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Any brain activity relies on the interaction of thousands of neurons, each of which 
integrating signals from thousands of synapses. While neurons are undoubtedly the 
building blocks of the brain, synapses constitute the main loci of information transfer 
that lead to the emergence of neuronal code. Investigating synaptic transmission 
constitutes a multi-faceted challenge that brings together a large number of 
techniques and expertise ranging from experimental to computational approaches, 
bringing together paradigms spanning from molecular to neural network level.

In this book, we have collected a series of articles that present foundational work 
aimed at shedding much-needed light on brain information processing, synaptic 
transmission and neural code formation. Some articles present analyses of regulatory 
mechanisms underlying neural code formation and its elaboration at the molecular 
level, while others use computational and modelling approaches to investigate, at 
synaptic, neuronal and inter-neuronal level, how the different mechanisms involved 
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in information processing interact to generate effects like long-term potentiation 
(LTP), which constitutes the cellular basis of learning and memory. This collection, 
although not exhaustive, aims to present a framework of the most used investigational 
paradigms and showcase results that may, in turn, generate novel hypotheses and 
ideas for further studies and investigations.
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Editorial on the Research Topic

Influence of Inter-and Intra-Synaptic Factors on Information Processing in the Brain

The main function of the brain is to process and integrate information coming from the
environment and from other parts of the body and produce appropriate responses.This
information processing capability is mimicked in neurons in which dendritic arborization
integrates information from thousands of synapses, both excitatory and inhibitory. The main
activity of a neuron then consists in receiving synaptic inputs and integrate them to produce spike
sequences (neural code), which ultimately form the presynaptic inputs to other neurons. Evidently,
synaptic transmission represents an essential building block of information processing in the brain.

Synapses show large variability in the amplitude, time duration, and time-dependent probability
of their produced output as a function of a presynaptic stimulus. Partially, this variability can
be assumed to be of stochastic origin (e.g., position of the vesicles at the presynaptic side), but
the larger part is due to the fine regulation of synaptic components, e.g., the activity-dependent
regulation of the number of postsynaptic receptors (through long-term potentiation and long-term
depression), their sub-unit composition and the biophysical properties of the neuronal area where
they are located.

These regulatory mechanisms determine the intensity, frequency, ability, and quality of
the information transmitted; they, in addition to the biophysical properties of both pre and
post-synaptic neurons are responsible for shaping the whole neural activity.

Unsurprisingly, these mechanisms and their effects on neuronal activity in both physiological
and pathological cases have been intensely studied. Yet a lot remains to be learned and achieving a
better understanding of the mechanisms involved is still of paramount importance.

The present research topic aims to collect papers by authors who, using approaches of both
experimental and computational nature, strengthen our understanding of synaptic function and its
role in information processing. This collection provides a non-exhaustive yet multiscale perspective
on synapses, ranging from the molecular contribution of proteins on the regulation of synaptic
transmission, to the study of the effects of synaptic activity on network-level activity.

A molecular switch involving the protein CaMKII in short period plasticity is proposed by
Clarke, who analyses the bistable properties of this molecule driven by Ca2+ cytosolic transients
using a computational approach.

To study stochastic short-term plasticity, a method based on hiddenMarkov models (HMMs) is
proposed by Mokhtari et al.
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Guerrier and Holcman present a review of the intricate
interactions that take place in the presynaptic terminal leading
to the release of neurotransmitters; the presynaptic sensors for
Ca2+ are considered for their role in the probability of vesicle
release and the contribution to plasticity phenomena.

All synaptic inputs are not equal and they strongly depend on
the location of the synapses on the dendritic tree. Felton et al.
present a study of postsynaptic integration and the interactions
betweenmultiple functional zones. They use stochastic resonance
models to perform their analysis and demonstrate the presence of
meaningful interactions between these different functional zones.

GABA is known to mediate intercellular communications by
participating in both “wiring” and “volume” transmission. The
“wiring” action of GABA takes place via synaptic transmission
by activating the postsynaptic (phasic) GABAA-receptors. The
“volume” transmission is carried out by “overspilled” ambient
GABA which regulates neuronal excitability by creating extra
transmembrane current through extrasynaptic (tonic) GABAA-
receptors. In their contribution, Adamchik et al. propose a
simple computational model that simulates the effects of non-
stationary, activity dependent GABA upon population dynamics
of interneurons and demonstrate that this effect leads to
relaxation oscillations.

Ferguson and Gao present a study of the regulatory effects of
inhibitory synapses on the activity of prefrontal cortical circuits
neurones. They outline the role of inhibition in regulating the
excitatory activity of glutamatergic neurons showing how lack
of balance between excitatory and inhibitory synapses can be the
base of specific pathologies.

Spike-timing dependent plasticity (STDP) is considered one
of the major processes underlying memory storage and recall.
Langlois et al. show the importance of dopaminergic synapses
on the regulation of the GABAergic STDP, which plays a critical
role in the circuitry between the deep nuclei of the brain and
the cortex.

Other mechanisms have also been shown to contribute to
modulation of STDP; Foncelle et al. propose a review of the
different mechanisms reported to affect this modulation.

Based on a theoretical model, Millán et al. show that the
pruning (and formation) of synapses alters the energy landscape
of an associative network such that the neural system becomes
able to track several memories or attractors by oscillation-
like dynamics. They argue that this oscillation is induced by

destabilization of the current attractor.
Calcium dynamics has been shown to play a critical role

for normal brain function as it affects synaptic homeostasis
and promotes learning and memory. Additionally, it has been

implicated in pathologies, and most notably neurodegeneration

and Alzheimer’s disease. Hu et al. present an integrated
mechanistic model of postsynaptic calcium concentration

dynamics that incorporates various already published elementary
models and demonstrate its accuracy using various experimental
results. Notably, an important factor that impedes our
understanding of the nervous system is its multiscale complexity.
Building biologically accurate computational models that
aim to span several scales quickly becomes impractical due
to high computational load. This limitation holds true for
the instantiation of many mechanistic models of calcium
dynamics in simulations comprising a large number of
neurons (each neuron containing thousands of synapses). To
circumvent this limitation, Hu et al. also present an input-
output model that accurately summarizes the functional
dynamics of the mechanistic model, while significantly reducing
the computational complexity, thereby enabling realistic
large-scale simulations.

Visualizing and quantifying molecular interactions taking
place at the synaptic level is a challenging task given
the nanoscopic scale of the system, as well as the rapid
temporal changes. Yet a growing number of tools now allow
live recordings of various signaling pathways and protein-
protein interaction dynamics in time and space by ratiometric
measurements, such as Bioluminescence Resonance Energy
Transfer (BRET) Imaging. Chastagnier et al. present a single-
cell BRET imaging protocol that is used to visualize protein-
protein interactions in living cells at subcellular level. The
visualization technique, introduced by the same group in 2016,
uses Nanoluciferase as a BRET donor partner in performing
the imaging assay. Here, the authors present the steps needed
to analyze BRET images concurrently with a toolset they have
developed called ”BRET-Analyzer” that facilitates systematic
quantitative analysis.

The present research topic constitutes a collection of studies
that investigate open questions on synaptic processes and their
effect on information processing. We trust these will add to the
collective knowledge and be of interest to scientists engaged in
the topic.
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Analog Signaling With the “Digital”
Molecular Switch CaMKII

Stephen E. Clarke*

Department of Bioengineering, Department of Neurosurgery, Stanford University, Stanford, CA, United States

Molecular switches, such as the protein kinase CaMKII, play a fundamental role in

cell signaling by decoding inputs into either high or low states of activity; because

the high activation state can be turned on and persist after the input ceases, these

switches have earned a reputation as “digital.” Although this on/off, binary perspective

has been valuable for understanding long timescale synaptic plasticity, accumulating

experimental evidence suggests that the CaMKII switch can also control plasticity

on short timescales. To investigate this idea further, a non-autonomous, nonlinear

ordinary differential equation, representative of a general bistable molecular switch, is

analyzed. The results suggest that switch activity in regions surrounding either the

high- or low-stable states of activation could act as a reliable analog signal, whose short

timescale fluctuations relative to equilibrium track instantaneous input frequency. The

model makes intriguing predictions and is validated against previous work demonstrating

its suitability as a minimal representation of switch dynamics; in combination with existing

experimental evidence, the theory suggests a multiplexed encoding of instantaneous

frequency information over short timescales, with integration of total activity over longer

timescales.

Keywords: molecular switches, frequency coding, stochastic resonance, cellular computation, CaMKII, synaptic

plasticity, burst detection, hill function

INTRODUCTION

Many cellular inputs lead to transient changes in cytosolic calcium (Ca2+) levels, generating
temporally complex signals that reflect a wealth of information (Berridge et al., 2003). As such,
cells express highly conserved molecular decoders capable of translating Ca2+ oscillations into
downstream signaling events that affect diverse processes such as gene transcription, development
and aging, neural network homeostasis and the synaptic plasticity that underlies learning and
memory (Lisman et al., 2002; Thomas andHuganir, 2004;Wen et al., 2004; Clapham, 2007; O’Leary
et al., 2013; Tao et al., 2013; de Jong and Fioravante, 2014; Smedler and Uhlen, 2014). A celebrated
example of a Ca2+ decoder is the protein kinase Ca2+/calmodulin (CaM)-dependent protein kinase
II (CaMKII;Box 1), which can be driven by transient levels of cytosolic Ca2+ into either high or low
states of switch-like activity. When stabilized through negative regulation by protein phosphatases,
self-exciting (autophosphorylating) kinases such as CaMKII are an ideal component of signal

7
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BOX 1 | The bistable molecular switch CaMKII and synaptic plasticity.

Accounting for approximately 1–2% of all brain protein, CaMKII is a central hub of cell signaling networks and can exert both pre- and post-synaptic control

over information transmission in the central nervous system (Lisman et al., 2002). Once bound to the Ca2+-CaM complex, the kinase’s ability to cooperatively

autophosphorylate can produce two distinct stable states: either high or low levels of enzymatic activation. Postsynaptically, after repetitive stimulation, the high

activation state may persist after the Ca2+ signal subsides and can strengthen the connection between neurons, for example, the hippocampal CA3-CA1 synapses

that support learning and memory (Lisman et al., 2012). However, it should be noted that the role of CaMKII autophosphorylation and constitutive activation is not fully

understood or accepted (Michalski, 2013) and we are just beginning to gain better insight into the problem (Chang et al., 2017). This paper proposes that CaMKII’s

principal role is to meaningfully transmit information via its short term dynamics rather than store it permanently within levels of autonomously activated switch.

Presynaptically, CaMKII also modifies connection strength (Wang and Maler, 1998; Ninan and Arancio, 2004; Pang et al., 2010). In weakly electric fish, the αCaMKII

isoform produces presynaptic potentiation in a motion sensitive, excitatory sensory feedback pathway (Wang and Maler, 1998; Clarke and Maler, 2017). The kinase

also potentiates hippocampal CA3-CA1 synapses, as evidenced by knocking-out αCaMKII, which leads to reduced synaptic potentiation under paired pulse facilitation

protocols when compared to the wild-type (Chapman et al., 1995). Through enzymatic phosphorylation of voltage gated Ca2+ channels and ryanodine receptors,

αCaMKII can enhance Ca2+ entry and Ca2+-induced Ca2+ release in response to high frequency signals, potentially supporting hysteresis (Figure 1) and driving

synaptic release (Catterall and Few, 2008). However, at the same CA3-CA1 synapses, post-tetanic potentiation protocols generate enhanced levels of potentiation in

the same knock-out mice, illustrating that αCaMKII may also depress synaptic strength depending on the frequency and duration of the input (Chapman et al., 1995).

Furthermore, αCaMKII has been shown to serve as a negative, activity-dependent regulator of neurotransmitter release probability at CA3-CA1 synapses (Hinds et al.,

2003). This effect may be partially explained by the fact that CaMKII phosphorylates Ca2+-activated potassium channels that hyperpolarize the presynaptic terminal

(Wang, 2008), decreasing the likelihood of Ca2+ entry and evoked neurotransmitter release. Intriguingly, αCaMKII also plays a non-enzymatic role in presynaptic

CA3-CA1 plasticity by regulating the number of docked synaptic vesicles containing neurotransmitter (Hojjati et al., 2007). In this case, decreased transmitter release

could be explained by the fact that αCaMKII is acting as a sink for intracellular Ca2+, lowering the cytosolic levels that drive the machinery of synaptic vesicle fusion

and influencing the size of the readily releasable vesicle pool (Thanawala and Regehr, 2013; Jackman et al., 2016). The size of the readily releasable pool is directly

correlated with release probability at hippocampal synapses (Dobrunz and Stevens, 1997), supporting a putative role for αCaMKII in control of presynaptic plasticity

parameters via Ca2+ and CaM buffering (Hinds et al., 2003).

One of the most influential discoveries about CaMKII is its ability to decode the frequency of periodic Ca2+ pulses into distinct amounts of long lasting, autonomously

activated kinase (De Koninck and Schulman, 1998). However, the interpretation of CaMKII as a frequency decoder has been criticized based on the fact that mean

values of activity, evoked by different combinations of Ca2+ pulse size, duration and frequency, are ambiguously mapped into the same level of autonomously

activated switch (Pinto et al., 2012), which suggests that the switch is actually integrating the Ca2+ input over longer timescales. Alternatively, this article focuses on

whether the concentration of activated switch acts as a reliable (analog) signal that reliably encodes frequency information over short timescales (sub-seconds), where

Ca2+ pulse size and duration are far more stable (Tank et al., 1995). The experimental evidence discussed above suggests that frequency coding by these “digital”

molecular switches is more sophisticated than previously thought and that fast fluctuations in presynaptic αCaMKII around either the stable high- or low-activation

state can better represent instantaneous frequency information, and, hypothetically, translate it into bidirectional control of synaptic strength in real-time.

amplification and have been previously likened to transistors on
a computer chip, in that they may be turned on or off, presenting
an ideal substrate for computation in cellular systems (Hunter,
1987; Ferrell and Ha, 2014).

The classic CaMKII experiments of De Koninck and
Schulman provided the first demonstration that a molecular
switch can decode the frequency of periodic Ca2+ pulses
into distinct, persistent levels of high enzymatic activation
(De Koninck and Schulman, 1998). Although experimental
evidence still largely lacks for whether this persistent activation
occurs within functioning cells (Michalski, 2013), there are
recent indications that it does occur to some extent (Michalski,
2014; Urakubo et al., 2014; Rossetti et al., 2017) and that
autophosphorylation is key to this process (Chang et al., 2017;
Rossetti et al., 2017). Many modeling studies of CaMKII
autophosphorylation dynamics capture the ability of the high
activation state to persist beyond the original Ca2+ signal
(known as hysteresis), which could potentially act over long
timescales (seconds, minutes, and longer) (Zhabotinsky, 2000;
Dupont et al., 2003; Graupner and Brunel, 2007). In these
studies, the relationship between Ca2+ concentration and the
state of the molecular switch are determined from simulations
of detailed, parameterized systems of differential equations
that are not readily amenable to deeper mathematical analysis;
furthermore, these studies are restricted to periodic inputs
and concerned with long timescale activation. In order to

better understand frequency coding over short timescales
(milliseconds to seconds) and its putative effect on synaptic
plasticity (Box 1), this article analyzes a reduced description
of molecular switch behavior when subject to noisy, aperiodic
forcing, while further demonstrating the model’s compatibility
with existing experimental and modeling results on CaMKII
activation (De Koninck and Schulman, 1998; Dupont et al.,
2003; Chang et al., 2017). As the study of cellular information
processing shifts from individual transduction pathways, toward
the emergent properties of complex signaling networks, simple
mathematical models are becoming indispensable tools for both
experimentalist and theoreticians alike by providing a trade-off
between detailed performance and a reduced description that
facilitates system-level studies (Bornholdt, 2005; Kotaleski and
Blackwell, 2010). Much in the way that the leaky-integrate and
fire model has benefited the study of spiking neurons (Jolivet
et al., 2004; Burkitt, 2006), the minimal switch model discussed
in this paper will hopefully facilitate further study of complex
kinase-phosphatase networks.

RESULTS

A Bistable Switch Model
The following differential equation is an abstraction of a bistable
molecular switch and was originally proposed as a model of
genetic development by Lewis et al. (1977). This relatively
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FIGURE 1 | Activation states of the bistable molecular switch model. (A) The model’s potential function, U(x), visually describes the tendency for solutions to settle

around one of two equilibrium points (x∗), where the rate of change of switch activation, f (x), is 0 (parameters, r = 0.52 and c = 0.04). To the left of the stable equilibria

(black circles), f (x) > 0 (green), and to the right, f (x) < 0 (blue), which forces perturbations to settle back into those states. Conversely, the sign of f (x) is reversed on

both sides of the unstable equilibrium (red circle), such that tiny perturbations push the switch away, toward either stable state. (B) As r or c change, f (x) changes and

can result in the loss of bistability. (i) To illustrate, r is fixed as the input c is varied: small values only support low activation, but, as c grows, bistability emerges and

eventually disappears as only the high activation state is supported when c > cc (rightmost). A defining feature of bistability is the hysteresis effect, where the same

value of a parameter may evoke different states depending on the history of activity. For example, the high activation state still exists for c less than the rightmost cc
and can only be lost when c falls below the leftmost cc value. (ii) c is fixed while the negative regulation parameter r is varied. For small r, only the high activation state

exists. As r grows larger, the system becomes bistable and, eventually, only the low state exists after crossing rc. Panel (iii) shows a parametric plot of the critical

values cc(x) and rc(x), that partition the parameter space, and the bifurcation surface summarize the analysis completely (iv).

simple model is a useful analytical tool to understand the
general properties of bistable kinetic systems and captures
the qualitative dynamics of more complicated models of
CaMKII (Zhabotinsky, 2000) (Figure 1). Although the model
interpretation and results presented here are centered on
CaMKII and synaptic plasticity, the reader is encouraged to
consider the broader implications for instantaneous frequency
coding with other molecular switches, such as mitogen-activated
protein kinases (Xiong and Ferrell, 2003; Thomas and Huganir,
2004).

dy

dt
= k0s− k1y+

k2y
n

k3
n + yn

In this formulation, the level of activated CaMKII (y) is
stimulated by the presence of Ca2+ bound to CaM, s, which will
be studied as a function of time. For simplicity, it’s assumed that
pulses of Ca2+ are bound upon cell entry, which is reasonable
since CaM is found in large concentrations surrounding Ca2+

channels and has a strong affinity for Ca2+ (Chin and Means,
2000). Switch deactivation is directly proportional to the active
CaMKII concentration at a rate k1, representing the activity of
protein phosphatases. Finally, once activated, CaMKII has the
ability to cooperatively bind Ca2+- CaM and autophosphorylate
its own subunits, which motivates the nonlinear, positive
feedback term captured by the Hill equation, where k2 and

k3 are the association and dissociation constants, respectively.
In addition to phosphorylation among the twelve subunits
of a single CaMKII molecule, the ability to exchange active
subunits between distinct CaMKII enzymes may connect this
simple interpretation to a total, large pool of activated subunits
distributed over multiple molecules (Stratton et al., 2014). Due to
physiological constraints, y,s,k0,k1,k2,k3 ≥ 0. In the following,
this specific equation will be referred to as the full kinetic model.

The full kinetic model of Lewis et al. has been previously
applied to bistable genetic networks (Lewis et al., 1977; Smolen
et al., 1998; Zheng et al., 2011), transcriptional regulation
(Heltberg et al., 2016; Kang et al., 2017), mitogen-activated
protein kinases (Xiong and Ferrell, 2003), and incorporated into a
larger phenomenological model of presynaptic plasticity (Oswald
et al., 2002). Although insightful for their specific systems, these
studies retain a large numbers of parameters that clutter analysis
and obscure the generality of the results. Therefore, it is desirable
to reduce the number of parameters and facilitate the following
analysis by performing routine nondimensionalization. Let y =
x · k3, r = k1k3

k2
, s = k2

k0
c and t = k3

k2
τ , which, when substituted

into the original equation and simplifying gives the reduced but
dynamically equivalent form:

dx

dτ
= c− rx+

xn

1+ xn
(1)
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This article is interested in a time varying c ≡ c0 + cl(τ ),
where c0 reflects residual cytosolic Ca2+, whose slow dynamics
are treated as fixed on the fast timescales over which the
local Ca2+ signal cl(τ ) fluctuates (Regehr, 2012). A timescale

factor T = k3
k2
, the quotient of the switch deactivation and

activation parameters, will be reintroduced later in order to
connect the switch dynamics to time in seconds and stimulation
frequency in Hz. The parameter r represents the kinetics of
CaMKII subunit dephosphorylation by protein phosphatases
and scales with the factor T. Finally, for highly cooperative
reactions, n = 2 is a reasonable approximation of the Hill
function exponent (Edelstein-Keshet, 2005) and a convention
maintained by all of the studies listed above. The following
bifurcation analysis is illustrated for n= 2, which allows for exact
analytical solutions (Figure 1 and Methods); however, the main
results are then generalized to arbitrary n ∈ R

+, which is much
more realistic and has important consequences for frequency
coding.

Stability and Bifurcation Analysis
Although interested in frequency-driven fluctuations over short
timescales (Box 1), we must first examine the bistable, long
timescale equilibrium behavior of the model that defines the
switch’s low and high activation states (Equation 1; Figure 1). An
important reason for reducing the number of model parameters
above is to simplify the analysis of all the possible system
behaviors as a function of only a few parameter values. Having
selected n= 2, we now only need to consider the effect of varying
r and c; depending on their values, we may have one, two or
three equilibrium points (x∗), where the rate of change of the

switch f (x) = c − rx + x2

1+x2
is equal to zero. For example,

consider the values r = 0.52 and c = 0.04 that support
bistability: there are three fixed points, two of which are stable, as
illustrated by the switch’s potential function U(x) = −

∫

f (x)dx
(Figure 1A). As r and c change, saddle node bifurcations
can occur, resulting in the presence of only the high or low
activation state. The corresponding bifurcation diagrams are
displayed in Figure 1B; their derivation is found in the Methods
section.

A key feature of bistability is the hysteresis effect, where the
same value of a parameter may evoke different states depending
on the history of activity. For example, as the Ca2+ signal c
increases, x∗ grows larger until crossing the rightmost cc, where a
saddle node bifurcation occurs and the switch jumps up to the
high activation state, as the low state disappears (Figure 1Bi).
Now, as c decreases back into the bistable range, the high
activation state is preserved, and only lost when c crosses below
the leftmost value of cc. This history dependent behavior is
presumably central to sustained CaMKII activity on the order of
seconds (Wang andMaler, 1998) (Box 1). A similar phenomenon
occurs for the negative regulation parameter r (Figure 1Bii).
The values of rc and cc are plotted parametrically as a function
of the active switch in the bifurcation curves (Figure 1Biii).
The bifurcation surface summarizes this information completely
(Figure 1Biv).

Existence of Solutions Around Stable

Equilibria
To date, studies of Lewis et al.’s full kinetic model have
been restricted to static input and periodic forcing. It is
of principal interest to characterize the model behavior in
response to aperiodic forcing, in order to gain a more general,
physiologically realistic understanding of frequency coding
with molecular switches. In addition to potentially encoding
frequency information into stable levels of activated switch
for many seconds presynaptically (Wang and Maler, 1998),
or minutes postsynaptically (Lisman et al., 2012), what about
frequency coding on the order of milliseconds to seconds,
which is associated with brief sequences of action potential-
evoked Ca2+ inputs? In a neighborhood surrounding a stable
activation state (a sub-state region), is there a unique solution
for a given time varying input signal? This question is
not trivial, since small changes in the initial conditions of
a nonlinear system (i.e., past switch activity) may generate
drastically different behavior. Understanding the relationship
that determines whether solutions converge or diverge around
a given steady state could provide valuable insight into the
properties of bistable molecular switches.

In the following section, we now reintroduce the scale factor
T, since we are interested in studying frequency in Hz and time
(t) in seconds. As such, Equation 1 becomes

T
dx

dt
= c(t)− rx+

xn

1+ xn
(2)

First, to establish the existence of solutions around the high
and low switch states, consider Equation 2 and note that f
explicitly depends on the time-varying forcing term, c(t) ≡
c0 + cl(t). The phosphatase activity r that can counteract the
switch phosphorylation is treated as fixed. The function f (t, x(t))
is assumed to be Lipschitz continuous and well-defined within
intervals of state space, y− ≤ x(t) ≤ y+ satisfying the conditions
f (t, y−) > 0 and f (t, y+) < 0 for all t ∈ R

+ (recall Figure 1A),
which traps solutions within these boundaries. For any given
point in time, there exist boundaries (y−, y+) determined by the
parameters r, c0, and the input cl(t); we refer to values of the
activated switch falling within these trapping regions as sub-state
solutions, that is, fast timescale fluctuations that occur around
either the high or low stable activation states (Lisman et al.,
2012).

For (c, r) corresponding to the bistable region of parameter
space (Figure 1Biii), there exist two intervals, x(t) ∈ (yl−, yl+)
and x(t) ∈ (yh−, yh+), each surrounding one of the stable
equilibrium points (x∗). Now, we wish to locate values for the
low state (yl−, yl+) and high state (yh−, yh+), where the existence
of local time-varying solutions can be established. This problem
is intimately linked to bifurcation, since yl+ and yh−depend on
the values of c and r. The choice of a lower bound for the interval
that exists around the low activation state is yl−=0, since the
physiological restriction c(t) ≥ 0 implies f (t, 0) > 0 for all
t ∈ R

+, ignoring the boring degenerate case of c(t) = x(t) = 0.
The upper bound of the lower strip, yl+, can be chosen as a value
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x∗u − 1x, left of the unstable equilibrium x∗u where f (t, x∗u) = 0,
such that 1c+ f (t, x∗u−1x) < 0; this condition ensures that the
system is not trivially displaced into the high activation state by a
single Ca2+ pulse with amplitude 1c. For the high concentration
strip (yh−, yh+), the lower bound yh− is chosen as a value of x
infinitesimally greater than x∗u, that is, yh− = x∗u + ε for ε → 0.
Since we have restricted r and c > cc (leftmost; Figure 1B) to
the bistable range, we know that f (t, yh−) > 0 . For the upper
bound of the high activation strip, it is enough to note that for
x > x∗

h
, f (t, x(t)) < 0 and, since we wish to maximize the

width of the strip, we take x arbitrarily large, denoting this value
by yh+ = x∞. During stimulation, if (c, r) drifts out of the bistable
region of parameter space, a saddle node bifurcation occurs and
only one interval exists; in this case, the bounds simply span the
state space, y− = 0 and y+ = x∞.

By invoking the Cauchy-Peano theorem, we guarantee the
existence of at least one sub-state solution for every initial
condition found within the interval regions defined above, since
the conditions on the sign of the derivative f (t, x(t)) define
trapping regions. However, this theorem says nothing about

d

dt
z(t) = lim

h→0

z(t + h)− z(t)

h

= lim
h→0

∣

∣u(t + h)− x(t + h)
∣

∣ −
∣

∣u(t)− x(t)
∣

∣

h

≤ lim
h→0

∣

∣(u(t + h)− x(t + h))− (u(t)− x(t))
∣

∣

h

= lim
h→0

∣

∣(u(t + h)− u(t))− (x(t + h)− x(t))
∣

∣

h

= sgn[u(t)− x(t)] ·
d

dt
(u(t)− x(t))

= T−1sgn[u(t)− x(t)]

(

c(t)− r · u(t)+
un(t)

1+ un(t)
−

(

c(t)− r · x(t)+
xn(t)

1+ xn(t)

))

= T−1sgn[u(t)− x(t)] ·
(

−r · (u(t)− x(t))+
un(t)− xn(t)

(1+ un(t))(1+ xn(t))

)

= T−1sgn[u(t)− x(t)] · (u(t)− x(t)) ·
(

−r +
un(t)− xn(t)

(u(t)− x(t))(1+ un(t))(1+ xn(t))

)

= T−1
∣

∣u(t)− x(t)
∣

∣ ·









−r +

n
∑

i=1
ui−1(t) · xn−i(t)

(1+ un(t))(1+ xn(t))









forn ∈ Z+

= T−1z(t) ·
(

−r + p(u, x, n)
)

whether solutions starting at different initial conditions will
converge to a unique, stimulus-driven response that tracks
changes in the Ca2+ signal.

Uniqueness of Sub-State Solutions
As motivation for the following results, Figure 2A shows an
example switch response to an 8Hz Poisson pulse sequence,
which is convolved with an alpha function filter (30ms,
Methods), then normalized to the signal’s maximum and scaled
by 1c = 0.5 to create an example input signal, which the switch
tracks closely. Note, in this simulation, the alpha-function kernel
was specifically chosen to be 30ms based on literature values
for the time course of local synaptic Ca2+ signals (Sinha et al.,
1997; Sabatini et al., 2002; Graupner and Brunel, 2012). Due to

our interest in the fast timescales associated with short sequences
of input pulses (100s of milliseconds), we assume that the Ca2+

pulse size is fixed on this timescale, which is a reasonable
approximation for hippocampal spiking frequencies less than
15Hz (Tank et al., 1995). This distinction between short and long
timescales provides a hypothetical means for the system to be less
sensitive to variations in the Ca2+ pulse size and the resulting
frequency-intensity coding ambiguity [(Zhabotinsky, 2000; Pinto
et al., 2012); see Box 1]. This could allow for more accurate
representations of instantaneous frequency over short time
periods, compared to long timescale frequency coding where
input history, as well as additional adaptive and homeostatic
processes may substantially adjust Ca2+ signaling.

We now establish the stability and uniqueness of solutions for
distinct initial conditions within a given interval of state space.
Consider a general interval (y−, y+), where x(t) is a solution to
Equation 2 with initial condition x0 ∈ (y−, y+). Assume there
is another solution, u(t), with a different initial condition u0 ∈
(y−, y+). Writing z(t)=|u(t) − x(t)| and first assuming n is a
positive integer, we see that

The expression p(u, x, n) achieves maximal values at intermediate
switch levels that separate the low and high states of activation.
Now, consider p(u, x, n) for the special case of n = 2 used in
the bifurcation analysis; in this case, p(u, x, 2) = u+x

(1+u2)(1+x2)
,

which is plotted in Figure 2B. Setting the partial derivatives of
the function to zero and solving for u and x, yields a critical

point: (u, x) =
(√

3
3 ,

√
3
3

)

. Substituting this into p gives a global

maximum of 3
√
3

8 . Since d
dt
z(t) ≤ T−1

(

−r + 3
√
3

8

)

z(t) for all t,

we can apply Grönwall’s inequality, which gives us the following:

z(t) ≤ eT
−1

t
∫

0

(−r +
3
√
3

8
)ds
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FIGURE 2 | Switch activity fluctuates with instantaneous input frequency. (A)

Motivating example: switch response to an 8Hz Poisson sequence of input

pulses, convolved with an alpha function kernel to create a signal,

c(t) = c0 + cl (t). The switch’s fluctuations track changes in the input frequency

(n = 1.6, r = 0.61, c0 = 0.04, and T = 0.01). (B) The example function

p(u, x, 2) from the uniqueness proof achieves a maximum of 0.65; r must

exceed this value to guarantee absolute convergence of the switch to a unique

frequency-driven solution. (C) Initial conditions: u(0) = 1.7 and x(0) = 0.1. The

value of T affects time-to-convergence between solutions and frequency

filtering. From empirical studies, T ≤ 0.01 (Coultrap and Bayer, 2012). (D) (i)

For r = 0.54 < rc, sufficiently high frequency Ca2+ pulses (bursts) cause

transitions from the low to high state (illustrated for n = 2). By adjusting c0 to

take advantage of hysteresis, the cell can control whether or not it is sensitive

to these burst-induced up states. The first two pulses (<10Hz), where c0 = 0,

do not result in hysteresis, whereas the high frequency 10Hz inter-pulse

interval (right panel black arrow) with c0 augmented to 0.04 does; note that

neither static value can generate the upstate alone without sufficient input

(e.g., 5Hz, left panel black arrow). The switch response differs during the

transition between low and high states, but once settled around a given state

gives good agreement (gray shading; the two example curves are compared

by choosing an offset of 0.92 that minimizes the Euclidean distance between

them). (ii) Top Simulation for r = 0.59 and n = 2, where x(t) has c0 = 0.02 and

thus cannot support bistability, vs. u(t) with c0 = 0.04, which, when driven by

input, traps the solutions around the high activation state through hysteresis.

Under these conditions, convergence cannot occur. Bottom The absolute

value of the difference between the relative changes in u(t) and x(t) induced

respectively by the common input frequencies (1, see Results for details)

plotted as a function of r; the maximum discrepancy of 0.046 is found at

r = 0.59 and represents a small fraction of the total activated switch

(Continued)

FIGURE 2 | concentration. (E) In general, the exponent n 6= 2 in real biological

systems. Interestingly, n = 1.55 is a minimum for the maximum value of the

class of functions p(u, x, n) in the uniqueness proof. This is remarkably close to

the empirical best-fit value of 1.6 their ± SEM or SD reported by De Koninck

and Schulman for presynaptic α CaMKII (De Koninck and Schulman, 1998).

Substituting the expression for z(t) and solving this integral
exponent yields,

|u(t)− x(t)| ≤ e−T−1(r− 3
√
3

8 )t

and, as t → ∞ , we have

0 ≤ lim
t→∞

|u(t)− x(t)| ≤ lim
t→∞

e−T−1(r− 3
√
3

8 )t

For r > 3
√
3

8 (≈ 0.65), we obtain

0 ≤ lim
t→∞

|u(t)− x(t)| ≤ 0

By the squeeze theorem we conclude that |u(t) − x(t)| → 0
as t → ∞ . Therefore, a unique frequency-driven solution
exists and is independent of the initial conditions within the
bounded interval. The time taken to converge to the unique

solution is inversely proportional to T = k3
k2

(Figure 2C).

The parameter value T = 0.01 s was chosen here for our
specific example switch, CaMKII, whose dissociation constant
(k3) has been experimentally determined to be at least 100-
fold smaller than the activation constant (k2) that governs
the rate of autophosphorylation (Coultrap and Bayer, 2012).
Unlike the larger value of T = 0.1 s, T = 0.01 permits
quick convergence and reliable encoding for the action potential
frequencies characteristic of hippocampal CA3-CA1 synaptic
input (approximately 1–15Hz) (Mizuseki et al., 2012). Smaller
values of T permit rapid convergence and more accurate
frequency coding, but may become overly sensitive to temporary
lulls in activity when c briefly drops below the leftmost critical
value cc (recall Figure 1Bi).

It should be noted that r > 0.65 is an absolute guarantee
of convergence to a unique frequency driven solution; but,
from the bifurcation analysis (Figure 1Biii; Methods), we know
that bistability does not exist for this value of r. However,
in general, only −r + p(u, x, 2) < 0 is required, which, for
low and high concentrations of activated switch, is obtained at
smaller values of r that do support bistability. In fact, p(u, x, n)
only exceeds the r value briefly during state transitions as it
moves through the unstable equilibrium. Although a unique
encoding of sub-state solutions can still exist for smaller r values
around either the high or low state, convergence about the
low activation state is now vulnerable to perturbation by short
Ca2+ inter-pulse intervals, thus acting as a high frequency event
(burst) detector through induction of high switch activation. For
example, experiments show that high frequency hippocampal
activity (>15Hz) causes successive Ca2+ pulses to accumulate
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(Tank et al., 1995), which could effectively boost c0 and serve
to promote burst detection by transiently maintaining the
high activation state via hysteresis (Figure 2Di). In theory, this
dynamic burst threshold (the separatrix) is sensitive to recent
levels of activation, and could be purposefully modulated by
the cell through dynamic regulation of the parameters r and
c0 (Li et al., 2012). To restore the low state, the cell simply
needs to adjust c0 to fall below the leftmost critical value cc.
The bottom panel of Figure 2Di illustrates that fluctuations
around the high- and the low-stable states still yield nice
agreement in their response to a given input frequency. Of course,
during the state transition itself, the switch response can differ
largely but once solutions are settled around their respective
stable states the model appears to give good agreement (gray
shading; the two example curves are compared by choosing an
offset of 0.92 that minimizes the Euclidean distance between
them).

When bistability is supported, the model response cannot
always converge to an absolute level of activated switch,
as illustrated in the top panel of Figure 2Dii; however, the
fluctuations about the distinct stable states appear to be similar,
as in Figure 2Di. To examine this idea further, repeated
simulations of the model were performed, where x(t) has an
associated residual Ca2+ level of c0 = 0.02 and thus does
not support bistability, vs. u(t) with c0 = 0.04, which can
trap the solution around the high activation state through
hysteresis (Figure 2Dii, top). As was the case in Figure 2C,
the same random spike sequences are used for x(t) and u(t)
on each trial. For each inter-pulse interval of the repeated
simulations, the change in the level of activated switch was
computed as the difference between the switch activity sampled
at the time of an input pulse and the subsequent maximum
switch response that occurred before the next pulse. For each
successive, shared inter-pulse interval, these differences, 1x
and 1u, were determined separately for x(t) and u(t), then
subtracted from each other for each 100 s trial, containing
an average of 797 pulse intervals (8Hz Poisson process).
This was repeated 10 times for each parameter set and the
composite mean of the absolute value of the difference between
the change in the two solutions, 1 = |1u− 1x|, was
determined as a function of r (Figure 2Dii, bottom). The
maximum discrepancy between 1x and 1u, 0.046, occurs at
r = 0.59 (used for Figure 2Dii, top) and is at least an order
of magnitude less than typical values achieved in the low
activation state. These results suggest that the relative change
in switch activation about a stable state is generally quite
consistent.

Realistically, the Hill function exponent n need not be
restricted to integer values, which is unlikely in real biological
systems. Thus, in the above proof, the expression p(u, x, n) is now
left as un−xn

(u−x)(1+un)(1+xn)
for n ∈ R

+, since there is no longer a

closed form expression for the factorization of the numerator
by the term u − x. The function p(u, x, n) has critical points at
u = x, which occur at an apparent discontinuity due to the factor
u − x in the denominator. However, assessing the limit as the
difference between x and u becomes infinitesimally small, making
the change of variable u = x + h as h → 0, and recognizing

the limit definition of the power rule for differentiation, yields an
expression for the maximum of p(u, x, n) for all u, x, n ∈ R

+:

max[p(u, x, n)] = lim
u→x

p(u, x, n)

= lim
u→x

[

un − xn

(u− x)(1+ un)(1+ xn)

]

= lim
h→0

[

(x+ h)n − xn

(x+ h− x)

]

· lim
h→0

1

(1+ (x+ h)n)(1+ xn)

=
d

dx

(

xn
)

·
1

(1+ xn)2

=
nxn−1

(1+ xn)2

For each value of the exponent n, the global maximum of this
expression is determined for all x ∈ R

+, and plotted (Figure 2E).
Ignoring the highly uncooperative reaction exponents of n <

0.012, the global minimum of the class of functions p(u, x, n)
is found at n = 1.55. Fascinatingly, the empirical αCaMKII
data reported by De Koninck and Schulman was fit by a Hill
function with an exponent of 1.6 (De Koninck and Schulman,
1998; Dupont et al., 2003). This intriguing match between their
experiment and the model’s theory suggests that αCaMKII’s
activation function may operate with this particular exponent as
it provides the minimum level of negative regulation r required
to maintain absolute convergence of unique input driven switch
activity in the low activation state, even for intermediate levels of
the switch response occurring just left of the unstable equilibrium
(Figure 1A), where rmust be much stronger to guarantee unique
solutions (Figure 2B). As we will see in the following section,
the value of n = 1.6 has additional benefits for amplifying the
frequency response of weak calcium fluctuations in the presence
of noise.

Molecular Switches and Stochastic

Resonance
If Equation 2 is to capture actual molecular switch behavior in
vivo, then we must understand frequency coding in the presence
of biological noise. Given our interest in synaptic information
transfer, it is natural to ask whether noise can improve the switch’s
frequency coding ability through stochastic resonance and how
different combinations of our main parameters (for example the
value of n) could potentially affect this phenomena. In particular,
does the value n = 1.6 confer benefits for frequency coding?
The results presented in this section are generated by Equation
2 with additive Ornstein-Uhlenbeck noise, η(t), which evolves
according to the stochastic differential equation

dη

dt
= −

η

τη

+ ξ (t)

where ξ (t) is bounded Gaussian noise, N(0, 1), whose amplitude
is scaled by a parameter σ . The simplest interpretation is that
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there is some weak noise in the Ca2+ signal amplitude, which
might arise from stochastic channel dynamics. The choice of
the time constant τn is based on previous studies of noisy
microdomain Ca2+ fluctuations, where an upper bound for
the autocorrelation time was determined to be approximately
10ms (von Wegner et al., 2014; Weinberg and Smith, 2014).
This choice has the added benefit of matching our switch time
constant T, should we instead assume the noise is inherent
to switch activation, as well as matching a typical value for
the membrane time constant of spiking neurons, whose noisy
membrane potential fluctuations might influence the activity
timescales of voltage-gated Ca2+ channels.

Figure 3A shows the power spectrum (Pc) of a weak sinusoidal
Ca2+ oscillation, c = c0 + α sin(2πϕt), where c0= 0.04, α =
0.02 and ϕ = 2Hz, which was selected based on the mean action
potential frequency associated with the CA3 and CA1 regions
of the hippocampus (Csicsvari et al., 2000). As expected, the
noisy switch oscillates at the frequency ϕ , reflected in its power
spectrum (Px). Very recently, the full kinetic model of Lewis
et al., studied under the context of genetic regulation with n =
2, has been shown to produce the stochastic resonance effect
(Kang et al., 2017), which is confirmed here for the dimensionally
reduced model (Equation 2; Figure 3B). As σ increases from 0,
frequency transfer, measured as the ratio of the switch power to
signal power at ϕ , dips slightly and then improves dramatically,
achieving a maximum at 0.29, followed by a quick decrease as
the noise becomes dominant. When changing the exponent from
n = 2 to n = 1.6, this spectral amplification becomes significantly
larger, further suggesting that presynaptic α CaMKII functions
as an important frequency decoder and that the exponent n =
1.6 may have evolved to fulfill this purpose. The reader should
note that, for fair comparisons sake, r = 0.65 and r = 0.61 were
selected respectively for n = 2 and n = 1.6 based on values
obtained from Figure 2E, but this effect is qualitatively robust
to changes in r and ϕ . Setting n = 1.6 also shifts the optimal
noise strength to a substantially lower value, 0.09, which has the
putative benefit of harnessing stochastic resonance and enhanced
frequency representations for low intensity Ca2+ signal noise.

The model results of Kang et al. (2017) depend on a full
complement of parameters, which begs the question of whether
stochastic resonance is a generic feature of the model switch
or whether the effect is only significant for a certain range of
the parameters. The dimensional reduction of the switch model
performed here allows this question to be easily addressed as a
function of the parameters c0, r and n. Figure 3C shows that
the parameter r has significant influence over the value of σ

that produces optimal spectral amplification and that, for some
combinations of c0, r and n, the stochastic resonance effect
disappears completely. The presence or absence of stochastic
resonance may prove useful for deducing parameter ranges of
molecular switches in vitro and in vivo. Furthermore, these
noise fluctuations may generate unimodal (e.g., σ = 0.035)
or bimodal (e.g., σ = 0.01) distributions of switch activation
(Figure 3D, n = 1.6), which provides another experimentally
testable prediction for αCaMKII, given that the switch state could
control neurotransmitter release (see Box 1) and thus explain

FIGURE 3 | Frequency coding with noisy switches. (A) The switch model

driven by a weak sinusoidal signal, c(t) = c0 + α sin(2πϕt), with c0 = 0.04,

α = 0.02, ϕ = 2Hz, and additive noise, η(t), whose intensity is scaled by the

parameter σ and evolves according to τη = 0.01. The switch amplifies the

frequency content of the input, as shown by its power spectrum Px relative to

the signal’s, Pc. (B) Top: For n = 2, the ratio of switch power to signal power

at ϕ is plotted as a function of the noise intensity σ , achieving a maximum at

0.29, that is, the switch displays stochastic resonance (SR). The value of σ

that promotes optimal frequency transfer is denoted by σp. Bottom: For n =
1.6, there is substantially larger gain in the SR effect, and σp shifts to 0.09.

(C) σp is plotted as a function of (n, r) and (c0, r), illustrating the presence or

absence of SR. (D) For n = 1.6, stochastic switch simulations produce

bimodal (e.g., σ = 0.01) or unimodal (e.g., σ = 0.035) activation around the

low state (left column; r = 0.61, c0 = 0.04) and the high state (right column; r

= 0.54, c0 = 0.04) (Box 1). Within each sub-state region, the input is uniquely

encoded. (E) As model validation, the pulse duration (ms) and frequency

experiments of De Koninck and Schulman were simulated (n = 1.6, r = 0.61,

and T = 0.4), qualitatively capturing their results, as well as the results of a

follow-up model (Dupont et al., 2003). The reader should note the ambiguity in

autonomously activated (long timescale) switch activity, based on input

duration and frequency (Pinto et al., 2012). (F) To validate the model against

short timescale CaMKII data, a 1Hz pulse train generates a calcium signal that

drives the switch model: the top plot shows the entire period of stimulation

and the decay of the switch after cessation of the stimulus (n = 1.6 and

T = 0.1). These simulations qualitatively capture the exciting new experimental

data of Chang et al. (2017). Note that, instead of a fixed value of negative

regulation, r now linearly increases from 0.58 to 0.67 over the course of the

stimulus, providing a potential explanation of the slow decay in the plateau

switch concentration seen in the data but not in the model for a fixed value of

r. The bottom plot zooms in on the first 15 s and also plots the model

prediction for a T286A mutant form of CaMKII, which prevents the nonlinear

switch activation. Naturally, this results in a much weaker response compared

to the wild-type (WT), as seen in the data (Chang et al., 2017).
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multimodal distributions of excitatory postsynaptic potential
amplitudes (Larkman et al., 1992). The occupation of the low
state (Figure 3D, left) vs. the high state (Figure 3D, right)
depends on the level of negative regulation r and whether c0 can
support hysteresis: the parameter choices for the left column of
Figure 3D do not support bistability (r = 0.61, c0 = 0.04) and
the switch fluctuates around the low activation state. The right
column of Figure 3D does support bistability (r= 0.54, c0 = 0.04)
and input activity quickly drives high switch activation, while
hysteresis ensures the switch stays within this state. Stochastic
simulations for Figure 3D were performed by including additive
Ornstein-Uhlenbeck noise, as described above. Further detail can
be found in the Methods section.

Bridging Short Term Dynamics With Long

Timescale Switch Activation
A potential caveat of the bistable switch model is that, even in
the high activation state, the population of phosphorylated units
(x) are still subject to the phosphatase activity (r). Equation 2
places difficult constraints on cells for long-timescale activation:
if c0 and r are not controlled carefully, the high activation state
can be lost. Although high activation levels may only be short
lived in vivo, it is important to establish a potential connection
between the current model and existing theories of long
timescale activation (Box 1; Introduction). Equation 2 effectively
represents all of the phosphorylated subunits in a population of
CaMKII molecules (each having twelve phosphorylation sites).
When one of these dodecamers becomes fully phosphorylated,
it could effectively become impervious to negative regulation by
the phosphatases, since any cleaved subunit could immediately be
re-phosphorylated by its neighboring subunits and the enzyme
can be shielded by its interactions with downstream targets
(e.g., an NMDA receptor subunit) (Lisman et al., 2012; Urakubo
et al., 2014). Until now, the work presented here has ignored
this potentially important feature of CaMKII, since the actual
biological relevance of autonomous activation is still in question
(Box 1). Therefore, to connect the short term dynamics to long
timescales, we introduce a new variable (X) to represent the level
of autonomously activated switch that might persist after the
stimulus has been removed, even when Ca2+ levels drop below
the leftmost critical value cc that supports hysteresis (Figure 1Bi).
X is calculated from Equation 2 by using Equation 3, explained
below.

Motivated by the work of Pinto et al. (2012) (Box 1), let us
assume that the total amount of autonomously activated switch
(X) is simply proportional to the average amount of Ca2+ input,
which is determined by pulse amplitude, duration and frequency.
As seen in Figure 2, this value is reflected by the amount of
activated switch x(t) over the duration of the stimulus, 1t.
Therefore, let X be the temporal average of x(t)

X =
〈

ωx(t)
〉

=
ω

1t

1t
∫

0

x(t)dt (3)

The biological interpretation is as follows: at a given moment
in time there is some likelihood for individual dodecamers to
transition to the fully autonomous, phosphorylated switch state
or bind to a downstream target. These autonomous elements
accumulate over time. For simplicity, a fixed basal rate of
transition of a given molecule to the fully autonomous state, ω,
is assumed.

As a validation of the model’s ability to produce CaMKII-
like behavior over long timescales, the essence of De Koninck
and Schulman’s experimental results (De Koninck and Schulman,
1998) and the model of (Dupont et al., 2003) are both captured
qualitatively by Equations 2 and 3 (Figure 3E). Note that this
result was generated using Equation 2 and 3, but does not include
Ornstein-Uhlenbeck noise given the synthetic and controlled
nature of the original experiment (De Koninck and Schulman,
1998). The timescale factor T was set on the order of 10−1 s,
which may reflect altered kinetics under the artificial conditions
of the experiment, or the need for further refinement of the
model presented here. For instance, the proportion ω is expected
to grow larger as more of the subunit population becomes
phosphorylated and cooperative activation grows stronger
(Meyer et al., 1992; Chao et al., 2010), leading to an increased
likelihood for individual dodecamers to transition to the fully
autonomous state. This is expected to improve the reproduction
of De Koninck and Schulman’s results by flattening the curves
at lower frequencies and steepening them at higher frequencies
(De Koninck and Schulman, 1998). Future work should seek
to determine ω(x), with the hopes of identifying reduced
representations of strongly nonlinear CaMKII activation. In
general, ω could also depend on the interaction of activated
CaMKII with downstream targets; for example, in vitro evidence
suggests constitutive CaMKII activation (hysteresis) requires
interaction with an NMDA receptor peptide (Urakubo et al.,
2014).

Given our interest in the short timescale behavior of the
CaMKII switch, Equation 2 was further validated against recent
experiments that used fluorescent life-time imaging microscopy
to measure CaMKII activity with millisecond precision in
neurons responding to glutamate uncaging (Chang et al.,
2017). Figure 3F shows 1Hz stimulation (30 pulses) that drives
a dynamic calcium concentration, modeled as a first-order
exponential decay with a time constant of 200 milliseconds.
This signal (c; not shown) is used to drive the switch model
with exponent n = 1.6. The value of T was set to 0.1 for
this simulation; as an aside, T may be impacted by the mean
frequencies experienced at the synapse over long timescales and
can be modified according to the specifics of the system (e.g., pre-
vs. post-synaptic), as well as further influenced by experimental
conditions. These factors might explain the difference used to
fit the Chang et al. (2017) from the value of T = 0.01 inferred
from Coultrap and Bayer (2012). To account for the slow
decay of plateaued switch activity (Chang et al., 2017), r was
made to linearly increase for a small range over the course of
stimulation. The justification for this is as follows: the protein
phosphatase calcineurin has a much higher affinity for Ca2+

ions than calmodulin, and will slowly strip Ca2+ away from
calmodulin that has yet to bind to CaMKII. Thus, it seems
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possible that the accumulation of activated calcineurin over the
course of prolonged stimulation may exert a growing, adaptive
effect on the switch. Although the linear change in r was chosen
for simplicity, it’s likely more complicated and may account for
minor discrepancies between the model and the actual data of
Chang et al. (2017). Finally, despite the fact that constitutively
active CaMKII is unlikely to occur in vivo, the bistable-associated
nonlinearity that governs its dynamics is still essential to its
function. By repeating their experiment with a mutated form of
CaMKII that cannot autophosphorylate (T286A), Chang et al.
provide evidence that T286 phosphorylation is essential for the
optimal integration of Ca2+ signals by boosting the activation of
the switch and slowing its decay. The bistable model nonlinearity
in Equation 2 reflects this cooperative autophosphorylation –
removing it results in a much weaker response (Figure 3F), as
seen in the data (Chang et al., 2017). In addition to enabling
the induction of long term plasticity postsynaptically, it is
hypothesized that this nonlinearity is also essential for the switch
to sequester cytosolic calcium and thus regulate neurotransmitter
release at the presynaptic terminal.

