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In the current drug research environment in academia and industry, cheminformatics 
and virtual screening methods are well established and integrated tools. Computational 
tools are used to predict a compound’s 3D structure, the 3D structure and function 
of a pharmacological target, ligand-target interactions, binding energies, and other 
factors essential for a successful drug. This includes molecular properties such as 
solubility, logP value, susceptibility to metabolism, cell permeation, blood brain barrier 
permeation, interaction with drug transporters and potential off-target effects. Given 
that approximately 40 million unique compounds are readily available for purchase, 
such computational modeling and filtering tools are essential to support the drug 
discovery and development process. The aim of all these calculations is to focus 
experimental efforts on the most promising candidates and exclude problematic 
compounds early in the project.

In this Research Topic on virtual activity predictions, we cover several aspects of this 
research area such as historical perspectives, data sources, ligand treatment, virtual 
screening methods, hit list handling and filtering.
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Design, Synthesis, and Evaluation of
Ribose-Modified Anilinopyrimidine
Derivatives as EGFR Tyrosine Kinase
Inhibitors
Xiuqin Hu 1, Disha Wang 1, Yi Tong 1, Linjiang Tong 2, Xia Wang 1, Lili Zhu 1, Hua Xie 2,

Shiliang Li 1, You Yang 1* and Yufang Xu 1*

1 Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology,

Shanghai, China, 2Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of

Materia Medica, Chinese Academy of Sciences, Shanghai, China

The synthesis of a series of ribose-modified anilinopyrimidine derivatives was efficiently

achieved by utilizing DBU or tBuOLi-promoted coupling of ribosyl alcohols with

2,4,5-trichloropyrimidine as key step. Preliminary biological evaluation of this type of

compounds as new EGFR tyrosine kinase inhibitors for combating EGFR L858R/T790M

mutant associated with drug resistance in the treatment of non-small cell lung cancer

revealed that 3-N-acryloyl-5-O-anilinopyrimidine ribose derivative 1a possessed potent

and specific inhibitory activity against EGFR L858R/T790M over WT EGFR. Based upon

molecular docking studies of the binding mode between compound 1a and EGFR, the

distance between the Michael receptor and the pyrimidine scaffold is considered as an

important factor for the inhibitory potency and future design of selective EGFR tyrosine

kinase inhibitors against EGFR L858R/T790M mutants.

Keywords: EGFR, tyrosine kinase inhibitors, anilinopyrimidine, glycosides, carbohydrate-based drugs

INTRODUCTION

Epidermal growth factor receptor (EGFR), a transmembrane protein with tyrosine kinase activity,
is essential for cell growth, differentiation, migration, adhesion, and proliferation under normal
physiological conditions (Gschwind et al., 2004). However, overexpression of EGFR has been
associated with tumor growth and progression in a variety of cancers including non-small cell
lung cancer (NSCLC), head and neck squamous cell carcinoma, and pancreatic cancer (Huang and
Harari, 1999; Kris et al., 2003; Moore et al., 2007; Harrington et al., 2009). Therefore, regulation of
EGFR has been deemed as an important strategy for the development of cancer therapy (Huang
and Harari, 1999; Gschwind et al., 2004; Steuer et al., 2015).

First-generation EGFR tyrosine kinase inhibitors (TKIs) such as gefitinib and erlotinib
that possess a 4-anilinoquinazoline scaffold, reversibly inhibit EGFR mutants (L858R and
delE746_A750) as well as wild-type (WT) EGFR, resulting in significant disease control of patients
with NSCLC (Figure 1) (Cohen et al., 2005; Cheng et al., 2016). However, drug resistance driven by
activating mutation of the gatekeeper T790M residue in which the threonine group is replaced with
the methionine moiety, greatly counteracted the clinical efficiency of first-generation TKIs against
NSCLC (Ozvegy-Laczka et al., 2005; Balak et al., 2006; De Luca et al., 2008; Pao and Chmielecki,
2010). To address this issue, the irreversible EGFR TKIs (afatinib, osimertinib, WZ4002, and
CO-1686) which contain a Michael acceptor moiety for binding covalently to the thiol group of

5
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FIGURE 1 | Structures of three generations of EGFR tyrosine kinase inhibitors.

Cys797 in the ATP binding domain of EGFR, were developed
to treat NSCLC via the efficient inhibition of EGFR mutants
(Figure 1; Castellanos and Horn, 2015). Among them, second-
generation TKIs such as afatinib potently inhibited both
EGFR mutants (L858R/T790M) and WT-EGFR without mutant
selectivity, thereby leading to side effects such as rash and
diarrhea (Dungo and Keating, 2013). In contrast, third-
generation TKIs such as osimertinib, WZ4002, and CO-1686
bearing an anilinopyrimidine core, showed high potency and
selectivity for EGFR L858R/T790M over WT EGFR, therefore
serving as mutant-selective TKIs targeting EGFR mutants
involved in NSCLC (Zhou et al., 2009; Walter et al., 2013; Cross
et al., 2014; Finlay et al., 2014; Gray and Haura, 2014).

Considering the drug resistance is rapidly emerging for
third-generation TKIs (Eberlein et al., 2015; Niederst et al.,
2015; Piotrowska et al., 2015; Thress et al., 2015), design of
EGFR inhibitors with new structural skeletons could lead to the
discovery of novel types of TKIs against EGFR mutants such as
the triple mutant L858R/T790M/C797S (Günther et al., 2016,
2017; Jia et al., 2016; Juchum et al., 2017; Park et al., 2017).
Based on the fact that most commercially available TKIs are
ATP-competitive inhibitors for binding at the catalytic domain
of the EGFR tyrosine kinase (Traxler and Furet, 1999; Grünwald
and Hidalgo, 2003; Normanno et al., 2003), we envisioned that
replacement of the phenyl ring on the right side of WZ4002 with
a chiral ribosyl moiety would provide compound 1 as a novel
type of carbohydrate-based EGFR TKI against the drug resistance
involved in NSCLC (Figure 2). Here we report the synthesis,
preliminary biological evaluation and molecular docking studies
of ribose-containing anilinopyrimidine derivatives as EGFR TKIs
against EGFR L858R/T790M.

MATERIALS AND METHODS

Commercial reagents were used without further purification
except where noted. Solvents were dried and redistilled prior

to use in the usual way. All reactions were performed in oven-
dried glassware with magnetic stirring under an inert atmosphere
unless noted otherwise. Analytical thin layer chromatography
(TLC) was performed on precoated plates of Silica Gel (0.25–
0.3mm, Shanghai, China). The TLC plates were visualized with
UV light and by staining with sulfuric acid-ethanol solution.
Silica gel column chromatography was performed on Silica
Gel AR (100–200 mesh, Shanghai, China). NMR spectra were
measured with a Bruker Avance III 400 or Bruker Avance III
500 spectrometer. The 1H and 13C NMR spectra were calibrated
against the residual proton and carbon signals of the solvents as
internal references (CDCl3: δH = 7.26 ppm and δC = 77.2 ppm;
CD3OD: δH = 3.31 ppm and δC = 49.0 ppm). Multiplicities are
quoted as singlet (s), broad singlet (br s), doublet (d), doublet of
doublets (dd), triplet (t), or multiplet (m). All NMR chemical
shifts (δ) were recorded in ppm and coupling constants (J)
were reported in Hz. Mass spectra were recorded on an Agilent
Technologies 6120 or LCT Premier XE FTMS instrument.

1,2-O-Isopropylidene-3-N-acryloyl-3-
deoxy-5-O-(2,5-dichloropyrimidin-4-yl)-α-
D-ribofuranoside 7
To a solution of compound 5 (0.60 g, 2.47 mmol) in anhydrous
CH2Cl2 (30mL) at room temperature, was added DBU (1.48mL,
5.94 mmol) and 2,4,5-trichloropyrimidine 6 (0.57mL, 4.94
mmol). After stirring at room temperature for 2 h, the reaction
mixture was diluted with saturated aqueous NH4Cl, and
extracted with CH2Cl2. The organic layer was washed with brine,
dried over Na2SO4, and concentrated in vacuo. The residue was
purified by silica gel chromatography (petroleum ether/EtOAc:
80/1) to give 7 (0.88 g, 92%) as a pale yellow syrup: 1HNMR (400
MHz, CDCl3) δ 8.30 (s, 1H), 6.29 (dd, J = 1.2, 17.2Hz, 1H), 6.12
(dd, J = 10.4, 17.2Hz, 1H), 6.07 (d, J = 8.8Hz, 1H, NH), 5.90 (d,
J = 3.6Hz, 1H, H-1), 5.69 (dd, J = 1.2, 10.4Hz, 1H), 4.73 (dd,
J = 2.4, 12.0Hz, 1H), 4.66 (t, J = 4.0Hz, 1H), 4.61–4.55 (m, 2H),
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FIGURE 2 | Design of novel EGFR tyrosine kinase inhibitors.

4.16 (m, 1H), 1.57 (s, 3H), 1.35 (s, 3H); 13C NMR (100 MHz,
CDCl3) δ 165.4, 165.3, 157.4, 157.2, 130.1, 128.0, 117.0, 113.0,
104.7, 79.1, 78.2, 67.3, 52.1, 26.8, 26.5; ESI-MS (ESI) m/z calcd
for C15H17O5N3Cl2Na [M+ Na]+ 412.0, found 412.0.

1,2-O-Isopropylidene-3-N-acryloyl-3-
deoxy-5-O-[5-chloro-2-N-(2-methoxy-4-(4-
methylpiperazin-1-yl)phenyl)pyrimidin-4-
yl]-α-D-ribofuranoside 1a
To a solution of compound 7 (80mg, 0.21 mmol) and aniline
derivative 8 (91mg, 0.41 mmol) in isobutanol (3mL), was added
TFA (0.12mL, 1.55 mmol). The mixture was heated to 100◦C
and stirred for 5 h. After cooling down to room temperature,
the mixture was quenched with Et3N (3mL) and concentrated
in vacuo to give a residue, which was purified by silica gel column
chromatography (CH2Cl2/MeOH: 30/1) to give 1a (82mg, 69%)
as a pale yellow powder: 1H NMR (400 MHz, CDCl3) δ 8.10 (d,
J = 8.8Hz, 1H), 8.08 (s, 1H), 7.35 (br s, 1H), 6.56 (dd, J = 2.4,
8.8Hz, 1H), 6.52 (d-like, J = 2.4Hz, 1H), 6.30 (dd, J = 1.2,
17.2Hz, 1H), 6.11 (m, 2H), 5.91 (d, J = 3.6Hz, 1H, H-1), 5.67
(dd, J = 1.2, 10.4Hz, 1H), 4.66 (m, 2H), 4.59–4.49 (m, 3H), 4.22
(m, 1H), 3.86 (s, 3H), 3.16 (t-like, J = 5.2Hz, 4H), 2.58 (t-like,
J = 5.2Hz, 4H), 2.34 (s, 3H), 1.58 (s, 3H), 1.35 (s, 3H); 13C
NMR (100MHz, CDCl3) δ 165.4, 164.1, 157.9, 156.5, 149.2, 147.5,
130.2, 127.8, 122.0, 120.0, 112.9, 108.3, 106.2, 104.8, 100.6, 79.1,
78.2, 66.6, 55.8, 55.3, 52.7, 50.2, 46.2, 26.8, 26.5; HRMS (ESI) m/z
calcd for C27H36O6N6ClNa [M+H]+ 575.2385, found 575.2385.

3-N-Acryloyl-3-deoxy-5-O-[5-chloro-2-N-
(2-methoxy-4-(4-methylpiperazin-1-
yl)phenyl)pyrimidin-4-yl]-D-ribofuranose 1b
A solution of compound 1a (58mg, 0.10 mmol) in TFA/acetic
acid/water (1/15/4, v/v/v, 5mL) was stirred at 70◦C for 7 h.
Concentration in vacuo and elution through reverse phase C-
18 column (H2O/MeOH: 2/3) provided 1b (44mg, 83%) as a
pale yellow syrup: 1H NMR (400 MHz, CD3OD) δ 8.07 (s,
1H), 8.05 (s, 2.4H), 7.92 (m, 3.4H), 6.67 (d-like, J = 2.4Hz,
3.4H), 6.58 (dd, J = 2.8, 8.8Hz, 3.4H), 6.35 (m, 3.4H), 6.21 (m,
3.4H), 5.67 (m, 3.4H), 5.38 (d, J = 4.0Hz, 1H), 5.22 (s, 2.4H),
4.67 (m, 2.4H), 4.58 (m, 3.4H), 4.49 (m, 4.4H), 4.34–4.24 (m,

4.4H), 4.00 (d-like, J = 4.4Hz, 2.4H), 3.87 (s, 10.2H), 3.78 (m,
6.8H), 3.58 (m, 6.8H), 3.26 (m, 6.8H), 3.03 (m, 6.8H), 2.96 (s,
10.2H); HRMS (ESI) m/z calcd for C24H32O6N6ClNa [M+H]+

535.2072, found 535.2079.

2,3-O-Isopropylidene-5-O-(2,5-
dichloropyrimidin-4-yl)-α-D-ribofuranosyl
acrylamide 14
To a solution of compound 13 (147mg, 0.60 mmol) in
anhydrous CH2Cl2 (25mL) at room temperature, was added
DBU (0.21mL, 1.42 mmol) and 2,4,5-trichloropyrimidine 6

(0.12mL, 1.07 mmol). After stirring at room temperature for 2 h,
the reaction mixture was diluted with saturated aqueous NH4Cl,
and extracted with CH2Cl2. The organic layer was washed
with brine, dried over Na2SO4, and concentrated in vacuo. The
residue was purified by silica gel chromatography (petroleum
ether/EtOAc: 5/1) to give 14 (217mg, 93%) as a colorless syrup:
1H NMR (400 MHz, CDCl3) δ 8.36 (s, 1H), 6.58 (d, J = 9.2Hz,
1H, NH), 6.32 (dd, J = 1.2, 17.2Hz, 1H), 6.15 (dd, J = 10.4,
17.2Hz, 1H), 6.08 (dd, J = 4.0, 9.2Hz, 1H, H-1), 5.72 (dd,
J = 1.2, 10.4Hz, 1H), 4.86 (d-like, J = 6.0Hz, 1H), 4.82 (dd,
J = 4.4, 6.0Hz, 1H), 4.55 (m, 2H), 4.45 (t, J = 2.8Hz, 1H), 1.57
(s, 3H), 1.38 (s, 3H); 13CNMR (100MHz, CDCl3) δ 165.1, 165.0,
157.7, 157.4, 130.6, 128.2, 116.8, 113.4, 82.3, 81.6, 79.7, 79.4, 70.4,
26.4, 24.8; HRMS (ESI) m/z calcd for C15H17O5N3Cl2Na [M +

Na]+ 412.0443, found 412.0448.

5-O-[5-Chloro-2-N-(2-methoxy-4-(4-
methylpiperazin-1-yl)phenyl)pyrimidin-4-
yl]-D-ribofuranosyl
acrylamide 1c
To a solution of compound 14 (58mg, 0.15 mmol) and aniline
derivative 8 (66mg, 0.30 mmol) in isobutanol (3mL), was added
TFA (0.084mL, 1.13 mmol). The mixture was heated to 100◦C
and stirred for 5 h. After cooling down to room temperature, the
mixture was quenched with Et3N (3mL) and concentrated in
vacuo to give a residue, which was purified by silica gel column
chromatography (CH2Cl2/MeOH: 30/1) to give 15 (60mg, 70%)
as a pale yellow oil: HRMS (ESI) m/z calcd for C27H36O6N6Cl
[M + H]+ 575.2385, found 575.2383. A solution of compound
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15 (85mg, 0.15 mmol) in TFA/acetic acid/water (1/20/4, v/v/v,
4mL) was stirred at 50◦C for 5 h. Concentration in vacuo and
elution through reverse phase C-18 column (H2O/MeOH: 2/3)
provided 1c (64mg, 80%) as a pale yellow syrup. 1c (α): 1HNMR
(400 MHz, CD3OD) δ 8.06 (s, 1H), 7.88 (d, J = 8.8Hz, 1H), 6.63
(d-like, J = 2.4Hz, 1H), 6.53 (dd, J = 2.8, 8.8Hz, 1H), 6.34 (dd,
J = 10.0, 17.2Hz, 1H), 6.27 (dd, J = 2.0, 17.2Hz, 1H), 5.83 (d,
J = 4.4Hz, 1H, H-1), 5.70 (dd, J = 2.0, 10.0Hz, 1H), 4.57 (dd,
J = 3.2, 12.0Hz, 1H), 4.40 (dd, J = 4.0, 11.6Hz, 1H), 4.25 (m,
3H), 3.85 (s, 3H), 3.16 (t, J = 4.8Hz, 4H), 2.61 (t, J = 4.8Hz,
4H), 2.34 (s, 3H); 13C NMR (100 MHz, CD3OD) δ 168.0, 165.6,
159.5, 157.3, 151.6, 148.8, 132.1, 128.1, 123.0, 122.3, 109.3, 106.7,
101.9, 81.9 (C-1), 81.5, 73.3, 71.8, 68.2, 56.4, 55.8, 50.2, 45.6;
1c (β): 1H NMR (400 MHz, CD3OD) δ 8.05 (s, 1H), 7.87 (d,
J = 8.4Hz, 1H), 6.65 (d-like, J = 2.4Hz, 1H), 6.54 (dd, J = 2.4,
8.8Hz, 1H), 6.23 (m, 2H), 5.67 (dd, J = 4.8, 6.8Hz, 1H), 5.48 (d,
J = 4.4Hz, 1H, H-1), 4.58 (dd, J = 3.6, 12.0Hz, 1H), 4.41 (dd,
J = 4.8, 12.0Hz, 1H), 4.24–4.14 (m, 2H), 4.03 (t, J = 4.8Hz, 1H),
3.84 (s, 3H), 3.76 (m, 2H), 3.57 (m, 2H), 3.23 (m, 2H), 3.00 (m,
2H), 2.93 (s, 3H); HRMS (ESI) m/z calcd for C24H32O6N6Cl [M
+H]+ 535.2072, found 535.2087.

5-O-tert-Butyldiphenylsilyl-3-O-(2,5-
dichloropyrimidin-4-yl)-2-O-tert-
butyldimethylsilyl-β-D-ribofuranosyl
azide 21
To a solution of compound 19 (0.86 g, 1.63 mmol) in anhydrous
CH2Cl2 (25mL) at room temperature, was added tBuOLi (1.83 g,
22.82 mmol) and 2,4,5-trichloropyrimidine 6 (0.37mL, 3.26
mmol). After stirring under reflux for 36 h, the reaction mixture
was diluted with saturated aqueous NH4Cl, and extracted with
CH2Cl2. The organic layer was washed with brine, dried over
Na2SO4, and concentrated in vacuo. The residue was purified
by silica gel chromatography (petroleum ether/EtOAc: 80/1) to
give 21 (0.88 g, 80%) as a pale yellow syrup: 1H NMR (400 MHz,
CDCl3) δ 8.34 (s, 1H), 7.71–7.67 (m, 4H), 7.45–7.34 (m, 6H),
5.66 (t, J = 4.8Hz, 1H, H-3), 5.25 (d, J = 3.6Hz, 1H, H-1),
4.40 (dd, J = 3.6, 7.6Hz, 1H), 4.33 (t, J = 4.4Hz, 1H), 3.91 (dd,
J= 4.0, 11.6Hz, 1H), 3.84 (dd, J= 3.6, 11.6Hz, 1H), 1.09 (s, 9H),
0.75 (s, 9H), 0.05 (s, 3H), −0.15 (s, 3H); HRMS (ESI) m/z calcd
for C31H42O4N5Cl2Si2 [M+H]+ 674.2152, found 674.2155.

5-O-tert-Butyldiphenylsilyl-3-O-[5-chloro-
2-N-(2-methoxy-4-(4-methylpiperazin-1-
yl)phenyl)pyrimidin-4-yl]-2-O-tert-
butyldimethylsilyl-β-D-ribofuranosyl
azide 22
To a solution of compound 21 (0.53 g, 0.79 mmol) and aniline
derivative 8 (0.70 g, 3.16 mmol) in isobutanol (12mL), was added
TFA (1.47mL, 19.75 mmol). The mixture was heated to 100◦C
and stirred for 5 h. After cooling down to room temperature, the
mixture was quenched with Et3N (8mL) and concentrated in
vacuo to give a residue, which was purified by silica gel column
chromatography (CH2Cl2/MeOH: 30/1) to give 22 (0.47 g, 69%)
as a white powder: 1H NMR (400 MHz, CDCl3) δ 8.12 (s, 1H),

8.08 (d, J = 9.2Hz, 1H), 7.69 (dd, J = 1.6, 7.6Hz, 2H), 7.63
(dd, J = 1.6, 8.0Hz, 2H), 7.43–7.25 (m, 6H), 6.54 (m, 2H), 5.58
(dd, J = 4.4, 7.2Hz, 1H, H-3), 5.29 (d, J = 1.6Hz, 1H, H-1),
4.47 (m, 1H), 4.38 (dd, J = 2.0, 4.4Hz, 1H), 4.02 (dd, J = 2.8,
11.6Hz, 1H), 3.88 (s, 3H), 3.83 (dd, J = 3.6, 12.0Hz, 1H), 3.17
(t, J = 5.2Hz, 4H), 2.61 (t, J = 4.8Hz, 4H), 2.37 (s, 3H), 1.06 (s,
9H), 0.78 (s, 9H), −0.07 (s, 3H), −0.25 (s, 3H); 13C NMR (100
MHz, CDCl3) δ 163.6, 157.9, 156.9, 149.3, 147.6, 135.8, 135.7,
133.1, 133.0, 129.9, 127.9, 127.8, 121.8, 120.1, 108.4, 106.1, 100.6,
95.8, 81.6, 74.7, 74.2, 62.8, 55.8, 55.3, 50.1, 46.3, 26.9, 25.6, 19.3,
18.0, −4.9, −5.4; HRMS (ESI) m/z calcd for C43H60O5N8ClSi2
[M+H]+ 859.3914, found 859.3920.

5-O-tert-Butyldiphenylsilyl-3-O-[5-chloro-
2-N-(2-methoxy-4-(4-methylpiperazin-1-
yl)phenyl)pyrimidin-4-yl]-2-O-tert-
butyldimethylsilyl-α-D-ribofuranosyl
acrylamide 23
A mixture of compound 22 (190mg, 0.22 mmol) and Pd/C
(50mg, 10%) in EtOH (7mL) was stirred under an atmosphere of
H2 at room temperature for overnight. The mixture was filtered
through celite, washed with EtOH and concentrated in vacuo to
afford the corresponding amine for the next step without further
purification. To a solution of the resulting amine in CH2Cl2
(7mL) at room temperature, was added DCC (69mg, 0.33
mmol), DMAP (41mg, 0.33 mmol), and acrylic acid (0.061mL,
0.89 mmol). After stirring at room temperature for 4 h, the
mixture was concentrated in vacuo to give a residue, which was
purified by silica gel column chromatography (CH2Cl2/MeOH:
30/1) to afford 23 (76mg, 39% over two steps) as a pale yellow
syrup: 1H NMR (400 MHz, CDCl3) δ 8.17 (s, 1H), 8.09 (d,
J = 8.8Hz, 1H), 7.71 (m, 4H), 7.43–7.36 (m, 6H), 7.12 (d,
J = 9.2Hz, 1H), 6.53 (d, J = 2.4Hz, 1H), 6.42 (m, 1H), 6.36
(dd, J = 1.2, 16.8Hz, 1H), 6.14 (dd, J = 10.4, 17.2Hz, 1H), 6.02
(d-like, J = 4.8Hz, 1H), 5.98 (dd, J = 6.0, 9.2Hz, 1H), 5.70 (dd,
J = 1.2, 10.4Hz, 1H), 4.72 (dd, J = 5.2Hz, 1H), 4.36 (br s, 1H),
3.86 (m, 5H), 3.07 (br s, 4H), 2.54 (br s, 4H), 2.35 (s, 3H), 1.11 (s,
9H), 0.68 (s, 9H), −0.02 (s, 3H), −0.09 (s, 3H); 13C NMR (100
MHz, CDCl3) δ 165.9, 164.0, 157.8, 157.0, 149.3, 147.6, 135.8,
135.5, 133.4, 132.5, 131.0, 130.1, 130.0, 128.9, 128.0, 127.4, 121.5,
120.0, 108.1, 105.8, 100.4, 82.2, 80.4, 77.4, 71.0, 64.2, 55.7, 55.2,
49.9, 46.2, 27.0, 25.4, 19.5, 17.7, −5.1, −5.3; HRMS (ESI) m/z
calcd for C46H64O6N6ClSi2 [M+H]+ 887.4114, found 887.4116.

3-O-[5-Chloro-2-N-(2-methoxy-4-(4-
methylpiperazin-1-yl)phenyl)pyrimidin-4-
yl]-2-O-tert-butyldimethylsilyl-α-D-
ribofuranosyl acrylamide 1d
To a solution of compound 23 (91mg, 0.11 mmol) in pyridine
(3mL) at room temperature, was added HF·pyridine (0.19mL).
After stirring at room temperature for overnight, the mixture
was poured into saturated aqueous NaHCO3 and extracted with
CH2Cl2. The combined organic layers were washed with brine,
dried over Na2SO4, and concentrated in vacuo. The residue was
purified by silica gel column chromatography (CH2Cl2/MeOH:
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20/1) to afford 1d (40mg, 68%) as a pale yellow syrup: 1H NMR
(400 MHz, CDCl3) δ 8.15 (s, 1H), 8.02 (d, J = 8.4Hz, 1H), 7.71
(m, 4H), 7.30 (br s, 1H), 7.06 (d, J = 8.4Hz, 1H), 6.54 (m, 2H),
6.33 (d-like, J = 17.2Hz, 1H), 6.12 (dd, J = 10.0, 16.8Hz, 1H),
5.90 (dd, J = 6.0, 8.4Hz, 1H), 5.73 (m, 2H), 4.51 (t, J = 5.6Hz,
1H), 4.30 (br s, 1H), 3.87 (s, 3H), 3.82 (d-like, J = 12.4Hz, 1H),
3.71 (d-like, J = 11.2Hz, 1H), 3.18 (br s, 4H), 2.61 (br s, 4H),
2.37 (s, 3H), 0.72 (s, 9H), −0.02 (s, 3H), −0.10 (s, 3H); 13C
NMR (100MHz, CDCl3) δ 166.1, 163.8, 157.9, 157.0, 149.6, 147.5,
130.9, 127.7, 121.9, 120.5, 108.6, 106.1, 100.8, 82.1, 80.6, 76.3,
70.9, 62.5, 55.8, 55.0, 49.6, 45.7, 25.5, 17.9, −5.0, −5.2; HRMS
(ESI) m/z calcd for C30H46O6N6ClSi [M+H]+ 649.2937, found
649.2940.

Kinase Assay
Kinases domain of EGFR WT and EGFR L858R/T790M were
expressed using the Bac-to-BacTM baculo virus expression
system (Invitrogen, Carlsbad, CA, USA) and purified in Ni-
NTA columns (QIAGEN Inc., Valencia, CA, USA). The kinase
activity was evaluated with enzyme-linked immunosorbent assay
(ELISA). Briefly, 20µg/mL Poly (Glu, Tyr) 4:1 (Sigma, St. Louis,
MO) was precoated in 96-well ELISA plates as substrate. After
adding 50 µL of 10 µmol/L ATP solution which was diluted in
kinase reaction buffer (50mM HEPES pH 7.4, 20mM MgCl2,
0.1mM MnCl2, 0.2mM Na3VO4, 1mM DTT), the plate was
treated with 1 µL of indicated concentrations of compounds
(dissolved inDMSO) per well. Experiments at each concentration
were performed in duplicate. Reaction was initiated by adding
tyrosine kinase diluted in kinase reaction buffer. After incubation
at 37◦C for 1 h, the wells were washed three times with
phosphate buffered saline (PBS) containing 0.1% Tween 20 (T-
PBS). One hundred microliters of anti-phosphotyrosine (PY99)
antibody (1:1,000, Santa Cruz Biotechnology, Santa Cruz, CA)
diluted in T-PBS containing 5 mg/mL BSA was added and the
plate was incubated at 37◦C for 30min. After the plate was
washed three times, 100 µL horseradish peroxidase-conjugated
goat anti-mouse IgG (1:2,000, Calbiochem, SanDiego, CA)
was added and the plate was incubated at 37◦C for 30min.
The plate was washed, added with 100 µL citrate buffer
(0.1M, pH 5.5) containing 0.03% H2O2. Then 2 mg/mL o-
phenylenediamine was added, and samples were incubated
at room temperature until color emerged. The reaction was
terminated immediately by adding 50 µL of 2M H2SO4. Plate
was read using a multiwell spectrophotometer (VERSAmaxTM,
Molecular Devices, Sunnyvale, CA, USA) at 492 nm. The
inhibitory rate (%) was calculated with the formula: [1 − (A492
treated/A492 control)]× 100%. IC50 values were calculated from
the inhibitory curves.

Molecular Docking
EGFRT790M/L858R structure (PDB: 3IKA) was retrieved from the
Protein Data Bank and covalent docking was performed with
maestro (Schrödinger, Inc., version 10.2). Compound 1a was
docked into the EGFR protein as an irreversible inhibitor using
Covalent Docking module. The docking procedure was validated
by re-docking the co-crystallized ligand WZ4002 into the ATP

binding site of EGFRT790M/L858R structure. The details of the
docking workflow are listed below:

(1) Protein was prepared using the “Protein Preparation
Wizard” workflow. All water molecules were removed from
the structure of the complex. Hydrogen atoms and charges
were added during a brief relaxation. After optimizing the
hydrogen bond network, the crystal structure wasminimized
using the OPLS_2005 force field with the maximum root
mean square deviation (RMSD) value of 0.3 Å.

(2) The ligand was prepared with LigPrep module in Maestro,
including adding hydrogen atoms, ionizing at a pH range
from 5.0 to 9.0, and producing the corresponding low-energy
3D structure.

(3) Pose prediction mode of Covalent Docking module was
adopted to dock the molecules into the ATP-binding site
with the default parameters. The center of the grid box
was defined with the intrinsic ligand and Michael addition
reaction type was chosen. The top-ranking poses of molecule
1a were retained.

RESULT AND DISCUSSION

The synthesis of 3-N-acryloyl-5-O-anilinopyrimidine ribose
derivatives 1a and 1b commenced with 3-amino ribose derivative
3 that can be readily prepared from D-xylose 2 in 41% yield
over six steps (Scheme 1; Shie et al., 2007). Protection of
the primary hydroxyl group in 3 with TBDPSCl followed by
condensation with acryloyl chloride using Et3N as base gave
ribose derivative 4 in 92% yield (two steps). Treatment of 4 with
HF·pyridine afforded alcohol 5 in 71% yield. When 5 was reacted
with 2,4,5-trichloropyrimidine 6 in the presence of K2CO3 or
DIPEA, almost no desired product was observed. Exhilaratingly,
nucleophilic reaction of 5 with 6 employing stronger base (DBU)
as promoter proceeded smoothly to provide ribose derivative 7
in excellent yield (92%). Subjection of 7 to the known aniline
derivative 8 (Han et al., 2014) under the promotion of TFA in
isobutanol at 100◦Cdelivered 1a in 69% yield. Removal of the 1,2-
O-isopropylidene group in 1a with TFA in acetic acid and water
at 70◦C produced 1b in 83% yield.

For the synthesis of 1-N-acryloyl-5-O-anilinopyrimidine
ribose derivative 1c, β-ribosyl azide 10was conveniently prepared
from D-ribose 9 in three steps and 53% yield according to the
procedures described in the literature (Scheme 2; Bonache et al.,
2009). The acetyl group in 10 was then replaced with TBS group
to give compound 11 in 85% yield. Hydrogenolysis of the azide
group in 11 over Pd/C followed by condensation with acrylic acid
in the presence of DCC and DMAP afforded a mixture of ribose
derivative 12 in 43% yield (α/β = 1:1; α-anomer: δH = 6.00 ppm,
δC = 81.4 ppm; β-anomer: δH = 5.95 ppm, δC = 87.2 ppm),
which were easily separated by silica gel column chromatography
(Numao et al., 1981; Bonache et al., 2009). After removal of the
TBS group in 12α, the resulting alcohol 13 reacted with 6 in the
presence of DBU to produce ribose derivative 14 in an excellent
93% yield. TFA-promoted reaction of 14 with aniline 8 led to 15

in 70% yield as a mixture of α/β anomers probably arising from
the anomerization of the 1-N-acryloyl ribose derivative under
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SCHEME 1 | Synthesis of 3-N-acryloyl-5-O-anilinopyrimidine ribose derivatives 1a and 1b.

SCHEME 2 | Synthesis of 1-N-acryloyl-5-O-anilinopyrimidine ribose derivative 1c.
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strong acidic conditions (Boschelli et al., 1989). Finally, acidic
cleavage of the isopropylidene group of 15 in the mixture of
TFA/HOAc/water provided 1c in 80% yield.

Synthetic work toward 1-N-acryloyl-3-O-anilinopyrimidine
ribose derivative 1d started from replacement of the 2,3-
isopropylidene group of azide 10 with 2,3-orthoester group by
treatment with TFA and subsequent protection with triethyl
orthoacetate under the catalysis of TsOH·H2O, affording azide 16

in 76% yield over two steps (Scheme 3). Substitution of the acetyl
group in 16with TBDPS group and subsequent acidic cleavage of
the orthoester group led to an inseparable mixture of 2-acetyl and
3-acetyl ribose derivatives 17 and 18 (77% yield over three steps).
Treatment of the mixture of 17 and 18 with TBSCl followed by
removal of the acetyl groups gave alcohols 19 and 20 in 83% yield,
allowing for the separation of 3-hydroxyl ribose derivative 19

from 2-hydroxyl ribose derivative 20 (19:20= 3:2). Nucleophilic

SCHEME 3 | Synthesis of 1-N-acryloyl-3-O-anilinopyrimidine ribose derivative 1d.
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attack of 19 on 6 required stronger basic conditions to promote
the reaction due to the steric hindrance of the silyl groups on
19. As such, excess tBuOLi in dichloromethane under reflux
was employed for this conversion, providing ribose derivative
21 in 80% yield. TFA-promoted coupling of 21 with aniline 8

generated ribose derivative 22 (69%), which was then subjected
to hydrogenolysis over Pd/C and subsequent condensation with
acrylic acid to afford ribose derivative 23 as single anomer
in moderate yield (39% over two steps). Exposure of 23 to
HF·pyridine in pyridine resulted in cleavage of the TBDPS group
without affecting the TBS group, providing 1d in 68% yield.

To determine whether the Michael acceptor played
a significant role in the inhibitory activity of ribose-
modified pyrimidine derivatives against EGFR tyrosine
kinase, 1-azide-5-O-anilinopyrimidine ribose derivative 24,
1-azide-3-O-anilinopyrimidine ribose derivative 25, and 5-O-
anilinopyrimidine ribose derivative 26 were readily synthesized
following the similar procedures described for 1a-1d (Table 1;
see Supplementary Material for details).

As shown in Table 1, compounds 1a and 1b containing
3-N-acryloyl-5-O-anilinopyrimidine ribosyl moiety potently
inhibited EGFR L858R/T790M mutant with IC50 values of
0.62 and 2.64µM, revealing specific inhibitory activity for
EGFR L858R/T790M over WT EGFR, although they are not
comparable to the positive controls osimertinib (IC50 = 1.5 nM
for EGFR L858R/T790M) and afatinib (IC50 = 3.7 nM for
EGFR L858R/T790M). In contrast, other compounds (1c, 1d,
and 24–26) bearing 5-O-anilinopyrimidine ribosyl moiety,
1-N-acryloyl-5-O-anilinopyrimidine ribosyl moiety, 1-N-
acryloyl-3-O-anilinopyrimidine ribosyl moiety, or their 1-azide
counterparts, showed no inhibitory activities against EGFR
tyrosine kinases.

In order to better understand the mechanism of this type
of compounds binding to EGFR T790M, molecular docking
was adopted to predict the binding mode of the representative
compound 1a. The docking procedure was validated in advance
by re-docking the co-crystallized ligand WZ4002 (Zhou et al.,
2009) into the ATP binding site of EGFR L858R/T790M
structure (PDB ID: 3IKA). The root mean square deviation
(RMSD) between the crystallographic and docked conformation
of WZ4002 is 0.57 Å (Figure S1), demonstrating that the
present docking procedure was feasible in generating the binding
conformation accurately. As expected based upon co-crystal
structure of the anilinopyrimidine-derived inhibitor WZ4002,
the anilinopyrimidine core of compound 1a forms a bidentate
hydrogen bonding interaction with the “hinge” residue Met793
(Figure 3). The chlorine substituent on the pyrimidine ring could
form hydrophobic contact with the mutant gatekeeper residue,
Met790. The aniline ring is oriented to form hydrophobic
interactions with Leu792 and Pro794 in the hinge region.
Moreover, the acrylamide group attached to the sugar ring of
compound 1a could form a covalent bond with Cys797 to achieve
irreversible binding. The sugar ring acts like a linker to tune
the orientation of the electrophilic acrylamide moiety that can
covalently alkylate the conserved cysteine residue Cys797. For
the 1,2-O-isopropylidene moiety in compound 1a, it could form
favorable vdW interactions with residues ARG841, ASN842,

TABLE 1 | In vitro inhibitory activities of ribose-modified pyrimidine derivatives

1a–1d and 24–26 against EGFR tyrosine kinase.

Compound R EGFR tyrosine kinase IC50 (µM)a

EGFR EGFRT790M/L858R

1a >10 0.6204 ± 0.1729

1b >10 2.6435 ± 1.8606

1c >10 >10

1d >10 >10

24 >10 >10

25 >10
>10

26 >10 >10

Osimertinibb 0.1586 ± 0.0428 0.0015 ± 0.0001

Afatinibb 0.00697 ± 0.00052 0.00374 ± 0.00035

aKinase activity assays were examined by using the ELISA-based EGFR-TK assay. Data

are averages of at least two independent determinations and reported as the mean ± SD

(standard deviation).
bReported data.
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FIGURE 3 | Docking pose of compound 1a in complex with the

EGFRT790M/L858R (PDB ID 3IKA). The EGFR kinase is shown as cartoon

(cyan) with the bound inhibitor in a stick representation (yellow). Key residues

are represented as cyan sticks. The expected hydrogen bonds are indicated

by red dashes.

and Thr854. Therefore, compound 1b without that protecting
group on the sugar ring, displayed less potent bioactivity against
EGFR T790M/L858R compared with compound 1a. Lacking of
the Michael receptor, compounds 24–26 are unable to form
covalent bond with Cys797 and thus displayed sharply decreased
inhibitory activity against EGFR T790M/L858R. Compound 1c

displayed no inhibitory activity of EGFR probably because of
the long distance between the Michael receptor and Cys797.
Although compound 1d also has an acrylamide group attached
to the sugar ring, it showed no inhibitory activity probably due to
the conformational alteration of compound 1d caused by the TBS
protecting group. Briefly, it could be concluded that the distance
between the Michael receptor and the pyrimidine scaffold has
a significant effect on the inhibitory potency of this type of
compounds. Employing the ribosyl moiety as a chiral building

block for modulating the distance between the Michael receptor
and the pyrimidine scaffold could pave a new avenue for future
design of EGFR inhibitors against EGFR mutants.

CONCLUSION

In summary, we have described a DBU- or tBuOLi-promoted
coupling of ribosyl alcohols with 2,4,5-trichloropyrimidine as
key step for the synthesis of a series of ribose-modified
anilinopyrimidine derivatives as EGFR TKIs. Preliminary
biological evaluation indicated that compound 1a displayed
potent inhibitory activity against EGFR L858R/T790M with
an IC50 value of 0.62µM, and good selectivity for EGFR
L858R/T790M over WT EGFR. Molecular docking studies
revealed that the inhibitory activities of this type of compounds
are largely influenced by the distance between the Michael
receptor and the pyrimidine scaffold. As a novel type of EGFR
inhibitor, the ribose-modified anilinopyrimidine derivative 1a

might be used as a promising lead compound for further
development of selective EGFR inhibitors to overcome EGFR
L858R/T790M resistance mutation.
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Cortisol synthase (CYP11B1) is the main enzyme for the endogenous synthesis of

cortisol and its inhibition is a potential way for the treatment of diseases associated with

increased cortisol levels, such as Cushing’s syndrome, metabolic diseases, and delayed

wound healing. Aldosterone synthase (CYP11B2) is the key enzyme for aldosterone

biosynthesis and its inhibition is a promising approach for the treatment of congestive

heart failure, cardiac fibrosis, and certain forms of hypertension. Both CYP11B1 and

CYP11B2 are structurally very similar and expressed in the adrenal cortex. To facilitate

the identification of novel inhibitors of these enzymes, ligand-based pharmacophore

models of CYP11B1 and CYP11B2 inhibition were developed. A virtual screening

of the SPECS database was performed with our pharmacophore queries. Biological

evaluation of the selected hits lead to the discovery of three potent novel inhibitors

of both CYP11B1 and CYP11B2 in the submicromolar range (compounds 8–10), one

selective CYP11B1 inhibitor (Compound 11, IC50 = 2.5µM), and one selective CYP11B2

inhibitor (compound 12, IC50 = 1.1µM), respectively. The overall success rate of this

prospective virtual screening experiment is 20.8% indicating good predictive power of

the pharmacophore models.

Keywords: cushing’s syndrome, wound healing, hypertension, congestive heart failure, myocardial fibrosis,

pharmacophore modeling, model validation, virtual screening

INTRODUCTION

Cortisol is a glucocorticoid hormone that modulates many processes in the body such as blood
sugar levels, immune system activity, metabolism of proteins, carbohydrates and fats, and bone
formation (Cain and Cidlowski, 2017). Hypercortisolism in an unwanted increase in the secretion
of cortisol and is the cause of many diseases such as Cushing’s syndrome, metabolic disorders,
and suppression of the immune system leading to delayed wound healing (Zhu et al., 2016).
Cushing’s syndrome is a condition that has symptoms like obesity, facial plethora, round face,
decreased libido, thin skin, and easy bruising, impaired growth in children, menstrual irregularities,
hypertension, hirsutism, depression, glucose intolerance, weakness, osteopenia, and nephrolithiasis
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GRAPHICAL ABSTRACT| Novel CYP11B1 and 2 inhibitors identified by virtual screening.

in more than 50% of clinically observed patients (Newell-Price
et al., 1998; Savage et al., 2001; Faggiano et al., 2003; Pecori Giraldi
et al., 2003). A tumor of the pituitary or adrenal gland is the main
reason for the over-secretion of cortisol. In most cases, a surgical
removal or radiation therapy of the tumor is not applied, and
instead the patients are treated with drugs (Tritos et al., 2011).
The use of glucocorticoid receptor antagonists for treating this
situation often comes with an increased secretion of cortisol,
potentially due to the pituitary feedbackmechanism (Orth, 1978).
An alternative treatment could be the reduction of cortisol
formation by inhibiting cytochrome P450 11B1. It catalyzes the
final step in the formation of cortisol by hydroxylating 11-
deoxycortisol in the zona fasciculate of adrenal cortex (Figure 1)
(Sayers, 1950). This mechanism of action is expected not to
cause the adverse effects observed for glucocorticoid receptor
antagonists (Nieman, 2002).

Aldosterone is a potent mineralocorticoid hormone, which
regulates blood pressure by increasing the reabsorption of
sodium at the distal convoluted tubule in the kidney. Under
normal conditions, aldosterone secretion is controlled by
the renin-angiotensin-aldosterone-system (RAAS). In case of
insufficient renal flow, excessive aldosterone is released by the
activation of the RAAS pathway (Young and Funder, 2000). The
increase in aldosterone levels causes an increase in blood volume

Abbreviations: kDa, kilodalton; CYP11B1, cytochrome p450 11B1; CYP11B2,
cytochrome p450 11B2; ACTH, adrenocorticotrophic hormone; RAAS, renin-
angiotensin-aldosterone-system; XVOL, exclusion volume; PAINS, pan-assay
interference compounds; PDB, protein data bank, RMSD, root mean square
deviation; Å, angstrom; Thr, threonine; Phe, phenylalanine; Ile, isoleucine; Trp,
tryptophan; Met, methionine; Ala, alanine; Arg, arginine; IC50, half maximal
inhibitory concentration; 2D, two dimensional; CAS, chemical abstract service; VS,
virtual screening; EtOH, ethyl alcohol; DMSO, dimethyl sulfoxide; min, minutes;
rpm, revolutions per minute; HPLC, high performance liquid chromatography;
HCl, hydrochloric acid; E.coli, Escherichia coli; NADPH, nicotinamide adenine
dinucleotide phosphate.

that elevates blood pressure. An unwanted increase in plasma
aldosterone levels results in various pathological conditions like
hyperaldosteronism, congestive heart failure, myocardial fibrosis,
cardiac hypertrophy, ventricular arrhythmia, and other adverse
effects through triggering cardiac fibroblasts (Ramires et al.,
1998; Brilla, 2000; Lijnen and Petrov, 2000; Briet and Schiffrin,
2010). CYP11B2 catalyzes the rate-limiting step in the formation
of aldosterone from corticosterone in the zona glomerulosa of
the adrenal cortex (Sayers, 1950; Lifton et al., 2001). The anti-
mineralocorticoid spironolactone is used to treat hypertension
and heart failure (Pitt et al., 1999). However, this therapy is
accompanied by severe antiandrogenic adverse effects (Soberman
and Weber, 2000). An alternative approach for the management
of congestive heart failure and hypertension would be the
inhibition of CYP11B2, probably leading to fewer adverse effects
(Azizi et al., 2013).

Both CYP11B1 and CYP11B2 are mitochondrial enzymes and
belong to the cytochrome P450 family. They use NADPH as a
cofactor (Guengerich, 2007). After moving to the mitochondrial
matrix, the enzymes length is reduced to 479 amino acids, of
which 450 (93%) amino acids are identical in both of them
(Belkina et al., 2001). The molecular mass of CYP11B1 is 50 kDa
and for CYP11B2 is 48.5 kDa (Ogishima et al., 1991). Although
their primary sequence is highly similar, they have different
functionalities (Belkina et al., 2001).

Several potent inhibitors of CYP11B1 and CYP11B2 have
been reported (Figure 2). Some of these compounds were
discovered using rational SAR studies and molecular modeling
approaches. In 2006, Ulmschneider et al. developed a ligand-
based pharmacophore model for CYP11B2 inhibitors by
superimposing previously synthesized active and inactive ligands
for CYP11B2 from their research group (Ulmschneider et al.,
2006). Their pharmacophore consisted of four points: three
ring centroids and an aromatic nitrogen. The model had a
steric inclusion area that mapped the active compounds and a
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FIGURE 1 | Catalytic cycle of the conversion of 11-deoxycortisol to cortisol by CYP11B1(Guengerich, 2007). (1) Transfer of an electron from NADPH reductase to the

heme iron resulting in the transformation of the ferric-form to the ferrous-form; (2) oxygen attachment to the ferrous-form producing an intermediate; (3) transfer of a

second electron from NADPH reductase to the heme iron resulting in a peroxo-iron intermediate; (4) transfer of a proton producing its protonated form; (5) attachment

of another proton to the intermediate and release of a water molecule producing a perferryl oxygen complex that immediately forms a free radical; (6) and (7) oxidation

of 11-deoxycortisol to cortisol.

FIGURE 2 | Structures of previously published CYP11B1 and CYP11B2 inhibitors (Yin et al., 2012; Emmerich et al., 2013; Gobbi et al., 2016).

steric exclusion area that was derived from inactive compounds.
They validated their pharmacophore model by designing

and synthesizing acenaphthalene-based inhibitors of CYP11B2,
followed by in vitro testing. In another study performed by
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Lucas et al. (2008a), the authors designed and synthesized
potential lead compounds for CYP11B2 inhibition with the help
of a ligand-based pharmacophoremodel containing hydrophobic
and hydrogen bond acceptor features. After the biological
testing, the compounds were docked into a homology model of
CYP11B2 (Lucas et al., 2008a). In 2011, the same group refined
their previous ligand-based pharmacophore hypothesis based
on diverse inhibitors. They added two hydrophobic features to
their previous pharmacophore. Their final pharmacophore had
four essential features, seven optional features, and five exclusion
spheres. The refined pharmacophore of this study was validated
by synthesizing and testing predicted inhibitors for CYP11B2
from the tetrahydropyrroloquinolinone scaffold, which led to
potent compounds (Lucas et al., 2011). In addition to this, Gobbi
et al. designed and synthesized several xanthone-based inhibitors
of CYP11B1 and CYP11B2 based on the pharmacophore models
by Lucas et al. (Lucas et al., 2011; Gobbi et al., 2013). The
rationally designed inhibitors of CYP11B1 and CYP11B2 had a
hydrophobic part in addition to the imidazolylmethyl ring, which
was assumed to form a complex with the heme iron of CYP11B1
and CYP11B2 enzymes. This complexation is believed to play
an important role for the inhibition of CYP11B1 and CYP11B2
enzymes (Gobbi et al., 2013).

All the above mentioned pharmacophore models have been
successfully used to optimize already known active compound
classes. However, none of them has been used to prospectively
screen large, chemically diverse 3D molecular databases and
identify novel active scaffolds. Our goal was therefore to create
and validate an in silico model for future virtual screening (VS)
experiments to find diverse inhibitors of either CYP11B1 or
CYP11B2 or both, which could be used as pharmacological
tool compounds. For this purpose, ligand-based pharmacophore
queries of CYP11B1 and CYP11B2 inhibitors were generated.
This method was chosen because of its frequently higher retrieval
of active hits compared to docking (Chen et al., 2009) and
because ligand-based models can often be better trained to
recognize structurally diverse compounds binding to the same
target compared to structure-based models (Schuster et al.,
2010).

WORKFLOW

Datasets
Modeling Dataset
Data sets for model development were collected from the
scientific literature (Table S1) (Dorr et al., 1984; Ulmschneider
et al., 2005a,b, 2006; Voets et al., 2005, 2006; Heim et al., 2008;
Lucas et al., 2008a,b, 2011; Adams et al., 2010; Roumen et al.,
2010; Hille et al., 2011a,b; Stefanachi et al., 2011; Zimmer et al.,
2011; Hu et al., 2012; Yin et al., 2012, 2013; Blass, 2013a,b;
Emmerich et al., 2013; Ferlin et al., 2013; Gobbi et al., 2013;
Meredith et al., 2013; Pinto-Bazurco Mendieta et al., 2013).
As training-set compounds it is very important to select those
compounds that are highly active, because VS commonly renders
hits that are less active than the training compounds (Scior et al.,
2012). For inactive compounds of the test set, a very high activity
cut-off value must be chosen so that it is justified to refine the

model according to the inactives. Therefore, the activity cut-off
for active compounds of the test set was an IC50 of less than
2µM and for inactive compounds, it was more than 100µM,
respectively. Finally, a test set of 386 active compounds (Dorr
et al., 1984; Ulmschneider et al., 2005a,b, 2006; Voets et al.,
2005, 2006; Heim et al., 2008; Lucas et al., 2008a,b, 2011; Adams
et al., 2010; Roumen et al., 2010; Hille et al., 2011a,b; Stefanachi
et al., 2011; Zimmer et al., 2011; Hu et al., 2012; Yin et al., 2012,
2013; Blass, 2013a,b; Emmerich et al., 2013; Ferlin et al., 2013;
Gobbi et al., 2013; Meredith et al., 2013; Pinto-Bazurco Mendieta
et al., 2013) was collected for the theoretical validation of the
models. This data set contained compounds with IC50s from
0.1 nM to 2µM. Since no compound with an IC50 > 100µM
was found in the literature, a decoy database representing the
test set of putatively inactive compounds was assembled for
theoretical validation purposes. Using the platform DecoyFinder
(Cereto-Massagué et al., 2012), which extracts decoys from
the ZINC (Irwin and Shoichet, 2005) database, 36 decoys per
compound were generated based on the active compounds in
the dataset. After removing duplicates, 15948 decoys remained
in the database. The 2D structures of all active compounds were
constructed in ChemBioDraw Ultra 14.0 (Cambridgesoft, 1986–
2015). For conformational analysis, LigandScout 3.12 (Wolber
and Langer, 2005) generated up to 500 conformers for each
compound in the dataset with OMEGA-BEST (Hawkins et al.,
2010; Hawkins and Nicholls, 2012) settings.

Pharmacophore Modeling
The espresso function of LigandScout was used to create ligand-
based pharmacophores (Krautscheid et al., 2014). This workflow
first assigns pharmacophore features to all of the conformations
of the training compounds. Then, the features of the two most
rigid training compounds are aligned to create intermediate
common feature pharmacophore models. These intermediate
models are ranked according to a selected scoring function.
In this study, the default scoring function pharmacophore fit
and atom overlap was used. The generated pharmacophore
models usually profit from manual refinement to optimize their
sensitivity (Equation 1) and specificity (Equation 2) (Vuorinen
et al., 2014). The sensitivity of models can be improved by
removing spatial restrictions, deleting features or marking them
as optional, and adjusting the size of the features depending on
the geometrical mapping of active compounds (Vuorinen et al.,
2014).

Sensitivity =
actives found by model

all actives in dataset
(1)

Specificity =
inactives not found by model

all inactives in dataset
(2)

Prospective Virtual Screening
For prospective model validation, the commercial SPECS
compound database was searched. The sd file containing
207976 compounds was downloaded from the SPECS webpage
(www.specs.net, April_2015). The conformational analysis was
performed with the same program and settings as the modeling
databases. VS of the SPECS database was performed using the
default settings of LigandScout 3.12.
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PAINS Filtering
Pan-assay interfering substances (PAINS) appear as frequent
hitters in many biological screening assays and are discussed as
possible false positive hits in VS experiments for various reasons
(Baell andHolloway, 2010). Therefore, PAINS filters were applied
to the virtual hits obtained by the pharmacophore models. For
this purpose, the sd files were submitted to the online server
FAF-Drugs3 (Lagorce et al., 2015).

Hit Selection
In order to select diverse virtual hits for biological evaluation,
a total number of 50 chemical clusters were generated from
the hits obtained by model 1 using the cluster ligands protocol
implemented in Discovery Studio 4.0 (Accelrys, 2015). For this
purpose, we used the default predefined set known as Feature-
Connectivity Fingerprint FCFP_6. FCFP generates clusters on the
basis of pharmacophoric features instead of functional groups
and six indicates the effective diameter of the largest feature
and is equal to the double of iterations performed (Rogers and
Hahn, 2010). For further processing, the top two hits from
each cluster were selected based on their pharmacophore fit
value.

Biological Testing
Preparation of Inhibitor Solution
The selected potential inhibitors were dissolved in DMSO at
a concentration of 10mM to generate stock solutions. Various
aliquots were then made from fresh stock solutions and each
aliquot was tested only once. All the selected inhibitors were
diluted with 100% ethanol (negative control) to the desired
concentration to observe their inhibition of CYP11B1 and
CYP11B2.

CYP11B1 and CYP11B2 Inhibition Assays
The selected hits were evaluated for their inhibition of human
CYP11B1 and CYP11B2 enzymes expressed in hamster V79MZh
cells. Approximately 8000000 V79MZh cells were cultured in 24-
well cell culture plates for 24 h. The area of each well was 1.9 cm2.
The cells were exposed to various concentrations of inhibitor
solutions. The reactions were started by incubating the cells with
[3H]11-deoxycorticosterone. The incubation time for CYP11B1
cells was 15–60 and 50–120min for CYP11B2 cells. The reactions
were stopped by extracting the supernatant with cold ethyl
acetate at 4◦C. Samples were mixed (10min), and centrifuged
(12,500 rpm). The organic (upper) layer was separated into fresh
Eppendorf tubes and dried. The steroids were re-dissolved in
methanol-water (65–35%) and were analyzed by radio-HPLC
(Denner et al., 1995a; Ehmer et al., 2002). Ketoconazole (Hille
et al., 2011b) (CYP11B1 IC50 = 120 nM, CYP11B2 IC50 =

60 nM,) was used as positive control and ethanol was used as
negative control.

CYP17 Inhibition Assay
The inhibition of CYP17 was investigated using the 5,000 g
sediment of homogenized Escherichia coli (Ehmer et al., 2000).
Human CYP17 along with NADPH-P450 reductase was used to
perform the assay as described previously. The incubation time

for the reaction was 30min at 37◦C. The reaction was started by
adding [3H]-progesterone, and was quenched with 1MHCl. The
reaction mixture was extracted twice with ethyl acetate at 4◦C in
order to avoid impurities. The samples were dried, prepared with
methanol, and analyzed with radio-HPLC. DSMO was used as
negative control. Abiraterone (IC50 = 100 nM) and ketoconazole
(IC50 = 4µM) were used as reference inhibitors (Sergejew and
Hartmann, 1994).

Docking
The 2D structures were prepared for docking in ChemBioDraw
Ultra 14.0 (Cambridgesoft, 1986–2015). The ChemBioDraw
files were converted to structure data (sd) format using a
protocol designed in Pipeline Pilot Client 2016 (Accelrys, 2011).
The 3D starting conformation of each chemical structure was
generated using OMEGA 2.3.2 from OpenEye (Hawkins et al.,
2010; Hawkins and Nicholls, 2012). The X-ray crystal structure
of CYP11B2 in complex with fadrozole (PDB entry 4FDH)
(Strushkevich et al., 2013) was used for docking employing
a genetic algorithm implemented in GOLD 5.2 (Jones et al.,
1995, 1997). The binding site was defined by selecting the 6 Å
space around the co-crystallized ligand. In order to obtain the
best docking poses, the default docking template for CYP450
Goldscore P450 was used. Gold’s Goldscore was used as a scoring
function to rank the docked poses of inhibitor compounds. For
validating the docking experiment, the co-crystallized ligand was
re-docked into the binding site, which resulted in an RMSD of
0.223 Å.

RESULTS

CYP11B1 and CYP11B2 Inhibitor
Pharmacophore Models
Pharmacophore models for CYP11B1 and CYP11B2 inhibitors
were derived from highly potent training compounds. These
compounds are expected to form a complex of an aromatic
nitrogen with the heme iron in the active site of the enzyme. This
sort of complex inhibits the catalytic process of the enzyme by
preventing oxygen binding to heme iron.

The ligand-based, common feature pharmacophore model
1 was generated from compounds 4 and 5 (Figure 3A)
(Meredith et al., 2013). From the 10 reported pharmacophore
queries, the model with the highest pharmacophore-fit and
atom overlap score (0.9084) and highest pharmacophore-fit score
of training compounds was selected for further refinement.
This pharmacophore model was composed of two aromatic
ring features (AR-1 and AR-2), three hydrophobic features (H-
1, H-2, and H-3), three hydrogen bond acceptors (HBA-1,
HBA-2, and HBA-3), and 47 XVOLs (Figures 3B,C). HBA-1
represents the heterocyclic nitrogen of the training compounds,
which is hypothesized to form a complex with the heme
of the CYP enzymes. The remaining pharmacophore features
represent various common features of the training compounds.
Pharmacophore model 1 was made more sensitive by; (1)
increasing the feature tolerance of AR-1, AR-2, and HBA-
3 from default 1–1.6, 1.3, and 1.75 Å, respectively, (2)
and marking the H-1, H-2, H-3, and HBA-2 features as
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optional. The theoretically validated model 1 found 76 out
of 384 active hits excluding the two training compounds
and 77 out of 15946 decoys. The training compounds 4

and 5 mapped all the features of refined pharmacophore
model 1 with pharmacophore-fit scores of 87.50 and 87.59,
respectively.

Ligand-based pharmacophore model 2 was generated from
training compounds 6 and 7 (Ulmschneider et al., 2005b; Hille
et al., 2011b) (Figure 4A) using the same settings as for model
1. The model which achieved the highest pharmacophore fit
and atom overlap score (0.9174) and highest pharmacophore-
fit score for the training compounds was selected for further

FIGURE 3 | Pharmacophore model 1 with training compounds 4 and 5. (A) 2D training compounds with their IC50 values are drawn. (B) Training compounds

mapped into the model. (C) Final pharmacophore model 1 with color-coded features (yellow—hydrophobic, blue rings—AR, red—HBA, dotted style—optional

features). The model consisted of 3 hydrophobic features, 3 HBAs, 2 AR features, and 47 XVOLs.

FIGURE 4 | Pharmacophore model 2 with its training compounds 6 and 7. (A) Training compounds with their IC50 values are drawn. (B) Mapping of training

compounds with the model are shown. (C) The pharmacophore model is shown. Pharmacophore features are marked by colors. Model 2 comprised of 2

hydrophobic features, 2 AR features, 1 HBA feature, and 33 XVOLs.
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optimization. It consisted of two AR features (AR-1, AR-2),
two hydrophobic (H-1 and H-2) features, one HBA (HBA-
1), and 33 XVOLs (Figures 4B,C). The shared HBA feature
of both of the training compounds was derived from the
nitrogen of pyrimidine and imidazole rings. This model was
made more sensitive by marking the hydrophobic feature H-
1 as optional. In the validation screening, the final model
found 36 active hits among 384 active compounds excluding
the two training compounds and 10 out of 15946 decoys. The

TABLE 1 | Inhibition of CYP11B1, CYP11B2, and CYP17 enzyme activity by the

virtual hits.

Cpd. CAS number CYP11B1a

IC50 (µM)b
CYP11B2a

IC50 (µM)b
CYP17c,d Fit value

8 839687-79-5 3.04 ± 0.72 2.77 ± 0.48 n.i.e 58.07 model 1

9 445402-94-8 0.21 ± 0.04 0.08 ± 0.005 n.i. 57.27 model 2

10 898644-65-0 0.13 ± 0.02 0.11 ± 0.02 n.i. 47.25 model 1,

46.42 model 2

11 489434-32-4 2.52 ± 0.28 15.58 ± 8.45 n.d.f 58.19 model 2

12 895332-29-3 33 ± 6%d 1.12 ± 0.22 n.i. 57.24 model 2

aHuman CYP11B1 and CYP11B2 enzymes expressed in hamster v79MZh cells.
bMean value of at least three experiments.
cHuman CYP17 enzyme isolated from Escherichia coli.
d Inhibition was measured at 10µM concentration.
en.i., not inhibited.
fn.d., not determined.

training compounds 6 and 7 mapped all the features of the
refined model 2 and both got pharmacophore-fit score of 58.66,
respectively.

The sensitivity values for both models 1 and 2 were calculated,
which were 0.20 for model 1 and for model 2, respectively.

Virtual Screening and Removal of False
Positive Hits
Both pharmacophore models were employed for the VS of the
drug discovery database SPECS (207,976 compounds) to find
novel CYP11B1 and CYP11B2 inhibitors. The VS campaign
resulted in 1,120 hits in total, including 1,023 hits found by
model 1 and 97 hits found by model 2, respectively. A PAINS
filter removed 65 compounds from the hit list obtained by model
1 and 4 from the hit list retrieved by model 2, respectively.
First of all, we focused on consensus hits. Just one compound
(10) was fitting to both pharmacophore models. Second, we
aimed to validate each pharmacophore with a similar number
of virtual hits in the biological testing. Because many of the
hits that remained after virtual screening and PAINS filtering
were derivatives of the same or similar scaffolds, we additionally
performed a structural clustering to group the hits according to
their chemical structure. The final selection was based on high
fit values, chemical diversity, and the presence of an aromatic
nitrogen in a ring system. Finally, 24 hits were submitted to in
vitro evaluation including 11 hits found bymodel 1, 12 hits found
by model 2, and 1 consensus hit (Table 1).

FIGURE 5 | Structures of the compounds 8–12 along with their IC50 values determined in cell-based assays.
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Inhibition of Human CYP11B1 and
CYP11B2 Enzymes
The selected 24 hits were analyzed for CYP11B1 and CYP11B2
inhibitory activities in a cell-based assay. In a first step, all
hits were tested against both CYP11B1 and CYP11B2 at a
concentration of 10µM. Three compounds (8, 9, and 10)
amongst the 24 tested hits showed more than 50% inhibition
on both CYP11B1 and CYP11B2 at a concentration of 10µM
(Table 1) and were therefore dual inhibitors. Compound 11

inhibited CYP11B1more potently than CYP11B2. Compound 12
selectively inhibited CYP11B2 (Figure 5). These five compounds
were further evaluated for their IC50 values (Table 1). All of the
newly discovered compounds that inhibited human CYP11B1
and CYP11B2 had a pyridine or pyrazole ring in their structures.
The tested inactive compounds are showed in Figure 6.

Selectivity over Human CYP17 Enzyme
The four most active compounds 8–10 and 12 were analyzed for
the inhibition of the steroidogenic enzymeCYP17. The inhibition

values were measured at a concentration of 10µM of inhibitor.
None of the tested compounds inhibited CYP17 (Table 1).

Docking of Active Hits into CYP11B2
Binding Sites
Because a ligand-based virtual screening workflow was used for
selecting the test compounds, a docking study was performed
to propose binding modes for the inhibitors. Previous studies
have suggested that binding affinity of the enzyme was highly
dependent on the coordination geometry between the heme iron
and the heterocyclic nitrogen of the inhibitor. Accordingly, an
angle of 90◦ of the aromatic nitrogen-iron vector projected on
the heme-porphyrin plane would lead to potent inhibition (Yin
et al., 2014).

The docked pose of compound 9 showed the binding
interaction of an imidazole-nitrogen with the heme iron at
the binding site in a perpendicular way with an angle of
92◦. The linker formed hydrophobic contacts with Thr318,
Phe130, Ile488, Phe487, Phe231, and Trp116. The phenyl ring

FIGURE 6 | Inactive compounds 13–31 tested against CYP11B1 and CYP11B2.
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contacted Trp116, Met230, Trp260, and Ala313. Finally, the
fluorine formed a bifurcated hydrogen bond with Arg120 and
hydrophobic interactions with Trp260, Met309, and Ala313
(Figure 7A).

The imidazole nitrogen of compound 10 interacted with the
heme iron in a perpendicular manner with an angle of 87◦.

The oxygen atoms of the sulfate formed a hydrogen bond with
Thr318. The other marked interactions included hydrophobic
interactions of halogens with Ile488, Phe130, Trp116, Phe130,
and the heme porphyrin (Figure 7B).

Compound 12 inhibited CYP11B2 more selectively than
CYP11B1. Two of the triazole nitrogen atoms were complexed

FIGURE 7 | Predicted binding modes of the newly discovered inhibitors 9, 10, and 12 in CYP11B2 (PDB code = 4FDH). (A) Docking pose of compound 9 showing

an iron complex of the imidazole-N with the heme iron and HBA interaction of the fluorine with Arg120. (B) The docking pose of compound 10 showing an iron

binding interaction of the imidazole-N with the heme iron, a hydrogen bond between the sulfonamide and Thr318, and hydrophobic interactions of the halogens. (C)

Docking pose of compound 12, a selective CYP11B2 inhibitor. Two N atoms of the triazole ring formed iron-binding interactions with the heme iron. The wire frame

network represented the binding pocket, and its surface is colored by aggregated lipophilicity (gray)/hydrophilicity (blue).
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with the heme iron at angles of 84 and 77◦, respectively.
The biphenyl part interacted via hydrophobic interactions with
Phe130, Ala313, Trp116, Trp260, Met230, Leu227, Phe231, and
Thr318 (Figure 7C).

DISCUSSION

This study was performed to generate and validate novel
pharmacophore models for CYP11B1 and CYP11B2 inhibitors
(Figures 3, 4). The developed pharmacophore queries were
experimentally validated by screening the SPECS database. After
removing the 69 PAINS (Baell and Holloway, 2010) compounds
from a total of 1,120 virtual hits, 24 were selected for in
vitro testing. These hits were biologically evaluated on hamster
V79MZh cells expressing human CYP11B1 or CYP11B2 (Denner
et al., 1995a; Ehmer et al., 2002). Five out of 24 selected hits
inhibited CYP11B1 and/or CYP11B2 (Table 1). The predictive
power of both pharmacophore models was analyzed. Eleven out
of 24 compounds were selected bymodel 1, of them compounds 8
and 10 inhibited both CYP11B1 and CYP11B2 in vitro (Table 1).
This implies a success rate of 18%. Among the 13 compounds
selected by model 2, compounds 9–11 inhibited both CYP11B1
and CYP11B2, and compound 12 showed selective inhibition of
CYP11B2. This results in a success rate of 31%. Compound 10

was a consensus hit and inhibited both CYP11B1 and CYP11B2.
Thus, an overall success rate of both pharmacophore models
was 21%. These findings showed that both models 1 and 2 had
adequate prospective, predictive power with success rates quite
typical for this virtual screening method. According to a search
of the SciFinder database, none of the compounds discovered in
this study were reported as CYP11B1 and CYP11B2 inhibitors in
literature before. Due to the 93.9% identical amino acid residues
in CYP11B1 and CYP11B2 (Kawamoto et al., 1992; Taymans
et al., 1998) it is challenging to generate selective pharmacophore
models for CYP11B1 and CYP11B2 inhibition. Model 1 found
compounds 8 and 10, both are novel dual inhibitors of CYP11B1
and CYP11B2. The IC50 values for compounds 8 and 10 for
CYP11B1 inhibition were 3.04 and 0.13µM, respectively, and
for CYP11B2 inhibition were 2.77 and 0.11µM, respectively
(Table 1). Model 2 found compounds 9–12, of them 9 and 10

were dual inhibitors of CYP11B1 and CYP11B2. The IC50 value
for compound 9 for CYP11B1 inhibition was 0.21µM and for
CYP11B2 inhibition was 0.08µM, respectively The IC50 values
of compound 11 (CYP11B1 = 2.52µM, CYP11B2 = 15.58µM)
showed that it had a selectivity factor of 6 for CYP11B1
inhibition over CYP11B2. Compound 12was a selective inhibitor
of CYP11B2 with an IC50 = 1.12µM, while it was a very
weak inhibitor of CYP11B1 with an inhibition of 33% at a
concentration of 10µM.

An X-ray crystal structure of CYP11B1 has not been published
yet; however the crystal structure of CYP11B2 was available from
the PDB (Berman et al., 2000) (PDB ID = 4FDH) (Strushkevich
et al., 2013). The positioning of the novel inhibitors into the
binding pocket of CYP11B2, which is similar to the well-
known inhibitor fadrozole, rationalizes their biological activities
(Figure 7).

A close analysis of the mapping of the active hits and fadrozole
into the pharmacophore models was performed. Combined
aromatic ring-HBA features (AR-1 and HBA-1) of the respective
pharmacophore models (Figure 9) mapped an aromatic nitrogen
of all the novel inhibitors 8–12. The angle and position of the
aromatic nitrogen toward the heme iron is important for making
an inhibition complex at the binding site. In the docking analysis,
all active hits formed this interaction in an angle of around 90◦

(Figure 7).
According to the results obtained in this study, we

compared our pharmacophore queries with previously reported
pharmacophore models (Ulmschneider et al., 2006; Lucas
et al., 2008a, 2011; Gobbi et al., 2013), Previously published
studies used molecular modeling as a tool for designing
optimized CYP11B1 and CYP11B2 inhibitors (Ulmschneider
et al., 2006; Lucas et al., 2008a, 2011; Gobbi et al., 2013).
Our pharmacophore queries were based on diverse training
compounds (Ulmschneider et al., 2005a; Hille et al., 2011b;
Meredith et al., 2013), and had different numbers and locations of
pharmacophore features in space. In comparison to the previous
models, our pharmacophores additionally include aromatic

TABLE 2 | Detailed analysis of pharmacophore features mapped by all novel

inhibitors 8-12 of CYP11B1 and CYP11B2.

Model 1 Cpd.a 8 Cpd. 9 Cpd. 10 Cpd. 11 Cpd. 12 Model 2

HBA-1 Yes Yes Yes Yes Yes HBA-1

HBA-2b – – – – – –

HBA-3 Yes – Yes – – –

H-1a Yes Yes – Yes Yes H-1a

H-2a – – – – – –

H-3a – – – – – –

AR-1 Yes Yes Yes Yes Yes AR-1

AR-2 Yes Yes Yes Yes Yes AR-2

– – Yes Yes Yes Yes H-2

aCompound.
bOptional feature.

FIGURE 8 | Comparison of pharmacophore models 1 and 2. The highlighted

features (wireframe) are from pharmacophore model 2. The pharmacophore

features are color-coded. Yellow represents hydrophobic, blue denotes AR,

and red shows the HBAs. Four pharmacophore features of both

pharmacophores are common. H-2* is hydrophobic feature from model 2.
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features (AR-1 and AR-2) (Figure 9, Table 2). The alignment of
our pharmacophore models reveals that they have four features
in common, including HBA-1, AR-1, AR-2, and H-1 (Figure 8).
All the novel inhibitors found in this study were mapped to
analyze the importance of different pharmacophore features.
The alignment showed that HBA-1, HBA-3 AR-1, AR-2, H-1,
H-2 were essential features in mapping the active compounds
during virtual screening run (Figure 9, Table 2). All of the
newly discovered inhibitors in this study have aromatic nitrogen-
containing heterocycles and hydrophobic parts (Figure 9). The
heterocyclic nitrogen part has a crucial role in forming an iron-
binding interaction with heme of these CYP enzymes and was
mapped by the HBA-1 and AR-1 features of the pharmacophores.
This type of interaction inhibited the catalytic process of the
target enzymes and has been reported earlier (Denner et al.,
1995a,b; Hartmann et al., 2003; Bureik et al., 2004; Ulmschneider
et al., 2005b; Hoyt et al., 2015).

Both active hits from model 1 did not map the two optional
features of the model. This suggests that these features may be
deleted from the model without losing active hits. A model with
fewer and no optional features is much faster in screening virtual
compound libraries. In future studies, a refined model 1 without
those optional features can be applied for screening millions of
compounds in a still reasonable time.

To compare the ligand-based features of the models to
the protein-ligand interactions observed in the available
X-ray structures of CYP11B2, the co-crystallized inhibitor
fadrozole (4FDH) was aligned to pharmacophore model 1.
Fadrozole mapped five features of the model (Figure S1),

but also didn’t map the two optional features supporting the
hypothesis that those are not advantageous. A comparison
of structure-based pharmacophore models derived from
4FDH (Strushkevich et al., 2013) and 4ZGX (Martin et al.,
2015) co-crystallized structures is given in the supporting
information (Figure S2). The general description about the
generation of pharmacophore models has been previously
outlined (Vuorinen et al., 2014; Akram et al., 2015; Kaserer et al.,
2015).

During the validation of our pharmacophore models, three
novel dual CYP11B1 and CYP11B2 inhibitors, one novel selective
CYP11B1 inhibitor, and one novel selective CYP11B2 inhibitor
were discovered. Compound 11 was a selective inhibitor of
CYP11B1 that is the principal enzyme for the production of
cortisol, which inhibition may be a strategy for the treatment
of Cushing’s syndrome and delayed wound healing (Nieman,
2002). Compound 12 was a selective CYP11B2 inhibitor,
which is the key enzyme for the production of aldosterone,
which inhibition is a potential target for the treatment of
congestive heart failure, myocardial fibrosis, and hypertension.
Compounds 8–10 are potent dual inhibitors of CYP11B1 and
CYP11B2, which makes them interesting lead compounds for the
development of drugs that could achieve a complete blockade of
adrenal corticoid formation. Compounds 8–12 could be further
chemically optimized to enhance their biological efficacies and
selectivities by bioisosteric replacements or substitution of rings.

Compounds 8–10 and 12 were also tested for inhibition
of human steroidogenic enzyme CYP17 (Table 1), because it
belongs to the same class and has same inhibition mechanism

FIGURE 9 | Mapping of novel CYP11B1 and CYP11B2 inhibitors to pharmacophore models. Pharmacophore features are color-coded. Yellow represents

hydrophobic, blue denotes AR, and red shows the HBAs. Optional features (dotted style) are not mapped by the virtual hits 8 and 10.
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as other CYP enzymes (Devore and Scott, 2012). None of the
novel inhibitors showed inhibition of human CYP17 of more 3%
at a concentration of 10µM. This showed the selectivity of these
novel inhibitors over CYP17.

The virtually selected hits 13–31 that showed no or only
very weak inhibition during in vitro testing on human CYP11B1
and CYP11B2 might not be able to bind to the target, may
have suffered from degradation or did not reach the binding
site of the enzyme, and/or could have been pumped out of the
cells via cellular efflux pumps (Johnstone et al., 2000). A precise
conclusion for their inactivity is difficult to draw (Figure 6).

CONCLUSION

In the course of this study, ligand-based pharmacophore models
for CYP11B1 and CYP11B2 inhibition were developed. For
experimental validation of pharmacophore queries, the virtually
selected hits were tested in vitro. This process resulted in
the identification of new structural features advantageous for
CYP11B inhibition (AR-1, AR-2, H-1, H-2, and HBA-3) and
five novel CYP11B1 and/or CYP11B2 inhibitors. All of the
novel inhibitors contained a heterocyclic nitrogen that is
frequently present in CYP inhibitors. This project validated our
pharmacophore model for future virtual screening campaigns.
Regarding the quality of the pharmacophore models, model 2
gave more active hits than model 1. Both models will be refined
further based on the biological testing to enhance their sensitivity
and specificity.
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During drug development, safety is always the most important issue, including a variety

of toxicities and adverse drug effects, which should be evaluated in preclinical and clinical

trial phases. This review article at first simply introduced the computational methods used

in prediction of chemical toxicity for drug design, including machine learning methods

and structural alerts. Machine learning methods have been widely applied in qualitative

classification and quantitative regression studies, while structural alerts can be regarded

as a complementary tool for lead optimization. The emphasis of this article was put on

the recent progress of predictive models built for various toxicities. Available databases

and web servers were also provided. Though the methods and models are very helpful

for drug design, there are still some challenges and limitations to be improved for drug

safety assessment in the future.

Keywords: drug safety, chemical toxicity, drug design, machine learning, structural alerts

INTRODUCTION

Drug discovery and development is a long journey full of high risk. It is estimated that the attrition
rate of drug candidates is up to 96% (Paul et al., 2010) and the average cost to develop a new drug
reaches to 2.6 billion U.S. dollars in recent years (PhRMA, 2015). One of the major causes for the
high attrition rate is drug safety, which accounts for 30% of drug failures (Giri and Bader, 2015).
Even if a drug is approved in market, it could be withdrawn due to safety problems. Therefore, drug
safety should be evaluated extensively as early as possible.

Usually, in vitro and in vivo tests are performed to investigate drug safety, including a variety
of toxicities and adverse drug effects. In recent years, there are also some efforts to develop
in vitro models such as “organ on a chip” to reduce cost (Huh et al., 2010, 2011). However,
those approaches are still costly and time-consuming. In comparison of experimental approaches,
computational methods have shown great advantages since they are green, fast, cheap, accurate,
and most importantly they could be done before a compound is synthesized (Segall and Barber,
2014).

Till now, many computational models have been developed for drug safety assessment, which
could be generally divided into three categories: qualitative classification, quantitative regression
and read-across. As the first step of drug safety assessment, we only need to know a compound is
toxic or non-toxic, highly toxic or slightly toxic, rather than its exact toxicity value, so classification
models can be used. For a small number of chemical analogs, quantitative structure-toxicity
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relationship (QSTR) models can be derived for prediction of
exact toxicity values. For those unique compounds, read-across
is also a feasible approach to deduce certain toxicity endpoint
from their similar structures with experimental toxicity values.
These models have high accuracies especially in a local chemical
space, and sometimes they can replace in vitro or in vivo assays
for certain endpoints. Furthermore, structural alerts (SAs) can
be derived from the models as keys for a compound to cause
adverse effects on organs (Pizzo et al., 2015), which can be used
in structural modification to reduce the risk by chemists.

In recent years, we have worked on drug safety assessment
and developed a lot of predictive models for chemical toxicity
with machine learning methods and structural alerts. A web
server named admetSAR was also developed for publicly free
access (Cheng et al., 2012b). In a previous paper published
in 2013, we reviewed the advances and challenges of in silico
prediction of chemical toxicity together with pharmacokinetic
properties (Cheng et al., 2013a). Here, we would like to review the
progress of in silico chemical toxicity prediction in recent 5 years,
including methodologies of machine learning and structural
alerts, and major toxicity endpoints in drug discovery and
development (Figure 1). Available data sources and web servers
were also mentioned. At last, challenges and future directions in
this field were provided.

MODEL BUILDING WITH MACHINE
LEARNING METHODS

The general procedure to build a predictive model contains
roughly four steps: data collection, data description, model
building, and model evaluation. Each step has its own
requirements to guarantee the reliability and accuracy of the
models.

Data Collection
The quality of experimental data is the most important in
model building. Currently, there are numerous well-defined data
available online, which greatly facilitates the construction of
computational models by machine learning methods. In Table 1,
we listed some widely used databases, including those linking
chemical structures with safety outcomes, protein targets and/or
biological pathways.

TOXNET is a comprehensive source that integrates several
toxicity databases such as ToxLine and ChemIDplus (Fowler and
Schnall, 2014). ACToR is a large database that aggregates data
from thousands of public sources (Judson et al., 2008). DSSTox,
a subset of ACToR, provides a high quality resource for toxicity
prediction, including ToxCast and Tox21 data (Williams-DeVane
et al., 2009). OECD established eChemPortal to provide chemical
information including physicochemical properties, and toxicity.
Many databases are contained in eChemPortal, such as ACToR
and HSDB (Fonger et al., 2014). Some other toxicity databases
include SuperToxic (Schmidt et al., 2009), T3DB (Wishart et al.,
2015), and ToxBank (http://www.toxbank.net). We previously
developed a web server admetSAR, which also contains toxicity
data (Cheng et al., 2012b).

In addition to the phenotype data that are directly relevant to
toxicity, databases on bioactivity, pathway and side effects are also
important to toxicity prediction. Several bioactivity databases are
free available, such as PubChem (Wang et al., 2009), ChEMBL
(Gaulton et al., 2017), and BindingDB (Gilson et al., 2016). We
developed a web server namedMetaADEDB that integrates CTD
(Davis et al., 2017), SIDER (Kuhn et al., 2010), and OFFSIDES
(Tatonetti et al., 2012) with regard to the ADE of drugs (Cheng
et al., 2013b,c).

Data Description
There are two ways to represent chemical structures as numeric
features which can be processed by machine learning methods.
One way is to use molecular descriptors, which can be calculated
from chemical structures, physicochemical or topological
properties. Currently thousands of continuous and discrete
molecular descriptors can be obtained via chemoinformatics
toolkits such as PaDEL-Descriptor (Yap, 2011), OpenBabel
(O’Boyle et al., 2011), CDKit (Steinbeck et al., 2003), RDKit
(Landrum, 2017), or web servers like E-Dragon (Tetko et al.,
2005), ChemBCPP (Dong et al., 2017a), and ChemDes (Dong
et al., 2015). Using numeric features may result in overfitting
when the size of training set is small (Xue et al., 2004). Hence,
feature selection should be done before model building, to reduce
the risk of overfitting and enhance the performance of model
(Sun et al., 2017).

The other way is to use molecular fingerprints, which
represent a molecule as a binary string, such as MACCS,
PubChemFP, and KRFP (Klekota and Roth, 2008). In a molecular
fingerprint, lists of substructures or other kinds of patterns are
predefined. If a specified pattern presents in a molecule, the
corresponding bit in the binary string is set to “1,” otherwise it will
be set to “0.” Comparing to molecular descriptors, these binary
features are more interpretable because each bit corresponds to
a specific substructure. In addition to the common fingerprints,
custom patterns can also be used to enhance the predictability of
the models (Yang et al., 2017b).

Single-Label Model Building
Machine learning methods are usually used to build the
predictive models. There are many free and open access tools
and development kits to fulfill this task. For example, Scikit-
learn (Pedregosa et al., 2011) is a popular python toolkit for
machine learning and TensorFlow (https://www.tensorflow.org)
is a widely used python library for deep learning. WEKA (Frank
et al., 2004), Orange (Demsar et al., 2013) and RapidMiner
(https://rapidminer.com/) are machine learning toolboxes with
GUI (Graph user interface).

Support vector machine (SVM), Random forest (RF), boost
tree (BT), and k-nearest neighbor (kNN) are classic machine
learning methods that are widely used in classification and
regression models. SVM, also known as support vector classifier
(SVC) or support vector regression (SVR) in particular tasks, is
well-known for its high predictive performance and less risk of
overfitting (Cortes and Vapnik, 1995). The basic idea of SVM
is to construct a hyperplane in a high dimensional space with
the largest distance to the nearest training data points (support
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FIGURE 1 | The roadmap of in silico prediction of chemical toxicity with machine learning methods and structural alerts. (A) Examples of available data and web

servers. (B) The state-of-the-art machine learning algorithms. (C) Scheme of building QSAR or structural alerts models for prediction of chemical toxicity.

vectors). RF and BT are derived from decision tree (Breiman,
2001; Elith et al., 2008). RF can be viewed as bagging many
decision trees that use a random subset of features and combine
them via a voting system. Different from RF, in which each
tree is equal, BT dynamically adjusts the weight of each tree
according to the mean error of prediction. kNN is one of the
simplest algorithms (Cover and Hart, 1967). The creed of kNN
is that compounds with similar structures have similar biological
properties. In kNN, a sample is classified by the votes of the
categories of its neighbors.

Sometimes, to enhance performance of prediction models,
combination of these algorithms is applied. We developed a
combined method using an artificial neural network (ANN)
model to generate the final combination decision probability,
which showed that the combined methods would be superior to
“single” methods (Cheng et al., 2011b; Du et al., 2017; Sun et al.,
2017).

Recently, deep learning (DL) has been applied in solving
such challenging problems as computer vision and speech

recognition (Deng et al., 2013; LeCun et al., 2015). Multilayer
neural network (MNN) is one of the DL techniques. Different
from common ANN that only has three layers including
input layer, hidden layer and output layer (Shen et al., 2004),
MNN contains more than one hidden layers and thus is
more competent in large toxicological data with complex
mechanisms. When the training set is large, it can perform
better than ANN and above-mentioned classic machine learning
methods (Mayr et al., 2016). However, more complex network
indicates more weights to fit and more likely to be overfitting.
Graph-convolutional networks (Duvenaud et al., 2015) and
long short-term memory architectures (Altae-Tran et al., 2017)
are recently developed to extract features from molecules
based on atom features and show better performance in
handling thousands of compounds or even more (Goh et al.,
2017). DeepChem (https://deepchem.io) is an open source
python library devoted to providing a high quality toolchain
to facilitate the use of DL in drug discovery and other
fields.
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TABLE 1 | Data sources for prediction of chemical toxicity.

Database name Typea URL

TOXNET CTA https://toxnet.nlm.nih.gov/

ToxBank Data Warehouse CTA http://www.toxbank.net/data-warehouse

admetSAR CTA http://lmmd.ecust.edu.cn/admetsar1/

Pharmaco Kinetics Knowledge Base (PKKB) CTA http://cadd.zju.edu.cn/pkkb/

ToxCast CTA https://www.epa.gov/chemical-research/toxicity-forecasting

Tox21 CTA https://tripod.nih.gov/tox21

CTD (Comparative Toxicogenomics Database) CTA http://ctdbase.org/

ECOTOX CTA https://cfpub.epa.gov/ecotox/

SuperToxic CTA http://bioinformatics.charite.de/supertoxic/

DSSTox CTA https://www.epa.gov/chemical-research/distributed-structure-searchable-toxicity-dsstox-database

ACToR CTA https://actor.epa.gov/actor/home.xhtml

T3DB CTA http://www.t3db.ca

eChemPortal CTA https://www.echemportal.org/echemportal/index.action

PubChem CPI http://pubchem.ncbi.nlm.nih.gov/

ChEMBLdb CPI https://www.ebi.ac.uk/chembldb/

BindingDB CPI http://www.bindingdb.org/bind/index.jsp

ChemProt CPI http://potentia.cbs.dtu.dk/ChemProt/

STITCH CPI http://stitch.embl.de/

DrugBank CPI http://www.drugbank.ca/

TTD CPI http://bidd.nus.edu.sg/group/cjttd/

IntAct MI http://www.ebi.ac.uk/intact/

SIDER SE http://sideeffects.embl.de/

MetaADEDB SE http://lmmd.ecust.edu.cn/online_services/metaadedb/

OFFSIDES SE http://www.pharmgkb.org

Chemical Effects in Biological Systems (CEBS) SE http://tools.niehs.nih.gov/cebs3/ui/

IntSide SE http://intside.irbbarcelona.org

Reactome Pathway http://www.reactome.org/

Pathway Commons Pathway http://www.pathwaycommons.org/

KEGG Pathway http://www.kanehisa.jp/

PharmGKB Pathway https://www.pharmgkb.org/

aCTA, compound-toxicity association; MI, molecular interaction; SE, side effect; CPI, compound-protein interaction.

Multi-Label Model Building
Unlike aforementioned single-label classification or regression
models, multi-label classification (MLC) is a data mining
approach in which each data instance can be assigned to
multiple categories at once (Tsoumakas et al., 2010; Zhang and
Zhou, 2014; Gibaja and Ventura, 2015). The demand for multi-
label techniques is constantly growing in biology and genomics
(Diplaris et al., 2005; Avila et al., 2009). The current algorithms
used for this task are pretty new and many of them are still in an
early stage of development.

There are three major approaches for multi-label learning:
data transformation, method adaptation and ensembles of
classifiers. The first one, including Binary Relevance (BR)
(Godbole and Sarawagi, 2004), classifier chains (CC) (Read et al.,
2011), and Label Powerset (LP) (Boutell et al., 2004), is to
transform original multi-label dataset (MLD) to a set of binary
datasets (BIDs) or one multi-class dataset (MCD) first, and then
process them with traditional classification algorithms (Barot
and Panchal, 2014). With the development of these frameworks
for MLC, classification algorithms available for binary and

multiclass data can be utilized as the underlying base classifier
including SVM, ANN, decision tree, kNN, and so on. The
second alternative aims for adapting existent algorithms to deal
with multi-label data, such as multi-label C4.5 (Al-Otaibi et al.,
2014), multi-label back-propagation (Zhang and Zhou, 2006),
Rank-SVM (Wang et al., 2014), and multi-label kNN (Zhang
and Zhou, 2007). Finally, the classification ensemble is also a
widespread technique inmulti-label field. For example, Ensemble
of Classifier Chain (ECC) (Read et al., 2011), which consists of
a set of CC with diverse label orders and then votes for the
final prediction, is proposed to allow for the effect of chain
order. Some other MLC methods based on the ensemble of
multi-class classifiers were also proposed, such as EPS (Read et al.,
2008), RAkEL (Tsoumakas and Vlahavas, 2007), and HOMER
(Tsoumakas et al., 2008).

Model Evaluation
For regression models, three evaluation metrics, namely Pearson
productmoment correlation coefficient (R2), mean absolute error
(MAE) and root mean squared error (RMSE) are frequently used
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to estimate the performance of models. These parameters are
defined as following:

R2 =





∑N
1 (xi − x)

(

yi − y
)

√

∑N
1 (xi − x)2

∑N
1 (yi − y)2





2

(1)

MAE =

∑N
1

∣

∣xi − yi
∣

∣

N
(2)

RMSE =

√

∑N
1

(

xi − yi
)2

N
(3)

where xi is the experimental value, yi is the predicted value,
x, y are their corresponding means and N is the number of
samples.

For traditional single-label binary or multiple classification
models, most of the performance metrics are calculated based on
the count of true positive (TP), true negative (TN), false positive
(FP), and false negative (FN). Accuracy, sensitivity and specificity
metrics can be calculated as the following equations to represent
the overall predictive ability, the predictive accuracy for positive
samples and the predictive ability for negative ones:

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

Sensitivity =
TP

TP + FN
(5)

Specificity =
TN

TN + FP
(6)

In addition to these computed from binary partition of labels,
metrics these calculated from a confidence degree of being
positive are also used like area under the receiver operating
characteristic curve (AUC).

Comparing to the single-label classification patterns, multi-
label classifiers can have multiple outputs for an instance,
of which the predictions can be fully or partially correct.
The multi-label performance metrics introduced there can
be classified into two groups, i.e., example-based and label-
based metrics (Tsoumakas et al., 2007; Zhang and Zhou,
2014). Here, five example-based metrics (subset accuracy,
Jaccard similarity coefficient, hamming-loss, micro-precision,
micro-recall) are described with mathematical formulations
below.

SubsetAccuracy =
1

n

∑n

i = 1
Yi = Zi (7)

Jaccard Similarity Coefficient =
1

n

∑n

i = 1

|Yi ∩ Zi|

|Yi ∪ Zi|
(8)

Hamming Loss =
1

n

1

k

∑n

i = 1
|Yi1Zi| (9)

Recallmicro =
1

n

∑n

i = 1

|Yi ∩ Zi|

|Yi|
(10)

Precisionmicro =
1

n

∑n

i = 1

|Yi ∩ Zi|

|Zi|
(11)

where Yi represents the real label-set of the ith instance, and
Zi the predicted one. n is the number of instances and k is the
number of labels.

Furthermore, another example-based metric named ranking
loss can be used. The ranking loss metric portrays how many
times an irrelevant label is ranked above a relevant one according
to their probabilities belonging to each label. As for label-based
metrics, micro-AUC is the most commonly used one. It is also a
ranking based metric similar to ranking loss. However, different
from the ranking loss that compares the ranks for each example,
micros-AUC counts the number of all the relevant-irrelevant
pairs meeting the condition that the relevant label is ranked above
irrelevant one (in which the labels are not necessarily for the same
example).

METHODS FOR DETECTING
STRUCTURAL ALERTS

Structural alerts (SAs) are key substructures responsible for
certain toxicity. They are directly connected to toxicity and
hence could be used for structural optimization by medicinal
chemists to reduce the risk. In 1985, Ashby found strong
associations between occurrence of some substructures or
patterns and chemical mutagenicity to Salmonella, which was
the first appearance of the concept of SA (Ashby and Tennant,
1988).

Till now, many methods and software have been developed
for detecting SAs, such as SARpy (Ferrari et al., 2013), MoSS,
Gaston, and MolFea. ToxAlerts is a web server that collects SAs
defined by experts or identified by computational tools. It can
predict toxicity according to the appearance of SAs (Sushko et al.,
2012). Automatic detection of SAs by computational tools now
becomes a hotspot as the development of cheminformatics and
the explosion of available data (Lepailleur et al., 2013; Floris et al.,
2017).

In a previous paper, we evaluated several methods for
identification of SAs (Yang et al., 2017a). At present, the
methods can be divided into three categories: fragment-based,
graph-based, and fingerprint-based. Fragment-based methods,
such as SARpy (Ferrari et al., 2013), cut the bonds of the
molecules in dataset first to get all possible fragments. Then
each fragment is evaluated according to their occurrence in
toxic and non-toxic compounds. These methods have been used
in detecting SAs for carcinogenicity (Golbamaki and Benfenati,
2016; Golbamaki et al., 2016). Graph-based approaches use
subgraph searching algorithms, treating molecules as graphs
that consist of a set of vertices and edges, to find the frequent
patterns. MoSS uses depth-first search association rules to
mine substructures (Borgelt and Berthold, 2002). Gaston is a
stand-alone tool that uses a graph-based approach to obtain
substructures from dataset (Kazius et al., 2006). Another graph-
based method proposed by Ahlberg (Ahlberg et al., 2014)
uses Atom Signature, a linear expression of a compound, to
mined sub-signature as SAs. Fingerprint-based approaches do
not obtain fragments from the dataset. Instead, the fragments
are defined by different molecular fingerprints such as MACCS
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and SubFP (Shen et al., 2010). The selection of fingerprints may
affect the final results of the identified SAs. Fingerprints such as
Morgan, used by Bioalerts (Cortes-Ciriano, 2016) might lead to
redundant SAs which are very similar and related to the same
mechanism.

Information gain (IG) can also be used to evaluate the
significance of a substructure. Compounds containing the
substructure are categorized as toxic and others are categorized
as non-toxic. IG is defined as the difference between the
information entropy of original dataset and the weighted average
information entropies of two datasets separated by a substructure
(Sokolova and Szpakowicz, 2010). We previously used IG to
detect privileged substructures whose occurrences have strong
relevance to some endpoints (Shen et al., 2010).

PROGRESS IN TOXICITY PREDICTION

Carcinogenicity and Mutagenicity
Chemical carcinogenesis is of increasing importance in drug
discovery for its serious effect on human health. Most of the
predictive models use Carcinogenic Potency Database (CPDB) as
the data source, which contains more than 1,500 chemicals with
their labels (carcinogen or non-carcinogen) according to their
TD50 values (Gold et al., 2005). Recently several publications
shared their protocols to construct models to predict chemical
carcinogenesis, including Naïve Bayes, kNN, probabilistic neural
network, and SVM (Singh et al., 2013; Tanabe et al., 2013; Li et al.,
2015; Zhang H. et al., 2016). Zhang et al. developed a web server,
CarcinoPred-EL, for chemists to predict carcinogenicity online,
in which Ensemble XGBoost was used to build the model (Zhang
et al., 2017).

Due to its complicated mechanism and less available
data, the predictive models based on phenotypic assays are
not precise and reliable enough. It is an alternative to
construct models based on in vitro assays. The mechanisms
of carcinogenesis of chemicals can be categorized into: (1)
genotoxicity, which are primarily caused by the mutagenicity
of chemicals damaging DNA (Fan et al., in press); (2)
non-genotoxic carcinogens acting through different specific
mechanisms, which are more complicated (Golbamaki and
Benfenati, 2016). Ames test devised by Bruce Ames is a well-
known in vitro assay to detect mutagenic effects of chemicals.
Currently more than 8,000 compounds with Ames mutagenicity
are available. Both predictive models and structural alerts were
promoted with these toxicity data in recent years (Kazius
et al., 2005; Hansen et al., 2009; Xu et al., 2012; Yang et al.,
2017a).

Acute Oral Toxicity
According to the exposure routes of chemicals, acute toxicity
can be divided into oral, dermal and inhalation, among which
acute oral toxicity is the most widely studied in computational
prediction. It is often the first performed endpoint in drug
discovery because any compounds causing acute toxicity will
not be further considered for its strong hazardous to human
health. Zhu et al. collected 7,385 compounds with LD50 values
and built several models for prediction of chemical acute oral

toxicity (Zhu et al., 2009). Based on the data set, several machine
learning methods were developed and applied to construct
classifiers and regression models to predict LD50 or their toxic
categories (Li et al., 2014; Lei et al., 2016; Xu et al., 2017).
Noticeably, the models built by Xu et al. have high performance
in two test sets, more than 95% of accuracy for classification
and 0.861 of R2 for regression, and the model is free available
in web server (http://www.pkumdl.cn/DLAOT/DLAOThome.
php).

Cardiotoxicity
Blockade of the hERG (human ether-a-go-go related gene)
potassium channel is the main adverse effect with regard to
cardiotoxicity (Gintant et al., 2016). Several in silico models
were developed according to the in vitro hERG blockage test
in early screening assays. Our group recently developed an
in silico model that used chemical category approaches to
predict hERG blockage (Zhang et al., 2016b), in which 1,570
unique compounds were collected from ChEMBL database and
early studies (Doddareddy et al., 2010; Wang et al., 2012).
In addition to machine learning methods, combination with
multiple pharmacophores can improve the predictive capabilities
and the model would be more interpretable (Wang et al.,
2016).

However, as the simplified in vitro approaches for detection of
cardiac safety are less specific, the in silicomodels will also output
the false-positive predictions that may result in unwarranted
attribution of novel drug candidates (Gintant et al., 2016). Other
categories such as contractile and structural cardiotoxicity should
be considered and more in vitro or in vivo data should be used to
construct sophisticated models.

Hepatotoxicity
Chemical hepatotoxicity in drug discovery, also termed “drug
induced liver injury (DILI),” is the leading cause for drug
failure or withdrawn from the market (Schuster et al., 2005).
Due to its complicated mechanism and inconsistency in diverse
patients, experimental detection of hepatotoxicity in preclinical
and clinical trials is difficult.

Computational approaches to predict DILI of compounds
are widely applied for their low cost and high efficiency.
Hewitt reviewed the in silico models on DILI prediction from
2000 to 2015, including statistics-based methods and expert
systems (Hewitt and Przybylak, 2016). Chemical or hybrid
descriptors as features, and different machine learning methods
such as linear discriminant analysis and ANN were used in
these models to predict general or specific endpoints related to
hepatotoxicity (Hewitt and Przybylak, 2016). Zhu constructed
a human hepatotoxicity database for QSTR models using post-
market safety data originated from FDA adverse event reporting
system (Zhu and Kruhlak, 2014). Our group previously used
molecular fingerprints and machine learning methods to build
classification models with a data set containing 1,317 diverse
compounds (Zhang et al., 2016a). Xu et al. used a deep learning
method called undirected graph recursive neural networks
(UGRNN) that encodes molecules into an undirected graph to
build QSTR models (Xu et al., 2015). The performance was
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excellent compared to other models, up to 0.955 of AUC. More
recently, Mulliner et al. classified the complex pathology of
hepatotoxicity into 21 endpoints at three levels, with a large
data set comprising 3,712 compounds. Then the specific models
were combined into an optimized global human hepatotoxicity
that has high sensitivity of 68% and excellent specificity of 95%
(Mulliner et al., 2016).

Respiratory Toxicity
Respiratory toxicity is another toxicity category with complicated
mechanisms. The most concerned endpoint is drug-induced
interstitial lung disease (DILD), which can be classified into
two categories in terms of their mechanisms: (1) cytotoxic lung
injury and (2) immune-mediated (Matsuno, 2012). Another type
of respiratory toxicity is respiratory sensitization, of which the
mechanism is more complicated. There are still no good models
for identification of respiratory sensitization (Mekenyan et al.,
2014; Dik et al., 2015). The current QSTR studies tend to use
phenotype data such as LD50, LC50 or symptoms such as asthma
as endpoints to represent the respiratory toxicity of a chemical,
and the built models performed well enough (Jarvis et al., 2015;
Lei et al., 2017).

Irritation and Corrosion
Risk assessment of eye and skin irritation/corrosion (EI/EC,
SI/SC) is of importance in pharmaceutical and cosmetics
industries. Though these endpoints might not be directly
considered in drug discovery stage, in silico models for these
endpoints are yet required since a lot of substances may cause
irritation and corrosion and should be assessed, including the
ocular and dermal pharmaceuticals and final products used in
manufacturing, agriculture, and warfare (Wilhelmus, 2001; Kolle
et al., 2017).

Verheyen et al. evaluated the existing QSTR models in Derek
Nexus, Toxtree and Case Ultra for the prediction of skin and
eye irritation/corrosion, and found that the performance of
those models is unsatisfactory because of narrow applicability
domain and low accuracy (Verheyen et al., 2017). However, using
machine learning methods to predict eye injury was reported
having high performance. For instance, Verma et al. build
combined QSTR models by ANN and got 88% of sensitivity and
82% of specificity for EI (Verma and Matthews, 2015a), 96% of
sensitivity and 91% of specificity for EC (Verma and Matthews,
2015b). Our group recently developed in silico models for EI/EC
using machine learning methods and molecular fingerprints
(Wang et al., 2017). In the paper, more positive data were
manually collected from X-Mol (http://www.x-mol.com) and
ChemIDplus and the performance is excellent, 94.6% of overall
accuracy for EI and 95.9% for EC.

Endocrine Disruption
Chemicals interacting with nuclear receptors such as estrogen
and androgen receptors (ER and AR) as off-targets or exposed in
environment may cause endocrine disruption. These chemicals,
called endocrine disrupting chemicals (EDCs), may interfere
with the normal functions of these endogenous steroid hormones
and lead to adverse health consequences such as tissue or organ

proliferation, reproductive disorders, metabolic disorders, or
even cancers (Colborn, 1995; Chawla et al., 2001; Grün and
Blumberg, 2007).

For the specific mechanisms such as binding to ER, using
in silico models to predict the bioactivity of chemicals and
evaluate their risk of being EDCs is preferred for its high
accuracy and less cost. We previously built in silico models for
AR and ER binding using molecular fingerprints and machine
learning methods and the best performance in the test set
was 0.84 and 0.79, respectively (Chen et al., 2014). The Tox21
project also includes nuclear receptors assays which involve
more diverse compounds (Hsieh et al., 2015). DeepTox, the
winner of the “Tox21 Data Challenge,” used deep neural network
and obtained an excellent performance against other machine
learning methods such as SVM (Mayr et al., 2016).

Previous studies on EDCs mainly focused on nuclear
receptors. However, chemicals that do not directly interact
with these receptors may also interfere through the pathway.
For instance, aromatase (CYP19A1) is an important enzyme
affecting the biosynthesis of estrogen and plays a key role in
maintaining the balance between estrogen and androgen inmany
of the EDC-sensitive organs (Sonnet et al., 1998). Therefore,
we recently built in silico models for prediction of aromatase
inhibitors as potential EDCs using machine learning methods
with molecular fingerprints (Du et al., 2017). The data used for
training and test were collected from Tox21 and the best model
had 0.84 of accuracy for the test set and 0.91 for the external
validation set.

Eco-Toxicity
Pharmaceuticals and their metabolites exposed to the
environment may affect the ecosystem since they are designed
to be bioactive to creature (Halling-Sørensen et al., 1998). For
instance, chemicals with binding affinities to hormone receptors
may be EDCs of fishes or concentrate in fish body and finally
reach to high-level animal bodies (He et al., 2017). To evaluate
the environmental persistence of a chemical, biodegradation
half-life is widely used as a common criterion (Raymond
et al., 2001). We previously categorized chemicals as ready
biodegradability and not ready biodegradability according to
their biological oxygen demand (BOD) with a threshold of 60%
and built several classification models. The best model used kNN
with molecular descriptors and had a AUC of 0.873 in test set
(Cheng et al., 2012a).

Fishes are usually used as model species to evaluate aquatic
toxicity and avian species are widely used as model species to
evaluate the terrestrial toxicity. Our group previously collected
LC50 data of three fish species from ECOTOX database and built
several local and global models (Sun et al., 2015). Recently, we
reported a model focusing on the aquatic toxicity of pesticides
and found that the molecule fingerprints performed different
between local and global models (Li et al., 2017). For the
avian species, several in silico models were developed including
classification (Zhang et al., 2015) and regression (Mazzatorta
et al., 2006; Toropov and Benfenati, 2006). In addition to the
endpoints mentioned above, another commonly used model
species for eco-toxicology is Tetrahymena pyriformis (Sauvant
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et al., 1999). Cheng et al. collected 1,571 unique chemicals with
toxicity to Tetrahymena pyriformis and built several models of
which the best performance was 92.6% for validation set (Cheng
et al., 2011a).

SOFTWARE AND WEB SERVERS

Currently many software and web servers can predict chemical
toxicity before synthesis. Drug design software suites such as
Discovery Studio and Pipeline Pilot integrate toxicity prediction
models to help filter compounds with risk of toxicity. But the
endpoints are not as diverse as that in some toxicity-oriented
commercial software including ADMET Predictor, Leadscope
and Lhasa Derek, which take efforts primarily on predicting and
alerting molecules with potential toxicity.

Free software or web servers are more preferred by academia,
which can promote the development of high quality models
and algorithms, and their applications in various fields including
drug discovery. OCED Toolbox is an official suite for toxicity
prediction and modeling using QSTR. Web servers are easier
and lighter to use and will be preferred by outsiders of
computational toxicology, such as medicinal chemists. Lazar is
such a tool that can predict several toxicity endpoints with a
user interface of drawing chemical structures (Maunz et al.,
2013). ToxTree is an open source application that estimates
toxic hazard by applying a decision tree approach (Patlewicz
et al., 2008). Compared to QSTR-like models, ToxTree is
more interpretable and the fragments (SAs) can guide the
chemists in modification of the molecules. The performance
of ToxTree, OECD Toolbox, and other commercial tools
were compared in literature (Devillers and Mombelli, 2010;
Mombelli and Devillers, 2010; Bhatia et al., 2015; Bhhatarai
et al., 2016). Our group developed admetSAR that can also
predict toxicity of compounds in SMILES format (Cheng et al.,
2012b).

Web servers such as ChemSAR (Dong et al., 2017b) and
ChemBench (Capuzzi et al., 2017) enable users to build custom
models for particular use with machine learning methods and
molecular descriptors. For chemists who have in-house data for
some particular endpoints, it will be convenient to use these
web servers to build predictive models to prioritize or substitute
in vitro or in vivo tests.

PERSPECTIVES

Though in silico prediction of chemical toxicity has made a
good progress in recent years, there are still some challenges and

limitations to be improved. At first, data quality is still a big issue.
Currently many toxicity data are obtained from high-throughput
in vitro assays or in vivo tests on animals. For example, Tox21
and ToxCast provide the activity data of thousands of chemicals
against hundreds of assays (Huang et al., 2016). While false
positive and false negative data are inevitable in those assays,
in vivo data from animals are also questionable to be used directly
on humans. Therefore, more data from drug clinical trials and
clinic applications are highly demanded.

Secondly, more computational methods should be developed
to enhance the accuracy of the predictive models. For instance,
read-across has gained wide attention recently because it can fill
the gap of missing data (Shah et al., 2016). Meanwhile, some
endpoints have complex mechanisms such as hepatotoxicity
and respiratory toxicity, computational systems toxicology has
emerged to use comprehensive data sources from gene to organ
to understand the mechanisms of toxicity (Jack et al., 2013;
Sauer et al., 2015). With the help of machine learning methods
and cheminformatics techniques, more accurate models could be
developed for toxicity prediction.

Thirdly, medicinal chemists are more interested in the
relationship between substructures and chemical toxicity,
which can guide the optimization of lead compounds. Using
computational tools to identify SAs is a promising way. Current
approaches of SA identification can only generate numerous
but redundant substructures in terms of their frequency of
occurrence, disregarding the chemical or biological mechanisms
(Yang et al., 2017a). It is not difficult to obtain “potential” SAs
for almost every endpoint with support of assay results, yet
innovative protocol or framework is still required to further
refine these substructures and explore the chemical mechanisms
of toxicity.

AUTHOR CONTRIBUTIONS

YT, GL, andWL contributed conception and design of the study;
HY wrote the first draft of the manuscript; HY and LS wrote
sections of themanuscript. All authors contributed tomanuscript
revision, read and approved the submitted version.

ACKNOWLEDGMENTS

This work was supported by the National Key Research and
Development Program of China (Grant 2016YFA0502304),
the National Natural Science Foundation of China (Grants
81373329 and 81673356) and the 863 Project (Grant
2012AA020308).

REFERENCES

Ahlberg, E., Carlsson, L., and Boyer, S. (2014). Computational derivation of
structural alerts from large toxicology data sets. J. Chem. Inf. Model. 54,
2945–2952. doi: 10.1021/ci500314a

Al-Otaibi, R., Kull, M., and Flach, P. (2014). “LaCova: a tree-based multi-label
classifier using label covariance as splitting criterion,” in 2014 13th International
Conference on Machine Learning and Applications, (Detroit, MI: Icmla),
74–79.

Altae-Tran, H., Ramsundar, B., Pappu, A. S., and Pande, V.
(2017). Low data drug discovery with one-shot learning.
ACS Cent. Sci. 3, 283–293. doi: 10.1021/acscentsci.6b
00367

Ashby, J., and Tennant, R. W. (1988). Chemical structure, Salmonella
mutagenicity and extent of carcinogenicity as indicators of genotoxic
carcinogenesis among 222 chemicals tested in rodents by the U.S.
NCI/NTP. Mutat. Res. 204, 17–115. doi: 10.1016/0165-1218(88)
90114-0

Frontiers in Chemistry | www.frontiersin.org 8 February 2018 | Volume 6 | Article 3036

https://doi.org/10.1021/ci500314a
https://doi.org/10.1021/acscentsci.6b00367
https://doi.org/10.1016/0165-1218(88)90114-0
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Yang et al. In Silico Prediction of Toxicity

Avila, J. L., Gibaja, E. L., and Ventura, S. (2009). Multi-label Classification
with gene expression programming. Hybrid Artif. Intell. Syst. 5572, 629–637.
doi: 10.1007/978-3-642-02319-4_76

Barot, P., and Panchal, M. (2014). Review on various problem transformation
methods for classifying multi-label data. Int. J. Data Min. Emerg. Technol. 4,
45–52. doi: 10.5958/2249-3220.2014.00001.9

Bhatia, S., Schultz, T., Roberts, D., Shen, J., Kromidas, L., and Marie Api, A.
(2015). Comparison of Cramer classification between Toxtree, the OECD
QSAR Toolbox and expert judgment. Regul. Toxicol. Pharmacol. 71, 52–62.
doi: 10.1016/j.yrtph.2014.11.005

Bhhatarai, B., Wilson, D. M., Parks, A. K., Carney, E. W., and Spencer, P. J.
(2016). Evaluation of TOPKAT, toxtree, and derek nexus in silico models
for ocular irritation and development of a knowledge-based framework to
improve the prediction of severe irritation. Chem. Res. Toxicol. 29, 810–822.
doi: 10.1021/acs.chemrestox.5b00531

Borgelt, C., and Berthold, M. R. (2002). “Mining molecular fragments: finding
relevant substructures of molecules,” in Data Mining, (2002). ICDM 2003.

Proceedings 2002 IEEE International Conference (Maebashi: IEEE), 51–58.
Boutell, M. R., Luo, J. B., Shen, X. P., and Brown, C. M. (2004). Learning

multi-label scene classification. Pattern Recognit. 37, 1757–1771.
doi: 10.1016/j.patcog.2004.03.009

Breiman, L. (2001). Random forests. Mach. Learn. 45, 5–32.
doi: 10.1023/A:1010933404324

Capuzzi, S. J., Kim, I. S., Lam, W. I., Thornton, T. E., Muratov, E. N., Pozefsky,
D., et al. (2017). Chembench: A publicly accessible, integrated cheminformatics
portal. J. Chem. Inf. Model. 57, 105–108. doi: 10.1021/acs.jcim.6b00462

Chawla, A., Repa, J. J., Evans, R. M., and Mangelsdorf, D. J. (2001). Nuclear
receptors and lipid physiology: opening the X-files. Science 294, 1866–1870.
doi: 10.1126/science.294.5548.1866

Chen, Y., Cheng, F., Sun, L., Li, W., Liu, G., and Tang, Y. (2014).
Computational models to predict endocrine-disrupting chemical binding with
androgen or oestrogen receptors. Ecotoxicol. Environ. Saf. 110, 280–287.
doi: 10.1016/j.ecoenv.2014.08.026

Cheng, F., Ikenaga, Y., Zhou, Y., Yu, Y., Li, W., Shen, J., et al. (2012a). In silico

assessment of chemical biodegradability. J. Chem. Inf. Model. 52, 655–669.
doi: 10.1021/ci200622d

Cheng, F., Li, W., Liu, G., and Tang, Y. (2013a). In silico ADMET prediction:
recent advances, current challenges and future trends. Curr. Top. Med. Chem.

13, 1273–1289. doi: 10.2174/15680266113139990033
Cheng, F., Li, W., Wang, X., Zhou, Y., Wu, Z., Shen, J., et al. (2013b). Adverse drug

events: database construction and in silico prediction. J. Chem. Inf. Model. 53,
744–752. doi: 10.1021/ci4000079

Cheng, F., Li, W., Wu, Z., Wang, X., Zhang, C., Li, J., et al. (2013c). Prediction of
polypharmacological profiles of drugs by the integration of chemical, side effect,
and therapeutic space. J. Chem. Inf. Model. 53, 753–762. doi: 10.1021/ci400010x

Cheng, F., Li, W., Zhou, Y., Shen, J., Wu, Z., Liu, G., et al. (2012b).
admetSAR: a comprehensive source and free tool for assessment of chemical
ADMET properties. J. Chem. Inf. Model. 52, 3099–3105. doi: 10.1021/
ci300367a

Cheng, F., Shen, J., Yu, Y., Li, W., Liu, G., Lee, P. W., et al. (2011a). In

silico prediction of Tetrahymena pyriformis toxicity for diverse industrial
chemicals with substructure pattern recognition and machine learning
methods.Chemosphere 82, 1636–1643. doi: 10.1016/j.chemosphere.2010.11.043

Cheng, F., Yu, Y., Zhou, Y., Shen, Z., Xiao, W., Liu, G., et al. (2011b). Insights into
molecular basis of cytochrome p450 inhibitory promiscuity of compounds. J.
Chem. Inf. Model. 51, 2482–2495. doi: 10.1021/ci200317s

Colborn, T. (1995). Environmental estrogens: health implications for humans and
wildlife. Environ. Health Perspect. 103 (Suppl. 7), 135–136.

Cortes, C., and Vapnik, V. (1995). Support-Vector Networks. Mach. Learn. 20,
273–297. doi: 10.1007/BF00994018

Cortes-Ciriano, I. (2016). Bioalerts: a python library for the derivation of
structural alerts from bioactivity and toxicity data sets. J. Cheminform. 8:13.
doi: 10.1186/s13321-016-0125-7

Cover, T., and Hart, P. (1967). Nearest neighbor pattern classification. IEEE Trans.

Inform. Theory 13, 21–27. doi: 10.1109/TIT.1967.1053964
Davis, A. P., Grondin, C. J., Johnson, R. J., Sciaky, D., King, B. L., McMorran, R.,

et al. (2017). The comparative toxicogenomics database: update 2017. Nucleic
Acids Res. 45, D972–D978. doi: 10.1093/nar/gkw838

Demsar, J., Curk, T., Erjavec, A., Gorup, C., Hocevar, T., Milutinovic, M., et al.
(2013). Orange: data mining toolbox in python. J. Mach. Learn. Res. 14,
2349–2353. Available online at: https://orange.biolab.si/citation/

Deng, L., Hinton, G., and Kingsbury, B. (2013). “New types of deep neural network
learning for speech recognition and related applications: an overview,”in IEEE

International Conference on Acoustics, Speech and Signal Processing (Vancouver,
BC), 8599–8603.

Devillers, J., and Mombelli, E. (2010). Evaluation of the OECD QSAR
Application Toolbox and Toxtree for estimating the mutagenicity of
chemicals. Part 1. Aromatic amines. SAR QSAR Environ. Res. 21, 753-769.
doi: 10.1080/1062936X.2010.528959

Dik, S., Pennings, J. L., van Loveren, H., and Ezendam, J. (2015). Development
of an in vitro test to identify respiratory sensitizers in bronchial epithelial
cells using gene expression profiling. Toxicol. In Vitro 30(1 Pt B), 274-280.
doi: 10.1016/j.tiv.2015.10.010

Diplaris, S., Tsoumakas, G., Mitkas, P. A., and Vlahavas, I. (2005). Protein
classification with multiple algorithms. Adv. Inform. Proc. 3746, 448–456.
doi: 10.1007/11573036_42

Doddareddy, M. R., Klaasse, E. C., Shagufta, Ijzerman, A. P., and Bender, A.
(2010). Prospective validation of a comprehensive in silico hERG model and its
applications to commercial compound and drug databases. Chem. Med. Chem.

5, 716–729. doi: 10.1002/cmdc.201000024
Dong, J., Cao, D. S., Miao, H. Y., Liu, S., Deng, B. C., Yun, Y. H., et al. (2015).

ChemDes: an integrated web-based platform for molecular descriptor and
fingerprint computation. J. Cheminform. 7:60. doi: 10.1186/s13321-015-0109-z

Dong, J., Wang, N.-N., Liu, K.-Y., Zhu, M.-F., Yun, Y.-H., Zeng, W.-B., et al.
(2017a). ChemBCPP: a freely available web server for calculating commonly
used physicochemical properties. Chemometr. Intell. Lab. Syst. 171, 65–73.
doi: 10.1016/j.chemolab.2017.10.006

Dong, J., Yao, Z. J., Zhu, M. F., Wang, N. N., Lu, B., Chen, A. F., et al. (2017b).
ChemSAR: an online pipelining platform for molecular SAR modeling. J.
Cheminform. 9:27. doi: 10.1186/s13321-017-0215-1

Du, H., Cai, Y., Yang, H., Zhang, H., Xue, Y., Liu, G., et al. (2017). In silico

prediction of chemicals binding to aromatase with machine learning methods.
Chem. Res. Toxicol. 30, 1209–1218. doi: 10.1021/acs.chemrestox.7b00037

Duvenaud, D., Maclaurin, D., Aguilera-Iparraguirre, J., Gómez-Bombarelli, R.,
Hirzel, T., and Aspuru-Guzik, A. N., et al. (2015). Convolutional Networks on
Graphs for Learning Molecular Fingerprints. ArXiv e-prints [Online], (1509).
Available online at: http://adsabs.harvard.edu/abs/2015arXiv150909292D
(Accessed Sept 1, 2015).

Elith, J., Leathwick, J. R., and Hastie, T. (2008). A working
guide to boosted regression trees. J. Anim. Ecol. 77, 802–813.
doi: 10.1111/j.1365-2656.2008.01390.x

Fan, D., Yang, H., Li, F., Sun, L., Di, P., Li, W., et al. (in press). In silico prediction
of chemical genotoxicity using machine learning methods and structural alerts.
Toxicol. Res. doi: 10.1039/C7TX00259A

Ferrari, T., Cattaneo, D., Gini, G., Golbamaki Bakhtyari, N., Manganaro, A.,
and Benfenati, E. (2013). Automatic knowledge extraction from chemical
structures: the case of mutagenicity prediction. SAR QSAR Environ. Res. 24,
631–649. doi: 10.1080/1062936X.2013.773376

Floris, M., Raitano, G., Medda, R., and Benfenati, E. (2017). Fragment
prioritization on a large mutagenicity dataset. Mol. Inform. 36:1600133.
doi: 10.1002/minf.201600133

Fonger, G. C., Hakkinen, P., Jordan, S., and Publicker, S. (2014). The National
Library of Medicine’s (NLM) Hazardous Substances Data Bank (HSDB):
background, recent enhancements and future plans. Toxicology 325, 209–216.
doi: 10.1016/j.tox.2014.09.003

Fowler, S., and Schnall, J. G. (2014). TOXNET: information on
toxicology and environmental health. Am. J. Nurs. 114, 61–63.
doi: 10.1097/01.NAJ.0000443783.75162.79

Frank, E., Hall, M., Trigg, L., Holmes, G., and Witten, I. H. (2004).
Data mining in bioinformatics using Weka. Bioinformatics 20, 2479–2481.
doi: 10.1093/bioinformatics/bth261

Gaulton, A., Hersey, A., Nowotka, M., Bento, A. P., Chambers, J., Mendez, D.,
et al. (2017). The ChEMBL database in 2017.Nucleic Acids Res. 45, D945–D954.
doi: 10.1093/nar/gkw1074

Gibaja, E., and Ventura, S. (2015). A tutorial on multilabel learning. Acm Comput.

Surveys 47, 1–38. doi: 10.1145/2716262

Frontiers in Chemistry | www.frontiersin.org 9 February 2018 | Volume 6 | Article 3037

https://doi.org/10.1007/978-3-642-02319-4_76
https://doi.org/10.5958/2249-3220.2014.00001.9
https://doi.org/10.1016/j.yrtph.2014.11.005
https://doi.org/10.1021/acs.chemrestox.5b00531
https://doi.org/10.1016/j.patcog.2004.03.009
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1021/acs.jcim.6b00462
https://doi.org/10.1126/science.294.5548.1866
https://doi.org/10.1016/j.ecoenv.2014.08.026
https://doi.org/10.1021/ci200622d
https://doi.org/10.2174/15680266113139990033
https://doi.org/10.1021/ci4000079
https://doi.org/10.1021/ci400010x
https://doi.org/10.1021/ci300367a
https://doi.org/10.1016/j.chemosphere.2010.11.043
https://doi.org/10.1021/ci200317s
https://doi.org/10.1007/BF00994018
https://doi.org/10.1186/s13321-016-0125-7
https://doi.org/10.1109/TIT.1967.1053964
https://doi.org/10.1093/nar/gkw838
https://orange.biolab.si/citation/
https://doi.org/10.1080/1062936X.2010.528959
https://doi.org/10.1016/j.tiv.2015.10.010
https://doi.org/10.1007/11573036_42
https://doi.org/10.1002/cmdc.201000024
https://doi.org/10.1186/s13321-015-0109-z
https://doi.org/10.1016/j.chemolab.2017.10.006
https://doi.org/10.1186/s13321-017-0215-1
https://doi.org/10.1021/acs.chemrestox.7b00037
http://adsabs.harvard.edu/abs/2015arXiv150909292D
https://doi.org/10.1111/j.1365-2656.2008.01390.x
https://doi.org/10.1039/C7TX00259A
https://doi.org/10.1080/1062936X.2013.773376
https://doi.org/10.1002/minf.201600133
https://doi.org/10.1016/j.tox.2014.09.003
https://doi.org/10.1097/01.NAJ.0000443783.75162.79
https://doi.org/10.1093/bioinformatics/bth261
https://doi.org/10.1093/nar/gkw1074
https://doi.org/10.1145/2716262
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Yang et al. In Silico Prediction of Toxicity

Gilson, M. K., Liu, T., Baitaluk, M., Nicola, G., Hwang, L., and Chong, J. (2016).
BindingDB in 2015: a public database for medicinal chemistry, computational
chemistry and systems pharmacology. Nucleic Acids Res. 44, D1045–D1053.
doi: 10.1093/nar/gkv1072

Gintant, G., Sager, P. T., and Stockbridge, N. (2016). Evolution of strategies to
improve preclinical cardiac safety testing. Nat. Rev. Drug Discov. 15, 457–471.
doi: 10.1038/nrd.2015.34

Giri, S., and Bader, A. (2015). A low-cost, high-quality new drug discovery process
using patient-derived induced pluripotent stem cells. Drug Discov. Today 20,
37–49. doi: 10.1016/j.drudis.2014.10.011

Godbole, S., and Sarawagi, S. (2004). Discriminative methods for multi-
labeled classification. Adv. Knowl. Discov. Data Min. Proc. 3056, 22–30.
doi: 10.1007/978-3-540-24775-3_5

Goh, G. B., Hodas, N. O., and Vishnu, A. (2017). Deep learning for computational
chemistry. J. Comput. Chem. 38, 1291–1307. doi: 10.1002/jcc.24764

Golbamaki, A., and Benfenati, E. (2016). In silico methods for
carcinogenicity assessment. Methods Mol. Biol. 1425, 107–119.
doi: 10.1007/978-1-4939-3609-0_6

Golbamaki, A., Benfenati, E., Golbamaki, N., Manganaro, A., Merdivan,
E., Roncaglioni, A., et al. (2016). New clues on carcinogenicity-related
substructures derived from mining two large datasets of chemical compounds.
J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 34, 97–113.
doi: 10.1080/10590501.2016.1166879

Gold, L. S., Manley, N. B., Slone, T. H., Rohrbach, L., and Garfinkel, G. B.
(2005). Supplement to the Carcinogenic Potency Database (CPDB): results
of animal bioassays published in the general literature through 1997 and by
the National Toxicology Program in 1997-1998. Toxicol. Sci. 85, 747–808.
doi: 10.1093/toxsci/kfi161

Grün, F., and Blumberg, B. (2007). Perturbed nuclear receptor signaling by
environmental obesogens as emerging factors in the obesity crisis. Rev. Endocr.
Metab. Disord. 8, 161–171. doi: 10.1007/s11154-007-9049-x

Halling-Sørensen, B., Nors Nielsen, S., Lanzky, P. F., Ingerslev, F., Holten
Lützhøft, H. C., and Jørgensen, S. E. (1998). Occurrence, fate and effects
of pharmaceutical substances in the environment–a review. Chemosphere 36,
357–393. doi: 10.1016/S0045-6535(97)00354-8

Hansen, K., Mika, S., Schroeter, T., Sutter, A., ter Laak, A., Steger-Hartmann,
T., et al. (2009). Benchmark data set for in Silico prediction of ames
mutagenicity. J. Chem. Inf. Model. 49, 2077–2081. doi: 10.1021/ci90
0161g

He, J., Peng, T., Yang, X., and Liu, H. (2017). Development of QSAR
models for predicting the binding affinity of endocrine disrupting chemicals
to eight fish estrogen receptor. Ecotoxicol. Environ. Saf. 148, 211–219.
doi: 10.1016/j.ecoenv.2017.10.023

Hewitt, M., and Przybylak, K. (2016). In silico models for hepatotoxicity. Methods

Mol. Biol. 1425, 201–236. doi: 10.1007/978-1-4939-3609-0_11
Hsieh, J. H., Sedykh, A., Huang, R., Xia, M., and Tice, R. R. (2015). A

data analysis pipeline accounting for artifacts in Tox21 quantitative
high-throughput screening assays. J. Biomol. Screen. 20, 887–897.
doi: 10.1177/1087057115581317

Huang, R., Xia, M., Sakamuru, S., Zhao, J., Shahane, S. A., Attene-Ramos,
M., et al. (2016). Modelling the Tox21 10K chemical profiles for in vivo

toxicity prediction and mechanism characterization. Nat. Commun. 7:10425.
doi: 10.1038/ncomms10425

Huh, D., Hamilton, G. A., and Ingber, D. E. (2011). From 3D cell culture
to organs-on-chips. Trends Cell Biol. 21, 745–754. doi: 10.1016/j.tcb.2011.
09.005

Huh, D., Matthews, B. D., Mammoto, A., Montoya-Zavala, M., Hsin, H. Y., and
Ingber, D. E. (2010). Reconstituting organ-level lung functions on a chip.
Science 328, 1662–1668. doi: 10.1126/science.1188302

Jack, J., Wambaugh, J., and Shah, I. (2013). Systems toxicology from genes
to organs. Methods Mol. Biol. 930, 375–397. doi: 10.1007/978-1-62703-
059-5_17

Jarvis, J., Seed, M. J., Stocks, S. J., and Agius, R. M. (2015). A refined QSAR model
for prediction of chemical asthma hazard. Occup. Med. (Lond). 65, 659–666.
doi: 10.1093/occmed/kqv105

Judson, R., Richard, A., Dix, D., Houck, K., Elloumi, F., Martin, M., et al.
(2008). ACToR–Aggregated computational toxicology resource. Toxicol. Appl.
Pharmacol. 233, 7–13. doi: 10.1016/j.taap.2007.12.037

Kazius, J., McGuire, R., and Bursi, R. (2005). Derivation and validation
of toxicophores for mutagenicity prediction. J. Med. Chem. 48, 312–320.
doi: 10.1021/jm040835a

Kazius, J., Nijssen, S., Kok, J., Bäck, T., and Ijzerman, A. P. (2006). Substructure
mining using elaborate chemical representation. J. Chem. Inf. Model. 46,
597–605. doi: 10.1021/ci0503715

Klekota, J., and Roth, F. P. (2008). Chemical substructures that enrich for biological
activity. Bioinformatics 24, 2518–2525. doi: 10.1093/bioinformatics/btn479

Kolle, S. N., van Ravenzwaay, B., and Landsiedel, R. (2017). Regulatory accepted
but out of domain: in vitro skin irritation tests for agrochemical formulations.
Regul. Toxicol. Pharmacol. 89, 125–130. doi: 10.1016/j.yrtph.2017.07.016

Kuhn, M., Campillos, M., Letunic, I., Jensen, L. J., and Bork, P. (2010). A side
effect resource to capture phenotypic effects of drugs. Mol. Syst. Biol. 6:343.
doi: 10.1038/msb.2009.98

Landrum, G. (2017). RDKit. Available online at: http://www.rdkit.org.
LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning.Nature 521, 436–444.

doi: 10.1038/nature14539
Lei, T., Chen, F., Liu, H., Sun, H., Kang, Y., Li, D., et al. (2017). ADMET Evaluation

in drug discovery. part 17: development of quantitative and qualitative
prediction models for chemical-induced respiratory toxicity. Mol. Pharm. 14,
2407-2421. doi: 10.1021/acs.molpharmaceut.7b00317

Lei, T., Li, Y., Song, Y., Li, D., Sun, H., and Hou, T. (2016). ADMET evaluation
in drug discovery: 15. Accurate prediction of rat oral acute toxicity using
relevance vector machine and consensus modeling. J. Cheminformat. 8:6.
doi: 10.1186/S13321-016-0117-7.

Lepailleur, A., Poezevara, G., and Bureau, R. (2013). Automated detection of
structural alerts (chemical fragments) in (eco)toxicology. Comput. Struct.

Biotechnol. J. 5:e201302013. doi: 10.5936/csbj.201302013
Li, F., Fan, D., Wang, H., Yang, H., Li, W., Tang, Y., et al. (2017). In silico prediction

of pesticide aquatic toxicity with chemical category approaches. Toxicol. Res. 6,
831–842. doi: 10.1039/C7TX00144D

Li, X., Chen, L., Cheng, F., Wu, Z., Bian, H., Xu, C., et al. (2014). In silico prediction
of chemical acute oral toxicity using multi-classification methods. J. Chem. Inf.

Model. 54, 1061–1069. doi: 10.1021/ci5000467
Li, X., Du, Z., Wang, J., Wu, Z. R., Li, W. H., Liu, G. X., et al. (2015). In silico

estimation of chemical carcinogenicity with binary and ternary classification
methods.Mol. Inform. 34, 228–235. doi: 10.1002/minf.201400127

Matsuno, O. (2012). Drug-induced interstitial lung disease: mechanisms and best
diagnostic approaches. Respir. Res. 13:39. doi: 10.1186/1465-9921-13-39

Maunz, A., Gütlein, M., Rautenberg, M., Vorgrimmler, D., Gebele, D., and Helma,
C. (2013). lazar: a modular predictive toxicology framework. Front. Pharmacol.

4:38. doi: 10.3389/fphar.2013.00038
Mayr, A., Klambauer, G., Unterthiner, T., and Hochreiter, S. (2016).

DeepTox: toxicity prediction using deep learning. Front. Environ. Sci.

3:80. doi: 10.3389/fenvs.2015.00080
Mazzatorta, P., Cronin, M. T. D., and Benfenati, E. (2006). A QSAR study of

avian oral toxicity using support vectormachines and genetic algorithms.QSAR
Comb. Sci. 25, 616–628. doi: 10.1002/qsar.200530189

Mekenyan, O., Patlewicz, G., Kuseva, C., Popova, I., Mehmed, A., Kotov, S., et al.
(2014). A mechanistic approach to modeling respiratory sensitization. Chem.

Res. Toxicol. 27, 219–239. doi: 10.1021/tx400345b
Mombelli, E., and Devillers, J. (2010). Evaluation of the OECD (Q)SAR

Application Toolbox and Toxtree for predicting and profiling the
carcinogenic potential of chemicals. SAR QSAR Environ. Res. 21, 731–752.
doi: 10.1080/1062936X.2010.528598

Mulliner, D., Schmidt, F., Stolte, M., Spirkl, H. P., Czich, A., and Amberg,
A. (2016). Computational models for human and animal hepatotoxicity
with a global application scope. Chem. Res. Toxicol. 29, 757–767.
doi: 10.1021/acs.chemrestox.5b00465

O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., and
Hutchison, G. R. (2011). Open Babel: an open chemical toolbox. J. Cheminform.

3:33. doi: 10.1186/1758-2946-3-33
Patlewicz, G., Jeliazkova, N., Safford, R. J., Worth, A. P., and Aleksiev, B.

(2008). An evaluation of the implementation of the cramer classification
scheme in the toxtree software. SAR QSAR Environ. Res. 19, 495–524.
doi: 10.1080/10629360802083871

Paul, S. M., Mytelka, D. S., Dunwiddie, C. T., Persinger, C. C., Munos, B.
H., Lindborg, S. R., et al. (2010). How to improve R&D productivity: the

Frontiers in Chemistry | www.frontiersin.org 10 February 2018 | Volume 6 | Article 3038

https://doi.org/10.1093/nar/gkv1072
https://doi.org/10.1038/nrd.2015.34
https://doi.org/10.1016/j.drudis.2014.10.011
https://doi.org/10.1007/978-3-540-24775-3_5
https://doi.org/10.1002/jcc.24764
https://doi.org/10.1007/978-1-4939-3609-0_6
https://doi.org/10.1080/10590501.2016.1166879
https://doi.org/10.1093/toxsci/kfi161
https://doi.org/10.1007/s11154-007-9049-x
https://doi.org/10.1016/S0045-6535(97)00354-8
https://doi.org/10.1021/ci900161g
https://doi.org/10.1016/j.ecoenv.2017.10.023
https://doi.org/10.1007/978-1-4939-3609-0_11
https://doi.org/10.1177/1087057115581317
https://doi.org/10.1038/ncomms10425
https://doi.org/10.1016/j.tcb.2011.09.005
https://doi.org/10.1126/science.1188302
https://doi.org/10.1007/978-1-62703-059-5_17
https://doi.org/10.1093/occmed/kqv105
https://doi.org/10.1016/j.taap.2007.12.037
https://doi.org/10.1021/jm040835a
https://doi.org/10.1021/ci0503715
https://doi.org/10.1093/bioinformatics/btn479
https://doi.org/10.1016/j.yrtph.2017.07.016
https://doi.org/10.1038/msb.2009.98
http://www.rdkit.org
https://doi.org/10.1038/nature14539
https://doi.org/10.1021/acs.molpharmaceut.7b00317
https://doi.org/10.1186/S13321-016-0117-7.
https://doi.org/10.5936/csbj.201302013
https://doi.org/10.1039/C7TX00144D
https://doi.org/10.1021/ci5000467
https://doi.org/10.1002/minf.201400127
https://doi.org/10.1186/1465-9921-13-39
https://doi.org/10.3389/fphar.2013.00038
https://doi.org/10.3389/fenvs.2015.00080
https://doi.org/10.1002/qsar.200530189
https://doi.org/10.1021/tx400345b
https://doi.org/10.1080/1062936X.2010.528598
https://doi.org/10.1021/acs.chemrestox.5b00465
https://doi.org/10.1186/1758-2946-3-33
https://doi.org/10.1080/10629360802083871
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Yang et al. In Silico Prediction of Toxicity

pharmaceutical industry’s grand challenge. Nat. Rev. Drug Discov. 9, 203–214.
doi: 10.1038/nrd3078

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Weiss, R., Dubourg, V.,
et al. (2011). Scikit-learn: machine learning in python. J. Mach. Learn. Res.

12, 2825–2830. Available online at: http://scikit-learn.org/stable/about.html#
citing-scikit-learn

PhRMA (2015). 2015 Biopharmaceutical Research Industry Profle. Washington,
DC: Pharmaceutical Research and Manufacturers of America.

Pizzo, F., Gadaleta, D., Lombardo, A., Nicolotti, O., and Benfenati, E. (2015).
Identification of structural alerts for liver and kidney toxicity using repeated
dose toxicity data. Chem. Cent. J. 9:62. doi: 10.1186/s13065-015-0139-7

Raymond, J. W., Rogers, T. N., Shonnard, D. R., and Kline, A. A. (2001). A review
of structure-based biodegradation estimation methods. J. Hazard. Mater. 84,
189–215. doi: 10.1016/S0304-3894(01)00207-2

Read, J., Pfahringer, B., and Holmes, G. (2008). “Multi-label classification using
ensembles of pruned sets,” ICDM 2008: Eighth IEEE International Conference

on Data Mining, Proceedings (Pisa), 995-1000.
Read, J., Pfahringer, B., Holmes, G., and Frank, E. (2011). Classifier

chains for multi-label classification. Mach. Learn. 85, 333–359.
doi: 10.1007/s10994-011-5256-5

Sauer, J. M., Hartung, T., Leist, M., Knudsen, T. B., Hoeng, J., and Hayes, A. W.
(2015). Systems toxicology: the future of risk assessment. Int. J. Toxicol. 34,
346–348. doi: 10.1177/1091581815576551

Sauvant, M. P., Pepin, D., and Piccinni, E. (1999). Tetrahymena pyriformis:
a tool for toxicological studies. A review. Chemosphere 38, 1631–1669.
doi: 10.1016/S0045-6535(98)00381-6

Schmidt, U., Struck, S., Gruening, B., Hossbach, J., Jaeger, I. S., Parol, R., et al.
(2009). SuperToxic: a comprehensive database of toxic compounds. Nucleic
Acids Res. 37, D295-D299. doi: 10.1093/nar/gkn850

Schuster, D., Laggner, C., and Langer, T. (2005). Why drugs fail - A study
on side effects in new chemical entities. Curr. Pharm. Des. 11, 3545–3559.
doi: 10.2174/138161205774414510

Segall, M. D., and Barber, C. (2014). Addressing toxicity risk when designing and
selecting compounds in early drug discovery. Drug Discov. Today 19, 688–693.
doi: 10.1016/j.drudis.2014.01.006

Shah, I., Liu, J., Judson, R. S., Thomas, R. S., and Patlewicz, G. (2016).
Systematically evaluating read-across prediction and performance
using a local validity approach characterized by chemical structure
and bioactivity information. Regul. Toxicol. Pharmacol. 79, 12–24.
doi: 10.1016/j.yrtph.2016.05.008

Shen, J., Cheng, F., Xu, Y., Li, W., and Tang, Y. (2010). Estimation of ADME
properties with substructure pattern recognition. J. Chem. Inf. Model 50,
1034–1041. doi: 10.1021/ci100104j

Shen, Q., Jiang, J. H., Jiao, C. X., Lin, W. Q., Shen, G. L., and Yu, R. Q.
(2004). Hybridized particle swarm algorithm for adaptive structure training of
multilayer feed-forward neural network: QSAR studies of bioactivity of organic
compounds. J. Comput. Chem. 25, 1726–1735. doi: 10.1002/jcc.20094

Singh, K. P., Gupta, S., and Rai, P. (2013). Predicting carcinogenicity of diverse
chemicals using probabilistic neural network modeling approaches. Toxicol.
Appl. Pharmacol. 272, 465–475. doi: 10.1016/j.taap.2013.06.029

Sokolova, M., and Szpakowicz, S. (2010). In Handbook of Research on Machine

Learning Applications and Trends: Algorithms, Methods, and Techniques.
Hershey, PA: IGI Global.