DISCUSSION

A main goal of this study was to extend the frequency coding
idea of De Koninck and Schulman (1998) in a generic switch
model that captures the qualitative behavior of CaMKII, but
focuses on fast timescale dynamics instead of slow timescales
(Box 1). The model presented here may help to reconcile
contradictory perspectives of CaMKII function (De Koninck and
Schulman, 1998; Pinto et al., 2012) and suggests dual streams
of information transfer that are temporally multiplexed: over
short timescales, where the size and duration of the Ca2+ pulse
are more stable (Tank et al., 1995), the molecular switch can
act as an encoder of instantaneous frequency information (e.g.
Figure 2A) and function to bidirectionally regulate transmitter
release at synapses through a combination of enzymatic and
non-enzymatic activity (summarized in Box 1). Over longer
timescales, the model switch integrates overall signal intensity,
which could dictate long term changes in synaptic strength and is
dependent on multiple factors such as slow Ca2+-induced Ca2+

release (affecting c0) (Sharma andVijayaraghavan, 2003; Catterall
and Few, 2008), the size of the Ca2+ pulse, its duration and the
mean frequency of stimulation (Figure 3E).

Although the present work is a very preliminary investigation
of the role of molecular switches in the processing of information
in the brain, it provides some testable predictions for synaptic
physiologists: establishing the presence of both bimodal and
unimodal synaptic release that depends on αCaMKII and noise,
as well as characterizing the hypothesized real-time modulation
of release probability at central synapses by αCaMKII in response
to natural, aperiodic stimulation patterns (specifically detection
of bursting events). Finally, of particular interest, is the putative
role of αCaMKII in the regulation of synchronous discharge
probability and duration, as well as the propagation of CA3
oscillations into the CA1 area (Hinds et al., 2003). A more
complete study including a coupling of the subcellular switch

dynamics with those of the neuron and synapse will be published
in the future.

Fascinatingly, the Hill function exponent of approximately 1.6
is not unique to CaMKII; calcium sensors within hippocampal
basket cells display cooperative binding that also reflects the
value 1.6, inferred from measurements of post-synaptic currents
(Debanne et al., 2013). The mitogen-activated protein kinase
(MEK1) is reported to have a Hill function exponent of
approximately 1.7 (Ferrell and Ha, 2014), further hinting at the
generality of the switch model. In general, bistable molecular
switches such as CaMKII, are a conserved feature of cell signaling
networks and generate combinatorial power in their collective
action (Ferrell, 1997; Bhalla and Iyengar, 1999; Brandman et al.,
2005). As previously described, stacking kinase pathways leads
to an increase in the effective cooperative binding (described
by the Hill function exponent) (Ferrell, 1997); for example,
the extracellular signal-regulated kinase 2 (ERK2), which lies
downstream of MEK1 is reported to have an approximately
three-fold larger Hill coefficient of 4.9 (Ferrell and Ha, 2014),
which is also associated with the famous Calyx of Held synapse
(Debanne et al., 2013).

Due to their complex kinetics and network interactions,
switch models are typically formulated by parameterized
systems of differential equations that are not ideal for deeper
mathematical analysis. It is proposed that the simple model
described by Equation 2 can capture the core essence of
molecular switches, much in the way that the leaky-integrate
and fire model has been a successful abstraction of neuronal
spiking activity, providing a trade-off between performance and
a reduced description that facilitates network studies (Burkitt,
2006; Jolivet et al., 2008). This idea is supported by the
inclusion of Equation 2 in an existing phenomenological model
of feedback-driven synaptic plasticity, using the conventional
exponent of n = 2 (Oswald et al., 2002). The relative simplicity
of the switch model and its application to diverse signaling
pathways make it a useful framework for further theoretical
and experimental investigations into signaling networks, synaptic
plasticity and cellular computation.

METHODS

Bifurcation Analysis
The first step of the bifurcation analysis is to find the equilibrium
points. Setting n= 2, we rewrite Equation 1 as,

dx

dt
= g(x)− h(x)

where g(x) = x2

1+x2
and h(x) = rx − c. The fixed points occur

when g(x) − h(x) = 0, which amounts to finding the solutions
of the polynomial −rx3 + (c + 1)x2 − rx + c = 0. First, fix c
and examine the effects of varying r. When c = 0, x = 0 is a
fixed point, and, for a particular range of r, there exists two other
positive valued fixed points, given by the roots of−rx2+x−r = 0.
The critical value of the parameter r, denoted by rc is found by
setting g(x) = h(x) and g′(x) = h′(x), which, when solved, gives
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rc = x
1+x2

= 2x

(1+x2)
2 . Three values of x satisfy this equality:−1, 0,

and 1. Since we are not considering negative values of x, we have
two critical points, rc = 0 and rc = 1

2 . Therefore, when c = 0, the

system is bistable for 0 < r < 1
2 . For c > 0, r can be larger

than 1
2 while still preserving bistability (as in Figure 1A). We

know rc occurs when h(x) = g(x) and h′(x) = g′(x); therefore,
when h(x) > g(x) we lose a fixed point through a saddle node

bifurcation. Forx > 0, the maximum of g(x) is found at x =
√

1
3

which gives maxx[g(x)] = 3
√
3

8 . Therefore, when r > rc = 3
√
3

8 ,
only one fixed point exists.

Now, we are interested in fixing r and examining the effects
of varying c. To find cc we set g(x) = h(x) and g′(x) = h′(x),

which gives r = 2x

(1+x2)
2 and cc = rx − x2

1+x2
. Substituting

the first expression into the second, we get cc = x2(1−x2)

(1+x2)
2 . We

differentiate with respect to x in order to locate the maximum

value for cc; 0 = 2x(1−3x2)

(1+x2)
3 . This gives x = 0 and x =

√

1
3 ,

which corresponds to cc = 0 and cc = 1
8 . When c > cc, only

one fixed point exists for all values of r. For a fixed value of
r that supports bistability, as c increases from 0 and crosses a
critical value (cc), the fixed point x∗ will jump up to the high
amplitude branch. If c is now decreased, the fixed point remains
on the high amplitude branch even as c becomes smaller than the
corresponding cc. This hysteresis effect permits switch activation
to remain as the transient Ca2+ signal subsides, consistent with
the findings from synaptic plasticity experiments (Box 1). Using
the expressions derived for the critical values of rc and cc, we plot
them parametrically as functions of x (Figure 1Biii). Saddle node
bifurcations occur all along the boundary of these curves, it is
here we find the values of r and c for which only two fixed points
occur. Crossing each branch results in a pairwise collision and
disappearance of two fixed points. Note where the bifurcation

curves meet tangentially, (c, r) →
(

1
8 ,

3
√
3

8

)

, here we observe a

co-dimension two bifurcation; beyond this point there is only one
fixed point and the distinction between low and high activation
states is blurred (Figure 1Biii).

Computational Specifications and

Miscellaneous Details
Simulations were solved using the 4th order Runge-Kutta
method, with the exception of the Ornstein-Uhlenbeck noise,
which was solved using the stochastic Euler method (time step of
1ms in all cases). All simulations were performed using custom

code, available upon request to the author, and were implemented
on a Linux machine running Ubuntu 16.04 with an Intel core
i7-6700 CPU, 3.4 GHz processing speed, and 62 GB of RAM.

Pulse train sequences {ti} were convolved with the filter
t · e−(t−ti)/τc , whose decay constant τc was set to 30ms, reflecting
an accommodation of both pre- and post-synaptic calcium decay
values from the literature that range from 15 to 43ms (Sinha
et al., 1997; Sabatini et al., 2002; Graupner and Brunel, 2012).
The resulting input signal was normalized to the maximum value
and then scaled by 1c. The decay value is closely related to the
input frequencies typical of a given synapse and the definition
of what constitutes a high frequency event in the system, since
for events occurring faster than the decay, Ca2+ accumulates
quickly, driving the switch into the upstate. The putative burst
detector will work for different τc, but may require a different
set of corresponding switch parameters, range of stimulation
frequencies and pulse amplitudes.

Histogram bin sizes for Figure 3D were set using the
Freedman-Diaconis method (Freedman and Diaconis, 1981).

AUTHOR’S NOTE

Bistable molecular switches can decode cellular inputs into
distinct high- or low-states of persistent enzymatic activity.
Although this on-off, “digital” perspective is valuable for long
timescales, I suggest that short timescale fluctuations of switch
activity around either stable state acts as an analog signal
that reliably encodes instantaneous input frequency. A minimal
model and theory make predictions about the molecular switch
CaMKII, synaptic plasticity and burst detection.
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Calcium diffusion in the thin 100 nm layer located between the plasma membrane

and docked vesicles in the pre-synaptic terminal of neuronal cells mediates vesicular

fusion and synaptic transmission. Accounting for the narrow-cusp geometry located

underneath the vesicle is a key ingredient that defines the probability and the time scale

of calcium diffusion to bind calcium sensors for the initiation of vesicular release. We

review here the time scale, the calcium binding dynamics and the consequences for

asynchronous versus synchronous release. To conclude, three-dimensional modeling

approaches and the associated coarse-grained simulations can now account efficiently

for the precise co-organization of vesicles and Voltage-Gated-Calcium-Channel (VGCC).

This co-organization is a key determinant of short-term plasticity and it shapes

asynchronous release. Moreover, changing the location of VGCC from few nanometers

underneath the vesicle modifies significantly the release probability. Finally, by modifying

the calcium buffer concentration, a single synapse can switch from facilitation to

depression.

Keywords: synaptic transmission, stochastic modeling, vesicular release, asynchronous release, facilitation,

short-term plasticity (STP), residual calcium, simulations

INTRODUCTION

The first 100 nm domain, between the plasma membrane and the vesicles in the pre-synaptic
terminal remains difficult to study, yet it seems that a displacement as small as a 10 of nanometers
in the molecular organization can affect vesicular release. There are many examples, where a 10
nm precision has to be achieved in order to guarantee normal physiology function. This is the
case for the apposition of pre- and post-synaptic terminal of neuronal synapses: this apposition
is obtained by a set of redundant adhesion molecules, such as laminins that self-organize to
maintain the synapse structure and stability in the central nervous system. A lack of the laminin
β2 subunit leads to a disruption of the hippocampal synapse structure, to a misalignment of the
pre- and post-synaptic partners and to an increased post-synaptic density (PSD) size (Egles et al.,
2007). In addition, mutations in PSD proteins are associated with neurological and psychiatric
diseases (Sheng and Kim, 2011). Another example is autism spectrum disorders which have been
associated with the mutations in genes encoding Shank2 and Shank3, PSD-93, and amis-regulation
of adhesion molecules neuroligin 3, neuroligin 4, and neurexin 1 (Durand et al., 2011; Sheng and
Kim, 2011), affecting a precise geometrical apposition.
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In the pre-synaptic terminal, some vesicles are concentrated
in a region called the Active Zone (AZ), which is well-aligned
with the PSD of the post-synaptic terminal. This apposition
creates geometrical columns: a single column alignment was
originally hypothesized and numerical simulations showed
that it maximizes the synaptic current (Xie et al., 1997)
while minimizing its fluctuations (Taflia and Holcman, 2011).
Multiple nanocolumns were predicted in Freche et al. (2011)
to sustain synaptic response and a more reliable transmission
compared to several synapses containing a single column. Finally,
these columns have recently been confirmed experimentally
and observed at super-resolution (Tang et al., 2016; Biederer
et al., 2017). This nanocolumn example shows that synaptic
transmission uses a tens of nanometer precision for its
organization and for example a misalignment of synaptic
terminals is at the basis of several pathological disorders (Südhof,
2008).

Another example is the PSD, that cannot permanently retain
glutamatergic receptors that are moving by random motion
(Nicoll, 2017). After a long enough time, these receptors spread
out, modifying the synaptic current (Freche et al., 2011; Fresche
et al., 2013). In the absence of direct experimental approaches,
studying the functional consequences of the nanometer precision
in the domain between the membrane and the vesicles at the pre-
synaptic terminal has recently benefited from three-dimensional
modeling and numerical simulations. We focus this review on
this paradigm shift of analyzing the diffusion of calcium ions
and in particular about the nano-metric relation between the
organization of calcium channels and vesicles and how it shapes
the release probability, synaptic transmission, asynchronous
release, and short-term plasticity.

1. DYNAMICS AND CONSTANT
RE-ORGANIZATION IN THE
PRE-SYNAPTIC TERMINAL

Despite the fast advances of super-resolution microscopy,
that allowed to reconstruct structural in vivo cell properties,
or to follow calcium and voltage using genetically encoded
indicators (Holcman and Yuste, 2015; Popovic et al., 2015;
Beaulieu-Laroche and Harnett, 2018; Cartailler et al., 2018),
it remains difficult to study the detailed molecular dynamics
in nanometer domains at a time scale <100ms. Indeed, to
understand how molecules interact in nanometer domains, the
notion of concentration has to be abandoned because it does
not make much sense due to the large fluctuations in the
small number of molecules. However, molecular interactions
can still be transformed into a cellular activation at the
micrometer level, but the exact biophysical mechanisms remain
in most cases unclear or controversial. Modeling and numerical
simulations based on biophysical principles have emerged as
orthogonal tools compared to experiments to describe molecular
dynamics at this spatio-temporal scales (Holcman and Schuss,
2015).

At this intermediate level between the molecular and the
cellular scale, physical modeling of diffusion is based on

Brownian motion, which requires to specify an inherent time
scale of simulations. Indeed the motion of molecules follows a
random walk approximation expressed by the Euler’s scheme for
a trajectory X(t) at time t:

X(t + 1t) = X(t)+
√

2D(X)1t η, (1)

where η is a Gaussian variable, D(X) is the spatial dependent
diffusion coefficient and 1t is the time scale to be chosen. It
is usually a difficult choice. It should not be too small to avoid
wasting simulation times and should not be too large compared
to the small spatial scales involved in the microdomain, such as
molecular binding sites.

In particular, taking into account in numerical simulations
the region between vesicles and the plasma membrane has
been particularly difficult to model because of its cusp-like
geometry. It requires a specific mathematical treatment to
estimate the mean time for a calcium ion after entering
through a Voltage-Gated-Calcium-Channel (VGCC) to find
a key calcium binding sensor, involved in triggering vesicular
release (Guerrier and Holcman, 2014) (Figure 1). Such sites
are Ca2+-binding proteins, located on synaptotagmins, that are
involved in triggering directly or not vesicular fusion (Lee and
Littleton, 2015). They are located precisely in this nanometric
region below vesicles. Interestingly, spontaneous excitatory and
inhibitory transmission are differently regulated by Ca2+ sensors
(synapotagmin-1 and Doc2α/β a high-affinity Ca2+ sensors)
(Courtney et al., 2018).

Calcium diffusion in the pre-synaptic terminal has
traditionally been modeled as two- or three- dimensional
diffusion (Modchang et al., 2010; Nadkarni et al., 2010; Stanley,
2016), but ignoring the three-dimensional complications of the
vesicle shape. However, for auditory hair cells, Monte-Carlo
simulations revealed (Graydon et al., 2011) that the spherical
shape of the ribbon where vesicles are tethered, can generate
a local Ca2+ microdomain that enhances vesicular fusion by
trapping calcium ions (Graydon et al., 2011, Figure 3B). This
spherical ribbon that aggregates vesicles is likely to create an
intermediate microdomain for calcium dynamics between the
pre-synaptic bulk and the boundary layer near the membrane,
which should be further investigated. For other types of
synapses, while estimating the time scale of calcium binding, and
computing the vesicular release probability, one cannot ignore
the specific three-dimensional organization of the first 100 nm,
the region underneath vesicles and the position of calcium
sensors (Rothman et al., 2017). The release probability not only
depends on the binding of calcium ions to sensor proteins,
located underneath the vesicle (Guerrier and Holcman, 2015),
but also on the AZ organization: a sparse vesicular distribution
vs. vesicular crowding, and channels clustered vs. uniformly
distributed (Figure 1B) (Delvendahl et al., 2015; Nakamura
et al., 2015). The major components in these dependencies
being the distance between VGCC and vesicles coupled to
the particular cusp-like geometry (Guerrier and Holcman,
2015).
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FIGURE 1 | Estimating the release probability. (A) Functional organization of the presynaptic terminal. An incoming action potential leads to the opening of voltage

gated calcium channels (blue) located at the AZ (light blue). The consecutive entry of calcium ions (orange) triggers the fusion of docked vesicles (green) with the

synaptic membrane, and the liberation of neurotransmitters (purple) in the synaptic cleft. The binding of neurotransmitters to specific receptors located in the

post-synaptic terminal triggers the conversion of the chemical signal into an electrical signal in the post-synaptic neuron. (B) Model of the AZ organization. Vesicles

(green) are regularly (left) or sparsely (right) distributed on a square lattice. Calcium channels (blue) can be clustered (left) or uniformly distributed (right) in the AZ.

(C) Elementary 3-dimensional domain to compute the splitting probability for an ion starting in the bottom of the domain (blue circle representing a channel), to reach

the target (red) before leaving the domain through the orange boundary. The other boundaries are reflecting. The vesicles are distributed on a square lattice of side 2H.

(D) (Top): Probability to find three, four, or five calcium ions (full, dashed and dotted lines respectively) underneath a vesicle, in the case of sparse vesicular distribution:

H = 100 nm (left) and in the case of crowding of vesicles at the AZ: H = 35 nm (right). The relation depends on the initial number of calcium ions. The diameter of the

pre-synaptic vesicles is fixed at R = 40 nm (green), the diffusion coefficient for free calcium ions being DCa = 200µm2s−1. (Bottom): Maximal channels distance r to

activate the vesicle with a probability pact ≥ 0.8 (blue) and 0.2 (green), when there are N initial ions, for H = 100 nm (left) and H = 35 nm (right). We fix the threshold to

three, four, or five calcium ions. The gray dashed line represents the maximal distance to the vesicle in the elementary domain:
√
2H.

2. CALCIUM BINDING SENSORS AND
VESICULAR RELEASE KINETICS

The synaptotagmin family of molecules are Ca2+ sensors
for vesicle fusion: following Ca2+ binding, activation of the
SNARE-complex mediates membrane fusion. Although there
are two specific sensors on synaptotagmin, the number of ions
necessary for fusion was estimated around 4 or 5 (Kochubey
et al., 2011; Schneggenburger et al., 2012). Indeed, for example
synaptotagmin1 has two Ca2+ binding C2 domains (C2A and
C2B) and three Ca2+ bind in C2A and two Ca2+ bind in C2B
(Gruget et al., 2018).

2.1. Modeling Calcium Binding and
Limitation of Using a Forward Rate
Constant
Modeling the causality between calcium dynamics and vesicular
fusion relies on patching steps, resulting in simulations that do

not necessarily account for the three-dimensional organization
of the AZ. In Keller et al. (2015), by using the software Mcell,

the forward rate constant of calcium ions is the reciprocal of
the flux to the sensor targets is assumed rather than derived
from physical considerations. This rate has to be pre-calculated
especially when calcium sensors are located underneath vesicles
(see next section). In addition, due to the vesicle crowding, the

calcium flow cannot be represented by a Gaussian function,

which is the classical probability density function of independent
particles initially concentrated at one spot in a free space. This

approximation further neglects the boundary effect and the depth
of a synapse. In that context, providing numbers such as a

distance of 30 nm for a possible exclusion area between vesicles
and VGCCs, based on a two-dimensional approximation that
ignores the effect of the vesicle size with a radius of R = 20

nm is not necessarily accurate. But the question is by how much?
Clearly this geometrical limitation calls for a three-dimensional
approach accounting for vesicular structure and organization.
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A different modeling approach is described in Nakamura
et al. (2015), based on diffusion (Nielsen et al., 2004; DiGregorio
et al., 2007) of a two-dimensional coarse-grained lattice, using a
two-dimensional Gaussian approximation for the initial calcium
entrance. The vesicular release in these approaches is computed
by using a Markov model, which is based on the concentration
of calcium in a two-dimensional domain around the location of
the channel. However, this concentration does fluctuate a lot,
depending on the size of the sampling volume. This modeling
approach neglects the small number of ions that penetrate
underneath the vesicle, which is replaced by assuming a value
for the forward rate. Indeed, to trigger vesicular release from the
binding of calcium ions to sensors, a value should be given to the
forward rate kon. Since the early work of von Smoluchowski in
1916 (Holcman and Schuss, 2017), this rate has been computed as
the flux from a fixed concentration to a narrow window located
on an infinite plan . But these assumptions are not satisfied for
the small steady-state calcium concentration, because the rate
should be computed for the first calcium arriving to the binding
site, sampled from the transient entrance through the VGCC
(Basnayake et al., 2017).

In summary, using a forward rate constant presuppose a
geometrical organization. An alternative is to replace such a
rate by Brownian simulations, but this approach is in general
heavy computationally. Recent hybrid simulations have been
developed, where classical diffusion is used far away from a
sensor, while near the boundary of a channel a Brownian
representation is used (see Dobramysl and Holcman, 2018 for a
description of such framework).

2.2. How to Chose an Effective Diffusion
Coefficient
What should be the buffer distribution and concentration in the
pre-synaptic terminal? Various buffers and concentrations were
previously considered: for the calyx of Held, a concentration of
400 µM immobile endogenous buffers plus a Parvalbumin-like
Ca2+ diffusing buffer with concentration of 50 µM were used
in Keller et al. (2015), while ATP, a mobile Ca2+ buffer, was
present at a total concentration of 2 mM in all simulations (with
a diffusion coefficient of 220 µm2/s). In Delvendahl et al. (2015)
the concentration of fixed buffers is 480 µM, and of mobile
buffers is 100 µM with D = 20 µm2/s. The buffer capacity κS
(ratio of bound vs. free) is often chosen equal to 40. However, one
of the main free parameter remaining is the value of the forward
rate, which is valid for a single compartment model like the pre-
synaptic terminal, which disregard its heterogeneity, but not for
buffers located underneath vesicles.

2.3. Calcium-Buffer Interactions in the
Pre-synaptic Bulk
When the pre-synaptic terminal is modeled as a bulk only, it
does not matter that buffers are moving or not, because in one
compartment the differential equations disregard the geometry.
So, what matters is the number of free buffers available. If buffers
are modeled with stochastic simulations, then space matters,
especially during multiple entry of calcium channels, due to
fluctuations of calcium buffers in the region very close to the

calcium sensor sites underneath the vesicle. But to be efficient,
this geometry should be implemented, which is often difficult.

In summary, buffers could be homogeneously distributed in
the bulk, but between vesicles, the concentration is much less
homogenous. More drastically, the number of buffers between
the membrane and the first layer of vesicles can be of the order
of a few: indeed, for vesicles positioned on a square lattice
with radius 60nm with a height of 40nm, the volume of the
parallelepiped lattice Ppara is V = 0.06 × 0.06 × 0.04 = 24 ×
6× 10−6, minus the volume of a vesicle which is 32× 10−6µm3,
that is Voltotal = 1.12 × 10−4µm3. Inside such a region, for a
buffer concentration of 40 µM, this represents around 26 buffers.
For 400 µM (at the calyx of Held), this represents around 260
buffers. These numbers should be compared to the number of
free calcium entry (from 80 to 500). It is conceivable that the
different vesicular proteins located near the vesicular calcium
sensor (others than the synaptotagmins) play a more important
role for buffering calcium than the diffusing calcium buffers
located in the bulk which can occasionally enter into the region
Ppara, because they are precisely located at the right place and thus
could create an efficient local calcium reservoir.

Finally, calcium mitochondria uptake can affect synaptic
release through the MCU channels (Kwon et al., 2016).
Mitochondrias participate in the calcium regulation that
controls synaptic release and a MCU disruption could increase
asynchronous release, decreasing the efficacy of synchronous
neurotransmitter release and could also alter short-term
presynaptic plasticity. This suggests that the distribution of
mitochondria within the AZ could be as determinant as calcium

buffers, a question that should be further investigated.
Another reason to reconsider the role of calcium buffer

in the first 100 nm layer is the presence of an electric field
that could push ions inside the bulk, as revealed recently for
the synaptic terminal (Cartailler and Holcman, 2018; Cartailler
et al., 2018). Too many buffers should disrupt calcium signaling
and direct vesicular release. A low buffer capacity will increase
asynchronous release. Thus, the concentration of buffers that
favor a synchronous release should have an optimal value: not
too low and not too large.

In Guerrier andHolcman (2015, 2016), the number of calcium
entering through the VGCC vary from 80 to 500, which is also the
case in Delvendahl et al. (2015), where they open around 12 Ca2+

channels with a single channel current of 0.15 pA and a duration
of 105 µs, leading to ≈ 500 − 600 calcium ions. Some of the
260 buffers with at least two binding sites, could bind calcium
ions on their direct way to the calcium sensor underneath the
vesicle. With ten times less buffers, much more free calcium
would be available and then what would matter is the distance
of the channel to the vesicle.

2.4. Phenomenological Laws Between
Probability and the Overall Calcium
Concentration
The relation between the molecular organization of VGCC, their
numbers, calcium buffer dynamics, the release probability Prelease
and the calcium flux of entering concentration of calcium [Ca]flux
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mediated by an action potential remains an interesting problem.
Over the years the following empirical relation has been proposed
(Kochubey et al., 2011):

Prelease = k
(

[Ca]flux
)a
, (2)

where k is a constant. The relation between the exponent a and
the number of active sensor binding sites is not direct, due to
the effect of buffers, the clustering of VGCCs, but also the local
vesicular geometry. Indeed, the contribution of geometry appears
while computing the probability for an ion to go underneath
the vesicle vs. going directly to the bulk (Guerrier and Holcman,
2014; Keller et al., 2015).

2.5. Partial Conclusion: Modeling Vesicular
Release
To conclude, there is not yet a derived formula from physical
principle to connect the flux or transient calcium concentration
and the release probability, however, stochastic approaches are
used to estimate the arrival of ions to the calcium sensors
(Delvendahl et al., 2015; Guerrier and Holcman, 2015, 2016;
Nakamura et al., 2015). In addition, the three dimensional
vesicular organization should be accounted either directly, by
implementing vesicles as obstacles or by computing the Brownian
flux to small targets located underneath.

Following calcium diffusion, once calcium ions are bound to
buffers, they can possibly unbind, but often the exact value of
the backward rate constant is unknown. In recent mathematical
models (Guerrier and Holcman, 2015, 2016; Keller et al., 2015),
vesicles are released when all 5 binding sites at a single sensor
are occupied. If less than 5 calcium ions are bound, the vesicle is
waiting for the final ions to arrive. There can be several copies
of molecular sensors, but a single one might be sufficient to
trigger release. It might also be conceivable that multiple binding
sensors cooperate in the release process, and this possibility could
explain the large modulation of the vesicular release probability
(Kochubey et al., 2011; Schneggenburger et al., 2012).

We already emphasized that the calcium ions bound to
calcium sensors located underneath the vesicles can contribute
critically to the residual calcium ions pool, especially when
the backward rate is very small. To conclude, there are two
types of calcium ions contributing to shaping the vesicular
release probability. The ions already bound to the specific
calcium sensors located underneath the vesicles, and the ions
freely moving in the pre-synaptic terminal, that can reach the
calcium sensors or induce calcium release from organelles, hence
filling a binding site, and ultimately triggering vesicular fusion.
This mechanism represents a possible scenario for the calcium
contribution to the asynchronous vesicular release (see below).

3. DISTRIBUTION OF CALCIUM IONS
ENTERING THROUGH A VGCC

The Hodgkin-Huxley model (Hodgkin and Huxley, 1952) can
be used Guerrier and Holcman (2016) to generate a calcium
influx current inside the pre-synaptic terminal. Following the
opening of VGCC, this current corresponds to an entry per

channel during a mean time of ≈1 ms for approximately 80
calcium ions, compatible with a previous estimation of 200
reviewed in Stanley (2016) or with the 45 ions per channels
described in Keller et al. (2015): with a total of 12 channels,
this would represent 540 ions entering during ≈ 0.1 ms. After
entry, the calcium flux can be split into a ionic component that
reaches the small region below the vesicle, and another one
reaching the pre-synaptic bulk. The probability for a calcium ion
to reach the binding region, defined as a small ribbon joining
the vesicle and the plasma membrane, before the bulk, has been
computed in models where vesicles are organized in a square
lattice (Figure 1B) with length 2H, where H is of the order of
the diameter of a vesicle, from 40 to 100 nm (Figure 1C). For a
dense set of vesicles distributed on a square lattice, the splitting
probability for a calcium ion (modeled as Brownian) to reach the
ribbon before the bulk is (Guerrier and Holcman, 2015):

ps(x) = 1−
1− A

r2vε

H3

1−
2rvε

H2

(

1−
2rvε

r(x)2

)

, (3)

where rv is the size of a vesicle,H is half the distance between two
vesicles, A = 9.8, r(x) is the distance between the point source
and the closest vesicle, and ε is the height of the small cylindrical
ribbon (Figure 1C), where calcium sensors are located. This
probability accounts for the particular geometry of the target
and depends on the relative distance between the targets and the
source points (Guerrier and Holcman, 2015).

3.1. Calcium Time Scales to the Ribbon
Region
How long does it take for a calcium ion in the synaptic bulk or
at the mouth of a VGCC (located far away from a vesicle) to
enter into the cylindrical ribbon (red region in Figures 1A–C)
underneath a vesicle? This mean time computed analytically in
Guerrier and Holcman (2015) and Holcman and Schuss (2015) is
given by:

τ̄ =
|�|

4πDε
. (4)

For a volume of a pre-synaptic microdomain |�| = 1 µm3, a
diffusion coefficient D = 20 µm2/s, and a size of the ribbon
in the range ε = 0.001 − 0.01 µm, the mean time is τ̄ =
3.6s. We note that the diffusion coefficient of calcium ions in
a free environment is usually D ≈ 200µm2/s, but the motion
of ions in pre-synaptic terminals or in dendrites is restricted by
obstacles such asmicrotubules, actin and organelles. In Biess et al.
(2011), the effects of crowding on the diffusion coefficient has
been estimated using modeling, simulations and a cytoplasmic
fluid in a patch pipette, leading to a modified effective diffusion
coefficient D ≈ 20µm2/s.

However, the size of a calcium ion of the order of 1nm should
not affect the classical law of diffusion. So the size of a calcium ion
is often neglected in most modeling and stochastic simulations.
Certainly, the most interesting part of vesicular crowding micro-
environments is the local molecular organization underneath

Frontiers in Synaptic Neuroscience | www.frontiersin.org July 2018 | Volume 10 | Article 2324

https://www.frontiersin.org/journals/synaptic-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/synaptic-neuroscience#articles


Guerrier and Holcman The First 100 nm Inside the Pre-synaptic Terminal

the vesicle, formed by all vesicular molecules, such as SNARE,
syntaxin, or synaptotagmin, that could result in a 10–20 nm
environment filled with polymer filaments. This intermediate
spatial scale could have several effects such as (1) sequestrating
calcium ions and/or creating channels to any sensor sites, (2)
preventing calcium channels to get too close to the calcium
sensors, (3) positioning synaptotagmin close to VGCC.

To conclude, as crowding is the main obstacle to diffusion,
when the diffusion time scale involves long distances the effective
diffusion coefficient should be used, while for short-distances
containing little obstacles, computation should be performed
with the cytoplasmic diffusion coefficient. No evidences have
shown that changes of the cytoplasmic volumes, occurring at
a time scale of milliseconds can modify the nature of calcium
diffusion.

3.2. Direct and Indirect Vesicular Release
Activation
Using the values mentioned in the previous subsection, the mean
time for calcium to transit from the bulk underneath a vesicle is
τ̄ = 1

kS
= |�|

4πDε
= 3.6 s (for ε = 1 nm) to 360 ms (for 10 nm).

This mean time is much longer than the initial calcium transient
from the channels(< 5 µs), as we shall see now. The reciprocal of
this time is the Poissonian rate kS representing the rate of arrival
of a free calcium ion to a binding sensor. However, this time is
very different from the time for an ion entering through a VGCC
close to the vesicle, to reach the region underneath the vesicle
directly, i.e. while staying in a boundary layer around it. Indeed
due to the confinement by the vesicle and in the absence of large
obstacles at a distance of 20 nm, the time for an ion to hit a target

sensor is τdirect ≈ l2

4D . Using the free diffusion coefficient for
calcium D ≈ 200µm2/s, this leads to a mean time of τdirect ≈
0.022

800 = 0.5 µs. Thus when the channel is located very close
to the vesicle, the direct binding of a single calcium is not time
limiting. However, when the distance increases, the mean time
for 5 calcium ions to arrive from a channel can be much longer
(Guerrier and Holcman, 2015) of the order of 5–500µs, due to
large fluctuations in the arrival time, the accumulation time for
5 ions (Dao Duc and Holcman, 2010) and the fast transient in
the calcium available at the entrance of the channel. This scenario
provides a physical mechanism for the fastest transmission events
reported in Sabatini and Regehr (1996) and Von Gersdorff and
Borst (2002).

4. COMPUTING THE RELEASE
PROBABILITY WHEN VGCC ARE LOCATED
UNDERNEATH A VESICLE

The probability that a finite number T of calcium ions (T = 3, 4,
and 5 ions) are bound at specific binding sites located between a
vesicle and the synaptic membrane (section 3.1), whenN calcium
ions have entered through a cluster or a single VGCC located at a
distance r from the center of the closest vesicle is defined by:

pact(r,N) = P(T ions have reached the synaptotagmin|N ions,

distance r). (5)

When the calcium unbinding events are too slow to be taken
into account, the probability of vesicular release pact(r,N) is thus
the one to find at least T ions inside the cylindrical ribbon. The
probability to find exactly k ions out of N follows the Binomial
distribution B(N, ps(r)), and the steady-state probability is:

pact(r,N) =
∑

k≥T

(

N

k

)

ps(r)
k
(

1− ps(r)
)N−k

(6)

= 1−
T−1
∑

k = 0

(

N

k

)

ps(r)
k
(

1− ps(r)
)N−k

,

where ps(r) was computed in Equation (3). The maximal VGCC
distance rmax,pact(N) to activate a vesicle with a probability
pact ≥ 0.8 is shown in Figure 1D. The probability pact critically
depends on the channels-vesicles distance, which can vary from
a few to hundreds of nanometers. This fast decrease of the
probability with the distance explains the large variability in
the release probability as VGCC position can vary over time
(Schneider et al., 2015).

The organization of vesicles in the AZ also influences
the release probability: when vesicles are sparsely distributed
(Figures 1B–D, H = 100 nm) and 100 ions entered through
VGCC, then a 80% release probability pact = 0.8 is reached
when the distance between the vesicles and the channels is
smaller than 24 nm, compared to the 20 nm radius of the
vesicle. This result shows that the co-localization of VGCC
with a vesicle is a key feature determining a high synchronous
release probability. However, for a high vesicular crowding
(Figures 1B–D, described by choosing the distance H = 35 nm)
and when 100 ions are released instantaneously at a VGCC, then
the probability pact is higher than 0.9, regardless of the initial
position of the channel, suggesting that vesicles are certainly
released and leading to a synchronous release.

To conclude, a high crowding of vesicles should be associated
with a high-release probability sustaining a synchronous release,
while a sparse vesicle density might be associated with
asynchronous release. Channels can be organized in clusters
or uniformly distributed and this is also a major determinant
governing release probability (Figures 1B–D). Indeed, the effect
of channels clustering can be modeled by simply increasing
the number of entering calcium ions. When vesicles are
sparsely distributed, the 24 nm distance required to obtain a
release probability pact = 0.8 when 100 ions are entering
through one channel, is increased to 61 nm for 500 ions.
This effect results from the local geometry of the ribbon
underneath the vesicle. When the number of ions is low, this
maximal distance to guarantee pact = 0.8 does not vary
much when the activation threshold T increases from 3 to 5;
however, for 500 ions, this distance changes significantly over 15
nm.

The maximal distance rmax,pact (N) between channels and
vesicles to obtain a given release probability pact depends on
the number N of entering ions. For a fixed probability pact , we
plotted rmax,pact (N) in Figure 1D. For a sparse distribution of
vesicles, characterized by a bulk located a distance H = 100
nm from the membrane, a vesicle is activated with a probability
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pact = 0.8 (resp. pact = 0.2), when 1,200 ions are entering at
a distance 100 nm (resp. 450 ions), and 340 ions at a distance
50 nm (resp. 125 ions). This result has to be compared to the
200–500 nm diameter of the AZ (Südhof, 2012). Consequently,
a sparse distribution of vesicles at the AZ requires a high
number of entering calcium ions in order to trigger fusion, which
can be achieved when channels are clustered. However, when
channels are co-localized with vesicles, the activation probability
pact is significantly increased: indeed 450 ions are necessary for
activation for pact = 0.2 at a distance 100 nm. When the
probability increases to 0.8, the distance reduces to 58 nm.

To conclude, a synapse with high release probability requires a
nanometer precision of the channel location. However, this high
requirement can be compensated by increasing the number of
initial ions entering through VGCC clustering: with 2,000 ions,
the maximum distance is relaxed to 140 nm. On the contrary,
in a pre-synaptic terminal crowded at its surface with vesicles
(characterized by H = 35 nm), very few initial ions are needed
for an efficient release. Indeed, 50 ions are enough to activate a
vesicle with probability 0.8, wherever the channels are located in
AZ (Figure 1D).

5. COMPUTING THE DISTRIBUTION OF
RELEASE PROBABILITY

To compute the time distribution of the release probability
and to account for the calcium ions at the AZ and in the
bulk, a full model of the pre-synaptic terminal is needed. The
main challenge for such derivation is to account both for
the stochastic regime governed by rare events of individual
calcium ions arriving to a sensor binding site, and the
continuous description of the calcium concentration in the
bulk of the synapse (Guerrier and Holcman, 2017). The
classical approach consists in using partial differential equations
that often cannot take into account easily the specific AZ
organization and in particular the geometry near vesicles. An
important assumption of these approaches is the use of the
forward rate for the calcium to sensors. This rate is often
assumed and not derived (contrary to the approach described in
section 3.1).

To compute the sensor activation, a different approach is
to use Monte-Carlo or Brownian simulations to follow each
ionic trajectory. But this approach is often computationally
greedy to detect the rare events of calcium hitting a small
target (Holcman and Schuss, 2015). Recently, a hybrid Markov-
mass action model has been developed (Guerrier and Holcman,
2016), that combines a Markov chain to represent the stochastic
events occurring at the AZ, with a mass-action laws model that
represents calcium dynamics in the large bulk. TheMarkov chain
and the mass-action model are coupled by the calcium ions
coming from the bulk and binding to the sensor. The arrival
time of such ions is Poissonian, with the rate computed taking
into account the geometry of the vesicle, as discussed in section
3.1. This model is used to compute the time distribution of
vesicular release (Guerrier and Holcman, 2016) and it shows that

vesicular release is triggered by the binding of calcium ions that
can originate either from the bulk or from VGCC.

The distribution of release time is bimodal although it
is triggered by a single fast action potential (Figure 2). This
simulation is initiated by three channels and each of them
let a flow of 80 ions inside the cell during a time scale that
was simulated from a Hudgkin-Huxley model (Guerrier and
Holcman, 2016).

An example of specific simulation is as follows: the pre-
synaptic terminal is a bulbous head of volume ≈ 1µm3. At the
AZ, we positioned eight vesicles, distributed on a square lattice of
surface ≈ 0.13µm2 (Figure 1 and Guerrier and Holcman, 2016),
so that the distance between two neighboring vesicles is 130nm,
and each vesicle has a diameter of 40nm. The three calcium
channels are uniformly distributed over the AZ, but remained
from a distance of 6 − 10nm (we chose around 6nm here) from
every vesicle. This distance corresponds to the radius of the red
ribbon (Figure 3A) of height 1nm the calcium ions need to reach
to simulate the binding to a sensor. For each simulation, the
terminal undergoes three spikes at a fixed time interval 1t =
20−−150ms. Once a calcium ion enters the terminal, it can either
reach a vesicle with probability ps (Equation 3), or enter inside the
bulk with probability 1−ps according to the scheme of Figure 3C.
We already discussed in subsection 2.2 how to chose the calcium
diffusion coefficient: at the AZ it is 200µm2/s, and 20µm2/s in
the bulk to account for crowding.

Inside the bulk, ions bind to buffers with a rate constant
k0 = 5.6s−1 and unbind with rate k−1 = 500s−1. Calcium
can be extruded by pumps with a rate kpump = 0.88s−1 or they
can leave the terminal with rate kes = 6.1s−1. Finally, calcium
can bind to the sensors located underneath a vesicle with a rate
kS = 0.3s−1. The number of buffer molecules in the bulk varies
from 0 to 1,000. A calcium ion bound at the calcium sensor can
unbind with a rate kU = 2000 s−1 (fast unbinding) or 5s−1 (slow
unbinding). Once 5 calcium ions are bound to a calcium sensor,
then the vesicle fuses with the synaptic membrane and the vesicle
spot becomes free for a new vesicle coming from the recycling
pool to bind with a rate 1

τDock
(Figure 3D). An immediate refilling

of vesicles at the AZ is obtained with a time τDock = 0 ms, but
other delay are possible such as τDock = 50ms, or not refilling of
vesicles with τDock = ∞ as shown in Figure 4.

In that simulation framework, the first peak in the time
distribution of vesicular release follows a single stimulation and
the second one in Figure 2 (that is smaller in amplitude and
wider) corresponds to the random arrival, over a much longer
time period, of ions located in the synaptic terminal to small
binding vesicular targets. To conclude, multiscale stochastic
modeling approaches allow studying cellular events based on
integrating discrete molecular events over long time scales from
one milliseconds to seconds.

5.1. Asynchronous Release
What defines the time lag between the arrival of an action
potential and the first release of a vesicle? A possible mechanism
is as follows: calcium ions flow inside a channel in less than 1ms.
We saw above that calcium ions entering from VGCG located
very close to a vesicle can reach key calcium sensors in less than
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FIGURE 2 | Consequences on the release probability of calcium channel location and vesicular crowding at the AZ. Calcium time course in the pre-synaptic terminal

and vesicular release activation. (A) Number of free (continuous) and buffered (dotted) ions for 0 (left), 100 (middle), and 400 (right) buffer sites. (B) Histogram of

vesicular release time for the stochastic (blue), and the Markov-mass action model (red) for 0 (left), 100 (middle), and 400 (right) buffer sites.

0.5µs. Either all calcium binding sites necessary to trigger fusion
are now activated and fusion does occur, or some sites are still
empty. In this case, the release will then depend on the arrival to
the ribbon underneath the vesicle of calcium ions that will have to
travel from other places, such as the bulk or other VGCC located
far away. This second arrival process has a rate constant of few
seconds (Guerrier and Holcman, 2016). These random arrival
times of calcium ions to the vesicular calcium sensors define the
distribution of vesicular release that can be widely spread due to
the two distributions of calcium sources (Figures 2A,B). It also
reveals that the distribution contains two peaks: one generated
by immediate or synchronous release, which corresponds to
the case where all calcium binding sites are immediately filled
(Guerrier and Holcman, 2017), and the second release, which is
asynchronous over hundreds of milliseconds, the time scale of
which is defined by the arrival of far away calcium ions.

In that case the cusp geometry underneath the vesicle defines
the arrival rate (see above and Guerrier and Holcman, 2015).
In addition, it might be possible that vesicle-tethered and
cytoplasmic Syntaxin1 proteins also contribute in differentially
regulating synchronous versus asynchronous release kinetics
(Lee and Littleton, 2015). In that case, the asynchronous release
would be determined by the vesicle-tethered mechanism and not
only by calcium arrival. The two processes could also combine
together.

Under the calcium hypothesis controlling asynchronous
release, increasing the concentration of calcium buffers in the
bulk should reduce the amount of free calcium that can travel
long distance in few milliseconds. Thus, increasing calcium

buffer concentration should reduce asynchronous release, as
shown in numerical simulations (Figures 2A,B Guerrier and
Holcman, 2016), and experimentally (Fawley et al., 2016).
Indeed, this hypothesis has received more support as buffering
intracellular calcium with EGTA-AM reduced asynchronous
EPSC. Asynchronous or spontaneous release involve calcium
coming from the bulk or VGCC located far away from the vesicles
(Goswami et al., 2012; Dai et al., 2015; Stanley, 2016). The release
of asynchronous vesicles was largely diminished when calcium
chelation such as BAPTA (Fawley et al., 2016) was used. The
authors of that study concluded that asynchronous release should
rely on calcium ions involving longer trajectories compared to
the ones originating from VGCC located near a vesicle. Note
that the number of buffer molecules such as calmodulin in the
first 100 nm between the vesicle and the membrane is very small
(of the order of a few) and thus these molecules do not affect
synchronous release, as shown also experimentally in Fawley et al.
(2016). However, it remains unclear whether or not the readily
releasable pool organization can influence asynchronous release.

To conclude, VGCC located underneath vesicles are not the
only contributor filling the calcium binding sites, required for
vesicular fusion. Actually, not all VGCC are located underneath
vesicles. If one or a cluster of VGCC are not close enough or
are moved away from a vesicle of a distance of 10 or 20 nm,
the probability to have the correct amount of calcium ions on
the sensor binding sites can decrease significantly (Figure 1D)
and thus vesicular release will have to involve calcium ions
coming from far away. Modeling and experiments (Fawley et al.,
2016) are now converging and suggest that this second source
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FIGURE 3 | Various model of the AZ. (A) The entering flux of calcium ions

(blue) through a VGCC, could be affect by the vesicle geometry. The flux

penetrates inside a layer of tens of nanometers. Buffers (purple) can bind

calcium ions. (B) Hair cell synapse containing a circular ribbon (green) that

could generate a micro-domain to retain calcium between the boundary layer

near the membrane and the pre-synaptic bulk (reproduced from Graydon

et al., 2011). (C) Summary of the Markov-Mass action model, showing how

the initial flux is split between the calcium vesicular sensor and the bulk

(Guerrier and Holcman, 2016). (D) Illustration of the rates: for replacing vesicles
1

τDock
and for calcium unbinding kU from the calcium sensor (red boxes).

of calcium defines and regulates asynchronous release, when
calcium ions generated from local VGCC is not enough. In
that context, any vesicle can potentially lead to an asynchronous
release as long as it does not contain enough VGCC underneath.
Most likely, these vesicles are located at the periphery of the AZ,
where the density of VGCC could decrease. The exact relation
between VGCC distribution and vesicular organization remains
unclear.

5.2. Simulating Multiple Spikes and
Paired-Pulse Ratio
The model developed in Guerrier and Holcman (2016, 2017)
can also be used to explore the short-term synaptic properties
such as calcium accumulation and the distribution of time
for vesicular release. First the method is consistent with any
other simulation methods, second it is possible to test how the
backward rate constant of the calcium ion to the sensor affects
the time distribution of release, as well as the paired-pulse ratio
(PPR), computed in this case as the ratio, after two consecutive
spikes of the amount of fused vesicles after the second spike
divided by the first one. A PPR >1 means that the release
probability is increased which is usually interpreted as short-term

synaptic facilitation, while a PPR <1 corresponds to a decrease,
interpreted as short-term synaptic depression.

For fast calcium unbinding to the sensors, there is no
accumulation of calcium in the sensor site and thus the release
probability is independent of the spike train and of the buffer
concentration (Figure 4A, thus PPR = 1). Conversely, a slow
unbinding time from the sensors is associated with a local
increase in the release probability (PPR >1) (Figure 4B). This
facilitation is due to various sources of calcium: first the ones
already bound to sensors and second to calcium accumulation
in the bulk following multiple spikes. This second source is
diminished by increasing the amount of calcium buffers, which
can lead at high buffer concentration to a decrease in the release
probability PPR < 1 (Figure 4B, bottom).

Hence, by changing the buffer concentration, a synapse can
go from a facilitating state to a depressing state. To investigate
the role of the readily-releasable-pool organization in the release
probability, a first step is to use a vesicular replacement rate at
the AZ by considering the time τDock for a vesicle from the readily
releasable pool of vesicles to replace a vesicle that has just fused: in
the extreme case τDock = 0, which corresponds to an immediate
refilling of vesicles, and τDock = ∞ which corresponds to no
refilling of vesicles: Figure 4C shows the behavior of a vesicular
release with no refilling of vesicles, and a slow unbinding rate.
Simulations show an increase in release probability after the
second spikes, due to the calcium accumulation at the binding
sites. After the third spike, the release probability is decreased,
due to the lack of vesicles docked at the AZ, which would
be interpreted as short-term depression. To conclude, a low
unbinding rate is responsible for calcium accumulation in the
sensor binding site that increases the release probability and
defines short-term facilitation.

6. CONCLUSION AND PERSPECTIVE

The lesson frommodeling and numerical simulations of diffusion
in the first hundred nanometers between docked vesicles and
the plasma membrane is that this boundary layer is crucial for
computing the vesicular release probability due to the critical
position of vesicular sensors. This space is difficult to access
experimentally and its role has been underestimated in short-
term plasticity. However, experimental approaches using calcium
chelator such as BAPTA or EGTA confirm the role of calcium
ions traveling from far away compared to the ones entering
directly through VGCC located underneath a vesicle to trigger
release.

Another key feature relevant for short-term plasticity is the
structural organization and the spatial correlation between the
distribution of VGCCs and vesicles. Do vesicles contain the same
amount of close VGCCs? What defines the exact location of
VGCC underneath vesicles? Can this number fluctuate? What
happens after vesicular fusion? How are VGCC redistributed?
It is possible that VGCCs are constantly moving to find local
optimal sites location (Schneider et al., 2015).

Short-term facilitation is classically thought as the
accumulation of calcium in the synaptic bulk (calcium hypothesis
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FIGURE 4 | Calcium dynamic and vesicular release in the pre-synaptic terminal following three pulses. Comparison between slow unbinding from the Snare (kU =
0.005 ms−1) with the vesicle docking time τD = 0ms (A), fast unbinding (kU= 2 ms−1) with τD = 50 ms (B), and fast unbinding with τD = ∞ (C) for 100 buffer

molecules and 150 ms between two spikes. Up: Time course of free calcium (red) and buffered calcium (blue). Middle: Probability density function of the release times.

Down: Paired Pulse Ratios (PPR), computed as the ratio of the number of fused vesicles during the first and the second spike.

of Katz and Miledi, 1968), due to various possibilities such as
slow and fast buffers. But computational evidences (Guerrier
and Holcman, 2017) reviewed here suggest that calcium
accumulation at the sensor binding sites and not in the bulk is
actually the determinant effect to pre-activate vesicular release
(by binding a certain fraction of the sensor sites). A similar
conclusion was reached in Bornschein et al. (2013) using
fluctuation analysis, calcium imaging and numerical simulation
analysis indicating that the residual calcium bound to the release
sensors (see also Schneggenburger and Neher, 2000), after the
first AP could cause Paired Pulse Facilitation at Purkinje neuron
synapses.

A byproduct of facilitation should be asynchronous release,
because the random calcium accumulation at sensor increases
the time window when a vesicular can be released, due to
ions arriving at random time from the bulk, thus leading to a
high variability in the calcium arrival and the vesicular release
times. However, synaptic facilitation requires a low concentration
of calcium buffer, suggesting that for facilitating synapses,
calcium buffers should be maintained at a low level. In general,

the relation between facilitation and asynchronous release
triggered by residual calcium can be mediated by the specific
molecular composition of the vesicle: indeed synaptotagmin
7 (Syt7) (Turecek and Regehr, 2018) present at cerebellar
granule cell synapses onto stellate cells and Purkinje cells (mice)
plays such a role: in Syt7 KO, facilitation, and asynchronous
release are smaller and shorter lived than in WT, although
the residual calcium was unchanged. This is in contrast with
synchronous released mediated by synaptotagmin I. It would
be certainly interesting to model the distribution of various
synaptotagmin on vesicles to determine when a vesicle will be
more likely to be released asynchronously vs synchronously.
In particular, is the distribution of these two SytI and 7
different on vesicles? Do they have very different calcium buffer
affinity? These properties could be explored using numerical
simulations.

In terms of calcium residual regulation, a low concentration
level can be achieved by preventing ER or mitochondria to come
in too close proximity of the AZ. In contrast, synchronous release
is associated with a high calcium buffer concentration, preventing
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calcium ions to travel from far away. More specifically, two-
dimensional numerical simulations (Delvendahl et al., 2015),
modeling essentially the synaptic bulk, revealed that fixed
endogenous buffers with low affinity, characterized by a low
calcium-binding ratio, mixed with mobile buffers with high
affinity, results in a fast AZ calcium clearance. This results in
synchronous high-frequency transmission (at 200 Hz). But it
remains unclear how calcium fluctuations is maintained low
(Modchang et al., 2010; Nadkarni et al., 2010; Dittrich et al.,
2013; Weinberg, 2015) especially near the vesicular calcium
sensor.

Finally, how the rate of vesicular release can vary over 6 orders
of magnitude for the same synapse (Kochubey et al., 2011) also
remains enigmatic. The cusp geometry and rare binding events
may hold the key to the solution of this spectacular modulation
of the vesicular release rate (Guerrier and Holcman, 2015).

Modeling vesicular trafficking and recycling at various synapses
including ribbon synapses (Thoreson et al., 2016) should clarify
the organization of the pre-synaptic terminal (Graydon et al.,
2011, 2014) and the effect of VGCC trafficking (Schneider et al.,
2015).
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In synapses, calcium is required for modulating synaptic transmission, plasticity,

synaptogenesis, and synaptic pruning. The regulation of calcium dynamics within

neurons involves cellular mechanisms such as synaptically activated channels and

pumps, calcium buffers, and calcium sequestrating organelles. Many experimental

studies tend to focus on only one or a small number of these mechanisms, as technical

limitations make it difficult to observe all features at once. Computational modeling

enables incorporation of many of these properties together, allowing for more complete

and integrated studies. However, the scale of existing detailed models is often limited

to synaptic and dendritic compartments as the computational burden rapidly increases

when these models are integrated in cellular or network level simulations. In this article

we present a computational model of calcium dynamics at the postsynaptic spine of

a CA1 pyramidal neuron, as well as a methodology that enables its implementation in

multi-scale, large-scale simulations. We first present a mechanistic model that includes

individually validated models of various components involved in the regulation of calcium

at the spine. We validated our mechanistic model by comparing simulated calcium

levels to experimental data found in the literature. We performed additional simulations

with the mechanistic model to determine how the simulated calcium activity varies with

respect to presynaptic-postsynaptic stimulation intervals and spine distance from the

soma. We then developed an input-output (IO) model that complements the mechanistic

calcium model and provide a computationally efficient representation for use in larger

scale modeling studies; we show the performance of the IO model compared to the

mechanistic model in terms of accuracy and speed. The models presented here help

achieve two objectives. First, the mechanistic model provides a comprehensive platform

to describe spine calcium dynamics based on individual contributing factors. Second, the

IO model is trained on the main dynamical features of the mechanistic model and enables

nonlinear spine calciummodeling on the cell and network level simulation scales. Utilizing

both model representations provide a multi-level perspective on calcium dynamics,

originating from the molecular interactions at spines and propagating the effects to higher

levels of activity involved in network behavior.

Keywords: multi-scale modeling, spine calcium, computational model, nonlinear dynamical systems,

glutamatergic synapse
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INTRODUCTION

The calcium ion is a key biochemical signaling molecule for

cellular function, and a number of studies have demonstrated

its importance in numerous cell types. Calcium is known to be
involved in regulation of gene transcription factors (Bading et al.,

1993; Dolmetsch et al., 1998), muscle contraction (Ebashi and
Endo, 1968; Weber and Murray, 1973), bone formation (Zhu
and Prince, 2012), cell metabolism (Contreras et al., 2010) and
apoptosis (Mattson and Chan, 2003). Within neurons, calcium
has an especially critical role in modulating communication and
network activity (Zucker, 1999; Emptage et al., 2001). Calcium
has been extensively investigated in postsynaptic spines due to
its involvement in various signaling cascades that lead to synapse
formation and plasticity, cellular mechanisms which underlie
learning and memory.

Early experimental studies on spine calcium focused on
measuring calcium concentration changes at postsynaptic
spines of the CA1 pyramidal cell in response to presynaptic
stimulations and action potential transients through fluorescence
procedures (Sabatini et al., 2002). Other studies focused on
identifying sources of calcium influx, which include voltage
dependent calcium channels (Bloodgood and Sabatini, 2007),
intracellular calcium stores (Holbro et al., 2009), and NMDA
receptor channels (Bloodgood and Sabatini, 2009). Downstream
calcium signaling pathways have also been investigated, where
calcium microdomains and localized calcium signaling (Higley
and Sabatini, 2012) can invoke signaling of the ubiquitous
Calmodulin/CAMKII protein, which leads to AMPA receptor

upregulation (Naoki et al., 2005; Zhabotinsky et al., 2006).
These standalone studies have helped further our understanding
of numerous processes that regulate calcium dynamics in
spines, but more research is needed to study how such
processes interact with each other and together influence synaptic
transmission.

Computational models have also been successfully adapted
to the study of calcium dynamics in spines and neurons
(Shouval et al., 2002; Naoki et al., 2005; Bartol et al., 2015). The
advantage of using computermodels over experimental protocols
is their inherent ability to provide a controlled environment
and overcome limitations in size constraints, an issue common
when studying subcellular spaces such as synaptic compartments.
Calcium dynamics models vary in biophysiological detail and
accuracy, ranging from simple phenomonological models that
directly relate calcium concentration to synaptic plasticity
(Shouval et al., 2002), to detailed and complete reconstruction of
the calcium dynamics at a dendritic subsection of a hippocampal
CA1 neuron using stochastic Monte Carlo simulations (Bartol
et al., 2015). Typically, the degree of realism used for a model is
often dependent on the scale of the study, where calcium models
at the cellular or network scales have less physiological detail than
molecular scale models.

Scientific computation has been trending toward multi-
scale modeling, where models are developed to explore
biological phenomena across multiple length or hierarchical
scales (Yu and Bagheri, 2016; Seo and Jun, 2017). Neural
computation spans molecular (Naoki et al., 2005; Bartol

et al., 2015), cellular (Jarsky et al., 2005; Migliore and
Migliore, 2012), network (Hendrickson et al., 2015), and
cortical systems (Markram, 2006) hierarchical scales. Thus,
multi-scale modeling is especially valuable for studying calcium
dynamics in neurons, because calcium induced molecular
signaling cascades can have dramatic effects on patterns of
activity at the cellular/network level. Calcium activity in a
CA1 pyramidal neuron is not distributed equally as evidenced
in experimental studies (Higley and Sabatini, 2008). Rather,
calcium processes can be categorized based on location and
degree of influence (Figure 1). For example, the high-voltage
activated (HVA) calcium channels present on postsynaptic
spines can create localized calcium microdomains—brief,
high concentrations of calcium in a small area—which can
then lead to protein kinase activation and induce secondary
messenger cascades, eventually resulting in synaptic plasticity
and larger scale changes in cell properties and network
activity (Higley and Sabatini, 2012). Meanwhile, intracellular
calcium stores, such as the smooth endoplasmic reticulum
(ER) and mitochondria, in dendritic compartments can be
involved in more metabolic processes such as gene transcription
and ATP production (Li et al., 2004). If possible, use
of detailed, biologically accurate computational models in
large-scale simulations would add the benefit of monitoring
such significant molecular-level influences in large network
interaction; however, simulating such a large number of complex
mechanisms and interactions in a realistic model requires
a prohibitively high computational cost. Unfortunately, this
computational burden limits the capability of current models to
elucidate critical calcium-dependent mechanisms associated with
plasticity, learning, and memory, which emerge from network
level activity.

To adequately model calcium-influenced cellular and network
level behaviors, it is critical to construct a model that can
efficiently and accurately replicate nonlinear calcium dynamics
based on the numerous calcium processes on multiple levels,
starting at the spine.

The focus of this article is to present a model describing
the calcium dynamics at the postsynaptic spine of a CA1
pyramidal cell, as well as a methodology to adapt the previously
defined model for multi-scale simulations. The calcium model
presented aims to (1) consider the variety of subcellular processes
that influence calcium at the spine, and (2) enable multi-
scale simulations that include the influence of said subcellular
processes on calcium dynamics on a larger scale. In (1), we
develop a mechanistic model that consists of various kinetic
state models of receptor channels and pumps pertaining to
calcium regulation at the spine; the mechanistic model is
validated with experimental data from the literature and is
used to study the subcellular processes involved in spine
calcium dynamics. In (2), we implement a “input-output” model
using the Volterra functional series trained on the nonlinear
calcium dynamics from the mechanistic model; the Volterra
functional series is a nonlinear systems filter that has been
adapted previously to successfully model dynamics of nonlinear
systems with reduced computational cost (Marmarelis and
Marmarelis, 1978; Bharathy et al., 2008; Song et al., 2009a,b;
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FIGURE 1 | Calcium is regulated within a CA1 pyramidal cell neuron on multiple scales—from spines, to dendrites, to the entire cell itself. Presented here is a

schematic representation of the regulation of calcium within a CA1 pyramidal cell neuron, as well as some of its functional properties. At the molecular level, calcium

dynamics at the postsynaptic spine are controlled by various ion channels and pumps that respond to synaptic activity. Opening of high-voltage activated (HVA)

calcium channels can influence other key processes such as localization of calcium microdomains, which can lead to functional changes brought about by

calcium-dependent protein kinases such as activation of secondary messenger pathways and synaptic plasticity. Calcium dynamics are also important in dendrites,

where many intracellular calcium stores, such as the smooth endoplasmic reticulum (ER) and mitochondria, are located. The presence of calcium stores allows

calcium to influence local regulation of factors such as gene transcription and ATP production and regulation. The various sub-cellular calcium dynamics integrated

together make up the changes in cell and network activity of the neuron. Our current work in this manuscript is highlighted in the dashed red rectangle in the presented

hierarchy: we focus on the development of a model of calcium at the postsynaptic spine, and how our model may be applied in future work to higher hierarchies.

Berger et al., 2010; Tu et al., 2012; Hu et al., 2015). We
demonstrate that the IO model requires less time to simulate
than the mechanistic model, while still reproducing the complex
nonlinear dynamics that arise from calcium interactions at the
spine. Thus, we propose that the IO model is better suited

for multi-scale modeling of calcium. In future studies, this
will allow us to investigate the effects of how the various
subcellular mechanisms in which affect spine calcium dynamics
can influence cell to cell interactions at the cellular and network
levels.
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MATERIALS AND METHODS

Here we first describe the models and parameters used for
the mechanistic model; an overview diagram is presented
in Figure 2, and a summary of the parameters is provided
in Table 1. A precursor of the mechanistic model had been
described previously in a conference publication (Hu et al.,
2016), which was at the time an incomplete; this current model
now describes the model in full with additional mechanisms,
optimized parameters, and validation that is described in the
results section. The development of the Input-Output model is
described afterwards.

Mechanistic Model
The premise of the mechanistic model is to build a physiological
representation of the postsynaptic spine taking into account
the components that are known to significantly influence
spine calcium dynamics. These components are identified
based on a number of experiments, reviews, and models
found in the literature (Sabatini et al., 2002; Bloodgood
and Sabatini, 2007; Higley and Sabatini, 2012; Bartol et al.,
2015). In the mechanistic model, influx and efflux components

such as the calcium channels (NMDAr, VDCC) and calcium
pumps (PMCA, NCX) are represented as calcium current
sources which can add or remove calcium in the spine
compartment. As calcium ions flow in and out of the
spine, the concentration is determined by calculating the
change in calcium divided by spine volume—the standard
definition of concentration. Buffers and intracellular calcium
stores interact directly with the calcium within the spine
using reaction rate equations. A schematic diagram of the
interactions between the components in the model is presented
in Figure 3A.

Besides modeling calcium in itself, each synapse also
provides postsynaptic current to the model neuron. The
postsynaptic current influences the postsynaptic potential,
which later influences spine calcium via voltage-dependent
calcium mechanisms. The postsynaptic current is governed
by both AMPA receptor channel and NMDA receptor
channel kinetic rate models. The NMDA receptor channel
kinetic rate model is the same model described in this
Supplementary Figure 1. The AMPA receptor channel rate
model is the model described in Robert and Howe (2003).
These components are part of the synaptic platform which

FIGURE 2 | Postsynaptic calcium can be influenced by a number of factors. Our focus is on calcium dynamics at the postsynaptic spine, as was highlighted in the red

dashed rectangle in Figure 1. Models for receptor channels and pumps that contribute to calcium dynamics have been developed in several studies. In our model,

these sources are integrated into a single platform to construct a mechanistic model of postsynaptic calcium dynamics.
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TABLE 1 | List of the parameters, specifications, and models used in the mechanistic model and their sources.

Parameter name Value References

SPINE PROPERTIES

Spine volume (Vspine) 0.1 µm3 Stewart et al., 2005

PSD volume (VPSD ) 0.0032 µm3 Stewart et al., 2005

Spine surface area 0.671 µm2 Stewart et al., 2005

PSD surface area 0.132 µm2 Stewart et al., 2005

Diffusion equation within spine Equation 1 Naoki et al., 2005

Backpropagation attenuation ∼30% Golding et al., 2001

Nernst potential of [Ca2+]i at 0.05µM −60mV Calculated

Nernst potential of [Ca2+]i at 10µM −30mV Calculated

NMDA MODEL

Kinetic states model Supplementary Figure 1 Erreger et al., 2005

Number of NMDA receptors (nNMDA) 20 Racca et al., 2000

Percent of Ca Ion in NMDAr current 11% Burnashev et al., 1995

Simulated NMDAr response amplitude 1.2µM Higley and Sabatini, 2012

CALCIUM EFFLUX

PMCA Hill equation model (I) Equation 10 Fridlyand et al., 2003

PmCap (max PMCA extrusion) 0.25 pA Calibrated

Half max concentration 0.1µM Fridlyand et al., 2003

NCX Hill equation with Na/Ca gradient Equation 11 Gall and Susa, 1999

gNaCa (max conductance) 0.0117 pS Gall and Susa, 1999

Half max concentration 1.5µM Gall and Susa, 1999

[Ca2+]i, [Ca
2+]o, [Na

+]i, [Na
+]o 0.05µM, 2mM, 10mM, 140mM Gall and Susa, 1999

VDCC MODEL

Predominant type T-type channels Higley and Sabatini, 2012

Total number of VDCCs per spine 1–20 Sabatini and Svoboda, 2000

Number of VDCCs opened during BPAP 5 Sabatini and Svoboda, 2000

T-Type single channel conductance (gVDCC) 7.5 pS Perez-Reyes et al., 1998

Max [Ca2+] during BPAP ∼600 nM Sabatini et al., 2002

Decay of [Ca2+] during BPAP transient ∼30ms Sabatini et al., 2002

CALCIUM BUFFERS

Percent of calcium buffered 95% Sabatini et al., 2002

Calmodulin (CaM) Supplementary Figure 2 Zhabotinsky et al., 2006

CaM concentration 0.01mM Zhabotinsky et al., 2006

CaM Hill coefficient (hc) 3 Zhabotinsky et al., 2006

CaM forward rate kforward () 10e7/mM3 * ms Zhabotinsky et al., 2006

CaM reverse rate (kreverse) 10/ms Zhabotinsky et al., 2006

Calbindin Supplementary Figure 2 Bartol et al., 2015

Calcium binding proteins (CBP) Supplementary Figure 2 Naoki et al., 2005; Bartol et al., 2015

CBP concentration 0.8mM Calibrated

CBP forward rate (kforward ) 247/mM * ms Calibrated

CBP reverse rate (kreverse) 4/ms Calibrated

has been developed in our lab and further details can be seen
in Bouteiller et al. (2011), Allam et al. (2015), and Hu et al.
(2015).

Spine Volume and Diffusion

The concentration of any constituent depends on the volume
of its compartment. Spines come in a variety of shapes and
sizes, with different forms such as thin spines, stubby spines,
and mushroom spines (Stewart et al., 2005). The postsynaptic

calcium model presented here considers the composition of an
average mushroom spine of a CA1 neuron, with a spine volume
of 0.1 µm3 and the postsynaptic density volume set to 0.0032
µm3 (Stewart et al., 2005). Here, we model the postsynaptic
density as separate compartment due to the rapid increase
in local calcium concentration during ion channel activation;
the calcium concentration then diffuses into the rest of the
spine. Diffusion from the postsynaptic density (PSD) to the
spine compartment was approximated using the spine diffusion
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FIGURE 3 | A visual depiction of (A) mechanistic calcium model and (B) the Input-Output spine calcium model. (A) portrays an interaction diagram of the mechanistic

calcium model presented in the manuscript, with references the equations and kinetic schemas which govern the dynamics of each of the individual components. (B)

In the IO model, the inputs and output correspond to parameters in the mechanistic model. Inputs to the IO model are NMDAr conductance and postsynaptic

potential. Output is the estimate on calcium concentration in the spine. Coefficients are estimated based on the spine calcium mechanistic model, and presented in

Supplementary Table 6.
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model described by Naoki et al. (2005). The diffusion rate is
modeled as:

(

d
[

Ca2+
]

dt

)

diffusion

= D
A

d∗Vspine
(
[

Ca2+
]

PSD
−
[

Ca2+
]

)

(1)

d
[

Ca2+
]

PSD

dt
=−

INMDA

2FVPSD
− D

A

d∗VPSD
(
[

Ca2+
]

PSD
−
[

Ca2+
]

)

(2)

where A is the surface area between the PSD and the rest of
the spine volume, d is the distance between the midpoints of
the PSD and the spine, Vspine is the total volume of the spine,
and

[

Ca2+
]

PSD
and

[

Ca2+
]

Spine
is the calcium concentration

at the postsynaptic density and the spine, respectively. The
postsynaptic density is dependent on INMDA, which is the calcium
influx current from NMDA receptors. The equation for INMDA

is described in Equation (3). The influx depends on Faraday’s
constant F and the volume of the postsynaptic density VPSD.

In our model, we consider the spine to be an isolated
compartment from the rest of the cell, where the calcium does
not flow out of the spine into the dendrite or vice versa. We
make this assumption based on experimental evidence that spines
are isolated electrically (Grunditz et al., 2008), and that less than
0.01% of the total calcium flux into the spine comes from the
adjacent dendrite (Sabatini et al., 2002). As such, the model
described here assumes that calcium exchange with the dendrite
is insignificant and calcium dynamics from our spine model does
not influence dendritic potential in our neuron model. We are
aware that while dendritic calcium can be influenced by spine
calcium dynamics, but in the current study, the focus of our
model considers only the spine calcium and not dendrite calcium
dynamics, as highlighted specifically as the red area in Figure 1.
Future studies are planned that will expand ourmodel beyond the
spine level and integrate calcium across more hierarchies that had
been presented in Figure 1. In the meanwhile, dendritic potential
can influence spine calcium influx dynamics, as described in the
following section.

Calcium Influx

Here, we first describe the models for NMDAr and VDCC, then
explain protocols to simulate calcium influx mechanisms and
activate the aformentioned models.

The calcium current contribution of the NMDA channel is
calculated as:

INMDA = gtotalNMDA × VCa (3)

gtotalNMDA = gNMDA × nNMDA (4)

INMDA indicates total calcium current that flows into the
spine, gNMDA is the NMDA conductance to be described in
the following paragraph and nNMDA represents the number of
NMDA receptors with the given PSD volume and is set to
20 (Racca et al., 2000). VCa represents the calcium potential

difference between intracellular and extracellular calcium, which
again will be described in more detail later in the text.

The NMDA receptor channel is represented as a kinetic
states model as described in Erreger et al. (2005). The model
consists of 8 states that represent the resting, activation, opening,
and desensitization states of the NMDA receptor channel. The
magnesium ion blockade of the NMDAr channel also must be
considered. To do so, the magnesium ion binding properties in
the channel pore are described by:

g0 = g1 +
g2 − g1

1+ eαV
(5)

gmax =
g0

1+
(

[Mg2+]o
K0

)

e−δzFV/RT
(6)

gNMDA = gmax × O(t) (7)

Where g0 represents the total conductance in the absence of any
magnesium, g1 and g2 represent the open state conductances
with one glutamate bound and two glutamate molecules bound,
respectively. g1is set at 40 pS while g2 is set at 247 pS. The value
α = 0.01 represents the steepness of the transition between g1and
g2.

[

Mg2+
]

o
represents the external magnesium concentration

and is set at 1mM. K0 is the equilibrium constant for magnesium
set at 3.57, F is Faraday’s Constant (9.64867.104Cmol−1), R is the
molecular gas constant (8.31434 J mol−1 K−1), z is the valency
of the calcium ion (2), and T is the temperature at 299.5 K.
V represents the membrane potential. δ is the affinity between
NMDAr andmagnesium, which is dependent on the postsynaptic
potential of the synapse; the value is set to 0.8. The variableO(t) is
the open state probability governed by the kinetic rate equations
for the NMDA model. The kinetic schema of the NMDAr model
is presented in Supplementary Figure 1 whereO (t) is represented
as “Open.” The rate constants which govern NMDA kinetics
are presented in Supplementary Table 1. In the kinetic model,
presynaptic action potentials cause vesicle glutamate release.
Thus, in our model, a presynaptic event correlates to a glutamate
spike in the NMDAr kinetic states model, moving the NMDAr
channel kinetics away from resting state and causing them to
open. For a more extensive description of the kinetic NMDAr
model, please refer to Erreger et al. (2005).

NMDAr is differentially permeable to different ions when
activated. Burnashev et al. (1995) reported that on average,
calcium constitutes about 11% of the total ion current when
NMDAr channels are opened. However, considering NMDA
current alone lead to an incorrect representation of NMDAr
mediated calcium influx, since the reversal potential of calcium
(+ 50mV) is considerably different from the reversal potential
of NMDAr conductance (+0mV). Therefore, in this model we
calculate the influx using the Nernst equation, which instead
depends on the difference between intracellular and extracellular
calcium concentration. The Nernst equation used is as follows:

VCa = −
RT

2F
log

(

[Ca2+]o
[Ca2+]

)

(8)

VCa represents the potential difference for calcium. R, T, and F
represent the molecular gas constant, temperature, and Faraday’s
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constant with the same values mentioned previously. [Ca2+]o is
the extracellular calcium set as a constant concentration of 2mM,
while [Ca2+] represents intracellular calcium concentration at
the spine. Here, we assume the calcium at the spine dominates
the driving force represented by the Nernst potential. It is also
possible to use the calcium concentration at the postsynaptic
density to calculate the potential, but due to its small volume,
minor fluctuations in current can result in drastic changes in the
concentration value, which would lead to more erratic changes in
the potential. Therefore, we consider the use of the overall spine
concentration to be a more adequate representation of the Nernst
potential for calcium.

The Nernst potential is typically used to determine the
potential when the spine is at during the resting state. However,
for our purposes we use the Nernst potential as an estimate
of the driving force for calcium influx. Our justification is
thus: In our spine model, we assume that all ions besides
calcium remain constant and the electrochemical force for all
other ions is zero. As mentioned earlier, considering only a
percentage of synaptic current influx as calcium is inaccurate,
since the reversal potential between calcium is much higher
than the reversal potential of synaptic current. This case is true
even for the Goldman–Hodgkin–Katz flux equation, since it
depends on the membrane potential—if the membrane potential
moves from negative to positive, the flux is also reversed. On
the other hand, using a constant value for calcium potential,
i.e., when calcium is at rest at 50 nM, does not account for
changes in flux induced by increased calcium levels in the spine.
Therefore, the use of the Nernst potential is an estimation
of the electrochemical gradient when calcium concentration is
changed. The concentration of intracellular calcium is orders
of magnitude lower than the concentration of extracellular
calcium, so the change is not large, but still significant enough
such that we believe it should be accounted for, i.e., the value
of VCa when intracellular calcium is 50 nM is approximately
−60mV, but can reach −30mV when intracellular calcium
reaches at 10µM.

Voltage dependent calcium channels (VDCCs) let calcium
into the spine when there is a significant difference in
membrane potential, such as action potential backpropagation
from the postsynaptic neuron (Higley and Sabatini, 2012).
Various types of VDCCs exist—each having different channel
properties, mechanics, and functional roles—and are found on
different types of cells (Catterall, 2011). For CA1 pyramidal
cells, experimental evidence suggests that T-type VDCCs
contribute the most to overall calcium concentration within
dendritic spines (Bloodgood and Sabatini, 2007). It should
be noted that L type and R type VDCCs are also present.
However, the calcium influx contribution of L-types and R-
types to the overall calcium concentration within spines was
found to be insignificant. Instead, these channels tend to
be concentrated into microdomains and activate secondary
messenger pathways (Higley and Sabatini, 2012). Consequently,
we consider the VDCC influx through T-type channels
only.

The more specific details of the VDCCmodel are described in
Supplementary Table 2. In general, the calcium contribution of

the VDCC channel is calculated as:

IVDCC = gVDCC ·m2 · h · fdrive (9)

Where IVDCC is the calcium current from the voltage dependent
calcium channel. m and h are part of the Hodgkin-Huxley
equation, with parameters as defined from Jaffe et al. (1994). fdrive
is the driving force of the internal and external calcium dynamics,
considered through modifications to the Hodgkin Huxley
equation as reported by Poirazi et al. (2003) (equivalent to dvf
in their model). Once again, the equations and parameters used
in the model related to VDCC are presented in Supplementary
Table 2. gVDCC is the he single channel conductance for VDCC is
set to be 7.5 pS (Perez-Reyes et al., 1998) and the average number
of VDCCs opened for each AP-evoked transient is 5 (Sabatini and
Svoboda, 2000).

Calcium Efflux

Experimental evidence indicates that calcium is removed from
the intracellular space through pumps and exchangers, but
mechanistic details concerning calcium efflux at the postsynaptic
spine are not yet fully understood. Generally, Plasma Membrane
Calcium Pumps (PMCA) and Sodium-Calcium Exchangers
(NCX) are the two prominent elements that participate in
calcium extrusion in spines and small dendrites of CA1
pyramidal cell neurons (Scheuss et al., 2006). Overall it is thought
that the constant active pumping by PMCA helps maintain the
standard basal levels of calcium at∼50 nM (Carafoli, 1991), while
NCX helps to quickly extrude calcium in a short amount of
time, such as during an action potential (Carafoli et al., 2001).
One source in the literature suggests the PMCA isoform is type
PMCA2w, although details on the dynamics and extrusion rates
of the isoform are lacking (Burette et al., 2010). Details on NCX
at spines are even less studied, with only one source indicating
that NCX is present in larger numbers in dendritic shafts than in
spines, though exact numbers are unknown (Lörincz et al., 2007).

Previously published models of spine calcium use calcium
extrusion models as a calibration factor to fit simulations
to experimental results (Naoki et al., 2005; Bartol et al.,
2015). For our model, we are interested in using more
physiologically accurate representations of extrusion, but such
models specifically relating to the extrusion pumps and channels
in spines are currently absent from the literature. Therefore,
we have decided to use extrusion models from models of other
physiological systems (Gall and Susa, 1999; Fridlyand et al.,
2003), and adjust parameters according to the geometry of the
synapse based on the surface area density of themodels presented
within these papers. The adjusted parameters are detailed in the
following paragraph.

Both PMCA and NCX are represented through the Hill
equation, which is typically used to describe binding properties
of a ligand to the receptor:

I = IMAX

[

Ca2+
]hc

Khc +
[

Ca2+
]hc

(10)

Here, IMAX is the maximum calcium current extruded from
the model, K is the equilibrium constant and hc is the hill
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coefficient. For PMCA model parameters, the Hill coefficient is
set to 2 and an equilibrium constant of 1µM (Fridlyand et al.,
2003). The maximum calcium current was optimized through
gradient descent based on experimental protocols highlighted
in the results section; the optimized maximal PMCA current
was set to be 0.25 pA. The NCX model has a Hill coefficient
of 5, equilibrium constant value of 1.5µM and a conductance
of 0.0117 pS (Gall and Susa, 1999); maximal current is then
calculated from the sodium/calcium gradient and the given
conductance. The higher Hill coefficient represented in the NCX
model indicates a higher affinity for calcium ions when more
calcium is bound. A table describing the parameter values is
presented in Table 2.

Additionally, the NCX model accounts for the
sodium/calcium gradient in which three sodium ions are
exchanged for one calcium ion (Fridlyand et al., 2003):

VNa,Ca =
RT

F
(3ln(

[

Na+
]

o
[

Na+
]

i

)− ln

(
[

Ca2+
]

o
[

Ca2+
]

i

)

) (11)

R, T, and F represent the molecular gas constant, temperature,
and Faraday’s constant with the same values mentioned
previously. IMAX for NCX is determined based on the gradient
difference. In the current model, intracellular and extracellular
sodium concentrations are considered constant at 10 and
140mM respectively. Similar to VCa from the Nernst equation,
VNa,Ca is an estimate of the driving force to consider how
calcium efflux will change depending on calcium concentration,
providing a slightly better estimate compared to keeping VNa,Ca

constant.

Buffers and Intracellular Calcium Stores

Buffering is an integral part of calcium dynamics at the
postsynaptic spine, as up to 95% of the total intracellular calcium
is bound to buffers (Sabatini et al., 2002). There are numerous
types of buffers that can bind calcium; in our model, we
specify two types of buffers, calmodulin and calbindin, while
the other possible buffers are represented as a collection of
generic calcium binding proteins (CBP). In our platform, the
buffer models directly influence the free calcium concentration
in the spine using reaction rate equations. The kinetic schemas
and descriptions of the parameters and equations are presented
in Supplementary Figure 2, Table 1, and Supplementary Table
3. Calmodulin is a ubiquitous calcium buffer which plays a
role in AMPA receptor upregulation and synaptic potentiation
when found in the postsynaptic spine. The calmodulin buffering
parameters are defined in accordance to Zhabotinsky et al.
(2006). Calbindin is a binding protein with four calcium binding

TABLE 2 | List of calcium efflux parameters.

Parameter PMCA model NCX model

hc 2 5

K 1µM 1.5µM

IMAX 0.25 pA VNa,Ca * 0.117 pS

sites; here it is defined as a 9 states kinetic model, with
parameters defined in the calcium model by Bartol et al. (2015).
The CBP were calibrated after the previous two buffers were
implemented, where the total buffered calcium at steady state
reaches approximately 95% in the presence of all three buffers.

Intracellular calcium stores are known to play a large role in
calcium dynamics, but current evidence on its impact particularly
on dendritic spines in CA1 neurons remains controversial.
So far it is found that approximately 19% of the total spine
count contain endoplasmic reticulum (ER), with a majority of
the ER-containing spines having a larger volume than others
(approx. 0.06 µm3) (Holbro et al., 2009). The ER apparatus
within the spine was shown to have no IP3 receptors present
while retaining a number of ryanodine receptors (Paula-Lima
et al., 2014). As such, we have included in our model state
representations for SERCA pumps and ryanodine receptors, but
omit IP3 receptors. Just like the buffer models, the models
pertaining to the intracellular calcium stores directly interact
with the free calcium concentration in the spine. We describe
the kinetic schema, parameters, and equations of SERCA and
ryanodine receptors in Supplementary Figure 3, Supplementary
Tables 4, 5. The SERCA pump is a 2 states model with equations
and parameters derived from Higgins et al. (2006). We also
included the ryanodine receptors model proposed by Williams
et al. (2011).

Inputs Into the Mechanistic Spine Calcium Model

In Figure 3A, we provide a diagram of the interactions in
the mechanistic model and describe the components which
can influence calcium activity. Input stimulation predominantly
occurs in two ways: (1) through synaptically activated transients,
where presynaptic release of neurotransmitter activates the
NMDA receptor channels on the postsynaptic density; and (2)
AP-evoked transients, where stimulation of the postsynaptic
neuron triggers an action potential, which is then backpropagated
to the spines. Simulation of (1) is represented through
presynaptic event-based activation of the NMDA receptormodel,
where a single event triggers the opening kinetics of the NMDAr
model. The protocol for (2) is slightly more complex: in order
to simulate AP-evoked transients in our model, we stimulate
a number of synapses on the neuron model to invoke an
action potential. Calcium concentration can then be measured
on a stimulated or non-stimulated synapse, where the back-
propagating action potential opens VDCCs and prompts calcium
entry into the spine.

Input-Output Model
The development of the Input-Output (IO) model for
postsynaptic calcium dynamics follows a protocol similar
to the IO models that had been covered in Berger et al. (2010)
and Hu et al. (2015). To describe briefly, the IO model uses
the Volterra functional power series, with Laguerre functions
as the basis equations of the Volterra series. The single input,
single output (SISO) model of the Volterra functional series and
the Laguerre equations have been previously described in Hu
et al. (2015). In brief, we propose to use a simplified functional
representation of the system under consideration.
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In the current work, a multi-input, single output (MISO)
model was developed with the inputs being the two major
sources of calcium influx for the calcium model: (1) postsynaptic
potential (V), and (2) NMDAr channel conductance (gtotalNMDA)
based on glutamate-based calcium influx. One notable difference
is that we herein consider the inputs to be continuous. Although
we use spike trains as input to our synapse platform, the
conductance and potential which are calculated from the spike
trains are continuous. The use of continuous inputs contrasts
with IO models that have been published previously assumed
the inputs to be of binary nature (Hu et al., 2015). A pictorial
representation of the mechanistic model and IO model is shown
in Figure 3B, to highlight which parameters the two models have
in common.

The inputs of the IO model were chosen because they
represent outside activity that drives changes in calcium
dynamics. The first input, the postsynaptic potential, is a
factor known to drive calcium influx due to its effects on
voltage dependent mechanisms (NMDAr associated channel and
calcium channels). In both mechanistic and IO models, the
postsynaptic potential depends on the neuron cell model. In
our simulations, the Izhikevich model (Izhikevich, 2003) is used
for most simulations except simulations that involve distance
measurements, where the Migliore neuron model is used instead
(Migliore and Migliore, 2012). Since the Izhikevich model has
no geometry component, measurements with respect to distance
cannot be performed using the Izhikevich model. The Migliore
model, on the other hand, is a reconstruction of a hippocampal
CA1 neuron, which consequently has dendritic geometry that
can be used for our simulation study. In the neuron model, we
simulate synaptic activity which results in firing of the cell; the
action potential is then backpropagated to the spinemodel, which
we use as input to either the mechanistic or the IO model. The
second input, i.e., NMDA-R channel conductance, is a critical
measure of pre- and postsynaptic activity; we determine the
total NMDAr conductance based on both pre- and post-synaptic
activity of the spine.

In our platform, opening of the NMDA receptor channel
model: (1) Allows calcium influx into the spine, and (2) produces
postsynaptic currents, which are passed to the neuron model
and influences the postsynaptic potential. We chose the NMDAr
channel conductance as an input parameter to the input-output
model to account for the calcium influx while still allowing
NMDAr channels to influence postsynaptic activity. The output
response of the IO model is calcium concentration, calibrated
using the calcium concentration obtained with the mechanistic
model. Thus, the influence on calcium dynamics of all other
components besides the NMDAr model are captured in the IO
model. The use of the IO model then allows us to model complex
nonlinear calcium dynamics without requiring the large number
of components that would otherwise be necessary when using a
mechanistic model.

To describe the structure of the IO model, we first begin with
a description of the SISO Volterra series:

uSISO (t) = c0 +
L
∑

j=1

c1
(

j
)

vj(t)+
L
∑

j1=1

j1
∑

j2

c2s
(

j1, j2
)

vj1 (t) vj2(t)

+
L
∑

j1=1

j1
∑

j2=1

j2
∑

j3=1

c3s
(

j1, j2, j3
)

vj1 (t) vj2(t)vj3(t) (12)

vj (t) =
M
∑

τ= 0

bj (τ ) x(t − τ ) (13)

Where uSISO is the single input Volterra series up to 3rd order.
L refers to the total Laguerre functions in the SISO model, and
c0, c1, c2s, and c3s refer to the coefficients associated with the 0th,
1st, 2nd, and 3rd order response of the series, respectively. vj (t)
is the convolution of the input to the IO model with the basis
function; x(t−τ ) is the input to the IOmodel; and bj (τ ) is the j-th
basis function. M is the memory window of the IO model, set to
5 s. The coefficients are determined during the training process to
best fit the nonlinear response of calcium dynamics. For our case,
we use the Laguerre basis functions for our model. The Laguerre
equations are used for their orthogonality and convergence
properties, which are characteristic of many biophysiological
systems (Berger and Song, 2010; Ghaderi et al., 2011).

The structure of the Volterra functional series in the MISO
model is similar to the SISO model. In the case of two inputs, the
series consists of the summation of two SISO model components
that account for two different inputs, then adding a cross-kernel
component accounting for possible nonlinear interactions that
may occur due to the presence of two inputs. The equations
become thus:

uMISO (t) = c0 + u1 (t) + u2 (t)

+
L1
∑

k1=1

L2
∑

k2=1

c2r
(

k1, k2
)

vu1
k1 (t) v

u2
k2
(t)

+
L1
∑

k1=1

L2
∑

k2=1

L1
∑

k3=1

c3r1
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k1, k2, k3
)

vu1
k1 (t) v

u2
k2 (t) v

u1
k3 (t)

+
L1
∑

k1=1

L2
∑

k2=1

L2
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k4=1

c3r2
(

k1, k2, k4
)

vu1
k1 (t) v

u2
k2
(t)vu2

k4 (t)

(14)

v
ui
j (t) =

M
∑

τ= 0

bj (τ ) xui (t − τ ) (15)

Here, uMISO is the equation for the multi-input Volterra series,
and u1 and u2 are the single input Volterra series based on uSISO
with the inputs the postsynaptic potential (V), and the NMDA
receptor conductance (gtotalNMDA), respectively. The cross kernel
components involve the number of Laguerre functions L1 and
L2 from the first and second SISO components, respectively, and
at all orders. vu

k (t) is the associated basis functions convolved
with inputs: postsynaptic potential (V), and the NMDA receptor
conductance (gtotalNMDA). cr is then the associated coefficients for
these terms. As a result, the nonlinearities influenced by having
two different inputs are considered.

The IO model must be trained to tune its parameters and
minimize the error with respect to the original system—in this
case, the mechanistic model. The training process consisted in
using the response of the original mechanistic model to random
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Poisson train events given at both low average frequency (2Hz)
and high average frequency (10Hz), with a total of 1,000 events
to ensure a wide range of activity. The low average frequency of
2Hz was chosen to reflect the typical firing rate of hippocampal
CA1 and CA3 neurons during resting state (Berger et al., 1988).
Meanwhile, the high average frequency of 10Hz is used to
account for situations with higher levels of neuron activity
in physiological conditions (Ranck, 1973). The coefficients
associated with the basis functions were determined through
the pseudoinverse matrix multiplication, and the optimal decay
values associated with the Volterra series were estimated using
gradient descent to find the parameters that resulted in the lowest
root mean square error value in the comparison between the
estimated and the actual result from the original model.

Platforms and Computational Tools

The mechanistic calcium model is described in the Systems
Biology Markup Language (SBML) and was constructed using
CellDesigner, a visual diagram editor for SBML (Funahashi et al.,
2008). Our models were then run in MEMORY, a python-
based platform designed for synapse-based simulations using
the libSBML library and the simulation engine libroadrunner
(Somogyi et al., 2015). In our studies which involve measuring
calcium and dendritic potential based on distance from the
soma, we required a neuron model with a detailed dendritic
structure where synapses can be placed along the dendritic
arbor. To achieve this, we use the CA1 pyramidal cell model
designed by Migliore (Migliore and Migliore, 2012) simulated
within NEURON cell simulation platform (Carnevale and Hines,
2006). The IO calcium model first required the coefficients to be
determined, which were calculated within MATLAB; afterwards,
the model was implemented into the MEMORY platform to run
for simulation. Unless otherwise indicated, the input stimulus
provided to synapses during simulation were Poisson 2Hz
randomized input trains, where each synapse was provided a
unique randomized input. All simulations were conducted on a
computer using the Fedora OS, with Intel quad-core 2.67 GHz
processor and 8 Gb RAM.

RESULTS

Calcium Dynamics Calibration and
Validation With Published Experimental
Data
In the resting phase, the average cytosolic calcium concentration
in spines is typically kept at around ∼50 nM, maintained by
various pumps and buffers (Higley and Sabatini, 2012). Calcium
influx occurs during activation of the various channels present
on the spine. There are two major sources of calcium influx:
Glutamate-dependent calcium influx, where calcium flows into
the spine via NMDA receptor channels, and Voltage-dependent
calcium influx, primarily through voltage-dependent calcium
channels. For calibration of the mechanistic calcium model at
the spine, we consider two scenarios: (1) calcium influx due to
presynaptic activation, where the presynaptic terminal releases
glutamate in response to a presynaptic action potential, and (2)
calcium levels when the postsynaptic neuron is fired, leading to a
backpropagating action potential (bAP). The response in (1) has

been measured both in the presence and absence of postsynaptic
depolarization (Sabatini et al., 2002; Higley and Sabatini, 2012).
Our calciummodel has a response of approximately 9 and 0.9µM
in the presence and absence of postsynaptic depolarization,
respectively, which is in line with the experimental data presented
in the literature (Figure 4A). Similarly, calcium levels in response
to bAP were simulated and compared to calcium levels measured
in Sabatini et al. (2002) (Figure 4B). The backpropagation factor
assumed that the spine was a distance of ∼150µm from the
soma, similar to the synapses recorded in the literature. The
simulated results showed an amplitude of approximately 700 nM,
comparable to measurements from Sabatini et al. (2002).

Calcium Fluctuations Vary According to the
Inter-spike Intervals Between Presynaptic
and Postsynaptic Activity of the Neuron
Due to the number of mechanisms in place, the integration
of glutamate-dependent calcium influx and voltage-dependent
calcium influx leads to further complex dynamics in calcium
concentration at the spine. When the membrane potential
increases as a result of postsynaptic events, the magnesium block
is removed in the NMDA receptor channel pore, increasing the
influx of ions when the receptor is activated (Jahr and Stevens,
1990; Ambert et al., 2010). In our model, we measured the
maximum amplitude of calcium concentration at varying pre-
post intervals to determine its influence on calcium dynamics
in the spine (Figure 5). Through the study, we found that
the highest calcium concentration peak reached was 9.88µM,
when the postsynaptic event occurred 3ms after the presynaptic
event. It was also noted that for pre-post intervals, where
the presynaptic event precedes the postsynaptic event, there
is a notable increase in the magnitude in comparison to the
calcium response when there is only presynaptic activation with
no postsynaptic activation. The increase in maximum calcium
amplitude is present when the pre-post interval ranges from 0
to 80ms; beyond 80ms, there appears to be no significant change
in maximum amplitude compared to presynaptic activation only.
In the case of post-pre intervals, where the presynaptic event
follows the postsynaptic event (corresponding to negative delays
in Figure 5), calcium amplitude begins rising sharply starting
at 20ms all the way to 0ms. It is interesting to note that
while our model does not account for synaptic plasticity, the
pre-post interval time-scale dependency of calcium amplitude
on pre-post intervals resembles the well-known spike timing
dependent plasticity (STDP) curve presented by Bi and Poo
(2001), particularly in regards to synaptic strengthening when
post-synaptic activation follows pre-synaptic activation. The
correlation in timescale dependence between the STDP curve
and the presented results from the mechanistic calcium model
suggests the mechanistic model can be considered a plausible
model basis for a plasticity model in the future.

Postsynaptic Calcium Activity Depends on
the Distance Between the Synapse and the
Soma
The experimental studies conducted by Sabatini et al. (2002)
observed synapses located approximately 150µm from the soma.
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FIGURE 4 | Validation of single event responses of the mechanistic model of calcium concentration at the postsynaptic spine. (A) The response of the postsynaptic

spine model to a single presynaptic event with an elicited action potential (in light blue, dashed) that reaches ∼9µM, and without any resulting action potential (in blue,

solid) that reaches ∼1µM, in line with expected amplitudes that have been reported in experimental studies and reviews (Sabatini et al., 2002; Higley and Sabatini,

2012). Neurotransmitter release following a presynaptic event opens NMDA receptor channels, causing calcium influx; the degree of influx is also dependent on

membrane potential due to the voltage-dependent magnesium block. (B) Response to a single postsynaptic backpropagation event by the postsynaptic spine model

(in red) in comparison to reported calcium response seen in the study by Sabatini et al. (2002) (in black). Voltage-dependent calcium channels (VDCC) open in

response to a change in calcium levels—the result shown here is the response due to low-voltage activated VDCC-T type channels in the postsynaptic spine model.

FIGURE 5 | The magnitude of the calcium response changes depending on

the interval between presynaptic and postsynaptic events. Timing interval

between presynaptic and postsynaptic events can influence the amplitude of

calcium dynamics in the mechanistic model of calcium at the postsynaptic

spine. Pre-Post interval is defined as the amount of time in milliseconds the

postsynaptic event (presynaptic neuron activation, NT release is triggered)

occurs after the presynaptic event (postsynaptic neuron activation, the action

potential is backpropagated to the spine). Black dots indicate measured

maximum calcium response for simulations with the designated pre-post

interval. In the inset, A., B., and C. show the simulated calcium profile in

response to different pre-post intervals. The change in maximum calcium

amplitude reflects the kinetics of the NMDAr channel dynamics, where the

voltage dependent magnesium block results in the nonlinear behavior of the

calcium response.

Studies have shown that backpropagation signal properties of
the synapse and dendrite can change depending on distance
(Golding et al., 2001). To observe the influence of distance
on the calcium response, we used the CA1 pyramidal neuron
model by Migliore and Migliore (2012) to simulate 50 randomly
placed synapses on the stratum radiatum, with the closest synapse
having a distance of 72.62µm and the furthest synapse has a
distance of 407.03µm; these values are close to theminimum and
maximum range specified for the stratum radiatum (Megías et al.,
2001). When synapses were randomly placed on the pyramidal
cell model, we measured the dendritic diameter of the synapse
locations. It was found that 45 (90%) of the synapse locations
had a diameter of 0.5µm. This corresponds to the measured
diameters of the thin dendrites located in the stratum radiatum in
experimental findings (Megías et al., 2001). Other diameters were
2, 2, 1.2, 1.2, and 0.18µm. Our simulations from these synapses
showed no influence of the diameter on our measured results. In
our first set of simulations, the synapses were stimulated with a
single presynaptic event, then a fixed single postsynaptic event
following 10ms afterwards. Figure 6A shows a schematic of the
simulation setup. In Figure 6B, we summarize the results where
for each synapse we consider (Figure 6Bi) the resting potential,
Figure 6Bii maximum amplitude of the backpropagating action
potential during stimulation with a pre-post interval of 10ms,
and Figure 6Biiimaximum calcium response during stimulation
with a pre-post interval of 10ms. We note that both the resting
potential from Figure 6Bi and the max bAP from Figure 6Bii are
properties inherent to the neuron model described by Migliore
and Migliore (2012). For Figure 6Biii, we simulate calcium
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FIGURE 6 | Simulated results of dendritic potential and maximum calcium amplitudes as a function of distance from the soma. Fifty random locations were chosen

within the stratum radiatum sections of a pyramidal CA1 cell model by Migliore and Migliore (2012). (A) Diagram of the simulation protocol for stimulating and

(Continued)
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FIGURE 6 | measuring calcium levels for synapses located at different distances from the dendrite. Presynaptic stimulation indicates simulated presynaptic release on

the respective synapse, while postsynaptic stimulation indicates simulation of the soma, inducing a backpropagating action potential. (B) Synapses were stimulated

with a presynaptic release event at time 0, followed by a simulated current injection into the soma of the neuron 10ms following the presynaptic event, triggering an

action potential and invoking backpropagation. (i) The dendritic resting potential values from the 50 locations with respect to distance. On average, the potential is

slightly higher in distal than in proximal locations by approximately 2mV. (ii) In contrast to the baseline potential, the maximum potential reached with the

backpropagation of a single postsynaptic spike becomes more attenuated when further away from the soma. (iii) The influence of the attenuation is seen in the

calcium measurements, where maximum calcium is reduced when moving further away from the soma, with 300µm and beyond the backpropagation becomes

negligible. (C) The pre-post interval was varied between simulations, and the maximum calcium response was measured for each simulation at each synapse location.

The darker lines indicate calcium responses from synapse locations closer to the soma, while lighter lines are responses from locations further away from the soma.

The blue dotted line is where the pre-post interval is 10 milliseconds, reflecting results that are seen in (Bi) through (Biii).

dynamics at the spine using our mechanistic calcium model
described in this manuscript. In Figure 6C, we repeated the
simulations with different pre-post intervals and measured the
maximum calcium response at the spine of each synapse location.

Our simulation results indicated that baseline potential is
slightly increased in distal dendrites than in proximal dendrites,
with a range lying between −73.4mV and −71mV. Such a
difference appears rather small, but still constitutes a notable
trend with respect to distance. Differences up to 2mV between
somatic and dendritic resting potential have been observed
experimentally, and our model falls in line within these
constraints (Golding et al., 2001). Conversely, the maximum
potential reached after pre-post event stimulations decreases with
respect to distance; proximal dendrites are more likely to reach a
higher maximum potential than distal synapses.

Observations of the calcium concentration levels at the
postsynaptic spine indicated that at a pre-post interval of
10ms, the amplitude of the calcium concentration peak in
spines decreased as distance with the soma increased. Again,
beyond 300µmwe found that calcium amplitudes do not extend
much beyond 1µM, likely due to the reduced influence of the
postsynaptic activity. Subsequent simulations where the pre-post
intervals are changed demonstrated that the influence of the
timing between presynaptic and postsynaptic events is more
prominent in proximal synapses than in distal synapses. In
particular, there no longer appears to be any dependency of the
max calcium response on the pre-post interval timing for the
synapses farthest away from the soma. These simulations are in
line with studies on the influence of distance on STDP, where it
was found that backpropagation induces LTP more commonly
in proximal synapses, while at distal synapses LTD occurs more
frequently in response to the same backpropagating potential
(Sjöström and Häusser, 2006).

Results presented here suggest that the bAP is significantly
attenuated in distal spines to the degree that a single pre-post
events does not trigger much calcium influx. At the time of
writing, experimental data of spine calcium levels based on
distance have not been documented in the literature. However,
the results presented on backpropagation are in line with what
has been observed in experimental studies, such as Golding et al.
(2001), where it was observed the bAP amplitude is reduced when
further away from the soma, and especially beyond 300µm. The
reason for attenuation is likely due to two factors: (1) changes
in active conductance with respect to distance from the soma,
where at distal dendrites there is a higher density of potassium
channels and low density of calcium and sodium channels

(Bikbaev et al., 2016); and (2) the branching of the dendritic
arbors, which has also been seen to contribute to the attenuation
of the bAP (Golding et al., 2001). In distal synapses, there may be
other mechanisms at play that may more prominently influence
signaling and plasticity to compensate for attenuated bAP, such
as modulation by glial cells and neurotransmitters (acetylcholine,
brain derived neurotrophic factor, dopamine noradrenaline)
(Edelmann et al., 2017).