Sonnet, P., Guillon, J., Enguehard, C., Dallemagne, P., Bureau, R., Rault S.
Auvray P., et al. (1998). Design and synthesis of a new type of non
steroidal human aromatase inhibitors. Bioorg. Med. Chem. Lett. 8, 1041–1044.
doi: 10.1016/S0960-894X(98)00157-7

Steinbeck, C., Han, Y. Q., Kuhn, S., Horlacher, O., Luttmann, E., and Willighagen,
E. (2003). The Chemistry Development Kit (CDK): an open-source Java
library for chemo- and bioinformatics. J. Chem. Inf. Comput. Sci. 43, 493–500.
doi: 10.1021/ci025584y

Sun, L., Yang, H., Li, J., Wang, T., Li, W., Liu, G., et al. (2017). In silico

prediction of compounds binding to human plasma proteins by QSARmodels.
ChemMedChem. doi: 10.1002/cmdc.201700582. [Epub ahead of print].

Sun, L., Zhang, C., Chen, Y. J., Li, X., Zhuang, S. L., Li, W. H., et al. (2015). In silico
prediction of chemical aquatic toxicity with chemical category approaches and
substructural alerts. Toxicol. Res. 4, 452–463. doi: 10.1039/C4TX00174E

Sushko, I., Salmina, E., Potemkin, V. A., Poda, G., and Tetko, I. V. (2012).
ToxAlerts: a web server of structural alerts for toxfic chemicals and compounds
with potential adverse reactions. J. Chem. Inf. Model. 52, 2310–2316.
doi: 10.1021/ci300245q

Tanabe, K., Kurita, T., Nishida, K., Lucić, B., Amić, D., and Suzuki, T. (2013).
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A corrigendum on
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and Structural Alerts

by Yang, H., Sun, L., Li, W., Liu, G., and Tang, Y. (2018). Front. Chem. 6:30.
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In the original article, there was an error.
The Equation (6) was:

Specificity =
TP

TP + FP
(6)

A correction has been made to Model Building With Machine Learning Methods, Model
Evaluation, Equation (6):

Specificity =
TN

TN + FP
(6)

The authors apologize for this error and state that this does not change the scientific conclusions of
the article in any way.

The original article has been updated.
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The observed moisture- and temperature dependent transformations of the dapsone

(4,4′-diaminodiphenyl sulfone, DDS) 0. 33-hydrate were correlated to its structure and

the number and strength of the water-DDS intermolecular interactions. A combination of

characterization techniques was used, including thermal analysis (hot-stage microscopy,

differential scanning calorimetry and thermogravimetric analysis), gravimetric moisture

sorption/desorption studies and variable humidity powder X-ray diffraction, along with

computational modeling (crystal structure prediction and pair-wise intermolecular energy

calculations). Depending on the relative humidity the hydrate contains between 0 and

0.33 molecules of water per molecule DDS. The crystal structure is retained upon

dehydration indicating that DDS hydrate shows a non-stoichiometric (de)hydration

behavior. Unexpectedly, the water molecules are not located in structural channels but

at isolated-sites of the host framework, which is counterintuitively for a hydrate with

non-stoichiometric behavior. The water-DDS interactions were estimated to be weaker

than water-host interactions that are commonly observed in stoichiometric hydrates

and the lattice energies of the isomorphic dehydration product (hydrate structure

without water molecules) and (form III) differ only by ∼1 kJ mol−1. The computational

generation of hypothetical monohydrates confirms that the hydrate with the unusual

DDS:water ratio of 3:1 is more stable than a feasible monohydrate structure. Overall,

this study highlights that a deeper understanding of the formation of hydrates with

non-stoichiometric behavior requires a multidisciplinary approach including suitable

experimental and computational methods providing a firm basis for the development

and manufacturing of high quality drug products.

Keywords: dapsone, hydrate, crystal structure prediction, temperature and moisture dependent stability,

intermolecular energy

INTRODUCTION

The vast majority of drugs is formulated and administered in a solid (mostly crystalline)
form, since this aggregation state assures the highest chemical and storage stability of the drug
compound. However, a drug compound may occur in a variety of different solid state forms,
which is subsumed under the general term “polymorphism” comprising one component forms
(polymorphs, amorphous form) and multicomponent phases (hydrates, solvates, co-crystals). The
statement “Many people think that polymorphism and solid state chemistry is the hardest thing to
get right in drug development” (Byrn, 2004) clearly reflects on the challenges encountered and
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efforts to be undertaken in pre-formulation to guarantee
that the best solid form is used in a drug formulation.
The molecular structure of a drug compound determines its
biological/pharmacological properties and is thus an invariant,
i.e., cannot be changed in order to optimize the physicochemical
and biopharmaceutical properties of a drug. The only strategy to
improve such properties at the molecular level is the formation
of bioreversible derivatives of the drug compound (prodrugs),
which are transformed to the active molecules by metabolic
principles in the organism (Rautio et al., 2008, 2017). The
molecular features of a drug (molecular size, shape, flexibility,
hydrogen bond donors/acceptors, etc.,) determine the potential
of a drug to occur in different “supramolecular” states (solid state
forms) which may exhibit significantly different physicochemical
properties that are critical for the adjustment of an optimal
performance of a pharmaceutical product. The most critical
parameters are equilibrium solubility and dissolution rate but
also differences in density, hardness, melting point, mechanical
strength, chemical stability etc. may affect manufacturing
processes and are relevant for shelf-life stability and finally the
bioavailability of a final dosage form. Thus, identifying solid state
forms of a drug and understanding their phase relationships,
interconversion pathways and properties is a key concern in
modern drug development (Byrn et al., 1999; Bernstein, 2002;
Hilfiker, 2006; Brittain, 2009). Multiple solid forms, including
salts, co-crystals and solvates, have been found for 90% of
molecules (Stahly, 2007) and therefore, considerably extend the
range of solid form options available for delivering drugs.

The past experience of late-appearing, more stable forms, as
in the case of ritonavir (Chemburkar et al., 2000) or rotigotine
(Perez-Lloret et al., 2013), has not only triggered the awareness
of the issue of solid forms but also led to the implementation of
polymorphism screenings, a survey of crystallization conditions
designed to find and identify solid forms of a drug substance,
as a routine in the pre-formulation phase. Experimental solid
form screens may encompass up to thousands of crystallization
experiments and need to be tailored to the properties of the
investigated molecule (Newman, 2013; Cruz-Cabeza Aurora
et al., 2015). The wide range of methods that have led to the
discovery of novel forms (Llinàs and Goodman, 2008) highlight,
however, that there is no standard recipe for comprehensive
experimental solid form screening. Furthermore, the problem
that there is no endpoint in experimental solid form screening,
a computational method ensuring that all relevant forms have
been found is in high demand. To this end, crystal structure
prediction (CSP) on smaller pharmaceuticals has shown high
promise in complementing experimental solid form screening,
helping to rationalize and unify experimental observations on
polymorphs, hydrates and solvates (Cruz-Cabeza et al., 2008;
Campeta et al., 2010; Braun et al., 2011a, 2014a,b, 2016; Baias
et al., 2013; Bhardwaj et al., 2013; Ismail et al., 2013; Kendrick
et al., 2013; Price et al., 2014, 2016; Singh and Thakur, 2014;
Braun and Griesser, 2016b; Price and Reutzel-Edens, 2016). The
aim of an experimental polymorph screen is the identification
of those solid state forms which are relevant for a product
development, and the main expectation of a CSP study is the
confirmation that those forms are among the lowest energy

structures. Yet, computing the crystal energy landscapes of larger
drug molecules including its hydrates and solvates is still too
complex and computationally very (time) demanding. For multi-
component systems host (drug molecule) and different guest
molecules in different stoichiometric ratios would have to be
considered separately.

Generating knowledge of how water (vapor) is associated
with a specific material and how it affects the stability of a
product is a crucial task in pre-formulation studies, because
water inevitably appears in the manufacturing and storage
process of pharmaceutical products. Knowledge about hydrate
formation (water adducts) is of importance, as hydrates can
be the most stable solid form at relevant production and
storage conditions and it is well-known that at least one-third
of organic (drug) molecules (Stahly, 2007; Braun, 2008; Cruz-
Cabeza Aurora et al., 2015) form hydrates. A transformation
to a hydrate may be unavoidable. In a hydrate the water
molecules occupy regular positions in the crystal lattice of the
parent substance. The water can either fill structural voids or
be an integral part of the structure. Based on the moisture
sorption/desorption behavior hydrates can be subdivided into
two main classes (Gal, 1968; Griesser, 2006). “Stoichiometric”
hydrates are regarded as molecular compounds. Dehydration
always leads to a different structure or the amorphous state.
“Non-stoichiometric” hydrates incorporate a range of water
levels as a function of temperature and water vapor pressure.
The latter often host water molecules in open structural voids
that allow for reversible water uptake/release without significant
changes in the crystal structure. The water in non-stoichiometric
hydrates is often rather weakly bound and may interact with
other components compromising the stability and performance
of formulated products. Thus, knowledge of hydrate formation,
moisture and temperature dependent stability is crucial for the
development of a high quality fine chemical product.

Dapsone (4,4′-diaminodiphenyl sulfone; DDS, Figure 1) has
been chosen in this study as a model compound for evaluating
the value of computational chemistry in solid form screening
and characterization of a pharmaceutical hydrate. The compound
itself has been synthesized for the first time over 100 years
ago (Fromm and Wittmann, 1908) and its microbial activity
and therapeutic use for leprosy has already been studied in the
1940s. DDS has reinvented itself as a drug many times and
has been in use for numerous indications, treatment of leprosy,
dermatitis herpetiformis, malaria, prophylaxis of pneumocytosis
etc. (Wolf and Orni-Wasserlauf, 2000; Wozel and Blasum, 2014).

FIGURE 1 | Molecular diagram of 4,4′-diaminodiphenyl sulfone (DDS,

dapsone) hydrate.
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Today, it is mainly used as first-line drug in the treatment of
leprosy in combination with rifampicin and clofazimine. As
such, it is listed in the WHO’s List of Essential Medicines
(medications satisfying the priority health care needs in humans)
(World Health Organization, 2017). The compound is known
to be polymorphic (anhydrate forms I–IV), with form III being
reported to be the most stable form (Brandstaetter-Kuhnert et al.,
1963; Kuhnert-Brandstatter and Moser, 1979). Single crystal
structures are known for anhydrate forms III (Dickinson et al.,
1970; Deo et al., 1980; Bocelli and Cantoni, 1990; Su et al., 1992;
Bertolasi et al., 1993) and II (Braun et al., 2017). It is also known
that DDS forms solvates with dichloromethane, 1,4-dioxane
and tetrahydrofuran (Babashkina et al., 2012; Lemmer et al.,
2012). Furthermore, several crystal structure determinations of
a hydrate with the unusual DDS:water stoichiometry of 3:1 (0.33-
hydrate) have been reported (Kuz’mina et al., 1981; Bel’skii et al.,
1983; Yathirajan et al., 2014). Apart from these structure reports
no other information about the hydrate can be found in the
literature.

The aim of this study was to unravel the molecular/structural
reasons for hydrate formation in DDS, the structural and
thermodynamic relationship between the 0.33-Hy and water-
free DDS forms and their interconversion pathways as a
function of temperature and humidity/water activity through
a combination of computational and experimental methods.
A range of experimental techniques (crystallization, slurry
experiments, thermal analysis and X-ray diffraction), along
with CSP and pair-wise intermolecular energy calculations
were applied to explore the solid forms at an atomistic
level. The applied method for estimating the intermolecular
interaction energies (CE-B3LYP), best described as a hybrid
method, did perform surprisingly well compared to B3LYP-D2/6-
31G(d,p) counterpoise-corrected energies, but in considerable
less computation time (Turner et al., 2014). However, calculating
water interactions in organic (drug) hydrates represents a
big challenge as the balance of host (organic molecule)-host,
host-water, and water-water intermolecular interactions has
to be modeled accurately. Most simple water potentials have
been parametrized against a wide range of liquid properties
(Guillot, 2002). A potential for studying ices and amorphous
water, which reparametrized the TIP4P potential to reproduce
the density of several forms of ice, has been developed by
Abascal et al. (2005). Very recently it has been demonstrated
(in lead optimization), that accurately modeling intermolecular
interactions involving water requires the incorporation of
three-body terms and nanoscale treatment of the dielectric
response of confined frustrated water molecules (Fernández,
2016, 2017; Fernandez and Scott, 2017). Nevertheless, in our
study we decided to test the applicability of the readily available
and transferable CE-B3LYP method, which was not explicitly
developed for hydrate structures. We address the role of CSP
in hydrate screening and modeling and investigate whether
it is possible to derive information about hydrate stability
and dehydration mechanism based on structural classifications
and simple intermolecular interaction energy estimations (i.e.,
estimating the strengths of host-host, water-host and water-water
interactions).

MATERIALS AND METHODS

Computational Generation of the
Monohydrate Crystal Energy Landscape
The global energy minimum of DDS, obtained using Gaussian09
(Frisch et al., 2009), was used in the CSP searches. 350,000
Z′ = 1 monohydrate structures were generated using
CrystalPredictor2.0 (Karamertzanis and Pantelides, 2005,
2007; Habgood et al., 2015) in 48 common space groups for
organic molecules (Supplementary Material). The molecules
were held rigid and the lattice energy was evaluated by an
exp-6 potential with atomic charges derived using the CHELPG
scheme (Breneman and Wiberg, 1990) and minimized. The
10,000 lowest energy crystal structures were used as starting
points for optimizing the intermolecular lattice energy (U inter),
with an improved model for the intermolecular forces. This was
calculated using the FIT exp-6 potential parameters (Coombes
et al., 1996), the sulfur potential derived by Scheraga (Day et al.,
2009) and the distributed multipoles (Stone, 2005) derived from
the PBE0/6-31G(d,p) charge density using GDMA2 (Stone,
2010).

The optimal proton positions of the amino group and
orientation of the phenyl groups, in all crystal structures
within 15 kJ mol−1 of the global minimum (116 structures),
were determined using the CrystalOptimizer database method
(Kazantsev et al., 2011). This was done by minimizing the
lattice energy (Elatt), calculated as the sum of the intermolecular
contributions (U inter) and the conformational energy penalty
paid for distortion of the molecular geometry to improve the
hydrogen bonding geometries. Conformational energy penalties
(1Eintra, with respect to the pyramidal global conformational
energy minimum) and isolated molecule charge densities were
computed at the PBE0/6-31G(d,p) level, for each conformation
considered in the minimization of Elatt. All isolated-molecule
wave function calculations were performed using Gaussian09
(Frisch et al., 2009) and intermolecular lattice energies using
DMACRYS (Price et al., 2010).

The 100 most stable structures (within 30 kJ mol−1 of the
global minimum) were used as starting points for periodic
electronic structure calculations. The DFT-D calculations were
carried out with the CASTEP plane wave code (Clark et al.,
2005) using the Perdew-Burke-Ernzerhof (PBE) generalized
gradient approximation (GGA) exchange-correlation density
functional (Perdew et al., 1996) and ultrasoft pseudopotentials
(Vanderbilt, 1990), with the addition of a semi-empirical
dispersion correction developed by Tkatchenko and Scheffler
(TS) (Tkatchenko Scheffler and Scheffler, 2009). Brillouin zone
integrations were performed on a symmetrized Monkhorst–Pack
k-point grid with the number of k-points chosen to provide
a maximum spacing of 0.07 Å−1 and a basis set cut-off of
780 eV. The self-consistent field convergence on total energy was
set to 1x10−5 eV. Energy minimizations were performed using
the Broyden–Fletcher–Goldfarb–Shanno optimization scheme
within the space group constraints. The optimizations were
considered complete when energies were converged to better
than 2 × 10−5 eV per atom, atomic displacements converged
to 1 × 10−3 Å, maximum forces to 5 × 10−2 eV Å−1, and

Frontiers in Chemistry | www.frontiersin.org 3 February 2018 | Volume 6 | Article 3144

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Braun and Griesser Non-stoichiometric Drug Hydrates: Dapsone

maximum stresses were converged to 1 × 10−1 GPa. Isolated
molecule minimizations to compute the isolated DDS and water
energy (Ugas) were performed by placing a single molecule in a
fixed cubic 35 × 35 × 35 Å3 unit cell and optimized with the
same settings as used for the crystal calculations.

The experimental hydrate, lower hydrates and forms II and
III of DDS, as well as other selected hydrates (Supplementary
Material), were minimized with CASTEP and the same settings
were used as described for generating the monohydrate crystal
energy landscape.

Crystal Explorer Calculations
The pair-wise energy contributions to 0.33-Hy and other well-
characterized hydrate structures, have been calculated using
CrystalExplorer V17 (Turner et al., 2014, 2015; Mackenzie et al.,
2017). The optimized atomic positions (PBE-TS) have been used
in all subsequent intermolecular interaction energy calculations.
The model energies have been calculated between all unique
nearest neighbor molecular pairs. The used model (termed
CE-B3LYP) uses B3LYP/6-31G(d,p) molecular wave functions
calculated by applying the molecular geometries extracted from
the crystal structures. This approach uses electron densities
of unperturbed monomers to obtain four separate energy
components: electrostatic (EE), polarization (EP), dispersion
(ED), and exchange-repulsion (ER). Each energy term was scaled
independently to fit a large training set of B3LYP-D2/6-31G(d,p)
counterpoise-corrected energies from both organic and inorganic
crystals. The CE-B3LYP energies reproduced the training set
energies with a mean absolute deviation of ∼1 kJ mol−1 (Turner
et al., 2014).

Conformational Analysis
Conformational energy scans were performed at the B3LYP/6-
31G(d,p) level of theory using Gaussian09 (Frisch et al., 2009),
allowing the two torsion angles defining the position of the
phenyl rings, C–C–S–C, to rotate by 360◦ in 20◦ steps.

Materials and Preparation of DDS Hydrate
Dapsone form III (purity 97%) was purchased from Aldrich.
The obtained sample was recrystallized from a hot-saturated
methanol solution. The solid product was isolated by filtration
and consisted of form III. The organic solvents used were all of
analytical grade and purchased from Aldrich or Fluka.

DDS 0.33-Hy was prepared as follows: (i) a slurry of DDS
form III in water was stirred in the temperature range from 10
to 30◦C for 1 week. The suspension was filtered and the solid
was stored at ambient conditions. (ii) A hot saturated solution of
form III in water (close to the boiling point) was cooled to room
temperature (RT).Within 2 days large elongated 0.33-Hy crystals
were obtained.

Thermal Analysis
For hot-stage thermomicroscopic (HSM) investigations a
Reichert Thermovar polarization microscope, equipped with a
Kofler hot-stage (Reichert, A), was used. Photographs were taken
with an Olympus DP71 digital camera (Olympus, A).

Differential Scanning Calorimetry (DSC) thermograms were
recorded on a Diamond DSC (Perkin-Elmer Norwalk, Ct.,
USA) controlled by the Pyris 7.0 software. Using a UM3
ultramicrobalance (Mettler, Greifensee, CH), samples of ∼5–
7mg were weighed into perforated or sealed aluminum pans. The
samples were heated using rates in between 1 and 20◦C min−1

and cooled using a rate of 5 or 10◦C min−1 with dry nitrogen
as the purge gas (purge: 20mL min−1). The instrument was
calibrated for temperature with pure benzophenone (mp 48.0◦C)
and caffeine (236.2◦C), and the energy calibration was performed
with indium (mp 156.6◦C, heat of fusion 28.45 J g−1). The errors
on the stated temperatures (extrapolated onset temperatures) and
enthalpy values were calculated at the 95% confidence interval
(CI) and are based on at least five measurements.

Thermogravimetric Analysis (TGA) was carried out with a
TGA7 system (Perkin-Elmer, Norwalk, CT, USA) using the Pyris
2.0 Software. Approximately 7–10mg of sample was weighed into
a platinum pan. Two-point calibration of the temperature was
performed with ferromagnetic materials (Alumel and Ni, Curie-
point standards, Perkin-Elmer). Heating rates of 5 and 10◦C
min−1 were applied and dry nitrogen was used as a purge gas
(sample purge: 20mL min−1, balance purge: 40mL min−1).

Powder X-Ray Diffraction (PXRD)
PXRD patterns were obtained using an X’Pert PRO
diffractometer (PANalytical, Almelo, NL) equipped with a θ /θ
coupled goniometer in transmission geometry, programmable
XYZ stage with well plate holder, Cu-Kα1,2 radiation source
with a focusing mirror, a 0.5◦ divergence slit, a 0.02◦ Soller slit
collimator on the incident beam side, a 2mm antiscattering slit,
a 0.02◦ Soller slit collimator on the diffracted beam side and a
solid state PIXcel detector. The patterns were recorded at a tube
voltage of 40 kV and tube current of 40mA, applying a step size
of 2θ = 0.013◦ with 200 s per step in the 2θ range between 2◦

and 40◦. For non-ambient RH measurements, a VGI stage (VGI
2000M, Middlesex, UK) was used.

The diffraction patterns were indexed using the first 20 peaks
with DICVOL04 and the space group was determined based
on a statistical assessment of systematic absences (Markvardsen
et al., 2001) as implemented in the DASH structure solution
package (David et al., 2006). Pawley fits (Pawley, 1981) and
Rietveld refinements (Rietveld, 1969) were performed with Topas
Academic V5 (Coelho, 2012). The background was modeled
with Chebyshev polynomials and the modified Thompson-Cox-
Hastings pseudo-Voigt function was used for peak shape fitting.
For the Rietveld refinements the DDS and water molecules were
treated as rigid body molecules using the PBE-TS optimized
conformations of the 0.33-Hy structure.

Gravimetric Moisture Sorption/Desorption
Experiments
Moisture sorption and desorption studies were performed
with the automatic multisample gravimetric moisture sorption
analyser SPS23-10µ (ProUmid, Ulm, D). Approximately 500–
750mg of sample was used for each analysis. The measurement
cycles were started at 60% with an initial stepwise desorption
(decreasing humidity) to 0%, followed by a sorption cycle
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(increasing humidity) up to 90% relative humidity (RH), a
desorption cycle to 0% RH and a final sorption cycle to 90% RH.
The RH changes were set to 2% and the equilibrium condition for
each step was set to a mass constancy of ± 0.001% over 60min
and a maximum time limit of 48 h per step.

Water Activity Measurements (Slurry
Method)
DDS form III was stirred (500 r.p.m.) in 1.5–2.5mL of each
methanol and water mixture [each containing a different mole
fraction of water corresponding to a defined water activity Zhu
et al., 1996, Supplementary Material] at 25.0± 0.1◦C for 21 days.
Samples were withdrawn, filtered and the resulting phase was
determined using PXRD.

RESULTS AND DISCUSSION

Computational Screening for DDS
Monohydrates
The fact that the asymmetric unit of 0.33-Hy (Kuz’mina et al.,
1981; Bel’skii et al., 1983; Yathirajan et al., 2014) consists of
four crystallographically distinct molecules (three DDS and one
water) makes CSP studies for the experimental stoichiometry
too time-consuming. Therefore, we decided to generate the
monohydrate crystal energy landscape (one DDS and one water
molecule) with the aim to estimate whether water molecules
can compete against the DDS-DDS intermolecular interactions
and form strong DDS-water contacts. In Figure 2 the computed
monohydrate structures are plotted according to lattice energy,
which equals the energy that would be required to separate the
molecules to infinity, against packing index.

To estimate whether any of the hypothetical monohydrate
structure is competitive in energy with form III, we compared
the lattice energy of the hydrate (Elatt-Hy) to the lattice energies
of the anhydrate (Elatt-III) and ice (Elatt-ICE). If Elatt-Hy <

Elatt-III + Elatt-ICE (we assume that hydrate formation is

FIGURE 2 | Summary of crystal structure prediction for DDS monohydrate

(Z′ = 1), with each symbol denoting a crystal structure by its lattice energy and

packing index. The vertical red dotted line separates the monohydrate

structure that was calculated to be more stable than form III and ice from other

computed hydrate structures that are less stable.

thermodynamically driven), then the hydrate is more stable than
the anhydrate. Using the lattice energies of 0.33-Hy, form III

(Table 1) and a value of −59 kJ mol−1 (Whalley, 1957, 1976)
for ice, as the used functional is known to overbind the ice
crystal structures (Thierfelder et al., 2006; Beran and Nanda,
2010), then only one structure, 01_1963, was calculated to be
more stable than III. The most stable hypothetical monohydrate
was estimated to be 12.38 kJ mol−1 more stable than form III,
which is a respectable potential energy differences (1trsU) for a
monohydrate with respect to an anhydrate. Thus, the CSP study
clearly indicates hydrate formation.

Furthermore,1trsU for the 0.33-Hy to form IIIwas calculated
to be 15.37 kJ mol−1, indicating that the experimental hydrate
is 3 kJ mol−1 more stable than the computed lowest energy
monohydrate structure and rationalizing why the stable 0.33-
hydrate and not a monohydrate is formed experimentally.

Experimental Screening for DDS Hydrate(s)
To confirm that 0.33-Hy is indeed the stable DDS hydrate form
and that 01_1963 is not a yet undiscovered monohydrate we
subjected DDS to an experimental hydrate screening program.
Evaporative crystallization experiments of DDS from a saturated
(20◦C) aqueous solution, as well as cooling crystallization
experiments from hot (boiling) saturated solutions in water at
5◦, 25◦, 50◦, and 75◦C resulted in 0.33-Hy crystals in the form
of elongated plates. In contrast, evaporation experiments of a
hot-saturated solution of DDS in water resulted in a mixture of
0.33-Hy and form III. Slurry experiments in water, isothermal or
cycling between 5◦ and 50◦C, always yielded the 0.33-Hy.

Another successful way to produce hydrates are moisture
sorption experiments. Therefore, form III and V (see section
Moisture Dependent Stability of the Hydrate) were subjected
to automated and manual water vapor sorption experiments.
Neither form III, nor formV showed a transformation in the RH
range up to 90%. Furthermore, no transformation was observed
in long-time storage experiments of the two anhydrous DDS
forms over saturated KOAc (24% RH), K2CO3 (43% RH), NaCl
(75% RH), KNO3 solutions (92% RH) or water (100% RH) within
3 months (end of experiments) at RT and 8◦C. Similarly, also
0.33-Hy did not dehydrate or transform to another hydrate if
stored under the same conditions over the same time period.

TABLE 1 | Lattice energy calculations (E latt) of 0.33-Hy, 01_1963, forms II and III

and the isomorphic dehydrate structure (0.33-Hy without water molecules,

Hydehy) and potential energy differences (1trsU) with respect to form III.

Form Elatt/kJ mol−1
1trsUx−III/kJ mol−1

0.33-Hy −222.95 15.37a

Hydehy −197.26 −0.90b

01_1963 −269.54 12.38a

Form II −194.92 −3.25b

Form III −198.16 0b

aCalculated according to: –1trsUx−III = Elatt-x – (Elatt-III + Elatt-ICE).
b –1trsUx−III = Elatt-

x– Elatt-III.
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Characterization of the DDS Hydrate
DDS Hydrate Structure and Intermolecular

Interaction Energies
To identify the key interactions in the DDS hydrate the pair-wise
CE-B3LYP intermolecular energies were estimated starting
from the PBE-TS optimized hydrate with the CSD Refcode
ANSFON02 (Yathirajan et al., 2014). The intermolecular
energies are subdivided into classical electrostatic (EE),
polarization (EP), dispersion (ED) and exchange-repulsion
energies (ER) and can be graphically represented by their
“energy frameworks” (Turner et al., 2014, 2015; Mackenzie et al.,
2017).

The hydrate crystallizes in the monoclinic space group C2/c
with three DDS and one water molecule in the asymmetric unit,
rationalizing the 3:1 stoichiometry (Kuz’mina et al., 1981; Bel’skii
et al., 1983; Yathirajan et al., 2014). The three crystallographically
independent DDSmolecules (color coded in the packing diagram
shown in Figure 3A) exhibit very similar conformations. The
first DDS molecule (mol A, shown in red in Figure 3A) does
not show any interaction with the hydrate water (Table 1), but
forms two strong intermolecular interactions with itself, denoted
with 2 and 4, mediated by inversion and 2-fold symmetry,
respectively (Figure 3B). Furthermore, mol A forms classical
hydrogen bonded interactions with neighboring DDS molecules

FIGURE 3 | (A) Packing diagram of DDS 0.33-Hy (ANSFON02, Yathirajan et al., 2014) viewed along the crystallographic b axis. The symmetry independent

molecules are color coded and hydrogen atoms have been omitted for clarity. Numbers denote key pair-wise intermolecular interactions, which are enlarged in (B) and

listed in Table 2. Hydrogen bonding is indicated with black lines. (C) Energy frameworks (total energy) for 0.33-Hy, viewed along the crystallographic b axis. The

energy scale factor is 80, and interaction energies with magnitudes smaller than 15 kJ mol−1 have been omitted. For additional views see Supplementary Material.
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(interactions 5, 7, and 11; Table 2). In contrast to interactions 2
and 4, which have dispersion as the strongest contributor to the
energy (π···π stacks), Coulomb interactions are the reason for
the stability of the latter three (also true for 3, 6, 8, 9, 14, 15,
16, and 21). Molecule B (green) and C (blue) form the strongest
pair-wise interaction (1, Figure 3B), which can be related to
interaction 4. The third most stable interaction (3) involves mol
C and is formed of four C–H···O close contacts. The strongest
classical hydrogen bonded interaction (5, Table 2), N–H···O, is
significantly less stable than interactions 1–4.

The water molecule, interacting only with mol B and mol C,
forms three hydrogen bonds, two N–H···Owater and one Owater –
H···O. Thus, the water molecule shows the water environment
type DAA (Infantes et al., 2007), with A corresponding to
hydrogen bonding acceptor and D to hydrogen bonding donor.
According to Morris and Rodriguez-Hornedo (Morris and
Rodriguez-Hornedo, 1993; Brittain et al., 2009) the DDS hydrate
can be classified as an isolated-site hydrate, which retains water
in segregated pockets in the crystal structure. The strongest pair-
wise water-DDS interaction was calculated to be−22.5 kJ mol−1,
which is distinctly weaker than the strongest pair-wise DDS-DDS
interaction (−53.9 kJ mol−1).

The presence of an isolated-site hydrate could be confirmed
by calculating the total energy of the hydrate and lower
hydrate structures thereof, i.e., structures which were generated
by systematically removing water molecules from the packing
presented in Figure 3 (using the P1 cell). Figure 4 shows that a
plot of the energy contributions from the water molecules to the
hydrate structure vs. the water content gives a linear relationship.

This clearly indicates that the water molecule interacts solely with
DDS molecules in the 0.33-Hy, which is a characteristic feature
of an isolated-site hydrate.

Temperature Dependent Stability of the Hydrate
Key information for handling and storing hydrates is
knowledge about temperature- and moisture-dependent
stability. The dehydration process of 0.33-Hy was monitored
with HSM (Figure 5), DSC and TGA (Figure 6). To
investigate the impact of the atmospheric conditions on
the dehydration behavior and associated processes, different
experimental conditions were applied: dry and silicon oil
preparations (HSM), heating of the sample in perforated
or sealed DSC crucibles and using different heating rates.
The obtained thermodynamic data are summarized in
Table 3.

The dehydration of 0.33-Hy occurs in the temperature range
from 40 to 90◦C. With HSM (dry preparation, Figure 5) hardly
any change is observed during the dehydration process of the
0.33-Hy to the isostructural dehydrate (Hydehy). However, with
TGA and DSC the dehydration is well observable. Under N2

purge (TGA) the dehydration process starts immediately and a
mass loss of ∼0.3mol of water per mol DDS was determined.
In DSC investigations (1a, 2a), the dehydration appears as a
broad endothermic event which partly overlaps with a second
endothermic process at a heating rate of 10◦C min−1. Using
lower heating rates (not shown) the two thermal events can
be separated and the heat of dehydration, 1dehyHHy−dehy of
10.60 kJ mol−1(sample contained 0.18mol water per mol DDS)

TABLE 2 | Pair-wise intermolecular interaction energiesa (Figure 3C) of DDS 0.33-Hy.

IDb Molc Molc Nd Symmetry operation de EE EP ED ER Etot Interaction

Å kJ mol−1

1 mol B mol B 1 – 3.84 −16.0 −5.2 −76.1 53.7 −53.9 π···π

2 mol A mol A 1 –x, –y, –z 8.37 −35.4 −6.6 −39.7 38.0 −53.3

3 mol C mol C 1 –x+1/2, –y+1/2, –z 5.72 −47.1 −15.7 −29.0 54.0 −53.3 4xC–H···O

4 mol A mol A 1 –x, y, –z+1/2 3.58 −11.5 −5.4 −89.5 75.9 −47.2 π···π

5 mol A mol C 1 – 8.83 −33.6 −9.6 −12.7 32.4 −33.7 N–H···O

6 mol C mol C 2 –x+1/2, y+1/2, –z+1/2 8.31 −28.1 −7.9 −13.6 22.4 −33.5 N–H···O

7 mol A mol A 1 – 9.03 −29.5 −8.4 −10.1 23.5 −31.7 N–H···O

8 mol B mol B 2 x, –y, z+1/2 8.46 −28.7 −7.2 −10.4 21.5 −31.5 N–H···O

9 mol B mol B 2 x, –y, z+1/2 8.84 −27.1 −10.1 −13.7 29.1 −30.1 N–H···O

10 mol B mol A 1 – 6.58 −16.6 −6.4 −32.0 32.9 −29.9

11 mol A mol A 2 x, –y, z+1/2 9.53 −33.1 −10.8 −14.9 42.9 −29.6 N–H···O

12 mol A mol A 2 x, –y, z+1/2 7.86 −15.4 −4.7 −19.4 20.6 −23.9 N–H···N

13 mol B mol C 1 – 9.2 −12.2 −4.5 −16.3 10.7 −23.8

14 mol C water 1 – 7.08 −25.9 −6.2 −6.1 23.7 −22.5 N–H···OW

15 mol B water 1 – 6.62 −16.7 −2.9 −5.7 8.6 −19.5 N–H···OW

16 mol C mol C 1 –x+1/2, –y+1/2, –z 11.23 −9.4 −2.2 −11.0 2.8 −19.4

17 mol C water 1 – 5.25 −33.8 −7.2 −4.4 41.4 −19.2 OW-H···O

18 mol B mol C 1 – 10.37 −20.0 −5.1 −12.6 27.5 −18.9 N–H···N

19 mol C mol C 2 x, –y, z+1/2 8.13 −6.5 −3.8 −9.3 3.9 −15.4

aElectrostatic (EE ), polarization (EP ), dispersion (ED) and exchange-repulsion energy (ER) contributions. Etot = kE EE + kP EP + kD ED + kR ER, with k being scale factors (Mackenzie

et al., 2017) b Interaction ID; cmolecule according to Figure 3A; dN – number of times interaction is present. eCentroid distances.
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was determined. The known enthalpy value for the vaporization
of water at the dehydration temperature (Tdehy ≈ 60◦C, 1vapH

H2O = 42.482 kJ mol−1 (Riddick and Bunger, 1986) can be
subtracted from the measured heat of dehydration (1dehyH),
according to Equation (1), resulting in an estimation of the heat
change (1trsH) upon hydrate to anhydrate transformation. The
enthalpy of this reaction was calculated to be 2.95 ± 0.09 kJ
mol−1 (Table 3).

FIGURE 4 | Energetic contribution (1E latt, see Supplementary Table 5) of the

water to the DDS hydrate structure in dependency of water occupancy (mol

ratio water/DDS) in 0.33-Hy.

1trsHHy−dehy = 1dehyHHy−dehy − 0.18 · 1vapHH2O (1)

The second endotherm of the DSC traces (perforated crucibles)
with an onset temperature of 103.6◦C corresponds to the solid-
solid phase transformation of Hydehy to form II (1.08 kJ mol−1).
In HSM investigations an increase in birefringence is observable
during the transformation process. Upon further heating, form
II melts at 177.2◦C (1a) and concomitantly form I crystalizes,
which then melts at 179◦C. Upon cooling the melt of DDS (1b)
spontaneous crystallization of form II occurs around 110◦C.
The presence of form II is confirmed by the occurrence of
the exothermic event at 75◦C (cooling curve), indicating the
transformation of form II to form III. The measured enthalpy
value of −2.02 kJ mol−1 agrees with the enthalpy value of
the transformation III → II (2.06 kJ mol−1), which can
be determined on reheating. A more detailed study of this
transformation has been reported just recently by us (Braun et al.,
2017). In a separate experiment, the DSC heating run of 0.33-
Hy was stopped above the Hydehy → II transition peak (2a)
and the subsequent cooling curve shows the exothermic II →
III transition (2b). The temperature range and enthalpy of this
spontaneous transition confirm unambiguously that mainly form
II is present after the hydrate is heated to about 150◦C. Form III

transforms back to form II at 81◦C (1c and 2c) just about 6◦C

FIGURE 5 | Photomicrographs of DDS 0.33-Hy. Dehydration in the temperature range 40◦-100◦C, Hydehy to form II transformation in the temperature range

110◦-114◦C, and peritectic dissociation (crystals embedded in high-viscosity silicon oil) of 0.33-Hy to form II in the temperature range 115◦−132◦C.
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FIGURE 6 | Selected DSC and TGA thermograms of DDS 0.33-Hy, recorded using a heating/cooling rate of 10◦C min−1. DSC curves 1 and 2 were measured using

perforated DSC crucibles and curve 3 using a hermetically sealed 3bar DSC crucible. I, II, III-anhydrous forms I, II, and III; Hy, 0.33-Hy; dehy, Hydehy.

above the II→ III transition peak highlighting the weak kinetic
control of this reversible solid-solid transformation.

By embedding the hydrate crystals into high viscosity silicon
oil (HSM, Figure 5) or using hermetically sealed DSC crucibles
(3, Figure 6) the peritectic dissociation process of 0.33-Hy to
form II can be observed or recorded around 125◦C, respectively.
A fast nucleation and growth process of form II occurs, thus
no clear melting process is observable by HSM and the phase
transition is mainly indicated by an increase in birefringence
(Figure 5). The measured heat of ∼5 kJ mol−1 can be related
to the 0.33-Hy to form II transformation, but also includes an
unknown contribution from the enthalpy of solution of a fraction
of the dehydration product in the liberated water. Due to the low
water solubility of DDS and the low water stoichiometry of the
hydrate the measured 0.33-Hy to form II enthalpy is only slightly
higher than the sum of the heats of 0.33-Hy toHydehy andHydehy

to form II transformations of ∼4 kJ mol−1. Thus for DDS, it is
possible to estimate the 0.33-Hy to form II transition enthalpy
directly in a hermetically sealed DSC crucible.

Moisture Dependent Stability of the Hydrate
The moisture sorption/desorption experiments of 0.33-

Hy (Figure 7) clearly indicate a non-stoichiometric
hydration/dehydration behavior. The isotherm shows a
continuous course and the water content of the hydrate
adjusts quickly to a specific value if the RH is altered. It
is particularly striking that the sorption and desorption
isotherms are superimposable, i.e., that there is no hysteresis
between the sorption and desorption curve. This fact and
the short time to reach the equilibrium water content
on changing RH suggests that the diffusion of water
molecules into or out of the structure occurs without
special constraints and without significant changes of the
DDS framework. This observation is even more surprising
because the water molecules are located at isolated-sites in
the 0.33-Hy structure (Figure 3A) and not in open structure
voids (channels, layers), which is the commonly expected
feature for hydrates with a non-stoichiometric dehydration
behavior.
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TABLE 3 | Thermochemical data of DDS solid forms (T, temperature; 1H,

enthalpy) obtained starting from the hydrate (Hy: 0.33 mol water/mol DDS)

compared with the CE-B3LYP energy estimation.

Process DSC CE-B3LYP

T/◦C 1H/kJ mol−1 kJ mol−1

DEHYDRATION

Hya → Hydehy 40–90 10.60 ± 0.10

Hy → Hydehy 16.95 ± 0.13b

Contribution of water to Hy structure 13.85

TRANSFORMATION

Hy → Hydehy 40–90 2.95 ± 0.09 2.98c

Hydehy → II 103.6 ± 2.8 1.08 ± 0.05

II → III 75.2 ± <0.1 −2.02 ± 0.08

III → II 81.5 ± 0.2 2.06 ± 0.07

PERITECTIC DISSOCIATION

Hy → II 126.5 ± 0.5 4.98 ± 0.53

aReferred to a hydrate with 0.18mol water/mol DDS.
bEstimated form 0.18-Hy.
c13.85 kJ mol-1–10.87 kJ mol-1.

The automated gravimetric moisture sorption/desorption
analysis of 0.33-Hy was complemented with longer-term drying
experiments at 0% RH (storage over P2O5) at 25◦, 50◦, and
75◦C to investigate whether Hydehy transforms to another DDS
anhydrate polymorph.Hydehy is stable for at least 3 weeks at 25◦C
and for at least 10 days at 50◦C. At 75◦C the transformation to
form III starts within 1 week at 0%. No new polymorph emerged
in the drying studies.

The changes seen in the gravimetric moisture
sorption/desorption studies (Figure 7) were correlated with
structural changes to 0.33-Hy using variable-humidity PXRD at
25◦C (Figure 8, Supplementary Material for the PXRD patterns).
In the case of the DDS hydrate only slight changes in peak
positions and peak intensities can be observed with varying RH.
Changes in lattice parameters were quantified by indexation and
Rietveld refinement of the 0.33-Hy PXRD patterns recorded at
different RH values. The lattice parameters changed by max.
0.2% in the range 90% to 1%, and the cell volume by only 0.66%.
Such small changes are in the range one would expect from a
non-stoichiometric hydrate and they are for example of similar
magnitude as measured for the non-stoichiometric hydrate HyA
of brucine (Braun and Griesser, 2016a). Plotting the 0.33-Hy

cell volume in dependence of the RH (Figure 8A) perfectly
reproduces the course of the sorption/desorption isotherms in
Figure 7.

Using the optimized (PBE-TS) experimental structure as
starting model, Rietveld refinements were performed with
PXRD patterns of samples recorded in 10% RH steps during
a desorption and sorption cycle. The aim of this study was
to unravel whether the water position in the 0.33-Hy varies
depending on the RH conditions. Figure 8C exemplarily shows
an overlay of the hydrate structures at 90 and 1% RH. The
DDS molecules are superimposable and also the water shows
hardly any positional variation with RH. The structures solved
at different RH values differ solely in the fractional occupancy

FIGURE 7 | Gravimetric moisture sorption/desorption isotherms of DDS

0.33-Hy at 25◦C. Circles represent data points recorded at equilibrium

conditions (see experimental section).

factor to which the water molecule refined to (Figure 8B). It
is surprising that this method works so well even though the
water is only a very minor contributor to the overall electron
density of the hydrate structure. The lowest water content
observed for 0.33-Hy in the RH dependent PXRD experiments
was 0.005(12) mol of water per three moles of DDS, which is in
reasonable agreement with the value determined in the automatic
gravimetric sorption/desorption measurements (0.02mol water
per mol DDS) determined at the same RH. No phase change was
observed in the moisture dependent PXRD experiments.

The question remains why the water egress/ingress in the
0.33-Hy is fast, which is not expected from a hydrate where
the water molecules are located at isolated-sites. Figure 9A

illustrates a possible escape route of water molecules parallel to
[011]. However, this route requires cooperative movement of the
diaminophenyl moieties of the DDS molecules to temporarily
open up diffusion pathways, similar to that seen in hydrates of β-
cyclodextrin (β-CD) (Steiner and Koellner, 1994), ciprofloxacin
(Mafra et al., 2012) or DB7 (Braun et al., 2015). The potential
energy surface scans of DDS reveal (Figure 9B) that considerable
movement of the diaminophenyl moieties is possible with
low energy cost (1Eintra), which we assume enables the local
formation of the required diffusion pathways.

Sorption/desorption studies based on exposure of the solid
material to various moisture conditions are controlled by kinetic
parameters, which must be minimized in order to assess
the thermodynamic equilibrium between the hydrate and a
dehydrated state. This can be achieved for example by slurring
the substance in solvents with different water activities, as has
been demonstrated in previous studies (Ahlqvist and Taylor,
2002a,b; Braun et al., 2013; Braun and Griesser, 2016a). The
most obvious indicator for the kinetic barrier is the hysteresis
between the sorption and desorption curve observed in moisture
sorption/desorption isotherms. The hysteresis can be extreme in
stoichiometric hydrates and is usually small in hydrates with non-
stoichiometric behavior. The isotherm of DDS 0.33-Hy shows no
hysteresis indicating that there is practically no kinetic barrier
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FIGURE 8 | Data derived from moisture-dependent PXRD measurements and Rietveld refinement showing (A) the change in cell volume with RH und (B) factional

occupancy factor of the water molecule vs. cell volume in 0.33-Hy. In (C) an overlay of the hydrate at 90% (in blue) and 1% RH (red) is shown. H-atoms are omitted

for clarity.

FIGURE 9 | (A) DDS 0.33-Hy structure (ANSFON02, Yathirajan et al., 2014), with water molecules depicted as space-fill in turquois, showing a possible water

egress/ingress route parallel to [011]. (B) Two dimensional potential energy surface scan for DDS with respect to dihedrals 1 and 2 at the B3LYP level of theory with

the 6-31G(d,p) basis set using the optimized DDS conformation.

between the ingress or release processes of the water molecules
to/from the crystal structure but also that the phase is maintained
and no transformation to another form with different structural
features occurs. To test the phase behavior under different
“moisture conditions” (water activities) in solvent systems, we
subjected DDS to a slurry study in methanol/water mixtures of
various compositions, covering the water activity (aw) range from
0 to 1.0 (corresponding to 0 to 100% RH) in 0.01 steps and the

range 0.6 to 0.7 in 0.001 steps using form III as the starting
form (Figure 10). Surprisingly, we obtained a new anhydrous
form, named form V hereafter, which emerged as the only stable
solid phase below a water activity of 0.64. At an aw > 0.66,
0.33-Hy was obtained, suggesting that this hydrate is the stable
form at high water activities and that the equilibrium between
the DDS form V and the 0.33-Hy, lies at an aw value of ∼0.655
at 25◦C.
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FIGURE 10 | Phase diagram after equilibration for 21 days showing the

stability ranges of solid phases of DDS (form V and the 0.33-Hy) as a function

of water activity in methanol/water mixtures at 25◦C. Anhydrous form III was

used as a starting phase; the phase identity and composition was determined

with PXRD.

Thermal analysis and PXRD characterization confirmed that
the new form V does not correspond to any of the four known
polymorphs (Brandstaetter-Kuhnert et al., 1963; Kuhnert-
Brandstatter and Moser, 1979). A thorough characterization of
the new form, which is obviously the thermodynamically most
stable anhydrate form at RT, and phase interrelations to the
known polymorphs will be addressed elsewhere.

Estimation of Host-Host, Host-Water, and
Water-Water Interaction Energies in
Organic Hydrates
To understand the nature and stability of a hydrate it is
important to consider the location and interaction energies of
the water molecules in the framework of the host structure. If
water molecules are located in open structural voids (tunnels
or connected pockets) the term channel hydrate (Brittain et al.,
2009) is commonly used. In such hydrates the water molecules
may be mobile and may readily escape through these tunnels on
modest increase in temperature or decrease in relative humidity
(RH). In contrast, if the water molecules are located at isolated-
sites (Brittain et al., 2009), it is assumed that water egress is
not as facile and requires a considerable rearrangement of the
hydrate packing to allow the release of water molecules. This
rearrangement results mostly in the formation of a different
packing arrangement or in a partial or total collapse of
the structure yielding a disordered or amorphous state upon
dehydration. The non-stoichiometric behavior of hydrates, where
the water content in the structure depends on the water vapor
pressure of the surrounding medium (atmosphere), is normally
observed in channel hydrates and not in isolated-site hydrates.
However, as demonstrated above, DDS 0.33-Hy shows clearly
the typical features of an isolated-site hydrate (Figure 3A) but
on the other hand shows a non-stoichiometric (de)hydration
behavior (see Figure 7) which is a contradiction and questions
the common relation between structural features and the stability
of hydrates.

To further clarify why the hydrate water can escape easily
from the “isolated sites” in the 0.33-Hy, without disrupting the
structure, we estimated the pair-wise interaction energies for
DDS and water molecules in the 0.33-Hy structure (Table 2).
The use of the CE-B3LYP energies and not a specific water
potential, not considering specific effects (nanoscale dielectric
responses of water) and three-body energy terms were justified
by the fact that the contribution of the water to 0.33-Hy

was found to be in reasonable agreement with the experiment
(Table 3). The water interactions contribute −13.85 kJ mol−1

to the 0.33-Hy lattice. The CE-B3LYP energies of 0.33-

Hy (−142.87 kJ mol−1) and Hydehy (−132.00 kJ mol−1,
optimized RT structures) differ by 10.87 kJ mol−1, ignoring
the conformational changes which are expected to account for
< 0.2 kJ mol−1 in the case of DDS. Thus, the sum of the
interaction energies (Ecluster) roughly corresponds to the lattice
energy. Furthermore, we calculated the intermolecular energies
for water-host, water-water and host-host molecules for a series
of well characterized organic hydrate systems (pharmaceuticals
and model compounds) and contrasted the values to the DDS
0.33-Hy (Figure 11, Supplementary Material). The chosen test
set consists of stoichiometric and non-stoichiometric hydrates,
as well as of channel and isolated-site hydrates. This analysis
should indicate, whether it is possible to assess hydrate stability
and/or the dehydration mechanism from general features of the
hydrate structure and not the location of the water molecules in
the structure alone.

In Figure 11 the calculated interaction energies are grouped
into contributions arising from host-host interactions and
the incteractions including water molecules (host-water and
water-water). Furthermore, the ratio between the host-host
and water interactions has been calculated. The hydrates are
ranked according to the compound:water ratio. For three of
the chosen hydrates (dapsone, indinavir, and brucine) it is
possible to remove the water molecules under maintaining the
crystal structure, which is characteristic for a non-stoichiometric
dehydration behavior. A grouping into channel and isolated-site
hydrates is not always straight forward, in particular if more than
one water molecule is present (di-, tri-hydrate, etc.,). However,
based on the energetic contributions, host-water vs. water-
water, such a classification is facilitated as it can be expected
that in isolated-site hydrates the host-water and in channel
hydrates the water-water interactions predominate, respectively.
Furthermore, the sum of host-host interactions are stronger in
isolated-site hydrates than in channel hydrates.

A requirement for maintaining the crystal lattice upon
dehydration is that the hydrate structure exhibits strong and/or
a predominance of host-host interactions. Indeed, the three
non-stoichiometric hydrates of the test set show the highest
percentage of host-host interactions, i.e.,∼90% of the interaction
energies for the DDS and indinavir hydrates. This value is
lower for brucine (61.5%) but compared to dihydrates showing
a stoichiometric behavior, brucine exhibits the most/strongest
host-host interactions. The fact that the DDS and indinavir
hydrates are isolated-site hydrates and brucine is a channel
hydrate highlights that it is not possible to deduce whether
a stoichiometic or non-stoichiometric dehydration mechanism
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FIGURE 11 | Overall contribution of intermolecular interactions in hydrate structures grouped into host-host, host-water and water-water interactions. The hydrates

are ranked according to their compound:water ratio and non-stoichiometric hydrates are indicated in bold and are underlined. The ratio given was calculated as:

[(host-host interactions)/(host-water and water-water interactions)].

occurs from the location of the water molecules in the
hydrate structure alone. Though, it is possible to rationalize
a non-stoichiometric dehydration behavior from the energy
contributions of the intermolecular interactions considering the
compound:water ratios. On the other hand, the analysis shows
that the moisture- or temperature dependent stability of hydrates
cannot be derived from the interaction energy calculations. For
example, the 5-flucytosine monohydrate (I) already dehydrates
at RH values < 40%, whereas 4-aminoquinaldine monohydrate
(Hy1A) dehydrates only at RH values below 10% (RT),
but exhibits less energetic contributions from the host-host
interactions than the 5-flucytosine monohydrate (I).

In the case of 0.33-Hy the latter analysis (Figure 10) strongly
indicates that water is only weakly bound and rationalizes
the facile moisture- and temperature dependent dehydration
behavior.

DISCUSSION

Molecular Level Understanding of the
Dehydration Mechanism Derived from the
Hydrate Structure
Knowledge of how water vapor is sorbed by a hygroscopic
material and how moisture affects the physical and chemical
stability of a (pharmaceutical) product is a crucial question

in developing drug products or preparations produced from
other fine chemicals. Failures and time delays in product
developments can be minimized or avoided with knowledge
compiled in thorough solid state investigations. Hydrates require
a thorough evaluation of their composition and stability
under production relevant conditions and additionally the
transformation pathways between different solid state forms
of a compound, as well as their stability ranges, should be
elucidated. This is mandatory to select the ideal solid state
form that guarantees an optimal product performance and
stability. In general, non-stoichiometric hydrates are undesired
solid forms because any change in water vapor pressure of
the surrounding medium causes a change in the water content
of the substance, which can be critical for weighing and
dosing operations and may thus lead to errors in any analyses,
which require exact sample amounts. Such variations in the
water content are often difficult to avoid as it requires special
efforts to precisely control temperature and humidity conditions
during processing and storage. Furthermore, the water molecules
which have been released from such a hydrate may interact
with other excipients in a drug formulation. Gravimetric
moisture sorption/desorption studies (Figure 7), combined with
environmental PXRD experiments (Supplementary Material) are
the preferred analytical techniques for unraveling this non-
stoichiometric behavior of a hydrate.
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DDS 0.33-Hy is a prime example for an isolated site
hydrate with non-stoichiometric dehydration behavior. The
latter behavior may be expected for hydrates where the water
is located in open voids such as channels or layers. Thus,
this study highlights that the popular structural classification
of hydrates into isolated-site hydrates (water molecules are
isolated from direct contact), channel hydrates (chains of
water molecules) and ion-associated hydrates (metal ions
are coordinated with water) cannot be directly related to
the dehydration behavior or dehydration mechanism of a
hydrate. However, by complementing the structural features with
intermolecular energy calculations the observed dehydration
behavior can be rationalized. As shown for DDS 0.33-Hy the
water molecules are only weakly bound (Figure 11), allowing
a facile water egress/ingress with changing environmental
conditions. Furthermore, the energy difference between the
isomorphic dehydrate structure and anhydrate polymorphs is
small. The lattice energy difference between Hydehy and form
II was calculated as 1.6 kJ mol−1 (PBE-TS, at −273◦C) and
the transition enthalpy between Hydehy and form II determined
to be 1.08 ± 0.05 kJ mol−1 (experimentally measured at
∼100◦C). Thus, the calculations rationalize and indicate the
non-stoichiometric dehydration mechanism.

Computational Modeling of
Pharmaceutical Hydrates
Modeling and predicting hydrate structures of pharmaceuticals
still represent a big challenge in computational chemistry.
Numerous potentials have been developed for modeling water
(Guillot, 2002), however, there exists no method that can
sufficiently model all its abnormalities. In organic hydrates the
water molecules may be described as confined at nanoscales,
implying frustration in their hydrogen-bonding coordination.
Consequently, accurately modeling the water molecules in
a hydrate lattice requires modeling efforts which go well
beyond the methods applied for modeling the organic solid
state (Reilly et al., 2016). In lead optimization is has been
demonstrated that incorporating the three-body energy terms,
and modeling frustration and frustration-related dielectric
responses, significantly improves the results (Fernández, 2016,
2017; Fernandez and Scott, 2017). Considering and modeling the
latter can be expected to significantly increase the accuracy of
lattice and intermolecular energy calculations of water containing
species, albeit at the expense of computational cost.

A major difficulty with using CSP in hydrate solid form
screening is the computational expense in time and resources
to generate the crystal energy landscape for all possible hydrate
stoichiometries (mono-, di-, etc.,). However, solid formmodeling
at the electronic and atomistic level can provide vital support
for unraveling the solid state for a compound which may not
be achieved with experiments alone. A CSP study answers the
question what types of crystal packings are favorable for a specific
molecule, unraveling the compromises between close packing
efficiency, conformational preferences and the different types of
intermolecular interactions that can lead to feasible structures
for a molecule (polymorph) or multi-component system (salt,

solvate, hydrate, co-crystal). It should be stressed that CSP aids
the interpretation of the experimental data (Price et al., 2014)
and can guide experimentalists to find new solid forms (Arlin
et al., 2011; Braun et al., 2014b, 2016; Neumann et al., 2015;
Srirambhatla et al., 2016).

To significantly reduce the computational cost, and to make
the calculations feasible, we did not attempt to computationally
screen for different hydrate stoichiometries (Braun et al., 2011b)
for the chosen model compound DDS, but used the crystal
energy landscape of the 1:1 stoichiometry (monohydrate) as a
guidance for hydrate formation. The monohydrate crystal energy
landscape (Figure 2) shows only one hydrate structure that is
more stable than the non-solvated form III and thus indicates
hydrate formation.

CONCLUSIONS

4,4′-Diaminodiphenyl sulfone (DDS) forms a non-stoichiometric
hydrate, with a water content of 0–0.33mol of water per mol
of DDS. The upper limit of this ratio is obvious from the
features of the crystal structure, but it is surprising that the
structurally isolated and hydrogen bonded water molecules can
easily leave and enter the structure, which is indicated by the
continuous change in water content when the hydrate is exposed
to different RH values. This observation highlights that it is not
advisable to make assumptions about the dehydration behavior
based on the location of the water molecules in the structure
alone. However, supported by intermolecular energy interaction
calculations (host-host, water-host and water-water) and by
comparing the lattice energies of the isomorphic dehydrate
(hydrate without water) and anhydrate polymorph(s) of the same
compound it is possible to rationalize and to potentially predict
a non-stoichiometric dehydration behavior. Furthermore, this
study shows that even though CSP has been performed with only
one hydrate stoichiometry (here monohydrate) the outcome may
be sufficient to get insight into the hydrate formation potential
of a compound. However, such a limited approach requires a
thorough analysis of the computed structures.

In our opinion, a sound understanding of hydrates and
their often complex behavior can only be achieved by
a full multidisciplinary investigation, including structural,
moisture- and temperature dependent studies combined with
modeling. Such an understanding may be mandatory to avoid
complications during processing, storing and handling of a
hydrate.
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Monoamine oxidase B (MAO-B) catalyzes deamination of monoamines such as

neurotransmitters dopamine and norepinephrine. Accordingly, small-molecule MAO-B

inhibitors potentially alleviate the symptoms of dopamine-linked neuropathologies such

as depression or Parkinson’s disease. Coumarin with a functionalized 3-phenyl ring

system is a promising scaffold for building potent MAO-B inhibitors. Here, a vast set

of 3-phenylcoumarin derivatives was designed using virtual combinatorial chemistry or

rationally de novo and synthesized using microwave chemistry. The derivatives inhibited

the MAO-B at 100 nM−1µM. The IC50 value of the most potent derivative 1 was 56 nM.

A docking-based structure-activity relationship analysis summarizes the atom-level

determinants of the MAO-B inhibition by the derivatives. Finally, the cross-reactivity

of the derivatives was tested against monoamine oxidase A and a specific subset

of enzymes linked to estradiol metabolism, known to have coumarin-based inhibitors.

Overall, the results indicate that the 3-phenylcoumarins, especially derivative 1, present

unique pharmacological features worth considering in future drug development.

Keywords: 3-phenylcoumarin, monoamine oxidase B (MAO-B), structure-activity relationship (SAR), virtual drug

design, Parkinson’s disease

INTRODUCTION

During neuronal signaling, neurotransmitters are released from the presynaptic cell into the
synaptic cleft, from where they bind into their specific receptors embedded on the postsynaptic
membrane. The membrane lipid bilayer, especially its anionic phospholipid constituents, has been
suggested to play a role in the small-molecule entry processes with the receptors (Orłowski et al.,
2012; Postila et al., 2016; Mokkila et al., 2017). Moreover, to assure that the neurotransmission
remains transient, the neurotransmitters are removed quickly from the synaptic cleft via enzymatic
degradation and cellular uptake.
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When inside the neuron, monoamine neurotransmitters such
as norepinephrine and dopamine are either recycled or destined
for deactivation through oxidative deamination (RCH2NHR’
+ H2O + O2 = RCHO + R’NH2 + H2O2) by monoamine
oxidases A (MAO-A; E.C. 1.4.3.4) and B (MAO-B; E.C. 1.4.3.4).
These enzymes are integral monotopic proteins that anchor
themselves as dimers onto the mitochondrial outer membrane
surface by protruding their α-helical C-termini into the lipid
bilayer (Figure 1A). Moreover, both subtypes A and B deaminate
preferentially their respective substrates to aldehydes: MAO-
A catalyzes serotonin, norepinephrine, and to some extent
dopamine; and MAO-B catalyzes dopamine, phenethylamine,
benzylamine and to a lesser extent norepinephrine (Shih
et al., 1999; Edmondson et al., 2005; Gaweska and Fitzpatrick,
2011).

The MAO-B, which is the target of this study, is connected
to neurodegenerative disorders such as Alzheimer’s disease
but also mental disorders such as schizophrenia, anorexia
nervosa, depression and attention deficit disorder. In all of these
conditions, the involvement of MAO-B in the metabolism of
dopamine and other amines is in a key role (Youdim et al.,
2006; Carradori and Silvestri, 2015). For instance, due to gliosis
associated with Parkinson’s disease, increased levels of MAO-
B speed up degradation of dopamine in the motor neurons.
MAO-B inhibitors decrease the degradation and boost dopamine
concentration in the synapse. Thus, instead of introducing more
dopamine, the neurotransmitter levels are elevated by inhibiting
MAO-B. As a result, MAO-B inhibitors such as selegiline
are used in treatment of Parkinson’s disease, moreover, their
neuroprotective effects can benefit Alzheimer’s disease patients
(Youdim et al., 2006). Due to these hepatotoxic effects of
irreversibly bindingMAO inhibitors, reversible inhibitors such as
moclobemide were developed (Youdim et al., 2006; Finberg and
Rabey, 2016). The MAO inhibitors can exhibit selectivity toward
MAO-A (moclobemide) or MAO-B (pargyline, selegiline) or
be non-selective (phenelzine, tranylcypromine). The selectivity,
which can be lost in high dosages, is important for avoiding
MAO-A inhibition related cheese effect (Youdim et al., 2006;
Finberg and Rabey, 2016).

A vast amount of different types of MAO inhibitors are
described in the literature and for example the ChEMBL
database lists inhibition data for thousands of compounds. The
specific problem in the development of MAO-specific ligands
is that the promising compounds have potential to become
active on other amine oxidases such as vascular adhesion
protein 1 (Nurminen et al., 2010, 2011). Here, the aim was to
probe the MAO-B activity and selectivity effects of different
substitutions on the coumarin core by focusing, especially,
on the 3-phenylcoumarin (or 3-arylcoumarin). Notably, there
exist two X-ray crystal structures with structurally related
coumarin analogs in which 3-chlorobenzyloxy groups are
attached at the C7-position (Figures 1B–D). The studied set

Abbreviations: MAO-A, monoamine oxidase A; MAO-B, monoamine oxidase
B; HSD1 or 17-β-HSD1, 17-β-hydroxysteroid dehydrogenase 1; ER, estrogen
receptor; CYP1A2, cytochrome P450 1A2; CYP19A1, aromatase; SAR, structure-
activity relationship.

of 3-phenylcoumarin derivatives with different R1-R7 groups
(Figure 1E) introduced in this study make an important addition
to the earlier studies in which the potential of coumarin core,
including 61 3-phenylcoumarin derivatives (Matos et al., 2009b,
2010, 2011a,b; Santana et al., 2010; Serra et al., 2012; Viña
et al., 2012a,b), to block MAO-A and MAO-B has been explored
(Borges et al., 2005; Catto et al., 2006; Matos et al., 2009a, 2010,
2011a; Serra et al., 2012; Ferino et al., 2013; Joao Matos et al.,
2013; Patil et al., 2013). The compounds were designed using
virtual combinatorial chemistry or rationally de novo and binding
were probed via molecular docking prior to synthesis or in vitro
testing.

Initially, 52 derivatives of the 3-phenylcoumarin core were
synthesized and tested here for the first time for MAO-B
inhibition using a specifically tailored spectrophotometric assay
(Supplementary Table S1) (Holt et al., 1997). Next, 24 of the
derivatives (Figure 2, Table 1), producing >70% inhibition at
10µM, were selected for further analysis. These derivatives
inhibited MAO-B at a∼100 nM to∼1µM range, while the most
potent derivative 1 produces ∼50–60 nM inhibition (Table 1,
Figure 2). Finally, the potency of the derivatives for inhibiting
estrogen receptor (ER), 17-β-hydroxysteroid dehydrogenase 1
(HSD1), aromatase (CYP19A1), and cytochrome P450 1A2
(CYP1A2), the topics of both our prior (Niinivehmas et al.,
2016) and ongoing studies, was also considered. A docking-
based structure-activity relationship (SAR) analysis (Figure 2)
was performed with all of the synthetized 3-phenylcoumarins
focusing mainly on the 24 most potent compounds.

In short, this study explores thoroughly the pharmacological
potential of 3-phenylcoumarin (Figure 1E) for blocking the
MAO-B activity (Table 1, Supplementary Table S1) and,
furthermore, explains the basis of the inhibitory effect on the
atom level.

MATERIALS AND METHODS

Virtual Combinatorial Chemistry
The 3-phenylcoumarin was chosen as the scaffold of interest
for building new MAO-B-specific inhibitors (see section The
Alignment of the 3-Phenylcoumarin Scaffold at the Active Site).
The analogs were designed using virtual combinatorial chemistry
or virtual synthesis. In the initial stages, methoxy group was
included at the R1 or R2 position (Figure 1E) in the coumarin
core due to its predicted favorability at the active site. The R4-R7
substituents of the 3-phenyl ring (Figure 1E) were designed by
combining phenylacetic acid with either 6-methoxycoumarin or
7-methoxycoumarin. The preliminary combinatorial compound
library was generated using MAESTRO version 9.3 CombiGlide
(CombiGlide, version 2.8, Schrödinger, LLC, New York, NY,
USA) and Combinatorial Screening module. The compounds
were docked with GLIDE and scored using GlideScore. Some of
these derivatives with promising potency and selectivity profile in
this study (8, 10, 25, 37) were eventually synthesized, albeit using
different chemistry (see section Chemical Procedure), and tested
in vitro. Majority of the final derivatives were designed de novo
after performing the initial docking simulations with the virtual
synthesis products.
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FIGURE 1 | Monoamine oxidase B structure and the small-molecule inhibitors. (A) The cytoplasmic MAO-B monomer (gray cartoon; PDB: 2V61; A-chain) (Binda

et al., 2007) is anchored by its C-terminal helix onto the outer mitochondrial membrane [thick orange line; from the OPM database (Lomize et al., 2006)]. The bound

inhibitor 7-(3-chlorobenzyloxy)-4-(methylamino)methyl-coumarin (C18 in PDB: 2V61; blue backbone) and the cofactor flavin adenine dinucleotide (FAD; green

backbone) are shown as CPK models. (B) A close up of the MAO-B active site with C18 (blue backbone; ball-and-stick model) shows the small-molecule forming a

halogen bond (green dotted line) and an H-bond (orange dotted line) with the main chain oxygen atoms of Leu164 and Cys172 (ball-and-stick models with gray

backbone), respectively. The binding poses of the coumarin-based inhibitors (C) C18 and (D) 7-(3-chlorobenzyloxy)-4-carboxaldehyde-coumarin (C17 in PDB: 2V60)

(Binda et al., 2007) are highly similar with the 3-phenylcoumarin scaffold pose produced by molecular docking. Notably, the coumarin ring is reversed for the

established inhibitors in comparison to the docking-based pose of the scaffold. Moreover, the phenyl rings of C17 and C18 are attached via ether bonds to the

coumarin’s C7-position instead of C3-position used with the inhibitors introduced in this study. (E) The 2D structure of the 3-phenylcoumarin scaffold indicating the

positions of the functional R1-R7 groups.

Chemical Procedure
All reactions were carried out using commercial materials
(Sigma-Aldrich, Mannheim, Germany) and reagents without
further purification unless otherwise noted. Reaction mixtures
were heated by the CEM Discover microwave apparatus.
All reactions were monitored by thin layer chromatography
(TLC) on silica gel plates. 1H NMR and 13C NMR data
was recorded on a Bruker Avance 400 MHz spectrometer or
Bruker Avance III 300 MHz spectrometer. Chemical shifts are
expressed in parts per million values (ppm) and are designated
as s (singlet), br s (broad singlet), d (doublet), dd (double
doublet), and t (triplet). Coupling constants (J) are expressed
as values in hertz (Hz). The mass spectra were recorded using
Micromass LCT ESI-TOF equipment. Elemental analyses were
done with Elementar Vario EL III elemental analyzer. The
coumarin derivatives were synthesized using Perkin-Oglialor
condensation reaction. The method was developed from the
earlier published procedures and transferred to microwave
reactor and it was published earlier by authors (Niinivehmas
et al., 2016).

A typical procedure: A mixture of salicylaldehyde derivative
(2mmol) and phenyl acetic acid derivative (2.1mmol), acetic acid

anhydride (0.6ml), and triethylamine (0.36ml) were placed in
a microwave reactor tube and this mixture was heated at 100–
170◦C with microwave apparatus (100–200W) for 10–20min.
After cooling, 2ml of 10% NaHCO3 solution was added and the
precipitate was filtered, dried and recrystallized from EtOH/H2O
or acetone/H2O mixture. The acetyl group(s) were removed
by treating the compound with 2M MeOH/NaOH(aq) (1:1)
solution for 30–60min at r.t. The solution was acidified with
2M HCl(aq,) and the precipitate was filtered and recrystallized
if needed.

Based on the elemental analysis and/or 1H-NMR the purity of
compounds was >95%.

6-methoxy-3-(4-(trifluoromethyl)phenyl)-2H-chromen-

2-one (1). Yield: 76%; 1H-NMR (400 MHz, CDCl3) δ: 3.86 (s,
3H, CH3O-), 6.99 (s, 1H, H-5), 7.14 (d, 1H, J3 = 7.7Hz, H-7),
7.29 (d, J3 = 8.9Hz, H-8), 7.69 (d, 2H, J3 = 7.9Hz, H-2’, H-6’),
7.58 (m, 3H, H-4, H-3’, H-5’); 13C-NMR (100.6 MHz, CDCl3) δ:
55.99, 110.24, 117.73, 119.78, 120.02, 125.51 (q, JC−F = 4Hz),
127.37, 129.05, 130.85 (q, JC−F = 32Hz), 138.41, 140.88, 148.33,
156.44, 160.42. HRMS(ESI): calc. for C17H11F3O3Na1 343.0558,
found 343.0574; elemental anal. for C17H11F3O3, calc. C% 63.76,
H% 3.46, found C% 63.25, H% 3.51.
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FIGURE 2 | 2D structures of the 24 3-phenylcoumarin derivatives producing at least 70% MAO-B inhibition. The compounds are grouped to (A–F) groups based on

the chemical similarity of the R1-R7 substituents (Figure 1E). See Table 1 for the detailed activity data.
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TABLE 1 | The activity data on the 24 most potent 3-phenylcoumarin derivatives.

Group ID MAO-B inhibition

IC50 nM

QPlogPo/

w

MAO-B inhibition

% (10µM)

MAO-A inhibition

% (100µM)

ER inhibition

% (10µM)

HSD1 inhibition

% (1µM)

CYP1A2 inhibition

IC50 µM

Control c 61(1) 2.43(1) 102.00(1) 100.89(2) 106.60(3) N/A N/A

A 01 56 4.08 99.53 0.00 N/A 0 124.00

02 138 4.11 99.58 0.00 N/A 1 N/A

03 141 3.33 100.44 22.03 N/A 0 280.00

04 317 4.22 101.96 0.00 N/A 0 7.00

05 343 4.35 105.33 0.00 1.08 0 171.00

B 06 189 2.47 99.92 0.00 N/A 21 N/A

07 888 3.36 91.01 0.00 N/A 0 46.00

C 08 231 3.11 111.93 0.00 0 0 2.30

09 255 3.21 80.21 0.00 N/A 0 84.00

10 400 3.15 97.57 10.14 N/A 0 15.00

11 798 3.06 90.33 0.00 0.29 4 1.60

12 955 2.49 85.89 24.57 91.34 3 170.00

13 1946 2.41 85.89 2.48 N/A 0 570.00

14 8476 2.34 75.75 N/A N/A 1 87.51

D 15 292 3.73 87.16 0.00 0 12 3.00

16 1433 3.71 77.63 N/A 8.80 33 4.50

E 17 384 2.80 90.14 4.74 N/A 5 35.00

18 617 3.49 93.86 0.00 0 1 17.00

19 866 2.79 85.41 0.00 N/A 15 370.00

F 20 391 2.71 100.82 0.00 86.10 46 30.00

21 433 3.32 88.77 0.00 0 0 3.00

22 831 2.73 94.86 0.00 55.38 54 1.50

23 902 3.58 83.49 0.00 0 11 3.00

24 1058 2.61 89.10 14.18 0 20 3.00

N/A = not available. Controls: (1)pargyline, (2)clorgyline, (3)kit control. The compounds are grouped (A–F) based on the chemical similarity of the R1–R7 substituents (Figure 1E).

SCHEME 1 | The synthesis of 3-phenylcoumarin analogs.

6-methoxy-3-(4-(trifluoromethyl)phenyl)-2H-chromen-2-

one (2). Yield: 80%; 1H-NMR (300 MHz, d6-DSMO) δ: 3.88 (s,
3H, CH3O-), 6.99 (s, 1H, J3 = 8.7Hz, J4 = 2.4Hz, H-6), 7.03
(d, 1H, J4 = 2.4Hz, H-7), 7.71 (d, J3 = 8.6Hz, H-8), 7.79 (d,
2H, J3 = 8.3Hz, H-2’, H-6’), 7.93 (d, 2H, H-3’, H-5’), 8.32 (s,
1H, H-4); 13C-NMR (75.5 MHz, d6-DMSO) δ: 55.97, 100.25,
112.80, 121.57, 122.38, 120.02, 124.97 (q, JC−F = 4Hz), 128.29
(q, JC−F = 32Hz), 128.97, 129.99, 139.01, 142.10, 155.09, 159.62,
162.82. HRMS(ESI) calc for C17H11F3O3Na1 [M + Na]+:
343.05525, found 343.05610.

2-oxo-3-(4-(trifluoromethoxy)phenyl)-2H-chromen-7-yl

acetate (3). (Dobelmann-Mara et al., 2017) Yield: 54%; %; 1H-
NMR (400 MHz, d6-DMSO) δ: 2.27 (s, 3H, CH3C(O)O-), 7.20
(dd, 1H, J3 = Hz, J4 =Hz, H-6), 7.33 (d, 1H, J4 =Hz, H-8), 7.47
(d, 2H, J3 = Hz, H-3’, H-5’), 7.81 (d, 1H, J3 = 8.4Hz, H-5), 8.32
(s, 1H, H-4); 13C-NMR (100 MHz, d6-DMSO) δ: 20.86 109.74,
117.23, 118.88, 120.75, 124.84, 129.42, 129.60, 130.52, 133.85,
140.73, 148.35, 152.90, 153.55, 159.40, 168.78; HRMS(ESI)
calc. for C18H11F3O5Na1 [M + Na]+ 387.0457, found
387.0481.
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6-methoxy-3-(4-(trifluoromethoxy)phenyl)-2H-chromen-

2-one (4). Yield: 52%; 1H-NMR (400 MHz, CDCl3) δ: 3.86 (s,
3H, CH3O-), 6.98 (d, 1H, J4 = 3Hz, H-5), 7.12 (dd, J3 = 9.1Hz,
J4 = 3Hz, H-7), 7.27-7.30 (m, 3H, H-8, H-3’, H-5’), 7.74 (d,
2H, J3 = 8.9Hz, H-2’, H-6’); 7.77 (s, 1H, H-4); 13C-NMR (100
MHz, CDCl3) δ: 55.99, 110.16, 117.70, 119.68, 119.92, 120.97,
127.41, 130.26, 133.51, 140.20, 148.21, 149.67, 156.41, 160.65.
HRMS(ESI) calc for C17H11F3O4Na1 [M + Na]+: 359.05071,
found 359.05260. elemental anal. for C17H11F3O4·0.5H2O, calc.
C% 59.14, H% 3.50, found C% 58.99, H% 3.25.

6-methyl-3-(4-(trifluoromethyl)phenyl)-2H-chromen-2-

one (5). Yield: 54%; 1H-NMR (400 MHz, CDCl3) δ: 7.27 (d,
1H, J4 = 2.2Hz, H-5), 7.35-7.38 (m, 2H, H-7, H-8), 7.70 (d,
J3 = 8.2Hz, H-2’, H-6’), 7.82 (m, 3H, H-4, H-3’, H-5’); 13C-NMR
(100 MHz, CDCl3) δ: 20.92, 116.46, 119.22, 122.80, 125.53 (q,
JC−F = 4Hz), 126.98, 128.07, 129.05, 130.80 (q, JC−F = 33Hz),
133.29, 134.62, 138.50, 141.08, 152.04 160.53; HRMS(ESI) calc
for C17H12Cl2O4Na1 [M+ Na]+: 373.0005, found 372.9998.

2-fluoro-4-(7-methoxy-2-oxo-2H-chromen-3-yl)phenyl

acetate (6). Yield 75%; 1H-NMR (400 MHz, d6-DMSO) δ: 2.35
(s, 3H, CH3C(O)O-Ph), 3.88 (s, 3H, CH3O-Ph), 6.99 (dd, 1H,
J3 = 8.6Hz, J4 = 2.4Hz, H-6), 7.05 (d, 1H, J4 = 2.4Hz, H-8), 7.37
(dd, J3 = 9.3Hz, JH−F = 8.3Hz, H-5’), 7.62 (ddd, 1H, J3 = 8.5Hz,
J4 = 2.1Hz, JH−F = 0.8Hz, H-6’), 7.68 (d, J = 8.6Hz, 1H, H-5),
7.74 (dd, JH−F = 12.1Hz, J4 = 2.0Hz, H-3’), 8.31 (s, 1H, H-4);
13C-NMR (100 MHz, d6-DMSO) δ: 20.19, 55.97, 100.25, 112.79,
116.35 (d, JC−F = 20.3Hz), 121.02, 121.03, 123.83, 124.79 (d,
JC−F = 3.2Hz), 129.86, 134.24 (d, JC−F = 7.7Hz), 137.20 (d,
JC−F = 13.1Hz), 141.55, 153.00 (JC−F = 246.1Hz), 154.92,
159.65, 162.69, 168.19. HRMS(ESI) calc for C18H13F1O5Na1
[M + Na]+: 351.06447, found 351.06240; elemental anal. for
C18H13F1O5 C% 65.85, H% 3.99, found C% 65.28 H% 4.02.

4-(6,8-dichloro-2-oxo-2H-chromen-3-yl)-2-fluorophenyl

acetate (7). Yield 58%; 1H-NMR (400 MHz, d6-DMSO) δ: 2.36
(s, 3H, CH3C(O)O-), 7.43 (dd, J3 = 9.3Hz, JH−F = 8.3Hz,
H-5’), 7.67 (ddd, 1H, J3 = 8.4Hz, J4 = 2.1Hz, JH−F = 0.8Hz,
H-6’), 7.74 (dd, JH−F = 11.8Hz, J4 = 2.0Hz, H-3’), 7.84 (d,
1H, J4 = 2.4Hz, H-7), 7.97 (d, 1H, J4 = 2.4Hz, H-5), 8.32 (s,
1H, H-4); 13C-NMR (100 MHz, d6-DMSO) δ: 20.72, 117.23 (d,
JC−F = 21Hz), 121.13, 122.17, 124.65, 125.74 (d, JC−F = 3.3Hz),
127.29, 128.80, 131.47, 133.70 (d, JC−F = 7.7Hz), 138.50
(d, JC−F = 12.9Hz), 140.12, 147.94, 152.30, 154.75. 158.73;
HRMS(ESI): calc. for C17H9Cl2F1O4Na1 [M + Na]+: 388.9760,
found 388. 9762.

6-methoxy-3-(3-methoxyphenyl)-2H-chromen-2-one (8).

Yield 78%; 1H-NMR (400 MHz, CDCl3) δ: 3.85 (s, 3H, CH3O-
Ph), 3.86 (s, 3H, CH3O-Ph), 6.93-6.97 (m, 2H, H-4’, H-5), 7.10
(dd, 1H, J3 = 9.0, Hz, J4 = 1.9Hz, H-7), 7.25-7.29 (m, 3H,
H-8, H-2’, H-6’), 7.35 (t, 1H, J3 = 8.2Hz, H-5’), 7.76 (s, 1H,
H-4); 13C-NMR (100 MHz, CDCl3) δ: 55.69, 56.18, 110.28,
114.57, 114.88, 117.78, 119.55, 120.28, 121.26, 128.80, 129.79,
136.43, 140.13, 148.34, 156.47, 159.88, 160.91; HRMS(ESI): calc.
for C17H14O4Na1 [M + Na]+: 305.07898, found 305.07950;
elemental anal. for C14H14O4 calc. C% 72.33, H% 5.00, found
C% 72.41, H% 4.88.

3-(3,5-dimethoxyphenyl)-6-methoxy-2H-chromen-2-

one (9). (Vilar et al., 2006) Yield 59%; 1H-NMR (400 MHz,

d6-DMSO) δ: 3.79 (s, 6H, CH3O-Ph), 3.82 (s, 3H, CH3O-Ph),
6.56 (t, 1H, J4 = 2.3Hz, H-4’), 6.89 (d, 2H, J4 = 2.3Hz, H-
2’, H-6’), 7.20 (dd, 1H, J3 = 9.0Hz, J4 = 3.0Hz, H-7), 7.31
(d, 1H, J4 = 3.0Hz, H-5), 7.36 (d, 1H, J3 = 9.0Hz, H-8),
8.23 (s, 1H, H-4); 13C-NMR (100 MHz, d6-DMSO) δ: 55.30,
55.66, 100.48, 106.71, 110.69, 116.90, 119.36, 119.78, 126.75,
136.44, 140.66, 147.33, 155.62, 159.53, 160.16; HRMS(ESI): calc.
for C18H16O5Na1 [M + Na]+: 335.08954, found 305.09010;
elemental anal. for C14H14O4 calc. C% 69.22, H% 5.16, found
C% 68.80, H% 5.14.

6-methoxy-3-(4-methoxyphenyl)-2H-chromen-2-one (10).

(Prendergast, 2001; Ferino et al., 2013) Yield 79%; 1H-NMR
(400 MHz, CDCl3) δ: 3.847 (s, 3H, CH3O-Ph), 3.852 (s, 3H,
CH3O-Ph), 6.95-6.98 (m, 3H, H-5, H-3’, H-5’), 7.07 (dd, 1H,
J3 = 9.0Hz, J4 = 2.9Hz, H-7), 7.27 (d, 1H, J4 = 8.8Hz, H-5),
7.66 (d, 2H, J3 = 8.9Hz, H-2’, H-6’), 7.70 (s, 1H, H-4); 13C-
NMR (100 MHz, CDCl3) δ:55.69, 56.16, 110.11, 114.23, 117.69,
119.05, 120.51, 127.47, 128.49, 130.18, 138.63, 148.11, 156.44,
160.49, 161.24; HRMS(ESI): calc. for C17H14O4Na1 [M + Na]+:
305.07898, found 305.07910; elemental anal. for C17H14O4 calc.
C% 72.33, H% 5.00, found C% 72.34, H% 4.86.

3-(3-methoxyphenyl)-2H-chromen-2-one (11).

(Kirkiacharian et al., 1999) Yield 81%; 1H-NMR (400 MHz,
CDCl3) δ: 3.86 (s, 3H, CH3O-Ph), 6.95 (ddd, 1H, J3 = 8.2Hz,
J4 = 2.3Hz, J4 = 2.5Hz, H-4’), 7.26-7.37 (m, 5H, H-6, H-8, H-2’,
H-5’, H-6’), 7.51-7.53 (m, 2H, H-5, H-7), 7.81 (s, 1H, H-4); 13C-
NMR (100 MHz, CDCl3) δ: 55.69, 114.56, 114.86, 116.76, 119.94,
121.24, 124.81, 128.26, 128.49, 129.80, 131.76, 136.35, 140.28,
153.85, 159.88, 160.76; HRMS(ESI): calc. for C16H12O3Na1 [M+

Na]+: 275.06841, found 275.06540; elemental anal. for C16H12O3

calc. C% 76.18, H% 4.79, found C% 75.94, H% 4.67.
7-hydroxy-3-(4-methoxyphenyl)-2H-chromen-2-one (12).

(Prendergast, 2001) Yield 81%; 1H-NMR (400 MHz, d6-DMSO)
δ: 3.79 (s, 3H, CH3O-Ph), 6.74 (s, 1H, H-8), 6.81 (d, 1H,
J3 = 8.5Hz, H-6), 6.99 (d, 2H, J3 = 8.3Hz, H-3’, H-5’), 7.57
(d, 1H, J3 = 8.4Hz, H-5), 7.65 (d, 2H, J3 = 8.3Hz, H-2, H-6’),
8.08 (s, 1H, H-4), 10.54 (s, 1H, HO-Ph); 13C-NMR (100 MHz,
d6-DMSO) δ: 55.18, 101.66, 112.10, 113.29, 113.61, 121.84,
127.30, 129.48, 129.70, 139.73, 154.63, 159.14, 160.20, 160.88;
HRMS(ESI): calc. for C16H12O4Na1 [M + Na]+: 291.06333,
found 291.06160.

3-(4-methoxyphenyl)-2-oxo-2H-chromen-7-yl acetate (13).

(Bhandri et al., 1949) Yield 67%; 1H-NMR (400MHz, d6-DMSO)
δ: 7.02 (d, 2H, J3 = 7.8Hz, H-3’, H-5’), 7.17 (d, 1H, J3 = 8.3Hz,
H-6), 7.29 (d, 1H, H-8), 7.69 (d, 2H, J3 = 7.8Hz, H-2’, H-6’), 7.79
(d, 1H, J3 = 8.2Hz, H-5), 8.19 (s, 1H, H-4); 13C-NMR (100MHz,
d6-DMSO) δ: 20.85, 55.22, 109.57, 113.68, 117.49, 118.68, 125.69,
126.72, 129.19, 129.75, 138.62, 152.36, 153.15, 159.59, 168.81;
HRMS (ESI): Calc for C18H14O5Na1 [M + Na]+: 333.07389,
found 333.07220. Elemental analysis for C18H14O5 calc C% 69.67
H% 4.55, found C% 69.58 H% 4.52.

3-(4-methoxyphenyl)-2-oxo-2H-chromen-6-yl acetate (14).

Yield 34%; 1H-NMR (300 MHz, d6-DMSO) δ: 2.31 (s, 3H,
CH3C(O)O-), 3.81 (s, 3H, CH3O-), 7.03 (d, 2H, J3 = 8.7Hz, H-
3’, H-5’), 7.37 (dd, 1H, J3 = 8.9Hz, J4 = 2.5Hz, H-7), 7.47 (d,
1H, J3= 8.9Hz, H-8), 7.54 (d, 1H, J4= 2.5Hz, H-5), 7.70 (d, 2H,
J3 = 8.7Hz, H-2’, H-6’), 8.15 (s, 1H, H-5); 13C-NMR (75 MHz,

Frontiers in Chemistry | www.frontiersin.org 6 March 2018 | Volume 6 | Article 4164

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Rauhamäki et al. 3-Phenylcoumarins as Monoamine Oxidase Inhibitors

d6-DMSO) δ: 20.73, 55.21, 113.68, 116.83, 120.07, 120.53, 125.00,
126.61, 127.03, 129.84, 138.30, 146.39, 150.18, 159.64, 159.71,
169.22. HRMS (ESI): Calc for C18H14O5 [M + H]+: 311.0914,
found 311.0908.

6-methoxy-3-(2,4,5-trifluorophenyl)-2H-chromen-2-one

(15). Yield 80%; 1H-NMR (400 MHz, d6-DMSO) δ: 3.81 (s, 3H,
CH3O-Ph), 7.26 (dd, 1H, J3 = 9.0Hz, J4 = 3.0Hz, H-7), 7.31 (d,
1H, J4 = 3.0Hz, H-5), 7.41 (d, 1H, J3 = 9.0Hz, H-8), 7.64-7.77
(m, 2H, H-2’, H-6’), 8.18 (s, 1H, H-4); 13C-NMR (100 MHz,
d6-DMSO) δ: 55.73, 106.31 (dd, JC−F = 21Hz, JC−F = 22Hz),
110.90, 117.25, 119.12, 119.39, 119.55, 120.07, 120.91, 143.74,
145.70 (d, JC−F = 242Hz), 147.64, 149.34 (JC−F = 252Hz),
155.13 (JC−F = 248Hz), 155.79, 158.78. HRMS (ESI): Calc
for C16H9F3O3Na1 [M + Na]+: 329.04015, found 329.04090.
Elemental analysis for C16H9F3O3: calc C% 62.75 H% 2.96,
found C% 62.62 H% 3.15.

7-methoxy-3-(2,4,5-trifluorophenyl)-2H-chromen-2-one

(16). Yield 85 %; 1H-NMR (300 MHz, d6-DMSO) δ: 3.88 (s, 3H,
CH3O-Ph), 7.00 (dd, 1H, J3 = 8.6Hz, J4 = 2.4Hz, H-6), 7.06 (d,
1H, J4 = 2.3Hz, H-8), 7.61-7.6 (m, 3H, H-5, H-2’, H-6’), 8.17
(s, 1H, H-4); 13C-NMR (75.5 MHz, d6-DMSO) δ: 56.02, 100.49,
106.21 (dd, JC−F = 21Hz, JC−F = 21Hz), 112.24, 112.85, 116.85,
119.30, 119.57, 129.95, 144.06, 145.67 (d, JC−F = 242Hz), 148.93
(d, JC−F = 250) Hz, 155.10 (d, JC−F = 245Hz), 155.22, 158.89,
162.98; HRMS (ESI): Calc for C16H9F3O3Na1 [M + Na]+:
329.04015, found 329.03980.

3-(4-(dimethylamino)phenyl)-7-hydroxy-2H-chromen-

2-one (17). (Kirkiacharian et al., 2003) In the first step
7-acetoxy-3-(4-(dimethylamino)phenyl)-2H-chromen-2one
was obtained. Yield: 70%; 1H-NMR (400 MHz, d6-DMSO)
δ: 2.31 (s, 3H, CH3C(O)O-Ph), 2.95 (s, 6H, (CH3)2N-Ph),
6.77 (d, J3 = 9.0Hz, 2H, H-2’, H-6’), 7.14 (dd, J3 = 8.4Hz,
J4 = 2.2Hz, 1H, H-5), 7.26 (d, J4 = 2.2Hz, 1H, H-8), 7.63 (d,
J3 = 9.0Hz, 2H, H-3’, H-5’) 7.76 (d, J3 = 8.5Hz, 1H, H-5), 8.11
(s, 1H, H-4); 13C-NMR (100.6 MHz, d6-DMSO) δ: 20.85, 39.84,
109.44, 111.58, 117.76, 118.57, 121.57, 126.00, 128.82, 129.11,
136.46, 150.45, 151.90, 152.77, 159.74, 168.85. In the second step
7-hydroxy-3-(4-(dimethylamino)phenyl)-2H-chromen-2one
was obtained. Yield: 85% yellow solid; 1H-NMR (400 MHz,
d6-DMSO) δ: 2.94 (s, 6H, (CH3)2N-), 6.72 (d, J4 = 2.3Hz, 1H,
H-8), 6.75 (d, J3 = 9.0Hz, 2H, H-2’, H-6’), 6.79 (dd, J3 = 8.4Hz,
J4 = 2.3Hz, 1H, H-5),), 7.55 (d, J3 = 8.5Hz, 1H, H-5), 7.58 (d,
J3 = 9.0Hz, 2H, H-3’, H-5’), 7.99 (s, 1H, H-4); 13C-NMR (100.6
MHz, d6-DMSO) δ: 39.92, 101.59, 112.33, 113.16, 122.30, 122.32,
129.34, 137.83, 150.07, 154.27, 160.30, 160.41; HRMS (ESI): Calc
for C17H15N1O3Na1 [M + Na]+: 304.09496, found 304.09480;
elemental anal. for C17H15N1O3, calc. C% 72.58, H% 5.37, N%
4.98, found C% 72.45, H% 5.40, N% 5.15.

3-(4-(dimethylamino)phenyl)-6-methoxy-2H-chromen-2-

one (18). Yield 55%; 1H-NMR (400 MHz, d6-DMSO) δ: 2.96 (s,
6H, (CH3)2N-Ph), 3.81 (s, 3H, CH3O-Ph), 6.77 (d, 2H, J3 = Hz,
H-3’, H-5’), 7.14 (dd, 1H, J3 = 3.0Hz, J4 = 9.0Hz, H-7), 7.28 (d,
1H, J4 = 3.0Hz, H-5), 7.33 (d, 1H, J3 = 9.0Hz, H-8), 7.63 (d,
2H, J3 = 9.0Hz, H-2’, H-6’), 8.06 (s, 1H, H-4); 13C-NMR (100.6
MHz, d6-DMSO) δ: 39.93, 110.27, 111.59, 116.68, 118.16, 120.35,
121.73, 126.96, 129.15, 136.79, 146.79, 150.46, 155.59, 160.06;
HRMS (ESI): Calc for C18H17N1O3Na1 [M + Na]+: 318.11061,

found 318.11050; elemental anal. for C18H17N1O3, calc. C%
73.20, H% 5.80, N% 4.74, found C% 72.75, H% 5.83, N% 4.45.

3-(4-(dimethylamino)phenyl)-2-oxo-2H-chromen-7-yl

acetate (19). Yield 70%; 1H-NMR (400 MHz, d6-DMSO) δ:
2.31 (s, 3H, CH3C(O)O-Ph), 2.95 (s, 6H, (CH3)2N-Ph), 6.77
(d, 2H, J3 = 9.0Hz, H-3’, H-5’), 7.14 (dd, 1H, J3 = 8.4Hz,
J4 = 2.2Hz, H-6), 7.26 (d, 1H, J4 = 2.2Hz, H-8), 7.63 (d, 2H,
J3 = 9.0Hz, H-2’, H-6’), 7.76 (d, 1H, J3 = 8.5Hz, H-5), 8.11
(s, 1H, H-4; 13C-NMR (100 MHz, d6-DMSO) δ: 20.86, 39.84,
109.44, 111.58, 117.76, 118.57, 121.58, 126.00, 128.82, 129.11
136.46, 150.45, 151.90, 152.77, 159.74, 168.85; HRMS (ESI): Calc
for C19H17N1O4Na1 [M+ Na]+: 346.10553, found 346.10640.

3-(3-fluoro-4-hydroxyphenyl)-7-methoxy-2H-chromen-

2-one (20). In the first step 2-fluoro-4-(7-methoxy-2-oxo-2H-
chromen-3-yl)phenyl acetate was obtained. Yield 75%; 1H-NMR
(400 MHz, d6-DMSO) δ: 2.35 (s, 3H, CH3C(O)O-Ph), 3.88 (s,
3H, CH3O-Ph), 6.99 (dd, 1H, J3 = 8.6Hz, J4 = 2.4Hz, H-6),
7.05 (d, 1H, J4 = 2.4Hz, H-8), 7.37 (t, 1H, J = 8.3Hz, H-6’),
7.62 (d, J = 8.5Hz, 1H, H-5’), 7.68 (d, J = 8.6Hz, 1H, H-5),
7.74 (dd, JH−F = 12.1Hz, J4 = 2.0Hz, H-3’), 8.31 (s, 1H,
H-4); 13C-NMR (100 MHz, d6-DMSO) δ: 20.19, 55.97, 100.25,
112.79, 116.35 (d, JC−F = 20.3Hz), 121.02, 121.03, 123.83,
124.79 (d, JC−F = 3.2Hz), 129.86, 134.24 (d, JC−F = 7.7Hz),
137.20 (d, JC−F = 13.1Hz), 141.55, 153.00 (JC−F = 246Hz),
154.92, 159.65, 162.69, 168.19. In the second step 3-(3-fluoro-4-
hydroxyphenyl)-7-methoxy-2H-chromen-2-one was obtained.
Yield 70%; 1H-NMR (400 MHz, d6-DMSO) δ: 3.87 (s, 3H,
CH3O-Ph), 6.96-7.03 (m, 3H, H-6, H-8, H-5’), 7.41 (d, 1H,
J3 = 8.4, H-6’), 7.57 (dd, 1H, JH−F = 13.1Hz, J4 = 2.2Hz
(H-H), 1H, H-2’), 7.66 (d, 1H, J3 = 8.4, H-5), 8.18 (s, 1H,
H-4), 10.09 (s, 1H, Ph-OH). 13C-NMR (75.5 MHz, d6-DMSO)
δ: 55.91, 100.16, 112.61, 113.04, 115.95 (d, JC−F = 20Hz),
117.37 (d, JC−F = 3.3Hz), 121.78 (JC−F = 2.0Hz), 124.54 (d,
JC−F = 3.0Hz), 126.08 (d, JC−F = 7.0Hz), 129.49, 139.62, 145.0
(JC−F = 13Hz), 150.46 (d, JC−F = 240Hz), 154.52, 159.87,
162.19; HRMS (ESI): Calc for C16H11F1O4Na1 [M + Na]+:
309.0539, found 309.0553.

3-(4-fluorophenyl)-6-methoxy-2H-chromen-2-one (21).

Yield 58%; 1H-NMR (400 MHz, d6-acetone) δ: 3.87 (s, 3H,
CH3O-Ph), 7.19-7.33 (m, 5H, H-5, H-7, H-8, H-3’, H-5’), 7.83
(dd, 2H, JHF = 5.4Hz, JH−H = 9.0Hz, H-2’, H6’), 8.12 (s,
1H, H-4); 13C-NMR (100 MHz, d6-acetone) δ: 56.17, 111.34,
115.84 (d, JC−F = 22Hz), 117.85, 120.04, 121.04, 127.79, 131.62
(d, JC−F = 8Hz), 132.41 (d, JC−F = 3Hz), 140.82, 148.82,
157.13, 160.64, 163.72 (d, JC−F = 247Hz); HRMS (ESI): Calc
for C16H11F1O3Na1 [M + Na]+: 293.05899, found 293.05850;
elemental anal. for C16H11F1O3, calc C% 71.11, H% 4.10, found
C% 71.10, H% 4.10.

3-(3-fluoro-4-hydroxyphenyl)-6-methoxy-2H-chromen-

2-one (22). In the first step 2-fluoro-4-(6-methoxy-2-oxo-2H-
chromen-3-yl)phenyl acetate was obtained. Yield 66%; 1H-NMR
(400 MHz, d6-DMSO) δ: 2.33 (s, 3H, CH3C(O)O-Ph), 3.82 (s,
3H, (CH3O-Ph), 7.23 (dd, 1H, J3 = 9.0Hz, J4 = 3.0Hz, H-7), 7.30
(d, 1H, J4 = 3.0Hz, H-5), 7.35 (d, 1H, J3 = 9.2Hz, H-8), 7.61 (d,
1H, J3 = 8.5Hz, H-5’), 7.75 (dd, 1H, JH−F = 12.0Hz, J4 = 1.7Hz
(H-H), 1H, H-3’), 8.30 (s, 1H, H-4); 13C-NMR (100.6 MHz,
d6-DMSO) δ: 20.22, 55.69, 110.83, 116.67, 117.02, 119.66, 123.96,
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125.10, 135.96, 141.18, 147.44, 151.78, 154.23, 155.70, 159.53,
168.21. In the second step 3-(3-fluoro-4-hydroxyphenyl)-6-
methoxy-2H-chromen-2-one was obtained. Yield 71%; 1H-NMR
(400 MHz, d6-DMSO) δ: 3.81 (s, 3H, (CH3O-Ph), 7.02 (dd,
1H, J3 = 9.2Hz, H-6’), 7.18 (dd, 1H, J3 = 9.0Hz, J4 = 3.0Hz,
H-7), 7.28 (d, 1H, J4 = 2.9Hz, H-5), 7.42 (d, 1H, J3 = 8.4Hz,
H-5’), 7.57 (dd, 1H, JH−F = 13.0Hz, J4 = 2.2Hz (H-H), 1H,
H-2’), 8.17 (s, 1H, H-4), 10.19 (s, 1H, Ph-OH); 13C-NMR (100.6
MHz, d6-DMSO) δ: 55.66, 110.59, 116.67, 117.02, 119.66, 123.96,
125.10, 135.96, 141.18, 147.44, 151.78, 154.23, 155.70, 159.53,
168.21. HRMS (ESI): Calc for C16H11F1O4Na1 [M + Na]+:
309.0539, found 309.0521.

3-(4-fluorophenyl)-6-methyl-2H-chromen-2-one (23).

(Chauhan et al., 2016) Yield 74%; 1H-NMR (400 MHz, d6-
DMSO) δ: 2.38 (s, 3H, CH3-Ph), 7.27-7.35 (m, 3H, H-3’, H-5’,
H-8), 7.43 (dd, 1H, J3 = 8.5Hz, J4 = 2.1Hz, H-7), 7.55 (d, 1H,
J4 = 1.4Hz, H-5), 7.77 (dd, 2H, JHF = 5.7Hz, JH−H = 9.0Hz,
H-2’, H6’), 8.18 (s, 1H, H-4); 13C-NMR (100.6 MHz, d6-DMSO)
δ: 20.26, 115.11 (d, JH−F = 21.5Hz), 115.64, 119.16, 125.76,
128.20, 130.70 (d, JH−F = 8.4Hz), 131.10 (d, JH−F = 3.2Hz),
132,61, 133.80, 140.48, 151.10, 159.82, 162.17 (d, JH−F = 245Hz);
HRMS (ESI): Calc for C16H11F1O2Na1 [M + Na]+: 277.06408,
found 277.06390; Elemental anal. for C16H11F1O2, calc C%
75.58, H% 4.36, found C% 75.42, H% 4.33.

3-(4-fluorophenyl)-6-hydroxy-2H-chromen-2-one (24). In
the first step 3-(4-fluorophenyl)-2-oxo-2H-chromen-6-yl acetate
was obtained and used as such for the next step. In the
second step 3-(4-fluorophenyl)-6-hydroxy-2H-chromen-2-one
was obtained. Yield 65%; 1H-NMR (300 MHz, d6-DMSO) δ:
7.04 (dd, 1H, J3 = 8.8Hz, J4 = 2.9Hz, H-7), 7.09 (d, 1H,
J4 = 2.8Hz, H-5), 7.24-7.29 (m, 3H,H-3’, H-5’, H-8), 7.75 (dd, 2H,
JHF = 5.6Hz, JH−H = 8.9Hz, H-2’, H6’), 8.13 (s, 1H,H-4), 9.72 (s,
1H, HO-Ph); 13C-NMR (75.5MHz, d6-DMSO) δ: 112.561, 115.03
(d, JH−F = 21.5Hz), 116.71, 119.78, 119.93, 125.80, 130.70 (d,
JH−F = 8.2Hz), 131.18 (d, JH−F = 3.2Hz), 140.50, 146.35, 159.92,
162.17 (d, JH−F = 246Hz); HRMS (ESI): Calc for C15H9F1O3Na1
[M+ Na]+: 279.04334, found 279.0444.

Monoamine Oxidase A and B
Both monoamine oxidase A (MAO-A) and B (MAO-B)
protein and the reagents for the chromogenic solution of
vanillic acid (4-hydroxy-3-methoxylbenzoic acid, 97% purity), 4-
aminoantipyrine (reagent grade), horseradish peroxidase and the
substrate tyramine hydrochloride (minimum 99% purity) as well
as the potassium phosphate buffer, which was prepared using
potassium phosphate dibasic trihydrate (≥99% ReagentPlusTM)
and potassium phosphate monobasic (minimum 98% purity,
molecular biology tested), were purchased from Sigma-Aldrich
(St. Louis, MO, USA) for the spectrophotometric assay.

The protocol for continuous spectrophotometric assay (Holt
et al., 1997) was followed in the activity measurements. The
assay was performed in 0.2M potassium phosphate buffer pH
7.6 on 96-well plates (NuncTM 96F microwell plate without
a lid, Nunc A/S, Roskilde, DK) in 200 µl total volume. The
chromogenic solution containing 1mM vanillic acid, 500µM 4-
aminoantipyrine and 8 U/ml horseradish peroxidase in 0.2M
potassium phosphate buffer pH 7.6 was mixed anew for each

measurement. 5mM tyramine solution was used as the substrate.
In order to determine the activity of both MAO-B and MAO-A,
concentration series as duplicates were prepared. The protein was
combined with the chromogenic solution and incubated 30min
at 37◦C. The background signal was measured using multilabel
reader (VictorTM X4, 2030 Multilabel Reader, PerkinElmer,
Waltham, MA, USA) at A490 before reaching the total 200 µl
volume by adding 20 µl of tyramine to final concentration of
0.5mM on the plate. As a result, the final concentration of the
chromogenic solution on the plate was 250µM vanillic acid,
125µM 4-aminoantipyrine and 2 U/ml horseradish peroxide.
After adding the substrate, the plates were measured 300 times
every 15 s using 1 s exposure time. The device was set to 37◦C for
the duration of the experiment.

Based on the activity measurement, suitable concentrations
were chosen for both MAO-B and MAO-A to be used in
the inhibition studies (Supplementary Figures S1, S2, and S5,
Table 1, Supplementary Table S1). The experiment conditions
should produce absorbance change of ∼0.35 (Holt et al.,
1997). With MAO-B, this was reached using 10 µl (equals
50 µg of protein with enzymatic activity 3.2 units per
well) of the protein and running the experiment for 2 h
(Supplementary Figures S1, S2, and S5, Table 1, Supplementary
Table S1). MAO-A was significantly more active, providing
absorbance change of >0.5 with 5 µl (equals 25 µg of
protein with enzymatic activity 1.05 units per well) of protein
and, consequently, the reaction maximum was reached already
in 30min (Supplementary Figure S5, Table 1, Supplementary
Table S1). Thus, a wide panel of coumarin derivatives was
analyzed at 10µM (Table 1, Supplementary Table S1) and those
3-phenylcoumarin derivatives producing >70% inhibition were
selected for further analysis (Table 1, Figure 2). The selected
24 candidates were measured as duplicates on a dilution series
ranging from 50µM to 1 nM, and based on the normalized
measurement results, IC50 values were calculated (Table 1).
The same wide panel of coumarin derivatives was additionally
used to analyze the MAO-A inhibition at 100µM (Table 1,
Supplementary Table S1).

GRAPHPAD PRISM 5.03 (GraphPad Software Inc., CA, USA)
was used to normalize the spectrophotometric assay data where
the maximal signal was reached at the lowest concentration
of 10−8 or 10−9 depending on the sample and the starting
concentration of 5·10−5 acted as the lowest point of signal.
The measured data was then fitted on a curve using non-linear
regression with the equation for log[inhibitor] vs. response. The
IC50 values were therefore determined based on the curve fit.
The fitted curves are shown on –log scale in Supplementary
Figures S1, S2.

17-β-Hydroxysteroid Dehydrogenase 1
Inhibition of the 17-β-hydroxysteroid dehydrogenase 1 (HSD1)
was determined by HPLC using recombinant human HSD1
proteins, produced in Sf9-insect cells, as described earlier
(Messinger et al., 2009). The assay was performed in a final
volume of 0.2ml buffer (20mM KH2PO4, 1mM EDTA, pH
7.4) containing 0.1 mg/ml protein, 1mM cofactor NADPH,
30 nM substrate estrone or estradiol, 800,000 cpm/ml of tritium
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labeled estrone ([3H]-E1) or estradiol ([3H]-E2) and inhibitor
concentrations in the range of 0.1–5mM. Triplicate samples
were incubated for 25min at RT. The reaction was stopped
by addition of 20ml 10% trichloroacetic acid per sample.
After incubation the substrate and the product of enzymatic
conversion [3H]-E1 and [3H]-E2, were separated and quantified
by HPLC (Alliance 2790, Waters) connected to an online -
counter (Packard Flow Scintillation Analyzer). The ratio of [3H]-
E1 converted to [3H]-E2, or vice versa, determines the sample
conversion percentage. Inhibition efficiencies were calculated by
comparing the conversion percentages of the samples including
inhibitors with those of conversion controls (without inhibitors).

Aromatase
Aromatase (CYP19A1) activity was measured as described
previously (Pasanen, 1985) by using human placental
microsomes and 50 nM [3H]-androstenedione as a substrate
and inhibitor concentrations in the range of 60–1,000 nM.
Aromatase activities were measured as released [3H]-H2O in
Optiphase Hisafe 2 scintillation liquid (Perkin Elmer, USA) with
a Wallac 1450 MicroBeta Trilux scintillation counter (Perkin
Elmer, USA). As a positive control for aromatase inhibition,
1µM finrozole (generous gift from Olavi Pelkonen, University
of Oulu, Finland) was used.

Cytochrome P450 1A2
Inhibition of CYP1A2 activity was determined with commercial
heterologously expressed human CYP1A2 enzyme (Corning Inc.,
Corning, NY, USA) as described earlier (Korhonen et al., 2005).
The metabolic activity was not in the scope of this particular
study. The assay was adapted to the 96-well plate format. In
each well, a 150 µL incubation volume contained 100mM Tris-
HCl buffer (pH 7.4), 4.2mM MgCl2,1µM 7-ethoxyresorufin,
0.5 pmol of cDNA expressed CYP1A2, 0-40mM inhibitor, and
a NADPH-generating system. All inhibitors were dissolved in
ethanol, and the final concentration of ethanol was 2% in all
incubations. The reaction was initiated by adding the NADPH-
regenerating system after a 10min preincubation at 37◦C, and
after a 20min incubation, the reaction was terminated by the
addition of 110 µL of 80% acetonitrile/20% 0.5M Tris base. The
formed fluorescence was measured with a Victor2 plate counter
(Perkin-Elmer Life Sciences Wallac, Turku, Finland) at 570 nm
excitation and 616 nm emission.

Estrogen Receptor
The pIC50 values for the derivatives (Table 1, Supplementary
Table S1) were measured with green PolarScreenTM ER Alpha
Competitor Assay (Life Technologies, CA, The United States of
America) kit, following the manufacturer protocol as previously
described (Niinivehmas et al., 2016). The final concentration of
the compounds ranged from 0.0007 to 10 000 nM in the dilution
series which were performed as duplicates. The molecules were
combined with 25 nM ERα and 4.5 nM fluormone in the assay
buffer and placed on black low volume 384-well assay plate
with NBS surface (Corning, NY, The United States of America).
After mixing the assay plate, it was incubated for 2 h in RT. The
fluorescence polarization was measured using excitation wave

length 485 and emission wave length 535 with bandwidths of
25/20 nm on a 2104 EnVision R© Multilabel Plate Reader which
had EnVision Workstation version 1.7 (PerkinElmer, MA, The
United States of America).

Computational Methods
The small-molecule ligand structures were drawn in 3D and their
tautomeric states at pH 7.4 were built using LIGPREP module
in MAESTRO 2016-3 (Schrödinger, LLC, New York, NY, USA,
2016). The derivatives were docked to the X-ray crystal structure
of MAO-B (PDB: 2V60) (Binda et al., 2007) with PLANTS 1.2
(Korb et al., 2009) using 10 Å radius and the C8 atom of inhibitor
C18 (PDB: 2V60) was used as the center. The R1-methoxy
group rotamers of compounds 1, 8, 9, 21, 15, 18, and 22 were
manually adjusted to indicate how the groups exploit the small
hydrophobic niche in the cavity (green sector in Figures 3A,B).
The 2D structures of the 3-phenylcoumarin scaffold and the
24 most potent inhibitor derivatives shown in Figures 1E, 2
were drawn with BIOVIA DRAW 2016 (Dassault Systèmes, San
Diego, CA, USA, 2016). Figures 1A–D, 3–5 were prepared using
BODIL (Lehtonen et al., 2004) and VMD 1.9.2 (Humphrey
et al., 1996). The negative images of the MAO-B and MAO-A
binding cavities shown in Figure 3A and C were outlined using
PANTHER (Niinivehmas et al., 2011, 2015) and visualized with
BODIL, MOLSCRIPT (Kraulis, 1991), and RASTER3D (Merritt
and Murphy, 1994).

RESULTS AND DISCUSSION

Spectrophotometric Activity
Measurements for Monoamine Oxidase B
All of the 52 derivatives were docked, synthetized and tested
experimentally. Those 24 compounds that provided IC50 values
below 10µM were tested more thoroughly (Table 1). The fact
that 24 of the synthesized derivatives with a wide variety of
different R1-R7 groups (Figure 2) passed the 70% threshold
indicates that the 3-phenylcoumarin is indeed a highly suitable
scaffold for building MAO-B inhibitors. Notably, eight of these
tested derivatives (3, 9–13, 17, and 23 in Figure 2) had been
synthesized previously (Bhandri et al., 1949; Kirkiacharian et al.,
1999, 2003; Prendergast, 2001; Vilar et al., 2006; Ferino et al.,
2013; Chauhan et al., 2016; Dobelmann-Mara et al., 2017),
however, this is the first time they are tested for MAO-B activity.
The novel derivative 1 is the most potent inhibitor of the analog
set with the IC50 value of 56 nM (Figure 2, Table 1); meanwhile,
the rest of the tested derivatives are evenly distributed within a
range of 0.1–10µM (Figure 2, Table 1).

By focusing solely on the R1-R7 constituents of the derivatives
(Figures 1E, 2) and the activity data (Table 1) it is possible to
outline trends that determine which functional groups, positions
or their combinations establish and weaken or improve the
MAO-B inhibition.

Although the R1 and R2 groups in the coumarin ring are not
necessarily required for establishing MAO-B inhibition (see 11;
Figure 2, Supplementary Figure S3F; Table 1), the activity
measurements indicate that adding amethoxy, hydroxyl, acetoxy,
methyl or even halogen group(s) into the ring can facilitate strong

Frontiers in Chemistry | www.frontiersin.org 9 March 2018 | Volume 6 | Article 4167

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Rauhamäki et al. 3-Phenylcoumarins as Monoamine Oxidase Inhibitors

FIGURE 3 | The active site of monoamine oxidase B with docked 3-phenylcoumarin derivatives. (A) A negative image of the MAO-B active site shown as a

transparent surface indicates the space available for inhibitor binding with docked derivative 1 (ball-and-stick model; Figure 2). (B) A cross section, showing half of

the active site, displays the contours (opaque surface) that roughly match the inhibitor shape and conformation. The colored sectors highlight specific sections of the

cavity dedicated to different aspects of the 3-phenylcoumarin derivative binding: 3-phenyl ring (orange), the R4-R7 groups of the 3-phenyl ring (red), coumarin ring

(yellow), the hydrophobic niche occupied by the R1/R2-groups of the coumarin ring (green). (C) A negative image of the MAO-A active site shows that only two

residue changes (Ile199→ Phe208; Leu164→ Phe173) are enough to prevent 3-phenylcoumarin analog binding. (D) The docked poses of the 23 most potent

3-phenylcoumarin derivatives show what space is collectively occupied by the new inhibitors. See Figure 1 for details.

inhibition (Table 1). As a rule of thumb, introducing R1-methoxy
group produces strong MAO-B inhibition (e.g., 1; Figure 2;
Table 1). In contrast, inserting for example a bulky R3 substituent
such as acetoxy group weakens the inhibition considerably (26,
35, 47; Supplementary Figure S4; Supplementary Table S1).
Whether the R1 or R2 position or any specific functional group in
particular is favored depends on the composition of the 3-phenyl
ring’s R4-R7 constituents.

In fact, the activity data indicates that the R4-R7 substituents
are vital for assuring strong MAO-B inhibition and without
any 3-phenyl substituents, the activity is lost (41, 50, 52;
Supplementary Figure S4, Supplementary Table S1). The most
potent inhibitors were 1 (IC50 of ∼56 nM; Table 1) and
2 (IC50 of ∼138 nM; Table 1) housing R6-trifluoromethyl,
but 3 (IC50 of ∼141 nM; Table 1) with structurally similar
R6-trifluoromethoxy group is almost equally potent. The
combination of the R6-acetoxy and R7-fluorine groups in
6 (IC50 of ∼189 nM) produces relatively strong inhibition.
Furthermore, housing just one methoxy group at the R7 position
(8; IC50 of ∼230 nM) or two methoxy groups at both R5
and R7 positions (9; IC50 of ∼255 nM) assures < 300 nM
inhibition.

The effects of the R4-R7 groups of the 3-phenyl ring
and the R1-R3 groups of coumarin ring (Figure 2) for
the derivative binding and inhibition are detailed below
in a docking-based structure-activity relationship (SAR)
analysis.

The Alignment of the 3-Phenylcoumarin
Scaffold at the Active Site
The 3-phenylcoumarin derivative binding at the MAO-B active
site is based on the premise that the coumarin and phenyl ring
systems occupy roughly the same 3D space as the equivalent ring
systems of the coumarin-based inhibitors co-crystallized with the
enzyme (PDB: 2V60, 2V61; Figures 1A–D) (Binda et al., 2007).
The fundamental difference between the 3-phenylcoumarin
derivatives and those coumarin inhibitors with validated binding
poses is that the coumarin alignment is reversed and the phenyl
ring is attached to the C3-position instead of the C7-position
(Figures 1C,D).

What is more, the “canonical” coumarin ring positioning
inside the pocket is somewhat analogous to even simpler double
ring constructs such as the indole of inhibitor isatin (PDB: 1OJA)
(Binda et al., 2003). In fact, the hydrophobicity of the aromatic
coumarin (yellow sector in Figures 3A,B) and 3-phenyl (orange
sector in Figures 3A,B) rings is vital for establishing the MAO-
B binding and it outweighs all other favorable interactions such
as hydrogen or halogen bonding (via sigma hole) in importance
(Figure 4). Thus, although the docking suggests variability
in the coumarin and 3-phenyl ring positioning for the 3-
phenylcoumarin derivatives due to different R1-R7 substituents,
the hydrophobic interactions of the aromatic rings are highly
similar between them (Figure 3D).

It is also noteworthy that the coumarin’s C2-carbonyl is not
facing the solvent based on the molecular docking simulations
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FIGURE 4 | Structure-activity relationship (SAR) analysis of the 3-phenylcoumarin derivatives.

(Figure 3D). Paradoxically, this does not matter, because the
carbonyl group finds an atypical interaction partner from the
thiol group of Cys172 side chain (Figure 4). Although the C2-
carbonyl cannot form a full-fledged H-bond with the proton
of the thiol group, the hydrophobic environment of the cavity
likely enhances this ordinarily weak interaction between the two
groups.

R6-Trifluoromethyl Packing Produces the
Strongest Inhibition
Halogen substituents in the 3-phenyl ring ensure strong MAO-
B inhibition (Figure 4). This makes sense with MAO-B, because
despite their apparent electronegativity the halogen substituents
actually improve the steric packing of small-molecules via
persistent van der Waals interactions while also retaining the
ability to act as a halogen bond donor. Both of these properties
should assist inhibitor binding into the active site that is mostly
hydrophobic (Figures 3A,B). Besides, the increased lipophilicity
conveyed by the halogen substituents (logP values in Table 1)
should assist the 3-phenylcoumarin derivatives in aggregating
on the outer mitochondrial membrane on route to the MAO-B
active site (Figure 1A).

The most potent derivative 1 (Figure 2, Table 1) has
trifluoromethyl group at the R6 position in the 3-phenyl ring.
The derivative is relatively flat when bound at the active site
and the proximal R6-group cannot flex out of this plane
(Figure 5A). The trifluoromethyl of 1 fits very snugly into the
hydrophobic end of the cavity (red sector in Figures 3A,B). The

high shape complementarity of this cavity part and the R6-
trifluoromethyl of 1 is typical for this bulky moiety in drug
compounds. Thus, the R6-group alignment of 1 is mostly relying
on the collective potency of individually weak van der Waals
interactions (Figures 3A,B, 5A).

Replacing the R6-trifluoromethyl of derivative 1 with a
trifluoromethoxy in 4 (Figure 2) produces six times lower
MAO-B inhibition (Table 1, Supplementary Figure S3B). This
happens because the trifluoromethoxy already fills the available
space almost optimally (Figures 3A,B, 5A) and elongating the
substituent with an ether bond does not improve the fit
(Supplementary Figure S3B). In fact, there is no extra wiggle
room to fit the trifluoromethoxy (Figures 3A,B), if the 3-
phenylcoumarin scaffold would be kept at the “canonical”
position (Figures 1C,D). Hence, the coumarin ring of 4 pushes
slightly closer to the cofactor. Although the binding site residues
can adjust slightly in response to this shift, the realignment or
rather misalignment of the scaffold (Supplementary Figure S3B)
imposes an energetic cost that is reflected in the MAO-B
inhibition (Table 1). In addition, depending on the rotamer pose
of the R6-trifluorometoxy, a hydrogen bond could be bridged
between a fluorine atom and the Pro102O by a water molecule
(not shown).

The Effects of Halogenation on the
3-Phenyl Ring Alignment
The chlorine and fluorine substituents of prior coumarin-based
inhibitors form halogen bond with the Leu164O based on

Frontiers in Chemistry | www.frontiersin.org 11 March 2018 | Volume 6 | Article 4169

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Rauhamäki et al. 3-Phenylcoumarins as Monoamine Oxidase Inhibitors

FIGURE 5 | The vital role of R4-R7 substituents of the 3-phenyl ring for the inhibition. Focusing on the 3-phenyl ring, the derivatives (ball-and-stick models with pink

backbone) elicit strong MAO-B inhibition via (A) R6-trifluoromethyl (1; Figure 2; IC50 of 56 nM; Table 1), (B) R6-trifluoromethoxy (3; Figure 2; IC50 of 141 nM;

Table 1), (C) R6-acetoxy and R7-fluorine (6; Figure 2; IC50 of 189 nM; Table 1), (D) R6-fluorine (21; Figure 2; IC50 of 433 nM; Table 1), (E) R7-methoxy (8;

Figure 2; IC50 of 231 nM; Table 1), and (F) R5- and R7-methoxy (9; Figure 2; IC50 of 255 nM; Table 1) groups. See Figure 1 for further details.

X-ray crystallography (PDB: 2V60, 2V61; Figures 1A–D; Binda
et al., 2007). Accordingly, it is not surprising that those 3-
phenylcoumarin derivatives with single halogen substituent at
their 3-phenyl rings are also capable of blocking the MAO-B
activity (Figure 4, Table 1).

Although it is known that fluorine is the poorest halogen
bond donor (Cavallo et al., 2016), the R7-fluorine groups of 20
and 22 (Figure 2) could form halogen bond with the Leu164◦

(Figures 6E,F) similarly to the halogens of previously published
inhibitors with validated binding modes (Figures 1B–D; Binda
et al., 2007). In fact, the R7-halogen groups of 20 and 22

are inserted into the exact same position as the halogen
groups of the established inhibitors (Figure 1B vs. Figures 6E,F).
The MAO-B inhibition (Table 1) is reinforced further by the
R6-hydroxyl group H-bonding with the Pro102O (magenta
dotted lines in Figures 6E,F). Because both 20 and 22 are
bonding simultaneously with the Leu164O and the Pro102O,
they elicit equivalent or stronger inhibition than derivatives
21 (Figure 5D), 23 (Supplementary Figure S3K), and 24

(Supplementary Figure S3L) that do not retain either one of
these two interactions. Docking suggests that replacing the R6-
hydroxyl with an acetoxy group prevents 6 (Figure 2) from
forming direct halogen or hydrogen bonds (Figure 5C), but
the R6-acetoxy and R7-fluorine could potentially connect via
a water bridge with the Pro102O (not shown). Despite this,
the hydrophobic packing of the R6-acetoxy in 6 against the
hydrophobic residues, mainly Phe103 (Figure 5C), is likely the
reason behind doubling the inhibition in comparison to 20 (IC50

value of 391 vs. 189 nM; Table 1, Figure 6E).

Introducing fluorine to the R6 position of the 3-phenyl ring in
derivatives 21, 23, and 24 (Figure 2) producesMAO-B inhibition
ranging from 433 to 1,060 nM (Table 1). Due to the overall
planarity of the 3-phenylcoumarin scaffold (Figures 1C,D), the
R6-fluorine (Figure 5D, Supplementary Figures S3K,L), cannot
take on the equivalent site occupied by the halogens of
validated coumarin-based inhibitors that form halogen bond
with the Leu164◦ (Figure 1B; Binda et al., 2007). In addition,
the R6-fluorine is too limited in size to fill the end of the
binding cavity as completely as for example the trifluoromethyl
of 1 does (Figures 3A,B, 5A). In addition, the R6-fluorine
groups of derivatives 21, 23, and 24 (Figure 5D, Supplementary
Figure S3K,L) reside within a suitable distance to form a halogen
bond with the Pro102O (3.6 Å), however, the available angles
seem to rule out actual bonding.

Derivatives 15 and 16 (Figure 2) house three fluorine atoms at
their 3-phenyl groups’ R4, R6, and R7 positions (Figures 6A,B).
In the case of 15 (Figure 6A), these halogen substituents assure
an IC50 value that is almost 150 nM stronger than what is seen
with derivatives housing only a single fluorine moiety at the R6 or
R7 position (21, 23, and 24; Figure 5D, Figure S3K-L, Table 1).
This is achieved by filling the hydrophobic cavity end (orange
and red sectors in Figure 3) efficiently with the 3-phenyl ring
and its fluorine moieties (Figures 6A,B). The fit is better for a
3-phenyl ring with the R5-trifluoromethyl than what is seen with
the ring housing three separate fluorine substituents (Figure 5A
vs. Figure 6A) and; accordingly, derivative 15 is not as potent
MAO-B inhibitor as 1 (IC50 292 vs. 56 nM; Table 1). In addition,
depending on the 3-phenyl ring pose, the R4 or R7 fluorine
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FIGURE 6 | The effects of R1 and R2 substituents are dependent on the 3-phenyl ring substituents. (A) Derivatives 15 (Figure 2; IC50 of 292 nM; Table 1) and (B) 16

(Figure 2; IC50 of 1433 nM; Table 1) both have fluorine groups at R4, R6, and R7 positions, but switching the coumarin ring’s R1-methoxy into the R2 position

reduces the inhibition by whopping 1141 nM. In contrast, with (C) 17 (Figure 2; IC50 of 384 nM; Table 1) and (D) 18 (Figure 2; IC50 of 617 nM; Table 1), the

R1-methoxy does not elicit as strong inhibition as the R2-hydroxyl due to the overall coumarin ring alignment dictated by the 3-phenyl’s R5-dimethylamine. The

R1/R2-methoxy switch produces a completely opposite effect for (E) 20 (Figure 2; IC50 of 391 nM; Table 1) and (F) 22 (Figure 2; IC50 of 831 nM; Table 1) than it

did for 15 and 16 (panels A,B); namely, it lowered the inhibition by 440 nM (Table 1). For further details, see Figures 1, 4.

groups could again potentially act as weak halogen bond donors
to the Phe168O or the Leu164O, respectively (not shown).

The Effects of the Methoxy and
Dimethylamine Groups for the 3-Phenyl
Alignment
Derivatives with proximal methoxy groups (Figure 2), especially
at the R7 position, assure relatively strong MAO-B inhibition
(Figure 4) and produce at best 230 nM inhibition (e.g., 8 in
Figure 2, Table 1).

Based on the docking, derivatives 8 and 11 (Figure 2)
flip their R7-methoxy groups toward the Leu164◦ (Figure 5E,
Supplementary Figure S3F), which is shielded from a clash
with the methoxy group by forming intra-protein H-bond with
the Phe168N (not shown). Inserting an extra R5-methoxy into
the 3-phenyl of 8 to produce otherwise identical derivative 9

(Figure 2) weakens the inhibition slightly (IC50 difference of
23 nM; Table 1), because the added methoxy group is unable to
form particularly favorable interactions with the nearby Pro102◦

(Figure 5F). With derivatives 10 or 13 (Figure 2), the methoxy
group is added to the phenyl ring’s para position, and due to the
planarity of the 3-phenylcoumarin scaffold, there is an energetic
penalty for pushing the group toward either side of the cavity
end (red sector in Figures 3A,B). Accordingly, to avoid a scaffold
misalignment, the R6-methoxy group of 10 (and 13) points
directly toward the side chains of Phe103, Pro104, Trp119, and
Ile199 (Supplementary Figures S3E,F), which, in turn, produces
roughly 170 nM difference in the IC50 values with otherwise

identical 8 (Figure 5E, Table 1) in favor of the R7-methoxy
position.

A dimethylamine group at the 3-phenyl ring’s para position
(a.k.a. dimethylaniline; Figure 2) produces moderately strong
MAO-B inhibition (Table 1) for derivatives 17 (Figure 2; IC50

value of 400 nM), 18 (Figure 2; IC50 value of 798 nM), and
19 (Figure 2; IC50 value of 955 nM). This is due to the
ability of the R6-dimethylamine to fill the cavity end (red
sector in Figures 3A,B) similarly to the R6-trifluoromethyl of
1 (Figures 5A,B vs. Figures 6C,D, Supplementary Figure S3J).
The downside is that the bulkier R6-substituent cannot form
halogen or hydrogen bonds with water or residues nor push
against either side of the cavity and, most importantly, it
causes unfavorable coumarin alignment. Accordingly, the R6-
dimethylamine of derivatives 17–19 packs directly against the
side chains of Phe103, Pro104, Trp119, Leu164, and Ile316
(Figures 4C,D, Supplementary Figure S3J).

Refining the Alignment via the R1–R3
Substituents of the Coumarin Ring
Inserting a functional group such as methoxy to the R1/R2
position of the coumarin ring (Figure 2), capable of forming both
hydrophobic and hydrophilic interactions, generally improves
the MAO-B inhibition (Figure 4, Table 1).

The benefits of this sort of dual-purpose group are evident
when comparing the activity of otherwise identical derivatives
with and without the proximal group; i.e., 11, that lacks only
the R1-methoxy of 8 (Supplementary Figure S3F vs. Figure 5E),
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produces significantly lower inhibition (IC50 value of 798 vs.
231 nM; Table 1). On one hand, the methyl of the R1-methoxy
group of 8 (Figure 5E) packs into a hydrophobic niche formed
by the side chains of Tyr60, Gln206, Tyr326, Leu328, Phe343,
and Met341 (green sector in Figures 3A,B). On the other hand,
the methoxy’s oxygen increases the 3-phenyl ring’s hydrophilicity
and softens the clash of the coumarin ring with the solvent
shielding the cofactor (Figure 5E).

Switching the R1-methoxy of 1 into the R2 position in 2

(Figure 2) makes the alignment of the coumarin ring more
challenging, because the R2-methoxy is unable to occupy the
same hydrophobic niche (green sector in Figures 3A,B) as
the R1-methoxy (Figure 4A vs. Supplementary Figure S3A).
Although the R1/R2 methoxy switch, by all means, does not
prevent binding, it leads to ∼80 nM reduction in the IC50

value (Table 1). Paradoxically, the opposite and considerably
larger difference in inhibition is produced by the R1/R2
switch, when comparing the activity of derivatives 20 and
22 (Figure 2; Table 1). Accordingly, 20 with the R2-methoxy
of (IC50 value of 391 nM; Table 1) provides twice as strong
inhibition as 22 with the R1-methoxy (IC50 value of 831 nM;
Table 1). The vast difference is caused by the coordinated
R6/R7 interactions of the 3-phenyl ring, which pushes the
coumarin ring closer to the Tyr326 side chain—a critical
shift that is stunted by the R1-methoxy of 22 (Figure 5E vs.
Figure 5F).

Replacing the R2-acetoxy of 3 (Figure 2) with the R1-methoxy
in 4 (Figure 2) weakens the inhibition ∼180 nM (Table 1).
The coumarin ring of 4 is pushed closer to the cofactor due
to the addition of the R6-trifluoromethoxy into the 3-phenyl
ring (Figure 5B vs. Supplementary Figure S3B) and, in this
new pose, the methyl of the R2-acetoxy is able to occupy
the small hydrophobic niche (green sector in Figures 3A,B),
meanwhile, exposing the acetoxy’s oxygen atoms to the solvent
(Figure 3B). However, substituting the R1-methoxy of 18

with the R2-acetoxy in 19 (Figure 2) does not improve the
inhibition; instead, the IC50 value is reduced by ∼250 nM
(Table 1). This happens, because the R6-dimethylamine of 19
(Supplementary Figure S3J) is not forcing the scaffold to align
close to the cofactor the same way as the R6-trifluoromethoxy
does (Figure 5B vs. Figures 6C,D). In contrast, replacing the
R1-methoxy of 18 with the R2-hydroxyl in 17 improves
the inhibition (IC50 improvement of 234 nM; Table 1) by
promoting water solubility near the cofactor (Figure 6C vs.
Figure 6D).

The R6 and R7 interactions of 7 (Figure 2) are expected
to remind closely those of 6 (Supplementary Figure S3D
vs. Figure 5C), but its coumarin ring’s R1- and R3-chlorine
groups weaken the inhibition ∼700 nM (Table 1). The R2-
methoxy of 6 is able to play into the hydrophobic/hydrophilic
dual nature of the cavity end facing the cofactor (Figure 5C)
without occupying the small hydrophobic niche (green sector in
Figures 3A,B). In this respect, the R1-chlorine is too bulky to
occupy this specific niche although a methoxy group at the same
position should be able to occupy the available space (e.g., 1 in
Figure 5A).

Selectivity of the 3-Phenylcoumarin
Derivatives
Determining the specificity and subtype selectivity of the 3-
phenylcoumarin derivatives for MAO-B is needed to evaluate
their true pharmacological potential. Unintended off-target
effects with other proteins can render even the most promising
drug candidates useless, ambiguous or even toxic. Here, the
focus is put on MAO-A which has shared activity with MAO-
B in deamination of dopamine and dietary amines tyramine and
tryptamine. In addition, the effects of the derivatives are tested
with a specific subset of enzymes, including HSD1, aromatase,
CYP1A2, and ER, whose function is linked to different stages of
estradiol action and metabolism. These particular enzymes were
looked at with the derivatives, because they are known to have
structurally similar ligands or even coumarin-based inhibitors
based on prior studies and our upcoming study (Mattsson et al.,
2014; Niinivehmas et al., 2016; Niinivehmas et al., unpublished
results).

Monoamine oxidase A (MAO-A) is more prevalent than the
subtype B in the gastrointestinal tract and, accordingly, the
MAO-A inhibition can cause accumulation of tyramine from
dietary sources. Because tyramine can displace neurotransmitters
leading to potentially fatal hypertensive crisis, it is highly
desirable to design MAO-B-specific inhibitors lacking MAO-A
activity. The vast majority of the novel derivatives do not produce
MAO-A inhibition at 100µM despite the fact that it is ten
times the concentration used in this study to determine MAO-
B inhibition percentage (Table 1, Supplementary Table S1).
Furthermore, only in those few cases where inhibition was
detected, especially with the most potent MAO-B derivatives,
it remains at moderate or close to non-existent level (Table 1).
The strongest MAO-A inhibition was elicited by derivatives 42
and 43 (48.86 and 56.76%), but derivatives 27 and 45 (43.83 and
43.36%) are close runner-ups and next analogs down the list are
already much weaker (Supplementary Figure S4, Supplementary
Table S1). Notably, 1, which is the most potent MAO-B inhibitor
of the derivative set with the IC50 value of 56 nM, does not
produce MAO-A inhibition at 100µM (Table 1). The molecular
basis for the lack of MAO-A activity is evident, when comparing
the shape and size of the active sites of the two enzyme subtypes
in the context of 3-phenylcoumarin binding (Figure 3A vs.
Figure 3B).

17-β-hydroxysteroid dehydrogenase 1 (HSD1), which
functions as the catalyst of the final reducing step in the
estradiol biosynthesis, is often overexpressed in breast cancer
and endometriotic tissue (Vihko et al., 2004; Dassen et al., 2007;
Hanamura et al., 2014). Thus, specific inhibition of HSD1 has
potential to reduce effective estradiol levels in the treatments.
Although the synthesized 3-phenylcoumarin set contains several
molecules that exhibit activity toward HSD1, the inhibition
was generally very weak and the active compounds are not
among the most potent MAO-B inhibitors. Of the 24 most
potent MAO-B inhibitors, the strongest HSD1 inhibition could
be recorded for 20 and 22 (46 and 54%; Figure 2, Table 1);
however, considerably higher activity (48.20–83.90%) was
seen with derivatives 30, 31, 33, 38, and 48 (Supplementary
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Figure S4, Supplementary Table S1). Modest HSD1 inhibition
(12–33%) was also elicited by 6, 15, 16, 23, 24 (Figure 2,
Table 1) and 51 (Supplementary Figure S4, Supplementary
Table S1). Importantly, derivative 1, which is the most potent
MAO-B inhibitor of the derivative set, does not inhibit
HSD1.

Aromatase (CYP19A1) inhibition, which is important for
blocking local estradiol synthesis for example in breast cancer
treatment (Pasqualini et al., 1996), was not detected with the
derivatives (Table 1, Supplementary Table S1). Although 3-
phenylcoumarin should be able to sterically mimic the steroidal
positioning at the active site (not shown), it would have to house
a clear-cut H-bond acceptor at the R5/R7-position in the 3-
phenyl to facilitate aromatase binding. This is, because X-ray
crystallography shows that the Asp309 side chain is in neutral
state at pH 7.4 and donating a proton to the carbonyl group of
inhibitor androstenedione (PDB: 3EQM) (Ghosh et al., 2009).
Inserting a hydroxyl group to the R5/R7 position could put an H-
bond acceptor to this same location with the 3-phenylcoumarins
(see 31, 38, 40, 42, 43; Supplementary Figure S4, Supplementary
Table S1). However, because the hydroxyl always has a dual
role as an H-bond donor as well, any aromatase binding by
the derivatives remains theoretical as it is prevented by a
proton donor clash. The issue is described more thoroughly
in our upcoming study (Niinivehmas et al., unpublished
results).

Estrogen receptor (ER) agonists/antagonists or selective
modulators are developed for infertility, contraception, hormone
replacement, and ER positive breast cancer therapies. If the
MAO-B inhibitors would function also as ER agonists, they
could promote tumorigenesis in the breast tissue as a side effect.
Unintended ER inhibition could also disturb natural estrogen
levels or interrupt ER-targeted therapies. The measurements
indicate that the 3-phenylcoumarin derivatives either are a hit or
miss when considering ER inhibition. Although the ER activity
could not be measured for all of the analogs due to running out
of the synthesis products, the acquired results overwhelmingly
support our prior findings stating that the R2-hydroxyl or the R6-
hydroxyl/halogen is needed to prompt ER activity (Niinivehmas
et al., 2016). This ER-specific effect is prominent with 12, 20, 22,
27, 28, 29, 30, 39, 40, 41, 44, and 48 (Table 1, Supplementary
Table S1, Figure 2, Supplementary Figure S4) and, moreover, ER
activity is predicted for 17 and likely for 32 and 47 based on the
well-established trend.

Cytochrome P450 1A2 (CYP1A2) catalyzes the oxidation of
xenobiotics, especially polyaromatic hydrocarbons and steroid
hormone-sized compounds such as 3-phenylcoumarins, into
more soluble form for excretion (Zhou et al., 2010). Accordingly,
it was prudent to get a rough estimate of the CYP1A2
inhibition levels for the novel 3-phenylcoumarin derivatives
as well. In general, all of the derivatives inhibited CYP1A2
at some level (Table 1, Supplementary Table S1); however,
typically the most potent CYP1A2 inhibitors such as 21–24
were less potent MAO-B inhibitors (Table 1). Similar to MAO-
A, HSD1, and aromatase, the most potent MAO-B derivative
1 displayed only low CYP1A2 activity (IC50 value of 124µM;
Table 1).