A Third Order, Multi-Input Input-Output
Calcium Model Closely Replicates the
Response of the Mechanistic Calcium
Model at Lower Frequency
Each individual component in the mechanistic calcium spine
model has its own degree of computational complexity, and the
integration of all the components also compounds the overall
computational burden. As a result, simulation of the calcium
dynamics for a larger number of spines becomes increasingly
difficult. We demonstrate here the use of an input-output
model based on the Volterra functional series that reduces
computational cost of simulating calcium dynamics. The output
of the model is calcium concentration. The inputs to the
proposed model are membrane potential and NMDA receptor
conductance. The NMDA receptor model is the only component
in the calcium dynamics model that we consider outside of
the IO calcium model, since an IO NMDA model had been
developed before and can be utilized in its place (Hu et al.,
2015). In brief, the IO NMDA model is a single-input-single
output model which uses the Volterra series with Laguerre basis
functions to predict the open state probability of the NMDA
receptor channel (“Open” from Supplementary Figure 1). The
open state probability is then used to calculate the conductance
based on the magnesium blockade equation (Equations 3–5).
However, for the purposes of consistency, in our simulations
we use the kinetic NMDA receptor model to properly compare
results only between the IO calcium model and mechanistic
calciummodel. Training the IOmodel requires keeping track and
replicating calcium concentration profiles from the mechanistic
model in three separate conditions. First, when only presynaptic
stimulation is applied; then, when only postsynaptic stimulation
is applied (back-propagated action potential); and finally, when
both presynaptic and postsynaptic stimulations are applied to
the spine. For each type of stimulation, we used Poisson random
interval trains for 1,000 events at 2Hz and 1,000 events at 10Hz
for a total of 2,000 events, as each input. This gives us a total
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of 8,000 events for the model to be trained on: 4,000 events
in total for presynaptic stimulation, and 4,000 events total for
postsynaptic stimulation. The large number of events at lower
and higher frequencies gives the IO model an adequate range of
nonlinear dynamics to be trained on. At the end of the training
phase, the root mean square (RMS) difference is calculated and
normalized to the maximum value and minimum of mechanistic
model response. The difference between the mechanistic model
and the trained IO model was 6.79% with the given training data.

We then validated the trained IO model with a naive train
of presynaptic and postsynaptic stimulations for both 2 and
10Hz and compared the results with the ones obtained with
mechanistic model. The trained IO model was found to be more
accurate at lower frequencies: the validation error at 2Hz was
8.15%, while the error for 10Hz reached 16.9% (Figure 7). We
have also provided a comparison between the mechanistic model
response and the response from the linear calcium model by
Shouval et al. (2002), which is presented in Figure 8. The linear
calcium model is presented as:

d
[

Ca2+
]

dt
= INMDA (t) − (

1

τCa

[

Ca2+
]

) (16)

[

Ca2+
]

represents calcium concentration. INMDA (t) is the
contribution of calcium current provided by the NMDA
receptors; in our simulations, we used the NMDAr kinetic rate
model described by Erreger et al. (2005) to determine calcium
current from NMDA receptors. This is the same NMDAr model
used for our mechanistic calcium model and IO calcium model.
τCa is the time constant for calcium decay in the linear model.
As a result, all nonlinearities associated with NMDAr kinetics
are also being accounted for in the simulation with the linear
calcium model. We calibrated the parameter to 20ms, which
best approximates the decay of the first order response to
the mechanistic model. After calibration, we simulated Poisson
random input events with an average frequency of 2 and 10Hz to
the linear model to compare with the mechanistic calciummodel
response. The difference is shown in Figure 8. The root mean
square difference between the two models is very large: 80.52%
for the 2Hz average response, and 89.75% for the 10Hz average
response. This demonstrates that, even with the nonlinear
dynamics of the NMDAr model accounted for, considerable
nonlinearities in the mechanistic calciummodel exist that cannot
be replicated in a linear calcium model. In particular, the results
from the linear model significantly undershoots the calcium
dynamics seen in the mechanistic model as demonstrated in
Figures 8C,D. Because the nonlinear dynamics of the NMDA
receptor channel have been accounted for, these differences in
nonlinearity are more likely a result of the buffers, VDCC, and
calcium influx dynamics simulated within the mechanistic model
but not in the linear model. Meanwhile, the nonlinear dynamics
are reproduced in the IOmodel, where the RMS error was shown
to be much lower.

Following validation, the computational time to run the IO
model and the mechanistic model was determined based on
number of spines with 2Hz Poisson random interval train inputs.
We find that the IOmodel finished the simulations faster than the

mechanistic model, where the runtime of the IO model required
around half the time to finish a simulation compared to the
mechanistic model (Figure 9).

Another advantage of the IO calcium model is that the
framework of the input-output model is easily implemented and
adaptable to other simulation platforms. To test the performance
of the IO calcium model simulated as an embedded mechanism
within the NEURON engine, we adapted the IO model into a
module file for the NEURON platform and compared cell level
simulations based on number of spine instances. Two types of
models were simulated with different spine configurations: (1)
spines using both an NMDA 8 state model and the IO calcium
model, and (2) spines with only the NMDA 8 state model and no
IO calcium model. Simulation protocols with 10, 100, 500, 1,000,
5,000, and 10,000 spine instances were conducted; simulations
were run in fixed time step of 0.1ms, a randomized poisson input
train of 2Hz frequency, and the overall simulated time period is
for 20 s. Simulation times were then benchmarked to determine
how much of a computational burden is added when including
IO calcium model within spines. Simulations were repeated 10
times each to derive the standard deviation in the simulation
time. Results are shown in Figure 10. Our simulations concluded
that at 10,000 spines, the computational burden increases from
9.3 to 13.3 h. For details on the variation in the benchmarks, the
standard deviation of the benchmarking data from Figures 9, 10
are plotted in Supplementary Figure 4. While the increased
required simulation time is not insignificant, the IO framework
still gives a viable option for simulating complex postsynaptic
calcium dynamics on a larger scale—with numerous spines on
a neuron or a neuron network.

DISCUSSION

This article describes the development and simulation of a
model of the postsynaptic calcium concentration in the spine.
The model presented is an integration of various mechanisms
which shape the dynamics of calcium concentration at the
postsynaptic spine, comprising elements that contribute to
calcium influx, calcium extrusion, and buffering. Experimental
studies on spine signaling have focused on calcium more than
any other signaling molecule within active spines (Higley and
Sabatini, 2012), as calcium dynamics and its effectors (NMDA,
VDCC, etc.) have been repeatedly shown to strongly influence
plasticity and learning. Calcium has also been implicated as a role
player in neurodegenerative diseases such as Alzheimer’s Disease
(Khachaturian, 1994; Alberdi et al., 2010). Our goal in modeling
calcium is to: (1) explore mechanisms and details underlying
calcium dynamics that would otherwise be difficult to achieve
with experimental studies alone (i.e., influence of pre-post timing
and distance on spine calcium, where the researcher must take
multiple time measurements at multiple spine locations, would
be difficult to measure in experimental setups), and (2) reduce
computational complexity of the calcium model to enable multi-
scale simulations. We have presented a viable model which is
supported by experimental data. We configured the model to
replicate a particular type of synapse—a glutamatergic CA3-CA1
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FIGURE 7 | Comparisons between the calcium responses from the mechanistic model and the IO calcium model. (A,B) Shows the responses of the mechanistic

model (in blue) and the trained IO calcium model (in red) over the course of 20 s given Poisson randomized presynaptic and postsynaptic events with an average of 2

and 10Hz, respectively. The difference between the mechanistic and the IO model are plotted beneath each response. The calculated RMS difference between the

two models is 8.15% for the 2Hz response and 16.9% for the 10Hz response. (C,D) Shows a direct comparison between the calcium response values from the

mechanistic model (x axis) and the IO calcium model (y axis) from the 2 and 10Hz responses, respectively.
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FIGURE 8 | Comparison between the linear calcium model (Shouval et al., 2002) and the mechanistic calcium model. (A,B) Shows the responses of the mechanistic

model (in blue) and the linear calcium model (in orange) over the course of 20 s given Poisson randomized presynaptic and postsynaptic events with an average of 2

and 10Hz, respectively. The root mean square difference between the two models is 80.52% for the 2Hz average response, and 89.75% for the 10Hz average

response. (C,D) Shows a direct comparison between the calcium response values from the mechanistic model (x axis) and the linear calcium model (y axis) from the 2

and 10Hz responses, respectably.
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FIGURE 9 | Comparison between the Mechanistic and IO model runtime vs.

number of spines. Each spine represents the kinetics for synaptic transmission

as well as calcium dynamics, which is either represented by the mechanistic

calcium model or the IO calcium model. Benchmarking was conducted at 5,

10, 15, 20, 30, 40, and 50 spines, and simulations were repeated 10 times to

derive the standard deviation of the runtimes. For each simulation, a 2Hz

Poisson random interval train input was given to all synapses. Overall, the IO

spine model required on average a little less than half the runtime needed to

finish a simulation compared to the mechanistic model.

FIGURE 10 | Benchmarking the IO model within the NEURON simulation

platform. The IO model was re-implemented as a module file usable within the

NEURON platform and simulated on a compartmental neuron model for 20

simulated seconds at 0.1ms timesteps. The number of spines was varied for

each simulation ranging from 10 to 10,000, where a spine was defined as a

kinetic NMDA 8 state model, either with or without the IO calcium model and

the simulation runtime is plotted here. Each simulation was repeated 10 times

each to derive the standard deviation, shown as error bars in the figure.

synapse of a pyramidal cell neuron; it incorporates the nonlinear
dynamics that result from interactions between the components
that contribute to spine calcium concentration.

Beyond experimental validation, we presented simulated
results with the mechanistic model which show changes
in spine calcium activity as a function of presynaptic and
postsynaptic intervals—a standard protocol for inducing spike-
timing dependent plasticity. In STDP, the weight of a synapse
changes after repeated identical pre-post stimulations at given
pre-post intervals. In hippocampal CA1 glutamatergic spines,
intervals where presynaptic stimulation precedes postsynaptic
stimulation induce synaptic potentiation, with the strength of
the potentiation inversely proportional to the interval distance
between the pre- and post-stimulation (Bi and Poo, 2001).
Our model demonstrates that similarly, calcium influx is
significantly amplified when presynaptic stimulation precedes
postsynaptic stimulation, and that the amplitude is also inversely
proportional to the interval size. Many plasticity associated
signaling cascades are activated by calcium—for example, AMPA
receptor upregulation into the spine is a known indicator for
synaptic strengthening (Zhabotinsky et al., 2006). This process is
initiated by spine calcium binding with CaMKII and triggering
secondary messenger pathways. Likewise, recruitment of actin
will lead larger spines—this, too has been associated with calcium
interaction (Araya, 2014).

It is thought that the major influence on the calcium
brought about by presynaptic/postsynaptic interactions is the
NMDA receptor channel kinetics, but we have demonstrated
in our simulations that the NMDAr channel alone is not the
sole contributor of the nonlinear dynamics of calcium in the
spine. The role of NMDAr in synaptic activity is considerably
important: it has been shown experimentally that NMDA
contributes to synaptic plasticity and LTP (Sakimura et al., 1995;
Grover et al., 2009; Larson and Munkácsy, 2015). Many LTP
models are based around this hypothesis, where NMDAr models
are used to represent calcium influx, and repeated stimulation
leads to calcium induced plasticity (Shouval et al., 2002; Standage
et al., 2014). However, the NMDA representation in such
models is a simple, linear representation where the NMDA-
based calcium influx is represented as a ratio proportional to
the bAP. This poorly reflects on nonlinear calcium dynamics in
two ways: (1) the simplified version of NMDAr dynamics ignores
important dynamical features that are known to be associated in
NMDAr channels, such as desensitization (Mayer et al., 1989),
which is included as a state in the NMDAr kinetic model used in
our mechanistic calcium platform, and the magnesium blockade
(Calabresi et al., 1992) which is instead roughly approximated
using a BPAP curve; (2) there is no influence or contribution
from other elements or properties from the spine, which can
drastically alter the calcium response. Meanwhile, our model
integrates validated channel kinetics within the confines of the
spine compartment. Thus, our mechanistic model can consider
the nonlinear aspects of calcium influx which are influenced
by NMDAr channels, along with other channels, pumps, and
buffers that regulate spine calcium concentration—all of which
influence observed calcium levels at the spine. Especially to
note is the spine volume and the buffers within the spine.
Changes to volume can result in undercompensation (in larger
volumes) or overcompensation (in smaller volumes) of calcium
concentration, unless the mechanisms which govern calcium

Frontiers in Computational Neuroscience | www.frontiersin.org July 2018 | Volume 12 | Article 5849

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Hu et al. Spine Model of Calcium Dynamics

dynamics are scaled appropriately (O’Donnell et al., 2011).
Furthermore, experimental evidence has shown that changes in
volume also can result in change in AMPAr expression and
upregulation (Noguchi et al., 2011), which is also important for
synaptic plasticity. Such mechanisms revolved around volume
are ignored in linear calcium concentration models, but can
be studied in future simulations using the mechanistic model.
Buffering provides another layer of complexity that will influence
the amplitude and decay of the calcium response, yet there
is no consideration for buffers in the linear calcium models.
Our results demonstrate that, in the study of spine calcium,
these components are important contributors to the nonlinear
response of calcium.

The investigation into calcium dynamics at the postsynaptic
spine is our latest study in the use of computational synaptic
modeling platform to better understand synaptic activity and
signaling: (1) We modeled the impact of astrocytic glutamate
uptake (Allam et al., 2012) and ionotropic receptor distribution
(Allam et al., 2015) on synaptic transmission in glutamatergic
CA1 synapses; (2) Our synapse platform has been adapted
to cellular and network levels in simulation (Bouteiller et al.,
2011) to observe effects of nonlinear activity of synapses
in a network simulation; (3) Large scale simulation models
containing millions of neurons have also been developed within
our research lab (Hendrickson et al., 2015); (4) and efforts
had been made to adapt the complex nonlinear postsynaptic
response of mechanistic synapses to large scale simulations
using input-output modeling (Hu et al., 2015). Our modeling
platform is consistently under expansion, with current projects
considering the effects of modulators such as acetylcholine
and how intracellular calcium stores influence metabolism and
pump activity. The mechanistic and IO calcium model we
describe in this manuscript expands our modeling platform to
simulate not only synaptic transmission, but complex calcium
dynamics as well. From here on, we plan to investigate and
implement mechanisms that are based on spine calcium (the
CaMKII signaling pathway, for example) and move to the next
hierarchical level of calcium dynamics, the calcium response at
the dendrite.

Expansion into large-scale, multi-scale modeling with
complex biologically accurate synapse dynamics requires
reduction of the computational burden while minimizing loss in
accuracy. Spine calcium plays a key role in synaptic plasticity and
influences communication between neurons, and understanding
how calcium dynamics change network properties on a large
scale can give us a better sense of the mechanisms that give
rise to plasticity. Key downstream processes are influenced by
the slightest changes in calcium dynamics (timing, magnitude,
frequency, decay) (Evans and Blackwell, 2015). For example, an
increase in spine calcium levels can activate signaling cascades
that lead to either LTP or LTD induction (Lisman, 1989;
Artola et al., 1990; Malenka and Bear, 2004); however, it is also
observed in experiments that there is not a simple threshold
that distinguishes when LTP or LTD occurs during calcium
influx (Neveu and Zucker, 1996)—emphasizing even more
the need of an integrated model of varying calcium dynamics,
not just a linear model based on thresholds. Hence, we believe

accurate representations of nonlinear calcium are required not
only at the subcellular scale models, but on larger network-level
models as well. Our model can provide an accurate reflection
on the magnitude, duration, and location of spine calcium
response—nonlinear dynamics that have been described to be
more and more important for calcium based synaptic plasticity
(Evans and Blackwell, 2015). Furthermore, neurodegenerative
disease are often accompanied by an imbalance in calcium levels
(Arundine and Tymianski, 2003). Nonlinear calcium models can
be modified to represent pathological conditions, and multi-scale
modeling can help identify the network level changes that occur
with neurodegeneration and disease.

However, the computational cost of using many instances of
the mechanistic calcium model in full exceeds the computational
capacity of even the most recent high-performance computers;
a method to improve computational efficiency is needed. Our
previous work considers the use of the Volterra functional series
to develop an IOmodel for the postsynaptic response to a synapse
(Hu et al., 2015). Using the same input-output framework, we
adapted this method to reduce the computational burden of
modeling calcium dynamics. We have shown that using the IO
model reduces the required simulation time by two to three-
fold compared to the mechanistic model within our MEMORY
platform. We also demonstrate that the IO framework can be
easily adapted into other platforms such as NEURON, where,
in our setup, 10,000 instances of the IO calcium model with
the NMDAr kinetic model can be simulated on a complex,
morphological, compartmental cell model, resulting in 1 h
additional simulation time compared to the same protocol using
the NMDAr kinetic model but without the IO calcium model.
However, the current IO model as described has a limitation
that must be addressed: it is limited to a 3rd order model, with
higher order models requiring exponentially increasing memory
requisites. Spine calcium dynamics become progressively more
nonlinear when given higher frequency input, such as high
frequency stimulation protocols often used in LTP induction.
As such, other IO model frameworks are being investigated,
such as the Laguerre-Volterra network structure (Geng and
Marmarelis, 2016), as possible enhancements leading to even
more efficient computational modeling of complex dynamic
systems.

The concept of using computer simulations to study
postsynaptic calcium dynamics is not new. There have been
several computational models of spine calcium that have been
developed previously, and their work has provided useful insights
on the dynamics and importance of calcium (Shouval et al.,
2002; Standage et al., 2014; Bartol et al., 2015). Generally,
current calcium models are divided into two categories: (1)
Phenomenological models which describe very few mechanistic
aspects of calcium dynamics, but help understand its influence
on synaptic plasticity and LTP (Shouval et al., 2002; Naoki
et al., 2005; Zhabotinsky et al., 2006; Standage et al., 2014);
and (2) detailed, stochastic models which describe calcium all
the way down to each individual ion (Bartol et al., 2015). In
(1), the models do not extensively consider calcium dynamics
at length and may even consider calcium as a linear system.
Instead, models from (1) evaluate the downstream effects of
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calcium on important synaptic processes such as plasticity. In
contrast, the detailed calcium model in (2) considers a complete
reconstruction of a small area on the CA1 pyramidal cell neuron,
including specific channel densities and exact volume and shape
reconstruction of a 6 × 6 × 5 µm3 cube of neuropil in a
Monte Carlo based stochastic simulator. However, such a model
is difficult to adapt outside of the scope of the reconstructed
area and is computationally intensive, making it unsuitable for
larger scale simulations. Themodels in this article help bridge this
discrepancy: (1) the mechanistic model is capable of replicating
complex non-linear interactions between the elements that
shape spine calcium dynamics, and (2) the input-output model
provides a method to simulate these complex calcium dynamics
on a larger scale.

The spine is a constantly changing organelle as a result
of development, plasticity, and/or pathological conditions. The
current spine calcium model as described here represents only a
snapshot of a particular spine, constrained by static parameters
based on the averaged responses from experimental data. Future
renditions of our model will not be limited to a single type of
synapse. Our spine calcium model has potential to be adapted
to varying physiological states (i.e., different morphologies
and channel distributions) and pathological conditions (such
as Alzheimer’s disease). Furthermore, the model has potential
applications in drug discovery, for in silico testing of compounds
that modulate calcium (either directly or via channel/pump
interactions). The calcium model is an expansion of the synapse
model framework that is constantly being built upon to provide

extensive and detailed multi-level models that can help explore
the pathways and processes of that take place in the spine
and influence synaptic plasticity, neuron communication, and
pathological processes.

AVAILABILITY

Model scripts and code will be made available in the future on the
EONS synaptic platform modeling site, www.synapticmodeling.
com.
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One of the most influential synaptic learning rules explored in the past decades
is activity dependent spike-timing-dependent plasticity (STDP). In STDP, synapses
are either potentiated or depressed based on the order of pre- and postsynaptic
neuronal activation within narrow, milliseconds-long, time intervals. STDP is subject to
neuromodulation by dopamine (DA), a potent neurotransmitter that significantly impacts
synaptic plasticity and reward-related behavioral learning. Previously, we demonstrated
that GABAergic synapses onto ventral tegmental area (VTA) DA neurons are able
to express STDP (Kodangattil et al., 2013), however it is still unclear whether DA
modulates inhibitory STDP in the VTA. Here, we used whole-cell recordings in rat
midbrain slices to investigate whether DA D1-like and/or D2-like receptor (D1R/D2R)
activation is required for induction of STDP in response to a complex pattern of spiking.
We found that VTA but not Substantia nigra pars compact (SNc) DA neurons exhibit
long-term depression (LTDGABA) in response to a combination of positive (pre-post) and
negative (post-pre) timing of spiking (a complex STDP protocol). Blockade of either
D1Rs or D2Rs prevented the induction of LTDGABA while activation of D1Rs did not
affect the plasticity in response to this complex STDP protocol in VTA DA neurons.
Our data suggest that this DA-dependent GABAergic STDP is selectively expressed
at GABAergic synapses onto VTA DA neurons which could be targeted by drugs of
abuse to mediate drug-induced modulation of DA signaling within the VTA, as well as
in VTA-projection areas, thereby affecting reward-related learning and drug-associated
memories.

Keywords: ventral tegmental area, VTA, spike-timing dependent plasticity, STDP, synaptic plasticity, long-term
depression, LTD, GABAergic synapses

Abbreviations: AKAP, A kinase anchoring protein; CaN, Calcineurin; DA, dopamine; D1R, dopamine D1-like receptor;
D2R, dopamine D2-like receptor; IPSC, Inhibitory postsynaptic current; LTD, long-term depression; LTP, Long-term
potentiation; LFS, Low frequency stimulation; NAc, Nucleus accumbens; bAPs, propagating action potentials; PKA, protein
kinase A; RMTg, rostromedial tegmental area; STDP, Spike-timing dependent plasticity; SNc, Substantia pars compacta;
VTA, Ventral tegmental area.
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INTRODUCTION

In the past few decades, synaptic plasticity has emerged as
an important candidate mechanism for drug-induced changes
in reward-related neural circuits where addictive drugs usurp
synaptic mechanisms underpinning reward/motivational or
aversive behavioral learning to alter dopamine (DA) signaling
from the ventral tegmental area (VTA), a critical brain region
involved in reward and motivation (Pignatelli and Bonci, 2015;
Langlois and Nugent, 2017). Drug-induced synaptic plasticity
has attracted considerable interest in studies of drug addiction
because strong and durable memories associated with drug
experience are demonstrated to promote compulsive drug taking,
craving and relapse.

Experimental synaptic plasticity can be induced using
traditional induction paradigms as well as spike-timing-
dependent plasticity (STDP) protocols. STDP is considered
a physiological form of plasticity that relies on the relative
timing of neuronal activity (Feldman, 2012). Specifically, STDP
at glutamatergic and GABAergic synapses within DA-related
neural circuits likely presents a critical synaptic learning rule for
encoding natural reward-related learning and memory (Pawlak
et al., 2010; Langlois and Nugent, 2017; Foncelle et al., 2018).
The Hebbian learning rules of STDP dictates that long-term
potentiation (LTP) is induced when presynaptic activity precedes
postsynaptic spiking (pre-post spiking, positive timing), whereas
reversing the order induces long-term depression (LTD, post-pre
spiking, negative timing; Dan and Poo, 2006; Caporale and
Dan, 2008). Recently, it has become clear that GABAergic
synaptic plasticity in addition to the widely studied glutamatergic
plasticity is targeted by drugs of abuse and drug-induced
modulation of this plasticity could critically influence DA
neuronal activity and DA release in VTA projection areas,
as well as in local VTA microcircuits (Langlois and Nugent,
2017). We previously demonstrated that GABAergic synapses
onto VTA DA neurons are able to exhibit a Hebbian
heterosynaptic STDP where near-coincident and correlated
activities of presynaptic glutamatergic neurons with postsynaptic
DA neurons result in expression of LTP and LTD (that we
call LTPGABA and LTDGABA). More importantly, we found
that GABAergic synapses are predisposed to undergo LTDGABA
in response to spike trains (a complex STDP protocol that
includes bursts of a combination of pre-post and post-pre
spiking; Kodangattil et al., 2013). Somatodendritically released
DA within the VTA acts on DA D2-like receptors (D2Rs)
and presents an important mechanism for controlling the
excitability of DA neurons (Beckstead et al., 2004). There
is also an emerging neuromodulatory role for DA in STDP
(Pawlak et al., 2010). In fact, our previous study (Dacher
and Nugent, 2011) demonstrated that the induction of
LTD in response to a traditional LTD pairing protocol (a
combination of low frequency stimulation (LFS) with modest
depolarization) is dependent on D2R activation. Here we
sought to explore the potential effects of pharmacological
manipulation of DA transmission within the VTA on the
induction of GABAergic STDP in response to complex STDP
protocols. We found that DA action through either D1Rs

or D2Rs is necessary and sufficient for the induction of
LTDGABA in VTA DA neurons and that this DA-dependent
plasticity is limited to GABAergic synapses in the VTA. Given
that drugs of abuse increase DA neurotransmission within
the VTA (Bradberry and Roth, 1989; Klitenick et al., 1992;
Campbell et al., 1996; Rahman et al., 2003), our present
findings provide an inhibitory synaptic mechanism by which
drug-induced alteration of local VTA DA signaling could affect
DA cell excitability and subsequently DA release in VTA DA
circuits.

MATERIALS AND METHODS

Brain slice preparation and electrophysiological recordings were
conducted as described previously from 14 days to 21 days old
Sprague-Dawley rats (Dacher et al., 2013; Kodangattil et al.,
2013). Briefly, animals were anesthetized using isoflurane and
quickly decapitated. The brain was rapidly dissected and placed
into ice-cold artificial cerebrospinal fluid (ACSF) containing
(in mM): 126 NaCl, 21.4 NaHCO3, 2.5 KCl, 1.2 NaH2PO4,
2.4 CaCl2, 1.00 MgSO4, 11.1 glucose, 0.4 ascorbic acid, saturated
with 95% O2/5% CO2. Horizontal midbrain slices containing
the substantia nigra pars compact (SNc) and VTA were cut
(250 µm) and incubated in ACSF during at least 1 h at
34◦C. Slices were then transferred into a recording chamber in
ascorbic acid-free ACSF at 28◦C. All experiments were carried
out in accordance with the National Institutes of Health (NIH)
guidelines for the care and use of laboratory animals and were
approved by the Uniformed Services University Institutional
Animal Care and Use Committee. All efforts were made to
minimize animal suffering, and to reduce the number of
animals used.

GABAA inhibitory post-synaptic currents (IPSCs) were
recorded using a patch amplifier (Multiclamp 700B) under
infrared-differential interference contrast microscopy. Data
acquisition and analysis were performed using DigiData 1440A
and pClamp 10 (Molecular Devices, Union City, CA, USA).
In all experiments, 6,7-dinitroquinoxaline-2,3-dione (DNQX,
10 µM) and strychnine (1 µM) obtained from Sigma were
added to block AMPA- and glycine-mediated synaptic currents,
respectively to pharmacologically isolate GABAA IPSCs that
were completely blocked by the GABAA receptor antagonist,
bicuculline. Paired GABAA IPSCs were evoked using a bipolar
stainless steel stimulating electrode placed 200–500 mm rostral
to the recording site in the VTA at 0.1 Hz (duration 100 µs,
50 ms inter-stimulation interval) and recorded using KCl
containing electrodes and whole-cell voltage-clamp in neurons
held at −70 mV. Pipettes were filled with (in mM): 125 KCl,
2.8 NaCl, 2 MgCl2, 2 ATP-Na+, 0.3 GTP-Na+, 0.6 EGTA and
10HEPES (pH adjusted to 7.28 with KOH, osmolarity adjusted to
275–280mOsmwith sucrose). Stimulation intensity was adjusted
to evoke baseline synaptic responses ranged between −200 pA
and −800 pA (approximately 50% of maximal responses).
The cell input resistance and series resistance were monitored
through the experiment and if these values changed by more
than 10%, data were not included. The appearance of an Ih
current (≥50 pA) in response to stepping cells from −50 mV to
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FIGURE 1 | Ventral tegmental area (VTA) but not substantia nigra pars compact (SNc) dopamine (DA) neurons express spike-timing-dependent (STD)-long-term
depression (LTDGABA) in response to a complex spiking spike-timing-dependent plasticity (STDP) protocol. Panel (A) represents sample bursts of the complex
spiking protocol for induction of LTDGABA. (B,C) Single and average experiments showing induction of STDP recorded in Ih(+) (presumably DA) neurons in VTA (filled
square symbols) or SNc (filled circle symbols). At the arrow, STDP was induced. Insets: averaged inhibitory postsynaptic currents (IPSCs) before and 25 min after
STDP protocol. In this and all figures, 10 consecutive traces from each condition were averaged for illustration as inset. Calibration: 100 pA, 25 ms (VTA: 75 ± 1.1%
of pre-STDP values, F(3,22) = 7.5, p < 0.0001, n = 8; SNc: 103 ± 2.4% of pre-STDP values, F(5,70) = 1.26, n = 14). Values shown throughout figure are the
mean ± SEM.

−100 mV was used to identify putative SNc/VTA DA neurons.
As a standard protocol in our lab including the present study we
consistently record from a region of the VTA (in the dorsal and
caudal VTA) that is shown to contain mostly nucleus accumbens
(NAc)- projecting DA neurons with Ih positivity (Margolis
et al., 2006a,b; Zhang et al., 2010). In addition we consistently
consider other electrophysiological criterions for identification
of DA neurons (AP characteristics and frequency) that are
also commonly used to identify putative DA neurons (Johnson
and North, 1992; Dacher et al., 2013; Kodangattil et al.,
2013).

To induce STDP, we first obtained a stable baseline for 10 min
and then DA cells were taken to current clamp and received
trains of a sub-threshold presynaptic stimulation paired with
back propagating action potentials (bAPs/postsynaptic spiking)
at 5 Hz. To evoke bAPs, cells were injected with direct somatic
currents of 1.5 nA for 5 ms through patch pipettes. STDP

protocols consisted of 30 trains of five bursts repeated at 0.1 Hz.
To induce LTDGABA using post-pre pairing, each burst was
composed of three bAPs at 50 Hz followed by a single presynaptic
stimulation (negative timing,−5 ms). A complex STDP protocol
was used to induce LTDGABA where each burst composed of three
bAPs preceded with three presynaptic stimulations at 50 Hz (the
complex pairing protocol included both positive timing, +5 ms
and negative timing, −15 ms, Figure 1A). Values are presented
as means ± SEM. Statistical significance was assessed using
repeated measures ANOVA with significance level of p < 0.05.
Levels of STDP are reported as averaged IPSC amplitudes for
5 min just before STDP induction compared with averaged IPSC
amplitudes during the 5 min period from 25 min to 30 min
after protocol. Interleaved control experiments were performed
with experiments in which drugs were bath applied. Salts and
all drugs were purchased from Sigma-Research Biochemicals
International or Tocris Bioscience.
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RESULTS

VTA but Not SNc DA Neurons Exhibit
LTDGABA in Response to a Complex Pairing
STDP Protocol
Previously, we showed that the synaptic efficacy of GABAergic
synapses onto VTADA neurons can be bi-directionally modified
by pre/post spike pairing in a narrow time window (Kodangattil
et al., 2013; Authement et al., 2015). Here, we used amore natural
and complex pattern of spiking (Figure 1A) to induce STDP
at GABAergic synapses onto midbrain VTA/SNc DA neurons.
Consistent with our previous results (Kodangattil et al., 2013), we
were able to induce LTDGABA in VTA DA neurons in response
to a combination of both positive (+5 ms) and negative (−15 ms)
timing (Figure 1B). On the other hand, we found that SNc DA
neurons did not exhibit any form of plasticity in response to the
same complex STDP protocol (Figure 1C). Given this finding, we
only examined the effects of D1R/D2R drugs on the induction of
STDP (LTDGABA) in VTA DA neurons.

Induction of LTDGABA in the VTA by STDP
Protocols Requires D2R Activation
LTDGABA at GABAergic synapses onto VTA DA neurons can
also be triggered in response to a traditional LTD pairing
paradigm using LFS paired with modest depolarization (Dacher
and Nugent, 2011). LTDGABA triggered in response to both
LFS-pairing paradigm and STDP protocols is dependent on
the postsynaptic scaffolding A-kinase anchoring protein 79/150
(AKAP79/150) signaling complex which selectively controls
GABAergic synaptic strength and mediates the opposing effects
of protein kinase A (PKA) and calcineurin (CaN) on GABAA
receptor trafficking in VTA DA neurons (Dacher and Nugent,
2011; Dacher et al., 2013; Authement et al., 2015). Since
LTDGABA in response to the LFS-pairing LTD paradigm is
also D2R-dependent and modulated by morphine (Dacher
and Nugent, 2011), we tested whether LTDGABA induced by
STDP protocols also requires D2R activation. We attempted to
induce LTDGABA by a complex STDP protocol or a post-pre
STDP protocol as previously described (Kodangattil et al., 2013;
Authement et al., 2015) while a D2R antagonist, sulpiride (10
µM), was present in the perfusate throughout the experiment.
Sulpiride was able to completely block the induction of LTDGABA
in response to the complex STDP protocol (Figure 2A) as well
as post-pre STDP protocol (Figure 2B) suggesting that both
the pairing and STDP protocols trigger this D2R-dependent
LTDGABA. It should be mentioned that D2R activation by a D2R
agonist results in a rundown in GABAergic IPSCs (a chemical
form of LTD) in VTA DA neurons that is dependent on CaN
activity upon inhibition of PKA-AKAP150 anchoring (Dacher
et al., 2013).

Induction of LTDGABA by a Complex STDP
Protocol Also Requires D1R Activation
The roles of D1Rs and D2Rs have been implicated in
induction and modulation of STDP (Pawlak and Kerr, 2008;
Shen et al., 2008; Pawlak et al., 2010; Xu and Yao, 2010; Ruan

FIGURE 2 | DA D1-like receptor (D1R) and D2R activation is required for
induction of LTDGABA in response to the complex STDP protocol. Panels
(A–D) show average experiments of STDP with sample traces from Ih(+)

neurons in response to the complex or post-pre STDP protocols in drug-free
artificial cerebrospinal fluid (ACSF; controls, filled square symbols) or drug bath
application (open square symbols) experiments. Control LTDGABA group in
response to the complex STDP protocol is similar to Figure 1B in (A,C,D)
Representing the interleaved control experiments conducted with drug-treated
slice experiments. (A) The D2R antagonist blocked the induction of LTDGABA in
response to the complex protocol (sulpiride: 104 ± 1.8% of pre-STDP values,
F(4,14) = 0.33, n = 7). (B) Sulpiride prevented the induction of LTDGABA in
response to the pre-post protocol while control slices showed robust LTDGABA

(control: 69 ± 1.8% of pre-STDP values, F(4,25) = 7.01, p < 0.0001, n = 7;
sulpiride: 96 ± 1.5% of pre-STDP values, F(4,32) = 0.63, n = 8). (C) The D1R
agonist did not affect the induction of LTDGABA in response to the complex
protocol (SKF81297: 75 ± 1.2% of pre-STDP values, F(3,12) = 3.7, p < 0.05,
n = 7). (D) The D1R antagonist blocked the induction of LTDGABA in response
to the complex protocol (SCH23390: 89 ± 1.04% of pre-STDP values,
F(4,32) = 2.01, n = 10). Calibration: 100 pA, 25 ms.
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et al., 2014). Although DA via both D1R and D2R may exert
opposing effects on STDP where D1Rs enable the induction of
LTP and D2Rs mainly favor LTD, the cooperative actions of
both DA receptors in induction of LTD of STDP have been
shown (Xu and Yao, 2010). Here we tested our hypothesis that
D1R activation blocks LTDGABA and reverses the direction of
plasticity to promote LTPGABA. To test this, we attempted to
induce LTDGABA in response to the complex pairing STDP
protocol in the presence of a D1R agonist (SKF81297, 10 µM)
or a D1R antagonist (SCH233390, 10 µM). While LTDGABA was
unaffected in the presence of the D1R agonist (Figure 2C), the
D1R antagonist blocked the induction of LTDGABA (Figure 2D)
suggesting that D1R activation also facilitates the induction of
LTD at GABAergic synapses onto VTA DA neurons.

DISCUSSION

Here, we have extended our previous studies on GABAergic
STDP in VTA DA neurons to investigate how local VTA DA
signaling through somatodendritic release of DA during STDP
within the VTA would affect STDP. We found that while
GABAergic synapses onto VTADA neurons were able to express
LTDGABA in response to a complex STDP protocol, GABAergic
synapses onto SNc DA neurons did not show any form of
plasticity in response to the same protocol. This suggests that
this form of inhibitory plasticity may be selectively expressed
at GABAA synapses in the VTA. LTDGABA triggered by our
complex STDP protocol or a post-pre STDP protocol in VTADA
neurons was dependent on D2R activation similar to LTDGABA
triggered in response to a typical LFS-pairing protocol shown
by our group (Dacher and Nugent, 2011). D1R activation seems
to commonly facilitate the induction of LTP in response to
STDP protocols although it could also contribute to induction
of LTD of STDP at the synapse (Pawlak and Kerr, 2008; Zhang
et al., 2009; Ruan et al., 2014; Brzosko et al., 2015). Thus, we
further examined whether boosting endogenous DA action on
D1R activity during STDP induction through bath application of
a D1R agonist could reverse the direction of plasticity towards
LTP. Not only were we unable to trigger LTP in response
to the complex protocol in the presence of D1R agonist, the
induction of LTDGABA was completely unaffected ruling out
the possibility of masking LTD by a simultaneous induction
of a D1R-dependent LTP at these synapses. Interestingly, we
observed a blockade of LTDGABA in response to the complex
protocol in the presence of D1R antagonist suggesting that local
endogenous DA could engage D1Rs to promote this plasticity.
The selectivity of induction of GABAergic STDP at GABAergic
synapses in the VTA vs. the SNc may not be surprising
considering the distinct anatomical and functional populations
of VTA and SNc DA neurons (Beier et al., 2015; Shin et al.,
2017). Given that VTA DA neurons are found to be more
heterogeneous than SNc DA neurons (Margolis et al., 2006b) and
the postsynaptic nature of DA-dependent LTDGABA triggered
at GABAergic synapses in the VTA (Dacher and Nugent, 2011;
Dacher et al., 2013; Kodangattil et al., 2013; Authement et al.,
2015), our data suggest that the expression of this STDP as a
uniform property of GABAA synapses in the VTA may be due

to distinct intrinsic characteristics of the VTA microcircuits that
differ from the SNc local circuitry. Consistently, it has been
shown that extracellular DA levels released within the VTA and
SNc differ as the dendritic release of DA within the VTA is
far greater than DA release within the SNc (Rice et al., 1997;
Ford et al., 2010). Therefore, we propose that this regional
difference in release properties of DA at dendritic locations may
underlie the selective expression of STDP in the VTA. Given
that activation of either D1Rs or D2Rs by endogenous DA
was sufficient to trigger this plasticity and considering different
localization of DA receptors in VTA neuronal populations and
presynaptic terminals innervating VTA neurons, it remains to
be known how and where the activation of either presynaptic
or postsynaptic DA receptors mediate this plasticity in the VTA.
GABAA synapses onto VTA DA neurons mainly originate from
VTA GABAergic neurons (that comprise 30% of VTA neuronal
populations) and rostromedial tegmental area (RMTg) neurons
(Barrot et al., 2012). D2Rs are mainly expressed postsynaptically
on VTA DA neurons to provide an auto feedback inhibition
of DA neurons (Beckstead et al., 2007). D2Rs are assumed to
be expressed on GABAergic terminals where their activation
facilitates the induction of a presynaptic endocannabinoid-
mediated LTD at GABAergic synapses onto VTA DA neurons
(Pan et al., 2008). We have also shown that inhibition of PKA
activity (which is the main downstream signaling mechanism for
both D1R and D2R) or disruption of AKAP150-PKA association
promotes LTDGABA in response to STDP protocols by favoring
CaN activity and endocytosis of GABAA receptors in VTA DA
neurons (Authement et al., 2015). Given that D2Rs can inhibit
PKA activity and the postsynaptic locus of LTDGABA expression,
we assume that D2R activation acts through this signaling
pathway to promote LTDGABA in response to complex STDP
protocols. Only a small subset of VTA DA neurons express D1Rs
(D1/D5; Schilström et al., 2006). DA increases presynaptic release
of GABA in the midbrain through D1R activation (Cameron and
Williams, 1993). It has been shown that NAc D1R-expressing
medium spiny neuronal projections inhibiting VTA DA neurons
preferentially make GABAB synapses onto VTA DA neurons
while these D1R expressing neurons of NAc inhibit VTA
GABAergic interneurons via activating GABAA synapses (Barrot
et al., 2012). It will be interesting to test whether the postsynaptic
action of DA on D1Rs in VTA DA neurons promotes LTD
through modulation of NMDA receptor (Schilström et al., 2006)
or GABAB receptor activity originating from D1 expressing
NAc (Cameron and Williams, 1993; Kamikubo et al., 2007) in
VTA DA neurons. It should be noted that there are several
limitations to our study including the young age of the rats, the
suboptimal cooler temperature for recordings at 28◦C, the use
of electrical stimulation rather than optogenetic stimulation of
specific afferent inputs to the VTA, and also the complexity of
mimicking a natural pattern of neuronal firings in an in vitro
STDP induction protocol. In fact, a recent study has shown the
heterogeneity of distinct GABAergic inputs to VTA DA neurons
where only GABAergic inputs arising from the VTA GABAergic
interneurons show short-term plasticity (Polter et al., 2018). In
sum, we demonstrated that synaptic actions of DA within the
VTA is required for induction of GABAergic STDP. The selective
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expression of this DA-dependent STDP in the VTA presents
an important synaptic learning mechanism that can be targeted
by drugs of abuse or stress to alter DA signaling within VTA
DA circuits and significantly impact reward-related behavioral
learning.
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Simple models of short term synaptic plasticity that incorporate facilitation and/or

depression have been created in abundance for different synapse types and

circumstances. The analysis of these models has included computing mutual information

between a stochastic input spike train and some sort of representation of the

postsynaptic response. While this approach has proven useful in many contexts, for

the purpose of determining the type of process underlying a stochastic output train, it

ignores the ordering of the responses, leaving an important characterizing feature on

the table. In this paper we use a broader class of information measures on output only,

and specifically construct hidden Markov models (HMMs) (known as epsilon machines or

causal state models) to differentiate between synapse type, and classify the complexity

of the process. We find that the machines allow us to differentiate between processes

in a way not possible by considering distributions alone. We are also able to understand

these differences in terms of the dynamics of the model used to create the output

response, bringing the analysis full circle. Hence this technique provides a complimentary

description of the synaptic filtering process, and potentially expands the interpretation of

future experimental results.

Keywords: short term plasticity, epsilon machines, synaptic filtering, mutual information, interneuron-pyramidal

cell synapses, causal state splitting reconstruction

1. INTRODUCTION

Short term plasticity at the synapse level can have profound effects on functional connectivity
of neurons. Through repetitive activation, the strength, or efficacy, of synaptic release of
neurotransmitter can be decreased, through depletion, or increased, through facilitation. A single
synapse type can display different properties at different frequencies of stimulation.

The role of synaptic plasticity and computation has been analyzed and reported on in numerous
papers over the past 30 years. A review of feed-forward synaptic mechanisms and their implications
can be found in Abbott and Regehr (2004). In this paper Abbott and Regher state “The potential
computational power of synapses is large because their basic signal transmission properties can
be affected by the history of presynaptic and postsynaptic firing in so many different ways.” They
also outline the basic function of a synapse as a signal filter as follows: Synapses with an initial low
probability of release act as high pass filters through facilitation, while synapses with an initially high
probability of release exhibit depression and subsequently serve as low pass filters. Intermediate
cases in which the synapse can act as a band-pass filter, exist. Identifying synapse-specific molecular
mechanisms is currently an active area of research, involving subtle changes in expression ofmyriad
calcium sensor isoforms (synaptotagmins), subtly configured to alter the microscopic rates of
synaptic release, facilitation, depression, and vesicle replenishment (Fioravante and Regehr, 2011;
Chen and Jonas, 2017; Jackman and Regehr, 2017).
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The underlying mechanisms creating these effects may be
inferred by fitting an a priori model to synaptic response
data. We parameterize such a model combining the properties
of facilitation and depression (FD) at the presynaptic neuron
with experimental data from dual whole-cell recordings from
a presynaptic parvalbumin-positive (PV) basket cell (BC)
connected to a postsynaptic CA1 (Cornu Ammonis 1 subregion)
pyramidal cell, for fixed frequency spike trains into the
presynaptic PV BC (Stone et al., 2014; Lawrence et al., 2015).
We later examine the response of the model to an in vivo-like
Poisson spike train of input, where the inter-spike interval (ISI)
follows an exponential distribution, in Bayat et al. (submitted).
Here we investigate the information processing properties of
the synapse in question, following (Markram et al., 1998) and
using standard calculations of entropy and mutual information
between the input spike train and output response. This,
however, left us unsatisfied, as it did not indicate the history
dependence of the response, which we believe is one of the more
interesting features of plasticity models that involve presynaptic
calcium concentration. We attempted using multivariate mutual
information measures, but this very quickly collapses due to the
“curse of dimensionality” (Bellman, 1957). In this paper we try to
resolve the question usingmethods of ComputationalMechanics,
creating unifilar HMMs called epsilon machines, that represent
the stochastic process that our synapse model creates. As a bonus
we are using data itself (albeit synthetic data) to create models of
plasticity that can be used to classify properties of different types
of synapses.

As stated in the abstract, methods from Information theory
rely on distribution measures which inherently ignore the
ordering of the measured data stream. We seek to incorporate
this important feature of plasticity, the dependence of the
response of the synapse on the prior sequence of stimulation,
directly through the construction of causal state machines. This
can only add to the understanding of the process in cases
where the input stimulus train is known. In experiments where
only the output postsynaptic response is known, this technique
is particularly useful. While the machines themselves cannot
be interpreted in a physiological way, the information they
provide can be used to classify synaptic dynamics and inform the
construction of physiological models. The point of the analysis is
to gain as much accurate information from experiments in short
term synaptic plasticity as possible without imposing the bias
of an assumed underlying physical model. To create synthetic
data we use a very simple but otherwise complete model of
short-term plasticity that incorporates a “memory” effect through
the inclusion of calcium build-up and decay. This has roots in
a real physiological process (the flooding of calcium into the
presynaptic terminal can trigger the release of neurotransmitter),
but we are not interested per se in creating a biophysically

Abbreviations: BC, basket cell; CA1, Cornu Ammonis, early name for

hippocampus; FD, facilitation and depression; IPSC, inhibitory postsynaptic

current; ISI, interspike interval; KL, Kozachenko and Leonenko; KSG, Kraskov,

Stögbauer, and Grassberger; mAChR, muscarinic acetylcholine receptors; MCMC,

Monte Carlo Markov Chain; MI, Mutual Information; NT, neurotransmitter; PSR,

postsynaptic response; PV, parvalbumin-positive; HMM, Hidden Markov Model;

CSSR, Causal State Splitting Reconstruction.

complete model here. The calcium dynamics simply introduces
another time scale into the model, one that is physiologically
relevant.Wewish to explore the effect of this additional time scale
on the complexity of the process.

Computational Mechanics is an area of study pioneered by
Crutchfield and colleagues in the 1990s, (Crutchfield and Young,
1989; Crutchfield, 1994; Shalizi and Shalizi, 2002). Finding
structure in time series with these techniques has been applied
in such diverse arenas as layered solids (Varn et al., 2002),
Geomagnetism (Clarke et al., 2003), climate modeling (Palmer
et al., 2002), financial time series (Park et al., 2007), and more
recently ecological models (Boschetti, 2008) and large scale
multi-agent simulations (Parikh et al., 2016). In neuroscience,
to name a few only, we note one application to spike train data
(Haslinger et al., 2013), and a recent publication by Marzen et al.
on the time resolution dependence of information measures of
spike train data (Marzen et al., 2015).

We employ some of the simplest ideas from this body of
work, namely decomposing a discrete time-discrete state data
stream into causal states, which are made up of sequences of
varying length that all give the same probability of predicting
the same next data point in the stream. The data are discrete
time by construction, and made into discrete symbols through
a partition, so the process can be described by symbolic
dynamics. We use the Causal State Splitting Reconstruction
(CSSR) algorithm on the data to create the causal states and
assemble a HMM that represents the transitions between the
states, while emitting a certain symbol. This allows us to classify
the synapse types and gives an idea of the differences in the
history dependence of the processes as well.

Using an a priori model for short-term synaptic dynamics
and fitting it to data, while a perfectly valid approach, allows
only for the discovery of the parameters in the model and
possibly a necessary model reduction to remove any parameter
dependencies (too many parameters in the model for the data set
to fit). The alternative approach is to allow the data itself to create
the model. From these “data driven” models, conclusions can
be drawn about the properties of the synapse that are explicitly
discoverable from the experimental data. The ultimate goal is a
categorization of the types of processes a synapse can create, and
an assignment of those to different synapse types under varying
conditions. Note that the complexity or level of biophysical detail
of our model synapse is not important to this end. In fact, the
best way to calibrate this method is using the simplest possible
model of the dynamics that captures the history dependence of
the plasticity. This is not consonant with the goal of incorporating
as many physiological features as possible, whether they affect
the dynamics significantly or not. In fact, in most cases the
limited data in any electro-physiological experiment precludes
identifying more than a handful of parameters in an a priori
model, a point we discuss in Stone et al. (2014). Our goal is
to classify the sort of filter the synapse creates under certain
physiological conditions, rather than to identify specific detailed
cellular level mechanisms.

We are motivated in this task by the work of Kohus
et al. (2016), in which they present a comprehensive data
set describing connectivity and synaptic dynamics of different
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interneuron (IN) subtypes in CA3 using paired cell recordings.
They apply dynamic stimulation protocols to characterize the
short-term synaptic plasticity of each synaptic connection across
a wide range of presynaptic action potential frequencies. They
discovered that while PV+ (parvalbumin positive) cells are
depressing, CCK+ (Cholecystokinin positive) INs display a range
of synaptic responses (facilitation, depression, mixed) depending
upon postsynaptic target and firing rate. Classifying such a wide
range of activity succinctly is clearly useful in this context. The
discovery that the rate of particular observed oscillations in these
cells (called sharp wave ripples) may be paced by the short-
term synaptic dynamics of the PV+BC in CA3 demonstrates the
importance of these dynamics in explaining complex network
phenomena.

The paper is organized as follows. The construct for an
experimental paper with section 2 and section 3 is not an
immediately obvious partition of our work, but we use it as best
we can. In the section 2 we describe the background on the
synaptic plasticity model, and some analysis of its properties.
We also cover the necessary background from Computational
Mechanics. Finally we show how the techniques are explicitly
applied to our data. In the section 3 we present the epsilon
machines created from data from three types of synapses
from our FD model: depressing, facilitating, and mixed, at
varying input frequencies. Here we also indicate similarities and
differences in the actual machines. In the section 4 we speculate
on the reasons for these features by referring back to the original
model. In the last section we indicate directions for future work.

2. MATERIALS AND METHODS

2.1. Model of Synaptic Plasticity
In Stone et al. (2014), we parameterize a simple model
of presynaptic plasticity from work by Lee et al. (2008)
with experimental data from cholinergic neuromodulation of
GABAergic transmission in the hippocampus. The model is
based upon calcium dependent enhancement of probability of
release and recovery of signalling resources (For a review of these
mechanisms see Khanin et al., 2006). It is one of a long sequence

of models developed from 1998 to the present, with notable
contributions byMarkram et al. (1998) and Dittman et al. (2000).
The latter is a good exposition of the model as it pertains to
various types of short term plasticity seen in the central nervous
system, and the underlying dependence of the plasticity is based
on physiologically relevant dynamics of calcium influx and decay
within the presynaptic terminal. In our work, we use the Lee
model to create a two dimensional discrete dynamical system in
variables for calcium concentration in the presynaptic area and
the fraction of sites that are ready to release neurotransmitter into
the synaptic cleft.

In the rest of this section we outline the model, which is used
to generate synthetic data for our study of causal state models, or
epsilon machines, of short-term plasticity.

In the model the probability of release (Prel) is the fraction of
a pool of synapses that will release a vesicle upon the arrival of an
action potential at the terminal. Following the work of Lee et al.