Overall Assessment on the Druglikeness
As a whole, the selectivity analysis indicates that the cross-
reactivity of 3-phenylcoumarins can be managed or even avoided
via specific functional group substitutions without taking away
the MAO-B activity. Coumarins in general do not belong to
the PAINS (pan assay interference compounds) category as it
is a privileged scaffold structure. Only derivative 50, which
is not a potent MAO-B inhibitor (Supplementary Table S1,
Supplementary Figure S4), was recognized as a potential PAINS
ligand by PAINS3 filter (or A filter) in CANVAS module
in MAESTRO (Baell and Holloway, 2010). In the ChEMBL
database, ∼14,200 coumarin derivatives are included (observed
online in 8.2.2018), which indicates that the scaffold can be
tailored to target multitude of proteins. Despite this, the literature
does not raise widespread concerns that the coumarin-based
compounds in particular would cause harmful cross-reactivity
or selectivity issues. The 24 active derivatives presented in this
study (Table 1, Figure 2) have lower potency than some of the
prior 3-phenylcoumarin compounds (Supplementary Figure S6,
Supplementary Table S2) (Matos et al., 2009b, 2011a,b; Santana
et al., 2010; Viña et al., 2012a); however, one has to be aware
of fact that these results originate from different laboratories
and activity assays and are, therefore, not fully comparable. To
a degree this is the case even for the positive control pargyline
(Fisar et al., 2010). Importantly, the new compounds follow
closely the Lipinski rule of five regarding the logP value (logP <

5) and remain in the logP range of 2–4. Moreover, the ligand-
lipophilicity efficiency (LiPE) values of the new analogs suggest
reasonable druglikeness (Freeman-Cook et al., 2013). What is
more, derivative 1 clearly has the most promising selectivity
profile of the derivatives for future consideration, because it is
not only the most potent MAO-B inhibitor of the set but it is also
selective against the other tested enzymes.

CONCLUSION

A broad set of 3-phenylcoumarin derivatives was designed
using virtual combinatorial chemistry or rationally de novo,
synthesized and tested for MAO-B inhibition potency using
spectrophotometry (Supplementary Table S1). The results further
validate prior studies suggesting that the 3-phenylcoumarin is
a suitable scaffold for building potent small-molecule MAO-
B inhibitors by functionalizing its ring systems. A moderate
MAO-B inhibition could be achieved by inserting a wide variety
of functional groups into the coumarin (R1–R3; Figure 4) or
3-phenyl (R4–R7; Figure 4) rings (Supplementary Table S1).
Twenty-four of the derivatives (Figures 2, 3D) were found to
elicit >70% inhibition (Table 1, Supplementary Figures S1, S2).
These promising derivatives inhibit the MAO-B at a ∼100 nM
to ∼1µM range (Table 1), while the most potent derivative
1 produces ∼56 nM MAO-B inhibition. A molecular docking-
based (Figures 5, 6, Supplementary Figure S3) SAR analysis
(Figure 4) describe the determinants of the MAO-B binding and
inhibition at the atomistic level. Firstly, without any kind of
the 3-phenyl substituents, no inhibition was detected. Although
both hydrogen and halogen bonding can assist the 3-phenyl
alignment and facilitate inhibition (Figures 6E,F, Table 1), the
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ability of the functionalized ring to fill the hydrophobic end
of the binding cavity (red sector in Figures 3A,B) is the most
important property for ensuring strong MAO-B inhibition
(e.g., R6-trifluoromethyl of 1; Figure 5A). Secondly, the SAR
analysis reveals that a spot-on placement and composition
of the coumarin ring’s substituents can further enhance the
MAO-B inhibition (Figure 2, Table 1), however, these effects
are ultimately dependent on the scaffold alignment, which, in
turn, depends on the 3-phenyl ring substituents (Figure 4). The
cross-reactivity analysis focusing on MAO-A and a subset of
estradiol metabolism-linked HSD1, aromatase, CYP1A2 and ER
highlighted the potential of the 3-phenylcourmains, especially
the most potent MAO-B derivative 1, for producing selective
MAO-B inhibition. Finally, the most potent 3-phenylcoumarin
analogs presented in this study are estimated to operate at close
to optimal ligand-lipophilicity efficiency—a feature highlighting
their overall druglikeness.
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Nwat-MMGBSA is a variant of MM-PB/GBSA based on the inclusion of a number of

explicit water molecules that are the closest to the ligand in each frame of a molecular

dynamics trajectory. This method demonstrated improved correlations between

calculated and experimental binding energies in both protein-protein interactions and

ligand-receptor complexes, in comparison to the standard MM-GBSA. A protocol

optimization, aimed to maximize efficacy and efficiency, is discussed here considering

penicillopepsin, HIV1-protease, and BCL-XL as test cases. Calculations were performed

in triplicates on both classic HPC environments and on standard workstations equipped

by a GPU card, evidencing no statistical differences in the results. No relevant differences

in correlation to experiments were also observed when performing Nwat-MMGBSA

calculations on 4 or 1 ns long trajectories. A fully automatic workflow for structure-based

virtual screening, performing from library set-up to docking and Nwat-MMGBSA

rescoring, has then been developed. The protocol has been tested against no rescoring

or standard MM-GBSA rescoring within a retrospective virtual screening of inhibitors of

AmpC β-lactamase and of the Rac1-Tiam1 protein-protein interaction. In both cases,

Nwat-MMGBSA rescoring provided a statistically significant increase in the ROC AUCs of

between 20 and 30%, compared to docking scoring or to standardMM-GBSA rescoring.

Keywords: MM-GBSA, explicit water, molecular dynamics, GPU, structure based virtual screening, protease,

protein-protein interactions

INTRODUCTION

Structure based virtual screening (SBVS)methods are widely applied in drug discovery (Enyedy and
Egan, 2008; Sousa et al., 2013). In most of the cases, SBVSs are done in the hit-to-lead development
phase of the drug discovery process, with multiple successful outcomes (Enyedy et al., 2001a,b;
Vangrevelinghe et al., 2003). In SBVS-related studies, scoring functions are mostly applied for
potential hit selection. In general, the scoring functions are based on either empirical, knowledge-
based, or molecular mechanics force field derived potentials (Wang et al., 2003; Raha et al.,
2007). Additionally, to make the virtual screening process computational inexpensive, the scoring
functions are most likely simplified. Thus, some important contributions known to influence the
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binding affinity are neglected (Sousa et al., 2006; Moitessier et al.,
2008). Inevitably, applications of such simplified methods tend
to fail in the hit optimization phase, where more meticulous
selections are required about structurally similar compounds for
better prediction of biological activity (Leach et al., 2006; Tirado-
Rives and Jorgensen, 2006; Warren et al., 2006; Enyedy and Egan,
2008).

A better scoring can be achieved by considering energy
evaluation averaged over an ensemble of conformations from
a complex dynamic trajectory, as is the underlying concept
of the molecular mechanics Poisson-Boltzmann / Generalized
Born surface area (MM-PB/GBSA) analysis. Of course, the
applications of MM-PB/GBSA methods are at the cost of
increased computational expenses (Massova and Kollman, 2000).
Nonetheless, the MM-PB/GBSA methods have been successfully
applied to estimate binding energies (Kollman et al., 2000), or
incorporated as a scoring method in SBVS applications (Lyne
et al., 2006; Zhou et al., 2006; Ferrari et al., 2007; Xiong
et al., 2007; Xu et al., 2010; Xu, 2012; Knight et al., 2014).
The treatment of the solvent in MM-PB/GBSA calculations
is implicit, providing an acceptable estimations of the energy
contribution while bulk water is the only solvent-related concern
(Wong and Lightstone, 2011; Yang et al., 2013). However,
explicit water molecules might also be important in forming
biomolecular complexes (Chong and Ham, 2017), particularly
waters involved in bridging the ligand and the receptor (Wong
et al., 2009; Abel et al., 2011; Ahmad et al., 2011; Wallnoefer
et al., 2011; Maffucci and Contini, 2013; Mikulskis et al.,
2014). Indeed, by analyzing several thousand of crystallographic
complexes, it was recently observed that at least a water molecule
mediates contacts between the partners in about two thirds of
all the considered systems (Hendlich et al., 2003). Thus, several
computational methods were proposed to aid the identification
of important water molecules in crystal structures (Raymer et al.,
1997; García-Sosa et al., 2003; Amadasi et al., 2006). Moreover,
although replacing a water molecule in the binding site is a
generally accepted strategy to increase drug potency, it has
been shown that better pharmacodynamic properties might be
obtained by keeping a tightly bound water as a bridge between
the ligand and the receptor (García-Sosa, 2013). The effects
of targeting or displacing binding site waters in drug design
can be rigorously assessed by free energy calculations (García-
Sosa and Mancera, 2010), that however are still too demanding
when libraries of hundreds of molecules need to be evaluated.
Therefore, some approaches have been attempted to consider
the contribution of water-mediated interactions into the ligand
docking score (Young et al., 2007; Ricchiuto et al., 2008; Forli
and Olson, 2012; Ross et al., 2012; Kumar and Zhang, 2013;
Murphy et al., 2016) or into theMM-PB/GBSA estimated binding
energy (Checa et al., 1997; Wong et al., 2009; Genheden et al.,

Abbreviations: SBVS, structure based virtual screening; VS, virtual screening;
ROC, receiving operator characteristic; AUC, area under curve; MD, molecular
dynamics; MM-GBSA, molecular mechanics Generalized Born surface area; PPI,
protein-protein interaction; SD, steepest descendent; CG, conjugated gradient;
NVT, constant number of particles, volume and temperature; NPT, constant
number of particles, pressure and temperature.

2011; Wallnoefer et al., 2011; Greenidge et al., 2013; Maffucci and
Contini, 2013).

In this framework, we developed a MM-PB/GBSA variant,
that we refer as Nwat-MMGBSA, which provided good-to-
excellent results in ranking the binding energies of different
protein-ligand or protein-protein complexes (Maffucci and
Contini, 2013, 2016). Nwat-MMGBSA is based on the inclusion
of a number of explicit water molecules, that are selected
to be the closest to the ligand in each frame of the MD
trajectory and are included as part of the receptor during the
analysis. In addition to our work (Maffucci and Contini, 2013,
2016), Aldeghi and coworkers recently validated, by a thorough
statistical analysis, the use of this approach on bromodomains
(Aldeghi et al., 2017). Compared to other methods that include
explicit water in MM-PB/GBSA calculations, Nwat-MMGBSA
might have some advantages. For instance, relevant explicit
water might be selected from the crystal structure (Wong et al.,
2009; Wallnoefer et al., 2011). However, this imply that high
resolution crystal structures are available, while Nwat-MMGBSA
calculations can be performed on receptor models obtained
by other techniques, such as homology modeling or NMR.
Moreover, crystallographic water sites might derive from the
average electron density of several molecules competing for
the same position (Schiffer and Hermans, 2003). Indeed, we
previously observed that a water-bridge between the ligand and
the receptor found in the crystal structure of topoisomerase I in
complex with topotecan (Staker et al., 2002) was described by
the competition of three different waters in a 4 ns MD trajectory
(Maffucci and Contini, 2013). It was also reported that explicit
water for MM-GB/PBSA calculations might be selected fromMD
simulations accordingly to their distance from the ligand (Zhu
et al., 2014). In this case, the distance from the ligand atoms is
fixed, while the number of waters is different in each snapshot
selected for MM-PB/GBSA analysis. However, by comparing
this method to Nwat-MMGBSA, where the number of selected
water is constant among all snapshots, we observed that Nwat-
MMGBSA provided a better correlation with experiments and
a better reproducibility among multiple repetitions of the same
calculation (Maffucci and Contini, 2016). In this work, aiming
to make Nwat-MMGBSA suitable for rescoring ligands in low-
to medium-throughput SBVS experiments, we optimized the
protocol to improve its efficiency, without losing in accuracy.
We selected penicillopepsin (James et al., 1992; Ding et al.,
1998; Hou et al., 2011a), HIV1-protease mutants (Shen et al.,
2010; Olajuyigbe et al., 2011) and BCL-XL (Lessene et al.,
2013) as test systems with known experimental data, either
binding free energy (1G), inhibition constant (ki), or IC50.
Our studies have shown improvements in the coefficient of
determination to experimental data (r2) ranging from 10 to 60%,
depending on the number of explicit water molecules considered
in the energy evaluation. Moreover, we assessed the Nwat-
MMGBSA approach for SBVS rescoring performance in a ligand-
protein interaction and a protein-protein interaction (PPI)
scenario (AmpC β-lactamase and Rac1-Tiam1, respectively). In
both cases, improved outcomes were observed compared to
either docking scoring or to standard MM-GBSA rescoring.
Furthermore, the complete SBVS workflow applied in this
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work, including Nwat-MMGBSA rescoring, is provided in the
Supplementary Information as a set of bash and tcsh scripts that,
together with working tutorials, should make it readily applicable
to other biomolecular systems of interest.

METHODS

Preparation of Complexes
Crystal structures of the penicillopepsin [PDB codes: 1APU,
1APV, 1APT, 1APW (James et al., 1992), 2WEA, 2WEB, and
2WEC (Ding et al., 1998)] and HIV1-protease [PDB codes:
3NU3, 3NU4, 3NU5, 3NU6, 3NUJ, 3NU9, 3NUO (Shen et al.,
2010), 3NDW, and 3NDX (Olajuyigbe et al., 2011)] complexes
(Table S1) were obtained from RCSB Protein Databank (Figures
S1, S2). However, for the BCL-XL system, (Figure S3) only
3ZK6, 3ZLN, 3ZLO, and 3ZLR complexes were available as
crystal structures (Lessene et al., 2013). Therefore, the starting
structures of the unavailable complexes were reconstructed using
MOE software (Molecular Operating Environment, v2016.08,
2016) starting from the available ones. Ligand partial charges
were derived with the AM1-BCC method using the antechamber
(Wang et al., 2006) software of AmberTools15 package (Case
et al., 2014). All waters, ions and stabilizing agents present
in the crystal structures were removed. The protonation state
of every titratable residue within the complexes were assigned
at physiological conditions using the Protonate-3D module of
MOE.

MD Simulations
MD simulations were performed with the pmemd.MPI or
pmemd.cuda (Götz et al., 2012; Salomon-Ferrer et al.,
2013) modules, depending on the hardware (classical HPC
environment or GPU equipped workstations, respectively),
included in the Amber14 package (Case et al., 2014). The ff14SB
(Maier et al., 2015) and the gaff (Wang et al., 2004) force fields
were adopted for the protein and the ligand in all simulations
respectively. In each complex, the total charge was neutralized
by adding Na+ or Cl- ions, and the systems were solvated by an
octahedral box of TIP3P water (Jorgensen et al., 1983), with a
box size of 10 Å from the solute.

The equilibration and production protocols were updated to
optimize performance, in respect to previous studies (Maffucci
and Contini, 2013, 2016). The systems were initially relaxed by
optimizing the position of hydrogens (1,000 cycles of steepest
descent (SD) and 5,000 cycles of conjugated gradient (CG), up to
a gradient of 0.01 kcal mol−1 ·Å; restraints of 100 kcal·mol−1 ·Å2

were applied on heavy atoms) and of ions andwaters (2,000 cycles
of SD and 5000 cycles of CG up to a gradient of 0.1 kcal·mol−1·Å;
restraints of 50 kcal·mol−1·Å2 were applied on atoms other
than ions and water). The solvent box was then equilibrated at
300K by 100 ps of NVT and 100 ps of NPT simulation using
a Langevin thermostat with a collision frequency of 2.0 ps−1

(restraints of 50 and 25 kcal·mol−1·Å2 were applied on the solute
for NVT and NPT simulations, respectively). Successively, two
cycles of restrained minimization (2500 cycles of steepest descent
and 5,000 cycles of conjugated gradient, up to a gradient of
0.1 kcal mol−1 Å, with restraints of 25 and 10 kcal mol−1 Å2

on backbone atoms, respectively) were performed. The systems
were then heated up to 300K in 6 steps (1T = 50K) of 5 ps
each, where backbone restraints were gradually reduced from
10.0 to 5.0 kcal mol−1 Å2. An equilibration of 1.6 ns was then
performed by initially using the NVT ensemble (100 ps, ligand
and backbone restraints = 5.0 kcal mol−1 Å2) followed by NPT
(1 step of 200 ps with ligand and backbone restraints = 5 kcal
mol−1 Å2, then 3 steps of 100 ps each reducing the ligand and
backbone restraints from 5.0 to 1.0 kcal mol−1 Å2, and finally
1 step of 500 ns with ligand and backbone restraints of 1.0
kcal mol−1 Å2). The last equilibration step consisted in 500
ps of unrestrained NVT simulation. Finally, production runs
were conducted under the NVT condition at 300K for 1 or 4
ns. An electrostatic cutoff of 8.0 Å, PME (Darden et al., 1993)
for long electrostatic interactions, and the SHAKE (Ryckaert
et al., 1977) algorithm were applied to all the calculations. Three
independent simulations were performed for each hardware set-
up (GPU workstation or CPU HPC cluster). For the simulations
performed on GPUs, the default single precision/fixed precision
(SPFP) version of pmemd.cuda (Le Grand et al., 2013) was applied
in all steps, except for geometry minimizations where the double
precision/fixed precision (DPFP) version was adopted.

All MD production trajectories were processed by cpptraj
for backbone RMSD analyses (Figures S4–S11), solute-solvent
hydrogen bond (donor-acceptor distance cutoff at 4.0 Å, angle
cutoff at 150◦) and water density (grid analysis over a cubic
box 50 Å × 50 Å × 50 Å, mesh = 0.5 Å, centered on ligands)
analyses. Images of water density plots were obtained by using
UCSF Chimera (Pettersen et al., 2004).

Nwat-MMGBSA Analyses
MM-GBSA and Nwat-MMGBSA analyses were performed with
theMMPBSA.py script (Miller et al., 2012) of the AmberTools15
package. The analyses were conducted on either the 1st or the
4th ns of the production runs by selecting 100 frames evenly
spaced out. The GB-Neck2 implicit solvent model (Nguyen
et al., 2013) was chosen for the GB calculations and the salt
molar concentration in solution was set at 0.15M. Entropy was
neglected in all calculations, since the benefits of including its
contribution still remain controversial (Weis et al., 2006; Hou
et al., 2011a; Wallnoefer et al., 2011; Yang et al., 2011) and
normal mode calculations are also extremely time consuming.
It should be noted that neglecting entropy, although acceptable
when comparing ligands of similar size and structure (Kollman
et al., 2000; Wang et al., 2001; Wong et al., 2009), might lead
to errors when the analysis involves ligands that are structurally
rather different (Oehme et al., 2012).

TheNwat-MMGBSA script (Figure 1) uses the cpptrajmodule
of AmberTools15 to process the solvated MD trajectory. When
Nwat > 0, the water molecules closest to the ligand were
preserved while the remaining were stripped from the selected
frames by using the cpptraj command closest. The total number
of water molecules to be kept in the trajectory is given by the
Nwat flag in the script input section (in this work, we evaluated
Nwat = 10, 20, 30, 40, 50, 60, 70, 80, 90, or 100). The number
of frames that are going to be selected from the original MD
trajectory is defined by the r flag in the script input section, that
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FIGURE 1 | Pseudocode of the complete screening and rescoring workflow. Each texture represents an independent script: VScreen (diagonal), autoMD (dots), and

Nwat-MMGBSA (vertical).

corresponds to the interval keyword in the MMPBSA.py script
(Miller et al., 2012). In this work, r was set at 10, meaning that one
every 10 frames (i.e., 100 frames per nanosecond) was sampled.
The preserved closest water molecules are considered as part
of the receptor during the MM-GBSA analysis. In analogy with
studies on the MM-PB/GBSA performance previously reported
by us and by others (Hou et al., 2011b; Maffucci and Contini,
2013, 2016; Xu et al., 2013), the coefficient of determination (r2)
between experimental data and calculated binding energies was
used as the evaluation metric.

Restrospective Virtual Screening
Preparation of the Receptor
The AmpC β-lactamase receptor was derived from the 2HDS
PDB file (Babaoglu and Shoichet, 2006) according to what
described on the DUD-E website (Mysinger et al., 2012).
Starting from the crystal structure, only chain B was preserved,
crystallographic water molecules were removed and the
“Structure preparation” module of the MOE software was used
to check the protein structure and correct eventual errors. The
receptor was then capped by acetyl (ACE) and methylamino
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(NME) groups at the N- and C-termini, respectively. Missing
hydrogen atoms were added using the “Protonate 3D” function
of the MOE package, considering a physiological pH. Partial
charges were added accordingly to the AMBER10:EHT force
field and solvation was treated with the Born model. The system
geometry was then optimized up to a gradient of 0.1 kcal mol−1

Å, with protein backbone atoms restrained to the original
position.

The Rac1 receptor, used in the VS simulation, was prepared as
described elsewhere (Ferri et al., 2009, 2013a; Ruffoni et al., 2014).

AmpC β-Lactamase Testing Library
The DUD-E database provides 48 experimentally determined
active ligands and 2850 decoy molecules for AmpC β-lactamase.
However, considering the computational cost of rescoring by
MD simulations followed by Nwat-MMGBSA analyses, we
considered using a smaller library that decently represent
the original database. Hence, fingerprint clustering methods
included in MOE package were applied to reduce the size
of the test set. Multiple fingerprint/similarity metric method
combinations have been trial-and-error-ed. We found that
the application of Typed Graph Triangle (TGT) fingerprint
and Tanimoto Superset/Subset (tanimoto-ss) similarity metric
method provides the closest reproduction of virtual screening
results as the data provided by DUD-E. However, the
combination applied here might not be directly transferred to
other biomolecular systems. The clustering process reduced the
original database to 20 active ligands and 378 decoys (Table S2)
with a docking AUC at 74.82% and top 1% enrichment factor of
9.5, in comparison to the original 78.92% and 8.3 provided on
DUD-E database. The smiles of the final database are reported in
Table S2.

Rac1 Testing Library
By analyzing the literature and by using in-house data, we
collected a set of 116 compounds, 10 of which were active
and 106 inactive on the Rac1 protein (Table S3). The active
compounds were selected among those able to inhibit at least
the 50% of Rac1 activity, as assessed by G-LISA biochemical
assays (Ferri et al., 2009, 2013a). Conversely, the decoys were
chosen among molecules that were designed (or identified by
computational screening) as Rac1 inhibitors, but turned out to
be completely inactive on experimental evaluation (Ferri et al.,
2009, 2013a; Hernández et al., 2010; Surviladze et al., 2010;
Shang et al., 2012; Rahimi et al., 2015; Lu et al., 2017). The
selected compounds were designed with MOE, minimized and
subjected to a conformational search (MMFF94x force field,
Born solvation, with the other parameters as default). The lowest
energy conformation of each compound was selected to form the
final test set.

Virtual Screening
The workflow included in the VScreen script (see Supplementary
Information) allows the following combinations for library
processing:

1) Use the library as it is
2) Generate tautomers

3) Generate stereoisomers and tautomers
4) Generate ring conformations and tautomers
5) Generate stereoisomers, ring conformations, and tautomers
6) Generate stereoisomers, ring conformations, tautomers, and

protonation states.

The sixth library processing tandemwas applied in this work. The
UNICON software is used to generate tautomer and protonation
states (Sommer et al., 2016). We chose the topscoring keyword
to generate only the most favored tautomers and protomers,
as in preliminary evaluation we observed that the generation
of all tautomers and protomers (using the ensemble keyword)
did not provide improved results and was significantly more
time consuming. The SPORES software (ten Brink and Exner,
2009, 2010) is instead used to obtain stereoisomer and ring
conformation, as well as for the final assignment of atom types,
as requested by the PLANTS software (Korb et al., 2006, 2007,
2009, 2010) used for all dockings. Specific docking parameters,
including search speed and scoring functions, can be set directly
in the VScreen script. In the examples reported here, PLANTS
was used in a low speed / high accuracy mode (search speed =

speed1) and with the CHEMPLP scoring function (Korb et al.,
2009). Additional PLANTS commands, such as H-bond or NMR
constraints (Korb et al., 2010), can also be inserted in the input
section of the VScreen script. Concerning the Rac1 example, we
requested a H-bond constrain of 3 kcal/mol between any H-bond
donor of the docking ligand and the carbonyl oxygen of Leu
70, since the literature evidence the importance of such ligand-
receptor interaction for a proper activity (Montalvo-Ortiz et al.,
2012; Ferri et al., 2013a; Ruffoni et al., 2014). Binding site radii
were optimized to 16 Å for Rac1 and 7 Å for AmpC β-lactamase
test sets, respectively. After the virtual screening process, the
outcomes were ranked according to total PLANTSCHEMPLP score,
using the top ranked pose of each ligand. Receiver operating
characteristic (ROC) curves and corresponding area under curve
(AUC) were then generated at the end of each docking run by
using an R script integrated in the VScreen program.

Ligand Parameterization
Following the docking, automatized parametrization of ligands
for later MD simulations can be enabled by setting the doMD
keyword to 1. The user is allowed to choose a “top percentage” of
the ranked ligands to be subjected to parametrization, by setting
the fract keyword. We have chosen 100% (fract = 100), i.e., the
full test set, as we were interested in a full assessment of the Nwat-
MMGBSA methods in terms of virtual screening rescoring. The
antechamber software (Wang et al., 2006) of the AmberTools15
package is used for deriving AM1-BCC partial charges for each
ligand and to assign atom types accordingly to the gaff force field
(Jakalian et al., 2002;Wang et al., 2004). The quantummechanical
calculations necessary to perform the charge parameterization
can be accomplished by using the default sqm software included
in AmberTools15, or with MOPAC2016 (Stewart, 2016) by
setting the qm keyword to 2 or 0, respectively. The topology and
starting coordinate files of each complex are then generated by
calling the tleap software, included in the AmberTools15 package.
Each complex is neutralized and solvated by adding Na+ or
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Cl− ions and a TIP3P water box of 10 Å from the solute. MD
simulations andNwat-MMGBSA analyses can then be performed
as detailed in previous sections.

Nwat-MMGBSA analyses were performed on the obtained
trajectories with number of closest water molecules set to 0, 30,
60, or 100. ROC curves and corresponding AUCs were evaluated
by using the rankings derived from each Nwat-MMGBSA
analysis.

All scripts applied in this work are available in the Supplement
Materials. Eventual updates might also be requested to the
authors.

RESULTS

Optimization of the Nwat-MMGBSA
Protocol
To optimize the Nwat-MMGBSA protocol for low- or medium-
throughput virtual screening procedures, such as those applied
in the hit-to-lead optimization phase of a drug discovery process,
we worked on a significant reduction of the overall simulation
time in comparison to our previous implementations (Maffucci
and Contini, 2013, 2016). Then, we integrated Nwat-MMGBSA
in a continuous workflow that includes the library setup, docking
and the preparation of complexes that is propaedeutic to MD,
as shown in Figure 1. The following steps of the protocol were
redesigned for an optimal ratio between accuracy and speed:

• The application of AM1-BBC charges to reduce the
computational cost for ligand parameterizations. Indeed,
it has been reported that AM1-BCC charges behaved fairly
well in MM-PB/GBSA calculations, compared to more
sophisticated methods (Xu et al., 2013; Sun et al., 2014).

• The use of the NVT ensemble instead of NPT for last
equilibration step and production run. This allowed a 30%
reduction on the overall MD simulation time, without a
significant variation in the results.

Generalized Born (GB) implicit solvent model is used by
default in Nwat-MMGBSA calculations. Indeed, several articles

report that GB can provide outcomes comparable to the PB
method, at a fraction of the computational cost, especially when
relatively short MD trajectories are used for MM-PB/GBSA
calculations (Hou et al., 2011a,b; Maffucci and Contini, 2013,
2015, 2016). However, the PB method can still be requested by
the user by setting the solv keyword in the input section of the
Nwat-MMGBSA script (see scripts and examples provided as
Supplementary Information).

Moreover, the reproducibility between independent MD
simulation repeats of the same system, especially when
using GPU, was also improved. This required some protocol
adjustments, including a longer equilibration of the solvent box,
the use of geometric restraints instead of constraints, the use of
the Langevin thermostat instead of the weak coupling algorithm,
and a slightly extended final equilibration phase.

The protocol modifications allowed approximately 1.5 h per
ligand on a standard workstation equipped with a single
GeForce GTX TITAN Black card, including parameterization,
minimization, equilibration, 1 ns of production run and Nwat-
MMGBSA analysis. This is roughly the same time required for
the simulation on a HPC architecture using 12 nodes equipped
with two 2.40 GHz octa-core processors under similar simulation
settings.

Considering our interest in using Nwat-MMGBSA
calculations to rescore docking results in a reasonable time,
the following tests were also designed to evidence any statistical
difference in the correlation to experiment when the analysis is
performed on 1 ns or 4 ns long MD trajectories. All the energies
computed for the discussed examples are reported in Tables
S4–S39. Correlations to experiments and statistical analyses are
shown in Tables S40–S42 and Table S43, respectively.

Test on Penicillopepsin
This system was already evaluated, although with a different
protocol, in a previous work where the bases of the Nwat-
MMGBSA approach were described (Maffucci and Contini,
2013). The results of the Nwat-MMGBSA analysis obtained
with the new protocol agreed with those reported in the

FIGURE 2 | Results of the penicillopepsin system regarding the application of Nwat-MMGBSA method. (A) Bar chart of r2 in dependency at different Nwat and

computational conditions. Nwat = 0 corresponds to a standard MM-GBSA calculation. (B) Water density plot obtained by grid analysis of penicillopepsin-1APT

complex (visualization with Chimera, step = 1, level = 15).
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previous work in terms of correlation between predicted and
experimental binding energies (Figure 2A and Table S40). This
confirms the robustness of the Nwat-MMGBSA method toward
the modifications in the MD simulation conditions. However,
the new protocol showed the beneficiary application of Nwat-
MMGBSA method even when only 10 closest water molecules
were considered (Nwat= 10), while in the previous evaluation no
significant improvement was observed at this condition. Water
density plot around the binding site (Figure 2B) confirm the role
of water in mediating the ligand-receptor binding. Indeed, for
this system, the use of the Nwat-MMGBSA methods allowed
to increase the r2 from about 0.3, obtained with the standard
MM-GBSA approach (Nwat= 0), to about 0.8 (Figure 2A).

In addition, relatively low standard deviations, obtained when
averaging the r2 obtained by independent repetitions of the
whole run, were observed when higher numbers of closest water
molecules were considered (Table S40 and Figure 2A), thus
suggesting that the inclusion of explicit waters is likely to improve
the reproducibility of results from individual runs.

Moreover, the outcome obtained by running simulations on
GPU and CPU hardware were statistically equivalent (Table S43),
and the same was true for the analyses performed on either the
1st or the 4th ns of MD simulations (Figure 2A). This suggests
that Nwat-MMGBSA analysis is suitable for the analysis of short
MD simulations run on GPU cards, with a great improvement in
speed and no impairments in accuracy.

Test on HIV1-Protease
Similarly to other aspartic proteases (Brik and Wong, 2003).
HIV1-protease exhibits a close relationship with water-mediated
bridging effects in the crystal structure (Shen et al., 2010).
Consequently, the effects of explicit waters were also reflected
by the Nwat-MMGBSA workflow (Figure 3A). The high water-
density around a wide area at the binding site also confirms the
likelihood of the involvement of explicit water during binding
process (Figure 3B).

When considering the correlation between the experimental
ki and the predicted binding energies, a significant improvement
in r2 was obtained with the inclusion of a hydration shell of

30–70 water molecules (Figure 3A and Table S41). Although,
results with a lower Nwat value showed no significant difference
from standard MM-GBSA analyses, suggesting that smaller
hydration shells around the ligand might have excluded certain
solute-solvent interactions important for binding free energy
estimations. However, water-mediated H-bond analyses showed
that only one or two stable (occupancy > 20%) water-mediated
interactions did involve the ligand, while majority of the bridging
water molecules were found between protein residues (Tables
S44, S45). Furthermore, crystallographic data provides that only
10–15 water molecules are generally present within 4 Å from the
ligand molecules (Olajuyigbe et al., 2011). These imply potential
conflicts between the lower numbers of the observed “stable”
bridging water molecules to the evidently better binding free
energy estimations when higher amount of closest explicit solvent
(up to 70) is included. Such conflicts can only be explained
when transient water bridges are considered. The averaged
free energy contribution of these transient interactions is more
likely been captured by Nwat-MMGBSA calculations, whereas
not necessarily detectable through population distribution or
electron density analyses. Indeed, for example, the inclusion of
crystallographic water molecules up to 3.5 Å from the ligand
did not provide a clear benefit over standard MM-PB/GBSA
approach (Greenidge et al., 2013).

Similar to the penicillopepsin system, the outcomes did not
show statistically significant differences between the 1st and
4th ns of MD simulations and were independent from the
hardware. Apparently, 4 ns MD simulations performed using
CPU averagely provided higher correlation to experiments for
Nwat ≤ 20, although the high standard deviations make this
result not statistically significant (Figure 3A and Table S41).

Test on BCL-XL

The Nwat-MMGBSA trails up to 50 closest water molecules have
no statistical difference from standard MM-GBSA calculations,
despite of different hardware environment (Figure 4A). A lower
water density was indeed observed around the ligand for
BCL-XL system (Figure 4B). This implies that explicit water
molecules are playing a less important role in ligand binding,

FIGURE 3 | (A) Trend of r2 in dependency of Nwat for HIV1-protease. Nwat = 0 corresponds to a standard MM-GBSA calculation. (B) Water density plot obtained by

grid analysis of HIV1-protease-3NUO complex (visualization with Chimera, step = 1, level = 15).
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FIGURE 4 | (A) Trend of r2 in dependency of Nwat for BCL-XL. (B) Water density plot obtained by grid analysis of BCL-XL-3ZC4 complex (visualization with Chimera,

step = 1, level = 15).

as reflected by the relatively deluding performance of Nwat-
MMGBSA compared to MM-GBSA. A relatively high r2 (∼0.7)
was indeed consistent throughout the multiple trials for all of
the conditions evaluated. These apparently non-effective results,
however, positively suggest that the Nwat-MMGBSA method
does not impair the statistical outcomes of the estimations
for systems where explicit water molecules are deemed less
important. Thus, it can be concluded that, even if system-specific
tuning is necessary for optimal performance, Nwat-MMGBSA
can be safe for binding free energy estimation even without
an a priori knowledge of the bridging water in the system of
interest.

Retrospective Virtual Screening Test
To assess the performance of the Nwat-MMGBSA method
in rescoring virtual screening results, we have chosen two
case studies for protein-ligand (PLI) and protein-protein (PPI)
interactions, respectively. The first system, AmpC β-lactamase
(Usher et al., 1998), was selected from the Dud-E database to
provide an example were water plays an active role in the target
catalytic cycle. Indeed, the inclusion of an explicit water molecule
was found beneficial in previously reported virtual screenings
(Powers et al., 2002). Conversely, the second system, the Rac1
protein targeted at the Tiam1 binding site (Worthylake et al.,
2000), was chosen because of the availability of reliable in-house
activity data, including those of several inactive compounds that
were however selected as potential hits by virtual screening
studies previously conducted (Ferri et al., 2009, 2013a).

The AUC of the ROC curves was chosen as the main metric
of comparison, since enrichment values are not indicated for
databases of limited sizes (Enyedy and Egan, 2008). For the
AmpC system, the full virtual screening workflow, followed by
MD simulation and Nwat-MMGBSA (Nwat = 0, 30, 60 and,
for Rac1 only, 100) rescoring, was repeated twice, while for
Rac1 a third repetition was added due to a higher variance among
the obtained correlations. Docking scores and Nwat-MMGBSA
binding energies for AmpC and Rac1 screenings are reported in
Tables S46, S47 and Tables S48–S50, respectively.

TABLE 1 | ROC AUC values obtained at different scoring conditions for AmpC

β-lactamase.

Docking Nwat0a Nwat30 Nwat60

r2 b 0.72 ± 0.00 0.76 ± 0.01 0.88 ± 0.01 0.88 ± 0.00

Pdocking 0.019 0.002 <0.001c

PMMGBSA 0.004 0.002

1%docking 4.9 22.7 21.7

1%MMGBSA 17.0 16.0

Percentage of variation (1%docking and 1%MMGBSA) and P values respect to ChemPLP

scoring (Pdocking) and to standard MM-GBSA rescoring (PMMGBSA ) are also reported.
aCorresponding to a standard MM-GBSA calculation, with no explicit waters included.
bAverage of two full repetitions.
c0.00001.

AmpC β-Lactamase
The receptor in Dud-E include an explicit water molecule. We
did preliminary docking evaluations by including the water,
using the “water_molecule” function implemented in PLANTS,
but comparable results were obtained (see Figure S12). For this
reason, to simplify and standardize the procedure, we decided
not to include any explicit water in the docking part of the virtual
screening workflow.

We initially noticed that virtual screening has already
provided a decent discrimination of active from decoys with a
ROC AUC that averaged at 72.0% (Table 1). The application
of the standard MM-GBSA method (Nwat = 0) only provided
a barely significant increase of ROC AUC value, respect to
docking (Table 1), while improvements appeared once explicit
water molecules were included, as shown by the Nwat = 30 and
60 scenarios (Figure 5, Figure S15). Considering that the ROC
AUCs for Nwat = 30 and 60 were fully converged, no additional
analyses at higher Nwat values were done. Additionally, ligand-
to-ligand correlations in calculated free energies were evaluated
between the two repeated runs. The standard MM-GBSA run
provides a r2 of 0.66 when correlating the energies obtained
by the two repetitions, while Nwat-MMGBSA with Nwat = 30
and 60 resulted in r2 of 0.84 and 0.91, respectively (Figure 6).
This implies that Nwat-MMGBSA rescoring is likely to provide
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FIGURE 5 | Average ROC AUC values for AmpC β-lactamase. Statistical

significance was calculated by t-test and is graphically reported only when a

significant variation was observed (*P < 0.05; **P < 0.01; ***P < 0.001).

better reproducibility between separate runs. Moreover, the
good ligand-to-ligand inter-method correlation between Nwat
= 60 and 30 (r2 = 0.95 and 0.94 for runs 1 and 2,
respectively; Figure S13) further confirmed the improvements
in reproducibility. Interestingly, a positive binding energy was
computed for two ligands by Nwat-MMGBSA calculations, but
not by docking or standard MM-GBSA rescoring. The two
ligands belong to the decoy set (ligands 088 and 179, Tables
S46, S47) and are thus supposed to be poorly ranked. Indeed,
by analyzing the binding modes of the decoy 088 (Figure
S17), it can be observed that an isopropyl group overlaps
with the position occupied by a water molecule present in
the crystal structure (Babaoglu and Shoichet, 2006), but not
explicitly considered during docking (see Methods). Conversely,
decoy 179 does not overlap with the crystallographic water
site (Figure S18). However, it can be observed that a solvent-
exposed chloropropyl group overlaps to a position occupied
by a hydrophilic amino acidic moiety of the crystallographic
ligand. In both cases, it appears that Nwat-MMGBSA rescoring
can correctly penalize compounds that do not offer an optimal
orientation of hydrophobic groups.

Tiam1-Rac1 PPI Interface as the PPI Test Set
Virtual screening targeting PPIs has been suggested as a
challenging task, especially when only traditional docking and
scoring procedures are used (Bienstock, 2012; Scott et al., 2016).
In the past, we have applied standard computational methods
to identify and design inhibitors of the Rac1-Tiam1 PPI, thus
collecting data on compounds identified as potential hits, but
that turned out to be inactive upon experiments (Ferri et al.,

FIGURE 6 | Correlations between the binding energies computed in two

independent repetitions (Run 1 and Run 2) for AmpC β-lactamase by standard

MM-GBSA (Nwat = 0) or by Nwat-MMGBSA with Nwat = 30 or Nwat = 60.

2009, 2013a,b; Ruffoni et al., 2014). In addition, we searched
the literature to identify compounds that were tested against
Rac1 inhibition, but turned out to be inactive (Hernández et al.,
2010; Surviladze et al., 2010; Shang et al., 2012; Rahimi et al.,
2015; Lu et al., 2017). By this way, the resulting ligand test set
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TABLE 2 | ROC AUC values obtained at different scoring conditions for the

Rac1-Tiam1 system.

Docking Nwat0 Nwat30 Nwat60 Nwat100

r2 a 0.59 ± 0.00 0.56 ± 0.06 0.53 ± 0.04 0.71 ± 0.07 0.76 ± 0.06

Pdocking 0.536 0.077 0.029 0.007

PMMGBSA 0.520 0.045 0.016

1%docking −4.1 −9.2 21.4 29.1

1%MMGBSA −5.3 26.7 34.7

Percentage of variation (1%docking and 1%MMGBSA ) and P-values respect to ChemPLP

scoring (Pdocking) and to standard MM-GBSA rescoring (PMMGBSA ) are also reported.
aAverage of three full repetitions.

shared similar physico-chemical and structural features between
the actives and the inactives, thus making this virtual screening a
difficult discrimination process to tackle.

The docking protocol was optimized to maximize AUC by
evaluating the effect of the different scoring functions available in
PLANTS, by variating the binding site radius, the search speed
and by using hydrogen bond constraints with residues known
to be essential for activity (i.e., Leu70 or Ser71) (Gao et al.,
2004). The docking poses were visually inspected to check their
consistency with the poses obtained in previous studies (Ferri
et al., 2013a). With the optimized protocol and for each library
processing condition, all the active compounds showed a similar
binding pose, except for ligand109 (Figure S14).

The ROC computed on the scores obtained by docking
showed a moderate ability of this procedure in discriminating
active from inactive compounds, with AUCs of about 0.6
(Table 2, Figure 7). Considering the strained characteristic of
both the target and database, this result is acceptable, if compared
to the ROC AUCs obtained in other benchmarks reported by
literature (Brozell et al., 2012; Liebeschuetz et al., 2012; McGann,
2012; Neves et al., 2012; Novikov et al., 2012; Repasky et al., 2012;
Schneider et al., 2012; Lavecchia and Di Giovanni, 2013; Yuriev
et al., 2015).

This time, the application of the standard MM-GBSA (Nwat
= 0) rescoring did not provide any significant improvement
in the AUC compared to docking (Table 2). Unexpectedly,
Nwat-MMGBSA performed with 30 water molecules (Nwat =
30) behaved similarly. Conversely, the ROC AUCs improved
of about 20 and 30% after rescoring with Nwat = 60 or
100, respectively (Table 2, Figure 7, and Figure S16). Since the
difference in AUC between the two last scenarios was not
statistically significant, no additional simulations were conducted
at higher Nwat. An improvement in the ROC AUC of about
20–30%, although reproducible and significant (Zhang et al.,
2014), might be questionable against the increased computational
effort of rescoring with either MM-GBSA or Nwat-MMGBSA.
However, in the framework of a lead optimization study, the
payback of a simulation that can be easily run on relatively
inexpensive hardware can be an increased chance of synthesizing
a good molecule. Considering the costs associated with the
synthesis of new molecules, having even only a 20% higher
probability of preparing an active compound can be considered a
rather good result.

FIGURE 7 | Average ROC AUC values for Rac1-Tiam1 virtual screenings.

Statistical significance was calculated by t-test and is graphically reported only

when a significant variation was observed (*P < 0.05; **P < 0.01).

DISCUSSION

When developing new drugs, computational calculation can
help in identifying new hits in either the hit-to-lead or lead
optimization phases. While the first task is generally performed
by using very fast computational methods to screen large
databases, the lead optimization phase is generally done by
applying more accurate, although more computationally
demanding, methods. Indeed, starting from a lead, a virtual
library of hundreds-to-thousands congeneric molecules
can be generated and evaluated computationally. However,
the prioritization of the synthesis of a few derivatives by
computational methods might still be quite challenging. In
this framework, we optimized a variant on the well-known
MM-GBSA method, referred as Nwat-MMGBSA (Maffucci and
Contini, 2013, 2016). This approach consists in the inclusion,
during the MM-GBSA analysis, of a fixed number of water
molecules, which in each frame of the MD simulation are the
closest to the ligand, or to a binding interface, and are therefore
potentially mediating interactions between the receptor and the
ligand. We demonstrated that this approach might improve
the correlation between predicted and experimental binding
energies up to 50%, compared to the standard MM/GBSA
method (corresponding to Nwat = 0), with only a modest
increase in computation time (Maffucci and Contini, 2016).
Of course, the potential improvement in correlation depends
on the role played by water in facilitating the ligand-receptor
binding. However, we also found that when water does not play
a specific role in mediating this interaction, the application of
Nwat-MMGBSA is not detrimental on the quality of correlation,
compared to the default approach. In the light of this, we
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automatized the process and optimized the MD protocol for
running simulations on standard workstations equipped with
a GPU, on which a full calculation can be completed in about
1–2 h per complex, depending on system size. Indeed, the results
obtained by using a single GPU card are comparable, in both
quality and duration, with those obtained by running MDs
on a relatively large HPC environment (12 nodes with 2 octa
core processors per node). Moreover, we also observed that
Nwat-MMGBSA analyses provided comparable results when
applied on 1 or on 4 ns MD trajectories, thus making this
simulation attractive for medium-throughput virtual screenings.

In the second part of this article, we described the integration
of Nwat-MMGBSA as a method to rescore docking results in
SBVS studies. By applying Nwat-MMGBSA rescoring (Nwat
= 60 or 100) we obtained, in both the examples, an increase
in the ROC AUCs of between 20 and 30%, compared to the
docking scorings or default MM/GBSA (Nwat = 0), depending
on the system. In the adopted conditions, we were able to
process more than 20 compounds per day using a standard
octa core workstation equipped by a single GPU. Although this
might appear a quite long time, compared to the thousands
of compounds that can be screened per day by docking, the
investment becomes reasonable when considering the time and
resources required for the synthesis of new molecules. Moreover,
we can expect that the fast development of GPU hardware will
make MD-based rescoring even faster in short time. Indeed, in
2010 we could run aMD simulation on a Rac1 complex at a speed
of 8.7 ns/day on a Tesla C1060 card, while a few years later, the
same simulation was run at a speed of 59.3 ns/day on a GeForce
GTX TITAN Black card.

Unfortunately, we were not able to find an ideal number of
water that need to be included during Nwat-MMGBSA rescoring.
Indeed, while Nwat = 30 appeared to be reasonable in most
of the examples, including those reported previously (Maffucci
and Contini, 2013, 2016), it failed in the Rac1 VS example.
Indeed, in this case, at least 60 waters were necessary to observe a
significant improvement over docking and standard MM-GBSA,
possibly due to the large and solvent-exposed nature of the Rac1
binding site. Conversely, it was recently reported that MM-PBSA
calculations on a set of Mnk1 and Mnk2 inhibitors provided

improved correlations to experiments only when including up
to 10 water molecules (Kannan et al., 2017). This quite low
number, compared to other examples, was justified by the rather
small interface between Mnk1/Mnk2 kinases and the respective
ligands.
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Epigenetic dysfunction has been widely implicated in several diseases especially cancers

thus highlights the therapeutic potential for chemical interventions in this field. With rapid

development of computational methodologies and high-performance computational

resources, computer-aided drug design has emerged as a promising strategy to

speed up epigenetic drug discovery. Herein, we make a brief overview of major

computational methods reported in the literature including druggability prediction, virtual

screening, homology modeling, scaffold hopping, pharmacophore modeling, molecular

dynamics simulations, quantum chemistry calculation, and 3D quantitative structure

activity relationship that have been successfully applied in the design and discovery of

epi-drugs and epi-probes. Finally, we discuss about major limitations of current virtual

drug design strategies in epigenetics drug discovery and future directions in this field.

Keywords: drug discovery, epigenetics, small-molecule inhibitor, computer-aided drug design, virtual screening

INTRODUCTION

Covalent modifications on nucleosomes, the basic building blocks on chromatins, including
methylation, acetylation, phosphorylation, and ubiquination specifically regulate downstream gene
expression patterns in a context-dependent manner that form the fundamental molecular basis of
epigenetics (Strahl and Allis, 2000; Berger, 2007). Dynamic regulation of epigenetic modification
collections leads to different functional outcomes that plays a pivotal role in biological processes
including genome reprogramming, gene transcription, DNA damage response and homeostatic
regulation (Li, 2002; Vidanes et al., 2005; Kouzarides, 2007; Gut and Verdin, 2013). Epigenetic
dysfunction is tightly related with the pathogenesis and progression of several diseases including
malignant diseases especially cancers and chronic diseases such as immune-mediated diseases,
neurodegenerative disorders and diabetes which underscoring the importance of these covalent
modifications (Best and Carey, 2010; Dawson and Kouzarides, 2012; Tough et al., 2016; Hwang
et al., 2017).

Proteins responsible to modulate epigenetic marks on nucleosomes could be roughly divided
into three categories based on their relative function including writers (enzymes that deposit
covalent modifications), erasers (enzymes that remove covalent modifications), and readers
(proteins that recognize specific modifications and recruit chaperons). Encouraging success has
been achieved in the development of epi-probes for dissecting epigenome in recent decades
(Shortt et al., 2017). However, there is still formidable challenge for epigenetic drug discovery
in both academia and industry due to complexity in epigenetics regulatory network and the
limits in assays and drug development technologies. So far only seven epigenetic agents targeting
two epigenetic enzymes (DNA methytransferases, histone deacetylases) have been approved for
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human use. The indications of approved epigenetic drugs
are limited to malignant diseases such as myelodysplastic
syndromes (MDS), acute myeloid leukemia (AML), chronic
myelomonocytic leukemia (CML), peripheral T-cell lymphoma
(PTCL), and cutaneous T-cell lymphoma (CTCL) while the
applications of epigenetic drugs in chronic diseases treatment
were less explored (Mann et al., 2007; Derissen et al., 2013;
Laubach et al., 2015; Lee et al., 2015). Hence, there is urgent need
to develop novel epigenetic drugs with multidisciplinary efforts
and extensive collaborations that may accelerate the pace of drug
discovery process.

With advanced development of computational
methodologies, computer-aided drug design (CADD) has
emerged as a burgeoning research filed (Zheng et al., 2013).
Currently, many pharmaceuticals companies and research
institutions all over the world have established their own
CADD departments and continued efforts have been made
toward the development and optimization of drug design
methodologies and software (Kim et al., 2017). In silico
druggability assessment helps researchers to identify more
chemical-tractable targets and prioritize screening endeavor
(Trosset and Vodovar, 2013). Based on rapid advancement
of crystallography and successful applications of homology
modeling, structure-based virtual screen (SBVS) has proven a
useful method to quickly identify bioactive hits in early-stage
discovery activities (Lounnas et al., 2013). Ligand-based drug
design (LBDD) strategies like three dimensional quantitative
structure activity relationship (3D-QSAR), 2D similarity-based
searching, scaffold hopping and pharmacophore studies are also
efficient approaches for hit enrichment and activity prediction
based on available information of known inhibitors (Meena
et al., 2011; Andrew et al., 2016; Yadav et al., 2017b). Moreover,
quantum mechanical calculation and molecule dynamic (MD)
simulation provide the in-depth understanding in protein
catalytic mechanism that is quite useful mechanism-based
drug design (Scheraga et al., 2007). In silico pharmacokinetic
properties assessment allows the prediction of absorption,
distribution, metabolism, elimination, and toxicity (ADMET)
of drug candidates that is an important cheminformatics
tool in drug design (Gaur et al., 2015; Yadav et al., 2016).
Collectively, combined with the gained availability of diverse
compound databases, these cost effective structure-based or
ligand-based strategies significantly increase the efficiency in
drug discovery and provide new horizons and promising
avenues to conquer life-threatening diseases (Figure 1,
Table 1).

Although these leading computational strategies have been
successfully applied in traditional drug discovery pipeline,
there are relatively few reports focusing on its contribution
in epigenetic landscape (Li et al., 2015). In this review,
we mainly focus on recent progress on the applications of
these strategies and highlight representative studies and major
contributions of computational approaches in this field. Other
successful drug discovery studies using wet lab approaches
are beyond the field of this review and not covered here
that may also be interesting aspects in epigenetic-related
studies.

WRITER

Epigenetic writers are the enzymes responsible for transferring
methyl groups or acetyl groups to DNA, histone or other
non-histone substrates from cofactors S-adenosyl-L-methionine
(SAM) or acetyl coenzyme A (Ac-CoA). Based on their
distinct functions, writers are usually divided into three
categories, namely DNA methyltransferases (DNMTs), protein
lysine/arginine methyltransferases (PKMTs/PRMTs) and histone
acetyltransferases (HATs). These enzymes alter chromatin
organization and contribute to downstream gene expression
regulation through site-specific modification that are involved in
the multiple function pathways (Gelato and Fischle, 2008). To
elucidate their roles in physiological or pathological states, there
has been increasing interest in the discovery of writer inhibitors
through in silico approaches and many successful stories have
been reported in the literature (Figure 2). In this section, we will
present an overview of the current applications of computational
methods used in hit identification targeting epigenetic writers.

DNA Methyltransferases
DNA methyltransferases catalyze DNA methylation by
depositing a methyl group on the 5-position of the cytosine
(Robertson, 2001). In mammalian cells, there are five members
identified so far: DNMT1, DNMT2, DNMT3A, DNMT3B,
and DNMT3L. Among them, DNMT1 is characterized as
the maintenance methyltransferase that shows preference for
hemimethylated DNA substrates while DNMT3A and DNMT3B
belong to de novo methyltransferases subfamily that function
in complex form and catalyze the methylation of unmethylated
DNA (Okano et al., 1999; Goll and Bestor, 2005). In DNMTs,
the founding member DNMT1 is the best studied. DNMT1
introduces a new methyl group into newly synthesized DNA
strand in the context of CpG dinucleotide that maintains
methylation patterns of template strand during DNA replication
(Bestor, 2000; Auclair and Weber, 2012). Aberrant promoter
DNA hypermethylation leads to silencing of tumor suppressor
genes, which has been frequently observed in various carcinomas
(Feinberg et al., 2006; Zhang and Xu, 2017). Therefore, DNMTs
have become one of the most promising targets for cancer
therapy and many computational approaches have evolved to
fuel the development of epi-probes and epi-drugs targeting
DNMTs (Medina-Franco et al., 2015).

Homology Modeling-Driven Studies
Homology modeling is a quite effective strategy especially when
interested protein crystal structures are not available and it
functions as the most valuable research tool to fill the sequence-
structure gap for structure-based drug design (Dwivedi et al.,
2015). The accuracy of homology models mainly depends on
the sequence identity or similarity between the template protein
and the protein to be modeled (Chothia and Lesk, 1986). As
commonly accepted, homology models based on more than 50%
of sequence identity with proteins whose structures have been
experimentally acquired are usually very accurate and can be used
for drug discovery purposes (Hillisch et al., 2004).
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FIGURE 1 | Traditional workflow of structure-based drug design (SBDD) and ligand-based drug design (LBDD).

Since there was no DNMT1 crystal structure ever released
until 2008, drug development against this therapeutic target
progressed slowly (Syeda et al., 2011). To circumvent this,
Siedlecki et al. built a homology model of human DNMT1
catalytic domain based on available structural information of
M.HhaI, M.HaeIII, and DNMT2 in the MODELLER module of
INSIGHT2000 (Siedlecki et al., 2003). In a follow-up study, based
on this established homology model, Siedlecki and co-workers
performed docking-based virtual screening of a diversity set
containing 1,990 compounds from the National Cancer Institute
(NCI) that represented more than 140,000 compounds using
DOCK version 5.1.0. The screen resulted in the discovery of

RG108 (compound 1 in Figure 2) that came out on top in
biochemical assays (Brueckner et al., 2005; Siedlecki et al., 2006).

Similarly, Kuck et al. carried out virtual screening (VS) of a
larger data set including more than 65,000 lead-like compounds
based on the aforementioned DNMT1 homology model. Top-
ranked compounds were re-scored by GLIDE, GOLD, and
AUTODOCK followed by experimental tests. Among them,
NSC14778 (compound 2 in Figure 2) presented inhibitory
activities against DNMT1 and DNMT3B with the IC50 value
of 92 and 17µM, respectively while nanaomycin A (compound
3 in Figure 2) selectively inhibited DNMT3B with the IC50

value of 500 nM. To explain the selective inhibitory activities
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TABLE 1 | The online public and commercial databases and compound collections used for virtual screening in epigenetics.

Database Size Website Applications

ZINC Over 35

million

http://zinc.docking.org GCN5; KDM4A/C; HDAC1; BRD4/T; SIRT2-3

SPECS ∼320,000 http://www.specs.net DOT1L; DNMT1; SET7; DNMT3A; PRMT1; G9a; FTO; PRMT5; EZH2;

HDAC8; LSD1; BRD4; Menin-MLL1

NCI ∼260,000 https://cactus.nci.nih.gov/ DNMT1; Class I/IIa HDACs; KDM4A/B; BRD2

Maybridge ∼56,000 http://www.maybridge.com LSD1; HDAC2; HDAC8

ChemBridge ∼1.1 million http://www.chembridge.com Type I PRMTs; PRMT5; p300/CBP; BRD4; Spindlin1; SIRT3

CoCoCo ∼7 million http://cococo.isof.cnr.it SMYD3

Enamine ∼2.4 million http://www.enamine.net LSD1; PRMT5

ChEMBL ∼1.7 million http://www.ebi.ac.uk/chembldb/index.php GCN5; BRD4

ChemDiv ∼1.5 million http://www.chemdiv.com PRMT5; BRD4; Spindlin1

Dictionary of Natural

Products

∼40,000 http://dnp.chemnetbase.com BRD4

ASINEX ∼87,000 http://www.asinex.com/libraries_synergy.html/ HDAC1

InterBioScreen ∼550,000 https://www.ibscreen.com HDAC1

eMolecules Over 8 million http://www.emolecules.com BRD4; WDR5-MLL1

Life chemicals ∼1.35 million http://www.lifechemicals.com BRD4

DrugBank ∼10,000 http://www.drugbank.ca SIRT3

WDI ∼80,000 http://www.daylight.com/products/wdi.html HDAC1; HDAC6

Data accessed in December 28, 2017.

of nanaomycin A, the authors established homology model of
DNMT3B catalytic domain based on DNMT3A crystallographic
structure, which provided structural basis for mechanism
interpretation (Kuck et al., 2010a,b).

In order to further disclose the mechanism of action (MOA)
of nanaomycin A, Caulfield and co-workers performed >100 ns
molecular dynamic simulation using the CHARMM27 force field
in NAMD version 2.62. The previously established DNMT3B
homology model bound to nanaomycin A was used with either
presence or absence of cofactor SAM in the simulation. The
results suggested that nanaomycin A and SAM could bind
to DNMT3B in a cooperative manner. Besides, nanaomycin
A could form long-lasting interactions with key residues that
involved in the methylation process which further validated the
hypothesis supported by previous docking simulation (Caulfield
and Medina-Franco, 2011).

High Throughput Virtual Screening
In 2014, through docking-based virtual screening based on the
complex structure of mouse DNMT1 bound to S-adenosyl-L-
homocysteine (SAH) (PDB ID: 4DA4), Chen et al. reported a
novel non-nucleoside DNMT1 inhibitor DC_05 that showed
significant selectivity toward other protein methyltransferases
(Chen S. et al., 2014). Further medicinal chemistry optimization
led to the discovery of more potent compound DC_517
(compound 4 in Figure 2) with the IC50 value of 1.7µM. The
putative binding models were generated based on molecular
docking studies, which gave detailed interpretation of the
structure-activity relationship (SAR).

In 2017, in order to identify novel DNMT3A inhibitors, Shao
et al. conducted a multi-step docking-based virtual screening
in combination with pharmacophore mapping. Through initial

screening and follow-up similarity-based analog searching, the
authors discovered novel DNMT3A inhibitor compound 40_3
(compound 5 in Figure 2) with the IC50 value of 41µM, which
may serve as the starting point to develop more potent DNMT3A
inhibitors (Shao et al., 2017).

Quantum Mechanical Calculation
In 2012, based on the ab initio methods, Alcaro and co-
workers developed the force field parameters implemented in the
MacroModel package for the treatment of charge distribution
and overall charge assignment of nucleic acids that undergo
methylation. It gives essential insights related to the correct
charge treatment and force field parameterization, which is an
important issue in molecular modeling of epigenetic phenomena
and shed light for the nucleic acids-related epigenetic functional
study and in the development of DNA intercalating, subtype-
selective DNMTs inhibitors (Alcaro et al., 2002).

Histone Methyltransferases
Histone methylation is one of the most important post-
translational modifications on histones and results in either
activation or repression depending on specific sites. The
methylation marks could recruit different methyl-binding
proteins and mediate downstream signaling pathways, which
could be basically regulated by dynamic interplay between
histone methyltransferases (HMTs) and demethyltransferases
(HDMTs) (Martin and Zhang, 2005). Histone methyltransferases
can be mainly divided into two categories based on their relative
substrates: protein lysine methyltransferases and protein arginine
N-methyltransferases (Li et al., 2012). Among them, PKMTs
consist of SET domain-containing PKMTs (SUV, SET1, SET2,
EZ, and RIZ) and non-SET domain-containing PKMT (DOT1L)
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FIGURE 2 | Chemical structures of epigenetic writer inhibitors mentioned in this review.

(Kouzarides, 2002). As for PRMT family, it could be further
classified into three subcategories: type I PRMTs responsible
for arginine monomethylation and asymmetric dimethylation
(PRMT1, 2, 4, 6, 8), type II PRMTs (PRMT5, 9) for arginine
monomethylation and symmetrical dimethylation and type III
PRMT (PRMT7) only with arginine monomethylation activity
(Wolf, 2009). Emerging evidence demonstrated that deregulated
alternations of methylation patterns were implicated in the
pathogenesis of various cancers and other malignant diseases
(Spannhoff et al., 2009; Jones et al., 2016). Consequently,
continued efforts have been devoted to drug design for HMTs,
which open up vast ranges of prospects for diseases treatment
(Table 2).

Pharmacophore-Based Drug Discovery
With the increasing knowledge of known active molecules
available in databases, pharmacophore modeling methods are
receiving more attention in the era of rational drug design that
could quickly extract the key steric and electronic features for
ligand-receptor interactions (Guner et al., 2004; Yadav et al.,
2010, 2012). In 2007, Spannhoff et al. presented first target-
based virtual screening with NCI diversity set to discover
novel PRMT1 inhibitors. The GRID-based pharmacophore
model, the methodology originally introduced by Ortuso et al.
in 2006, was applied as post-docking filter to analyze all
preliminary docking solutions (Ortuso et al., 2006). The study
resulted in the identification of allantodapsone (compound 6
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TABLE 2 | The HMTs inhibitors derived based on virtual screening or high

throughput screening.

Targets Virtual screen High throughput screen

Ia IIb IIIc I II III

PRMT1 ⋆ ⋆

PRMT3 ⋆ ⋆

PRMT4 ⋆ ⋆

PRMT5 ⋆ ⋆

PRMT6 ⋆ ⋆

DOT1L ⋆ ⋆

SUV420H1 – – – ⋆

SUV420H2 – – – ⋆

SMYD2 – – – ⋆

SMYD3 ⋆ ⋆

GLP – – – ⋆

G9a ⋆ ⋆

NSD2 ⋆ – – –

SETD2 – – – ⋆

SETD7 ⋆ ⋆

SETD8 ⋆ ⋆

EZH1 – – – ⋆

EZH2 ⋆ ⋆

aThe IC50 values smaller than 1 µM.
bThe IC50 values at the range of 1–10 µM.
cThe IC50 values at the range of 10–100 µM.

The stars here denote that the IC50 value of the most potent compound against this target

is in the corresponding range.

in Figure 2) with the IC50 value of 1.7µM (Spannhoff et al.,
2007a).

In the follow-up study, Heinke et al. expanded their work
to a larger compound collection, the ChemBridge database
containing 328,000 molecules (Heinke et al., 2009). Based
on previously reported binding modes of allantodapsone,
the pharmacophore models were generated in LigandScout
with one HBD, one hydrogen bond acceptor (HBA), two
hydrophobic/aromatic features, one included volume and
23 excluded volumes leading to the identification of nine
compounds with PRMT1 inhibitory activity below 35µM.

Ligand-based pharmacophoremodeling is also a powerful tool
in drug discovery campaigns. In 2012, Wang et al. constructed
four rational pharmacophore models with HBA, HBD, and
ring/aromatic (RA) as key chemical features based on 17
reported active molecules in Discovery Studio version 2.1. Then
established models were used as the query to search theoretical-
soluble small molecule library. Through cluster analysis in
combination with biological assays, A9 and A36 (compounds
7–8 in Figure 2) were identified as PRMT1 inhibitors with the
IC50 values of 41.7 and 12.0µM, respectively (Wang et al., 2012).
Kinetic analysis demonstrated that A9 was a peptide-competitive
PRMT1 inhibitor whereas A36 was the non-competitive PRMT1
inhibitor that could be used as the parent compounds for further
chemistry optimization.

The pharmacophore modeling has also been widely applied
in hit identification targeting other HMTs. In 2016, aiming to

identify novel EZH2 inhibitors, Wu et al. conducted ligand-based
pharmacophore modeling based on validated EZH2 inhibitors
(Wu et al., 2016). The reliability of constructed models was
evaluated by enrichment capacity analysis using molecules in test
sets. Based on the established models, they identified novel EZH2
inhibitors DCE_254 (compound 18 in Figure 2) with the IC50

value of 11µM.
In 2015, through integrated structure-based pharmacophore-

modeling and molecular docking, Meng et al. discovered a SET7
inhibitor, namely DC_S100 with the IC50 value of 30.0µM
(Meng et al., 2015). Docking-based SAR analysis followed
by structure optimization led to the identification of DC-
S239 (compound 19 in Figure 2), with the IC50 value of
4.6µM. In addition, DC-S239 could dose-dependently inhibit
the proliferation of MCF7, HL60, and MV4-11 with the IC50

values at micromolar range supporting its potential use in cellular
context.

Molecular Dynamics Simulation
Molecular dynamics simulation is a useful theoretical technique
to investigate the conformations and dynamic behaviors of
biomolecules in long-time scale that provides atomic-level
insight into the regulatory mechanism (Lindorff-Larsen et al.,
2011; Okumura et al., 2018). To characterize the elusive roles
of the N-terminal region and dimerization arms for PRMT1
activity, Zhou et al. performedMD simulations using GROMACS
4.3 package based on hPRMT1 homology model in monomer
and dimer states (Zhou et al., 2015b). The simulations captured
the dynamic correlations between the N-terminal region and
dimerization arms.Moreover, the normalized covariance analysis
and principal component analysis (PCA) were applied to analyze
the energy landscape of different conformations at reduced
dimensions. Through network topology analysis, a long-distance
communication pathway was theoretically proposed which was
further validated by biochemical mutational experiments. The
simulations disclosed the underlying molecule mechanism of
allosteric communication between the two regions and provided
the rationale for mechanism-based PRMT subtype-selective
inhibitors.

Molecule dynamic simulations could be not only wildly
applied in protein dynamic regulation studies but also in MOA
studies for small molecule inhibitors. In order to uncover the
molecular basis of diamidine inhibitors for selective PRMT1
inhibition, Yan et al. conducted extensive MD simulations
and molecular mechanics/Poisson–Boltzmann solvent-accessible
surface area (MM/PBSA) calculation to analyze the interaction
patterns in the binding cavity for the docking complex which
provided the avenue to designmore potent and specific inhibitors
(Yan et al., 2014; Zhang et al., 2017a,b). A similar MD study
was reported by Yang and co-workers to propose binding poses
of identified PRMT1 inhibitors and circumvent the limitations
introduced by inaccuracy of molecule docking methods (Yang
et al., 2017).

High Throughput Virtual Screening
The big explosion of available structural information of HMTs
has greatly facilitated the application of docking-based virtual
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screening (DBVS). In 2007, via virtual screening and 2D
similarity-based analog searching, Spannhoff et al. identified
RM65 (compound 9 in Figure 2) as the PRMT1 inhibitor with
the IC50 value of 55.4µM (Spannhoff et al., 2007b). In 2010, a
similar study was reported by Feng and co-workers in structure-
based virtual screening with 400,000 compounds. In this study,
NS-1 (compound 10 in Figure 2) was identified as the PRMT1
inhibitor with an IC50 value of 12.7µM which directly targeted
the peptide substrates instead of enzymes (Feng et al., 2010).
In 2014, Xie and co-workers used the combinatorial dockings
methods including GLIDE and DOCK for in silico screen. The
authors identified DCLX069 and DCLX078 (compounds 11–
12 in Figure 2) with the IC50 values of 17.9 and 26.2µM,
respectively in biochemical assays (Xie et al., 2014).

A number of attempts have also been made to identify
other PRMTis besides PRMT1 inhibitors. In 2015, Alinari
et al. used comparative modeling and structure-based virtual
screening with ChemBridge CNS-Set library of 10,000 small
molecule compounds leading to the identification of first-in-
class PRMT5 inhibitor CMP5 (compound 13 in Figure 2). In
cellular context, CMP5 could selectively inhibit the proliferation
and transformation of EBV-driven B-lymphocyte (Alinari et al.,
2015). In 2016, Ferreira et al. started their work based on the
two basic amine tails that mimicked the side chain of substrate
arginine and established PRMT-focused virtual library. Through
initial biochemical screening and structure-based optimization,
the authors identified compound 27 (compound 14 in Figure 2)
as the selective CARM1 inhibitor with an IC50 value of 0.05µM
and ligand efficiency of 0.43 (Ferreira de Freitas et al., 2016).
In 2017, Ji et al. carried out molecular docking studies with
semi-flexible docking methods in GOLD and identified selective
PRMT5 inhibitor P5i-6 (compound 15 in Figure 2) with an IC50

of 0.57µM (Ji et al., 2017). Similarly, Ye et al. identified PRMT5
inhibitor named DC_C01 (compound 16 in Figure 2) with the
IC50 value of 2.8µM via docking-based virtual screening and
structure modification (Ye et al., 2017). Concurrent with the two
studies described above, through hierarchical docking strategies
and chemistry optimization, Chen et al. identified DCPR049_12
(compound 17 in Figure 2) with promising inhibitory activity for
type I PRMTwith the IC50 value at nanomolar range (Wang et al.,
2017).

Besides PRMTs, docking-based virtual screening strategy was
also applied in the epi-probe design for other HMTs. In 2015,
in an attempt to search for SMYD3 inhibitors, Peserico et al.
performed high-throughput virtual screening of the CoCoCo
database containing nearly 260,000 molecules in GLIDE version
5.7 (Peserico et al., 2015). The study led to the identification
of BCI-121 (compound 20 in Figure 2) as the best candidate
for SMYD3 inhibition that could reduce global H3K4me2/3
and H4K5me levels in colorectal cancer. Similarly, Chen et al.
identified the DOT1L inhibitor DC_L115 (compound 21 in
Figure 2) with an IC50 value of 1.5µMvia structure-based virtual
screening of approximately 200,000molecules in SPECS database
(Chen S. et al., 2016).

Very recently, Wang and co-workers developed a target-
specific scoring function based on epsilon support vector
regression (ε-SVR) named the SAM-score for SAM-dependent

methyltransferases. Based on the built regression model, the
authors identified compound 6 (compound 22 in Figure 2) as the
DOT1L inhibitor with an IC50 of 8.3µM (Wang et al., 2017).
There are also some successful studies reported elsewhere for
the discovery of other HMT inhibitors (compounds 23–26 in
Figure 2) for G9a and SETD8 based on in silico approaches (Chen
W. L. et al., 2016; Kondengaden et al., 2016; Milite et al., 2016).

Histone Acetyltransferases
Histone acetyltransferases (HATs) transfer acetyl groups onto
N-terminal tails of core histone and consequently give rise to
DNA relaxation, which is closely related to gene activation
(Brown et al., 2000). HATs can be divided into four categories
on the basis of their sequence similarities, including the GNAT
family (GCN5 and PCAF), the MYST family (MOZ/MORF,
YBF2/SAS3, SAS2, and TIP60), p300/CBP and RTT109 (Dancy
and Cole, 2015). Recently, emerging evidence implicated that
deregulation of HATs was closely correlated with tumorigenesis,
neurological disorders and inflammatory diseases (Yang, 2004;
Rajendrasozhan et al., 2009; Sheikh, 2014). Several HAT
inhibitors have been reported, such as bi-substrate inhibitors,
natural products, and small molecules. However, there is still
a large gap between activities in vitro and their potential
applications as therapeutic agents in vivo due to the lack of
potency and selectivity for the current inhibitors which is a
long-standing challenge in the field.

In 2010, Bowers et al. conducted structure-based, in silico
screening approach with a screening set of ca. 500,000
commercially available compounds to identify the p300 inhibitor
(Bowers et al., 2010). The compounds were scored and ranked
based on ICM (Internal Coordinate Mechanics) score in the
ICM-VLS software version 3.5. Then top 194 compounds
were cherry-picked by visual inspection and purchased from
ChemBridge for biochemical analysis. Among them, C646
(compound 27 in Figure 2) was identified with Ki value of
400 nM. Further in vitro assay demonstrated that C646 was
cofactor-competitive and selective p300 inhibitor. The detailed
interaction patterns were confirmed by site-directed mutagenesis
in accordance with the predicted computational model.

Very recently, Lasko and co-authors performed similar
docking-based in silico screening with nearly 800,000 compounds
and 1,300 available compounds were test in radioactive p300
acetylation assays (Lasko et al., 2017). Among them, hydantoin
and a conjugated thiazolidinedione were identified with the
IC50 values of 5.1 and 11.5µM, respectively. More efforts were
devoted to the optimization on hydantoin scaffold yielding A-485
(compound 28 in Figure 2) with an IC50 value of 60 nM. A-485
was a first-in-class highly potent, selective p300/CBP catalytic
inhibitor and displayed significant selectivity against other HATs
members. Besides, it inhibited proliferation across a broad range
of cancer cell lines with specificity for hematological and prostate
cell lineages and retarded tumor growth in xenograft models,
which underscored the therapeutic potential targeting p300/CBP.
Another small molecule discovered by virtual screening from
ChEMBL bioassay database was C14 (compound 29 in Figure 2)
with an IC50 value of 225 nM on PfGCN5 in parasite growth
assay (Kumar et al., 2017). C14 displayed promising antimalarial
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activity and showed no effect on mammalian fibroblast cells
supporting its safe use for further applications.

ERASER

Erasers are key modifying enzymes in charge of the removal
of epigenetic marks that participate in dynamic regulation
on gene expression patterns (Mosammaparast and Shi, 2010).
Based on their different substrates and their relative functions,
erasers could be divided into different families such as histone
deacetylases (HDACs), RNA demethyltransferases, histone
demethylases (HDMs), histone deubiquitinases, and so on
(Arrowsmith et al., 2012). Among them, HDACs are the most
studied targets for pharmacological interventions. So far, five
epi-drugs targeting HDACs have been approved for clinical
use and other HDAC inhibitors like entinostat and CUDC-907
have entered into clinical trials for advanced cancer treatment
(Falkenberg and Johnstone, 2014; Li and Seto, 2016). In the
following section, we will focus on representative computational
work in drug discovery and related mechanism studies that
expert in this field (Figure 3).

Histone Deacetylases
In mammalian cells, HDACs consist of 18 isoforms and are
broadly classified into four categories based on their distinct
structural features and subcellular localization: Class I (HDAC1,
2, 3, and 8), Class II (Class IIa HDAC4, 5, 7, 9, and Class
IIb HDAC6, 10), Class III (NAD-dependent Sirtuins; SIRT1-
7) and Class IV (HDAC11) (Gregoretti et al., 2004; Li and
Seto, 2016). HDACs catalyze the deacetylation of histone as well
as non-histone substrates and are implicated in fundamental
physiological processes including gene transcription, cell cycle
regulation, DNA damage response, and metabolism homeostasis
(Bode and Dong, 2004; Minucci and Pelicci, 2006). There
is a growing body of evidence that deregulation of HDACs
activity is strongly correlated with the pathogenesis of several
diseases including hematological malignancies and solid tumors
that implicates the significance of target intervention (Minucci
et al., 2001; Zhu et al., 2004; Buurman et al., 2012). Significant
progress has been made in the development of HDAC inhibitors
(HDACis) over the recent decades based on in silico approaches
(Yanuar et al., 2016). The following chapters will focus on some
representative studies using computational methods in this field,
some of which are described below.

Quantum Mechanical Calculation
Hydroxamic acid moiety presented in most common HDACis
is usually recognized as problematic fragment with poor
pharmacokinetic profile. To rationally design non-hydroxamic
acid HDACis with more favorable physico-chemical properties,
Wang et al. performed density functional theory (DFT)
calculations to investigate binding modes and related binding
free energy of potential zinc binding groups (ZBGs) (Wang
et al., 2007). In model active site, only the side chains of zinc-
coordinated residues were kept for calculation including two
formats and one imidazole that represented as the functional
groups of zinc-coordinated histidine and two aspartic acid

residues. The calculation results proposed alternatives with novel
structural features that favored zinc binding including 3-hydroxy
pyrones or β-amino ketones, which may be further utilized for
medicinal chemistry optimization on current HDACis.

Apart from the applications in novel hit discovery, quantum
mechanical calculation could also enable precise and solid
interpretation into mechanism studies that facilitates the drug
design of novel and specific HDACis. Finin et al. proposed
that H143-D183 catalytic dyad was indispensable for HDAC8
enzymatic activity by abstracting proton from the bridged water
molecule while Zhang et al. underscored the role of H142-D176
dyad in proton-shuttle process (Finnin et al., 1999; Wu et al.,
2010). In addition, the controversial function of potassium ion
near the active pocket present in HDAC crystal structures is also
under debate (Gantt et al., 2010; Werbeck et al., 2014). Based on
QM/MM simulations including the complete catalytic residues in
the quantum region, Chen et al. explained disagreement for those
observations and uncovered the unique catalytic mechanism
of HDAC8. The results disclosed the inhibitory role of the
potassium ion at the active site and uncovered the significance of
the pKa values of zinc-coordinated moiety in HDACis that would
be of great value in developing potent and subtype-selective
mechanism-based HDACis (Chen K. et al., 2014).

Quantitative Structure-Activity Relationship Analysis
QSAR analysis is a well-established ligand-based computational
methodology to describe the quantitative relationship between
compound biological activity and its physicochemical properties
or structural features, which is the milestone progress in the era
of rational drug design (Gupta, 2007; Yadav et al., 2013, 2017a).
Since therapeutic value of HDACis has been addressed over
recent years and many potent HDACis have been identified so
far, comprehensive QSAR studies were conducted using different
kinds of data sets to facilitate drug design and discovery against
this drug-actionable target. In 2004, Wang et al. developed QSAR
models based on hydroxamic acid-based HDACis and found
statistically significant relationship between charge distribution,
hydrophobicity, geometrical shape of compounds and its relative
anti-proliferative activities for PC-3 cell lines (Wang et al., 2004).
Since then, the number of QSAR modeling studies increased at a
dramatic rate (Xie et al., 2004; Guo et al., 2005; Juvale et al., 2006;
Chen et al., 2008; Kozikowski et al., 2008; Ragno et al., 2008).

The first QSAR studies used for virtual screening was reported
by Tang and co-workers (Tang et al., 2009). Based on validated
QSAR models, the authors screened the in-house library with
ca. 9.5 million compounds and identified four novel scaffolds
that favored HDACs inhibition (compounds 30–33 in Figure 3).
In 2012, Xiang and colleagues developed pharmacophore and
3D-QSAR models on a series of (benz)imidazole inhibitors
(Xiang et al., 2012). The results led to the discovery of 27
inhibitors with putative HDAC2 inhibitory activity. Later on,
several groups employed QSAR modeling workflow for HDACis
activity and selectivity prediction (Silvestri et al., 2012; Zhao
et al., 2013b). In 2014, Kandakatla et al. conducted ligand based
3D-QSAR pharmacophore modeling and identified eight hit
compounds from Maybridge and NCI databases as potential
HDAC2 inhibitors (Kandakatla and Ramakrishnan, 2014). In
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FIGURE 3 | Chemical structures of epigenetic eraser inhibitors mentioned in this review.

the same year, based on 79 previously published substrate-based
SIRT1 inhibitors, Kokkonen and coworkers performed CoMFA
studies that was successfully applied in the bioactivity prediction
of 13 newly synthesized compounds (Kokkonen et al., 2014).
Similarly, Cao et al. developed QSAR models using support
vector classification and regression with scrupulous examination
based on published HDAC8 inhibitors that was applied in next-
round drug screening (Cao et al., 2016).

High Throughput Virtual Screening
In 2007, Price and colleagues initiated virtual screening with
HDAC-focused library containing 644 hydroxamic acids (Price
et al., 2007). The study resulted in the identification of
ADS100380 (compound 34 in Figure 3) with an IC50 value of
0.75µM followed by iterative optimization. Similarly, another
successful application of structure-based virtual screen for the
discovery of HDACis was carried out by Park et al. based
on HDAC1 homology model (Park et al., 2010). The newly
identified inhibitors (compounds 35–36 in Figure 3) presented

novel chemotypes that had not yet been reported before with
IC50 values at micromolar range. In 2016, Yoo et al. rationally
designed selective HDAC6 inhibitors with the IC50 value of
0.199µM (compound 37 in Figure 3) inspired by preliminary
virtual screening efforts with LeadQuest chemical database
containing 80,600 entries (Yoo et al., 2016). Very recently, Hu
designed a versatile VS pipeline with better screening power for
the rapid discovery of selective HDAC3 inhibitors (Hu et al.,
2017). Many efforts have also been devoted to the discovery
of Sirtuins inhibitors, the NAD-dependent class III histone
deacetylases that was reported elsewhere (Salo et al., 2013;
Kokkonen et al., 2015; Padmanabhan et al., 2016).

As commonly accepted, each computational approach may
not perform optimally when applied alone due to complexity
of epigenetic network and this highlighted the importance
of various combined in silico approaches in epigenetic drug
discovery. Hou et al. developed ZBG-based pharmacophore
model with enhanced sensitivity for virtual screening leading
to the identification of selective HDAC8 inhibitor H8-A5
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(compound 38 in Figure 3) with the IC50 value of 1.8µM.
Then molecular docking followed by 50 ns MD simulation was
performed to give detailed insight of the MOA of identified
hits (Hou et al., 2015). In 2017, Ganai and co-workers
employed top-down combinatorial strategy of molecule docking
and molecular mechanics generalized born surface area (MM-
GBSA), MD simulation and trajectory clustering, energetically-
optimized pharmacophore. The authors identified distinct hot
spots in highly homologous HDAC1 and HDAC2 that shed
light on the development of specific HDAC2 inhibitors against
neurological diseases (Ganai et al., 2017). Hsu and co-workers
employed VS approach against classified NCI database leading
to the identification of class IIa-selective HDACis (compounds
39–41 in Figure 3). Homology modeling was performed to
generate HDAC5 andHDAC9 3D structures that provide atomic-
resolution insight into the selectivity of these inhibitors (Hsu
et al., 2017).

RNA Demethyltransferases
RNA methylation is one of most important chemical marks in
epigenetic landscape among which N6-methyladenosine (m6A)
is the most abundant and conserved modification in eukaryotes
(Desrosiers et al., 1974). Reversible N6-methyladenosine could
be dynamically regulated by related writers and erasers involved
in gene expression, RNA splicing, transport, and stability (Fu
et al., 2014). Fat mass and obesity-associated (FTO) enzyme is
one of the RNA demethylases and depends on Fe (II) and α-
KG cofactors for its oxidative demethylation activity (Jia et al.,
2011). Genetic variations of FTO are functionally associated with
human obesity and metabolic disorders (Frayling et al., 2007).
Recent studies demonstrate that FTO is highly expressed in
MLL-rearranged AML and plays pivotal role in leukemogenesis
(Li et al., 2017). Collectively, these studies hold promise for
drug design and development targeting FTO for therapeutic
translation.

In order to gain detailed insight into molecular mechanism
for its catalytic specificity, the complex crystal structure of FTO
and 3-meT substrate was resolved, which laid foundations for
structure-based drug design (Yadav et al., 2010). Chen et al.
employed virtual screening strategy in an effort to identify
inhibitors targeting FTO active site. After initial screening against
the drug-like SPECS database in Dock version 4.0, the primary
results were evaluated in Sybyl and revisited byAutoDock version
4.0. Then top 300 compounds were selected for cluster analysis to
ensure scaffold diversity. Finally, 114 compounds were picked out
for biochemical validation leading to the identification of natural
product rhein (compound 50 in Figure 3) as the competitive
FTO inhibitor. Further decomposed binding energy prediction
highlighted the electrostatic interactions between R316 and
rhein, which was validated by follow-up biophysical studies
(Chen et al., 2012; Aik et al., 2013). Later on, more efforts have
been devoted to the drug design and discovery of selective FTO
inhibitors (Huang et al., 2015; Toh et al., 2015). These identified
structurally different inhibitor collections may serve as the parent
templates applied in ligand-based drug design approaches. The
small molecule sets could be used to establish focused and biased

libraries that may be useful for rational drug design against other
RNA demethylases.

Histone Demethyltransferases
Histone demethylation remained ambiguous until the hallmark
discovery of first lysine specific demethylase LSD1 in 2004 (Shi
et al., 2004). These demethyltransferases catalyze lysine/arginine
demethylation and function as transcription corepressor that
is tightly associated with dynamic regulation of methylation
patterns shaping the epigenome (Dimitrova et al., 2015). Since
then, more histone demethylases have been identified and
their biological relevance has been disclosed (Kooistra and
Helin, 2012). Currently, histone demethylases could be mainly
categorized into two subfamilies based on homology and
substrate specificity: LSD demethylases (LSD1-2) and Jumonji C
(JmjC) domain-containing demethylases (JHDMs) (Markolovic
et al., 2016). Dysfunction of histone demethylases has been
observed in malignant diseases especially cancers such as
colorectal cancer, bladder cancer and lung cancer (Hayami et al.,
2011; Højfeldt et al., 2013). Harris et al. delineated the potential
oncogenic role of LSD1 (KDM1A) in leukemia using the mouse
model of MLL-AF9 leukemia (Harris et al., 2012). In another
study, the authors showed that KDM2B was highly expressed
in leukemia samples and played central role in the etiology and
progression of acute myeloid leukemia (He et al., 2011). Thus,
histone demethylases were considered as putative epi-targets for
discovering anticancer agents. In the following section, we will
discuss the successful applications of computational approaches
in the field.

High Throughput Virtual Screening
In order to pursue novel LSD1 inhibitors, Hazeldine et al.
undertook the virtual screen strategy against Maybridge
compound library. Sitemap was employed to assess the
druggability of potential active chamber. Through high
throughput virtual screen in GLIDE, the authors identified a
total of 10 hits with GlideScore lower than −7.5 kcal/mol. The
most effective compound (compound 42 in Figure 3) featuring
amidoximes moiety displayed moderate in vitro activity with
the IC50 value of 16.8µM (Hazeldine et al., 2012). Later on,
Sorna and co-workers reported structure-based docking studies
with the ligand library containing 13 million compounds. High
Throughput Virtual Screen (HTVS) protocol integrated in
Schrödinger suite was applied and the database was subsequently
refined by rule of five filters to weed out nonbinders and
compounds with undesirable physicochemical parameters. Top
15% compounds were selected and re-ranked by combinatorial
scoring with GLIDE, ICM, and GOLD to discard false positives.
Based on chemical diversity analysis and visual inspection
of initial docking results, 121 compounds were selected
for biochemical validation and further medicinal chemistry
optimization led to the identification of novel LSD1 inhibitor
12 (compound 43 in Figure 3) with the IC50 value of 0.013µM
(Sorna et al., 2013). Continued efforts have been made toward
the discovery of potent, selective epi-probes against LSD1 and
other histone demethylases (compounds 44–45,47 in Figure 3)
based on computational approaches (Schmitt et al., 2013; Kutz
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et al., 2014; Roatsch et al., 2016). Chu et al. utilized GEMDOCK
to screen the NCI database (∼236,962 compounds) in silico and
identified a selective KDM4A/KDM4B inhibitor (compound 48
in Figure 3) with the IC50 value at micromolar level (Chu et al.,
2014). In 2016, Korczynska et al. performed molecular docking
screens using ZINC fragment library (∼600,000 commercially
available fragments) in DOCK version 3.6 leading to the
identification of 5-aminosalicylates as the KDM4C inhibitor with
good ligand efficiency. Further docking analysis and fragment
linking optimization yielded more potent inhibitor with Ki

value of 43 nM (compound 49 in Figure 3) against KDM4C
that highlighted the viable applications in fragment-based drug
discovery (FBDD) (Korczynska et al., 2016).

3D-QSAR Pharmacophore Modeling
In 2015, Zhou et al. presented pharmacophore-based ligand
mapping strategy against LSD1 using refined SPECS database
(∼171,143 small molecules) in Discovery Studio version 2.5.
3D conformations of 37 compounds with known activities (22
compounds for training set and 15 compounds for test set) were
generated and used to generate pharmacophore in HypoGen
module. The reliability of the pharmacophore model was verified
by Fischer randomization test and decoy set prediction. Through
combinatorial pharmacophore mapping and optimized docking
in database screening, the authors identified XZ-09 (compound
46 in Figure 3) as a selective LSD1 inhibitor with the IC50

value of 2.4µM that may serve as a lead compound for further
optimization (Zhou et al., 2015a).

READER

The posttranslational modifications on histone tails with
different modification states are recognized by specific epigenetic
readers, which recruit effector modules to stimulate different
functions. Until now there are several well-characterized
epigenetic readers including acetyl-lysine readers, methyl-
lysine readers, methyl-arginine readers, and phospho-serine
readers. Among them, lysine acetylation and methylation
related readers were studied extensively as drug targets in epi-
drug design and discovery. The acetyl-lysine readers consist
of bromodomains and the tandem PHD domains (Lange
et al., 2008; Filippakopoulos et al., 2012). And the readers
associated with lysine methylation include PHD zinc finger
domains, WD40, Tudor, double/tandem Tudor, MBT, Ankyrin
Repeats, zf-CW, PWWP, and chromodomains (Kim et al.,
2006; Collins et al., 2008; Musselman and Kutateladze, 2009;
He et al., 2010; Rona et al., 2016; Schapira et al., 2017).
Emerging evidence demonstrated the dysfunction of epigenetic
readers is implicated in various diseases such as cancer,
intellectual disability, aging, autoimmune disease, inflammation
and acquired immune deficiency syndrome (Baker et al., 2008;
Greer and Shi, 2012; Jung et al., 2015). So far, several successful
compounds selectively targeting epigenetic reader domains have
been reported and some of them enter into clinical studies
(Greschik et al., 2017). Herein, we focus on the computer-
aided drug discovery in epigenetic readers and review the
successful examples to illuminate the advantages and potential

applications of computational drug design and discovery in this
field (Figure 4).

Druggability Prediction
Based on the complex crystal structure information of epigenetic
readers with their relative substrates or small molecule inhibitors,
the druggability of these targets could be easily predicted by
computational methods. Many pragmatic programs have been
developed and applied to explore potential drug-actionable
pocket and assess the druggability of these binding sites (Halgren,
2009; Fauman et al., 2011). In 2011, Santiago et al. conducted
the systematic druggability prediction for methyl-lysine binding
proteins (Santiago et al., 2011). Based on the terms like steric
volume, enclosure and hydrophobicity of the pocket, the Dscores
of potential pockets were calculated using SiteMap. The results
revealed that the druggability of different of methyl-lysine
readers was highly variable dependent on backbone motion
and intramolecular interactions, among which chromodomains,
WDR domains and PWWP domains were more targetable
than others like Tudor and PHD domains for small molecule
inhibitors.

In 2012, to explore the druggability for bromodomains, the
acetyl-lysine binders, Vidler et al. retrieved the available crystal
structures of 33 human bromodomains from the Protein Data
Bank (PDB) and evaluated druggability in SiteMap (Vidler et al.,
2012). Among them, bromodomain, and extra-terminal (BET)
family was predicted as the highly druggable target, which
was already proved by small molecule inhibitors studies, but
it could not represent the whole bromodomain families. The
authors classified 49 bromodomains into eight categories based
on common binding site features and found that only one of
them showed the comparable druggability with the BET family
including CECR2, FALZ (A/B), GCN5L2, PCAF, TAF1 (A/B)(2),
and TAF1L(2). Other groups were predicted with low scores
suggesting to be challenging for epi-drug discovery. Collectively,
these work uncovered novel druggable readers that were less
explored before, which provided new opportunities for drug
discovery.

Combinatorial in Silico Virtual Screen
Approaches
With the rapid development of BET inhibitors, more complex
crystal structures were obtained, which made structure-based
virtual screen and chemical modifications more easily. Based
on the well-known critical interactions between BET family and
related inhibitors, many computational studies were performed
to develop novel chemotypes for BET family.

In 2013, a high throughput virtual screening was performed
with more than 7 million small molecules from the Dictionary of
Natural Products, the ChEMBL database, and the ZINC database
by Lucas and colleagues in order to discover novel inhibitors
of BRD4(1) (Lucas et al., 2013). Based on standard precision
and extra precision algorithm for molecular docking in GLIDE
version 5.6, top-ranked 500 hits were clustered into 33 diverse
categories. According to the prediction of several properties
including physicochemical, pharmacokinetic, toxicological and
binding promiscuity using various computational approaches,
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FIGURE 4 | Chemical structures of epigenetic reader inhibitors mentioned in this review.

22 candidate compounds were selected for further experimental
validation. Finally, 7 compounds comprising 6 different novel
scaffolds (compounds 51–56 in Figure 4) were identified with
significant binding affinity. The subsequent resolved complex
structures of BRD4(1) with XD14, XD1, and XD25 revealed the
accurate binding modes consistent with the docking simulation.

In 2015, Allen et al. developed in silico screening approaches
against kinases and bromodomains, which integrated machine
learning and structure-based drug design strategies. At last
several BRD4 inhibitors (compounds 57–58 in Figure 4) and

one dual EGFR-BRD4 inhibitor (compound 59 in Figure 4)
were identified (Allen et al., 2015). Similarly, Xue and co-
authors performed another structure-based virtual screening
against BET bromodomains (Xue et al., 2016). Approximately
10,000 compounds were firstly screened against BRD4(1) in
GLIDE version 6.1. Through binding free energy assessment
and cluster analysis, 15 representative compounds were chosen
for biological evaluation. The results showed two compounds
with benzo[cd]indol-2(1H)-one scaffold were identified as novel
inhibitors targeting the BRD4(1). Before the optimization of
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this scaffold, binding modes of these two compounds were
predicted by molecular docking in order to characterize the
critical interactions. A 20 ns MD simulation was subsequently
performed, which indicated the conformations were stable
and reasonable for hit optimization. Further SAR analysis
and resolved complex crystal structures provided guidance for
hit optimization leading to the discovery of compound 85
(compound 60 in Figure 4) with high-potency biological activity.

Concomitantly, Tripathi et al. carried out a virtual screening
against BRD2(2) using 1,700 compounds in NCI Diversity
Set III library (Tripathi et al., 2016). The candidates were
selected according to the free energy values, critical binding
conformations, and ligand efficiency. Among them, crystal
structure of compound NSC127133 (compound 61 in Figure 4)
in complex with BRD2(2) was resolved, which displayed distinct
structural features. In 2017, Ayoub et al. performed high
throughput virtual screen with 6,000,000 compounds in ZINC
database using the crystal structure of BRDT(1) (Ayoub et al.,
2017). A dihydropyridopyrimidine scaffold (compound 62 in
Figure 4) was identified with highly selectivity for BET family
and submicromolar affinity for BRD4(1) and BRDT(1), which
could be easily synthesized in one step.

With many new scaffolds uncovered from high throughput
virtual screening, Raj et al. made an attempt to screen with
flavonoids and derivatives instead of a common library with
large collections of compounds (Raj et al., 2017). The followed
ADMET properties analysis demonstrated the good drug-
likeness properties of the identified compounds (compounds 63–
66 in Figure 4) suggesting potential applications in the therapies
for BET-related diseases. In another study, Deepak et al. designed
three benzotriazepipne analogs using in silico tools with the
aim to improve the selectivity between BET family members
(Deepak et al., 2017). Combined with ensemble docking, MD
simulation and binding energy calculation, compound Bzt-W49
(compound 67 in Figure 4) was synthesized and showed about
10-folds selectivity toward BRD4 compared to BRD2.

Besides the virtual screening efforts against BET family,
drug discovery toward other readers has also progressed a
lot in recent years. In 2016, a structure-based pharmacophore
modeling combined with molecular docking were carried out to
identify small molecule inhibitors of methyllysine reader protein
Spindlin1 (Robaa et al., 2016). Several hits (compounds 68–
70 in Figure 4) were subject to 2D-chemical similarity search
and medicinal optimizations which improved the potency over
10-folds.

In addition to the in silico structure-based virtual screening
against commercial libraries directly, the ligand-based
computational methods would also help to improve the
efficiency of virtual screening. In 2013, Vidler et al. carried out
substructure searches for advanced enrichment of chemotypes in
two branches (Vidler et al., 2013). For one thing, substructures
that mimicked the acetyl-lysine moiety were searched in
database. For another, similarity searching was performed
to identify distinct chemotypes from known inhibitors using
pharmacophore models, shape-based 2D fingerprint searches.
The extensive set of substructures obtained was submitted to
molecular docking in eMolecules database and manual selection

for further experimental validation. Finally six novel hits
(compounds 71–76 in Figure 4) including four unprecedented
acetyl-lysine mimetics were identified. Structure-guided
chemical modifications were performed based on complex
crystal structures to improve the potency. In 2016, Hugle et al.
screened PurchasableBoX library to select analog of previously
identified bromodomain inhibitor XD14 (compound 52 in
Figure 4) (Hügle et al., 2016). Several candidates were used
to explore the SAR of XD14 and additional structural features
of BRD4 through DFT calculation, atom-based QSAR and
ligand-based pharmacophore, which offered the guidance for the
development of novel BRD4(1) inhibitors.

Fragment-Based Drug Discovery
Fragment-based drug discovery has been widely practiced in
drug discovery and some FBDD-derived drugs have entered
into the clinical study (Erlanson et al., 2016). Many CADD
integrated tools have been designed for scaffold replacement and
fragment growing such as Molecular Operating Environment
(MOE) developed by Chemical Computing Group, which could
accelerate the pace of FBDD-guided drug discovery. In 2012,
Chung et al. firstly built a fragment library that contained
substructures with acetyl-lysine mimetic functional groups to
identify novel BET inhibitors (Chung et al., 2012). The library
was filtered to eliminate unsuitable substructures based on “rule
of three” and predicted pKa values. The remaining fragments
were clustered and then representative members were selected
in each cluster according to docking results. Coupled with
follow-up experiments, Chung and colleagues identified several
compounds (compounds 77–81 in Figure 4) with two novel
fragment scaffolds, which significantly extended the chemotypes
of current inhibitors.

In 2013, Zhao et al. built a fragment library to discover
novel BRD4 inhibitors (Zhao et al., 2013a). The fragment
compounds in ZINC database were filtered by particular rules
including molecular weight ≤ 250 Da, rotatable bonds ≤ 5, log
P ≤ 3.5, and 1 ≤ smallest set of small ring ≤ 4. According
to the Tanimoto similarity calculated in Pipeline Pilot, 487
representative fragments were purchased to build the fragment
library. Through molecular docking with established in-house
library and crystallization experiments, 9 fragments were
identified in the binding pocket of BRD4(1) in the solved crystal
structures and four of them (compounds 82–85 in Figure 4) were
presented in Figure 4. Further pharmacokinetic study showed
the great potential for further drug development. In 2017, Ali
et al. performed docking-based virtual screening with fragment-
like database containing nearly 800,000 compounds from ZINC
database in an effort to pursue BRD4 inhibitors (Ali et al., 2017).
Finally, the authors unveiled the discovery of a novel scaffold
(compound 86 in Figure 4) contained [1,2,4]triazolo[4,3-
α]quinoxaline as BET inhibitors. Several rounds of chemical
modification led to the synthesis of analogwith high potency and
improved pharmacokinetic properties.

Target-Specific Scoring Function
Considering the better druggability for BET family, many
efforts were devoted to the discovery of novel BET inhibitors.
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However, the performance of either virtual screening or high
throughput screening varies and shows high rate of false
positives, which restricts the applications in this field. In order to
improve enrichment factor in screening, a BRD4-specific score
named BRD4LGR was developed through machine-learning-
assisted approach by Xing et al. (Xing et al., 2017). First-
round virtual screening was performed in GLIDE version 5.6
and 453 compounds were selected for in vitro evaluation
resulting in a high false positive rate of 95%. Based on
the first-round screening results and other reported studies,
structure and activity data of 814 compounds was collected
to construct specific scoring function. The authors identified
critical molecular interaction features from reported complex
structures and established logistic regression model to correlate
the interaction features to potencies. Compared with GLIDE
and PMF, BRD4LGR discriminated BRD4 inhibitors and non-
inhibitors more effectively with high specificity and sensitivity.
A second-round virtual screening using BRD4LGR identified 15
new active compounds with a lower FP rate at 85%. Beyond
this, BRD4LGR was capable of interpreting key structure-activity
relationships of BRD4 inhibitors, which would be quite valuable
for chemistry optimization.

In a follow-up study, Jiang et al. employed virtual screening
strategy with an in-house compound library containing 887
FDA-approved drugs using BRD4LGR scoring model (Jiang
et al., 2017). The docking-based virtual screening coupled
with similarity-based analog searching led to the discovery of
nitroxoline (compound 87 in Figure 4) as a potent and novel
BET inhibitor that was previously used to treat urinary tract
infections. The successful application of BRD4LGR suggested
potential use of nitroxoline in the treatment of BET family-
related diseases.

Quantum Mechanical Calculations
Quantum mechanical calculations are commonly used to
understand the nonbonding interactions, such as cation-π and
hydrogen bond interactions. In order to explain the different
affinity of 1,5-naphthyridine derivatives,Mirguet et al. carried out
in vacuo QM calculations to calculate the bound conformations
of several derivatives in their complex with BRD2 (Mirguet
et al., 2014). The results showed that the differences in internal
geometric energy might account for differences in relative
bioactivity.

Besides, quantum mechanical calculations could be applied
in combination with other computational studies in epi-probes
discovery. In 2014, Rooney et al. identified two CREBBP
bromodomain inhibitors with weak activity by in silico screen
and biochemical assays (Rooney et al., 2014). Further structure-
based chemical modifications led to the compound (R)-1
(compound 88 in Figure 4) with the IC50 value of 758 nM. The
complex structure of (R)-1 and CREBBP bromodomain revealed
an induced-fit pocket that didn’t exist in apo-form. (R)-1 formed
a cation-π interaction with R1173 to maintain the stability of
the conformation. In an effort to rationalize the importance of
the cation-π interaction, the authors undertook MD simulation
in which the cation-π interaction was observed for 40% of the
trajectory time. Then the strength of cation-π interaction was

estimated by DFT calculations with the strength value of 3.2–
4.7 kcal mol−1 in accordance with the experimentally measured
average strengths involving lysine or arginine. Meanwhile, DFT
calculations were also applied to confirm the significance of
internal hydrogen bound in ligand conformation which were also
applicable in other studies.

PROTEIN-PROTEIN INTERACTION

Epigenetic enzymes from the same protein subfamily often
share similar catalytic core pockets and cofactors within family
members, thus making it quite difficult to discover and design a
selective inhibitor. A growing body of evidence suggests that a
variety of protein–protein interactions (PPIs) are indispensable
for integrity and oncogenic function of epigenetic enzymes.
Therefore, these PPIs appear to be alternative drug targets to
modulate chromatin state in epigenetic drug discovery. Due
to the unique structural features of PPIs, which have large
and flat contact surface and the lack of well-defined pockets,
it remains challenging to explore small molecule inhibitors
targeting epigenetic interactome (Wells and McClendon, 2007).
However, with high-resolution protein complex structures
resolved, advanced computational tools developed and renewed
understanding of PPIs mechanisms, great progress has been
made in the development of small molecule inhibitors (Scott
et al., 2016). Here, we focus on the application of CADD
methods, including structure-based virtual screening, scaffold
hopping, structure-based pharmacophore modeling, and ligand-
based pharmacophore profiling in the discovery and design
of small molecule inhibitors targeting important epigenetic
PPIs including EZH2-EED, WDR5-MLL1, and Menin–MLL1
(Figure 5).

EZH2-EED

Polycomb repressive complex 2 (PRC2) specifically trimethylates
lysine 27 at histone H3, which is one of the cardinal marks for
transcriptional repression (Simon andKingston, 2009). Enhancer
of zeste homolog 2 (EZH2) is the catalytic subunit of PRC2,
which requires two additional subunits embryonic ectoderm
development (EED) and suppressor of zeste 12 (SUZ12) for
full functional activity (Czermin, 2002; Cao and Zhang, 2004).
Aberrant PRC2 activity has been reported in the initiation
and progression of wide range of cancers (Chang and Hung,
2012). Thus drug design and discovery targeting the PRC2
complex formation represents the unique strategy in chemical
intervention.

Drug repositioning is an increasingly attractive strategy widely
applied in biopharmaceutical companies to identify alterative
therapeutic indications from approved drugs (Ashburn and Thor,
2004). In 2014, in order to pursue EZH2-EED inhibitors, Kong
et al. utilized structure-based virtual screening approach to enrich
the hits from in-house compound library containing ca. 1,000
existing drugs (Kong et al., 2014). The standard precision and
extra precision mode in GLIDE version 5.5 were subsequently
employed to perform docking-based virtual screening leading
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FIGURE 5 | Epigenetic PPI inhibitors. (A–C) Chemical structures of the inhibitors mentioned in this review. (D–F) The detailed interactions patterns of EZH2-EED (PDB

code: 2QXV), WDR5-MLL1 (PDB code: 3EG6), and Menin-MLL1 (PDB code: 4GQ6). EED, WDR5, and Menin are represented in surface contours. The side chains of

key residues involved in hydrophobic interactions are depicted in red while the ones involved in polar interactions are depicted in yellow.

to the identification of astemizole (compound 89 in Figure 5),
a FDA-approved antihistamine drug as moderate EZH2-EED
inhibitor with K i value of 23.0µM. Further biophysical assays
and cellular studies demonstrated the competitive MOA of
astemizole and its inhibition for intracellular PRC2 activity.

WDR5-MLL1

Mixed lineage leukemia 1 (MLL1) is the histone
methyltransferase responsible for the H3K4 methylation.
MLL1 interacts with many chaperons including WD repeat-
containing protein 5 (WDR5), a common unit that is essential
for the integrity of the catalytic core complex (Dou et al.,
2006). Therapeutically targeting WDR5-MLL1 interaction by
peptidomimetic inhibitors has been demonstrated as a promising
strategy for MLL fusion-mediated acute leukemogenesis (Karatas
et al., 2013).

In 2016, Getlik and co-workers designed focused library
in silico guided by crystal structure information and initial

SAR exploration on previously identified benzamides scaffold
(Getlik et al., 2016). An exhaustive virtual enumeration
was performed in Pipeline Pilot to search all accessible
building blocks containing benzamides moieties. The set of
compounds with poor physicochemical properties were removed
by OICR HTS filters. About 1,200 acyl halides and 9,000
acids/esters were enumerated and used for further medium-
throughput virtual screening. Subsequently, molecular docking
was performed in GLIDE with one H-bond constraint to the
side chain of S91 in WDR5. Through overall consideration
of the docking score, binding pose, structural complexity
and synthetic difficulty, 50 representative compounds were
selected by visual inspection and prioritized as candidates for
synthesis and verification. Finally, 4-(trifluoromethyl)pyridin-
2(1H)-one moiety was discovered as better alternative in
replacement of the benzamide moiety. Among the derivatives,
the optimized antagonist 16 days (compound 90 in Figure 5)
was the most potent inhibitor against WDR5-MLL1 with
the Kdisp value of 60 nM, which offered novel therapeutic
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options in the treatment of leukemia harboring MLL fusion
proteins.

Menin-MLL1
The oncoprotein MLL1 can directly associate with cofactor
Menin through N-terminal 43 amino acids including twoMenin-
binding motifs (MBMs), MBM1 (Kd = 53 ± 4.2 nM) and
MBM2 (Kd = 1.4 ± 0.42µM) (Grembecka et al., 2010).
Menin-MLL1 interaction is required for oncogenic function
of MLL fusion proteins and contributes to related leukemia
pathogenesis (Yokoyama and Cleary, 2008; Huang et al., 2012).
Thus, the Menin-MLL1 PPI interface has been spotlighted
as a potential target for epi-drugs development against MLL-
mediated leukemia.

In 2014, Li et al. employed structure-based pharmacophore
modeling targeting the Menin–MLL1 interface based on the
interaction patterns of Menin and MBM1 complex structure
(PDB ID: 4GQ6) (Shi et al., 2012; Li et al., 2014). 10 best
pharmacophore models were generated in Discovery Studio
3.0, considering the features of HBD, HBA, and hydrophobic
group. Based on overall consideration of the fitness score in
generated models, excluded volumes and hot spots analysis,
one pharmacophore model with two hydrophobic groups
and a hydrogen bond acceptor was selected as a query
for follow-up virtual screening. Then an in-house library
comprising 900 exiting drugs was built and queried by
the constructed pharmacophore model. 29 compounds were
finally selected for biochemical verification. Among them,
two aminoglycoside antibiotics, neomycin and tobramycin
(compounds 91–92 in Figure 5), were identified as Menin–
MLL1 inhibitors in fluorescence polarization competition assay
with binding affinities of 18.8 and 59.9µM, respectively.
Thermal shift assay and isothermal titration calorimetry
validated the direct interactions between the two antibiotics and
Menin. Molecular docking analysis indicated these antibiotics
competitively occupied the binding site of MLL1 in the central
cavity of Menin.

In 2016, Xu and co-workers conducted the structure-based
molecular docking and ligand-based pharmacophore modeling
to obtain Menin-MLL1 inhibitors (Xu et al., 2016). To establish
the ligand data set, 74 previously reported inhibitors classified
into three categories were collected and 5,000 decoy compounds
were generated based on 10 compounds with best potency by
DecoyFinder (Cereto-Massagué et al., 2012). For one thing,
molecular docking with various constrained conditions was
subsequently performed in GLIDE. According to the Glide
score and enrichment factor (EF) values, non-constraint SP
docking approach performed best and was more appropriate
for SBVS that could well distinguish known inhibitors from
decoys for Menin-MLL1 inhibitors. For another, ligand-based
pharmacophore models with 4–6 pharmacophore features (HBA,
HBD, hydrophobic group, aromatic ring and positively or
negatively charged group) were generated from those collected
inhibitors with pIC50 > 5.0. 3D-QSAR models were then
developed based on the built pharmacophore models through
partial least-squares (PLS) regression analysis. Through the
joint LBVS and SBVS computational strategies, five compounds

with novel scaffolds were identified as Menin-MLL1 inhibitors
validated by fluorescence polarization assay. Among them,
DCZ_M123 (compound 93 in Figure 5) showed the most potent
inhibitory activity in vitro with the IC50 value of 4.7µM and
could effectively inhibit the growth of MLL leukemia cells by
impairing the Menin-MLL1 interaction in cell-based assays.

Scaffold hopping was proposed as a promising strategy to
look for novel molecular entities with similar three dimensional
conformations and properties (Schneider et al., 1999). As a
shape-based three dimensional structure superposition method,
it has been extensively used to generate potential alternatives
of known compounds based on the bioisosteric replacement
of core motif within molecules (Sun et al., 2012; Lamberth,
2017). In 2016, Yue et al. applied a shape-based scaffold
hopping approach to reposition approved drugs targeting the
Menin-MLL1 interaction (Yue et al., 2016). In the study,
reported bioactive conformations of representative Menin-MLL1
inhibitors MI-2-2 and MIV-6R (PDB code 4GQ4 and 4GO8,
respectively) were used as query (Shi et al., 2012; He et al.,
2014). An in-house library comprising∼1,600 existing drugs was
aligned onto the query to perform 3D similarity searching using
SHAFTS (Liu et al., 2011; Lu et al., 2011). A set of 12 top ranked
compounds with SHAFTS similarity scores >1.2 (maximum
2.0) were selected for primary validation, which indicated that
loperamide, previously used as anti-diarrhea agents, showed
weak inhibition with the IC50 value of 69µM. Further molecular
docking analysis and medicinal chemistry optimization led to
the identification of more potent loperamide-derived analog.
Among them, DC_YM21 (compound 94 in Figure 5) presented
nanomolar inhibitory activity of the same order of magnitude as
the reported inhibitor MI-2-2.

FUTURE PERSPECTIVES

Computational methods are indispensable and creditable tools
in both academia and industry that undoubtedly streamline
the epi-drug and epi-probe discovery process. The focal point
of this review is the state of art of CADD methods in epi-
drug design and discovery framework over the past decades.
Tremendous progress has been achieved in epigenetic drug
discovery based on in silico approaches as we have mentioned
above which unequivocally draws a positive picture in the field.
However, it is widely accepted that these aforementioned hit-
finding methodologies are far from perfect and not omnipotent
in all situations. There are still formidable challenges that
need to be overcome which limit the effective applications
of current computational methods. Firstly, current molecular
docking scoring functions rank the compounds collections with
inherent poor prediction accuracy in novel target drug discovery
whose function has just been unraveled not long ago (Sable
and Jois, 2015). Secondly, traditional docking algorithms fail
to take complicated factors into full consideration like protein
flexibility, solvation, entropy, and dynamic inclusion of water
molecules (Clark, 2008; Lavecchia and Di Giovanni, 2013). Thus,
it’s difficult to precisely predict the absolute binding energy
for ligand-protein interactions based on current methodologies.
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There are some reviews that investigate protein flexibility in detail
(Barril and Fradera, 2006). However, the current computational
methodology considering this issue is time-consuming that needs
to be further improved. Thirdly, despite the fact that epigenetic
enzymes have been actively pursued as potential drug targets,
there is still conspicuous lack of potent chemical probes for
a large number of knotty targets like HATs and epigenetic
protein-protein interactions, which needs to be further explored.
For these less well-studied epi-targets, there are few inhibitors
with limited diversity of scaffolds ever reported that hinders
the ligand-based drug design and development. For instance,
PRMT5-MEP50 complex formation could enhance the stability
and activity of PRMT5 and the PPI is essential for cancer cell
invasion in lung cancer and breast cancer (Chen et al., 2017).
Heterooctameric PRMT5-MEP50 complex structure has been
resolved which enables structure-based drug design. Nonetheless,
no chemical probes have ever been reported for such novel
targets. Fourthly, the bioactivities of identified inhibitors vary
considerably due to different assay platforms in differ different
labs. Some of the reported inhibitors belong to pan-assay
interference compounds and present non-specific interactions
that have not been carefully examined (Dahlin et al., 2017).
Overinterpretation of these results leads to misleading readouts
and would go to the cul-de-sac in drug discovery process.
Taken together, there are still many problems left unsolved
which encourage the researcher to devote more drug discovery
efforts in order to fill the vacancy in this field. To tackle with
these issues, integrated SBVS and LBVS approaches should be
applied to counterbalance their own limitations in a parallel
manner in virtual screen campaigns. As for novel targets
with fewer inhibitors ever reported, computational methods

should be applied in synergy with experimental approaches.
Multidisciplinary efforts shall be devoted to generate more
diverse machine learning datasets for the establishment of
target-customized scoring functions, which in turn help to
exploit chemical space available in database as thoroughly as
possible. Meanwhile, the researchers should carefully examine
the biological data before interpreting the biological results. This
appeals to the researchers to develop a reliable experimental
platform to standardize current biochemical assays. It could
be expected that with rapid development of computational
power and methodologies, more epi-drugs and epi-probes will
be developed in the near future, which could not only help to
uncover the elusive role of each node in epigenetic regulatory
network but also guide optimum therapeutic options in the
treatment of epigenetic-related diseases.
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In a continuation of our previous work for the exploration of novel enzyme inhibitors,

two new coumarin-thiazole 6(a–o) and coumarin-oxadiazole 11(a–h) hybrids have been

designed and synthesized. All the compounds were characterized by 1H- and 13C-NMR

spectroscopy and elemental analysis. New hybrid analogs were evaluated against

acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) in order to know their

potential for the prevention of Alzheimer’s disease (AD). In coumarinyl thiazole series,

compound 6b was found as the most active member against AChE having IC50 value

of 0.87 ± 0.09µM, while the compound 6j revealed the same efficacy against BuChE

with an IC50 value of 11.01 ± 3.37µM. In case of coumarinyl oxadiazole series, 11a

was turned out to be the lead candidate against AChE with an IC50 value of 6.07 ±

0.23µM, whereas compound 11e was found significantly active against BuChE with an

IC50 value of 0.15 ± 0.09µM. To realize the binding interaction of these compounds

with AChE and BuChE, the molecular docking studies were performed. Compounds

from coumarinyl thiazole series with potent AChE activity (6b, 6h, 6i, and 6k) were found

to interact with AChE in the active site with MOE score of −10.19, −9.97, −9.68, and

−11.03 Kcal.mol−1, respectively. The major interactions include hydrogen bonding, π-π

stacking with aromatic residues, and interaction through water bridging. The docking

studies of coumarinyl oxadiazole derivatives 11(a–h) suggested that the compounds

with high anti-butyrylcholinesterase activity (11e, 11a, and 11b) provided MOE score of

−9.9, −7.4, and −8.2 Kcal.mol−1, respectively, with the active site of BuChE building

π-π stacking with Trp82 and water bridged interaction.

Keywords: coumarin thiazoles, coumarin oxadiazoles, cholinesterase inhibition, molecular docking, MOE score
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INTRODUCTION

Alzheimer’s disease (AD), the most common cause of dementia,
is a neurodegenerative disorder mainly characterized by
progressive deterioration of memory and cognition (Terry
and Buccafusco, 2003). One of the key therapeutic strategies
adopted for primarily symptomatic AD is based on the
cholinergic hypothesis targeting cholinesterase enzymes
(acetylcholinesterase and butyrylcholinesterase; Cummings
et al., 2007), two important enzymes from the group of serine
hydrolases. Structurally, these serine hydrolases belong to the
class of proteins known as the esterase/lipase family within the
α/β-hydrolase fold superfamily (Cygler et al., 1993). The major
role of AChE is the inhibition of the hydrolysis of acetylcholine
in cholinergic synapses. Thus, blocking its metabolic activity
and increasing the ACh concentration ultimately leading to
a possible symptomatic treatment option for AD, whereas,
the functional activity of butyrylcholinesterase (BChE) is less
understood because it can hydrolyze ACh as well as other esters
(Groner et al., 2007; Chiou et al., 2009). Butyrylcholinesterase
has recently been considered as a potential target because it
also plays an important role in regulating ACh level (Mesulam
et al., 2002). AChE inhibitors currently approved as drugs for
the treatment of Alzheimer’s disease are donepezil, rivastigmine,
galantamine, and tacrine (Figure 1). Although, donepezil is most
commonly used AChE inhibitor, its Aβ formation inhibition
activity is weak (Bartolini et al., 2003). In view of the limited
number of cholinesterase inhibitors currently available for the
treatment of AD, the search for new and potent inhibitors
is of significant interest and a progressive area of current
research.

Among oxygenated heterocycles, coumarin compounds
have sustained efficacy as they inhibit both acetyl- and
butyrylcholinesterase enzymes and help to slow down the
formation of amyloid compounds (de Souza et al., 2016).
Coumarins, both natural and synthetic demonstrate a wide
spectrum of biological functions as they offer a wide range
of structural changes on benzopyran ring. Activities like anti-
tubercular (Manvar et al., 2011), anti-tumor (Maddi et al., 2007),
anti-HIV (Kashman et al., 1992), anti-inflammatory (Ronad
et al., 2010), anti-cancer (Olmedo et al., 2012), and anticoagulant
(Martin-Aragón et al., 2001) have been reported. In addition,
thiazole and oxadiazole skeletons are fundamentally important

FIGURE 1 | Cholinesterase inhibitors used in AD therapy.

and versatile structural analogs of five-membered heterocyclic
compounds. They show a vast majority of biological activities
(Klimesová et al., 2004; Hang and Honek, 2005; Campiglia
et al., 2009; Siddiqui et al., 2009; Jaishree et al., 2012; Romagnoli
et al., 2012; Helal et al., 2013; Naveena et al., 2013; Venugopala
et al., 2013; Yavari et al., 2014) in addition to be a part of
numerous complex natural products like vitamin B1, penicillin
(Shaker, 2006), and thiamine pyrophosphate, an important
co-enzyme.

In the present study, two new coumarin-thiazole 6(a–o)

and coumarin-oxadiazole 11(a–h) hybrids were synthesized
and evaluated for their acetylcholinesterase (AChE) and
butyrylcholinesterase (BuChE) inhibitory activity. Furthermore,
the molecular docking studies on both series were also performed
to explore their binding interactions.

RESULTS AND DISCUSSION

Chemistry
Two series of coumarinyl thiazoles 6(a–o) and oxadiazoles 11(a–
h) were prepared with the aim to identify new and potent
inhibitors of acetylcholinesterase and butyrylcholinesterase.
Coumarinyl thiazole derivatives 6(a–o) were accessed through
a multi-component reaction approach which starts with
the preparation of 3-(2-bromoacetyl)-2H-chromen-2-one (3)

via base-catalyzed condensation of readily available starting
materials (salicylaldehyde and ethyl acetoacetate) followed
by bromination (Scheme 1; Ibrar et al., 2016). An acid-
catalyzed one-pot reaction of intermediate 3, different substituted
acetophenones (4) and thiosemicarbazide (5) provided the title
compounds 6(a–o) in good yields (Ibrar et al., 2016).

In a second series, coumarinyl oxadiazole-2(3H)-thione
conjugates 11(a–h), the central intermediate 3-(5-thioxo-
4,5-dihydro-1,3,4-oxadiazol-2-yl)-2H-chromen-2-one (8)

was prepared by the reaction of coumarinyl hydrazide
(7) with carbon disulfide in ethanolic solution of KOH
in good yield (Pattan et al., 2009). A one-pot reaction of
compound 8, paraformaldehyde (9) and different (aliphatic
and aromatic) amines (10) gave the desired compounds
11(a–h) in good yields (Scheme 2). The compounds were
characterized by various spectroscopic techniques and full
spectro-analytical data is described in our recent report (Ibrar
et al., 2016).
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SCHEME 1 | One-pot multi-component synthetic protocol for the preparation of coumarinyl thiazole derivatives 6(a–o).

SCHEME 2 | One-pot multi-component synthetic protocol for the preparation of coumarin-oxadiazole-2(3H)-thione conjugates 11(a–h).
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TABLE 1 | Inhibition potency of coumarinyl thiazoles 6(a–o) against AChE and BuChE.

Compound Substituent (R) Substituent (Ar) AChE BuChE Selectivity for

IC50 (µM) ± SEMa AChE BuChE

6a Me Ph 16.91 ± 0.32 32.7 ± 2.08 1.93 0.51

6b Me 3-NH2-Ph 0.87 ± 0.09 31.22 ± 0.17 35.8 0.027

6c Me 2-Br-Ph 21.19 ± 0.23 19.33 ± 1.42 0.91 1.09

6d Me 3-Br-Ph 30.06 ± 1.73 15.16 ± 0.53 0.50 1.98

6e Me 4-Br-Ph 33.42 ± 0.18 49.12 ± 0.12 1.47 0.68

6f Me 2-F-Ph 23.06 ± 0.32 32.07 ± 1.21 1.39 0.71

6g Me 4-F-Ph 36.34 ± 0.18 28.01 ± 0.21 0.77 1.29

6h Me 4-OMe-Ph 1.08 ± 0.84 19.32 ± 0.11 17.8 0.055

6i Me 3-F-4-OMe-Ph 2.34 ± 1.43 22.1 ± 1.08 9.44 0.105

6j Me 2-OH-4-OMe-Ph 9.05 ± 0.23 11.01 ± 3.37 1.22 0.81

6k Me 4-OH-3-OMe-Ph 5.86 ± 0.15 19.13 ± 1.32 3.29 0.303

6l Me 3-I-4-OMe-Ph 13.84 ± 1.58 32.1 ± 1.08 2.32 0.42

6m Me 2-NH2-4-Cl-Ph 22.74 ± 0.16 37.17 ± 0.55 1.63 0.61

6n Ph Ph 11.19 ± 0.17 21.6 ± 3.09 1.94 0.51

6o Me Coumarin 10.1 ± 1.12 23.19 ± 0.29 2.28 0.43

Neostigmine – – 28.2 ± 2.01 16.1 ± 1.13 0.57 1.75

Donepezil – – 7.23 ± 0.13 0.03 ± 0.003 0.004 241

aSEM, Standard mean error of three experiments.

TABLE 2 | Inhibition potency of coumarinyl oxadiazoles 11(a–h) against AChE and BuChE.

Compound Substituent (R1) Substituent (R2) AChE BuChE Selectivity for

IC50 (µM) ± SEMa AChE BuChE

11a H Me 6.07 ± 0.23 0.341 ± 0.06 0.056 17.8

11b H n-Bu 9.41 ± 0.55 0.77 ± 0.08 0.081 12.2

11c H 4-Me-Ph 23.8 ± 0.94 8.01 ± 3.58 0.33 2.97

11d H 2-Cl-Ph 16.6 ± 2.72 3.48 ± 1.58 0.20 4.77

11e H 3-Cl-Ph 12.4 ± 0.08 0.15 ± 0.09 0.012 82.6

11f H 4-Cl-Ph 18.6 ± 0.32 12.1 ± 1.08 0.65 1.53

11g Ph Ph 9.57 ± 1.42 4.54 ± 0.54 0.47 2.10

11h Morpholine 12.2 ± 1.67 13.46 ± 0.41 1.09 0.91

Neostigmine – – 28.2 ± 2.01 16.1 ± 1.13 0.57 1.75

Donepezil – – 7.23 ± 0.13 0.03 ± 0.003 0.004 241

aSEM, Standard mean error of three experiments.
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FIGURE 2 | Structure-activity relationship of compound 6b with 6d, 6h, 6i, and 6k.

Pharmacology
The target compounds, coumarinyl thiazoles 6(a–o) and
coumarinyl oxadiazoles 11(a–h), were screened for their
inhibitory activity against AChE and BuChE by Ellman’s method.
All the assays were carried out at micromolar level using
neostigmine and donepezil as standard inhibitors having IC50

values of 28.2± 2.01 and 7.23± 0.13µM for AChE, whereas 16.1
± 1.13 and 0.03± 0.003µM for BuChE, respectively. The results
obtained for both series 6(a–o) and 11(a–h) are summarized in
Tables 1, 2. The IC50 values revealed that most of the synthesized
compounds displayed potent and selective inhibition toward
cholinesterases.

Among them, 6b of the coumarinyl thiazole series was found
to be the strongest AChE inhibitor with an IC50 value of 0.87
± 0.09µM (Table 1, Figure 2). This compound inhibited AChE
∼32-fold more strongly than the standard neostigmine, and
nine-fold as effective against AChE as the second standard
donepezil (IC50 = 7.23 ± 0.12µM). The strong inhibitory
potential of 6b could be credited to the electron-donating
amine group present at meta-position of the aryl ring. The
introduction of a bromo group at the meta-position produced

comparable results (6d; IC50 = 30.06 ± 1.73µM) to the
neostigmine. A slight decrease in the inhibition (IC50 = 1.08
± 0.84µM) was observed in case of compound 6h having
methoxy group at para-position but the inhibition was still 26-
fold stronger than the standard neostigmine (Figure 2). However,
compounds 6i and 6k bearing a double substitution at the aryl
ring showed IC50 values of 2.34 ± 1.34 and 5.86 ± 0.15µM,
respectively. These compounds incorporate a combination of
different electron-donating and electron-withdrawing groups
which could potentially lead to increase the several folds in AChE
inhibition than the neostigmine and comparable inhibition (in
case of 6k) to the donepezil (Figure 2). In the same series (6a–o),
a slight decrease in the inhibition was observed in compounds
6j, 6n, 6o, and 6l as compared to the potent analogs, but the
inhibition was still stronger compared to neostigmine.

On the other hand, in the coumarinyl oxadiazole series
(11a–h), compound 11a was found to be the most potent
AChE inhibitor having IC50 value of 6.07 ± 0.23µM (Table 2,
Figure 3). This inhibitory potency might be attributed to an
aliphatic methyl group substituted on the amine moiety. A slight
decrease in the inhibition was observed when the methyl group
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FIGURE 3 | Structure-activity relationship of compound 11a with 11b and 11d–f.

FIGURE 4 | Structure-activity relationship of compound 11a with 11g and 11h.

was replaced by another aliphatic (n-Bu) group as revealed by
compound 11b (IC50 = 9.41 ± 0.55µM). When these aliphatic
groups were replaced by aromatic substitutions as in 11c–f,
reduced inhibition was observed (Figure 3).

Moreover, oxadiazole compounds with morpholine
substituent (11g) and two phenyl groups (11h) were also
found as moderate inhibitors of AChE with two- and three-fold

higher inhibition as compared to neostigmine (Figure 4).
Overall, among the tested compounds, coumarinyl thiazoles
appeared as potent AChE inhibitors than the coumarinyl
oxadiazoles.

All the synthesized analogs were also evaluated for
butyrylcholinesterase inhibition and several compounds
were found to possess potent inhibitory activity higher than
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FIGURE 5 | Structure-activity relationship of compound 6j with 6d and 6h.

FIGURE 6 | Structure-activity relationship of compound 11e with 11a and 11b.

TABLE 3 | MOE score of highly ranked coumarinyl thiazole and oxadiazole

derivatives with the active site of AChE and BuChE.

Compound MOE score

(Kcal.mol−1) with

AChE (4EY7)

Compound MOE score

(Kcal.mol−1) with

BuChE (4BDS)

6b −10.19 11e −9.9

6h −9.97 11a −7.4

6i −9.68 11b −8.2

6k −11.03 11d −7.0

Neostigmine −7.03 Neostigmine −5.05

Donepezil −9.14 Donepezil −7.75

the standard neostigmine. Among the coumarinyl thiazoles,
compound 6j with dual electron-donating groups was the lead
inhibitor with IC50 value of 11.01 ± 3.37µM. Compounds
6d and 6h with meta-bromo and para-methoxy substituents

were also moderate inhibitors of BuChE (Figure 5). The other
compounds in the series showed weak inhibition for BuChE.

However, the coumarinyl oxadiazoles were strong inhibitors
of BuChE. Compound 11e bearing meta-chloro substituent
inhibited the BuChE with an IC50 value of 0.15 ± 0.09µM. This
compound was about 107-fold more potent than neostigmine.
The replacement of chloro phenyl with an aliphatic methyl and
n-Bu group (11a; IC50 = 0.341 ± 0.06µM, 11b; IC50 = 0.77
± 0.08µM) directed a small decrease in the inhibition but the
compounds were still several-folds more active than neostigmine
(Figure 6). The other compounds in the series 11c, 11d, 11f, 11h,
and 11g revealed significant inhibition more than the reference
standard.

In general, among the synthesized analogs, the compounds
from coumarinyl thiazole series (6a–o) were excellent AChE
inhibitors than the two reference drugs neostigmine and
donepezil while coumarinyl oxadiazoles (11a–h) showed strong
inhibition for BuChE than the standard neostigmine. All in
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FIGURE 7 | 2D binding pose representation of compound (A) 6b, (B) 6h, (C) 6k, and (D) donepezil with the active site of AChE (4EY7) chain A.

FIGURE 8 | (a) 3D ribbon model of AChE (4EY7) chain A (green) docked with

compound 6b (magenta) and co-crystalized ligand donepezil (yellow).

Interacting residues shown in ball and stick model (cyan). Black solid lines

represent hydrogen bonding. (b) Hydrophobic surface model and active site

cavity of the enzyme bound with donepezil (yellow) and compound 6b

(magenta).

all, the target analogs proved to be very potent inhibitors
of cholinesterase and by considering their strong inhibitory
potential, these heterocyclic hybrid compounds hold great

potential for the development of new targets for AD
therapy.

Molecular Docking Studies
Possible binding modes of coumarinyl thiazole and oxadiazole
derivatives were explored by MOE (Molecular Operating
Environment) software. Molecular docking studies revealed that
the thiazoles having high anti-acetylcholinesterase activity (6b,
6h, 6i, and 6k) represented better interaction with the active
site of AChE (4EY7) with MOE score of −10.19, −9.97, −9.68,
and−11.03 Kcal.mol−1, respectively, whereas oxadiazoles having
high activity against butyrylcholinesterase (11e, 11a, and 11b)
represented better interaction with BuChE (4BDS) with MOE
score of −9.9, −7.4, and −8.2 Kcal.mol−1, respectively, as
compared to reference ligands (neostigmine and donepezil) as
shown in Table 3. Compound 6b (IC50 = 0.87 ± 0.09µM)
demonstrated conventional hydrogen bonding with Glu202
(1.48 Å) and Ser203 (1.69 Å) due to amino group of aryl ring and
π-π stacking with Trp86, Trp286, and Tyr341 along with water
bridging with Tyr337, Tyr124, and Ser125 as shown in Figure 7A.
The impact of amino group on the activity of compound was
already mentioned earlier in the structure-activity relationship
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(Figure 2). Compound 6h (IC50 = 1.08 ± 0.84µM) represented
hydrogen bonding with Tyr72 (2.89 Å) and π-π stacking
with Trp86, Trp286, and Tyr341 and Phe338 along with water
bridging with Tyr72, Tyr124, and Thr83 as shown in Figure 7B.
Compound 6i (IC50 = 2.34 ± 1.43µM) also demonstrated
almost similar interactions (as with compound 6h) except the
length of hydrogen bond with Tyr72 (2.93 Å). Compound 6k

represented hydrogen bond with Tyr124 (2.21 Å), π-π stacking
with Trp86 and Tyr341 (not with Trp286) and water bridging
with Thr83, Ser125, and Asp74 as shown in Figure 7C. Reference
compound (co-crystallized ligand) donepezil was also docked
to compare and confirm our docking results where it was
observed that it makes only π-π stacking with Trp86 and
Trp286 along with water bridging with Tyr337 and Tyr341
as shown in Figure 7D. In agreement to the in-vitro results,
molecular docking studies suggested that compounds 6b, 6h, 6i,
and 6k represented better interaction than donepezil; (i) due to
hydrogen bonding, (ii) due to extra π-π stacking with aromatic

residues, and (iii) due to more interaction through water
bridging as shown in Figure 7. Active site of the enzyme ribbon
model (4EY7) and molecular docking comparison of the most
active compound 6b (magenta) with reference ligand donepezil
(yellow) was depicted in Figure 8a, whereas hydrophobic surface
and active site cavity of the enzyme docked with compound 6b

(magenta) was represented in Figure 8b.
According to molecular docking results, the highest ranked

anti-butyrylcholinesterase compound 11e (IC50 = 0.15 ±

0.09µM) illustrated π-π stacking with Trp82 and interaction
through water bridging with Asp70 and Ser79 as shown in
Figure 9A. Compound 11a (IC50 = 0.34 ± 0.06µM) and 11b

(IC50 = 0.77 ± 0.08µM) represented conventional hydrogen
bonding with Glu197 (1.5 Å) and Ser198 (3.0 Å), respectively
as shown in Figures 9B,C. However their low affinity binding
poses also demonstrated π-π stacking with Trp82 and water
bridging. Reference ligand donepezil represented π-π stacking
with Trp82 and interaction through water bridging with Asp70,

FIGURE 9 | 2D binding pose representation of compound (A) 11e, (B) 11a, (C) 11b, and (D) donepezil with the active site of BuChE (4BDS).
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FIGURE 10 | (a) 3D ribbon model (blue) of BuChE (4BDS) docked with

compound 11e (pink) and reference ligand donepezil (yellow). (b)

Hydrophobic surface and active site cavity of the enzyme bound with

donepezil (yellow) and compound 11e (pink).

TABLE 4 | Pharmacokinetics prediction of top ranked compounds.

Compound MW LogP MR HBD HBA nROT tPSA BBB LD50

6b 376.5 3.5 109 3 6 4 93 −ve 937.3

6h 391.4 4.5 110 1 6 5 77 +ve 523.0

6i 409.5 5.1 111 1 6 5 77 +ve 1,188

11a 289.3 1.4 77 1 6 3 73 +ve N/A

11e 385.8 3.79 103 1 6 4 73 +ve N/A

Ser79, Thr120, Ser287, and Pro285 as shown in Figure 9D.
Docking comparison of compound 11e (pink) with reference
ligand donepezil (yellow) in the active site of BuChE (4BDS)
ribbon model and surface model was depicted in Figures 10a,b,
respectively.

Pharmacokinetics Prediction
Early prediction of in-silico ADMET properties of lead molecules
has now realized as an effective tool in the drug discovery
and development process. Therefore, Lipinski’s criteria and
oral rat LD50 value were estimated for top ranked active
compounds by using TEST (Toxicity Estimation Software
Tool) and Molinspiration online software. Top five compounds
selected from coumarinyl thiazoles and oxadiazole (6b, 6h, 6i,
11a, and 11e) for the analysis and results were summarized
in Table 4. Polar surface area (tPSA) values are important for
the determination of blood brain barrier (BBB) penetration.
According to Waterbeemd the cutoff value is 90 Å2 or less.
Almost all the compounds fulfilled the criteria except compound
6b with cutoff value slightly higher i.e., 93. Number of rotatable
bonds (nROT) is an additional property that measures the
flexibility of the molecule. The drugs that are BBB +ve, usually
reported to have fewer nROT bonds. Another extension in RO5
to improve the prediction of drug-likeness is molar refractivity
(MR) which should be 40–130. Oral rat LD50 was also predicted
for these compounds and the compounds were found slightly
toxic according to Hodge and Sterner scale. All the criteria were
fulfilled by the compounds and no Lipinski’s violation was found
as shown in Table 4.

CONCLUSIONS

In summary, the present report clearly revealed that the
new hybrid molecules show remarkable inhibition of AChE
and BuChE enzymes. Compound 6b from coumarinyl
thiazole series was emerged as the most potent inhibitor of
AChE, whereas 11e from coumarinyl oxadiazole derivatives
inhibited the BuChE with highest potency. Both the identified
inhibitors follow Lipinski’s RO5, slightly toxic and near
the range of blood brain barrier crossing. In future, these
compounds and their functionalized derivatives may be
helpful in the development of potent drugs for Alzheimer’s
disease.

EXPERIMENTAL

Synthesis of Coumarinyl Thiazole 6(a–o)
and Oxadiazole 11(a–h) Derivatives
The coumarinyl thiazole 6(a–o) and oxadiazole 11(a–h) analogs
were prepared according to our recently published report (Ibrar
et al., 2016).

Pharmacological Protocols
Methodology for Determining AChE and BuChE

Inhibitory Activity
For the determination of cholinesterase inhibition, electric eel,
and horse serum were used as source of AChE and BuChE,
respectively. The Ellman’s spectrophotometric method was used
to determine the AChE and BuChE inhibitory activity with a
slight modification (Ellman et al., 1961). The compounds with
1Mm concentration were prepared in DMSO. Assay was carried
out in 96 well-plate in triplicates. The reactionmixture comprised
of 20 µL of buffer (tris HCl 50mM, 0.02M MgCl2.6H2O,
0.1mM NaCl) at pH 8, 10 µL of the test compound, 10 µL
enzyme acetylcholine or butyrylcholinesterase of 0.03 U/mL
(500U of AChE and 700 U/mg of BuChE). The contents
were incubated for 10min at 25◦C followed by the addition
of 1mM of 10 µL of substrate acetylcholine iodide for AChE
and butyrylthiocholine iodide for BuChE and incubated again
at 25◦C for 15min. A 50 µL of 3mM DTNB as a coloring
agent was added and incubated at 25◦C for further 10min.
The amount of product formed was measured by using micro
plate reader (Bio-Tek ELx 800, Instruments Inc., Winooski,
VT, USA) at 405 nm. The enzyme dilutions were made by
using buffer of pH 8 (tris base 50mM and having 0.1% BSA).
The compounds which depict inhibitory activity more than
50% were further tested by making 9–12 serial dilutions in
assay buffer and IC50 values were calculated by graph pad
prism.