(2008), we postulate that Prel increases monotonically as function
of calcium concentration in a sigmoidal fashion to asymptote
at some Pmax. The kinetics of the synaptotagmin-1 receptors
that binds the incoming calcium suggests a Hill equation with
coefficient 4 for this function. The half-height concentration
value, K, and Pmax are parameters determined from the data.

After releasing vesicles upon stimulation, some portion of
the pool of synapses will not be able to release vesicles again
if stimulated within some time interval, i.e., they are in a
refractory state. This causes “depression;” a monotonic decay of
the amplitude of the response upon repeated stimulation. The
rate of recovery from the refractory state is thought to depend on
the calcium concentration in the presynaptic terminal (Dittman
and Regehr, 1998; Wang and Kaczmarek, 1998). The model has
a simple monotonic dependence of rate of recovery on calcium
concentration, a Hill equation with coefficient of 1, starting at
some kmin, increasing to kmax asymptotically as the concentration
increases, with a half height of Kr .

The presynaptic calcium concentration itself, [Ca], is assumed
to follow first order decay kinetics to a base concentration,
[Ca]base. At this point we choose that [Ca]base = 0, since
locally (near the synaptotagmin-1 receptors) the concentration
of calcium will be quite low in the absence of an action potential.

The evolution equation for [Ca] then is simply τca
d[Ca]
dt
=

−[Ca] where τca is the calcium decay time constant, measured in
milliseconds. Upon pulse stimulation, presynaptic voltage-gated
calcium channels open, and the concentration of calcium at the
terminal increases rapidly by an amount δ (measured in µm):
[Ca] → [Ca] + δ at the time of the pulse. Note that calcium
build-up is possible over a train of pulses if the decay time is long
enough relative to the ISI.

Asmentioned above, the probability of release Prel and the rate
of recovery, krecov, depend monotonically on the instantaneous
calcium concentration via Hill equations with coefficients of 1
and 4 respectively. Rescaling the calcium concentration by δ = δc
in the control case, we define C = [Ca]/δc. Then the equations

are Prel = Pmax
C4

C4+K4 , and krecov = kmin + 1k C
C+Kr

. The

variable Rrel is governed by the ordinary differential equation
dRrel
dt
= krecov(1 − Rrel), which can be solved exactly for Rrel(t).

Rrel(t) = 1 − (1 − R0)(
C0e
−t+Kr

Kr+C0
)1ke−kmint . Prel is also a function

of time as it follows the concentration of calcium after a stimulus.
We used experiments in hippocampus to parameterize

this model, as part of an exploration of the frequency
dependent effects of neuromodulation. Whole-cell recordings
were performed from synaptically connected pairs of neurons
in mouse hippocampal slices from PV-GFP mice (Lawrence
et al., 2015). The presynaptic neuron was a PV basket cell
(BC) and the postsynaptic neuron was a CA1 pyramidal cell.
Using short, 1–2 ms duration suprathreshold current steps
to evoke action potentials in the PV BC from a resting
potential of −60 mV and trains of 25 of action potentials
are evoked at 5, 50, and 100 Hz from the presynaptic basket
cell. The result in the postsynaptic neuron is the activation
of GABAA-mediated inhibitory postsynaptic currents (IPSCs).
Upon repetitive stimulation, the amplitude of the synaptically
evoked IPSC declines to a steady-state level. These experiments
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were conducted with 5, 50, and 100 Hz stimulation pulse trains,
with and without the neuromodulator muscarine, in order to test
frequency dependent short term plasticity effects.

The peak of the measured postsynaptic IPSC is presumed
to be proportional to the total number of synapses that receive
stimulation Ntot , which are also ready to release (Rrel), e.g.,
NtotRrel, multiplied by the probability of release Prel. That is, peak
IPSC ∼ NtotRrelPrel. Prel and Rrel are both fractions of the total,
and thus range between 0 and 1. Without loss of generality, we
consider peak IPSC to be proportional to RrelPrel.

From the continuous time functions describing C, Rrel, and
Prel, we constructed a discrete dynamical system (or “map”) that
describes PrelRrel upon repetitive stimulation. Given an ISI of T,
the calcium concentration after a stimulus is C(T) + 1 (1 =
δ/δc), and the peak IPSC is proportional to Prel(T)Rrel(T), which
depend uponC. After the release, Rrel is reduced by the fraction of
synapses that fired, e.g., Rrel → Rrel−PrelRrel = Rrel(1−Prel). This
value is used as the initial condition in the solution to the ODE
for Rrel(t). A two dimensional map (in C and Rrel) from one peak
value to the next is thus constructed. To simplify the formulas we
let P = Prel and R = Rrel. The map is

Cn+1 = Cne
−T +1, (1)

Pn+1 = Pmax

C4
n+1

C4
n+1 + K4

, (2)

Rn+1 = 1− (1− (1− Pn)Rn)(
Cne
−T + Kr

Kr + Cn
)1ke−kminT . (3)

Following this notation the peak value upon the nth stimulus is
Prn = RnPn, where Rn is the value of the reserve pool before the
release reduces it by the fraction (1− Pn).

Data from the experiments were fitted to the map using the
Matlab package lsqnonlin, and with Bayesian techniques (Haario
et al., 2006). The value of Pmax was determined by variance-
mean analysis, and is 0.85 for the control data and 0.27 for the
muscarine data. The common fitted parameter values for both
data sets are shown in Table 1.

For the control data set 1 = 1, and the muscarine data
set has the fitted value of 1 = 0.17. From this result it is
clear that the size of the spike in calcium during a stimulation
event must be much reduced to fit the data from the muscarine
experiments. This is in accordance with the idea that mAChR
activation reduces calcium ion influx at the terminal.

TABLE 1 | Parameter values.

Parameter Fitted value

K 0.2

kmin 0.0017 1/ms

kmax 0.05171/ms

Kr 0.1

τca 1.5 ms

2.1.1. Analyzing the Map
It is common in the experimental literature to classify a synapse
as being “depressing” or “facilitating,” depending upon its
response to a pulse train at some relevant frequency. Simple
models can be built that create each effect individually. The
model here combines both mechanisms so that, depending
upon the parameters, both facilitation and depression and a
mixture of the two can be represented (Lee et al., 2008). Note
that facilitation is built into this model through the calcium
dependent P value and rate of recovery. For instance, by
varying the parameters we can create a “mock” facilitating
synapse, where the size of the response increases with increasing
frequency of input stimulation, or a “mixed” synapse, where the
response is depressed for low and high frequency, but increases
comparatively for moderate values of the frequency.

We are able to “tune” the parameters in themap from the fitted
values to realize these cases, and the results are shown in Table 2.
To attain more complicated dynamics we must first increase the
calcium decay time to 30 ms, a much larger value that has never-
the-less been found in fitting the model to electrophysiological
data from other synapses (Lawrence lab, unpublished results).
The build-up of calcium means a larger recovery rate, but the
probability of release ranges only up to Pmax = 0.6, and over
a larger concentration range of the calcium (K = 4.0 for
facilitating and K = 1.0 for mixed), off-setting the effect of the
larger amount of calcium from the build-up to a varying degree.
The competition between increasing probability of release and
decreasing R creates the local maximum in the mixed case, which
is also present in the facilitating case, but for frequencies outside
the physiological range.

The map has a single attracting fixed point, and the collapse
to this fixed point from physiological initial conditions is very
rapid (Stone et al., 2014). The value of the fixed point depends
on the frequency (1/T), and plotting this is a good way to
represent the different types of synaptic dynamics. In Figure 1

we plot the expression for the fixed point (Pr = P × R
or PR) of the deterministic map vs. rate for three cases. For
instance, the depressing synapse fixed point decreases from
Pmax (for one stimulus, or zero frequency) monotonically, with
a quick decay over 0–10 Hz, and a slower decay to zero
following. The facilitating synapse fixed point increases over
the physiological range shown, but decreases for larger values
of the frequency. The mixed synapse fixed point starts at a
base value of 0.3 for one stimulus, increases to a local max
near 50 Hz and decays thereafter. The “resonance” indicated by

TABLE 2 | Parameter values for “mock” synapses.

Parameter Facilitating Mixed

K 4.0 1.0

kmin 0.002 1/ms 0.002 1/ms

kmax 6.0 1/ms 6.0 1/ms

Kr 0.1 0.1

τca 30 ms 30 ms
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FIGURE 1 | Fixed point values of normalized postsynaptic response for three

synapse models of “depressing,” “mixed,” and “facilitating” stimulated by

Poisson spike trains with mean firing rates ranging from 0.1 to 250.

the local maximum gives the mixed synapse more complicated
linear filtering properties than the other two in the physiological
frequency range.

2.1.2. The Depressing Synapse
The interplay of the presynaptic probability of release and the
rate of the recovery can create a non-linear filter of an incoming
stimulus train. To investigate this idea, in Bayat et al. we
consider the distribution of values of Pr created by exponentially
distributed random ISIs for varying rates λ, or mean ISI, denoted
< T >= 1/λ for the depressing synapse. Doing so explores the
filtering properties of the synapse when presented with a Poisson
spike train. We also present results from numerical studies to
determine of the effect of varying the mean rate of the pulse train.
The information processing properties, in the form of mutual
information and multivariate mutual information, of the synapse
at physiological frequencies are compared. We found that the
mutual information peaked around 3 Hz, when the entropy of
the Pr distribution was at its maximum, for both muscarine and
control parameter sets.

We also determined that the random variable describing the
calcium concentration has a closed form distribution, and indeed
a well-known distribution. However, this is not the case for the
variable R due to the complexity of the map, and so a closed
form for the distribution of Pr = PR is not possible. However,
we can understand it partially by considering the mechanisms
involved, and using some information from the deterministic
map, namely the expression for the fixed point. If the Pr value is
directly determined by the fixed point value for the ISI preceding
it, we would be able to convert the distribution of the ISIs into
that of the Prs by using composition rules for distributions of
random variables. We examine this when the calcium decay time
(τca) is notably smaller than the ISI (T). With this approximation
C, P, and R have time in between pulses to decay to their steady
state value before another pulse. This means that the fixed point

value for a rate given by 1/T where T is the preceding interspike
interval is more likely to give a good estimate of the actual value
or Pr = PR.

It was shown in Stone et al. (2014) that in this case C→ 1 as
T increases and hence P → Pmax. Therefore, the fixed point for
R, (R) is then

R =
1− e−kminT

1− (1− Pmax)e−kminT
.

With this simplification we found the probability density
function (PDF) of R given an exponential distribution of the
variable T. For simplicity of notation, we use X = R and Y = PR.

If X is a random variable, then an analytic expression for its
PDF is given by

f
(

x|λ, c, kmin

)

=
λ(1− c)

kmin
(1− x)−(1−λ/kmin)(1− cx)−(1+λ/kmin),

(4)
where c = 1 − Pmax, λ > 0 is the mean Poisson rate and kmin >

0 is the baseline recovery rate. The distribution is supported
on the interval [0, 1]. Similarly, we can compute the analytical
expression of the PDF of fixed point Y . We will refer to this in
what follows as the stochastic fixed point. Hence, the PDF for the
stochastic fixed point is

f
(

y|λ, c, kmin

)

=
λPmax(1− c)

kmin
(Pmax − y)−(1−λ/kmin)(Pmax − cy)−(1+λ/kmin). (5)

This distribution is supported on the interval [0, Pmax].
Figure 2 shows this expression for different mean input ISI, in
milliseconds.

In Figure 3 are histograms of Pr-values obtained numerically
from the map with very small τca, with an exponentially
distributed T random variable and other parameters from the
control set, as in Figure 2. The similarity between the two is
evident. Apparently this approximation captures the shape of the
distribution and how it changes with varying input spike train
rate.

We are now convinced that we understand the primary driver
of the variation of the probability distribution of the response
to the input mean rate. However, as mentioned before, the
creation of a distribution automatically ignores the causality in
the sequence of the responses. In the next section we describe
a method for assessing this causality directly from the response
data.

2.2. Computational Mechanics Background
We can use distribution to compute measures of information
transfer between input spike trains and output Prs. However,
the question of how far back in a spike train the synapse
“remembers,” or, how far back in the spike train is important
for predicting the output, is difficult to answer, even using
multivariate mutual information measures. Instead we propose
a method for describing the process in terms of output only, with
the goal of classifying the complexity of the underlying synaptic
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FIGURE 2 | Probability density function of the normalized postsynaptic response fixed point PR for six interspike interval variants of 10, 50, 100, 120, 330, and 2,000

ms under analytic expression. Minimum recovery rate kmin is 0.0013 and maximum probability of release Pmax is 0.85 under the control condition in depressing

synapse model.

FIGURE 3 | Frequency distributions of normalized postsynaptic response for varying presynaptic interspike interval values of (A) 10, (B) 50, (C) 100, (D) 120, (E) 330,

and (F) 2,000 in milliseconds. We consider very small calcium decay time τca under the control condition. We can observe the similarity with Figure 2 which indicates

the agreement with the analytic expression.
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dynamics. This method relies on the ideas of “computational
mechanics” developed by Crutchfield and colleagues in the 1990s.

The material presented in this section is drawn from many of
the seminal papers by Crutchfield et al. (Crutchfield and Young,
1989; Crutchfield, 1994; Shalizi and Shalizi, 2002), much of which
is quite technical. In what follows we outline the key ideas
that we have used in our analysis, but note that the theoretical
underpinnings of the ideas are completely described in this
body of work and we refer the reader to these papers for more
detail.

Imagine a black box experimental system and itsmeasurement
channel. Inside the black box is a three state system or process.
The measurements are a sequence of symbols (0, 1) generated
upon transitions between the unseen states in the black box.
The measurement channel itself acts to map the internal state
sequence · · ·BCBAA · · · to a measurement sequence of symbols
· · · 01110 · · · . The black box system is assumed to be Markovian,
meaning that the transition probability from one state to another
depends only upon the current state. The observed symbol
sequence, generated upon transitions between states, make the
system a hidden Markov process. From the point of view of
the observer, how many of the system’s properties be inferred
from the observed symbol sequence? Can a model of the hidden
process be created from this data stream? Can the model be used
to predict the future symbols in the sequence?

Let the symbol sequence be represented by S. With

information from the past
←−
S , we want to make a prediction

about the future
−→
S . The formative idea is to find past sequences

of measurements (histories) leading to the same future. Once
these states are identified, the transitions between them can be
inferred from S. The states themselves and the transition matrix
are called the ǫ-machine for the process. A finite state ǫ-machine
is a Unifilar Hidden Markov Model given by M = {S , {T(s), s ∈
A}} where unifilar means for each state σi ∈ S and each symbol
x ∈ X there is at most one outgoing edge from state σi and output
symbol x.

An ǫ-machine captures the (temporal) patterns in the
observations and reflects the causal structure of the process. With
this model, we can extrapolate beyond the original observations
to predict future behavior of a system. The ǫ-machine is
further defined to be the unique, minimal and maximally
optimal model of the observed process. It can model stationary
stochastic processes with states that represent equivalence classes
of histories with no significant difference in their probability
distribution over the future events.

2.2.1. Epsilon Machine Construction
Consider a portion of a contiguous chain of random variables:
Xn :m = XnXn+1 · · ·Xm, m > n. A semi-infinite chain is
either: Xn : = XnXn+1 · · · , which is called the future, or X: n =
· · ·Xn−2Xn−1, the past. The bi-infinite chain of random variables
is denoted X:. A process is specified by the distribution Prob(X:).

Assume the process is stationary and that a realization of
length L has this property: Prob(X1 : L) = Prob(Xn : L+n−1) for all
n ∈ Z. The values of Xi, the xi, are drawn from a finite alphabet,
A. In our case we use two symbols, 0 and 1, and a sample

finite realization of the process would look like: 00111001001, for
instance.

A causal state σ+ ∈ S+ is a set of pasts grouped by the
equivalence relation∼+:

x: 0 ∼+ x′
: 0 <=> Prob(X0 :|X: 0 = x: 0) = Prob(X0 :|X: 0 = x′

: 0)

Two histories are equivalent if and only if they have the same
conditional distribution of futures. Groups of specific blocks,
e.g., 011, 10, 1011 might all be in the same causal state. At a
time t, S+t is a random variable drawn from σ+ ∈ S+ and
· · · S+−1S

+
0 S
+
1 · · · S

+
t is a causal state process. Each causal state has

a future morph Prob(Xt :|σ+t ), the conditional measure of futures
that can be generated from it. Each state inherits a probability
π(σ+t ) from the processes measure over all pasts Prob(X: t). A
generative model is constructed out of the causal states by giving
the causal state process transitions:

T
(x)
σσ ′ = Prob(S+t+1 = σ ′,Xt = x|S+t = σ )

that give the probability of generating the next symbol x and
while starting from state σ and ending in state σ ′. A process’
forward-time ǫ-machine is the tuple {A,S+, {T(x)

: x ∈ A}} For
a discrete time, discrete alphabet process, the ǫ machine is its
minimal unifilar HMM. Minimal means the smallest number of

states, and unifilarity means the next state is known given the
current state and the next symbol. E.g., the probability of the
transition Prob(S+t+1|Xt = x,S+t = σ ) has support on a single
causal state. The statistical complexity of an epsilon machine is
defined to be the entropy of the causal state distribution, e.g.,
H[S+].

The task of creating the epsilon machine is not a simple one
and generally is quite computationally intense. There has been
much work on creating code for this purpose, and we rely on
available software. For instance, in these preliminary results we
use the Causal-State Splitting Reconstruction Algorithm (CSSR)
(Shalizi and Klinkner, 2004) to create the machine from blocks
of length L starting with L = 1 and increasing up to an
appropriate maximum. We note that there packages created by
Crutchfield’s group that use a Bayesian approach for finding
machines, resulting in distributions of possible machines on
the level transition probabilities for fixed model topology or
for inferring the model topology itself (Travers and Crutchfield,
2011; Strelioff and Crutchfield, 2014).

2.3. Distributions
To create approximations to the distribution of Pr-values we
computed 215 samples from the stochastic map, after discarding
a brief initial transient. The values, ranging between 0 and 1,
were placed into evenly spaced bins. The histograms, normalized
to be frequency distributions, were computed for a range of
mean frequencies (or rates) in the theta range, gamma range,
and higher (non-physiological, for comparison). We tested the
three different synapse types: depressing, facilitating, and mixed.
For parameter values of each, see Tables 1, 2. The histograms
themselves are shown in Figures 4–6.

In order to create epsilon machines, the Pr-values must be
partitioned into a sequence of 0’s and 1’s, which requires the
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FIGURE 4 | Causal state machines (CSMs) reconstructed and their corresponding relative frequency distributions obtained from depressing FD model. Model is

stimulated by Poisson spike trains with mean firing rates (A) 0.1, (B) 2, (C) 5, and (D) 100 Hz. The transitions between states are indicated with symbol emitted during

the transition (1, large synaptic response; 0, small synaptic response) and the transition probability. In both (A,D), CSMs for 0.1 and 100 Hz Poisson spiking process

consist of a single state “1” which transitions back to itself, emitting a large response with probabilities 0.9 and 0.06 for low and very high mean firing rates,

respectively. In both (B,C), 2-state CSMs reconstructed for 2 and 5 Hz Poisson spiking process emit large response with nearly similar probabilities.

adoption of a threshold value. The choice of this threshold
impacts the result, as might be expected. We explore this
dependence in Appendix 2, where we show that most of the
machines are robust within a finite interval around the chosen
threshold. This partition of the output of a real valued map
on the interval [0, 1] into a discrete symbol sequence is known
as a “symbolic dynamic” and has been studied extensively in
dynamical systems theory. For an introductory reference to the
mathematical ideas, see Katok’s excellent textbook (Katok and
Hasselblatt, 1997). If this mapping can be uniquely reversed, the
infinite symbol sequence uniquely determines the initial value of
the orbit in phase space. This can be proven by finding what is
known as a “generating partition” for the iterated map. In the
case of the binary shift map, for instance, the partition into two
halves of the interval is such a generating partition, because the
symbol sequence obtained by following an orbit beginning at x0
is exactly the binary expansion of x0. For a general map it is not
clear if such a partition exists, or how to find it. The practice is
rather to create an equipartition of the phase space (in this case
the interval), knowing that as the number of subintervals in the
partition increases the accuracy of the representation increases.
Here we take a coarse partition, but have limited ourselves to
comparing epsilon machines created from symbol sequences
from the same partition only to each other, not to any external
case. This is similar to the problem of computing the entropy of
a distribution with a histogram, which depends explicitly on the

number of bins. Finally we note that describing orbits of iterated
maps on the unit interval with a symbol sequence by partitioning
the interval is common and considered to be generally applicable
and advantageous if the iterates are obtained from a numerical
simulation or from experimental data. This idea is taken up in
Beck and Schögl (1993), and a good introductory textbook on
symbolic dynamics for scientists is Lind and Marcus (1995).

2.4. Partition
We have considered several options for the thresholding choice.
One idea would be to set the threshold at one half Pmax,
differentiating between small and large responses. However, this
might obscure some of the more interesting dynamics in the
process, so we could make a decision based on the mean, or
median of the distribution. Alternatively we can use the fixed
point value for the deterministic map, which is close to the mean
in low frequency cases. However, if the goal is to uncover as much
of the dynamics as possible, we choose the threshold that gives
a machine with the maximum statistical complexity. To do so,
we computed machines for varying threshold levels in each case,
computed the statistical complexity, and took the one with the
largest value. We also need to make sure we were not resolving
the noise in the process, which guides us to choose a threshold
with care if the support of the distribution is quite small, say
less than 0.2. This occurs for very low and very high frequencies
typically.
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FIGURE 5 | Causal state machines (CSMs) reconstructed and their corresponding relative frequency distributions obtained from facilitating FD model driven by

Poisson spike train with mean firing rates (A) 50, (B) 77, (C)100, (D) 125, (E) 200, and (F) 250 Hz. State “0” is the baseline state. Similar graph structure is seen for

mean firing rates of 50 and 70 Hz. Under mean firing rate of 100 Hz, the graph structure is more complex with more edges, vertices, and one set of parallel edges

from state “3” to “6”. This increase in complexity is somewhat not surprising as this is inflection point where the concavity of the normalized response fixed point for

this synapse model changes at this firing rate, (see Figure 1). In non-physiological range from 125 to 250 Hz, the complexity of graph structure decreases.

See Appendix 2 for an investigation of the effect the
partition has upon the resulting machine. For simpler cases
finite changes in threshold do not change the topology, only the
probabilities. For the facilitating case in mid-range frequencies
the machine changes more dramatically as the threshold is
varied. Because the statistical complexity measure quantifies
the degree of structure present in the data, choosing the
machine that maximizes the statistical complexity ensures that it
represents the maximum structure present in the data. Then the
resulting machines can be compared across the input frequency
range.

2.5. Machines
After partitioning, the Pr time series becomes a sequence of 0’s
and 1’s that can be used to create HMMs. We apply the CSSR

algorithm (Shalizi and Klinkner, 2004), using the Matlab package
in the Causal State Modeller Toolbox (available online at http://
www.mathworks.com/matlabcentral/fileexchange/33217) (Kelly
et al., 2012).

CSSR has two user-specified parameters. The significant level
α, assigned by χ2 or Kolmogorov-Smirnov (KS) tests, determines
whether the estimated conditional distribution of histories over
the next-symbol is significantly different from all of the state’s
other morphs. In case of a significant difference, new states
are formed for these subsequences. By varying the significance
level α, we control the risk of seeing structure that is not there
and states merely created due to sampling error, rather than
the actual differences between their morphs. Some common
choices of α that work well in practice are 0.001, 0.01, 0.1, and
0.05. In our study we set α = 0.01. Also, the CSSR algorithm
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FIGURE 6 | Causal state machines (CSMs) reconstructed and their corresponding relative frequency distributions obtained from mixed FD model driven by a Poisson

spike train with mean rates (A) 5, (B) 25, (C) 50, (D) 125, and (E) 250 Hz. In (A,C,D), CSMs for mean firing rates of 5, 50, and 125 Hz consist of two states with

similar structure, emitting successive large responses followed by small responses. 3-State CSM for mean firing rate 25 Hz has more complex graph structure. Note

that this is inflection point for this synapse model (see Figure 1).

depends crucially on another user-set parameter, Lmax, which
is the maximum subsequence length considered when inferring
the model structure. It is important to find the correct value
of Lmax as it defines the exponent of the algorithm complexity.
Setting Lmax too large results in data shortage for long strings,
the algorithm tends to produce too many states and hence the
results become unreliable. On the other hand, if Lmax is too small,
the algorithm won’t be able to capture all statistical dependencies
in the data and the state structure of the inferred machine may
not be useful. Finding an optimal choice of Lmax is not straight
forward. Here we determine the history length according to the
relationship derived from Hanson (1993). Based on this formula,
for a given number of data points N, and fixed significance

level α, we choose the maximum length of subsequence L such
that

√

|A|Lmax

N − Lmax
= α.

where A is the alphabet size. For instance, for N = 105 and α =
0.01 this formula gives Lmax = 3 as a starting value. Sometimes
it is still too large and another check on Lmax is whether every
state in the resulting machine contains at least one sequence of
that length. If not, the machine is not valid and Lmax should be
decreased. For a discussion of this see (Shalizi et al., 2002). Here
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we have two-symbol alphabet A = {0, 1}, and we use Lmax = 3
and α = 0.01.

For cases with less complex dynamics the machine can be
resolved with L = 2 (maximum of 4 causal states possible),
and increasing to L = 3 gives the same result. For the more
complex cases L = 3 (maximum of 8 causal states possible)
was needed to capture the dynamics. In each case we checked
that the machines had converged in the sense that they did not
change significantly when larger data sets are considered.We also
checked that the machines were well-conceived using Shalizi’s
rule of thumb above.

We show machines for the three different types of synapse
next. What we find gives us confidence in the both the algorithm
for constructing the machine, and the machine itself as a
representative of the dynamics. Furthermore, we are able to
use these to illustrate some of the pitfalls in relying only on
histograms to elucidate the underlying dynamics of the stochastic
process.

3. RESULTS

Results for the depressing synapse are shown in Figure 4 and
details for all these machines can be found in Appendix 1.
We indicate on the histograms where the maximum statistical
complexity is with a red line. For low frequencies, the probability
of getting a large Pr value (or a “1”) is quite large, and its
epsilon machine captures that dynamic with one state. Similarly
for high frequencies the probability of getting a small Pr value
(or a “0”) is quite large and a one state machine results with
the probabilities reversed. For intermediate frequencies, near the
maximum entropy value of 2–3 Hz, the epsilon machine has 2
states, indicating a more complicated sequence of low and high
Pr-values. Both 2 and 5 Hz have identical machines in structure
with slight variations in the transition probabilities.

The words in each causal state indicate the kind of sequences
that are typical of the synapse. For 2 and 5 Hz, state 0 contains the
sequences 00, 10, 000, 010, 100, and 110. State 1 contains 01, 11,
001, 011, 101, and 111. Between the two, all possible sequences
of length 2 and 3 are represented. The probability of getting a
0 or a 1 is more or less equally likely from both states. State 0
contains more zeros overall, so it is the lower Pr state. Note that
the transition from state 0 to state 1 occurs with the emission of a
1, so the occurrence of a 1 in the sequence drives the dynamic to
state 1, and visa versa. This is a kind of sorting of sequences into
words with more zeros and those with more 1’s. There is nothing
particularly “hidden” in this HMM. For us it means the dynamics
of the synapse are best understood in terms of the histograms.
There is nothing particularly complex in the filter produced by
the map.

We have already seen that the histograms for the depressing
synapse are well represented by the stochastic fixed point
distribution. And even though the distribution sloshes around as
the frequency is varied, there is little change in complexity in the
epsilon machines through this range. There are several ways to
interpret this result. One is that the very short τca means there is
little correlation in calcium time series, which in turn determines

the correlation in P and, indirectly and directly, R. We examine
this idea further in section 4. Another way is to consider the
histograms themselves which are either fairly flat, or with a single
peak at smaller Pr-values and an exponential type tail to the right.
The structure is simple, and can be understood as a “stochastic
fixed point” filter of the incoming Poisson spike train. All this is
in contrast with the results for the facilitating synapse, which we
show in Figure 5.

Histograms of the output Pr are shown in Figures 5A–F,
for 50, 77, 100, 125, 200, 250 Hz, respectively, along with their
corresponding epsilon machines of L = 3. For frequencies less
than 50 Hz the machine has one state. Starting at ν = 50,
all the machines can be described by referring to a persistent
“inner cycle” and “outer cycle.” With the exception of the 100
Hz machine, which has a third cycle, they can be related to
one another by graph operations as the frequency is varied.
For instance, at 50 and 77 Hz, the machines are topologically
similar, with small variations in the transition probabilities. Note
however that the histograms are not similar in any obvious way;
the epsilon machine identifies the underlying unifying stochastic
process. The outer cycle connects state 0 to 1 to 2 and back
to 0. The inner cycle connects states 1 to 3 to 4 to 2 and back
to 1. An additional transition exists between state 3 and 2, bi-
passing state 4. State 4 is notable for its self-connecting edge that
emits a “1.” This state also appears in all the other machines. The
machine found at 125 Hz is very similar to these: the outer cycle
is preserved, though now it connects states 0 to 1 to 3 and back
to 0. The inner cycle can be derived from the inner cycle in the
lower frequency machines by removing state 3, and sharing an
edge with the outer cycle, the one connecting states 1 to 3.

The 200 Hz machine has the same inner cycle as the 125 Hz
machine (connecting states 1 to 3 to 2 and back to 1, with a shared
edge with the outer cycle from state 1 to state 2). The outer cycle
can be made from the 125 Hz outer cycle with the addition of a
state between 1 and 3 in that graph, and another edge from the
new state back to 1. The machine for 250 Hz is the simplest, and
can be derived from the machine at 125 Hz by merging state 1
and 2.

This leaves the most complicated structure, at 100 Hz, with 7
states. However, note that there is still an outer cycle from states
0 to 1 to 3 to 5 and back to 0. The inner cycle connects states
1 to 2 to 4 to 5 and back to 1. The third cycle runs from states
2 to 4 to 6 and back, connecting with the outer cycle at state 3.
This connection gives the process another path back to state 0.
The point of this rather tedious exercise is to see there is indeed
an underlying structure to the overall dynamics of the synapse,
with more states and transitions being revealed as the frequency
is increased through 100 Hz.

The mixed synapse dynamics are surprisingly less complex,
see Figure 6. We set the parameters of the map so that the fixed
point spectrum has a local max at physiological frequencies, but
apparently this can occur without creating much structure in
the histograms, or complexity in the dynamics. The machines
at 5, 50, and 125 Hz have 2 states and are the same as the
machines at 2 and 5 Hz in the depressing case, with small
variation in the transition probabilities. At 25 and 250 Hz the
machines are topologically similar with different probabilities on

Frontiers in Computational Neuroscience | www.frontiersin.org May 2018 | Volume 12 | Article 3271

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Bayat Mokhtari et al. Data Driven Models of STP

the transitions. They have three states, and state 1 is the same as
state 1 in the two state machines. States 0 and 2 together contain
the sequences in state 0 of the two state machines. To move from
the two state machine to the three state machine another state is
added between state 1 and 0 (on that edge) and also linked back
to state 1. The machine is also topologically similar to the 250 Hz
machine for the facilitating synapse, though the causal states are
created with L = 2 in the facilitating case.

FIGURE 8 | Statistical complexity values obtained from average amount of

information of the distribution over causal states as a function of mean firing

rates for synapse models, “depressing,” “facilitating,” and “mixed”.

The hierarchy of the machines for each set of parameter values
is evident, and it is possible to visualize transformations of one
machine into another as the firing rate is changed. To sum up
these results we plot the statistical complexity of the machines as
a function of frequency in each case. See Figure 7. We now seek
to connect this back to properties of the synapse model itself.

4. DISCUSSION: INTERPRETATION OF
RESULTS

The depressing synapse is the simplest of the three cases, and
through this investigation it is clear that the formulation of the
distribution of the Pr in terms of the “stochastic fixed point” gives
an almost entire description of the dynamics. For very small and
very large frequencies the data points are almost all 1’s or 0’s,
respectively, so the machine has one state. In the small frequency
range where the distribution slides from being concentrated at
Pmax to be concentrated at zero, the epsilon machine shows that
the dynamics are still simple, and can be explained by two causal
states, one withmostly 0’s and the other withmostly 1’s. Changing
frequency affects the transition probabilities on the edges only.

The other two cases are much less simple. More complicated
dynamics are possible as the input firing changes. The complexity
of the machines for the facilitating synapse compared to the
depressing and mixed synapse can be understood by comparing
the “decomposed” fixed point spectrum. See Figure 8. Plotting
the fixed points in R and P along with Pr shows a striking
difference between the three cases. The depressing synapse Pr
fixed point is entirely controlled by the variation in R, as P

FIGURE 7 | Fixed point values for release probability P, fraction of readily releasable pool R and normalized postsynaptic response Pr for varying mean firing rates

ranges from 0.1 to 100 Hz for (A) depressing synapse and from 0.1 to 250 Hz for (B) facilitating and (C) mixed synapse.
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remains constant over the range of frequencies, and the P
variation happens in a very small range of frequencies near
zero. The facilitating synapse has a range of R-values across the
spectrum, as well as a range of P-values. The mixed synapse has
a very little variation in P. The more complicated machines in
both cases occur at frequencies where there is the largest variation
in both. Obviously, having a range of response in both P and R
creates the complexity of the machines, however indirectly.

Another way to view this difference is through the calcium
decay time. For the depressing synapse τca is very short, and
there is very little correlation in the calcium time series in all but
very high frequencies (which are not physiological). The synapse
simply filters the Poisson spike train process. In the mixed case,
while the calcium time series is more correlated, the lack of
variation of the P response flattens out any downstream effect on
Pr. The facilitating case is really in the “goldilocks zone” where
the correlation in the calcium time series can effect Pr through the
variation in P. A synapse might be expected to be a more complex
filter if there is a hidden time dependent variable, such as calcium,
that links the two processes of facilitation and depression, as it
does in this model for larger τca or higher frequencies. The exact
details of the relationship between the probability of release, and
the rate of recovery of R as they depend upon C must line up to
produce sensitivity in the fixed point values for each in the same
frequency range.

Finally, we note that the histograms themselves, from which
many information measures are constructed, do not tell the
whole story. There is a much more complicated dynamic
occurring in the facilitating synapse than the depressing synapse,
though comparing the histograms themselves in the two cases
does not suggest this. We have also seen the converse, where
the machines are the same, even though the distributions are
quite different. This implies that both are needed to have a full
understanding of such a stochastic process.

5. CONCLUSIONS

In this paper we demonstrate the validity of using causal
state models to more completely describe stochastic short-term
synaptic plasticity. These models rely only upon output data
from a synaptic connection, knowledge of the input stimulus
stream is not required. This will expand the arena of experiments
where data can directly inform models, and more importantly
uses the data itself to create models. While these models are
not physiologically motivated per se, we have shown how
we can connect the structure of the model to complexity
of the mechanisms involved, a useful first step in a more
complete categorization of short term plasticity. Interpreting
synaptic plasticity in the language of computation could also
be exploited in the construction of large scale models of neural
processes involving many thousands of neural connections, and
potentially lead to a more complete theoretical description of the
computations possible.

Our results also draw direct connections between the causal
state models and the deterministic dynamics of the underlying
model used to create the data. Specifically, they point to the

importance of having variability in both probability of release
and the recovery rate of resources with frequency in creating a
more complex synaptic filter. This finding can be reversed (at
some peril, we realize) to imply that a more complicated machine
results from a synapse with such variability. This in turn could
be used to inform the development of physiologically accurate
models, or direct future experimental design. Interested reader
may receive any/all of the code use to create these results by
contacting Elham Bayat-Mohktari.

6. FUTURE WORK

The model of the synapse we used to create the data was
parameterized from experimental data from an actual depressing
synapse in the hippocampus. The experiments gave the synapse
uniformly spaced stimuli at fixed frequencies. Our work suggests
that a more comprehensive understanding of the dynamics of
the synapse could be found by using a predetermined stochastic
input, such as a Poisson spike train. The distributions of
the responses could then be fit if the desire was to estimate
parameters of an a priori model. This fitting could be done using
Bayesian techniques as well as standard statistical methods.

The other approach would be to let the data from such
an experiment create the model itself, in the form of epsilon
machines or perhaps some other form of HMM. We have seen
here that the machine reconstruction process can be used for
classification purposes, and can uncover features not obvious
from the distributions of the response. It is also possible
to describe such short term synaptic plasticity as a simple
computing operation, or Turing Machine (Copeland, 2004) but
the graph model of this is not unifilar, so making a simple
connection between it and epsilon machines, or creating a non-
unifilar HMMs from data, are topics for further investigation.

Finally, describing the evolution of one epsilon machine to
another as a parameter is varied in terms of graph operations
could give one more description of an entire range of behavior
of a short term plasticity filter, as a parameter is varied. We are
currently investigating this approach.
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A growing number of tools now allow live recordings of various signaling pathways and
protein-protein interaction dynamics in time and space by ratiometric measurements,
such as Bioluminescence Resonance Energy Transfer (BRET) Imaging. Accurate and
reproducible analysis of ratiometric measurements has thus become mandatory to
interpret quantitative imaging. In order to fulfill this necessity, we have developed
an open source toolset for Fiji—BRET-Analyzer—allowing a systematic analysis, from
image processing to ratio quantification. We share this open source solution and a
step-by-step tutorial at https://github.com/ychastagnier/BRET-Analyzer. This toolset
proposes (1) image background subtraction, (2) image alignment over time, (3) a
composite thresholding method of the image used as the denominator of the ratio to
refine the precise limits of the sample, (4) pixel by pixel division of the images and
efficient distribution of the ratio intensity on a pseudocolor scale, and (5) quantification
of the ratio mean intensity and standard variation among pixels in chosen areas. In
addition to systematize the analysis process, we show that the BRET-Analyzer allows
proper reconstitution and quantification of the ratiometric image in time and space, even
from heterogeneous subcellular volumes. Indeed, analyzing twice the same images,
we demonstrate that compared to standard analysis BRET-Analyzer precisely define
the luminescent specimen limits, enlightening proficient strengths from small and big
ensembles over time. For example, we followed and quantified, in live, scaffold proteins
interaction dynamics in neuronal sub-cellular compartments including dendritic spines,
for half an hour. In conclusion, BRET-Analyzer provides a complete, versatile and efficient
toolset for automated reproducible and meaningful image ratio analysis.

Keywords: open source software, automatic image analysis, ratiometric measurements, bioluminescence

resonance energy transfer

INTRODUCTION

A perpetual association and dissociation between proteins drives specific cellular signaling in time
and space. Bioluminescence Resonance Energy Transfer (BRET) imaging is a sensitive technology
to highlight the spatio-temporal dynamics of protein-protein interaction and understand their
functions in intact living cells (Coulon et al., 2008; Perroy, 2010; Goyet et al., 2016; Faklaris et al.,
2017). Briefly, the principle of the method stands on an energy transfer between a bioluminescent
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donor and a compatible fluorescent acceptor (Xu et al., 1999;
Angers et al., 2000). By catalytic oxidation of its substrate, the
bioluminescent donor emits light (donor image, D, Figure 1).
Upon molecular proximity (<75Å), the BRET compatible
acceptor is excited by a non-radiative transfer of energy and in
turn emits light at its characteristic wavelength (acceptor image,
A, Figure 1). Pixel by pixel division of the light emitted by
the acceptor over the light emitted by the donor (A/D) gives
rise to the BRET image, a ratiometric measurement expressed
as pseudo-colors, allowing live quantification of the interaction
between proteins tagged with BRET compatible entities, in
subcellular domains (Goyet et al., 2016). The advantage of BRET
over other RET methodologies precisely comes from the absence
of light to initiate the energy transfer in BRET. Thereby, BRET
circumvents many drawbacks linked to light excitation (such
as auto-fluorescence of cells, direct excitation of the acceptor
fluorophore by the donor exciting light, or photobleaching of
fluorophores) giving rise to an excellent signal over noise ratio.

A ratiometric measurement provides the huge benefit to
normalize the output signal to the intensity of its stimulus.
Hence, any efficient activation of a system can virtually be
reported, regardless of the stimulus intensity. This is particularly
relevant to put emphasis on effective forces of small ensembles.
However, this benefit is counterbalanced by the fact that a near-
background stimulus will give rise to an aberrant ratiometric
measure resulting from the fraction’s near-zero denominator.
Consequently, the specific signal is lost in a high-intensity
background. Therefore, delimitation of the linear detection
range of the recording system and proper determination of
the stimulus intensity threshold is mandatory to perform
ratiometric measurements. In the present work, we have
developed a systematic image processing to obtain relevant
ratiometric measurements. We applied this automatic processing
on BRET images. This homemade toolset is a complete open
source solution for Fiji [free software for scientific image
analysis, (Schindelin et al., 2012)], available for the scientific
community together with a step-by-step tutorial (https://github.
com/ychastagnier/BRET-Analyzer).

The BRET-Analyzer toolset includes classical processing of
the D and A images by cleaning the background, and pixel
by pixel division of the A/D images. We worked mainly on
two parameters. First we defined a donor threshold computed
as a function of the donor signal intensity in a given area.
This step allows defining the frontiers between the sample
luminescence per se and the light spread on neighboring pixels.
Second we selected and combined different threshold processes
independently in each sub-area, depending on the local donor
intensity. This is particularly relevant when the recorded cell
displays heterogeneous subcellular volumes. For example in
neurons, a cytosolic signal from the donor accumulated in the
soma will be much brighter than the donor light recorded
in thin neuritic processes. A combination of donor threshold
processing allows proper reconstitution of the ratiometric image.
It is fundamental to note that getting rid of low-level donor pixels
permits the selection of pixels from the luminescent specimen
only, but does not influence the ratiometric measurement per
se. We thus provide here a toolset—BRET-Analyzer—that allows

FIGURE 1 | Principle of the BRET-Analyzer toolset. The BRET-Analyzer toolset
provides automatic analyses of donor (D) and acceptor (A) images (A) to
generate a quantitative analysis of the specific A/D ratio image (B).
(A) Scheme of two BRET donor compatible entities emission spectra:
Nanoluciferase (Nluc) is the BRET donor and Venus the BRET acceptor. The
light emitted by the donor alone displays an emission pic at 450 nm (blue
curve). When Venus is co-expressed and close enough (<75Å) from Nluc, a
non-radiative transfer of energy from Nluc excites Venus, which emits light at
its characteristic wavelength (pic at 535 nm, green curve). Light collected with
specific filters gives rise to donor and acceptor images. (B) Distribution of the
A/D ratio pixel values and possible representations of the BRET images: A
stack histogram (left panel) displays the distribution of the A/D ratio values
obtained from pixel by pixel division of the A image over the D image,
suggesting the minimal and maximal values to be set on the pseudo-color
scale expressing the A/D ratio image. “Raw,” “weighted” and “specific” panels
are three possible representations of the A/D ratio image. The “raw” image
expresses the ratio as pseudo-colors, without any selection of pixels.
Consequently, pixels with a near-zero intensity on the D image display a
maximal A/D ratio, compromising the detection of pixels from the specimen.
Alternatively, the “weighted” ratio also displays the A/D ratio intensity as
pseudocolors, but the brightness of each pixel is proportional to the donor
intensity. This representation shades the ratio background around the cell but
also the specific signal coming from low protein expression level in sub-cellular
area. The BRET-Analyzer toolset allows obtaining the “specific” ratio by an
automatic selection of pixels from the specimen only (obtained by composite
thresholding of the D image). The “specific” image displays the intensity of the
A/D ratio expressed as pseudo-colors, regardless of protein expression levels.

the elimination of non-specific signal, and performs quantitative
analysis of long period recordings of protein-protein interactions,
regardless of the protein expression level (Figure 1).

STEPWISE PROCEDURES AND
ANTICIPATED RESULTS

Raw images of the donor (D) and acceptor (A) BRET entities
were obtained as previously described (Goyet et al., 2016), from
hippocampal neurons (Figure 1). To summarize the process,
the images will first have their background subtracted, then be
aligned over time. A threshold will be computed to separate signal
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from background. A image is divided by D image pixel by pixel.
Finally, measures are made on the ratiometric images obtained.

The analysis starts with the removal of non-specific signals
(“clean” button, Supplementary Material 4.1), in D and A
images, in 3 simple steps. First, in each image, applying
a median filter of radius 1 (3∗3 pixels) allows to remove
outliers. Second, subtracting the median value of a region
corresponding to the background removes the camera offset
and global light background, assuming they are homogeneous.
The homogeneous assumption is based on the fact that BRET
doesn’t use illumination, unlike fluorescence based imaging.
Subtracting a background image is available as an option. This
value is measured on each image of the donor and the acceptor,
to account for potential fluctuations of the background’s mean
intensity from an image to another. Third, in case recording is a
timelapse, aligning images might be needed. To do so, we make
use of the plugin TurboReg (http://bigwww.epfl.ch/thevenaz/
turboreg/ Thevenaz et al., 1998), a pyramid approach to subpixel
registration based on intensity. This alignment can rescue xy drift
that may happen during multi-positioning of the microscopy
setup to record distant cells on the same sample. It is important
that images are aligned through time to make sure the area in
which the measures are made always corresponds to the same
part of the sample.

Second step is to divide, pixel by pixel, the A image by
the D image (“divide” button, Supplementary Material 4.3).
Prior to this division, it is necessary to get rid of all pixels
that have an intensity level too close to the noise level on
the donor image, to keep only specific signal from the sample
(Figure 1B, “specific”). Indeed, the computed A/D ratio tends
to infinity for each pixel with a near-zero intensity on the D
image. If these pixels are not removed, the ratiometric values
can range from zero to hundreds and the boundaries of the
cells cannot be distinguished (Figure 1B, “raw”). Alternatively,
the brightness of the A/D ratio image can be weighted by
the expression level of proteins (Figure 1B, “weighted”), which
efficiently hides non-specific pixels, but also fades ratiometric
values from small protein numbers. This weighting can be
attractive for homogenous samples but should be avoided to
perform ratio-metric measurements from heterologous volume
specimens since it overshadows proficient strengths from small
ensembles.

Hence, in order to remove pixels that are outside of
luminescent specimen from the resulting A/D ratio image, we
applied available threshold methods to the D image (Figure 2).
The simplest approach, applying a static threshold level of a
given value across all images (Figure 2B) presented two main
problems. First, since the D signal decreases with time, part of
the specific D signal falls below the threshold during image time
series when the threshold was determined on the first image.
Conversely, lowering the threshold resulted in keeping the noise
on the first images of the image time series. We circumvented this
problem by computing a specific threshold for each individual
image of the image time series. We selected a region of interest
(which should contain about half pixels to keep and half to
remove). For each time point, we computed the median of that
area as the threshold to be applied on the D image (Figure 2C).

Alternatively, we used an automatic threshold built in Fiji. Across
all the available automatic thresholding methods, Otsu [which
searches for the threshold value that minimizes the intra-class
variance (Otsu, 1979)] gave the best results at separating the high
signal from the rest (Figure 2D).

However, a second problem was related to the fact that,
for a given time point, the D image displayed strong intensity
differences among neuronal subareas (Figure 2A). Therefore,
applying a homogenous constant threshold on the D image
did not allow suppressing pixels adjacent to the neuronal
cell body (which, even so located out of the neuron, still
displayed a relatively high light intensity due to the D light
spread), while keeping the low but specific D light from neuritic
processes (Figures 2B–D). To solve this spatial problem, one
possibility was to crop different regions of interest (“crop”
button, Supplementary Material 4.2) and compute a specific
threshold for each crop. But the resulting BRET image of
the neuron was segmented in several areas. Furthermore this
process increased analysis time to quantify the BRET images
(step below), as it required a repeated exploration on each
crop. We thus favored a second analysis process to determine
the threshold of the D image in space. Automatic local
thresholds built in Fiji have the advantage to compute the
threshold for each pixel based on the surrounding pixels.
Hence values that are locally high are selected, allowing
inhomogeneous signal across the image. For example Phansalkar
threshold (Phansalskar et al., 2011), provided good results at
removing noise at the edges of cells making clear delimitation,
but kept a good part of the noise far from the cells
(Figure 2E).

We thus designed our own composite thresholding method
(Chastagnier threshold, Figure 2F). The whole process consisted
in drawing an accurate mask around the neuron to keep only
pixels of the D image arising from the luminescent specimen. To
create this mask (Figure 3, gray rectangle), we first subtracted
a blurred version of the D image to itself in order to increase
the contrast, and convert it to binary values using Li’s automatic
threshold method (Li and Tam, 1998). When the blur effect
is decreased, noise areas start to show up, while when blur
effect is increased, areas of interest show up thicker than
they really are. To get rid of the defects of both low and
high blur effect, we used both and combined them with a
logical AND in order to keep only pixels that are in both
images. As “holes” appeared in the lowest intensity area of
two juxtaposed regions of high intensity areas, we combined
it using a logical OR with the original image on which Otsu
Threshold was applied (to keep only high signal). Logical OR
is inclusive, so it keeps pixels that are in an image, in the
other, or in both. We thus obtained a binary image with values
0 and 255. Dividing it by 255 gave 0 for pixels we want to
remove and 1 for pixels to keep. This is the mask (Figure 3,
Chastagnier Threshold). Multiplying it with the original D image
removed irrelevant pixels (set them to 0) and did not affect
the value for the rest of the D image (Figure 3, Thresholded
donor). The Chastagnier’s threshold thus unequivocally refined
the limits of the luminescent sample in space and time. For
user convenience, we nevertheless included the conventional
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FIGURE 2 | Methods to define a donor threshold in space and time. Applying a threshold to the donor image before division allows masking irrelevant pixels
(background around the luminescent specimen) in the A/D ratio image. Various threshold methods (B–F) can be applied to the donor image (A). Each column
represents a different time point. (A) Intensity of the donor for each time point. (B) Mask using a constant threshold all over the image time series. (C,D) Mask using a
global threshold computed for each time point (median threshold of the area outlined in red, (C) or Otsu thresholding method, (D). (E,F) Mask using a local threshold
computed for each time point, Phansalkar (E) or Chastagnier threshold (F), described in Figure 3. Note that computing a local threshold for each image over the time
series allows to precisely define the luminescent specimen limits, all along the experiment.
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FIGURE 3 | Principle of the Chastagnier threshold. The Chastagnier threshold computed on the donor image (Gray rectangle) creates the mask (red image) to be
applied on the donor image (thresholded donor) prior to A/D images division. Left column shows the donor, acceptor and A/D ratio images without mask. The gray
rectangle is a diagram representation of the process used for Chastagnier thresholding method. A composite process using Gaussian blur subtraction and Li’s
thresholding method identifies pixels with locally high intensity. In parallel, Otsu’s thresholding method preserves pixels with globally high intensity. A logical OR
combines the two processes to obtain the final mask. This mask (red image) with values of 0 for black pixels and 1 for white pixels multiplies the original D image to
remove irrelevant pixels without affecting the donor light intensity of pixels from the fluorescent specimen (Thresholded donor). Bottom line shows the thresholded
donor, the acceptor and resulting A/D ratio images.

alternative thresholding methods herein tested, as an option in
the BRET-Analyzer toolset.

The A image was then divided by the thresholded D image
and displayed with a 16 pseudo-colors look up table, ranging
from cold to hot colors (Supplementary Material 4.3.5). The
minimal and maximal A/D ratio values between which the colors
will be distributed have to be selected. The stack histogram
displayed between the 5th and 995th permilles (without taking
into account pixels with value 0) can be used to help the
user choose appropriate values (Figure 1B). Once the range
is set, it should be kept the same for every image, so they
can be visually compared, before doing the in depth analysis.
The resulting BRET image is a quantitative measurement of
the energy transfer intensity reporting either the efficiency of
interaction between two proteins tagged with BRET compatible
entities (intermolecular BRET) or conformational changes of a
molecule tagged with D and A entities (intramolecular BRET).
This analysis displays BRET intensity regardless of the level of

protein expression. Hence, even small numbers of complexes
are measured and visualized on the BRET image. This provides
an important benefit compared to ratiometric analysis in which
the signal is expressed as discontinuous pseudo-color scale
representing two different parameters in one, namely A/D ratio
and expression level (the brightness of the image being weighted
by the protein expression level, e.g., by the D and/or A image
intensity). This is potentially confusing and may lead to arbitrary
judgments about the extent of BRET. Indeed, this kind of
analysis, presented on Figure 1 as “weighted” A/D ratio allows
to visually exclude the noise but the evidenced BRET signals
come from proteins with high expression level only, neglecting
the functional importance of high protein interactions of small
ensembles. The weighted representation is nevertheless included
as an option in the BRET-Analyzer (Supplementary Material 4.5
Param Tool, Display weighted images?).

Final step is to extract the BRET values out of the
ratiometric image, in regions of interest, which can be chosen
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FIGURE 4 | Quantitative analysis of the A/D ratio image. (A) Regions of
interest are drawn on the ratiometric image. (B,C) The mean intensity of pixels
within areas of interest quantifies BRET signals over time (B) whereas the
standard deviation of A/D ratio between pixels (C) provides a measurement of
the homogeneity of the BRET signal within areas and the evolution as a
function of time.

on a single image (Figure 4), or pooled from multiple images
(Supplementary Material 4.4). All tools can be used to define
the area of interest (rectangle, polygon, freehand. . . ), at user
convenience. It is not necessary to precisely draw the limits of
the samples with the tool, because all pixels with a null value
are being automatically ignored by the measures and excluded

FIGURE 5 | Ratiometric measurements in heterogeneous subcellular volumes
using BRET-Analyzer. Hippocampal neurons expressing mGlu5 and Homer
proteins fused to BRET compatible entities were recorded as previously
described (Moutin et al., 2012; Guo et al., 2015) for 30min. Images were
analyzed using conventional (A) and /or BRET-Analyzer protocols (A,B).
(A) Images obtained in control condition (KCl 3mM) were analyzed twice,
using the conventional BRET analysis (Yellow-framed pictures) or the
BRET-Analyzer (Red-framed pictures) protocol. We quantified the mean BRET
intensity in soma and dendritic spines over time. Note that BRET signals
measured by BRET-Analyzer are stable in all cellular compartments for half an

(Continued)
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FIGURE 5 | hour. By opposition, the conventional analysis failed to quantify
the BRET in spines over time. (B) BRET-Analyzer enables live, BRET image
time series of mGlu5-Homer interaction in neurons. We quantified the mean
BRET intensity in single areas drawn on soma and dendritic spines over time,
before and during neuronal depolarization (KCl 55mM). KCl 55mM decreases
BRET signals in soma and spines. BRET-Analyzer enables precise
measurements of ratiometric signals over time. Each point of the curves is the
mean ± SEM of BRET intensity recorded in 3 areas.

from the analysis of the BRET quantification in the area. The
mean BRET intensity provides a quantification of the number
of protein complexes in a given area and the standard deviation
of the BRET intensity between pixels reports homogeneity or
clusterization of the BRET signal.

In addition to the automation of analysis process, the
main strength of BRET-Analyzer resides in the potency to
quantify luminescent ratio regardless of protein expression levels.
This is particularly relevant when working on heterogeneous
subcellular volumes such as neurons. Indeed, a neuron contains
a large range of volumes from the neuronal cell body (around
500 µm3) to small dendritic spines (spine head volumes
ranging from 0.01 µm3 to 0.8 µm3). The first challenge, as
discussed before is thus to find an adequate composite threshold
allowing to perform ratiometric measurements in all volumes
at the same time. Moreover for the smallest compartments,
measuring protein-protein interactions from few proteins is
difficult and live dynamics over time are even more challenging.
To illustrate the benefits from the herein developed analysis
toolset, we analyzed twice the same images either with the
conventional analysis (including a static threshold level of
D images, described in Figure 2B) or with BRET-Analyzer
(using Chastagnier’s threshold, Figure 2F). We thus measured in
neurons the interaction between a glutamate receptor, mGlu5,
and its cognate scaffold, Homer, together involved in neuronal
synaptic transmission (Moutin et al., 2012; Guo et al., 2015).
As shown in Figure 5A, the interaction between mGlu5 and
Homer was accurately recorded over time in the soma and the
quantification indiscernible whatever was the analysis protocol.
However, the advantage of using BRET-Analyzer became obvious
for small processes, which from the beginning of the experiment
were barely identifiable using the classical analysis protocol
and totally lost few minutes after. BRET-Analyzer enables long
time recording of BRET signals in small subcellular volumes,
allowing for the first time live and stable measurements of
mGlu5-Homer interaction in individual spines for half an

hour. By opposition to previous studies (Moutin et al., 2012;
Guo et al., 2015), instead of assessing synaptic activity-induced
changes in mGlu5-Homer interactions in spines from two
distinct cell populations (stimulated or not), we could here
follow BRET changes using BRET-Analyzer in the same spines
before and during KCl-induced neuronal depolarization. Thus,
neuronal depolarization disrupted mGlu5-Homer interaction
(Figure 5B). We recorded a 15 and 16% drop of BRET signal

in soma and spines, respectively. This BRET decrease was
measured as soon as 2min following KCl 55mM perfusion
and stable for 20min. Hence, BRET-Analyzer enables image
time series of ratiometric measurements even in small cellular
compartments.

MATERIALS

Source Code
The data were analyzed using a toolset made for Fiji (https://
fiji.sc) (Schindelin et al., 2012). We here provide a step-
by-step tutorial as Supplementary Material. The toolset and
documentation details of how to use it are also publicly available
at (https://github.com/ychastagnier/BRET-Analyzer), and will be
regularly updated. Moreover, the tools can be freely downloaded,
modified and improved to fit future research needs.

TurboReg, the plugin used to align stacks of images can
be downloaded at (http://bigwww.epfl.ch/thevenaz/turboreg/)
(Thevenaz et al., 1998).

Example Luminescent Images
The donor and acceptor fluorescent images used here to
exemplify the use of BRET-Analyzer corresponds to an
hippocampal neuron from primary cell culture transfected with
an intramolecular BRET-based sensor for ERK activity [YEN
(Goyet et al., 2016)], except in Figure 5, where mGlu5-NanoLuc
and Venus-Homer intermolecular BRET was recorded. Raw
images are available at https://github.com/ychastagnier/BRET-
Analyzer.
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In spike-timing dependent plasticity (STDP) change in synaptic strength depends on the
timing of pre- vs. postsynaptic spiking activity. Since STDP is in compliance with Hebb’s
postulate, it is considered one of the major mechanisms of memory storage and recall.
STDP comprises a system of two coincidence detectors with N-methyl-D-aspartate
receptor (NMDAR) activation often posited as one of the main components. Numerous
studies have unveiled a third component of this coincidence detection system, namely
neuromodulation and glia activity shaping STDP. Even though dopaminergic control of
STDP has most often been reported, acetylcholine, noradrenaline, nitric oxide (NO),
brain-derived neurotrophic factor (BDNF) or gamma-aminobutyric acid (GABA) also
has been shown to effectively modulate STDP. Furthermore, it has been demonstrated
that astrocytes, via the release or uptake of glutamate, gate STDP expression. At
the most fundamental level, the timing properties of STDP are expected to depend
on the spatiotemporal dynamics of the underlying signaling pathways. However
in most cases, due to technical limitations experiments grant only indirect access
to these pathways. Computational models carefully constrained by experiments,
allow for a better qualitative understanding of the molecular basis of STDP and its
regulation by neuromodulators. Recently, computational models of calcium dynamics
and signaling pathway molecules have started to explore STDP emergence in ex and
in vivo-like conditions. These models are expected to reproduce better at least part
of the complex modulation of STDP as an emergent property of the underlying
molecular pathways. Elucidation of the mechanisms underlying STDP modulation and

Abbreviations: AMPAR, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; ATP, adenosine triphosphate;
BDNF, brain-derived neurotrophic factor; cAMP, cyclic adenosine monophosphate; CaMKII, Ca2+/calmodulin-dependent
protein kinase-II; CB1R, cannabinoid type-1 receptor; cGMP, cyclic guanosine monophosphate; DARP-32, dopamine-
and cAMP-regulated phosphoprotein, Mr 32 kDa; DXR, dopaminergic type-X receptor; EAAT2, excitatory amino acid
transporter-2; ERK, extracellular signal–regulated kinase; GABA, gamma-aminobutyric acid; ITDP, input-timing dependent
plasticity; mAChRs, muscarinic acetylcholine receptors; mGluR, metabotropic glutamatergic receptor; MX, muscarinic
type-X receptor; nAChRs, nicotinic acetylcholine receptors; NMDAR, N-methyl-D-aspartate receptor; NO, nitric oxide;
STDP, spike-timing dependent plasticity; tLTD, timing-dependent long term depression; tLTP, timing-dependent long
term potentiation.
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its consequences on network dynamics is of critical importance and will allow better
understanding of the major mechanisms of memory storage and recall both in health
and disease.
Keywords: STDP, third factor, dopamine, acetylcholine, noradrenaline, astrocytes, eligibility traces, Hebbian
plasticity

INTRODUCTION

Most computational and experimental studies of synaptic
plasticity focus on variations of Hebb’s rule in which the change
in synaptic strength is caused by direct association of two factors,
i.e., two inputs (or activity patterns), one on the presynaptic
and one on the postsynaptic side. Thus, when neural circuits
adjust their synaptic weights depending on the frequency or
timing of the pre-synaptic and post-synaptic firing patterns,
Hebb’s postulate is fulfilled. In addition, a third factor (for
example neuromodulators or astrocytes) stabilizes or modulates
the expression of synaptic plasticity and, thus, ultimately learning
(Kempter et al., 1998; Pawlak et al., 2010; Lisman et al., 2011;
Frémaux and Gerstner, 2016; Edelmann et al., 2017; Kuśmierz
et al., 2017; Gerstner et al., 2018). The inclusion of this
third factor with two-factor Hebbian plasticity rule is called
neoHebbian plasticity (Lisman et al., 2011), and is infrequent
in computational models of spike-timing dependent plasticity
(STDP). In this review article, we focus on STDP (Sjöström et al.,
2008; Feldman, 2012), a synaptic Hebbian learning rule, and its
control by the third factor: neuromodulation (via the action of
dopamine, acetylcholine, noradrenaline and others) or astrocyte
activity. Our goal is to highlight aspects of STDP that should be
taken into account in future computational models of STDP.

Since its discovery, STDP has attracted considerable interest
in experimental and computational neuroscience because it
avoids implausibly high firing frequencies and instead relies
on spike correlation. STDP has emerged as a candidate
mechanism for experience- and activity-dependent changes in
neural circuits, including map plasticity (Abbott and Nelson,
2000; Dan and Poo, 2006; Morrison et al., 2008; Sjöström et al.,
2008; Feldman, 2012; Froemke, 2015). Experiments in different
brain regions and in diverse neuronal types have revealed
a plethora of STDP forms that vary in plasticity direction,
temporal dependence and the involvement of signaling pathways
(Sjöström et al., 2008; Feldman, 2012; Korte and Schmitz, 2016).
Experimental protocols that investigate STDP use pairing of
a presynaptic stimulation with a postsynaptic spike, with the
pre- and postsynaptic stimulations separated by a fixed interval
∆tSTDP(spike timing). In most of the studies, the spike timing is
computed as ∆tSTDP = tpost−tpre, where tpost and tpre are the times
of emission of the postsynaptic spike and that of the presynaptic
stimulation, respectively. If the postsynaptic stimulation occurs
before the presynaptic, ∆tSTDP < 0 (post-pre pairings), whereas
∆tSTDP > 0 when the presynaptic stimulation occurs before the
postsynaptic one (pre-post pairings). The same pairing pattern is
then repeated between 50 and 200 times at a constant frequency
(typically between 0.1 Hz and 5 Hz). The canonical STDP
is bidirectional (able to generate potentiation and depression

depending on the value of ∆tSTDP) and Hebbian, i.e., post-
pre pairings (∆tSTDP < 0) yield timing-dependent long-term
depression (tLTD) and pre-post pairings (∆tSTDP > 0) give rise
to timing-dependent long-term potentiation (tLTP). For most
STDP forms, the expression of plasticity is restricted to a narrow
temporal window (|∆tSTDP| < 80 ms); thus, when pre- and
postsynaptic activities are separated by a large ∆tSTDP, long-term
synaptic changes are not observed (Markram et al., 1997; Bi and
Poo, 1998).

The predominant form of STDP is Hebbian, and has been
observed in the neocortex (Markram et al., 1997; Feldman,
2000; Sjöström et al., 2001; Froemke et al., 2005; Nevian
and Sakmann, 2006), the hippocampus (Debanne et al., 1997,
1998; Bi and Poo, 1998; Nishiyama et al., 2000; Wittenberg
and Wang, 2006), and the striatum (Fino et al., 2008, 2009;
Pawlak and Kerr, 2008; Shen et al., 2008). In contrast to
Hebbian STDP, bidirectional anti-Hebbian STDP expresses tLTP
for ∆tSTDP < 0 and tLTD for ∆tSTDP > 0. Anti-Hebbian
STDP was first reported in the cerebellum-like structure of
electrical fish (Bell et al., 1997). More recently, bidirectional
anti-Hebbian STDP has been observed in mammals and in
various structures including the striatum (Fino et al., 2005, 2010;
Schulz et al., 2010; Paille et al., 2013; Valtcheva et al., 2017) and
the somatosensory cortex (Letzkus et al., 2006). Unidirectional
anti-Hebbian forms of STDP inducing tLTD for both ∆tSTDP < 0
and ∆tSTDP > 0, have been observed in the cerebellum (Han
et al., 2000; Safo and Regehr, 2008), the neocortex (Egger et al.,
1999; Lu et al., 2007), the dorsal cochlear nucleus (Tzounopoulos
et al., 2004) and the hippocampus (Wittenberg and Wang,
2006). Recently, a unidirectional Hebbian STDP where tLTP
was observed for both post-pre and pre-post pairings, has been
reported in hippocampus (Mishra et al., 2016). The mechanisms
that produce these diverse forms of STDP are not completely
understood, though could involve a third factor, such as
neuromodulators (such as dopamine or acetylcholine; for reviews
see Pawlak et al., 2010; Edelmann et al., 2017) or astrocytes.

All the forms of STDP described so far depend on one of
three main systems of coincidence detectors (Feldman, 2012;
Korte and Schmitz, 2016). The first system comprises the
N-methyl-D-aspartate receptor (NMDAR) receptor (NMDAR)
as the unique coincidence detector for both tLTP and tLTD,
though voltage-sensitive calcium channels may play a role
in coincidence detection. This form of plasticity has been
reported in hippocampal CA1 neurons (Nishiyama et al., 2000),
neocortical layer 2/3 pyramidal cells (Froemke et al., 2005),
striatal output neurons (Pawlak and Kerr, 2008) and striatal
gamma-aminobutyric acid (GABA)ergic interneurons (Fino
et al., 2008). The second system combines NMDAR-dependent
tLTP with tLTD which depends on metabotropic glutamate
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receptor (mGluR)- and/or cannabinoid type-1 receptor (CB1R)-
activation. Though the tLTD is independent of postsynaptic
NMDARs, the activation of presynaptic NMDARs can be
implicated (Sjöström et al., 2003; Bender et al., 2006; Corlew
et al., 2007; Rodríguez-Moreno and Paulsen, 2008). This form
of plasticity has been observed in the visual (layer 2/3) and
somatosensory (layer 5) cortex (Sjöström et al., 2003; Bender
et al., 2006; Nevian and Sakmann, 2006; Corlew et al., 2007;
Rodríguez-Moreno and Paulsen, 2008), cholinergic striatal
interneurons (Fino et al., 2008) or striatal output neurons (Fino
et al., 2010). Recently in striatal output neurons, a third system
has been reported, in which the tLTD is CB1R-dependent,
whereas the molecular dependence of tLTP is governed by the
number of pairings: a small number of pairings (∼10) produces a
CB1R-mediated tLTP, whereas greater number of pairings yields
an NMDAR-mediated tLTP (Cui et al., 2015, 2016).

The molecular mechanisms accounting for these various
forms of STDP are not yet fully understood, despite a substantial
number of studies focusing on STDP. For the NMDAR-
dependent tLTP and tLTD, calcium amplitude seems to partly
determine plasticity direction (Nevian and Sakmann, 2006).
For ∆tSTDP > 0, when the presynaptic activity precedes the
back-propagating action potential, the excitatory post-synaptic
potential coincides with the back-propagating action potential
resulting in high and more prolonged calcium influx through
the NMDAR and voltage-sensitive calcium channels, which leads
to tLTP. For ∆tSTDP < 0, calcium influx through the NMDARs
and voltage-sensitive calcium channels is lower and as a result
induces tLTD (Magee and Johnston, 1997; Koester and Sakmann,
1998; Nevian and Sakmann, 2006; Pawlak and Kerr, 2008).
These different calcium dynamics produce different directions
of plasticity by recruiting different downstream signaling
molecules. Several computational models have used a description
of neuronal calcium dynamics and/or the kinetics of downstream
signaling pathways as a proxy to predict the direction of plasticity
(tLTP or tLTD). These computational models investigate the
impact of different STDP timings or of modulators on STDP
by integrating their effects on calcium dynamics or downstream
signaling pathways. Therefore computational models based on
the kinetics of the implicated molecular pathways are promising
avenues to integrate the third factor in Hebbian plasticity and will
be the main focus of the present review.

NEUROMODULATORS AFFECTING THE
EXPRESSION, POLARITY AND SHAPE OF
STDP

Neuromodulators and neurotransmitters play an important, but
often unappreciated, role in the control of STDP induction and
maintenance (for reviews see Pawlak et al., 2010; Edelmann et al.,
2017). The skepticism about neuromodulation stems from the
apparent discrepancy between the time scale of neuromodulation
and the coincidence detection timing inherent to STDP. The
former is on the scale of seconds or more, whereas the
latter is on the scale of milliseconds. However, this apparent
discrepancy becomes less important after considering STDP

from the perspective of a learning system that needs to link
recorded information (memory) with a value scale (reward).
Indeed, an individual acting on its environment needs to learn
to discriminate actions leading to reward from those leading to
punishment, both possibly occurring seconds, minutes or even
hours after the taken action. A system of memory and learning
based only on the timescale of STDP would miss this essential
information. Thus, one role of neuromodulation is to link
STDP and the reward system. In this context, we demonstrate
below how a third factor, comprised of neuromodulators and/or
astrocytes, modulates the timing dependence of STDP. Note that
the modulation of timing dependence depends on brain region
and cell type; thus future computational models will need to
incorporate region and cell type specific modulation. In this
section, we detail STDP protocols used in experimental studies
because depending on the activity patterns neuromodulatory
systems are differentially recruited. Therefore, the apparent
contradiction between several of the experimental reports on
STDP could depend on the activity patterns or neuromodulatory
activation that were used. This knowledge might help the
building of computational models, by taking into account the
different regimes of action of neuromodulators in shaping STDP.

Dopamine
The action of dopamine is mediated by the metabotropic
dopaminergic receptors that functionally modulate other
receptor systems and/or ion channels without inducing large
postsynaptic currents. Dopaminergic receptors belong to two
groups based on their G-protein coupling: the D1-class receptors
(D1R and D5R) are coupled to Gs- or Golf-proteins and the
D2-class receptors (D2R, D3R and D4R) to Gi/o-proteins (Neve
et al., 2004). D1- and D2-class receptors have opposite action on
the cyclic adenosine monophosphate (cAMP) second messenger
pathway and the protein kinase A (PKA; Figure 1A).

Dopamine is released by midbrain dopaminergic neurons
in response to both reward and the reward prediction error
(Schultz, 2007). In the hippocampus, tLTD, which is observed
in control conditions for negative ∆tSTDP, is converted to tLTP
by dopamine addition during STDP pairings or immediately
after STDP pairings (aiming at mimicking a retroactive effect;
Zhang et al., 2009; Brzosko et al., 2015; Figure 1B). Dopamine
addition during STDP induction leads to the enlargement of the
temporal window of tLTP expression (Figure 1B). However the
effects of dopamine disappear when dopamine is added long after
STDP pairings, since dopamine addition 10 and 30 min after
pairings results in an absence of plasticity and a recovery of tLTD
observed in control conditions, respectively (Brzosko et al., 2015;
Figure 1B). This dopaminergic modulation, which converts
bidirectional STDP to unidirectional tLTP, is D1R- but not D2R-
mediated (Zhang et al., 2009; Brzosko et al., 2015). Acetylcholine
(classically associated with arousal and exploratory behavior;
Ma et al., 2018) transforms bidirectional Hebbian hippocampal
STDP into unidirectional tLTD (Brzosko et al., 2017). However,
the effect of acetylcholine is reverted by dopamine addition 1 s
after STDP pairings, which allows recovering tLTP (Figure 1B).
Although these results constitute an important step for the
experimental demonstration of a retroactive action of dopamine
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FIGURE 1 | Dopamine and acetylcholine shape spike-timing dependent plasticity (STDP) in hippocampus and prefrontal cortex. (A) Generic schematics of the main
signaling pathways activated in STDP in response to dopamine, acetylcholine and glutamate. Full and tee-shaped arrows denote activation and inhibition,
respectively. Gx, G-protein coupled receptor signaling x subclass; PKA, Protein kinase A, MEK-ERK (activation of MAPK); PP1, Protein Phosphatase-1; CaMKII,
Ca2+/calmodulin-dependent protein kinase-II; DAG, diacylglycerol; PLC, phospholipase C. (B) In hippocampus, bidirectional Hebbian STDP observed in control
conditions is converted to timing-dependent long-term potentiation (tLTP) when dopamine is applied during the STDP pairings or just after it. When dopamine is
applied 10 and 30 min after STDP pairings, an absence of plasticity and timing-dependent long-term depression (tLTD) are observed, respectively. Adapted from
Zhang et al. (2009) and Brzosko et al. (2015). Acetylcholine, applied during STDP pairings, converts bidirectional Hebbian STDP to unidirectional tLTD for both
post-pre and pre-post pairings. Dopamine applied just after STDP pairings with acetylcholine during STDP pairings can rescue pre-post tLTP. Adapted from Brzosko
et al. (2017). (C) In the prefrontal cortex, addition of dopamine or D1-plus D2-class receptor agonists to a pairing protocol that does not induce STDP promotes a
unidirectional tLTP. The inhibition of GABAA receptors or application of agonists of D2-class receptors allows the expression of tLTP for pre-post pairings. Conversely,
application of agonists of D1-class receptors allows the expression of tLTP for post-pre pairings. Activation of D2R expressed by gamma-aminobutyric acid
(GABA)ergic interneurons (or their direct inhibition by GABAA receptor inhibitors) decreases activity of these interneurons uncovering tLTP for pre-post pairings. For
post-pre pairings induction relies on D1-class receptor (located on the postsynaptic neuron) activation. Adapted from Xu and Yao (2010) and Ruan et al. (2014), with
no permission required.

on Hebbian plasticity, the molecular mechanisms underlying
dopamine interactions with the coincidence detectors were not
characterized. In addition, more distal action of dopamine from
STDP protocol remains to be investigated to fully explore the
temporal credit-assignment problem (Sutton and Barto, 1998;
Izhikevich, 2007; Schultz, 2007; Gerstner et al., 2018).

Additional evidence supports the role of dopamine for
promoting hippocampal tLTP. Conditions that lower basal
dopamine during the preparation of brain slices prevent the
induction of tLTP at synapses between Shaffer collaterals
and CA1 pyramidal cells (Edelmann and Lessmann, 2011).
Subsequent addition of dopamine rescues tLTP, through a D1R-
mediated mechanism (Edelmann and Lessmann, 2011, 2013).
In addition, D1- and D5R-activations are important for the
induction of tLTP at the synapses between the medial perforant
pathway and dentate gyrus neurons (Yang and Dani, 2014).

The mechanism here includes a change in cell excitability:
inactivation of the transient A-type potassium current by D1R
and D5R increases the excitability of dentate gyrus neurons and
the amplitude of their back-propagating action potentials (Yang
and Dani, 2014).

Beyond the hippocampus, the importance of dopamine
modulation of STDP also is attested in the basal ganglia,
where dopamine plays a crucial role in motor control, action
selection and reinforcement learning (Yin and Knowlton, 2006;
Schultz, 2007). Given the importance of dopamine, it is not
surprising that dopamine is required for STDP in the striatum,
both ex vivo (Pawlak and Kerr, 2008; Shen et al., 2008) and
in vivo (Schulz et al., 2010; Fisher et al., 2017). However,
the situation is complicated by the diversity in dopamine
receptors. In rodents, striatal output neurons belong either to the
direct or the indirect trans-striatal pathways and show different
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dopaminergic receptor expression, D1- and D2-class receptors,
respectively (Calabresi et al., 2014). In vivo in anesthetized
rodents, negative and positive pairing STDP protocol both
result in tLTD at corticostriatal synapses, and bidirectional
STDP can be elicited only with phasic dopaminergic release
obtained by electrical stimulation of midbrain dopaminergic
neurons (Schulz et al., 2010) or pharmacological manipulation
of dopaminergic transmission (together with GABAergic and
adenosine transmissions; Fisher et al., 2017). These results are
consistent with ex vivo studies, which showed that application
of dopamine either simultaneously, or 0.6 s after glutamate
allows dendritic spine enlargement and calcium increase
(Yagishita et al., 2014). Moreover, this study demonstrated
the existence of synaptic eligibility traces, which can be
revealed by subsequent dopamine release after Hebbian learning
(see section ‘‘Monoamines Transform Eligibility Traces Into
Plasticity’’ below). Ex vivo, conflicting results have been reported
regarding STDP modulation by dopamine: according to Pawlak
and Kerr (2008) both tLTD and tLTP requires D1R- but not
D2R-activation (D2R-activation affecting only plasticity kinetics:
tLTP and tLTD onset is shortened and delayed, respectively),
whereas Shen et al. (2008) reported that D2R-activation is
required for tLTD expression in striatal neurons belonging to
the indirect pathway and D1R-activation is necessary for tLTP
in striatal neurons belonging to the direct pathway. There are
methodological differences between these two studies which
could account for this discrepancy in results: for post-pre and
pre-post pairings the same STDP protocol (i.e., 100 pairings
at 0.1 Hz) was applied by Pawlak and Kerr (2008), whereas
two distinct STDP-like protocols (theta bursts 3:3 for tLTP and
1:3 for tLTD) were utilized by Shen et al. (2008). Depending
on the activity patterns, D1- and D2-class receptors could be
differentially activated. The effects of dopamine in the striatum
via D2R receptors would result from a D2R-mediated attenuation
of both synaptic- and back-propagating action potential-evoked
calcium influx into dendritic spines via the inhibition of
PKA-dependent regulation of NMDARs (Higley and Sabatini,
2010; Figure 1). This mechanism also is supported by the
demonstration that dopamine depletion enhances calcium influx
in dendrites of the D2R-expressing striatal neurons belonging
to the indirect pathway (Day et al., 2008). Future development
of detailed computational models of the signaling pathways will
be useful for fully exploring the involvement of dopaminergic
receptors in various forms of STDP (see ‘‘Molecular Pathway-
Based Computational Models of STDP’’ section).

The role of dopamine has been demonstrated in two other
brain regions, the prefrontal cortex and the amygdala. In
the prefrontal cortex (at layer 5 pyramidal cells) an STDP
protocol such as 60 pairings (∆tSTDP = +10 ms) at 0.1 Hz
fails to produce plasticity, while dopamine application during
the STDP pairings permits the induction of Hebbian tLTP
(∆tSTDP = +10 ms; Xu and Yao, 2010) and anti-Hebbian
tLTP (∆tSTDP = −30 ms; Ruan et al., 2014; Figure 1B). Both
Hebbian and anti-Hebbian tLTP directly depends upon D1R-
activation in the postsynaptic neuron whereas the Hebbian tLTP
depends also indirectly upon the activation of D2R expressed by
GABAergic interneurons. D2R activation blocks the inhibition

exerted by GABAergic interneurons and permits the expression
of Hebbian tLTP (∆tSTDP<+10 ms). By combining D1R- and
D2R-activation, the temporal window of tLTP is extended up
to ∆tSTDP = +30 ms (Xu and Yao, 2010; Figure 1C). This
suggests that in prefrontal cortex, the physiological form of
STDP is the anti-Hebbian tLTP since the expression of Hebbian
tLTP is disfavored by GABAergic network activity. In the
lateral nucleus of the amygdala tLTP requires the activation of
D2R located on neighboring GABAergic interneurons (Bissière
et al., 2003). Since dopamine is released in the amygdala in
response to stress (Inglis and Moghaddam, 1999), dopaminergic
neuromodulation of inhibitory synaptic transmission appears
to be a crucial mechanism underlying the acquisition of fear
conditioning.

In summary, these results show that dopamine is a key
neuromodulator of STDP and constitutes the third factor
required for the temporal credit-assignment. Overall, the effects
of dopamine seem to conform to a simple general scheme:
the activation of Gs/Golf-coupled D1R tends to promote tLTP
whereas the activation of Gi-coupled D2R favors tLTD. However,
the effects exerted by dopamine strongly depend on the brain
area: dopamine either can be mandatory for STDP induction
and/or maintenance or modulate STDP properties (width of
the ∆tSTDP window, polarity of the STDP or magnitude of the
plasticity). Moreover, network effects can add complexity to
the picture, since the expression of dopamine receptors is not
restricted to the examined neuron but can affect the response to
e.g., local interneurons.

Noradrenaline
Noradrenaline interacts with G-protein–coupled receptors
of three families: α2-, α1- and β1-3-adrenergic receptors
(by order of decreasing affinity; Ramos and Arnsten, 2007).
α2-adrenergic receptors are Gi/Go-coupled and lead to cAMP
decrease. α1-adrenergic receptors are Gq-coupled, and activate
phospholipase Cβ (PLCβ), resulting in intracellular calcium
release via inositol 1,4,5-triphosphate (IP3). β-adrenergic
receptors are Gs-coupled and yield cAMP increase (Figure 2A).

In several brain regions, activation of adrenergic receptors
modifies the shape of the STDP curve (Figure 2B). In the
hippocampus, activation of β-adrenergic receptors enlarges
the range of ∆tSTDP for Hebbian tLTP expression by increasing
the excitability of CA1 pyramidal cells (Lin et al., 2003). In the
visual cortex, whereas paired stimulations of layer 4 afferents
with postsynaptic action potential bursts does not produce
plasticity, the concomitant activation of adrenergic receptors
(with both α1-and β-adrenergic receptor agonists) allows the
emergence of bidirectional Hebbian STDP in pyramidal cells
of layer 2/3 (in rodents: Guo et al., 2012; in primates: Huang
et al., 2014; Figure 2B) as well as in fast-spiking interneurons
and non-fast-spiking somatostatin-positive interneurons
(Huang et al., 2013). Note that α1-and β-adrenergic receptor
agonists alone (or agonists of M1-class muscarinic acetylcholine
receptors (mAChRs), see section below; Seol et al., 2007)
trigger a tLTD-only (i.e., unidirectional anti-Hebbian STDP),
whereas β-adrenergic receptor agonists alone induce the
expression of a tLTP-only (i.e., unidirectional Hebbian STDP;
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FIGURE 2 | Noradrenaline and acetylcholine shape STDP in the visual cortex. (A) Generic schematic of the main signaling pathways activated in STDP in response
to noradrenaline, acetylcholine and glutamate. Abbreviations are those of Figure 1A. (B) In layer 2/3 of the visual cortex, STDP protocols consisting of
120–200 pairings at 1 Hz do not produce STDP in control conditions. When α1- and β-adrenergic receptor agonists (1) or when muscarinic M1R and β-adrenergic
receptor agonists (3) are applied, then bidirectional Hebbian STDP can be observed. Unidirectional anti-Hebbian tLTD and unidirectional Hebbian tLTP are induced
after α1- and β-adrenergic receptor agonist application, respectively (2); M1R agonist promotes unidirectional anti-Hebbian tLTD (3). Low and high concentration of
noradrenaline promote unidirectional anti-Hebbian tLTD (2) and bidirectional Hebbian STDP (1), respectively. (C) Monoamines transform eligibility traces into plasticity.
Hebbian pairings (200 pairings at 10 Hz) induce post-pre tLTD and pre-post tLTP only if serotonin and noradrenaline are released 5–10 s after STDP pairings.
Adapted from Seol et al. (2007), Salgado et al. (2012), Guo et al. (2012), Huang et al. (2013) and Huang et al. (2014), He et al. (2015) with no permission required.

Seol et al., 2007; Guo et al., 2012; Huang et al., 2013; Figure 2B).
The affinity for noradrenaline of α1-adrenergic receptors exceeds
that of β-adrenergic receptors, and unidirectional anti-hebbian
STDP (tLTD-only) is observed in low noradrenaline, whereas
bidirectional Hebbian STDP can be induced with higher
noradrenaline concentration (Salgado et al., 2012; Figures 2B,C).

Taken together, those studies show that adrenergic receptors
play an important role in shaping STDP, mostly by enlarging
∆tSTDP and controlling STDP polarity, but also, similarly
to dopamine, by acting subsequently to the stimulation to
promote plasticity. Overall, a pattern emerges from the effects
of noradrenaline: the activation of Gs-coupled β-adrenergic
receptors tends to promote tLTP, whereas the activation of
Gq-coupled α1-adrenergic receptors tends to favor tLTD.

Monoamines Transform Eligibility Traces
Into Plasticity
One of the fundamental questions in reward learning is the
temporal credit-assignment problem: how are the correct

actions learned given that delivery of a reward or punishment
occurs significantly later than the key actions that promoted
the outcome (Schultz, 2007). In an attempt to solve the
temporal credit-assignment problem, some computational
studies addressed the question of the retroactive effect of
dopamine on cortical and hippocampal STDP (Sutton and Barto,
1998; Izhikevich, 2007; Gerstner et al., 2018). From a cellular
perspective, the temporal credit-assignment problem translates
into the following question: if dopamine (and more broadly
monoamines) modulates STDP, is there a dependence of this
modulation on the time elapsed between the stimulus (STDP
pairings) and the reward (release of monoamines)? This question
adds a supplementary temporal dimension to the modulation by
the third-factor monoamine.

To solve the temporal credit-assignment or the distal
reward problem, it has been proposed that synaptic eligibility
traces could constitutes synaptic tags that are set by Hebbian
learning and that will be transformed subsequently into
synaptic plasticity by neuromodulators, bridging the
learning sequence with reward (Sutton and Barto, 1998;

Frontiers in Computational Neuroscience | www.frontiersin.org July 2018 | Volume 12 | Article 4988

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Foncelle et al. Modulation of STDP

Izhikevich, 2007; Gerstner et al., 2018). In other words, eligibility
traces would be induced by Hebbian learning but would
remain silent in term of synaptic efficacy changes, unless a
neuromodulator released subsequently transforms them for
plasticity. Synaptic eligibility traces would allow the synapse
to keep a trace from the stimulus until getting the reward,
the latter of which is represented by monoamines. We can
distinguish two cases: the subsequent release of neuromodulator
shapes an existing plasticity (Cassenaer and Laurent, 2012;
Brzosko et al., 2015, 2017; Shindou et al., 2018) or allows
the plasticity expression (Yagishita et al., 2014; He et al.,
2015).

Octopamine, the equivalent of noradrenaline in insects,
changes the bidirectional Hebbian STDP at synapses of Kenyon
cells in the locust, critical for the associative learning of
odors, into a unidirectional STDP (tLTD-only) even in a
retroactive manner when applied seconds after the relevant
pairing (Cassenaer and Laurent, 2012). In a similar way, in
rodents, when dopamine is applied just after STDP pairings, it
converts tLTD into tLTP in hippocampus (Brzosko et al., 2015,
2017) or in striatum (Shindou et al., 2018).

In striatum, dopamine induces spine enlargement exclusively
when opto-stimulation of dopaminergic terminals occur between
0.3–2 s after Hebbian learning (i.e., STDP pairings; Yagishita
et al., 2014). In the visual cortex and in the medial prefrontal
cortex, release of noradrenaline and serotonin, just after the
whole set of pairings or just after every pairing, allows the
expression of tLTP and tLTD for pre-post and post-pre pairings,
respectively (He et al., 2015); the STDP pairings per se did not
induce plasticity (Figure 2C). He et al. (2015) observed that the
eligibility traces are short-lived since the monoamines need to
be release 5–10 s after learning to promote plasticity (He et al.,
2015). The fact that a couple of monoamines (or third factors)
is at play for distinct induction plasticity (tLTP vs. tLTD) could
allow an efficient stabilization of learning and avoid synaptic
saturation.

Acetylcholine
Acetylcholine acts on two types of muscarinic receptors
mAChRs: the M1-(M1, M3 and M5) and M2-(M2 and M4)
class receptors (Thiele, 2013), and the ionotropic (cationic)
nicotinic acetylcholine receptors (nAChRs; Albuquerque et al.,
2009). M1-class mAChRs are Gq/G11-coupled leading to IP3
and diacylglycerol (DAG) production (via PLCβ activation),
subsequent increase of intracellular calcium and activation of
protein kinase C; (PKC; Figure 2A); M2-class mAChRs are
Gi/Go-coupled, leading to inhibition of adenylate cyclase, and a
reduction of cAMP and thus PKA activity.

Unlike STDP experiments with noradrenaline and dopamine,
experiments to characterize the effect of acetylcholine have
not carefully delineated M1-class vs. M2-class effects; thus
experimental results are more diverse. At hippocampal
CA1 pyramidal cells, bidirectional Hebbian STDP is converted
into unidirectional tLTP after enhancement of acetylcholine
(Brzosko et al., 2017; Figure 1B), whereas inhibition of
mAChRs prevents post-pre tLTD and converts pre-post tLTP
into tLTD (Sugisaki et al., 2011, 2016). When excitatory and

inhibitory post-synaptic currents were examined at synapses
of CA1 pyramidal neurons, pre-post pairings induce tLTP of
excitatory pathway while it triggers tLTD at inhibitory pathways
via the co-activation of mAChRs and CB1R (Ahumada et al.,
2013). Thus, Hebbian STDP in CA1 pyramidal neurons depends
on the excitation/inhibition balance, which is tightly regulated by
mAChRs expressed in GABAergic interneurons and pyramidal
cells (Sugisaki et al., 2011, 2016; Ahumada et al., 2013; Takkala
and Woodin, 2013).

Though acetylcholine alone seems to promote unidirectional
plasticity (tLTP- or tLTD-only), co-activation of mAChRs and
Gs coupled pathways (either D1/D5 dopaminergic receptors in
the hippocampus CA1 pyramidal cells (Brzosko et al., 2017) or
β-adrenergic receptors in visual cortex layer 2/3 pyramidal cells
(Seol et al., 2007) promotes bidirectional plasticity by restoring
Hebbian tLTP for ∆tSTDP > 0 (Figure 2B).

The effects of acetylcholine via nAChR-activation are
expected to include depolarization and possibly increased
calcium influx (Jones et al., 2012), but they also can exert a
more subtle influence on STDP by regulating the magnitude of
STDP rather than its polarity or expression (Sugisaki et al., 2016).
Nicotine increases the threshold for the induction of Hebbian
tLTP at excitatory synapses of pyramidal cells of the prefrontal
cortex (Couey et al., 2007). However, note that nicotine when
applied at a high concentration (∼10 µM) can exert a more
drastic effect on STDP since it converts tLTP into tLTD (Couey
et al., 2007). Interestingly, in the medial prefrontal cortex,
after nicotine treatment in juvenile rats, opposing effects are
obtained depending on the developmental stage: tLTP magnitude
was reduced in juvenile whereas it was increased in adult rats
(Goriounova and Mansvelder, 2012).

Taken together, the above results reveal a general principle
whereby the neuromodulatory effects exerted on STDP by
monoamines (dopamine or noradrenaline) or acetylcholine are
for a large part guided by the type of G-protein activated
(regardless of the agonist): Gi/o-coupled and Gq/11-coupled
receptor activation facilitates tLTD (D2-class, α1-adrenergic,
M1-class), whereas Gs- and Golf-coupled receptor activation
rather leads to the expression of tLTP (D1R-class, β-adrenergic
receptors). However the validity of this general principle needs
further investigation in other brain areas and neuronal subtypes.

Brain-Derived Neurotrophic Factor (BDNF)
The neurotrophic factor brain-derived neurotrophic factor
(BDNF) binds to the tyrosine receptor kinase B, which
induces tyrosine receptor kinase B dimerization and the
autophosphorylation of tyrosine residues in the cytoplasmic
kinase domain. This process induces the activation of three
main signaling pathways: phospholipase Cγ, phosphoinositide
3-kinase and extracellular signal-regulated protein kinases
cascades. Notably, the phosphoinositide 3-kinase signaling
pathway plays an important role in the regulation of mRNA
translation, which impacts protein synthesis and putatively
BDNF-dependent plasticity. Numerous studies have shown
the role of BDNF in modulating synaptic transmission and
plasticity (for reviews see Park and Poo, 2013; Edelmann et al.,
2014).
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Concerning STDP, pairings of glutamate release and
postsynaptic spiking at 1 Hz are sufficient to release BDNF
from the postsynaptic dendrites in a spike-timing-dependent
manner (for 0 < ∆tSTDP ≤ +20 ms; for ∆tSTDP > 20 ms
BDNF release was not detected; Lu et al., 2014). This spike-
timing-dependent BDNF release is dependent on the activation
of NMDARs. In hippocampal neurons, the tLTP part of the
observed bidirectional Hebbian STDP depends on BDNF (Bi
and Poo, 1998; Lu et al., 2014). Interestingly, depending of the
activity pattern during STDP pairings, the BDNF dependence of
the observed plasticity is different. Indeed, hippocampal tLTP
induced with presynaptic activation paired with postsynaptic
bursts of four back-propagating action potentials (1:4 pairings
repeated 30 times at 0.5 Hz) is BDNF and tyrosine receptor kinase
B-mediated, whereas canonical STDP pairings (1:1 pairings
repeated 100 times at 0.5 Hz) induced a tyrosine receptor
kinase B-independent tLTP at the same synapses (Edelmann
et al., 2015). Genetic impairment of BDNF synthesis has led to
alteration of STDP in the prefrontal cortex. Disruption of one
of the promoters involved in BDNF transcription (promoter
IV mutant mice) leads to the aberrant induction of tLTP,
which is absent in wild-type mice, for 50 pairings (Sakata et al.,
2009). In the infralimbic medial prefrontal cortex, STDP is
absent in a rodent model (BDNF-Met/Met mice) of the human
BDNF Val66Met polymorphism (leading to severe cognitive
dysfunction and anxiety disorders) in which the BDNF release is
impacted; STDP is recovered after exogenous BDNF application
(Pattwell et al., 2012).

Nitric Oxide (NO)
Nitric oxide (NO), an intercellular messenger, is generated
by the enzyme NO synthase and activates soluble guanylyl
cyclase leading to cyclic guanosine monophosphate (cGMP)
formation. In turn, cGMP-activated protein kinases regulate
multiple substrates such as DARPP-32 and G-substrate, which
inhibits phosphatases that are involved, among other effects,
in synaptic plasticity expression (for review see: Hardingham
et al., 2013). Concerning STDP, in the somatosensory cortex of
mice, Hebbian tLTP depends both on the α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid receptor (AMPAR)-subunit-
1 and a NO-dependent presynaptic component (Hardingham
and Fox, 2006). Similarly, glutamate afferents to serotoninergic
neurons of the dorsal raphe nucleus exhibit tLTP for pre-post
pairings, which is NO-dependent, involving the cGMP-activated
protein kinase signaling cascade (Haj-Dahmane et al., 2017). In
retinal ganglion cells of tadpoles, STDP can be induced by natural
visual stimulation (e.g., moving bar) or by electrical stimulation
of the retina and in both cases, NO is required for tLTD while
BDNF is required for tLTP (Mu and Poo, 2006).

GABA
In the dorsal striatum, anti-Hebbian STDP as observed in control
conditions in striatal output neurons is shifted to Hebbian
STDP under pharmacological blockade of GABAAR receptors
(Fino et al., 2010; Paille et al., 2013; Valtcheva et al., 2017;
Figure 3A). This effect applies equally at D1R-class striatopallidal
(direct pathway) and D2R-class striatonigral (indirect pathway)

FIGURE 3 | GABAA and GABAB receptor activation shapes STDP in dorsal
striatum and hippocampus. (A) Modulation of striatal synaptic plasticity by
GABAergic signaling at different post-natal ages. Schematic view of the impact
of GABAergic signaling on corticostriatal STDP throughout development. Left,
at P7–10, inhibition of GABAergic signaling turns Hebbian tLTD into
bidirectional Hebbian STDP. Selective activation of tonic GABAergic signaling
converts Hebbian tLTD into bidirectional anti-Hebbian STDP (as observed at
P25–30). Adapted from Valtcheva et al. (2017). Right, at P25–30, inhibition of
GABAergic signaling shifts bidirectional anti-Hebbian STDP into bidirectional
Hebbian STDP. Selective inhibition of tonic GABAergic converts bidirectional
anti-Hebbian STDP into Hebbian tLTD (as observed at P7–10). Adapted from
Paille et al. (2013) and Valtcheva et al. (2017). (B) In hippocampus, depending
on the frequency of STDP pairings (5, 25 and 50 Hz), inhibition of GABAA or
GABAB receptors shape differently STDP expression and polarity. GABAA

receptors modulate the timing dependence of tLTD whereas GABAB receptors
control STDP frequency dependence. Adapted from Nishiyama et al. (2010)
and Sugisaki et al. (2016), with no permission required.

neurons of juvenile and adult rodents. Although the molecular
mechanisms underneath this reversal of polarity by GABA
are not fully elucidated, a computational model suggests that
depolarizing effects of GABA at distal dendrites would reverse
calcium influx by modifying the balance between calcium
influxes from NMDAR vs. voltage-sensitive calcium channels
(Paille et al., 2013). Although GABA increases calcium influxes
in both NMDAR and voltage-sensitive calcium channels, via
its depolarizing effect in striatal output neurons (due to the
relative values of the chloride reversal and membrane potential),
the depolarizing effect of GABA would impact differentially
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NMDAR and voltage-sensitive calcium channels depending on
the order of pairings (post-pre vs. pre-post). GABA would
favor calcium influx via voltage-sensitive calcium channels for
post-pre pairings (promoting tLTP), whereas it would favor
calcium influx via NMDARs for pre-post pairings (promoting
tLTD) in control conditions, leading to anti-Hebbian STDP
(Paille et al., 2013). Under GABA blockade, this balance between
calcium influxes is shifted and Hebbian STDP can be observed.
Change in GABAergic signaling during striatal development
(i.e., the onset of the tonic GABAergic signaling around P14;
Ade et al., 2008) appears to be a key factor for shaping
of striatal STDP. Indeed, in young rats (P7–10) corticostriatal
STDP is unidirectional and Hebbian (tLTD with post-pre
pairings, no plasticity with pre-post pairings) but bidirectional
and anti-Hebbian in adult rodents (Valtcheva et al., 2017;
Figure 3A). GABA signaling is also at play with the control
of CB1R-dependent tLTP which expression shifts from post-pre
to pre-post stimulation when ionotropic GABAA transmission
is blocked (Cui et al., 2015). GABA is not involved in the
induction of STDP per se, nor its magnitude, but controls STDP
polarity, i.e., the association between the sign of the pairing (pre-
post or post-pre) and the plasticity outcome (tLTP or tLTD).
The tonic GABAergic component plays a major role in the
emergence of the anti-Hebbian striatal STDP in juvenile and
adult rodents (Valtcheva et al., 2017; Figure 3A). Thus, the
pathological deregulation of tonic GABAergic signaling may
affect the polarity and occurrence of striatal plasticity and alter
procedural learning and memory. It remains to be seen whether
the neuromodulator role of GABA for STDP emergence and/or
polarity constitutes a general rule in the brain.

Change of STDP polarity induced by GABAergic
transmission has also been observed in hippocampus. In
hippocampal CA1 pyramidal cells, blockade of GABAARs
converts unidirectional tLTD to bidirectional Hebbian STDP
(with 80 pairings at 5 Hz; Sugisaki et al., 2016; Figure 3B). The
modulatory effects of GABAA and GABAB receptors can also
combine. Indeed, at Schaffer collateral-CA1 excitatory synapses
of the rat hippocampus, plasticity relies on postsynaptic GABAA
receptors to set the spike-timing dependency and also depends
on presynaptic GABAB receptors for its frequency dependence
(Nishiyama et al., 2010; Figure 3B). Specifically, postsynaptic
GABAA receptors regulate the timing dependence of tLTD at
5 Hz pairings (in the theta frequency band), whereas presynaptic
GABAB receptors control the frequency dependence of tLTD
at 25 Hz (alpha and beta frequencies) and also accounts for the
expression of tLTP for 5 Hz and 50 Hz (gamma frequencies;
Nishiyama et al., 2010). In addition, STDP can be expressed at
GABAergic interneurons, where it modulates the strength of
GABAergic inhibition since STDP pairings alters the activity
of potassium-chloride cotransporter-2, resulting in changes in
the reversal potential of GABAergic synaptic currents (Woodin
et al., 2003).

Taken together, the above results indicate that the spectrum
of the third factor of STDP is very large since in addition
to neuromodulators it can be extended to BDNF, NO and
neurotransmitters acting as neuromodulators such as GABA.
STDP synaptic plasticity is thus modulated, whether in its

induction, its direction or its temporal window. Though
neuromodulation of STDP has been investigated for the early
phase of plasticity (within the first hour, i.e., the induction phase),
the effects of neuromodulators remain to be investigated for the
late phases of plasticity in which the third factor is expected to
have a crucial role for the maintenance of memory (Lisman et al.,
2011).

Modulation of STDP by Astrocytes:
the Forgotten Third Factor
Many forms of excitatory STDP rely on either pre- or
postsynaptic glutamate receptors (Sjöström et al., 2008; Feldman,
2012; Korte and Schmitz, 2016). Therefore, STDP is expected
to be tightly controlled by glutamate dynamics. Specifically, the
spatiotemporal profile of glutamate may define the extent and
location of recruited glutamate receptors, which are involved in
the induction of tLTP or tLTD.

An overriding question is how coincident synaptic activity in
the millisecond range can be integrated over a longer timescale
during the iteration of pre- and postsynaptic pairings to allow
STDP induction, while keeping sharp sensitivity to timing during
individual pairing episodes. A potential solution to this problem
could be that: (1) glutamate should be released in a delayed
manner to allow integration of pre- and postsynaptic activity
over the time course of minutes; and (2) synaptically released
glutamate during neuronal activity needs to be reliably cleared
from the extracellular space to allow high fidelity sampling of
coincident pre- and postsynaptic activity during STDP pairings.
Astrocytes help solve this problem of controlling extracellular
glutamate dynamics and have been shown to play an important
role in synaptic transmission, as well as short- and long-term
memory (Chung et al., 2015; Oliveira et al., 2015). This role
of astrocytes has led to the concept of the tripartite synapse,
comprised of the pre- and postsynaptic neuronal elements as
well as the astrocytes. Indeed, a substantial part of central
synapses are contacted by astrocytes (Bernardinelli et al., 2014).
Notably, astrocytes are able to release glutamate via exocytosis in
response to neuronal activity (Araque et al., 2014; Sahlender et al.,
2014; Verkhratsky et al., 2016) and to efficiently clear glutamate
from the extracellular space on a submillisecond timescale via
high-affinity glutamate transporters (Danbolt, 2001). Therefore,
astrocytes can both detect and control neuronal activity via the
release and reuptake of glutamate.