Molecular Docking
The molecular construction of the compounds was performed
using ChemBioDraw Ultra 14 suite (PerkinElmer Inc.) and
converted into 3D conformations by ChemBio3D (Mills,
2006). Molecular docking studies of the compounds were
carried out using MOE (Molecular Operating Environment)
software (ChemicalComputingGroup, 2008). The structures
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of the compounds were energy minimized using MMFF94x
forcefield and gradient: 0.05. Crystal structures of the enzymes,
acetylcholinesterase (PDB: 4EY7) and butyrylcholinesterase
(PDB: 4BDS) were retrieved from Protein Data Bank (Berman
et al., 2006). The co-crystallized ligands in the active site of AChE
and BuChE, donepezil (PDB: E20), and Tacrine (PDB: THA)
were taken as possible binding site. Ligand neostigmine was taken
from PubChem (CID:4456) (Kim et al., 2015). The target proteins
were prepared by the addition of hydrogen. All other parameters
were used with the default settings. Donepezil and neostigmine
were taken as reference ligands for comparison purposes. For
each ligand 10 conformations were generated. The images in
2D were captured through MOE ligand binding interaction. 3D

images were taken using UCSF Chimera 1.11 software (Pettersen
et al., 2004).
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Bovine viral diarrhea virus (BVDV) is a member of the genus Pestivirus within the family

Flaviviridae. BVDV causes both acute and persistent infections in cattle, leading to

substantial financial losses to the livestock industry each year. The global prevalence of

persistent BVDV infection and the lack of a highly effective antiviral therapy have spurred

intensive efforts to discover and develop novel anti-BVDV therapies in the pharmaceutical

industry. Antiviral targeting of virus envelope proteins is an effective strategy for

therapeutic intervention of viral infections. We performed prospective small-molecule

high-throughput docking to identify molecules that likely bind to the region delimited

by domains I and II of the envelope protein E2 of BVDV. Several structurally different

compounds were purchased or synthesized, and assayed for antiviral activity against

BVDV. Five of the selected compounds were active displaying IC50 values in the low- to

mid-micromolar range. For these compounds, their possible binding determinants were

characterized by molecular dynamics simulations. A common pattern of interactions

between active molecules and aminoacid residues in the binding site in E2 was observed.

These findings could offer a better understanding of the interaction of BVDV E2with these

inhibitors, as well as benefit the discovery of novel and more potent BVDV antivirals.

Keywords: BVDV entry inhibitors, structure-based virtual screening, molecular dynamics simulation, envelope

protein, molecular docking

INTRODUCTION

Bovine viral diarrhea virus (BVDV) is a worldwide distributed pathogen of cattle. Together with
classical swine fever virus (CSFV) and border disease virus (BDV) of sheep, BVDV belongs to the
genus Pestivirus of the Flaviviridae family. The pestiviral genome is a positive, single-stranded
RNA molecule of about 12.3 kb in length encoding a single polyprotein that is processed into
individual viral proteins: Npro -C-Erns -E1-E2-p7-NS2-NS3-NS4A-NS4B-NS5A-NS5B (Collett
et al., 1988). Pestivirus particles consist of a lipid bilayer with envelope glycoproteins Erns, E1,
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and E2 surrounding the nucleocapsid, composed by the capsid
protein C and the RNA genome (Callens et al., 2016). BVDV
infection is distributed worldwide resulting in major economic
losses to the livestock industry. The virus is primarily a pathogen
of cattle and the clinical manifestations are presented as acute
infection, fetal infection, or mucosal disease (Lanyon et al., 2014).
Based on genetic and antigenic differences, BVDV is segregated
into genotypes 1 and 2. For each of these genotypes, cytopathic
and non-cytopathic biotypes are distinguished according to
the capacity of virus infection to induce cell death in culture
(Ridpath, 2003). Non cytopathic (ncp) BVDV biotypes cause
acute infections in adult animals and can be transmitted across
the placenta to the fetus. Fetal infection is particularly relevant
and it can lead to congenital malformations and abortion, or
to the birth of persistently infected (PI) calves that spread
and maintain the disease in cattle populations (Lanyon et al.,
2014). Cytopathic (cp) BVDV biotypes arise in PI cattle from
recombination events in the infecting ncpBVDV genome, and are
associated with the development of fatal mucosal disease (Becher
and Tautz, 2011).

Control and prevention of BVDV infection should combine
systematic vaccination with detection and culling of persistently
infected cattle from herds (Newcomer and Givens, 2013).
However, immunization is complicated due to the wide
antigenic diversity of the virus, and fails to target the
emergence of persistently infected animals (Fulton et al., 2003;
Newcomer et al., 2017). Previous studies showed that antivirals
directed against the pestivirus polymerase NS5B provide
immediate protection from viral challenge (Newcomer et al.,
2012), thus prophylactic treatment with antivirals represents
an alternative for therapeutic intervention in outbreaks of
BVDV.

Computer-aided drug design has become an integral part
of drug discovery and development in the pharmaceutical
and biotechnology industry, and is nowadays extensively used
in lead identification and optimization (Cavasotto and Orry,
2007; Jorgensen, 2009; Spyrakis and Cavasotto, 2015). Virus
envelope proteins are attractive targets for the development
of antiviral agents, and structure-based drug design has been
successfully used to identify small molecule ligands of envelope
proteins that block entry of flaviviruses (Zhou et al., 2008;
Kampmann et al., 2009; Leal et al., 2017). With the aim of
finding novel targets for pestivirus drug design, we focused
on the in silico identification of antivirals directed against the
envelope protein E2 of BVDV. E2 mediates receptor recognition
on the cell surface and is required for fusion of virus and
cell membranes after the endocytic uptake of the virus during
entry (Ronecker et al., 2008; Wang et al., 2009). In this work,
we expand on a structure-based approach to seek hit small-
molecules that dock into the druggable pocket at the interface
between domains I and II of the envelope protein E2 of
BVDV (Pascual et al., 2018). Around a million compounds
from different chemical libraries were screened in a high-
throughput docking (HTD) fashion. This led to the selection
of nineteen lead candidates that were either purchased or
synthesized, and evaluated in a reporter-based assay for antiviral
activity. The likely interaction of active compounds with the

protein E2 was further characterized by molecular dynamics
(MD) simulations. The approach presented here led to the
identification of five of novel compounds with anti-BVDV
activity displaying IC50 values in the low to mid-micromolar
range.

MATERIALS AND METHODS

Computational Chemistry
Molecular System Preparation
All simulations were based on the crystal structure of the
pestivirus of the envelope glycoprotein E2 from BVDV (PDB
2YQ2) (El Omari et al., 2013). Protein domains were designated
from the N- to the C-terminus of E2 as I, II and III according
to the nomenclature used by Li et al. (2013). The molecular
system was described in terms of torsional coordinates using
the ECEPP/3 force field (Nemethy et al., 1992) as implemented
in the ICM program (version 3.7-2c, MolSoft LLC, La Jolla,
CA; Abagyan et al., 1994), and prepared in a similar fashion
as earlier works (He et al., 2012; Brand et al., 2013; Leal et al.,
2017; Pascual et al., 2018). Hydrogen atoms were added to
the receptor structure followed by local energy minimization.
All Asp and Glu residues were assigned a −1 charge, and all
Arg and Lys residues were assigned a +1 charge. Histidine
tautomers were assigned according to the hydrogen bonding
pattern.

High-Throughput Docking
As in an earlier work (Pascual et al., 2018), docking was
performed within Site I located at the interface of domains I
and II of E2. All water molecules and co-factors were deleted.
A flexible-ligand:rigid-receptor docking methodology as
implemented in ICM was used. The receptor was represented
by six potential energy maps, while the docked molecule
was considered flexible and subjected to global energy
minimization within the field of the receptor using a
Monte Carlo protocol (Abagyan et al., 1994; Cavasotto
et al., 2006); thus, the intra- and inter-molecular energy of
the molecule are minimized. Each molecule was assigned
an empirical docking score according to its fit within the
binding site (Totrov et al., 2001). Two independent runs of
HTD were performed to improve convergence of the global
optimization energy, while the best score per molecule was
kept.

Small-Molecule Libraries and Filtering
The ZINC (Irwin and Shoichet, 2005) (accessed Nov. 2014),
Maybridge (http://www.maybridge.com/), and in house
databases were chosen for HTD. They were first filtered to
remove the compounds containing inorganic atoms, PAINS
(Filtering Pan-assay interfering substances) structures, and
other reactive groups. Then the complete virtual library was
pre-filtered for properties based on Lipinski’s rules (Lipinski
et al., 1997). Finally about a total of one million small-
molecules were used. The PAINS filter was implemented
through the online server FAF-Drugs3 (Lagorce et al.,
2015).
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FIGURE 1 | Chemical structures of the 19 hits from docking-based virtual screening.

Molecular Dynamics
MD simulations were performed using GROMACS v5.1 package
(Abraham et al., 2015) using the Amber99SB force field (Hornak
et al., 2006). The system was solvated with the SPCE water
model in a triclinic box, extending 10 Å from the protein, and
neutralized adding sufficient NaCl counter ions to reach 0.15M
concentration. Bond lengths were constrained using the LINCS
algorithm allowing a 2 fs time-step. Long-range electrostatics
interactions were taken into account using the particle-mesh
Ewald (PME) approach. The non-bonded cut-off for Coulomb
and Van der Waals interactions were both 10 Å, and the non-
bonded pair list was updated every 25 fs. Energy minimization
was conducted through the steepest-descent algorithm, until
the maximum force decayed to 1,000 [kJ mol−1 nm−1]. Then
an equilibration of the whole system was performed by 500
ps of NVT simulation followed by 500 ps of NPT simulation.
Temperature was kept constant at 300K using a modified
Berendsen thermostat (Berendsen et al., 1984) with a coupling
constant of 0.1 ps. Constant pressure of 1 bar was applied
in all directions with a coupling constant of 2.0 ps and a
compressibility of 4.5 10−5 bar−1.

Biological Evaluation
Cell Culture
MDBK cells (Bos taurus kidney, ATCC CCL-22) were purchased
from ATCC and grown in Dulbecso’s modified Eagle medium
(DMEM) supplemented with 10% fetal bovine serum and
antibiotics under 5% CO2 at 37◦C. For infections, cells were
cultivated in DMEM supplemented with 2% Horse serum and
antibiotics under 5% CO2 at 37◦C.

Cytotoxicity Assay
Cell viability assays were performed on confluent cell cultures
in 96 well plates (∼15,000 cells per well). For each compound,
cells were treated with serial dilutions of the compound in
quadruplicates and incubated at 37◦C for 3 days. Then, cell
viability was measured using crystal violet staining. Briefly, cells
were fixed with 10% formaldehyde, stained with crystal violet
solution (20% Ethanol, 0.1% Crystal Violet), and after washing,
the absorbance at 595 nm was recorded for each well in a
spectrophotometer. Assays were conducted at least in duplicates,
and the cytotoxic concentration 50 (CC50) was estimated by a
nonlinear regression fitting of five data points as the compound

Frontiers in Chemistry | www.frontiersin.org 3 March 2018 | Volume 6 | Article 79128

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Bollini et al. Discovery of Novel BVDV Inhibitors

TABLE 1 | Antiviral activity against BVDV.

Compound IC50(µM)a BVDV CC50 (µM)b

1 NA >50

2 44.3 ± 10.3 >50

3 NA >50

4 30.1 ± 2.9 >50

5 NA >50

6 ND 7.2 ± 1.3

7 NA >50

8 20.2 ± 3.6 >50

9 NA >50

10 NA >50

11 23.9 ± 7.9 >50

12 44.4 ± 11.5 >50

13 NA 61.5±1.4

14 NA >50

15 NA >50

16 NA 49.8 ± 1.5

17 NA >50

BI03c 17.6 ± 6.4 >200

PTC12c 0.30 ± 0.10 89.5 ± 1.1

a IC50: inhibitory concentration 50%. Data represent the mean and standard deviation of

at least two independent experiments.
bCC50: cytotoxic concentration 50%. Data represent the mean and standard deviation of

at least two independent experiments.
cPascual et al. (2018).

NA indicates assayed but not active compounds; ND Not determined.

concentration necessary to reduce cell viability by 50% compared
to control non-treated cells.

Reporter-Based Assay for Antiviral Activity
Antiviral activity was evaluated in a reporter-based assay using a
recombinant virus expressing GFP, cpBVDV/Npro GFP (Pascual
et al., 2018). MDBK cells were seeded onto 24 well plates, infected
with cpBVDV/Npro GFP at a multiplicity of infection of 0.1
in the presence of increasing concentrations of compounds. At
48 h post-infection cells were thoroughly washed, lifted with
trypsin 0.05% and fixed using 4% paraformaldehyde in PBS.
The fluorescence signal was measured using a flow cytometer
(CyFlow R© Space, Partec) at a detection spectrum of 488 nm.
Data were analyzed in the FlowJo 7.6.2 software package. The
inhibitory concentrations 50 (IC50s) for the compounds tested
in the assay were calculated from curves constructed by plotting
the percentage of infected cells versus the concentration of
compound as the compound concentration necessary to reduce
the number of infected cells by 50% compared to control non-
treated cells.

Chemistry
General Information
NMR spectra were recorded on Bruker Biospin 600 MHz
AVIII600, Bruker advance II 500 MHZ and Bruker 300 MHZ
spectrometers at room temperature. Chemical shifts (δ) are
reported in ppm and coupling constants (J) in Hertz. Column

chromatography was carried out employing Merck silica gel
(Kieselgel 60, 63–200µm). Precoated silica gel plates F-254
were used for thin-layer analytical chromatography. The
mass spectrometer utilized was a Xevo G2S QTOF (Waters
Corporation, Manchester, UK) with an electrospray ionization
(ESI) source. The mass spectrometer was operated in positive
and negative ion modes with probe capillary voltages of 2.5 and
2.3 kV, respectively. The purity (≥95%) of all final synthesized
compounds was determined by reverse phase HPLC, using a
Waters 2487 dual λ absorbance detector with a Waters 1,525
binary pump and a Phenomenex Luna 5µ C18(2) 250× 4.6mm
column. Samples were run at 1 mL/min using gradient mixtures
of 5–100% of water with 0.1% trifluoroacetic acid (TFA) (A) and
10:1 acetonitrile:water with 0.1% TFA (B) for 22min followed by
3min at 100% B. UV spectra were measured with a Shimadzu
3600 UV/vis/NIR spectrophotometer.

Synthetic Procedures of New Compounds From Our

in House Library

Synthesis of (E)-2-(4-(dimethylamino)benzylidene)-N-(4-

(trifluoromethyl)phenyl)hydrazinecarbothioamide (11)
Synthesis of N-(4-trifluoromethoxyphenyl)hydrazinecarbothioa
mide (19) Sodium hydroxide (0.14 g, 3.4 mmol) and carbon
disulphide (0.2mL, 2.8 mmol) were added to a solution of 4-
(trifluoromethoxy)aniline 18 (0.50 g, 2.8 mmol) in DMF (5mL).
The mixture was stirred at room temperature for 1 h. Then,
hydrazine hydrate (0.5mL, 8.5 mmol) was added and stirring
continued at 70◦C for 1 h. After water addition compound
19 precipitate and the solid was filtrated off. The crude was
recristallized from ethanol:water (0.28 g, 39.1 %). 1H NMR (500
MHz, CDCl3) δ 9.30 (s, 1H), 7.82 (s, 1H), 7.68 (d, J = 7.1Hz,
2H), 7.24 (d, J = 8.7Hz, 2H), 4.01 (s, 2H). To a solution
of 19 (0.10 g; 0.40 mmol) in ethanol (3mL) was added 4-
dimethylaminobenzaldehyde (0. 65 g, 0.44 mmol). The mixture
was stirred under reflux for 1 h. The reaction was then cooled
to room temperature, and precipitate solid was filtered and
washed with cyclohexane to give 11, which was recristallized
from ethanol. (0.07 g, 43.5 %). 1H NMR (600 MHz, CDCl3) δ

9.37 (s, 1H), 9.20 (s, 1H), 7.79 (s, 1H), 7.76 (dd, J = 8.9, 2.1Hz,
2H), 7.57 (dd, J = 8.9, 2.1Hz, 2H), 7.27 (d, J = 8.5Hz, 2H),
6.72 (dd, J = 8.9, 1.9Hz, 2H), 3.07 (s, 6H). 13C NMR (151 MHz,
CDCl3) δ 175.2, 152.2, 146.5, 144.2, 144.1, 136.75, 129.0, 125.4,
125.3, 121.3, 121.2, 121.2, 120.1, 119.6, 111.8, 111.7, 40.1, 40.09.
HR-MS (ES) calcd for C17H18F3N4OS [M+H]+ 383.1153, found
383.1141.

4-((5-methylisoxazol-3-yl)amino)-4-oxobutanoic acid. (14)
To a solution of isoxazol-5-amine (0.20 g, 2.0 mmol) 20 in
dioxane (5mL) was added succinic anhydride (0.20 g, 2.0 mmol).
The mixture was stirred at 80–90◦C overnight. The solvent was
evaporated and the obtained yellowish solid was suspended in
water, collected by filtration, and crystallized from ethanol to
give the pure product as a white solid (0.088 g, 0.44 mmol,
22%). 1H NMR (600 MHz, dmso-d6) δ 12.14 (s, 1H), 10.87
(s, 1H), 6.58 (s, 1H), 2.55 (t, J = 6.5Hz, 2H), 2.34 (s, 3H). The
other methylene group was determined by HSQC, due to the
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SCHEME 1 | Synthesis of compound 11. Reagents and conditions. (a) CS2, NaOH, DMF, 25◦C, 1 h. NH2NH2, 70
◦C, 1 h. (b) 4-dimethylaminobenzaldehyde, EtOH,

Reflux, 1 h.

SCHEME 2 | Synthesis of compound 15 and 16. Reagents and conditions. (a) SOCl2, TEA, DCM, N2, rt, 5 h; (b) Cs2CO3, ACN, rt, overnight; (c)

4-(trifluoromethoxy)aniline, TEA, DCM, rt, overnight; (d) dioxane 80–90◦C, 5 h.

overlapping with solvent signal (SI). 13C NMR (151 MHz, dmso-
d6): δ 173.4, 170.3, 169.2, 158.1, 96.2, 30.4, 28.4, 12.1. HRMS
(ES) m/z calc. for C8H10N2O4Na [M+Na]+: 221.0538; found:
221.0533, C8H11N2O4 [M+H]+: 119.0719; found: 199.0714.

4-chloro-N-(isoxazol-5-yl)benzamide (15)
A mixture of p-chloro benzoic acid (1.0 g, 6.4 mmol), and an
excess of thionyl chloride (4.92 g, 3mL, 41.7 mmol) was refluxed
for 2 h. The excess of thionyl chloride was distilled in vacuo
and the acyl chloride was used without further purification. To
a solution of p-chlorobenzoyl chloride 23 in MeCN (10mL)
was added Cs2CO3 (3.7 g, 19 mmol) and isoxazol-5-amine 20

(0.63 g, 6.4 mmol) at 0◦C and the obtained suspension was stirred
at r.t. overnight. Then, the reaction mixture was concentrated
under vacuo and the obtained residue was treated with water
and extracted with EtOAc (4 × 20mL). The organic layers
were dried over Na2SO4, filtered-off and concentrated under
vacuo to give a residue that was purified by silica gel column
chromatography eluting with cHex/EtOAc (95:5–70:30). The
product was obtained as a white solid (0.146 g, 0.63 mmol, 10%).

FIGURE 2 | Ribbon representation of protein E2 with PTC12 ligand within the

binding site. Figure prepared with ICM (MolSoft LLC, La Jolla, CA).

1HNMR (600MHz, dmso-d6) δ 11.39 (s, 1H), 8.02 (d, J = 8.6Hz,
2H), 7.60 (d, J = 8.6Hz, 2H), 6.74 (s, 1H), 2.41 (s, 3H). 13C NMR
(151 MHz, dmso-d6) δ 169.4, 164.2, 158.5, 137.1, 131.9, 129.9,
128.5, 96.9, 12.1. HRMS (ES) m/z calc. for C11H9ClN2O2Na
[M+Na]+: 259.0250; found: 259.0247, C11H10ClN2O2 [M+H]+

237.0431; found: 237.0428.
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FIGURE 3 | Predicted interaction of active compounds PTC12 (A), BI03 (B), 11 (C), and 8 (D) within the E2 protein binding site, extracted from the molecular

dynamics simulations. For simplicity, only aminoacids within 4 Å of the ligand and polar hydrogens are shown. Hydrogen bonds are shown as a line of orange colored

spheres. Color code: ligand carbons, yellow; E2 protein carbons, white; oxygens, red; nitrogens, blue; sulfur, dark yellow; polar hydrogens, dark gray. Figure prepared

with ICM (MolSoft LLC, La Jolla, CA).

N-(4-(trifluoromethoxy)phenyl)furan-2-carboxamide (16)
Thionyl chloride (0.1mL, 1.34 mmol) was added dropwise
to a mixture of 2-furoic acid 20 (0.15 g, 1.34 mmol) and
triethylamine (0.26mL, 1.82 mmol) in DCM (5mL) under
N2 atmosphere. The reaction mixture was stirred at room
temperature for 5 h. The crude was added to another flask
containing 4-(trifluoromethoxy)aniline (0.16mL, 1.22 mmol)
and triethylamine (0.34mL, 2.43 mmol) in DCM (5mL).
The reaction mixture was stirred at room temperature
overnight. After complete reaction, the solvent was the removed
under reduced pressure, water added and extracted with
dichloromethane. The organic layer was sequentially washed
with brine, dried over anhydrous Na2SO4 and concentrated
in vacuo. The crude was purified by column chromatography
(SiO2, dichloromethane) to give a white solid 16 (0.25 g, 75.6 %).
1H NMR (600 MHz, DMSO-d6) δ 10.38 (s, 1H), 7.96 (d, J =

0.9Hz, 1H), 7.88 (dd, J = 9.1, 2.0Hz, 2H), 7.40–7.32 (m, 3H),

6.72 (dd, J = 3.4, 1.7Hz, 1H). 13C NMR (126 MHz, CDCl3)
δ 156.0, 147.4, 145.4, 144.3, 136.0, 121.8, 121.5, 121.0, 119.4,
115.6, 112.7. HR-MS (ES) calcd for C12H8F3NO3Na [M+Na]+

294.0354, found 294.0345. Synthetic procedure of compounds 5,
12, 13 and 17 from the ZINC library are described in Supporting
information (Scheme S1 and S2).

RESULTS AND DISCUSSION

Computer-Aided Indentification, Chemical
Synthesis, and Biological Evaluation of
Novel Inhibitors
We employed a multistep HTD screening framework to
efficiently identify novel inhibitors of the E2 protein using
commercially available (ZINC andMaybridge chemical libraries)
and synthetic druglike compounds (from our in house library)
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FIGURE 4 | Time dependence of hydrogen bond (HB) distances between (A) the carbonyl O of Gln89 and the benzamide H of PTC12 ligand, and (B) the backbone

amide H of Thr60 and the N2 atom of BI03 ligand.

using the available structural data of the BVDV virus envelope
protein E2. Initially, several chemical filters were applied on the
chemical libraries to remove pan assay interference compounds
(PAINS) (Baell and Holloway, 2010), compounds containing
inorganic atoms, unwanted functionalities, reactive groups, and
compounds having (i) MW <500 Dalton; (ii) more than one
violation or the Lipinsky rules (Lipinski et al., 1997), or (iii)
more than two violation of the rule of three, or more than
six #STARS using the program QikProp (Jorgensen, 2005). The
#stars parameter indicates the number of property descriptors
computed by QikProp that fall outside the optimum range of
values for 95% of known drugs.

The selected molecules were subjected to independent
parallel HTD cycles and the top 1,000 scoring compounds
were further analyzed. To ensure diversity, these highly ranked
compounds were clustered based on chemical similarity using
ICM. For each cluster, several compounds were selected
manually based on commercial availability, synthetic tractability
for potential modifications, interaction with binding site
amino acids and adequate pharmacological characteristics for
drug candidates. Finally, 19 compounds were purchased
from vendors (1–10) or synthesized (11–16), and then
evaluated in a reporter-based assay for antiviral activity
(Figure 1, Table 1). Compounds 5 and 17 were obtained
via reaction of the corresponding amine and dicyandiamide
under acidic conditions to give the required phenylbiguanide
(5, 17) in high yields. 2-Guanidinobenzimidazole (12) was
prepared by the cyclocondensation of o-phenylendiamine
with cyanoguanidine (Scheme S1 of Supplementary
Material) according to the method reported by King
et al. (1948). Synthesis of new compounds is shown in
Scheme 1. Compound (11) was obtained by ccondensation
of thiosemicarbazide with 4-(dimethylamino)benzaldehyde.
Compounds 14–16 were prepared by acylation of the
corresponding amine with the adequate carboxilic acid
chloride (15, 16) or by reaction with succinic anhydride (14) (see
Scheme 2).

First, we assayed selected compounds for cytotoxicity in
cultured cells. Only compound 6 displayed high toxicity and was
discarded from further analysis (Table 1). The remainder of the
compounds were evaluated for antiviral activity in a reporter-
based assay using a recombinant BVDV virus carrying GFP on
its genome to infect MDBK cells (Pascual et al., 2018). Expression
of GFP induced by BVDV infection was measured 2 days after
infection using flow cytometry. Inhibition of BVDV infection
was assessed by comparing the number of GFP positive cells
in non-treated control cells and in cells treated with increasing
amounts of compound. Structurally different compounds 4, 8,
11, BI03, and PTC12 showed activity with IC50 values of 30.1,
20.2, 23.9, 17.6, 0.30µM, respectively, and no cytotoxicity was
detected at 50µM. In accordance with targeting of envelope
protein function, we have previously shown that compounds
BI03 and PTC12 specifically block BVDV cell entry (Pascual et al.,
2018).

Analysis of Binding Determinants Using
Molecular Dynamics
To further characterize the likely interaction between the new
molecules and protein E2, we performed 100 ns MD simulation
on the most active compounds listed on Table 1. The docked
poses of the ligands within the binding site between domains I
and II were used as the initial conformations. For compound 8

two conformationally different poses with very similar docking
scores were used as starting conformations, and the most
probable pose was assigned based on the molecular dynamics
simulation results and the analysis of interactions (Liu and
Kokubo, 2017). The protein and ligands remained stable in
every simulation (Figure S1), displaying the ligands the following
RMSF values: PCT12, 0.4 Å; BI03, 0.4 Å; 8, 0.3 Å; 11, 0.2 Å.
The analysis of the binding determinants of the most active
compounds is described in the following paragraphs.

The predicted binding mode of PTC12 within the E2 protein
is shown in Figures 2, 3. The 3,4-dimethoxybenzamide group
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remained exposed to the solvent, whereas the thiophene ring
made contacts with Asp91, Thr60, and Arg61. The system
also presented a strong hydrogen bond between the benzamide
group of the ligand and the carbonyl O of Gln89, exhibiting
an interatomic distance of ∼2 Å and an angle of 160◦ during
the last 50 ns simulation (Figure 4). A moderate hydrogen bond
between the NH of the thiophencarboxamide and the carbonyl
O Gln89 was detected, with interatomic distances and angles
closer to 2.5 Å and 140◦, respectively. This group was also
intermittently exposed to the solvent through a narrow channel.
A stable cation-π interaction between the aromatic ring of the 3,
4 dimethoxyphenyl group and Arg154 was observed throughout
the simulation, with a N+-ring centroid distance below 6 Å at all
times and a favorable θ angle below 40◦ during half of the last 50
ns simulation (Marshall et al., 2009).

The predicted interaction of BI03 is shown in Figure 3. This
ligand also presented a strong hydrogen bond between N2 and
the backbone amide H of Thr60, with an average interatomic
distance of 2.1 Å (Figure 4) and an angle of ∼165◦ during the
final half of the simulation. A stable cation-π interaction was also
found in this case between the ligand ring and Arg154, showing
again distances and θ angles below 6 Å and 40◦, respectively for
most of the final 50 ns of the simulation. A moderate hydrogen
bond was also formed between the ring and the HO atom of
Thr60. The system was further stabilized by close contacts with
Thr60, Gln87, Arg154, Val153, and Pro105, while the ligand ring,
NH and OH groups were mainly exposed to the solvent.

Compound 11 is shown within its predicted binding site
in Figure 3 Two stable hydrogen bond occurred between
the HN atoms of the ligand and the carbonyl O atom in
Val153 and Gln87. In both cases interatomic distances and
angles were very favorable with average values of 2 Å and
155◦ respectively. The cation-π interaction between Arg154
and the aromatic ring of 4-trifluoromethylphenyl group was
less favorable than for the other compounds showing higher
N+-ring centroid distances and θ angles, probably due to
a moderate interaction between the CF3 group and the
charged portion of Arg154. The ligand made contacts with
Asp91, Arg61, Arg154, Gln87, Val153, Pro105, and Thr60
while the CF3 and NMe2 groups were mostly exposed to the
solvent.

The predicted binding mode of compound 8 is shown in
Figure 3. This pose was selected as the most probable one based
on the analysis of the interactions and binding free energy
estimations. In the last half of the simulation, a moderate
hydrogen bond between N1 (N with no H) and the side chain of
Arg154 was observed, with average interactomic distances of 2.5
Å and angles of∼140◦. No cation-π interaction was detected, and
the charged portion of Arg154 seemed to interact strongly with
the amide group of the ligand. The 3-chloro-4-fluorobenzamide
remained exposed to the solvent and there were close contacts
of the ligand with Ser57, Thr60, Gln87, Gln89, Pro105, and
Arg154.

Overall, molecular dynamics simulations reveal a common
pattern of interactions with the binding site in E2. Taken together
with previous studies on the mode of action (Pascual et al., 2018),

our data support binding of active compounds to E2. Further
studies including in vitro binding to the recombinant protein
are still required to confirm the interaction of active compounds
with E2.

CONCLUSIONS

We have undertaken a structure-based virtual screening
approach to identify small-molecules that dock into the
druggable binding site at the interface between domains I and
II of the E2 of BVDV, a virus responsible of both acute and
persistent infections in cattle, with the consequent financial
losses to the livestock industry each year. Around a million
compounds were screened, and after chemical clustering, the top
nineteen lead candidates were selected, and either purchased or
synthesized, and evaluated in a reporter-based assay for antiviral
activity. Five of these compounds exhibited IC50 values in the
low micromolar range. The likely binding determinants of these
compounds is supported by molecular dynamics simulations,
where a common pattern of interaction with the binding site in
E2 could be identified. These findings should benefit the design
of novel and improved BVDV antivirals.
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Knowledge of the bioactive conformations of small molecules or the ability to predict them

with theoretical methods is of key importance to the design of bioactive compounds such

as drugs, agrochemicals, and cosmetics. Using an elaborate cheminformatics pipeline,

which also evaluates the support of individual atom coordinates by themeasured electron

density, we compiled a complete set (“Sperrylite Dataset”) of high-quality structures of

protein-bound ligand conformations from the PDB. The Sperrylite Dataset consists of a

total of 10,936 high-quality structures of 4,548 unique ligands. Based on this dataset,

we assessed the variability of the bioactive conformations of 91 small molecules—each

represented by a minimum of ten structures—and found it to be largely independent

of the number of rotatable bonds. Sixty-nine molecules had at least two distinct

conformations (defined by an RMSD greater than 1 Å). For a representative subset of

17 approved drugs and cofactors we observed a clear trend for the formation of few

clusters of highly similar conformers. Even for proteins that share a very low sequence

identity, ligands were regularly found to adopt similar conformations. For cofactors, a

clear trend for extended conformations was measured, although in few cases also coiled

conformers were observed. The Sperrylite Dataset is available for download from http://

www.zbh.uni-hamburg.de/sperrylite_dataset.

Keywords: bioactive conformational space, protein-bound ligand conformation, conformational variability, PDB,

protein-ligand interaction, binding site, small-molecule drug, cofactor

INTRODUCTION

The protein-bound (“bioactive”) conformations of ligands can differ substantially from those
observed in solution, the gas phase and small-molecule crystal structures (Boström, 2001; Perola
and Charifson, 2004; Seeliger and de Groot, 2010). Bioactive conformations can be distributed over
large regions of the ligand’s conformational space and can have considerable strain energy (Nicklaus
et al., 1995; Boström et al., 1998; Boström, 2001; Perola and Charifson, 2004; Günther et al., 2006).
For the application of 3D computational approaches such as docking or de novo design methods in
drug discovery, the protein-bound conformations of small molecules need to be known or at least
determinable (Brameld et al., 2008).
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The Protein Data Bank (PDB) is the most comprehensive
resource of experimental structural data on biomacromolecules
and their interaction with small molecules (Berman et al.,
2000). Currently, the PDB contains more than 100k structures
of biomacromolecules that include a bound ligand. While the
structural data available from the PDB are extremely valuable for
the research of biomacromolecules and their interactions with
small molecules, these data represent only a very small fraction
of (known) interactions.

Sturm et al. (2012) investigated the relationship between the
promiscuity of drug-like molecules and the molecular properties
of ligands and their binding sites. In order to do so, they compiled
a dataset of more than 1,000 protein-ligand complexes in which
drug-like molecules are bound to at least two distinct proteins.
They identified two major drivers of ligand promiscuity: the
structural similarities of ligand binding sites (largely independent
of the similarities of the overall protein sequences or folds)
and the ability of ligands to adopt distinct binding modes for
different proteins. The latter is facilitated by the conformational
flexibility of ligands and/or the specific characteristics of their
pharmacophoric features. In related work, He et al. (2015),
analyzed the structures of 100 pharmaceutically relevant ligands
bound to at least two different proteins (to which they bind with
comparable in vitro affinities). Contrary to the common belief
that ligand flexibility and promiscuity are correlated, no evidence
for a distinct correlation was found within their dataset. In fact,
for 59 out of the 100 investigated ligands, no significant changes
between the conformers of ligands bound to different proteins
were observed.

The relative abundance of available structural data on
the conformation of protein-bound cofactors, and nucleotide
cofactors in particular, has made them a primary subject
of investigation. For example, Moodie and Thornton (1993)
analyzed 65 structures of nucleotides bound to proteins and
found them to bind predominantly in an extended conformation.
In more recent work, Stockwell and Thornton (2006) analyzed
the conformational variability of adenosine triphosphate (ATP),
nicotinamide adenine dinucleotide (NAD) and flavin adenine
dinucleotide (FAD) in a preprocessed set of more than 2,000
structures extracted from the PDB. Dym and Eisenberg (2001)
compiled a set of 150 structures of FAD bound to 32 non-
redundant flavoproteins. They found a clear correlation between
the FAD-family fold, the shape of the cofactor binding site and
the conformation of FAD. Bojovschi et al. (2012) investigated
the conformational diversity of ATP/Mg:ATP in motor proteins
based on a set of 159 X-ray structures extracted from the
PDB. They found that ATP adopts a wide range of different
conformations, with a preference for extended conformations
in tight binding pockets (e.g., F1-ATPase) and compact
conformations in motor proteins such as RNA polymerase
and DNA helicase. The incorporation of Mg2+ was found to
increase the conformational flexibility of ATP. They clustered the
conformations of the individual ligands based on the similarity
of their binding pockets and, in the case of ATP for example,
identified 27 clusters with a mean intercentroid RMSD of more
than 2 Å. The authors concluded that, within the individual
protein superfamilies, the investigated ligands generally bind

in a fairly conserved manner, although several exceptions were
identified. In the case of ATP, most structures were found to
have the ligand bound in an extended conformation. In few cases
however, a conformation bent such that the terminal phosphate
atoms are almost in van der Waals contact with the adenine
ring was observed. Stegemann and Klebe (2012) explored the
structural properties of six cofactors including an adenosine
diphosphate moiety bound to a variety of different proteins with
low sequence identity. They found that common binding pocket
patterns sometimes only recognize parts of the cofactor and
thereby induce similar conformations.

These and further studies have contributed substantially
to the understanding of protein-bound ligand conformations.
However, a major bottleneck is the limited quality (Liebeschuetz
et al., 2012; Reynolds, 2014), quantity and diversity of the
structural data that these studies are based on, in particular
with respect to the uncertainty of atom coordinates that is
inherent to crystallographic structures. Only recently, a robust
and fully automated method for the assessment of the support
of individual atom coordinates (as well as molecules) by the
measured electron density (EDIA) has become available (Meyder
et al., 2017). This allowed, for the first time, extraction of a
complete subset of high-quality structures of protein-bound
ligands from the PDB (Friedrich et al., 2017b). Prior to the
development of the EDIA method, time-consuming manual
inspection by human experts was required to assure the high
quality of structural data, which limited the size of available
datasets (see e.g., Warren et al., 2012).

In this work we assess the conformational variability of small
molecules based on a complete set of high-quality structures of
protein-bound ligands extracted from in the PDB, each of which
is represented by at least ten high-quality X-ray structures. In
total the conformational variability of 91 approved drugs and
cofactors represented by 4,574 protein-bound conformations was
assessed. The bioactive conformational space of 17 representative
molecules was studied in detail.

MATERIALS AND METHODS

Dataset Compilation
The Sperrylite Dataset was extracted from the PDB using a
workflow described previously (Friedrich et al., 2017a). It consists
of 10,936 conformers of 4,548 unique small molecules. Ninety-
one ligands in this dataset are represented by at least 10
structures, and these served as the basis of this analysis.

To ensure that all ligands with the same PDB ligand ID have
identical stereochemistry, their isomeric smiles (generated with
UNICON, Sommer et al., 2016) were compared in order to keep
only the isomer with the most occurrences. The Approved Drugs
subset of DrugBank (Wishart et al., 2017) was used to identify the
approved drugs present in the Sperrylite Dataset.

RMSD, Rotatable Bonds and Sequence
Identity Calculations
All RMSD values were calculated with NAOMI (Urbaczek
et al., 2011), which selects the minimum heavy-atom RMSD
for the best superposition of each pair of conformers, taking
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molecular symmetry into account via complete automorphism
enumeration.

The number of rotatable bonds was calculated with RDKit
(RDKit: Open-Source Cheminformatics, version 2015.09.1,
2015). The default definition was used, meaning that amide and
ester bonds were not counted as rotatable bonds.

All-against-all sequence identity was determined with NCBI
BLAST (Altschul et al., 1990; BLAST, version 2.2.31. https://
blast.ncbi.nlm.nih.gov (accessed Jan 14, 2018); Camacho et al.,
2009) and the sequence identity of individual pairs of proteins
was measured with the Molecular Operating Environment
(Molecular Operating Environment (MOE), version 2016.08;
Chemical Computing Group Inc.: Montreal, QC, 2016) based on
sequence and structural alignments.

Principal component analysis (PCA)-derived score plots
of the alignments with the minimum median RMSDs were
generated with R for each ligand.

Visualization
Visualization of the (i) alignments of ligand conformers (ii)
alignments of protein structures and (iii) interactions of
proteins and ligands were generated with Maestro (Schrödinger
Release 2016-2: Maestro, Schrödinger, LLC, New York, NY,
2016), MOE (Molecular Operating Environment (MOE), version
2016.08; Chemical Computing Group Inc.: Montreal, QC,
2016) and LigandScout (LigandScout, version 4.2; Inte:Ligand
GmbH: Vienna, Austria, 2017; Wolber and Langer, 2005),
respectively.

For the sake of clarity, all hydrogens, only polar hydrogens or
no hydrogens were included in the depictions on a case-by-case
basis to avoid overcrowded figures.

RESULTS

The Sperrylite Dataset is a collection of all high-quality X-ray
structures of small molecules bound to biomacromolecules that
are contained in the PDB. The dataset includes 10,936 structures
of 4,548 unique protein-bound ligands and was compiled with a
recently developed cheminformatics pipeline that automatically
(i) prepares the chemical structures of small molecules by taking
into account the protein environment (in order to determine,
e.g., the most likely tautomeric and protonation states); (ii)
removes undesirable molecules such as crystallization aids as
well as structures with topological and/or geometrical errors;
and (iii) rejects structures of low quality (Friedrich et al.,
2017a,b). Importantly, the procedure not only includes checks
for resolution and DPI (Cruickshank, 1999), but also employs the
recently developed EDIA method (Meyder et al., 2017) to assess
the support of individual atoms of a structure by the electron
density.

In this study the diversity of the protein-bound conformations
of all ligands represented by at least 10 high-quality structures
was investigated. This dataset consists of a total of 4,574
conformations of 91 unique ligands (an overview of all structures
is provided in Scheme S1), including more than 30 nucleotides
and 20 approved drugmolecules. In an all-against-all comparison
of the differences in conformation of each ligand as measured

by RMSD, 81 of the 91 ligands had at least one conformer with
an RMSD above 0.6 Å (which corresponds to the maximum
positional uncertainty for atoms in the Sperrylite Dataset), and
69 had at least one conformer above 1 Å, meaning that they are
clearly distinct. The correlation observed between the minimum
median RMSD measured for all pairs of conformations and
the number of rotatable bonds was (very) weak (R2 = 0.126;
Figure S1).

This work focuses on the analysis of the bioactive
conformational space of a representative set of 17 approved drugs
and cofactors (Tables 1, 2; note that there is an overlap between
cofactors and approved drugs). This set was compiled with the
objective to include the most relevant and best-represented small
molecules in a detailed analysis of individual ligands.

Definitions
In the following sections, “high-quality structures” refers to any
structures matching the quality criteria defined in previous work
(Friedrich et al., 2017b). Importantly, this term only refers to
the quality of the protein-bound ligand, not the overall structure
of the protein-ligand complex. Four-letter codes refer to PDB
entries and three-letter codes in italics refer to PDB ligand
identifiers.

Small-Molecule Drugs
Imatinib
Imatinib (STI) is an approved anti-cancer drug targeting Bcr-
Abl and several other tyrosine kinases. The drug binds to the
ATP-binding site, spanning almost the entire width of the protein
(Reddy and Aggarwal, 2012). Imatinib locks the protein in a
closed conformation, thus arresting the enzyme’s functionality.
The PDB lists 11 high-quality structures with imatinib, 10 thereof
with the drug bound to one of three different tyrosine kinases
(ABL1: 1IEP, 1OPJ, 3K5V, 3MS9, 3MSS, 3PYY; ABL2: 3GVU; c-
Src: 2OIQ, 3OEZ) or a synthetic construct of tyrosine kinase AS
(4CSV), a common ancestor of Src and Abl.

The accessible conformational space of imatinib, which has
seven rotatable bonds, is large. However, the conformations
observed for imatinib bound to any of these tyrosine kinases are
similar (Figures 1A,B), which is reflected by the low maximum
pairwise RMSD of just 0.3 Å and is in agreement with the
findings of He et al. (2015). This conformational similarity can
be explained by the highly conserved nature of the residues
that form the ligand binding sites of these tyrosine kinases (the
minimum pairwise sequence identity between these proteins is
45%; Figure 1D).

One high-quality structure of imatinib is a complex with
human quinone reductase 2 (3FW1). This enzyme exists as
a dimer with two active sites, each located in a deep pocket
at the interface between the monomers (Foster et al., 1999;
Winger et al., 2009). Quinone reductase 2 is structurally
dissimilar to protein kinases. Imatinib binds to the enzyme
active site in proximity to the isoalloxazine ring of the FAD
cofactor (Figure 1C), thereby adopting a distinct, “horseshoe-
like” conformation (Winger et al., 2009) that differs by at least 2.4
Å from any of the conformations observed with tyrosine kinases
(Figure 1A).
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TABLE 1 | Summary of approved drugs investigated in this work.

Name No. of PDB

entries

Protein names: No. of

high-quality conformers

No. of

Confs.a
Major observations

Imatinib (STI) 18 Tyrosine kinases: 10

Quinone reductase 2: 1

2 Conformers for different tyrosine kinases are similar, even for pairs

of proteins with low sequence identity. A distinct conformation is

observed in a complex with quinone reductase 2

Darunavir (017) 54 HIV-1 protease: 14 1 Conformers are highly similar, also those in complex with various

different mutants of this protein

Acetazolamide (AZM) 29 Carboanhydrases: 9

Endochitinase: 1

n.d.b It is likely that the ligand binds in a similar conformation to all

proteins covered by the dataset (the experimental data do not

allow a definitive conclusion)

Triclosan (TCL) 31 Enoyl-acyl carrier protein

reductases: 11

1 All conformers are highly similar. The median RMSD is 0.1 Å and

the maximum pairwise RMSD is below 0.6 Å

Ubenimex/bestatin (BES) 28 Aminopeptidases: 9

Leukotriene A-4 hydrolase: 2

3 Conformations observed for most (even distantly) related

aminopeptidases and human leukotriene A-4 hydrolases are

similar, with the exception of one conformation observed in

complex with human aminopeptidase N

Biotin (BTN) 99 Streptavidin: 24 Avidin: 7

Biotin-protein ligase: 6

Others: 6

3 Conformations observed among the different complexes with core

streptavidin are very similar. Two distinct conformers are observed

in complex with biotin-protein ligase and biotin carboxylase

Sapropterin (H4B) 472 Total: 188 2 All but three conformers are extremely similar to each other

(median RMSD smaller than 0.1 Å), even for distantly related

proteins

Cholic acid (CHD) 74 Cytochrome c oxidase: 2

Ferrochelatase: 2

Alcohol dehydrogenase: 1

Others: 8

4

Due to the rigid steroid scaffold, the conformations observed for

both ligands are all highly similar
Deoxycholic acid (DXC) 29 Cathepsin A: 11

Bet v1: 2

Others: 3

2

aNo. of distinct bioactive conformations.
bThe experimental data are insufficient to allow a definitive conclusion on the number of distinct bioactive conformations.

Note that imatinib is known to bind to spleen tyrosine kinase
(SYK) in an orientation that is different from that observed for
Bcr-Abl and other tyrosine kinases (Alton and Lunney, 2008).
A crystal structure of the imatinib-SYK complex exists (1XBB;
Atwell et al., 2004) but is not part of the Sperrylite Dataset because
of a poor electron density support of parts of the ligand facing
the bulk water phase (Figure S2). The conformer of imatinib
in complex with SYK has an RMSD of 2.5 Å to any of the
other kinase-bound conformers but is similar to the imatinib
conformation observed in the complex with quinone reductase
2 (RMSD= 1.3 Å).

Darunavir
Darunavir (017) is an antiretroviral drug approved for the
treatment and prevention of human immunodeficiency virus
(HIV) infections. The compound inhibits HIV-1 protease at
picomolar concentrations by forming strong polar interactions
with the target enzyme (King et al., 2004). Fourteen out of
the 54 available structures with darunavir are of high quality,
all of them being structures with darunavir bound to wild
type or mutant HIV-1 protease. The mutations observed in
the 14 high-quality structures introduce only subtle changes
to the shape and chemical properties of the ligand binding
environment. This is reflected in the high similarity of the
protein-bound conformations of darunavir, where, among the

high-quality structures, a maximum pairwise RMSD of just 0.2 Å
was measured (Figure S3).

Acetazolamide
Acetazolamide (AZM) is an inhibitor of carbonic anhydrase
and approved for the treatment of glaucoma, cardiac edema,
idiopathic intracranial hypertension, epilepsy, and altitude
sickness (Chakravarty and Kannan, 1994; Kaur et al., 2002).
Ten out of the 29 structures of acetazolamide listed in
the PDB are of high quality. Nine of these structures are
with acetazolamide bound to one of six different human
carbonic anhydrases (isoforms II, VII, IX, XII, XIII, and XIV,
represented by PDB entries 3V2J, 3ML5, 3IAI, 1JD0, 3CZV,
and 4LU3, respectively) or three different extremophilic bacteria
carbonic anhydrases (Sulfurihydrogenibium sp., Thermovibrio
ammonificans, and Sulfurihydrogenibium azorense, represented
by PDB entries 4G7A, 4UOV, and 4X5S, respectively). The
ligand binding pockets of all these carbonic anhydrase isozymes
are highly similar (Figure 2G) and so are the conformations
of acetazolamide observed for these complexes (Figure 2A).
The protein-ligand complexes are stabilized by hydrogen bonds
formed between the acetyl group of acetazolamide and the
binding pocket (Figure 2B), with one exception, which is a
complex with human carbonic anhydrase XII (1JD0). In that
structure, the acetyl group of the ligand is rotated by about

Frontiers in Chemistry | www.frontiersin.org 4 March 2018 | Volume 6 | Article 68139

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Friedrich et al. Diversity of Protein-Bound Conformations of Small Molecules

TABLE 2 | Summary of cofactors and cofactor analogs investigated in this work.

Name No. of PDB

entries

Protein names: No. of

high-quality conformers

No. of

Confs.a
Major observations

Sinefungin (SFG) 70 Methyltransferase: 23

Others: 7

6 Three clusters of conformers are observed. The largest group includes

23 highly similar conformers and includes structures bound to proteins

that share low sequence identity. The maximum RMSD measured for

any of the sinefungin conformers is 3.6 Å

S-adenosylmethionine (SAM) 410 Methyltransferase: 92

Others: 31

24 A wide variety of conformations are observed, with a clear clustering

into three distinct groups of conformers. Within these groups, a large

number of similar conformers are observed, even when bound to

proteins sharing low sequence identity. The maximum pairwise RMSD is

3.3 Å

S-Adenosyl-L-Homocysteine

(SAH)

784 Methyltransferase: 284

RNA polymerase: 8

Others: 19

23

Glutathione (GSH) 360 Glutathione transferase: 46

Others: 28

16 Most of the conformers have a pairwise RMSD between 0.6 and 1.6 Å,

but the maximum pairwise RMSD is 3.6 Å

Adenosine monophosphate

(AMP)

575 Total: 171 36 A wide variety of different conformers is observed. One distinct,

extremely coiled conformer was observed in complex with an adenylate

kinase-related protein. The maximum pairwise RMSD is 2.5 Å

Adenosine diphosphate (ADP) 1,810 Total: 462 81 The conformers are similar to those observed for AMP, despite the

presence of an additional phosphate group. The median RMSD is 0.9 Å

Adenosine triphosphate (ATP) 1,079 Total: 218 76 ATP is observed in an extended conformation in most structures, but

some conformers are extremely bent. The median and the maximum

pairwise RMSDs are 1.6 and 3.9 Å, respectively

Flavin mononucleotide (FMN) 919 Total: 367 21 The overall median RMSD is 0.9. The all-against-all comparison

revealed four groups of conformers, with peaks in the RMSD distribution

at around 0.3, 1.2, 1.7, and 2.4 Å

aNo. of distinct bioactive conformations.

FIGURE 1 | (A) Ligand-based alignment of imatinib conformers observed in complex with three different tyrosine kinases (gray carbon atoms), human quinone

reductase 2 (3FW1; violet carbon atoms) and human spleen tyrosine kinase (1XBB; green carbon atoms). (B) Imatinib bound to ABL1 (3MS9) in an extended

conformation that is characteristic for the drug bound to tyrosine kinases. Red and green vectors indicate hydrogen bond donors and acceptors, respectively. Yellow

spheres mark hydrophobic moieties involved in interactions with the protein, and blue astral centers indicate charge interactions involving a positively charged group

on the ligand side. (C) Imatinib bound to human quinone reductase 2 in a conformation that is different from those characteristic of tyrosine kinases (3FW1; FAD with

green carbon atoms). (D) Alignment of the binding sites of human ABL1 (3K5V; red) and c-Src (2OIQ; green). Despite a sequence identity of only 45%, the ligand

binding sites of both proteins are almost identical.

140◦ as compared to any of the other structures (RMSD 0.9 Å;
Figure 2C). A second, distinct conformation of acetazolamide is
found in a complex with a different enzyme, endochitinase from
Saccharomyces cerevisiae (2UY4) with a fundamentally different
binding pocket. In that structure, the carbon-sulfur bond of the
ligand is rotated by 120◦ (Figure 2D). The moieties in question

are oriented toward the bulk water phase, freely rotatable, and
not engaged in directed interactions with the protein. Also, the
electron density maps do not allow a definitive conclusion on
the orientation of these moieties (Figures 2E,F). It is therefore
entirely possible that in reality all conformers of acetazolamide in
the Sperrylite Dataset are nearly identical.
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FIGURE 2 | (A) Ligand-based alignment of acetazolamide bound to different carbonic anhydrases (gray carbon atoms, except those of 1JD0, which are violet) and

endochitinase (2UY4; green). (B) The acetyl group of acetazolamide forms hydrogen bond interactions with some carbonic anhydrases such as isozyme VII (3ML5)

depicted here. (C) In a complex with human carbonic anhydrase XII (1JD0) the acetyl group of acetazolamide is rotated by about 140◦. (D) In a complex with

endochitinase (2UY4), the sulfonamide moiety of acetazolamide is rotated by about 120◦. The support of atom positions by the measured electron density can be

quantified by the EDIA score. For some of the atoms of the acetyl (E) and sulfonamide groups (F) of these structures the EDIA scores are below 0.8, meaning that

their exact position is uncertain. The 2Fo-Fc, Fo-Fc(–ve) and Fo-Fc(+ve) sigma maps are shown in blue, red and green, respectively. It can therefore not be excluded

that the acetyl group in (C) and the sulfonamide moiety in (D) are present in the same orientation that is observed in any of the other crystal structures.

(G) Superposed binding pockets of the nine human and three extremophilic bacterial carbonic anhydrases.

Triclosan
Triclosan (TCL) is an antibacterial and antifungal agent
inhibiting enoyl-acyl carrier protein reductases (ENR),
which are key enzymes in the fatty acid elongation cycle.
Its wide use as a disinfectant in cremes and consumer
products (e.g., soaps, toothpaste, detergents) is a controversial
topic nowadays (Buth et al., 2010; Carey and McNamara,
2014).

In all 31 structures of triclosan contained in the PDB, the
ligand is bound to an ENR. The conformers of triclosan observed
among the 11 high-quality structures with ENR I and ENR III
are very similar (median RMSD 0.1 Å; maximum pairwise RMSD
< 0.6 Å; Figure 3A). These include the structures of Plasmodium
falciparum ENR I (2O2Y) and Bacillus subtilis ENR III (3OID)
which, despite a sequence identity of just 14% and a highly
flexible binding site region (when in the unbound state), show

almost identical structural features in the presence of triclosan
(Kim et al., 2011).

In an X-ray structure of triclosan bound to Staphylococcus
aureus ENR I (3GR6; not included in the Sperrylite Dataset
because of low EDIA scores), the hydroxyl group of all four
instances of triclosan ismodeled in a different orientation (RMSD
1.4 Å measured to any of the other conformations present in the
dataset). The EDIA score for the oxygen atom of the hydroxyl
group of the four instances of this conformer is just 0.11–0.27,
and visual inspection of the electron density map confirms a lack
of support of this conformation (Figure 3B). The characteristic
hydrogen bonds formed between the phenolic hydroxyl group
of triclosan and Y156 as well as NAD(P) (Heath et al., 1999;
Levy et al., 1999; Figure 3C) are also missing in this model
(Figure 3D). All of these observations taken together indicate a
likely error in this structural model.
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FIGURE 3 | (A) Ligand-based alignment of eleven conformers of triclosan present in the Sperrylite Dataset bound to ENRs, including the drug-resistant G93V mutant

of ENR I (3PJF; violet carbon atoms) and an uncommon conformation observed in Staphylococcus aureus ENR I (3GR6; blue carbon atoms). The latter is not part of

the Sperrylite Dataset because of a lack of support of the structural model by the electron density, as shown in (B), with the 2Fo-Fc, Fo-Fc(–ve) and Fo-Fc(+ve) sigma

maps in blue, red and green, respectively. (C) Interaction of triclosan and NAD (green carbon atoms), including the characteristic hydrogen bond between both

molecules in the binding pocket of E. coli ENR I (1QG6). (D) Triclosan and NADP (green) bound to Staphylococcus aureus ENR I (3GR6). In this structural model, the

characteristic hydrogen bond is missing because of the unusual position of the hydroxyl group. However, this conformation of triclosan lacks support by the measured

electron density. (E) A G93V mutation in ENR I (green protein backbone; ligand with violet carbon atoms) induces a conformational shift of the flexible α-helical turn

located in the proximity of triclosan. The complex of the WT protein and triclosan (4M89) is shown with the protein backbone and ligand in blue.

The largest deviations between conformers of triclosan
within the Sperrylite Dataset were observed for the complex
with a triclosan-resistant G93V mutant (3PJF) of ENR I
from Escherichia coli. These deviations are related to small
conformational changes of a flexible α-helical turn in close
proximity to the ligand (Figure 3E), resulting in the weakening
of some edge-to-face aromatic interactions near the ligand (Singh
et al., 2011). The high-level resistance of this mutant is not caused
by a substantial loss in binding affinity of the drug but is a
consequence of the inability of the G93Vmutant to form the high
affinity ENR-NAD+-triclosan ternary complex that inhibits the
wild type (Heath et al., 1999).

Ubenimex, Bestatin
Ubenimex, also known as bestatin (BES), is a competitive
protease inhibitor under investigation for the treatment of
acute myelocytic leukemia and lymphedema (Tian et al.,
2017). The molecule inhibits aminopeptidases and has shown
immunomodulatory and host-mediated antitumor activities
(Urabe et al., 1993; Inoi et al., 1995; Sakuraya et al., 2000).
It has been approved in Japan as an adjunct to chemotherapy
agents against acute non-lymphocytic leukemia for decades
and has been reported to inhibit the growth of malaria
parasites (Plasmodium falciparum) in vitro (Nankya-Kitaka et al.,
1998).

Twenty-eight structures of bestatin are listed in the PDB.
All of the 11 high-quality structures are with bestatin bound to
aminopeptidases. The ligand conformations observed in eight
of these high-quality structures are very similar to each other
(maximum pairwise RMSD = 0.8 Å), even though the proteins
originate from three different bacteria (E. coli, Pseudomonas
putida and Vibrio proteolyticus), the unicellular protozoan
parasite Plasmodium falciparum and mouse, and their minimum
pairwise sequence identity is only 3.3%.

In contrast, the structure of bestatin bound to human
aminopeptidase N (4FYR) shows an extended ligand
conformation that has an RMSD of 2.0 Å to any of the ligand
conformers observed for the bacterial proteins (Figure 4A).
The conformations of the drug bound to human leukotriene
A-4 hydrolase differ only slightly from and have similar
binding modes to the characteristic conformation observed for
aminopeptidases mentioned above (RMSD = 1.0 Å for both
3FUH and 3FTX; Figures 4B–D).

Biotin
Biotin (BTN, vitamin B7) is a water-soluble coenzyme for
carboxylase enzymes and an approved drug for the treatment
of dietary shortage or imbalance. There are 99 crystal structures
including biotin listed in the PDB. The biotin conformers
observed for the 43 high-quality structures can be assigned

Frontiers in Chemistry | www.frontiersin.org 7 March 2018 | Volume 6 | Article 68142

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Friedrich et al. Diversity of Protein-Bound Conformations of Small Molecules

FIGURE 4 | (A) Superposition of all eleven conformers of bestatin in the Sperrylite Dataset. The carbon atoms of the conformers in complex with human

aminopeptidase N (4FYR) and human leukotriene A-4 hydrolase (3FUH and 3FTX) are indicated in green, violet and cyan, respectively. The carbon atoms of all other

structures are shown in gray. (B) Typical conformer of bestatin bound to aminopeptidases N from E. coli (2HPT). (C) A conformation that differs slightly from the

characteristic conformation, observed in complex with human leukotriene A-4 hydrolase (3FUH shown here). (D) Uncommon, extended conformation of bestatin

observed in complex with the human aminopeptidase N (4FYR).

to three distinct groups, indicated by gray, green and violet
carbon atoms in Figure 5A. Twenty-four of the 43 structures
are complexes with core streptavidin from different bacteria
(both wild type and mutants). Streptavidin homotetramers have
a very high affinity for biotin, one of the strongest non-covalent
interactions known (Kd ≈ 10−14 to 10−16 M) (Laitinen et al.,
2006). The protein-ligand complex stands out by a high degree
of shape complementarity and an extensive network of hydrogen
bonds formed between both binding partners. One of the 24
structures of biotin bound to core streptavidin (4GD9) shows the
impact of the cutting of a binding loop on the conformation of the
bound ligand (Figure S4; Le Trong et al., 2013). Another structure
(2IZJ) shows subtle structural changes of the streptavidin-biotin
complex induced by a low pH that stabilizes intersubunit salt
bridges (Figure 5A; orange carbon atoms; Katz, 1997).

Six crystal structures of avidin from chicken (wild type and
mutants) and one of engineered avidin (2C4I) are also included
in the dataset. Avidin is loosely related to streptavidin, with
an equally high affinity to biotin and a very similar binding
site (Figure S4). As expected, biotin binds to this protein in
a conformation that is very similar to those predominantly
observed for complexes with streptavidin.

Biotin-protein ligase (1WPY, 2EJ9, 2EJF, 2DTH, 2FYK,
and 2ZGW) and biotin carboxylase (3G8C) share very low
structural similarity with streptavidin and with each other. The
conformations observed for biotin bound to biotin-protein ligase
(Figure 5A; violet carbon atoms) are virtually identical among
each other but differ by an RMSD of 1.1 Å from the predominant
conformation observed in the Sperrylite Dataset. In particular,
the angle of the alkyl chain leaving the ring system differs by
around 103◦ from that observed for biotin bound to streptavidin.
A third conformer of biotin is observed in complex with E. coli
biotin carboxylase (3G8C; Figure 5A; green carbon atoms), with

an RMSD of 0.9 Å measured against any of the streptavidin-
bound conformers. Despite substantial structural differences
observed among the various different biotin-binding proteins,
the non-covalent interactions formed between biotin and the
target protein are largely conserved (Figures 5B–D).

Sapropterin
Sapropterin (tetrahydrobiopterin, H4B) is an approved drug for
the treatment of tetrahydrobiopterin deficiency. It is an essential
cofactor for the synthesis of nitric oxide and the hydroxylation
of phenylalanine, tyrosine and tryptophan. The PDB counts 472
complexes with sapropterin, 188 of which are of high quality.

Of the high-quality conformers of sapropterin, all but three
are extremely similar to each other (median RMSD of less
than 0.1 Å; Figure S5A). All of these highly similar sapropterin
conformers are bound to nitric oxide synthase, from five different
species (human, rat, mouse, cattle and Bacillus subtilis). The
exceptions are the conformers bound to human phenylalanine
hydroxylase (1MMK, 1MMT and 1J8U), and differ by an
RMSD of 0.7 Å from the conformer in human nitric oxide
synthase (4D1N, Figure S5B). The sequence identity between
human phenylalanine hydroxylase and human nitric oxide
synthase is less than 15%. The slightly different conformer
bound to phenylalanine hydroxylase is stabilized by hydrophobic
interactions (Figure S5C).

Cholic Acid
Cholic acid (CHD) is one of the major bile acids produced
from cholesterol in the liver. It is approved for the treatment of
bile acid synthesis disorders and as an adjunctive treatment of
peroxisomal disorders.

Thirteen of the 74 available crystal structures that include
cholic acid are of high quality. Twelve thereof are from eukaryotic
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FIGURE 5 | (A) Superposition of 43 structures of biotin (BTN) bound to core streptavidin (gray carbon atoms), E. coli biotin carboxylase (3G8C; green carbon atoms),

biotin-protein ligase (1WPY; violet carbon atoms), and streptavidin-biotin at low pH (2IZJ; orange carbon atoms). The binding modes observed for biotin in complex

with (B) core streptavidin from Streptomyces avidinii (3WYP), (C) biotin-protein ligase from Pyrococcus horikoshii (1WPY) and (D) E. coli biotin carboxylase (3G8C) are

very similar.

proteins, including alcohol dehydrogenase, ferrochelatase,
cytochrome c oxidase and bile acid-binding proteins; one
structure is of choloylglycine hydrolase from Clostridium
perfringens (2RLC).

Some pockets of cholic acid-binding proteins can
accommodate more than a single cholic acid molecule, as
observed e.g., in structures of the chicken liver basic fatty acid-
binding protein (1TW4) and the zebrafish liver bile acid-binding
proteins (2QO5).

Given the rigid scaffold of steroids it is not surprising that,
despite in part low sequence identity between the cholic acid-
binding proteins, the observed ligand conformations (i.e., those
bound to the deepest part of their respective binding pocket)
are highly similar (median RMSD = 0.6 Å; Figure 6A). The
maximum pairwise RMSD of 1.6 Å was measured between
the conformation of cholic acid in the crystal structure
of the G55R mutant of zebrafish liver bile acid-binding
protein (2QO6) and in human mitochondrial ferrochelatase
(3W1W).

Deoxycholic Acid
Deoxycholic acid (DXC), a metabolic byproduct of intestinal
bacteria, is a steroid acid commonly found in the bile of
mammals (Ridlon et al., 2016). Deoxycholic acid is a detergent
that disturbs the integrity of biological membranes and is used
to isolate membrane-associated proteins. Deoxycholic acid is
approved for submental fat reduction, as a safer and less invasive
alternative to surgical procedures for the treatment of lipomas
(Duncan and Rotunda, 2011) and for improvements of aesthetic
appearance.

Of the 29 entries deposited in the PDB, 18 are of high
quality. Eleven of those structures are deoxycholic acid bound
to cathepsin A and have a maximum pairwise RMSD of just 0.1
Å. Because of the rigid ligand core, deoxycholic acid also binds

to structurally distinct proteins in very similar conformations
(Figure 6B). Examples from the Sperrylite Dataset include two
structures of Betula pendula Bet v1 (a major pollen allergen;
4A81 and 4A84), a structure of subunits I and II of cytochrome
c oxidase (3DTU) from Rhodobacter sphaeroides, a structure of
choloylglycine hydrolase from Clostridium perfringens (2BJF), a
structure of the multidrug transporter MdfA (4ZP0) from E. coli,
and even a conformer of deoxycholic acid bound to the interface
of a dimer of the cell invasion protein SipD from Salmonella
enterica (3O01; Chatterjee et al., 2011) The maximum pairwise
RMSD (0.9 Å) was measured for the ligand conformers bound
to a K9E mutant of cathepsin A (4HAJ) and salmonella invasion
protein D (3O01), indicated by violet carbon atoms in Figure 6B.

Cofactors and Cofactor Analogs
The most abundant small molecules in the Sperrylite Dataset
are cofactors and their analogs. The cofactors represented by at
least 10 high-quality structures can roughly be grouped into three
categories: sinefungin and its analogs (S-adenosylmethionine,
SAM, and S-adenosylhomocysteine, SAH; Figure 7), adenosine
phosphates (AMP, ADP, ATP; Figure 8), and three cofactors
without analogs listed in the dataset (glutathione, flavin
mononucleotide and sapropterin). The RMSD distributions (all-
against-all comparisons) for the most relevant cofactors are
reported in Figure 9.

Sinefungin and Analogs

Sinefungin
Sinefungin (SFG), an analog of the cofactor substrate
SAM, inhibits a wide range of methyltransferases, thereby
interfering with DNA synthesis (Pugh et al., 1978). It is an
antifungal antibiotic and also a known effective inhibitor of the
transformation of chick embryo fibroblasts by the cancer-causing
Rous sarcoma virus (Vedel et al., 1978).
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FIGURE 6 | (A) Ligand-based alignment of 13 structures of cholic acid bound to different eukaryotic proteins and choloylglycine hydrolase from Clostridium

perfringens (2RLC; gray carbon atoms) and human mitochondrial ferrochelatase (3W1W; violet carbon atoms). (B) Ligand-based alignment of 16 structures of

deoxycholic acid bound to structurally distinct proteins, including salmonella invasion protein D (3O01; violet carbon atoms).

FIGURE 7 | Ligand-based alignment (left) and PCA-derived score plots (right) of (A,B) 30 structures of sinefungin bound to different methyltransferases (gray carbon

atoms; these and all further color definitions in this caption are referring to the left panels only), ribosomal RNA small subunit methyltransferase NEP1 (3BBH; violet

carbon atoms), tRNA (guanine-N(1)-)-methyltransferase (4YVH; green carbon atoms), SMYDs and SET7 lysine methyltransferase (3CBP, 3PDN, 3N71, 3QWW and

3RU0; cyan carbon atoms); (C,D) 123 structures of SAM bound to different methyltransferases (gray carbon atoms), tRNA(m1G37)methyltransferase (1UAK; violet

carbon atoms) and yeast ribosome synthesis factor Emg1 (2V3K; green carbon atoms); (E,F) 311 structures of SAH and (G,H) 74 conformers of glutathione (GSH).
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FIGURE 8 | Ligand-based alignment (left) and PCA-derived score plots (right) of (A,B) 171 conformers of AMP (conformer bound to adenylate kinase-related protein

from Sulfolobus solfataricus in (A) with violet carbon atoms; 3LW7), (C,D) 462 conformers of ADP, (E,F) 218 conformers of ATP, and (G,H) 367 conformers of FMN.

The PDB lists 70 structures of sinefungin, all of them
bound to methyltransferases. Thirty of these structures are of
high quality. The observed conformers of sinefungin can be
classified into three groups by an all-against-all comparison
of their RMSDs (Figure 9). The largest group (Figure 7A;
gray carbon atoms) includes 23 highly similar conformers (a
representative example is given in Figure 10A) with a median
RMSD of 0.5 Å, even though some of the proteins that these
sinefungin molecules are bound to share low sequence identity
(e.g., 30% for murine protein arginine N-methyltransferase 6
and the ribosomal protein L11 methyltransferase of Thermus
thermophilus).

The second largest group consists of sinefungin conformers
bound to the murine SET and MYND domains (SMYD) 1
(3N71) and 2 (3QWW), the human SMYD 3 (3PDN, 3RU0)
and the SET7 lysine methyltransferase (3CBP), with RMSDs

between 1.7 and 1.8 Å measured against the conformations
representing the largest group (Figure 7A; cyan carbon
atoms). Murine SMYD 1 (3N71) and human SET7 lysine
methyltransferase (3CBP) have less than 15% sequence
identity but bind sinefungin in very similar conformations
(RMSD 0.3 Å).

Distinct conformations of sinefungin are observed for
a complex with Haemophilus influenzae tRNA (guanine-
N(1)-)methyltransferase (4YVH; Figure 7A; green atoms)
and a complex with the ribosomal RNA small subunit
methyltransferase NEP1 (3BBH, Figure 7A; violet carbon
atoms, and Figure 10B) from Methanocaldococcus jannaschii,
with RMSDs measured to the most abundantly observed
conformation of 3.1 and 3.6 Å, respectively. In both cases the
ligand conformation is stabilized by a hydrogen bond formed
between the ligand’s carboxyl group and the protein backbone.
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S-Adenosylmethionine
SAM (SAM) is a cofactor that functions as a methyl donor
in methyltransferases. It is essential for the methylation of
proteins, DNA, lipids and small molecules. The bulk of SAM
is generated in the liver, but all mammalian cells use it as an
intermediate in the methionine-homocysteine cycle (Mato et al.,
2013). SAM is also involved in the synthesis of many other
endogenous metabolites. It has wide-ranging anti-inflammatory
activity (Pfalzer et al., 2014) and, since its synthesis is depressed
in chronic liver diseases, there has been considerable interest
in its therapeutic use (Anstee and Day, 2012; Guo et al., 2015).
S-adenosylmethionine is used as a drug for the treatment of
depression, liver disorders, fibromyalgia, and osteoarthritis.

Four hundred ten structures listed in the PDB contain
SAM. For example, almost all crystal structures of flavivirus

FIGURE 9 | Violin plot including box plots of the RMSD distributions of

high-quality, protein-bound conformations of sinefungin (SFG), SAM, SAH,

AMP, ADP, ATP, GSH and FMN. The width of each violin plot for a certain

RMSD value indicates how often the specific value occurs in the pairwise

comparison of all conformers.

methyltransferases contain SAM (because the molecule co-
purifies with the enzymes (Noble et al., 2014). There are
119 high-quality SAM-containing structures present in the
Sperrylite Dataset. Many of these conformers are similar, with
an overall median RMSD of 0.6 Å (Figures 7C,D). Even
conformers bound to proteins sharing a low sequence identity
(e.g., 19% in the case of Aeropyrum pernix fibrillarin, 4DF3,
and human NSUN5, 2B9E), have RMSDs of just 0.5 Å. The
all-against-all RMSD comparison shows a partitioning into
three groups that are mainly determined by the torsion angles
between the adenine and the ribose and to the torsion angles
including the sulfonium linkage (Figure 7). The highest RMSD
measured between any pair of SAM conformers is 3.3 Å, which
was measured for the ligand in complex with Haemophilus
influenzae tRNA(m1G37)methyltransferase (1UAK; Figure 7C;
violet carbon atoms) and with SAM methyltransferase from
Ruegeria pomeroyi (3IHT).

S-Adenosyl-L-homocysteine
The strong product inhibitor SAH (SAH) is released in all
SAM-dependent methyltransferase reactions (Tehlivets et al.,
2013). The ratio of SAM to SAH controls the activity of
methyltransferase enzymes (“methylation ratio”; Schatz et al.,
1977).

The PDB lists 784 structures including SAH, of which an
unusually high proportion (40%; 311 structures) is of high quality
(Figure 7). These represent a highly diverse set of proteins from
all three domains of organisms in nature. Most of the structures
are of human (73 structures) and Pyrococcus horikoshii (72
structures) proteins.

Many of the SAH conformations are highly similar, with
an overall median RMSD of 0.6 Å. The all-against-all RMSD
comparison shows three groups of conformations and an overall
spread very similar to that observed for SAM (Figure 9).
As shown in Figure 7, the conformations observed for SAM
and SAH are similar. Also, all conformations of sinefungin
are closely represented by at least one conformation of SAM
and SAH.

The largest difference observed among the SAH
conformations was measured between a coiled conformer
bound to Haemophilus influenzae tRNA (Guanine-N(1)-)-
methyltransferase (1UAL) and a mostly stretched conformer
bound to E. coli ribosomal RNA large subunit methyltransferase
L (3V97) with an RMSD of 3.2 Å.

FIGURE 10 | (A) A typical conformer of sinefungin bound to human histone-arginine methyltransferase CARM1 (2Y1W) and (B) the coiled conformer in the ribosomal

RNA small subunit methyltransferase NEP1 from Methanocaldococcus jannaschii (3BBH).
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Glutathione
The tripeptide glutathione (GSH; GSH) is a cofactor of
various different enzymes and a defensive reagent against toxic
xenobiotics. Of the 360 entries with glutathione listed in the PDB,
74 structures are of high quality. These high-quality structures
cover glutathione bound to 10 different proteins (Figures 7G,H).
Most of the GSH conformers have a pairwise RMSD between
0.6 and 1.6 Å (Figure 9). The two most distinct conformers of
glutathione observed in the Sperrylite Dataset are an unusually
stretched conformer bound to a putative branched-chain amino
acid ABC transporter from Chromobacterium violaceum (4PYR,
Figure 11A) and an extremely coiled conformer bound to
human mPGES-1 (4YL1, Figure 11B), with an RMSD of
3.6 Å. Nevertheless, their interaction patterns show similarities.
Glutathione transferases are represented by 46 high-quality
structures. These are mostly similar and have a median RMSD
of less than 0.5 Å (Figures 7G,H).

Adenosine Phosphates
ATP functions as the most important molecule for intracellular
storage and transport of chemical energy. It has many
crucial roles in metabolism and is also a neurotransmitter.
During metabolic processes, ATP is converted into
adenosine diphosphate (ADP) and, subsequently, adenosine
monophosphate (AMP), thereby releasing the stored energy.

Adenosine monophosphate
Out of the 575 complexes with AMP (AMP) found in the
PDB, 171 conformers are of high quality. AMP has four
rotatable bonds and the median RMSD measured between all

high-quality conformers is 0.8 Å. The all-against-all comparison
of AMP conformers results in a wide spread of the RMSD
values (Figure 9). The flexibility of the molecule is mostly
limited to the phosphate group (Figures 8A,B). The maximum
RMSD of 2.5 Å was measured between an extremely coiled
conformer bound to an adenylate kinase-related protein from
Sulfolobus solfataricus (3LW7; Figure 8A, violet carbon atoms;
Figure 12A) and the stretched conformer bound to NTPDase1
from Legionella pneumophila (4BRN; Figure 12B).

Adenosine diphosphate
Out of the 1,810 entries including ADP (ADP) in the PDB, 462
conformers are of high quality. Despite an additional phosphate
group and a total of six rotatable bonds, the conformational
space covered by ADP is very similar to that covered by
AMP (Figures 8C,D). This similarity is reflected in the median
RMSD of 0.9 Å between the conformers of ADP and a similar
overall spread in the all-against-all comparison (Figure 9).
The two most different ADP conformers in the Sperrylite
Dataset are those bound to tryptophanyl-tRNA synthetase from
Campylobacter jejuni (3TZL; Figure 13A) and an Stt7 homolog
from Micromonas algae (4IX6; Figure 13B), with an RMSD of
2.9 Å.

Adenosine triphosphate
Only 218 conformers out of the 1,079 structures of the PDB
containing ATP (ATP) were of high quality. In all structures of
ATP included in the Sperrylite Dataset, the N-glycosidic bond
is found in an anti-orientation. With its eight rotatable bonds
ATP is more flexible than the previously discussed adenosine

FIGURE 11 | (A) The most stretched conformer of glutathione bound to an ABC transporter from Chromobacterium violaceum (4PYR) and (B) an unusually coiled

conformer of glutathione bound to human mPGES-1 (4YL1).

FIGURE 12 | (A) Unusually coiled conformer of AMP bound to adenylate kinase-related protein of Sulfolobus solfataricus (3LW7) and (B) the most stretched

conformer in Legionella pneumophila NTPDase1 (4BRN).
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FIGURE 13 | The most distinct conformers of ADP in the Sperrylite Dataset are the coiled conformer from (A) tryptophanyl-tRNA synthetase from Campylobacter

jejuni (3TZL; sodium ion in light blue) and (B) the stretched conformer from a Stt7 homolog from Micromonas algae (4IX6).

phosphates. This results in a median RMSD of 1.6 Å among
the ATP structures of the Sperrylite dataset (as compared to
a median RMSD of 0.9 Å measured for ADP) and a distinct
spread of the RMSD values in the all-against-all comparison
(Figure 9). The maximum pairwise RMSD was 3.9 Å, measured
between ATP conformers from human lysyl-tRNA synthetase
(3BJU) and Drosophila melanogaster Wiskott-Aldrich syndrome
protein homology 2 (3MN6).

ATP is observed in an extended conformation in most
structures (Figures 8G,H), which is in agreement with earlier
studies (Moodie and Thornton, 1993; Stockwell and Thornton,
2006; Bojovschi et al., 2012; Stegemann and Klebe, 2012).
As reported also by Stockwell and Thornton (Stockwell and
Thornton, 2006), some conformers are bent to an extent
that the terminal phosphate atoms are almost in van der
Waals contact with the adenine ring. Examples of ATP in
bent conformations include complexes with the aspartyl-tRNA
synthetase from Pyrococcus kodakaraensis (1B8A; Figure S6) and
the ribonucleotide reductase protein R1 from E. coli (3R1R).

Flavin Mononucleotide
Flavin mononucleotide (FMN; FMN) is the prosthetic group
of various oxidoreductases (including NADH dehydrogenase),
as well as a cofactor in biological blue-light photoreceptors
(Froehlich et al., 2002; Schwerdtfeger and Linden, 2003). Blue-
light receptors in plants (phototropins), for example, employ
flavin mononucleotide as the chromophore for their light sensing
function (He, 2002).

Its frequent occurrence as a prosthetic group and a cofactor
result in flavin mononucleotide’s presence in 919 structures
deposited in the PDB, among which 367 conformers of
FMN are of high quality. Despite having seven rotatable
bonds, most structures show extended, similar conformations
(Figures 8G,H), with a median RMSD of 0.9 Å. The all-against-
all comparison reveals four groups of conformers, with peaks
observed in the RMSD distribution around 0.3, 1.2, 1.7, and
2.4 Å (Figure 9). These peaks correspond to an accumulation
of conformers with similar torsion angles of the side chain.
The maximum RMSD of 2.9 Å was observed between the
conformation of FMN in E. coli pyridoxine 5′-phosphate oxidase
(1JNW) and in human glycolate oxidase (2RDU), with the
sidechain bent into opposing directions.

CONCLUSIONS

The Sperrylite Dataset presented in this work is a complete
subset of high-quality conformations of protein-bound ligands
extracted from the PDB. This dataset resulted from a multi-step
data processing and filtering procedure that, most importantly,
also includes an automated approach for the evaluation of the
support of individual atom positions by the electron density.
The Sperrylite Dataset consists of a total of 10,936 high-quality
structures of 4,548 unique ligands. Ninety-one of those ligands
are each represented by a minimum of ten structures, and among
these only a (very) weak correlation was observed between the
number of rotatable bonds of amolecule and its overall variability
(measured as the minimum median RMSD; R2 = 0.126). Sixty-
nine out of the 91 ligands had at least two distinct conformations
(defined as RMSD above 1Å).

A representative subset of 17 approved drugs and cofactors
was analyzed in detail to determine the conformational variability
of protein-bound conformations of small molecules. For all of
the analyzed small-molecule drugs and some of the cofactors,
a clear trend for the formation of few clusters of highly similar
conformers was observed. Similar conformers were observed for
proteins with similar binding sites, mostly independent of the
overall protein sequence identity (which is in agreement with the
findings of, e.g., Sturm et al., 2012). A particularly interesting
example is imatinib, which was found to adopt highly similar
conformations when binding to different tyrosine kinases (even
to those sharing low overall sequence identity) but to adopt
a distinct conformation upon binding to quinone reductase 2.
For cofactors, a clear trend for extended conformations was
observed, which is in agreement with previous works (Moodie
and Thornton, 1993; Stockwell and Thornton, 2006; Bojovschi
et al., 2012; Stegemann and Klebe, 2012). A few cases of strongly
coiled conformers of cofactors were also observed. This result is
well in line with earlier reports (Stockwell and Thornton, 2006).

It is clear that the currently available structural data on
protein-bound ligands is still too limited to allow us to gain
a full understanding of the bioactive space of small molecules.
However, for several cofactors a large number of conformers
observed in complex with dozens of proteins are available to date
and provide valuable insight into the bioactive conformational
space and the prevalence of bioactive conformations of small
molecules. With an automated workflow for the extraction of
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high-quality ligand structures from the PDB in place, it is
expected that the ever increasing amount of data will allow a
more detailed understanding of, e.g., conformational preferences,
ligand promiscuity, or the relationship between the bioactive
conformational space of small molecules and the structural
diversity of binding pockets.
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Tumor necrosis factor-α (TNF-α) plays a pivotal role in inflammatory response.

Dysregulation of TNF can lead to a variety of disastrous pathological effects, including

auto-inflammatory diseases. Antibodies that directly targeting TNF-α have been proven

effective in suppressing symptoms of these disorders. Compared to protein drugs, small

molecule drugs are normally orally available and less expensive. Till now, peptide and

small molecule TNF-α inhibitors are still in the early stage of development, and much

more efforts should be made. In a previously study, we reported a TNF-α inhibitor,

EJMC-1 with modest activity. Here, we optimized this compound by shape screen

and rational design. In the first round, we screened commercial compound library for

EJMC-1 analogs based on shape similarity. Out of the 68 compounds tested, 20

compounds showed better binding affinity than EJMC-1 in the SPR competitive binding

assay. These 20 compounds were tested in cell assay and the most potent compound

was 2-oxo-N-phenyl-1,2-dihydrobenzo[cd]indole-6-sulfonamide (S10) with an IC50 of

14µM, which was 2.2-fold stronger than EJMC-1. Based on the docking analysis of

S10 and EJMC-1 binding with TNF-α, in the second round, we designed S10 analogs,

purchased seven of them, and synthesized seven new compounds. The best compound,

4e showed an IC50-value of 3µM in cell assay, which was 14-fold stronger thanEJMC-1.

4e was among the most potent TNF-α organic compound inhibitors reported so far. Our

study demonstrated that 2-oxo-N-phenyl-1,2-dihydrobenzo[cd]indole-6-sulfonamide

analogs could be developed as potent TNF-α inhibitors. 4e can be further optimized

for its activity and properties. Our study provides insights into designing small molecule

inhibitors directly targeting TNF-α and for protein–protein interaction inhibitor design.

Keywords: TNF-α inhibitor, dihydrobenzo[cd]indole-6-sulfonamide, virtual screening, synthesis, structure activity

analysis
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INTRODUCTION

Tumor necrosis factor-α (TNF-α), an
important cytokine mediator involved in inflammatory
responses, is commonly used as a marker for many inflammatory
disorders (Wajant et al., 2003). Antibodies that directly targeting
TNF-α have achieved success in the treatment of inflammatory
disorders such as rheumatoid arthritis, Crohn’s disease, and
ulcerative colitis (Bongartz et al., 2005; Jacobi et al., 2006).
However, these biologics possess the possibility to cause anti-
antibody immune responses and weaken the immune system to
opportunistic infections (Scheinfeld, 2004; Ai et al., 2015).

Thus, developing inhibitors to block TNF-α is still of great
importance. Zhu et al. have reported several rationally designed
proteins that directly bound to TNF-α. They grafted three key
residues from a virus viral 2L protein to a de novo designed
small protein DS119, and then optimized their residues at the
interface, which provided some small proteins that bind TNF-
α with sub-micromolar affinities (Zhu et al., 2016). Other than
small proteins, bicyclic peptides and helical peptides were also
designed as peptidic antagonists of TNF-α (Lian et al., 2013;
Zhang et al., 2013).

In addition to peptide inhibitors, small molecular inhibitors
that directly targeting TNF-α have also been discovered (Leung
et al., 2012; Davis and Colangelo, 2013; Shen et al., 2014).
Suramin was thought to be the first small compound inhibitor
that directly disrupts the interactions between TNF-α and its
receptor (TNFR) (Grazioli et al., 1992). But its potency was too
low to be used in clinic (Alzani et al., 1993). No breakthrough
was made until 2005, when SPD304 was reported as the first
potent small molecule inhibitor that directly targeting TNF-α,
with an IC50 of 22µM by ELISA. And the co-crystal structure
of SPD304 in complex with TNF-α dimer was solved (He et al.,
2005). However, as the 3-alkylindole moiety of SPD304 can be
metabolized by cytochrome P450s to produce toxic electrophilic
intermediates, its further applications in vivo is limited (Sun
and Yost, 2008). After that, several novel TNF-α inhibitors
were discovered using structure-based virtual screening (VS)
of different chemical libraries. Chan et al. identified two
compounds using high-throughput ligand-docking-based VS
(Figure 1, quinuclidine 1 and indoloquinolizidine 2), and their
experimental tests showed that quinuclidine 1 is more effective
than indoloquinolizidine 2 in inhibition of TNF-α induced
NF-κB signaling in HepG2 cells, with IC50-values of 5 and
>30µM, respectively (Chan et al., 2010). Choi and colleagues
discovered a series of pyrimidine-2,4,6-trione derivatives from
a 240,000-compound library. The best compound (Figure 1,
Oxole-1) showed 64% inhibition at 10µM (Choi et al., 2010).
Leung et al. reported a novel iridium(III)-based direct inhibitor
of TNF-α (Figure 1, [Ir(ppy)2(biq)]PF6; Leung et al., 2012).
Mouhsine et al. used combined in silico/in vitro/in vivo screening
approaches to identify orally available TNF-α inhibitors with
IC50 of 10µM (Figure 1, Benzenesulfonamide-1; Mouhsine
et al., 2017). Other efforts to develop TNF-α inhibitors were
also reported (Mancini et al., 1999; Buller et al., 2009; Leung
et al., 2011; Hu et al., 2012; Alexiou et al., 2014; Ma et al., 2014;
Kang et al., 2016). However, due to the low potency and high

cytotoxicity, small molecule TNF-α inhibitors still have a long
way to go for clinical applications (Davis and Colangelo, 2013).
Highly active TNF-α inhibitors with novel chemical structures
need to be developed. In a previous study, we have discovered
a compound (Figure 1, EJMC-1) that directly bound TNF-
α (Shen et al., 2014). The scaffold of the compound, 2-oxo-
N-phenyl-1,2-dihydrobenzo[cd]indole-6-sulfonamide, has been
reported as inhibitors of West Nile virus (Gu et al., 2006),
RORγ inhibitors (Zhang et al., 2014), and BET bromodomain
inhibitors (Xue et al., 2016; Mouhsine et al., 2017). Considering
the good druggability of this scaffold, its analogs may be
valuable for developing potent TNF-α inhibitors. In the present
study, we used the scaffold of compound EJMC-1 to perform
similarity-based virtual screen and experimental testing. Top-
ranking compounds were first tested for their abilities to reduce
TNF-α binding with TNFR using surface plasmon resonance
(SPR). Then the cell-based NF-κB reporter gene assay was
used to test the activities of the compounds to reduce TNF-
α induced signaling. New compounds were further designed,
synthesized, and tested. The structure-activity relationship of
these compounds was analyzed.

MATERIALS AND METHODS

General Information
HEK293T cells were received as a gift from Professor Jincai
Luo (Peking University, China). The extracellular domain of
the TNF receptor 1 (TNFR1-ECD) was purchased from R&D
Systems. The selected compounds were purchased from the
SPECS database with purity higher than 90% and for most
compounds >95% (confirmed by the supplier, using NMR or
LC-MS data available through the website). Other biochemistry
reagents were from Sigma Aldrich unless indicated otherwise.
The organic reagents and solvents were commercially available
and purified according to conventional methods. All reactions
were monitored by thin layer chromatography (TLC), using silica
gel 60 F-254 aluminum sheets and UV light (254 and 366 nm)
for detection. All title compounds gave satisfactory 1HNMR, 13C
NMR, and mass spectrometry analyses. The 1H NMR and 13C
NMR spectra were measured on a Bruker-400M spectrometer
using TMS as internal standard. High resolution mass spectra
were recorded on a Bruker Apex IV FTMS mass spectrometer
using ESI (electrospray ionization).

Synthesis
Benzo[cd]indol-2(1H)-one 2
2 was prepared based on the adoption of method by Kamal et al.
(2012). Napthalic anhydride (1.98 g, 10 mmol), hydroxylamine
hydrochloride (0.69mg, 10 mmol), and dry pyridine (5ml) were
added to dried three-necked flask. Heating was discontinued after
reflux for 1 h, than benzenesulfonyl chloride (5 g) was added
portion wise to cause controlled boiling. Finally, heating was
resumed for 1 h, and the hot mixture was poured into water
(30ml). The crystalline precipitate was collected, washed with
0.5N NaOH and water. The crystals were boiled with water
(15ml) and ethanol (5ml) containing sodium hydroxide (5 g) for
2 h, during the second of which, ethanol was allowed to distill
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FIGURE 1 | Structures of small molecule inhibitors of TNF-α.

out. The solution was acidified with concentrated hydrochloric
acid (3ml), carbon dioxide being evolved and yellow crystals
deposited. Next day, the crystals were washed, and dried to
give light yellow needles (1.25 g, 74%). Mp175–179◦C; 1H NMR
(DMSO, 300 MHz, DMSO-d6) δ 8.05 (d, 1H, J = 6.7Hz), 8.01 (d,
1H, J = 8.3Hz), 7.75–7.70 (m, 1H), 7.53 (d, 1H, J = 8.3Hz), 7.40
(dd, 1H, J = 7.5, 6.7Hz), 6.94 (d, 1H, J = 6.7Hz).

2-oxo-1,2-dihydrobenzo[cd]indole-6-sulfonyl

Chloride 3
3 was prepared based on the adoption of method by Talukdar
et al. (2010). Chlorosulfonic acid (3.2ml) was added slowly to 2

(1.0 g, 5.9 mmol). The reaction mixture was stirred at 0◦C for 1 h
and at room temperature for 2 h. The mixture was then poured
into ice water (20ml). The precipitate was washed with water (2
× 10ml) and dried to give product as yellow solid (0.66 g, 38%).
Used without further purification.

General Procedure for N-Substituted
2-oxo-N-phenyl-1,2-dihydrobenzo[cd]ind-
ole-6-sulfonamides 4
A mixture of 2-oxo-1,2-dihydrobenzo[cd]indole-6-sulfonyl
chloride (100mg, 0.37 mmol), 0.37 mmol aniline, 0.4ml Et3N,
20mg DMAP was dissolved in 5ml DMF, the reaction mixture
was stirred at room temperature, the reaction was detected
by TLC, after the reaction was finished, extracted with 50ml

ethyl acetate and 20ml water, washed with water 20ml three
times, then 20ml saturated NH4Cl aqueous, 20ml brine. The
organic layer was dried by Na2SO4, and the solvent was removed
in vacuo. The residue was purified by Column chromatography.

N-(5-aminonaphthalen-1-yl)-2-oxo-1,2-

dihydrobenzo[cd]indole-6-sulfonamide 4a
Seventy-six milligrams, yield 54%. 1H NMR (400 MHz, DMSO-
d6) δ 5.66 (s, 2H), 6.52 (d, J = 7.5Hz, 1H), 6.88 (t, J = 8.1Hz,
1H), 6.92 (d, J = 7.6Hz, 1H), 7.04 (d, J = 8.4Hz, 1H), 7.11
(d, J = 7.3Hz, 1H), 7.18 (t, J = 7.9Hz, 1H), 7.87 (dd, J = 7.9,
4.0Hz, 3H), 8.07 (d, J = 7.0Hz, 1H), 8.65 (d, J = 8.4Hz, 1H),
10.18 (s, 1H), 11.07 (s, 1H). 13C NMR (101 MHz, DMSO-d6)
δ 168.70, 144.73, 142.65, 132.68, 132.01, 130.51, 130.23, 129.48,
128.50, 126.64, 126.46, 125.92, 124.71, 124.56, 123.29, 122.84,
122.76, 121.03, 110.30, 107.63, 104.54. HRMS (ESI): calcd for
C21H16N3O3S, [(M+H)+], 391.0912, found 390.0896.

N-(3-aminonaphthalen-2-yl)-2-oxo-1,2-

dihydrobenzo[cd]indole-6-sulfonamide 4b
Thirty-four milligrams, yield 26%. 1H NMR (400 MHz, DMSO-
d6) δ 1.20–1.29 (m, 2H), 4.67–5.36 (m, 2H), 6.79 (s, 1H), 6.95
(d, J = 7.6Hz, 1H), 7.05 (ddd, J = 8.1, 6.7, 1.2Hz, 1H), 7.22
(ddd, J = 8.2, 6.8, 1.3Hz, 1H), 7.35 (s, 1H), 7.41 (d, J = 8.2Hz,
1H), 7.46 (d, J = 8.2Hz, 1H), 7.85 (dd, J = 8.4, 7.0Hz, 1H),
7.95 (d, J = 7.6Hz, 1H), 8.08 (d, J = 7.0Hz, 1H), 8.65 (d, J
= 8.4Hz, 1H), 11.12 (s, 1H). 13C NMR (101 MHz, DMSO-d6)
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δ 169.10, 143.82, 142.21, 132.68, 132.21, 130.81, 130.01, 129.31,
128.65, 126.66, 126.45, 125.87, 124.63, 124.53, 123.39, 122.81,
122.77, 121.03, 110.60, 106.63, 103.59. HRMS (ESI): calcd for
C21H16N3O3S, [(M+H)+], 390.0912, found 390.0896.

2-oxo-N-(1,2,3,4-tetrahydronaphthalen-1-yl)-1,2-

dihydrobenzo[cd]indole-6-

sulfonamide 4c
Sixty-eight milligrams, yield 48%. 1H NMR (400 MHz, DMSO-
d6) δ 1.31–1.42 (m, 2H), 1.55–1.74 (m, 2H), 2.55–2.70 (m, 2H),
4.33 (dd, J = 9.7, 5.3Hz, 1H), 6.93–6.97 (m, 2H), 7.02 (s, 1H),
7.08 (d, J = 7.4Hz, 2H), 7.90–7.95 (m, 1H), 8.14 (t, J = 6.9Hz,
2H), 8.35 (d, J = 8.4Hz, 1H), 8.72 (d, J = 8.4Hz, 1H), 11.16 (s,
1H). 13C NMR (101 MHz, DMSO-d6) δ 169.31, 142.98, 137.57,
136.86, 132.65, 130.89, 130.37, 130.12, 129.17, 128.95, 127.41,
127.35, 126.67, 126.10, 125.31, 124.82, 105.17, 51.51, 30.68, 28.87,
19.68. HRMS (ESI): calcd for C42H36N4NaO6S2, [(2M+Na)+],
779.1974, found 799.1939.

N-(naphthalen-1-ylmethyl)-2-oxo-1,2-

dihydrobenzo[cd]indole-6-sulfonamide 4d
Fifteen milligrams, yield 10%. 1H NMR (400 MHz, DMSO-d6)
δ 4.43 (d, J = 5.7Hz, 2H), 6.94 (d, J = 7.5Hz, 1H), 7.25–7.36
(m, 3H), 7.41 (ddd, J = 8.1, 6.8, 1.2Hz, 1H), 7.72–7.76 (m,
1H), 7.82 (d, J = 8.1Hz, 1H), 7.85–7.90 (m, 2H), 7.98 (d, J
= 7.5Hz, 1H), 8.08 (d, J = 7.0Hz, 1H), 8.40 (t, J = 5.9Hz,
1H), 8.65 (d, J = 8.3Hz, 1H), 11.10 (s, 1H). 13C NMR (101
MHz, DMSO-d6) δ 169.29, 133.54, 132.94, 132.84, 131.08, 130.74,
130.04, 128.93, 128.69, 128.47, 127.29, 126.52, 126.33, 126.07,
125.47, 125.13, 124.74, 123.89, 104.98, 44.73. HRMS (ESI): calcd
for C44H33N4O6S2, [(2M+H)+], 777.1842, found 777.1804.

N-(1H-indol-6-yl)-2-oxo-1,2-dihydrobenzo[cd]indole-

6-sulfonamide 4e
Ninety-one milligrams, yield 68%. 1H NMR (300 MHz, DMSO-
d6) δ 6.21–6.27 (m, 1H), 6.67 (dd, J = 8.4, 2.0Hz, 1H), 6.95
(d, J = 7.7Hz, 1H), 7.05 (d, J = 1.7Hz, 1H), 7.17–7.22 (m,
1H), 7.27 (d, J = 8.5Hz, 1H), 7.91 (dd, J = 8.4, 7.0Hz, 1H),
7.97 (d, J = 7.6Hz, 1H), 8.08 (d, J = 6.9Hz, 1H), 8.74 (d, J =
8.3Hz, 1H), 10.20 (s, 1H), 10.91 (s, 1H), 11.11 (s, 1H). 13C NMR
(101 MHz, DMSO-d6) δ 169.15, 143.24, 136.18, 133.83, 131.41,
130.96, 129.77, 128.07, 127.28, 126.38, 125.87, 125.29, 124.90,
120.64, 114.44, 105.02, 104.61, 101.32. HRMS (ESI): calcd for
C38H27N6O6S2, [(2M+H)+], 727.1433, found 727.1428.

N-(3-(1-methyl-1H-pyrazol-4-yl)phenyl)-2-oxo-1,2-

dihydrobenzo[cd]indole-6-sulfonamide 4f
Seventy-six milligrams, yield 51%. 1H NMR (300 MHz, DMSO-
d6) δ 3.84 (s, 3H), 6.80 (dt, J = 5.4, 2.8Hz, 1H), 7.04 (d, J =
7.6Hz, 1H), 7.09 – 7.13 (m, 2H), 7.19 (s, 1H), 7.64 (s, 1H), 7.90
– 7.95 (m, 1H), 7.98 (s, 1H), 8.09 (d, J = 7.0Hz, 1H), 8.19 (d, J
= 7.7Hz, 1H), 8.72 (d, J = 8.3Hz, 1H), 10.59 (s, 1H), 11.16 (s,
1H). 13C NMR (101 MHz, DMSO-d6) δ 169.25, 143.33, 136.18,
133.83, 133.56, 131.41, 130.96, 130.51, 129.77, 128.07, 127.28,
126.38, 125.87, 125.29, 124.90, 124.64, 119.44, 117.82, 117.61,
114.32, 40.51. HRMS (ESI): calcd for C21H17N4O3S, [(M+H)+],
405.1021, found 405.1086.

FIGURE 2 | SPR competitive binding curves of compounds from shape

screening of EJMC-1. Compounds showed competitive binding to TNF-α.

The Red curve was TNF-α binding with TNFR1-ECD alone, and the other

curves were TNF-α TNFR1-ECD in the presence of compounds at 100µM.

The reference compound EJMC-1 was colored blue and the best compound

in SPR assay S10 was colored brown.

6-((1H-benzo[d]imidazol-1-yl)sulfonyl)benzo[cd]indol-

2(1H)-one 4g
Eighty milligrams, yield 62%. 1H NMR (400 MHz, DMSO-d6) δ

7.16 (d, J = 7.8Hz, 1H), 7.37-7.31 (m, 2H), 7.69–7.75 (m, 1H),
7.82 (dt, J = 8.3, 0.9Hz, 1H), 7.93–8.03 (m, 1H), 8.12 (d, J =
7.0Hz, 1H), 8.71 (d, J = 7.8Hz, 1H), 8.76 (d, J = 8.4Hz, 1H), 9.19
(s, 1H), 11.35 (s, 1H). 13C NMR (101 MHz, DMSO-d6) δ 168.46,
145.77, 143.47, 142.38, 136.22, 132.11, 129.83, 127.72, 127.05,
126.04, 125.57, 125.46, 124.71, 123.50, 122.77, 120.65, 112.18,
104.85. HRMS (ESI): calcd for C36H23N6O6S2, [(2M+H)+],
699.1120, found 699.1135.

Competitive Binding Assay Using SPR
Binding interactions between TNF-α and TNFR1-ECD in the
presence/absence of small molecule inhibitors were examined
on the SPR-based Biacore T200 instrument (GE Healthcare).
TNFR1-ECD was immobilized on a CM5 sensor chip using
standard amine-coupling at 25◦C with 1X running buffer
PBS-P (GE Healthcare). A reference flow cell was activated
and blocked in the absence of TNFR1-ECD. All experiments
were performed in phosphate-buffered saline (PBS)-EP buffer
(10mM NaH2PO4/Na2HPO4, 150mM NaCl, 3.7mM EDTA,
0.05% surfactant P20, pH 7.4) at 25◦C with a flow rate of
50 µl/min. A final concentration of 20 nM TNF-α was mixed
with each compound at various concentrations (as indicated in
section Results) in PBS-EP and the mixture was injected. Equal
amounts of TNF-α mixed with PBS-EP were used as a control.
Regeneration was achieved by extended washing with glycine
hydrochloride buffer (10mM Glycine-HCl, pH 2.1) after each
sample injection.

Cell Based NF-κB Reporter Assay
The cellular assay were carried out as described previously
(Zhang et al., 2013). HEK293T cells were grown to
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FIGURE 3 | Inhibition of TNF-α induced NF-κB transcription activity. (A) Dose-response of compounds S10 in the cell based assay in 293T cell line.

(B) Dose-response of compounds 4e in the cell based assay in 293T cell line. The data was reported as means ± errors from three independent experiments.

FIGURE 4 | The predicted binding modes of TNF-α inhibitors. Predicted binding mode of compounds EJMC-1 and 4e to TNF-α. The binding site was shown as

surface, the key residues were shown as sticks (green). (A) compound EJMC-1 (yellow). (B) Compound S10 (cyan). (C) EJMC-1 compare to SPD304 (gray).

(D) compound 4e (magenta).

70% confluence in 6 cm dish at 37◦C in Dulbecco’s
modified Eagle’s medium supplemented with 10% fetal
bovine serum (FBS; Gibco), then transfected with purified
plasmids 0.6 µg pGL4.32 (luc2P/NF-κB-RE/Hygro plasmid)
and 0.4 µg pGL4.74 (hRluc/TK) with ViaFect transfection
reagent (Promega). After 24 h, the transfected cells were
seeded in 96-wells plate, 40,000 cells per well. Twelve hours
later, 100 µL pre-incubated mixture of TNF-α and small

molecules was added to stimulate the cells for 6 h and
the luciferase assays were carried out using the Dual-Glo
Luciferase Assay System (Promega) with a BioTek synergy
4 Multi-Mode Microplate Reader. The final concentration
of TNF-α in each well was 10 ng/ml. Equal amounts of
TNF-α without small molecular were added to the cells as
a negative control to calculate the percentage of activity
inhibition.
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FIGURE 5 | Designed TNF-α inhibitors.

Similarity-Based Virtual Screen
The crystal structure of TNF-α dimer (PDB code: 2AZ5) was used
for grid generation. The program Glide Standard Precise (SP)
mode was used to do the molecular docking studies (Friesner
et al., 2004; Halgren et al., 2004). EJMC-1 was first docked
to TNF-α dimer, and its conformation in the complex was
used for Shape Screening of the SPECS library (May 2013
version for 10mg; 197,276 compounds). The Shape Similarity
indexes between each compound in the library and the reference
compound were calculated. A total of 587 compounds with
indexes between 0.8 and 0.99 were selected as candidates
for the second round manual selection with the following
selection criteria: (a) containing at least one ring which provides
hydrophobic interaction; (b) containing no metal atoms; and (c)
shared in multiple structures. A total of 68 compounds were
purchased from SPECS for experimental testing.

Molecular Docking
The complex structure of TNF-α with SPD304 (PDB code:
2AZ5) was retrieved from the Protein Data Bank and docking
was performed with maestro (Schrödinger, Inc., version 10.2).
Compound EJMC-1, S10, and 4e were docked into TNF-α
dimer protein using Glide Docking module (Friesner et al.,
2004; Halgren et al., 2004). The details of the docking
workflow are listed below: (1) Protein was prepared using the
“Protein Preparation Wizard” workflow. All water molecules
were removed from the structure of the complex. Hydrogen
atoms and charges were added during a brief relaxation. After
optimizing the hydrogen bond network, the crystal structure was
minimized using the OPLS_2005 force field with the maximum
root mean square deviation (RMSD) value of 0.3 Å. (2) The
ligand was prepared with LigPrep module in Maestro, including
adding hydrogen atoms, ionizing at a pH range from 7.2 to 7.4,
and producing the corresponding low-energy 3D structure. (3)
Pose prediction mode of Glide Docking modules were adopted
to dock the molecules into the SPD304-binding site with the

default parameters. The center of the grid box was defined with
SPD304. The top-ranking poses of molecule EJMC-1, S10, and
4e were retained. The LigPrep mol2 format output was also
docked using AutoDock Vina (Trott and Olson, 2010) with
standard protocols. The computed binding free energies and
structures for the top conformations were saved for post-docking
analysis.

Statistical Analysis
Cell assay was repeated for three times. Statistical analysis was
performed using OriginPro 9.1, data was fit by DoseResp using
Origin 9.1. DoseResp was a three-parameter Hill equation.
Results were expressed as mean± SD (standard deviation value).

RESULTS AND DISCUSSION

Chemistry
Seven derivatives of dihydrobenzo[cd]indole-6-sulfonamide
were synthesized using a three-step synthetic route (Scheme 1)
with yields between 10 and 68%. Napthalic anhydride was
transformed to benzo[cd]indol-2(1H)-one by aminolysis
reaction smoothly, with a yield of 74%. Then, benzo[cd]indol-
2(1H)-one underwent nucleophile substitution reaction
with chlorosulfonic acid to get key intermediate 2-oxo-1,2-
dihydrobenzo[cd]indole-6-sulfonyl chloride (3), with a yield
of 38%. Reactions of compound 3 with various amines in the
presence of a catalyst system consisting of DMAP, Et3N, afforded
4 and derivatives in good yields. The original spectra of featured
compounds shown in Supplementary Image 1.

Compounds From Similarity Search of
EJMC-1 Block TNF-α Binding to TNFR
We used compound EJMC-1 as the reference compound for
similarity search (Figure 1). The binding conformation of EJMC-

1 with TNF-α was generated using molecular docking and used
in pharmacophore based shape screening over the SPECS library.
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TABLE 1 | The structure and activities of S10 analogs.

Compound Structure IC50 in cell

assay (µM)a
Source

EJMC-1 43.2 ± 2.6 SPECS

S10 19.1 ± 2.2 SPECS

S21 28.8 ± 3.1 SPECS

S22 16.0 ± 1.8 SPECS

S23 24.6 ± 2.1 SPECS

S24 19.8 ± 1.5 SPECS

S25 14.0 ± 2.3 SPECS

S26 16.0 ± 2.3 SPECS

S27 28.5 ± 3.8 SPECS

4a >100 Synthesis

4b >100 Synthesis

(Continued)

TABLE 1 | Continued

Compound Structure IC50 in cell

assay (µM)a
Source

4c 12.5 ± 1.6 Synthesis

4d >100 Synthesis

4e 3.0 ± 0.8 Synthesis

4f 6.2 ± 1.3 Synthesis

4g >100 Synthesis

SPD304 6.4 ± 0.6

aData shown represent the mean (n = 3).

Compounds with similarity index between 0.80 and 0.99 with
EJMC-1 were subjected to further manual selection. A total of
68 compounds were selected for experimental testing (Table S1).
The chemical structures of these compounds fall into two classes,
sulfonates and sulfonamides. The sulfonamides contain both
N-aryl sulfonamides and N-alkylsulfonamides, with or without
substituted aminocarbonyl group (Table S1).

We used a SPR competitive assay to test whether these
compounds can more efficiently block TNF-α and TNFR binding
than EJMC-1. TNF-α with or without compounds flowed over
the chip surface where the extracellular domain of TNFR
was immobilized. At the concentration of 100µM, 20 of the
68 compounds reduced the TNF-α binding signal compared
to EJMC-1 (Figure 2). These 20 candidates were selected for
further cell-based inhibition studies. The specs ID of these 20
compounds were listed in Table S2, and the corresponding
chemical structures were in supporting information. All the
sulfonamide derivatives of EJMC-1 showed competitive binding
with TNF-α against TNFR1, while sulfonates could not.

EJMC-1 Analogs Inhibit TNF-α Induced
NF-κB Gene Expression
To explore whether these compounds with enhanced abilities
to reduce TNF-α binding with receptor were active under
cellular environment, we used a luciferase assay to monitor
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SCHEME 1 | Synthesis of 2-oxo-1,2-dihydrobenzo[cd]indole-6-sulfonamide derivatives.

their influences on NF-κB transcriptional activity. In this assay,
in transfected cells, TNF-α induces NF-κB activation through
TNFR1, which then drives the expression of the luciferase.
The cell-level inhibitory effects of these 20 compounds were
measured using the Dual-Glo Luciferase Assay System. With
two dose screen, two compounds, S3 and S10 showed better
activity than EJMC-1 (Table S2). The best compound, S10,
suppressed NF-κB transcriptional activity dose-dependently
(Figure 3A) with an IC50 of 19.1± 2.2µM. The positive control,
SPD304, displayed an IC50 of 6.4 ± 0.6µM in the side-by-side
experiment.

Docking Analysis and Compound Design
Molecular docking gave clues on rational designing compounds
with potential enhanced activities and understanding SAR. In
the complex structure of TNF-α with SPD304, SPD304 bound
to a pocket in the TNF-α dimer (He et al., 2005; Shen et al.,
2014). EJMC-1 was shown to bind with the same site (He
et al., 2005; Shen et al., 2014). Both Glide and AutoDock Vina
were used in the docking study. We first tested whether the
binding pose of SPD304 can be reproduced. We have tried
many times with different parameters, but was unable to get a
binding pose that is close to that in the crystal structure (with
the minimum RMSD up to 4 Å). We then used AutoDock
Vina to dock SPD 304 to the TNF-α dimer and the lowest
binding free energy conformation obtained was closed to its
crystal conformation with a RMSD of 0.70 Å. Despite of
the different binding conformations obtained for SPD304 by
using two docking software, the top ranking conformations
of EJMC-1 were almost the same from the docking runs
using both Glide and AutoDock Vina. These differences might
due to the flexibility of SPD304, which adopted a U shape
conformation, and the conformational sampling preference of
the docking software. As there are no essential differences in
the docking poses of the compounds other than SPD304, we
used the Glide docking poses of these compounds to compare
to SPD304 in the crystal structure. Compared to EJMC-1, S10
had increased hydrophobic interaction with the Tyr59 residue
(Figures 4A,B). In addition to the nonpolar interactions with
TNF-α as in the case of SPD304, the scaffold of EJMC-1

and S10 provide further polar interactions, strengthening the
specificity and activity (Figure 4C). As EJMC-1 is smaller
than that of SPD304 with unoccupied hydrophobic space in
the pocket (Figure 4C), several analogs with larger substituted

group of sulfonamide of 2-oxo-1,2-dihydrobenzo[cd]indole-6-
sulfonamide were designed and docked to this site. Compound
4e, with larger hydrophobic group size and additional H-bond
donor, interacts favorably with TNF-α and might be more potent
(Figure 4D). Based on the docking analysis, the designed analogs
were purchased or synthesized for cell assay.

Optimization of Compound S10 and
Structure-Activity Analysis
As shown in the cell assay, the inhibition activity of S10 increased
about 2-fold than that of EJMC-1. The introduction of the
naphthalene ring provides stronger hydrophobic interactions.
Based on the docking analysis and increased activity of
S10, we try to: (1) Keep naphthalene ring, changed N-
substituted groups of dihydrobenzo[cd]indole, (2) Keep N-H of
dihydrobenzo[cd]indole, optimize the hydrophobic R group, (3)
optimize both N-substituted groups of dihydrobenzo[cd]indole
and the hydrophobic R group (Figure 5). Seven commercially
available analogs of S10 were purchased for testing (Table 1).
The SPECS ID of these seven S10 analogues were listed in Table
S3. We further synthesized seven new compounds in three steps
from 1,8-Naphthalic anhydride through conventional reactions
(Scheme 1 and Figure 5). All compounds passed the PAINS
(pan assay interference compounds) remover, which filters
out compounds that appear as frequent hitters (promiscuous
compounds) in many biochemical high throughput screens
(Baell and Holloway, 2010).

All the compounds were tested using the TNF-α induced
NF-κB reporter assay. The structures and activities were listed
in Table 1. For S10, methyl or ethyl group substitution on the
amide of 2-oxo-1,2-dihydrobenzo[cd]indole-6-sulfonamide had
no obviously enhanced inhibition (S21 and S22), and the α or β

substitution of the naphthyl group did not affect the inhibition
(S23, S24, and S25). The size of the N-substituted groups of
sulfonamide was important for inhibition activity (EJMC-1, S10,

and S27). The flexibility and aromaticity of the N-substituted
two-ring group of sulfonamide played dominant role, too rigid
or too flexible dramatically reduced the activity (4g, 4d). The fact
that N-(5-aminonaphthalen-1-yl) andN-(3-aminonaphthalen-1-
yl) group substituted compounds lost functions might be caused
by the conformation change due to additional amino group
on the naphthalene ring. Introducing heterocycle significantly
increases the inhibition activity (4e and 4f). The N-(1H-indol-
6-yl) substituted sulfonamides (4e) were 6-fold more potent than
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S10, even better than SPD304 (Table 1, Figure 3B). Though S10

and 4e had similar size of substitution group on sulfonamide,
4e shown better inhibition activity than S10 might due to the
additional H-bond that 4e forms with the backbone carbonyl of
Gly121 (Figure 4C). Meanwhile, the indolyl group of 4e was also
deeper in the binding pocket than that of naphthyl group on S10

(Figure 4D).

CONCLUSION

We have optimized a previously reported TNF-α inhibitor
EJMC-1 using similarity-based VS and rational design. An
analog of EJMC-1, S10 was found with 2-fold TNF-α
increased inhibition activity. Based on the structures of EJMC-

1, S10, and their interactions with TNF-α, we designed
derivatives of 2-oxo-1,2-dihydrobenzo[cd]indole-6-sulfonamide.
Several commercially available ones were purchased and seven
new compounds were synthesized for SAR study. After two
rounds of design, we obtained 4e with an IC50 of 3.0 ± 0.8µM,
which is one of the most potent TNF-α small molecule inhibitors
reported so far. Compound 4e provides a good starting point for
developing more potent TNF-α small molecule inhibitors.
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Diterpene synthases catalyze complex, multi-step C-C coupling reactions thereby

converting the universal, aliphatic precursor geranylgeranyl diphosphate into diverse

olefinic macrocylces that form the basis for the structural diversity of the diterpene natural

product family. Since catalytically relevant crystal structures of diterpene synthases are

scarce, homology based biomolecular modeling techniques offer an alternative route to

study the enzyme’s reaction mechanism. However, precise identification of catalytically

relevant amino acids is challenging since these models require careful preparation

and refinement techniques prior to substrate docking studies. Targeted amino acid

substitutions in this protein class can initiate premature quenching of the carbocation

centered reaction cascade. The structural characterization of those alternative cyclization

products allows for elucidation of the cyclization reaction cascade and provides a new

source for complex macrocyclic synthons. In this study, new insights into structure and

function of the fungal, bifunctional Aphidicolan-16-ß-ol synthase were achieved using a

simplified biomolecular modeling strategy. The applied refinement methodologies could

rapidly generate a reliable protein-ligand complex, which provides for an accurate in silico

identification of catalytically relevant amino acids. Guided by our modeling data, ACS

mutations lead to the identification of the catalytically relevant ACS amino acid network

I626, T657, Y658, A786, F789, and Y923. Moreover, the ACS amino acid substitutions

Y658L and D661A resulted in a premature termination of the cyclization reaction cascade

en-route from syn-copalyl diphosphate to Aphidicolan-16-ß-ol. Both ACS mutants

generated the diterpene macrocycle syn-copalol and a minor, non-hydroxylated labdane

related diterpene, respectively. Our biomolecular modeling and mutational studies

suggest that the ACS substrate cyclization occurs in a spatially restricted location of the

enzyme’s active site and that the geranylgeranyl diphosphate derived pyrophosphate

moiety remains in the ACS active site thereby directing the cyclization process. Our

cumulative data confirm that amino acids constituting the G-loop of diterpene synthases

are involved in the open to the closed, catalytically active enzyme conformation. This

study demonstrates that a simple and rapid biomolecular modeling procedure can

predict catalytically relevant amino acids. The approach reduces computational and

experimental screening efforts for diterpene synthase structure-function analyses.

Keywords: homology modeling, aphidicolin, diterpene, diterpene synthase, homology model refinement
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INTRODUCTION

With more than 50,000 different molecules known to date
terpenes are the greatest natural occurring product family found
in organisms from bacteria to fungi, mammals, and plants.
They are all derived from the isoprene units’ dimethylallyl
diphosphate and isopentenyl diphosphate. Condensation
reactions of this molecules lead to the formation of different
length phosphorylated linear terpenes, serving as substrate
for terpene synthases. This enzyme family carry out highly
stereo complex C-C coupling reactions, resulting in structurally
complex macrocycles that contribute to the structural and
functional diversity of terpenes (Christianson, 2017). Diterpenes
are derived from the linear aliphatic precursor geranylgeranyl
diphosphate (GGDP) being cyclized by diterpene synthases.
More specifically, diterpene synthases are classified into class
I and class II enzymes based on the structural presence of
the conserved motifs DDXD or DDXXD/E and NSE/DTE,
respectively. While class II reactions perform a protonation
initiated cyclization reaction to generate phosphorylated bicyclic
structures, class I reactions are initiated by hydrolyses of
the GGDP pyrophosphate moiety that is coordinated by a
Mg2+-triad thereby generating mono- or poly-cyclic structures.

The natural product Aphidicolin, initially isolated from the
fungus Cephalosporium aphidicola, is a hydroxylated, tetracyclic
diterpenoid that exhibits a broad range of biological activities
and applications (Brundret et al., 1972; Dalziel et al., 1973).
More specifically, it is a potent inhibitor of the eukaryotic
DNA α-polymerase with a commercial application as a cell
synchronization agent. The compound is in pharmaceutical
development due anti-tumor, anti-viral, and anti-leishmanial
activity (Ikegami et al., 1978; Pedrali-Noy et al., 1980; Kayser
et al., 2001; Edwards et al., 2013; Starczewska et al., 2016).
Recently, other organisms including the fungus Nigrospora
sphaerica and the pathogenic fungus Phoma betae have been
identified as natural Aphidicolin producers. Current data
suggests that Aphidicolin biosynthesis is exclusive to fungal
metabolism and that natural sources for Aphidicolin are
limited (Starratt and Loschiavo, 1974; Fujii et al., 2011; Lopes
and Pupo, 2011). Nevertheless, elucidation of the responsible
Aphidicolin biosynthetic gene cluster in P. betae allowed for the
identification of a bifunctional diterpene synthase that contains
both a functional class I and class II domain (Oikawa et al.,
2001). The Aphidicolan-16-ß-ol synthase (ACS) generates the
stereo-chemically demanding Aphidicolan-16-ß-ol (AD)—core
structure of Aphidicolin—structure via a two-step reaction as
depicted in Figure 1 (Oikawa et al., 2002).

Initially, GGDP is rearranged in the class II active site cleft by
protonation to the bicyclic syn-copalyl diphosphate (syn-CDP).
Subsequently, syn-CDP is elaborated to AD in the class I active
site (Adams and Bu’Lock, 1975; Oikawa et al., 2002). As depicted
in Figure 2 the cyclization mechanism in the class I active site,
initiated by the hydrolysis of the pyrophosphate group, results

Abbreviations: ACS, Aphidicolan-16-β-ol synthase; AD, Aphidicolan-16-β-ol;
GGDP, geranylgeranyl diphosphate; LRS, labdane related diterpene synthase; syn-
CDP, syn-copalyl diphosphate.

FIGURE 1 | Model of a bifunctional diterpene synthase. In the case of ACS

GGDP is initially converted to syn-CDP in the class II active site (located

between ß and γ domain). Syn-CDP is further cyclizied to AD in class I active

site (α-domain).

in 8-ß-pimaradienyl carbocation formation. A subsequent attack
of the vinyl group, bridging the C ring, directly undergoes a
Wagner-Meerwein rearrangement and results in the formation of
the aphidicolenyl carbocation. Eventually, this cation is quenched
by water thereby generating AD.

Terpene cyclization mechanisms are conventionally
elucidated by radio labeling of protons and carbons (Dickschat,
2017). This substrate specific labeling provides for identification
of unusual hydride shifts and rearrangements. Alternatively,
the enzyme’s cyclization mechanisms can be probed by altering
amino acids, trying to terminate the reaction cascade at a specific
transition state (Morrone et al., 2008; Janke et al., 2014; Schrepfer
et al., 2016; Jia et al., 2017). Therefore, random mutagenesis
can be performed but the screening effort for this methodology
is elaborate without an efficient high throughput screening
options (Lauchli et al., 2013). Biomolecular modeling allows
for the rational identification and in silico modulation of amino
acid networks that are involved in complex reaction cascades
(Pemberton et al., 2015; Schrepfer et al., 2016; Christianson,
2017; Escorcia et al., 2018). This methodology provides for
a knowledge based approach of enzyme mutagenesis and
screening. Nevertheless, a particular challenge for this strategy
is based on the missing structural information for most
terpene synthases. However, as their structural elements and
domains are highly conserved (Christianson, 2017), homology
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FIGURE 2 | Proposed cyclization mechanism of the ACS class I reaction (Oikawa et al., 2002).

modeling is a potential route to identify catalytically relevant
amino acids despite the low primary sequence identities in
this enzyme family (Xu and Li, 2003). Unfortunately, most
available crystal structures of terpene synthase are deposited
in the open apo-enzyme configuration that is catalytically
inactive. This open enzyme conformation presents an additional
obstacle when catalytically relevant amino acids have to be
identified in silico. At present, only two diterpene synthase
structures have been reported in the closed, catalytically
active form (Liu et al., 2014; Serrano-Posada et al., 2015).
Therefore, automated homology modeling approaches will
almost always result in catalytically non-relevant open enzyme
configuration. Moreover, while prediction tools can place
large cofactors (i.e., FAD, NADH, Heme) correctly in the
apo-protein framework, ligand-metal interactions are difficult
to predict because of the multiple coordination geometries
and the lack of sufficiently accurate force field parameters
(Khandelwal et al., 2005). Hence, structure function predictions
that depend on the interplay between the amino acids of the
protein framework with small metal ions cannot be conducted
solely by application of automated software tools. In this
context, a rational combination of structural information by
superposition and extraction of cofactors is performed to
prepare the protein structure for docking studies. Nevertheless,
this approach often neglects reliable positioning of the cofactor
coordinating amino acids. Additionally, falsely predicted
positioning of amino acid side chains in the active site cleft
can lead to invalid interpretation of a homology model based
protein-ligand complex. To improve this situation, this study
elucidated rapid and simple methodologies to refine diterpene
homology models for docking studies thereby allowing for
reliable structure-function predictions. In this context, an
ACS class I homology model of the α-domain was predicted
from the primary sequence. Subsequently, these models were
compared to catalytically relevant closed terpene synthases
structures. The location of metals was refined and fitted against
specifically selected structural templates and multiple docking
studies were carried out and validated. Our in silico results
were experimentally evaluated by ACS mutagenesis studies.
This lead to an identification of essential amino acid residue
sidechains that are necessary for retaining the enzymes activity.
Additionally, we detected amino acid substitutions that abort
the catalytic reaction cascade en- route from syn-CDP to
AD. Structural analyses and elucidation of these compounds

revealed the formation of syn-copalol and a labdane related,
non-hydroxylated diterpene by the ACS mutants Y658L and
D661A. Our approach of a protein homology model based
structure function analysis can be easily adapted for other
terpene synthases. This methodology allows for rapid and simple
analysis of the catalytically relevant amino acid network that
help studying complex reaction cascades and developing new
biocatalysts.

MATERIALS AND METHODS

Materials and Chemicals
All genes used were synthesized by Life technologies GmbH and
the codon usage was optimized for E. coli if not stated otherwise.
Primers were obtained from Eurofins Genomics GmbH. Strains
and plasmids were obtained from Merck KGaA. All chemicals
used were obtained at highest purity from Roth chemicals
or Applichem GmbH. Enzymes were purchased from Thermo
Fisher Scientific.

Software and Web-Tools
RaptorX was applied for homology modeling studies (http://
raptorx.uchicago.edu; Källberg et al., 2012). The initial predicted
structure was analyzed and further modified in the environment
of UCSF Chimera software package (Pettersen et al., 2004; http://
www.cgl.ucsf.edu/chimera). Comparative modeling by spatial
restraints was performed byMODELLER (Eswar et al., 2006), and
all substrate docking studies performed by AutoDock Vina (Trott
and Olson, 2010; http://vina.scripps.edu). Chemical structures
were drawn by PerkinElmer ChemBioDraw Ultra (http://
www.cambridgesoft.com). For ligand preparation the Avogadro
(Hanwell et al., 2012; https://avogadro.cc/) software package was
used. A syn-CDP toppar stream file was generated by CHARMM
General Force Field program version 1.0.0 for use with CGenFF
version 3.0.1 (https://cgenff.paramchem.org; Vanommeslaeghe
et al., 2010, 2012; Vanommeslaeghe and MacKerell, 2012). Two
ns molecular dynamic studies of the docked ACS model B in
a water sphere have been performed under CHARMM general
force field by NAMD (Phillips et al., 2005; http://www.ks.uiuc.
edu/Research/namd/). NAMD was developed by the Theoretical
and Computational Biophysics Group in the Beckman Institute
for Advanced Science and Technology at the University of Illinois
at Urbana-Champaign. For high resolution pictures the protein
was prepared by Visual Molecular Dynamics (http://www.ks.
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uiuc.edu/Research/vmd/; Humphrey et al., 1996) and rendered
by Tachyon implemented in the VMD software package (Stone,
1998).

Docking
Ligand structures were downloaded from https://pubchem.ncbi.
nlm.nih.gov/ available and geometrically optimized by 500
steps of steepest descent under MMFF94 force field parameters
included in Avogadro. Protein structures were prepared by Dock
Prep, which is part of the Chimera software environment. The
AMBER force field (AMBERff14SB) was applied to the receptor
while Gasteiger charges were added to the ligand and co-factors.
As recently reported, docking can be improved by assigning
partial charges to metal ions (Hu and Shelver, 2003). In this
context, Mg-ion charges were set to+1. Syn-CDP charge was set
to−3. Docking was performed by AutoDockVina using standard
parameters. Docking poses were chosen based on a structural
comparison to the pyrophosphate group that is co-crystallized
in pdb 5A0J (see Figure S1B). The chosen pose was furthermore
validated by re-dock approaches. Therefore, the predicted syn-
CDP pose was de novo geometrically optimized by 500 steps of
steepest descent under MMFF94 force field parameters included
in Avogadro software environment prior to docking repetition
(see Figure S1A).

Model Generation
An initial homology model of the ACS α-domain was predicted
by RaptorX starting from the amino acid 565. A model based
on the pdb crystal structure 5A0J, referring to a labdane related
diterpene synthase, was manually selected for further structure
function analyses. In order to prepare the model for docking
studies, the coordinating Mg2+-ion triad and water molecules
were implemented in the structure by different methods. Model
A was generated by structural alignment to 5A0J. Cofactor
positions were transferred from the structure template to Model
A without any further adjustment prior to docking studies.
Model B was created by MODELLER implemented in the
Chimera software environment using the 5A0J as template
structure. In this model hetero atoms and water molecules in
the structure environment were computationally implemented.
The pyrophosphate group was removed prior to docking with
syn-CDP. Model C was prepared analogously to Model B but
prior to refinement by MODELLER, syn-CDP was docked into
the template structure 5A0J.

Model Validation
The protein ligand complex of Model B was validated by
molecular dynamics studies. Therefore, syn-CDP was initially
extracted from Model B and parameterized by CHARMM
General Force Field program version 1.0.0 for use with CGenFF
version 3.0.1. VMD was used to parameterize the protein and for
merging ligand and protein. Subsequently, a water sphere was
added around the protein-ligand complex. Two nanoseconds of
molecular dynamic studies under CHARMMGeneral Force Field
was applied to the protein complex by NAMD. The calculated
rmsd of the generated frames was plotted over time (Figure S2). A
constant rmsd value was chosen as the criteria for an equilibrated

protein-ligand complex. The last frame obtained was compared
to the initial model B (Figure S3).

Plasmids for Diterpene Production
For all cloning procedures E. coli HMS 174 (DE3) was used.
Clones were cultivated at 37◦C in Luria-Bertani (LB) medium.
Chloramphenicol (34 µg/L) and Kanamycin (50 µg/L) were
added as required. For efficient production of the diterpene AD,
E. coli’s internal 1-deoxy-xylulose-5 phosphate pathway flux was
increased by overexpression of deoxy-xylulose 5 phosphate
synthase (dxs: GenBank: YP001461602.1), isopentenyl-
diphosphate delta isomerase (idi: GenBank: AAC32208.1),
and further extended by expressing geranylgeranyl diphosphate
synthase (crtE: GenBank: KPA04564.1) and Aphidicolan-16-ß-ol
synthase (acs: GenBank: AB049075.1). Therefore, dxs and
acs were amplified from original sources by PCR. Polycistronic
operons (Table 1) were constructed by BioBrick cloning standard
(Shetty et al., 2008).

Site directed mutations of acs were generated by PCR.
Forward primers were designed exhibiting the respective
mutation at the 5′ end while the corresponding reverse primers
were phosphorylated at 5′ end (Table S1). PCR products were
ligated by T4 Ligase prior to transformation. All amino acid
exchanges were confirmed by sequencing.

Production of Diterpenes
All diterpene production experiments were performed in E. coli
BL 21 (DE3). To investigate the product outcome of ACS
mutants, pACYC acs plasmids were co-transformed with pAX
dic. Cultivation was performed in minimal media supplemented
with 6 g/L yeast extract and 30 g/L glycerol at 25◦C. After 60 h
the culture was extracted with a mixture of hexane, ethanol and
ethyl acetate (1:1:1) (v/v/v) for 1 h. The extract was centrifuged
at 10,000 g for 2min. The upper, organic phase was directly
analyzed for diterpene products via GC-MS.

Diterpene Analytics
GC-MS analyses of diterpenes was performed by a Trace GC
Ultra with DSQII (Thermo Fisher Scientific). Therefore, 1 µL
sample was loaded (Split 1/10) by TriPlus AS onto a SGE BPX5
column (30m, I.D 0.25mm, Film 0.25µm). The initial column
temperature was set to 160◦C and maintained for 5min before a
temperature gradient at 8◦C/min up to 320◦C was applied. The
final temperature was kept for additional 3min. MS data were
recorded at 70 eV (EI) and m/z (rel. intensity in %) as total ion
current (TIC). The recorded m/z range was in between 50 to 650.

NMR spectra were recorded in CDCl3 with an Avance III
500 MHz (Bruker) at 300K. 1H NMR chemical shifts are given
in ppm relative to CDCl3 (δ = 7.26 ppm). The 2D experiments

TABLE 1 | Plasmids used for AD production in E. coli.

Name Promotor

strength

Genes Resistance vector

pAX dic Weak dxs, idi, crtE Kanamycin pBR322

pACYC acs Strong acs Chloramphenicol pACYC duet
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(HSQC) were performed using standard Bruker pulse sequences
and parameters.

RESULTS AND DISCUSSION

Homology Model Refinement
The steady increase in published protein crystal structures
provides for an accelerated improvement of computational
homology prediction. Especially due to the high structurally
conservation of the terpene synthase enzyme families,
biomolecular tools can predict structures solely based on
the amino acid sequence. In this context, structure prediction
of the bifunctional ACS was performed to analyze the highly
complex conversion of GGDP via syn-CDP to the tetracyclic
AD which is the core structure of the cytostatic compound
Aphidicolin. ACS belongs to the diterpene synthase family
and we identified three highly structurally conserved domains.
The initial conversion from the universal diterpene precursor
GGDP to syn-CDP occurs in class II active site, located
between the ACS ß- and γ-domain. The subsequent syn-CDP
cyclization to AD is then conducted in the class I active site
that is positioned in the middle of an α-helical bundle forming
the ACS α-domain. Notably, the fungal ACS is structurally
highly similar to the previously crystallized plant diterpene
synthases Abietadiene (pdb: 3S9V) and Taxadiene synthase (pdb:
3P5R), respectively. Homology prediction based on the full
ACS sequence took those two structures into account, but for
both, crystals could only be achieved in N-terminal truncated
forms. Furthermore, these crystal structures have only been
solved in an open conformation that is catalytically inactive.
In order to circumvent the consideration of these catalytically
inactive templates, only the ACS α-domain sequence was used
for homology prediction. A model based on the labdane related
diterpene synthases (LRS) (pdb: 5A0J), which is provided in a
catalytically active holo-complex (Serrano-Posada et al., 2015),
was selected for ACS homology refinement. The structural
superposition of Abietadiene (pdb: 3S9V), LRS (pdb: 5A0J), and
the ACS model, as depicted in Figure 3, explicitly demonstrates
that there is a better fit between the ACS model and the LRS
crystal structure. While the structural fit between LRS and the
ACS model is visually well apparent, we have not calculated an
rmsd value qualifier as structural domains that do not constitute
the active site region are highly variable.

Co-crystallized cofactors (Mg2+-ion triad) and waters, both
provided in the LRS structure, are also involved in the
ACS reaction en-route from syn-CDP to AD. Therefore, we
differentially adapted both, the positions of the Mg2+ ions and
waters into the ACS models that resulted in the generation of
three ACS models (A–C). Model A was prepared by adaptation
of cofactor positions from the template structure LRS after
structural alignment. Initial evaluation of this model indicated
that this un-refined modeling method results in clashes of
cofactors positions with amino acids side chains. Generally, in
homology prediction the active site’s cavity is not reserved for
the substrate or cofactors specifically. Therefore, we presume
that amino acid sidechains occupy this free space due to applied
energy minimization optimizations. This is demonstrated in

FIGURE 3 | Structural alignment of Abietadiene synthase (gray), LRS (blue),

and ACS (purple) in complex with Mg2+-ions and syn-CDP.

our docking studies of model A, where ACS amino acid
Y658 is preventing syn-CDP to completely access the active
site cavity. With the MODELLER package, which is based on
comparative protein structure modeling by spatial restraints, a
protein structure can be refined based on a template structure.
Additionally, hetero-atoms and water molecules can be included
directly in the model refinement. This refinement methodology
applied to our initial model structure lead to the generation
of ACS model B. This model B computationally included
the three Mg2+-ions, a pyrophosphate group (conventionally
derived by Mg2+ based hydrolysis of the phosphorylated
substrate [syn-CDP] substrate) and water molecules directly as
they are all present in the LRS template structure. Model B
provides reliable positioning of the conserved amino acids that
constitute the class I diterpene synthase signature DDXXD/E
and NSE/DTE motifs in relation to the adapted Mg2+- ions,
water and pyrophosphate moieties, respectively. Subsequently,
we removed the pyrophosphate group from the model B
structure to enable docking with the native syn-CDP substrate.
Our docking data indicated that in Model B syn-CDP can
completely access the active site’s cavity. A specific syn-CDP
conformation was selected pointing toward the ACS G-Helix,
as this flexible helix is proposed to be involved in terpene
cyclization reactions (Yoshikuni et al., 2006; Baer et al., 2014;
Jia et al., 2017). This docking pose was validated by multiple
re-docking approaches (Figure S1A). Additionally, we validated
the pose while the position of the pyrophosphate moiety was
compared to the pyrophosphate group co-crystallized in LRS
(Figure S1B). Finally, a third approach for structure-function
analyses was performed by docking syn-CDP into LRS prior
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to ACS refinement with MODELLER. Again, a syn-CDP
conformation was chosen with close proximity toward the G-
Helix. On the basis of this LRS holo-protein complex, an ACS
holo-complex model C was generated. This method provided
for a protein model that was refined around the substrate
and cofactors. This methodology also provided for a precise
specification of amino acids involved in the AD cyclization
reaction. For all three models amino acids located within a five
Ǻ vicinity to the docked substrate syn-CDP (thereby neglecting
the pyrophosphate moiety) were analyzed by mutational
studies to elucidate their catalytic relevance (see Figure 4,
Table S2).

Mutational Validation of Catalytically
Relevant ACS Amino Acids
Due to their stereo-chemical diversity, natural diterpene scaffolds
are attractive research leads. The enormous stereo-chemical
demand of diterpene macrocycles renders them difficult to access
via total chemical synthesis approaches. Therefore, biosynthetic
routes to generate these complex structures are currently an
intense research focus (Dickschat, 2016; Bian et al., 2017;
Jones, 2017). The ability to access new diterpene macrocycles
via selective alteration of amino acids in diterpene synthases
provides for a highly varied accessible chemical space. For the
class I cyclooctat-9-en-7-ol synthase, which naturally generates
a tricyclic fusicoccin type diterpene, amino acid mutations in
the vicinity of the active site lead to intermittent abortion of
the reaction cascade. Hence, alternative macrocyclic structures,
such as the bicyclic dolabellane and the monocyclic cembrane,
could be generated thereby elucidating the reaction cascade
(Görner et al., 2013; Janke et al., 2014). In this study,
insights into the class I reaction of the ACS were achieved

by mutational studies. In that respect, we intended to quench
the reaction from syn-CDP to AD at previously proposed
transitional states (Adams and Bu’Lock, 1975; Oikawa et al.,
2002). Based on the proposed ACS transitional states we presume
that syn-labdatriene and syn-copalol (termination product of
the syn-copalyl carbocation), stereoisomers of syn-pimaradiene
(termination products of the pimaradienyl carbocation), or
aphidicolene and stemodene (termination products of the
aphidicolenyl carbocation) are potential abortion products (see
Figure 5).

For an intermittent abortion of the reaction cascade from
syn-CDP to AD, we have selected amino acids within a

range of five Ǻ to the docked ligands as prime targets for
mutagenesis (see Figure 4). Preliminary studies revealed that
sidechain substitutions encompassing amino acids exchanges
that inherently change physico-chemical properties frequently
resulted in inactive enzyme variants (Janke et al., 2014; Schrepfer
et al., 2016). In this context, we focused on changing the size of
the respective amino acid sidechain thereby trying to preserve
physico-chemical characteristics. Alternatively, we chose amino
acid side chain substitutions that would replace polar groups with
similar size amino acids (Table S2).

ACS syn-CDP docking results pointed toward a strong
interaction between the decalin core and surrounding
hydrophobic sidechains. However, as the decalin structure
of syn-CDP remains untouched in further cyclization steps
most of the implemented mutations near this particular moiety
resulted in inactive (I626A, Y923L, F789L) or wildtype activity
variants (F629L, Y658F, C831G, C831T, T920G, Y923F). Based
on our modeling results, we also identified specific amino
acids located in the ACS G-helix that in other studies have
been proposed to be of catalytic relevance (Baer et al., 2014;

FIGURE 4 | Homology models of ACS synthase refined and prepared for docking of the substrate syn-CDP. Model A results are colored red, Model B results yellow,

and Model C results blue.
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FIGURE 5 | Expected products generated by ACS if the reaction cascade en-

route from syn-CDP to AD is prematurely terminated.

Jia et al., 2017). While mutational changes in the G-Helix of
Kaurene synthase like diterpene synthases resulted in alternative
product profiles (Jia et al., 2017), our analogous approaches
with ACS only provided inactive (A786L, F789L) or wildtype
active (A786G, F789Y) variants. Nevertheless, our results support
previous findings that propose the G-Helix as an essential flexible
motif which is involved in the catalytically relevant structural
change from the open to the closed enzyme configuration (Baer
et al., 2014).

Only the substitution of ACS Y658L and D661A provided
for a varied product outcome. In addition to amino acids
that constitute the DXXDD/E and NSE/DTE signature
motifs that are responsible for Mg2+-ion coordination, our
combined in silico and experimental study identified only a
few amino acids (see Figure 6, colored in pink) capable to
terminate activity. Our successful mutations (D661A, Y658L)
indicated that the unusual cyclization from syn-CDP to
AD proceeds in a spatially restricted area of the active site’s
cleft. Additionally, our data suggests that the pyrophosphate
group remains in the active site and coordinates the reaction
cascade. This is in accordance to the recently postulated
Taxadiene synthase reaction mechanism (Schrepfer et al.,
2016).

ACS Mutants D661A and Y658L
GC-MS analyses of the ACS mutants Y658L and D661A revealed
that this mutations lead to the formation of two unknown
diterpene products (see Figure 7). In contrast to the native AD,

which had aGC retention time of 17.67min, these new diterpenes
had a retention time of 12.79 and 13.46min, respectively. The
latter product with a retention time of 13.46min, showed a
total mass of 290 m/z. Comparison of the MS spectral data
suggests that this was a hydroxylated diterpene with a similar
structure to syn-copalol (Hoshino et al., 2011). Subsequently,
this compound was isolated and structural characterized by
NMR (Figures S4, S5). The results are in accordance to
previous spectral data for syn-copalol (Yee and Coates, 1992).
One plausible explanation for syn-copalol formation is the
quenching of the syn-copalyl carbocation intermediate by water
in the active site of the enzyme. The other diterpene product
with a retention time of 12.79min had a total mass of 272
m/z indicating that this structure was not-hydroxylated. While
we expected the formation of syn-labda-8(17),12E,14-triene,
comparison with published MS-spectra revealed significant
differences (Morrone et al., 2011). Unfortunately, due to the
low amounts produced and purification issues for this highly
hydrophobic compound, we could not conduct NMR analysis.
However, we presume that this compound is also originated from
the syn-copalyl carbocation and that a labdane related diterpene
with high structural similarity to syn-labda-8(17),12E,14-triene
was generated by the ACS mutants. The newly generated
diterpenes are of great interest as copalol derivatives display
various biological activities analogous to aphidicolin (Hanson,
2015).

The structural changes (D661A and Y658L) still allowed
syn-CDP binding in the active site with subsequent hydrolyses
of the pyrophosphate group. The syn-copalyl carbocation was
then quenched either by water (release of syn-copalol) or an
amino acid side chain (release of non-hydroxylated diterpene).
Furthermore, as we did not find other substitution that stopped
cyclization at the proposed transitional states and as we could
not even detect changes in the byproduct formation of the
active mutants, we presume that the ACS cyclization occurs
in a spatially restricted area and that the pyrophosphate group
remains in the active site, which is in accordance to recent reports
(Schrepfer et al., 2016).

Former diterpene centered production processes were
limited by low target compound yields. However, optimization
of recombinant diterpene production hosts has extensively
progressed to provide gram per liter yields (Ajikumar et al.,
2010; Schalk et al., 2012). Today, access to novel diterpene lead
structures is limited by the effective identification of relevant
enzyme systems from large scale genome sequencing projects.
Therefore, rational alteration of known terpene synthase
product profiles by using a combination of in silico prediction
and knowledge based mutagenesis studies can allow for a
more rapid and targeted expansion of the desired chemical
space.

CONCLUSION

A model of ACS synthase was computed that required the
application of various methods for model refinement to improve
the quality of in silico structure function analysis. A model of the
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FIGURE 6 | (A) ACS active sites cleft in complex with Mg2+ and syn-CDP. Amino acid network within five
´
Å to syn-CDP are displayed. (B) ACS active sites cleft in

complex with Mg2+ and syn-CDP. Substitution of labeled amino acid (displayed in pink) resulted in inactive enzyme versions or mutants with altered product outcome.

FIGURE 7 | Analysis of ACS wildtype and ACS D661A mutant product outcome by GC. The MS-patterns for syn-labdatriene, syn-copalol and AD (from right to left)

are presented below.

catalytically active, closed ACS α-domain complex was generated.
Examination of this model provided for the identification of
catalytically active amino acid sidechains. The in silico results
were confirmed by mutational studies of the ACS. The amino

acid substitutions Y658L and D661A in the vicinity of the
ACS active site lead to formation of the alternative cyclization
products syn-copalol and a minor labdane related diterpene.
Formation of these products were delineated by quenching of
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the syn-copalyl carbocation en-route to AD. Additional mutants
leading to inactive enzyme variants (A786L, F789L) provided
insights into catalytically relevant amino acid residues within
the G-Helix. The cumulative in-silico and experimental data
suggests that amino acids constituting the G-loop motif of class
I terpene cyclases are involved in the transformation of the
open to the closed, catalytically active enzyme conformation.
Moreover, as we only obtained a limited number of alternative
cyclization products in our mutational screens, we presume
that AD formation occurs in a rather confined location of the
ACS active site. With respect to our biomolecular modeling
approaches, we demonstrated that application of simple and
rapid computational methodologies can be employed for
prediction and structure function analyses of class I diterpene
synthases.
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Discovery of new pharmaceutical substances is currently boosted by the possibility of

utilization of the Synthetically Accessible Virtual Inventory (SAVI) library, which includes

about 283 million molecules, each annotated with a proposed synthetic one-step route

from commercially available starting materials. The SAVI database is well-suited for

ligand-based methods of virtual screening to select molecules for experimental testing.

In this study, we compare the performance of three approaches for the analysis of

structure-activity relationships that differ in their criteria for selecting of “active” and

“inactive” compounds included in the training sets. PASS (Prediction of Activity Spectra

for Substances), which is based on a modified Naïve Bayes algorithm, was applied since

it had been shown to be robust and to provide good predictions of many biological

activities based on just the structural formula of a compound even if the information in

the training set is incomplete. We used different subsets of kinase inhibitors for this case

study because many data are currently available on this important class of drug-like

molecules. Based on the subsets of kinase inhibitors extracted from the ChEMBL 20

database we performed the PASS training, and then applied the model to ChEMBL 23

compounds not yet present in ChEMBL 20 to identify novel kinase inhibitors. As one may

expect, the best prediction accuracy was obtained if only the experimentally confirmed

active and inactive compounds for distinct kinases in the training procedure were used.

However, for some kinases, reasonable results were obtained even if we used merged

training sets, in which we designated as inactives the compounds not tested against the

particular kinase. Thus, depending on the availability of data for a particular biological

activity, one may choose the first or the second approach for creating ligand-based

computational tools to achieve the best possible results in virtual screening.

Keywords: ChEMBL, bioactivity data, kinase inhibitors, SAR, PASS, virtual screening, classification, SAVI
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INTRODUCTION

Discovery of novel pharmaceutical agents with improved safety
and efficacy is the perpetual task of medicinal chemistry
(Pammolli et al., 2011). In addition to the traditional methods
of chemical synthesis and pharmacological studies of various
drug-like substances, in recent years substantial attention has
been paid to the analysis of the general chemical-biological
space (Lipinski and Hopkins, 2004; Baell and Holloway, 2010;
Bon and Waldmann, 2010; López-Vallejo et al., 2012; Deng
et al., 2013; Medina-Franco et al., 2013; Buonfiglio et al., 2015;
Rodriguez-Esteban, 2016; Horvath et al., 2017). Such approaches
significantly increase the diversity of the studied chemical
libraries as well as the chances to identify the pharmaceutical
agents interacting with multiple molecular targets and causing
additive or synergistic desired pharmacological action (Sidorov
et al., 2015; Lauria et al., 2016).

Nowadays, available chemical libraries can be divided
into four categories: (1) databases containing information
about structure and properties of publicly disclosed chemical
compounds, e.g., PubChem (Li et al., 2010; Wang Y. et al.,
2014) and ChEMBL (Bento et al., 2014); (2) databases containing
information about structure of commercially available chemical
samples, e.g., ZINC (Sterling and Irwin, 2015); (3) databases
of virtually generated structures comprehensively covering the
particular chemical space, e.g., GDB-17 (Ruddigkeit et al., 2012);
(4) databases of virtually generated, synthetically accessible,
structures with data on starting materials and proposed synthetic
routes, e.g., SAVI (Synthetically Accessible Virtual Inventory)
(Pevzner et al., 2017). Although GDB-17 is one of the largest1

currently known libraries of chemical structures containing
166.4 billion possible molecules up to 17 atoms of C, N, O,
S, and halogen, SAVI looks more attractive for utilization in
drug discovery because of the synthesability of its molecules.
Furthermore, it was shown (Pevzner et al., 2017) that the overlap
between the 93 million structures from PubChem with the 238
million SAVI database is only about 0.03%. Thus, SAVI represents
a significant previously unexploited reservoir of novel structures,
presumably useful for drug discovery.

To reveal the hidden pharmacological potential of the
synthesizable molecules from SAVI, computer-aided virtual
screening could be applied (Jorgensen, 2004; Nettles et al.,
2006; Bajorath, 2014; Fujita and Winkler, 2016; Lee et al.,
2016). Although structure-based methods are widely used now,
ligand-based methods have important advantages (Leelananda
and Lindert, 2016). In several case studies, machine learning
approaches were shown to surpass the performance of both
chemical similarity assessment and reverse docking (Anusevicius
et al., 2015; Druzhilovskiy et al., 2016; Murtazalieva et al., 2017).

Thus, it is reasonable to analyze the probable biological
activity of SAVI molecules using our computer program PASS

1The Danish biopharmaceutical company Nuevolution announced that it had
created a library of 40 trillion uniquemolecules (C&EN, 2017, 95: 28–33); however,
the web site (https://nuevolution.com/technology) states that the company enables
DNA encoded synthesis of billions of chemically diverse drug-like small molecule
compounds.

that recently received high marks: “One of the earliest and
most widely used examples of data-mining target elucidation is
the continuously curated and expanded Prediction of Activity
Spectra for Substances (PASS) software, which was assimilated
from the bioactivites of more than 270,000 compound-ligand
pairs” (Mervin et al., 2015). The PASS development started
more than 25 years ago (Poroikov et al., 1993; Filimonov
et al., 1995), and during this time its performance has
continuously and significantly improved. PASS in its 2017 version
predicts over 7,000 kinds of biological activity with an average
accuracy of 94% based on the analysis of structure-activity
relationships for more than 1 million known biologically active
compounds.

Initially, in the PASS training set a molecule is designated
as “active” if reliable information about some biological activity
is found in a authoritative source (publication in a peer-
reviewed journal, record in curated database, etc.); otherwise, it
is designated as “(conditionally) inactive.” This would seem to
be a reasonable approach as it has been found that if the same
set of chemical compounds is studied against the same molecular
target in the three different assays, only 35% of active compounds
completely coincided (Lipinski and Hopkins, 2004).

Since no one chemical compound has been tested for all
known biological activities, this may appear to be the incorrect
designation in some cases. However, it has been shown that PASS
provides reasonable estimates of structure-activity relationships
despite the incompleteness of information in the training set
on both chemical structures and biological activities, due to the
robustness of the Naïve Bayes approach in general (Rish, 2001;
Rennie et al., 2003) and the MNA descriptors and the biological
activity representation used in PASS in particular (Poroikov et al.,
2000).

Quantitative data on structure and activity of many chemical
compounds freely available from ChEMBL and PubChem
databases allow one to consider alternative approaches for
creating training sets that may improve the performance of
machine learning methods. Such possibilities were recently
considered in several studies (Heikamp and Bajorath, 2013;
Smusz et al., 2013; Kurczab et al., 2014; Afzal et al., 2015; Mervin
et al., 2015).

In this work we evaluated the PASS performance in virtual
screening for kinase inhibitors with training performed using
three approaches, which differ with respect to what compounds
were selected as inactives: (1) only experimentally validated
(“true”) inactives; (2) combining true and conditionally inactives;
(3) only conditionally inactives. The first and second approaches
have the drawback that they require enoughdata on true inactives.

These training strategies are both related to the multi-label
classification (Tsoumakas et al., 2010; Cherman et al., 2011; Afzal
et al., 2015) and positive unlabeled learning (Kilic and Tan, 2012),
because one and the same classifying object may simultaneously
belong to several categories [have multiple labels, i.e., inhibit
more than one kinase (Martin et al., 2011) in our case study]
and the problem of inactives’ selection may be solved using more
than one method. In contrary to various approaches of inactives’
selection described by the authors (Kilic and Tan, 2012), we used
only straightforward approaches, since in chemoinformatics we
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are forced to deal with extremely sparse data about ligand-protein
interactions and, thus, introduction of data about target-to-target
relations during the training may lead to strong overfitting.

The kinases were chosen for this study because of the strong
family ties among kinases that manifest themselves through
common structural features and predispose kinase inhibitors to
polypharmacological action (Knight et al., 2010; Gani et al., 2015;
Sidorov et al., 2015). Thus, the aforementioned differences in the
training set formation may lead to visible changes in the virtual
screening performance. Although this class of protein targets has
a privileged place in contemporary drug discovery and there are
thus many compounds that have been assayed against several or
even numerous kinases (Fedorov et al., 2007; Gao et al., 2013;
Christmann-Franck et al., 2016; Elkins et al., 2016), multitarget
action is found only for a small and diverse subset of the whole
chemical-biological space (Jasial et al., 2016).

Therefore kinases and their inhibitors represent an interesting
and challenging case that provides useful insights into the
influence of the multitarget action of chemical compounds
on the success of virtual screening studies (Merget et al.,
2017). Moreover, since the multitarget action is by definition
an attribute of thoroughly studied compounds, such as FDA-
approved drugs (Law et al., 2014), whereas most known
compounds are not thoroughly studied, our results may be
extrapolated to the target classes (Barelier et al., 2015; Munoz,
2017) less extensively studied compared to kinases, to help
achieve better results in virtual screening of a huge chemical
library.

MATERIALS AND METHODS

Brief Description of PASS
PASS (Filimonov et al., 2014) is a computer program for
analysis of structure-activity relationships (SAR) that allows
users to perform ligand-based virtual screening for ligands
of multiple targets and/or compounds with desired biological
activities (Abdou et al., 2017; James and Ramanathan, 2017;
Stasevych et al., 2017; Yildirim et al., 2017). Structures of
chemical compounds are represented in PASS as a set of 2D
atom-centric substructural descriptors called MNA (Multilevel
Neighborhoods of Atoms). It was previously shown that MNA
descriptors are suitable for implementation in a wide range
of qualitative (classification) SAR studies and reflect structural
features important for ligand–target interactions (Filimonov
et al., 1999). PASS predicts biological activity profiles for
chemical compounds in standardized representation: uncharged,
single-component, containing at least three carbon atoms, with
molecular mass not exceeding 1,250 Da. The majority of drug-
like molecules fulfill these conditions and clipping of the non-
drug-like compounds allows us to avoid dealing with non-specific
and atypical biological activities. The mathematical approach
of PASS is based on a naïve Bayes classifier and its particular
realization in PASS has been previously described in detail
elsewhere (Filimonov et al., 2014).

The result of PASS prediction is a list of probable biological
activities arranged in descending order of Pa-Pi values, where Pa
is the probability of belonging to the class of “actives,” while Pi is
the probability of belonging to the class of “inactives”. By default,

Pa-Pi > 0 is considered as the cutoff for discrimination between
“active” and “inactive” molecules. The result of PASS-based
virtual screening for a chemical library is the list of molecules
predicted as “actives”; and these could be recommended for
biological testing.

Training and Test Datasets
Data Acquisition
Every dataset used in this study was formed based on the data
contained in the ChEMBL database. We chose ChEMBL because
this is one of the largest freely available sources of experimental
bioactivity data, its data are well-organized and documented, they
are easy to acquire (via graphical web interface or API), and easy
to manipulate by setting-up a local version of the database. We
used the list of protein kinases and their IDs that is available
via the ChEMBL web interface by browsing targets by assigned
protein classes to select the subset of targets for this case study.

The training set of chemical structures and activities of
chemical compounds tested for inhibition of protein kinases was
extracted from the 20th version of the ChEMBL database. The
ChEMBL SQL-format file dump (dump itself and instructions are
available from here: ftp://ftp.ebi.ac.uk/pub/databases/chembl/
ChEMBLdb/releases/chembl_20/)was handled in MySQL, SQL
queries and PHP scripts were used to manipulate the data and
write them to external SD files. Basic validation and comparison
of the virtual screening performance were executed using 5-fold
cross-validation.

The external test sets contained data from the up-to-
date 23rd version of ChEMBL on structures and activities
not present in ChEMBL 20 (ftp://ftp.ebi.ac.uk/pub/databases/
chembl/ChEMBLdb/releases/chembl_23/). ChEMBL 23 contains
1 154 583 new data on activities, among which we searched
for those related to the targets involved in our study using the
following procedure:

- We extracted the list of pairs of identifiers of chemical
compounds and biological targets from both ChEMBL 20 and
23.

- Intersections between the lists (identical pairs) were excluded.
- We used the remaining pairs to perform virtual screening and
compare the results obtained using the three aforementioned
approaches.

Data Preparation
It is known that some noise and various contradictions are stored
in, and migrate from one source of bioactivity data to another,
along with correct records (Kramer and Lewis, 2012; Kalliokoski
et al., 2013; Tiikkainen et al., 2013; Papadatos et al., 2015). Thus,
it is necessary to filter the data before using them in order to
eliminate incorrect data and records that are inconsistent with
the goal of the virtual screening study (Fourches et al., 2016).
To achieve this goal, we used the procedures described in our
previous work (Pogodin et al., 2015) with slight differences,
designed to reflect the peculiarities of the targets selected for this
study.

Training data preparation
First, chemical structures were filtered to eliminate incorrect
molecular representations and to provide PASS with
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unambiguous (in the given feature space of MNA descriptors)
examples for training and validation. We used an in-house
command-line utility (SDF-check) to check structures for PASS
compatibility and remove unsuitable ones. In addition to this, we
identified structures having different ChEMBL IDs, but the same
sets of MNA-descriptors, i.e., equivalent structures. We treated
such structures as a single one. Thus, data on their activities were
joined together, and all structures except first one encountered
were deleted from the set.

After the filtering and preparation of the structures, data
on bioactivities were processed to remove unreliable and
inconsistent data points. In this study we used the following
endpoints: Ki, Kd, IC50, Potency—assessed as concentration of
compound that induces the given response; Activity, Inhibition
and Residual Activity—assessed as response of the kinase,
induced by the given concentration of the compound. In addition
to duplicates and incomplete records, the following data were
excluded:

- Records related to mutated kinases. Kinases with mutations
can have different sensitivity to inhibitors, i.e., quantitatively
they may really represent distinct targets, but in general they
do not have their own ChEMBL IDs. This fact, taken together
with the large number of different mutated forms, makes use
of such data difficult and redundant in the context of this
study.

- Records related to the (Q)SAR and docking studies of
kinase inhibitory activity without experimental validation
of the results provided. Unfortunately, calculated values
of kinase inhibitory activities may be found in databases
along with those measured experimentally, since data are
collected automatically using text mining procedures. Even
the subsequent curation of the collected data does not allow
removal of all questionable data due to the large amount of
diverse data.We searched for such records and excluded them,
since semi-supervised learning (Rosenberg et al., 2007) was
not planned to be studied in this work.

- Records where Activity, Inhibition, or Residual Activity values
were provided for a concentration other than 1µM.

- Records where activation of kinases was provided instead of
inhibition.

- Records related to non-standard types of action: inhibition
of unphosphorylated kinases (without ATP or prior to
ATP addition), allosteric and covalent inhibition, substrate-
competitive inhibition (PPI, [protein-protein interaction]).
Such cases were excluded since structure-activity relationships
for inhibitors of such types may differ (Cortés-Ciriano et al.,
2015; Bosc et al., 2017) from the ATP-competitive inhibitors,
which represent the majority of known inhibitors.

- Records where kinase inhibitory activities were assigned to the
compounds on the basis of their influence on the phenotype
of various cells and tissues. Biochemical studies are better
suited for the purpose of our study, since they allow to
precisely measure the effect of a chemical compound against
the particular protein kinase.

- Data on inhibition of non-human kinases were also excluded.

Measurements assessed as response of the kinase
(Activity, Inhibition, Residual Activity), induced by the

given concentration of a chemical compound were transformed
to Inhibition for convenience. The problem with the “Activity”
records is their ambiguity. Such records may mean both
Inhibition and Residual Activity. We clarified the meaning
based on the content of the assay description field. Residual
Activity and Inhibition are unambiguously connected (Residual
Activity = 100 − Inhibition) and it was easier for us to deal with
only one (Inhibition) type of measurement.

Records on the bioactivities were filtered semi-automatically,
utilizing the content of the “Description” field from the “Assays”
table. Distinct “Description” fields were reviewed and, in the
cases of detection of ambiguous data, analogous records were
found using suitable set of words or regular expressions. Thus,
identified suspicious entries were inspected using the original
publications and deleted, if the suspicions were confirmed.

To improve the validation reliability, we included in the study
only those kinases that had at least 100 actives and 100 inactives
(determined at the concentration 1µM). These limitations also
help with the creation of accurate classifiers, which may be used
for their primary purpose: to search for novel kinase inhibitors.
Attempts to balance sets in terms of actives to inactives ratio were
not conducted, not in the least because the assessment of the
difference in the quality of classifiers built on the training data
with a different ratio of actives to inactives was of interest, since
two of the studied approaches for the training set creation may be
considered as a method to fight skewed training data distribution
(Rennie et al., 2003).

After the filtering of the bioactivities, different measurements
of the inhibitory activity were used to create overall qualitative
assessments for each compound designating it as active or
inactive against the particular kinase. As it was mentioned
earlier, we had different types of data on activities in our set
for some compounds. Within these types (percentage of kinase
inhibition and compound concentration producing response),
median values were calculated in case a given kinase-ligand pair
had multiple assessments. If concentrations of compound were
available and it was less than or equal to 1µM, we designated
it as active against the particular kinase. In cases where data
on concentration of compound were absent we designated it
as active if inhibition of the particular kinase produced by this
compound was greater than or equal to 50%. Otherwise the
compound was designated as inactive.

Initially we extracted from ChEMBL 458 863 records on
kinase inhibition. After the completion of the all procedures
described above we were left with 173 275 data points on kinase
inhibitors evaluated relative to the cut-off value of 1µM (62 309
on true actives and 110 966 on true inactives at given cut-off).
These data characterize interactions of 55 162 compounds with
one or more of 152 human protein kinases selected for this study.
These kinases represent all major families of human kinases. Our
data cover a significant portion of the human kinome and allow
one to search for inhibitors for all kinase families (Figure 1).

External test data preparation
Preparation of the data for external test set was performed in the
same way as for the training set data, except for the following
differences:
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FIGURE 1 | Distribution of targets from the set over the human kinome tree. Illustration reproduced courtesy of Cell Signaling Technology, Inc. (www.cellsignal.com).

- Chemical data were not filtered, since done automatically by
PASS.

- Potency was excluded from the list of the relevant activity
types, since the majority of such activity records do not
contain any data in the field “standard_relation.”

- Activity was excluded from the list of the relevant activity
types, since the majority of such activity records do not fulfill
the requirement of absence of mutations, and/or compound
concentration is not relevant to the selected cut-off.

- Nominimumnumbers for actives and inactives were imposed.

In total, we were able to identify 81 563 new activities against
the kinases involved in this study in the 23rd version of ChEMBL.
After filtering, 35 317 activities describing the action of 23 004
compounds against kinases remained.

Training set formation approaches
Filtered training set data on kinase inhibitors were stored in the
local MySQL database and used to create three different training
sets described below and presented in Figure 2. In addition,
each training set was divided into the five non-overlapping
and equivalent subsets for subsequent stratified 5-fold cross-
validation (5-f CV).

Individual sets (I-sets)
The tested compounds for each kinase were sorted from the most
active to the most inactive and, in this order, they were written to

the five SD files: the first compound in the rank was placed into
the first subset, the second compound into the second subset, the
fifth compound into the fifth subset, the sixth then again into the
first subset and so on; until each compound was placed into the
each corresponding subset. The subsets were created in this way
to be equivalent in terms of the total number of compounds and
similar to each other in the degree of inhibitory activity of the
placed compounds.

Merged actives and inactives set (MAI-set)
Then, we merged the first, second etc. subsets for each of the 152
kinases. If identical compounds were found in different subsets,
only the structural formula was retained with all its kinase
inhibiting activity data. As a result, we obtained 5 combined
MAI-subsets, which were equivalent to the I-subsets because
these subsets contained the same active compounds.

Merged actives set (MA-set)
This set was created in the same manner as MAI-set, but the true
inactives were excluded.

Quality Metrics
We used the following metrics to evaluate the results of our
ligand-based virtual screening of kinase inhibitors:

SENSITIVITY(RECALL) = TP/(TP + FN) (1)

SPECIFICITY = TN/(TN + FP) (2)
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FIGURE 2 | Scheme describing how the training sets were created in accordance with the different approaches. Initial data on kinase inhibitors are represented via

bipartite graph using all kinases and subset (∼ 6 000) of tested compounds. Initially for 152 kinases 5x152 I-sets had been created; then, MA- and MAI-set were

created as described in section Merged Actives and Inactives Set (MAI-set) and Merged Actives Set (MA-set).

BALANCED ACCURACY =
1

2
∗(

TP

TP + FN
+

TN

TN + FP
) (3)

PRECISION = TP/(TP + FP) (4)

F1 = 2 ∗
PRECISION ∗ RECALL

PRECISION + RECALL
(5)

ROCAUC = P
(

Rankactivei < Rankinactivei
)

in Uniform distribution (6)

BEDROC = P
(

Rankactivei < Rankinactivei
)

in exponential Probability Density

Function (PDF) with parameter α, IF α∗Ra << 1

(7)

Metrics (1–6) are appropriate for the evaluation of the
performance of the classification procedure, which determines
the upper limits of the virtual screening quality under

condition where every compound predicted as active is screened
experimentally.

Boltzmann-Enhanced Discrimination of Receiver Operating
Characteristic (BEDROC) (Truchon and Bayly, 2007) (Equation
7) represents the adaptation of ROC AUC metric to conditions
under which detection of maximal number of TPs in a certain top
fraction of the set is more important than general recognition.
Thus, it is designed to evaluate the early detection rate, i.e., to
assess the quality of virtual screening under the limitation that
it is possible to evaluate experimentally only small fraction of
top rated compounds from the whole library. Parameter α in the
BEDROC AUC is inversely related to the size of the top fraction
that will contribute to 80% of the score value while the other 20%
will come from the assessment of the remaining part of the set.
Values of α that were used in this study, and the corresponding
top fractions of the sets, are given in Table 1.
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TABLE 1 | Values of BEDROC parameter α and corresponding top fractions of

sets.

Top fraction BEDROC α Actives rate α * actives rate

1.00% 160.9 0.001 0.161

3.00% 53 0.054

5.00% 32.2 0.032

8.00% 20 0.020

10.00% 16.1 0.016

16.10% 10 0.010

20.00% 8 0.008

Performance Assessments
Stratified 5-Fold Cross-Validation
The training data had been divided into the five subsets in such
a way that the average numbers of actives and inactives were
approximately equal in all subsets (Refaeilzadeh et al., 2009). Four
subsets from each set were used for the training, while one subset
was used as the external test set. This procedure was repeated five
times; each time a different subset was used as the external test
set. The main differences from the standard 5-fold CV were:

- Corresponding individual subsets were always used as test,
regardless of set type utilized for training.

- Compounds were placed into the subsets not on a random
basis, but according to their degree of inhibitory activity.

The overall scheme for performance evaluation is given in
Figure 3.

Such validation procedure provides reliable quality
assessments for classifiers, since every compound in the
test sets had experimental test results against a particular
kinase. Besides, such an approach provides the conditions for
comparison that are close to those observed in real research
projects when one tries to find novel activity for a compound
already included in the training set with some other activities.
Such situations occur in drug repurposing projects or in in silico
toxicological studies (Wang Y. J. et al., 2014).

The results of the predictions were assessed using the metrics
described in theMaterials andMethods section. Unfortunately, at
least one of them, BEDROC,may suffer from saturation. To avoid
this, the ration of actives to inactives for a set (Ra in Formula 7)
must be low enough to fulfill the condition given in Formula 7.

The condition of low fraction of actives in the set seems
acceptable and reasonable in the context of high throughput
screening, which typically provides a number of hits below 5%
(Murray and Wigglesworth, 2017). However, the data on kinase
inhibitors from our set do not fulfill this condition. Thus, the
saturation effect on BEDROC was expected to affect the results
of our study. To avoid BEDROC saturation, we implemented the
procedure of random sampling with replacement as realized in R
package mlr (Bischl et al., 2016) applied to the prediction results.
We undersampled the portions of actives and oversampled the
portions of inactives for each kinase. Factors to under- and
oversample actives and inactives were chosen in such a way that
numbers of actives and inactives in the resampled set became

equal to approximately 60 and 60 000, respectively (Formulae 8,
9). Thus, we maintained the same actives rate in the resampled
sets, which was chosen to be approximately 0.001. This rate is low
enough to calculate BEDROC values for each α level selected for
this study without the risk of saturation.

Factor actives = 60/Number of actives (8)

Factor inactives = 60 000/Number of inactives (9)

The resampling procedure was repeated 5 000 times
for each type of sets and each kinase to achieve statistical
significance in the subsequent assessment of differences
between the results. BEDROC values were calculated on the
resampled data using the R package enrichVS (http://cran.
r-project.org/web/packages/enrichvs/index.html) for each
resampled set. ROC AUC was also calculated using the R
package pROC (Robin et al., 2011). To increase the speed of
obtaining resampling results, we performed calculations in
parallel mode using R package “parallel” (https://stat.ethz.ch/
R-manual/R-devel/library/parallel/doc/parallel.pdf). Values of
the classification quality metrics achieved in cross-validation
and training set composition could be found in Supplementary
Table 1.

Virtual Screening of the External Test Set
Prepared data from 23rd version of ChEMBL was used for
forming the test sets according to the procedure used for
preparation of the training I-sets. During the external validation
(Chen et al., 2012) with these sets we calculated BEDROC values
for the resampled prediction results. Values of the classification
quality metrics achieved in external validation and training set
composition could be found in Supplementary Table 2.

Comparison of the Results Obtained Using
Different Training Approaches
The Tukey honest significant difference (HSD) test was used
along with the analysis of variance to compare the quality of
the created PASS classifiers based on the different types of
training sets. These quality parameters include BEDROC for
the resampled results; sensitivity, specificity, balanced accuracy,
precision, F1 score and ROC AUC for the original results.
The analysis was performed at a P-value < 0.05 using the
functions “aov” and “TukeyHSD” from the R standard library.
This provides the ranked lists for three PASS classifiers, which
allows one to evaluate their performance.

RESULTS

Stratified 5-Fold Cross-Validation
All classification metrics values averaged over all kinases except
the sensitivity values were slightly higher for the results achieved
by classifiers trained on I-sets. Statistical analysis indicates that
results obtained using the I-sets differ significantly from those
obtained with the MA and MAI sets (Figure 4). The results of
classifiers trained on the MA- and MAI-sets do not differ at the
given level of significance from each other.
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FIGURE 3 | Scheme for performance evaluation. I-subset was always used as a test set, thus corresponding MA- and MAI-subsets were just excluded from training.

FIGURE 4 | Comparison of the results obtained using different types of sets.

Results that are significantly different (P-value < 0.05) from one another are

colored by distinct shades of gray. Results were obtained using stratified 5-f

CV. Points correspond to the results achieved for the distinct kinases, shape of

the points corresponds to the type of the training set.

We used the resampled results to calculate values of BEDROC
at different degrees of early recognition of TP (via varying values
of α). These values were grouped according to the types of sets
used for the training, and then averaged over the kinases in a
manner similar to the way the original results were obtained.
Statistical analysis of these data shows that classifiers trained
on I-sets significantly outperform classifiers trained on MAI-sets
and those, in turn, outperform classifiers trained on MA-sets
(Figure 5) for any α value used in the study.

Also, using the resampled results, we were able not only to
compare different approaches for the training by averaging values
of the selected metrics across kinases, but to select the most
adequate approach for each kinase individually. This was because

FIGURE 5 | Comparison of BEDROC values of resampled results for different

kinases. In this case results obtained using different type of training sets were

significantly different from each other (P-value < 0.05) for any value of α.

Results were obtained using 5-f CV.

after the resampling procedure repeated 5,000 times, we had
enough data points to estimate the statistical significance. Such
estimation was performed as follows: at the level of the P-value
chosen earlier, less than 0.05, we found that for most of the
kinases the best approach for training is to use I-sets; nonetheless,
for some kinases it is better to use MA- or MAI-sets (Figure 6)
according to our evaluation. In total, we depicted 13 kinases for
which the classifiers trained using MA- or MAI-sets performed
better in early recognition of TP at at least three levels of α.

Virtual Screening of External Test Set
Since we did not impose any limitations on the number of actives
and inactives in our external test set, we were not able to calculate
values for all the metrics for each kinase. We excluded such
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FIGURE 6 | Kinases for which inhibitors may be found at top ranks using MA- or MAI-training sets, according to the evaluation based on the resampling technique

(P-value < 0.05). Empty cells correspond to the cases where I-sets still perform better. Illustration reproduced courtesy of Cell Signaling Technology, Inc. (www.

cellsignal.com).

kinases before averaging the values of the classification metrics
across the different training approaches, thus only results for 128
kinases were compared.

The main conclusions of the comparison of Specificity,
Balanced Accuracy, and AUC values are similar to those obtained
using 5-f CV: The training approach I provided significantly
better results than those introducing conditionally inactives (MA
and MAI). No significant difference for the other metrics was
found (Figure 7).

To compare the earliness of actives detection achieved
using different training approaches, we resampled results of
the inhibitory activity prediction for each kinase and calculate
BEDROC values. In this part of the study only results related to
kinases having at least 20 actives and 20 inactives in the external
test set were included. This restriction was imposed to exclude the
influence of extreme cases, where only few actives and inactives
exist. Despite the introduced restrictions, we were forced to
change the resampling protocol in some cases; if the kinase had
less than 60 actives, we used an oversampling procedure instead
of undersampling to make sure we had 60 actives.

The main result of the comparison of BEDROC values was
concordant to those obtained using 5-f CV: at each value of
the criterion α, training using I-sets led to the better results
than training performed using MA- or MAI-set, while MAI-sets
outperformed MA-sets (Figure 8).

FIGURE 7 | Comparison of the results obtained using different types of sets.

Results that are significantly different (P-value < 0.05) from one another are

colored in distinct shades of gray. Results were obtained using external test

set. Points correspond to the results achieved for the distinct kinases, the

shape of the points corresponds to the type of the training set.

Correlations Between the Values of Metrics
and Actives to Inactives Ratio in the Sets
We also analyzed the behavior of the employed accuracy metrics
for different actives/inactives ratios, to be sure that they give an
unbiased picture.
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FIGURE 8 | Comparison of BEDROC values of the resampled results for

distinct kinases. In this case results obtained using different type of training

sets were significantly different from each other (P-value < 0.05) for any value

of α. Results were obtained using the external test set.

Values of Precision and F1-score were found to show
correlations with the actives to inactives ratio in the test sets.
Thus, we conclude that sets’ imbalance affects Precision and F1-
score values, while the other metrics are significantly more robust
(see Supplementary Figure 1), especially AUC and Balanced
Accuracy.

Applicability Domain Estimation
To estimate the applicability domain, we calculated the values
of the classification quality metrics for those cases where
compounds had a certain number of new MNA-descriptors not
found in the training set. In this case we merged the results over
all kinases to obtain sufficient numbers of data points.

We showed that in the case of the results achieved using I-sets
for training, the performance of the classifiers decreases linearly
with increasing number of new MNA descriptors. In contrast
to this, for the results achieved using MA- and MAI-sets for
training, we were unable to find a strong dependence between
the number of new MNA descriptors and the performance of
the classifiers. Still, these results should be treated with caution,
since the percentage of data points involved in this assessment
decreases drastically with increasing number of new MNA
descriptors, especially for the classifiers built using MAI- and
MA-training sets (see Figure 9).

In the case of the classifiers built using I-sets for training
we can judge that the applicability domain includes those
compounds which have 4 or fewer new MNA descriptors, since
the average balanced accuracy and AUC exceeded 0.7.

DISCUSSION

In contrast to the many contemporary studies in the field of
the virtual screening, in this work no decoys (Irwin, 2008) were
used to assess the enrichment achieved in virtual screening of
large datasets. Instead, validation and subsequent comparison
of the different training approaches were performed using only
experimentally tested compounds, both actives and inactives.

Today, due to the constant growth of available computational
resources and amount of bioactivity data, it is possible to
do this using 5-f CV and true external test sets. Moreover,
since negative influence of the conditionally inactive compounds
involved in training was shown, this makes us wonder: if
conditionally inactives can do harm during training, are decoys
good for testing? The exact answer is not known yet, but the
risk of reaching wrong conclusions may be mitigated by using
resampling-based approaches in parallel with, or instead of,
decoys.

Our study represents a quantitative assessment of the trade-
off between the initial requirements on the training data and
the quality of PASS-based virtual screening. We have shown that
the most efficient training approach for the ligand-based virtual
screening system is to use the true actives and inactives for each
target. This approach outperformed those where conditionally
inactive compounds were introduced, in both classification
quality and earliness of the detection. Moreover, in this case
we observe a strong dependence of the performance depending
on the number of new descriptors in the structures of the test
compounds.

According to the analysis of the data from our training set, the
higher the number of kinases for which compounds are tested,
the more activities are found. Thus, using MA and MAI sets for
training, some unknown actives could be treated as conditionally
inactives (Figure 10). This may shed some light onto the problem
of promiscuity of kinase inhibitors, which are often discussed as
polypharmacological drugs. However, analysis of the content of
bioactivity databases such as ChEMBL has shown that the average
degree of promiscuity of such compounds is not so high (Hu
et al., 2014). According to our results there is no contradiction
between these points of view: kinase inhibitors tend to show
promiscuity, but at the moment most of them have been studied
against only a rather limited number of kinases.

Nevertheless, using MA and MAI approaches, it is possible
to achieve good virtual screening results too, despite the softer
requirements on the amount and quality of the training data.
These approaches may be implemented in cases when only few
active compounds are known, even in the absence of inactives,
which helps expand the druggable target space and find new
modes of action for existing molecular targets.

From this perspective it is surprising that we also found 13
kinases for which virtual screening may be performed more
efficiently using training approaches introducing conditionally
inactive compounds. This means that using machine learning
it is easier to distinguish between inhibitors of these kinases
and compounds tested against other kinases, than between
their inhibitors and inactives at the given concentration cut-
off. This fact can possibly be explained by the systematical shift
in compounds selection for testing against these kinases. Also,
it may indicate the importance of small structural changes in
related targets leading to larger changes in inhibitor potency,
since these 13 kinases are diverse, they belong to different
families represented in our set and, in the case of other members
of their families, introduction of the conditionally inactive
compounds leads to the observed negative consequences. Thus,
we show that virtual screening performance may benefit from
the introduction of conditionally inactive compounds if these
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FIGURE 9 | Influence of the number of new descriptors in the structure of chemical compound on the quality of prediction. (A) Balanced accuracy and AUC assessed

using different types of training sets. (B) Percentage of data points characterizing by the different number of new descriptors.

compounds are unfamiliar to the main target. Unfortunately, this
knowledge is risky to apply to achieve better results in ligand-
based virtual screening, since our knowledge on target-target
relations mediated by common ligands are generally based on
sparse training sets.

We obtained rather good results of both external (quasi
prospective) and cross-validation. However, in case of data on
kinase inhibitors extracted fromChEMBL, one initially deals with
the pre-selected compounds studied in the appropriate biological
activity area, which provides good predictivity, particularly using
the approach based on individual sub-sets.

Big libraries like SAVI contain diverse and previously not
investigated chemical structures, including compounds other
than those possessing known ligand-related target signatures
(Sidorov et al., 2015). To achieve the best predictivity for
such library, it seems reasonable to make pre-selection with
the standard PASS approach using conditionally inactive
compounds. As we already mentioned above, PASS provides
satisfactory results of prediction despite the incompleteness of
data in the training set (Poroikov et al., 2000). Moreover, in
this work, we showed that classifiers created using the merged

training sets did not exhibit the significant dependence between
the prediction quality and the number of new MNA descriptors
contained in the predicted chemical structures.

Consequently, we propose two-steps procedure to analyze the
big and diverse chemical libraries. At the first step, pre-selection
is performed using the general classifier that took into account
the conditionally inactives. At the second step, one may more
thoroughly discriminate between the active hits and putatively
inactive structures using the specific classifier that is based only
on the real actives and inactives.

CONCLUSIONS

In this study, we compared the performance of three approaches
for the analysis of structure-activity relationships that differ in
their criteria for selecting “active” and “inactive” compounds for
the training sets. We used the program PASS to build classifiers
based on different subsets of kinase inhibitors extracted from
ChEMBL 20 (for training and 5f-CV) and ChEMBL 23 (for
external, quasi-prospective validation). The highest classification
and early recognition quality was obtained by using individual
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FIGURE 10 | Positive dependence between the number of tested kinases and number of inhibited kinases in the training set; (A) Relation for the whole set (weak); (B)

Relation for the fraction of compounds tested against less than 80 kinases (moderate); (C) Relation for the fraction of compounds tested against more than 80 kinases

(not observed). X–coordinates correspond to the number of chemical compounds against which compounds were tested, Y-coordinates corresponds to the amount

of kinase against which compounds were found to be active at given cut-off (1µM).

training sets for each kinase containing only experimental data.
Nevertheless, other training strategies can provide acceptable
results even in the absence of data on known inactives, which
is often the case with the novel targets (Russ and Lampel,
2005; Nguyen et al., 2017). We assessed the applicability domain
of our classifiers: while classifiers trained using individual sets
expose strong dependence of the prediction quality on the
predicted compounds’ novelty, training strategies employing
merged sets are much less sensitive to the novelty of predicted
compounds.

Taken together these findings allow us to suggest that
one can benefit most from using combinations of different
training strategies when exploring huge chemical libraries
containing diverse structures of unexplored chemical
compounds.
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Farnesoid X receptor (FXR) is a member of nuclear receptor family involved in multiple

physiological processes through regulating specific target genes. The critical role of FXR

as a transcriptional regulator makes it a promising target for diverse diseases, especially

those related to metabolic disorders such as diabetes and cholestasis. However, the

underlying activation mechanism of FXR is still a blur owing to the absence of proper FXR

modulators. To identify potential FXR modulators, an in-house natural product database

(NPD) containing over 4,000 compounds was screened by structure-based virtual

screening strategy and subsequent hit-based similarity searching method. After the yeast

two-hybrid (Y2H) assay, six natural products were identified as FXR antagonists which

blocked the CDCA-induced SRC-1 association. The IC50 values of compounds 2a, a

diterpene bearing polycyclic skeleton, and 3a, named daphneone with chain scaffold,

are as low as 1.29 and 1.79µM, respectively. Compared to the control compound

guggulsterone (IC50 = 6.47µM), compounds 2a and 3a displayed 5- and 3-fold higher

antagonistic activities against FXR, respectively. Remarkably, the two representative

compounds shared low topological similarities with other reported FXR antagonists.

According to the putative binding poses, the molecular basis of these antagonists against

FXR was also elucidated in this report.

Keywords: FXR, antagonist, virtual screening, molecular docking, similarity searching, natural product

INTRODUCTION

The farnesoid X receptor (FXR, NR1H4), a member of the metabolic nuclear receptor
superfamily, regulates the expressions and activities of a broad spectrum of genes. Since 1995
when FXR was isolated from a rat cDNA library for the first time (Forman et al., 1995),
the studies on the physiological functions of FXR have been appealing and challenging. FXR
is conserved from teleost fish to human beings (Maglich et al., 2003) and is abundantly
expressed in liver, intestine, and kidney. As the endogenous receptor of bile acids, FXR
can be activated by chenodeoxycholic acid (CDCA), lithocholic acid (LCA), deoxycholic
acid (DCA), and many other bile acids (Makishima et al., 1999). In addition, FXR is also
reported to exert regulatory roles in lipoprotein and glucose homeostasis, fatty acid and
triglyceride synthesis, liver regeneration, and bacterial growth in the intestine (Lee et al.,
2006; Wang et al., 2008). All these accumulating data make FXR a promising pharmaceutical
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target for multiple diseases, especially those related to metabolic
disorders such as diabetes and cholestasis (Schaap et al., 2014;
Gonzalez et al., 2016; Yuan and Li, 2016; Filho et al., 2017).

As a typical nuclear receptor, FXR shares common structural
characteristics with other members of this superfamily, which
comprises a highly conserved DNA-binding domain (DBD),
a moderately conserved ligand-binding domain (LBD), and
a ligand-dependent transcriptional activation domain (AF-2)
(Pellicciari et al., 2005).Upon the binding of proper ligand to
the LBD, FXR will undergo a conformational change, which
is critical to determine whether a coactivator or a corepressor
binds efficiently to the AF-2 motif. If activated by appropriate
agonists, the recruitment of coactivators (such as SRC-1, DRIP,
and PRMT) to FXR occurs, which further up- or down-regulates
the expressions of certain target genes. While for antagonists, the
association of FXR with activators will be hindered (Lew et al.,
2004). Although it is widely accepted that FXR participates in
many biological processes, owing to the diversity and complexity
of target genes involved in the FXR signaling pathways (Zhang
and Edwards, 2008), the physiological functions of FXR haven’t
been clearly defined. Therefore, it is still an essential step to
identify potential FXR modulators, which may contribute to
the elucidation of physiological effects of FXR and provide
novel opportunities for the treatment of metabolic diseases by
targeting FXR.

Apart from the natural bile acid ligands with steroidal
skeleton, over 700 structurally diverse FXR modulators have
also been identified (Gaulton et al., 2017), most of which
function as agonists (Carotti et al., 2014). Obeticholic acid (6α-
ethyl-chenodeoxycholic acid, 6-ECDCA), a semi-synthetic bile
acid analog with highly potent FXR agonistic activity (EC50 =

0.099µM) (Pellicciari et al., 2002), is the first FDA-approved
drug that is used for treating primary biliary cholangitis (PBC)
(Nevens et al., 2016). In contrast, the development of FXR
antagonists, which are also useful chemical tools to unravel the
physiological roles and relative clinical significance of FXR (Li
et al., 2013), does not seem to be satisfactory due to the scanty
number of potent FXR antagonists that have been reported so
far. Guggulsterone, a natural product extracted from the resin of
the guggul tree, is the most described FXR antagonist, with the
ability of blocking the agonist-induced coactivator recruitment
and decreasing the hepatic cholesterol in wild-type mice (Urizar
et al., 2002). However, the researches on guggulsterone are
still confined to preclinical and academic studies because of
the complexity of its mechanism of action (Fiorucci et al.,
2010; Yamada and Sugimoto, 2016). Although other natural or
synthetic FXR antagonists have also been developed (Figure 1;
Wu et al., 2002; Dussault et al., 2003; Nam et al., 2007; Choi
et al., 2011; Huang et al., 2012; Xu et al., 2015), further
pharmaceutically relevant activities were rarely reported. Herein,
six natural products were identified as antagonists from an in-
house natural product database (NPD) through virtual screening
strategy and subsequent biological experiment validation. In
the yeast two-hybrid (Y2H) assay (Fields and Sternglanz, 1994;
Lin and Lai, 2017), these compounds could abolish CDCA-
induced FXR activation at micromolar level. We hope the
natural products revealed in this study will offer novel scaffolds

for uncovering new FXR regulatory mechanism and provide
insights into potential development for further discovery of FXR
modulators.

MATERIALS AND METHODS

Structure-Based Virtual Screening
Protein Preparation
The crystal structures of FXR-LBD in complex with 6-ECDCA
(Mi et al., 2003) (PDB code 1OSV, a dimer and chain B was
used) and fexaramine (Downes et al., 2003) (PDB code 1OSH,
monomer) were obtained from the Protein Data Bank. The
synthetically modified bile acid ligand 6-ECDCA was derived
from the structure of CDCA, but showed almost 100-fold
more potent FXR agonistic activity than CDCA and did not
activate other nuclear receptors. Fexaramine is a synthetic non-
steroidal FXR agonist, which was identified by optimization
of a benzopyrane-based combinatorial derived library. The
coactivators and all the watermolecules were removed. Hydrogen
atoms and charges were added during a brief relaxation
performed using the “Protein Preparation Wizard” workflow in
Maestro 10.1. After the hydrogen bond network was optimized,
the crystal structure was minimized until the root-mean-square
deviation (RMSD) between the minimized structure and the
starting structure reached 0.3 Å with OPLS_2005 force field.

Glide Docking
The grid-enclosing box was placed on the centroid of the
crystallographic ligand in the optimized protein structure and
defined to enclose residues located within 15.0 Å of the binding
pocket. A scaling factor of 0.8 was set to van der Waals (VDW)
radii of those receptor atoms with partial atomic charges of less
than 0.15 to soften the nonpolar parts of the receptor. After
addition of hydrogen atoms and ionization at a pH range of 5.0-
9.0, the three-dimensional structures of compounds in the NPD
were generated with Ligprep v3.3 module. Standard precision
(SP) and extra precision (XP) approaches of Glide (Friesner et al.,
2004; Halgren et al., 2004) were respectively adopted to dock
the molecules into the binding site with the default parameters,
and only the top one pose for each molecule were retained.
After parallel Glide SP scorings using two different protein
structures (PDB codes 1OSV and 1OSH), the top 500 docking
poses were reserved for each docking calculation and subjected to
XP calculation with a more precise scoring function, and the top
200 docking poses were retained, respectively, for further visual
observation.

Hit-Based Similarity Searching
The similarity searching process was accomplished in Pipeline
Pilot v7.5, and two of the most potent FXR antagonists 2a and
3a were used as query molecules, respectively. The Tanimoto
coefficient (Tc) of similarity between the query molecule and
the target molecule was calculated using SciTegic functional
connectivity fingerprints of radius 4 (FCFP_4) (Bender et al.,
2009). TheminimumTc was set to a low value of 0.3, to maximize
the number of obtained analogs.
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FIGURE 1 | Selected structures of the reported FXR modulators.

SRC-1 Recruitment Assay
Materials
The restriction and modification enzymes in this work
were obtained from New England Biolabs (Beijing, China).
P-nitrophenyl α-D-galactopyranoside (PNP-α-Gal), yeast
nitrogen base without amino acids, agar, PEG3350, dimethyl
sulfoxide (DMSO), lithium acetate, and glucose were all
purchased from Sigma (Shanghai, China). The yeast expression
plasmids pGADT7 and pGBKT7 were from Clontech (Palo Alto,
CA), and CDCA was from Merck. The dropout supplement free
from leucine and tryptophan (-Leu/-Trp DO supplement) was
bought from Takara, and Salmon Sperm DNA was obtained
from invitrogen. The yeast strain AH109 was purchased from
Clontech (Palo Alto, CA).

Plasmid Construction
Based on the genome sequences of FXRα (GenBank
accession no. NC 000012.10), human FXRα-LBD (200-473
AA) was sub-cloned into vector pGBKT-7 using NdeI and
BamHI restrict enzyme sites. The primers used for PCR
amplification were listed as follows: FXRα-LBD (sense)
5′-ATCATATG-GAAATTCAGTGTAAATCTAAGCG-3′,
(anti-sense) 5′-ATGGATCCTCACTGCA-CGTCCCA-3′.
The combination plasmid pGADT7-SRC-1 was prepared
as described previously (Lin et al., 2008), by amplifying

with the following primers: (sense) 5′-CAGAATTC-
CATAACAATGACAGACTTTCA-3′ and (anti-sense)
5′-AAGGATCCCACCTTTA- CATCATCCAGGCT-3′.

Y2H System Construction
We constructed the Y2H for FXR by yeast co-transformation
with pGBKT7-FXR LBD (BD) and pGADT7-SRC-1 (AD)
according to the lithium acetate method. Briefly, 500 ng of BD
and AD were added to 50 µL of the yeast competent cells and
mixed with 36 µL of lithium acetate, 240 µL of 50% PEG3350,
and 50 ng single-strain DNA at 30◦C for 30min, followed by
heat-shock (250 rpm) at 42◦C for 30min. The mixture was
subsequently spread on a drop-out-agar plate without leucine
and tryptophan (6.7 g/L yeast nitrogen base without amino
acids, 1.54 g/L -Leu/-Trp DO supplement, 20 g/L glucose, 20 g/L
agar). The plates were incubated at 30◦C for 48 h for yeast
growth and the PCR method was used to confirm the successful
transformation.

Y2H Assay
We performed Y2H assay to determine the agonistic or
antagonistic activities of the compounds. Yeast transformations
were incubated with either a control vehicle (DMSO) or the
indicated compounds for 24 h in an hFXR agonist testing, and
in antagonist assays treated with tested compounds plus 10µM
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CDCA. The quantitative α-galactosidase activity assays were
carried out by using PNP-α-Gal as the substrate according to
the Clontech manual. Each experiment was repeated three times
independently.

1. Vortex the overnight culture tube for 0.5–1min to disperse cell
clumps and then each sample needs 200µL to record the exact
OD600.

2. Centrifuge the tube at 14,000 rpm (10,000 × g) for 30 s.
Incubate 16 µL cell culture medium supernatant with 48 µL
PNP-α-Gal at 30◦C for 60min. Be sure to cover microtiter
plates with a lid or parafilm to prevent evaporation.

3. Terminate the reaction by adding 136 µL of 1µM sodium
carbonate. Record the optical density of each sample at
410 nm.

The α-galactosidase activity was calculated according to the
following formula:

α − galactosidase activity[milliunits/(mL× cell)]

=
OD410 × Vf × 1000

(ε × b)× t × Vi × OD600

where t is the elapsed time of incubation (min), Vf is the
final volume of assay (200 µL), Vi is the volume of culture
medium supernatant added (16 µL), OD600 is the optical
density of overnight culture, and ε×b is the p-nitrophenol molar
absorptivity at 410 nm×the light path (cm) = 10.5 mL/µmol
(Yeast Protocols Handbook PT3024-1, Clontech).

The agonistic activation and inhibition rates (%) were
calculated as follows:

agonistic activation =
GAtreated

GADMSO

inhibition rate(%) =
GACDCA − GAtreated

GACDCA − GADMSO

where GA indicates α-galactosidase activity.

Chemistry
The NPD is our in-house collection of over 4,000 natural
products isolated from about 100 plants and their structures
were established by extensive spectroscopic. The purities of all
compounds were checked by using NMR and HPLC (purities ≥
95%). The detailed data of the natural products mentioned in the
report are listed as follows.

1a: Abiesatrine B, isolated from Abies georgei; amorphous
powder; ESI-MS: m/z 491 [M + Na]+; 1H-NMR (600 MHz,
CD3OD, δ): 2.28 (m), 1.83 (m), 1.95 (m), 1.58 (m), 3.39 (m), 1.45
(m), 1.92 (m), 5.66 (m), 1.42 (m), 2.25 (m), 1.81 (dd, J =14.7,
2.4Hz), 5.56 (dd, J = 8.4, 2.4Hz), 1.45 (m), 1.92 (m), 0.96 (s),
0.95 (s), 2.21 (m), 0.88 (d, J = 6.3Hz), 2.92 (dd, J =14.1, 1.8Hz),
2.23 (m), 6.86 (d, J = 1.5Hz), 2.16 (d, J = 1.5Hz), 0.94 (s), 0.92
(s), 1.20 (s). 13C-NMR (150 MHz, CD3OD, δ): 30.7, 26.5, 77.2,
38.0, 39.4, 24.3, 120.1, 147.5, 52.6, 36.0, 29.1, 123.8, 157.4, 51.2,
37.9, 39.2, 47.6, 25.4, 22.8, 40.2, 16.2, 49.4, 205.5, 129.7, 149.1,
15.9, 174.6, 28.9, 23.6, 26.6.

1b: (24Z)-3,23-Dioxo-9βH-lanosta-7,24-dien-27-oic acid,
isolated from Abies georgei; amorphous powder; ESI-MS: m/z

467 [M - H]−; 1H-NMR (300 MHz, CD3OD, δ): 5.67 (1H, dt, J
= 7.5, 2.7Hz), 1.94 (3H, d, J = 1.2Hz), 1.08 (3H, s), 1.07 (3H, s),
1.05(3H, s), 0.99 (3H, s), 0.95 (3H, d, J = 6.0Hz), 0.82 (3H, s);
13C-NMR (75 MHz, CD3OD, δ): 35.2, 35.3, 221.7, 48.1, 53.7,
24.0, 122.8, 149.9, 46.8, 37.0, 21.9, 35.6, 45.2, 53.2, 34.2, 29.5,
54.7, 22.9, 23.5, 34.2, 20.8, 50.1, 200.0, 128.1, 150.2, 173.6, 28.4,
21.7, 27.9.

1c: Abiesatrine D, isolated from Abies georgei; amorphous
powder; ESI-MS: m/z 477 [M + H]+; 1H-NMR (600 MHz,
CD3OD, δ): 1.73 (m), 1.61(m), 2.50 (dt, J = 7.5, 1.8Hz), 1.42 (dt,
J = 12.0, 1.2Hz), 1.94 (m), 1.89 (m), 5.65 (dt, J = 7.8, 2.7Hz),
2.21 (m), 1.64 (m), 1.85 (m), 1.72 (m), 1.60 (m), 1.43 (m), 1.96
(m), 1.29 (m), 1.54 (m), 0.79 (m), 1.00 (s), 1.42 (m), 0.92 (d, J =
6.6Hz), 1.63 (m), 1.58 (m), 2.24 (m), 2.15 (m), 6.19 (dt, J = 7.5,
1.2Hz), 1.85 (brs), 1.10 (s), 1.11 (s), 1.03 (s). 13C-NMR (150MHz,
CD3OD, δ): 34.2, 34.3, 219.1, 47.0, 52.4, 23.0, 121.5, 148.7, 45.5,
35.8, 20.9, 34.4, 44.0, 51.9, 33.1, 29.7, 53.0, 22.4, 23.1, 36.1, 18.2,
34.6, 26.0, 145.7, 126.6, 172.6, 12.0, 28.0, 21.3, 27.4.

2a: 15-Hydroxy-7-oxo-8,11,13-abietatrien-18-oic acid,
isolated from Abies georgei; amorphous powder; ESI-MS: m/z
329 [M - H]−; 1H-NMR (300 MHz, CD3OD, δ): 8.06 (1H, d, J =
2.1Hz), 7.72 (1H, d, J =8.4, 2.1Hz), 7.43 (1H, d, J = 8.4Hz), 1.51
(6H, s), 1.31 (3H, s), 1.27 (3H, s); 13C-NMR (75 MHz, CD3OD,
δ): 39.1, 19.5, 38.2, 48.2, 45.7, 38.6, 201.5, 131.4, 155.9, 38.6,
124.9, 132.2, 149.1, 124.0, 72.6, 31.7, 31.7, 183.4, 17.4, 23.8.

2b: 17-Nor-7,15-dion-8,11,13-abietatrien-18-oic acid, isolated
from Abies georgei; amorphous powder; ESI-MS: m/z 313 [M -
H]−; 1H-NMR (600 MHz, CD3OD, δ): 2.48 (m), 1.61 (dt, J =
6.9, 3.0Hz), 1.81 (m), 1.80 (m), 2.68 (dd, J = 14.2, 3.0Hz), 2.86
(dd, J = 17.6, 14.2Hz), 7.63 (d, J = 8.4Hz), 8.18 (dd, J = 8.4,
2.1Hz), 8.52 (d, J = 2.1Hz), 2.61 (s), 1.35 (s), 1.32 (s). 13C-NMR
(150 MHz, CD3OD, δ): 38.2, 19.1, 37.8, 47.5, 45.0, 38.8, 199.5,
132.0, 161.8, 39.5, 125.9, 134.5, 136.6, 128.5, 199.3, 26.7, 181.0,
16.9, 23.5.

3a: Daphneone, isolated from Daphne odora Thunb. var.
marginata; white powder; ESI-MS:m/z 255 [M+H]+; 1H-NMR
(500 MHz, DMSO-d6, δ): 2.92 (2H, t, J = 6.0Hz), 1.61 (2H, t, J
= 3.0Hz), 1.61 (2H, t, J = 3.0Hz), 2.60 (2H, t, J = 6.0Hz), 7.84
(2H, d, J = 9.0Hz), 6.85 (2H, d, J = 9.0Hz), 6.85 (2H, d, J =
9.0Hz), 7.84 (2H, d, J = 9.0Hz), 7.18 (m), 7.27 (m), 7.18 (m),
7.27 (m), 7.18 (m), 10.28 (s); 13C-NMR (125 MHz, DMSO-d6,
δ): 23.7, 30.5, 34.9, 37.1, 115.1, 115.1, 128.3, 128.2, 128.1, 125.5,
128.1, 128.2, 130.3, 130.3, 142.0, 161.8, 198.1.

3b: Daphneolon, isolated from Daphne odora Thunb. var.
marginata; white powder; EI-MS: m/z 270 [M]; 1H-NMR (500
MHz, CD3OD, δ): 1.80 (2H, m); 2.72 (1H, m); 3.00 (1H, m); 3.08
(1H, m), 3.09 (1H, m), 4.14 (1H, m), 6.80 (2H, d, J = 7.0Hz), 7.11
(1H, m), 7.15 (4H, m), 7.84 (2H, d, J = 7.0Hz); 13C-NMR (125
MHz , CD3OD, δ): 31.0, 38.3, 44.6, 66.9, 114.3, 124.8, 127.4, 127.5,
128.5, 130.1, 141.5, 161.9, 198.1.

3c: Daphnenone, isolated from Daphne tangutica Maxim;
white powder; EI-MS: m/z 252 [M]+; 13C-NMR (125MHz,
DMSO-d6, δ): 187.3, 125.9, 146.7, 33.5, 33.7, 128.7, 130.9, 115.3,
162.0, 115.3, 130.9, 141.0, 128.3, 128.3, 125.8, 128.3, 128.3.

3d: P-coumaric acid, isolated from Incarvillea mairei var.
grandiflora (Wehrhahn) Grierson; white amorpuous powder;
ESI-MS: m/z 164 [M]+; 1H NMR (600 MHz ,CD3OD, δ): 6.32
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(1H, d, J = 16.0Hz), 7.37 (1H, d, J = 16.0Hz), 7.35 (2H, d, J
= 8.5Hz), 6.77 (2H, d, J = 8.5Hz), 5.0 (4-OH), 6.41 (-H), 6.77
(3-H,5-H), 7.35 (2-H,6-H), 7.37 (7-H), 11.0 (-H); 13C-NMR (150
MHz ,CD3OD, δ): 128.7 (s), 130.1 (d), 116.6 (d), 159.8 (s), 116.6
(d), 130.1 (d), 141.5 (d), 122.6 (d), 171.5 (s).

3e: Ethylparaben, isolated from Aeschynanthus bracteatus;
Colloidal; ESI-MS: m/z 175 [M + Na]+; 1H-NMR (300 MHz,
CD3OD, δ): 7.97 (1H, d, J = 9.0Hz), 6.87 (1H, d, J = 9.0Hz),
6.87 (1H, d, J = 9.0Hz), 7.97 (1H, d, J = 9.0Hz), 4.35 (2H, d, J
= 7.2Hz), 1.26 (3H, s); 13C-NMR (75 MHz ,CD3OD, δ): 123.1,
131.9, 115.1, 159.7, 115.1, 131.9, 162.9, 60.7, 14.4.

RESULTS AND DISCUSSIONS

Protein Structure Selection and Redocking
Validation
The binding of proper modulators to LBD is the molecular
basis for FXR activation that triggers the conformational change
of FXR, the subsequent coactivators association, and the final
target genes regulation. Previous studies have shown that FXR
can be activated by structurally diverse agonists, and an array
of crystal structures of FXR-LBD complexed with agonists
have been solved. The agonist-binding pocket is positioned in
the interior of the LBD, and agonists with different skeletons
display enormously distinct binding features (Maloney et al.,
2000; Soisson et al., 2008; Flatt et al., 2009; Jin et al., 2013).
Computational studies, along with crystallographic experiments
(Xu et al., 2015), support the notion that the agonist-binding
pocket can also be occupied by antagonists (Meyer et al., 2005).
Given the variability of the binding pockets occupied by distinct
modulators, it is necessary to use different FXR crystallographic
models in the virtual screening process, in order to maximize
the diversity of hit compounds. At the time when we initiated
this study, there were in total 27 crystal structures of FXR in
complex with different modulators in the Protein Data Bank.
After deleting the structures bound with structurally analogous
ligands and those without published biological data, 10 unique
protein structures were reserved for further analysis.

Protein flexibility has vital influence on ligand recognition,
and even subtle protein conformational changes can significantly
affect the results of docking simulations (Kitchen et al., 2004).
Nevertheless, the receptor is usually held rigid for most docking
procedures, including Glide used in this study, to speed
up virtual screening of large databases. To compensate for
the limitations of rigid protein conformation, as well as to
simply the computational simulations, we decided to select two
receptors representing dramatically dissimilar conformations to
the other reported crystal structures to perform two independent
docking calculations. Both the binding site similarity and ligand
similarity profiles were taken into consideration for docking
model selection. On the one hand, pairwise binding pocket
similarities among the 10 structures were calculated using
our in-house program PocketShape, which is designed for
computational evaluation of the binding site similarity based
on pocket shape and property and could be accessed through
the webserver SiteMapper (http://lilab.ecust.edu.cn/). Residues

within 5Å distance around the ligand were extracted as the
binding site for each structure. Typically, two binding sites
with a score value over than 0.8 are considered similar. On
the other hand, pairwise molecular similarities among the 10
crystallographic ligands were calculated with SciTegic FCFP_4
fingerprints in Pipeline Pilot v7.5, and a Tc cutoff value of 0.6 was
set to define similarity.

The binding pocket and ligand similarity values of the 10
unique crystal structures were plotted in Figure S1. Meanwhile,
for each model, the average pocket and ligand similarity
values were calculated, respectively, to evaluate its uniqueness.
Four crystal structures 1OSH, 1OSV, 3OLF, and 4WVD were
considered, as all of them have top five minimum average
values ranked by either pocket or ligand similarity calculations.
Although both the pocket and ligand similarity values of 4WVD
scatter in a low range, its ligand ivermectin is a large macrocyclic
lactone (Jin et al., 2013), making the ligand binding pocket
expand to a volume of 1081 Å3 (Dundas et al., 2006), which
is likely to cause artificial enrichment of molecules with large
sizes and high molecular weights in docking procedure (Verdonk
et al., 2004). Therefore, we did not choose 4WVD. The Tc
values of the FXR agonist 6-ECDCA in 1OSV to other ligands
are relatively low with predominant scattering below 0.2, and
its binding pocket also reveals uniqueness with the average
similarity value of 0.62. Moreover, 6-ECDCA is the only FDA-
approved FXR modulator so far. Therefore, the 1OSV model
was first selected for docking simulation (Mi et al., 2003). After
thoroughly analyzing the binding interactions, the biological
activities against FXR, as well as the X-ray crystal parameters,
the secondmodel of 1OSH was preferentially reserved, the ligand
of which has a lower Tc value to 6-ECDCA than that of 3OLF
(0.13 vs. 0.15).

Alignment of the 6-ECDCA and fexaramine binding sites
exhibited substantial differences in both shape and surrounded
residues (Figure S2A). And the tremendous dissimilarities of
the two ligands in terms of topological structures and induced
binding conformations render them extend to non-overlapping
space. To evaluate the docking accuracy of Glide, the two
cocrystallized ligands were redocked into the active pocket using
Glide XP scoring for each structure. Superimposition of the best
redocked poses and the experimental structures (Figures S2B,C)
gave the RMSD values of 0.53 Å for 6-ECDCA and 0.65 Å
for fexaramine, indicating the robustness of Glide in accurately
reproducing the bioactive conformations of the ligands for
our two docking models. Cross-docking calculations were also
carried out where each crystal structure ligand was docked into
the binding pocket of the other. The ligand 6-ECDCA could
be docked into 1OSH by Glide XP mode, but the predicted
binding pose deviated greatly from the crystallized bioactive
conformation (Figure S2D). In agreement with the enormous
differences of the two binding sites, fexaramine could not be
accommodated by the smaller 6-ECDCA-binding site of 1OSV,
hence no proposed docking pose was obtained.

Virtual Screening
To search for potent FXR modulators, structure-based virtual
screening strategy, an effective method to identify novel ligands
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FIGURE 2 | Schematic representation of the whole strategy adopted in this study to identify potential FXR modulators.

based on predicted binding poses and docking scores, was
executed using Glide v6.6 (Maestro v10.1, Schrödinger Inc.). And
we speculated that if the docking pose of a certain compound
to the agonist-binding pocket was computationally favorable, it
could be an effective FXR modulator, either an agonist or an
antagonist. The screened natural products database is a collection
of over 4000 natural products isolated from about 100 plants, the
structures of which have been validated by our researchers. After
hierarchical virtual screenings independently implemented with
Glide (Figure 2) by using two crystal structures of the receptor, a
total of 400 top-ranking compounds were retrieved as candidates
from the NPD. These candidates were then subjected to visual
inspection to remove those that are likely to be nonbinders.
With consideration of key interactions observed from the crystal
structures, such as predominant VDW complementarity and
some critical hydrogen bonds with polar residues, each docked
pose of these candidates was carefully checked to delete the
inappropriate compounds. Meanwhile, a specific focus was put
on the sizes of the candidates, and those compounds with
relatively large groups protruding out of the binding pocket
were not considered. Additionally, the compounds with the
same scaffold were reserved with a maximum of three to
maximize the structural diversity. A total of 30 candidates were
finally selected for further bioactivity assay. In the coactivator-
recruitment assay based on the Y2H system, none of the 30
compounds could enhance the association of SRC-1 to FXR-
LBD, thus no agonist was found. Intriguingly, four compounds
(1a, 2a, 3a, 3c) strongly inhibited the CDCA-induced SRC-1
recruitment with the inhibition rate higher than 50% in the
concentration of 25µM, displaying apparent FXR antagonistic
profiles. The IC50 values of the four compounds were determined
(Table 1, Figure S4), and guggulsterone was used as the reference
compound.

Starting from the potent FXR antagonists 2a and 3a as hit
compounds, the in-house NPD was re-screened using similarity
searching method, to obtain more potent derivatives as well
as to establish underlying structure-activity relationships (SAR).
A prior minimum Tc value of 0.6 was first set to retrieve

analogous compounds. Unfortunately, only several derivatives
were obtained for each hit compound, probably owing to the
heterogeneity of the in-house NPD. We, thus, chose a relatively
low threshold of 0.3 tomaximize the number of obtained analogs.
Subsequently, the analogs were also manually checked, and only
compounds possessing the same skeleton to the hit compound
and with proper sizes were selected. After further in vitro Y2H
assay, two compounds 3d and 3e with the Tc values of 0.4
and 0.41, respectively, to compound 3a, were found to display
moderate antagonistic activities against FXR. As illustrated in
Table 1, compounds 3d and 3e share the phenol moiety with
compound 3a, and their IC50 values were 14.1 and 19.3µM,
respectively.

To evaluate the performance of the virtual screening strategy
adopted in this study, the rankings and docking scores of the
newly identified natural products were retrospectively examined.
The distribution of docking scores of the top ranking candidates
reserved from Glide calculations were presented in Figure S3.
The natural compounds bearing different scaffolds, including 1c,
2a, 2b, 3b, and 3c, could be ranked in the top 500 candidates
during the Glide SP docking process using both crystal structures
1OSV and 1OSH, whereas the Glide XP results are totally
different. As shown in Table 2, compounds containing similar
chemical skeleton to the crystallographic ligand tend to score
higher. Moreover, none of the identified FXR antagonists could
be simultaneously ranked in the top 200 candidates by the two
Glide XP calculations, confirming the rationality of using two
distinct crystal structures for structure-based virtual screening.
Despite of the confirmed moderate antagonistic effects against
FXR, compounds 3d and 3e with smaller sizes were excluded
after the initial Glide SP screening, which may be ascribed to
the recognized bias of structure-based virtual screening method
toward high molecular weight compounds (Pan et al., 2003).
The results also demonstrate that 2D molecular similarity search
method is a powerful and complementary approach to structure-
based virtual screening, which could retrieve biologically active
compounds that are regarded as false-negatives by docking
simulations.
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TABLE 1 | Chemical structures and activities of FXR antagonists and their analogs reported in this studya.

Compd. Structure Inhibition rate % (25µM) IC50 (µM)b Agonistic activation

(25µM)

1a 67.35 13.5 1.09

1b 22.66 >25 1.12

1c 12.84 >25 0.93

2a 82.16 1.29 1.05

2b 10.05 >25 0.90

3a 84.45 1.79 1.03

3b 41.4 >25 0.76

(Continued)
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TABLE 1 | Continued

Compd. Structure Inhibition rate % (25µM) IC50 (µM)b Agonistic activation

(25µM)

3c 54.9 5.46 1.29

3d 52.8 14.1 1.08

3e 60.1 19.3 0.93

DMSO 0 – 1.00

CDCA – – 2.70

Guggulsterone 60.72 6.47 –

aData shown are the average values of triplicate measurements determined by Y2H assays. This system employs the interaction between hFXR-LBD and the coactivator SRC-1.
bAttempts to determine IC50 values were made if the inhibition rate at 25µM was larger than 50%.

TABLE 2 | The rankings and docking scores of the natural products.

Compd.a Glide SP (kcal/mol) Glide XP (kcal/mol)

1OSV 1OSH 1OSV 1OSH

Rank Score Rank Score Rank Score Rank Score

1a 20 −10.02 − − 2 −15.1 − −

1b 37 −9.52 − − 13 −13.2 − −

1c 395 −7.99 309 −8.16 42 −12.01 − −

2a 59 −9.16 292 −8.23 70 −11.41 − −

2b 93 −8.91 381 −7.87 171 −10.34 − −

3a − − 177 −8.61 − − 142 −10.55

3b 488 −7.83 120 −8.85 − − 139 −10.57

3c 390 −8.00 133 −8.80 − − 195 −10.05

3d* − − − − − − − −

3e* − − − − − − − −

aCompounds that were ruled out by structure-based virtual screening process but recovered using similarity searching method are labeled with *.

Structural Novelty Assessment
The six natural products were first reported to show FXR
antagonistic activity. To evaluate their structural novelty with
respect to known FXR antagonists, the pairwise Tc values
of chemical similarity were calculated based on the FCFP_4
fingerprints. The Tc value between the similar compounds 3a

and 3c is 0.67, a Tc cutoff value of 0.6 was therefore set
to define similarity. 15 structurally diverse FXR antagonists
including seven natural products (compounds 4–21, Table S1)
were collected from literatures, among which the maximum Tc
value is 0.46. As shown in Figure 3, all the Tc values of the six
newly identified hits to the known 15 FXR antagonists were below

0.4, and the maximum Tc values of compounds 1a, 2a, and 3a

were 0.38, 0.25, and 0.31 (Table S2), respectively. Accordingly, the
six natural products could be considered to be structurally novel
as FXR antagonists.

Analysis of Predicted Binding Poses
From the structural point of view, the six antagonists
can be simply categorized into two classes: terpenes
possessing polycyclic skeletons and phenols with chain
scaffolds. In order to better delineate SAR, their inactive
analogs were also displayed and analyzed in this
study.

Frontiers in Chemistry | www.frontiersin.org 8 April 2018 | Volume 6 | Article 140193

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Diao et al. Discovery of Novel FXR Antagonists

FIGURE 3 | Heatmap presentation of topological similarities of the six natural products to the 15 reported FXR antagonists.

FIGURE 4 | Superposition of docking poses of compounds 1a and 2a onto 6-ECDCA (A,B) and their proposed interactions with FXR (C,D). The conformation of

6-ECDCA (yellow sticks) was extracted from the crystal structure 1OSV. Compounds 1a and 2a are shown as green sticks and hydrogen bonds are highlighted as

black dashes. Key residues around the binding pocket are shown as blue lines.

Terpenes
Compounds 1a and 2a belong to triterpenes and diterpenes,
respectively (Yang et al., 2010), and both of them are isolated
from Abies georgei which grows exclusively in China. In a
previous study, compound 1a was reported to have moderate
agonistic effect against estrogen receptor (ER). The polycyclic
ring skeletons of the two compounds are much similar to that of
the bile acids, especially for the tetracyclic triterpene compound

1a. However, the Tc values between compounds 1a and 2a and
6-ECDCA are as low as 0.36 and 0.28, respectively. Intriguingly,
despite the opposite activities against FXR, the proposed binding
poses of the two compounds closely resemble that of 6-ECDCA
when interacting with FXR (Figure 4). Similar to 6-ECDCA,
compound 1a adopts cis-orientation in the A/B rings linkage,
which is considered to be a unique feature for bile acids. The
ring skeleton fits the binding pocket well through favorable VDW
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FIGURE 5 | Predicted binding pose of compound 3a against FXR. (A) Overall view. The X-ray crystal structure of the FXR-LBD (PDB ID: 1OSH) is shown in cartoon,

and the docked inhibitor is represented by spheres. (B) Detailed binding interactions of compound 3a with FXR. Key residues around the binding pocket are displayed

as green lines, and the hydrogen bonds are presented as black dashed lines.

contacts and hydrophobic effects with adjacent residues. The 3α-
OH group extends to the space between helix 7 and helix 10/11
and putatively participates in hydrogen bond interactions with
residues Tyr358 and His444. Additionally, the terminal carboxyl
group could interact with residue Arg328, located at the entrance
of the binding pocket, through salt bridge or hydrogen bond
interactions. All the interactions described above are beneficial
to the binding of compound 1a to FXR. However, the hydrogen
bond formed between the 7α-OH of 6-ECDCA and Tyr366 is
absent for compound 1a due to its structural variation on ring B.
Under the physical-shape discrimination mechanism employed
by FXR (Mi et al., 2003), bile acids without a 7α-OH group,
such as LCA and DCA, showed extremely weak affinity with
FXR, which may also cause the moderate antagonistic activity of
compound 1a against FXR.

For the analogs where the 3α-OH groups are replaced
by carbonyl groups (compounds 1b and 1c), no detectable
antagonistic activity was found in the coactivator recruitment
assay. The planarity of the double bond may restrict the carbonyl
oxygen atom to a position distant from residues Tyr358 and
His444, and the absence of corresponding hydrogen bond
interactions presumably results in the loss of agonistic effects
against FXR.

Compared with compound 1a, compound 2a has a relatively
smaller volume, but displayed 10-fold stronger antagonistic
activity. Apparently, compound 2a doesn’t fit the canonical
mechanism that nuclear receptors’ antagonists are usually
voluminous than agonists (Meyer et al., 2005). In the proposed
binding pose with FXR, compound 2a reveals the same
amphipathic properties as the bile acid ligands. The oxygen
atom of the carboxyl group putatively forms hydrogen bond
interactions with residues Ser329 and Tyr366. At the other end
of compound 2a, hydrogen bond interactions could also form
between the hydroxyl group and Arg328. The hydroxyl group
seems to be essential for the antagonistic activity of compound
2a, as its analog with an acetyl group (compound 2b) exhibited
no observed activity against FXR. Owing to the methyl group
located at the10α-position, the carboxyl-substituted hydrocarbon

ring A protrudes from the benzene ring panel, making VDW
contacts and hydrophobic effects withMet325 on helix 5. Besides,
the sequential ring structure could interact with loop H1-H2
(Met262), helix 3 (His291 and Met287), and helix 6 (Leu345) by
favorable hydrophobic and VDW interactions.

Because of the relatively smaller volume, compound 2a is not
able to extend to the pocket that is occupied by rings A and B
of 6-ECDCA, hence no direct interactions with helix 10/11 and
helix 12 were observed. Previous studies have suggested that the
π-cation interaction between His444 on helix 10/11 and Trp466
on helix 12 plays a critical role for the active conformation
of helix 12 induced by endogenous bile acids (Mi et al., 2003;
Pellicciari et al., 2005). Steroid agonists with 3α-OH group
could facilitate the π-cation interaction by providing appropriate
disposition of His444 through the steric restriction of hydrogen
bonds formed between 3α-OH and residues His444 and Tyr358.
Consequently, without the ability of establishing the triad of
Tyr358, His444, and Trp466, compound 2a couldn’t secure helix
12 in the active conformation, thus preventing the recruitment of
coactivators.

Phenols
Compounds 3a and 3c, named daphneone and daphnenone
respectively (Zhang et al., 2006), are constituents of Daphne
odora Thunb. var.marginata, an ornamental plant whose growth
is restricted to the south of China. The two compounds, together
with their simple structures and small volume, are extraordinarily
peculiar to present antagonistic effects against the CDCA-
induced SRC-1 association with FXR. Moreover, it is difficult to
find common structural features between the two compounds
and known agonists or antagonists. Accordingly, we turned to
the initial docking poses to probe the structural basis of the FXR
antagonistic profiles of this chemical series (Figure 5).

The two compounds were selected from the virtual screening
process using the crystal structure of FXR-fexaramine complex.
Compound 3a is sandwiched in the cleft enclosed by helices
5, 7, and 10/11, partially overlapping with the fexaramine-
binding pocket. The hydroxyl group points toward helix 5 and
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TABLE 3 | In silico predicted properties of the six FXR antagonists.

Compd. MWa donorHBb accptHBc #rotord QPlogSe QPlogPo/wf QPPCacog Rule of fiveh Rule of threei

1a 468.67 2.0 5.7 7 −6.60 5.52 142.21 1 1

2a 330.42 2.0 4.75 3 −4.23 3.03 82.62 0 0

3a 254.32 1.0 2.75 7 −4.27 3.92 1315.91 0 0

3c 252.31 1.0 2.75 6 −4.33 3.59 1160.27 0 0

3d 164.16 2.0 2.75 4 −1.55 1.38 68.09 0 0

3e 166.17 1.0 2.75 3 −2.27 2.46 1083.37 0 0

6-ECDCA 420.63 3.0 5.40 7 −5.36 4.28 48.73 0 0

The recommended ranges by QikProp are as follows:
aMolecular weight, 130.0–725.0.
bNumber of hydrogen bond donors, 0.0–6.0.
cNumber of hydrogen bond acceptors, 2.0–20.0.
dNumber of non-trivial rotatable bonds, 0–15.
ePredicted aqueous solubility, −6.5–0.5.
fPredicted octanol/water partition coefficient, −2.0–6.5.
gPredicted apparent Caco-2 cell permeability in nm/sec, <25 poor, >500 great.
hNumber of violations of Lipinski’s rule of five, maximum is 4.
iNumber of violations of Jorgensen’s rule of three, maximum is 3.

may form hydrogen bonds with residues Ser336 and His298.
On the other terminal, the benzene ring moiety extends to
the aromatic residues-rich groove formed by Phe288 (helix
7), Trp458 (helix 10/11), and Phe465 (loop H10/11-H12), and
probably contacts with these residues by advantageous π-
stacking interactions. The linker between the two benzene rings
fits the pocket by hydrophobic interactions and VDW contacts
with surrounding residues such as Leu291, Met294, Ile356,
and Ile361.

Previous molecular dynamics simulation studies assumed
that the intrinsically unstable loop H10/11-12 controlled the
flexibility of helix 12 (Costantino et al., 2005). Through offset
face-to-face π-stacking interaction between the benzene ring
and Phe465, both compounds 3a and 3c could contact with the
loop directly, which may interfere with the conformation of the
loop and push helix 12 away from its active conformation. For
compound 3c which has a double bond in the linker region,
the antagonistic effect in the SRC-1-recruinment assay is slightly
weaker. Presumably, the relatively flexible hydrocarbon linker
is more suitable for the binding process with FXR-LBD, hence
compound 3a displayed stronger antagonistic activity. When
a hydroxyl group was introduced into the hydrocarbon linker,
the antagonistic activity of compound 3b markedly decreased,
displaying an IC50 value higher than 25µM. Whereas the
much smaller compounds 3d and 3e, which share the phenolic
moiety with 3a, exhibited moderate antagonistic effects against
FXR. Compounds 3d and 3e were docked to FXR by Glide
XP mode using the crystal structure 1OSH. As illustrated in
Figure S5, the two small molecules occupy merely a fraction of
the fexeramine-binding pocket. Hydrophobic effects and shape
complementarities presumably dominate the interactions with
FXR, as no hydrogen bond was detected in their proposed
binding poses.

Notably, compounds 3a and 3c have been previously reported
to show cytotoxic activities against a variety of human tumor
cell lines, including K562, A549, MCF-7, LOVO, HepG2, and
A375-S2, with the IC50 values ranging from 3.12 to 51.0µM

(Zhang et al., 2006; Wang et al., 2012). Besides, the agonistic
profiles of compounds 3d and 3e against ER have also been
described in a previous study (Cao et al., 2013). The phenol FXR
antagonists identified in this study are relatively small, especially
for compounds 3d and 3e, which probably have effects on
other targets in living cells. Further thorough investigations are
ongoing to better elucidate the exact mechanisms of action of the
newly identified natural FXR antagonists and their implications
regarding in vivo pharmacological effects.

Druglikeness Evaluation
To assess the drug-like profiles of the six natural products, an
in silico prediction of ADME properties was performed using
QikProp v4.3 module integrated into Maestro 10.1, and 6-
ECDCA was used as the reference compound (Table 3). All
physically significant descriptors and pharmaceutically relevant
properties of the natural FXR antagonists, except for compound
1a, fall into the recommended ranges of 95% of known drugs,
suggesting remarkable potential of druglikeness. The QPlogPo/w
and QPlogS values of compound 1a exceed the limits of either
Lipinski’s rule of five or Jorgensen’s rule of three, therefore the
aqueous/lipid solubility should be taken into consideration if
further structural optimization was carried out based on the
tetracyclic triterpene compound 1a.

CONCLUSION

In summary, we have established a small NPD containing over
4,000 compounds that were previously isolated from about 100
medicinal plants. From the database, six FXR antagonists were
identified by strategic virtual screening method, which validated
the feasibility of virtual screening to explore the potential targets
of natural products. Although procured on the basis of known
agonist-binding pocket, two of the most potent compounds 2a
and 3a could antagonize the CDCA-induced SRC-1 recruitment
to FXR-LBD with the IC50 values of 1.29µM and 1.79µM,
respectively. The predicted docking mode of the diterpene 2a

Frontiers in Chemistry | www.frontiersin.org 11 April 2018 | Volume 6 | Article 140196

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Diao et al. Discovery of Novel FXR Antagonists

against FXR exhibited partially similar binding interactions
to those of the crystallographic ligand 6-ECDCA bound to
FXR, whereas the daphneone 3a showed noncanonical proposed
binding mode, which may directly contact with the intrinsically
unstable loop H10/11-12 by π-stacking interactions with the
aromatic residue Phe465. Moreover, as assessed by QikProp,
most of the natural FXR antagonists displayed comparable
drug-like properties to that of 95% of known drugs. We hope
our discovery will provide promising chemical scaffolds for
further hit-to-lead optimization and for the study of FXR-related
biological mechanisms.
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This article is a systematic review of reverse screening methods used to search for

the protein targets of chemopreventive compounds or drugs. Typical chemopreventive

compounds include components of traditional Chinese medicine, natural compounds

and Food and Drug Administration (FDA)-approved drugs. Such compounds are

somewhat selective but are predisposed to bind multiple protein targets distributed

throughout diverse signaling pathways in human cells. In contrast to conventional virtual

screening, which identifies the ligands of a targeted protein from a compound database,

reverse screening is used to identify the potential targets or unintended targets of a

given compound from a large number of receptors by examining their known ligands or

crystal structures. This method, also known as in silico or computational target fishing,

is highly valuable for discovering the target receptors of query molecules from terrestrial

or marine natural products, exploring the molecular mechanisms of chemopreventive

compounds, finding alternative indications of existing drugs by drug repositioning,

and detecting adverse drug reactions and drug toxicity. Reverse screening can be

divided into three major groups: shape screening, pharmacophore screening and reverse

docking. Several large software packages, such as Schrödinger and Discovery Studio;

typical software/network services such as ChemMapper, PharmMapper, idTarget, and

INVDOCK; and practical databases of known target ligands and receptor crystal

structures, such as ChEMBL, BindingDB, and the Protein Data Bank (PDB), are

available for use in these computational methods. Different programs, online services and

databases have different applications and constraints. Here, we conducted a systematic

analysis and multilevel classification of the computational programs, online services and

compound libraries available for shape screening, pharmacophore screening and reverse

docking to enable non-specialist users to quickly learn and grasp the types of calculations

used in protein target fishing. In addition, we review the main features of these methods,

programs and databases and provide a variety of examples illustrating the application of

one or a combination of reverse screening methods for accurate target prediction.

Keywords: drug design, reverse screening, shape similarity, pharmacophore modeling, reverse docking,

methodology, online service, screening databases
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INTRODUCTION

New drugs can be designed via traditional receptor structure-
based virtual screening, which enables the discovery of bioactive
compounds that bind the target protein, but they can also
originate from reverse virtual screening, which finds the
unknown protein targets of active compounds or additional
targets of existing drugs (drug repositioning; Hurle et al., 2013).
Among the 84 drug products introduced to the market in 2013,
new indications of existing drugs accounted for 20%, implying
that drug repositioning plays a key role in drug discovery
(Graul et al., 2014; Li J. et al., 2016). The majority of drugs or
bioactive compounds exert their functions by interacting with
protein targets. With an increasing number of drugs showing
the ability to target multiple proteins, target identification plays
an important role in the fields of drug discovery and biomedical
research (Wang J. et al., 2016). Many reverse screening methods
can be used to search for the protein targets of molecules
(Ziegler et al., 2013), although the earliest approaches involved
expensive and time-consuming biological assays (Drews, 1997).
However, with the continuous development of Big Data and
computational techniques, computer-aided reverse screening
methods are playing an increasingly important role in the
prediction of the off-target effects and side effects of drugs as
well as in drug repositioning (Rognan, 2010; Liu et al., 2014;
Schomburg and Rarey, 2014).

Abbreviations: 4-HT, 4-Hydroxy-tamoxifen; 5-Aza-dC, 5′-Aza-2′-deoxycytidine;
5-HT1AR, 5-Hydroxytryptamine 1A receptor; 5-HT2A, 5-Hydroxytryptamine
receptor 2A; 67DiOHC8S, 6,7-Dihydroxycoumarin-8-sulfate; 6BIO, 6-Bromo-
indirubin-3′oxime; ABL, BCR-ABL tyrosine kinase; ACE, Angiotensin converting
enzyme; ACHE, Acetylcholinesterase; ACM2, Muscarinic acetylcholine receptor
2; ADA, Adenosine deaminase; ADH, Alcohol dehydrogenase; AdrA3, Adenosine
receptors A3; ADRB1, Human beta-1 adrenergic receptor; AGS-IV, Astragaloside
IV; AKR1B1, Aldo-keto reductase family 1, member B1; ANXA5, Annexin A5;
Apaf-1, Apoptotic protease activating factor-1; APH(2′)-Iva, Aminoglycoside-
2′-phosphotransferase type Iva; AR, Aldose reductase; AR′, Androgen receptor;
ASA, Aspirin; BACE1, ASC, Astragalus Salvia compound; Beta-secretase 1; BBR,
Berberine; Braf, B-raf kinase; Bub1, Human spindle checkpoint kinase Bub1; CA,
Carnosic acid; CA1, Carbonic anhydrase 1; CA2, Carbonic anhydrase 2; CaM,
Calmodulin; CASP-3, Cysteinyl aspartate specific proteinase 3; CB1, Cannabinoid
receptor 1; CB2, Cannabinoid receptor 2; CBS, Cystathionine beta-synthase;
c-di-GMP, Cyclic diguanylate monophosphate; CDK2, Cyclin dependent
kinase-2; CHS, Chitin synthase; CK2, Casein kinase 2; CN, Calcineurin; CO,
Curculigo orchioides; Complex I, NADH:ubiquinone oxidoreductase; COMT,
Catechol-O-methyltransferase; COX-1, Prostaglandin G/H synthase 1; COX1,
Cyclooxygenase-1; COX2, Cyclooxygenase-2; CT, Cryptotanshinone; CYP450,
Cytochrome p450; D2R, Dopamine D2 receptor; DAPDC, Diaminopimelate
decarboxylase; DAPH, Dialkylphosphorylhydrazone; DHFR, Dihydrofolate
reductase; DHODH, Dihydroorotate dehydrogenase; DIP, Dipyridamole; DPD,
Dihydropyrimidine dehydrogenase; DPP-IV, Dipeptidyl peptidase IV; DRD2,
Dopamine receptor D2; EB1, Microtubule-associated protein RP/EB family
member 1; EGFR, Epidermal growth factor receptor; EphA7, Ephrin receptor
EphA7; ErbB-1, ErbB-1 tyrosine kinase; ErbB-2, ErbB-2 tyrosine kinase; ERK1,
Extracellular regulated protein kinases 1; ERR-γ, Estrogen-related receptor-γ;
ERα, Human estrogen receptor alpha; ESR1, Estrogen receptor alpha; ESR2,
Estrogen receptor beta; FAK, Focal adhesion kinase; FGFR-4, Fibroblast growth
factor receptor 4; GAD, Ganoderic acid D; GAPDH, Glyceraldehyde-3-phosphate
Dehydrogenase; GBA3, Cytosolic beta-glucosidase; GCN5, General control
non-derepressible 5; GCR, Glucocorticoid receptor; GFW, Guizhi Fuling Wan;
GK, Glucokinase; GMP reductase, Guanosine 5′-monophosphate oxidoreductase;
GPX1, Glutathione peroxidase 1; GR, Glucocorticoid receptor; GR′, Glutathione
reductase; GS, β(1,3)-Glucan synthase; GSH-S, Glutathione synthetase; GSK3β,

These computational methods can be divided into three
classes according to their underlying principles: shape screening,
pharmacophore screening, and reverse docking. In the absence
of receptor crystal structures, shape or pharmacophore screening
facilitates the discovery of the potential targets of a query
molecule by comparing its overall shape or key pharmacophore
features with those of the compounds from a ligand database
annotated with target information (Schuffenhauer et al., 2003;
Hawkins et al., 2007; Chen et al., 2009). The annotated targets
of the matched ligands can then be considered potential targets
of the query molecule. Reverse docking, in contrast to the
traditional molecular docking used to find the ligands of a target
protein, refers to the successive docking of a query molecule into
the active pocket of each protein from a protein 3D structure
database based on spatial and energy principles to identify
protein targets with strong binding affinity as potential targets of
the query molecule (Li et al., 2013). Reverse screening methods
are important computational techniques for identifying new

Glycogen synthase kinase-3 beta; GST, Glutathione S-transferase; GSTA1,
Glutathione S-transferase A1; GSTP1, Glutathione s-transferase PI-1; GTPase,
Guanosine triphosphatase; GTs, Ganoderma triterpenes; HDAC2, Histone
deacetylase 2; HDPR, 6-hydroxyl-1,6-dihydropurine ribonucleoside; HEXB,
beta-Hexosaminidase; HGFR, Hepatocyte Growth Factor Receptor; HGPRT,
Hypoxanthine-guanine phosphoribosyltransferase; HIV-1 PR, HIV-1 protease;
HMGCR, 3-Hydroxy-3-methylglutaryl-coenzyme A reductase; HpPDF, H.
pylori PDF; HPRT, Hypoxanthine phosphoribosyltransferase; HRAS, Harvey
rat sarcoma; HRH4, Histamine receptor H4; HSD11B1, 11 beta-Hydroxysteroid
dehydrogenase type 1; HSPA8, Heat shock protein family A member 8; HSYA,
Hydroxysafflor yellow A; IDO, Indoleamine 2,3-dioxygenase; IDV, Indinavir;
I-FABP, Intestinal fatty acid binding protein; IGF1-R, Insulin-like growth
factor 1 receptor; IL-2, Interleukin-2; IMPDHII, Inosine 5′-monophosphate
dehydrogenase II; JNK, c-Jun N-terminal kinase; LCN-2, Lipocalin-2; LDH,
L-lactate dehydrogenase; LTA4H, Leukotriene A4 hydrolase; lysC, Lysozyme C;
MAO-B, Monoamine oxidase B; MAP2K1, Mitogen-activated protein kinase
kinase 1; MAPK-14, Mitogen-activated protein kinase 14; MCDF, 6-Methyl-
1,3,8-trichlorodibenzofuran; MDM2, Mouse double minute 2 homolog; MEK1,
Mitogen-activated protein kinase 1; MIF, Migration inhibitory factor; MMP3,
Metalloproteinase 3; MMP8, Metalloproteinase 8; MPO, Myeloperoxidase; MTX,
Methotrexate; NBP, DL-3-n-Butylphthalide; NF-kB, Nuclear factor kB; NK2
receptor, Neurokinin NK2 receptors; NMT, N-myristoyltransferase; NQO1,
NAD(P)H quinone oxidoreductases; Nrf2, Nuclear factor erythroid 2-related
factor 2; OBA, Obacunone; OPRK, Kappa opioid receptor; OSC, Oxidosqualene
cyclase; p38 MAPK, p38 Mitogen-activated protein kinase; PARP1, Poly [ADP-
ribose] polymerase 1; PAs, Pyrrolizidine alkaloids; PBP4, Penicillin binding
protein 4; PDE4, Phosphodiesterase 4; PDF, Peptide deformylase; PDGFR,
Platelet-Derived Growth Factor Receptor; PDK1, Phosphoinositide-dependent
kinase-1; PEPCK, Phosphoenolpyruvate carboxykinase; PGS, Phenolic acid
glycoside sulfate; PI-3K, Phosphoinositide 3-kinase; PKA, cAMP-dependent
protein kinase; PLA2, Phospholipase A2; PLMF1, Periodic leaf movement factor
1; POLB, DNA polymerase beta; PPARγ, Peroxisome proliferator-activated
receptor γ; PPARδ, Peroxisome proliferator-activated receptor delta; PRDX3,
Thioredoxin-dependent peroxide reductase mitochondrial precursor; PRIMA-1,
P53 reactivation and induction of massive apoptosis; PTP1B, Protein tyrosine
phosphatase 1B; PTPNT1, Protein tyrosine phosphatase non-receptor type 1;
RA, Rosmarinic acid; RARα, Retinoic acid receptor alpha; REN, Renin; SAA,
Salvianolic acid A; SB, Salvianolic acid B; SFJD, Shufengjiedu Capsule; SHBG, Sex
hormone-binding globulin; SND, Sini decoction; STAT3, Signal transducer and
activator of transcription 3; SULT1E1, Estrogen sulfotransferase; TCDD, 2,3,7,8-
tetrachlorodibenzo-p-dioxin; TDP1, Tyrosyl-DNA phosphodiesterase 1; THRa,
Human thyroid hormone receptor alpha; TOP1, DNA topoisomerase 1; UA,
Ursolic acid; TrxR, Thioredoxin reductase; VEGFR-2, Vascular endothelial growth
factor receptor; VGKC, Voltage gated potassium channel; WB, Wentilactone B;
XO, Xanthine oxidase.
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macromolecular targets of existing drugs or active molecules
and for analyzing their functional mechanisms or side effects
(Patel et al., 2015). Based on the principles of the methods
and the availability of existing large-scale small-molecule [e.g.,
ChEMBL, the European Molecular Biology Laboratory (Gaulton
et al., 2017)] or macromolecule (e.g., the PDB; Rose et al., 2015)
databases, researchers worldwide have developed a variety of
software and online services for predicting the protein targets of
small molecules. Representative examples include SEA (Keiser
et al., 2007), PharmMapper (Liu et al., 2010) and INVDOCK
(Chen and Zhi, 2001), which are among the earliest tools for
shape screening, pharmacophore screening and reverse docking,
respectively. In recent years, these three methods have been
widely used in the prediction of protein targets to clarify
the molecular mechanisms of active small molecules against
various diseases (Kharkar et al., 2014; Cereto-Massagué et al.,
2015). Many of these molecules are derived from Chinese
herbal medicine, and while their pharmacological or biological
activities are known, their cellular and molecular mechanisms
remain unclear. For example, Lim et al. (2014) used shape
screening to determine that curcumin (compound 1, Figure 1),
extracted from Zingiberaceae, suppresses the proliferation of
human colon cancer cells by targeting cyclin dependent kinase
2 (CDK2). Marine compounds are another class of bioactive
small molecules. For example, wentilactone B (WB, compound
2) is a tetranorditerpenoid derivative extracted from the
marine algae-derived endophytic fungus Aspergillus wentii EN-
48. Zhang et al. (2013) used reverse docking to discover that
this small molecule induces G2/M phase arrest and apoptosis
of human hepatocellular carcinoma cells by co-targeting the
Ras/Raf/MAPK proteins in their signaling pathways.

Here, we begin by introducing the basic principles of
these three types of reverse screening methods, i.e., shape
screening, pharmacophore screening and reverse docking, for
the prediction of the protein targets of small molecules. Then,
representative and classical software and online services for
each method as well as the relevant databases are hierarchically
categorized and systematically presented. Finally, we reviewed
nearly all articles on the applications of these methods since 2000
and selected some typical examples to illustrate the use of these
methods. By statistically analyzing these articles, we reveal the
trends in the application of these three methods for computer-
aided protein target prediction. In addition, we discuss their
shortcomings and possible solutions as well as previous reviews
of these reverse screening approaches for predicting the protein
targets of small molecules.

METHODS

Reverse screening to search for unknown targets, unintended
targets, or secondary targets of small-molecule drugs can be
achieved by shape similarity screening, pharmacophore model
screening, or reverse protein-ligand docking (Figure 2). These
three different calculation approaches are complementary and
can be used in conjunction with each other. By comparison,
shape, and pharmacophore screening are simpler and faster,

while reverse docking is more complex and slower. We will
introduce these three methods in detail in the following
sections.

Shape Screening
The basic principle of shape screening, from a two-dimensional
(2D) perspective, is that structurally similar molecules may
have similar bioactivity by targeting the same proteins. From a
three-dimensional (3D) perspective, the basic principle is that
molecules with similar volumes may have the potential to bind
effectively to spaces of the same or similar size (considering the
ligand-induced fit effect; Koshland, 1958) in the active pockets of
proteins (Shang et al., 2017). To use shape screening to predict
the targets of small molecules, a small-molecule ligand database
annotated with protein targets is necessary. Then, the overall
shape similarity of a querymolecule to each ligand in the database
can be measured individually. Finally, the protein targets for
matched molecules with high similarity scores can be considered
potential targets of the query molecule (Schuffenhauer et al.,
2003). Shape screening involves two levels of mapping: the
first mapping between the query molecule and the ligands in
the database and the second mapping between the matched
ligands in the database and their annotated protein targets
(Figure 2).

Shape similarity comparison is based on the 2D or 3D
topological structures of small molecules. Notably, 2D methods
were originally created to obtain more of the same part between
paired molecules, whereas 3D methods can be used to enhance
scaffold diversity (Nettles et al., 2006). A universal descriptor for
molecular similarity comparison in 2Dmethods is FingerPrint2D
(FP2), which employs a simple bit vector to represent a variety
of chemical characteristics and is encoded in a variety of
software and databases (Bender et al., 2004). The most frequently
used type of FP2 is extended-connectivity fingerprints (ECFPs),
which are circular fingerprints. ECFPs symbolize circular atomic
neighborhoods based on the Morgan algorithm and are designed
especially for structural activity modeling (Rogers and Hahn,
2010). They have variable length: for example, ECFP4 refers to
a diameter of 4 and ECFP6 to a diameter of 6 (Glem et al.,
2006), both of which are encoded in TargetHunter (Wang L.
et al., 2013). Molecular ACCess System (MACCS; Durant et al.,
2002) is another commonly used FP2. It is a structure key-
based fingerprint and is encoded in the 2D approach of the
ChemMapper server (Gong et al., 2013). In addition to FP2,
other descriptors are based on 2D topologies or paths, including
the daylight fingerprint (http://www.daylight.com) encoded in
ChemProt 3.0 (Kringelum et al., 2016) and the MDL structural
key, another 2D descriptor (Durant et al., 2002). Structural
matching based on 3D topology mainly compares the 3D
geometries of the molecules, sometimes with the addition of
pharmacophores (Lo et al., 2016), ElectroShapes (Armstrong
et al., 2010), Spectrophores (Smusz et al., 2015), or other
additional information. For example, WEGA (Yan et al., 2013)
and gWEGA (Yan et al., 2014) compare only the volumes
of two molecules, but SHAFTS (Lu et al., 2011), encoded
in ChemMapper, incorporates pharmacophore matching when
calculating the volume similarity.
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The similarity of the descriptors in both 2D and 3D methods
can be measured by the Tanimoto coefficient. The Tanimoto
coefficient represents the ratio of the union to the intersection
of the shapes of two molecules (Salim et al., 2003). For example,
TargetHunter uses the Tanimoto coefficient to calculate the
similarity among molecular fingerprints (Wang L. et al., 2013).
The City-Block distance (CBD, also called the Manhattan or
Hamming distance), which represents the difference between
the sum of two molecular shapes and twice the overlap
of two molecular shapes, can also be used to calculate the
molecular similarity (Awale and Reymond, 2014). For example,
SwissTargetPrediction uses this formula to calculate ElectroShape
vectors in 3D comparisons (Gfeller et al., 2014).

Shape screening can be divided into two subclasses: indirect
target prediction and direct target prediction. Indirect target
prediction indicates that the potential targets of the query
molecule are manually selected from the annotated protein
targets of the matched database ligands. ROCS (Rush et al.,
2005) and TargetHunter (Wang L. et al., 2013) are representative
examples. These programs merely calculate the similarity scores
between the query molecule and the matched ligands in the
database but cannot reveal the complex relationships among the
annotated protein targets of multiple matched ligands. In general,
the annotated targets of any database ligand are not unique, and
a protein target may also be annotated with multiple compounds

(Rognan, 2010). Therefore, these programs can have high rates
of false positives in target prediction and low accuracy in target
searching.

Direct target prediction not only calculates the similarity score
between the query molecules and the ligands in the database but
also estimates the probability that the annotated targets of the
matched ligands are targets of the query molecule. This extra
process can reduce the false positive rate of target prediction
and improve the accuracy of the target search. The probability
that the annotated targets of the matched ligands are targets of
the query molecule can be evaluated by multiple computational
models or algorithms (the dotted line in Figure 2). For example,
ChemMapper (Gong et al., 2013), which is based on a compound-
protein network constructed from the top similar structures
and their annotated targets, employs a random walk algorithm
(Köhler et al., 2008) to calculate the probabilities of interaction
between the query structure and the annotated targets of the
hit compounds. In addition, SwissTargetPrediction (Gfeller et al.,
2014) and CSNAP3D (Lo et al., 2016) use a cross-validation
method and a network algorithm, respectively, to assess the
probabilities that the annotated targets of thematched ligands are
targets of the query molecule.

Because shape screening is based on the comparison of
overall molecular shape, it may not be suitable for predicting
the potential targets of molecules that are excessively large or

FIGURE 1 | Compounds described in the manuscript.
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FIGURE 2 | The principle and workflow of shape screening, pharmacophore screening, and reverse docking.

small. Judging the potential targets of an oversized molecule
is difficult because its best matched ligands usually show a
low similarity score, and selecting the potential targets of an
undersized molecule is difficult because its matched ligands are
numerous with high similarity scores. Shape screening is suitable
for predicting potential targets whose available inhibitors have
sizes similar to that of the query molecule but is less fit for
finding novel targets whose current inhibitors differ greatly in
size from the query molecule but whose active pocket space is
easily adjusted to bind diverse ligands due to a strong induced-fit
effect.

Pharmacophore Screening
The basic principle of pharmacophore screening is that the
binding of certain drugs with their protein targets is primarily
determined by key functional pharmacophores (Rognan, 2010).

Thus, the matching of these important pharmacophores can be
used to search for new targets of small-molecule drugs (Fang
and Wang, 2002). A pharmacophore is the spatial arrangement
of functional characteristics that allows molecules to interact
with target proteins in a particular binding mode, such as a
hydrophobic center (H), hydrogen bond acceptor vector (HBA),
hydrogen bond donor vector (HBD), positively charged center
(P), or negatively charged center (N) (Kurogi and Güner, 2001).
A pharmacophore model is the combination of pharmacophores
in a pattern of ligand-protein interaction that give the final
pharmacological effect (Leach et al., 2010). Similar to a
ligand database for shape screening, a pharmacophore database
also requires annotation with target protein information. In
pharmacophore screening, the pharmacophore features of the
query molecule are successively matched with the features of
the pharmacophore models in the database. A higher matching
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degree indicates that the annotated protein target of the matched
pharmacophore model has greater potential to be a target of the
query molecule (Steindl et al., 2006). Pharmacophore screening
also undergoes two levels of mapping: the first mapping is
between the pharmacophore models of the query molecule and
of the ligands in the database, and the second mapping is
between the matched pharmacophore models of the ligands in
the database and their annotated protein targets (Figure 2).

The pharmacophore database is built by pharmacophore
modeling. The three construction methods are the use of
ligands only, receptor structures only, or co-crystallized complex
structures, which can be defined as ligand-based, structure-based
and complex-based pharmacophore modeling, respectively.
Ligand-based pharmacophore modeling was initially designed
and is often used for traditional ligand-based virtual screening;
an example is the quantitative structure–activity relationship
(QSAR; Pulla et al., 2016). Themost substantial common features
shared by a group of active molecules can be easily extracted by
using this method to form a good pharmacophoremodel to guide
the further optimization of active compounds (Leach et al., 2010;
Gaurav and Gautam, 2014). However, this approach is seldom
used in reverse pharmacophore modeling due to the arbitrariness
of pharmacophore models based on a single protein-annotated
ligand.

The other two main methods, the use of only receptor
structures and the use of protein-ligand complex structures, are
forms of structure-based pharmacophore modeling (Gaurav and
Gautam, 2014). In receptor-based methods, the pharmacophore
features are first extracted from potential binding sites detected
by specific protocols, and the pharmacophore models are then
derived from the clustering of interaction point information and
further refined or validated by using the input of the known
ligands and their available or even calculated binding data (Chen
and Lai, 2006). For instance, Pocket v.2 (Chen and Lai, 2006)
and Catalyst SBP in Discovery Studio (DS) (BIOVIA, 2017) can
both produce this type of pharmacophore database. In complex-
based methods, pharmacophore models are simply generated via
knowledge-based topological rules by using all features, such
as hydrogen bonding information, charge, and hydrophobic
contacts, based on the interactions between the co-crystallized
ligands and receptor atoms (Sutter et al., 2011; Meslamani et al.,
2012). Complex-based pharmacophore modeling is commonly
used to construct pharmacophore databases, such as PharmaDB
in Discovery Studio (Meslamani et al., 2012) and PharmTargetDB
in PharmMapper (Liu et al., 2010), due to the stronger association
between the built pharmacophore models and the experimentally
verified ligand-protein interactions, which can improve the
accuracy of target prediction.

The matching process between a pharmacophore model of
the query molecule and the pharmacophore models in the
pharmacophore database considers the alignment of two core
components: pharmacophore feature types and the positions of
the feature types (Wolber and Langer, 2005). The alignment
of feature types is the matching between the pharmacophore
features shared by the query molecule and the database ligands,
such as matching between a hydrophobic feature in the
molecular structure and those in database ligand pharmacophore

models. The alignment of the feature positions is the pairwise
matching of the distances between the fitted feature types
in the pharmacophore models (Kabsch, 1976). For example,
PharmMapper groups pharmacophores into triplets (e.g., H-H-
H, H-HBA-HBD) and uses the vertexes of a triangle to represent
the pharmacophore feature types and the side length of the
triangle to measure the relative positions of these feature types
(Liu et al., 2010).

In pharmacophore screening, the pairwise fitness score
between pharmacophore models can be used directly as a basis
for target evaluation. The fitness score includes the scores
obtained from both the alignments between feature types and the
alignments between the positions of each pair of pharmacophore
models from the query molecule and database ligands. Higher
fitness scores indicate higher probabilities (Wang X. et al., 2016).
In addition, other matching information, such as the number
of matched features and overall shape similarity, can also be
used as additional references for target evaluation (Khedkar
et al., 2007). If the pharmacophore scoring process does not
consider the overall shape of the query molecules, it will be
more likely to find pseudo protein targets with high fitness scores
for a smaller query molecule because its limited pharmacophore
features can be easily matched in the database (Wang X. et al.,
2016). Thus, the target score must be recalculated to improve the
prediction accuracy (the dotted line in Figure 2). For example,
PharmMapper utilizes a normalized fitness score to re-rank the
potential targets by standardizing a normal distribution of the
fitness score to achieve a higher accuracy (Wang X. et al., 2017).

Since the construction of the pharmacophore database
by structure-based pharmacophore modeling is not easy,
the development of corresponding tools based on this
principle has been somewhat limited. However, compared
with shape screening, pharmacophore screening can improve the
accuracy of prediction because it focuses on matching the key
pharmacophore functional groups. In addition, it can ignore the
total size of the molecule. As a result, pharmacophore screening
can be used to search for potential targets of a query molecule
with a large or small volume and can also be employed to find
novel protein targets capable of binding a large diversity of
ligands. Although PharmTargetDB, the PharmMapper in-house
repository, does incorporate protein structural information, a
pharmacophore database can be built to use ligands only. That
is, constructing a pharmacophore database based on ligands
with currently unavailable target structures is also useful for
pharmacophore screening.

Reverse Docking
The basic principle of reverse docking is that the binding strength
of a small-molecule ligand and a potential protein target is
determined by their interaction energy (docking energy). To
use reverse docking to predict the targets of a query molecule,
a structure grid database of a large number of protein targets
is normally required. Then, the query molecule is individually
docked with each protein structure in the database. Each
docking score is calculated. Finally, the protein targets are
sorted according to their docking energy. Generally, a higher
rank indicates a greater probability that the protein is a target

Frontiers in Chemistry | www.frontiersin.org 6 May 2018 | Volume 6 | Article 138204

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Huang et al. A Systematic Review of Reverse Screening Methods

of the query molecule. In contrast to shape screening and
pharmacophore screening, reverse docking involves one level
of mapping, which reflects the direct relationship between the
query molecule and the target proteins (Figure 2). However, it
is a complex process that includes recognition of a binding site,
construction of the docking grid, a molecular docking algorithm,
docking score calculation and target evaluation, among other
steps (Lee et al., 2016).

In most cases, the active site of a protein is already known and
can be determined from its co-crystallized small-molecule ligand.
However, for some apo-form structures without co-crystallized
ligands, the docking program must first recognize the active
binding site of these proteins. If the apo-form structure is from
a protein for which other co-crystallized structures are available,
its active site can also be identified from those protein structures
with co-crystallized ligands. Otherwise, de novo detection of the
active site of the apo-form structure is required. The literature
describes multiple ways to achieve this task. For example, Wang
et al. (2012) uses the “divide-and-conquer” method in idTarget
to search the surface structure of the entire protein and possible
allosteric structures to find potential binding sites. Kuntz et al.
(1982) describes a method that was later used in INVDOCK
(Chen and Zhi, 2001) to define a binding site by a group
of overlapping probe spheres of certain radii, which fill up
a cavity and whose inward-facing surfaces cover the van der
Waals surfaces of the protein atoms at the interface. Active site
recognition is very useful in attempts to dock a query molecule
into cavities other than the binding pockets of known ligands,
which can increase the diversity of the binding between the query
molecule and protein targets and improve the accuracy of reverse
docking.

The database of protein targets used in reverse docking
can be a library of protein crystal structure grids with
recognized binding sites determined by co-crystallized ligands or
available cavities. We can build these databases by continuously
downloading a series of protein crystal structures from the
Protein Data Bank (PDB); the time-consuming human-computer
interaction processes (such as the deletion of water molecules,
the addition of hydrogen atoms, and energy optimization) can
be accomplished by using a molecular docking program, and
the protein structure grids are finally generated. Traditional
molecular docking programs, such as DOCK (Allen et al., 2015),
AutoDock (Di Muzio et al., 2017), Schrödinger (Schrödinger,
2018) and Discovery Studio (BIOVIA, 2017), can be used to
construct a custom target database for reverse docking to search
for potential targets of a small molecule. Alternatively, the protein
target database can also be a simply processed, automatically
constructed protein structure database, and the grids can be
generated after the programmed identification of active sites
in the process of reverse docking; an example is the idTarget
in-house database (Wang et al., 2012). Notably, the lack of a
universal protein structure grid database and the need to build
a new one for each docking program are the main reasons that
reverse docking cannot be used as often as traditional structure-
based virtual screening.

At present, reverse screening uses two main types of
molecular docking techniques, originally developed in

DOCK and AutoDock. DOCK (Ewing et al., 2001) adopts
a “geometry matching method” to perform molecular docking
by complementing the geometric shape of the docking ligands
with that of the protein active site, usually including hydrogen
binding sites and locally accessible sites (Shoichet et al., 2010).
The matching process is performed by an “anchor and grow
algorithm,” in which the anchor is a rigid portion of the ligand
that is used to initialize a pruned conformation search, and
grow refers to the generation of multiple conformations of
the remaining segments to simulate the flexible docking of
the ligand (Ewing et al., 2001). AutoDock uses a “docking
simulation method” that employs the “genetic algorithm” to
sample the conformations of a docking molecule inside a grid of
the receptor binding pocket (Willett, 1995). In this algorithm, the
molecule starts randomly at the receptor surface and undergoes
orientation, translation and rotation to cause conformational
changes until the ideal binding pose with the best binding energy
is found (Morris et al., 2015). Among three reverse docking
programs, INVDOCK (Chen and Zhi, 2001) and TarFisDock
(Li et al., 2006) use the DOCK geometry matching method for
molecular docking, while idTarget uses the AutoDock genetic
algorithm for reverse docking (Wang et al., 2012).

Currently, almost all molecular docking programs can
perform flexible-ligand docking due to the small size of
the ligands; however, these programs still have difficulty in
performing molecular docking with a fully flexible protein.
Therefore, depending on the flexibility of the receptor proteins,
reverse docking can also be classified into two types: rigid protein
docking and semi-flexible protein docking. Although reverse
docking with a rigid receptor is fast, it ignores ligand/receptor-
induced fit effects. An example of a rigid protein docking
program for reverse screening is TarFisDock (Li et al., 2006).
Reverse docking with semi-flexible receptors can be achieved
by various methods such as side-chain rotations (Liu H. et al.,
2015), stretching of active pocket residues (Halgren et al., 2004),
and ensemble docking (Lorber and Shoichet, 1998). For example,
INVDOCK allows the amino acid residues of the receptor
binding sites to rotate with the entry of the ligand, thereby
simulating the ligand induced-fit conformational changes of
receptors (Chen and Zhi, 2001). idTarget uses the docking
of a query molecule into an ensemble of different receptor
crystal structures after clustering (Wang et al., 2012) and thus
simulates semi-flexible receptor docking by possible binding of
the molecule with the distinct locations of the active pocket
residues of the receptor in its different structures.

The docking score between a query molecule and receptors
is an evaluation criterion for ranking its potential targets in
reverse screening. Docking energy is a major method of scoring
docking poses and normally refers to the interaction energy
between the ligand and protein but may also include the
energy of the ligand or the energies of both the ligand and
the protein (or a part of the protein such as the binding
pocket). For example, INVDOCK evaluates the docking structure
by calculating the interaction energy between the ligand and
receptor (Chen and Zhi, 2001), whereas idTarget scores the
docking pose by calculating the energy of the ligand, the
protein binding pocket and the interaction between them (Wang
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et al., 2012). According to the principle that the most stable
structure has the lowest energy, a more negative docking energy
results in stronger binding between the ligand and protein.
The docking energy is calculated based on energy functions,
which are mainly divided into three types: molecular mechanics
energy functions, empirical energy functions, and semi-empirical
energy functions. The molecular mechanics energy functions
are more comprehensive and are rigorously defined by the
sum of terms with clear physical meaning, including bond
stretching, angle bending, torsion angles, van der Waals
forces, electrostatic interactions, desolvation, or hydrophobic
interactions, conformational entropy, and potentially others
(Huang and Zou, 2010; Wang et al., 2011). In reality, the
molecular mechanics energy functions used in the docking
programs may include only some of these terms. For example,
TarFisDock uses energy functions including only van der
Waals and electrostatic interaction terms (Li et al., 2006).
Empirical energy functions comprise weighted energy terms
whose coefficients are obtained by reproducing the binding
affinities of a benchmark data set of protein-ligand complexes
(Gilson et al., 1997; Gilson and Zhou, 2007). For example,
INVDOCK uses an empirical energy function based on simple
contact terms, including hydrogen bond and non-bond terms,
to calculate the ligand-protein interactive energy as the binding
affinity (Chen and Zhi, 2001). Semi-empirical energy functions
combine some molecular mechanics energy terms with empirical
weights and/or empirical functional forms and have been widely
used in computational docking methods (Raha and Merz, 2005).
For example, idTarget follows the AutoDock 4 robust scoring
functions (Huey et al., 2007) and employs a semi-empirical free
energy function that includes hydrogen bonding, electrostatics,
desolvation, and torsional entropy, whose weighting coefficients
are derived from regression analysis of the experimental binding
affinity information (Wang et al., 2011). In addition, reverse
docking allows visual assessment of the docking poses by
analyzing the number of hydrogen bonds, the presence or
absence of critical hydrogen bonds and pi-pi conjugation, etc., as
in traditional virtual screening, to further assist target evaluation
for a more accurate prediction.

Reverse docking considers key elements of both shape
screening and pharmacophore modeling. It determines whether
or not the size of a query molecule can fit inside the binding
pocket of a protein target by docking and scores the interaction
of the key pharmacophore groups in the molecule and the targets
to perform target evaluation. Thus, reverse docking could be the
most comprehensive of the three methods in principle. However,
similar to traditional molecular docking, it also has the following
shortcomings: incompleteness of the search space, inaccuracy of
the scoring function, and extensive calculation (Lee et al., 2016).
Relative to traditional docking, reverse docking has the additional
problem that the sizes of the active pockets of proteins defined
by co-crystallized ligands are inconsistent. Even if the docking
pockets can be defined as being a universally equal size, the
residue density of different protein binding pockets may vary,
resulting in differences in the calculation ranges for the binding
interaction energies. Therefore, reverse docking suffers from a
rationality problem, as it is unable to normalize binding energies

for the correct sorting of potential targets. Nevertheless, reverse
docking can serve as an effective method to complement shape
and pharmacophore screening when the protein structures are
available.

Software and Online Services
Many software programs, some of which are available as online
services, can be used for reverse screening to predict protein
targets of small molecules, but the numbers of online tools
available for the three methods are quite different. Shape
screening tools are the most numerous and include more than
a dozen, such as ChemProt (Kringelum et al., 2016), ROCS
(Rush et al., 2005), ChemMapper (Gong et al., 2013), and the
SEA search server (Keiser et al., 2007). They are listed in the
outer ring of Figure 3. By contrast, the only tool available for
pharmacophore screening is PharmMapper (Liu et al., 2010), as
shown in the inner ring of Figure 3. The main tools available
for target searching by reverse docking are TarFisDock (Li et al.,
2006), idTarget (Wang et al., 2012) and INVDOCK (Chen and
Zhi, 2001), which are illustrated in the middle ring of Figure 3. A
few large software packages, such as Schrödinger and Discovery
Studio, also contain related modules that perform reverse
screening, but they can be used only for the indirect prediction
of potential targets of small molecules. These tools require
users to build their own databases or perform other relevant
processing steps. We have summarized the basic information
on these tools, organized according to their characteristics, in
Table 1. In addition, for each type of software and online service,

FIGURE 3 | Software and online services for shape screening,

pharmacophore screening, and reverse docking.
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we have provided more detailed descriptions of a few classic
representatives.

Shape Screening
At present, many online services are available to search for
targets of small-molecule drugs by shape screening. According
to whether these services and software programs can directly sort
the potential protein targets by probability or not, we classified
them into direct target prediction tools, such as SuperPred
(Dunkel et al., 2008), HitPick (Liu et al., 2013), ChemMapper,
SEA search server, ReverseScreen3D (Kinnings and Jackson,
2011), TarPred (Liu et al., 2015a), and SwissTargetPrediction,
and indirect target prediction tools, such as SwissSimilarity
(Zoete et al., 2016), ChemProt, TargetHunter (Wang L. et al.,
2013), CSNAP3D (Lo et al., 2016), and ROCS. These categories,
respectively, are located on the inside and outside of the
outer ring in Figure 3. A brief introduction to these services,
including their input and output formats, shape similarity
calculation methods, database information and website links, is
provided in Table 1. Because indirect target prediction services
require the manual selection of protein targets, we do not
provide a more detailed overview of these tools here. We
chose the SEA search server among the direct target prediction
services as a representative for further description because it
is the oldest and most widely used shape-screening service
(Keiser et al., 2007).

As a web-based target prediction tool, SEA was developed
in 2007, and it performs quantitative classification and target
association based on the chemical similarity of protein-related
ligands (Keiser et al., 2007). SEA supports only the SMILES
format for the input of query molecules for target prediction.
After receiving the relevant information about the query
compound, SEA performs a pairwise comparison of a 2D
similarity metric in a collection of ∼65,000 ligands annotated
with drug targets, in which most annotations contain hundreds
of ligands (Keiser et al., 2007). SEA then clusters the ligands based
on their chemical similarity into hundreds of sets, relating their
corresponding annotated targets to each other quantitatively, and
further uses a model resembling that of BLAST (Mount, 2007) to
link these sets together in a minimal spanning tree (Keiser et al.,
2007). Next, a statistical model is used to rank the significance
(E-value) of the resulting similarity scores of each set in the
minimum spanning tree. Finally, SEA produces a list of Max
Tanimoto coefficients (MaxTc) and E-values. A larger similarity
score (maxTC) with smaller significance score (E-value) indicate
a higher rank, and there is a greater probability that the protein is
a potential target.

Pharmacophore Screening
PharmMapper, the only web server to screen the potential
protein targets of a query molecule based on pharmacophore
modeling (Figure 3), was developed in 2010 (Liu et al., 2010;
Wang X. et al., 2017). PharmMapper uses a triangle hashing
mapping method to match the pharmacophore models between
the compound and the internal database ligands to predict
potential protein targets of a query molecule (Liu et al., 2010).
A brief introduction to this online tool is also given in Table 1,

including the input and output formats, database information
and website link. Its in-house database, PharmTargetDB, will
be described in detail in the Databases section. PharmMapper
supports the Tripos Mol2, MDL and SDF formats for the input
of a 2D or 3D query molecule structure to begin a job. Next,
PharmMapper flexibly aligns the molecule with each protein
pharmacophore model in its database and calculates the fit score
between the query molecule and the pharmacophore models
(Liu et al., 2010). Subsequently, PharmMapper ranks candidate
targets according to the fit score (Liu et al., 2010) or according
to normalized fit scores standardized by using a two-dimensional
Z-transformation algorithm on the ligand and pharmacophore
target dimensions (Wang X. et al., 2016), and records the aligned
pharmacophore pose for the query molecule and targets. With
the default setting, the top 300 target hits of the prioritizing list
are outputted, and users can select candidate proteins based on
both these fit scores and the aligned pose for further bioassay
experiments (Liu et al., 2010; Wang X. et al., 2017).

Reverse Docking
TarFisDock, idTarget, and INVDOCK (Figure 3) are three
reverse docking programs that are currently widely used
in predicting the targets and mechanisms of various active
biomolecules. A brief introduction to these tools is given in
Table 1, including the input and output formats, database
information and website links. Here, we will also provide a
slightly more detailed description of these three tools.

TarFisDock, a web-based tool for predicting the potential
binding targets of a given ligand, was first released in 2006
(Li et al., 2006) and last updated in 2008 (Gao et al., 2008).
TarFisDock uses reverse docking to search for all possible protein
binding partners of small molecules from a potential drug target
database called PDTD (Li et al., 2006), which will be described
further in the Databases section. This program supports only the
mol2 format for the input of the query molecule. TarFisDock (Li
et al., 2006) uses the docking program DOCK 4.0 to perform
molecular docking between the given molecule and each protein
in the PDTD, and it calculates their binding energy based on van
derWaals and electrostatic interaction terms by using the Amber
force field (Weiner et al., 1984). TarFisDock can output a list
of the top 2, 5, or 10% target hits according to binding energy.
The main limitation of TarFisDock is the insufficient number
of target proteins in the PDTD. The PDTD initially released
in 2006 contained only 698 protein structures (Li et al., 2006)
and was expanded to contain >830 protein targets in 2008 (Gao
et al., 2008). TarFisDock considers the flexibility of the small
molecules but has yet to consider the flexibility of the protein
targets.

In 2012, the web server idTarget (Wang et al., 2012) was
developed to predict the potential binding targets of small
molecules via a divide-and-conquer reverse docking approach.
To improve the efficiency of target prediction, idTarget uses a
contraction-and-expansion strategy to differentiate the protein
structures at different levels for molecular docking into the
families of homologous structures by clustering almost all of the
protein structures deposited in the PDB (Wang et al., 2012).
idTarget supports multiple coordinate formats, including pdbqt
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and mol2, for the input of the given molecule. Then, the program
uses MEDock (Chang et al., 2005) to initially generate a large
number of conformations of the query molecule and directly
orient them inside the grid box of the binding site for molecular
docking (Wang et al., 2012). Subsequently, idTarget assesses the
binding pose by using semi-empirical score functions derived
from quantum chemical charge models and robust regression
analysis (Wang et al., 2012). Finally, the program outputs two
sets of results, both of which are ranked in ascending order of
the predicted binding free energy (1GPred). One set of results
is listed according to the names of the proteins, while the other
is listed according to the names of the homologous families
(Wang et al., 2012). In addition, idTarget provides two modes
for searching binding poses, scanning mode and fast mode
(Wang et al., 2012). In “scanning mode,” molecular docking is
performed individually for each protein structure in the database.
In “fast mode,” the ligand is docked simultaneously to the binding
sites of the superposed homologous protein structures, and the
binding poses are further minimized by adaptive local sampling
(Shindyalov and Bourne, 1998). The fast mode performs quick
searches via docking between the ligand and the common
binding sites after the protein structures of each homologous
family are pre-aligned, but the scanning mode does not limit the
docking conformation searches to these predetermined binding
sites (Wang et al., 2012). Both modes uses the strategy of
ensemble docking (Lorber and Shoichet, 1998) to consider the
flexibility of the receptor indirectly (Wang et al., 2012).

INVDOCK (Chen and Zhi, 2001), an online service for ligand-
protein reverse docking that runs on both Windows and Unix
platforms, was developed in 2001. INVDOCK has an in-house
protein target database of 9000 protein and nucleic acid entries
(Chen and Zhi, 2001). It supports standard 3D ligand structure
files, such as the SDF and MOL formats. INVDOCK sets cavities
on the protein surface that are covered by a large portion
of spherical probes as active binding pockets. The automatic
docking is performed by multi-configuration shape matching
between the molecule and cavities. Then, torsion optimization
and energy minimization are performed on the molecule and on
the protein residues in the binding region (Chen and Zhi, 2001).
Finally, the simplified DOCK scoring method is used to score the
binding energy, and the protein targets are ranked in ascending
order by the ligand-protein interaction energy function (1ELP;
Chen and Zhi, 2001). INVDOCK also considers the flexibility
of the protein via a limited torsion space sampling of rotatable
bonds in the side chains of the target residues at the binding site
(Chen and Zhi, 2001).

Integrated Software Suites
Some drug design software suites, such as Schrödinger (2018)
and Discovery Studio (BIOVIA, 2017), can also be used in shape
screening, pharmacophore screening, and reverse docking to
predict the protein targets of small molecules.

The Schrödinger modules for reverse screening are “Shape
Screening,” “Pharmacophore Modeling,” and “Docking”.
However, Schrödinger does not provide any ligand or protein
database that can be used for reverse screening, and thus, users
must provide the databases themselves. “Shape Screening” and

“Pharmacophore Modeling” require a protein-annotated ligand
database that can be generated by a simple process from the
ligand library Ligand Expo, which can be downloaded from
the PDB database (Feng et al., 2004; Rose et al., 2015). Each
small-molecule ligand in this library is annotated with its
co-crystallized protein target information. The protein structure
grid database for reverse docking can be constructed by users
via grid generation by the “Docking” module after the “Protein
Presentation Wizard” is used to pre-process the protein crystal
structure coordinates from the PDB, such as to remove water
molecules and add hydrogens. Then, reverse docking can be
performed by using “Glide Cross Docking” to dock a given
molecule with multiple proteins simultaneously. Although the
number of proteins for simultaneous docking in “Glide Cross
Docking” is limited (normally ∼ 50), users can write their own
scripts to run reverse docking for one ligand and many proteins.
We have performed several reverse screening tasks by using
these modules in the Schrödinger software package (Kim et al.,
2014; Lim et al., 2014; Wang Z. et al., 2016).

The “Pharmacophore” and “Receptor-Ligand Interaction”
modules of Discovery Studio can be used for reverse screening.
Users can select shape screening or pharmacophore screening by
using the “Ligand Profiler” tool in the “Pharmacophore” module.
This tool allows users to upload a database or use the Ligand
Profiler Pharmacophore Database, PharmaDB, provided in the
software. This database is generated from an annotated database
of druggable binding sites called scPDB (Desaphy et al., 2015)
based on the PDB and contains the molecular structure and
corresponding pharmacophores for calculation of the shape and
pharmacophore similarity. The protein crystal structure database
for reverse docking must be prepared by the user. These crystal
structures can be defined by the “Define and Edit Binding
Site” in the “Tools” menu of the “Receptor-Ligand Interaction”
module. “Libdock Batch Mode” in the “Protocols” menu of the
“Receptor-Ligand Interaction” module can be used for batch
docking and has the same effect as reverse docking. Because of the
different algorithms and databases needed, the advantages and
disadvantages of these two software suites for reverse screening
have yet to be evaluated.

Databases
Databases, whether protein-annotated ligand
structure/pharmacophore databases or protein structure
grid databases, are key elements of reverse screening. Although
reverse screening has been under development for nearly two
decades, no general or benchmarked database is available for
use in different methods or programs. Here, we have classified
the existing relevant databases at different levels (Figure 4).
The first class of databases is associated with software built
by software developers and used for program running. We
call these databases “software databases” or “direct databases”
(shown at the bottom layer of Figure 4). Each database in this
class is named for its corresponding software or referred to as
the software in-house database. The second class of databases
provides resources describing annotated ligands or target
structures, but the users must process and collect these resources
to construct direct databases for reverse screening. We call these
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FIGURE 4 | The relationships among direct databases, indirect databases, and reference databases used in reverse screening.

databases “indirect databases” (shown in the middle layer of
Figure 4), and examples include the PDB (Rose et al., 2015) and
ZINC (Sterling and Irwin, 2015). The third class of databases
can provide a large amount of information about ligands or
proteins that can be used for reverse screening, but collecting and
organizing the information from these databases to construct
direct databases is difficult. However, we can use them to search
for various information resources, such as additional targets, the
bioactivities of matched molecules, or the signaling pathways
of potential target proteins for further analysis of the reverse
screening results. We call these databases “reference databases”
(shown in the upper layer of Figure 4); examples include
PubChem (Kim et al., 2016) and UniProt (Pundir et al., 2015).
Relevant information on several direct databases used for reverse
screening can be found in Table 1. In addition, information
on indirect and reference databases, including the database
coverage and website links, is listed in Table 2. In the following
paragraphs, we provide a slightly more detailed introduction to
these three classes of databases and their relationships with each
other.

Direct Databases
Direct Databases Used in Shape Screening
Each online service for shape screening has its own in-house
database, except ROCS (Rush et al., 2005), which requires users
to prepare their own protein-annotated ligand databases (Mori
et al., 2015). The database information for 12 shape-screening
software programs is shown in the “coverage” column of Table 1.
Among the 11 direct databases, TargetHunter, CSNAP3D and
ReverseScreen3D do not give specific capacity data; for the
former two, the information is not published, and the latter is
noted only as updated with updates to the RCSB PDB, according
to the literature (Kinnings and Jackson, 2011).

Figure 4 shows 10 direct databases with clear
sources, including HitPick, CSNAP3D, TargetHunter,
SwissTargetPrediction, SuperPred, SwissSimilarity, ChemProt,
ChemMapper, SEA, and ReverseScreen3D. These databases
are basically constructed by extracting data from indirect
databases (Figure 4). For example, ChemMapper is built from
several public databases, including ChEMBL (Gaulton et al.,
2017), DrugBank (Law et al., 2014), BindingDB (Gilson et al.,
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2016), KEGG (http://www.kegg.jp/kegg/) and the PDB. It
collects bioactive targets and pharmacological information
on small molecules, each of which has various pre-generated
conformations for 3D similarity screening (Gong et al., 2013).
ChemProt 3.0 (Kringelum et al., 2016) includes all chemical-
protein interaction data from the available open source databases,
including ChEMBL (version 19), BindingDB, the Psychoactive
Drug Screening Program (PDSP) Ki database (Roth et al.,
2000), and DrugBank, as well as clinical information from the
Anatomical Therapeutic Chemical (ATC) Classification System
(Wang Y. C. et al., 2013) and side effect data from Sider (Kuhn
et al., 2016). The SwissSimilarity database gathers protein-
annotated ligands mainly from four indirect databases, namely,
HMDB (Wishart et al., 2009), ZINC, ChEMBL, and DrugBank,
as well as from some reference databases, such as Chemical
Entries of Biological Interest (ChEBI; Hastings et al., 2016). The
SuperPred (Nickel et al., 2014) database consists of a large data
set of ligand-target interactions from two indirect databases,
ChEMBL and BindingDB. The CSNAP3D (Lo et al., 2016),
Target Hunter (Wang L. et al., 2013), SwissTargetPrediction
(Gfeller et al., 2014), and SEA (Keiser et al., 2007) databases are
all constructed by taking ligands with protein target information
from ChEMBL. The HitPick (Liu et al., 2013) database collects
information from the STITCH database (Szklarczyk et al.,
2015), and the information in ReverseScreen3D (Kinnings and
Jackson, 2011) is extracted from the PDB database. In addition,
the TarPred (Liu et al., 2015a) database, which is not shown
in Figure 4, is a compound-target-disease database built by
gathering information from the Comparative Toxicogenomics
Database (CTD; Davis et al., 2017) and UniProt.

Direct Databases Used in Pharmacophore Screening
Two direct databases used for pharmacophore screening are
shown in Figure 4. PharmTargetDB is the in-house database
of the PharmMapper server (Liu et al., 2010), and PharmaDB
(Meslamani et al., 2012) is the direct database deposited and used
in Discovery Studio. Since these two databases are updated when
the software updates, the different versions of PharmTargetDB
and PharmaDB have different data capacities. The numbers of
pharmacophore models in the newest versions are also shown in
Table 1.

The pharmacophore models in PharmTargetDB are derived
from the DrugBank, BindingDB, PDB, and PDTD databases.
These models are built by extracting pharmacophore features
within cavities by using the receptor-based pharmacophore
modeling program Pocket 2.0 (Chen and Lai, 2006) after the
binding sites of given protein structures are detected and ranked
based on their druggability scores by using the software CAVITY
(Yuan et al., 2013) for binding site detection (Wang X. et al.,
2017). The original version of PharmTargetDB contained more
than 7,000 pharmacophore models built from co-crystallized
complex structures of protein targets (Liu et al., 2010). A
new version of PharmMapper was published in 2017 (Wang
X. et al., 2017), and the new PharmTargetDB is six times
larger than the previous one, with a total of 23,236 proteins
covering 51,431 pharmacophore models. PharmaDB is the
pharmacodynamics database for Discovery Studio drug design

software, and its pharmacophoremodels are constructed by using
the Receptor-Ligand Pharmacophore Generation Protocol with
default settings based on the binding information of ligand and
protein complexes in the scPDB database. The original version of
PharmaDB contained 68,056 pharmacophore models annotated
with receptor information (Meslamani et al., 2012). The latest
version of PharmaDB includes 140,000 pharmacophore models
(BIOVIA, 2017), and users can utilize it in Discovery Studio to
perform rapid reverse pharmacophore screening to search for
protein targets of small molecules.

Direct Databases Used in Reverse Docking
The direct databases used in reverse docking are collections
of target structure grids, which are usually generated from
protein crystal structures by using docking programs or their
auxiliary software tools. Before grid generation, the target crystal
structures downloaded from the PDB must be preprocessed
to remove ions and waters, add hydrogens and define the
binding pocket. The original 3D protein structures can also be
downloaded from some PDB derivative databases, such as the
PDBbind-CN Database (Liu Z. et al., 2015), where all valid
ligand-protein structures in the PDB are identified and collected.