Astrocytes can integrate the coincident neuronal activity
during STDP pairings and participate in the induction of
tLTD (Min and Nevian, 2012). Excitatory tLTD induced by
post-pre pairings at layer 4 onto layer 2/3 synapses in the
rat barrel cortex relies on the release of endocannabinoids by
the postsynaptic element through the activation of astrocytic
CB1Rs (Min and Nevian, 2012). In turn, glutamate released by
astrocytes activates presynaptic NMDARs which are required
for tLTD induction (Rodríguez-Moreno and Paulsen, 2008).
Astrocytes are able to sense postsynaptic endocannabinoid
release by gradually increasing their calcium waves exclusively
during repetitive post-pre pairings within a narrow temporal
window of ∆tSTDP =−25 ms which is eligible for tLTD induction.
Indeed, pre-post pairings at ∆tSTDP = +25 ms and post-pre

Frontiers in Computational Neuroscience | www.frontiersin.org July 2018 | Volume 12 | Article 4991

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Foncelle et al. Modulation of STDP

pairings at ∆tSTDP = −250 ms, which induce tLTP and no
plasticity, respectively, do not trigger any changes in calcium
dynamics (Min and Nevian, 2012). Therefore, astrocytes are
selective to a unique temporal pattern, which both generates
calcium dynamics to promote glutamate release and imposes a
threshold for tLTD induction. Astrocytes can thus act as a time
buffer by integrating coincident pre- and postsynaptic activity
over the time course of minutes and enabling tLTD by delayed
release of glutamate.

Astrocytes also are crucial for the gating of both tLTP
and tLTD in the dorsal striatum via the uptake of glutamate
(Valtcheva and Venance, 2016). Physiological activity of
the astrocytic glutamate transporter, called the excitatory
amino acid transporter-2 (EAAT2), allows the expression
of bidirectional anti-Hebbian STDP induced in a narrow
temporal window −30 < ∆tSTDP < +30 ms (Fino et al.,
2010; Paille et al., 2013; Valtcheva and Venance, 2016). When
EAAT2 is blocked, a form of LTP that does not rely on
coincident detection can be induced by uncorrelated activation
of pre- and postsynaptic elements. This non-Hebbian LTP
requires postsynaptic back-propagating action potentials and
extrasynaptic GluN2B-containing NMDARs, which are activated
by glutamate spillover. In contrast, the overexpression of
EAAT2 prevents the expression of striatal STDP (Valtcheva
and Venance, 2016) possibly by restricting glutamate availability
for both the NMDARs and mGluRs required for striatal STDP
(Shen et al., 2008; Fino et al., 2010). Thus, preserving the
optimal temporal contingency between pre- and postsynaptic
activity required for STDP depends on astrocytic glutamate
uptake. Astrocytes gate tLTP and tLTD by a subtle regulation
of the extracellular glutamate levels and, therefore, a precisely
tuned range of EAAT2 activity allows the emergence of STDP.
Computational models have begun to explore interactions
between glutamatergic synapses and astrocytes (De Pittà et al.,
2011; De Pittà and Brunel, 2016 see also De Pittà et al. (2012)
for a review), but investigating the role of astrocytic glutamate
control requires transforming the binary glutamate release event
typically used in STDP models into glutamate diffusion and
update mechanisms.

Astrocytes can release various other neurotransmitters and
factors besides glutamate (Araque et al., 2014; Sahlender et al.,
2014; Verkhratsky et al., 2016) including the NMDAR co-agonist
D-serine which regulates different forms of synaptic plasticity.
The release of D-serine is necessary for frequency-dependent
LTD and LTP in the hippocampus (Zhang et al., 2008;
Henneberger et al., 2010) and prefrontal cortex (Fossat et al.,
2011). Moreover, experience-dependent changes in the degree
of synaptic enwrapment by astrocytes governs the level of
D-serine availability and subsequently controls the expression
of NMDAR-dependent LTP and LTD in the supraoptic
nucleus of the hypothalamus of lactating rats (Panatier et al.,
2006). The NMDARs implicated in STDP can be situated at
both pre- or postsynaptic sites (Feldman, 2012; Korte and
Schmitz, 2016) and thus may be affected to different extents
by gliotransmission. D-serine has a permissive role for the
induction of NMDAR-dependent tLTP at mossy fiber-CA1
hippocampal synapses (Rebola et al., 2011), although its glial

origin has not been investigated. In the developing hippocampus
a presynaptic tLTD at CA3-CA1 synapses requires D-serine
signaling possibly released from astrocytes (Andrade-Talavera
et al., 2016). Interestingly, the same STDP pairing protocol
induces tLTP at later developmental stages suggesting the
possibility that astrocytic coverage of neurons and modulation
of STDP by gliotransmission may be developmentally regulated.

Another important gliotransmitter is adenosine triphosphate
(ATP), which is enzymatically converted to adenosine in the
extracellular space and can act on pre- and postsynaptic
adenosine receptors situated on neurons. Glial release of ATP
controls the magnitude of hippocampal LTP induced with
high-frequency stimulation (Pascual et al., 2005) and blockade
of postsynaptic adenosine A2a receptor increases the amplitude
of low-frequency stimulation-dependent LTD in the striatum
(Lerner et al., 2010). Adenosine also mediates striatal tLTP via
postsynaptic adenosine A2a receptors both in vitro (Shen et al.,
2008) and in vivo when the STDP paradigm is coupled with
dopamine pairing (Fisher et al., 2017). In addition, presynaptic
adenosine A1 receptors modulate the amplitude of tLTP in the
visual cortex (Bannon et al., 2017). However, evidence directly
implicating astrocytes in the purinergic control of STDP is still
lacking. Computational models of signaling pathways underlying
STDP have begun to include adenosine A2a receptors (see
below), but investigation of interaction between pre-synaptic
NMDA and adenosine A1 receptors requires modeling of
mechanisms controlling pre-synaptic vesicle release.

Finally, astrocytes are involved in the GABAergic modulation
of both the polarity (Fino et al., 2010; Paille et al., 2013; Valtcheva
et al., 2017) and threshold for induction (Groen et al., 2014)
of excitatory STDP. Astrocytes regulate basal and transient
inhibitory tone via GABAergic transporters (Scimemi, 2014).
Non-specific blockade of both neuronal and astrocytic GABA
transporters in the developing striatum has a permissive role for
the induction of tLTD (Valtcheva et al., 2017) but the particular
contribution of astrocytic GABA clearance in STDP remains to
be explored.

MOLECULAR PATHWAY-BASED
COMPUTATIONAL MODELS OF STDP

In an attempt to better understand the mechanisms governing
learning and memory and determine which mechanisms control
input-dependent plasticity, modeling efforts have focused on
biophysical and biochemical models that utilize a kinetic
description of the molecular pathways implicated in STDP.
These models range in molecular complexity from single ion
(i.e., calcium) to complicated signaling pathways, and in spatial
complexity from single-compartment (Figure 4A1) to multi-
compartment (Figure 4A2). An overview of this literature can
be found in several review articles (see e.g., Graupner and
Brunel, 2010; Griffith et al., 2015). In the following, we focus
on the articles published after 2010, though include the most
influential contributions published before that date. Moreover,
in the following, we subdivide the models into two types: those
evaluating the control of plasticity from calcium dynamics alone,
and those that add one or more downstream signaling pathway
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FIGURE 4 | Computational models for predicting the direction of STDP have a wide range of complexity. (A) Models differ in morphological complexity, from
single-compartment (A1) to multi-compartment models (A2). Top traces show that the back-propagating action potential decreases in amplitude, initiates later and
broadens as it propagates distally in multi-compartmental models. Bottom traces show that distal synapses may produce higher calcium elevations than proximal
synapses due to higher local input resistance. (B) Models differ in the mechanisms used to control calcium dynamics, from single time constant of decay, to
biophysical/biochemical models of diffusion (red arrows), pumps (such as the plasma membrane ATPase: PMCA) that extrude calcium (yellow arrow), buffers (such
as calmodulin, calbindin, or immobile buffers) that bind to free calcium (gray arrows) and calcium release (not shown). All models include influx through the
N-methyl-D-aspartate receptors (NMDARs; blue arrows). (C) The prediction of plasticity from calcium often uses two amplitude thresholds (C1), but sometimes
include duration thresholds (C2) or other measures of calcium duration. TLTP, tLTP amplitude threshold; TLTD, tLTD amplitude threshold; DLTD, threshold on the
duration of the calcium elevation.

molecules. In addition, we try to distinguish single-compartment
models from those that add some degree of spatial structure to
the postsynaptic neuron. We acknowledge that in both of these
dimensions the classification is not binary and some models
bridge the divide.

Simplified Calcium Dynamics and
Two-Threshold Rules
Models of calcium dynamics in response to STDP stimuli are
the most common type of models, and are justified both by the
critical role of calcium in plasticity and also by the stimulation
protocol in which neuromodulator release does not change.
The only difference between STDP protocols that produce
tLTP and STDP protocols that produce tLTD is the timing
between the presynaptic stimulation and the postsynaptic action
potential, ∆tSTDP; thus the number and frequency of presynaptic
stimulations does not differ between tLTP and tLTD. This
implies that presynaptic release of neuromodulators does not
differ so it must be postsynaptic molecules activated by calcium
dynamics that determine the polarity of plasticity.

Calcium predicting the direction of synaptic plasticity is
one of the ideas that are popular among theoreticians and
experimentalists. In the simplest form the peak calcium (or
indeed the amplitude of the current through the calcium
permeable, NMDA subtype of the glutamate receptor) controls
the direction of plasticity (for reviews see: Graupner and
Brunel, 2010; Evans and Blackwell, 2015; Griffith et al., 2015).
This is known as the ‘‘two-threshold’’ rule: if calcium (either
peak or integrated) is above the higher, potentiation threshold,

tLTP is induced, whereas if calcium is larger than the lower
LTD threshold but lower than the LTP threshold, tLTD
occurs (Figure 4C1). Pre-post pairings produce a large calcium
influx through the NMDA receptor channel with calcium
concentration above the LTP threshold, whereas post-pre
pairings produce a moderate calcium influx with calcium
concentration between the LTD and LTP thresholds. One of
the first models of NMDAR-dependent synaptic plasticity was
proposed by Shouval et al. (2002). This model, using simplified
calcium dynamics inside a dendritic spine, accounted for a
diverse range of stimulation protocols such as STDP and classical
rate-based plasticity; however it predicted depression for long
positive ∆tSTDP, a model prediction which is not confirmed by
experiments (but see Nishiyama et al., 2000, 2010; Wittenberg
and Wang, 2006). In the dorsal striatum, a model of calcium
dynamics (Evans et al., 2012) evaluated the role of NMDAR
subunit (2A and 2B subunits) in shaping the sensitivity to timing
dependence, and correctly predicted that NMDAR-2A would
require a small ∆tSTDP, whereas NMDAR-2B can support tLTP
with a large ∆tSTDP. Several extensions or modifications to the
basic model have been made both to account for results with
spike triplets (i.e., when either two presynaptic stimuli or two
postsynaptic action potentials are generated) and to minimize
the tLTD window for long positive spike-timings. Adding
another coincidence detection of presynaptic NMDARs with
endocannabinoids is one mechanism utilized in a neuromorphic
implementation of calcium based synaptic plasticity (Rachmuth
et al., 2011). Alternatively, incorporating short term depression
of transmitter release or AP back-propagation (Shouval and
Kalantzis, 2005; Bush and Jin, 2012) minimizes the tLTD
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seen with long positive ∆tSTDP and can account for other
experimental results; however, a more broadly applicable study
(Rubin et al., 2005) showed that plasticity rules that use calcium
amplitude alone cannot completely avoid predicting tLTD for
long positive timings.

An extension of the two-threshold rule states that the
duration of calcium elevation is equally important in determining
direction of plasticity (Figure 4C2). Several models of STDP
explicitly take into account both the amplitude and the duration
of calcium in predicting plasticity outcome (Kumar and Mehta,
2011; Graupner and Brunel, 2012). Including a duration
threshold or integrating the total calcium response allows
correctly predicting experimental outcomes for both traditional
STDP curves and STDP curves produced by spike triplets.
Another extension of the Shouval et al. (2002) model, Standage
et al. (2014), implements a calcium-dependent, sigmoid-shaped
time constant of calcium decay, which represents saturation
of calcium extrusion from the spines. This model shows that
saturation of calcium extrusion might be responsible for the
dependence of tLTP on the (theta-frequency like) inter-spike
interval for triplet stimulation protocols. Including the duration
of calcium does not exclude consideration of presynaptic release
probability on STDP. Indeed, gliotransmission may change the
shape of the STDP curve depending on whether gliotransmitters
increase or decrease presynaptic release (De Pittà and Brunel,
2016).

Threshold Rules Based on Detailed
Calcium Dynamics
Most of the aforementioned models use simplified calcium
dynamics instead of explicitly implementing the mechanisms
underlying control of calcium (Figure 4B), which might improve
predictions of synaptic plasticity. In other words, the next
set of models used neither single time constant of decay nor
summation of independent pre- and postsynaptic components
for calcium dynamics. Though not explicitly implementing a
STDP rule, Griffith et al. (2016) indirectly consider the effect of
calcium duration by using calcium-bound calmodulin to assess
how back-propagating action potential timing influences calcium
concentration. Using a 3-dimensional, deterministic reaction-
diffusion model of calcium interactions with calmodulin and
other calcium binding proteins within a dendritic spine, Griffith
et al. (2016) show that calcium-bound calmodulin is a more
sensitive indicator of spike timing than free calcium. They further
demonstrate the role of neuromodulators in regulating synaptic
plasticity through their activation or inhibition of calcium
dependent potassium channels during an STDP protocol, which
greatly modulates calmodulin activation.

Several studies explicitly investigate how the dendritic
location and inhibitory inputs shape the local calcium-based
plasticity rules (Bar-Ilan et al., 2013; Jędrzejewska-Szmek et al.,
2016). Bar-Ilan et al. (2013) showed that inhibition shapes the
spatial profile of dendritic calcium concentration in neocortical
pyramidal neurons. Depending on the location of the excitatory
and inhibitory inputs on the dendritic tree (Figure 4A2), tLTP
may be blocked, transformed to tLTD, or the synapse may
undergo no plasticity. Similarly, Jędrzejewska-Szmek et al. (2016)

developed a computational model of the major neuron type
in the striatum, the striatal output neurons, including both
electrical activity and calcium dynamics. They demonstrated
that calcium amplitude and duration together (Figure 4C2) can
predict a wide range of experimental plasticity outcomes, and
further demonstrated a distance dependence of STDP caused by
the back-propagating action potential. In both of these models,
the distance dependent decreases in back-propagating action
potential amplitude reduces calcium influx through NMDARs
for more distant synapses. This reduced calcium influx can
convert tLTP into either tLTD or no plasticity. These publications
demonstrate that by modeling mechanisms controlling calcium
dynamics, including diffusion, buffers and pumps, and by
considering calcium duration, the LTD window for long positive
∆tSTDP is avoided.

An aspect of calcium dynamics often ignored in modeling
studies is calcium release from intracellular stores. This has been
shown to contribute to tLTP under some conditions (Plotkin
et al., 2013; Cui et al., 2016). Thus, Nakano et al. (2013) included
calcium release from stores in their multi-compartmental model
of a direct pathway spiny projection neuron. In addition, though
not explicitly including other signaling pathways, they evaluated
the effect of dopaminergic modulation of calcium, potassium and
NMDAR channels. The main result of their simulations showed
that dopaminergic input preceding a back-propagating action
potential induced higher calcium responses than dopamine input
following a back-propagating action potential. This study also
predicted that the timing dependence of calcium responses
between the up- and down-states was similar.

Models of Signaling Pathway to Explain
Synaptic Plasticity
Beyond calcium, several models add on simplified or abstract
version of downstream signaling molecules. Rubin et al., 2005
propose a three detector system, loosely based on pathways
resembling the opposing Ca2+/calmodulin-dependent protein
kinase-II (CaMKII)—protein phosphatase signaling pathways. In
brief, three calcium-sensitive detectors are implemented: high,
transient calcium levels activate the tLTP detector; low calcium
elevations activate the tLTD detector; and intermediate calcium
levels activate a ‘‘Veto’’ detector. Another variable integrates both
the tLTD detector and the Veto detector (called a double filter),
such that intermediate calcium levels decrease the double filter
value; thus the double filter detects the uninterrupted duration of
calcium at low values yet suppresses the development of tLTD
should calcium spend some time at intermediate values, such
as occurs with long positive ∆tSTDP. Using the three calcium
detector system of Rubin et al. (2005), Cutsuridis (2011) showed
that single GABAergic inhibitory inputs can sharpen the shape of
the STDP curve: narrowing the temporal window that supports
tLTD, whereas a train of GABAergic inputs both sharpens the
tLTD window and reduces the tLTP amplitude. A follow-up
study (Cutsuridis, 2012) extended the model to burst stimulation,
and predicted that GABAergic inputs would expose a tLTD
window for long positive ∆tSTDP. The timing of the GABA inputs
determined whether the effect was predominantly depression or
potentiation.
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Several models (Graupner and Brunel, 2007, 2012; Pi and
Lisman, 2008; Carlson and Giordano, 2011; Mihalas, 2011;
Saudargiene. and Graham, 2015; Cui et al., 2016; for reviews
see: Graupner and Brunel, 2010; Evans and Blackwell, 2015;
Griffith et al., 2015) have implemented even more realistic
representations of signaling pathway kinetics, including the
calcium activated phosphatase calcineurin, the calcium activated
kinase, CaMKII, and the Gs-activated adenylyl cyclase, the latter
of which produces cAMP to activate PKA (Figure 5). Additional
pathways, such as PKC (resulting from activation of Gq-coupled
receptors such as M1R and mGluR) and extracellular signal-
regulated protein kinase (ERK; downstream of protein kinases
A, C and tyrosine receptor kinase B) are also involved. Several
advantages accrue from these models, including the ability to
produce experimentally testable predictions regarding the role
of specific molecules. Another key advantage of simulating

signaling molecules is that the tLTD window for long positive
∆tSTDP is eliminated without arbitrarily assuming the existence
of a dedicated calcium concentration range that does not
elicit synaptic plasticity, i.e., a separate range between the
tLTD-inducing calcium range and the tLTP range. Again these
models vary in complexity, such as the number of different
signaling pathways included, and whether spatial aspects are
included. Several models of these signaling molecules have been
applied to STDP protocols in the cortex, hippocampus and
striatum.

One of the earliest models, the single-compartment electric
model of Graupner and Brunel (2007), couples membrane
potential with a biochemical reaction model via calcium
dynamics. Phosphorylation state of CaMKII serves as the models
readout, i.e., the level of phosphorylated CaMKII serves as a
proxy of the synaptic weight. Short positive intervals can switch

FIGURE 5 | Main predictions of the model of Cui et al. (2016). (A) Scheme of the signaling pathways that are considered in the model. The postsynaptic weight is set
by the amount of phosphorylated CaMKII whereas the presynaptic weight is controlled by the activation of cannabinoid type-1 receptor (CB1R). Abbreviations: PIP2,
phospatidylinositol 4,5-biphosphate; DAG, diacylglycerol; IP3, inositol-1,4,5-triphosphate; PLCβ/δ, phospholipase-Cβ/δ; DAGLα, diacylglycerol lipase α; 2-AG,
2-arachidonoylglycerol; AEA, anandamide; TRPV1, transient receptor potential cation channel subfamily V member 1; IP3R, IP3-receptor channel; SERCA,
sarcoplasmic/endoplasmic reticulum calcium ATPase; CaER: calcium in the endoplasmic reticulum; (Ca)4CaM, fully bound calmodulin; CaN, calcineurin aka PP2B;
PKA, protein kinase A; I1p/I1, phosphorylated/unphosphorylated protein phosphatase-1 inhibitor 1 (DARPP-32 in striatal output neurons); PP1, protein phosphatase
1; CaMKII, Ca2+/calmodulin-dependent protein kinase II. (B) Prediction of the evolution of the total synaptic weight (product of the pre- and postsynaptic weights)
when the spike timing and the number of pairing varies. tLTD progressively emerges at positive ∆tSTDP, whereas for negative ∆tSTDP, the model correctly predicts
two domains of tLTP, one around 10–20 pairings and another emerging after 50 pairings. (C) When CB1R are blocked in the model, both the tLTD and the tLTP for
low pairing numbers disappear. (D) Adding presynaptic D2Rs in the model, correctly predicts that tLTP for low pairing numbers is also controlled by dopamine.
Adapted from Cui et al. (2016) with no permission required.
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the CaMKII to a highly phosphorylated state; whereas negative
intervals (but not long positive intervals) switch the CaMKII
to a low phosphorylated state. Critical to success of this model
is adjustment of calcium dependence of PKA and calcineurin
activity against inhibitor 1, which controls the level of free
protein phosphatase 1. A high-level of protein phosphatase 1 will
dephosphorylate CaMKII to prevent its persistent activation.
Indeed, in this model (Figure 5): (i) the protein phosphatase-
1 (PP1)/CaMKII activation ratio dictates plasticity; LTD is
expressed when PP1 activation overcomes CaMKII, whereas LTP
occurs when CaMKII activation is larger than PP1 activation;
and (ii) PP1 activity is maximal at intermediate calcium levels
whereas CaMKII activation needs larger calcium levels. Short
negative ∆tSTDP yield intermediate but long lasting calcium
levels, which efficiently activate PP1 but are not large enough
to activate CaMKII, thus triggering LTD. Short positive ∆tSTDP
yield sharp calcium peaks that are large enough to activate
CaMKII but do not persist long enough around intermediate
values to activate PP1 significantly; this leads to LTP. Finally,
the calcium levels triggered by long positive ∆tSTDP are too
weak to activate CaMKII but do not stay long enough around
intermediate values to activate PP1. Long positive ∆tSTDP
therefore fail to activate either the PP1 or CaMKII, which in effect
rules out the expression of tLTD. This molecular system therefore
exhibits dynamics similar to the ‘‘Veto’’ detector proposed by
Rubin et al. (2005) to eliminate tLTD at long positive spike
timings (see above).

Subsequent models either enhance the electrical activity
model, or add AMPA receptors as a model readout. Urakubo
et al. (2008) develop a multi-compartment, multi-ion channel
model of visual cortex pyramidal neurons to activate a
biochemical reaction model. In contrast to Graupner and
Brunel (2007), the timing dependence of tLTD cannot be
reproduced unless calcium-bound calmodulin allosterically
inhibits NMDARs. Both Carlson and Giordano (2011) and
Saudargiene. and Graham (2015) used a model of AMPAR
insertion controlled by the CaMKII/protein phosphatase-2A
switch. Carlson and Giordano (2011) used a single-compartment
model of calcium dynamics (from Shouval et al., 2002) to
activate the biochemical network model of Pi and Lisman
(2008). This single-compartment model can explain STDP and
does not predict tLTD for long positive ∆tSTDP. Voltage-
sensitive calcium channels are critical for the latter effect,
as blocking voltage-sensitive calcium channels allow tLTD to
emerge for long positive ∆tSTDP. Saudargiene. and Graham
(2015) incorporated spatial aspects of calcium dynamics by
using a detailed compartmental model of pyramidal CA1 neuron
(Poirazi et al., 2003) to activate a biochemical network model
derived from two earlier models (Graupner and Brunel, 2007;
Pi and Lisman, 2008). Saudargiene. and Graham (2015) showed,
by monitoring AMPAR phosphorylation by the CaMKII/protein
phosphatase-2A switch, that tLTD is indeed induced by lower
calcium levels than tLTP, and that tLTD also requires many
more repetitions of this lower calcium (which is consistent
with experimental results). Saudargiene. and Graham (2015) also
investigated the influence of particular timings of inhibition
associated with excitatory inputs, showing that inhibition affects

tLTD more that tLTP, because tLTD occurs for moderate calcium
levels and is thus more vulnerable to any reduction in peak
calcium.

Whereas spatial models of calcium dynamics typically include
dendritic branching or explicit spines (microdomains), many
signaling molecules are anchored via structural proteins into
multi-protein complexes, effectively creating nanodomains of
molecule interactions. One method for evaluating the effect of
nanodomains (without explicitly creating a spatial model) is
to couple different sources of calcium to different downstream
signaling molecules. This approach was utilized by Mihalas
(2011) who coupled three different calcium sources to three
different signaling molecules: NMDAR to CaMKII, voltage-
sensitive calcium channels to calcineurin, and phosphodiesterase
to calcium release. Adenylyl cyclase was coupled to both voltage-
sensitive calcium channels and NMDAR. The change in synaptic
weight was calculated from kinase (tLTP) and phosphatase
(tLTD) activity. This model investigated the role of cAMP
degradation in triplet-based STDP, and showed that, if cAMP
activity is spatially restricted to the membrane, the STDP profile
is similar to that observed in cortical layer 2/3 slices. The STDP
profile for spatially diffuse cAMP activity was consistent with that
observed in hippocampal cell culture.

In the striatum, endocannabinoid production and activation
of CB1Rs are required for most forms of tLTD (Mathur
and Lovinger, 2012); thus, Cui et al. (2016) extended the
signaling pathways from Graupner and Brunel (2007) with
2-arachidonoylglycerol; (2-AG the main endocannabinoid)
production via mGluR- and M1R activation. Cui et al. (2016)
utilized a single-compartment model of electrical activity of a
spiny projection neuron for calcium dynamics, coupled with
a model of signaling pathways underlying STDP in striatum,
including calcium-induced calcium release from internal stores.
This model used a combined 2-AG- and CaMKII-based plasticity
rule, where the direction of plasticity (LTP or LTD) was
determined by the product of the presynaptic weight (2-AG-
based) and postsynaptic weight (CaMKII based). The strength
of this model is the ability to show the mechanism whereby
decreasing the number of pairings converts NMDAR-dependent
tLTP to an endocannabinoid-dependent tLTP, which was
confirmed experimentally (Figure 5; Cui et al., 2015, 2016).
The underlying hypothesis of this model (that was confirmed
experimentally) is that moderate activation of CB1R caused
endocannabinoid-mediated tLTD whereas large CB1R activation
leads to tLTP. In the model, 10–20 negative pairings trigger large
endocannabinoid transients that result in endocannabinoid-
mediated tLTP. However, CB1R desensitization and partial
depletion of calcium in the endoplasmic reticulum (CaER) starts
to be significant after 20 pairings, so that CB1R activation
is in fact smaller with more than 20 pairings than with
10–20 pairings. As a result, the expression of endocannabinoid-
mediated tLTP is restricted to 10–20 negative pairings, in
agreement with experimental observations (Cui et al., 2015,
2016). On the other hand, as in the original model by
Graupner and Brunel (2007), calcium levels become large
enough to activate significant amounts of CaMKII only after
40–50 negative pairings, thus restricting the expression of
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NMDAR-dependent tLTP to this range of pairings. As a
result, this model successfully reproduces the experimental
observation that the endocannabinoid-mediated tLTP expressed
at 10–20 positive pairings disappears, to be replaced by
NMDAR-dependent tLTP after 50 pairings (Figure 5). The
addition of presynaptic dopamine signaling to the model
correctly predicted that the CB1R-dependent tLTP observed with
10–20 pairings is also under the control of presynaptic D2R
(Figure 5).

Exploring in Vivo-Like Conditions
One benefit of computational modeling is the ability to isolate
a specific aspect of STDP and address the impact of this very
aspect at the level of networks and/or learning in vivo. For
instance, Kempter et al. (1998) used spike-based models to
explore how the pulse structure of neuronal signals and events
on a millisecond scale influenced learning rules. Clopath et al.
(2010) utilized a voltage-based plasticity rule, consistent with a
wide body of experimental data, to study the emergence from
plasticity of connectivity patterns in a cortical network. Along
the same line, variants of the classical computational STDP rule
have been devised that yield broad synaptic weight distributions
matching the available experimental observations (Gilson and
Fukai, 2011).

However, one major detractor of STDP is its deterministic and
constant spike timing (interval between spikes within a pairing)
and inter-stimulation interval (interval between consecutive
pairings), which diverge highly from biological variability. One
of the most pressing questions of learning and memory is which
stimuli resemble in vivo-like conditions best. Gjorgjieva et al.
(2011) showed that a triplet model of STDP, depending on the
interactions of three precisely timed spikes, described plasticity
experiments closer to natural stimuli measured in the brain.
Graupner et al. (2016) compared in silico plasticity outcomes
to several types of irregular, in vivo-like, firing patterns to
investigate the influence of firing rate and spike timing on
synaptic plasticity. They showed that sensitivity of plasticity to
spike-timing is reduced by adding jitter (irregularity) to spike-
pairs. Using physiological firing patterns recorded in awake
behaving macaque monkeys, Graupner et al. (2016) further
showed that moderate variation of firing rate, without any timing
constraints, could reproduce synaptic changes induced by spike
timing. This result offers a different view on the central role
played by spike timing in long-term synaptic plasticity.

Most computational models of STDP indicate that plasticity
disappears when the timing between pre and postsynaptic
pairings loses its regularity. However, it is not clear what
amount of noise can be tolerated for STDP or ITDP to
be expressed (robustness) and whether this amount depends
on the signaling pathway supporting the plasticity. This
question has recently been tackled both experimentally and
in a computational model, using noisy STDP stimulations
where the timing between the pre- and the postsynaptic
stimulations was jittered (Cui et al., 2018). As stated above,
in striatum three forms of STDP are observed: NMDAR-tLTP,
endocannabinoid-tLTD and endocannabinoid-tLTP (Cui et al.,
2015, 2016). These three forms do not show similar sensitivity

to jittered spike timing: NMDAR-tLTP appeared poorly resistant
whereas endocannabinoid-plasticity (tLTD and tLTP) appeared
more robust (Cui et al., 2018). Moreover, increasing the
average pairing frequency or the number of pairings reinforces
NMDAR-tLTP and increases resistance to jittered spike timing.
These results suggest that the probability to observe the various
forms of STDP in vivo is a multivariate function of the mean spike
timing, the number of pairings, the frequency of pairings and also
the variability of the spike timing. The shape of this multivariate
function is thus more complex than e.g., a monotonic decay
with increasing variability of the spike timing, and could reveal
a functional specialization of each of these STDP forms to
sub-regions of the stimulation train parameters.

CONCLUSIONS AND FUTURE
DIRECTIONS

In addition to the pre- and postsynaptic firing patterns, a
third factor for STDP control comprises not only the classical
neuromodulators (dopamine, noradrenaline or acetylcholine to
name a few) but also neuropeptides (BDNF), unconventional
neurotransmitters (NO) and astrocytes surrounding
neurons, which can uptake or release neurotransmitters and
neuromodulators. The spectrum of the third factor of STDP is
even larger since it can be extended to neurotransmitters acting
as neuromodulators such as GABA and glutamate (via their
tonic component) and endocannabinoids. Here, we reviewed the
main effects of the third factor on STDP: from the emergence of
STDP, to the shaping of STDP i.e., the dependence on ∆tSTDP,
and the magnitude and polarity of plasticity.

Beyond the time scale of ∆tSTDP that is consistently in
the ∼80 ms range, the studies that explored STDP properties
have used a large variety of pairing protocols to induce STDP.
This diversity in stimulation protocol renders the comparison
between studies exceedingly difficult. As described above, beside
its dependence on ∆tSTDP, STDP expression is highly affected by
varying the structure of STDP pairings (1:1, 1:2, . . . n:n or theta
bursts; Edelmann et al., 2015), or the number and/or frequency
of pairings (Sjöström et al., 2001; Cui et al., 2016) (for review see
Sjöström et al., 2008; Feldman, 2012; Edelmann et al., 2017). It
is thus expected that the effect of neuromodulation also would
strongly depend on the STDP activity pattern (as an example see
Edelmann et al., 2015).

How the local interneuron networks (GABAergic or
cholinergic) or the neuromodulatory afferents are recruited
and impact STDP, depends on the activity patterns of the
two main inputs. i.e., the third factor effect may vary with
or depend on a triplet of characteristics: ∆tSTDP, number of
pairings, frequency of pairings. Optogenetics will most certainly
be a key method to induce neuromodulator release in a more
time-controlled manner to mimic for example phasic activity or
explore precisely the retroactive action of neuromodulation on
STDP properties.

The number of experimental studies investigating the
signaling pathways underlying the STDP expression and their
modulation by a third factor is still limited and needs further
consideration. The signaling pathways underlying frequency-

Frontiers in Computational Neuroscience | www.frontiersin.org July 2018 | Volume 12 | Article 4997

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Foncelle et al. Modulation of STDP

dependent plasticity (triggered by high- or low-frequency
stimulations) have been more thoroughly explored, but need to
be fully address in STDP. Signaling though G-protein coupled
receptors is far more complex than the static view of the list
of proteins that compose each signaling pathways. For instance,
G-protein coupled receptors exhibit the ‘‘biased agonism,’’
i.e., the notion that a given agonist of a signaling pathway
activates only a subset of all the signaling pathways associated
with its receptor (Kenakin and Christopoulos, 2013). In other
words, two agonists of the same signaling pathway, even of
the same receptor, activate different subsets of reactions, thus
yielding different biological effects. One potential mechanism
explaining biased agonism is the interplay between differential
ligand-binding kinetics and the kinetics associated with different
cell signaling processes (Klein Herenbrink et al., 2016). In this
context, the subsets of signaling processes effectively activated by
STDP pairings could differ from those activated by the stronger
protocols employed in frequency-dependent plasticity.

The complexity of G-protein coupled receptor signaling
also has consequences on STDP modulation. The available
experimental data surveyed above point to a general rule
according to which neuromodulation by monoamines or
acetylcholine is mostly controlled by the type of G-protein
coupled receptors activated: regardless of the agonist, Gi-coupled
and Gq/11-coupled receptors favor tLTD, whereas Gs- and
Golf-coupled receptor activation leads to tLTP. One might
therefore erroneously conclude that two modulators would
have the same effect by activating the same signaling pathway.
This would of course be at odds with the concept that
different neuromodulators exhibit different biological effects,
due to different receptor affinities, different receptor locations,
co-localization of diverse downstream signaling molecules, and
the ability of phosphorylated receptors to switch their coupling
to different G proteins. Hence, dopamine signaling via D1R
may display different biological effects from noradrenaline
signaling via β–adrenergic receptors, although both activate
the Gs/Golf signaling pathway. Future computational models of
STDP modulation should aim to reconcile the general scheme of
the above rule with the specificity of neuromodulators, probably
through variants of biased agonism.

Because of the complexity of the mode of action of
neuromodulators, most of the studies have investigated the role
of only a small number of neuromodulators one by one (the
neuromodulator systems have mostly been activated or inhibited
one-at-a-time), but the crosstalk between neuromodulators is
critical, as demonstrated in only a few studies: for dopamine
and acetylcholine (Brzosko et al., 2017), dopamine and GABA
(Xu and Yao, 2010), dopamine and noradrenaline (Seol et al.,
2007) or dopamine and endocannabinoids (Cui et al., 2015).
The effects of other neurotransmitters/neuromodulators (such
as adenosine, serotonin or endocannabinoids), or neuropeptides
(substance P, enkephalins, oxytocin), fatty acids (arachidonic
acid, cholesterol, omega-3), hormones or the role of other
non-neuronal cells (astrocytes, oligodendrocytes, microglia,
pericytes, ependymal cells or endothelial cells) remain to be
investigated in STDP expression; Indeed, most of these actors
are known to modulate rate-dependent plasticity. Furthermore,

the effects of neuromodulators in STDP maintenance remain to
be determined and not only for the induction phase of STDP. It
has been shown in a rate-coded plasticity at CA1 hippocampal
synapses that D1-like-receptor inhibition blocks late-phase LTP
(Huang and Kandel, 1995), impedes consolidation of memory
and accelerates its erasure (Wang et al., 2010; Lisman et al., 2011).
Similarly, the third factor effect should be evaluated in the late
phase of STDP (maintenance and potentially erasure).

By fully taking into account the third factor, i.e., a
multicomponent learning rule, the computational power of
neural networks might be considerably improved (as reviewed
in Kuśmierz et al., 2017). Up to now, the third factor has usually
been considered in isolation from the pre- and postsynaptic firing
patterns. This experimental convenience might well disguise
more complex network-level properties. In this regard, the
fact that the level of tonic GABA in the local network can
switch STDP from Hebbian to anti-Hebbian may have important
consequences in dendritic computation and in a network context
(Hiratani and Fukai, 2017). The interplay between changes of
the firing rate of some of the network neurons due to Hebbian
STDP and resulting changes in tonic GABA could give rise to
abrupt STDP shifts locally from Hebbian to anti-Hebbian. Such
local STDP shifts may provide the network with self-organizing
properties that would not be predicted easily when the third
factor is considered in isolation. Added to the fact that different
synapse types in the network can have different STDP rules
(and possibly, different modulation by the third factor), the
complexity and variety of the resulting network dynamics would
considerably increase. Note that here again, computational
models will be instrumental to explore the potential impact of
these mechanisms on the dynamics and functional properties of
neural networks.

A fair criticism of the physiological relevance of STDP
has been raised by Lisman et al. (2011) since in vivo the
back-propagating action potential is obviously not triggered
with a somatic current injection in the postsynaptic neuron (as
classically performed in STDP experiments) but rather with the
dynamic integration of synaptic inputs whose build-up would
eventually reach the action potential threshold. Input-timing-
dependent plasticity (ITDP), a form of heterosynaptic plasticity,
consists in paired activation of presynaptic inputs separated by
an interval ∆tITDP, leading to sub- or suprathreshold activity
in the postsynaptic neuron (Dudman et al., 2007; Williams
et al., 2007). Therefore, ITDP could be viewed as an attractive
naturalistic upgrade of STDP, not only for experimental studies
(Dudman et al., 2007; Cho et al., 2011; Mehaffey and Doupe,
2015; Brandalise et al., 2016; Leroy et al., 2017) but also for
computational models (Shim et al., 2016). ITDP has been
reported in amygdala following activation of thalamic and
cortical inputs (Humeau et al., 2003; Cho et al., 2011), in
hippocampal CA1 (Dudman et al., 2007), CA2 (Leroy et al., 2017)
or CA3 (Brandalise et al., 2016) pyramidal cells and in avian
basal ganglia (Mehaffey and Doupe, 2015). Interestingly, GABA
and enkephalin have been shown to modulate CA2 hippocampal
ITDP (Leroy et al., 2017), which paves the way for future
studies investigating the role of the third factor in ITDP
properties.
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The vast majority of STDP studies investigating the
third factor have been achieved ex vivo (cell cultures or
acute brain slices), although few studies have addressed
neuromodulation of STDP in vivo (Mu and Poo, 2006; Schulz
et al., 2010; Cassenaer and Laurent, 2012; Yagishita et al.,
2014; Fisher et al., 2017). In ex vivo studies, neuromodulators
(dopamine, acetylcholine) are typically applied exogenously
because of their very low levels when compared to in vivo.
Neuromodulators are released in tonic and phasic modes in vivo
and therefore ex vivo bath-applications of neuromodulators
or specific agonists hardly mimic such complexity of the
neuromodulation. It would be important to explore the in vivo
neuromodulation needed to stabilize STDP or ITDP, by
transforming eligibility traces into plasticity, and thus allowing
an activity pattern sequence to be pertinent for the engram.
Thus, there is a need to collect data in vivo in awake and
behaving animals and model in vivo-like plasticity rules and
stimulation patterns to fully understand the action of the
third factor in Hebbian learning and information storage and
recall.
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Emergence of Relaxation
Oscillations in Neurons Interacting
With Non-stationary Ambient GABA
Denis A. Adamchik*, Valery V. Matrosov and Victor B. Kazantsev

Lobachevsky State University, Nizhny Novgorod, Russia

Dynamics of a homogeneous neural population interacting with active extracellular
mediumwere considered. The correspondingmathematical model was tuned specifically
to describe the behavior of interneurons with tonic GABA conductance under the
action of non-stationary ambient GABA. The feedback provided by the GABA mediated
transmembrane current enriched the repertoire of population activity by enabling the
oscillatory behavior. This behavior appeared in the form of relaxation oscillations which
can be considered as a specific type of brainwaves.

Keywords: neural oscillation, rate model, tonic conductance, GABA, interneurons

1. INTRODUCTION

Historically, the focus of experimental and theoretical studies of brain signaling was almost
exceptionally on neurons and their networks. Being the only electrically excitable cells in the
nervous system, neurons are able to communicate by receiving, processing and generating electrical
signals in the form of spike trains (Nicholls et al., 2001). All other structures constituting the
nervous tissue such as glial cells and extracellular matrix (ECM) until very recent decades were
not taken into account in the mechanisms of information processing.

Glial cells and various exctracellular structures were primarily thought to perform a number of
auxiliary functions such as trophic, supportive and immune (Allen et al., 2009). The comprehension
of inalienability of glia and ECM to the neuronal signaling came with the discovery of chemical
synaptic transmission machinery (Krnjević, 1974) and secretory function of astrocytes (Martin,
1992). Glia turned out to be a gigantic chemical factory of the nervous system, governing neurons
and using the extracellular space as an intermediary (Barres, 1991).

At present, there has been a great number of theoretical and experimental studies devoted to
neuron-glia interaction (Bezzi and Volterra, 2001). One of the most prominent concepts in the
field was that of the tripartite synapse (Araque et al., 1999). Glial cells, particularly astrocytes, can
effectively influence and modulate the synaptic transmission. Many aspects of such modulations
were discussed in a number of computational studies (Postnov et al., 2007; Gordleeva et al., 2012;
Kazantsev et al., 2012; Volman et al., 2012; Lazarevich et al., 2017).

Besides several glial cell types, the extracellular space itself can be an important player
in neuronal signaling. It serves as an interstitial transport system mediating cell-to-cell
communications by means of numerous active chemicals (Sykovaá and Nicholson, 2008). This type
of communications is called “volume” transmission and is characterized by signal diffusion in a
three-dimensional fashion within the brain extracellular fluid (Agnati et al., 1995). The “volume”
transmission depends crucially upon the actual geometry of the ECS (Syková, 2004) which has great
relevance for pharmacokinetics and actions of neuropsychoactive drugs (Zoli et al., 1999).
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One of the major neurotransmitters in the CNS is γ -
Aminobutyric acid (GABA) (Webster, 2001). It mediates
intercellular communications by participating in both “wiring”
and “volume” transmission (Semyanov et al., 2004). The “wiring”
action of GABA is through mediating the synaptic transmission
by activating the postsynaptic (phasic) GABAA-receptors. The
“volume” transmission is, in its turn, carried out by “overspilled”
ambient GABA which regulates neuronal excitability by creating
the extra transmembrane current through extrasynaptic (tonic)
GABAA-receptors.

GABA was reported to maintain the fast neuronal
oscillations (gamma, 20–80Hz) in inhibitory interneuron
networks (Whittington et al., 1995; Bartos et al., 2007).
In the computational study (Wang and Buzsáki, 1996),
GABAA synaptic transmission was shown to provide a
suitable mechanism for synchronized gamma oscillations
in a sparsely connected network of fast-spiking interneurons.
Incidentally, GABA was reported to enhance collective behavior
in neuronal axons (Traub et al., 2003). Specifically, gamma-
frequency oscillations were demonstrated to coexist with phasic
high-frequency oscillations (>90Hz) in principal cell axon
populations.

Primarily, GABA was considered to be the main inhibitory
neurotransmitter in the brain until it was shown experimentally
to be able to perform the bi-directional regulation of neuronal
spiking activity (Song et al., 2011). Based on this experimental
finding, a number of mathematical models describing the
action of ambient GABA on the excitability properties of
interneurons were suggested (Adamchik et al., 2015; Adamchik
and Kazantsev, 2017). In Adamchik et al. (2015), the behavior
of a single interneuron embedded in the extracellular space
with constant ambient GABA concentration was studied. It
was shown that depending on the parameters of tonic current,
such as tonic conductance density and GABA reversal potential,
the interneuron demonstrated different behavioral modes
including self-oscillations. The impact of stationary GABA at
the population level was studied subsequently in Adamchik
and Kazantsev (2017). Specifically, it led to bistability between
asynchronous firing and zero-activity state.

In this paper, we study the effects of non-stationary, activity
dependent GABA upon population dynamics of interneurons. To
this end, we propose a mathematical model accounting for the
feedback between interneurons and ambient GABA (section 2).
The origin of the feedback has the following explanation.
Extracellular GABA creates the additional transmembrane
current through activation of extrasynaptic (tonic) GABAA-
receptors. This current further changes the firing properties of
interneurons (Adamchik et al., 2015), which immediately affects
the synaptic release of GABA (Destexhe et al., 1994). Since
extracellular GABA concentration depends, among others, on
spillover, i.e., the diffusion of the neurotransmitter out of the
synaptic cleft (Semyanov et al., 2004), it changes, which futher
affects tonic conductance and provides the respective feedback.

Based on these considerations, we proposed a mathematical
model using the following assumptions. First, we considered a
particular case of a homogeneous population of interneurons
which allowed us to describe their collective behavior using the

simple rate-based formalism. Second, we neglected any spatial
gradient of neurotransmitter, considering its concentration to
be uniformly distributed over the entire extracellular space.
This assumption allowed us to build the minimal model
of the feedback avoiding dealing with an explicit model
of spatiotemporal GABA dynamics. The model consisted of
two coupled equations, one of which described the time-
course of population activity (section 2.1) while the other–
the concentration of ambient GABA (section 2.2). The model
was explored both numerically and analytically (section 3). The
results including the appearance of relaxation oscillations were
discussed in (section 4).

2. MATERIALS AND METHODS

2.1. Population Dynamics
Within the framework of rate-based formalism, a homogenous
population of neurons is described by a single variable, e.g., the
population activity, A. The rate of change of A is determined by
the so called gain fuction gλ(I), which is unique for each cell type.
The respective equation reads:

τm
dA

dt
= −A+ gλ(I) (1)

where τm is the membrane time constant and I is the total input
current an arbitrary neuron receives from the entire network. The
latter is linearly dependent on population activity, I = JA, where
the proportionality factor, J, is called coupling strength (Gerstner
et al., 2014).

The gain gλ(I) is primarily a function of input current, I, but
can also depend on a number of factors, collectively denoted here
by λ. In our case, these are tonic conductance density, G, and
GABA reversal potential, E, i.e., λ = (E,G).

The exact form of the gain function can be derived analytically
only for a few simple neuron models, such as, for example, the
quadratic integrate-and-fire (QIF), whose dimensionless normal
form reads: v̇ = v2 + κ . Using separation of variables and
integration over infinite potential bounds, one can get:

gλ(I) =
1

τr + τmκ−1/2
(2)

where the dimensionless parameter κ depends both on input
current I and other factors. The absolute refractory period,
τr , is added to the period of oscillations to prevent the firing
frequency from taking an arbitrarily large value. Note, that
formula (Equation 2) is valid only for positive κ ; when κ < 0
no oscillations occur and, as a result, gλ(I) = 0.

The gain function (Equation 2) describes qualitatively the

responce of Class I excitability neurons. In these neurons, the
transition from resting to spiking occurs via saddle-node on

invariant circle bifurcation (SNIC), that allows them to fire

with arbitrarily small frequency (Izhikevich, 2007). The Wang-

Buzsáki interneuron (Wang and Buzsáki, 1996) belongs exactly
to this type of neurons. In Adamchik and Kazantsev (2017), the

original conductance-based model, modified in a way to account
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TABLE 1 | Model constants.

Constant Value Description

τm 8.925ms Membrane time constant

τr 0.627ms Absolute refractory period

Gm 0.112mS · cm−2 Conductance density at threshold

Em −60.414mV Halfway between resting and

threshold membrane potentials

k 0.0155µA · cm−2 mV−2 Proportionality factor

α 5mmol−1 ms−1 Forward rate

β 0.18ms−1 Backward rate

for the additional transmembrane tonic current, was reduced

to the QIF neuron. The dimensionless parameter κ took the
following form:

κ = −
1+ (G/Gm)

2

4
+

k

G2
m

[I + G(E− Em)] (3)

where Em, Gm and k are constants listed in Table 1. The details of
the reduction can be found in Adamchik and Kazantsev (2017).

Equation (1) along with the relations (Equations 2, 3)
describes the time-course of population activity. It contains
parameters such as coupling strength, J, and GABA reversal
potential, E, which can take arbitrary values but remain
unchanged. Tonic conductance density, G, is on the contrary
a variable, which depends on local GABA concentration, C.
The form of this dependence can be determined using a
common kinetic formalism (Destexhe et al., 1998). According
to a simplified kinetic scheme of the GABAA-receptor, which is
assumed to exist in two conformations, open (O) and closed (C),
one can get:

G = Ḡ
αC

αC + β
(4)

where α and β are forward (activation) and backward
(deactivation) rates, respectively, and Ḡ is maximum
conductance density. Rate values were taken from Koch
and Segev (1998) and are given in Table 1 for reference.

Note, that equation (4) does not determine a momentary
but rather a stable-state value of G. Nevertheless, we may use
it because conductance relaxation time τG = 1/(αC + β) ≤
1/β ≈ 5ms, which is far less than the operating time of
ambient GABA concentration which amounts to hundreads of
milliseconds (Semyanov et al., 2004).

2.2. Ambient GABA Dynamics
According to Semyanov et al. (2004), extracellular GABA
concentration is regulated by uptake, non-synaptic release and
spillover. Uptake is carried out by GABA transporters which
decrease the concentration by binding and removing GABA
molecules from the extracellular space. Ambient GABA can
originate from various sources. It can escape from synaptic cleft
(spillover) and can be released via non-vesicular mechanism
by neurons and glia. Both spillover and non-synaptic release

increase ambient GABA concentration but do it differently.
Unlike non-synaptic release, spillover depends crucially on
synaptic dynamics and, as a result, on population activity. These
general considerations allowed us to write a governing equation
for ambient GABA concentration:

dC

dt
= −

C − C0

τC
+ S(A) (5)

The first term is supposed to describe the mutual action of uptake
and non-vesicular release, which counterbalance each other
by maintaining an optimal background GABA level, denoted
here by C0. Spillover is described, in its turn, by the second
term, S(A), representing the production function of GABA and
depending explicitly on population activity. The exact form of the
production function was chosen in a way to describe qualitatively
correctly the properties of synaptic neurotransmitter release. In
the most common case, the production function reads as follows:

S(A) = Q
AτP

AτP + 1
(6)

where τP is GABA production time constant and Q is the
maximum production rate.

The exact form of the production function can be derived

based on the following consideration. Let δCm be the amount
of GABA released in response to a single spike. Then, due to
exhaustion of synaptic vesicle pools, the next spike, coming
τ time units after the first one, will evoke the release of a
lesser amount of neurotransmitter, precisely δC = δCm[1 −
exp(−τ/τP)]. For a Poisson spike train, the interspike interval
distribution (ISI) with the mean firing rate equal to A reads:
P(τ ) = A · exp(Aτ ). Then, the average amount of GABA released
in response to a spike from the spike train will be 〈δC〉 =

∫ ∞
0 δC ·

P(τ )dτ = δCm/(1+AτP). The productA·〈δC〉 gives the required
production rate (cf. 6), where Q = δCm/τP.

2.3. Dynamical System
Two coupled ordinary differential equations (ODE) (1, 5) with
relations (2–4, 6) form a 2D dynamical system. Its state variables
are population activity, A, and ambient GABA concentration,
C. Besides some constants (see Table 1), the equations contain
a number of free parameters, which can roughly be split into
two distinct groups. The first group, (E, Ḡ, J), consists of the
parameters controlling population activity, while the second one,
(C0,Q), determines ambient GABA concentration. Our task is
to reveal how the dynamics of equations (1, 5) depend on all
these parameters. Some preliminary considerations concerning
the matter are the following.

In absense of the second equation (Equation 5), the system
reduces to a simple 1D phase line, corresponding to the case of
stationary external medium. This particular case was a subject
of our previous study (Adamchik and Kazantsev, 2017). It was
shown then that introduction of tonic current did not lead to
any new dynamical effects compared to the reference case, (G =
0), characterized by a simple stable-state dynamics. It resulted,
however, in appearance of a monostable regime of asynchronous
firing once tonic current parameters, E and G, were properly
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tuned, specifically, in a way that the point (E,G) was located
above a certain curve on the parameter plane. This curve was
shown previously to be a border of the self-oscillatory mode in
the model of a tonically driven single neuron (Adamchik et al.,
2015). The impact of coupling strength, J, on population activity
consisted, in its turn, in inducing bistability, i.e., coexistence of
resting and asynchronous firing, and expanding the bistability
region at the cost of trivial (zero-activity) monostable solutions.