PDTD, INVDOCK, and idTarget are the three direct databases
used for reverse docking shown in Figure 4. Among them,
PDTD is the only open database, and it can be downloaded as
a compressed file, which is then decompressed as a collection
of two types of structure files. The first type is the preprocessed
protein structure file in the PDB and mol2 formats, and the
second type is the active site structure file in PDB format. These
two types of structure files for any PDB entry can be downloaded
independently and viewed using the molecular visualization tool
plug-in (Gao et al., 2008). Currently, this database contains
more than 1,100 protein entries with 3D structures in the PDB
and covers 841 diverse drug targets associated with diseases,
biological functions, and signaling pathways (Gao et al., 2008).
The binding (active) sites of these protein structures were defined
by a data set of amino acid residues within 6.5 Å of the
bound ligand (Gao et al., 2008). The INVDOCK and idTarget
databases are not published but are the in-house databases of
the corresponding programs. In addition, in contrast to the
binding sites defined by the co-crystallized ligands in the PDTD,
the binding sites in the INVDOCK and idTarget databases are
generated from the available cavities by a search performed with
spherical probes. The protein structures in these two databases
also originate from the PDB. The INVDOCK in-house database,
constructed in 2001, collects 9000 proteins and nucleic acid
structures from the PDB database (Chen and Zhi, 2001). Each
receptor structure grid in this database is constructed by first
calculating the inward-facing surface covering the interface of
van der Waals surfaces of the receptor crystal structure with a
probe sphere 1.4 Å in radius. The binding site is then defined
as the surrounding space within 15 Å of the center of the cavity
formed by the combination of neighboring spheres covered by
protein atoms in more than 50% of directions. Finally, grid
generation is performed (Chen and Zhi, 2001). The idTarget
database collects all protein structures in the PDB and is regularly
updated when the PDB updates (Wang et al., 2012). The binding
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sites of each protein in the database are dynamically determined,
and the grids are constructed by the “divide-and-conquer”
method according to the size of the query molecule (Wang et al.,
2012). Theoretically, idTarget could be the most extensive and
complete database among the three for reverse docking.

Indirect Databases
Indirect databases are rich in ligand and target information
and can be simply processed to build direct databases for
reverse screening. Nine indirect databases are shown in the
middle layer of Figure 4, and a brief introduction to these
databases, including the coverage, update time and website
link, is given in Table 2. Among these nine indirect databases,
ZINC, ChEMBL, BindingDB, and DrugBank mainly include
structural information on ligands and their target annotations,
whereas the PDB, scPDB, and Therapeutic Target Database
(TTD) mainly provide 3D structures of proteins with ligand
binding information. The 15 direct and in-house software-
associated databases used for reverse screening are essentially
extracted or constructed from these indirect databases. These
indirect databases are also extensively linked to reference
databases. For example, DrugBank and ChEMBL have mutual
data exchange with PubChem, ChEBI, and UniProt. BindingDB
(Gilson et al., 2016) collects data from the PubChem and PDSP
Ki databases. The scPDB and PDB share protein information
with UniProt, including sequences and crystal structures. In
addition, HMDB (Wishart et al., 2007) and ZINC share
compound information with ChEBI, and the TTD database
collects its information on therapeutic protein targets from
UniProt.

Users can employ indirect databases to build their own
databases when they use large commercial software suites for
molecular drug design, such as Schrödinger and Discovery
Studio, to perform reverse screening. For example, users can
collect small molecules with explicit target annotation from
the DrugBank, ChEMBL, and ZINC databases to construct a
ligand database for shape screening. They can also use ligand-
protein binding information from the BindingDB, scPDB, and
PDB databases to build a pharmacophore model database for
pharmacophore screening or a protein structure grid database for
reverse docking. Notably, Ligand Expo (Feng et al., 2004) from
the PDB can be easily used to build in-house program databases
for shape or pharmacophore screening after non-ligand small
molecules, including metal ions and solvent molecules, are
removed. In addition, a collection of protein crystal structures
downloaded from the PDB can be used to generate a protein
structure grid database for reverse screening. In fact, we built
our own databases for use in Schrödinger based on this Ligand
Expo database and the protein structures in the PDB, and we then
performed shape screening and reverse docking to search for the
protein targets of several natural compounds (Kim et al., 2014;
Lim et al., 2014; Wang Z. et al., 2016).

Reference Databases
Reference databases normally contain a very large amount
of information on small-molecule compounds and proteins.
However, extracting the rich information resources from these

databases to establish direct databases for reverse screening
can be difficult for users. Nevertheless, we can utilize these
databases to search for additional information on the matched
molecules and their potential protein targets from reverse
screening results.

The four main reference databases, PubChem, ChEBI, PDSP
Ki, and UniProt, which are closely associated with the nine
indirect databases, are shown in the upper layer of Figure 4. A
brief introduction to these four databases is also provided in
Table 2. PubChem consists of three interrelated sub-databases:
substances, compounds, and bioassays. The first two sub-
databases provide information on the chemical structure and
other properties of small molecules, and the sub-database of
bioassays gives information on their pharmacological properties
and biological targets (Kim et al., 2016). ChEBI is a freely
available dictionary of molecular entities focused on “small”
chemical compounds. ChEBI and ChEMBL are both sites of
the European Molecular Biology Laboratories, and their data
occasionally overlap. Compared with ChEMBL, ChEBI is more
focused on “molecular entity” information, such as the chemical
and biological roles and applications of a small molecule, rather
than on biological target information (Hastings et al., 2013, 2016).
The PDSP Ki database is a unique open resource that provides
information on the ability of drugs to interact with increasing
numbers of molecular targets. The key data in this database
are the Ki activity data on ligands internally derived or from
published articles, but it also includes information on protein-
annotated ligand structures, protein-ligand affinities, and article
sources (Roth et al., 2000). UniProt (Pundir et al., 2015) is a freely
accessible resource of protein sequence and function information
extracted from gene sequencing and published literature that
undergoes quality assurance by curator-evaluated computational
analysis (Poux et al., 2017).

The PubChem, ChEBI, UniProt, and Ki databases are the
four major reference databases used by researchers. However,
more reference databases containing information on proteins or
ligands are available, and readers who are interested in learning
about them can read two further database review papers authored
by Zhang Y. et al. (2011) and Moura Barbosa and Del Rio (2012).

Applications
We reviewed nearly all articles on the applications of shape,
pharmacophore screening and reverse docking in searching
for the potential targets of small molecules published since
2000 and conducted a systematic analysis. In addition, we
have provided slightly more detailed descriptions of some
representative examples of the application of existing services to
drug discovery. In reviewing these previous studies, we found two
approaches to method application: the use of a single method
and the use of combined methods. In general, shape screening,
pharmacophore screening and reverse docking have all been
successfully applied individually. However, these methods have
their own limitations in terms of features and application scopes,
as mentioned above. The majority of newer examples involve the
combined application of multiple methods. Finally, it is noted
that all the compounds as examples for illustration in this section
are shown in Figure 1.
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Shape Screening
Shape-screening services have a wide range of applications.
Table 3 shows 18 examples of the use of SEA, TargetHunter,
ROCS, SwissTargetPrediction, etc. to perform shape screening
for molecular target prediction. Here, even if an article involves
several query molecules, we still present them as one example.

Reverse screening based on shape similarity has multiple
types of applications. First, it is used to search for the targets
of molecules from Chinese herbal medicine. For instance,
using TargetHunter, Zhang et al. predicted human beta-1
adrenergic receptor (ADRB1) as the protein target of aconitine
(compound 3), an experimentally active component of Sini
Decoction in the treatment of cardiovascular disease, and this
prediction has been experimentally verified (Zhang H. et al.,
2016). Shape screening is also helpful for drug repositioning and
for clarifying the mechanisms of action of existing drugs. For
example, Keiser et al. conducted shape screening using SEA to
reposition 3,665 FDA-approved and investigational drugs, and
they successfully predicted unintended targets of several drugs,
such as the antagonism of the β1 receptor by the transporter
inhibitor prozac (compound 4), the inhibition of the 5-HT
transporter by the ion channel drug vadilex (compound 5), and
the antagonism of the histamine H4 receptor by the enzyme
inhibitor rescriptor (compound 6; Keiser et al., 2009).

Pharmacophore Screening
Reverse screening based on pharmacophore modeling is also
widely used to search for the targets of components of various
Chinese traditional medicines. Table 4 shows 27 examples of

the use of PharmMapper and Discovery Studio to perform
pharmacophore screening for the prediction of molecular targets.

For example, Liu et al. used PharmMapper to predict p38,
glucocorticoid receptor (GR) and dihydroorotate dehydrogenase
(DHODH) as potential targets of berberine (BBR, compound
7) and further elucidated the possible molecular mechanisms
by which these protein targets participate in the anti-melanoma
activity of BBR (Liu et al., 2017). Lei et al. employed the
Pharmacophore module of Discovery Studio 3.5 in reverse
screening and found that the isoquinoline alkaloids (such as
compound 8) extracted from Macleaya cordata (Bo Luo Hui)
might target macrophage migration inhibitory factor (MIF),
potentially leading to the broad-spectrum antitumor effects of the
plant (Lei et al., 2015).

Reverse Docking
Reverse screening based on molecular docking is widely used
to search for the targets of small molecules to elucidate
their mechanisms of action. Tables 5, 6 show 25 and 20
examples with and without experimental validation, respectively,
of the application of reverse docking to the prediction of
molecular targets by using TarFisDock, idTarget, INVDOCK, and
conventional virtual screening software such as DOCK, MDock,
and AutoDock.

For example, several research groups used INVDOCK to
predict that p53 (Lu et al., 2010), calmodulin (CaM; Ma et al.,
2013), annexin A5 (ANXA5) and heat shock protein family A
member 8 (HSPA8; Lu et al., 2012) might be protein targets
of the broad-spectrum anticancer drug BBR (compound 7).

TABLE 3 | Applications of shape screening in predicting protein targets of small molecules.

Query molecule Target information Reverse screening tool References

EXPERIMENTALLY VERIFIED

Prozac1, Vadilex2, Rescriptor3 β1 receptor1, 5-HT transporter2, HRH43 SEA Keiser et al., 2009

Wuweizi (compound 11/12) GBA311,12, SHBG11,12 SEA Wang et al., 2015

Lignan 5-HT1AR SEA Zheng et al., 2015

Plumbagin TrxR, GR’ SEA Hwang et al., 2015

Obacunone MIF SEA Gao et al., 2018

5-aza-dC HDM2 SuperPred Putri et al., 2017

Sini decoction (aconitine1, liquiritin2, 6-gingerol3) ADRB11, ACE2, HMGCR1,3 TargetHunter Zhang H. et al., 2016

Salvinorin A* OPRK, CB1, CB2, DRD2 TargetHunter Xu et al., 2016b

NOT EXPERIMENTALLY VERIFIED

NBP NQO1, IDO, NADH-ubiquinone oxidoreductase SEA Wang Y. et al., 2017

Quinoline derivative (83b1) PPARδ SEA Pun et al., 2017

Tributyltin (Ch-409) RamC SwissTargetPrediction Waseem et al., 2017

Xeronine Adr A3, TDP1, muscleblind-like proteins 1 SwissTargetPrediction Sanni et al., 2017

KNOWN TARGETS COMPUTATIONALLY VERIFIED

Methadone1, emetine2, loperamide3 Muscarinic M31, α2 adrenergic2, NK2 receptors3 SEA Keiser et al., 2007

CID 46907796 Nrf2 TargetHunter Wang L. et al., 2013

Chlorotrianisene COX-1, ESR1 SwissTargetPrediction Gfeller et al., 2014

Entecavir POLB TarPred Liu et al., 2015a

Taxol mimetics Tubulin CSNAP3D Lo et al., 2016

Caffeine D2R ChemProt Kringelum et al., 2016

*Target prediction confirmed by the literature. Superscript values denotes that the protein targets in the second column correspond to the query molecules in the first column respectively.
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TABLE 4 | Applications of pharmacophore screening in predicting protein targets of small molecules.

Query molecule Target information Reverse screening tools References

EXPERIMENTALLY VERIFIED

CT MAP2K1 PharmMapper Yuan et al., 2014

Arctigenin PDK1 PharmMapper Fang et al., 2015

HSYA XO PharmMapper Xu et al., 2016a

ZYZ-488 Apaf-1 PharmMapper Wang Y. et al., 2016

NCI 748494/1 c-Met kinase PharmMapper El-Wakil et al., 2017

UA CASP-3, JNK2, ERK1 PharmMapper Ma et al., 2017

BBR GR, p38, DHODH PharmMapper Liu et al., 2017

5,7-dihydroxy-4′-methoxy-8-

prenylflavanone

AChE PharmMapper Das et al., 2017

Phytoestrogens (genistein1, daidzein2,

secoisolariciresinol3 )

AKR1B11, H-Ras2, GSTP13 PharmMapper Dutta et al., 2017

NOT EXPERIMENTALLY VERIFIED

MCDF GR PharmMapper Chitrala and Yeguvapalli, 2014

Capsaicin CA2 PharmMapper Ye et al., 2015

SID 242078875 DPP-IV, PTP1B, PEPCK, GSK-3B, GK PharmMapper Krishnasamy and Muthusamy, 2016

Flavanoid analogs CDK2 PharmMapper Simon et al., 2017

Chalcones and chalcone-like compounds Cysteine proteases PharmMapper Gomes et al., 2017

16E-arylideno-nitrogen mustard

hybrids(3/4)

GRs PharmMapper Acharya et al., 2018

Components of CO ESR1, ESR2, HSD11B1, cortisone reductase PharmMapper Wang N. et al., 2017

N-substituted tetrahydro-β-carboline

imidazolium salt derivatives

MEK-1 PharmMapper Liang et al., 2017

ASC AKR1B1, ALB, AR, BACE1, CDK2, F2 PharmMapper Zeng et al., 2017a

GFW compounds F2, MMP3, CA2, AKR1B, CDK2 PharmMapper Zeng et al., 2017b

Thiadiazole compounds c-Met PharmMapper Meshram et al., 2017

Components in SFJD Multi-targets in ERK pathway PharmMapper Li et al., 2017

Isoquinoline alkaloids MIF, ZipA-FtsZ, GAPDH, etc. Discovery Studio 3.5 Lei et al., 2015

Six GTs GCN5, CDK2 Discovery Studio 4.0 Shao et al., 2016

Pinctada fucata oligopeptide 5HT2A, BACE-1 Discovery Studio Chen et al., 2017

KOWN TARGETS COMPUTATIONALLY VERIFIED

Tamoxifen ERRγ PharmMapper Liu et al., 2010

S-adenosyl-L-homocysteine Modification methylase TaqI PharmMapper Wang X. et al., 2016

Kanamycin APH(2′)-Iva PharmMapper Wang X. et al., 2017

*Target prediction confirmed by the literature. Superscript values denotes that the protein targets in the second column correspond to the query molecules in the first column respectively.

Zhang et al. employed TarFisDock in the reverse docking of 19
compounds extracted from the traditional Chinese medicines
Bacopa monnieri (L.) Wettst and Daphne odora Thunb. Var.
Marginata, and they concluded that five of the compounds (such
as compound 9) might target dipeptidyl peptidase IV (DPP-
IV), thus accounting for the effectiveness of these medicines
in the treatment of diabetes and their anti-inflammatory effects
(Zhang S. et al., 2011). Scafuri et al. (2016) applied idTarget
to predict that the proteins guanosine triphosphatase (GTPase),
guanosine 5′-monophosphate oxidoreductase (GMP reductase)
and hypoxanthine-guanine phosphoribosyltransferase (HGPRT)
might be key targets of apple polyphenols (such as compound
10 and 11), resulting in their cancer-preventive effects. Grinter
et al. used MDock to fish for the protein targets of the compound
PRIMA-1 (compound 12) in the PDTD database and discovered
that PRIMA-1 could inhibit the cholesterol synthetic pathway by
directly binding with oxidosqualene cyclase (OSC), considerably

reducing the viability of BT-474 and T47-D breast cancer cells
(Grinter et al., 2011).

Hybrid Applications
The combinations of methods include shape screening with
reverse docking, shape screening with pharmacophore screening,
pharmacophore screening with reverse docking, and the
combination of all three methods. Table 7 shows 22 examples of
the use of these four combinations to predict molecular targets.

Eight target prediction examples were performed by
combining shape similarity and molecular docking. Kozielewicz
et al. employed ReverseScreen3D and TarFisDock to predict the
targets of oxindole pentacyclic alkaloids (such as compound
13) and found that the biological ability of these compounds
to induce cancer cell apoptosis may potentially involve the
inhibition of several important targets, including dihydrofolate
reductase (DHFR) and mouse double minute 2 homolog
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TABLE 5 | Applications of reverse docking in predicting protein targets of small molecules with experimental verification.

Query molecule Target information Reverse screening tools References

Triptonide1, triptolide2, triptriolide3 ERα1,2,3 AutoDock 4.2 Liu et al., 2015b

c-di-GMP Human LCN2 protein DOCK 6 Li et al., 2015

Derivatives of indirubin (6BIO) PDK1 GlamDock Zahler et al., 2007

DAPH Hexokinase GOLD Da Matta et al., 2015

Apple polyphenols GMP reductase, GTPase H-ras, HGPRT idTarget Scafuri et al., 2016

Anti-HIV drugs (Pis, NRTIs)* POLB, TOP1, etc. INVDOCK Ji et al., 2006

Analgesics* ErbB-2, PLA2, GSH-S INVDOCK Pan et al., 2014

GAD EphA7, EB1, PRDX3 INVDOCK Yue et al., 2008

BBR p53 INVDOCK Lu et al., 2010

SB EGFR INVDOCK Feng et al., 2011

BBR HSPA8, ANXA5 INVDOCK Lu et al., 2012

AGS-IV CN, ACE, JNK INVDOCK Zhao et al., 2012

SB* ACE, REN INVDOCK Ye et al., 2012

WB CDK2, PAK4, BRaf1 INVDOCK Zhang et al., 2013

BBR CaM INVDOCK Ma et al., 2013

Ophiobolin O GSK3β INVDOCK Lv et al., 2015

PRIMA-1 OSC Mdock Grinter et al., 2011

Meranzin COX1, COX2, PPARγ SELNERGY Do et al., 2007

Tofisopam PDE4 SELNERGY Bernard et al., 2008

Anti-Helicobacter pylori drugs (compound 1/2) HpPDF1,2 TarFisDock Cai et al., 2006

[6]-gingerol LTA4H TarFisDock Jeong et al., 2009

5 of 19 natural products DPP-IV TarFisDock Zhang S. et al., 2011

Bezafibrate CDK2 TarFisDock Liu et al., 2015c

Bicyclol IMPDHII TarFisDock Zhang Y. W. et al., 2016

Esculentoside A CK2 TarFisDock Li Y. et al., 2016

*Target prediction confirmed by the literature. Superscript values denotes that the protein targets in the second column correspond to the query molecules in the first column respectively.

(MDM2; Kozielewicz et al., 2014). The combination of shape
screening and pharmacophore screening has been applied in
three instances to predict molecular targets. Biplab Bhattacharjee
and Jhinuk Chatterjee used PharmMapper and ReverseScreen3D
to perform reverse screening and demonstrated that eucalyptol
(compound 14), the effective component of cardamom,
might target CASP-3 and cAMP-dependent protein kinase
(PKA), resulting in its anti-apoptosis, anti-inflammation,
anti-proliferation, anti-invasion and anti-angiogenesis activities
in cancer prevention (Bhattacharjee and Chatterjee, 2013).
The combination of pharmacophore modeling and reverse
docking has been used most frequently to predict the targets
of small molecules, as shown by the 10 applications given in
Table 7. For example, Ge et al. used PharmMapper and idTarget
in reverse screening and predicted that dihydropyrimidine
dehydrogenase (DPD) and human spindle checkpoint kinase
Bub1 were the potential unintended or secondary targets of
the antithrombotic agent dipyridamole (DIP, compound 15),
resulting in its anti-cancer activity (Ge et al., 2016). Finally, one
application combined all three methods for reverse screening.
Gao et al. used the Pharmacophore Modeling and Docking
modules in Schrödinger as well as RerverseScreen3D jointly to
predict molecular targets and found that baicalein (compound
16), an anti-Parkinson disease drug, played a protective role in
the nervous system by targeting catechol-O-methyltransferase
(COMT) and monoamine oxidase B (MAO-B); these targets
were confirmed experimentally (Gao et al., 2013).

DISCUSSION

Comparison of the Applications of the
Three Types of Reverse Screening
Software and Online Services in the
Prediction of Small-Molecule Targets

To provide a better understanding of the application of reverse
screening for small-molecule target prediction, we collected as
many reverse screening tools and databases as possible, most of
which have been updated since 2016 (Tables 1, 2). In addition,
we counted the number of applications of these three methods
since 2000, the number of applications of their representative
software programs, and the application trends over the years. All
information is shown in Tables 3–7 and Figures 5A,B.

Different types of reverse screening tools have characteristic
features. Many software programs and online services are
based on shape similarity, and they have a rich supply of
ligand databases. These shape screening tools have rapidly
updated in-house databases, can screen large chemical databases
rapidly, and therefore can be used for large-scale preliminary
reverse screening. Although shape-screening methods have
the smallest number of applications, a slow upward trend is
evident in recent years (Figure 5A). Notably, few studies have
applied TarPred, SwissSimilarity, and ChemMapper. The main
software and online services based on pharmacophore modeling
are PharmMapper and Discovery Studio, each with its own
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TABLE 6 | Applications of reverse docking in predicting protein targets of small molecules without experimental verification.

Query molecule Target information Reverse screening tool Reference

NOT EXPERIMENTALLY VERIFIED

Tea polyphenols LTA4 hydrolase Autodock, TarFisDock Zheng et al., 2011

4 compounds PBP4 Autodock Vina Sarangi et al., 2015

Lenalidomide VEGFR-2, erbB-3, FGFR-4, ABL, p38MAPK,

MMP-3

Autodock Hu et al., 2017

Torcetrapib PDGFR, HGFR, IL-2, ErbB1 Discovery Studio Fan et al., 2012

Melamine and cyanuric acid GPX1, HEXB, LDH, lys C INVDOCK Ma et al., 2011

PAs GSTA1, GPX1 INVDOCK Yan et al., 2016

Icariin PI3K, AChE INVDOCK Cui et al., 2016

Dioscin TOP1 MDock Yin et al., 2015

Ginsenosides MEK1, EGFR, thrombin, Aurora A Schrödinger Park and Cho, 2017

TCDD MMP8, MMP3, OSC, MPO TarFisDock Oliveroverbel et al., 2010

Ganoderic acid HIV-1 proteasein TarFisDock Akbar and Yam, 2011

Fullerene derivatives HPRT, BACE1 TarFisDock Gupta et al., 2011

Alpha lipoic acid LTA4 hydrolase, VGKC TarFisDock Maldonado-Rojas, 2011

Aryl-aminopyridine derivatives CDK2, aurora kinase, KIT receptor TarFisDock Erić et al., 2012

KNOWN TARGETS COMPUTATIONALLY VERIFIED

4-HT, vitamin E ER, GST INVDOCK Chen and Zhi, 2001

ASA1, gentamicin2, ibuprofen3, IDV4,

neomycin5, penicillin G6, 4-HT7, vitamin C8
Antithrombin1, CA12,5, SULT1E13, IFABP4,

GST6, ADH7, alphaamylase8
INVDOCK Chen and Ung, 2001

Biotin1, 4-HT2, HDPR3, methotrexate4 Streptavidin1, ERa2, ADA3, DHFR4 GOLD Paul et al., 2004

ε-viniferin PDE4 SELNERGY Do et al., 2005

Vitamin E1, 4-HT2 AChE1, DHFR2 TarFisDock Li et al., 2006

DRV1, 6BIO2,

N-(4-aminobiphenyl-3-yl)-benzamide3
HDAC21, HIV-1 PR2, CDK23 idTarget Wang et al., 2012

*Target prediction confirmed by the literature. Superscript values denotes that the protein targets in the second column correspond to the query molecules in the first column respectively.

pharmacophore database. PharmMapper is a free online service,
whereas Discovery Studio is commercial software, leading to
more widespread use of PharmMapper. Among the three reverse
screening methods, pharmacophore modeling has the fewest
applications before 2016 (Figures 5A,B), but its application
exhibited a significantly escalating trend in 2017 (Figures 5A,B).
The reverse docking method has been applied the most; however,
the applications of reverse docking have shown a downward
trend in recent years. The possible reasons are that some online
services, such as TarFisDock, have undergone limited expansion
of the existing protein crystal structure grid database, while
others, such as idTarget, have a long computational time and high
computational cost. Figure 5A also illustrates the trend of the
practical applications of hybrid methods, with a slow rise in the
use of combinations of multiple reverse screening methods for
target prediction in recent years.

In addition, we downloaded from PubChem or sketched
in Schrödinger the structures of 57 small-molecule ligands
whose targets were predicted by reverse screening and
further verified experimentally, as reported in these
application articles. We used the Cluster Analysis Module
in Schrödinger via the two-tiered drop-down menu of Maestro’s
Scripts/Cheminformatics/Clustering of Ligands and a pop-up
window titled Clustering based on Volume Overlap to conduct
a cluster analysis of these small molecules. Figure 6 shows
representative compounds in the 28 clusters we obtained.

Their targets were predicted separately by shape screening,
pharmacophore screening and reverse docking. By comparing
the structures of these molecules, we may be able to summarize
some rules regarding the application ranges of each type of
method according to the structures of the query molecules.
For example, shape screening may be suitable for a query
molecule whose structure shows stereoscopic sense even in a
two-dimensional structural view and that is neither very large
nor very small (Compounds 3 and 17–23). Pharmacophore
screening is appropriate for query molecules whose structures
contain diverse pharmacophore functional groups with a good
balance between them (compounds 24–30). Reverse docking
is suitable for the most diverse range of query molecules
(compounds 31–39). We hope that this type of cluster analysis
can provide some guidance for the effective use of reverse
screening to predict small-molecule targets in the future.

Deficiencies in Current Reverse Screening
Methods and Potential Solutions
Each reverse screening tool has its own characteristics and
appropriate application scope in terms of principle, algorithm
and program. However, we need to know the application scopes
of these tools in order to select the most appropriate software
for making accurate predictions. Thus, a horizontal comparison
can provide a better understanding of the advantages and
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TABLE 7 | Applications of hybrid screening in predicting protein targets of small molecules.

Query molecule Target information Method Reverse screening tool References

EXPERIMENTALLY VERIFIED

Rosemary components (carnosol,CA,UA,RA)* CDK2, MAPK-14, AR’, PPARγ RD&PS PharmMapper, idTarget Deshmukh et al., 2013

DIP* DPD, Bub1 RD&PS PharmMapper, idTarget Ge et al., 2016

Magnaporthe oryzae inhibitor C1 CYP450, NMT, GS, CHS RD&PS PharmMapper, TarFisDock Chen et al., 2016

SAA* AR RD&PS DRAR-CPI, PharmMapper Chen and Cui, 2017

Curcumin CDK2 RD&SS Schrödinger Lim et al., 2014

Naproxen PI 3-K RD&SS Schrödinger Kim et al., 2014

GV2–20 CA2 RD&SS ROCS, AutoDock Mori et al., 2015

Kinetin Chitinase RD&SS idTarget, ReverseScreen3D Kumar et al., 2015

Glabridin Braf, MEK1/2 RD&SS Schrödinger Wang Z. et al., 2016

Macrocyclic amidinoureas Chitinase RD&SS ROCS, OEDocking Maccari et al., 2017

α-FMH GST PS&SS PharmMapper, ReverseScreen3D Considine et al., 2017

Baicalein COMT, MAO-B RD&PS&SS Schrödinger, ReverseScreen3D Gao et al., 2013

NOT EXPERIMENTALLY VERIFIED

Saffron bioactive ingredients (picrocrocin) HSP 90-α RD&PS PharmMapper, idTarget Bhattacharjee et al., 2012

Danshensu GTPase Hras RD&PS PharmMapper, idTarget Chen and Ren, 2014

Tanshinone IIA RARα RD&PS PharmMapper, AutoDock Vina Chen, 2014

2-thiazolylimino-5-benzylidin-thiazolidin-4-one COX2, AChE, AR, THRα RD&PS PharmMapper, TarFisDock Iyer et al., 2015

Glycopentalone CDK-2, VEGFR-2 RD&PS AutoDock4.2, PharmMapper Gurung et al., 2016

PGS1, PLMF12, 67DiOHC8S3 GSTA11, PTPNT12,3, CBS3 RD&PS PharmMapper, DRAR-CPI Pereira et al., 2017

Oxindole pentacyclic alkaloids DHFR, MDM2 RD&SS TarFisDock, ReverseScreen3D Kozielewicz et al., 2014

Quercetin PARP1 RD&SS SHAFTS, idTarget Carvalho et al., 2017

Cardamom bioactive components (eucalyptol) CASP-3, PKA PS&SS PharmMapper, ReverseScreen3D Bhattacharjee and Chatterjee,

2013

Amai alkaloid and pyridine derivatives in maca AR’, CA2, ERα, MAPK14, etc. PS&SS Discovery Studio4.5 Yi et al., 2016

*Target prediction confirmed by the literature. Superscript values denotes that the protein targets in the second column correspond to the query molecules in the first column respectively.

disadvantages of these reverse screening tools and their in-
house databases. Some clear deficiencies are present in the
programs and in-house databases of current reverse screening
tools, making a comparison of the efficiency or the accuracy
of target prediction by these tools difficult. None of the online
services has a general interface module that can be used to upload
and recognize user databases. Because these tools cannot use
external databases, evaluating the methods or services based on
benchmark databases is infeasible. However, researchers may be
able to test the pros and cons of these tools in a way that does
not require a benchmark database: we may not need to know the
superiority of these tools over each other but may instead need to
learn their practical uses and application scopes so that they can
be better applied in real-life practice. This comparison requires
studies to select some benchmarking query compounds whose
known targets represent a large category and whose secondary
targets or non-targets have also been studied thoroughly. We can
use evaluation indexes such as the enrichment factor and receiver
operating characteristic (ROC) curve (Truchon and Bayly, 2007)
to assess the practical effects of reverse screening tools on the
prediction of targets within this large category for other small
molecules, thus achieving a horizontal comparison of existing
software and online services. This theory is not yet perfected,
and successful examples of this approach remain lacking, but
it may provide prospects for developing assessments of reverse
screening methods and tools.

Moreover, reverse screening servers also lack general-type
databases, and their in-house databases are not publicized. We
cannot learn the inclusion and exclusion criteria for building
these direct databases. Almost all direct databases are bound
to the corresponding software, and we are unable to conduct
potential data mining. The resources of different online services
are also undisclosed, and the services cannot refer to each other’s
databases. Hence, we encourage the developers of all software
and online services to disclose their own databases and their
construction processes to facilitate user comprehension and
utilization. Only in this way can these software databases be better
applied in practice, and this approach could also promote the
production of more excellent protein-annotated ligand or target
structure grid databases for reverse screening.

Previous Reviews and Prospective Studies
on Reverse Screening in Molecular Target
Prediction
To date, five reviews of reverse screening are available in the
literature, which we will discuss briefly below. Readers can also
peruse these reviews to deepen their understanding of molecule
target prediction algorithms. We will not address other reviews
that involve the use of experimental methods or a combination
of computational and experimental methods to predict molecular
targets (Schenone et al., 2013).
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FIGURE 5 | The number and trend of applications using the three reverse screening methods and representative software since the year 2000.

Three of the five reviews are similar to our work and provide
broad overviews of in silico target fishing. They describe the
principles, databases and software involved in computer-aided
small-molecule target prediction in terms of different aspects,
perspectives and levels (Rognan, 2010; Zheng et al., 2013; Cereto-
Massagué et al., 2015). Cereto-Massagué et al. (2015) categorize
the methods of target fishing into four classes according
to computational principles: molecular similarity methods,
protein structure-based methods, data mining/machine learning
methods, and methods based on the analysis of bioactivity
spectra. Our review covers the principles and applications of the
first two classes, molecular similarity and protein structure, but

does not address the latter two categories of machine learning
and bioactivity spectra. Therefore, readers can review the article
by Cereto-Massagué et al. carefully if they are interested in
the calculation methods used in those latter two categories.
Rognan et al. (Rognan, 2010) describe only protein structure-
based approaches and further classify them into protein-ligand
docking, structure-based pharmacophore searches, binding site
similarity measurements, and protein-ligand fingerprints. Based
on the principle of receptor structure-based screening, the
authors describe these four sub-methods in detail and discuss
their pros and cons for target fishing and ligand profiling.
That review features descriptions of protein pocket similarity
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FIGURE 6 | Twenty-eight representative compounds obtained by the clustering of 57 bioactive compounds for target prediction by different reverse screening

methods.
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matching and the molecular fingerprinting of protein-ligand
interaction information, which is worth reading and comparing
to our paper. In addition, Zheng et al. (2013) provide
a comprehensive overview of computer-aided drug design
methods, including conventional (forward) virtual screening and
reverse screening, in terms of five aspects: drug target prediction,
drug repositioning, protein-ligand interaction, virtual screening
and lead optimization, and ADME/T (absorption, distribution,
metabolism, excretion, and toxicity) property prediction. The
three reverse screening methods we reviewed are closely related
to drug target prediction, drug repositioning and protein-ligand
interaction. The above review can help readers systematically
study and understand the field of computer-aided virtual
screening in drug design.

The other two reviews address only reverse docking and
its applications. Specifically, Kharkar et al. (2014) give a
detailed description of reverse docking programs and their target
databases and further discuss the applications of reverse docking
in target identification and the prediction of target functions and
off-target effects. Lee et al. (2016) summarize target databases,
software programs and services and discuss the application of
reverse docking in small-molecule target recognition and drug
discovery. They also professionally discuss four issues related to
reverse docking that remain to be solved: the standardization
of database construction, the inclusion of receptor flexibility,
the time-consuming nature of flexible receptor docking, and the
inaccuracy of binding free energy calculations and ligand binding
pose prediction. Readers may refer to these two reviews for a
more comprehensive understanding of reverse docking methods.

CONCLUSION

In this review article, based on previous studies, we selected
the three most commonly used types of reverse screening
methods, i.e., methods based on shape similarity, pharmacophore
modeling and molecular docking, and provided a detailed and
comprehensive introduction, including a description of the
principles underlying eachmethod and a systematic classification
of software, online services, and databases. In addition, we

collected nearly all the articles related to the application of
computer-aided target reverse screening prediction published
since 2000 and analyzed the possible relationships or correlations
between compound structures and screening methods by using
cluster analysis. The purpose of this review is to help readers
quickly understand these three methods and the characteristics
of the software and online services based on these methods,
to familiarize readers with the status and applications of
the different levels of ligand and protein databases used in
reverse screening and to provide a better understanding of how
existing tools can be applied to molecule target prediction. We
strongly believe that more accurate predictions resulting from the
familiarity of users with the existing online services and databases
will increase the importance of reverse screening in drug
repositioning and future research on the pharmacodynamics and
pharmacological mechanisms of bioactive compounds.
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Phosphodiesterase 10 is a promising target for the treatment of a series of central

nervous system (CNS) diseases. Imbalance between oxidative stress and antioxidant

defense systems as a universal condition in neurodegenerative disorders is widely

studied as a potential therapy for CNS diseases, such as Alzheimer’s disease

(AD), Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS). To discover

multifunctional pharmaceuticals as a treatment for neurodegenerative diseases, a

series of quinazoline-based derivatives with PDE10 inhibitory activities and antioxidant

activities were designed and synthesized. Nine out of 13 designed compounds showed

good PDE10 inhibition at the concentration of 1.0µM. Among these compounds,

eight exhibited moderate to excellent antioxidant activity with ORAC (oxygen radical

absorbance capacity) value above 1.0. Molecular docking was performed for better

understanding of the binding patterns of these compounds with PDE10. Compound

11e, which showed remarkable inhibitory activity against PDE10 and antioxidant activity

may serve as a lead for the further modification.

Keywords: Phosphodiesterase-10A, papaverine, antioxidant activity, Alzheimer’s disease, molecular docking

INTRODUCTION

Phosphodiesterases (PDEs) are a super enzyme family in charge of hydrolyzing the intracellular
second messenger molecules 3′,5′-cyclic adenosine monophosphate (cAMP) and 3′,5′-cyclic
guanosine monophosphate (cGMP) by degrading their phosphodiester bonds (Liu et al., 2001;
Mehats et al., 2002; Castro et al., 2005; Bender and Beavo, 2006; Conti and Beavo, 2007; Houslay,
2010). As both cAMP and cGMP are involved in various extracellular signals and biological
processes, the inhibition of PDEs can improve abnormal physiological processes caused by
the low concentration of cAMP and/or cGMP by inhibiting their degradation (Lugnier, 2006;
Francis et al., 2011). Thus, PDEs have been considered as promising targets for various diseases.
Currently, up to 12 PDEs inhibitors have been approved, including PDE5 inhibitor sildenafil for
erectile dysfunction and pulmonary arterial hypertension, PDE4 inhibitor roflumilast for chronic
obstructive pulmonary disease (Sung et al., 2003; Christie, 2005). PDEs are classified into 11 distinct
families (PDE1-11) based on the amino acid sequences, substrate specificities, and pharmacological
properties (Bender and Beavo, 2006). The different expression of each subfamily on the organs and
tissues makes specific PDE inhibitors have different therapeutic effects.
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Phosphodiesterase 10 (PDE10) is a dual-specificity
superfamily responsible for hydrolyzing both cAMP
(Km = 0.05µM) and cGMP (Km = 3µM) (Soderling et al.,
1999), which is highly expressed in the brain and has been
considered as a potential target for the treatment of several
central nervous system (CNS) disorders such as Schizophrenia
and Huntington’s disease (Hebb et al., 2004). Recent work
has shown that blockade of PDE10A with selective inhibitors
increases striatal cGMP and phosphorylated cAMP-response
element binding protein (CREB), a downstreammarker of cAMP
production (Siuciak et al., 2006b). PDE10 inhibitors regulate
the levels of cAMP and cGMP and activate the downstream
dopaminergic pathways and glutamatergic pathways, which
may avoid side effects of extrapyramidal system (EPS) caused
by current anti-Schizophrenia drugs. In conditioned avoidance
responding (CAR), an animal model predictive of drug
antipsychotic activity, PDE10A inhibitors exhibited a dose-
dependent inhibition. (Jones et al., 2015; Suzuki et al., 2015).
Great efforts have been devoted in the development of PDE10
inhibitors in the last decade. Up to 7 candidates such as MP-10

and TAK-063 have entered the preclinical or clinical trials
(Kehler, 2013; Gentzel et al., 2015; Wilson et al., 2015). However,
there is still no PDE10 inhibitor approved on the market as a
drug.

Oxidative stress (OS) has been suggested as a possible
element in the pathogenesis of neurodegenerative disorders
(Ceballos et al., 1990; Islam, 2017). Researches showed
that neurodegenerative disorders are qualified by different
levels of oxidative stress biomarkers and antioxidant defense
biomarkers in the brain and peripheral tissues. Recently, some
pharmaceuticals on the market with anti-oxidant activities have
been demonstrated to decelerate neurodegenerative processes
and enhance comprehension ability of the Oxidative stress (OS)
characteristics in the pathobiology of these stubborn conditions
(Mecocci and Polidori, 2012; Danta and Piplani, 2014).
Moreover, experimental studies have proved the presence of
elevated levels of Oxidative stress (OS) biomarkers accompanied
with the impairments to antioxidant defenses in central and
peripheral tissues in pathological process of Parkinson’s disease
(PD), Alzheimer’s disease (AD), and amyotrophic lateral
sclerosis (ALS). Pharmaceuticals with antioxidant activity
enable biomarkers of the oxidant/antioxidant to rebalance
in animal models, thus are widely studied as possible anti-
neurodegenerative agents (Zhang et al., 2006; Niedzielska et al.,
2016). Vinpocetine, a moderate PDE1 inhibitor with antioxidant
activity, can significantly improve the learning and memory in
the streptozotocin infused AD rat models. Vinpocetine acts as a
neuroprotective agent, which is widely applied to the treatment
of CNS disorders with good antioxidant activity and the observed
cognitive effects and memory improvement of vinpocetine is
believed to be bound up with the antioxidant mechanism and
elevations of cGMP levels (Hindmarch et al., 1991; Bönöczk
et al., 2000). As noted above, PDE inhibitors with antioxidant
activities have potential possibility to apply in the treatment of
several CNS disorders.

Till now, compounds with both PDE10A inhibitory activities
and antioxidant activities have seldom been reported. Taking all

these into consideration, a strategy to design lead compounds
combining the pharmacophore of PDE10A inhibitors and
antioxidants seems to be attractive and challenging. In this
study, a series of compounds expected to exhibit both
PDE10A inhibition and antioxidant activity were designed
and synthesized based on the chemical structure of a natural
derivative papaverine. Five compounds showed moderate to
good PDE10A inhibitory activities. Compound 11e showed
good antioxidant activity as well as PDE10A inhibitory
activity.

MATERIALS AND METHODS

All starting materials and reagents were purchased from
commercial suppliers (Adamas, Energy, Bide, Sigma-Aldrich,
ShuYa, J&K, and Meryer) and used directly without further
purification. Chemical HG/T2354-92 silica gel (200–300 mesh,
Haiyang R©) was used for chromatography, and silica gel plates
with fluorescence F254 (0.25mm, Huanghai R©) were used for
thin-layer chromatography (TLC) analysis. Reactions requiring
anhydrous conditions were performed under argon or a
calcium chloride tube. 1H NMR and 13C NMR spectra were
recorded at room temperature on a Bruker AVANCE III
400 instrument with tetramethylsilane (TMS) as an internal
standard (Presentation 1). The following abbreviations are used:
s (singlet), d (doublet), t (triplet), m (multiplet), dd (doublet
of doublets), dt (doublet of triplets), td (triplet of doublets),
and br (broad signal). Coupling constants were reported in Hz.
Low- and high-resolution mass spectra (LRMS and HRMS) were
recorded on a MAT-95 spectrometer. The purity of compounds
was determined by reverse-phase high-performance liquid
chromatography (HPLC) analysis confirming to be over 95%.
HPLC instrument: SHIMADZU LC-20AT (column: Hypersil
BDS C18, 5.0µm, 4.6 × 150mm (Elite); Detector: SPD-20A
UV/VIS detector, UV detection at 254 nm; Elution, MeOH
in water (60–80%, v/v); T = 25◦C; and flow rate = 0.8–1.0
mL/min.

7-methoxy-4-oxo-3,4-dihydroquinazolin-6-
yl Acetate (4)
Pyridine (4mL) was added dropwise to the solution of 6-
hydroxy-7-methoxyquinazolin-4(3H)-one 3 (1.92 g, 10.0mmol)
in acetic anhydrate (20mL). The reaction mixture was heated at
100◦C for 2 h and then cooled to room temperature. After the
mixture was poured into ice water, a white solid was precipitated.
The precipitate was collected, washed with water and dried to
give the compound 4 (2.32 g, 99%) as a white solid. 1HNMR (400
MHz, DMSO – d6) δ 8.09 (s, 1H), 7.76 (s, 1H), 7.28 (s, 1H), 3.92
(s, 3H), 2.30 (s, 3H).

4-chloro-7-methoxyquinazolin-6-
yl acetate (5)
To a solution of 4 (2.34 g, 10.0mmol) in SOCl2 (20mL) was
added DMF (0.1mL) dropwise. The mixture was stirred at
80◦C for 2.5 h and then concentrated under vacuum, providing
compound 5 (2.22 g, 88%) which could be used in the next step
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without further purification. 1H NMR (400 MHz, DMSO – d6) δ

9.02 (s, 1H), 8.02 (s, 1H), 7.65 (s, 1H), 4.03 (s, 4H), 2.36 (s, 3H).

7-methoxy-4-morpholinoquinazolin-6-ol (7)
A solution of compound 5 (2.52 g, 10.0mmol) and morpholine
(1.04 g, 12.0mmol) in DMF (20mL) was stirred at 80◦C for
6 h. The mixture was then poured into the ice water and a
white solid was precipitated, which was collected and washed
with ice water to afford compound 6. The compound 6 was
dissolved in methanol (20mL). Ammonia (2.5mL) was added to
the mixture and the mixture was then stirred under reflux for 2 h.
The solvents were evaporated under vacuum. The crude product
was recrystallized using methanol to afford compound 7 (1.87 g,
72%). 1H NMR (400 MHz, DMSO – d6) δ 8.52 (s, 1H), 7.24 (s,
1H), 7.21 (s, 1H), 3.93 (s, 3H), 3.83 – 3.75 (m, 4H), 3.54 – 3.47
(m, 4H).

4-(6-(2-(1H-indol-3-yl)ethoxy)-7-
methoxyquinazolin-4-yl) morpholine (8a)
To a solution of compound 7 (522mg, 2.0mmol) in DMF
(20mL) was added 3-(2-bromoethyl)-1H-indole (538mg,
2.4mmol) and potassium carbonate (690mg, 5.0mmol). The
reaction mixture was refluxed for 3 h. After cooling to room
temperature, adding water to quench the mixture, and then
the residue was diluted with CH2Cl2 (30mL) and washed
with saturated aqueous sodium bicarbonate and water. The
organic layer was dried over anhydrous sodium sulfate, and
purified by silica gel column chromatography (petroleum
ether/EtOAc, 3:1–1:1) to afford the title compound as a yellow
solid. Purity: 97%; yield: 20%; 1H NMR (400 MHz, CDCl3)
δ 8.67 (s, 1H), 8.29 (s, 1H), 7.69 (d, J = 7.8Hz, 1H), 7.38 (d,
J = 8.0Hz, 1H), 7.22 (t, J = 7.5Hz, 1H), 7.17 (s, 1H), 7.15
(t, J = 7.4Hz, 1H), 7.08 (s, 1H), 4.37 (t, J = 7.0Hz, 2H),
4.02 (s, 3H), 3.82 (s, 4H), 3.60 (s, 4H), 3.39 (t, J = 7.0Hz,
2H); 13C NMR (101 MHz, CDCl3) δ 163.76, 155.11, 152.96,
149.17, 148.04, 136.26, 127.46, 122.49, 122.22, 119.51, 118.76,
111.85, 111.42, 111.28, 107.65, 104.44, 69.48, 66.63 × 2, 56.19,
50.21×2, 25.19; LRMS (ESI) m/z [M+H]+ 405.2; HRMS
(ESI) m/z calcd C23H24N4O3 [M+H]+ 405.1927, found
405.1922.

General Procedure for Synthesis of
Compounds 8b-8c
To a solution of compound 7 (522mg, 2.0mmol) in DMF
(20mL) was added the EDCI (575mg, 3.0mmol) and DMAP
(12mg, 0.1mmol). The reaction mixture was stirred at room
temperature for 0.5 h, and then the corresponding acid
(2.4mmol) was added, the reaction mixture was refluxed
overnight. After cooling to room temperature, adding water
to quench the mixture, and then the residue was diluted with
CH2Cl2 (30mL) and washed with saturated aqueous sodium
bicarbonate and water. The organic layer was dried over
anhydrous sodium sulfate, and purified by silica gel column
chromatography (petroleum ether/EtOAc, 3:1 to 1:1) to afford
the title compound as a white solid.

7-methoxy-4-morpholinoquinazolin-6-yl
3-(4-hydroxyphenyl)Acrylate (8b)
White solid; purity: 97%; yield: 10%; 1HNMR (400MHz, CDCl3)
δ 8.70 (s,1H), 7.86 (d, J = 16.0Hz, 1H), 7.61 (s, 1H), 7.52 (d,
J = 7.5Hz, 2H), 7.35 (s, 1H), 6.90 (d, J = 7.5Hz, 2H), 6.54 (d,
J = 15.7Hz, 1H), 5.35 (br, 1H), 3.96 (s, 3H), 3.91–3.85 (m, 4H),
3.78–3.73 (m, 4H); 13CNMR (101MHz, CDCl3) δ 177.80, 164.07,
155.98, 154.20, 151.68, 147.48, 139.24, 138.32, 130.45× 2, 117.87,
116.23 × 2, 113.08, 110.55, 108.16, 94.86, 66.76 × 2, 56.28, 50.18
× 2; HRMS (ESI) m/z calcd C22H21N3O5 [M+H]+ 408.1559,
found 408.1554.

7-methoxy-4-morpholinoquinazolin-6-yl
5-(1,2-dithiolan-3-yl)pentanoate (8c)
White solid; purity: 97%; yield: 16%; 1HNMR (400MHz, CDCl3)
δ 8.66 (s, 1H), 7.48 (s, 1H), 7.31 (s, 1H), 3.93 (s, 3H), 3.90–3.78
(m, 4H), 3.75–3.64 (m, 4H), 3.59 (dt, J = 12.9, 6.4Hz, 1H), 3.14
(dtd, J = 17.9, 11.4, 6.8Hz, 2H), 2.63 (t, J = 7.3Hz, 2H), 2.46 (td,
J = 12.4, 6.4Hz, 1H), 1.91 (td, J = 13.7, 7.0Hz, 1H), 1.76 (ddd,
J = 29.4, 14.5, 8.2Hz, 4H), 1.58 (ddd, J = 22.9, 14.4, 8.1Hz, 2H);
13C NMR (101 MHz, CDCl3) δ 177.02, 155.73, 153.99, 151.77,
145.91, 139.05, 117.65, 111.54, 106.70, 66.68 × 2, 56.36, 50.08 ×

2, 40.19, 38.45, 34.62, 34.29, 33.71, 28.81, 24.78; HRMS (ESI) m/z
calcd C21H27N3O4S2 [M+H]+ 450.1521, found 450.1534.

4-chloro-6,7-dimethoxyquinazoline (10)
To a solution of 9 (10.0mmol) in SOCl2 (20mL) was added DMF
(0.1mL) dropwise. The mixture was stirred at 80◦C for 2.5 h
and then concentrated under vacuum, providing compound 10

(2.22 g, 90%) which could be used in the next step without further
purification. 1HNMR (400MHz, DMSO – d6) δ 8.88 (s, 1H), 7.46
(s, 1H), 7.40 (s, 1H), 4.01 (d, J = 6.0Hz, 6H).

General Procedure for Synthesis of
Compounds 11a-11h, 12 and 13
To a solution of 10 (2.0mmol), the corresponding amine
(3.0mmol) in isopropanol (20mL) was added triethylamine
(6.0mmol) dropwise. The reaction mixture was refluxed for
4 h and then concentrated under vacuum, providing crude
product. The crude product was purified by silica gel column
chromatography (CH2Cl2/MeOH, 100:1–40:1) to afford the title
compound as a white solid.

N-(2-(1H-indol-3-yl)ethyl)-6,7-
dimethoxyquinazolin-4-amine (11a)
White solid; purity: 97%; yield: 60%; 1H NMR (400 MHz,
DMSO–d6) δ 10.92 (s, 1H), 10.27 (br, 1H), 8.80 (s, 1H), 8.06 (s,
1H), 7.63 (d, J = 7.8Hz, 1H), 7.35 (d, J = 8.1Hz, 1H), 7.26 (d,
J = 11.6Hz, 2H), 7.07 (t, J = 7.5Hz, 1H), 6.98 (t, J = 7.4Hz, 1H),
3.97 (s, 1H), 3.95 (s, 7H), 3.93–3.91 (m, 1H), 3.13 (t, J = 7.4Hz,
2H); 13C NMR (101 MHz, DMSO–d6) δ 159.44, 156.13, 150.20,
149.28, 136.72, 134.53, 127.62, 123.40, 121.49, 118.80, 114.08,
111.92, 111.57, 107.09, 104.42, 99.94, 57.29, 56.77, 42.80, 24.94;
HRMS (ESI) m/z calcd C20H20N4O2 [M+H]+ 349.1665, found
349.1670.
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N-(1-(1H-indol-3-yl)propan-2-yl)-6,7-
dimethoxyquinazolin-4-amine (11b)
White solid; purity: 96%; yield: 55%; 1HNMR (400MHz, CDCl3)
δ 8.59 (s, 1H), 8.37 (br, 1H), 7.70 (d, J = 7.8Hz, 1H), 7.41
(d, J = 8.1Hz, 1H), 7.28 (s, 1H), 7.21 (t, J = 7.5Hz, 1H),
7.12 (t, J = 7.2Hz, 2H), 6.56 (s, 1H), 5.74 (br, 1H), 4.96–4.85
(m, 1H), 3.97 (s, 3H), 3.75 (s, 3H), 3.24 (dd, J = 14.5, 5.9Hz,
1H), 3.13 (dd, J = 14.4, 4.6Hz, 1H), 1.40 (d, J = 6.4Hz, 3H);
13C NMR (101 MHz, CDCl3) δ 157.73, 154.22, 154.00, 148.80,
146.09, 136.30, 128.25, 123.26, 122.12, 119.79, 118.90, 111.41,
111.28, 108.60, 107.39, 99.58, 56.13, 56.08, 46.72, 31.11, 20.06;
HRMS (ESI) m/z calcd C21H22N4O2 [M+H]+ 363.1821, found
363.1806.

6,7-dimethoxy-N-(2-(5-methoxy-1H-indol-
3-yl)ethyl)quinazolin-4-amine (11c)
White solid; purity: 97%; yield: 62%; 1H NMR (400 MHz,
DMSO–d6) δ 10.67 (br, 1H), 8.41 (s, 1H), 8.10 (t, J = 5.5Hz, 1H),
7.59 (s, 1H), 7.24 (d, J = 8.7Hz, 1H), 7.17 (d, J = 2.3Hz, 1H),
7.13 (d, J = 2.4Hz, 1H), 7.11 (s, 1H), 6.72 (dd, J = 8.7, 2.4Hz,
1H), 3.89 (d, J = 9.2Hz, 6H), 3.88 (s, 3H), 3.81 (dd, J = 14.3,
6.3Hz, 2H), 3.71 (s, 3H), 3.10–3.00 (m, 2H); 13C NMR (101
MHz, DMSO–d6) δ 158.27, 153.68, 153.60, 152.96, 148.25, 145.80,
131.37, 127.70, 123.27, 112.00, 111.86, 111.10, 108.56, 106.91,
101.99, 100.20, 55.97, 55.62, 55.17, 41.43, 24.85; HRMS (ESI) m/z
calcd C21H22N4O3 [M+H]+ 379.1770, found 379.1766.

6,7-dimethoxy-N-(1-(5-methoxy-1H-indol-
3-yl)propan-2-yl)quinazolin-4-amine (11d)
White solid; purity: 98%; yield: 51%; 1HNMR (400MHz, CDCl3)
δ 8.61 (s, 1H), 8.23 (br, 1H), 7.31 (d, J = 8.8Hz, 1H), 7.20 (s,
1H), 7.14 (d, J = 1.9Hz, 1H), 7.10 (s, 1H), 6.87 (dd, J = 8.8,
2.1Hz, 1H), 6.47 (s, 1H), 5.41 (br, 1H), 4.91 (dt, J = 12.5, 6.4Hz,
1H), 3.99 (s, 3H), 3.73 (s, 3H), 3.70 (s, 3H), 3.69–3.64 (m, 1H),
3.22 (dd, J = 14.5, 6.0Hz, 1H), 3.08 (dd, J = 14.4, 4.1Hz,
1H), 1.38 (d, J = 6.5Hz, 3H); 13C NMR (101 MHz, CDCl3)
δ 157.73, 154.25, 154.02, 148.91, 146.18, 131.36, 128.62, 124.05,
112.49, 112.18, 110.96, 108.61, 107.43, 100.45, 99.50, 56.14, 55.92,
55.52, 46.61, 31.10, 19.92; HRMS (ESI) m/z calcd C22H24N4O3

[M+H]+ 393.1927, found 393.1916.

3-(2-((6,7-dimethoxyquinazolin-4-
yl)amino)ethyl)-1H-indol-5-ol (11e)
White solid; purity: 97%; yield: 62%; 1H NMR (400 MHz,
DMSO–d6) δ 10.58 (s, 1H), 10.23 (t, J = 5.0Hz, 1H), 8.79 (s, 1H),
8.71 (s, 1H), 8.09 (s, 1H), 7.30 (s, 1H), 7.14 (d, J = 8.5Hz, 2H),
6.98 (d, J = 2.0Hz, 1H), 6.62 (dd, J = 8.6, 2.2Hz, 1H), 3.95 (d,
J = 4.5Hz, 6H), 3.90 (dd, J = 14.5, 6.7Hz, 2H), 3.06–3.02 (m,
2H); 13C NMR (101 MHz, DMSO–d6) δ 159.03, 154.98, 152.15,
151.72, 150.69, 149.35, 131.28, 128.41, 123.65, 112.17, 111.80,
111.13, 108.23, 104.32, 103.27, 102.82, 56.79, 56.41, 42.20, 25.32;
HRMS (ESI) m/z calcd C20H20N4O3 [M+H]+ 365.1614, found
365.1611.

N-(2-(6-fluoro-1H-indol-3-Yl)ethyl)-6,7-
dimethoxyquinazolin-4-amine (11f)
White solid; purity: 97%; yield: 44%; 1H NMR (400 MHz,
DMSO–d6) δ 10.90 (br, 1H), 8.39 (s, 1H), 8.09 (t, J = 5.5Hz,
1H), 7.62 (dd, J = 8.6, 5.5Hz, 1H), 7.59 (s, 1H), 7.21
(d, J = 2.1Hz, 1H), 7.12 (dd, J = 11.1, 3.2Hz, 2H), 6.85
(ddd, J = 9.8, 8.8, 2.3Hz, 1H), 3.90 (s, 3H), 3.88 (s,
3H), 3.79 (dd, J = 14.3, 6.3Hz, 2H), 3.08–3.02 (m, 2H);
13C NMR (101 MHz, DMSO–d6) δ 158.75, 154.27, 153.81,
148.81, 145.57, 136.57, 124.68, 123.73, 119.88, 112.71, 108.88,
107.32, 107.08, 102.48, 97.92, 97.67, 56.50, 56.17, 41.87, 25.22;
HRMS (ESI) m/z calcd C20H19FN4O2 [M+H]+ 367.1570, found
367.1766.

6,7-dimethoxy-N-(2-(5-methyl-1H-indol-3-
Yl)ethyl)quinazolin-4-amine (11g)
White solid; purity: 97%; yield: 68%; 1H NMR (400 MHz,
DMSO–d6) δ 10.67 (br, 1H), 8.39 (s, 1H), 8.05 (t, J = 5.4Hz,
1H), 7.58 (s, 1H), 7.38 (s, 1H), 7.23 (d, J = 8.2Hz,
1H), 7.15 (s, 1H), 7.10 (s, 1H), 6.90 (d, J = 8.2Hz, 1H),
3.90 (s, 3H), 3.88 (s, 3H), 3.79 (dd, J = 13.5, 6.7Hz,
2H), 3.04 (t, J = 7.5Hz, 2H), 2.35 (s, 3H); 13C NMR
(101 MHz, DMSO–d6) δ 158.70, 154.14, 148.70, 146.49,
135.13, 128.07, 127.01, 123.19, 122.95, 118.54, 112.04, 111.54,
109.07, 107.54, 102.47, 99.99, 56.47, 56.12, 42.00, 25.38, 21.74;
HRMS (ESI) m/z calcd C21H22N4O2 [M+H]+ 363.1821, found
363.1816.

N-(2-(5-bromo-1H-indol-3-yl)ethyl)-6,7-
dimethoxyquinazolin-4-amine (11h)
White solid; purity: 97%; yield: 72%; 1H NMR (400 MHz,
DMSO–d6) δ 11.04 (br, 1H), 8.40 (s, 1H), 8.13 (t, J = 5.6Hz,
1H), 7.82 (d, J = 1.7Hz, 1H), 7.57 (s, 1H), 7.32 (d, J = 8.6Hz,
1H), 7.27 (d, J = 2.1Hz, 1H), 7.18 (dd, J = 8.6, 1.9Hz,
1H), 7.10 (s, 1H), 3.90 (d, J = 6.6Hz, 6H), 3.78 (dd,
J = 13.5, 6.8Hz, 2H), 3.05 (t, J = 7.3Hz, 2H); 13C NMR
(101 MHz, DMSO – d6) δ 158.85, 154.49, 153.24, 149.00,
144.50, 135.41, 129.75, 125.00, 123.79, 121.34, 113.87, 112.42,
111.43, 108.78, 106.27, 102.90, 56.67, 56.23, 42.06, 25.07; HRMS
(ESI) m/z calcd C20H20BrN4O2 [M+H]+ 427.0770, found
427.0759.

N-(4-(1H-indol-2-yl)butan-2-yl)-6,7-
dimethoxyquinazolin-4-amine (12)
White solid; purity: 97%; yield: 60%; 1HNMR (400 MHz, DMSO
– d6) δ 10.71 (s, 1H), 8.32 (s, 1H), 7.67 (s, 1H), 7.58 (d, J = 7.6Hz,
1H), 7.49 (d, J = 7.6Hz, 1H), 7.32 (d, J = 8.0Hz, 1H), 7.09 (t,
J = 7.1Hz, 2H), 7.04 (d, J = 7.7Hz, 1H), 6.94 (t, J = 7.2Hz,
1H), 4.58 – 4.48 (m, 1H), 3.90 (dd, J = 9.9, 4.6Hz, 6H), 2.77 (t,
J = 6.6Hz, 2H), 2.02 – 1.88 (m, 2H), 1.31 (d, J = 6.3Hz, 3H); 13C
NMR (101 MHz, CDCl3) δ 157.79, 154.22, 154.19, 148.79, 146.52
136.45, 127.22, 122.06, 121.39, 119.24, 118.75, 115.83, 111.19,
108.52, 107.79, 99.31, 56.22, 56.15, 47.07, 36.86, 22.15, 21.13;
HRMS (ESI) m/z calcd C22H24N4O2 [M+H]+ 377.1978, found
377.1972.
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N-(2-(1H-benzo[d]imidazol-2-yl)ethyl)-6,7-
dimethoxyquinazolin-4-amine (13)
White solid; purity: 98%; yield: 68%; 1HNMR (400 MHz, DMSO
– d6) δ 9.31(br, 1H), 8.56 (s, 1H), 7.84 (s, 1H), 7.52 (dd, J = 5.9,
3.2Hz, 2H), 7.19 (s, 2H), 7.18 (d, J = 3.2Hz, 1H), 4.17–4.01 (m,
2H), 3.92 (s, 3H), 3.89 (s, 3H), 3.34–3.26 (m, 2H); 13C NMR (101
MHz, DMSO–d6) δ 159.33, 155.46, 152.92, 150.99, 150.93, 149.68,
149.66, 137.57, 137.46, 122.67×2, 114.82, 107.93, 103.66, 102.90,
56.97, 56.55, 31.18, 28.19; HRMS (ESI) m/z calcd C19H19N5O2

[M+H]+ 350.1617, found 350.1616.

Protein Expression and Purification
The recombinant pET15b-PDE10A plasmid coding the catalytic
domain (residues 446-789) was subcloned and purified according
to the following protocols previously reported (Li et al., 2015).
Then it was transferred into E. coli strain BL21 (Codonplus,
Stratagene). The E. coli cells carrying the recombinant
plasmid were cultured in an 2XYT medium (containing
100µg/mL ampicillin and 30µg/mL chloramphenicol) at
37◦C until OD600 = 0.6-0.8. And then, 1mM isopropyl-β-D-
thiogalactopyranoside was added in to induce the PDE10A
protein expression at 20◦C for 24 h. The nickel nitriloacetic acid
(Ni-NTA) column (Qiagen) was used for purifying PDE10A
proteins. The concentration of the PDE10 fractions was
estimated based on the absorbance at 280 nm (calculated by
the ProtParam software). A typical batch of purification yielded
100-200mg PDE10A protein from a 1.0 L cell culture.

PDE10A Enzymatic Assays
The enzymatic activities of the catalytic domains of PDE10Awere
performed using 3H-cGMP solution in the assay buffer of 50mM
Tris pH = 7.5, 4mM MgCl2, 1mM DTT, and 3H-cGMP giving
20,000–30,000 cpm after the reaction terminated per assay. To a
solution (DMSO) of test compounds in different concentration,
the PDE10A enzyme in the assay buffer was added to perform
the enzymatic reaction and then incubated at room temperature
for 15min. The assay was then terminated by addition of 0.2M
ZnSO4, Subsequently, 0.2N Ba(OH)2 was added to precipitate
the reaction product 3H-GMP, whereas unreacted 3H-cGMP
remained in the supernatant. The radioactivity in the supernatant
was measured in 2.5mLUltima Gold liquid scintillation cocktails
(PerkinElmer) by a liquid scintillation counter (PerkinElmer
2910). The IC50 values of test compounds at PDE10A enzymes
were measured by repeating of three independent experiments
using the nonlinear regression method. Papaverine with an IC50

of 0.1µM was used as the reference compound for enzymatic
assay.

Antioxidant Assay
The modified oxygen radical absorbance capacity fluorescein
(ORAC-FL) method was performed to determine the antioxidant
activity (Ou et al., 2001; Dávalos et al., 2004). The reaction was
diluted with 75mM phosphate buffer (pH= 7.4), and the volume
of the final reaction mixture was 200 µL in well. Test compound
(20 µL) and fluorescein (120 µL, 150 nM final concentration)
were placed in the well of a black 96 well optical bottom plates.
After the mixture was incubated at 37◦C for 15min, AAPH

solution (60 µL, 12mM final concentration) was added rapidly.
The plate was placed in a Spectrafluor Plus plate reader (Tecan,
Crailsheim, Germany) and the fluorescence was recorded every
minute for 4 h with an excitation wavelength at 485 nm and
emission wavelength at 535 nM. Trolox was used as standard
(1–8µM, final concentration). A blank (fluorescein + AAPH)
with phosphate buffer instead of test compounds and trolox
calibration were performed for the assays of antioxidants. The
samples were measured at different concentration (1–10µM).
All the reaction mixtures were prepared fourfold, and at least
three independent assays were performed for each sample.
Fluorescence in time course was normalized on basis of the blank
(without antioxidants). The ORAC-FL values were calculated as
the reported method. Final ORAC-FL values were expressed in
µM of trolox equivalents. Ferulic acid was used as the positive
reference compound, showing an ORAC-FL value of 1.6 trolox
equivalents.

Molecular Docking Studies
The starting conformation of synthesized compounds was
generated using Accelrys Discovery Studio 2.5.5. The crystal
structure of PDE10A protein with a bound inhibitor possessing
the same quinazoline core (PDB code: 3QPN) was used as the
reference (Helal et al., 2011). The binding site was defined by
the co-crystallized PDE10A inhibitor in PDB entry 3QPN. The
Surflex-dock in the software Tripos Sybyl 1.2 (Jain, 2003) was
used to obtain the dominant docking conformations in this
study.

RESULTS AND DISCUSSION

Rational Design of PDE10 Inhibitors
Papaverine, a natural drug used for the prevention of vasospasm
in the clinic, has been proved to have good inhibitory activity
toward PDE10A (IC50 = 10–300 nM) (Siuciak et al., 2006a).
Based on the structure of papaverine, several quinazoline
compounds have been developed as PDE10A inhibitors such
as compound 1 and compound 2 (Figure 1; Chappie et al.,
2007; Helal et al., 2011). Observed from the crystal structure
of 1 and PDE10A complex, following information for further
structural modification were obtained. Firstly, the quinazoline
ring located in a hydrophobic clamp comprised of Phe719 and
Phe686 in the PDE10A protein, forming π-π interaction with
Phe719. Secondly, the 6,7-dimethoxy group in the quinazoline
ring formed a bidentate interaction with Gln716 in the pocket.
As Gln716 has been regarded as a conserved amino acid residue
in PDE10A, the interaction with Gln716 is the main reason
for the high affinity of compounds with PDE10A protein.
Thus, in our designed compounds, the quinazoline ring was
kept as core. Last but not least, the piperazine ring of 1

located outside of the catalytic site in PDE10 protein, providing
room for introducing a fragment with antioxidant activity.
Furthermore, compound 2, a PDE10 inhibitor developed from
1, had a quinoline ring attached on the quinazoline core in
order to completely fill the selectivity pocket mainly composed of
Tyr683, Met703 and Gly715 in the PDE10A protein. Occupying
this unique pocket in PDE10A may significantly enhance the
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selectivity of the inhibitors over other PDEs. In addition,
6-position at the quinazoline core also provides space and
synthetic possibilities for conveniently introducing a fragment.
Based on these evidences, the strategy combining PDE10A
inhibitory activity and antioxidant activity might improve the
druggability of hits. Different fragment from antioxidants (such
as melatonin, ferulic acid and lipolic acid) were attached on
the 6-position or 4-position of quinazoline ring to form the
designed compounds and went into the following synthetic
work.

Chemistry
The synthetic route of compounds 8a-8c is outlined in
the Scheme 1 (Chandregowda et al., 2009). 6-hydroxy-7-
methoxyquinazolin-4(3H)-one was reacted with acetic anhydride
in pyridine to protect the phenolic hydroxyl group, providing

the intermediated 4. Chlorination of 4 was accomplished with
SOCl2 to give 4-chloro-7-methoxyquinazolin-6-yl acetate 5,
which could be used in the reaction with the morpholine
directly without further purification, providing 7-methoxy-4-
morpholinoquinazolin-6-yl acetate 6. Hydrolysis of the acetyl
group of 6 was performed with concentrated ammonia in
MeOH to give 7. The final products 8a-8c were obtained
by the SN2 displacement with corresponding bromides or
condensation reaction with corresponding acids in moderate
yields.

The series of compound 11a-11h, 12, and 13were synthesized
in three steps (Scheme 2). With 6, 7-dimethoxyquinazolinone as
the starting material, a following chlorination led to intermediate
10, which reacted with different melatonin derivatives to acquire
compounds 11a-11h, 12, and 13 in high yields (Garofalo et al.,
2012; Min et al., 2016).

FIGURE 1 | Rational design of novel PDE10 inhibitors with antioxidant activity.

SCHEME 1 | The synthesis route of compounds 8a−8c. Reagents and conditions: (a) Aceticanhydride, pyridine, 100◦C, 2 h; (b)SOCl2, DMF, 80◦C, 2.5 h; (c)

Morpholine, DMF, 80◦C, 6 h; (d) Ammonia, methanol, reflux, 2 h; (e) The corresponding bromide, K2CO3, DMF, reflux for 3 h; or the corresponding acid, EDCI, DMAP,

DMF, reflux overnight.
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SCHEME 2 | The synthesis route of compounds 11a−11h, 12, and 13. Reagents and conditions: (a) SOCl2, DMF, 80◦C, 2.5 h; (b) the corresponding amine,

isopropanol, triethylamine, reflux.

Structure-Activity Relationships
Two series of compounds with antioxidant fragments on
4- or 6-position at the quinazoline core were synthesized.
The inhibitory activities of these compounds toward PDE10A
were evaluated with papaverine as the positive control. LogP
(Octanol-Water Partition Coefficient) were calculated as the
measure of lipophilicity, mostly drug candidates have LogP
value below 5 based on Lipinski’s Rule of Five. For our
study, all synthetic and designed compounds have good LogP
value. TPSA (Topological Polar Surface Area) provided a good
estimate of proportion of compounds passed through BBB
(blood-brain barrier), high penetration is necessary for drug
candidates that targeted central nervous system (CNS) diseases.
We were pleased to find that compound 8a, with a fragment
“2-(1H-indol-3-yl)ethyl” substituted on the 6-position, showed
good inhibitory activity in the series of compounds 8a-8c,
although not as good as the papaverine and 1, which also
gave ORAC value of 1.0. Compound 8b and 8c only showed
26 and 24% inhibition on PDE10A at the concentration of
1µM, respectively, despite that 8b showed good TPSA value
and antioxidant activity with ORAC value of 3.3 (Table 1).
We concluded that the ester group in the linker caused steric

hindrance in PDE10A pocket, resulting the low inhibitory
activities.

According to the structures of reported PDE10/inhibitor
complexes, Gln716 and Tyr683 in the PDE10 catalytic domain
are two key amino residues for the interaction between inhibitors
and PDE10 protein. From this point, we hypothesized that
introducing a long chain at the 6-position of our hit compounds
to form an interaction with the residue Tyr683 may be useful
for the improvement of inhibitory activity toward PDE10. In
the other series of compounds 11a-11h, 12 and 13, different
groups were placed on the 4-position of the quinazoline core
and the methoxy group on the 6-position remain unchanged.
The results were encouraging. Compound 11a, 11e, 11f, 12,
and 13 showed good PDE10A inhibitory activities with IC50

below 1µM. As depicted in Figure 2, compound 11f and
12 exhibited the best PDE10A inhibitory activities with the
IC50 of 0.33 and 0.24µM. However, they showed moderate
antioxidant activities with ORAC (oxygen radical absorbance
capacity) 1.0 and 1.3. Compound 11e, giving the third best
IC50 of 0.64µM on PDE10A and good ORAC (oxygen radical
absorbance capacity) value of 2.3, reached a compromise between
the PDE10A inhibitory activity and antioxidant activity. From
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TABLE 1 | The Inhibitory activities against PDE10A, TPSA, LogP, and oxygen radical absorbance capacity of compounds 8a-8c, 11a-11h, 12, and 13.

Compound R PDE10 inhibitory assay TPSAb LogPb ORACc

Inhibition ratio (1µM) (%) IC50 (µM)a

8a 57 – 67.719 3.942 1.0 ± 0.1

8b 26 – 90.781 3.418 3.3 ± 0.1

8c 24 – 69.965 3.991 0.3 ± 0.01

11a 72 0.76 ± 0.09 68.247 3.901 1.3 ± 0.1

11b 66 – 68.247 4.278 1.5 ± 0.1

11c 49 – 77.177 3.885 2.2 ± 0.03

11d 56 – 77.177 4.262 1.3 ± 0.1

11e 76 0.64 ± 0.05 89.063 3.659 2.3 ± 0.2

11f 78 0.33 ± 0.04 68.247 4.106 1.0 ± 0.1

11g 64 – 68.247 4.387 1.0 ± 0.2

11h 66 – 68.247 4.649 1.9 ± 0.1

(Continued)
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TABLE 1 | Continued

Compound R PDE10 inhibitory assay TPSAb LogPb ORACc

Inhibition ratio (1µM) (%) IC50 (µM)a

12 84 0.24 ± 0.02 68.247 4.735 1.3 ± 0.2

13 80 0.68 ± 0.09 79.5 3.243 0.15 ±

0.02

Papaverine – – 0.1 – – –

Ferulic acid – – – – – 1.6 ± 0.1

a IC50 values are given as the mean of three independent determinations.
bPSA and LogP values are calculated by Accelrys Discovery Studio 2.5.5.
cORAC results are expressed as trolox equivalents.

FIGURE 2 | Inhibitory curves of four of the most potent compounds toward PDE10A.

11a to 11b and 12, it can be observed that the inhibition on
PDE10was affected by introducing extra carbon atom andmethyl
group in the linker, while the antioxidant activity was not much
affected. In contrast, the antioxidant activities were weakened
from 11c to 11d, with the ORAC (oxygen radical absorbance
capacity) of 2.2–1.3, we concluded that the slight change of
introducing a methyl group may cause the steric hindrance (11b,

11d and 12 compared to 11a, 11c and 11d) and leading to
impropriate occupation in PDE10 protein, thus responsible for
the decreased inhibition on PDE10A. The predict TPSA value
of 8b and 11e seems good for the BBB penetration. Taking all
into consideration, compound 11e, which showed good PDE10
inhibitory activity and antioxidant activity was good lead for the
further modification.
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FIGURE 3 | Docked conformation of (a) compound 8a, (b) compound 11e, (c) compound 11a in complex with PDE10A and crystal structure of (d) papaverine in

complex with PDE10A.

Molecular Docking
The molecular docking was performed to better understand
the binding modes between the inhibitors and the PDE10
protein. The structure of PDE10 complex with papaverine has
been reported in 2009 (PDB code: 2WEY), which clarified the
interaction between papaverine and PDE10 (Andersen et al.,
2009). All compounds of 8a-8c, 11a-11h, 12, and 13 were
docked into the PDE10 catalytic domain by the Surflex-dock in
the software Tripos Sybyl 1.2 (Jain, 2003). From the docking
results (Figure 3), we found that the quinazoline core of this
series compounds occupied the same position as papaverine,
and the oxygen of the quinazoline core formed a hydrogen
bond interaction with the residue of Gln716. Besides, the
quinazoline ring has the hydrophobic interactions with the
residues of Phe719 and Phe686. These interactions have been
reported to be the critical forces to determine the binding
capacity of PDE10 inhibitors. In the series of compounds 8a-
8c, introducing groups at the 6-position of the quinazoline
core could fill in the selective pocket of PDE10. However, no
hydrogen bond was observed between compounds and Tyr683.
The substituted groups of 8b and 8c might be too large in
terms of volume size for the PDE10 selective pocket. Thus, the
PDE10 inhibitory activities of them were weaker than that of
8a. Compounds 11a-11h had similar docking patterns since they
structurally resemble each other. Besides, compound 8a and
11a have the same 2-(1H-indol-3-yl)ethyl group. By observing
the docked conformations of 8a and 11a in complex with
PDE10A, we found that the side chains stretch in different
directions, respectively. The side chain of 8a resides in the
selective pocket of PDE10A, however, no hydrogen bond is

formed with Tyr683. On the contrary, the side chain of 11a

stretches out of the catalytic site, possessing the same pattern as
papaverine (Figure 3d).

CONCLUSION

In summary, a series of novel PDE10A inhibitors with
antioxidant activities were successfully designed and synthesized
using a structure-based discovery strategy, which are potential
pharmaceuticals as anti-neurodegenerative PD, AD, or ALS
therapies. On the basis of the lead compound papaverine,
13 new quinazoline-based derivatives have been synthesized
and evaluated by the inhibitory assays. Nine out of 13
compounds showed good PDE10A inhibitory activities at
the concentration of 1µM. Among these compounds, eight
exhibited moderate to good antioxidant activity with the
ORAC above 1.0. Especially worthy to mention is that
compound 11e, gave an IC50 value of 0.64µM on PDE10A
and good ORAC value of 2.3. In conclusion, this work
has described a structure-based discovery strategy and the
synthesized quinazoline-based derivatives with both PDE10A
inhibitory activity and antioxidant activity, and might provide
a new perspective for the development of novel PDE10A
inhibitors.
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Today computational chemistry is a consolidated tool in drug lead discovery endeavors.

Due to methodological developments and to the enormous advance in computer

hardware, methods based on quantum mechanics (QM) have gained great attention in

the last 10 years, and calculations on biomacromolecules are becoming increasingly

explored, aiming to provide better accuracy in the description of protein-ligand

interactions and the prediction of binding affinities. In principle, the QM formulation

includes all contributions to the energy, accounting for terms usually missing in molecular

mechanics force-fields, such as electronic polarization effects, metal coordination, and

covalent binding; moreover, QM methods are systematically improvable, and provide

a greater degree of transferability. In this mini-review we present recent applications of

explicit QM-basedmethods in small-molecule docking and scoring, and in the calculation

of binding free-energy in protein-ligand systems. Although the routine use of QM-based

approaches in an industrial drug lead discovery setting remains a formidable challenging

task, it is likely they will increasingly become active players within the drug discovery

pipeline.

Keywords: quantum mechanics, semi-empirical methods, structure-based drug design, molecular docking, drug

lead optimization, binding free energy, molecular dynamics

INTRODUCTION

The drug discovery process relied for many years on the experimental high-throughput screening
of large chemical libraries to identify and optimize new drug lead compounds. In spite of efforts to
improve its efficiency, this remained an expensive and time consuming process (Phatak et al., 2009).
The availability of 3D structures of protein-ligand (PL) complexes has guided lead optimization
for many years, paving the way to a more rational approach. Later on, theoretical developments,
coupled with better computational algorithms and faster computing resources, allowed the routine
use of in silico methods to model PL interaction, estimate binding affinity, and screen chemical
libraries using structure-based approaches. Today, computational chemistry is a well-established
and valuable tool in the drug discovery process (Cavasotto and Orry, 2007; Jorgensen, 2009).
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The central quantity in PL association is the binding free
energy (1Gbinding), a property of enormous relevance in the
pharmaceutical industry, and no effort is too great to accurately
estimate it in a computationally efficient way. Reliable prediction
of receptor-small-molecule affinities in the early-stages of the
drug discovery pipeline would be instrumental to rationally
design new, more potent, and safer drugs, saving precious effort,
time and cost. The accurate calculation of1G depends on several
factors: (i) the energy model of the system; (ii) the accounting for
protein flexibility; (iii) the presence of water molecules within the
binding site and the solvationmodel. The last two challenges have
been thoroughly addressed in recent reviews [(Cavasotto, 2011,
2012b; Spyrakis et al., 2011), and (Spyrakis and Cavasotto, 2015),
respectively]. The last 20 years have seen a remarkable advance
in theoretical and algorithmic developments for the calculation
of binding affinities (Gohlke and Klebe, 2002; Gilson and Zhou,
2007; Mobley and Gilson, 2017), ranging from fast estimates, to
be used in high-throughput docking and scoring (Cross et al.,
2009; Cavasotto, 2012a), to much slower—yet more accurate—
calculations using free energy perturbation or thermodynamic
integration (Mobley and Klimovich, 2012; Hansen and Van
Gunsteren, 2014), well-suited to guide chemical synthesis for
hit-to-lead optimization. Most of these applications have been
rooted inmolecularmechanics (MM) force-fields (FF), but recent
years have seen the development and application of quantum
mechanical (QM) methods to biomacromolecular systems in the
context of drug lead discovery and design. The recent blind
challenges for ligand-pose and binding affinity predictions ran by
the Drug Design Data Resource (D3R) in 2015 (Gathiaka et al.,
2016) and 2016 (Gaieb et al., 2018) highlight the critical relevance
of method development and benchmarking in pose prediction
and affinity ranking of bound ligands.

It should be highlighted that the QM formulation accounts
for all contributions to the energy (including effects missing
in FFs, such as electronic polarization, charge transfer, halogen
bonding, and covalent-bond formation), and thus is, in principle,
theoretically exact; moreover, it offers the advantage of being
general across the chemical space, avoiding system-dependent
parameterizations, so that all elements and interactions can
be considered on equal footing. In fact, QM has been
present since the early days of computer-aided drug design
(cf. the pioneering work of W.G. Richards on quantum
pharmacology; Richards, 1977), and it is routinely used to
derive FF parameters [such as torsional potentials from high
level ab initio data and partial atomic charges by fitting
to electrostatic surface potentials (ESP) (Mucs and Bryce,
2013)], in QSAR methods (De Benedetti and Fanelli, 2014),
to study reaction mechanisms (Blomberg et al., 2014), and
small-molecule strain (Forti et al., 2012; Juárez-Jiménez et al.,
2015).

The goal of this short mini-review is to highlight the
growing importance of quantum chemistry (QC) in the study
of PL interaction, and present the latest applications of
explicit QM calculations to structure-based drug design in
the context of lead identification and optimization [for a
survey on the development rather than application of QM
methods for ligand-binding affinity calculations the reader is

referred to an excellent recent review (Ryde and Söderhjelm,
2016); the review by Korth also offers a comprehensive
coverage on the development of semiempirical QM and density
functional theory (DFT) methods augmented by hydrogen-
bonding and dispersion corrections (Yilmazer and Korth,
2016)].

QUANTUM CHEMICAL APPROACHES IN
PROTEIN-LIGAND DOCKING

In silico molecular docking has been widely used to determine
the binding mode (pose) of small-molecules to a binding site.
However, the true potential of this technique is revealed when
used in a high-throughput fashion to screen up to millions of
molecules, aiming to generate a sub-library rich in potential
binders, thus imposing a structural filter on a given chemical
library to prioritize compounds for synthesis. In high-throughput
docking (HTD), where usually the protein is considered rigid or
with very few degrees of freedom, two stages could be identified:
(i) the prediction of the binding modes of molecules within
the binding site (docking stage); (ii) the calculation of a score
which attempts to predict the likelihood that a molecule will
actually bind to the target. Although docking accuracy depends
on the program used, the number of ligand poses with RMSD
< 2 Å compared to the native structure can reach up to
80% of the studied cases (Warren et al., 2006; Wang et al.,
2016). In some docking programs the binding pose is assessed
by searching the global energy minimum (“docking energy”)
within the potential energy surface (PES) of the protein-molecule
system. Other energetic contributions should be accounted for
(such as the free energy of the unbound molecule, the entropy
change, and desolvation effects) in order to assign a “docking
score” to molecules of a chemical library; scoring functions are
classified as force-field-based, empirical, and knowledge-based
(Kitchen et al., 2004). It should be highlighted that the docking
energy discriminates among poses of the same molecule, while
the docking score is aimed at discriminating among different
molecules of the set [usually docking scores are calculated on the
best pose (of few best poses) of each molecule]. In many docking
programs, however, the docking score is used for both purposes.

In the last 10 years there have been continuous efforts to
enhance scoring functions by incorporating some type of QM-
based calculations, especially deriving system-specific charges,
such as the QM-polarized ligand docking approach (Cho et al.,
2005). Some degree of improvement was observed using these
tailored energy functions in terms of pose prediction. However,
these advances will not be addressed here, and the reader is
referred to a sound review covering these issues (Mucs and Bryce,
2013).

There are fewer works describing PL interactions with explicit
calculations at the QM level. One should highlight the pioneering
work of Raha and Merz (Raha and Merz, 2004, 2005), who
introduced QMScore, a semiempirical QM (SQM) scoring
function based on the Austin Model 1 (AM1) Hamiltonian
(Dewar et al., 1985), complemented with a FF dispersion
term and a Poisson-Boltzmann implicit solvent model, and
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calculated using the linear-scaling divide and conquer method
(Dixon and Merz, 1996). QMScore was able to discriminate
native and decoy poses and captured essential binding affinity
trends in a set of 165 PL complexes; a series of QM/MM
scoring functions were also studied to discriminate native
from decoy poses in six HIV-1 proteases (Fong et al., 2009),
showing in some of them improvements over MM empirical
potentials.

Very recently, the SQM/COSMO energy filter was introduced,
aimed at discriminating native from decoy ligand docking poses
(Pecina et al., 2016). The SQM/COSMO filter is a simplified
version of a general binding free energy function (Raha andMerz,
2005; Lepšík et al., 2013),

1Gbinding = 1Eint + 11Gsolv + 1Gconf − T1S (1)

(where 1Eint is the gas-phase interaction energy, 11Gsolv the
solvation energy change upon complex formation, 1Gconf the
change of conformational free energy, and –T1S the entropy
change upon binding). In this new filter, only the first two
dominant terms in Equation (1) are conserved, thus avoiding
expensive SQM optimizations. 1Eint is calculated at the PM6
level (Stewart, 2007) with the D3H4X correction for dispersion,
hydrogen- and halogen bonding interactions (Rezáč and Hobza,
2011, 2012), and the implicit solvent model COSMO (Klamt and
Schüürmann, 1993) is used to calculate the 11Gconf term (this
filter was named PM6-D3H4X). It was shown that calculations
in a small subsystem (the ligand and neighboring amino acids)
do not deteriorate results compared to the whole system, with
a clear benefit in terms of computational speed. The ability of
this filter to discriminate binding-like poses from decoy poses
was evaluated in four challenging systems [acetyl cholinesterase
(AChE), TNF-α converting enzyme (TACE), aldose reductase
(AR), and HIV-1 protease (HIV PR)], and compared to
seven well-known empirical scoring functions and a physics-
based AMBER/GB. It was shown that the SQM/COSMO filter
performed best by two metrics: the number of false-positive
solutions, and the maximum ligand RMSD of all poses within a
given range of a normalized score. The worst performance was on
the TACE metalloprotein, containing a Zn2+. . . S− interaction.
As for the computational requirements, this filter is ∼100 times
slower than the traditional scoring functions, ∼10 times slower
than the AMBER/GB scoring scheme, but∼100 times faster than
the standard SQM filter calculated using the full Equation (1). In
a follow up contribution (Pecina et al., 2017), the SQM/COSMO
filter was evaluated in the same four systems (AChE, TACE,
AR, HIV PR) using the self-consistent charge density functional
tight-binding (SCC-DFTB) (Elstner et al., 2001), complemented
with the D3H4 corrections for dispersion and hydrogen-bond
interactions (Rezáč and Hobza, 2012). This improved filter
(named DFTB3-D3H4) retained its excellent performance in
AChE, AR and HIV PR, and clearly improved the results on
the TACE system at a reasonably higher computational price. To
further validate the two variants of SQM filters, diverse 17 PL
complexes were studied using the PM6-D3H4X and the DFTB3-
D3H4X (extended in this case to account for halogen bonding),
and compared to four standard docking programs (Ajani et al.,

2017). The QM-based energy functions clearly outperformed
the standard scoring functions in terms of the number of false
positives.

Using MD simulations and QC energy evaluations, Burton
and co-workers evaluated the preferred docking (binding)
mode of the natural salpichrolide A and a synthetic analog
with an aromatic D ring within the estrogen receptor α

(ERα) binding site (Alvarez et al., 2015). The MM/QM-
COSMO (Anisimov and Cavasotto, 2011; Anisimov et al.,
2011) method with the PM6 Hamiltonian was used for the
energy calculations. The MD simulations coupled with energy
evaluations corresponding to different ligand-binding modes
support the preferred inverted orientation of the steroids
in the ERα binding site, in which the aromatic ring D
occupies a similar position to the corresponding A ring of
estradiol.

G protein-coupled receptors (GPCRs) present a challenging
case for docking due to their solvent-exposed and polar binding
sites (Cavasotto and Palomba, 2015). A new docking protocol
was recently presented where a QM/MM + implicit solvation
model was used to rescore docked ligand poses (Kim and
Cho, 2016). The gas energy was calculated at a QM/MM level,
considering the ligand and neighboring residues within 5 Å
as the QM region, and the solvation energy was calculated
using a Poisson-Boltzmann (PB) approach with partial charges
derived from ESP fitting. Evaluating their protocol on 40
GPCR complexes including representatives of classes A, B,
and F, the authors obtained an average RMSD of 0.78 Å,
and a success rate of 40/40 for ligands with RMSD < 2
Å.

Chaskar et al. (2014) developed an on-the-fly QM/MM
approach combining the EADock DSS docking algorithm
(Grosdidier et al., 2007) with calculations based on the
SCC-DFTB model and the CHARMM FF (Brooks et al.,
2009), and evaluated it on a dataset of high-quality x-ray
structures of zinc metalloproteins. Their method significantly
improved the success rate compared to classical docking
programs for orthosteric ligands in terms of ligand pose
RMSD. Recently, a similar approach (Chaskar et al., 2017),
but coupled with the Attracting Cavities docking algorithm
(Zoete et al., 2016), was applied on three different sets:
(i) the Astex Diverse data set of 85 common non-covalent
drug/target complexes; (ii) a zinc metalloprotein data set of
281 complexes: (iii) a heme protein data set of 72 complexes,
where ligand/protein interactions are dominated by covalent
ligand/iron binding. On the first set the performance was
similar to the standard scoring functions, but on the other two,
QM/MM showed an improved performance, especially in the
third set.

CALCULATION OF LIGAND BINDING FREE
ENERGY USING QUANTUM
MECHANICS-BASED METHODS

The binding process of five classical AChE inhibitors was
analyzed using free energy perturbation (FEP) and QM/MM
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MD simulations (Nascimento et al., 2017). The QM calculations
were performed at the AM1 level. The 1Gbinding was obtained
as the sum of two terms, introducing two parameters into
the electrostatic and van der Waals QM/MM interaction terms
in the total energy (Swiderek et al., 2014). The correlation
between the experimental and calculated values was in very
good agreement (R2 value of 0.96 for 100 ps simulation time).
Moreover, there was a qualitative agreement of the order of
inhibition between theoretical and experimental values. The use
of QM to describe these ligands was of great importance due to
their polar nature and the high aromaticity of the enzyme binding
site.

In order to analyze the efficiency of different approaches
to calculate 1Gbinding at the QM/MM level employing MD
simulations, Ryde and Olsson have recently compared the
results of the calculation of the binding of nine small
carboxylate ligands to the octa-acid deep cavity host (Olsson
and Ryde, 2017), via reference-potential FEP calculations
(Rod and Ryde, 2005) and full QM/MM FEP simulations.
The ligand was described using a SQM PM6 Hamiltonian
augmented by the DH+ empirical dispersion and hydrogen-
bond corrections (Korth, 2010). The results showed that
the reference-potential approach is approximately three times
more effective than the direct approach, and the convergence
of the MM→QM/MM perturbations is improved by the
addition of QM/MM MD simulations for a number of
coupling parameter values between the MM and QM/MM
energies.

Grimme and co-workers presented a full QM approach to
evaluate absolute ligand binding free energies as the sum of
three terms: the interaction energy, the solvation contribution,
and the entropic term (Ehrlich et al., 2017). Calculations were
performed on a reduced system consisting of the ligand and
neighboring binding site atoms (∼1,000 atoms in total). For
the interaction energy, two methods were used: the minimal
basis Hartree-Fock HF-3c (Sure and Grimme, 2013) which
includes a D3 dispersion correction (Grimme et al., 2010),
and the composite hybrid PBEh-3c DFT lower computational
cost method (Grimme et al., 2015); entropic contributions
were calculated using a semiempirical DFTB3-D3 hessian (Gaus
et al., 2011; Brandenburg and Grimme, 2014); the solvation
contribution was calculated with the COSMO-RS method
(Klamt, 1995, 2011). Two molecular systems were studied: the
activated serine protease factor X (FXa) with 25 ligands and
the non-receptor tyrosine-protein kinase 2 (TYK2) with 16
ligands. The mean absolute deviation (MAD) of the 1Gbinding

using the HF-3c level was 2.8 and 2.7 kcal/mol, with a Pearson
correlation coefficient 0.47 and 0.51, respectively; while a MAD
of 2.1 kcal/mol was obtained on the FXa system using the
PBEh-3c method, with a Pearson coefficient of 0.53. Although
the results are clearly encouraging from a QC standpoint,
this approach cannot be yet used in an industrial setting,
and errors stemming from the structural optimization level,
conformational sampling and the solvation contribution need
further development.

Frush et al. performed a QM/MM-based evaluation of
1Gbinding on four diverse protein targets of pharmaceutical

relevance: beta-secretase 1 (BACE1), TYK2, heat shock
protein 90 α (HSP90), and protein kinase R (PKR)-like
endoplasmic reticulum kinase (PERK), using 22, 16, 70, and
32 ligands, respectively (Frush et al., 2017). Binding affinities
were calculated using the linear interaction energy (LIE)
protocol (Aqvist et al., 1994), with α and β LIE coefficients
similar to those reported elsewhere (Su et al., 2007), but
modified to fit the experimental affinities of the TYK2
set. Ensemble averages were calculated through QM/MM
calculations on MD trajectories, describing the ligand at the
SQM level using the AM1 Hamiltonian, and the rest of the
system using MM. On each of the four systems, the obtained
MAE was 0.86, 0.42, 0.86, and 1.11 kcal/mol, respectively,
and a correlation of 0.73, 0.71, 0.60, and 0.86, respectively.
The authors concluded that their methodology reached a
reasonable balance between accuracy and computational
cost.

In the context of the D3R grand challenge blind test
competition (Gathiaka et al., 2016), Ryde and co-workers
evaluated four different approaches for predicting the
binding affinities of three sets of ligands of the HSP90
protein (Misini Ignjatovic et al., 2016): (i) induced-fit
docking (Sherman et al., 2006) followed by calculations
with three energy functions; (ii) MM/GBSA calculations
on minimized docked structures; (iii) optimization of
docked structures with QM/MM calculations followed
by QM-based energy evaluation of a subset of ∼1,000
atoms using continuous solvent; (iv) calculations of relative
binding affinities using free-energy simulations. Although
the results were somehow poor, the authors were able to
identify the sources of error: in one case the ligand could
displace water molecules (this could be found only after the
experimental data was released), and for other two, ligands
might exhibit alternative binding modes that those in the
crystal, or conformational changes of the system might
be critical.

CONCLUSIONS AND PERSPECTIVE

In this short review we presented the most recent applications
of QM-based methods to molecular docking and ligand
binding free energy prediction in the context of drug lead
discovery, focusing on cases where QM is explicitly used
to calculate at least some of the free energy contributions.
The last 10 years have seen a remarkable interest in the
development and application of QM-based methods in the
field of drug discovery. This was triggered by the interest
in modeling biomolecular systems in a more accurate way,
and allowed by the unprecedented growth of computational
power. QM methods are theoretically exact, capturing the
underlying physics of the system and accounting for all
contributions to the energy; thus, missing effects in FFs
(such as electronic polarization, covalent-bond formation, and
coupling among terms) are de facto accounted for in QM
formulations, which are thus systematically improvable; being
generally valid across the chemical space, they offer greater

Frontiers in Chemistry | www.frontiersin.org 4 May 2018 | Volume 6 | Article 188242

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Cavasotto et al. QM Methods in Drug Design

freedom to deal with non-standard molecules, avoiding the FF
parameterizations.

Overall, the results obtained using QM approaches are
very encouraging, but still different sources of error should
be addressed in order to improve accuracy and predictability
of these methods: (i) they are still system-dependent; thus,
further validation and benchmarking are needed; (ii) in
spite of the progress in computational speed, most QM
applications to drug discovery cannot still be used in industrial
settings, highlighting the need for optimized codes, especially
those using GPUs; (iii) conformational sampling and protein
flexibility: due to computing time, in most approaches aimed
for high-throughput use, only local energy minimization is
performed, or even no minimization at all; this should
be integrated with the possibility of system cutout, and
optimal combinations of these thoroughly validated; (iv)
solvation contribution, especially in charges systems; (v) entropic
considerations, usually omitted in many of this type of
calculations. In spite of these limitations, it is clear that
reliable QM methods for biomolecular systems would be a

tremendous step forward toward predictive binding free energy
calculations.
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Lepšík, M., Rezáč, J., Kolár, M., Pecina, A., Hobza, P., and Fanfrlík, J. (2013). The
semiempirical quantum mechanical scoring function for in silico drug design.
ChemPlusChem 78, 921–931. doi: 10.1002/cplu.201300199
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Rezáč, J., and Hobza, P. (2011). A halogen-bonding correction for
the semiempirical PM6 method. Chem. Phys. Lett. 506, 286–289.
doi: 10.1016/j.cplett.2011.03.009
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With the idea of retrosynthetic analysis, which was raised in the 1960s, chemical

synthesis analysis and pathway design have been transformed from a complex problem

to a regular process of structural simplification. This review aims to summarize the

developments of computer-assisted synthetic analysis and design in recent years,

and how machine-learning algorithms contributed to them. LHASA system started the

pioneering work of designing semi-empirical reaction modes in computers, with its

following rule-based and network-searching work not only expanding the databases,

but also building new approaches to indicating reaction rules. Programs like ARChem

Route Designer replaced hand-coded reactionmodes with automatically-extracted rules,

and programs like Chematica changed traditional designing into network searching.

Afterward, with the help of machine learning, two-step models which combine reaction

rules and statistical methods became themain stream. Recently, fully data-driven learning

methods using deep neural networks which even do not require any prior knowledge,

were applied into this field. Up to now, however, these methods still cannot replace

experienced human organic chemists due to their relatively low accuracies. Future new

algorithms with the aid of powerful computational hardware will make this topic promising

and with good prospects.

Keywords: chemical synthesis analysis, retrosynthesis, pathway design, deep learning, seq2seq

INTRODUCTION

Although the concept of organic chemistry was proposed before the nineteenth century, the first
steps of synthesis analysis took human beings more than 100 years, from 1828, when the German
chemist FriedrichWöhler produced urea with potassium cyanate and ammonium sulfate (Leicester
and Klickstein, 1951), to mid-twentieth century, when chemists such as Robinson, Woodward, and
Corey raised it to a qualitatively higher level of sophisticationwith the idea of retrosynthetic analysis
(Corey, 1988). Since then, laboratories around the world have made remarkable achievements in
total synthesis, biosynthesis and biomimetic synthesis. The standard flow of synthesis pathway
planning has made it possible for scientists to design computer programs to deal with synthetic
problems.

Since the Dendral Project (although failed) of Stanford University in the 1960s, experts
in chemistry, biology and computer science showed great enthusiasm in developing relevant
algorithms in the next 30 years, but few breakthroughs were made and more people viewed it as a
“mission impossible.” Actually, this task was too complex for scientists at that time when machines
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could only deal with very simple molecules which humans
did not need much assistance with. However, after the 1990s,
the developments of new efficient algorithms and more well-
designed databases including Reaxys and SciFinder (providing
chemists the source of structured data of chemical reactions)
lighted the passion for computer-assisted synthesis design again.
And more cheminformatics tools were proposed, including the
development of molecule descriptors and molecular encoding
methods like SMILES (Simplified Molecular Input Line Entry
Specification) (Weininger, 1988).

Early retrosynthesis analytic systems were mainly reaction
rule-based, such as LHASA (Corey et al., 1972a,b), SYNLMA
(Johnson et al., 1989). Different rule-based methods focused
on different concepts, including reaction mechanisms, skeletal
construction and some classic reactions between common
groups. However, rule-based methods cannot cover the whole
organic reaction space and probably give out incorrect results
(e.g., the algorithms would produce a compound which never
exist, or forget to protect groups with high reactivity).

After 1990, many new methods using machine learning as an
important tool were proposed, but most of them still followed
the concepts of traditional reaction rules. So we define them as
“two-step models”—machine learning played the role of decision
making, and decision generating were related to reaction rules or
structural rules. In recent years, deep learning (or deep neural
networks) techniques have been applied in reaction prediction
and retrosynthesis analysis. For example, regarding reactions as
translation between two languages (“reactants” and “products”),
seq2seq (two recurrent neural networks) (Sutskever et al., 2014)
was used in synthetic prediction. However, these modern tools
still need essential improvements to meet the need of organic
chemists. Also, negative samples are quite important in machine
learning, but reaction databases seldom provide information
about “A do not react with B,” which is a severe limitation.

Recently, in the field of drug design, modern methods
have changed the trial-and-error and time-consuming lab
work into computational process. After designing molecules
according to certain principles, medicinal chemists will have
to synthesize the designed molecules. With modern web
resources (Khan et al., 2011; Yadav et al., 2016), computers
can take the synthesis pathway into consideration. For example,
databases like KEGG enzymatic reaction and ChemBioFinder
have benefited a lot in both drug discovery and drug synthesis
prediction.

Organic reactions are not like the process of chess or Sudoku
games, because they are full of exceptions and rarely have fixed
rules, so it presents great challenge for computer programs. With
the general trend of artificial intelligence (AI), scientists realized
the combination of AI and synthetic planning would probably
be the general trend in this field. Although we cannot guarantee
the correctness of one computer-designed synthetic route, AI
may probably come up with incredible new ideas beyond human
ones, and its comprehension of complex reaction patterns such
as rearrangement and catalytic cycles may be superior to humans,
too. To sum up, we believe that computers will help scientists to a
great extent in the field of synthetic analysis and pathway design
in the future.

SYNTHESIS PREDICTION WITH NETWORK
SEARCHING AND RULE MATCHING

Building and Searching Reaction Networks
As we all know, one decisive character differing between
humans and computers are the ability of memory. For organic
chemistry experts, they often memorize hundreds of classic
reactions and rules, but modern computers have the ability
to store and search for chemical databases as large as the
entire set of known molecules and reactions. In a computer
scientists’ view, chemical reactions are sets of data indicating
relationships or connections of compounds, and this kind
of existence can be represented as data structures such as
connections or networks. According to these ideas, Grzybowski
et al. did such a kind of transformation in early 2000s and
finally finished the Network of Organic Chemistry (NOC)
(Fialkowski et al., 2005; Bishop et al., 2006; Grzybowski et al.,
2009), which contains more than ten million organic reactions
(edge) connecting a similar number of compounds (vertex)
(Figure 1).

The searching process is not simple. Grzybowski’s group
tried different ways to do global minimization in their program
Chematica. They took two factors into consideration: one is the
overall “cost” Ctot of a pathway (including labor, purification
costs, etc.) and the cost of starting materials. The other is the
popularity scoring function Ptot which prioritized more popular
reactions. For the searching algorithm, one approach is to
minimize the scoring function in each “depth” of searching and
gradually increase the “depth” to produce the synthetic pathway.
Traditional BFS (breadth-first-search) (Lee, 1961) is also adapted
to synthetic planning to generate many possible pathways.
These searching algorithms can simplify the “combination
explosion” problems into simple and intuitionistic ones, which
can be solved within a few seconds. In addition, due to the
specific data structure of NOC, Chematica has the Synthesis
Optimization with Constrains (SOCS) scheme, too, which
supports the existence of constraints, such as the maximum
number of products and avoidance of certain intermediate.
This process is just like finding a function’s minimum value

FIGURE 1 | Schematic representation of a local part of the Reaction Networks.

Reactions included in this figure are: (1) A + B = C; (2) B + C = D; (3) C = E.
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with constrains. And without doubt, satisfying any constraint
factors will probably cause a trade-off of an increased cost
function.

The Development of Rule-Based Synthetic
Design
Although reaction networks can guarantee the validity of
predicted retrosynthesis reactions, it was a much difficult task
for early pioneers to collect reaction databases as big as
NOC. The first ideas of chemists and computer scientists were
using reaction rules to predict retrosynthesis reactions, and
developing logic-based and knowledge-based searching strategies
for designing reaction routes. By applying retrosynthetic
(backward generation) procedure which was proposed in the
mid-twentieth century, in theory, computers can generate
reasonable starting materials and reaction pathways. However,
although there are many rules and famous name reactions in
the field of organic chemistry, choosing which reaction to use
are things that really matters. One of the earliest pioneers,
Dendral project (Lindsay et al., 1993) started by a Stanford
team did not realize this goal. As one of the contributors of
retrosynthesis analysis, Corey raised his rule of breaking bonds
and planning the synthetic pathway, which can be taught to
computers. Although it is far from mature in today’s view,
Corey and his idea had raised computer-assisted pathway design
to a higher level. In 1969, Corey and Wipke presented the
first computer-aided synthesis design software called OCSS
for Organic Chemical Simulation of Synthesis (Corey and
Wipke, 1969). It was then split into two directions: LHASA
(Corey et al., 1972a,b) in Corey’s group and SECS (Wipke
et al., 1978) developed by Wipke. After that, many followers
proposed different kinds of rule-based methods, which were
introduced in detail in other recent reviews (Szymkuć and
Gajewska, 2016). Here we only briefly list some of them in
Table 1.

For rule-based de novo synthesis prediction, there exists
mainly two challenges. The first one is the collection of reaction
rules. Early pioneers like LHASA and SECS are relatively weak in
the number and diversity of reaction rules, while later programs
like Syntaurus can meet the requirements of basic coverage
of reaction space. The other challenge is ranking or scoring
of pathways. To deal with this, different synthetic-planning
programs used various types of methods ranging from bond
disconnections in LHASA to minimize the combined scoring
function in Syntaurus.

Perhaps the challenge has been tackled too early, as organic
reactions are full of exceptions. Rule-based methods still cannot
meet the full requirement of organic chemists. In practice,
some relatively rare reactions, paradoxically, can be of vital
importance in some particular synthesis, so generalized rules
may not be the ample knowledge for computers, instead, some
specialized cases are also needed. Moreover, most algorithms
cannot predict issues of stereo- and regio-chemistry until the
general application of SMILES and SMARTS (which can take
these factors into consideration). Limitations of searching space
and lack of intelligent algorithms still call on scientists to explore
new revolutionary ways to predict synthetic pathways—that is

why machine learning was becoming more and more popular in
the past decade.

THE APPLICATION OF MACHINE
LEARNING IN SYNTHETIC DESIGN

Automatically Learning Reaction Rules
Manual encoding of organic reaction rules has some obvious
disadvantages. Since it relies on the experience of a small
number of chemists, it usually did not cover enough fraction
of the reaction space and few of them can be as ample as
Syntaurus. Moreover, it is not realistic to exhaustively define
the full substrate scope and incompatibilities for every possible
reaction, and conflicting reactivity is rarely black and white;
incompatibility depends on the exact nature of the reacting
molecules. These factors motivate the development of an
automated approach to the forward reaction evaluation.

Systems with machine-generated chemistry rules were first
published in the early 1990s such as the example SYNCHEM
(Gelernter et al., 1990), which also use machine learning to
increase its knowledge base. The KOSP (Satoh and Funatsu,
1999) program (Knowledge Base-oriented System for Synthesis
Planning) attempts to extract rules from reaction databases by
clustering reactions based on characteristics of atoms within
three bonds of a disconnection site. Similarly, RETROSYN
(Blurock, 1990) also provided an interactive search based
on finding single disconnections by similarity with precedent
reactions. The system ARChem Route Designer (Law et al.,
2009) developed by SymBioSys realized a systematic mode for
automatically extract reaction rules and applied these rules in
retrosynthetic design. However, it also has the limitation of
not accounting for stereochemistry and/or regiochemistry like
most rule-based system. Figure 2 illustrates how ARChem Route
Designer learns reaction rules from reaction pools.

ARChem Route Designer provides the method to generate
synthesis trees. This method still has some weakness. First, the
long-distance effect was neglected, for example, the existence
of hydroxyl in the distance of several bonds can accelerate
leaving of groups such as –OSO2CH3. Second, some conflicts
might happen when there are two or more reactive groups
in a molecule. Nevertheless, this approach already proved that
computer’s ability to learn reaction rules can make it possible for
fully data-driving and automatic pathway designing algorithms.

Two-Step Models—Combination of
Rule-Based Model and Machine Learning
Methods summarized in section The Development of Rule-
based Synthetic Design emphasized the importance of reaction
rules as traditional organic chemists do. As statistical methods
get more and more popular in recent two decades, scientists
tried to combine reaction rules with data science skills,
especially machine learning. We define these models as two-
step ones, which undergoes two separate steps (1) the first
step is for providing excess possible reaction results, and the
second is for ranking or scoring of them; (2) or the first
step is for classification of reactions, and the second is for
applying certain pre-coded rules. In a two-step method, “reaction
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TABLE 1 | Summary of some rule-based retrosynthesis models.

Model name References Reaction rules Limitations and problems

LHASA & SECS Corey et al., 1972a,b;

Wipke et al., 1978

Expressing several simple design strategies by a chemical language

called CMTRN (ChemistryTRaNslator).

Few reaction rules

No stereochemistry

Not active for years

SYNLMA Johnson et al., 1989 Using knowledge base to do logical operations. The problem of combination explosion

IGOR & IGOR2 Bauer et al., 1985; Ugi

et al., 1993

Transforming molecules into bond-electron (BE) matrices &

transforming reactions rules were into the subtraction of reactant and

product matrices.

High computationally cost

CHIRON Hanessian et al., 1990 Trying to maximize the overlap between targets and start materials. CHIRON does not search full synthetic tree

and can only be used to assist humans

WODCA Hollering et al., 2000 Analyzing the characters of bonds to suggest which one should be

regarded as the retrosynthetic disconnections with matrix notation.

Slow computational speed

Syntaurus Szymkuć and

Gajewska, 2016

Using 20,000 expert-coded and cross-checked chemical transforms

and using CSF (Chemicals’ Scoring Function) + RSF (Reaction Scoring

Function) to evaluate and rank the synthetic routes.

Many years were taken to construct the

database

Some reactions are not applicable in real

lab work

FIGURE 2 | The process of extracting reaction rules. (A–C) Identifying the Reaction core (the set of atoms where connections or bonds have changed by going from

reactant to product) by comparing reactants and products, and extending the cores to contain neighboring atoms or functional groups. (D) Clustering the extracted

reaction cores into common groups. (E) Producing a generalized rule template for each cluster group and completing the generalized rule templates.

rules” play the role of important intermediates in the models
(Figure 3).

SYNCHEM (Gelernter et al., 1990) was one of the earliest
effort in the application of machine learningmethods to chemical

predictions, relied on clustering similar reactions, and learning
when reactions could be applied based on the presence of
key functional groups. While SYNCHEM uses active node
and non-active node to label the molecules, other subsequent
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FIGURE 3 | Reaction rules play the intermediate role in two-step models. The judging or ranking (in diamond blocks) is implemented by using machine learning or

deep learning methods.

machine learning algorithms are based on molecular descriptors
to characterize the reactants in order to guess the outcome of
the reaction. Such descriptors include information both from
experimental/physico-chemical measurements, such as dipole
moment, and theoretical/structural information such as the
number of rings, to represent the properties of themolecule.With
descriptors as the fingerprint of molecules or reactions, computer
algorithms become more likely to do classification or similarity
calculation. Schneider and collaborators’ work (Schneider et al.,
2015) is an example to use molecular descriptors to generate
reaction fingerprints and classify organic reactions into 50 classes,
with methods of random forests, naïve bayes, K-means and
logistic regression. If the input is shortened to only include
reactant or product, this method can be applied to reaction
prediction or pathway design.

During the last 10 years, there were many algorithms
published to predict the outcome of organic reactions, which still
rely on reaction rules but use machine learning to judge which
rule to choose. Although the ideas are similar, they differ in some
details. Since outcome prediction is forerunners of retrosynthesis
analysis in this field, we briefly introduce some of the relevant
algorithms. Carrera et al. used machine learning to predict
chemical reactivity of organic molecules (Carrera et al., 2009).
They train random forest models for certain molecules (such
as BuNH2 and NaCNBH3) to predict their reactivity. However,
it was unlikely to give every compound an independent model,
so it was far from a generalized reaction prediction system.
The CSB (Chemical Sense Builder) system (Fica and Nowak,
2005) proposed by Fica and Nowak can simulate and predict
organic reactions. This system consists of two separate functional
modules, which can be used individually or sequentially. The
first one contains four logic-based and knowledge-based models
for generating and discovering reactions. The second one mainly
applies learning tools for reaction simulation process. The CSB
takes account of a set of mechanisms controlling the course of
reaction generation, even considering thermodynamic concept
(reaction enthalpy), and common reactive sites, searching for
analogies in reaction database.

Reaction Predictor (Kayala et al., 2011; Kayala and Baldi, 2012)
by Kayala et al. is an algorithm that first identifies potential
electron sources and electron sinks in the reactant molecules
based on atom and bond descriptors. The first component
is a proposal model analyzing structures of input molecules
and propose all possible reactions according to the mechanism
of reactions. Finally, neural networks are used to determine
the most likely combinations in order to predict the true
mechanism. The reported accuracy is 78.1% for polar reaction,
85.8% for pericyclic reactions and 77% for radical reactions.
While this approach allows for the prediction of many reactions
at the mechanistic level, many organic chemistry reactions
have relatively complicated mechanisms with several elementary,
which would be costlier for this algorithm to predict. However, it
does not require any reaction template.

Coley et al. also applied the idea of two-step analysis like
ReactionPredictor too, but their way of generating the set of
possible products is different (Coley et al., 2017). First, they
generated a set of chemically plausible products according to pre-
inputted reaction rules. During this process, they also mentioned
the importance of negative sampling like Segler and Waller,
and they expanded existing reaction databases with negative
reaction examples. Second, softmax neural network layer (i.e., an
exponential activation function that maps a list of numbers to
a list of probabilities that sum to one) was applied to generate
probabilities of each product. The most creative part was to
use “edit-based” information as the feature of learning. Four
kinds of information were inputted: (1) An atom ai loses a
hydrogen; (2) An atom ai gains a hydrogen; (3) Two atoms, ai
and aj, lose a connecting bond bij; (4) Two atoms, ai and aj,
gain a connecting bond bij, and output will be the probability.
Combining edit-based model and baseline model (only concern
about the structure of products), the hybrid model gives the
accuracy of 71.8% for top-1, 86.7% for top-3, and 90.8% for top-5.
It can also be applied to predict retrosynthetic reactions.

Wei et al. (2016) used a graph-convolution neural network
proposed by Duvenaud et al. (2015) to infer fingerprints of the
reactants and reagents, and then predict the outcome of reactions
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based on reactant fingerprints. This kind of fingerprints were
generated frommolecule graphs, in which nodes represent atoms
and edges represent bonds. At each layer of a convolutional
neural network, information flows between neighbors in the
graph. Finally, this model will generate a fixed-length fingerprint
vector. In the afterward predicting algorithm, Wei et al. classified
organic reactions into 16 different types (for alkyl halides
and alkenes) and use SMARTS transformation to describe the
transformation between product molecules and reactants. This
method can achieve an accuracy of 85% of test set reactions and
80% of selected textbook questions fromWade problems (Wade,
2013). In fact, previously developed machine learning algorithms
were also able to predict the products of these reactions with
similar or better accuracy, but the structure of their algorithms
allow for greater flexibility. However, only 16 types of reactions
covering a very narrow scope of possible alkyl halide and alkene
reactions limits the application of the algorithm. Furthermore,
the effect of secondary reactant or reagent was over-simplified as
only 50 common ones were taken into consideration.

Segler and Waller built a knowledge graph using reaction
templates (Segler and Waller, 2017a), which resembles NOC
described in section Building and Searching Reaction Networks.
With some additional network-based calculation, this model can
find novel reactions by searching for missing nodes in the graph
and predict the catalysts of reactions. Although they did not
include machine learning then, one major advancement is their
idea of negative sampling. As they mentioned, while the positive
evaluation of a reaction prediction system can be easily done with
a test set of hold-out known reactions, negative evaluation with
reactions that are known not to occur is a difficult task, because
failed reactions or the limitations of synthetic methodology were
seldom published. This lack of data has been criticized both by
synthetic chemistry and chemoinformatics community. To get
data on reactions which are unlikely to occur, Segler and Waller
randomly selected 36,000 known reactions from their validation
set and generated “wrong” (but some still plausible) products
with hand-coded reaction rules. Then the model can identify the
wrong products and label these reactions as unlikely to occur.
That means negative samples can be generated by computers,
which greatly helped the development of machine learning in the
field of reaction prediction.

Although these methods are not designed specifically for
retrosynthesis, some of them can be modified to meet the
requirements of retrosynthetic prediction, too, such as Segler
and Waller’s reaction graph, Coley et al.’s ReactionPredictor and
Wei et al.’s graph-convolution neural network. These methods,
together with other earlier retrosynthesis methods related to
machine learning are in common because they all divide the
task into two separate steps, they all undergo an intermediate
step—reaction rules. Similarly, programs specialized for reaction
pathway prediction can also adopt this process. One important
work is Segler and Waller’s neural-symbolic approach (Segler
and Waller, 2017b) for retrosynthesis and reaction prediction, as
well as synthetic pathway design. Since it is specially designed
for retrosynthesis analysis, it must have some distinguished
features—global information has to be considered to avoid
conflicts. For example, for carbon-carbon coupling reactions,

when there are carboxyl or aldehyde groups in the target
molecule, Kumada reaction should be abandoned because the
Grignard reagent will react with these groups, so we can only
choose Suzuki, which uses R-B(OH)2 instead of RMgBr. In their
neural-symbolic method, the computer has to learn which named
reaction can be used to produce a molecule (or under which
rule the starting materials reacted) with all information about the
molecule. By training neural networks with millions of examples
of known reactions and the corresponding correct reaction
rules, computers will give each input a label of reaction type.
Their reaction data are from the commercially available Reaxys
database. The input information is ECPF4 (Unterthiner et al.,
2014) of targeting molecule. Because this fingerprint a fixed-
length indicator, a neural network with one hidden layer (Clevert
et al., 2015) or a deep highway network can be applied. The
neural network on molecular fingerprints to prioritize rules are
combined with a Monte Carlo tree search, which can realize the
function of retrosynthetic reaction prediction. When applying
retrosynthesis prediction several times, we can get the synthesis
pathway. Segler and Waller used 103 hand-coded reaction rules,
such as Diels-Alder, Sonogashira, Kumada. Their model can
predict retrosynthesis reaction rules in an accuracy of 78% (top-
1) and 98% (top-3). Then, they replaced 103 hand-coded reaction
rules with automatically-extracted 8,720 reaction rules from 4.9
million examples. Although the accuracy decreased to 64% (top-
1) and 95% (top-3), this approach is fully end-to-end and data-
driving. However, they reported an average of 44.5 matches per
query, suggesting the coverage might be not enough.

In Segler et al. (2018) published their updated model. In
this work, they proposed a 3N-MCTS approach for chemical
synthesis prediction, which means three neural networks
combine with Monte Carlo tree search (MCTS). Like their
previous work, reactions published in Reaxys before 2015
were used to extract reaction rules (contain the information
of reaction center), and two separate neural-symbolic models
are trained—relatively slower “expansion policy” for selecting
best candidate transformations and faster “rollout policy”
for estimating synthesis positions values. Then by generating
negative examples as they did in their previous work, a binary
filter network for predicting whether reactions really occur were
trained, thus every reaction proposed in the expansion process
would be evaluated and only feasible ones are kept, which greatly
reduced the risk of wrong output. Following the process of
selecting, expansion, rollout and update, 3N-MCTS model can
give result much more quickly than any other methods such as
plain Monte Carlo, and BFS. In double-blind test, even chemists
cannot distinguish literature and 3N-MCTS results. However,
quantitatively prediction of enantiomerism is still an unsolved
problem in this model. Because of the coverage of training set,
the accuracies of synthetic prediction for natural products are
limited.

For all the methods mentioned in this section, reaction rules
are still the most important guidance of reaction prediction and
pathway design, and machine learning is more like assisters. The
common limitation of this kind of system, as well as other rule-
based ones, is that they do not take stereochemistry into account.
We are curious if it can be solved with more reaction examples
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or other descriptors, such as stereo-chemically aware descriptors
(Carbonell et al., 2013). But it is indubitably that, machine
learning greatly accelerates the development of retrosynthesis
design. Although these methods have not fully got rid of the
idea of rule-guided design, the wide application range and high
accuracy is really impressing.

Fully End-To-End Retrosynthesis Analysis
With Deep Neural Networks
In recent years, deep neural networks have been applied to this
field. One characteristic feature is that computers do not need to
follow human-defined reaction rules, and instead, they can re-
comprehend chemical reactions with only millions of reaction
examples. So we call these methods end-to-end ones—scientists
only provide computers with two ends—one end is reactant
and the other is product. These methods are fully data-driven.
One exception is mentioned in section Two-Step Models—
Combination of Rule-Based Model and Machine Learning—
the first template-free approach introduced by Kayala et al.
(2011) and Kayala and Baldi (2012). Because it can predict a
series of mechanistic steps to obtain one reaction outcome using
fingerprints and handcrafted features, it was based on common
reaction mechanisms, and not fully data-driven. Using end-to-
end analysis with deep neural networks, many approaches were
proposed in recent years.

In order to implement the end-to-end methods, one kind
of approaches is to define some special data structures to help
computers understand the concept of reactions. These data
structures are far from traditional “reaction rules” which can
be understand by human beings. An important example is Jin
et al.’s research (Jin et al., 2017) with a novel approach based
on Weisfeiler–Lehman Networks (WLN) (Lei et al., 2017). They
trained two independent networks on a set of 400,000 reactions
extracted from US patents and their approach bypasses reaction
templates by learning a reaction center identifier. In WLN,
organic molecules are considered as a graph G = (V, E), where
V is the set of atoms (vertices) and E is the set of associated
bonds (edges), and a chemical reaction is a pair of molecular

graphs (Gr, Gp). Thus, a reaction center is defined as a minimal
set of graph edits needed (change of bond type for certain atom
pairs) to transform reactant graph to product graph. The WLN
will give every node a vector by training it with the information
of all the neighbor nodes, which captures the local chemical
environment of the atom and involves a comparison against a
learned set of reference environments. Then with the local or
global information (taking important reagent into account), they
trained the model to predict reactivity label. After generation
of candidates according to the reactivity label, they trained
another Weisfeiler–Lehman Difference Network (WLDN) to
rank the candidates. Their method achieved a top-1 accuracy
of 74.0% on a test set of 40,000 reactions. Jin et al. claimed
to outperform template-based approaches by a margin of 10%
after augmenting the model with the unknown products of the
initial prediction to have a product coverage of 100% on the
test set. Differing from methods summarized in section Two-
Step Models—Combination of Rule-based Model and Machine
Learning, this approach is not only end-to-end, but also gets
rid of the dependence on reaction rules. Though it definitely
undergoes an intermediate step of reaction center (defined with
certain data structure), this method is more “computational”
than “chemical,” and the final model becomes more abstract than
before.

Other end-to-end methods can even skip the step of
“reaction center” (or similar concepts). In Nam and Kim (2016)
first applied seq2seq approach to reaction prediction. Seq2seq
(Sutskever et al., 2014) is an algorithm using a multilayered
Long Short-Term Memory (LSTM) to an input sequence (of
unfixed length), and then another deep LSTM to decode a target
sequence (also of unfixed length) from the vector (Figure 4). It
was designed for translation between English and French, with
the advantage that we only need to input large amount of parallel
data, and the powerful deep neural network will automatically
extract information and features of different languages and finally
realize the translation. Molecule structures can be represented
as linear SMILES strings, which can be decomposed to a list
of atoms, bonds and several kinds of symbols. Hence, in a
linguistic perspective, SMILES can be regarded as a language

FIGURE 4 | A schematic diagram of seq2seq—RNN with LSTM.
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with grammatical specifications. In this sense, the problem of
predicting products can be regarded as a problem of translating
“reactants and reagents” to “products.” Nam and Kim used
reaction database collected from patents by Lowe (2012) and
2001–2013 USPTO. Their model was based on the TensorFlow
translate model (v0.10.0) (Abadi et al., 2016), from which they
took the default values for most of the hyperparameters. When
testing with Wade problems, the accuracy ranges between 0.35
and 0.85 in different problem sets.

With more training data, seq2seq model can behave much
better in the field of reaction prediction. Schwaller et al.
from IBM Research, Zurich also published a seq2seq approach
(Schwaller et al., 2017). They built on the idea of relating
organic chemistry to a language and explore the application of
state-of-the-art neural machine translation methods, which are
seq2seq models. Besides Lowe’s data, they used data extracted
from US patents granted and applications dating from 1976
to September 2016 in addition. The portion of granted patents
is made of 1,808,938 reactions, described with SMILES. They
took only single product reactions, corresponding to 92% of
the dataset, to have distinct prediction targets. The accuracy is
80.3% for top-1, 84.7% for top-2, 86.2% for top-3 and 87.5% for
top-5.

Actually, retrosynthesis is the opposite of reaction prediction.
Given a product molecule, the goal is to find possible reactants.
So, if we reverse the reaction direction, seq2seq can also solve
pathway design problems, and this algorithm was developed by
Liu et al. (2017). They used a set of 50,000 reactions extracted and
curated by Schneider et al. (2016) The accuracy is 34.1% for top-
1, 56.5% for top-5, 62.0% for top-10, and 71.9% for top-50. An
important difference between this and Schwaller et al.’s method
is that they did not omit reactions with multiple reactants or
products. Instead, adding a dot between separate SMILES string
can deal with this kind of reaction. In their approach, the dataset
was classified into 10 reaction classes, including heteroatom
alkylation and arylation, acylation and related processes, etc. The
dataset was split into training, validation and test datasets (8:1:1).
The accuracies of different reaction classes were calculated
separately. Reversed input can increase the accuracy of recurrent
neural networks, so they also reversed all the SMILES strings
before training. Compared with other rule-based algorithms
(Law et al., 2009), seq2seq retrosynthetic analysis behave much
better in protection and de-protection reactions, that is to say,
this algorithm can judge whether to introduce a protection
group to avoid side reactions. As for common bond connecting
and breaking reactions, however, this retrosynthetic analysis
program cannot outperform traditional rule-based reactions.
Liu et al. summarized all the errors into three types. First, the
model outputs invalid SMILES string, which means the data
is not enough for computers to comprehend the grammar of
SMILES. Second, some reaction rules are wrongly predicted.
Third, the overall reaction is chemically plausible but different
from the result of the test set—this means the accuracy is
underestimated in some ways. It is partially because of the
presence of multiple reaction sites in the target molecule that can
be disconnected retrosynthetically, so multiple possible reactant
sets are chemically plausible.

The accuracy of retrosynthesis prediction is much lower than
reaction outcome prediction. The difference between training
and testing data is one reason, andmultiple possible pathways for
synthetic design is another reason. However, it is undeniable that
none of the previous works can achieve end-to-end learning to
the level of seq2seq models, and the accuracy of reaction product
prediction has reached the highest level. An obvious disadvantage
when compared to template-based methods is that the strings are
not guaranteed to be a valid SMILES, which might decrease the
prediction accuracy. Another limitation of the training procedure
is multiple pathway choices. However, the problem of multiple
choices only affects the apparent accuracy, and the algorithms can
still give valuable results of retrosynthesis pathway predictions.

PERSPECTIVE

It is now clear that high-quality synthesis analysis systems
are required to meet various needs in chemistry. With the
development of learning algorithms and database, these needs
are gradually being met or are the subject of active researches,
but there are still many challenges to be overcome, including
regiochemistry and stereochemistry. Computational chemical
synthesis analysis and pathway design prediction is a task full
of contradictions—more reaction rules mean more matches in
each query, but are also likely to produce implausible examples;
local scoring functions (for each step) may not give the best
pathway, but designing functions emphasizing global minimum
is so difficult. That’s why recently scientists are shifting their
attention to deep learning algorithm, however, methods like
seq2seq are still not good enough for academic or commercial
usage.

In an organic chemist’s view, synthesis design is a kind of art
rather than science—which intermediate, whether to protect. . .
But for computer algorithms, whether rule-based methods or
deep neural networks mainly focus on the availability of each
step (some new methods could even solve the problem of the
first step), and neglect the idea of “designing.” To reach the level
of intelligent design, algorithms other than seq2seq and datasets
which contain multiple-step synthetic data should be developed.
If we regard chemical space as a “compound surface,” present
methods are ready to tell us “how to take a correct step,” but we
need the result of “shortest trajectory,” which is on a higher level.

Besides developing more methods for common chemical
reactions, there are other fields needing the help of synthesis
analysis. For example, biomimetic and biological synthesis is
a tricky problem, and choosing proper enzymes can greatly
reduce the complexity of synthesis pathway. Projects like
PathPred (Moriya et al., 2010) used methods similar to database
searching, but the result is limited due to the insufficient
coverage of database and relatively poor ability of generalization.
There are also learning-based methods like Dale et al.’s
model (Dale et al., 2010) and rule-based methods like U
Minnesota Pathway Prediction System (Gao et al., 2011) for
biosynthesis pathway prediction. Predicting the condition of
unknown reactions is also an extension of synthesis analysis
systems.
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In summary, in the past decades, there are plenty of
exciting breakthroughs in chemical synthesis analysis and
pathway design. Today, computers can be used to predict
viable syntheses leading to quite complex targets and, with
further development of computational methods, they can
become better. As these systems of many varieties become
more widely known and studied, the trend of chemical
synthesis analysis systems will become more apparent and
will stimulate research and development in directions not yet
envisioned.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual
contribution to the work, and approved it for publication.

FUNDING

This work has been supported by the Ministry of Science and
Technology of China (2016YFA05023032) and the National
Natural Science Foundation of China (21673010, 21633001).

REFERENCES

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., et al.
(2016). TensorFlow: A system for large-scale machine learning.
arXiv.

Bauer, J., Herges, R., Fontain, E., and Ugi, I. (1985). IGOR and computer-assisted
innovation in chemistry. Chimia 39, 43–53.

Blurock, E. S. (1990). Computer-aided synthesis design at RISC-Linz: automatic
extraction and use of reaction classes. J. Chem. Inf. Model. 30, 505–510.
doi: 10.1021/ci00068a024

Bishop, K. J., Grzybowski, B. A., and Klajn, R. (2006). The core and most
useful molecules in organic chemistry. Angew. Chem. Int. Ed. 45, 5348–5354.
doi: 10.1002/anie.200600881

Carbonell, P., Carlsson, L., and Faulon, J. L. (2013). Stereo signature
molecular descriptor. J. Chem. Inf. Model. 53, 887–897. doi: 10.1021/ci3
00584r

Carrera, G. V., Gupta, S., and Aires-de-Sousa, J. (2009). Machine learning of
chemical reactivity from databases of organic reactions. J. Comput. Aided Mol.

Des. 23, 419–429. doi: 10.1007/s10822-009-9275-2
Clevert, D. A., Unterthiner, T., and Hochreiter, S. (2015). Fast and accurate

deep network learning by exponential linear units (ELUs) Computer Science.
arXiv:1511.07289.

Coley, C. W., Barzilay, R., Jaakkola, T. S., Green, W. H., and Jensen, K. F. (2017).
Prediction of organic reaction outcomes using machine learning.ACS Cent. Sci.
3, 434–443. doi: 10.1021/acscentsci.7b00064

Corey, E. J. (1988). Retrosynthetic thinking-essentials and examples. Chem. Soc.

Rev. 17, 111–133.
Corey, E. J., Cramer, R. D., and Howe, W. J. (1972a). Computer-assisted

synthetic analysis for complex molecules - methods and procedures for
machine generation of synthetic intermediates. J. Am. Chem. Soc. 94, 440–459.
doi: 10.1021/ja00757a022

Corey, E. J., Howe, W. J., and Cramer, R. D. (1972b). Computer-assisted
synthetic analysis - facile man-machine communication of chemical
structure by interactive computer graphics. J. Am. Chem. Soc. 94, 421–430.
doi: 10.1021/ja00757a020

Corey, E. J., and Wipke, W. T. (1969). Computer-assisted design of complex
organic syntheses. Science 166, 178–192. doi: 10.1126/science.166.39
02.178

Dale, J. M., Popescu, L., and Karp, P. D. (2010). Machine learning
methods for metabolic pathway prediction. BMC Bioinformatics 11:15.
doi: 10.1186/1471-2105-11-15

Duvenaud, D., Maclaurin, D., Aguilera-Iparraguirre, J., Gómez-Bombarelli, R.,
Hirzel, T., Aspuru-Guzik, A., et al. (2015). Convolutional networks on graphs
for learning molecular fingerprints. arXiv.

Fica, G., and Nowak, G. (2005). The CSB approach to prediction
of chemical reactions. Chemometr. Intell. Lab. Syst. 75, 137–148.
doi: 10.1016/j.chemolab.2004.05.013

Fialkowski, M., Grzybowski, B. A., Bishop, K. J., Chubukov, V. A., Campbell, C. J.
(2005). Architecture and evolution of organic chemistry. Angew. Chem. Int. Ed.

44, 7263–7269. doi: 10.1002/anie.200502272
Gao, J., Ellis, L. B., andWackett, L. P. (2011). The University ofMinnesota Pathway

Prediction System: multi-level prediction and visualization.Nucl. Acids Res. 39,
W406–W411. doi: 10.1093/nar/gkr200

Gelernter, H., Rose, J. R., and Chen, C. (1990). Building and refining a
knowledge base for synthetic organic chemistry via the methodology of
inductive and deductive machine learning. J. Chem. Inf. Model. 30, 492–504.
doi: 10.1021/ci00068a023

Grzybowski, B. A., Bishop, K. J., Kowalczyk, B., and Wilmer, C. E. (2009).
The ‘wired’ universe of organic chemistry. Nat. Chem. 1, 31–36.
doi: 10.1038/nchem.136

Hanessian, S., Franco, J., and Larouche, B. (1990). The psychobiological basis of
heuristic synthesis planning man, machine and the chiron approach. Pure Appl.
Chem. 62, 1887–1910.

Hollering, R., Gasteiger, J., Steinhauer, L., Schultz, K. P., and Herwig, A.
(2000). Simulation of organic reactions: from the degradation of chemicals
to combinatorial synthesis. J. Chem. Inf. Comput. Sci. 40, 482–494.
doi: 10.1021/ci990433p

Jin, W., Coley, C. W., Barzilay, R., and Jaakkola, T. (2017). Predicting organic
reaction outcomes with weisfeiler-lehman network. arXiv.

Johnson, P. Y., Bernstein, I., Crary, J., Evans, M., and Wang, T. (1989). “Designing
an expert system for organic synthesis in expert systems application in
chemistry,” in ACS Symposium Series of American Chemical Society, eds B. A.
Holme and H. Pierce (Washington, DC).

Kayala, M. A., Azencott, C. A., Chen, J. H., and Baldi, P. (2011). Learning to predict
chemical reactions. J. Chem. Inf. Model. 51, 2209–2222. doi: 10.1021/ci200207y

Kayala, M. A., and Baldi, P. (2012). ReactionPredictor: prediction of complex
chemical reactions at the mechanistic level using machine learning. J. Chem.

Inf. Model. 52, 2526–2540. doi: 10.1021/ci3003039
Khan, F., Yadav, D. K., Maurya, A., Sonia, and Srivastava, S. K. (2011). Modern

methods & web resources in drug design & discovery. Lett. Drug Design Discov.
8, 469–490. doi: 10.2174/157018011795514249

Law, J., Zsoldos, Z., Simon, A., Reid, D., Liu, Y., Khew, S. Y., et al. (2009). Route
Designer: a retrosynthetic analysis tool utilizing automated retrosynthetic
rule generation. J. Chem. Inf. Model. 49, 593–602. doi: 10.1021/ci80
0228y

Lee, C. Y. (1961). An algorithm for path connections and its applications.
IRE Trans. Elec. Comput. 10, 346–365. doi: 10.1109/TEC.1961.52
19222

Lei, T., Jin, W., Barzilay, R., and Jaakkola, T. (2017). Deriving neural architectures
from sequence and graph kernels. arXiv.

Leicester, H. M., and Klickstein, H. S. (1951). A Source Book in Chemistry,
1400-1900. New York, NY: Harvard University Press.

Lindsay, R. K., Buchanan, B. G., Feigenbaum, E. A., and Lederberg, J.
(1993). Dendral - a case-study of the 1st expert-system for scientific
hypothesis formation. Artif. Intell. 61, 209–261. doi: 10.1016/0004-3702(93)
90068-M

Liu, B., Ramsundar, B., Kawthekar, P., Shi, J., Gomes, J., Nguyen, Q. L., et al. (2017).
Retrosynthetic reaction prediction using neural sequence-to-sequence models.
ACS Cent. Sci. 10, 1103–1113. doi: 10.1021/acscentsci.7b00303

Lowe, D. (2012). Extraction of Chemical Structures and Reactions from the

Literature. Ph.D. thesis, University of Cambridge.
Moriya, Y., Shigemizu, D., Hattori, M., Tokimatsu, T., Kotera, M., Goto, S., et al.

(2010). PathPred: an enzyme-catalyzed metabolic pathway prediction server.
Nucleic Acids Res. 38, W138–W143. doi: 10.1093/nar/gkq318

Nam, J., and Kim, J. (2016). Linking the neural machine translation and the
prediction of organic chemistry reactions. arXiv: 1612.09529.

Frontiers in Chemistry | www.frontiersin.org 9 June 2018 | Volume 6 | Article 199254

https://doi.org/10.1021/ci00068a024
https://doi.org/10.1002/anie.200600881
https://doi.org/10.1021/ci300584r
https://doi.org/10.1007/s10822-009-9275-2
https://doi.org/10.1021/acscentsci.7b00064
https://doi.org/10.1021/ja00757a022
https://doi.org/10.1021/ja00757a020
https://doi.org/10.1126/science.166.3902.178
https://doi.org/10.1186/1471-2105-11-15
https://doi.org/10.1016/j.chemolab.2004.05.013
https://doi.org/10.1002/anie.200502272
https://doi.org/10.1093/nar/gkr200
https://doi.org/10.1021/ci00068a023
https://doi.org/10.1038/nchem.136
https://doi.org/10.1021/ci990433p
https://doi.org/10.1021/ci200207y
https://doi.org/10.1021/ci3003039
https://doi.org/10.2174/157018011795514249
https://doi.org/10.1021/ci800228y
https://doi.org/10.1109/TEC.1961.5219222
https://doi.org/10.1016/0004-3702(93)90068-M
https://doi.org/10.1021/acscentsci.7b00303
https://doi.org/10.1093/nar/gkq318
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Feng et al. Computational Chemical Synthesis Analysis

Satoh, K., and Funatsu, K. (1999). A novel approach to retrosynthetic analysis using
knowledge bases derived from reaction databases. J. Chem. Inf. Comput. Sci. 39,
316–325. doi: 10.1021/ci980147y

Schneider, N., Lowe, D. M., Sayle, R. A., and Landrum, G. A. (2015). Development
of a novel fingerprint for chemical reactions and its application to large-
scale reaction classification and similarity. J. Chem. Inf. Model. 55, 39–53.
doi: 10.1021/ci5006614

Schneider, N., Stiefl, N., and Landrum, G. A. (2016). What’s what: the (Nearly)
definitive guide to reaction role assignment. J. Chem. Inf. Model. 56, 2336–2346.
doi: 10.1021/acs.jcim.6b00564

Schwaller, P., Gaudin, T., Lanyi, D., Bekas, C., and Laino, T. (2017). “Found in
translation”: predicting outcome of complex organic chemistry reactions using
neural sequence-to-sequence models. arXiv 1711.04810.

Segler, M. H. S., Preuss, M., and Waller, M. P. (2018). Planning chemical
syntheses with deep neural networks and symbolic AI. Nature 555, 604–610.
doi: 10.1038/nature25978

Segler, M. H. S., and Waller, M. P. (2017a). Modelling chemical reasoning
to predict and invent reactions. Chem. Eur. J. 23, 6118–6128.
doi: 10.1002/chem.201604556

Segler, M. H. S., and Waller, M. P. (2017b). Neural-symbolic machine learning
for retrosynthesis and reaction prediction. Chem. Eur. J. 23, 5966–5971.
doi: 10.1002/chem.201605499

Sutskever, I., Vinyals, O., and Le, Q. L. (2014). Sequence to Sequence LearningWith
Neural Networks. arXiv: 1409.3215.
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Herein we present the algorithm and performance assessment of our newly developed

conformer generator iCon that was implemented in LigandScout 4.0. Two data sets of

high-quality X-ray structures of drug-like small molecules originating from the Protein

Data Bank (200 ligands) and the Cambridge Structural Database (481 molecules) were

used to validate iCon’s performance in the reproduction of experimental conformations.

OpenEye’s conformer generator OMEGA was subjected to the same evaluation and

served as a reference software in this analysis. We tested several setting patterns in order

to identify the most suitable and efficient ones for conformational sampling with iCon;

equivalent settings were also tested on OMEGA in order to compare the results obtained

from the two programs and better assess iCon’s performance. Overall, this study proved

that iCon is able to generate reliable representative conformational ensembles of drug-like

small molecules, yielding results comparable to those showed by OMEGA, and thus is

ready to serve as a valuable tool for computer-aided drug design.

Keywords: conformer generation, conformational analysis, drug design, pharmacophore modeling, virtual

screening

INTRODUCTION

Conformer generation still represents a remarkably important topic within the Computer-Aided
Molecular Design (CAMD) field. The exploration of the conformational space of small molecules
is a challenging task that is required for different applications ranging from the search for
the molecule conformation at its global energy minimum to the generation of conformational
ensembles that properly represent all possible low-energy spatial dispositions that molecules are
allowed to assume. Particularly, this latter analysis constitutes a fundamental step in many in-silico
studies comprising pharmacophore modeling and pharmacophore-based virtual screening (VS)
(Güner et al., 2004; Wolber and Langer, 2005), shape-based similarity searches (Hawkins et al.,
2007; Sastry et al., 2011), docking and other VS methods (Cross et al., 2010; McGann, 2012), as well
as different approaches like 3D and 4D QSAR modeling (Shim and MacKerell, 2011). Moreover,
these techniques require different levels and qualities of conformational sampling depending on
the specific goals they aim at. Therefore, it is important to balance speed and thoroughness of the
conformational sampling process depending on the size of the database to be screened, in order to
produce an appropriate conformational ensemble size that still guarantees reliable results. In this
context, automated clustering algorithms have been recently applied for resampling conformational
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ensembles of small molecules (Kim et al., 2017). Such clustering
approaches based on RMSD matrices, which can also find
application in post-processing docking results (Tuccinardi
et al., 2014), were employed to filter out unrepresentative
molecular conformers with the aim of reducing the size of
ensembles and data, but still providing a high coverage of
the ligand’s conformational space. These data highlight that
the conformational sampling of small molecules is still a
hot topic in CAMD. Due to the different tasks conformer
generators are asked for, it is not surprising that a substantial
number of programs based on different sampling algorithms
(Hawkins, 2017) belonging to both stochastic (Chang et al., 1989;
Treasurywala et al., 1996; Saunders, 1998; Güner et al., 2004;
Watts et al., 2010) and deterministic methods (Smelliem et al.,
2003; Renner et al., 2006; Li et al., 2007; Hawkins et al., 2010) have
already been developed. In particular, deterministic sampling
algorithms are used within several well-known conformer
generators employed for VS application, including CONAN
(Smelliem et al., 2003), ROTATE (Renner et al., 2006), CAESAR
(Li et al., 2007), and OMEGA (Hawkins et al., 2010; OpenEye
Scientific Software, 2013) whose performance has been widely
validated and compared to other software (Boström, 2001;
Good and Cheney, 2003; Loferer et al., 2007; Schwab, 2010;
Friedrich et al., 2017). Anyway, novel software is continuously
appearing on the CAMD scene, where always newer and more
efficient tools are needed, and they are tested for their ability
of mapping the conformational space and reproducing the
conformations of experimentally determined crystal structures
of drug-like small molecules (Miteva et al., 2010; O’Boyle et al.,
2011; Ebejer et al., 2012; Friedrich et al., 2017). Here we report
the algorithm and the performance assessment of the novel
conformer generator iCon implemented in LigandScout (Wolber
and Langer, 2005) which uses a systematic, knowledge-based
approach for the generation of conformational ensembles to be
employed in the generation of pharmacophore models and in
the creation of screening databases for pharmacophore-based
searches. With the aim of best analyzing iCon’s performance,
we evaluated representative data sets of test compounds to be
used in our study. Recently, Hawkins and co-workers reported an
algorithm validation of the conformer generator OMEGA for its
default settings by using two sets of high-quality crystallographic
structures of small molecules originating from the Protein
Data Bank (PDB) (Berman et al., 2000) and the Cambridge
Structural Database (CSD) (Allen, 2002) that were selected by
filtering larger data sets used in previous studies (Hawkins
et al., 2010). These data sets were then further refined after
an analysis aimed at better understanding their suitability for
conformational sampling (CS) validation as well as identifying
and studying OMEGA’s failures, showing that they were able
to well represent the torsion angle space of the parent sets
(Hawkins and Nicholls, 2012). Stimulated by these analyses, we

Abbreviations: CAMD, computer-aided molecular design; CS, conformational
sampling; CSD, Cambridge structural database; HA, heavy atom; MMFF94, Merck
molecular force field; NOC, number of conformers; PDB, protein data bank; RB,
rotatable bond; RMSD, root mean square deviation; TC, Tanimoto combo; VS,
virtual screening.

decided to use these data sets to validate the performance of iCon
regarding the reproduction of crystallographic conformations of
drug-like small molecules and to compare it to the corresponding
results obtained with OMEGA. A wide panel of different
settings has been tested for iCon in the attempt to identify
the most suitable ones. In particular, we analyzed the impact
of the main conformational sampling parameters on the size
and quality of the conformational ensembles generated by
iCon for the two data sets of small molecules using 20
different setting patterns. For each setting, the reliability of
the conformers generated by iCon for the test ligands was
evaluated based on the accuracy in the reproduction of their
experimental conformations, which was assessed by using two
different metrics of conformational similarity. The same analysis
was also performed using the software OMEGA, which is
one the best conformer generators available today and thus
served as the reference for iCon’s performance evaluation.
The quality of the conformational ensembles generated with
OMEGA using 20 setting patterns corresponding to those
tested with iCon was assessed and the results produced by the
two software packages were compared. Based on the whole
analysis, the reliability of the new conformer generator iCon was
demonstrated and the most suitable iCon’s setting patterns were
identified.

MATERIALS AND METHODS

Data Sets Preparation
Two different data sets comprising 200 X-ray ligand structures
originating from the Protein Data Bank and 481 X-ray structures
from the Cambridge Structural Database, representing the final
data sets of structures used by Hawkins and co-workers in
their reported analyses concerning OMEGA’s performance
(Hawkins and Nicholls, 2012), were employed in this
study.

For the creation of the PDB data set, we analyzed the PDB
complexes from which the ligands used in Hawkin’s study
were extracted (see Supplementary Material) to obtain the
corresponding ligand three-letter codes. The structures of all
ligands were downloaded from the RCSB Ligand Expo database
(www.ligand-expo.rcsb.org) in sd-file format. Hydrogen atoms
were added to the ligands by using LigandScout 4.0 (Inte:Ligand
GmbH, 2015) and then the molecules were visually checked
for correctness on the basis of their corresponding parent X-
ray complexes. For the creation of the CSD data set, the list of
CSD molecules used in Hawkin’s study was directly downloaded
from the CSD database (in sd-file format). The so obtained
experimental ligand conformations served as reference structures
in the computation of root mean square deviation (RMSD)
and Tanimoto Combo (TC) score values for the corresponding
conformers generated by iCon and OMEGA (vide infra). To
avoid any bias that could affect the conformer generation by
starting from 3D structures, the two data sets were converted
into SMILES notation by using OpenEye’s Babel 3.327 (OpenEye
Scientific Software, 2010). The obtained 681 SMILES codes
eventually served as the input for iCon and OMEGA and could
be processed without any issues by the two programs.
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Conformer Generation With iCon
Since OMEGA’s algorithm has been broadly discussed elsewhere
(Hawkins et al., 2010) here we describe the conformer generation
algorithm of iCon, which uses a systematic, knowledge-based
approach for the generation of conformer ensembles similar
to CAESAR (Li et al., 2007). The overall process is presented
schematically in Figure 1 and can be divided into four logical
phases that are described in more detail below.

Phase 1: Input Molecule Analysis and Fragmentation
When iCon starts to process an input molecule, the first step is
the perception of all the rotatable bonds within the molecule. A
rotatable bond is any single bond that is not a member of a ring
system and connects only non-terminal heavy atoms (e.g., a bond
to a methyl group or chlorine is not considered as rotatable).
For each detected rotatable bond, a lookup in the built-in torsion
rule database is performed to extract preferred relative torsions
that are characteristic for the substituents of the bond. If a
matching torsion rule cannot be found, one of the hard-coded
fallback rules is applied which provide default torsion angles
depending on the hybridization state of the bonded atoms. The
next step is the perception of any topological symmetry that may
occur in the input molecule. The thus obtained automorphism
mappings of the heavy atoms are used in the conformer build-
up stage for the detection of generated duplicate conformations
that need to be discarded. The last step in phase 1 is the logical
transformation of the input molecule into a tree-like hierarchy
of structure fragments (see Figure 1). This is done by splitting
the input molecule (which represents the root node of the tree)
at its most central rotatable bond (green bond) into two smaller
fragments of nearly the same structural complexity (fragments 1
and 2). The same procedure is then applied recursively to the two
initial fragments until only fragments that cannot be partitioned
any further remain. Those terminal fragments (fragments 3, 4, 5,
and 6) represent the smallest conformational units of the input
molecule and can be either simple heavy atom centers (e.g., -
CH2-), rigid chain fragments (e.g., >C=C<) or various kinds of
ring systems and combinations thereof.

Phase 2: Generation of Terminal Fragment

Conformations
Initial conformations assigned to the structural units at the leaf
nodes of the fragment-tree serve as the primary building-blocks
for the recursive assembly of fragment conformer ensembles on
higher tree-levels. Conformer 3D coordinates are generated by
the following procedure which is based on a distance geometry
approach: First, a distance bounds matrix is generated using the
connection table of the fragment. The distance constraints are
then augmented by volume constraints for defined chiral centers
and any planar moieties of the fragment. In the next step, random
3D coordinates are assigned to each atom and then optimized
to fulfill the distance and volume constraints. The thus obtained
raw coordinates are further refined using a modified version of
the static Merck Molecular Force Field (MMFF94s) (Halgren,
1996a,b,c,d, 1999a,b; Halgren and Nachbar, 1996) where
electrostatic interactions are not considered in the energy
calculation. In the case of terminal fragments representing

flexible ring systems, multiple conformations of the system may
be possible. If enabled (as by default, enum-rings option), the
geometry optimization procedure is therefore repeated many
times to obtain a set of multiple unique conformations of the ring
system until a maximum number of subsequently failed attempts
to generate a conformations or the timeout limit (max-frag-build-
time option) has been exceeded. Terminal fragments containing
invertible nitrogen atoms are also treated specially (if enabled as
by default with the enum-nitrogens option). For such fragments,
the substituents of each invertible nitrogen atom are simply
flipped and again refined in the force field to yield a second set of
fragment 3D coordinates. The generation of terminal fragment
conformations by the just described distance geometry/force
field optimization procedure is quite simple but rather time
consuming. For the speedup of the overall process, calculated
terminal fragment conformations get stored in a continuously
growing (up to an internal maximum size) dedicated cache.
Whenever a future input molecule with an already processed
fragment is encountered, the lengthy calculations can be
bypassed and the cached fragment conformations are used
instead.

Phase 3: Generation of Flexible Fragment

Conformers
Phase 3 is concerned with the recursive assembly of conformer
ensembles which is starting at the terminal fragments. For
an explanation of the process let us consider the assembly
of two fragments FX and FY at level L+1 of the tree into
the larger parent fragment FXY at level L. Fragments FX and
FY are connected by the rotatable bond BXY of the parent
fragment and the conformations of both child fragments are
available, either because assembled at a lower level or because
generated in phase 2. At this stage, all conformers of FX and
FY contain no duplicates, show no atom clashes, satisfy the
user specified energy window constraint (e-window option)
and are ordered by increasing MMFF94 energy. The assembly
of FX and FY comprises the following sub-steps: The first
step is to align the bond BXY in all conformers of both
FX and FY in a way that the bond has the same standard
orientation (e.g., in direction of the x-axis). In the next step, a
conformation from FX and one from FY is selected and their
coordinates are combined with a relative torsion angle taken
from the list of favorable torsions provided by the assigned
torsion library entry. Afterwards, the MMFF94 energy of the
new conformer candidate is calculated and compared with
the energies of the previously generated conformations. If the
difference between the candidate conformation energy and the
energy of the lowest energy conformer so far is larger than
the user specified energy window, the new conformation gets
rejected because any generated parent fragment conformations
will then also exceed the energy threshold. One thing to
note is that there is no explicit check for atom clashes in
iCon. Conformers with Van der Waals clashes show a rather
high MMFF94 energy that always exceeds the specified energy
window and in turn leads to their automatic exclusion from
any further processing. The next step is to make sure that
the generated conformer is not a duplicate of a previously
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FIGURE 1 | Conformer generation workflow for an example molecule with three rotatable bonds. In the first step, the input molecule is dissected recursively at each of

its rotatable bonds (marked in red, green, and blue) into a tree-like structure of fragments (tree nodes) of approximately equal structural complexity. Fragments at the

leaf nodes (fragments 3, 4, 5, and 6) represent the smallest rigid conformational units of the input molecule (like ring systems, atoms in chains, etc.) and are assigned

initial 3D coordinates by a distance geometry/force field optimization approach (purple arrows). To generate conformer ensembles for flexible fragments (fragment 1

and 2), the coordinates of the two leaf fragments are combined by relative rotations around the connecting rotatable bond (boxes with circular arrows) of the parent

fragment using the angles provided by a bond specific (or default) torsion rule. This procedure is repeated until a final set of candidate conformations for the root node

(input molecule) has been obtained from which the requested number of output conformations under the given energy window and RMSD constraints are selected.

generated conformation. Duplicates may always arise due to local
rotational symmetries and must be excluded from the final list of
fragment conformations. If the candidate conformation is not a
duplicate, it gets inserted into the list of intermediate fragment
conformers. If the inserted conformation is the new lowest
energy conformation found so far, any previously generated
conformations that now exceed the energy window are discarded.
The number of fragment conformers stored at each node
has an upper limit and is calculated dynamically depending
on the number of rotatable bonds, the number of requested

output conformations and the tree level. For the root node
the limit is set to max(PS, 5×N) where N is the number of
requested output conformation (max-num-confs option) and
PS is the value of the max-pool-size option. For an internal
node the maximum ensemble size depends on the number of
rotatable bonds in the subtree and on the number of requested
conformers of the parent node. If the maximum ensemble size is
exceeded by a new conformation, the highest energy conformer
is simply discarded to keep the ensemble size at its upper
limit.
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Phase 4: Selection of Output Conformations
Once a pool of candidate low energy conformations of the
input molecule has been obtained, the requested number of
output conformations is selected under the specified RMSD
constraints (rms-thresh option). The selection algorithmworks as
follows: First, the list of root fragment conformations is ordered
by increasing MMFF94 energy value and the lowest energy
conformer is put into the list of output conformations. Using this
conformer as a reference, the list of fragment conformations is
searched in order of increasing energy to find a new conformer
whose heavy atom 3D coordinates differ at least by the specified
RMSD threshold. If such a conformation could be found, it is
put into the list of output conformers and the search for the
next sufficiently different conformation continues. This process
is repeated until the requested number of output conformations
or the end of the list of fragment conformations has been reached.

Conformational Model Generation
A total of 20 different setting patterns was used for the
generation of conformational models of the two compound
collections (Table 1). In each setting pattern, three parameters
that have an analogous meaning in iCon and OMEGA (version
2.4.6.35) were systematically modified, while all other parameters
were left unchanged. The parameters modified in the different
settings are: e-window, max-num-conf, rms-thresh in iCon
and ewindow, maxconfs, rms in OMEGA. The e-window and
ewindow parameters define the strain energy window allowed for
conformers to be included in the final ensemble of conformers.
Conformers with strain energy higher than the sum of the energy
of the global minimum conformer and the e-window/ewindow
value are rejected. The default ewindow value for OMEGA is 10
kcal/mol. The max-num-conf and maxconfs parameters define
the maximum number of conformers that can be included in
the final ensemble of conformers (the default maxconfs setting
for OMEGA is 200). If the number of conformers satisfying the
energetic criteria is higher than the allowed limit, conformers
with the highest strain energies are rejected until the threshold
value is reached. Rms-thresh and rms parameters define the
minimum RMSD of coordinates below which two conformers
are considered as duplicates. The default value for OMEGA’s
rms option is 0.5 Å. To simplify the analysis of results, the
settings patterns were divided in low, medium, and high accuracy
settings depending on the average number of conformers (NOC)
generated for the compounds of the PDB data set: up to 100
for low accuracy settings, from 100 to 200 for medium accuracy
settings and from 200 to 500 for high accuracy settings.

Computation of RMSD Values
RMSD values between the experimental ligand conformations
and the related ensembles of conformers generated by iCon
and OMEGA employing the different setting patterns were
calculated for each molecule. Only heavy atoms were considered
in the RMSD computation, without including anymass-weighted
term. For each molecule only the RMSD value between the
crystallographic conformation and the best-fitting conformer
was considered for performance analyses. For the actual
calculation of the heavy atom RMSD of two conformations

TABLE 1 | Setting patterns tested for conformer generation with iCon and

OMEGA.

Setting name MCa EWb (kcal/mol) RTc (Å)

LowAcc_1 25 10 0.8

LowAcc_2 25 15 0.5

LowAcc_3 50 10 0.5

LowAcc_4 50 15 0.5

LowAcc_5 100 15 0.8

LowAcc_6 100 15 0.5

LowAcc_7 200 20 0.8

MedAcc_1 200 10 0.5

MedAcc_2 200 15 0.5

MedAcc_3 200 20 0.5

MedAcc_4 350 15 0.5

MedAcc_5 350 20 0.5

MedAcc_6 400 25 0.8

HighAcc_1 400 25 0.5

HighAcc_2 500 20 0.5

HighAcc_3 500 25 0.5

HighAcc_4 500 25 0.2

HighAcc_5 800 30 0.5

HighAcc_6 800 35 0.5

HighAcc_7 800 25 0.2

aMC, max-num-conf/maxconfs; bEW, e-window/ewindow; cRT, rms-thresh/rms.

an alignment in 3D space is required. The alignment was
performed by a Java implementation of Kabsch’s algorithm
(Kabsch, 1976, 1978) which calculates the optimal rotationmatrix
that minimizes the RMSD between two paired sets of points
(positions of the heavy atoms). Rotational symmetries were
considered in the alignment and RMSD calculation by trying
all possible pairings of equivalent heavy atoms and then using
only the lowest obtained RMSD for the comparison of the two
conformations.

Computation of Tanimoto Combo Scores
The Tanimoto Combo (TC) represents a complementary metric
with respect to the RMSD to compare experimental and
generated ligand conformations. It comprises two different
scores: shape Tanimoto and color Tanimoto. Shape Tanimoto
refers to the structural shape similarity whereas color Tanimoto
refers to the matching of the ligands functional groups.
Each score provides a contribution ranging from 0 to 1 to the
TC score, which can thus assume values between 0 and 2. The
TC score relative to the superposition between the experimental
conformations of the test compounds and the related ensembles
of conformers generated by iCon and OMEGA were calculated
by using the Shape Toolkit (Haigh et al., 2005) implemented in
ROCS (Hawkins et al., 2007; OpenEye Scientific Software, 2012)
from OpenEye Scientific Software. Shell scripts were employed
to allow the automated calculation of the TC score values for
the conformer ensembles generated with the different tested
setting patterns. For each compound, only the TC score of the
superposition between the crystallographic conformation and the
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best-matching generated conformer was used for performance
analyses.

Hardware Specifications
All calculations considering computation time were performed
on a single Intel i7-3770K 3.50 GHz PC equipped with 8 GB RAM
running Linux Centos 5.8. All calculations were done in single
CPU mode.

RESULTS AND DISCUSSION

In order to evaluate the performance of iCon in reproducing
experimentally determined ligand conformations, two data sets
of high quality X-ray structures originating from the PDB and
CSD were created. These data sets comprise a total of 681
structures (200 for the PDB data set and 481 for the CSD data
set) and were selected by Hawkins and co-workers to validate the
performance of their conformer generator OMEGA (Hawkins
and Nicholls, 2012). The choice of these structures as test set for
iCon’s validation was also driven by the intention to use OMEGA
as a reference software, since it is one of the best conformer
generators available today.

Data Set Properties
The two data sets show different distributions of heavy atoms
and rotatable bonds among the test compounds. For the
ligands belonging to the PDB data set a quite homogeneous
distribution of the heavy atoms (HAs) was observed, especially
for compounds with up to 30 HAs (Figure 2A). On the contrary,
about 95% of CSD compounds showed a number of HAs ranging
from 15 to 30 and in particular almost 45% of molecules
presented 21–25 HAs. Regarding the distribution of the number
of rotatable bonds (RBs) in the data set compounds, PDB ligands
showed again a more homogeneous trend with respect to the
CSD structures (Figure 2B). In the CSD data set about 95%
of compounds had less than 7 RBs and no molecules with
more than 9 rotors were found, whereas 29% of PDB ligands
presented more than 7 RBs and 15% of compounds showed
an average of 13 rotors. All these data indicate that the PDB
data set comprises molecules with a larger range of molecular
weight compared to the CSD structures and with a higher
conformational freedom. This makes the conformations of PDB
ligands more challenging to reproduce with respect to the CSD
molecules.

Influence of the Sampling Parameters on
the NOC
The NOC generated by conformational sampling strongly
influences the performance of a conformer generator in
reproducing experimentally derived conformations; the higher
the NOC in a conformational ensemble, the higher the
probability that a conformer well-fitting the experimental one
can be found in that ensemble. On the other hand, the quality of
the sampling process also depends on the way the conformational
space of the molecules is sampled. For example, the generation
of an elevated number of redundant conformers does not help
in the exploration of all the dispositions that a molecule can

FIGURE 2 | Distribution of heavy atoms (A) and rotatable bonds (B) among

PDB and CSD compounds.

assume according to its conformational freedom, but increases
the calculation time and the data file size. This is the reason
why the different parameters influencing the NOC should be
reciprocally calibrated, so that the compounds conformational
space can be adequately covered according to the NOC generated
through the sampling process. To this aim, understanding how
the different parameters affect the conformational sampling of
different compounds is an important issue.

In Figure 3 the average NOC generated with iCon for the
two data sets by employing all the different setting patterns
is shown, together with some of the results obtained with
OMEGA by using the same settings. As expected according
to the molecular properties analyzed for the two data sets, a
higher NOC was always generated for the PDB ligands and this
difference increased along with the maximum NOC allowed for
the ensembles. This trend can be best observed by comparing the
results obtained with iCon forMedAcc_3 andHighAcc_2 settings,
differing only in the values of max-num-conf (200 and 500,
respectively). In fact, the difference between the average NOC
produced for CSD and PDB compounds increased more than
3.5 times passing from MedAcc_3 to HighAcc_2. Therefore, the
max-num-conf parameter showed to have a stronger influence on
conformer generation for PDB ligands than for CSD compounds.

Conversely, when the NOC was increased due to a lower
RMSD threshold allowed among the output conformers, the
difference between the NOC for CSD and PDB compounds was
found to be smaller. This is clearly shown by the comparison
of HighAcc_3 and HighAcc_4 settings, for which a reduction
of the rms-thresh value from 0.5 to 0.2 Å determined the
generation of a much higher NOC for both data sets, but
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FIGURE 3 | Number of conformers (NOC) generated by iCon and OMEGA for PDB data set (blue bars) and CSD data set compounds (red bars) with different

settings. For iCon all the tested settings are reported; for OMEGA only some representative settings are shown as a reference.

with a really smaller gap between them (PDB/CSD NOC with
HighAcc_3 settings = 232/171; PDB/CSD NOC with HighAcc_4
settings = 343/339). Interestingly, increasing the max-num-conf
value up to 800 in the HighAcc_7 settings raised the NOC
produced for the two data sets to almost 500 conformers per
ensemble although maintaining such a small gap. These findings
indicate that both max-num-conf and rms-thresh parameters
have a strong influence on the NOC. Anyway, for compounds
with less conformational freedom a low RMSD threshold has
a bigger impact for the production of large conformational
ensembles, even though it can lead to the generation of too
similar conformers.

The value for the energy window seemed to have a lesser
effect than the other two parameters on the NOC generated for
the PDB ligands. Raising the e-window from 10 to 15 and 20
kcal/mol without changingmax-num-conf and rms-thresh values
(passing from MedAcc_1 to MedAcc_2 and MedAcc_3 settings,
respectively) produced a 12 and 18% increase in the NOC,
respectively. Nevertheless, the energy window appears to have
a greater influence on the size of the conformational ensembles
produced for the CSD compounds, as the same changes resulted
in a 27 and a 44% increase in the NOC for these molecules.

All the considerations reported above are also valid for
OMEGA as the same trends relative to the variations of the
NOC generated for the two data sets are observed. OMEGA
always produced a higher NOC than iCon for all tested setting
patterns, especially for high accuracy settings (on average a 9.3,
20.1, and 24.0% higher NOC for low, medium and high accuracy
settings, respectively), with a corresponding wider gap between
the NOC generated for the CSD and PDB compounds (see also
Supplementary Figure 1).

Influence of Rotors on the NOC
The analysis of the variation of the average NOC as a function
of the number of rotatable bonds (RBs) clearly highlighted the
unsurprisingly strong dependence of the conformer generation
process on the conformational freedom of the compounds. For
molecules with 3 or less rotors, ensembles of up to 50 conformers
were generated for all the tested settings except for those where
the RMSD cutoff was set to 0.2 Å, which produced nearly a three-
fold higher NOC (Figure 4). For ligands with 8 or more rotors
ensembles comprising a minimum of 120 conformers (up to
several hundreds) were generated for medium and high accuracy
settings, where a wider conformational variability was allowed in
the sampling process (see Supplementary Figure 2). As shown in
Figure 4, the two conformer generators presented a similar trend
in the NOC generated for the analyzed compounds with respect
to their number of RBs. However, the increase in the number of
rotors produced a slightly steeper increase in the NOC generated
by OMEGA. This became even more evident when settings
patterns producing high average NOC were considered. Anyway,
setting the RMSD threshold to 0.2 Å reduced this difference, as
shown by the comparison of the NOC generated with HighAcc_3
and HighAcc_4 settings.

Performance Assessment
The ability of the software iCon to reproduce the crystallographic
conformation of the data set compounds was studied by using
two different metrics: the root mean square deviation (RMSD)
and the Tanimoto combo (TC) score, which were calculated
for the generated ligand conformers using the corresponding
experimental conformation as reference. These analyses were
carried out on the conformers generated by using all the 20
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FIGURE 4 | Average NOC generated by iCon and OMEGA, for some

representative setting patterns, as a function of the number of rotatable bonds

of PDB and CSD compounds. Due to the different rotor distribution in PDB and

CSD molecules, different scales have been considered for the two data sets.

different settings patterns reported in Table 1. Only the values
for the best-fitting conformers were taken into consideration, i.e.,
the lowest RMSD and the highest TC score obtained for each
ligand conformational ensemble. In the same way the conformers
generated by OMEGA using equivalent settings were analyzed, in
order to compare the performance of the two software packages.
To get a global overview of iCon’s performance as a function
of the various settings used and to compare it to OMEGA’s
performance, we calculated the average values of RMSD and TC
scores obtained for the best-fitting conformers of the PDB and
CSD compounds. Additionally, the number of ligands giving a
RMSD value higher than 2 Å (RMSD failures) and the number
of ligands giving a TC score lower than 1 (TC failures) were
also reported and used as a secondary metric for performance
assessment and comparison. The results obtained by applying
low, medium, and high accuracy settings for the conformer
generation of PDB and CSD ligands are reported in Tables 2–
4, respectively. As expected, the PDB data set showed to be
more challenging than the CSD data set, since for the CSD
compounds both conformer generators gave significantly better
RMSD and TC score values with respect to those produced for
the PDB ligands. Accordingly, the number of RMSD and TC
failures yielded by the two programs for the CSD data set were

consistently lower than those reported for the PDB data set,
which in fact contained a higher percentage of large compounds
with a higher conformational freedom (see section Data Set
Properties).

Influence of the Sampling Parameters on
iCon’s Performance
The influence of the sampling parameters on iCon’s performance
was in agreement with their effect on the NOC generated.
The max-num-conf parameter showed the strongest impact on
the quality of the conformational sampling outcome when low
accuracy settings were used. In this case, the maximum number
of conformers allowed was quite small and represented the main
limit to the generation of larger ensembles and to sampling
accuracy. The increase ofmax-num-conf from 25 in LowAcc_2 to
50 in LowAcc_4 settings gave a difference in mean RMSD and TC
score values of−11.0 and+3.57%, respectively, for PDB ligands,
while a difference of −11.86 and +2.38%, respectively, was
obtained for CSD compounds (Table 2). Moreover, this settings
change produced a strong reduction of the number of failures for
both data sets (from −25% up to −70%). This suggested that a
max-num-conf value lower than 50 is too restrictive even for the
generation of small ensembles, rejecting valuable conformers for
an adequate sampling of the molecule’s conformational space. By
doubling again the max-num-conf value in LowAcc_6 settings a
lower (although still substantial) improvement in performance
was obtained, in terms of both mean RMSD (−5.62% for PDB
and −5.77% for CSD compounds) and TC score values (+2.07%
for PDB and +1.26% for CSD data set). Finally, passing from
MedAcc_3 (max-num-conf = 200, Table 3) toHighAcc_2 settings
(max-num-conf = 500, Table 4) even smaller improvements
were obtained for both PDB (−3.95% in mean RMSD and
+1.99% in mean TC score) and CSD compounds (−4.35% in
mean RMSD and+0.57% in mean TC score).

An e-window value of 10 kcal/mol (OMEGA’s default ewindow
value) seemed to be too restrictive for iCon, since an increase of
5 kcal/mol lead to a substantial improvement in the quality of
the conformational ensembles generated with MedAcc_2 respect
to MedAcc_1 settings (Table 3), especially for the CSD data set.
WithMedAcc_2 settings iCon gave a mean RMSD of 0.47 Å and a
mean TC score of 1.75 for the CSD data set (−7.84% and+1.74%
compared to the results obtained with MedAcc_1 setting), while
for the PDB data set mean RMSD and TC score values of 0.78
Å (−4.88%) and 1.71 (+1.34%) were obtained. This was in
agreement with the deeper influence produced by this parameter
on the NOC generated for CSD compounds with respect to PDB
ligands (see section Influence of the Sampling Parameters on the
NOC). The better results obtained with the LowAcc_4 settings in
comparison with LowAcc_3 (Table 2), particularly for the CSD
compounds (−5.45% of mean RMSD and +1.78% of mean TC
score), suggested that an e-window of 15 kcal/mol might be also
suitable for the generation of small conformational ensembles
(depending on the molecular properties of the compounds to
be sampled), even if at the price of a slightly higher calculation
time. A further increase of e-window up to 20 kcal/mol was
considered more appropriate for larger ensembles, since when
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TABLE 2 | Mean RMSD and TC score values obtained for PDB and CSD data set compounds by using iCon and OMEGA with low accuracy settings.

Settings LAa_1 LA_2 LA_3 LA_4 LA_5 LA_6 LA_7

Parameters MCb = 25 MC = 25 MC = 50 MC = 50 MC = 100 MC = 100 MC = 200

EWc = 10 EW = 15 EW = 10 EW = 15 EW = 15 EW = 15 EW = 20

RTd = 0.8 RT = 0.5 RT = 0.5 RT = 0.5 RT = 0.8 RT = 0.5 RT = 0.8

iCon PDB mean RMSD 0.96 1.00 0.91 0.89 0.84 0.84 0.81

PDB RMSD failures 12 18 13 11 4 7 4

PDB mean TC 1.41 1.40 1.44 1.45 1.47 1.48 1.49

PDB TC failures 25 32 25 24 16 19 14

CSD mean RMSD 0.63 0.59 0.55 0.52 0.56 0.49 0.54

CSD RMSD failures 1 2 1 1 0 1 0

CSD mean TC 1.64 1.68 1.69 1.72 1.69 1.74 1.71

CSD TC failures 4 7 5 3 1 1 0

OMEGA PDB mean RMSD 0.94 0.97 0.90 0.89 0.82 0.80 0.78

PDB RMSD failures 11 15 12 12 5 6 3

PDB mean TC 1.43 1.45 1.48 1.49 1.50 1.53 1.52

PDB TC failures 27 29 26 26 12 20 7

CSD mean RMSD 0.64 0.61 0.56 0.54 0.57 0.50 0.54

CSD RMSD failures 4 7 3 3 2 3 0

CSD mean TC 1.63 1.66 1.69 1.71 1.68 1.73 1.70

CSD TC failures 8 12 5 4 3 3 0

aLA, LowAcc; bMC, max-num-conf/maxconfs; cEW, e-window/ewindow; dRT, rms-thresh/rms.

used inMedAcc_3 settings it did not seem to be worth the higher
costs in machine time (see section Computational Resources)
in light of the small improvements obtained in terms of mean
RMSD and TC scores with respect to the MedAcc_2 settings
(Table 3).

As far as the rms-thresh value is concerned, it showed to
have a quite different impact on the results obtained for the two
different data sets. For the generation of small conformational
ensembles an rms-thresh value of 0.8 Å allowed a substantial
reduction of both RMSD and TC failures obtained for PDB
ligands with LowAcc_5 settings with respect to LowAcc_6 (−43
and −26%, respectively), although accompanied by a marginal
reduction of the mean TC score (Table 2). On the contrary, the
results obtained for CSD compounds with LowAcc_5 setting were
considerably worse compared to those given by LowAcc_6 (mean
RMSD = 0.56 Å, +14.29%; mean TC score = 1.69, −2.87%).
When higher max-num-conf and e-window values were used, a
RMSD cutoff of 0.8 Å had a more deleterious effect on the size
and quality of the conformational ensembles generated for CSD
compounds especially in terms of mean RMSD values, for which
an increment of 22.73% was obtained passing from HighAcc_1
(mean RMSD = 0.44 Å, Table 4) to MedAcc_6 settings (mean
RMSD = 0.54 Å, Table 3). This change gave worse results also
for the PDB data set (mean RMSD = 0.79 Å, +8.22%; mean TC
score = 1.50, −2.60%), although without affecting the number
of failures. Finally, reducing the rms-thresh value to 0.2 Å for
the generation of very large conformational ensembles produced
improvements in the results relative to the CSD data set, as

observed for HighAcc_3 and HighAcc_4 settings (Table 4), which
gave mean RMSD and TC score values of 0.40 Å and 1.80,
respectively (−9.09% and +1.12%, compared to the HighAcc_3
values). For the PDB data set, instead, this settings change seemed
to result in the generation of ensembles comprising too similar
conformers (with the consequent rejection of valuable ones, for
some compounds), since it produced a higher number of failures
and a higher mean RMSD value (0.75 Å, +4.17%), with only a
marginal increase of mean TC score (1.55,+0.65%).

Taken together, these results show that in order to obtain
good quality conformational ensembles, independently from the
accuracy level required, it is not only necessary to reciprocally
adjust the different sampling parameters, but also to calibrate
them based on the molecular properties of the compounds to
be sampled. Among the medium accuracy settings, MedAcc_2
showed to be a good settings pattern for both data sets,
considering the results in terms of mean RMSD and TC scores
with respect to the average NOC generated, even though given
the machine time required for the sampling it might not be
particularly efficient for PDB-like molecules. For the same reason
LowAcc_4 seems to represent a good compromise between
accuracy and computational resources for CSD compounds, but
not for PDB ligands (see section Computational Resources).
Nevertheless, in order to get a certain improvement in the
quality of the conformational sampling of compounds with
molecular properties similar to PDB ligands, a small increase
of max-num-conf should be accompanied by a less strict
RMSD cutoff (as in LowAcc_5 setting), while for CSD-like
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TABLE 3 | Mean RMSD and TC score values obtained for PDB and CSD data set compounds by using iCon and OMEGA with medium accuracy settings.

Settings MAa_1 MA_2 MA_3 MA_4 MA_5 MA_6

Parameters MCb = 200 MC = 200 MC = 200 MC = 350 MC = 350 MC = 400

EWc = 10 EW = 15 EW = 20 EW = 15 EW = 20 EW = 25

RTd = 0.5 RT = 0.5 RT = 0.5 RT = 0.5 RT = 0.5 RT = 0.8

iCon PDB mean RMSD 0.82 0.78 0.76 0.75 0.74 0.79

PDB RMSD failures 5 4 4 3 3 2

PDB mean TC 1.49 1.51 1.51 1.52 1.53 1.50

PDB TC failures 15 14 15 13 14 13

CSD mean RMSD 0.51 0.47 0.46 0.46 0.44 0.54

CSD RMSD failures 0 0 0 0 0 0

CSD mean TC 1.72 1.75 1.76 1.76 1.77 1.71

CSD TC failures 3 1 0 1 0 0

OMEGA PDB mean RMSD 0.76 0.75 0.75 0.72 0.72 0.76

PDB RMSD failures 4 5 5 5 5 2

PDB mean TC 1.56 1.57 1.57 1.58 1.58 1.54

PDB TC failures 10 10 10 8 8 4

CSD mean RMSD 0.51 0.48 0.45 0.47 0.44 0.53

CSD RMSD failures 3 3 1 2 0 0

CSD mean TC 1.73 1.75 1.76 1.76 1.77 1.71

CSD TC failures 4 2 1 1 0 0

aMA, MedAcc; bMC, max-num-conf/maxconfs; cEW, e-window/ewindow; dRT, rms-thresh/rms.

compounds this change would only yield a negative effect.
For a more exhaustive sampling the use of a lower rms-thresh
value seemed more important than a considerable increase of e-
window andmax-num-conf parameters to improve the quality of
conformational ensembles of CSD-like compounds. In fact, the
best results for the CSD data set were obtained with HighAcc_4
and HighAcc_7 settings, while for PDB-like molecules, the best
results were obtained by using higher e-window and max-num-
conf values without reducing the RMSD cutoff (with HighAcc_5
and HighAcc_6 settings).

OMEGA and iCon: Overall Comparison of
the Results for PDB and CSD Data Sets
In general, despite the two conformer generators showed similar
performances, OMEGA seemed to be slightly more effective
in reproducing the bioactive conformation of PDB ligands,
independently from the setting patterns used, since the mean
RMSD values obtained with iCon were, on average, 3.23% higher
than those shown by OMEGA and the TC scores were 3.11%
lower (Figures 5A,B). Only with the LowAcc_4 settings iCon
showed the same mean RMSD values obtained with OMEGA.
The main difference among the results obtained with the two
programs for PDB data set concerned the number of TC failures,
which was however significantly high for both programs when
low accuracy settings were used, reaching a maximum of 16% for
iCon and 14.5% for OMEGA (with LowAcc_2 settings, Table 2).
Although the average gap between the mean TC scores given by
the two programs was quite small, the number of OMEGA’s TC

failures was about 40% lower than iCon’s ones for medium and
high accuracy settings (Figure 5D, Tables 3, 4). For low accuracy
settings instead, the number of TC failures was comparable
between the two conformer generators, with iCon giving less
failures than OMEGA with 4 out of these 7 settings (Table 2).
An inverse situation is observed regarding the number of RMSD
failures produced by the programs. By using low accuracy settings
iCon gave a lower number of RMSD failures only with LowAcc_4
and LowAcc_5 settings (Table 2). On the contrary, with almost
all the medium and high accuracy settings the number of iCon’s
RMSD failures was either lower or equal to the number of
OMEGA’s ones (Figure 5D, Tables 3, 4).

For the CSD data set, a different trend in the performance
of the two programs was observed depending on the group of
setting patterns tested. As reported in Table 2, by using low
accuracy settings iCon showed a slightly better performance with
respect to OMEGA in terms of both mean RMSD (−2.01%,
on average) and mean TC score (+0.59%, on average) values.
Moreover, for these settings iCon produced a number of RMSD
and TC failures corresponding, on average, to 50% of the failures
shown by OMEGA (see also Figures 5C,D). By using medium
accuracy settings the two conformer generators gave very similar
results: the mean TC scores were practically identical and the
differences in mean RMSD values minimal (Table 3, Figure 5A).
Notably, for all these settings the number of iCon’s RMSD and TC
failures was always lower or equal to the corresponding OMEGA
failures (Figures 5C,D). Finally, with high accuracy settings the
difference in performance of the two conformer generators
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TABLE 4 | Mean RMSD and TC score values obtained for PDB and CSD data set compounds by using iCon and OMEGA with high accuracy settings.

Settings HAa_1 HA_2 HA_3 HA_4 HA_5 HA_6 HA_7

Parameters MCb = 400 MC = 500 MC = 500 MC = 500 MC = 800 MC = 800 MC = 800

EWc = 25 EW = 20 EW = 25 EW = 25 EW = 30 EW = 35 EW = 25

RTd = 0.5 RT = 0.5 RT = 0.5 RT = 0.2 RT = 0.5 RT = 0.5 RT = 0.2

iCon PDB mean RMSD 0.73 0.73 0.72 0.75 0.71 0.70 0.72

PDB RMSD failures 2 3 2 5 2 2 4

PDB mean TC 1.54 1.54 1.54 1.55 1.56 1.56 1.56

PDB TC failures 13 13 12 14 11 11 12

CSD mean RMSD 0.44 0.44 0.44 0.40 0.43 0.43 0.39

CSD RMSD failures 0 0 0 1 0 0 0

CSD mean TC 1.78 1.77 1.78 1.80 1.78 1.78 1.80

CSD TC failures 0 0 0 0 0 0 0

OMEGA PDB mean RMSD 0.71 0.71 0.71 0.72 0.68 0.68 0.69

PDB RMSD failures 3 3 3 6 2 2 5

PDB mean TC 1.59 1.59 1.60 1.60 1.61 1.61 1.62

PDB TC failures 7 7 7 11 5 5 9

CSD mean RMSD 0.43 0.44 0.43 0.40 0.41 0.41 0.39

CSD RMSD failures 0 0 0 1 0 0 1

CSD mean TC 1.78 1.77 1.78 1.80 1.79 1.79 1.81

CSD TC failures 0 0 0 1 0 0 1

aHA, HighAcc; bMC, max-num-conf/maxconfs; cEW, e-window/ewindow; dRT, rms-thresh/rms.

seemed almost the opposite with respect to what observed for low
accuracy settings. In fact, iCon showed mean RMSD values and
mean TC scores that were, on average, 2.06% higher and 0.24%
lower than those obtained with OMEGA (Table 4), although
it never produced a higher number of RMSD or TC failures
(Figures 5C,D).

The overall comparison of iCon’s and OMEGA’s results
showed that iCon seemed more efficient in reproducing
crystallographic ligand conformations through small
conformational ensembles, since by using low accuracy
settings it slightly outperformed OMEGA in terms of RMSD
and TC scores (and corresponding failures) for the CSD data set.
Moreover, for the PDB data set, the difference in performance
with respect to OMEGA, which gave slightly better results, was
lower than that observed for the other groups of setting patterns.
When the generation of larger ensembles was allowed as in
medium and high accuracy settings, OMEGA seemed to perform
relatively better than iCon, although the differences were still
modest. This can be due to the facts that OMEGA always
produced a NOC considerably higher than iCon for these setting
patterns (see section Influence of the Sampling Parameters
on the NOC) and the built-in torsion library employed by
OMEGA which is biased toward PDB ligand conformations
(Hawkins et al., 2010). A reasonable explanation for the in
general higher NOC generated by OMEGA is the input molecule
fragmentation strategy that is adopted by OMEGA. In contrast
to iCon, OMEGA allows flexible terminal chain fragments
(see section Conformer Generation With iCon) with multiple
rotatable bonds which are in turn looked up in a built-in cache

of precalculated refined fragment conformations upon overall
molecule conformer assembly. This effectively reduces the
number of rotatable bonds when dealing with highly flexible
molecules and, as a consequence, will speed up the conformer
generation process in general and also decrease the chance
to produce rejected high energy conformations of the overall
molecule due to steric clashes. However, it is worth noting that
with medium and high accuracy settings OMEGA gave a higher
number of RMSD failures for both PDB and CSD data sets and
a lower number of TC failures only for PDB compounds, on
average.

OMEGA and iCon: Deep Comparative
Analysis of Representative Setting Patterns
Spreading of RMSD and TC Score Values
For a better insight into iCon’s performance and a more
accurate comparison with OMEGA, we analyzed the spreading
of the RMSD (Table 5) and TC score values (Table 6) that
were obtained for the generated conformers of both data sets
by using three representative setting patterns, one for each of
the three different setting groups: LowAcc_4, MedAcc_2, and
HighAcc_4 (see Supplementary Tables 1, 2 for the analysis
of other representative setting patterns). The results for both
metrics were divided into different classes representing different
levels of precision in the reproduction of the experimental
conformations. A RMSD smaller than 0.5 Å, as well as a TC
score higher than 1.75, correspond to an excellent matching
between two different conformations, thus denoting a perfect
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FIGURE 5 | Overall comparison of (A) mean RMSD values, (B) mean TC score values, (C) number of RMSD failure, and (D) number of TC failures obtained for PDB

and CSD data set compounds by using iCon and OMEGA with the different setting patterns. Black vertical lines are used to separate the three different groups of

settings.

reproduction of the compound’s crystallographic pose (TC scores
higher than 1.95 and RMSDs of about 0.1 Åmean conformational
identity). RMSD values between 0.5 and 1.0 Å correspond to a
very good matching, where all the compound’s functional groups
of the best-fitting generated conformers are correctly superposed
to the experimental ones; the same is valid for TC scores between
1.75 and 1.50. When the RMSD lies in the 1.0–1.5 Å range
and/or when the TC score is in the 1.50–1.25 range there is still a
good matching between the overlaid conformations. For RMSDs
between 1.5 and 2.0 Å, as well as for TC scores between 1.25
and 1.0, the representation of the crystallographic conformation
is less accurate, since some of the compounds’ chemical features
in the generated conformers might not be correctly oriented
with respect to the same moieties in the reference ligand pose,
but the overall superposition is still sufficiently good. RMSDs
above 2.0 Å and/or TC scores below 1.0 mean that the matching
between the generated and experimental conformers is not
good enough to consider the crystallographic pose as properly
reproduced.

The analysis of the results reported in Tables 5, 6 clearly
demonstrates a high performance for both programs using
the three setting patterns considered, since more than 50% of

the generated conformational ensembles produced a very good
matching with the ligand reference poses, giving TC scores≥1.50
and RMSD values ≤1.0 Å. Precisely, as the PDB data set is
concerned, for a minimum of 51.5% up to 68% of the ligands,
a TC score above 1.50 was obtained for iCon_LowAcc_4 and
OMEGA_HighAcc_4, respectively (Table 6), while the percentage
of molecules showing RMSD values below 1.0 Å (Table 5) ranged
from 69.5 up to 81.5%. Compared to iCon, OMEGA always
gave better results for the PDB data set in terms of TC score,
consistently with what observed in the overall comparison of the
two programs’ performance. OMEGA produced 58.0–68.0% of
conformational ensembles with TC scores ≥ 1.50, on average 8%
more than iCon (51.5–61.0%), for which a shift toward lower TC
score values was observed. Moreover, OMEGA yielded 25.0% of
ensembles with excellent fit (TC score ≥ 1.75) using LowAcc_4
settings and 45.0% with HighAcc_4, whereas those obtained with
iCon for the same settings were 22.0 and 34.5%, respectively. The
RMSD values revealed a slightly different situation (Table 5). Not
only the difference in the percentage of ensembles with RMSD ≤

1.0 Å generated by iCon and OMEGA was marginal (69.5–79.5
and 73.0–81.5%, respectively) but iCon also produced a number
of ensembles with RMSD ≤ 0.5 Å (31.5–39.5%) higher than that
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TABLE 5 | Percentage spreading of RMSD values calculated for conformers of PDB and CSD compounds generated by iCon and OMEGA using three representative

setting patterns.

Setting pattern Data set <0.1 <0.5 <1.0 <1.5 <2.0 <3.0 >2.0 Mean

RMSD (Å)

iCon_LowAcc_4 PDB 0.0 31.5 38.0 16.5 8.5 5.0 5.5 0.89

OMEGA_LowAcc_4 PDB 0.0 25.0 48.0 12.0 9.0 5.5 6.0 0.89

iCon_LowAcc_4 CSD 0.8 61.0 29.7 6.4 1.9 0.2 0.2 0.52

OMEGA_LowAcc_4 CSD 0.2 59.3 32.8 5.8 1.3 0.6 0.6 0.54

iCon_MedAcc_2 PDB 0.0 35.5 42.5 14.0 6.0 1.5 2.0 0.78

OMEGA_MedAcc_2 PDB 0.0 32.5 48.0 11.0 6.0 2.5 2.5 0.75

iCon_MedAcc_2 CSD 0.8 68.8 25.8 3.7 0.8 0.0 0.0 0.47

OMEGA_MedAcc_2 CSD 0.2 69.0 26.4 3.3 0.4 0.6 0.6 0.48

iCon_HighAcc_4 PDB 0.0 39.5 40.0 12.5 5.5 2.0 2.5 0.75

OMEGA_HighAcc_4 PDB 0.0 37.5 44.0 10.5 5.0 2.5 3.0 0.72

iCon_HighAcc_4 CSD 1.2 76.6 18.5 2.9 0.6 0.2 0.2 0.40

OMEGA_HighAcc_4 CSD 0.4 75.1 21.6 2.5 0.2 0.2 0.2 0.40

TABLE 6 | Percentage spreading of TC score values calculated for conformers of PDB and CSD compounds generated by iCon and OMEGA using three representative

setting patterns.

Settings pattern Data set >1.95 >1.75 >1.50 >1.25 >1.0 >0.75 <1.0 Mean

TC score

iCon_LowAcc_4 PDB 1.0 21.0 29.5 20.5 16.0 11.0 12.0 1.45

OMEGA_LowAcc_4 PDB 1.0 24.0 33.0 18.0 11.0 11.0 13.0 1.49

iCon_LowAcc_4 CSD 7.5 48.2 27.0 12.9 3.7 0.6 0.6 1.72

OMEGA_LowAcc_4 CSD 6.7 49.3 24.3 14.6 4.4 0.8 0.8 1.71

iCon_MedAcc_2 PDB 1.0 24.5 32.5 23.5 11.5 7.0 7.0 1.51

OMEGA_MedAcc_2 PDB 1.0 29.0 38.5 15.5 11.0 4.0 5.0 1.57

iCon_MedAcc_2 CSD 7.5 54.7 26.2 9.4 2.1 0.2 0.2 1.75

OMEGA_MedAcc_2 CSD 6.9 56.3 25.4 8.3 2.7 0.4 0.4 1.75

iCon_HighAcc_4 PDB 3.0 31.5 26.5 23.0 9.0 6.5 7.0 1.55

OMEGA_HighAcc_4 PDB 3.5 41.5 23.0 16.0 10.5 4.5 5.5 1.60

iCon_HighAcc_4 CSD 14.1 57.6 19.1 7.9 1.2 0.0 0.0 1.80

OMEGA_HighAcc_4 CSD 16.4 54.9 20.4 5.8 2.3 0.2 0.2 1.80

shown by OMEGA (25.0–39.0%). In particular, with LowAcc_4
settings iCon produced 6.5% more excellent-fitting conformers
with respect to OMEGA. Similar results were obtained by the
analysis of LowAcc_3,MedAcc_1, andHighAcc_3 setting patterns
(see Supplementary Tables 1, 2). These results underline the
complementarity of the two different metrics, which are based
on two different methods of structure superposition and thus
gave different results that seemed to be the more divergent the
higher the dimensions and the conformational freedom of the
considered compounds.

Concerning the CSD data set, a higher number of compounds
with a very good matching between generated and experimental
conformations was obtained by the two programs, with respect
to the PDB ligands (consistent with the higher mean TC scores
and lower mean RMSD values), but the results in terms of
the two metrics were more similar to each other. For instance,
the number of CSD compounds for which a TC score ≥

1.50 and a RMSD ≤ 1.0 Å was obtained ranged from 80.2%
(OMEGA_LowAcc_4) to 91.7% (OMEGA_HighAcc_4) and
from 91.5% (iCon_LowAcc_4) to 97.1% (OMEGA_HighAcc_4),
respectively. With LowAcc_4 and MedAcc_2 settings iCon
generated a higher number of perfect fitting conformers with
respect to OMEGA in terms of both metrics, with 0.8% of
compounds showing a RMSD ≤ 0.1 Å and 7.5% presenting a
TC score ≥ 1.95 (compared to 0.2% and 6.7–6.9%, respectively,
as obtained for OMEGA), as well as a lower percentage of
failures. ForHighAcc_4 settings, for which the two programs gave
equal values of mean RMSD and TC scores, iCon produced less
ensembles comprising perfect fitting conformers than OMEGA,
in terms of TC score (14.1%, and 16.4% for OMEGA) but more in
terms of RMSD (1.2 vs. 0.4%). For all these settings iCon showed
a small enrichment in compounds with RMSD ≤ 0.5 Å (ranging
from 61.8 to 77.8%) with respect to OMEGA (59.5–75.5%), but
gave a marginally higher number of molecules with TC score
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≥ 1.75 only with HighAcc_4 settings (71.7, 71.3% reported for
OMEGA).

Overall, the obtained data indicate that both software packages
actually perform in a similar way, with OMEGA giving only
slightly better results when a medium-to-high quality sampling
of larger and more flexible compounds is carried out; also, these
differences are mainly relative to the TC score.

Influence of Rotors in RMSD and TC Score Values
To better assess how the conformational freedom of the data
set compounds influenced the performance of the two programs
in reproducing experimental conformations, we plotted the
obtained results in terms of RMSD and TC scores for PDB
and CSD molecules by using MedAcc_2 settings (as a reference
setting) as a function of the number of rotors of the compounds
(Figure 6). As expected, quite different trends were observed
for the two data sets. For CSD molecules almost no correlation
was found between the number RBs and the relative RMSD
and TC score values given by iCon and OMEGA, which
showed an almost identical distribution of the results with
respect to both metrics (Figures 6A,C). For PDB ligands an
appreciable correlation between conformational freedom and
sampling performance was identified for both programs and
particularly in terms of RMSD values, for which RBs/RMSDs
correlation coefficients of 0.42 and 0.54 were calculated for
OMEGA and iCon, respectively (Figure 6C). iCon’s performance
seems to be more influenced by the number of rotors compared
to OMEGA, in accordance with what observed in the previous
analyses. However, the difference in R2 values was quite small and
the distribution of the results in terms of both metrics was pretty
similar for the two programs, which again showed a comparable
behavior.

Computational Resources
To compare iCon’s efficiency in terms of computation time
with OMEGA and to understand how it is affected by the
different settings, we reported the average time required by the
two programs for the conformational sampling of PDB and
CSD compounds by using the various settings patterns. Both
conformer generators proved to be fast, especially in the sampling
of the CSD data set (Figure 7B), which required <0.4 s per
compound (s/cpd) for all the low accuracy settings and <0.6
s/cpd for all the medium accuracy settings. OMEGA showed
generally a better efficiency with respect to iCon, even though
for this data set the differences in the average elapsed time
were substantial only for HighAcc_4 and HighAcc_7 settings,
where a RMSD cutoff for saving conformers of 0.2 Å was used.
Using these two settings OMEGA was particularly fast (0.371
and 0.478 s/cpd, respectively) considering the elevated number
of conformers generated. On the contrary, when a RMSD cutoff
of 0.8 Å was used in MedAcc_6 settings iCon was found to be
faster than OMEGA (0.450 and 0.522 s/cpd, respectively) while
for LowAcc_7 settings the difference between the two programs
was marginal. With the CSD data set, LowAcc_4 and MedAcc_2
confirmed to be efficient setting patterns for iCon (compared to
the other low and medium accuracy settings), considering the
performance in terms of mean RMSD and TC score with respect

to the calculation time and the average NOC generated. The same
can be said for HighAcc_4 among the high accuracy settings,
which proved to be particularly efficient also for OMEGA. In fact,
OMEGA employed less than half of the sampling time required
by iCon using these parameters and was faster even with respect
to theMedAcc_4-6 settings.

The sampling of the PDB data set took, in general, a
longer time for both programs. This is in accordance to the
higher conformational freedom of these ligands with respect
to the CSD molecules. For this data set the gap between
iCon and OMEGA was more evident, the latter being 26%
faster, on average. Nevertheless, such a difference can be
attributed to iCon’s caching strategy, which was designed in
order to allow a conformational sampling that is getting faster
with a growing number of compounds in the database to be
sampled. Precisely, the conformations generated by iCon for
the compounds terminal fragments are continuously stored in
a cache, thus having no necessity to be recalculated when the
same fragments are encountered in further input compounds
during the sampling process (see section Conformer Generation
With iCon). However, the performance results clearly show that
it might be worth thinking about changing the current caching
strategy toward a prebuilt start fragment cache (like OMEGA
has one) that is updated with newly encountered fragments.
This would allow for overall faster calculations also for small
compound libraries where the current caching strategy does not
provide any significant speedup in the conformational sampling
process. The influence of the various setting parameters on the
efficiency of the two programs was much stronger with PDB
data set (Figure 7A). OMEGA was remarkably affected by the
rms parameter, showing again a faster sampling for rms = 0.2 Å
(HighAcc_4 andHighAcc_7 settings) and a substantial increase in
computation time when an rms value of 0.8 Å instead of 0.5 Å
was used (e.g., MedAcc_6 vs. HighAcc_1). On the contrary, this
effect was not observed for iCon, which was appreciably faster
than OMEGA for MedAcc_6 settings and seemed to be mostly
affected by the e-window value, in particular for the generation of
medium- and small-sized conformer ensembles. With LowAcc_1,
LowAcc_3, and MedAcc_1 settings, for which an e-window value
of 10 kcal/mol was used, iCon showed very similar calculation
times (from 0.456 to 0.516 s/cpd) although the average NOC
ranged from 17.5 to 102.2 compounds per ensemble, respectively
(see also Figure 3). Similarly, in LowAcc_2, LowAcc_4-6, and
MedAcc_2 settings the e-window was set to 15 kcal/mol and the
sampling time only ranged from 0.650 to 0.733 s/cpd even though
the average NOC was raised from 22.2 to 114.4 compounds
per ensemble. When larger ensembles were generated, the e-
window seemed to have a smaller impact on iCon’s efficiency
compared to the other parameters. These results also showed that
the improvement in iCon’s performance obtained by increasing
e-window of 5 kcal/mol was paid with an increase of computation
time of nearly 40% the for PDB data set. This makes LowAcc_4
andMedAcc_2 settings not really convenient for the sampling of
PDB-like molecules compared to the LowAcc_3 and MedAcc_1
settings, respectively. Anyway, MedAcc_1 showed to be a very
efficient setting for PDB ligands, requiring just a 12.7% longer
sampling time than LowAcc_3 but with much better results in
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FIGURE 6 | Distributions of TC score values as a function of the number of rotatable bonds for CSD (A) and PDB compounds (B). Distributions of RMSD values as a

function of the number of rotatable bonds for CSD (C) and PDB compounds (D).

FIGURE 7 | Average time required for the conformational sampling of PDB (A) and CDS (B) compounds with iCon and OMEGA, by using the different setting

patterns. Black vertical lines are used to separate the three different groups of settings.

terms of both RMSD and TC score values, making it suitable
not just for medium-sized databases but also for large ones,
despite the higher NOC generated. For the high accuracy settings,
HighAcc_3 seemed to have a good efficiency, giving results
nearly as good as HighAcc_5-6 but in less time (averagely
−31.6%).

Notes on Using the Reproduction Ability of

Crystallographic Conformations as a Performance

Measure
Before concluding the performance assessment of iCon it is worth
mentioning the induced folding problem, i.e., the structural
adaptation of the target protein to the ligand in order to
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form an optimal complex. The ligand-induced folding of the
target receptor, which can be observed particularly in flexible
protein such as tyrosine kinases after drug-target association,
is a well-known issue in drug design (Fernández, 2016). Due
to this effect, it is unlikely that the conformation of the target
protein remains unchanged upon interaction with different
ligands. Therefore, the target protein should not be considered
as a rigid body in structure-based drug design studies: the
flexibility of the corresponding target should be taken into
account in combination with the conformational space of the
ligand. However, the conformational flexibility of the protein
is usually studied through computationally expensive molecular
dynamic simulations which allow a thorough evaluation of the
conformational motion of both ligand and protein at the same
time. On the contrary, in docking studies the structure of the
protein is normally treated as a rigid body allowing at most just
a movement of residue side chains. Thus the conformational
sampling of the docking algorithm only considers the ligand as
flexible and largely neglects the adaption ability of the receptor.
Moreover, in pharmacophore modeling and pharmacophore-
based virtual screening, as well as in ligand-based similarity
approaches, the protein structure is not even considered except
for the generation of receptor-based pharmacophore models,
and in this latter case only a single conformation of the protein
is usually used. Therefore, all common conformer generators,
especially those used for virtual screening purposes such as iCon
and OMEGA, perform only the conformational sampling of
small molecules in a way that is totally independent from the
structure of any possible target protein. Indeed, there is no need
to consider the conformational variability of the protein because
it is intrinsically taken into account due to the fact that the output
of the conformer generation is not a single conformer of a drug-
like molecule but an ensemble of conformers that covers many
structurally different protein conformations. For this reason,
our performance assessment of iCon was only based on the
reproduction of experimental structures of small molecules, a
methodology that is widely used and reported in literature
(Hawkins et al., 2010; Miteva et al., 2010; O’Boyle et al., 2011;
Ebejer et al., 2012; Hawkins and Nicholls, 2012; Friedrich et al.,
2017).

CONCLUSIONS

In this study we report the algorithm of the novel conformer
generator iCon implemented in LigandScout 4.0 and the
assessment of its performance in comparison to OMEGA by
using two different data sets of high-quality crystal structures
from the PDB and CSD databases. We evaluated iCon’s efficacy
in reproducing the experimentally determined conformation of
the test compounds in terms of RMSD and TC score values for
20 different setting patterns and we compared the results with
those obtained with OMEGA using equivalent settings. The three
parameters changed in these setting patterns showed to affect the
size and the quality of the conformational ensembles generated
by iCon for the two data sets in a different manner. The results
indicate that in order to obtain an adequate sampling of the

conformational space, a max-num-conf lower than 50 should be
avoided, even for the generation of small ensembles. Moreover,
an e-window value not lower 15 kcal/mol is recommended to
improve iCon’s performance, but this might be paid with an
increase of computation time that might not be suitable for high-
throughput conformational sampling. An rms-thresh value of 0.5
Å showed to be quite appropriate for all kind of conformational
ensembles, even though some small adjustments based on the
molecular properties of the sampled compounds can lead to
better results. LowAcc_3-4 and MedAcc_1-2 settings proved to
be good for a high-throughput and average quality sampling,
while for a more thorough conformational analysis HighAcc_3-4
settings represent a better choice.

Compared to OMEGA, iCon showed its best performance
in the reproduction of crystallographic poses of less flexible
molecules through small conformational ensembles, slightly
outperforming OMEGA in the results obtained for CSD
compounds with low accuracy settings. With the CSD data set,
iCon yielded high quality results also when larger ensembles were
generated, showing a lower or equal number of failures with
respect to OMEGA for most of the setting patterns. Also, the
spreading of RMSD and TC score values proved to be extremely
similar. OMEGA is more effective in the sampling of ligands with
higher conformational freedom, since with PDB data set it always
produced better results than iCon, whose performance is more
influenced by the number of rotors of the sampled compounds.
However, the observed differences were still small, particularly
when settings yielding small conformational ensembles were
considered; also, such differences were primarily related to the
TC scores. OMEGA proved to be always slightly faster than
iCon, particularly in the conformer generation of PDB ligands
but, on the basis of its algorithm, iCon’s computation times
decrease when larger databases are sampled. Moreover, iCon
always showed to generate smaller conformational ensembles
than OMEGA for equivalent settings, which can speed up
any analysis based on iCon’s conformational sampling, like
pharmacophore modeling or virtual screening processes. Overall,
the study herein reported proved that iCon represents a solid
and well validated new conformer generator that comes free
of additional charge with LigandScout 4.0 and is seamlessly
integrated in all pharmacophore modeling and virtual screening
related workflows of LigandScout. For a further improvement of
iCon, the adoption of a different input molecule fragmentation
and terminal fragment caching strategy is planned. This will
not only speed up the conformer sampling process in general
but will also lead to better results when it comes to the
reproduction of bioactive conformations of larger and more
flexible molecules.
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The G protein-coupled bile acid receptor (GPBAR1) has been recognized as a promising

new target for the treatment of diverse diseases, including obesity, type 2 diabetes,

fatty liver disease and atherosclerosis. The identification of novel and potent GPBAR1

agonists is highly relevant, as these diseases are on the rise and pharmacological

unmet therapeutic needs are pervasive. Therefore, the aim of this study was to develop

a proficient workflow for the in silico prediction of GPBAR1 activating compounds,

primarily from natural sources. A protocol was set up, starting with a comprehensive

collection of structural information of known ligands. This information was used to

generate ligand-based pharmacophore models in LigandScout 4.08 Advanced. After

theoretical validation, the two most promising models, namely BAMS22 and TTM8,

were employed as queries for the virtual screening of natural product and synthetic

small molecule databases. Virtual hits were progressed to shape matching experiments

and physicochemical clustering. Out of 33 diverse virtual hits subjected to experimental

testing using a reporter gene-based assay, two natural products, farnesiferol B (27) and

microlobidene (28), were confirmed as GPBAR1 activators reaching more than 50%

receptor activation at 20µM with EC50s of 13.53µM and 13.88µM, respectively. This

activity is comparable to that of the endogenous ligand lithocholic acid (1). Seven further

virtual hits showed activity reaching at least 15% receptor activation either at 5 or 20µM,

including new scaffolds from natural and synthetic origin.

Keywords: GPBAR1, TGR5, pharmacophore, virtual screening, natural product, triterpene

INTRODUCTION

The G protein-coupled bile acid receptor 1 (GPBAR1), also commonly named M-BAR or
Takeda G-protein-coupled receptor 5 (TGR5), is a rhodopsin-like G protein-coupled receptor
(GPCR) expressed in various tissues. It is primarily present in the bile duct, digestive system,
spleen, and placenta. It is a cell-surface receptor comprising an extracellular N-terminus, an
intracellular C-terminus and seven trans-membrane helices connected by intra- and extracellular
loops. Its endogenous ligands are bile acids and neurosteroids. The binding pocket is predicted
to be located between the trans-membrane helices. Next to the transcription factor farnesoid
X receptor (FXR), GPBAR1 was the second receptor discovered to be responsive to bile acids
(Maruyama et al., 2002; Kawamata et al., 2003; Keitel et al., 2010; Gertzen et al., 2015).
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In the past decade, this receptor has attracted attention as
a potential drug target for a variety of pathologic conditions
(Hodge and Nunez, 2016), predominantly because GPBAR1
is a key receptor in the adjustment of energy expenditure
and glucose metabolism with possible implications for the
treatment of obesity and type 2 diabetes. Its activation in
enteroendocrine L-cells leads to the release of the incretins
peptide tyrosine tyrosine (PYY) and glucagon like peptide
1 (GLP1), which promote insulin secretion in the pancreas
and are important in the suppression of appetite (Woods
and D’Alessio, 2008; Bala et al., 2014). GPBAR1 activation in
pancreatic cells leads to an enhanced insulin secretion and a
recovery of β-cell mass and function switching from glucagon
to GLP1 (Kumar et al., 2012, 2016). In striated myocytes and
brown adipocytes, GPBAR1 activation leads to thyroid hormone
activation. In white adipocytes it mediates remodeling into
beige cells and improves mitochondrial dynamics and cellular
respiration rate (Watanabe et al., 2006; Velazquez-Villegas et al.,
2018). Moreover, endothelium- and liver-protecting, as well as
immunosuppressing effects offer perspectives for new therapies
for diseases like atherosclerosis and inflammatory liver diseases
(Keitel et al., 2007, 2008; Keitel and Haussinger, 2011; Pols et al.,
2011; Asgharpour et al., 2015). Unusual for GPCRs, the GPBAR1
seems to only transfer signaling via G proteins and not via
β-arrestins (Jensen et al., 2013).

In animal trials, GPBAR1 agonists showed promising results,
however, difficulties have also been encountered since GPBAR1
agonists may induce itching and gallbladder extension (Vassileva
et al., 2006; Alemi et al., 2013). Interestingly, gallbladder
extension upon GPBAR1 activation is mainly caused by smooth
muscle relaxation via induction of the cAMP–PKA pathway
independent of the agonist scaffold (Lavoie et al., 2010; Li
et al., 2011). The plethora of GPBAR1-mediated biological
functions appears to be an obvious opportunity, but a major
drawback at the same time (Vassileva et al., 2006; Alemi et al.,
2013; Hodge and Nunez, 2016). Novel agonistic scaffolds may
incorporate a different and possibly more favorable side effect
profile in terms of receptor and functional selectivity as well
as pharmacokinetic properties. In this sense there is a demand
for new GPBAR1 ligands as they may help to cope with
pharmacologically unmet therapeutic needs against metabolic
diseases.

Beside bioassay-guided fractionation of plant extracts (Sato
et al., 2007), bioisosteric replacement (Park et al., 2014), and
exploitation/lead optimization of bile acid scaffolds (Pellicciari
et al., 2009), previous efforts in the discovery of GPBAR1
modulators have focused on high throughput screening
(HTS) (Evans et al., 2009; Herbert et al., 2010; Londregan et al.,
2013; Martin et al., 2013) leading to a broad range of agonists of
which some are depicted in Figure 1.

Chenodeoxycholic acid (CDCA, 3) is a primary bile acid,
which activates both GPBAR1 and the nuclear receptor FXR.
By bacterial dehydroxylation, CDCA is transformed into the
more potent lithocholic acid (LCA, 1). The bile acid’s potency on
GPBAR1 can be further increased by conjugation with glycine
or taurine, whereas taurine-conjugated lithocholic acid (TLC)
is the most potent endogenous ligand (Sato et al., 2008). Lead

optimization of the bile acid scaffold led to INT-747 (4), an
approved drug for the treatment of primary biliary cholangitis
and dual agonist of GPBAR1 and FXR as well as INT-777 (2), a
more selective GPBAR1 agonist (Pellicciari et al., 2009; Fiorucci
et al., 2014; Floreani and Mangini, 2018). Beside bile acids,
several secondary plant metabolites activate this receptor (5-8).
The antidiabetic effect of e.g., Olea europaea L. leaves may be
linked to GPBAR1 activation by its major constituent oleanolic
acid (6) (Sato et al., 2007). Moreover, HTS and extensive SAR
efforts gave access to a large range of synthetic compounds
activating this receptor in the nanomolar and low micromolar
range (9-12).

Absence of a crystal structure of GPBAR1 forced researchers to
rely either on homology models or ligand-based approaches for
in silico studies, as this is the case for most GPCRs (Peeters et al.,
2011; Vaidehi et al., 2014). Several GPBAR1 homology models
have been described up to now. They all represent fundamentally
different bile acid binding poses, but none of them is able to
cover all results from mutagenesis studies (Macchiarulo et al.,
2013; D’Amore et al., 2014; Gertzen et al., 2015; Yu et al., 2015).
This prompted us to develop a ligand-based approach using
pharmacophore modeling for the identification of new GPBAR1
agonists.

Pharmacophore modeling and subsequent virtual screening
(VS) is a well-established method in the early drug discovery
process showing some important benefits: (1) pharmacophore
screening can retrieve ligands with structurally diverse
scaffolds and allows for so called “scaffold-hopping”; (2) it
can automatically and rapidly filter large compound libraries;
(3) ligand-based pharmacophore VS has been able to retrieve
satisfactory results, also without structural information on the
target (Evers et al., 2005; Ha et al., 2015; Akram et al., 2017).
Here, we report on the construction of two ligand-based 3D
pharmacophore models, their in silico and in vitro validation,
and the directed discovery of sesquiterpene coumarins as a new
class of potent GPBAR1 agonists.

MATERIALS AND METHODS

Software
The generation of pharmacophore models, their subsequent
refinement and VS was performed with LigandScout 4.08
Advanced, available by Inte:Ligand GmbH (Wolber and
Langer, 2005). The conformational libraries for both
pharmacophore modeling and the VS process were created
with i:Con, LigandScout’s implemented conformer generator
(Friedrich et al., 2017). Shape comparison was performed
with OpenEye’s ROCS 3.2.1.4 (Hawkins et al., 2007; OpenEye,
2016). 2D structures were drawn with ChemDraw Professional
15.0.

Data Sources
For model generation in LigandScout, structural data of GPBAR1
ligands with bioactivity annotations were collected. The data for
GPBAR1 available in the ChEMBL database was extracted on
March 15th 2016. It consisted of 24 different publications with
623 reported EC50 values (Bento et al., 2014). The reliability of the
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FIGURE 1 | Chemical structures of examples for GPBAR1 agonists.

content was checked with the original literature. This molecule
set was extended by extracting data from another 18 publications,
24 patents and previous in house projects, resulting in a total of
1025 activity annotations.

Decoy Set
For the experimental validation of pharmacophores, next to a
set of active molecules, also a set of inactive molecules and/or
a set of decoys is necessary (Schuster et al., 2006). In contrast
to true inactives, which are molecules reported in the literature
not to be active at the target, decoys are hypothetical structures,
which are unlikely to show activity at the target, but have not
yet been tested experimentally. Due to the shortage of published
negative data and therefore the presence of only a small set of
reliably tested inactive compounds, a set of decoys was generated
using the Dude decoys database (http://dude.docking.org/): 338
molecules from the “High Actives” dataset was submitted to the
DUDE decoy online generator (Mysinger et al., 2012) to obtain
decoys with similar 1D physicochemical properties but dissimilar
2D topology in comparison to the active compounds. Using
this strategy, a “Decoy” set comprising 18 043 substances was
created.

Conformational Sampling, Ligand Set
Clustering
The “High Actives,” “Decoys,” and “True Inactives” sets were
transferred into multi-conformational databases via i:Con
with the default “BEST” settings [Timeout (s): 600, RMS
threshold: 0.8, energy window: 20.0, max. pool size: 4,000, max
fragment build time: 30, max number of conformers: 200].
The 338 compounds of the “High Actives” set were clustered
in LigandScout 4.08 using the implemented pharmacophore
clustering tool. The tool clusters molecules with similar
pharmacophore characteristics in the dataset: It generates
pharmacophores for each molecule in the dataset for a
desired number of conformations. The similarity of these
pharmacophores is measured with the cosine similarity (value
between 0 and 1) of their radial distribution function score
(RDF) vectors. Options, distance 0.9 and cluster distance
calculation method “maximum” with three conformations for
each molecule, were used.

Pharmacophore Generation
With LigandScout pharmacophores can be generated as
shared or merged feature pharmacophores. A shared feature
pharmacophore only appoints common features observed
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during 3D alignment of the validation set molecules. A merged
feature pharmacophore merges several shared pharmacophores.
Features, which are not shared by the whole validation set, are
appointed as optional. The initial pharmacophore model for
cluster 7 was built as a shared feature pharmacophore with six
molecules as templates using “pharmacophore fit and atom
overlap” as the scoring function. The initial model for cluster
12 was built as a merged feature pharmacophore with four
molecules as templates using “pharmacophore fit and atom
overlap” as the scoring function. The models were refined and
theoretically validated until favored theoretical performance was
achieved.

Theoretical Validation
For theoretical validation, the scoring function was set to
“pharmacophore-fit,” the screening mode to “match all query
features” with maximum number of omitted features zero. To
assess the performance of the individual models, the resulting
hit list were used to calculate common enrichment metrics, as
comprehensively outlined in a review by Seidel and coworkers
(Seidel et al., 2010).

Virtual Screening
Several freely available molecular structure databases
were deployed for VS, having a strong focus on NP. The
conformational libraries were generated with i:Con (Friedrich
et al., 2017). Depending on the size of the database the
recommended “BEST” or “FAST” settings were used (Table 1).
For VS, the same settings were used as in the theoretical
validation, although the retrieval method “get best matching
conformation” was used.

Hit List Prioritization
A principal component analysis using the chemGPS online
tool (Larsson et al., 2007) was determined and a hierarchical
cluster analysis with SIMCA facilitated the assignment of the
compounds into 9 groups, each inhabiting a different chemical
space. For clustering, the default Ward’s minimum variance
agglomerative clustering algorithm for the quantitative first three
chemGPS principal components, PC1, PC2, and PC3, were used.
A molecule’s size, polarizability and shape are characterized by
PC1, while PC2 describes its aromatic and conjugation-related
properties and PC3 corresponds to its lipophilicity, polarity, and
hydrogen bond (HB) capacity. Shape-focused VS was performed
with Open Eye ROCS to retrieve a TC score, which combines a
shapematching with a chemistry alignment Tanimoto score. This
scoring function assesses the goodness of the alignment between
the query and the candidate molecules. ComboScore puts
exactly equal weights on both of its components, a shape-based
scoring function and a function considering pharmacophore-like
chemical pattern matching. Theoretically, the TC score can lie
between 0 and 2 (Hawkins et al., 2007; OpenEye, 2016). The
best fitting conformation of 13 derived from the alignment with
model BAMS22was used as query with the ROCS default options.
The PAINS filters of the FAF-Drugs 4 online tool were applied to
identify potential promiscuous hitters.

In Vitro GPBAR1 Activity and Statistical
Analysis
In vitro evaluation of the selected hit list was performed
with a reporter gene-based luciferase assay in HEK 293T cells
(obtained from ATCC, USA), which was described previously
(Ladurner et al., 2017). Cells were grown and maintained in

TABLE 1 | Screened databases with content type (origin of molecules) and size (number of molecules), their source and the used standard settings for conformer

generation with i:Con.

Database Number of molecules Type Source Settings

Analyticon-MEGx 4,355 NPs Analyticon http://www.ac-

discovery.com/

Best settings

Analyticon-Triterpenes 409 NPs Analyticon http://www.ac-

discovery.com/

Fast settings

Drugbank 6,863 Approved/

trialed drugs

DrugBank 4.5 http://www.

drugbank.ca/

Fast settings

In house database

Department of

Pharmacognosy;

University of Vienna

1,152 NPs In house (Update 2016) Fast settings and best

settings

NPDB 115,275 NPs (Rollinger et al., 2004) Fast settings

NuBBE 1,628 NPs (Valli et al., 2013) http://

nubbe.iq.unesp.br/portal/

nubbedb.html

Best settings

SPECS NP 871 NPs SPECS http://www.

specs.net/

Fast settings

SPECS SC 212,446 Synthetic

compounds

SPECS http://www.

specs.net/

Fast settings

TCM-Taiwan 35,993 NPs (Chen, 2011) http://tcm.

cmu.edu.tw/

Fast settings
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Dulbecco’s modified eagle medium (DMEM) without phenol
red with 10% heat-inactivated fetal bovine serum (FBS),
4.5 g/L glucose, 2mM glutamine, 100 U/mL benzylpenicillin,
and 100µg/ml streptomycin. During the experiments, charcoal-
strippedmediumwith 5% FBS was used. 6× 106 cells were grown
in 15 cm dishes for 19 h and then transiently transfected using the
calcium phosphate method with 5 µg of a GPBAR1 expression
plasmid and 5 µg of a CRE-Luc plasmid. For later normalization,
3 µg of an EGFP expression plasmid was co-transfected. Control
experiments were performed with cells transfected only with 3µg
EGFP and 5µg CRE-Luc plasmids. After 6 h, transfected cells
were reseeded to 96 well plates (5× 104 cells/well) and incubated
with 5µM and 20µM compound dilutions, respectively, for
18 h. 0.1% DMSO served as vehicle control and 10µM LCA
as positive control. After incubation the medium was removed,
and the plates were immediately frozen at −80◦C. Plates were
kept frozen for at least 1 h to facilitate lysis and measurements
were performed in the following 10 days. For the measurement,
cells were thawed, lysed and transferred to black 96-well plates.
After addition of ATP and luciferin, emitted luminescence and
fluorescence was measured with a Tecan Infinite 200 PRO
plate reader (Tecan, Austria). GPBAR1 activity was expressed
as fold activation compared with the solvent control (0.1%
DMSO) or as % activation compared to the positive control
10µM LCA (arbitrary 100% activation). The measured relative
luciferase units (nRLU) were normalized to the transfected
cell mass expressed as EGFP-derived relative fluorescence units
(RFU) from at least three independent experiments (mean
values ± standard error mean) performed in quadruplicate.
Quantified EGFP-derived fluorescence was used as an indicator
for transfected cell mass and thus used to assess the compounds’
cytotoxicity. Compounds, which resulted in significantly lower
RFU values than the control, were considered as cytotoxic. For
statistical analysis GraphPad Prism 4.03 was used. Statistical
significance was assessed by One Way ANOVA and Bonferroni
post-test (∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, ns not significant).
Non-linear regression was used to calculate EC50 values with the
sigmoidal dose response (variable slope) settings.

Compounds and Chemicals
Hederagenin (CAS#465-99-6) and bayogenin (CAS#80368)
were ordered from Phytolab (Germany). 2,3-O-isopropylidenyl-
euscaphic acid (CAS#220880-90-0) was ordered from Proactive
Molecular Research (USA). Phytolaccoside B (CAS#60820-
94-2) and euscaphic acid (CAS#53155-25-2) was purchased
from Cambridge Chemicals (USA). Phytolaccagenic acid
(CAS#54928-05-1) and 16-dehydropregnenolone (CAS#1162-
53-4) were obtained from Carbosynth (UK). Spironolactone
(CAS#52-01-7) and methylhyoxycholate (CAS#2868-48-6) were
purchased from TCI Deutschland GmbH (Germany). The
screening compounds (CAS#1019061-83-6, CAS#303139-94-
8, CAS#330636-58-3, CAS#353253-76-6, CAS#353779-79-0,
CAS#432530-00-2, CAS#444931-63-9, CAS#496937-29-2,
CAS#791840-52-3, CAS#902244-06-8, CAS#915930-57-3,
CAS#932954-51-3, CAS#352644-32-7, CAS#500218-51-9,
CAS#314757-83-0, CAS#380633-89-6, CAS#26179-09-9,
CAS#664993-86-6, CAS#525577-20-2) were obtained from

SPECS (Netherlands). Microlobidene (CAS#89783-66-4)
and farnesiferol B (CAS#54990-68-0) were available from a
previous project (Rollinger et al., 2008). Nordihydroguaretic acid
(CAS#500-38-9) was purchased from Fluka (Switzerland). The
positive controls LCA (CAS#434-13-9) and CDCA (CAS#474-
25-9) were obtained from Sigma Aldrich (Austria). Alphitolic
acid (CAS#19533-92-7), was obtained by hydrolysis from a
previously isolated saponin (Mair et al., 2018). The purity was
checked using UPLC-PDA-MS and determined as ≥ 98% for
compounds 20, 21, 23, 24, 28, 30-35, 37, 40, 41, 44-46, 48, 49,
and 52. For all other compounds it was between 90 and 98%.
MS and NMR data of all in house compounds (27, 28, 52) are
provided in the literature (Rollinger et al., 2008; Mair et al., 2018)
and the Supplementary Information (Supplementary Figures
4–10).

Cell Culture Reagents and Plasmids
DMEM, L-glutamine, benzylpenicillin and streptomycin were
purchased from Lonza, (Switzerland), FBS, and trypsin were
obtained from Gibco via Invitrogen (Austria). The GPBAR1
transcript variant 3 (NM170699) plasmid was obtained from
Origene via Biomedica (Vienna, Austria). The CRE-Luc plasmid,
(pGL4.29[luc2P/CRE/Hygro), luciferase assay system and used
lysis buffer were ordered from Promega (Germany) and the
EGFP (pEGFP-N1) plasmid was purchased from Clontech
(USA).

RESULTS AND DISCUSSION

Workflow
The workflow of this study is divided into 3 levels, as depicted
in Figure 2: (1) Literature search for the compilation of a
database of known GPBAR1 actives and inactives to be split
and used as pharmacophore training set and a validation set for
theoretical validation; The generation of a pharmacophore model
collection with LigandScout and the subsequent theoretical
validation. (2) VS of multi-conformational databases consisting
of structures of natural and synthetic compounds (Table 1) using
the two most promising models as queries; Evaluation of the hit
list applying shape-based screening and physicochemical space
clustering of virtual hits. (3) Selection of 33 virtual hits and
their experimental validation in a HEK 293T cell based luciferase
assay.

Pharmacophore Modeling
A pharmacophore model is the abstract three dimensional
representation of the molecular interactions between a target
and a ligand structure, which is reduced to a collection of
steric and chemical features that are necessary to trigger a
desired pharmacological effect. The quality of a ligand-based
pharmacophore model strongly relies on the selection of training
set molecules. Therefore, it is mandatory to strictly select only
highly potent activators for the training and validation sets
(Seidel et al., 2010). In the case of GPBAR1, available bioactivity
data were not only obtained by different working groups, but
also with different cellular assays. This raised concerns about
direct data comparison among the used assays. Only ligands
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FIGURE 2 | Workflow of model generation, VS and experimental validation.

FIGURE 3 | Databases used for the generation and validation of the pharmacophore models: Molecules with reported or measured GPBAR1 agonistic activity were

gathered into a comprehensive “Database”. Compounds with low or not assignable bioactivities were discarded. The “High Actives” dataset was grouped into 12

clusters using LigandScout’s pharmacophore clustering tool. The two best-performing models were derived based on training sets from clusters 7 and 12. The

clusters were further used to generate validation sets for corresponding models.

tested clinically or with a reported activity, which was proven
to be both potent and directly comparable to respective positive
controls, were therefore used in this study. Subsequently, 428

of 815 compounds had to be discarded. The remaining 338
compounds formed the “High Actives” dataset. 49 compounds
were categorized as “True Inactives.” The data handling used

Frontiers in Chemistry | www.frontiersin.org 6 July 2018 | Volume 6 | Article 242279

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Kirchweger et al. GPBAR1 Activating Natural Products

as basis for the generation of the ligand-based phamacophore
models is illustrated in Figure 3.

A pharmacophore model built of several query compounds
binding at different ligand binding sites to the target protein
would clearly distort the quality of such a model and
devastate its predictive power. Therefore, the “High Actives”
dataset compounds were divided into 12 clusters using the
pharmacophore clustering tool implemented in LigandScout.
Cluster 1 was discarded as it only consisted of one compound.
The remaining 11 clusters contained between 11 and 80
molecules and were separated each into test and validation
set.

Out of the retrieved 11 cluster sets, 12 pharmacophore
models were generated. Altogether, in parallel screening, these
models were able to predict 275 of 338 compounds (81%) in
the “High Actives” database as true positives. However, a high
number of false positives were retrieved, when the models were
screened against the “Decoys” and “True Inactives” databases.
This resulted in poor metrics of this entire model collection’s
enrichment factor (EF = 11.22). Two models, which were
based on the pharmacophores of natural products, showed
promising metrics and were selected for the prospective VS and
experimental validation. The first model, BAMS22, was based
on a training set of 6 molecules (depicted in Figure 4) resulting

from cluster 7. They had been selected for covering nearly the
whole physicochemical space and for incorporating most of the
structure-activity information contained in cluster 7. BAMS22
was used for VS of the “Decoys”/“True Inactives” (n = 18.112)
databases and the cluster 7 validation set (n= 20), which resulted
in a specificity of 1 (0.998785) and a sensitivity of 1, achieving an
EF of 823.3. Along with the molecules from cluster 7, the potent
ligand TLC from cluster 12 was retrieved as highly ranked virtual
hit.

The BAMS22 model consists of two mandatory hydrophobic
features, two mandatory HB acceptor features, an optional
HB donor, an optional hydrophobic, and an optional
negatively ionizable feature, as well as a rigid exclusion
volume coat. In agreement to the TLC binding predictions and
experiments of Gertzen and coworkers (Gertzen et al., 2015), our
pharmacophore model, although not based on the homology
model’s input information, depicts a very similar interaction
pattern (Figure 5). Gertzen stated that the 3-hydroxyl moiety
of TLC forms a HB to E169 and Y240, the sulfonic acid group
forms a salt-bridge to R79 and hydrophobic interactions appear
with L244. All of these statements were underlined with alanine-
scanning experiments and are in accordance with our model.
The model also suggests a second important HB interaction
with the C-24 carboxamide group of TLC (Figure 5C), as well

FIGURE 4 | Chemical structures of training compounds for the generation of the pharmacophores BAMS22 (blue molecules) and TTM8 (green molecules).
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as with the C-24 hydroxyl group of 14, or in the case of 16
with the C-20 keto group. The hydrophobic interactions were
placed where hydrophobic alignment was possible. Although the
model showed a very high specificity, it only consisted of four
mandatory pharmacophore features, two HB accepting and two
hydrophobic features, a widespread pattern of pharmacophore
features. Therefore, not only steroid-like structures can putatively
be retrieved in the prospective VS.

It is questionable whether triterpenes and bile acids share
the same binding mode, as it was not possible to generate a
restrictive pharmacophore model incorporating both scaffolds,
although the binding modes appear to be very similar. It is likely
that they have a different binding mode within the same binding
position. Therefore, it was preferred to explain the steroidal
structures with two highly specific local models and not with
a single global model. It has previously been acknowledged
for the identification of cyclooxygenase inhibitors that a set of
highly specific local models leads to lower false positive hit

rates, compared to one pleiotropic global model (Schuster et al.,
2010).

The second model, TTM8 is based on a training set of 4
molecules (Figure 4) from cluster 12. The model consists of 4
mandatory hydrophobic, two mandatory HB acceptor features,
and a mandatory negatively ionizable feature (Figure 5). TTM8
was theoretically validated against the set of “Decoys”/”True
Inactives” datasets (n = 18,112) and the cluster 12 validation set
(n = 16), and showed a specificity of 1 and sensitivity of 0.81,
achieving an EF of 919.5.

Genet and co-workers (Genet et al., 2010) were the first
evaluating the SAR of triterpenes on the GPBAR1 receptor. They
concluded that essential features for agonistic activity are a 3α-
hydroxyl group, a carboxyl group in position 17α, and a rigid
pentacyclic scaffold, in the best case a lupane backbone with
high lipophilicity. Further publications regarding triterpenes are
scarce, although some have shown higher selectivity over FXR
and higher potency on the GPBAR1 than bile acids. Therefore,

FIGURE 5 | Representation of the pharmacophore model BAMS22 aligned to TLC in 3D with exclusion volume spheres (A), without exclusion volumes (B) and in 2D

(C). Depiction of TTM8 aligned to oleanolic acid (6) in 3D with exclusion volume spheres (D), without exclusion volumes (E) and in 2D (F) The gray spheres in A,D

depict so-called exclusion volumes reflecting steric hindrances. The colored spheres represent the pharmacophore features, explained at the bottom, whereby

opaque spheres represent mandatory features and spheres with light shading optional ones. In the 2D graphs (C,F), HB features are illustrated as dashed arrows,

hydrophobic features as yellow circles and negatively ionizable features as red marks with red bolts attached.
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TABLE 2 | Results of the experimental validation of the virtual hits tested at 5µM and 20µM, the pharmacophore fit score (PF), the TC score (calculated in OpenEye

ROCS with 13 as a query), the model with which they were predicted and their underlying database.

Compound Database predicted by

BAMS22

predicted

by TTM8

PF score TC score Activity (at 5µM) Activity (at

20µM)

20 SPECs X 45.31 0.873 2.34% (± 1.40) 1.74% (± 1.36)

21 SPECs X 56.55 0.913 Not evaluable neither at 5µM nor 20µM, due to

cytotoxic properties

22 SPECs X 46.23 0.703 1.42% (± 1.39) −0.06% (± 0.39)

23 SPECs X 56.31 0.720 1.69% (± 1.01) 11.00% (± 4.15)

24 SPECs X 46.23 0.703 4.75% (± 1.51) 6.12% (± 2.01)

25 SPECs X 45.24 0.627 1.16% (± 0.35) 0.70% (± 0.54)

26 SPECs X 45.08 0.701 0.47% (± 1.82) 0.58% (± 0.89)

27 In house X 46.39 0.737 4.70% (± 1.99) 60.85% (± 20.05)

28 In house X 56.72 0.726 5.07% (± 1.36) 83.81% (± 12.00)

29 SPECs X 46.23 0.783 1.54% (± 0.91) 1.65% (± 0.69)

30 SPECs X 47.83 0.860 −0.60% (± 0.36) 0.92% (± 0.67)

31 SPECs X 46.32 0.806 −0.31% (± 0.38) 0.88% (± 1.69)

32 SPECs X 57.09 0.877 3.00% (± 0.58) 19.45% (± 6.00)

33 SPECs X 56.50 0.801 0.98% (± 1.13) 1.00% (± 0.18)

34 SPECs X 65.59 0.773 −0.02% (± 0.14) 9.27% (± 2.62)

35 SPECs X 46.2 0.777 −0.06% (± 0.44) 3.10% (± 0.46)

36 SPECs X 46.15 0.821 1.07% (± 0.10) 0.34% (± 0.18)

37 SPECs X 46.28 0.838 0.33% (± 0.63) 3.87% (± 1.89)

38 SPECs X 45,25 0.810 1.67% (± 2.54) Not evaluable at

20µM, due to

cytotoxic

properties

39 SPECs X 46.14 0.774 2.63% (± 0.69) 2.45% (± 1.42)

40 In house X 46.16 0.783 −0.13 (± 0.31) 1.72% (± 0.90)

41 NPDB X 65.87 0.664 3.73% (± 2.99) 4.35% (± 1.28)

42 TCM-DB X 73.71 0.662 3.76% (± 1.67) 8.78% (± 3.87)

43 NPDB X 73.16 0.815 3.23% (± 0.86) 26.28% (± 2.18)

44 NPDB X 73.41 0.779 3.45% (± 4.66) 22.19% (± 15)

45 NPDB X 55.93 1.222 5.20% (± 2.42) 22.58% (± 0.74)

46 drugbank X 46.71 0.938 12.80% (± 6.60) Not evaluable at

20µM, due to

cytotoxic

properties; at 15

µM: 17.34% (±

0.91)

47 NPDB X 56.19 0.954 Not evaluable neither at 5µM nor 20µM, due to

cytotoxic properties

48 NPDB X 68.54 1.611 1.13% (± 0.77) 23.22% (± 5.29)

49 In house X 72.75 0.896 1.99% (± 1.07) 12.08% (± 6.51)

50 In house X 73.53 0.897 12.69% (± 5.33) 35.95% (± 2.37)

51 In house X 72.75 0.864 −1.39% (± 1.17) Not evaluable at

20µM, due to

cytotoxic

properties

52 In house X 73.88 0.822 29.79% (± 10.79) Not evaluable at

20µM, due to

cytotoxic

properties

Vehicle control (0.1% DMSO) 0%

LCA (1) (10µM) 100%

CDCA (3) (50µM) 66.69% (± 8.72)
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a cherry-picking pharmacophore model, highly sensitive to these
pentacyclic triterpene acids, was created. It can be considered
as a highly suitable filtering tool with a high applicability in
in silico assisted NP research as previously reported e.g., for
pharmacological profiling of secondary metabolites or target
identification of NPs (Schuster, 2010; Waltenberger et al., 2011;
Grienke et al., 2015; Kratz et al., 2016).

Prospective Virtual Screening and Hit
Selection
A prospective VS was performed with the two pharmacophores
against over 350,000 molecules from nine different databases
(Table 1). After removing duplicates, 1,069 virtual hits were
obtained and clustered according to physicochemical diversity
into 9 groups (Figure 6). As obvious from Figure 6, groups 1 and
2 differ from the other groups on a very early hierarchical level.
The main structural difference of these two groups compared
to the others is that they comprise synthetic compounds and
NPs with aromatic rings, more conjugated double bonds and
heteroatoms, while groups 3–9 consist of steroidal structures,
reaching from cardenolides, pregnanes, bile acids to steroids
and triterpenes. The most interesting molecules, in terms of
structural diversity, are found in groups 1 and 2, as they comprise
scaffolds dissimilar to the query molecules of the underlying
pharmacophore models.

For prioritization of virtual hits to be experimentally tested
a ranking was performed using shape-focused VS employing
the ROCS Tanimoto Combo (TC) score (Hawkins et al., 2007;
OpenEye, 2016). For this purpose best matching conformations
derived from the pharmacophore-based VS were aligned with
query molecule 13. Hit selection considered a high TC score,
but also compound availability in sufficient purity, and structural
variance. Finally, 33 compounds were subjected to experimental
validation (Table 2): 11 compounds had been clustered in

groups 4–9 (Supplementary Figure 3), 9 compounds in group
1 (Supplementary Figure 1), and 13 compounds in group 2
(Supplementary Figure 2).

Biological Evaluation
GPBAR1 activity of selected hits (Supplementary Figures
1–3) was determined in a reporter gene-based luciferase
assay performed in HEK 293T cells. This assay assesses the
upregulation of the cAMP-PKA-CREB pathway upon GPBAR1
activation and all conclusions are therefore limited to this
receptor pathway. Compounds were considered active when
they achieved at least 50% receptor activation. Compounds
reaching at least 15% receptor activation were counted as weak
activators. The response to 10µM LCA was set to 100% receptor
activation. Vehicle control with a final dimethylsulfoxide
(DMSO) concentration of 0.1% was set to 0% activation. Initially,
compounds were tested at 2 concentrations, i.e., 5µM and
20µM. From the 33 compounds, only two (47 and 50) were
cytotoxic in both concentrations tested. From the remaining
31 compounds, two showed significant activity with more than
50% receptor activation at 20µM and six further compounds
achieved more than 15% receptor activation either at 5µM
or 20µM (Table 2). Compounds 22, 24, 30, 34-36, and 41

were identified as potential pan-assay interference substance
(PAINS) but none of them showed activity in the experimental
validation. At 5µM, only one compound (52) achieved the
arbitrary threshold of 15% receptor activation. Spironolactone
(46) an approved drug for the treatment of heart failure, showed
17.3 % receptor activation at 15µM. Table 2 gives an overview of
the experimental results.

As a result of this screening, the sesquiterpene coumarins 27
and 28 were discovered to be potent activators of the GPBAR1
receptor, which corroborated the scaffold-hopping competence
of BAMS22. The two compounds are present in the gum resin

FIGURE 6 | Hit list clustering into 9 groups and chemical space analysis of virtual hits. Left: Hierachical cluster analysis dendrogram with Ward’s clustering technique

using the first three chemGPS (Larsson et al., 2007) calculated principal components (PC1, size; PC2, aromaticity; PC3, lipophilicity) as parameters. The linkage

distances were expressed as Euclidean distances. The height of the branches is similar to the distance of each node. Right: The chemical space analysis of the hit list

with molecules colored according to their groups. The position of each virtual hit is defined by its calculated chemGPS principal components.
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of Ferula assa-foetida L., used in central Asia as spice and
medicine. The concentration response curves for 27 and 28 were
determined and are shown in Figure 7. Compounds 27 and 28

were cytotoxic in transfected HEK cells at concentrations higher
than 27.5 and 22.5µM, respectively. Due to this limitation the
determination of Emax values could not be accurately determined
in this assay. Accordingly, the analyzed fold activations and
extrapolated EC50 values of 27 and 28 are limited to the
non-cytotoxic concentration-response range and may not be
completely accurate. Although limited by these constraints,
farnesiferol B (27) showed 10.54 ± 2.25 fold activation at 20µM

(60.85% ± 20.05) and an EC50 of 13.53µM. Microlobidene
(28) achieved 16.21 ± 1.64 fold activation at 20µM (83.81%
± 12.00) and an EC50 of 13.88µM. Whether the differences in
sigmoidal slopes of LCA (1) and the newly identified ligands 27
and 28 are due to different interaction modes warrants further
investigations. In the same assay the endogenous ligand CDCA
only reached a fold activation of 11± 1.05 at 50µM. The positive
control LCA (1) reached 18.59 ± 0.97 fold activation at 10µM
and 20.19 ± 3.77 at 30µM. The activity of compounds 27 and
28 can therefore be regarded as in the range of endogenous bile
acids.

FIGURE 7 | (A) Concentration-dependent increase of GPBAR1 activity in response to LCA (1), farnesiferol B (27) and microlobidene (28). HEK-293 cells were

transfected and stimulated as described in the Methods section. Luciferase activity was normalized to EGFP-derived fluorescence. Results are expressed as fold

induction compared with the solvent control (DMSO, 0.1%) as the mean with SEM of at least three independent experiments. The two highest concentrations of 27

are the mean of two independent experiments. GraphPad Prism’s non-linear regression with the sigmoidal dose response settings (variable slope) was used to

calculate curves. (B) Fold activation of compounds 1 (10µM), 27 and 28 (20µM) in comparison to vehicle control 0.1% DMSO in (left) GPBAR1 transfected cells and

(right) GPBAR1 untransfected cells. HEK 293T cells were transfected with GPBAR1, EGFP and CRE-Luc expression plasmids (left), or with EGFP and CRE-Luc

expression plasmids only (right). Cells were treated for 18 h with 20µM of 27 and 28 as well as 10µM LCA (1) as positive control and 0.1% DMSO as vehicle control.

Luciferase activity was normalized to EGFP-derived fluorescence. Results are expressed as fold induction compared with the solvent control (0.1% DMSO). All given

values are the mean of at least 3 independent experiments and the variance is given as SEM. Significance was evaluated with one-way ANOVA-Bonferoni post-test

(***p < 0.001; **p, < 0.01; ns, not significant vs. vehicle control).
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Many NPs are well-known PAINS or frequent hitters (Baell,
2016). In order to prevent such unintentional false-positive
results, the experiments with the two GPBAR1-activating NPs
have been repeated without transfecting GPBAR1. EGFP and
CRE-Luc plasmids have been transfected as usual with the
same concentrations. In these control experiments, none of the
compounds showed a significant increase in luminescence values.
In contrast to that, the increase in luminescence in GPBAR1
transfected cells in response to the positive control LCA (1), as
well as to compounds 27 and 28, was significant, confirming a
direct interaction with GPBAR1 (Figure 7).

CONCLUSION

The two presented 3D pharmacophore models have proven their
quality as VS queries, both theoretically and experimentally.
The combined computational and experimental efforts led to
the successful identification of novel GPBAR1 agonists with
unreported scaffolds derived both from nature (27 and 28)
and from synthetic origin (32). They not only enlarge the
chemical diversity of receptor activators, but can also be
promising starting points for SAR and further optimization. It
is also the first study reporting the activity of spironolactone
(46) on GPBAR1, highlighting the possibility that already
approved drugs may interact with GPBAR1. The elucidation
of the mechanism underlying the GPBAR1 activation by these
compounds may be an interesting starting point for further
research. The physicochemical clustering process enabled a
scaffold rich hit selection and a solid predictive power, with 6.5%
correctly predicted strong activators and 18.8% weak activators,
recommending the presented workflow for future works. The

study shows that the two models in combination are qualified
for their application in the future assessments of a molecules’
GPBAR1 activating profile, in particular for the assessment of
NPs, as the models comprise scaffolds that are widespread in
nature. This is particularly helpful for increasing our insight into
the molecular mechanism of traditionally used herbal remedies
with complex compositions of secondary metabolites. A fast
appraisal of their pharmacological profile can give direction
and fast-forward research (i.e., pinpointing most promising
constituents), alongside reducing expenses.
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Molecular similarity is a key concept in drug discovery. It is based on the assumption that

structurally similar molecules frequently have similar properties. Assessment of similarity

between small molecules has been highly effective in the discovery and development of

various drugs. Especially, two-dimensional (2D) similarity approaches have been quite

popular due to their simplicity, accuracy and efficiency. Recently, the focus has been

shifted toward the development of methods involving the representation and comparison

of three-dimensional (3D) conformation of small molecules. Among the 3D similarity

methods, evaluation of shape similarity is now gaining attention for its application not only

in virtual screening but also in molecular target prediction, drug repurposing and scaffold

hopping. A wide range of methods have been developed to describe molecular shape

and to determine the shape similarity between small molecules. The most widely used

methods include atom distance-based methods, surface-based approaches such as

spherical harmonics and 3D Zernike descriptors, atom-centered Gaussian overlay based

representations. Several of these methods demonstrated excellent virtual screening

performance not only retrospectively but also prospectively. In addition to methods

assessing the similarity between small molecules, shape similarity approaches have been

developed to compare shapes of protein structures and binding pockets. Additionally,

shape comparisons between atomic models and 3D density maps allowed the fitting

of atomic models into cryo-electron microscopy maps. This review aims to summarize

the methodological advances in shape similarity assessment highlighting advantages,

disadvantages and their application in drug discovery.

Keywords: molecular similarity, virtual screening, shape similarity, drug discovery, gaussian overlay, spherical

harmonics, 3D Zernike descriptors

INTRODUCTION

Molecular similarity is a key concept in drug discovery and has been routinely used in the discovery
and design of new molecules. It is based on the notion that two molecules often share similar
physical properties and biological function if they are structurally similar. This similarity principle
has been widely utilized in early phases of drug development to discover new molecules. Virtual
screening has been used to filter large databases of compounds to a smaller number based on
this similarity principle. Molecular similarity has been also employed to optimize the potency and
pharmacokinetic properties of lead compounds based on their structure–activity relationships.
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There are two components of molecular similarity analysis
(1) structural representations and (2) quantitative measurements
of similarity between two structural representations. Many
types of structural representations have been suggested to
measure the similarity between two molecules. These include
physiochemical properties, topological indices, molecular graphs,
pharmacophore features, molecular shapes, molecular fields
etc. Further, there are various methods to quantify the
similarity between two structural representations, e.g., Tanimoto
coefficient, Dice index, cosine coefficient, Euclidean distance,
Tversky index etc. Among these, Tanimoto coefficient (Rogers
and Tanimoto, 1960) is the most popular and widely used
similarity measure. Based on the structural representation,
molecular similarity approaches can be broadly classified into
2D or 3D similarity methods. The 2D similarity methods rely
only on the 2D structural information and are among the
fastest, efficient and most popular similarity search methods.
Moreover, they do not rely on structural alignments for
estimating the similarity between two molecules. These methods
include substructure search, fingerprint similarity search and
2D descriptor-based methods. However, most of these methods
are limited in their ability to enable scaffold hopping and
provide no structural and mechanistic insights. To deal with
the limitations associated with 2D similarity methods, several
approaches were developed that account for 3D conformations
of a molecule while performing similarity search. These methods
include pharmacophore modeling, shape similarity, molecular
field-based methods, 3D fingerprints among others. In recent
years, ligand 3D shape-based similarity analysis has become a
method of choice in increasing number of virtual screening
campaigns. Several successful applications of shape similarity to
discover new molecules have been published in the literature.
Themajor advantage with shape-based virtual screeningmethods
is that scaffold hopping can be conveniently accomplished and
scaffolds other than the query can be identified.

In this review, we will summarize the development and
application of various 3D shape similarity methods and will
comment on their utility in drug discovery. We will first outline
the classification and various types of 3D shape similarity
methods highlighting their advantages and disadvantages. Later,
we will describe various applications of 3D shape similarity
methods in drug discovery.

3D SHAPE SIMILARITY METHODS

The 3D shape has been widely recognized as a key determinant
for the activity of small molecules and other biomolecules
(Zauhar et al., 2003; Rush et al., 2005; Schnecke and Boström,
2006; Kortagere et al., 2009). The shape complementarity
between ligand and receptor is necessary for bringing the
receptor and ligand sufficiently close to each other so they
can form critical interactions necessary for binding. Two
molecules with similar shape are likely to fit the same binding
pocket and thereby exhibiting similar biological activity.
Shape comparison methods could be broadly classified as
(1) Alignment-free or non-superposition methods and (2)

Alignment or superposition-based methods. Both of these
methods have their own advantages and disadvantages.
Alignment-free methods are independent of the position and
orientations of molecules. As such, they are much faster and
could be used to screen large compound databases. Alignment-
based methods rely on finding the optimal superposition
between the compounds. Alignment-based methods are highly
effective in identifying shape similarities among the molecular
structures but they are computationally expensive. These
methods enable comparison of the surface properties such
as hydrophobicity and polarity. Visualization is one of the
advantages with the alignment-based methods and the similarity
between two molecules can be displayed. This information is
useful in the design of new molecules and to guide further
optimization. However, a subpar molecular alignment may
lead to errors in comparing two molecules. Apart from this
broad classification, shape similarity methods could be classified
based on the underlying representation of molecular shape. The
similarity between these shape representations is evaluated by
employing various similarity metrics. A schematic overview
of the similarity calculation between a query and database
molecules is given in Figure 1. In the following paragraphs, we
will outline commonly utilized shape representations with their
advantages and disadvantages. As this review is targeted toward
a broader readership, we will only provide an overview of the
methods. For algorithmic details and mathematics behind each
method, original publications may be referred.

Atomic Distance-Based Descriptors
These methods are based on the assumption that the shape of a
molecule can be described by the relative positions of its atoms.
The similarity between molecules can be then calculated by
comparing the corresponding distributions of atomic distances.
As these descriptors only require the computation of interatomic
distances in compounds, these methods are faster compared
to other shape comparison methodologies. Additionally, these
methods do not require the alignment between two molecules
for shape comparison. An overview of various atomic distance-
based methods is given in Table 1 highlighting their availability
as well as their advantages and disadvantages. One of the
earlier atomic distance-based shape comparison method was
based on atom triplet distances (Bemis and Kuntz, 1992).
This method considered each molecule as a collection of three
atom sub-molecules. The atom triplet triangle perimeters were
used to generate shape histograms which were then utilized
to compare the shape of molecules. This method however
has a few limitations. It is difficult to select bin size suitable
for all molecules. Each molecule typically generates 300–500
atom triplets and storing them require large space especially
when comparing a large database of molecules. To deal with
this limitation, another atom triplet based molecular shape
comparison method was developed where a 2,048 bits long single
condensed triplet shape signature was employed to represent
the entire set of triplets in each molecule (Nilakantan et al.,
1993). A signature of the query molecule is first compared with
the already stored signatures of database molecules. Then only
the compounds with adequately similar signatures are compared
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FIGURE 1 | A schematic overview of similarity calculation between a query and database molecules.

in detail by generating all triplets. Although this method was
efficient but there was a risk of missing similar compounds due
to the use of highly reduced signature representation. Another
group developed molecular descriptors based on atom triplet
triangles, angular information from surface point normal and
local curvature to facilitate shape comparisons (Good et al.,
1995). However, these descriptors have limited discriminating
power and require large disk space for storage.

Ultrafast shape recognition (USR) (Ballester and Richards,
2007a,b; Ballester, 2011) is possibly the most popular atomic

distance-based method developed to overcome alignment and
speed problems associated with shape similarity methods. This
method also uses the relative positions of atoms to describe the
shape of a molecule. The schematic overview of USR method is
given in Figure 2 along with an example of the shape similarity
evaluation. USR calculates the distribution of all atom distances
from four reference positions: the molecular centroid (ctd), the
closest atom to molecular centroid (cst), the farthest atom from
molecular centroid (fct) and the atom farthest away from fct
(ftf). Consecutively, the first three statistical moments (mean,
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TABLE 1 | Atomic distance based shape comparison methods.

Method Description Availability References

USR Extremely fast shape comparison method.

Webserver can screen about 55 million

conformers in 1 s. Different functional groups

and enantiomers not recognized.

A ligand-based virtual screening webserver,

USR-VS is available at http://usr.marseille.inserm.fr

Ballester and Richards, 2007a,b;

Ballester, 2011; Li et al., 2016

USR+MACCS Functional group information added to USR.

Enantiomers not recognized.

Available on request Cannon et al., 2008

CSR and USR:OptIso Chiral shape recognition. Optical isomerism

descriptors added to USR.

Developed by University of Oxford, UK. May be

available from Oxford Drug Design company

(https://www.oxforddrugdesign.com), Another

implementation USR:OptIso is available at https://

code.google.com/archive/p/usrchirality/

Armstrong et al., 2009; Zhou

et al., 2010

Electroshape Chiral shape recognition, include descriptor for

charge and lipophilicity.

Developed by University of Oxford, UK. May be

available from Oxford Drug Design company

(https://www.oxforddrugdesign.com), A similarity

search webserver including Electroshape

implementation is available at http://www.

swisssimilarity.ch

Armstrong et al., 2010, 2011;

Zoete et al., 2016

UFSRAT Pharmacophoric constraints by including

atom-type information.

Developed by University of Edinburgh. Server

available at http://opus.bch.ed.ac.uk/ufsrat/index.

php

Shave, 2010; Lim et al., 2011;

Shave et al., 2015

USRCAT Included CREDO atom-type information. A python implementation of the method using RDKit

toolkits is available from https://bitbucket.org/

aschreyer/usrcat

Schreyer and Blundell, 2009,

2012; Li et al., 2016

ACPC Method uses autocorrelation of partial charges.

High throughput virtual screening possible.

Cannot distinguish a molecule from its

enantiomer.

Developed by Laboratory for Structural

Bioinformatics, Centre for Biosystems Dynamics

Research, RIKEN and is available from http://www.

riken.jp/zhangiru/software.html.

Berenger et al., 2014

variance, and skewness of distribution) are calculated from each
of these distributions. Hence, each molecule has a vector of
twelve descriptors to describe its 3D shape. Finally, the similarity
between shapes of two molecules is calculated through an inverse
of the Manhattan distance of these 12 values:

Sqi =
1

1+ 1
12

∑12
l=1 |M

q

l
−Mi

l
|

where Mq and Mi are vectors of shape descriptors for
query and ith molecule, respectively. The performance of
USR was retrospectively compared with EigenSpectrum Shape
Fingerprints (EShape3D) where better mean enrichment for USR
was observed (Ballester et al., 2009). A retrospective comparison
with three state-of-the-art shape similarity methods: EShape3D,
shape signatures and ROCS revealed that USR is 1,546, 2,038, and
14,238 times faster than each one of them respectively (Ballester
and Richards, 2007a). A web implementation of USR (USR-
VS) is an extremely fast way of carrying out shape similarity
calculations (Li et al., 2016). USR-VS is capable of screening 55
million 3D conformers per second and can calculate similarity
scores for 94 million 3D conformers in about 2 s. This extremely
fast speed is achieved as the features for all 3D conformers are
preloaded into thememory.Moreover, themulti-threaded design
of the webserver and alignment-free nature of USR method
also contributed to such a high computational efficiency. A
hardware implementation of USR has been shown to achieve
two-fold speed gains over standard CPU based implementation

of USR (Morro et al., 2018). In this implementation, a computing
technique, Spiking Neural Networks, has been adapted utilizing
Field-Programmable Gate arrays to allow highly parallelized
implementation of USR. Prospective application of USR in the
identification of arylamine N-acetyltransferases, protein arginine
deiminase 4 (PAD4), falcipain 2, phosphatases of regenerating
liver (PRL-3), p53-MDM2 inhibitors and for phenotypic targets
such as colon cancer cell lines established the real-world
applicability of USR (Li et al., 2009; Ballester et al., 2010,
2012; Teo et al., 2013; Hoeger et al., 2014; Patil et al., 2014).
As USR is an ultrafast, purely shape-based similarity method,
several methods augmenting the original USR capabilities were
developed. These include a method where USR was combined
with MACCS key encoding the topological information of
small molecules (Cannon et al., 2008). To clearly distinguish
between enantiomers, methods complementing USR with optical
isomerism descriptors were developed (Armstrong et al., 2009;
Zhou et al., 2010). Electroshape, a USR variant appended partial
charge and atomic lipophilicity (alogP) as additional molecular
properties to account for electrostatics and lipophilicity along
with shape recognition (Armstrong et al., 2010, 2011). A web
implementation of Electroshape is available at SwissSimilarity
(Zoete et al., 2016). AutoCorrelation of Partial Charges (ACPC)
also utilized partial charges with atomic distances to measure
similarity between two molecules (Berenger et al., 2014). The
method uses an autocorrelation function and a point charge
model to encode all atoms of a molecule into two vectors that
are rotation translation invariant. Another implementation of
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FIGURE 2 | (A) An overview of USR shape representation. In USR approach, the shape of a molecule is described by the distribution of atomic distance to four

reference points. (B) An example of shape similarity calculation between two small molecules utilizing the USR approach.

USR method is Ultrafast Shape Recognition with Atom Types
(UFSRAT) which introduced pharmacophoric constraints to
USR by incorporating atom type information (Shave, 2010; Lim
et al., 2011; Shave et al., 2015). UFSRAT is capable of very
fast comparison of query molecule with small molecule libraries
from several major chemical vendors via its webserver (Table 1).
Application of UFSRATmethod in the discovery ofMDM2, PRL-
3, FK506-Binding Protein 12, kynurenine 3-monooxygenase and
11β-hydroxysteroid dehydrogenase type 1 (11βHSD1) inhibitors
demonstrated its utility in key areas of drug discovery such as
cancer, Alzheimer’s disease, inflammation and type-II diabetes.
(Hoeger et al., 2014; Houston et al., 2015; Shave et al., 2015, 2018).
Another similar implementation, USRCAT utilized CREDO
atom types to encode pharmacophoric information to USR
(Schreyer and Blundell, 2009, 2012). USRCAT not only retained
USR abilities to retrieve hits with low structural similarity but
also demonstrated improved performance over the original USR
implementation.

Atomic distance or descriptor-based methods are widely used
due to their ability to quickly compare the shapes of query
molecules with large small molecule libraries. A fast comparison
of a wide range of chemical space increases the chances of finding
novel hits. These methods are not only computationally efficient
but also have produced excellent hit rates as revealed from several
successful prospective studies against a wide range of molecular
and non-molecular targets. Moreover, they are also capable of
retrieving chemical scaffolds which are different from the query
molecule, thus allowing scaffold hopping. As atomic distance-
based shape similarity approaches are alignment-free, the visual
inspection of shape similarity may be sometimes challenging
especially for molecules which have low structural similarity.
Selection of the right query compound is a key component
of atomic distance-based shape similarity methods and their

performance depends on optimal query selection. Hit rate can
be improved by employing multiple queries and increasing
the diversity of selected hits. Moreover, clustering based on
shape similarity could be utilized to understand how different
chemotypes arrange in binding pockets and thereby generating
consensus queries (Pérez-Nueno et al., 2008; Pérez-Nueno and
Ritchie, 2011) to improve virtual screening performance and
reducing false positives.

Atom-Centered Gaussian-Based Shape
Similarity Methods
Among many methods of describing the molecular shape of
a molecule, hard sphere (Connolly, 1985; Masek et al., 1993)
and Gaussian sphere (Grant and Pickup, 1995; Grant et al.,
1996) are two most widely adopted models. Both of these
models describe the shape in terms of the volume of a molecule.
Two molecules will possess similar shape if they have similar
volume. Hard sphere model represents a molecule by a set
of merged spheres where each sphere serves as an atom with
its van der Waals radius. The volume of a molecule can be
calculated by a formula that describes the union of a number
of sets and their intersection. Although the analytical expression
of the volume and its derivatives is reported in the original
publication (Masek et al., 1993), it is not easy to implement as
the formulas become very complicated with increasing number
of intersections. Gaussian spheremodel (Grant and Pickup, 1995,
1997; Grant et al., 1996) represents a molecule using a set of
overlapping Gaussian spheres and measures the integral volume
over all overlapping Gaussians. In this model, each intersection is
expressed as the integral of a set of overlapping atom-centered
Gaussian spheres and the volume of a molecule is described
based on the inclusion-exclusion principle. Analytical expression
for the volume calculation is given in the original publication
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which describes highly accurate volume calculation up to sixth
order intersections (Grant and Pickup, 1995). The authors also
proposed comparing shapes of two molecules by numerically
optimizing the overlap between two molecules (Grant et al.,
1996).

Several methods based on Gaussian overlays were developed
to measure the shape similarity between two molecules. An
overview of these methods is presented in Table 2. Among these,
Rapid Overlay of Chemical Structures (ROCS) is undoubtedly
the most widely used method that utilizes Gaussian functions
to measure the shape similarity between two molecules (Rush
et al., 2005; Hawkins et al., 2007). ROCS algorithm is based on
the original Gaussian overlay approach that finds and quantifies
themaximum volume overlap between twomolecules (Grant and
Pickup, 1995; Grant et al., 1996). An overview of ROCS shape
similarity calculation is given in Figure 3. However, to improve
the efficiency of volume overlap calculations, it incorporated
several modifications to the original implementation. ROCS
ignores hydrogens for the volume calculations and uses equal
radii for all heavy atoms. Furthermore, ROCS utilizes only the
first order terms of shape density function. ROCS employs
Tanimoto (Rogers and Tanimoto, 1960) and Tversky (Tversky,
1977) correlation coefficients as similarity metrics to calculate the
overlap between two molecules which are defined as:

Tanimotoa,b =
Oa,b

Oa + Ob − Oa,b

Tverskya,b =
Oa,b

Oa,b + αOa + βOb

where Oa,b is the volume overlap between molecules a and b, Oa

is the volume of molecule a and Ob is the volume of molecule b.
α and β are parameters for Tversky index. ROCS also considers
chemical complementarity by including the chemical features to
improve shape-based superposition. ROCS has been successfully
employed in various drug discovery campaigns such as in the
identification of small molecules inhibitors (Kumar et al., 2014b),
to scaffold hop from one chemical class to another (Kumar et al.,
2016), to rescore docking generated poses (Kumar and Zhang,
2016a) and to predict binding poses and ranking of inhibitors
(Kumar and Zhang, 2016b,c). ROCS can routinely perform
shape and chemical feature comparisons of about 600–800
conformers per second on a modern CPU. Although this speed
is reasonable for alignment-based shape similarity methods,
it takes several hours to screen a moderately sized virtual
screening library. To facilitate large scale shape comparison,
e.g., to screen large small molecule libraries within minutes,
FastROCS (https://www.eyesopen.com/molecular-modeling-
fastrocs), a GPU implementation of ROCS has been developed
that increased the shape comparison speed by about three
orders of magnitude over its CPU implementation. FastROCS
is capable of processing up to a million conformers per second
on a single NVIDIA Tesla K20 GPU (https://docs.eyesopen.
com/toolkits/python/fastrocstk/architecture.html). PAPER, an
open source GPU implementation of ROCS algorithm, also
demonstrated speed acceleration up to two orders of magnitude
on an NVIDIA GeForce GTX 280 GPU over its open source CPU

implementation on a Intel Xeon E5345 CPU (Haque and Pande,
2010). MolShaCS is another method that engages Gaussian
description of shape to evaluate molecular similarity between
two molecules (Vaz de Lima and Nascimento, 2013). In addition
to shape, MolShaCS utilizes Gaussian description of charge
distribution to optimize overlays and similarity computations
using Hodgkin’s index (Hodgkin and Richards, 1987; Good et al.,
1992). It was able to process 21 compounds per second, which
seems to be a quite impressive speed for computers of that time.
As Gaussian overlay based methods require precise alignment
for the calculation of shape similarity, several groups employed
approaches such as pharmacophore and field based methods to
generate initial alignment. SHAFTS (SHApe-FeaTure Similarity)
(Liu et al., 2011) adopted pharmacophoric point triplets and least
square fitting to generate initial alignment. A weighted sum of
pharmacophoric fit and volume overlap was then used to assess
shape similarities. Phase Shape (Sastry et al., 2011) also employed
the same concept of atom distribution triplets to generate
initial alignments which were then refined by maximizing the
volume overlap. Phase Shape is capable of performing shape
comparisons of about 500 conformers per second. Reminiscent
of Shape and Electrostatic Potential (ShaEP) (Vainio et al., 2009)
also resembles SHAFTS and Phase Shape as it utilizes a hybrid
approach that combined field-based methods with volumetric
methods to estimate molecular similarity. ShaEP borrowed a
graph matching algorithm to generate initial superposition.
Molecular graphs represented shape and electrostatic potential at
points close tomolecular surface. Themethod then optimized the
initial alignment by maximizing the volume overlap calculated
through Gaussian functions. Another similar method, SimG
(Cai et al., 2013), adopted downhill simplex method (Nelder and
Mead, 1965) to evaluate the similarity in shape and chemical
features of a molecule and a binding pocket or ligand. SimG
shape similarity method possessed advantage over other methods
described here in the sense that it is capable of performing shape
similarity evaluations between a ligand and a binding pocket.
SABRE method (Hamza et al., 2012, 2013) introduced two
modifications to the original Gaussian overlay based shape
similarity implementation. First, it utilized reduced chemical
structures by removing the functional group not present in query
to generate initial alignments. Reduced chemical structures
were subsequently replaced by full structures and the initial
alignments were refined by rigid-body translation and rotation
using steepest descent to produce shape density overlap with the
query. Secondly, to avoid bias for large sized ligands when using
Tanimoto similarity metric, a new scoring function Hamza–
Wei–Zhan (HWZ) score was developed. An extension to SABRE
method enabled its utility in chemogenomics area (Wei and
Hamza, 2014). Shapelets (Proschak et al., 2008) is unlike any
other Gaussian overlay based shape comparison method. It
describes the shape of a molecule by decomposing its surface
into discrete patches. This 3D graph representation can then be
used for either full or partial shape similarity evaluations.

In most Gaussian function based overlay methods shape
density of a molecule is described as the sum of shapes of
individual atoms which sometimes results in the overestimation
of the volume, for example, in molecules where some atoms
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TABLE 2 | An overview of commonly used Gaussian overlay based shape comparison methods.

Method Description Availability References

ROCS Fast Gaussian overlay based shape comparison. Widely

used shape based virtual screening tool. GPU version

also available.

Developed by OpenEye Scientific Software (https://www.

eyesopen.com). Commercial.

Rush et al., 2005;

Hawkins et al., 2007

PAPER Accelerates large scale virtual screening experiments.

Parallel implementation on NVIDIA GPUs.

Developed by Stanford University. Open source.

Available from SimTK at https://simtk.org/projects/paper

Haque and Pande, 2010

MolShaCS Uses Gaussian description of shape and charge.

Hodgkin like similarity metric. Molecules are considered

rigid.

Developed by University of Sao Paolo, Brazil. Open

source tool available at https://code.google.com/

archive/p/molshacs/downloads

Vaz de Lima and

Nascimento, 2013

SHAFTS It combines shape similarity with pharmacophoric

features. Employs a hybrid similarity metric combining

shape and chemical similarity. Suitable for large scale

virtual screening.

Developed by Shanghai Key Laboratory of New Drug

Design, East China University of Science & Technology,

Shanghai, China. Available for download from http://lilab.

ecust.edu.cn/home/resource.html

Liu et al., 2011

Phase Shape Uses atom triplets to generate initial alignments which

are refined by Gaussian overlay.

Developed by Schrodinger. (https://www.schrodinger.

com). Commercial.

Sastry et al., 2011

ShaEP Generate consensus shape pattern based on structural

features of known ligands.

Developed by Abo Akademi University, Finland. Free for

Academics. Available from the Abo Akademi University

at http://users.abo.fi/mivainio/shaep/index.php

Vainio et al., 2009

SimG Uses downhill simplex method to evaluate shape and

chemical similarity between two molecules. Comparison

of ligand and binding pocket shape or chemical similarity

is also possible.

Developed by Shanghai Key Laboratory of New Drug

Design, East China University of Science & Technology,

Shanghai, China. Available for download from http://lilab.

ecust.edu.cn/home/resource.html

Cai et al., 2013

SABRE Uses consensus shapes to generate initial alignments

which are later refined by rigid-body rotations and

translations.

Academic license is available on request Hamza et al., 2012, 2013

WEGA Uses a weighted Gaussian function to improve the

accuracy of first order approximation. A GPU

implementation (gWEGA) is also available for large scale

virtual screenings.

Developed by Research Center for Drug Discovery, Sun

Yat-sen University, China. Academic license is available

on request at http://www.rcdd.org.cn/home/program.

html.

Yan et al., 2013

FIGURE 3 | An overview of the shape similarity calculation by ROCS program.
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highly overlap with others in the vicinity. Weighted Gaussian
algorithm (WEGA) method (Yan et al., 2013) puts forward a
modification where a weight factor is introduced for every atom.
This weight factor reflects the crowdedness of an atom with its
neighbors. The shape density of a molecule is represented by
the linear combination of weighted atomic Gaussian functions.
Utilizing this modification, WEGA method demonstrated
improved shape similarity and virtual screening performance.
The speed of WEGA shape similarity calculations varies with
the size of query and database compounds. For an average
drug-like query, WEGA can process 1,000–1,500 conformations
per second (Yan et al., 2013). A GPU implementation of this
method (gWEGA) has also been developed that reported a
virtual screening speed increase by two orders of magnitude on
one NVIDIA Tesla C2050 GPU over its CPU implementation
on a quad-core Intel Xeon X3520 CPU (Yan et al., 2014).
Another WEGA derivative, HybridSim proposed a hybrid metric
combining 2D fingerprints with WEGA shape similarity and
demonstrated improved virtual screening performance over
standalone 2D fingerprint and shape similarity methods (Shang
et al., 2017).

Overall, atom-centered Gaussian-based shape similarity
methods present many advantages over other shape similarity
methods. Although not as fast as distance based methods, these
methods are fast enough for large scale virtual screenings.
The major advantage with atom-centered Gaussian-based shape
similarity methods is the visualization. The visualization of
shape similarity between two molecules is immensely helpful in
deriving the structure activity relationship for the optimization
and for scaffold hopping. A majority of these methods address
the problem of ligand flexibility by utilizing conformational
ensemble. However, in some cases it may not be trivial
to sample all possible conformations, e.g., natural products.
Moreover, several top performing conformational generation
methods face difficulty in modeling the correct conformation of
some molecules, e.g., macrocycles, peptidomimetics etc. Another
limitation with these methods is that their performance highly
depends upon the query molecule and choosing the right query is
a critical component of a shape-based virtual screening campaign
(Kirchmair et al., 2009). Despite these limitations, atom-centered
Gaussian overlay based methods are the most widely used
shape similarity methods. They have provided many successful
examples demonstrating their utility in various areas of drug
discovery which will be discussed later in this manuscript.

Surface Based 3D Shape Similarity
Comparison Methods
Molecular surface is another way of depicting the shape of
a molecule. Comparison of molecular surfaces based on their
shapes can reveal similarity in their physical and biological
properties. There are many ways to describe the surface of a
molecule. Precise definitions such as surface based on quantum
mechanical wave functions are not practical especially for large
molecules (Mezey, 2007). Surface definitions such as solvent-
accessible surface (Lee and Richards, 1971; Connolly, 1983) and
van der Waals surface are more practical and much easier to

calculate. Some studies employed alpha shapes (Edelsbrunner
et al., 1983; Edelsbrunner and Mücke, 1994; Edelsbrunner, 1995)
which is a coarse representation of Connolly surface (Connolly,
1983) to describe the shape of a molecule (Wilson et al., 2009).
Alpha shapes of a set of points “S” are generalization of convex
hull and utilize a parameter, α to describe the shape with varying
levels of details. For large α values, the alpha shape is equivalent
to convex hull and shape feature details such as concavities and
voids started to appear with decrease in α value. The alpha shape
method has been applied to represent and compare shapes of 3D
molecules (Wilson et al., 2009).

Shape signatures or shape histograms offer another
representation of molecular shape that can be used to explore
3D volume of a molecule confined by the solvent accessible
surface (Zauhar et al., 2003; Meek et al., 2006). Shape signatures
are probability distribution histograms borrowed from a
computer graphics technique, ray-tracing. In this method, a ray
is initiated within a molecule bound by its solvent accessible
surface. Propagation of a ray trace inside of the triangulated
solvent accessible surface is recorded as probability distribution
histograms. The histograms for query and any other molecule
can be easily compared using the following metrics:

L1D1 =
∑

i

|H1
i −H2

i |

L2D1 =
∑

i

∑

j

|H1
i,j −H2

i,j|

where 1D represents the probability distribution of ray-
trace lengths only while 2D represents ray-trace lengths
in combination with additional molecular property such as
electrostatic potential. Shape signature encodes shape, molecular
size and surface charge distribution of a molecule and can be
utilized to compare the histogram of a query molecule with
the pre-generated histograms of small molecule libraries. The
utility of shape signatures as a virtual screening approach has
been demonstrated in several studies (Nagarajan et al., 2005;
Wang et al., 2006; Hartman et al., 2009; Ai et al., 2014; Werner
et al., 2014). As shape signature based similarity comparisons
are fast and do not require the alignment of molecules, they are
capable of screening millions of molecules in a short time. In
addition to shape similarity, shape signatures also allow shape
complementarity comparisons against a receptor binding pocket.
Although shape similarity calculations with shape signature have
been effectively used in many inhibitor discovery efforts, the
high number of false positives is a concern especially for large
and complex queries. To cope with these drawbacks, a few
modifications to the original methods were reported. These
include fragment-based shape signature (FBSS) (Zauhar et al.,
2013) and inner distance shape signature (IDSS) (Liu et al., 2009,
2012). FBSS involves the generation and comparison of shape
signatures for fragments in the molecules. IDSS utilizes inner
distance which is the shortest path between landmark points
within the molecular shape. IDSS has been shown to be especially
useful in case of flexible molecules as it is insensitive to shape
deformation of flexible molecules.
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TABLE 3 | An overview and availability of a few surface-based shape comparison methods.

Method Description Availability References

SURFCOMP Molecular surface is divided into patches and

corresponding patches are identified using geometrically

invariant descriptors and physicochemical properties.

Available on request. Hofbauer et al., 2004

ParaFit Performs 3D superposition and surface property

comparison. Electronic surface properties are calculated

using ParaSurf program. Spherical harmonics expansion

coefficients of molecular surface are used.

Developed by CEPOS in silico Ltd. Commercial or

Academic license can be obtained at http://www.

ceposinsilico.de/

Mavridis et al., 2007

SHeMS Uses spherical harmonics description of shape. Weights

of spherical harmonics expansion coefficients are

optimized using a genetic algorithm.

Developed by Shanghai Key Laboratory of New Drug

Design, East China University of Science & Technology,

Shanghai, China. Obtained by contacting Prof. Honglin

Li at http://lilab.ecust.edu.cn/home/resource.html

Cai et al., 2012

HPCC Combined spherical harmonics shape comparison with

pharmacophoric features. Tanimoto similarity coefficients

for shape and chemical similarity are added to evaluate

similarity between two molecules.

Developed by Harmonic Pharma. May be available from

https://www.harmonicpharma.com/oncology/

Karaboga et al., 2013

3DZD Uses 3D Zernike descriptors which are extension of

spherical harmonics. Rotation translation invariant.

Developed by Kihara Bioinformatics laboratory at Purdue

University, USA. Several implementations of 3DZD are

available either as standalone program or web-server at

http://kiharalab.org/contact.php

Sael et al., 2008a,

Venkatraman et al.,

2009a

Several methods employed local surface shape similarity to
align and estimate the similarity between molecules. One such
method applied subgraph isomorphism to molecular surface
comparison (Cosgrove et al., 2000). In this method, molecular
surface was represented by patches of the same shape. Alignment
between two molecules was obtained by using a clique-detection
algorithm to obtain overlapping patches. Quadratic shape
descriptors (Goldman and Wipke, 2000) exploited a similar
concept where molecular surface was divided into a series of
patches. Each patch was represented by geometrically invariant
descriptors such as the normal, the shape index and the principle
curvatures which were then used to identify similar patches.
SURFCOMP (Hofbauer et al., 2004) further applied several filters
such as surrounding shape and physicochemical properties to
identify corresponding patches on surfaces of two molecules
(Table 3).

Spherical harmonics (SH) based representations which are
expansion of SH functions also allow quantitative description of
molecular shapes (Max and Getzoff, 1988). In this representation,
shapes are expressed as functions on a unit sphere. Each point
on a unit sphere surface is described by its spherical coordinates
(r,θ,φ) and setting f (θ,φ)= r,where r is a radial function encoding
the distance of surface points from a chosen origin. This function
can be determined by deriving an expansion of SH basis function
given by:

r (θ ,φ) =

L
∑

l=0

l
∑

m=−l

cl,mY
m
l (θ ,φ)

where Ym
l
(θ , φ) is the SH basis function for degree l and order

m. cl, m are coefficients of SH function. L is the chosen limit
to get desired resolution of the surface. The number of terms
in the function depends upon this limit as a value of L, which
yields (L+1)2 terms. In general, SH are not rotation translation
invariant as magnitude of cl, m change based on the rotation of

r (θ , φ). Hence, prior alignment is necessary before comparing
the shape of molecules. Efforts were also made to make SH
rotation translation invariant (Kazhdan et al., 2003; Mak et al.,
2008), however, thesemodifications increase the number of terms
thereby increasing the complexity of SH.

About two decades ago, it was shown that SH functions
could be applied to estimate the 3D molecular similarity between
two macromolecules (Ritchie and Kemp, 1999). Since then, it
has been successfully applied in virtual screening (Cai et al.,
2002; Mavridis et al., 2007), protein structure comparisons (Tao
et al., 2005; Gramada and Bourne, 2006), protein-ligand docking
(Ritchie and Kemp, 2000; Lin and Clark, 2005; Yamagishi et al.,
2006), binding pocket similarity comparison (Morris et al., 2005)
etc. Additionally, several groups utilized variations of SH to
compare the shapes of small molecules. The first implementation
of SH to compare shapes of small molecules opened the way for
many applications ranging from virtual screening to quantitative
structure-activity relationship (QSAR) model building (Lin and
Clark, 2005). SpotLight program utilizes SH to superpose and
classify small molecules (Mavridis et al., 2007). To enable
high throughput virtual screening, the vector interpretation
of SH coefficients was used to construct rotation translation
invariant fingerprints (RIFs) which were compared using a
distance score (Mavridis et al., 2007). In this method, rotational
invariance was gained by binning together the SH coefficients
of the same order. This method was later developed as ParaFit
(http://www.ceposinsilico.de) (Table 3). In another study, SH
based molecular surface was decomposed and the norm of
decomposition coefficients were used to describe the molecular
shape (Wang et al., 2011). Norms of decomposition coefficients
are partially rotation translation invariant enabling large scale
comparison. The performance of this method was retrospectively
demonstrated and was also prospectively applied in the discovery
of cyclooxygenase-1 and cyclooxygenase-2 inhibitors. SHeMS
method utilizes genetic algorithm to optimize the weights
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of SH expansion coefficients for a reference set (Cai et al.,
2012). Through optimization of weights, SHeMS demonstrated
improved performance over original SH implementation and
USR method. To facilitate measurement of similarity between
sets of compounds, many shape similarity methods were
complemented with physicochemical properties. Harmonic
pharma chemistry coefficient (HPCC) method combined SH
shape representation with pharmacophoric features (Karaboga
et al., 2013). In HPCC method, SH surfaces are discretized as
triangle meshes which are assigned pharmacophoric features.
Tanimoto similarity for both shape and pharmacophore features
is calculated separately between query and test molecules. A
combo score is finally calculated by adding Tanimoto scores
for shape and chemical overlay. HPCC method demonstrated
improved performance for the combo approach over utilizing the
shape alone.

In several studies, 3D-Zernike descriptors (3DZD) (Novotni
and Klein, 2003), which are the extension of SH were employed
to compare the shapes of molecules and cryoEM maps
(Figure 4 and Table 3). 3DZD differs from SH in terms of their
mathematical description. 3DZD can model molecular shape
precisely as compared to SH which can only model single valued
or star-shape surfaces. They are rotation translation invariant,
whereas SH depends on the orientation of the molecule.
Although rotation translation invariant SH descriptors have been
developed (Kazhdan et al., 2003), the number of terms are much
higher in SH descriptors. 3DZD is also suitable to represent other
properties on molecular surfaces such as hydrophobicity and
electrostatic potential (Sael et al., 2008a). In the drug discovery
area, 3DZD was initially applied to compare shapes of protein
molecules (Sael et al., 2008b; Figure 4A). Later, the concept was
extended to measuring shape similarity and small molecules
(Venkatraman et al., 2009a) and between binding pockets
(Kihara et al., 2009; Venkatraman et al., 2009b; Figures 4B,C).
In 3DZD method, 3D Zernike function is described as:

Zm
nl (r, θ ,φ) = Rnl(r)Y

m
l (θ ,φ)

where Ym
l
(θ , φ) is the SH basis function while Rnl(r) is the radial

function. Zernike moments are calculated using the following
equation:

Fmnl =
3

4π

∫

f (x)Zm
nl (x)dx

As Zernike moments are not rotationally invariant, so to make
them rotation translation invariant, they are expressed as norm
Fm
nl

which is known as 3DZD. Shape similarity between two
molecules based on 3DZD is compared using the following
metrics:

Euclidean distance =

√

√

√

√

n
∑

i=1

(Xi − Yi)
2 ∈ [0,∞]

Pearson r =
n

∑

XiYi −
∑

Xi
∑

Yi
√

n
∑

Xi
2 − (

∑

Xi)
2
√

n
∑

Yi
2 − (

∑

Yi)
2
∈ [−1,1]

Manhattan distance =
1

1+
∑n

i=1|Xi−Yi|
N

∈ [0, 1]

Ligand 3D shape similarity comparison using 3DZD is fast and
rotation translation invariant. As no alignment step is required
for comparison, it can be utilized as a virtual screening tool to
filter a database of compounds based on shape similarity with a
query molecule.

Overall, surface-based shape similarity methods present
attractive options for comparing the shapes of small molecules
and macromolecules. They were quite successful in estimating
the global and local similarities between macromolecules.
However, most of these methods are still in infancy as far
as small molecule shape comparison is concerned. Several
reasons may have contributed to the lack of interest from
researchers in accepting these methods as small molecule shape
comparison tools. Surface-based methods such as SH and 3DZD
are mathematically complex and involve inclusion of many terms
to fully capture the shape of a molecule. Moreover, they are
slow in comparison to atomic distance-based shape description
and comparison methods while their accuracy in retrieving
compounds similar in shape to a query does not match Gaussian
overlay-based shape similarity methods. Further, while these
methods capture very well the global shape of a molecule, the
local shape similarity is not represented comprehensively which
is very critical in comparing the shapes of small molecules.
However, these methods present several new areas of shape
comparison such as comparing shape of ligands with that of
binding pockets which may be of immense utility for structure-
based design.

Other Shape Similarity Approaches
There are many other approaches of shape representation and
methods of similaritymeasurement in addition to these described
above. Another way of representing molecular shape is to use
molecular descriptors. Several shape-based descriptors have been
traditionally used to compare small molecules and develop QSAR
models. These descriptors mostly represent shape implicitly with
other properties such as size, symmetry and atom distribution.
These include Weighted Holistic Invariant Molecular (WHIM)
descriptors of shape (Gramatica, 2006), shape indices, descriptors
for moments of the distribution of molecular volume (Mansfield
et al., 2002). Most of molecular descriptors are alignment
independent, however, some such as moments of the distribution
of molecular volume require superposition of molecules.
Comparative Molecular-Field Analysis (CoMFA) (Cramer et al.,
1988) is a widely used technique to develop QSAR models and
understand SAR for a series of compounds. CoMFA compares
a set of molecules by placing them on a grid and calculating
potential energy fields. The differences and similarities between
molecules are then correlated with differences and similarities
in their biological activities. As CoMFA requires molecules to be
pre-aligned, the 3D shape similarity of molecules can be obtained
based on potential energy fields. A modification of CoMFA
approach, Comparative Molecular Moment Analysis (CoMMA)
calculates geometric moments from the center of mass, center
of charge and center of dipole of a molecule (Silverman and
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FIGURE 4 | Application of 3D Zernike descriptors in (A) protein protein similarity (B) small molecule similarity (C) protein ligand complementarity and (D) comparison

of cryoEM maps.

Platt, 1996). However, superposition of molecules is not required
in this approach. Shape of the molecules can also be inferred
from structural descriptors such as molecular quantum numbers
(MQNs) (Nguyen et al., 2009; van Deursen et al., 2010). The
MQN represents counts for 42 structural features such as atom,

ring and bond types, polar groups and topology. MQN system
has been used to effectively classify and visualize large libraries of
organic molecules such as ZINC, GDB, and PubChem.

Volumetric aligned molecular shapes (VAMS) method (Koes
and Camacho, 2014) uses data structures to represent and
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compare shapes of 3D molecules. It applies inclusive and
exclusive shape constraints to estimate the similarity in shapes
of 3D molecules. In VAMS method, the shape of a molecule
is represented by solvent-excluded volume calculated from its
heavy atoms using a water probe of radius 1.4 Å. Volume is
discretized on a grid of 0.5 Å resolution where each point on the
grid represents a Voxel or 3D pixel. An oct-tree data structure
is used to store voxelized volume. This method requires all the
shapes to be pre-aligned to a standard reference coordinates. The
conformations of the molecule are aligned using the moment
of inertia of heavy atoms. Voxelized shapes are compared using
Tanimoto similarity (Rogers and Tanimoto, 1960) where the ratio
of number of voxels common in two shapes and number of voxels
present in either of the shapes is measured. The performance
of VAMS method as a standalone virtual screening tool is not
better than many other shape similarity methods, e.g., ROCS,
however, VAMS is reasonably fast and could perform a million
shape comparisons in about 10 s. Hence, it may be used as a
pre-filtering tool for other shape similarity methods. Fragment
oriented molecular shape (FOMS) is the extension of VAMS
method, where shapes are aligned using fragments (Hain et al.,
2016).

APPLICATION OF SHAPE SIMILARITY
METHODS IN DRUG DISCOVERY

Application in Virtual Screening
Shape similarity attempts to quantify the resemblance between
two molecules utilizing several descriptions of molecular shape
as described previously. This approach has been successfully
utilized as a virtual screening tool to identify molecules
similar to a given query from the library of chemicals. Several
retrospective studies have been published demonstrating the
utility of shape based similarity methods over 2D and other 3D
similarity methods (Nagarajan et al., 2005; Renner and Schneider,
2006; Ballester et al., 2009; Giganti et al., 2010; Venkatraman
et al., 2010; Ballester, 2011; Hu et al., 2012, 2016). Several
studies also presented computational approaches to improve
the performance and efficiency of shape comparison methods.
One study recommended the selection of a suitable query and
incorporation of chemical information such as pharmacophoric
features of the query molecule to improve the performance of
shape-based virtual screening (Kirchmair et al., 2009). Another
study demonstrated that the application of a machine learning
method, Support Vector Machine (SVM), to shape comparisons
can significantly improve virtual screening efficiency (Sato et al.,
2012). The need of automation was further suggested specially to
carry out multiple query searches which ensure a diverse hit list
(Kalászi et al., 2014).

Apart from retrospective tests, many prospective applications
of shape similarity have been published in the literature. In
numerous studies, it was employed as the only virtual screening
approach to filter and prioritize compounds from a large library
to a number small enough for biological testing (Rush et al.,
2005; Boström et al., 2007; Freitas et al., 2008; Ballester et al.,
2010, 2012; Kumar et al., 2012; Vasudevan et al., 2012; Sun et al.,

2013; Hoeger et al., 2014; Patil et al., 2014; Temml et al., 2014;
Chen et al., 2016; Bassetto et al., 2017). Among these studies,
the shape based identification of a compound active on colon
cancer cell line is quite interesting (Patil et al., 2014). This study
employed USR to screen a database of approved drugs. The top
virtual screening hit displayed dose dependent inhibition of a
colon cancer cell line. This study not only repurposed a known
drug but also demonstrated the applicability of shape similarity
methods for phenotypic screens, e.g., anti-bacterial or anti-
fungal drug discovery where molecular target is often unknown.
This is especially important considering the fact that most
approved drugs come from phenotypic screens (Swinney and
Anthony, 2011). In other investigations, it was combined with
other ligand-based virtual screening methods or structure based
approaches such as molecular docking. Among ligand-based
approaches, shape similarity was frequently used in combination
with electrostatic similarity. As electrostatic comparison between
two small molecules requires precise alignment between them,
shape matching was first performed and then followed by the
electrostatic potential similarity calculations. This hierarchical
combination was utilized to discover a wide variety of binders
including enzyme inhibitors (Hevener et al., 2011), mRNA
binders (Kaoud et al., 2012), chemical probes (Naylor et al., 2009),
protein-protein interaction inhibitors (Boström et al., 2013),
SUMO activating enzyme 1 inhibitors (Kumar et al., 2016), and
Aurora kinase A inhibitors (Kong et al., 2018).

Although shape-based approaches demonstrated considerable
success in ligand-based virtual screening studies, the true
potential of the method was realized when it was combined
with structure based methods in a hierarchical manner or in a
parallel manner. To effectively use shape based virtual screening,
several groups employed hierarchical virtual screening (Kumar
and Zhang, 2015) where it was coupled with molecular docking.
As shape matching calculations are comparatively faster than
structure based virtual screening methods, it is generally used
during initials steps of a hierarchical virtual screening protocol.
This hierarchical combination of shape similarity with molecular
docking has been successfully employed in the discovery of type
II dehydroquinase inhibitors (Ballester et al., 2012) and that of
MDM2 inhibitors (Houston et al., 2015), 11β-hydroxysteroid
dehydrogenase 1 inhibitors (Xia et al., 2011), PPARγ partial
agonists (Vidović et al., 2011), inhibitors of chemokine receptor
5 (CCR5)-N terminus binding to gp120 protein (Acharya et al.,
2011), Grb7-based antitumor agents (Ambaye et al., 2013), fungal
trihydroxynaphthalene reductase inhibitors (Brunskole Švegelj
et al., 2011), non-steroidal FXR ligands (Fu et al., 2012; Wang
et al., 2015), novel SIRT3 scaffolds (Salo et al., 2013), protein
kinase CK2 inhibitors (Sun et al., 2013), SUMO conjugating
enzyme inhibitors (Kumar et al., 2014a), and chemokine
receptor type 4 inhibitors (Das et al., 2015). Combination of
shape similarity methods with structure-based methods such as
docking provide several advantages. Ultrafast shape comparison
methods such as USR can very quickly filter large libraries for
compounds that are similarly shaped as known inhibitors. Hence,
the time required for docking could be drastically reduced by
eliminating compounds that doesn’t fit in the binding pocket.
Moreover, in case of some proteins the inhibitor activity is driven
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by key moieties in compounds, e.g., metal binding groups in
case of metalloproteins, reactive functional groups in cysteine
proteases, hinge binding groups in kinases etc. In these scenarios,
docking will help in the prioritization of compounds based on
the interactions they make with the binding pocket. Sometimes
the difference in shape similarity scores for compounds is
very small and it is challenging to cherry pick for biological
assay. Here, docking of shape similarity hits could also help
in the prioritization of compounds for purchase or chemical
synthesis. However, the combination of shape similarity with
molecular docking is not always advantageous especially for
proteins with highly flexible binding pockets, multiple pocket
conformations or homology models where accurate docking is
challenging. A virtual screening scheme where USR hits were re-
ranked using Autodock-Vina score produced no active hits as
docking was performed in a quite different pocket conformation
(Hoeger et al., 2014). In another study, shape-based virtual
screening alone produced better hit rates than hierarchical
combination of shape similarity and docking methods (Ballester
et al., 2012). In numerous studies, shape similarity calculations
along with molecular docking were complemented with other
approaches such as 2D similarity search, pharmacophore
modeling, electrostatic potential matching, machine learning and
MM-PBSA method (Mochalkin et al., 2009; Alcaro et al., 2013;
Poongavanam and Kongsted, 2013; Wiggers et al., 2013; Hamza
et al., 2014a; Kumar et al., 2014b; Pala et al., 2014; Feng et al.,
2015; Corso et al., 2016; Mangiatordi et al., 2017; Xia et al., 2017).
The use of different virtual screening approaches in parallel has
been previously suggested as different methods tend to identify
different set of compounds and virtual screening hit rates could
be improved by employing them in parallel manner (Sheridan
and Kearsley, 2002). In parallel virtual screening, several methods
are run independently and the top hits from each method is
selected. Parallel combination of various ligand and structure
based methods with shape similarity approaches was found to
be productive especially in case of challenging targets (Swann
et al., 2011; Langdon et al., 2013; Hoeger et al., 2014). A parallel
virtual screening to identify inhibitors of PRL-3 employing
several ligand and structure-based methods against the same
screening library produced contrasting hit rates for different
approaches (Hoeger et al., 2014). Many prospective applications
suggest the utility of hierarchical or parallel combination of
shape similarity approaches with other ligand and structure-
based methods. However, no benchmark study demonstrating
their utility has been published. A systematic study will help
researchers to identify areas where the combination of several
approaches will be better than employing shape based virtual
screening methods alone.

One application of shape similarity methods is to hop from
one chemical scaffold to another in order to improve the
potency, selectivity, physicochemical properties and to create
novel intellectual property positions (Hu et al., 2017). Shape
similarity methods are capable of identifying several scaffolds
which are structurally different from the query compounds and
each scaffold may be pursued separately. Scaffold hopping is
highly effective in rescuing the problematic leads that cannot be
pursued further due to problems in selectivity, pharmacology and

pharmacokinetics. Both atomic distance-based and Gaussian-
overlay shape similarity methods can effectively perform scaffold
hopping as exemplified from several prospective studies. Among
the first prospective application of shape similarity based
methods in scaffold hopping, small molecule inhibitors of ZipA-
FtsZ protein-protein interaction were identified (Rush et al.,
2005). Some recent scaffold hopping applications include the
identification of inhibitors of arylamine N-acetyltransferases
(Ballester et al., 2010), type II dehydroquinase inhibitors
(Ballester et al., 2012) sumoylation enzymes (Kumar et al.,
2014b, 2016), anti-tubercular agents (Hamza et al., 2014b;
Wavhale et al., 2017), anti-tumor agents (Ge et al., 2014),
11βHSD1 inhibitors (Shave et al., 2015), leucine zipper kinase
inhibitors (Patel et al., 2015), kynurenine 3-monooxygenase
inhibitors (Shave et al., 2018), and partial agonist of inositol
trisphosphate receptor (Vasudevan et al., 2014). In addition
to prospective application, rigorous benchmarking of shape
similarity methods for their scaffold hopping capabilities is
important. However, systematic benchmarking is challenging
due to disagreement on the definition of scaffold. In one
retrospective study, the scaffold hopping potential of atomic
distance-based shape similarity method USRCAT has been
demonstrated utilizing DUD-E dataset (Schreyer and Blundell,
2012). For the tested benchmark dataset, USRCAT was capable
of identifying structurally dissimilar active hits that could not be
retrieved by utilizing topological similarities. Shape similarity was
also used to repurpose existing drugs for previously unknown
activity (Vasudevan et al., 2012). Another application is in silico
target fishing or the identification of protein targets of orphan
chemical compounds. In one recent research, the target of anti-
fungal macrocycle amidinoureas was identified following a shape
similarity screening (Maccari et al., 2017). The representative
structure from a series of macrocycle amidinoureas was used as
a query to obtain most similar crystallographic ligand from all
solved crystal structures. A prioritized list of targets based on
similarity score and subsequent docking and enzymatic assay
revealed Trichoderma viride chitinase as target of this class of
compounds. Along the same line, retrospective studies showed
that the combination of molecular shape and chemical structure
similarity can reliably achieve biological target prediction
(Abdulhameed et al., 2012; Gfeller et al., 2013). Additionally,
shape similarity comparison based on spherical harmonics
surface representation has been demonstrated that it can be
used to predict drug promiscuity (Perez-Nueno et al., 2011).
Furthermore, shape similarity comparisons could also be used to
predict subtype selectivity of ligands (Kuang et al., 2016).

One important application of shape similarity methods in
drug discovery is the clustering of known inhibitors of a protein
target. As the performance of most shape-based methods highly
depend on the selection of right query for the virtual screening
(Kirchmair et al., 2009), special attention was paid toward the
development of methods dealing with this problem. It has
been reported that clustering of known inhibitors based on
their shapes could help the identification of optimal query for
virtual screening (Pérez-Nueno and Ritchie, 2011). Clustering
of spherical harmonics-based consensus shapes assisted in the
identification of ligands that bind to different regions in the
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binding pocket of some protein targets such as CCR5 (Pérez-
Nueno et al., 2008). Further, the clustering of molecular shapes
also helped in the identification of promiscuous protein targets
and ligands (Pérez-Nueno and Ritchie, 2011). Selection and
use of high quality compound libraries is an important aspect
of high throughput screening (HTS). However, testing a large
number of compounds is not economically viable. In silico,
mostly 2D similarity based, methods are commonly employed
to generate a subset or focused set for HTS (Huggins et al.,
2011; Dandapani et al., 2012). The limitation with 2D similarity
methods is that they ignore inherent property such as the
shape of a molecule. Use of shape-based clustering of large
compound libraries for creating quality HTS library present
several advantages. Clustering of molecular libraries based on
atomic distance-based methods such as USR can achieve similar
or significantly better computational efficiency as 2D fingerprint-
based methods. Moreover, it will ensure maximum diversity with
less number of compounds in HTS library.

Apart from employing ligand 3D shape similarity as a virtual
screening method, several groups adopted it to improve the
performance of other virtual screening methods. Molecular
docking is one such method widely used in drug discovery.
Although there has been significant progress in the development
of molecular docking methods, challenges still remain both in
sampling and scoring of binding poses within protein binding
pockets. In the last few years, several methods were developed
that utilized ligand 3D shape similarity to improve both sampling
and scoring performance of molecular docking. The shape
overlap with known crystallographic ligands for the target
protein was utilized to guide ligand conformational sampling
toward critical regions of protein binding site (Wu and Vieth,
2004). Other methods used shape similarity based alignment for
the selection of reliable poses among many docking generated
poses (Fukunishi and Nakamura, 2008, 2012; Anighoro and
Bajorath, 2016; Kumar and Zhang, 2016a). Ligand 3D shape
similarity was also a key component of many pose prediction
methods where shape similarity with existing ligand bound
crystal structures was utilized to predict binding poses of
unknown ligands (Kelley et al., 2015; Huang et al., 2016; Kumar
and Zhang, 2016b,c). Several of these methods demonstrated
excellent retrospective and prospective performance. Moreover,
shape similarity also facilitated the improvement in scoring
and rank-ordering performance of a docking method. Several
methods have reported improved virtual screening performance
of a docking method when shape overlap with crystallographic
ligands was employed to select the best binding pose of ligands
in a screening library (Roy et al., 2015; Anighoro and Bajorath,
2016). Consideration of protein flexibility inmolecular docking is
a challenging problem and several methods have been developed
to tackle it (B-Rao et al., 2009). Among these, receptor ensemble
basedmethods demonstrated reasonable performance (Bottegoni
et al., 2011) where the receptor ensemble is selected either
from many crystallographic structures or from those generated
by in silico methods such as molecular dynamics simulation.
It has been shown previously that the selection of receptor
ensemble based on binding pocket shape similarity is an
effective way of considering receptor flexibility in molecular

docking (Osguthorpe et al., 2012). Further, onemethod suggested
utilizing a single suitable receptor for each ligand in a screening
library instead of docking all compounds to multiple receptor
structures (Kumar and Zhang, 2018). It was also shown that
single suitable receptor selection based on ligand 3D shape
similarity is superior to 2D similarity based selection.

Applications in Protein Structure
Comparison
Evaluation of structural similarity between protein structures
has many applications including but not limited to classification
of protein structures, evolutionary relationship between
protein structures, identification of templates for homology
modeling, functional annotation, protein-protein interactions
etc. Conventional methods for protein structure comparison
are based on the alignment of protein atoms or residues.
These methods require extensive rotational and translational
sampling thereby limiting their utility for large scale protein
structure comparisons. Several methods have been developed
that utilize shape similarity to detect global or local similarity
between protein structures. Classification of these methods
also follows the previously described classification including
Gaussian overlay based methods, surface-based methods using
spherical harmonic descriptors, 3D Zernike descriptors etc.
Among these, surface-based methods were developed previously
to measure similarity between protein structures. Only later
they were applied to the small molecule area. Several methods
of protein structure comparison employed SH to represent
shapes of protein structures (Tao et al., 2005; Gramada and
Bourne, 2006; Konarev et al., 2016). Like SH, 3D Zernike
based moments are also suitable to compare shapes of protein
structures (Sael et al., 2008b; Figure 4A). Not only they were
suitable to estimate the similarity between two proteins but
also their rotation-translation invariant nature allows fast
real-time search of similar proteins in structural databases
such as PDB (La et al., 2009; Kihara et al., 2011; Xiong et al.,
2014). A Gaussian mixture model based protein shape similarity
method (Kawabata, 2008) also allows large scale comparisons
of proteins with data from PDB and EMDB. This method has
been implemented as Omokage search in PDB Japan (Suzuki
et al., 2016; Kinjo et al., 2017). The server compares global
shapes of proteins and results are obtained reasonably fast
within 1min after submission of a query. Large scale comparison
of protein structures based on shape is useful in functional
annotation, selection of templates for comparative modeling
etc. An application of shape comparison method to protein
classification has also been reported (Daras et al., 2006).

One important application of shapematching is the evaluation
of similarity between protein binding pockets. This field is
especially interesting as sequence and structural alignments are
often not useful when comparing binding pockets of proteins
with different folds. As protein binding pockets are much
more conserved than protein structures (Gao and Skolnick,
2013), a reliable comparison between protein binding pockets
is crucial for predicting protein functions, polypharmacology
of ligands and for drug repurposing. Numerous methods based
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on distinct structural representations as described previously
were developed in the last decade. One such method employed
spherical harmonics to represent and compare the shapes of
protein binding pockets (Morris et al., 2005). This method
was later extended to compare the shape of protein binding
pockets with that of binding ligands (Kahraman et al., 2007).
PocketMatch compares two binding pockets based on the
sorted list of distances that captured chemical nature and 3D
shape of the binding pocket (Yeturu and Chandra, 2008).
Another method based on property-encoded shape distributions
(PESD) combines the concept of shape distributions with the
chemical environment of the binding pocket surface to effectively
capture binding pocket similarities (Das et al., 2009). Pocket-
Surfer utilizes pseudo-Zernike descriptors and 3D Zernike
descriptors to represent and compare properties and 3D shapes
of binding pockets (Chikhi et al., 2010). An extension of this
method, Patch-Surfer searches local similarity by representing a
binding pocket as amalgamation of segmented surface patches
which are described by properties such as shape, electrostatic
potential, concaveness and hydrophobicity (Sael and Kihara,
2012). Similarity between protein cavities was also measured by
representing the pockets by pharmacophoric grid points and
aligning them by optimizing their volume overlap (Desaphy et al.,
2012).

Concept of pocket similarity was also extended to
complementarity between binding pockets and ligands.
This gave rise to a new virtual screening methodology based on
shape complementarity between binding pockets and ligands.
PL-Patch-Surfer2 program evaluates the compatibility between
ligand and binding pocket by measuring the complementarity
between ligand surface and local surface patches in the binding
pocket (Shin et al., 2016a,b; Figure 4C). The program utilizes
3DZD to represent molecular shape while physicochemical
properties are also mapped onto the surface. The method
was evaluated on benchmark datasets and revealed better
performance than two docking programs. Spherical harmonics
expansion coefficients have also been employed in the
approximation and comparison of binding pockets and
ligand surfaces (Cai et al., 2002). The complementarity was
demonstrated utilizing 35 protein-ligand complexes. Elekit
adopted shape and electrostatic complementarity concept
to discover small molecule inhibitors of protein-protein
interactions (Voet et al., 2013). Elekit assesses the similarity
between small molecules and protein ligands of a receptor protein
based on the electrostatic potential values stored on a 3D grid.

Applications in Fitting of Atomic Models
Into Cryo-Electron Microscopy Maps
Recent developments in cryo-electron microscopy (cryo-EM)
has helped researchers to overcome resolution barrier and
provide structural and mechanistic insights into structures of
difficult proteins and large protein assemblies. Most of these
improvements came from the advances in sample preparation,
electron detector technologies, improved microscope and
computational data processing. Computational methods played
an important part in particle picking, particle reconstruction,

building and fitting of structures into cryo-EM maps. In recent
years, several methods were developed to improve building,
fitting and refinement of protein structures in cryo-EM maps
(Esquivel-Rodríguez and Kihara, 2013). Among these methods,
a few methods employed shape similarity to fit atomic structures
of protein subunits into the cryo-EM maps of multi-subunit
proteins. Onemethod, GaussianMixture macromolecule FITting
(gmfit), utilizes Gaussian mixture models (GMM) to represent
the shape of cryo-EMmaps and atomicmodels (Kawabata, 2008).
GMMs are probability distribution functions obtained by joining
many 3D Gaussian functions. Initially, both the cryo-EM map
and atomic models are first converted into GMM followed by
the fitting of a single subunit GMM into the GMM of protein
complex using random and gradient based local search. Finally,
the fit between atomic models and cryo-EM map is obtained
based on the position and orientation of GMM. This method
is reasonably fast and can fit multiple subunits with reasonable
accuracy. PDB Japan (https://pdbj.org) has implemented this
method in its EM navigator utility to provide shape based
structural similarity search against protein databases (Kinjo et al.,
2017). Another method adopted a surface-based approach where
3DZD was used to represent and compare isosurface derived
from low resolution cryo-EM maps of protein structures (Sael
and Kihara, 2010; Figure 4D). It was demonstrated that 3DZD
can distinguish proteins of different folds even at low resolution
of 15 Å. A web-based platform for comparing cryo-EM maps
was also developed by the same group (Esquivel-Rodríguez et al.,
2015; Han et al., 2017). A similar method utilized 3D Zernike
moments to search a database of protein structures for matching
protein structures to a cryo-EMmap (Yin and Dokholyan, 2011).
EMLZerD method also utilized 3DZD to fit multiple structures
in a cryo-EM map (Esquivel-Rodríguez and Kihara, 2012). The
method generates hundreds of putative configurations of subunit
arrangement using a protein-protein docking method. These
configurations were later compared with a cryo-EM map using
3DZD and Euclidean distance. The biggest advantage of 3D
Zernike moments methods is that they are rotation translation
invariant and no computational expensive step of rigid body
or flexible structural alignment is required. Moreover, these
methods enable screening of proteins from structural databases
such as PDB to find out models that can fit into a cryo-EM map.

CONCLUSION AND FUTURE DIRECTIONS

3D shape similarity methods have contributed immensely to
the overall acceptance of the computational virtual screening
methods in drug discovery. Most shape similarity methods
for shape comparison of small molecules and macromolecules
took inspiration from the approaches developed to compare
the shapes of 3D objects in computational geometry field.
Several approaches were developed ranging from extremely
fast atom distance-based methods to comparatively slower
mathematically complex methods such as SH and 3DZD.
Among all the 3D shape comparison methods, atomic distance-
based and Gaussian overlay-based methods are the most
widely used. These approaches possess several advantages over
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surface-based methods. Atomic distance-based methods present
an extremely fast way of quickly comparing the shapes of
small molecules. This has facilitated the screening of very
large libraries of millions of compounds within a few seconds.
Moreover, screening large libraries increased the probability
of finding novel chemical scaffolds. Furthermore, as most of
these methods depend on shape rather than the underlying
chemical structure, scaffold hopping can be conveniently
achieved. Another possible application of these fast shape
similarity evaluation methods would be the clustering of large
chemical space to generate quality shape diverse HTS screening
libraries. Although Gaussian overlay-based methods are slower
than atomic-distance based methods, they are fast enough to
allow high throughput virtual screening. GPU implementations
of these methods is not very difficult as exemplified by the
development of several GPU compatible programs such as
FastROCS, PAPER, gWEGA etc. resulting in further increase
in the processing speeds. Another advantage with Gaussian-
based methods is that they allow visualization as they require
alignment of molecules prior to shape similarity calculations.
Visualization is helpful in understanding the features responsible
for biological activity and critical for the optimization of
a molecule especially for the molecules with low structural
similarity with query compound. However, a suboptimal
alignment can lead to errors in volume overlap calculations
and thereby affecting similarity scores and visualization. As
alignment is the key component of Gaussian overlay methods,
efforts should be focused toward improvingmolecular alignment.
Some of these methods employ chemical features to refine
global overlays. As alignment is global optimization problem,
molecular alignment could also be improved by employing
fast local optimization methods. Both atomic distance-based
and Gaussian overlay-based shape similarity methods handle
ligand flexibility by employing the conformational ensemble.
The performance thus indirectly depends upon conformation

generation methods. Current state-of-the-art conformation
generation methods still struggle to generate near-native
conformations of ligands such as peptidomimetics, macrocycles
etc. Development of novel conformation generation approaches
utilizing knowledge from experimental databases such as CSD
and PDB will steer improvement in performance of shape-
based virtual screening approaches. Surface based methods
such as SH expansion coefficients and 3DZD are suitable for
comparing macromolecules and atomic models with electron
density maps, however, comparatively less efforts have been
made toward utilizing them in small molecule area. One
advantage with surface-based methods is that the protein ligand
complementarity search is possible by comparing enclosed
shapes of binding pockets and ligands. This will be handy in
cases where ligand-based virtual screening methods could not
be used due to the lack of active compounds. Finally, shape-
based similarity could be used in combination with other ligand
and structure-based approaches either in hierarchical or parallel
manner to improve hit rate especially for difficult targets.
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γ-Aminobutyric acid (GABA) Transporters (GATs) belong to sodium and chloride

dependent-transporter family and are widely expressed throughout the brain. Notably,

GAT1 is accountable for sustaining 75% of the synaptic GABA concentration and entails

its transport to the GABAA receptors to initiate the receptor-mediated inhibition of

post-synaptic neurons. Imbalance in ion homeostasis has been associated with several

neurological disorders related to the GABAergic system. However, inhibition of the GABA

uptake by these transporters has been accepted as an effective approach to enhance

GABAergic inhibitory neurotransmission in the treatment of seizures in epileptic and

other neurological disorders. Here, we reviewed computational methodologies including

molecular modeling, docking, and molecular dynamic simulations studies to underscore

the structure and function of GAT1 in the GABAergic system. Additionally, various SAR

and QSAR methodologies have been reviewed to probe the 3D structural features of

inhibitors required to modulate GATs activity. Overall, present review provides an overview

of crucial role of GAT1 in GABAergic system and its modulation to evade neurological

disorders.

Keywords: γ-aminobutyric acid (GABA), GABA transporters (GATs), homologymodeling, molecular dynamics (MD),

QSAR

INTRODUCTION

Transporters or solute carriers are membrane bound proteins involved in the transport of
signaling molecules such as ions, nutrients, and various amino acids. The transport of the
impermeant solutes against concentration gradient is ATP mediated. Among these transporters,
solute carrier (SLC) transporter is one of the major class of human transport proteins that act as
symporters, antiporters, exchangers, and are classified into 55 families on the basis of variation in
structural elements and biological functions (Hediger et al., 2013). However, SLC6 transporters (the
sodium- and chloride-dependent neurotransmitter transporter family) including γ-Aminobutyric
acid transporters (GATs), norepinephrine transporter (NET), dopamine transporter (DAT), and
serotonin transporter (SERT) encoded by SLC6A1-4 genes in humans are specifically known
to be important for efficient neuronal synaptic transmission hence providing neurotransmitter
homeostasis in the central nervous system (CNS) (Ben-Yona et al., 2011; Kristensen et al., 2011;
Pramod et al., 2013).
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NET, DAT, and SERT are further classified under monoamine
transporters whereas GATs are amino acid transporters also
known as GABA neurotransmitter transporters (Singh et al.,
2007). The mammalian GATs are categorized into four subtypes,
GAT1-3 and BGT1 (Betaine GABA transporter) with respect
to their amino acid sequence and pharmacological properties
(Conti et al., 2004; Besedovsky et al., 2007; Parpura and
Haydon, 2008). Briefly, GAT1 and GAT3 subtypes accounts for
major proportion in CNS. Peculiarly, GAT1 is mainly expressed
throughout the brain in neurons (Jin et al., 2011); specifically
at the presynaptic terminals of the axons and also in minute
concentration in ganglia (Besedovsky et al., 2007; Rego et al.,
2007; Wilson, 2011) whereas GAT3 is mainly localized at
the perisynaptic astrocytes (Melone et al., 2015). Nevertheless,
GAT2/BGT1 are expressed in the liver, kidney, meninges as well
as at the blood brain barrier (BBB) (Takanaga et al., 2001; Zhou
and Danbolt, 2013).

The imbalance in homeostasis of various ions including
Na+ and Cl− due to dysregulation of monoamine transporters
at neuronal cells is widely associated with the modulation of
anxiety, appetite, mood, attention, depression, and aggression
etc (Singh et al., 2007). However, dysregulation of GATs (amino
acid transporters), under pathological conditions results in
extra removal of GABA neurotransmitter from the synapse
thereby leads to severe mental illnesses like Parkinson’s disease,
Alzheimer, schizophrenia, and seizures in epilepsy (Hack
et al., 2011; Schaffert et al., 2011). Generally, imbalance
in GABAergic neuronal circuits due to lowered expression
of glutamic acid decarboxylase (GAD), a key enzyme for
the conversion of excitatory neurotransmitter glutamate into
inhibitory neurotransmitter GABA in the presynaptic neuron,
is affiliated with onset of epileptic seizures (Gupta, 2011).
Moreover, decreased levels of GABA transaminase (GABA-T), a
known catabolizer of GABA into succinic semialdehyde, are also
profound in choreoathetosis, encephalopathy, hypersomnolence,
Alzheimer’s disease, and epilepsy. The lower GABA-T propagates
the higher levels of GABA in the intraneuronal cytoplasm
that causes certain pathological/psychiatric and pharmacological
effects (Sadowski, 2003). Markedly, as GATs are in direct contact
with the GABA neurotransmitter in the extracellular space
therefore, of all the stated GABAergic system components,
GATs have attained significant importance for maintaining
concentration gradient during abnormal conditions (Yamashita
et al., 2005).

Notably, GAT1 is mainly involved in the GABA binding and
transport from the cytoplasm to extracellular space (reverse
mode) and from the extracellular space back into the cytoplasm
(forward mode). Thus, malfunctioning of GAT1 may provoke
delay in communication with the post-synaptic GABA receptors
(Scimemi, 2014) which may result in various neurological
disorders (Hack et al., 2011; Schaffert et al., 2011). Given the
pivotal role of GAT1 in GABAergic transport mechanism, it
has been recognized as potential therapeutic target for decades
(Bialer et al., 2007). Therefore, inhibition of GABA re-uptake
transport [either through clinically tested GABA reuptake
inhibitors (GRIs) or GAT1 selective antiepileptic FDA approved
drug Tiagabine (Trimble and Schmitz, 2011)] to block the

extra removal of GABA from synapse is the most accepted
strategy to maintain a concentration gradient and normal
activity of GABA at the synaptic clefts (Zhou et al., 2007, 2009;
Krishnamurthy and Gouaux, 2012; Scimemi, 2014). Thus, this
review highlights the structural and functional properties of
GAT1 and also elucidates the important 3D structural features
of its antagonists. Additionally, pharmacoinformatics strategies
including quantitative structure-activity relationship (QSAR),
pharmacophore modeling, homology modeling, molecular
docking, and molecular dynamics (MD) studies have been
highlighted to underscore the overall binding hypothesis of
human γ-Aminobutyric acid transporter (hGAT1) modulators.

Mechanism of Action of GATs
The GABAergic mechanism starts with the conversion of
an excitatory neurotransmitter Glutamate into the inhibitory
neurotransmitter GABA by an enzyme glutamate decarboxylase
(GAD) in the mature mammalian brain (Gropper and Smith,
2012). This conversion is followed by GABA packing and
release into the synaptic vesicles. The vesicle’s uptake priority is
given to the newly synthesized GABA in lieu of the preformed
GABA. However, the underlying mechanism of such priority
supply of glutamate to the inhibitory synaptic terminals and to
maintain the vesicles content with fresh GABA formation is not
completely understood till date (Stafford et al., 2010). Hence,
it has been advocated that GABAergic neuronal networks are
mainly responsible for the synthesis and release of vesicular
packed GABA along with the respective ions from presynaptic
nerve terminals into the synaptic cleft down their electrochemical
gradient as shown in Figure 1 (Deidda et al., 2014). However,
regulation of GATs functioning is dependent on a wide
variety of signaling cascades including “second messengers”
(such as pH, kinases, arachidonic acid, and phosphatases) and
“synaptic proteins” (such as syntaxin) that play crucial role in
functional modulation of GATs (Law et al., 2000). For instance,
phosphorylation of tyrosine residues of GAT1 by tyrosine kinase
helps in mediating its GABA transport function (Law et al., 2000;
Wang and Quick, 2005). Various reports indicates that upon
activation released vesicular GABA from the presynaptic neurons
is taken up by GAT1 and transported to the GABA receptors that
are present on the post-synaptic terminals of the dendrites across
the synapse, as synaptic GABA does not undergoes enzymatic
breakdown (Figure 1) (Gonzalez-Burgos, 2010).

GABA is known as a key player of regulating plasticity and
inhibiting anxiety in eukaryotes (Brady et al., 2018). However,
the action of GABA is terminated to maintain its concentration
in the synapse. In this prospect GAT1 initiates about 80% GABA
re-uptake into presynaptic neurons (forward mode) from where
it releases again (reverse mode) when require. However, around
20% of the GABA molecules are metabolized into glutamine
after transportation to the glial astrocytes by GAT3 and thus,
are not available for the neuronal release (Figure 1). Hence, the
next cycle begins with the conversion of glutamine to glutamate
followed by conversion into GABA once again (Parpura and
Haydon, 2008).

Further, Rosenberg and colleagues conferred the translocation
cycle of GAT1 as explained in Figure 2. Briefly, GAT1 adopts
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FIGURE 1 | Schematic illustration of GABA synthesis, release, uptake, re-uptake, and metabolism in the CNS. In the presynaptic neuron, conversion of glutamine to

glutamate followed by the GABA synthesis is represented along with the respective catalytic enzymes and transporters. GABA receptor present on the post-synaptic

neuron receives the signals from the presynaptic neuron while astrocytes functions to metabolize the extra amount of GABA in the synaptic cleft and process it to

glutamine. The processed glutamine is transported to the presynaptic neuron with the help of Linker for activation of T-cells family member 2 (LAT2) transporter. Thus,

synthesis of GABA in presynaptic neuron is started again on the arrival of new signal.

three distinct conformations i.e., open-to-out, occluded-out,
and open-to-in conformations. When empty, GAT1 faces the
extracellular medium (out T) to which two Na+ ions bind (step
1). Na+ ions stabilize the binding of substrate in the protein
core. In a follow-up step, GABA (G) and a Cl− ion bind
with the transporter so that the transporter becomes loaded.
However, theoretical and computational studies have revealed
that prokaryotes do not require chloride (Cl−) ion for the
transport (Scimemi, 2014). Since, it is necessary in eukaryotic
mammals for the compensation of positive charge induced by
the co-transport of Na+ ions during GABA translocation step to
maintain themembrane potential (Rosenberg and Kanner, 2008).
In step 3, fully loaded transporter adopts a seal conformation
which does not allow the release of ions and/or substrate to either
intracellular (cytoplasm) or extracellular (synapse) medium until
or unless it changes its conformation. Subsequently loaded

transporter becomes inward facing (step 4) and then GABA and
co-transported ions are released into the cytoplasm (step 5). The
empty inward facing transporter (in T) transits to again occlude
its binding pocket and thus resume outward facing empty
transporter configuration (step 6). Hence, a new translocation
cycle begins again (Rosenberg and Kanner, 2008).

STRUCTURAL AND FUNCTIONAL
HOMOLOGS OF GAT1

Various attempts have been made to determine the crystal
structure of GATs in humans. However, struggles remained
unsuccessful due to the unavailability of appropriate quantities of
pure and stable transporter proteins. In prokaryotes, availability
of X-ray crystal structure of Aquifex aeolicus leucine transporter
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FIGURE 2 | Translocation cycle of GAT1. Steps 1–4 of translocation cycle represent the open-to-out conformation of hGAT1 which involves the co-transport of two

Na+ ions along with a Cl− ion and GABA (also known as forward mode of reaction). In forward mode, net influx of two Na+ ions through GAT1 results in the increased

concentration of Na+ ions in the cytoplasm. To maintain the intracellular Na+ ions concentration, Na+ pump present on the presynaptic neuronal membrane effluxes

the Na+ ions into synaptic cleft to maintain the concentration gradient. Step 5 represents open-to-in conformation of hGAT1 (also known as reverse mode of

reaction). In reverse mode functioning of Na+ pump is opposite to that of the forward mode. In step 6, the hGAT1 becomes empty again to begin a new cycle.

(AaLeuT, PDB ID: 3F3A) that shares remarkable functional
similarity and about 25% sequence similarity with eukaryotic
GATs (Kristensen et al., 2011) has augmented the research
efforts to elucidate the structure and function of human GATs
(hGATs). Moreover, crystal structure of dopamine transporter
(DAT, PDB ID: 4XP4) in open-to-out conformation inDrosophila
melanogaster (Wang et al., 2015) (that shares 46% sequence
identity with GAT1) serves as a good template for the molecular
modeling of the tertiary structure of GATs.

Though, detailed insights into functional inhibition
mechanism of GATs remained exclusive till date. Yet, inhibition

of hGAT1 translocation cycle at any of the three distinct
conformational states of hGAT1 (open-to-out, occluded-
out, or open-to-in) to inhibit the extra removal of GABA
neurotransmitter has been reported by various authors in the
past. However, open-to-out and occluded-out conformations
are mostly targeted (Beuming et al., 2006; Skovstrup et al.,
2010). It has been demonstrated that inhibition of open-to-
out conformation obstructs hGAT1 to acquire occluded-out
conformation responsible for translocation of substrate GABA
and co-transported ions (Baglo et al., 2013). As the transport of
the substrate is mediated through two binding sites i.e., S1 and
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S2, none of the AaLeuT or dDAT crystal structures were solved
with a bound ligand at S2 site until 2008. Briefly, S2 site is known
as a low affinity and temporary occupied region for the ligands,
as they finally move toward the S1 site from the extracellular
vestibule (Quick et al., 2009).

Later, researchers were successful in elucidating the
importance of S2 site through impairment of symporter activity
(i.e., release substrate molecule to the S1 site) in a mutagenesis
study conducted on hGAT homolog, AaLeuT. The substitution
of n-octyl-D-glucopyranoside (OG) detergent along with the
substrate at S2 site trapped the transporter in its open-to-out
conformation due to its inhibitor like effect on activity thereby
blocked the translocation of substrate to S1 site; subsequently
led to the inhibition of occluded transport conformation (Quick
et al., 2009). Moreover, in case of dDAT the binding of inhibitor
cocaine at the S2 site in open-to-out conformation during
pathogenic conditions induced the conformational change in
the binding site of dDAT to facilitate its translocation to S1 site.
The binding of the cocaine to S1 site resulted in the blockade
of conformational shift from open-to-out to occluded-out
conformation (Clementi and Fumagalli, 2015; Wang et al., 2015)
which ultimately results in the inhibition of dopamine transport
into the cytoplasm; eventually leading to the neuromodulation
to overcome anxiety and depression.

Topology and Physiological Properties of
GAT1
The topology of GAT1 was first determined with the help of
hydropathy plots that assists in structure elucidation of rest
of the members of GATs as they share significant similarity
(>50%) (Cummings et al., 2009). Hydropathy plots allow the
identification of the domains which are soluble or insoluble
i.e., charged or uncharged amino acids regions, respectively,
over the length of protein sequence. Thus, sequence and
structural inspection of electron microscopic, epitopic and X-
ray crystallographic studies delineates that GATs consists of 12
transmembrane (TM) segments with N- and C-terminus facing
cytoplasm as shown in Figure 3. Overall, GATs encompasses
two pseudo repeats of helices i.e., TM1-TM5 and TM6-TM10.
Moreover, TM segments 1, 3, 6, and 8 are majorly involved in the
upholding of ions and substrate in GATs (Figure 3). Mutagenesis
studies have provided detailed insights into some structural
aspects of the defined topology that includes identification of N-
glycosylation sites that fall in the hydrophilic extracellular loop
(EL2) in between TM3 and TM4 segments (Masuda et al., 2008)
whereas phosphorylation occurs in the intracellular loops (IL)
of GATs with the help of tyrosine kinases (Bennett and Kanner,
1997). Moreover, mutagenesis studies have showed that removal
of these glycosylation sites may result in the reduced GABA
uptake activity however, malfunctioning of tyrosine kinases
involves the redistribution of GATs from the cell surface to
intracellular locations (Masuda et al., 2008; Jin et al., 2011).
Arbitrary, GATs require transportation of an extracellular Cl−

ion along with Na+ ions and a GABA molecule (substrate)
per transportation step as shown in Figure 3 (Reichenbach and
Bringmann, 2010). However, stoichiometry of Na+:Cl−:GABA

transport for GAT1, GAT2, GAT3, and BGT1 is 2:1:1, 2:1:1,
≥2:2:1, and 3:1(or 2):1, respectively (Loo et al., 2000; Dalby,
2003). In general, GABA molecule is zwitterion therefore, GATs
propagates a net influx of one positive charge per transport step
(Lu and Hilgemann, 1999).

Substrate and Na+ Ions Binding Sites in hGAT1
Briefly, TM1 and TM6 segments contain unwound regions
hence separating them as TM1a, 1b, 6a, and 6b. Moreover, I62
and G63 residues in the unwound regions adopt an extended
conformation to link the TM1a-b segments whereas G307
to G311 are involve in linking TM6a-b segments. TM1 and
TM6 segments, harboring the highest percentage of conserved
residues, run in opposite direction. These two TM segments in
their unwound regions along with TM3 and TM8 form the inner
cylindrical ring (S1 binding site) which upholds the two Na+ ions
and substrate binding site (Figure 3B). Amino acid residues G59,
A61, I62, L64, G65, Y60, N66 (of TM1), Y140 (of TM3), S305,
G307 (of TM6), N327 (of TM7), L392, D395, S396, L402, and
S406 (of TM8) are known to be involved in pocketing Na+ ions
and substrate in water depleted binding site of hGAT1 (Yamashita
et al., 2005). However, S2 site is the preliminary allosteric site in
the extracellular vestibule at which either substrate or inhibitor
molecule binds. It mediates the release of Na+ ions and substrate
to primary site (S1), thus, enables the sodium coupled GABA
(substrate) symporter activity (Quick et al., 2009).

Cl− Ion Binding Site
The X-ray crystal structure of AaLeuT does not encompass Cl−

ion. However, the uneven estimate of its binding in AaLeuT is in
the EL2 which is ∼20Å away from the binding pocket (S1 site).
Thus, the transport is considered as Cl− independent transport
(Forrest et al., 2007). In comparison, eukaryotic neurotransmitter
transporters are Cl− dependent and R69 is known to be a crucial
residue in Cl− ion binding during the transport. Moreover,
replacement of any other residue with R69 especially charged
residues abolishes the Cl− ion binding hence obstructs the
substrate transport (Lajtha and Reith, 2007).

Additionally, the structural analysis of SERT, one of
the members of neurotransmitter transporters that share
significant similarity with GATs, emphasized that Y121, S336,
N368, and S372 interact through carbonyl oxygen and amide
nitrogen with Cl− ion in eukaryotes. The corresponding
residues in prokaryotes are Y47, T254, N286, and E290
(Krogsgaard-Larsen et al., 2016). However, mutagenesis studies
of S372 (corresponding E290 residue in prokaryotic AaLeuT)
with alanine, cysteine, glutamate and aspartate, and N368
(corresponding residue N286 in AaLeuT) with aspartate inhibit
the Cl− ion mediated transport (Forrest et al., 2007). Later on,
Kristian identified that Cl− ion is important for the translocation
of substrate (GABA in eukaryotes) against the concentration
gradient by compensating the positive charges (Na+ ions). Thus,
the specific residues of hGAT1 known for Cl− ion dependence
and selectivity are Y86, Q291, S295, N327, and S331 (Figure 3B)
(Krogsgaard-Larsen et al., 2016).

Along with the substrate transport, the ions movements
through neurotransmitter transporters also play a significant role
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FIGURE 3 | Generalized membrane topology of GATs. (A) The TM segments 1 and 6 (shown in red and light blue) along with the TM segments 3 and 8 (shown in

green and dark blue) are involve in the formation of cylindrical ring for binding of the substrate and co-transported ions. Rests of the TM segments are shown in

brown. Interconnecting intra- and extracellular loops (ILs and ELs) are represented with dark blue color. S1 and S2 represent the primary and preliminary binding sites

of the substrate. (B) 3D structure of hGAT1 possessing substrate (S1 and S2), ions binding sites and glycosylation sites. Purple sphere shows sodium ions and Cl−

ion is represented with green color. An enlarge view of GAT1 residues interaction profile of GABA and all three ions is presented on right side.

in inducing conformational change in the TM helical segments
of the binding pocket. Generally, in open-to-out conformation
of transporter, encompassing the bound Na+ ions in the active
site (S1), extracellular gates are relatively thin and remain
open. However, substrate binding induces slight conformational
changes in the extracellular regions of the TM1, TM2, TM6,
and EL4 (Krishnamurthy and Gouaux, 2012). The functional
role of EL4 is well-established in sealing of the binding site
thereby leading to the occluded-out conformation (Gether et al.,
2006). Upon release of Na+ ions into the cytoplasm (open-to-in
state), the re-shifting of TM segments 1, 2, 5, 6, and 7 induces
a major conformational change in the transporter structure
once again. Furthermore, intense changes in the hinge region

of TM1a and extracellular vestibule of EL4 i.e., bending and
occlusion, respectively occurs. This allows the formation of thick
extracellular and thin intracellular gates therefore, blocking the
access of water in the binding cavity and permit access to binding
site from the cytoplasmic face (Krishnamurthy and Gouaux,
2012).

Bio-physiologically, GAT1 encompass four basic properties
thoroughly determined by [3H] GABA uptake assays performed
on rats: (i) GAT1 have strong affinity for GABA molecules
as a substrate at low micromolar concentration (Guastella
et al., 1990), (ii) the increase rate of GABA uptake in the
presence of K+- selective ionophore valinomycin help in the
determination of the fact that this transport is voltage dependent
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across the membrane (Kanner, 1978; D’adamo et al., 2013),
(iii) replacement of Na+ ion with other cations e.g., Li+, K+,
Tris+ may affect the transport mechanism thus, suggesting
Na+ ion crucial for the transport (Iversen and Neal, 1968;
Nascimento et al., 2013), and (iv) the GABA transport requires
electrochemical gradient of Na+ ion which is generated by
Na+/K+ ATPase activity (Guastella et al., 1990; Hertz et al., 2013).

Although, GABA is now established as a major inhibitory
neurotransmitter in the vertebrate brain (Tritsch et al., 2016),
GABA presence in the CNS was not fully determined until
1975. However, during last 40 years a tremendous progress
has been made to identify its role in CNS. In this regard,
a number of experiments have been conducted on mice
and crustacean models specifically in crayfish that helped in
defining the role of GABA in GABAergic neuronal system
mediated inhibition processes (Bowery and Smart, 2006).
From more than 65 years, mutagenesis studies and wet
lab experiments have been carried out to understand the
functional relevancy of amino acid residues, quantitativemeasure
or qualitative assessment of functional activity, presence or
amount of the target (site/protein/chemical). Hereof, several
biochemical, pharmacological, and physiological studies have
shown determinable effects in comprehending GABAergic
interneurons system and its use in treatment of epilepsy. For
example, numerous studies have been conducted on activity
of GAD enzymes, binding of GABA to post-synaptic GABAA

receptors, percentage reduction in GABA mediated inhibition,
presence of GABA in brain tissue and cerebrospinal fluid
(CSF) (Treiman, 2001). Hitherto, a huge number of tested
acquired and genetic animal models have shown a clear evidence
of abnormalities in GABA regulation in interneurons system
(Horton et al., 1982; Olsen et al., 1985; Peterson et al., 1985;
Roberts et al., 1985; King and Lamotte, 1988).

PHARMACOINFORMATICS APPROACHES

Under pathological conditions, the low GABA concentration
near a synapse induces a weaker activation of its receptors
(provoking a delay in generating communication between pre-
and post-synaptic neurons) thus, making the system more liable
to the de-formation of new memories (Laviv et al., 2010). Thus,
different biological assays including equilibrium binding assay,
GABA uptake assay and GAT1 transport assay have been used
to study the GABA transport through GAT1 in the presence of
various antagonists in various cell lines including CHO, HEK,
and Xenopus oocytes (Kragler et al., 2005, 2008; Pizzi et al., 2011).

Additionally, numerous attempts have also been made to
identify the GATs inhibitors by using combined structure and
ligand based strategies. Main focus was to remain on GAT1
as limited GAT1 inhibitory compounds failed to enter the
clinical phase due to their impairment of motor activities and
inability to cross the BBB (Falch et al., 1987). One of the
successful inhibitor, Tiagabine, is the only FDA approved second
generation GAT1 selective antiepileptic drug in the market
with less toxicity however, certain side effects such as tremor,
ataxia, asthenia and sedation are related to its pharmacological

activity (Schwartzkroin, 2009). In general, Tiagabine is the
derivative of nipecotic acid with the lipophilic chain attached
to the protonated nitrogen of the piperidine ring of nipecotic
acid at one end and di-thiophene rings substitutions at the
other end (Genton et al., 2001). Various authors utilized
pharmacoinformatics approaches to design selective inhibitors
of GATs subtypes however, only handful of compounds could
meet the selectivity and affinity criteria. Thus, less statistics are
available about the potent inhibitors of GAT2, GAT3, and BGT1
as compared to GAT1 (Clausen et al., 2005a).

Structure Based Studies
Homology Modeling
Overall, a brief overview of different conformations of hGAT1
studied through X-ray crystallography technique in the bacterial
and fly homolog has been presented in Table 1.

It has been elucidated that all four isoforms of GATs (GAT1-3
and BGT1) share>50% sequence similarity as shown in Figure 4.
However, hGAT1 shares 60% sequence similarity with dDAT
as compared to AaLeuT (36%) which makes dDAT valuable
template for structural modeling of hGATs and to resolve nature
and shape of binding pocket, opening and closing conformations
of GAT1 through further docking and molecular dynamic
simulation (MD) studies.

In the last decade, homology models of different isoforms
of GATs have been developed to understand their structural
and functional characterization in humans. In this regard, Baglo
and colleagues conducted homology modeling of the hGAT1
using AaLeuT crystal structure as a template in three different
conformations i.e., open-to-out (PDB ID: 3F3A), occluded-out
(PDB ID: 2A65), and open-to-in (PDB ID: 3TT3). However, due
to the difference in number of amino acid residues of EL2 among
prokaryotes and eukaryotes maximum length of EL2 was not
considered for model building (Baglo et al., 2013). The residues
A61, I62, G63, L64, N66, S295, L300, S396, Q397, and C399
have been predicted to be involved in both GABA binding and
transport. However, Dodd et al. (Dodd and Christie, 2007) and
Anderson et al. (2010) have analyzed that the residues Y60, L136,
G297, and T400 were specifically involved in GABA transport
activity. The built homology models of GAT1 are discussed in
detail in section Docking and Molecular Dynamics Simulations
(MD) Studies with respect to amino acid residues involved in
docking of ligands.

Docking and Molecular Dynamics Simulations (MD)

Studies
Until now only two investigations have been carried out to
computationally scrutinize the binding of substrate, two Na+ and
a Cl− ion in the S1 binding site of hGAT1 through molecular
docking followed by molecular dynamics simulation studies. In
addition to this, binding of such small molecules in GAT1 pocket
allowed the researchers to predict the corresponding biological
activities as well (Palló et al., 2007; Wein and Wanner, 2010).

Therefore, docking of small molecules into the binding pocket
of hGAT1 provides a way to understand their mechanism along
with the shape and nature of the binding core. Noticeably, in
hGAT1 the coordination of one of the Na+ ion was observed
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TABLE 1 | Reported crystal structures of AaLeuT and dDAT deposited in RCSB PDB.

PDB code Resolution (Å) Conformation Wild/ Mutated Substrate Inhibitor Organism Year References

2A65 1.65 Occluded-Out Wild L-Leu – A. aeolicus 2005 Yamashita et al.,

2005

2Q6H 1.85 Occluded-Out Wild L-Leu Clomipramine A. aeolicus 2007 Singh et al., 2007

2Q72 1.70 Occluded-Out Wild L-Leu Imipramine A. aeolicus 2007 Singh et al., 2007

2QB4 1.90 Occluded-Out Wild L-Leu Desipramine A. aeolicus 2007 Singh et al., 2007

2QEI 1.85 Occluded-Out Wild L-Ala Clomipramine A. aeolicus 2007 Singh et al., 2007

2QJU 2.90 Occluded-Out Wild – Desipramine A. aeolicus 2007 Zhou et al., 2007

3F3A 2.00 Open-To-Out Wild – L-Trp A. aeolicus 2008 Singh et al., 2008

3F3C 2.10 Occluded-Out Wild p-F-L-Phe – A. aeolicus 2008 Singh et al., 2008

3F3D 2.30 Occluded-Out Wild L-Met – A. aeolicus 2008 Singh et al., 2008

3F3E 1.80 Occluded-Out Wild L-Leu – A. aeolicus 2008 Singh et al., 2008

3F48 1.90 Occluded-Out Wild L-Ala - A. aeolicus 2008 Singh et al., 2008

3F4I 1.95 Occluded-Out Wild L-Se-Met - A. aeolicus 2008 Singh et al., 2008

3F4J 2.15 Occluded-Out Wild Gly - A. aeolicus 2008 Singh et al., 2008

3GJC 2.80 Occluded-Out Mutant L-Leu OG A. aeolicus 2009 Quick et al., 2009

3GJD 2.00 Occluded-Out Wild L-Leu and OG – A. aeolicus 2009 Quick et al., 2009

3GWU 2.14 Occluded-Out Wild – Sertraline A. aeolicus 2009 Zhou et al., 2009

3GWV 2.35 Occluded-Out Wild – R-fluoxetine A. aeolicus 2009 Zhou et al., 2009

3GWW 2.46 Occluded-Out Wild – S-fluoxetine A. aeolicus 2009 Zhou et al., 2009

3MPN 2.25 Occluded-Out Mutant L-Leu – A. aeolicus 2010 Kroncke et al.,

2010

3MPQ 2.25 Occluded-Out Mutant L-Leu – A. aeolicus 2010 Kroncke et al.,

2010

3TT3 3.22 Inward-open

&outward

open

Wild Substrate free

(open-outward

and apo inward)

– A. aeolicus 2012 Krishnamurthy and

Gouaux, 2012

4XP1 2.89 Open-To-Out Wild Dopamine – D. melanogaster 2015 Wang et al., 2015

4XP4 2.80 Open-To-Out Wild – Cocaine D. melanogaster 2015 Wang et al., 2015

4XP5 3.3 Open-To-Out Wild Cocaine

analog-RTI55

- D. melanogaster 2015 Wang et al., 2015

4XP6 3.1 Open-To-Out Wild – methamphetamine D. melanogaster 2015 Wang et al., 2015

4XP9 2.8 Open-To-Out Wild – D-amphetamine D. melanogaster 2015 Wang et al., 2015

4XPA 2.95 Partially

occluded

Wild 3,4dichloro-

phenethylamine

– D. melanogaster 2015 Wang et al., 2015

4XPB 3.05 Open-To-Out Mutant – Cocaine D. melanogaster 2015 Wang et al., 2015

4XPF 3.27 Open-To-Out Mutant – RTI-55 D. melanogaster 2015 Wang et al., 2015

4XPG 3.21 Open-To-Out Mutant – beta-CFT D. melanogaster 2015 Wang et al., 2015

4XPH 2.9 Open-To-Out Mutant 3,4dichloro-

phenethylamine

– D. melanogaster 2015 Wang et al., 2015

4XPT 3.36 Open-To-Out Mutant 3,4 dichlorophen

ethylamine

– D. melanogaster 2015 Wang et al., 2015

with the carboxyl group of GABA. Moreover, GABA forms
hydrogen bonds with the side chain hydroxyl group of Y140,
to the main chain nitrogen atom of G65 and to the main
chain oxygen of F294. The amine moiety of GABA in addition
form ionic interactions with Y60 (Lovinger, 2010; Baglo et al.,
2013).

In another study, the binding pattern of substrates of hGAT1
and AaLeuT i.e., GABA and leucine, respectively were analyzed.
As both of the substrates possess carboxylic acid group, involved
in interaction with the Na+ ion therefore, represented a very
similar pattern of binding. In comparison to AaLeuT, the carbon

chain of the GABA adopted extended conformation in the
binding pocket thus –NH of the GABA showed the hydrogen
bond interaction with Y60 and G297 of hGAT1 as shown in
Figure 5 (Wein and Wanner, 2010). Later on, small molecule
inhibitors such as nipecotic acid, guvacine, 4-amino-isocrotonic,
taurine, and 4-amino-2-hydroxybutanoic acid were also docked
into the built hGAT1 model to probe their binding in hGAT1.
The subsequent molecular dynamics (MD) calculations after
flexible docking showed that the active site was not easily
accessible either from the extracellular or cytoplasmic face
because it was of very limited size hitherto, suggested that the

Frontiers in Chemistry | www.frontiersin.org 8 September 2018 | Volume 6 | Article 397316

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Zafar and Jabeen GAT1 Modulation in Neurological Disorders

FIGURE 4 | Sequence similarity among dDAT (UniProt ID: Q7K4Y6), AaLeuT (UniProt ID: O67854) and all four subtypes of GATs [UniProt IDs: GAT1 (P30531), GAT2

(Q9NSD5), GAT3 (P48066), and BGT1 (P48065)]. The multiple sequence alignment (MSA) was performed using Schrodinger alignment tool (Schrödinger Release,

2017). The red boxes highlight the amino acid residues of the respective substrate binding sites in the aligned homologous sequences.

large inhibitors bind in open-to-out conformation only (Wein
and Wanner, 2010).

In 2010, Skovstrup and colleagues studied the binding
conformations of GABA, nipecotic acid and Tiagabine in
occluded-out conformation of hGAT1. Figure 6 show a venn
diagram of overlapping interacting amino acid residues in
substrate binding site of GAT1 identified by previous researchers.
It illustrates that T400, Y60, L136, and G297 amino acid residues
play an important role in the binding of GABA and nipecotic acid
derivatives (Yamashita et al., 2005; Gether et al., 2006; Dodd and
Christie, 2007; Skovstrup et al., 2010; Baglo et al., 2013) however,
Skovstrup et al. additionally reported the role of Y296 in the
GABA binding.

It was also hypothesized that the large aromatic moieties of
GAT1 modulators are important for their inhibition activity. The
attachment of large hydrophilic chains to the aromatic moieties
may allow the inhibitor Tiagabine to face the extracellular
vestibule of GAT1 in comparison to nipecotic acid (devoid
of hydrophilic chain) which orients toward the cytoplasmic
face of GAT1 (Figure 7) i.e., formation of hydrogen bond
interaction between the protonated nitrogen of Tiagabine and
F294(O) in occluded-out conformation. Moreover, all of the
three compounds (i.e., GABA, nipecotic acid, and Tiagabine)
showed electrostatic interaction with sodium ion while shared
common polar interactions with Y60, Y140, and S396. However,
the specific polar contacts (in case of GABA) were seen with
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FIGURE 5 | Comparison of ligand binding site residues in (A) Leucine bound LeuT and (B) GABA bound hGAT1 [Taken and modified from Wein and Wanner (2010)].

Residue numbers for the shown polar interactions in LeuT and hGAT1 is according to the respective transporters.

FIGURE 6 | Comparison of specific and overlapping interacting amino acid

residues at GABA binding site in GAT1 determined by Skovstrup et al. with the

residues identified by Baglo et al. and Dodd et al.

Y296, G65 (in nipecotic acid), and F294 (in Tiagabine). On the
other hand, MD simulations for open-to-out conformation of
these compounds were also in agreement with the observations
for occluded-out conformation (Skovstrup et al., 2010). This
shows that occluded-out conformation requires major change
in binding cavity for adjusting large inhibitors such as
Tiagabine.

Later on, steered molecular dynamics (SMD) simulation
approach was utilized to understand the whole mechanism of
action of GABA in all the three GAT1 conformational states.
Skovstrup and colleagues were successful in reorienting the
occluded-out conformation into open-to-out and open-to-in
conformations (Skovstrup et al., 2012). In case of reorientation
to open-to-out conformation, the amino acid residues involved
in the transfer of GABA from S1 site to temporary binding
site (S2), located in the extracellular vestibule of GAT1, were

FIGURE 7 | Comparison of binding mode of docked GABA, nipecotic acid

and Tiagabine in GAT1 [taken and modified from Skovstrup et al. (2010)]. All of

the three docked ligands have showed ionic interactions with one of the

sodium ion present in the GAT1 binding pocket. The aromatic moieties of

Tiagabine (purple) face the extracellular vestibule of GAT1 due to the presence

of the linker lipophilic chain.

determined. Before dissociation of GABA from S1 to S2 site
the carboxylate group of GABA showed (i) intra-molecular
interaction with amine of GABA (ii) ionic interaction with
the Na1 and (iii) hydrogen bonding with Y60(O), G65(NH),
Y140(OH), and S396(OH) (Skovstrup et al., 2010). However,
after 8 ns of simulation, the amine of GABA and D451 from
S2 site started water mediated interaction with each other.
Moreover, R69 rearranged itself to form ionic interaction with
GABA carboxylate through guanidinium to inhibit the drifting
of GABA. The residues Y72 (located one helical turn above
R69) and K76 (located one helical turn above Y72 and two
helical turns above R69) took part in GABA binding after ∼12
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FIGURE 8 | Examples of N-substituted nipecotic acid derivatives for the inhibition of GAT1 with DDPM-2571 (pIC50 = 8.29 ± 0.02) having pIC50 value comparable to

the Tiagabine (7.43 ± 0.11).

ns of MD simulation. The complex remained stable for around
more 6 ns however, the GABA was fully solvated afterwards
(at 19 ns time period, sticked in the extracellular vestibule)
representing the open-to-out conformation of GAT1 (Skovstrup
et al., 2010). While in case of open-to-in GAT1 conformation,
the conformational change of TM6 results in the displacement of
the residue Y60 which in turn disrupted the interaction between
the carboxylate of GABA and Na1 of hGAT1. The residues R44,
W47, F53, Q106, Y309, N310, and N314 were observed to be
involved in the formation of intracellular gate. Additionally,
E101 made ionic contact with amine group of GABA hitherto
emancipated GABA into the cytoplasm. Therefore, the channels
from S1 to S2 (dissociation and release of GABA in extracellular
space) and S1 to cytoplasm have been recognized hydrophobic
in nature. On the other hand, R-nipecotic acid showed similar
dissociation effect as that of the GABA whereas; Tiagabine
showed hydrophobic interactions with the residues of TM1 and
TM6 in between two binding sites i.e., S1 and S2 (Skovstrup et al.,
2012).

R-nipecotic acid is known to be a medium-to-strong
inhibitor of hGAT1 however; proline is known to be a weak
inhibitor (Quandt et al., 2013). In 2016, Wein and colleagues
synthesized a series of N-substituted 4,4-diphenylbut-3-en-1-yl
(DPB) and 4,4-bis(3-methylthiophen-2-yl)but-3-en-1-yl (BTB)
nipecotic acid and proline derivatives (examples shown in
Figure 8). Interestingly in comparison to pure amino acids, the
resultant BTB or DPB substituted amino acids showed similar
binding affinities. On the other hand, docking of all these
inhibitors in hGAT1 pocket has portrayed that the nitrogen atom

of the pure amino acids is oriented toward the intracellular face of
the hGAT1 whereas the nitrogen atom of the N-substituted BTB
or DPB derivatives face the extracellular vestibule. This led to the
finding that in order to augment the hGAT1 locking in open-to-
out conformation the N-substituted amino acid derivatives are
better option as compared to the pure amino acids (Wein et al.,
2016).

Therefore, DDPM-2571 has been synthesized later, an N-
substituted derivative of pyridine. DDPM2571 (pIC50 = 8.29 ±

0.02) showed comparative affinity to Tiagabine (pIC50 = 7.43
± 0.11) when subjected to the hot plate test, formalin test and
mouse models. In addition, DDPM2571 (shown in Figure 8)
did not disrupt motor skills of the mouse models in lieu it
has augmented the memory deficits. Thus, DDPM-2571 may
be declared as a lead structure for the inhibition of seizures in
hGAT1 as well (Sałat et al., 2017).

Recently, nipecotic acid derivatives with alkyne type spacer
followed by the aromatic moiety have been synthesized. The
comparison of Tiagabine and newly synthesized nipecotic
acid derivatives showed a hydrogen bond interaction between
protonated nitrogen and carbonyl carbon of F294 of hGAT1
(Lutz et al., 2017). Moreover, a binding mode hypothesis
of nipecotic acid and N-diarylalkenyl piperidine analogs has
been determined in newly developed hGAT1 model (template:
dDAT, PDB ID: 4XP4) that may provide a structural basis to
apprehend hGAT1 analogs binding and design. The identified
binding site residues were in good agreement with already
known roof and base residues of hGAT1 pocket (Sadia,
2018).
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FIGURE 9 | Chemical structures of well-known GAT inhibitors.

Ligand Based Studies
From early 1980s, several attempts have been made to optimize
lead structures of GATs inhibitors. Hereof, researchers attempted
to employ amino acids, non-amino acids and their respective
derivatives to develop GATs antagonists (Andersen et al., 2001).
Among all, the bi-aromatic rings attached to the lipophilic
moiety are of fundamental importance (Kragler et al., 2008)
however, the underlying molecular mechanism of interaction of
these lipophilic analogs with GABA uptake system is unknown
(Stromgaard et al., 2009). A breakthrough in our understanding
of GATs pharmacology came with the development of a nipecotic
acid derivative with a di-aromatic substituent attached to the
lipophilic chain. The resulting analog Tiagabine was found to
be a potent, subtype specific and competitive inhibitor with a
high affinity (IC50 = 0.049µM) (Nakada et al., 2013). Later
on, derivatives of these cyclic GABA analogs such as 4,4-
diarylbutenyl, aminomethylphenols, tetrahydrobenzo-isoxazols,
diaryloxime, pyrrolidine-2-acetic acid derivatives, and diarylvinyl
ethers have been used to design and synthesize well-known
specific inhibitors of GAT1 (Knutsen et al., 1999; Andersen et al.,
2001; Zhao et al., 2005; Kragler et al., 2008; Pizzi et al., 2011).

Thorough investigations of the compounds guvacine, proline
and nipecotic acid led to the identification of the phenomenon
that the addition of lipophilic side chains to these compounds
results in the second generation compounds having ability to
penetrate BBB. For example, SK&F 89976A (Murali Dhar et al.,
1996), SKF-100591A (Zhao et al., 2005) SK&F 100330-A, CI-
966 (Borden et al., 1994), NNC 711 (or NO 711), Tiagabine
(highly selective for GAT1), SNAP-5294 (highly selective
for GAT2) (Hack et al., 2011), (S)-SNAP-5114 (moderately
selective for GAT3), NNC 05-2045, (poorly selective for BGT1),
EF1502 (selective for GAT1/BGT1) etc (Figure 9). Normally, the
lipophilic side chain is added onto the nitrogen atom of the
parent molecule. The side chain addition has showed a significant
increase in potency of many of the derivative inhibitors of GATs
however, these compounds have not reached to the status of
drugs (Pavia et al., 1992).

Andersen and colleagues synthesized novel tricyclic analogs
from the amino acids nipecotic acid, guvacine, and homo-
β-proline (Figure 9). The di-aryl groups were replaced with
the tricyclic ring moieties and were further attached with
the parent amino acid by the addition of variable length
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TABLE 2 | Derivatives of Compound 1 as modulators of hGAT1.

Compound 1

Bridging cell

represented

by “A”

r s R GABA uptake

IC50 (µM)

Compound 1 CH2CH2 2 2 homo-β-proline

(HOM)

0.05

Derivatives of

Compound 1

CH2CH2 2 2 (R)-nipecotic acid 0.18

S 2 2 (R)-nipecotic acid 0.30

O 2 2 (R)-nipecotic acid 14.6

CH2 – – (R)-nipecotic acid >40

of hydrophilic chains, containing the electronegative moiety.
However, this replacement decreased the potency of newly
synthesized compounds with the exception of one derivative of
homo-β-proline (HOM) that have showed 3-fold high potency
(compound 1), better ligand efficiency and hydrophilicity as
compared to the parent compound. The Andersen group
later extended the library of compound 1 like compounds by
modifying the “A” and “R” substituents, resulting in moderate
and poor inhibitors with a 0.18–40µM affinity (Table 2). Later
on, in vivo testing of compound 1 (IC50 = 0.05µM) for
neuronal [3H]-GABA uptake inhibition in mice also reveal its
anticonvulsant activity (i.e., higher than the nipecotic acid and
guvacine) (Andersen et al., 2001) approximately equivalent to the
Tiagabine (IC50 = 0.049µM) (Nakada et al., 2013).

Together, the following section provides a summary of the
pharmacology of GATs inhibitors with emphasis on the recent
advances in deciphering their role in hGAT1 binding pocket and
corresponding biological activities.

Aminomethylphenols
In 2008, Kragler and Wanner synthesized the non-amino acid

aminomethylphenol derivatives and correlated their affinities
against all GATs subtypes. The addition of the lipophilic side
chain on the nitrogen of the aminomethylphenol molecule
was applied to increase the flexibility of the compounds
e.g., 5-n-dodecylaminomethyl-2-methoxyphenol (compound 2,
Figure 10). The compound 2 showed significant inhibition
against both neuronal and glial [3H]-GABA uptake, although was
subtype unspecific (IC50 values: GAT1 = 12.30µM, GAT2 =

12.58µM, GAT3 = 2.69µM, BGT1 = 8.70µM) (Kragler et al.,

2008). Later on, Pizzi and colleagues investigated nipecotic acid
analogs by incorporating methyl, chlorine, fluorine, and bromine
on the ortho positions of the di-aromatic moieties attached to
the lipophilic chain. Nevertheless, only the addition of methyl
and flouro groups produced 4,4-diphenylbut-3-enyl derivative
(compound 3, pKi = 7.83, Figure 10) using [3H]-Tiagabine
radio ligand binding assay, with comparable affinity to Tiagabine
(pKi = 7.77) which also possess methyl group substituent at
the ortho position of the thiophene rings (di-aromatic moieties)
(Pizzi et al., 2011).

Nipecotic acid being a polar and hydrophilic compound
is not a perfect GAT1 blocker (Stella et al., 2007) therefore,
addition of N-(4,4-diphenyl-3-butenyl) hydrophilic moiety
to the nipecotic acid resulted in the robust derivative
SK&F89976A (Figure 9) with an about 20-fold improvement
in affinity over nipecotic acid. However, replacement of N-
(4,4-diphenyl-3-butenyl) lipophilic moiety with substituent
3,3-diphenylpropyl showed no in vivo activity at physiological
pH, but improved in vitro activity (Stella et al., 2007; Wermuth,
2011).

In another study, 1F9 cells were observed to measure
the proficiency of blockers SK&F89976A, SK&F100844A (4-
methoxyphenyl derivative of SKF89976-A), and SK&F100330A
(guvacine derivative) against GAT1 (Figure 9). Two of the
three derivatives (SK&F100844A and SK&F89976A) possessed
saturated piperidine rings however, SK&F100330A contained
unsaturated piperidine ring with the biological activities of 10,
0.8, and 0.5µM, respectively (Corey et al., 1994). Likewise,
Yunger et al. also acknowledged the anticonvulsant activity
of SK&F89976A, SK&F100330A, and SK&F100844A (IC50 =

0.20, 0.21, and 1.25µM, respectively) in rats brain using [3H]-
GABA uptake assay (Yunger et al., 1984). Later on, Braestrup
synthesized a nipecotic acid derivative Tiagabine (NO 328)
with the side chain addition of (R)-N-[4,4-Bis(3-methyl-2-
thienyl)but-3-en-l-yl] to the nitrogen atom of the piperidine ring.
Tiagabine was declared as a potential selective GABA inhibitor
in astrocytes/neuronal cells and also a potential radio-ligand to
check the concentration of GABA uptake (Braestrup et al., 1990).
Later on, Tiagabine was renowned as a GAT1 selective inhibitor
(Madsen et al., 2011).

Moreover, Yang synthesized a series of lipophilic di-aromatic
derivatives of 3-ethoxy-4,5,6,7-tetrahydrobenzo[d]isoxazol-4-
one by reductive amination of O-alkylatedracemic to obtain
the astrocyte specific GABA uptake blockers; (R)-4-amino-
4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol or (R)-exo-THPO
(Table 3). In addition, in vitro analysis of their binding
affinities against induced convulsions was carried out against
all the GATs subtypes along with expression testing in three
mediums/systems i.e., HEK cell lines, neurons, and astrocytes.
Surprisingly, the obtained derivatives were more selective for
the neuronal cells in comparison to the other two systems with
the highest selective compound 5 ((RS)-4-[N-(1,1-diphenylbut-
1-en-4-yl)amino]-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol)
having high binding affinity of 0.14µM (Table 3). Other
examples include compound 6 (IC50 = 34µM, attached
nitrogen in S-conformation) being a potent blocker of GAT2
whereas R-conformation of nitrogen atom in compound
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FIGURE 10 | Chemical structures of GATs inhibitors having ability to cross BBB due to attachment of the linker lipophilic chain.

TABLE 3 | Chemical structures of exo-THPO derivatives along with inhibitory

potency (IC50) values against hGAT 1.

(R)-exo-THPO *R1 and R2 = H (R-configuration)

Compound No. R1 R2 IC50 (µM)

Compound 5 Ph2C=CH(CH2)2 – 0.14

Compound 6 C14H15S2 CH3

N-atom in

S-conformation

N-atom in

R-conformation

0.14

4

Compound 7 CH3 – 28

6 (IC50 = 4µM) showed subtype selectivity for GAT1
(Table 3) (Clausen et al., 2005b). Additionally, N -methyl-
exo-THPO (4,5,6,7-tetrahydroisoxazolo [4,5-c]pyridin-3-ol)
with binding affinity of 28µM acted as astrocytic GABA
transport blocker (Table 3, compound 7) (Yang and Rothstein,
2009).

Azetidine Derivatives
The carboxylic acid group attached at different positions (i.e.,
ortho, meta, or para) of the polar moiety of the GAT1 antagonists
is known to play a crucial role toward high inhibitory potency
(Zheng et al., 2004, 2006). However, another class of GATs
inhibitors based on the bioisosteric substitution in place of
carboxylic acid group with tetrazole ring was synthesized to
evaluate the potential of the resultant azetidine derivatives. The
subsequent derivatives displayed no effect on the GABA uptake
which made tetrazole rings equipotent substitutors of carboxylic
acid group. However, the substitution of piperidine ring in NNC-
05-2045, one of the known GABA blocker, with the azetidine

ring resulted in the potentially moderate azetidine derivatives of
GAT1 e.g., 3-Hydroxy-3-(4-methoxyphenyl) (compound 8, IC50

= 26.6µM) and GAT3 (compound 9, IC50 = 31µM) as shown in
Figure 11. Additionally, the insertion of 4,4-diphenylbutenyl or
4,4-bis(3-methyl-2-thienyl)butenyl moiety N-alkylated lipophilic
side chains exhibited azetidine-2-ylacetic acid derivatives that
ensured the highest activity against GAT1 (compound 10, IC50

= 2.83µM and compound 11, IC50 = 2.01µM). Whereas,
the most active compound against GAT3 was the β-alanine
analog 1-{2-[tris(4-methoxyphenyl)methoxy]ethyl}azetidine-3-
carboxylic acid (compound 12) with an IC50 = 15.3µM
(Figure 11) (Faust et al., 2010).

Aminomethyltetrazoles
In 2011, Glycine’s mono- and di-substituted
aminomethyltetrazole derivatives were evaluated for biological
activity against all four subtypes of GATs in murine cells.
5-monosubsituted tetrazole blockers showed no contribution
toward inhibition of the GABA whereas 1,5-disubstituted
tetrazoles exhibited remarkable potential for the GAT2, GAT3,
and GAT4 (BGT1 in humans) subtypes. For example, the highly
selective di-substituted tetrazole derivative of GAT3 (compound
13, IC50 = 8.12µM) showed 4 and 12 folds higher selectivity
in comparison to GAT4 and GAT1 subtypes, respectively
(Figure 12). Until 2010, the GAT1 and GAT2 inhibitors
were subtype unspecific due to the unavailability of detailed
pharmacophore model of GAT2, which is still not completely
solved. In this perspective, Schaffert’s study provided a landmark
in the identification of two new selective GAT2 inhibitors, having
no impact on GAT1 activity i.e., compound 14 and compound
15 (IC50 = 15.48 and 10.23µM, respectively). Moreover, the
biological activity of Compound 15 was approximately similar
to the activity of NNC-05-2090 i.e., IC50 = 8.12µM (Figure 12)
(Schaffert et al., 2011).

QSAR Studies
So far, limited three dimensional-quantitative structure activity
relationship (3D-QSAR) studies based on comparative molecular
field analysis (CoMFA) and 2D-QSAR study on GAT1 have been
conducted. Zheng et al., in 2004 and later in 2006 developed
3D-QSAR models for N-diarylalkenyl-piperidinecarboxylic acid
analogs. It was hypothesized that either one or two of
the aryl rings substituted with bulky phenoxymethyl and
benzyloxymethyl group in the ortho position might improve
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FIGURE 11 | Chemical structures of azetidine derivatives as modulators of hGAT1. Compounds 10 and 11 were shown to be the most potent with respect to the

other compounds in the series.

the GAT1 inhibitory activity. Moreover, negative groups e.g.,
carboxylic acid meta position with respect to nitrogen atom of
the piperidine ring displayed greater potency for the interaction
of inhibitors with GAT1 and both steric and electronic factors
were also shown to be important (Zheng et al., 2004, 2006).

Later on, Jurik et al. performed 2D-QSAR study on 162
nipecotic acid and guvacine derivatives with pIC50 = >7.0. Four
different sets of descriptors including weinerPol, opr_brigid,
16 physicochemical descriptors, 32 van der Waals surface area
(VSA) descriptors were used to build the model. In this respect,
contingency matrix and VSA descriptors turned out to be
well-suited to describe the dataset. Moreover, as 2D-QSAR is
a versatile method for capturing SAR information, therefore
the test compounds were easily differentiated as active ones
having ortho-substitution in the linker region of the derivatives
of nipecotic acid from the inactive compounds (Jurik et al.,
2013).

In addition, Hirayama and colleagues utilized
pharmacophoric approach for the development of small molecule
hSGLT1 and GAT1 inhibitors. Nipecotic acid derivatives,
baclofen, saclofen, nortriptyline and SKF89976A compounds
were used for the development of GAT1 pharmacophore model.
The best pharmacophore model consisted of 1 hydrogen bond

unfavorable region, 3 hydrogen bond donors and acceptors
and 1 hydrogen bond donor site that plays a critical role in
interaction between GAT1 and inhibitors. Moreover, it has been
demonstrated that large aromatic or hydrophobic moieties of
GAT1 inhibitors are separated at a distance of 8Å from the
protonated nitrogen atom in the polar moiety (Figure 13).
Overall, the GAT1 inhibitor’s aromatic moieties binding position
resides coplanar ∼8Å from the substrate (GABA) binding site
and is responsible for the inhibition of translocation process
(Hirayama et al., 2001).

Recently, a GRINDmodel of GAT1 antagonists was developed
using flexible alignment by pharmacophore mapping approach.
The model represent good statistics at second cycle of Fractional
Factorial Design algorithm (FFD2) (Palló et al., 2007) with
correlation coefficient (r2) of 0.75. According to the model, two
hydrogen bond acceptors (N1), one hydrogen bond donor (O)
and one hydrophobic region (DRY) at certain distances from
each other play an important role in achieving high inhibitory
potency against hGAT1 (Sadia, 2018).

Briefly, the past decade has witnessed a paradigm shift in
drug discovery with the help of computer aided drug design
approaches. In this regard, the combine use of ligand based
and structure based studies for the identification of GAT1
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FIGURE 12 | Chemical structures of aminomethyltetrazoles-type modulators of hGAT1.

FIGURE 13 | Favorable distance between the aromatic moieties and protonated nitrogen atom of the polar region within the common scaffold of hGAT1 antagonist to

achieve maximum inhibition of hGAT1, adopted from Hirayama et al. (2001).

antagonists has bridged the gap between the ligands and
transporter interactions. From the current review on GAT1,
it has been deciphered that the hydrophobic region of GAT1
pocket allows the adjustment of the aromatic moieties of the
GAT1 antagonists and sodium ion (Na1) of GAT1 is involve
in making electrostatic interaction with the acidic group (most
commonly COOH group) attached to the polar moiety. In
addition, protonated nitrogen atom of polar region of GAT1
antagonists also plays an important role in interaction with
F294/S295 of GAT1. In summary, over the short course of
recent advances made for determining the mechanistic models
of hGAT1, it might be expected that this progress will accelerate
in the upcoming years and will serve as a fuel for the detailed
insights of membrane transporter proteins. This should not only
include the availability of high resolution X-ray structure of
hGAT1 but also the development of new experimental protocols

followed by the structure determination of other members of
SLC6 family with more optimized computational models and
methods.

OUTLOOK SUMMARY

Knowledge of the structure and function of GABA transporters
continues to increase due to recent advancements in structural
biology. In molecular mechanism perspective, the efforts to
understand the structure and function of GATs are mainly
compromised due to lack of crystal structure of mammalian
GATs. However, the crystal structures of bacterial and fly
homologs of GATs aids to comprehend the pharmacology of
GATs. Until now, only a single GAT1 selective FDA approved
drug Tiagabine is available against one of the most notable
neurological disorder epilepsy that is caused due to dysregulation
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of GAT1. Various molecular modeling studies reported that one
of the sodium ions in binding pocket of GAT1 form electrostatic
interactions with Tiagabine. This may depict the importance of
one sodium ion in the translocation cycle of hGAT1. Moreover,
the residues G65 and Y140 of GAT1 are also observed crucial for
the formation of hydrogen bond either with the docked substrate
or inhibitors. Overall, the binding hypothesis of Tiagabine and
its derivatives suggests that carboxylic acid moiety in the basic
scaffold may contribute positively in achieving high inhibitory
potency (IC50) against hGAT1. However, substitution of large
functional groups on the thiophene rings (aromatic moieties) of
Tiagabine may result in less potent GAT1 inhibitors. Therefore,

this could provide a rationale to design more potent GAT1
inhibitors to mediate fast inhibitory neurotransmission.

AUTHOR CONTRIBUTIONS

SZ and IJ conceived and designed the paper, figures and/or tables,
reviewed drafts of the paper.

FUNDING

Support was provided by HEC Indigenous Ph.D. Fellowship for
5,000 scholars Phase-II, Batch-I, 2012.

REFERENCES

Andersen, K. E., Sørensen, J. L., Lau, J., Lundt, B. F., Petersen, H., Huusfeldt,
P. O., et al. (2001). Synthesis of Novel γ-Aminobutyric Acid (GABA)
uptake inhibitors. 5. 1 preparation and structure-activity studies of tricyclic
analogues of known GABA uptake inhibitors. J. Med. Chem. 44, 2152–2163.
doi: 10.1021/jm990513k

Anderson, C. M., Kidd, P. D., and Eskandari, S. (2010). GATMD: γ-
aminobutyric acid transporter mutagenesis database. Database 2010:baq028.
doi: 10.1093/database/baq028

Baglo, Y., Gabrielsen, M., Sylte, I., and Gederaas, O. A. (2013). Homology
modeling of human γ-butyric acid transporters and the binding of pro-drugs
5-aminolevulinic acid and methyl aminolevulinic acid used in photodynamic
therapy. PLoS ONE 8:e65200. doi: 10.1371/journal.pone.0065200

Bennett, E. R., and Kanner, B. I. (1997). The membrane topology of GAT-1, a
(Na++ Cl−)-coupled γ-aminobutyric acid transporter from rat brain. J. Biol.
Chem. 272, 1203–1210. doi: 10.1074/jbc.272.2.1203

Ben-Yona, A., Bendahan, A., and Kanner, B. I. (2011). A glutamine residue
conserved in the neurotransmitter: sodium: symporters is essential for the
interaction of chloride with the GABA transporter GAT-1. J. Biol. Chem. 286,
2826–2833. doi: 10.1074/jbc.M110.149732

Besedovsky, H. O., Lajtha, A., Galoyan, A., and Besedovsky, H. (2007).Handbook of
Neurochemistry and Molecular Neurobiology: Neuroimmunology. Boston, MA:
Springer.

Beuming, T., Shi, L., Javitch, J. A., and Weinstein, H. (2006). A
comprehensive structure-based alignment of prokaryotic and eukaryotic
neurotransmitter/Na+ symporters (NSS) aids in the use of the LeuT structure
to probe NSS structure and function. Mol. Pharmacol. 70, 1630–1642.
doi: 10.1124/mol.106.026120

Bialer, M., Johannessen, S. I., Kupferberg, H. J., Levy, R. H., Perucca, E.,
and Tomson, T. (2007). Progress report on new antiepileptic drugs: a
summary of the Eigth Eilat Conference (EILAT VIII). Epilepsy Res. 73, 1–52.
doi: 10.1016/j.eplepsyres.2006.10.008

Borden, L. A., Dhar, T., Smith, K. E., Weinshank, R. L., Branchek, T. A., and
Gluchowski, C. (1994). Tiagabine, SK&F 89976-A, CI-966, and NNC-711 are
selective for the cloned GABA transporter GAT-1. Eur. J. Pharmacol. Mol.

Pharmacol. 269, 219–224. doi: 10.1016/0922-4106(94)90089-2
Bowery, N., and Smart, T. (2006). GABA and glycine as neurotransmitters: a brief

history. Br. J. Pharmacol. 147(Suppl. 1), S109–S119. doi: 10.1038/sj.bjp.0706443
Brady, M. L., Pilli, J., Lorenz-Guertin, J. M., Das, S., Moon, C. E., Graff,

N., et al. (2018). Depolarizing, inhibitory GABA type A receptor activity
regulates GABAergic synapse plasticity via ERK and BDNF signaling.
Neuropharmacology 128, 324–339. doi: 10.1016/j.neuropharm.2017.10.022

Braestrup, C., Nielsen, E. B., Sonnewald, U., Knutsen, L. J., Andersen, K. E.,
Jansen, J. A., et al. (1990). (R)-N-[4, 4-Bis (3-Methyl-2-Thienyl) but-3-en-1-yl]
nipecotic acid binds with high affinity to the brain γ-aminobutyric acid uptake
carrier. J. Neurochem. 54, 639–647. doi: 10.1111/j.1471-4159.1990.tb01919.x

Clausen, R. P., Madsen, K., Larsson, O. M., Frølund, B., Krogsgaard-
Larsen, P., and Schousboe, A. (2005a). Structure-activity relationship
and pharmacology of gamma-aminobutyric acid (GABA) transport

inhibitors. Adv. Pharmacol. 54, 265–284. doi: 10.1016/S1054-3589(06)
54011-6

Clausen, R. P., Moltzen, E. K., Perregaard, J., Lenz, S. M., Sanchez, C., Falch, E.,
et al. (2005b). Selective inhibitors of GABA uptake: synthesis and molecular
pharmacology of 4- N-methylamino-4, 5, 6, 7-tetrahydrobenzo [d] isoxazol-3-
ol analogues. Bioorg. Med. Chem. 13, 895–908. doi: 10.1016/j.bmc.2004.10.029

Clementi, F., and Fumagalli, G. (2015). General and Molecular Pharmacology:
Principles of Drug Action. New Jersey, NJ: John Wiley & Sons.

Conti, F., Minelli, A., and Melone, M. (2004). GABA transporters
in the mammalian cerebral cortex: localization, development
and pathological implications. Brain Res. Rev. 45, 196–212.
doi: 10.1016/j.brainresrev.2004.03.003

Corey, J. L., Guastella, J., Davidson, N., and Lester, H. A. (1994). GABA uptake
and release by a mammalian cell line stably expressing a cloned rat brain
GABA transporter. Mol. Membr. Biol. 11, 23–30. doi: 10.3109/09687689409
161026

Cummings, D. M., André, V. M., Uzgil, B. O., Gee, S. M., Fisher, Y. E.,
Cepeda, C., et al. (2009). Alterations in cortical excitation and inhibition in
genetic mouse models of Huntington’s disease. J. Neurosci. 29, 10371–10386.
doi: 10.1523/JNEUROSCI.1592-09.2009

D’adamo, M. C., Catacuzzeno, L., Di Giovanni, G., Franciolini, F., and Pessia,
M. (2013). K+ channelepsy: progress in the neurobiology of potassium
channels and epilepsy. Front. Cell. Neurosci. 7:134. doi: 10.3389/fncel.2013.
00134

Dalby, N. O. (2003). Inhibition of γ-aminobutyric acid uptake: anatomy,
physiology and effects against epileptic seizures. Eur. J. Pharmacol. 479,
127–137. doi: 10.1016/j.ejphar.2003.08.063

Deidda, G., Bozarth, I. F., and Cancedda, L. (2014). Modulation of GABAergic
transmission in development and neurodevelopmental disorders: investigating
physiology and pathology to gain therapeutic perspectives. Front. Cell.

Neurosci. 8:119. doi: 10.3389/fncel.2014.00119
Dodd, J. R., and Christie, D. L. (2007). Selective amino acid substitutions convert

the creatine transporter to a γ-aminobutyric acid transporter. J. Biol. Chem.

282, 15528–15533. doi: 10.1074/jbc.M611705200
Falch, E.,Meldrum, B., andKrogsgaard-Larsen, P. (1987). GABAuptake inhibitors.

Synthesis and effects on audiogenic seizures of ester prodrugs of nipecotic acid,
guvacine and cis-4-hydroxynipecotic acid. Drug Des. Deliv. 2, 9–21.

Faust, M. R., Höfner, G., Pabel, J., and Wanner, K. T. (2010). Azetidine derivatives
as novel γ-aminobutyric acid uptake inhibitors: synthesis, biological evaluation,
and structure–activity relationship. Eur. J. Med. Chem. 45, 2453–2466.
doi: 10.1016/j.ejmech.2010.02.029

Forrest, L. R., Tavoulari, S., Zhang, Y.-W., Rudnick, G., and Honig, B.
(2007). Identification of a chloride ion binding site in Na+/Cl−-
dependent transporters. Proc. Natl. Acad. Sci. U.S.A. 104, 12761–12766.
doi: 10.1073/pnas.0705600104

Genton, P., Guerrini, R., and Perucca, E. (2001). Tiagabine in clinical practice.
Epilepsia 42, 42–45. doi: 10.1046/j.1528-1157.2001.042suppl.3042.x

Gether, U., Andersen, P. H., Larsson, O. M., and Schousboe, A. (2006).
Neurotransmitter transporters: molecular function of important drug targets.
Trends Pharmacol. Sci. 27, 375–383. doi: 10.1016/j.tips.2006.05.003

Frontiers in Chemistry | www.frontiersin.org 17 September 2018 | Volume 6 | Article 397325

https://doi.org/10.1021/jm990513k
https://doi.org/10.1093/database/baq028
https://doi.org/10.1371/journal.pone.0065200
https://doi.org/10.1074/jbc.272.2.1203
https://doi.org/10.1074/jbc.M110.149732
https://doi.org/10.1124/mol.106.026120
https://doi.org/10.1016/j.eplepsyres.2006.10.008
https://doi.org/10.1016/0922-4106(94)90089-2
https://doi.org/10.1038/sj.bjp.0706443
https://doi.org/10.1016/j.neuropharm.2017.10.022
https://doi.org/10.1111/j.1471-4159.1990.tb01919.x
https://doi.org/10.1016/S1054-3589(06)54011-6
https://doi.org/10.1016/j.bmc.2004.10.029
https://doi.org/10.1016/j.brainresrev.2004.03.003
https://doi.org/10.3109/09687689409161026
https://doi.org/10.1523/JNEUROSCI.1592-09.2009
https://doi.org/10.3389/fncel.2013.00134
https://doi.org/10.1016/j.ejphar.2003.08.063
https://doi.org/10.3389/fncel.2014.00119
https://doi.org/10.1074/jbc.M611705200
https://doi.org/10.1016/j.ejmech.2010.02.029
https://doi.org/10.1073/pnas.0705600104
https://doi.org/10.1046/j.1528-1157.2001.042suppl.3042.x
https://doi.org/10.1016/j.tips.2006.05.003
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Zafar and Jabeen GAT1 Modulation in Neurological Disorders

Gonzalez-Burgos, G. (2010). GABA transporter GAT1: a crucial determinant of
GABAB receptor activation in cortical circuits? Adv. Pharmacol. 58, 175–204.
doi: 10.1016/S1054-3589(10)58008-6

Gropper, S., and Smith, J. (2012). Advanced Nutrition and Human Metabolism.

Belmont: Cengage Learning.
Guastella, J., Nelson, N., Nelson, H., Czyzyk, L., Keynan, S., Miedel, M. C., et al.

(1990). Cloning and expression of a rat brain GABA transporter. Science 249,
1303–1306. doi: 10.1126/science.1975955

Gupta, S. P. (2011). Ion Channels and Their Inhibitors. Meerut: Springer Science &
Business Media.

Hack, S., Wörlein, B., Höfner, G., Pabel, J., andWanner, K. T. (2011). Development
of imidazole alkanoic acids as mGAT3 selective GABA uptake inhibitors. Eur.
J. Med. Chem. 46, 1483–1498. doi: 10.1016/j.ejmech.2011.01.042

Hediger, M. A., Clémençon, B., Burrier, R. E., and Bruford, E. A. (2013). The ABCs
ofmembrane transporters in health and disease (SLC series): introduction.Mol.

Aspects Med. 34, 95–107. doi: 10.1016/j.mam.2012.12.009
Hertz, L., Xu, J., Song, D., Yan, E., Gu, L., and Peng, L. (2013). Astrocytic

and neuronal accumulation of elevated extracellular K+ with a 2/3 K+/Na+

flux ratio—consequences for energy metabolism, osmolarity and higher brain
function. Front. Comput. Neurosci. 7:114. doi: 10.3389/fncom.2013.00114

Hirayama, B. A., Díez-Sampedro, A., and Wright, E. M. (2001). Common
mechanisms of inhibition for the Na+/glucose (hSGLT1) and
Na+/Cl−/GABA (hGAT1) cotransporters. Br. J. Pharmacol. 134, 484–495.
doi: 10.1038/sj.bjp.0704274

Horton, R., Prestwich, S., and Meldrum, B. (1982). γ-Aminobutyric acid
and benzodiazepine binding sites in audiogenic seizure-susceptible mice. J.
Neurochem. 39, 864–870. doi: 10.1111/j.1471-4159.1982.tb07972.x

Iversen, L., and Neal, M. (1968). The uptake of [3H] GABA by slices of rat cerebral
cortex. J. Neurochem. 15, 1141–1149. doi: 10.1111/j.1471-4159.1968.tb06831.x

Jin, X.-T, Galvan, A.,Wichman, T., and Smith, Y. (2011). Localization and function
of GABA transporters GAT-1 and GAT-3 in the basal ganglia. Front. Syst.
Neurosci. 5:63. doi: 10.3389/fnsys.2011.00063

Jurik, A., Reicherstorfer, R., Zdrazil, B., and Ecker, G. F. (2013). Classification of
high-activity tiagabine analogs by binary QSAR modeling. Mol. Inform. 32,
415–419. doi: 10.1002/minf.201300020

Kanner, B. I. (1978). Active transport of γ-aminobutyric acid bymembrane vesicles
isolated from rat brain. Biochemistry 17, 1207–1211. doi: 10.1021/bi00600a011

King, J. T., and Lamotte, C. C. (1988). VIP-, SS-, and GABA-like immunoreactivity
in the mid-hippocampal region of El (epileptic) and C57BL/6 mice. Brain Res.

475, 192–197. doi: 10.1016/0006-8993(88)90218-1
Knutsen, L. J., Lau, J., Petersen, H., Thomsen, C., Weis, J. U., Shalmi,

M., et al. (1999). N-substituted adenosines as novel neuroprotective A1
agonists with diminished hypotensive effects. J. Med. Chem. 42, 3463–3477.
doi: 10.1021/jm960682u

Kragler, A., Höfner, G., and Wanner, K. T. (2005). Novel parent structures for
inhibitors of the murine GABA transporters mGAT3 and mGAT4. Eur. J.
Pharmacol. 519, 43–47. doi: 10.1016/j.ejphar.2005.06.053

Kragler, A., Höfner, G., and Wanner, K. T. (2008). Synthesis and biological
evaluation of aminomethylphenol derivatives as inhibitors of the murine
GABA transporters mGAT1–mGAT4. Eur. J. Med. Chem. 43, 2404–2411.
doi: 10.1016/j.ejmech.2008.01.005

Krishnamurthy, H., and Gouaux, E. (2012). X-ray structures of LeuT in
substrate-free outward-open and apo inward-open states.Nature 481, 469–474.
doi: 10.1038/nature10737

Kristensen, A. S., Andersen, J., Jørgensen, T. N., Sørensen, L., Eriksen, J., Loland,
C. J., et al. (2011). SLC6 neurotransmitter transporters: structure, function, and
regulation. Pharmacol. Rev. 63, 585–640. doi: 10.1124/pr.108.000869

Krogsgaard-Larsen, P., Strømgaard, K., and Madsen, U. (2016). Textbook of Drug
Design and Discovery, 2010. Boca Raton, FL: CRC press.

Kroncke, B. M., Horanyi, P. S., and Columbus, L. (2010). Structural origins
of nitroxide side chain dynamics on membrane protein α-helical sites.
Biochemistry 49, 10045–10060. doi: 10.1021/bi101148w

Lajtha, A., and Reith, M. E. (2007). Handbook of Neurochemistry and Molecular

Neurobiology: Neural Membranes and Transport. Boston, MA: Springer.
Laviv, T., Riven, I., Dolev, I., Vertkin, I., Balana, B., Slesinger, P. A.,

et al. (2010). Basal GABA regulates GABA(B)R conformation and
release probability at single hippocampal synapses. Neuron 67, 253–267.
doi: 10.1016/j.neuron.2010.06.022

Law, R. M., Stafford, A., and Quick, M. W. (2000). Functional regulation of
γ-aminobutyric acid transporters by direct tyrosine phosphorylation. J. Biol.
Chem. 275, 23986–23991. doi: 10.1074/jbc.M910283199

Loo, D. D., Eskandari, S., Boorer, K. J., Sarkar, H. K., and Wright, E. M. (2000).
Role of Cl− in electrogenic Na+-coupled cotransporters GAT1 and SGLT1. J.
Biol. Chem. 275, 37414–37422. doi: 10.1074/jbc.M007241200

Lovinger, D. M. (2010). Neurotransmitter roles in synaptic modulation, plasticity
and learning in the dorsal striatum. Neuropharmacology 58, 951–961.
doi: 10.1016/j.neuropharm.2010.01.008

Lu, C.-C., and Hilgemann, D. W. (1999). Gat1 (Gaba: Na+: Cl−) cotransport
function steady state studies in giant xenopus oocyte membrane patches. J. Gen.
Physiol. 114, 429–444. doi: 10.1085/jgp.114.3.429

Lutz, T., Wein, T., Höfner, G., and Wanner, K. T. (2017). Development
of highly potent GAT1 inhibitors: synthesis of nipecotic acid
derivatives with N-arylalkynyl substituents. ChemMedChem 12, 362–371.
doi: 10.1002/cmdc.201600599

Madsen, K. K., Ebert, B., Clausen, R. P., Krogsgaard-Larsen, P., Schousboe, A.,
and White, H. S. (2011). Selective GABA transporter inhibitors tiagabine
and EF1502 exhibit mechanistic differences in their ability to modulate the
ataxia and anticonvulsant action of the extrasynaptic GABAA receptor agonist
gaboxadol. J. Pharmacol. Exp. Ther. 338, 214–219. doi: 10.1124/jpet.111.
179671

Masuda, N., Peng, Q., Li, Q., Jiang, M., Liang, Y., Wang, X., et al. (2008). Tiagabine
is neuroprotective in the N171-82Q and R6/2 mouse models of Huntington’s
disease. Neurobiol. Dis. 30, 293–302. doi: 10.1016/j.nbd.2008.01.014

Melone, M., Ciappelloni, S., and Conti, F. (2015). A quantitative analysis of cellular
and synaptic localization of GAT-1 and GAT-3 in rat neocortex. Brain Struct.

Funct. 220, 885–897. doi: 10.1007/s00429-013-0690-8
Murali Dhar, T., Nakanishi, H., Borden, L. A., and Gluchowski, C. (1996). On the

bioactive conformation of the gaba uptake inhibitor SK&F 89976-A. Bioorg.
Med. Chem. Lett 6, 1535–1540. doi: 10.1016/S0960-894X(96)00268-5

Nakada, K., Yoshikawa, M., Ide, S., Suemasa, A., Kawamura, S., Kobayashi, T.,
et al. (2013). Cyclopropane-based conformational restriction of GABA by a
stereochemical diversity-oriented strategy: identification of an efficient lead
for potent inhibitors of GABA transports. Bioorg. Med. Chem. 21, 4938–4950.
doi: 10.1016/j.bmc.2013.06.063

Nascimento, J. L. M. D., Sawada, L. A., Oliveira, K. R. M., Crespo-López, M.
E., Silva, A. M. H. O. D., Hamoy, M., et al. (2013). GABA and glutamate
transporters: new events and function in the vertebrate retina. Psychol.

Neurosci. 6, 145–150. doi: 10.3922/j.psns.2013.2.03
Olsen, R. W., Wamsley, J. K., Mccabe, R. T., Lee, R. J., and Lomax, P. (1985).

Benzodiazepine/gamma-aminobutyric acid receptor deficit in the midbrain
of the seizure-susceptible gerbil. Proc. Natl. Acad. Sci. U.S.A. 82, 6701–6705.
doi: 10.1073/pnas.82.19.6701

Palló, A., Bencsura, A., Héja, L., Beke, T., Perczel, A., Kardos, J., et al. (2007). Major
human γ-aminobutyrate transporter: in silico prediction of substrate efficacy.
Biochem. Biophys. Res. Commun. 364, 952–958. doi: 10.1016/j.bbrc.2007.10.108

Parpura, V., and Haydon, P. G. (2008). Astrocytes in (patho) Physiology of the

Nervous System. Boston, MA: Springer.
Pavia, M. R., Lobbestael, S. J., Nugiel, D., Mayhugh, D. R., Gregor, V. E., Taylor, C.

P., et al. (1992). Structure-activity studies on benzhydrol-containing nipecotic
acid and guvacine derivatives as potent, orally-active inhibitors of GABA
uptake. J. Med. Chem. 35, 4238–4248. doi: 10.1021/jm00100a032

Peterson, G. M., Ribak, C. E., and Oertel, W. H. (1985). A regional increase in
the number of hippocampal GABAergic neurons and terminals in the seizure-
sensitive gerbil. Brain Res. 340, 384–389. doi: 10.1016/0006-8993(85)90937-0

Pizzi, D. A., Leslie, C. P., Di Fabio, R., Seri, C., Bernasconi, G., Squaglia,
M., et al. (2011). Stereospecific synthesis and structure–activity
relationships of unsymmetrical 4, 4-diphenylbut-3-enyl derivatives of
nipecotic acid as GAT-1 inhibitors. Bioorg.Med. Chem. Lett. 21, 602–605.
doi: 10.1016/j.bmcl.2010.09.025

Pramod, A. B., Foster, J., Carvelli, L., and Henry, L. K. (2013). SLC6 transporters:
structure, function, regulation, disease association and therapeutics. Mol.

Aspects Med. 34, 197–219. doi: 10.1016/j.mam.2012.07.002
Quandt, G., Höfner, G., and Wanner, K. T. (2013). Synthesis and evaluation of

N-substituted nipecotic acid derivatives with an unsymmetrical bis-aromatic
residue attached to a vinyl ether spacer as potential GABA uptake inhibitors.
Bioorg. Med. Chem. 21, 3363–3378. doi: 10.1016/j.bmc.2013.02.056

Frontiers in Chemistry | www.frontiersin.org 18 September 2018 | Volume 6 | Article 397326

https://doi.org/10.1016/S1054-3589(10)58008-6
https://doi.org/10.1126/science.1975955
https://doi.org/10.1016/j.ejmech.2011.01.042
https://doi.org/10.1016/j.mam.2012.12.009
https://doi.org/10.3389/fncom.2013.00114
https://doi.org/10.1038/sj.bjp.0704274
https://doi.org/10.1111/j.1471-4159.1982.tb07972.x
https://doi.org/10.1111/j.1471-4159.1968.tb06831.x
https://doi.org/10.3389/fnsys.2011.00063
https://doi.org/10.1002/minf.201300020
https://doi.org/10.1021/bi00600a011
https://doi.org/10.1016/0006-8993(88)90218-1
https://doi.org/10.1021/jm960682u
https://doi.org/10.1016/j.ejphar.2005.06.053
https://doi.org/10.1016/j.ejmech.2008.01.005
https://doi.org/10.1038/nature10737
https://doi.org/10.1124/pr.108.000869
https://doi.org/10.1021/bi101148w
https://doi.org/10.1016/j.neuron.2010.06.022
https://doi.org/10.1074/jbc.M910283199
https://doi.org/10.1074/jbc.M007241200
https://doi.org/10.1016/j.neuropharm.2010.01.008
https://doi.org/10.1085/jgp.114.3.429
https://doi.org/10.1002/cmdc.201600599
https://doi.org/10.1124/jpet.111.179671
https://doi.org/10.1016/j.nbd.2008.01.014
https://doi.org/10.1007/s00429-013-0690-8
https://doi.org/10.1016/S0960-894X(96)00268-5
https://doi.org/10.1016/j.bmc.2013.06.063
https://doi.org/10.3922/j.psns.2013.2.03
https://doi.org/10.1073/pnas.82.19.6701
https://doi.org/10.1016/j.bbrc.2007.10.108
https://doi.org/10.1021/jm00100a032
https://doi.org/10.1016/0006-8993(85)90937-0
https://doi.org/10.1016/j.bmcl.2010.09.025
https://doi.org/10.1016/j.mam.2012.07.002
https://doi.org/10.1016/j.bmc.2013.02.056
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Zafar and Jabeen GAT1 Modulation in Neurological Disorders

Quick, M., Winther, A.-M. L., Shi, L., Nissen, P., Weinstein, H., and Javitch, J. A.
(2009). Binding of an octylglucoside detergent molecule in the second substrate
(S2) site of LeuT establishes an inhibitor-bound conformation. Proc. Natl. Acad.
Sci. U.S.A. 106, 5563–5568. doi: 10.1073/pnas.0811322106

Rego, A. C., Malva, J., Cunha, R., and Oliveira, C. (2007). Interaction Between

Neurons and Glia in Aging and Disease. Boston, MA: Springer.
Reichenbach, A., and Bringmann, A. (2010). Müller Cells in the Healthy and

Diseased Retina. New York, NY: Springer Science & Business Media.
Roberts, R. C., Ribak, C. E., and Oertel, W. H. (1985). Increased numbers of

GABAergic neurons occur in the inferior colliculus of an audiogenic model
of genetic epilepsy. Brain Res. 361, 324–338. doi: 10.1016/0006-8993(85)
91303-4

Rosenberg, A., and Kanner, B. I. (2008). The substrates of the γ-aminobutyric
acid transporter GAT-1 induce structural rearrangements around the interface
of transmembrane domains 1 and 6. J. Biol. Chem. 283, 14376–14383.
doi: 10.1074/jbc.M801093200

Sadia, Z., I. J. (2018). GRID-independent molecular descriptor analysis and
molecular docking studies to mimic the binding hypothesis of γ-Aminobutyric
Acid Transporter 1 (GAT1) inhibitors. Front. Chem. Membr. Transp. Channels

Targets Drugs.
Sadowski, J. (2003). “3D structure generation,” in Handbook of Chemoinformatics:

From Data to Knowledge in 4 Volumes, ed. J. Gasteiger (Weinheim:Wiley-VCH
Verlag GmbH & Co), 231–261.

Sałat, K., Podkowa, A., Malikowska, N., Kern, F., Pabel, J., Wojcieszak, E.,
et al. (2017). Novel, highly potent and in vivo active inhibitor of GABA
transporter subtype 1 with anticonvulsant, anxiolytic, antidepressant
and antinociceptive properties. Neuropharmacology 113, 331–342.
doi: 10.1016/j.neuropharm.2016.10.019

Schaffert, E. S., Höfner, G., and Wanner, K. T. (2011). Aminomethyltetrazoles as
potential inhibitors of the γ-aminobutyric acid transporters mGAT1–mGAT4:
synthesis and biological evaluation. Bioorg. Med. Chem. 19, 6492–6504.
doi: 10.1016/j.bmc.2011.08.039

Schrödinger Release (2017). Schrödinger 2017-1, LLC. New York, NY.
Schwartzkroin, P. A. (2009). Encyclopedia of Basic Epilepsy Research. Davis, CA:

Academic Press.
Scimemi, A. (2014). Structure, function, and plasticity of GABA transporters.

Front. Cell. Neurosci. 8:161. doi: 10.3389/fncel.2014.00161
Singh, S. K., Piscitelli, C. L., Yamashita, A., and Gouaux, E. (2008). A competitive

inhibitor traps LeuT in an open-to-out conformation. Science 322, 1655–1661.
doi: 10.1126/science.1166777

Singh, S. K., Yamashita, A., and Gouaux, E. (2007). Antidepressant binding site in
a bacterial homologue of neurotransmitter transporters. Nature 448, 952–956.
doi: 10.1038/nature06038

Skovstrup, S., David, L., Taboureau, O., and Jørgensen, F. S. (2012). A
steered molecular dynamics study of binding and translocation processes
in the GABA transporter. PLoS ONE 7:e39360. doi: 10.1371/journal.pone.
0039360

Skovstrup, S., Taboureau, O., Bräuner-Osborne, H., and Jørgensen, F. S. (2010).
Homology modelling of the GABA transporter and analysis of tiagabine
binding. ChemMedChem 5, 986–1000. doi: 10.1002/cmdc.201000100

Stafford, M. M., Brown, M. N., Mishra, P., Stanwood, G. D., and Mathews,
G. C. (2010). Glutamate spillover augments GABA synthesis and release
from axodendritic synapses in rat hippocampus. Hippocampus 20, 134–144.
doi: 10.1002/hipo.20600

Stella, V. J., Borchardt, R. T., Hageman, M. J., Oliyai, R., Maag, H., and Tilley, J. W.
(2007). Prodrugs: Challenges and Rewards. New York, NY: Springer.

Stromgaard, K., Krogsgaard-Larsen, P., and Madsen, U. (2009). Textbook of Drug
Design and Discovery. Boca Raton, FL: CRC Press.

Takanaga, H., Ohtsuki, S., Hosoya, K.-I., and Terasaki, T. (2001). GAT2/BGT-
1 as a system responsible for the transport of &ggr;-aminobutyric acid at
the mouse blood–brain barrier. J. Cereb. Blood Flow Metab. 21, 1232–1239.
doi: 10.1097/00004647-200110000-00012

Treiman, D. M. (2001). GABAergic mechanisms in epilepsy. Epilepsia 42, 8–12.
doi: 10.1046/j.1528-1157.2001.042suppl.3008.x

Trimble, M. R., and Schmitz, B. (2011). The Neuropsychiatry of Epilepsy.

Cambridge University Press.
Tritsch, N. X., Granger, A. J., and Sabatini, B. L. (2016). Mechanisms and functions

of GABA co-release. Nat. Rev. Neurosci. 17, 139–145. doi: 10.1038/nrn.2015.21
Wang, D., and Quick, M. W. (2005). Trafficking of the plasma membrane

γ-aminobutyric acid transporter GAT1 SIZE AND RATES OF AN
ACUTELY RECYCLING POOL. J. Biol. Chem. 280, 18703–18709.
doi: 10.1074/jbc.M500381200

Wang, K. H., Penmatsa, A., and Gouaux, E. (2015). Neurotransmitter and
psychostimulant recognition by the dopamine transporter. Nature 521, 322.
doi: 10.1038/nature14431

Wein, T., Petrera, M., Allmendinger, L., Höfner, G., Pabel, J., and Wanner, K.
T. (2016). Different binding modes of small and large binders of GAT1.
ChemMedChem. doi: 10.1002/cmdc.201500534

Wein, T., and Wanner, K. T. (2010). Generation of a 3D model for human GABA
transporter hGAT-1 using molecular modeling and investigation of the binding
of GABA. J. Mol. Model. 16, 155–161. doi: 10.1007/s00894-009-0520-3

Wermuth, C. G. (2011). The Practice of Medicinal Chemistry. London: Academic
Press.

Wilson, C. J. (2011). Basal Ganglia X-Proceedings of the 10th Triennial Meeting of

the International Basal Ganglia Society. Frontiers E-books.
Yamashita, A., Singh, S. K., Kawate, T., Jin, Y., and Gouaux, E. (2005).

Crystal structure of a bacterial homologue of Na&plus;/Cl–dependent
neurotransmitter transporters. Nature 437, 215–223. doi: 10.1038/
nature03978

Yang, Y., and Rothstein, J. D. (2009). “Specialized neurotransmitter transporters
in astrocytes,” in Astrocytes in (Patho) Physiology of the Nervous System. eds. P.
Haydon, and V. Parpura (Boston, MA: Springer), 69–105.

Yunger, L., Fowler, P. J., Zarevics, P., and Setler, P. (1984). Novel inhibitors of
gamma-aminobutyric acid (GABA) uptake: anticonvulsant actions in rats and
mice. J. Pharmacol. Exp. Ther. 228, 109–115.

Zhao, X., Hoesl, C. E., Hoefner, G. C., and Wanner, K. T. (2005). Synthesis
and biological evaluation of new GABA-uptake inhibitors derived from
proline and from pyrrolidine-2-acetic acid. Eur. J. Med. Chem. 40, 231–247.
doi: 10.1016/j.ejmech.2004.11.004

Zheng, J.,Wen, R., Luo, X., Lin, G., Zhang, J., Xu, L., et al. (2006). Design, synthesis,
and biological evaluation of the N-diarylalkenyl-piperidinecarboxylic acid
derivatives as GABA uptake inhibitors (I). Bioorg. Med. Chem. Lett. 16,
225–227. doi: 10.1016/j.bmcl.2005.09.004

Zheng, J.-B., Wen, R., and Luo, X.-M. (2004). 3D-QSAR study on 4,
4-diaryl-3-butenyl derivatives of nipecotic acid and guvacine with
comparative molecular field analysis. Chinese J. Med. Chem. 14,
197–201.

Zhou, Y., and Danbolt, N. C. (2013). GABA and glutamate transporters in brain.
Front. Endocrinol. 4:165. doi: 10.3389/fendo.2013.00165

Zhou, Z., Zhen, J., Karpowich, N. K., Goetz, R. M., Law, C. J.,
Reith, M. E., et al. (2007). LeuT-desipramine structure reveals how
antidepressants block neurotransmitter reuptake. Science 317, 1390–1393.
doi: 10.1126/science.1147614

Zhou, Z., Zhen, J., Karpowich, N. K., Law, C. J., Reith, M. E., and
Wang, D.-N. (2009). Antidepressant specificity of serotonin transporter
suggested by three LeuT–SSRI structures. Nat. Struct. Mol. Biol. 16, 652–657.
doi: 10.1038/nsmb.1602

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2018 Zafar and Jabeen. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Chemistry | www.frontiersin.org 19 September 2018 | Volume 6 | Article 397327

https://doi.org/10.1073/pnas.0811322106
https://doi.org/10.1016/0006-8993(85)91303-4
https://doi.org/10.1074/jbc.M801093200
https://doi.org/10.1016/j.neuropharm.2016.10.019
https://doi.org/10.1016/j.bmc.2011.08.039
https://doi.org/10.3389/fncel.2014.00161
https://doi.org/10.1126/science.1166777
https://doi.org/10.1038/nature06038
https://doi.org/10.1371/journal.pone.0039360
https://doi.org/10.1002/cmdc.201000100
https://doi.org/10.1002/hipo.20600
https://doi.org/10.1097/00004647-200110000-00012
https://doi.org/10.1046/j.1528-1157.2001.042suppl.3008.x
https://doi.org/10.1038/nrn.2015.21
https://doi.org/10.1074/jbc.M500381200
https://doi.org/10.1038/nature14431
https://doi.org/10.1002/cmdc.201500534
https://doi.org/10.1007/s00894-009-0520-3
https://doi.org/10.1038/nature03978
https://doi.org/10.1016/j.ejmech.2004.11.004
https://doi.org/10.1016/j.bmcl.2005.09.004
https://doi.org/10.3389/fendo.2013.00165
https://doi.org/10.1126/science.1147614
https://doi.org/10.1038/nsmb.1602
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


ORIGINAL RESEARCH
published: 13 November 2018

doi: 10.3389/fchem.2018.00531

Frontiers in Chemistry | www.frontiersin.org 1 November 2018 | Volume 6 | Article 531

Edited by:

Daniela Schuster,

Paracelsus Medizinische

Privatuniversität, Salzburg, Austria

Reviewed by:

Margherita Brindisi,

Università degli Studi di Siena, Italy

Jiangjiang Qin,

University of Houston, United States

*Correspondence:

Shoude Zhang

shoude.zhang@qhu.edu.cn

Zhanhai Su

suzhanhai@foxmail.com

Specialty section:

This article was submitted to

Medicinal and Pharmaceutical

Chemistry,

a section of the journal

Frontiers in Chemistry

Received: 11 April 2018

Accepted: 12 October 2018

Published: 13 November 2018

Citation:

Zhang S, Jia Q, Gao Q, Fan X, Weng Y

and Su Z (2018) Dual-Specificity

Phosphatase CDC25B Was Inhibited

by Natural Product HB-21 Through

Covalently Binding to the Active Site.

Front. Chem. 6:531.

doi: 10.3389/fchem.2018.00531

Dual-Specificity Phosphatase
CDC25B Was Inhibited by Natural
Product HB-21 Through Covalently
Binding to the Active Site

Shoude Zhang 1,2,3*, Qiangqiang Jia 1, Qiang Gao 1, Xueru Fan 2, Yuxin Weng 2 and

Zhanhai Su 1,2*

1 State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China, 2Department of Pharmacy,

Medical College of Qinghai University, Xining, China, 3 School of Pharmacy, East China University of Science and Technology,

Shanghai, China

Cysteine 473, within the active site of the enzyme, Cdc25B, is catalytically essential

for substrate activation. The most well-reported inhibitors of Cdc25 phosphatases,

especially quinone-type inhibitors, function by inducing irreversible oxidation at this active

site of cysteine. Here, we identified a natural product, HB-21, having a sesquiterpene

lactone skeleton that could irreversibly bind to cys473 through the formation of a covalent

bond. This compound inhibited recombinant human Cdc25B phosphatase with an IC50

value of 24.25µM. Molecular modeling predicted that HB-21 not only covalently binds

to cys473 of Cdc25B but also forms six hydrogen bonds with residues at the active

site. Moreover, HB-21 can dephosphorylate cyclin-dependent kinase (CDK1), the natural

substrate of Cdc25b, and inhibit cell cycle progression. In summary, HB-21 is a new type

of Cdc25B inhibitor with a novel molecular mechanism.

Keywords: Cdc25B inhibitor, sesquiterpene lactone, anticancer, cell cycle progression, covalent binding to protein

INTRODUCTION

Dual-specificity protein phosphatases (DSP) such as Cdc25s (Cdc25A, Cdc25B, and Cdc25C) play
an essential role in cell cycle progression by controlling the phosphorylation state of their natural
substrates, cyclin-dependent kinases (CDKs) (Kristjánsdóttir and Rudolph, 2004). Overexpression
of Cdc25s and overactivation of CDKs are involved in cancer-associated cell-cycle aberrations
(Kristjánsdóttir and Rudolph, 2004). Therefore, Cdc25s have been demonstrated as promising
anticancer targets (Boutros et al., 2006, 2007; Xing et al., 2008). Cysteine 473, within the active
site of the enzyme Cdc25B, is catalytically essential for activating its natural substrates. Most potent
small-molecule inhibitors of the Cdc25 phosphatases are quinone-derived compounds. It has been
reported that inhibition of Cdc25B activity can occur by the oxidation of the cys473 through the
production of reactive oxygen species (Brisson et al., 2007; Lavecchia et al., 2010, 2012).

Natural products have historically served as a major source of new leads for pharmaceutical
development, especially for cancer therapy (Newman and Cragg, 2016). Sesquiterpene lactones
(SLs) are one of the most prevalent secondary metabolites in plants, especially in Asteraceae
(Chadwick et al., 2013). They have been subject to a number of studies because of their outstanding
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biological activities, particularly in antiinflammation and
anticancer (Lyss et al., 1998; Whan Han et al., 2001; Gertsch
et al., 2003; Chen et al., 2011). The α-methylene-γ-lactone
group (αMγL) of SLs was regarded as the pharmacophore
for biological effects based on its alkylation power (Chadwick
et al., 2013). Much research has proven that the αMγL group
is capable of covalently binding to thiol groups of available
cysteines through a Michael reaction, as shown in Figure 1

(Liu et al., 2014; Wu et al., 2017). Here, we identified a natural
compound 6β-Hydroxy-tomentosin (Figure 2), termed HB-21,
which can bind to cysteine 473 of Cdc25B by forming a covalent
bond. Furthermore, the related biological activities of cancer
cells following treatment with this compound, such as the
phosphorylation state of substrates and cell cycle arrest, were
confirmed.

MATERIALS AND METHODS

Reagents
HB-21 (catalog no. BBP04900) was purchased from BioBioPha
Co., Ltd (Kunming, China) with a purity <95%.

Gene Expression and Protein Purification
The Cdc25B (372–551) coding sequence with an N-terminal
TEV cleavage site was inserted into a pCold-GST vector. The
protein expression was performed as described in previous
research (Lund et al., 2015). In summary, the Cdc25B catalytic
domain (372–551) was expressed in E. coli BL21 (DE3) with
an N-terminal GST tag in the LB medium supplemented with
50µg/mL ampicillin. The cells were grown at 37◦C, and protein
expression was induced by adding 0.5mM IPTG until the
OD600 reached approximately 0.6. Then, the temperature was
reduced to 21◦C, and the expression continued for 20 hours.
The cells were collected by centrifugation at 4◦C and suspended
in lysis buffer (50mM Tris, pH 8.0, 150mM NaCl, 0.5mM
DTT, and 0.5mM PMSF). The suspensions were lysed using
ultrasonication, and the supernatant containing soluble protein
was collected by centrifuging for 40min at 19,000 rpm with
a Beckman centrifuge at 4◦C. The protein was captured by
glutathione resin and eluted with lysis buffer containing 20–
50mM L-glutathione. The GST tag was removed by adding HRV
3C protease, and further purification was performed by S-200
size-exclusion chromatography. The purified protein was pooled
and frozen at−80◦C.

In vitro Enzymatic Assay
The CycLex R© Protein Phosphatase Cdc25B Fluorometric Assay
Kit (CYClex, Cat. No. CY-1353) was used to screen for active
compounds that inhibit the diphosphate activity of Cdc25B.
The activities were measured using the substrate O-methyl
fluorescein phosphate (OMFP) in a 96-well microtiter plate
assay based on the manufacturer’s protocol. In summary, 40 µL
of assay mixture and 5 µL of test compound were combined
in the wells and incubated for 15min at room temperature
with 5 µL of recombinant Cdc25B. Afterward, 25 µL of stop
solution was added. Fluorescence was measured at an excitation
wavelength of 485 nm and an emission wavelength of 530 nm

using a fluorescencemicroplate reader (BioTek Instruments, Inc.,
Winooski, Vt, USA).

Molecular Modeling
The docking method used is described in previous work (Liu
et al., 2014). In summary, molecular modeling was performed
using Maestro 9.0. The X-ray structure of Cdc25B (PDB code:
1QB0) was downloaded from the Protein Data Bank (PDB, http://
www.pdb.org) and prepared with “Protein Preparation Wizard”
workflow using default settings. The grid-enclosing box was
generated within 10 Å from the cys473 in the refined crystal
structure. The structure of HB-21 was prepared using the Ligprep
module. Docking was performed using the covalent docking
module. The terminal carbon atom of the α-methylene moiety of
HB-21 and the sulfur atom of cys473 were specified as the ligand
reactive group and the receptor bond.

Western Blot
The phosphorylation status of CDK1 was analyzed by Western
blotting as described in our previous work (Zhang et al., 2014).
In summary, the tsFT210 cells (1 × 106) were treated with HB-
21 (0, 1, 5, 25µM) for 4 h and the lysed protein was analyzed via
10% SDS polyacrylamide gels. The protein signals were captured
with primary antibodies and secondary antibodies according to
the manufacturer’s instructions. In this process, the protein β-
actin was used to normalize target protein. All the antibodies
used in this paper were purchased from Cell Signal Technology
(Inc, China). The data shown in Figure 6 are representative of
two independent experiments.

Cell Cycle Analysis
The method of cell cycle analysis used was referenced by others
(Tsuchiya et al., 2012). Briefly, the tsFT210 cells (1 × 105

cells/well) were blocked at the G2/M phase by increasing the
temperature from 32 to 39◦C and treating for 17 h. Then, the
cells were synchronized at 32◦C and immediately treated with
shikonin. The cells were stained (50µg/ml propidium iodide,
0.1% sodium citrate, and 0.2% NP-40) and analyzed by flow
cytometry (BD Biosciences). The concentration of nocodazole
used was 100 nM. The data shown in Figure 7 are representative
of two independent experiments.

Cell Lines and Culture Condition
The cancer cell line tsFT210 was kindly provided by the lab of
Dr. Rongcai Yue (School of Pharmacy, Second Military Medical
University). The tsFT210 cells were kept at logarithmic growth
in 5% CO2 at 37◦C in the RPMI-1640 medium, supplemented
with 10% FBS and 1% penicillin G-streptomycin, in a humidified
chamber at 5% CO2.

Mass-Spectrometric Analysis of HB-21
Binding
The molecular weights of protein molecules and the protein–
ligand adducts were detected as suggested by others (Böth et al.,
2013). In brief, 5mg of Cdc25B (372–551) was incubated with
or without 1mM HB-21 at 20◦C for 30min. Subsequently,
the samples were diluted in 0.5ml denaturing buffer [5%(v/v)
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FIGURE 1 | The mechanism scheme of sesquiterpene lactones.

FIGURE 2 | Chemical structure of HB-21.

acetonitrile, 0.1% (v/v) formic acid, 0.5mM TCEP], and the
molecular weights were detected by ESI-Q-TOF (Waters Corp.).

RESULTS

The Inhibitory Effects of HB-21 on
Recombinant Human cdc25B Phosphatase
Using the protein phosphatase Cdc25 combo fluorometric assay
kit, HB-21 inhibited recombinant human Cdc25B in vitro in
a concentration-dependent manner (Figure 3) with an IC50

value of 24.8 ± 1.63µM. Caulibugulone A was identified as an
inhibitor of Cdc25s (Brisson et al., 2007) and thus was included
as a positive control. This compound showed comparative
inhibition of Cdc25B with an IC50 value of 5.37± 0.45µM.

Binding of HB-21 to cdc25B
The inhibitory effect of HB-21 on Cdc25B likely occurs through
covalently binding to the cysteine residues within the active
site, as shown in Figure 1. Incubation of the truncated form of
Cdc25B (372–551) with HB-21 led to the formation of covalent
Cdc25B–HB-21 (×3) adducts according to the results of ESI-MS
(Table 1 and Supplementary Material). The 21421.76 Da peak
was assigned as the molecular mass of the truncated Cdc25B
(residues 372–551) because it aligned with the calculated mass
(21420.52 Da) on the basis of the sequence. A new mass peak
(22214.18 Da) was generated after the incubation with 1mMHB-
21, and this mass corresponds to the exact mass of the three
HB-21 added to that of Cdc25B (372–551) (Table 1). There were
5 cysteines in the truncated Cdc25B (374–551) as shown in
Figure 4. However, two of them (Cys426 and Cys523) were not

FIGURE 3 | Dose–response curve for inhibition of Cdc25B by compound

HB-21.

TABLE 1 | Covalent adducts formed by Cdc25B with HB-21.

Cdc25B(374-551)

molecular mass (Da)

HB-21 molecular

mass (Da)

Detected

mass (Da)

Mass difference

(Da)

21421.76 264.1 22214.18 792.42 (3 ×

264.14)

available for the formation of covalently bonded adducts with
HB-21, as they were buried under the protein surface. Therefore,
three HB-21 molecules covalently bound to Cdc25B (374–551).

Molecular Model of HB-21 Interactions
With cdc25B Catalytic Domain
To evaluate the bindingmode and affinity of HB-21 with Cdc25B,
molecular modeling was performed using the docking program
Glide package. The crystal structure of Cdc25B has been solved
with a resolution of 1.91 Å, showing that the catalytic domain
of Cdc25B contains the canonical HCX5R PTPase catalytic-site
motif (Reynolds et al., 1999). In this motif, C represents the
catalytic cysteine 473 which forms a phosphate-binding loop with
five X residues and arginine 479. In the proposed binding mode
of HB-21-Cdc25B, HB-21 covalently binds to the cys473-located
pocket of Cdc25B with suitable shape complementarity. In
addition, six hydrogen bonds were observed between HB-21 and
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FIGURE 4 | The sequence of Cdc25B (374-551) and available cysteine residues (× not accessible).

FIGURE 5 | Binding mode of the HB-21 in the Cdc25B-binding cavity. (A) Overall view the Cdc25B is shown in surface, and the docked inhibitor is represented by

green sticks. (B) Detailed binding interactions of compound HB-21 with Cdc25B. Key interacting residues are represented as lines. H-bonds are shown as dashed

black lines. The figures were generated using Pymol (PDB ID: 1QB0).

residues surrounding cys473 (Figure 5). Although the covalent
binding betweenHB-21 and cys473 of Cdc25B plays a crucial role
in the inhibition process, these non-covalent interactions, such
as hydrogen bonds, were previously thought to increase the rate
of initial site-recognition and cause a simultaneous increase in
binding affinity (Liu et al., 2014).

HB-21 Inhibits CDK1 Dephosphorylation
and Delays the Entry Into Mitosis
Endogenous Cdc25 phosphatases control the cell cycle through
dephosphorylating their natural substrate, cyclin-dependent
kinases (CDKs) (Boutros et al., 2007). Therefore, the CDK1
protein will be hyperphosphorylated if CDC25s are inhibited.
To confirm whether HB-21 could inhibit the activity of
intracellular Cdc25 phosphatases, the phosphorylation status of
CDK1 was analyzed by Western blotting. At concentrations
of 5 and 25µM, HB-21 induced an accumulation of the
tyrosine 15-phosphorylated form of CDK1 (Figure 6). These
results suggested that HB-21 downregulated the activity of the
Cdc25B phosphatase, leading to hyperphosphorylation of CDK1
in cultured cells. Hence, the effects of this compound on cell cycle
progression were examined.

FIGURE 6 | Inhibition of CDK1 dephosphorylation caused by HB-21. The cells

in the G2/M phase were treated with the indicated concentration of HB-21 or

DMSO for 4 h, and then harvested. The samples were processed for Western

blot analysis.

HB-21 Inhibits Cell Cycle Progression
The inhibition of Cdc25s will result in dephosphorylation of
CDKs and cell cycle arrest. Therefore, the effects of HB-21 on
cell cycle progression were investigated. The tsFT210 cell line
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FIGURE 7 | Cell-cycle analysis of tsFT210 cells in the absence or presence of HB-21. (A) G2/M-arrested cells after a temperature shift for 17 h at 39◦C.

(B) DMSO-treated cells after a temperature shift for 4 h at 32◦C. (C) Cells treated with 100 nM nocodazole. (D–F) Cells treated with 1–25µM HB-21.

has been widely used for the study of cell cycle progression
because it can easily be controlled at different cell cycle phases
through changing temperature (Th’ng et al., 1990). The cell
cycle differences between synchronized tsFT210 cells treated
with the indicated concentration of HB-21, nocodazole (a potent
mitotic blocker), and 1%DMSOwere analyzed by flow cytometry
and shown in Figure 7. The positive control nocodazole
significantly arrested the cells at G2/M phase and DMSO
did not show a significant impact on cell cycle progression.
Comparatively, the HB-21-treated tsFT210 cells were blocked
at the G2/M phase in a concentration-dependent manner. Such
results provide supplementary evidence that HB-21 can target
Cdc25B and delay cell cycle progression at the Cdc25B-related
G2/M phase.

DISCUSSION

Cys473 is the crucial cysteine for catalyzing the substrate of
Cdc25B. Themost crucial quinone-derived inhibitors supposedly
inactivate the enzyme through oxidizing the thiolate group of
cys473 (Cui et al., 2017). Until now, no inhibitors have been
reported to bind directly to cys473. This study has shown that the
natural product HB-21 can directly bind to cys473 by forming a
covalent bond.

The structural biodiversity of natural products makes them a
valuable source for drug development (Lund et al., 2015). Studies
on SLs have increased due to their prevalence in plants and
their diverse bioactivity (Chadwick et al., 2013). HB-21 belongs
to a type of xanthane sesquiterpene, which possesses an αMγL
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moiety. The multiple bioactivities of SLs are attributed to the
αMγL unit, which has the potential to bind to thiol groups of
proteins covalently by a Michael reaction (García-Piñeres et al.,
2001). Using mass spectrometry and molecular modeling, this
investigation has also proven that this mechanism exists between
HB-21 and Cdc25B. Modeling results showed that, in addition
to the αMγL unit, other chemical groups of HB-21 are likely
to have an influence on the activity of Cdc25B through non-
covalent interactions. These interactions might serve as an initial
site-recognition step during the binding of HB-21 to Cdc25B.
The shape and size of the binding pocket of target proteins
is variable, and good shape complementarity between SLs and
target proteins is crucial for activity. Therefore, SLs containing
more flexible groups show increased activity (Chadwick et al.,
2013). Moreover, the residues around cysteine were thought
to play a role in the initial site-recognition for ligand binding
through other intermolecular forces, such as Van der Waals
forces, hydrogen bonds, etc. (Liu et al., 2014). This outcome also
explains why HB-21 showed a moderate inhibitory activity for
Cdc25B. Although HB-21 covalently binds to cysteine 473, the
noncovalent interactions between Cdc25B and HB-21 may be
weak, resulting in slow initial site-recognition. Further research
is necessary to fully understand the activity of HB-21 in the
HB-21: Cdc25B co-crystal structure at the molecular level. This
would allow a new HB-21-based derivative with much higher
biochemical activity to be designed.

Further research also needs to address the selectivity of HB-
21 for Cdc25B, and whether there are additional molecular
targets for HB-21 within the cell. In this study, HB-21 began
to induce cell cycle arrest at a concentration of 5µM in G2/M
phase cells. At this concentration, however, HB-21 has a relatively
low inhibitory effect (<5% inhibition). Three possible reasons
may explain this result. (1) Only the reduced state of the
cysteine’s sulfhydryl group (-SH) can covalently bind to HB-
21. This sulfhydryl group is, however, easily oxidized in air,
resulting in the inability of HB-21 to bind to Cdc25B. (2)
The Michael reaction needs time to complete. The Cdc25B
and HB-21 were, however, only incubated for 15min to keep
the protein in a reduced state. However, in addition to the
aforementioned reasons, the low inhibitory effect also suggests
that HB-21 has other intracellular targets, such as the other

homologues of Cdc25s (Cdc25B, and -C) sharing common
structural properties with Cdc25A, especially for the signature
motif (HCxxxxxR), which will be necessary to confirm in future
research.

In conclusion, this study has identified a new type of Cdc25B
inhibitor, HB-21. HB-21 resulted in the dephosphorylation of
Cdc25’s natural substrate, CDK1, and the inhibition of cell cycle
progression by HB-21 covalently binding to cys473, located
within the active site of Cdc25B. Neither in vivo nor in vitro
activity of HB-21 has been evaluated prior to this study. This
is the first time that HB-21 has been found to have anticancer
activity, allowing for HB-21 to provide a new molecular template
for anticancer drug development. The in vivo studies will be part
of our future studies.
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