In this study our particular interest is on the feedback-induced
dynamical effects. For this purpose we specifically focus on
the parameters governing ambient GABA concentration, i.e.,
C0 and Q. Note that such parameters as baseline concentation,
C0, and maximum production rate, Q, can be controlled
pharmacologically in experiments.

2.4. Semi-explicit Model
To verify the validity of our population model prediction as
well as to visualize neural oscillations we built a semi-explicit
computational model of the respective spiking network. To
do this we replaced the equation for the population activity
(Equation 1) with an explicit spiking neural network model but
preserved (Equation 5), which describes the dynamics of ambient
GABA.

We considered specifically a network of N = 100
interneurons randomly coupled with probability p = 0.1.
Each neuron was described by the original conductance-based
model (Wang and Buzsáki, 1996) with the additional tonic
current term: IGABA = G(u − E), where u is the membrane
potential. Tonic conductance density, G, depended here on
extracellular GABA concentration just in accordance with
equation (4). Synaptic transmission was mediated by phasic
GABAA-receptors. The total synaptic current to an arbitrary
neuron was determined as the normalized sum over the
contributions of all its presynaptic neighbors:

Isyn =
1

M

∑

Gsynr(u− E) (7)

whereM is themean number of presynaptic inputs:M = Np. The
fraction of the receptors in the open state, r, obeyed the kinetic
equation

dr

dt
= αT(1− r)− βr (8)

while the synaptic concentration of GABA, T, strictly followed
the potential at the presynapse:

T(upre) =
Tmax

1+ exp
(

− upre−2

1

) (9)

Besides transmembrane and synaptic components, the total
current to each neuron included also a constant one, I0, which
served to regulate the level of depolarization. The parameters of
synaptic transmission are listed in Table 2.

To couple the explicit spiking network model with the
equation describing ambient GABA dynamics we calculated at

TABLE 2 | Model synapse.

Parameter Value Description

Gsyn 0.1mS · cm−2 Maximum phasic (synaptic) conductance density

Tmax 1mmol Peak synaptic cleft concentration of GABA

2 0mV Threshold of the activation

1 2mV Width of the transition area

I0 −1.4 µA cm−2 Depolarization current

each time step the instantaneous population activity, using for
averaging the α-function (Dayan and Abbott, 2001):

A(t) =
1

N

3τw
∑

s=jτs ,
j∈N

α(s) S(t − s; t − s+ τs), (10)

α(s) =
[

s

τ 2w
exp

(

−
s

τw

)]

+
(11)

Here, S(t − s; t − s + τs) is the total number of spikes, the
entire network generates within the respective time window;
τw = 20ms and τs = 1ms are averaging and sliding windows,
respectively.

3. RESULTS

3.1. Numerical and Phase Plane Analysis
First, we performed numerical analysis of the dynamical system
(Equations 1, 5). We carried out numerous simulation trials for a
wide range of biologically relevant parameter values. In each trial,
the system proceeded with the same initial conditions (A|t=0 =
0, C|t=0 = C0) corresponding to zero population activity
and baseline GABA concentration, respectively. We found out
that, depending on parameters, the system demonstrated either
oscillatory or stationary behavior (see Figure 1). The parameters
of the simulations are listed in Table 3.

Different kinds of behavior can be accounted for using the
phase plane. In case of oscillations, the trajectory first makes a
big loop before converging to the limit cycle (see Figure 1B).
The latter is intersected by the A-nullcline, coinciding for the
small A’s with the border between zero and non-zero gain:
gλ(0) = 0 (see Figure 2B). It means that the system in the
oscillatory mode sequentially visits the region of excitatory
GABA action. The oscillations would evidently not occur if the
baseline GABA concentration, C0, exceeded the borderline value
between inhibition and excitation, C+. In other words, if the
system was placed into the region of inhibitory GABA, it would
never leave it. In the stationary mode, the trajectory moves up
slower than the A-nullcline does (see Figure 1D), so it converges
to the fixed point corresponding to stationary asynchronous
firing. This scenario realizes if the maximun production rate,
Q, is lower than a certain threshold value. These considerations
helped us subsequently to determine conditions for oscillations
(section 3.2).
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FIGURE 1 | The time-course of population activity (solid) and ambient GABA concentration (dashed) along with the respective phase plane trajectories (thick solid) for
oscillatory (A,B) and stationary (C,D) modes. On the phase portraits (B,D), thin gray lines correspond to A- (solid) and C- (dashed) nullclines, respectively.
Separatrices of the saddle are represented by a pair of thin black lines with arrows indicating the flow direction.

TABLE 3 | Model parameters.

Parameter Value Description

J 50ms ·µA cm−2 Coupling strength

E −50mV GABA reversal potential

Ḡ 1mS · cm−2 Maximum tonic conductance density

τC 100ms GABA relaxation time constant

τP 100ms GABA production time constant

C0 0.05mmol Baseline ambient GABA concentration

Q 0.02mmol · ms−1 (oscillations) Maximum GABA production rate

0.01mmol · ms−1 (stationary)

Let us now describe the biophysical mechanism underlying
periodical oscillatory solutions (see Figure 1B). If the baseline
ambient GABA concentration, C0, is high enough to make
neurons fire but not too high to inhibit them by shunting,
the initially silent neurons start firing. Non-zero population
activity makes activity dependent ambient GABA concentration

steadily grow up through synaptic release and spillover (OM).
If parameters, governing ambient GABA dynamics, are properly
tuned, then, at some point, tonic GABA switches from excitation
to inhibition. On the phase plane, it corresponds to the
intersection of the trajectory with the A-nullcline (M). As
soon as the intersection occurs, the gain becomes zero and
population activity starts decreasing to its steady-state (zero)
value with a time constant of the membrane, τm. While
population activity goes down, the concentration keeps growing
but its grow rate gradually slows down (MN). Eventually,
the rate of change of C becomes negative and the trajectory
moves down with a time constant of concentration, τC (NO′).
At some point (O′), the trajectory re-enters the region of
excitatory GABA and the entire process starts from the scratch.
Note, that concentration does not reach its baseline level, C0,
so the magnitude of the limit cycle is less than that of the
initial loop.

To avoid the trajectory from making a loop before converging
to the limit cycle, we took the initial conditions exactly at
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FIGURE 2 | Stationary relaxation oscillations in the model of the feedback between a population of interneurons and GABA-containing extracellular medium: (A) the
time-course of the dynamical variables during one period of oscillations–population activity (solid) and ambient GABA concentration (dashed); (B) the corresponding
phase plane trajectory in the form of a limit cycle. The unstable fixed point (denoted by the empty circle) lies close to the limit cycle.

FIGURE 3 | Oscillatory region on the plane (gray) (C0,Q) for (A) E = −50mV, (B) E = −55mV.

the upper border between inhibitory and excitatory GABA:
A|t=0 = 0, C|t=0 = C+. The condition for the border follows
directly from equation (1) as: gC+−0(0) > 0, gC++0(0) =
0. Based on the explicit analytical expression for the gain
function (Equations 2, 3) as well as on the relation between
tonic conduction density, G, and GABA concentration, C,
(Equation 4), one can get:

C± =
β

α

G±

Ḡ− G±
, (12)

where

G± = Gm

(

x±
√

x2 − 1
)

, x =
2k

Gm
(E− Em) (13)

The minus-subscripted concentration, C−, corresponds to the
transition from inhibition to excitation as we move upwards the

C-axis and is given here just for reference. Its value for the actual
choice of parameters (see Table 3) is negligible and its existence
does not play any substantial role for oscillations. Oscillations
occur essentially at the border between excitatory and inhibitory
GABA and not vice versa.

Note, that the solution exists only if GABA reversal potential,
E, lies above a certain threshold, whose value is determined by
zero determinant condition (see equation (13)): E∗ = Em +
Gm
2k

≈ −56.8mV, which exceeds the resting membrane potential
(≈ −64mV) by 9.2mV.

The time-course of the dynamical variables as well as the
shape of the limit cycle (see Figure 2) are typical for relaxation
oscillations. In the excitatory region, the population activity
relaxes to the value determined by the gain function but as
soon as it leaves it, A starts the exponential decay to zero. The
concentration follows the population activity with a delay caused
by the difference between the time constants of membrane, τm,
and of concentration, τC.
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FIGURE 4 | (A,C) Period and (B,D) magnitude of relaxation oscillations (A–solid, C–dash) vs. baseline GABA concentration and maximal GABA production rate. The
parameters are: E = −50mV, (A,B) Q [mmol · ms−1]: 0.02 (black), 0.06 (dim gray), 0.1 (silver); (C,D) C0 [mmol]: 0 (black), 0.03 (dim gray), 0.06 (silver).

3.2. Conditions for Oscillations and Their
Characterisctics
Our next step was to determine the region in the parameter
plane (C0,Q) where the system had periodical solutions. For
this purpose we implemented the following calculations. For
each point (C0,Q) from the rectangular (0,Cmax) × (0,Qmax)
we traced the time evolution of the dynamical system Equations
(1, 6) under the same initial conditions: A|t=0 = 0, C|t=0 =
C+. Depending on the parameters, the system either remained
at the starting point or relaxed to the upper stable state, or
oscillated periodically. The periodicity was ascertained based
on multiple crossings of the trajectory with the A-nullcline.
The border between the regions of oscillatory and transient
solutions is depicted in Figure 3 for two different values of GABA
reversal potential. Specifically, Figure 3A corresponds to highly
depolarizing GABA, while Figure 3B corresponds to GABA,
whose reversal potential is slighly above (precisely by 1.8mV) the
oscillatory threshold.

The oscillatory region for highly depolarizing GABA has
roughly the shape of a semi-infinite strip, (0,C+) × (Q−,∞),
where the border values C+ and Q− are both dependent on the
reversal potential, E. As far as we get closer to the oscillatory

threshold, the region shrinks until collapsing at E = −56.8mV.
The shape of the oscillatory region for high E’s implies that
oscillations occur if both the baseline GABA concentration and
the GABA production rate are located below and above their
respective threshold values: C < C+, Q > Q−. Note, that the
upper bound C+ corresponds exactly to the concentration value
at the starting point of simulation. The shape of the oscillatory
region has the straightforward phase-plane interpretation (see
section 3.1). Although, we managed to find the explicit analytical
expression for C+ (see Equations 12, 13), there was no way to
obtain such for Q−(E), the more so it depends not only on E but
on C+ as well, which is illustrated in Figure 3B.

Having found the oscillatory region we looked for the

magnitude and period of oscillations as functions of C0 and Q.

To this end we started time-course simulations from the same
point at the limit cycle as we did before in oder to pass the

transition phase. We defined the period of oscillations as the
time before two subsequent intersections with the A-nullcline

with the same sign of the slope. The magnitude of oscillations
was determined as the maximum value of population activity and
concentration, respectively. The results are depicted in Figure 4.
First, we fixed the maximum production rate, Q, and found
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FIGURE 5 | Spike raster plots and time-course of population activity for (A,C) oscillatory and (B,D) stationary modes. The parameters are: C0 = 0.05mmol,
Q [mM/ms]: (A,C) 0.01, (B,D) 0.003.

numerically the dependence of both period andmagnitude on the
baseline concentration of GABA,C0 (see Figures 4A,B). Next, we
fixed C0 and found the respective dependencies on the parameter
Q; the corresponding graphs are depicted in Figures 4C,D. Note,
that the period grows infinitely as soon as we approach the
boundaries of the oscillatory region. The dependence of the
magnitude on the production rate is more drastic than that on
the background GABA level. The explanation is quite simple –
the higher Q is, the faster the periodic trajectory intersects the
A-nullcline, the lower is the magnitude.

3.3. Spiking Network Simulation
The results of our computer simulation are depicted in Figure 5.
Note that they quite correctly reproduce those obtained using
the original rate model. In case of periodicity, after an initial
burst of population activity, the network demonstrates stationary
oscillatory behavior (Figure 5C) just in accordance with the
prediction (Figure 1A). The stationary-like behavior in the
spiking network model was another option that we can verify at
the network level (see Figure 5D).

4. DISCUSSION

We proposed a self-consistent model of interneurons
interacting with extracellular, activity dependent GABA.
The model represented two coupled nonlinear ODEs describing
the dynamics of population activity and ambient GABA
concentration, respectively. To write the first equation we

used the well-known Wilson-Cowan formalism describing
the low-pass behavior of a neural ensemble (Gerstner et al.,
2014). The gain function was chosen in a way to properly
mimic the behavior of the interneuron with tonic GABA
conductance (Adamchik and Kazantsev, 2017). The dynamics of
ambient neurotransmitter were quantitatively accounted for on
the basis of empirical evidence about the sources and sinks of
extracellular GABA (Semyanov et al., 2004). Mathematically, the
model was a continuous-time dynamical system on a plane. It was
shown to admit both stationary and periodic solutions depending
on the parameters governing neurotransmitter concentration.
Unlike the stationary-like behavior, periodicity was a feedback-
induced feature with clear biophysical explanation. In oscillatory
mode, the system evolved between the regions of excitatory
and inhibitory GABA. In each of these regions the dynamical
variables relaxed to their stable-state values, so that the type of
the oscillations was essentially relaxational. Such a pattern of
synchronized population activity can be regarded as a specific
type of brainwave.

We determined the conditions for oscillations and their
characteristics such as period and magnitude as a function of
GABA parameters. In particular, we found out that oscillations
were possible only for strongly depolarizing GABA. For
interneurons, GABA reversal potential had to exceed the RMP
by at least 9.2mV for oscillations to occur, which is above the
reported values (Michelson and Wong, 1991; Verheugen et al.,
1999; Chavas and Marty, 2003; Banke and McBain, 2006). The
oscillatory region on the plane of baseline GABA concentration
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and maximumGABA production rate had roughly the shape of a
semi-infinite stripe, i.e., there existed an upper background level
of GABA and a lower intensity of its production, beyond which
no oscillations occured. As a consequence, neural oscillations
could be induced or suppressed pharmacologically, by changing
GABA control parameters. This might have some biomedical
implications since extrasynaptic GABA is believed to contribute
to epileptic or schizophrenic brain activity (Brickley and Mody,
2012).

In conclusion, we need to mention the limitations of our
present consideration. The suggested model of the feedback
between neurons and extracellular GABA is minimal in the sense
that it does not account for many key features of real neural
networks and their environment. For example, when discussing
ambient GABA dynamics (section 2.2) we assumed GABA
sources, sinks, and receptors to be co-local. This allowed us to
describe the time evolution of ambient GABA concentration with
a simple ODE instead of building a detailed model accounting for
the actual geometry of the extracellular space. Futher, we assumed
uptake and non-vesicular release independent on population
activity, although there is experimental evidence that this
traditional view was too simplistic (Richerson and Wu, 2003).

In addition, we considered the special case of a homogeneous
neural network which is a rough representation of real neuronal
ensembles. Taking into view all these considerations, we must
admit that our conclusions can offer only primary insights into
the feedback-induced dynamics of GABA-driven interneurons.
At the same time, they can be regarded as reference point for
future studies applying more sophisticated methods.
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Evidence suggests that layer 5 pyramidal neurons can be divided into functional

zones with unique afferent connectivity and membrane characteristics that allow for

post-synaptic integration of feedforward and feedback inputs. To assess the existence

of these zones and their interaction, we characterized the resonance properties of a

biophysically-realistic compartmental model of a neocortical layer 5 pyramidal neuron.

Consistent with recently published theoretical and empirical findings, our model was

configured to have a “hot zone” in distal apical dendrite and apical tuft where both

high- and low-threshold Ca2+ ionic conductances had densities 1–2 orders of magnitude

higher than anywhere else in the apical dendrite. We simulated injection of broad

spectrum sinusoidal currents with linearly increasing frequency to calculate the input

impedance of individual compartments, the transfer impedance between the soma and

key compartments within the dendritic tree, and a dimensionless termwe introduce called

resonance quality. We show that input resonance analysis distinguished at least four

distinct zones within the model based on properties of their frequency preferences: basal

dendrite which displayed little resonance; soma/proximal apical dendrite which displayed

resonance at 5–23Hz, strongest at 5–10Hz and hyperpolarized/resting membrane

potentials; distal apical dendrite which displayed resonance at 8–19Hz, strongest at

10Hz and depolarized membrane potentials; and apical tuft which displayed a weak

resonance largely between 8 and 10Hz across a wide range of membrane potentials.

Transfer resonance analysis revealed that changes in subthreshold electrical coupling

were found to modulate the transfer resonant frequency of signals transmitted from

distal apical dendrite and apical tuft to the soma, which would impact the frequencies

that individual neurons are expected to respond to and reinforce. Furthermore,

eliminating the hot zone was found to reduce amplification of resonance within the

model, which contributes to reduced excitability when perisomatic and distal apical

regions receive coincident stimulating current injections. These results indicate that the

interactions between different functional zones should be considered in a more complete

understanding of neuronal integration. Resonance analysis may therefore be a useful tool

for assessing the integration of inputs across the entire neuronal membrane.
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INTRODUCTION

Neocortical architecture facilitates association-based information
processing where feedforward and feedback signals connect the
many different processing stages of the neocortex. The associative
nature of neocortical function can even be observed on the scale
of single neurons, such as layer 5 pyramidal neurons that play
a central role in the functioning of neocortical microcircuits
(Larkum et al., 1999; Larkum, 2013). The neuronal membrane
of these neurons has a large spatial extent and is usually spread
throughout all neocortical layers, and different parts of the
neuron (e.g., proximal vs. distal) receive inputs from different
regions of the brain (Larkum et al., 2009). Direct feedforward
projections, which are typically of local origin, synapse close to
the soma on proximal dendrites; on the other hand, feedback
projections, which tend to originate from far away sources, like
non-specific thalamocortical neurons or distant cortical neurons,
synapse on the distal regions of the apical dendrite and apical tuft
(Spruston, 2008; Hawkins and Ahmad, 2016). The perisomatic
and distal apical regions of layer 5 pyramidal neurons have
been identified as two distinct “zones” that both mediate action
potential initiation (Larkum, 2013). Moreover, because these two
spike initiation zones are electrically coupled, the pyramidal
neuron is able to detect coincident feedforward input to its
perisomatic regions and feedback input to its distal apical regions.

The concept of distinct functionally-defined zones has been
expanded by taking into account additional functional aspects,
such as the processes of synaptic integration within the large
and complex membrane of layer 5 pyramidal neurons (Williams
and Stuart, 2003; Polsky et al., 2004; Spruston and Kath, 2004).
For instance, Spruston and Kath (2004), proposed a three-layer
model of synaptic integration where: (1) basal/oblique dendrites
and apical tuft are two distinct zones that collectively comprise an
input layer, (2) proximal apical dendrite/soma and distal apical
dendrite are two distinct zones that collectively comprise an
integration layer, and (3) the axon hillock itself constitutes an
output layer.

Previously, resonance analysis has been shown to be a
useful tool, both experimentally and computationally, for
distinguishing and defining functional zones (Hutcheon and

Yarom, 2000; Izhikevich et al., 2003; Nusser, 2009; Zhuchkova
et al., 2013). That is, non-uniform ionic conductance expression
throughout the neuronal membrane can establish distinct

regions that differ in terms of their frequency preference
to subthreshold oscillatory input. Therefore, in biologically-

realistic compartmental models of pyramidal neurons, the
particular ionic conductances that are defined for a given
model compartment largely determines the resonant properties
of that compartment (Reyes, 2001; Lörincz et al., 2002).
Differences in compartment resonant properties can, in turn,
be interpreted in terms of different functional roles. Hu et al.
(2009), used resonance analysis on CA1 hippocampal pyramidal
neuron models (as well as experimentally) and identified two
complementary resonances (roughly 3–12Hz), each generated
by distinct mechanisms, for signals transmitted to-and-from the
soma and distal apical dendrite when membrane potentials are
below−55mV.

In the current study, we employ a resonance-based
computational approach to studying the spatial distribution
of frequency preference within a realistic layer 5 pyramidal
neuron model. We began with a model whose post-synaptic
responses have been tuned to generate action potentials in
response to simultaneous input to distal apical regions and the
soma to simulate the associative function of these neurons. We
examined the resonance responses of this model to oscillatory
input in biologically relevant frequency ranges (1–40Hz). We
then used transfer resonance to examine the electrical coupling
that occurs between distinct regions of the model via both
subthreshold oscillations and the generation of both perisomatic
and distal apical action potentials. We find that tuning of a
neuron’s post-synaptic physiological properties to enhance
association between feedforward and feedback inputs impacts
which frequencies it is expected to respond to most strongly and
reinforce.

MODELS AND ANALYSIS

Model Configuration
We used the GEneral NEural SImulation System (GENESIS)
environment to construct a model neuron that has properties
of neocortical layer 5 pyramidal neurons (Bower and Beeman,
2003). Our model is an adaptation of the regular spiking,
tufted layer 5 neuron constructed by Traub et al. (2005) (for
morphology, passive electrical properties) and Traub et al. (2003)
(for conductance kinetics). We made no changes to morphology.
All but two of the ionic channels included in the original model
remain throughout our simulations. Specifically, resonance
analysis requires that neuronal responses be subthreshold. To
assure subthreshold behavior in our resonance simulations, we
therefore removed the fast sodium conductance [gNa(F)], which
produces action potential onset (Hodgkin and Huxley, 1952) and
the Ca2+ dependent K+ afterhyperpolarization current which
acts as an integrating current to control bursting behavior
(Mainen and Sejnowski, 1996). Furthermore, the kinetics for all
but one of the ionic conductances remained the same. The lone
adjustment was made to M current [gK(M)] kinetics where we
shifted activation dynamics up to 15mV in the hyperpolarized
direction near the base of the activation curve, and reducing
its time constant maximum value by 40ms (see Equations S1,
S2 and Figure S1). Changing gK(M) in this way allows this
channel to become active at subthreshold membrane potentials,
which more accurately captures the resonance characteristics
attributed to gK(M) in neocortical pyramidal neurons when their
membrane potential is between rest and depolarized to 30mV
(Gutfreund et al., 1995; Hutcheon and Yarom, 2000). In addition
we updated some conductance density values which have been
shown experimentally to diverge from those in the original
(Traub et al., 2005) model. A more complete description of the
model configuration is found in the Supplementary Materials.

Our model was configured to behave similarly to layer
5b pyramidal neurons that display back propagation-activated
Ca2+ spikes in distal apical dendrite (Larkum et al., 1999;
Hay et al., 2011; Larkum, 2013). We incorporate the concept
of a distal apical “hot zone,” which is defined as distal apical
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dendrite (model compartments 16–18 in Table S1) and apical tuft
(model compartments 19) with densities for the high-threshold
Ca2+ conductance [gCa(H)] and low-threshold Ca

2+ conductance
[gCa(L)] 10 and 100 times higher than anywhere else in the
apical dendrite, respectively. This type of configuration has been
shown to faithfully reproduce the distal apical dynamics, such
as Ca2+ spike generation, that are necessary for the coupling
of perisomatic and distal apical regions of layer 5b pyramidal
neurons (Hay et al., 2011).

Model Behavior
In order to determine if our model reproduced feedforward-
feedback interactions, we injected a depolarizing current into
the soma and distal apical dendrite compartments (Figure 1A)
with gNa(F) active. A 3 nA, 5ms square pulse injected into
the soma of the model with the hot zone (Figure 1B, left-
bottom) evoked an action potential spike and spikelet followed
by an afterdepolarization potential (Figure 1B, left-top, black
line). This somatic depolarization back propagates to distal
apical dendrite and leads to depolarization of the local
membrane potential (Figure 1B, left-top, green line). When
a back propagated pulse evoked by a somatic square wave
injection arrives at distal apical dendrite at the same time as a
current injection (given by equation S3) into the distal apical
dendrite (Figure 1B, right-bottom), a very broad Ca2+ spike
can be produced in a spike initiation region in the distal apical
dendrite (Figure 1B, right-top, green line). This Ca2+ spike
travels along the apical dendrite to the soma and can cause
the soma to depolarize further and emit an additional action
potential (Figure 1B, right-top).

Figure 1C illustrates the scenario when the distal apical hot
zone has been removed, such that compartments comprising
distal apical dendrite (16–18, see Table S1) and apical tuft (19)
were given the same density values for gCa(H) and gCa(L) as the rest
of the apical dendrite (6–15). A 3 nA, 5ms square pulse injected
into soma (Figure 1C, left-bottom) evoked an action potential
spike and spikelet followed by an afterdepolarization potential
(Figure 1C, left-top, black line) that was reduced in duration
relative to the neuron containing the hot zone (Figure 1B, left-
top, black line). The somatic depolarization back propagates
to distal apical dendrite and leads to a depolarization of the
local membrane potential (Figure 1C, left-top, green line) that
is also reduced relative to the neuron containing the hot zone
(Figure 1B, left-top, green line). When a back propagated pulse
evoked by a somatic square wave injection arrives at distal
apical dendrite at the same time as a current injection into the
distal apical dendrite (Figure 1C, right-bottom), a less robust
Ca2+ spike is initiated in the distal apical dendrite, indicating
a reduction in electrical coupling between distal apical dendrite
and soma. The result is that the soma does not depolarize further
and does not emit an additional action potential as it did in
the case with the distal apical hot zone (compare Figures 1C,B,
right-top, black lines).

Resonance Analysis
Resonance analysis was applied on both the model neuron in
Figure 1B, the one with a distal apical hot zone, and the model

neuron in Figure 1C, the one without a hot zone. In both cases,
gNa(F) was removed to prevent action potential generation, as
described in section Model Configuration, above. Toggling the
hot zone in this manner allowed resonance analysis to be used as
a tool to investigate the role of gCa(H) and gCa(L) in the coupling
of distal apical and perisomatic regions of the model. There were
two phases to our resonance analysis: input and transfer.

Input Resonance Analysis
Input resonance analysis was used to examine local frequency
preference throughout the model. To characterize the input
resonance properties of our model neuron, we systematically
injected “chirp” currents, or, broad-spectrum sinusoidal currents
with linearly increasing frequency (0–40Hz over 65 s) into a
compartment within the following regions of the model neuron:
soma (specifically, compartment 2 in Table S1), basal dendrite
(5), middle apical dendrite (11), distal apical dendrite (18), and
apical tuft (19) (Figures 2A,B). 40Hz was set as the maximum
frequency for the analysis based on preliminary work where
the soma and distal apical dendrite compartments were held
at depolarized membrane potentials and injected with a chirp
current with linearly increasing frequency from 0 to 200Hz over
325 s. During these tests, resonance was not observed above
30Hz, therefore, we report model behavior up to 40Hz in order
to fully capture all resonance observed.

During the input resonance analysis, compartments’
membrane potentials were varied from−80 to−30mV for soma
and basal dendrite, and −80 to 0mV for apical dendrite and
apical tuft compartments, in steps of 5mV using a DC offset
current (for DC offset values see Supplementary Materials).
These membrane potential ranges were selected based on
physiological considerations to avoid evaluating membrane
resonance during significant refractory periods. For instance,
the maximum membrane potential for the soma and basal
dendrite compartments was selected based on the peak value of
the somatic afterdepolarization potential after the neuron has
fired an action potential; the maximum membrane potential for
apical dendrite and tuft compartments were selected based on
peak membrane potential after local current injection is timed to
match the arrival of a back propagated somatic action potential
(see Figure 1B, right-top).

At each of these membrane potentials, a chirp current was
injected into the compartments and we calculated the input
impedance by dividing the Fourier spectrum of the resultant
membrane potential by the Fourier spectrum of the chirp
current, FVm and FI, respectively (Equation 1). Chirp current
amplitudes were chosen that kept the resultant membrane
potential oscillations below approximately 8mV in peak-to-peak
amplitude for each compartment. This ensures that sufficiently
non-overlapping regions of the activation curves for the ionic
conductances in the model are examined. The chirp current
amplitudes were as follows: 10 pA, basal dendrite; 50 pA, apical
tuft; 75 pA, soma; 100 pA, middle apical dendrite; and 115 pA,
distal apical dendrite. We obtained our Fourier spectrums by

applying a Fast Fourier Transform (FFT) algorithm (Matlab
TM

FFT function) on model compartment’s membrane potential
over the 65 s chirp injection epoch and applying 100-pt moving
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FIGURE 1 | Electrical coupling between distal apical dendrite and soma. (A) current injections to distal apical dendrite (green arrow) and soma compartments (black

arrow) (neuron rendering from Traub et al., 2005) (B, left) model response to 3 nA, 5ms step current injection into soma when hot zone is in-place. (B, right) Model

response to 3 nA, 5ms somatic step current and EPSP-like current injection to distal apical dendrite (1 nA peak, 5ms delay relative to somatic step current) when hot

zone is in-place. (C, left) Model response to 3 nA, 5ms step current injection into soma without hot zone. (C, right) Model response to 3 nA, 5ms somatic step current

and EPSP-like current injection to distal apical dendrite (1 nA peak, 5ms delay relative to somatic step current) without hot zone.

average smoothing in the frequency domain. Impedance was
calculated on the interval, 1–40Hz, to avoid boundary effects
associated with applying discrete FFT on a finite sampling
window. Resonance quantification analysis was performed on
the resultant impedance magnitude curves (simply referred to as
impedance in the remainder of the text) by calculating resonance
strength (Q), degree of high-pass filtering (D), half-band width
(HB), and by identifying the resonant frequency (fres) and
resonant impedance (Zres) value (Erchova et al., 2004) (Equations
2, 3; Figure S8).

We introduce a dimensionless quantity that we call “resonance
quality” defined as the ratio of resonance strength and degree
of high-pass filtering (Q/D). We used resonance quality as the

primary metric to quantify the shape of impedance curves within

the 1–40Hz interval (Equation 4). It is advantageous to use Q/D
to mitigate “false positive” resonance cases when Q is roughly

equal to D (Q/D ≈ 1), a condition that is more indicative
of broadband or high-pass filtering/amplification as opposed
to a well-defined resonance. On the other hand, larger values
of Q/D are indicative of well-defined band-pass filtering (large
amplitude and narrow peak in impedance curve). Mitigating
for false positives becomes important when a compartment
passes through its resonant regime as its membrane becomes
increasingly depolarized. It was observed during preliminary

tests that resonance tends to give way to high-pass filtering in
some simulations, particularly for the perisomatic regions of
the model. Therefore, Q/D is a metric that accurately captures
resonance features of our model on the 1–40Hz interval.
Expressions for our resonance quantification analysis are given
in Equations 1–4:

Z =
FVm

FI
(1)

Q =
Zres

Z1
(2)

D =
Z40

Z1
(3)

resonance quality =
Q

D
=

Zres

Z40
(4)

where Z, FVm, and FI are the impedance, Fourier spectrum of
output compartment membrane potential, and Fourier spectrum
of injected chirp current, respectively; Zres, Z1, and Z40 are the
resonant impedance, impedance at 1Hz, and impedance at 40Hz,
respectively (Figure 2C).
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FIGURE 2 | Experiment schematic (A) arrows point to compartments used in resonance analysis: black- soma, purple- basal dendrite, blue- middle apical dendrite,

green- distal apical dendrite, and red- apical tuft. (B) Schematic of circuit response to simulated chirp current injection (circuit diagram from Bower and Beeman, 2003).

(C) quantification of impedance curve using resonance quality (Q/D). Left—example impedance curve with high Q/D. Right—example impedance curve with low Q/D.

Transfer Resonance Analysis
Transfer resonance analysis was used to characterize
subthreshold interaction, or electrical coupling, between
compartments in our model. Transfer impedance was calculated
between each dendritic compartment examined in the input
resonance analysis and the soma, as well as the transfer
impedance between the soma and distal apical dendrite. Transfer
impedance was calculated by dividing the Fourier spectrum of
the resultant membrane potential in the transfer, or “receiving,”
compartment by the Fourier spectrum of the chirp current
injected into the input compartment. Transfer resonance was
quantified using the same metrics used in the input resonance
analysis. The compartments where the chirp current was injected
had their membrane potentials varied across the same range as in
the input resonance analysis, but in steps of 10mV, as opposed to
5mV, using DC offsets (for DC offset values see Supplementary
Materials). In addition, the transfer analysis was repeated
multiple times, each time with the transfer compartments
held at either hyperpolarized, near rest, or various amounts of
depolarized membrane potentials using a second DC offset (see
Supplementary Materials).

RESULTS

Input Resonance Analysis on Model With

Hot Zone
Results of the input resonance analysis are shown in Figure 3

(for waveforms of compartment voltage response at key values

of membrane potential in different regions of the model
neuron, see Figure S3). Profiles of input resonance quality
(Q/D) are presented in Figure 3A. For the compartments
along the soma-apical dendrite axis, there was a progressive
shift in the compartment exhibiting the highest resonance
quality as each compartment’s membrane potential was increased
from hyperpolarized to depolarized potentials. The soma’s peak
resonance quality, the highest of any compartment, occurred at
hyperpolarized membrane potentials. Also note that the soma’s
resonance quality (Figure 3, black line) reduced to approximately
1 at a membrane potential of around −35mV; a condition that
is not indicative of resonance, but rather of a broadband and/or
high-pass impedance curve. Middle apical dendrite resonance
quality (blue line) peaked when its membrane potential reached
around −65mV, and it became the compartment with the
highest resonance quality. Distal apical dendrite (green line)
became the compartment with the highest resonance quality
at more depolarized membrane potentials, with a peak at
−45mV, approximately 12mV above the local resting membrane
potential. By contrast, peak resonance quality for apical tuft (red
line) occurred around −20mV, but there was no membrane
potential for which apical tuft became the compartment with the
highest resonance quality. Basal dendrite (purple line) exhibited
only very weak resonance for a small range of membrane
potentials, from hyperpolarized potentials up to approximately
−55mV.

In addition to a soma-apical dendrite shift in peak
input resonance quality as each compartment’s membrane
potential was increased from hyperpolarized to depolarized
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FIGURE 3 | Input resonance analysis. (A) Input resonance quality (Q/D), (B) input resonant frequency (fres), and (C) input resonant impedance (Zres), vs. initial

compartment membrane potential.

membrane potentials, the input resonance quality curves for
the compartments on the soma-apical dendrite axis, including
the apical tuft, became progressively flatter the farther the
compartment was from the soma. In particular, apical tuft
displayed a fairly flat resonance quality curve across almost the
entire range of membrane potentials. This progressive flattening
of input resonance quality profiles along the soma-apical dendrite
axis is similar to the spatial distribution of frequency preference
specificity as reflected in the half-bandwidth (HB) of the
compartments’ impedance curves (Table S2A). The soma and
middle apical dendrite have narrow HB at hyperpolarized and
resting membrane potentials but their HB widens rapidly with
depolarization. On the other hand, distal apical dendrite and
apical tuft generally have wider HB than soma or middle apical
dendrite. However, the HB of these compartments does become
narrower for intermediate levels of depolarization (by up to 9Hz
in some cases for distal apical dendrite).

Input resonant frequency profiles for the compartments in
this analysis are shown in Figure 3B. Soma, basal dendrite, and
middle apical dendrite all consistently showed rising resonant
frequency as membrane potential increased from hyperpolarized
to higher levels of depolarization. Somatic resonant frequency
increased from 5Hz at hyperpolarized potentials to 23.5Hz
at −40mV, the highest membrane potential for which the
soma exhibited resonance. Basal dendrite exhibited resonance
across an even shorter range of membrane potentials where
it sweeps out a wide range of resonant frequencies from 8.5
to 29Hz. Middle apical dendrite had a resonant frequency
profile similar to the soma but with a slower rate of increase.

Distal apical dendrite and apical tuft had relatively flat
resonant frequency curves, centered around 8–9.5Hz from
hyperpolarized to near resting membrane potentials. The
resonant frequency curves for these compartments ultimately
increased to > 15Hz for highly depolarized membrane
potentials. Note that at −50mV, distal apical dendrite began
to display a resonant frequency that progressively increased
with increasing membrane potentials, much like the soma,
basal dendrite, and middle apical dendrite compartments.
On the other hand, apical tuft remained relatively flat out
to −20mV, then rapidly increased with further membrane
depolarization.

Input resonant impedance profiles for this analysis are shown
in Figure 3C. The compartment that showed the highest resonant
impedance values was the basal dendrite. Its resonant impedance
was 700 M� when its membrane potential was −80mV and
rapidly decreased to 500M� as its membrane potential increased
to −55mV. The maximum resonant impedance values for
the apical dendrite and apical tuft compartments showed an
inverse relationship to these compartments’ maximum values in
their resonance quality profiles, namely, the highest resonant
impedance values belonged to the apical tuft compartment
across the entire range of membrane potentials (maximum
value 150 M� at −45mV), while the distal apical dendrite
was generally greater than middle apical dendrite, except below
−70mV. Distal apical dendrite resonant impedance maximum
was 60 M� at −45mV while middle apical dendrite resonant
impedance maximum was 37 M� at −65mV. The soma’s
resonant impedance profile peaked at hyperpolarized potentials
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(50 M� at −75mV) then decreased as membrane potentials
increased to−40mV.

Transfer Resonance Analysis on Model

With Hot Zone
Soma and Distal Apical Compartments
Transfer resonance analysis was used to examine subthreshold
electrical coupling between the dendritic compartments involved
in the input resonance analysis and the soma, and between the
soma and distal apical dendrite. Because our baseline model
neuron is configured to exhibit enhanced spiking due to coupling
of the soma and a distal apical spiking zone, we chose to present
the results of transfer resonance analysis for the soma and
the two distal apical compartments together (Figure 4, Figure
S4). The black curves represent the scenarios in which a chirp
current was injected into the soma and the resultant membrane
potential in the distal apical dendrite was measured. The green
curves represent the scenarios in which a chirp current was
injected into distal apical dendrite and the resultant membrane
potential of the soma was measured. The red curves represent
the scenarios in which a chirp current was injected into apical
tuft and the resultant membrane potential of the soma was
measured. Multiple experimental runs were performed in which
the injection compartment membrane potential was stepped
through a range of values in steps of 10mV while the transfer
compartment was held at a few select membrane potentials
provided in parentheses next to the name of the injection
compartment in the legend of Figure 4.

Figure 4A presents the transfer resonance quality profiles
for the soma and distal apical compartments. The somatic
membrane potentials that resulted in the highest resonance
quality between soma and distal apical dendrite were
hyperpolarized/resting potentials. As the soma was depolarized
above its resting membrane potential, transfer resonance quality
decreased rapidly. The highest observed values of resonance
quality between soma and distal apical dendrite (Q/D between
4.5 and 5) occurred both when the distal apical dendrite
membrane potential was near rest and depolarized to −30mV.
The resonance quality profile for soma-to-distal apical dendrite
transmission remains qualitatively the same but is shifted
downward when distal apical dendrite membrane potential is
hyperpolarized to−75mV (values between 3.5 and 4 when soma
at hyperpolarized/resting membrane potentials) or depolarized
further to −3mV (values between 2.5 and 3 when soma at
hyperpolarized/resting membrane potentials).

The membrane potentials of distal apical dendrite that
resulted in the highest transfer resonance quality with the soma
were between −50 and −40mV (Figure 4A). As distal apical
dendrite membrane potential became more hyperpolarized
or more depolarized than these values, transfer resonance
quality decreased. The highest observed values of transfer
resonance quality between distal apical dendrite and soma
(Q/D approximately 5.5) occurred when the somatic membrane
potential was hyperpolarized at −80mV. The resonance
quality profile for distal apical dendrite-to-soma transmissions
qualitatively remains the same, but is shifted downward when the

soma becomesmore andmore depolarized—peak values between
4.5 and 5 when soma at−65mV, and peak values between 2.5 and
3 when soma at−50mV.

The largest transfer resonance quality observed for signals
transmitted from apical tuft to soma also occurred when the soma
was hyperpolarized and at rest (Figure 4A). Each of these profiles
contain values > 4, and their peaks (5.2 and 4.8, respectively)
occurred when the apical tuft compartment was at −20mV. The
peak value in the profile for signals transmitted from apical tuft
to soma when soma is depolarized to−50mV reduced to 2.8.

Figure 4B shows the transfer resonant frequency between
the soma and distal apical compartments. Transfer resonant
frequency from soma to distal apical dendrite increases almost
linearly as soma membrane potential is depolarized. When
distal apical dendrite membrane potential is between −75 and
−30mV, the resonant frequency profiles of soma-to-distal apical
dendrite transmission group together and vary from 7Hz for
hyperpolarized soma (distal apical dendrite at −75 or −60mV)
to 18Hz for soma depolarized to −30mV (distal apical dendrite
at −30mV). The highest resonant frequencies for transmission
from soma to distal apical dendrite occurred when distal apical
dendrite is highly depolarized to −3mV. Under this condition,
the range of somatic transfer resonant frequencies as the soma’s
membrane potential was varied is 11–34Hz. However, it should
be noted that the frequencies under the condition of both high
somatic and distal apical dendrite depolarization are associated
with very low resonance quality and therefore represent a very
weak frequency preference.

Transfer resonant frequency from distal apical dendrite to
soma displayed a banded structure that is based on somatic
membrane potential (Figure 4B). The band with the slowest
frequencies (roughly 7–11Hz) occurred when the soma was
hyperpolarized; a band with intermediate frequency values (10–
14Hz) occurred when soma was at −65mV; lastly, a band
with the fastest frequencies (14–20Hz) occurred when soma
was depolarized to −50mV. On the other hand, each of
the transfer resonant frequency curves for apical tuft-to-soma
transmissions were flatter and non-overlapping. These bands
were situated at 7, 10, and 14.5Hz for hyperpolarized, resting,
and depolarized soma, respectively. The bands in resonant
frequency for transmission from distal apical dendrite and apical
tuft to soma are inversely related to the resonance quality of
transmission from distal apical dendrite and apical tuft to the
soma, such that the faster the frequency, the lower the transfer
resonance quality.

Transfer resonant impedance between soma and distal
apical compartments is shown in Figure 4C. Transfer
resonant impedance profiles for soma-to-distal apical dendrite
transmission and for transmission between both distal apical
compartments and the soma are qualitatively similar to their
corresponding resonance quality profiles. However, it is easier
to identify within the transfer resonant impedance profiles a
two-tiered structure in the communication between these two
regions of the pyramidal neuron model. For soma-to-distal
apical dendrite transmission, the transfer resonant impedance
profiles for the cases when distal apical dendrite is at −60 and
−30mV group together, peaking between 13 and 14 M� when
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FIGURE 4 | Transfer resonance analysis (soma, distal apical dendrite, apical tuft). (A) Transfer resonance quality (Q/D), (B) transfer resonant frequency, and (C)

transfer resonant impedance, vs. initial compartment membrane potential. In the legend, the membrane potential of the transfer compartment is given in parentheses

next to the name of the injection compartment.

soma is hyperpolarized, and decreasing rapidly to 0.5 M�

with somatic depolarization. On the other hand, the transfer
resonant impedance profiles for the case when distal apical
dendrite membrane potential is hyperpolarized at −75mV and
depolarized strongly to −3mV group together, with values
around 6 M� when soma is hyperpolarized and also decreasing
to 0.5 M� with somatic depolarization.

For distal apical dendrite-to-soma transmission, the transfer
resonant impedance profiles for the cases when the soma is
at −80 and −65mV group together, peaking near 15 M�

when distal apical dendrite is between −50 and −40mV,
and decreasing rapidly to 5 M� with either hyperpolarization

or depolarization out of this range of dendritic membrane

potentials. On the other hand, when the soma is depolarized
to −50mV, the peak in the transfer resonant impedance
profile for distal apical dendrite-to-soma transmission is
reduced by half to 7.5 M� and tapers to 3 M� with
either hyperpolarization or depolarization out of the −50 to
−40mV range in membrane potential values for distal apical
dendrite.

The transfer resonant impedance profiles for apical tuft-
to-soma transmissions were generally lower in magnitude,
except for compartment membrane potentials > −25mV, and
had a broader shape relative to the profiles for distal apical
dendrite. Maximum values for apical tuft-to-soma transmission
were 12 M� when soma was either hyperpolarized or at
rest, while maximum values of the apical tuft-to-soma transfer

resonant impedance profile decreased to 6 M� when soma was
depolarized.

Basal Dendrite and Middle Apical Dendrite
Transfer resonance analysis for the other dendritic
compartments included in this study are presented in Figure 5

and Figure S4. Each curve was obtained by injecting chirp
current into the respective compartment and then measuring
the resultant membrane potential in the soma. Once again, there
are three profiles per compartment corresponding to the three
membrane potential values that the transfer compartment, in
this case the soma, was held at–hyperpolarized, resting, and
depolarized potentials.

Figure 5A presents the transfer resonance quality profiles
for middle apical and basal dendrite compartments (blue
and purple lines, respectively). The largest transfer resonance
quality observed were for signals transmitted from middle
apical dendrite to soma when soma was at hyperpolarized and
resting membrane potentials. These values peaked (3.7 and 3.1,
respectively) when middle apical dendrite membrane potential
was between −70 and −55mV and then reduce sharply (to
1.5) as the compartment is depolarized. The resonance quality
profile for transmission between middle apical dendrite and
soma when the soma is depolarized to −50mV exhibits the
typical downward shift relative to the profiles obtained when
soma was at hyperpolarized/resting membrane potentials. In
general, the lowest transfer resonance quality was observed to
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FIGURE 5 | Transfer resonance analysis (basal dendrite and middle apical dendrite). (A) Transfer resonance quality (Q/D), (B) transfer resonant frequency, and (C)

transfer resonant impedance, vs. initial compartment membrane potential. In the legend, the membrane potential of the transfer compartment is given in parentheses

next to the name of the injection compartment.

be in transmissions from basal dendrite to soma. These profiles
exhibited the usual banding structure where the profiles obtained
when soma was at hyperpolarized and resting potentials had the
higher values of transfer resonance quality and were clustered
much closer together. The transfer resonance quality between
basal dendrite and soma peaked at 2.8 when both compartments
were hyperpolarized, and when the soma was depolarized to
−50mV, transfer resonance between basal dendrite and soma
nearly disappears.

Transfer resonant frequency for middle apical and basal
dendrite compartments is shown in Figure 5B. As soma
membrane potential was increased from hyperpolarized to
depolarized values, the transfer resonant frequency became
progressively faster for signals transmitted from both middle
apical and basal dendritic compartments to the soma. The bands
of resonant transfer frequency for middle apical dendrite-to-
soma and basal dendrite-to-soma transmissions increased as
dendritic membrane potential increased and were partially
overlapping. For hyperpolarized, resting, and depolarized
soma, the corresponding middle apical dendrite-to-soma
bands were 5–15Hz, 10–20Hz, and 15–25Hz, respectively.
Similarly, for hyperpolarized, resting, and depolarized soma,
the corresponding basal dendrite-to-soma bands were 5–11Hz,
10–14Hz, and 17–21Hz.

Transfer resonant impedance for middle apical and basal
dendrites is shown in Figure 5C. Like both distal apical
compartments, basal dendrite and middle apical dendrite
compartments had transfer resonant impedance profiles for the

cases when the soma was at −80 and −65mV that group
together at much higher values than when the soma was at
−50mV. For basal dendrite-to-soma transmissions, the highest
transfer resonant impedance values (40–45M�) are observed for
hyperpolarized basal dendrite compartment and hyperpolarized
and resting soma. When basal dendrite is depolarized, the
transfer resonant impedance decreases rapidly to values near 5
M�. When the soma is depolarized to −50mV, the maximum
transfer resonant impedance is 22 M� at hyperpolarized basal
dendrite membrane potential and decreases to 3 M� when
basal dendrite was depolarized to −30mV. For middle apical
dendrite-to-soma transmissions, the highest transfer resonant
impedance values (25–28 M�) are observed for middle apical
dendrite membrane potentials between −70 and −50mV and
hyperpolarized and resting soma. When middle apical dendrite
is hyperpolarized or depolarized out of this range, the transfer
resonant impedance decreases. When the soma is depolarized to
−50mV, the maximum transfer resonant impedance is 15 M� at
hyperpolarized dendrite membrane potential and decreases to 3
M� when middle apical dendrite is depolarized to 0mV.

Resonance Analysis on Model Without Hot

Zone
Input Resonance Analysis
A good illustration of changes to model behavior when the distal
apical hot zone has been removed is to examine difference plots
between the case with the hot zone and the case without the
hot zone. Figure 6 illustrates how the outcome of our input
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FIGURE 6 | Change to input resonance analysis when hot zone is removed. (A) Percentage change to input resonance quality, (B) change to input resonant

frequency, and (C) change to input resonant impedance, vs. initial compartment membrane potential.

resonance analysis changed when gCa(H) and gCa(L) density in
distal apical dendrite and apical tuft is reduced. For profiles
of input resonance quality, resonant frequency, and resonant
impedance presented in the same format as Figure 3, and for the
corresponding waveforms of compartment voltage response at
key values of membrane potential, see Figures S5, S6, respectively.

Percentage change to input resonance quality when distal
apical hot zone has been removed is shown in Figure 6A. Not
surprisingly, there isn’t much change to the resonance quality
in the basal dendrite compartment. There was a small decrease
in resonance quality for soma and middle apical dendrite at
hyperpolarized/rest membrane potentials (1–2.5% decrease). On
the other hand, much larger decreases to resonance quality
was observed for the distal apical compartments where the
gCa(H) and gCa(L) density was reduced. Two large decreases
occur at membrane potentials of −70 and −20mV. At −70mV,
resonance quality decreased by 6 and 14% for apical tuft and
distal apical dendrite compartments, respectively. At −20mV,
resonance quality decreased by 7 and 23% for apical tuft and
distal apical dendrite compartments, respectively.

Reducing gCa(H) and gCa(L) density in distal apical
compartments also impacts HB values for the compartments
during input resonance analysis (Table S2B). The soma and distal
apical compartments all experienced a widening of HB relative
to the results obtained on the baseline model, while middle
apical dendrite and basal dendrite both experienced a modest
narrowing of HB.

Figure 6B shows how each compartments’ input resonant
frequency changed when the hot zone was removed. Resonant
frequency for the basal dendrite compartment does not change
when distal gCa(H) and gCa(L) density is reduced. There is
a small decrease to resonant frequency ( < 1Hz) for soma
and middle apical dendrite when they are at hyperpolarized
membrane potentials. Larger decreases to resonant frequency
are observed for distal apical compartments at hyperpolarized
and very high levels of depolarization. Both distal apical
dendrite and apical tuft experience up to 2Hz reduction
to resonant frequency at −65mV, while at membrane
potentials > −20mV, the reduction experienced by distal
apical dendrite and apical tuft is as much as 8 and 3.8Hz,
respectively.

Changes to input resonant impedance is shown in Figure 6C.
With the reduction to distal gCa(H) and gCa(L) density, resonant
impedance for the basal dendrite compartment increased by 1
M� at hyperpolarized membrane potentials. There was a small
decrease to resonant impedance for soma and middle apical
dendrite when they were at hyperpolarized membrane potentials
( < 1 M�). Like the case for resonance quality, the distal
apical dendrite and apical tuft compartments show significant
reductions in resonant impedance at −70 and −20mV except
this time, it is the apical tuft that was most affected by the reduced
distal gCa(H) and gCa(L) density. At −70mV, resonant impedance
magnitude decreased by 6 and 13 M� for distal apical dendrite
and apical tuft compartments, respectively. At−20mV, resonant
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impedance magnitude decreased by 13 and 24 M� for distal
apical dendrite and apical tuft compartments, respectively.

Transfer Resonance Analysis
In Figure 7 we again use difference plots to illustrate changes
to model behavior when the distal apical hot zone has
been removed. Profiles of transfer resonance quality, resonant
frequency, and resonant impedance are presented in the same
format as Figures 4, 5, and for the corresponding waveforms
of compartment voltage response at key values of membrane
potential, see Figures S7–S9, respectively. In the case of transfer
resonance analysis performed on a model neuron without
a distal apical hot zone, only simulations with the transfer
compartment held near resting membrane potentials were
performed (−60mV for distal apical dendrite and −65mV for
soma).

Figure 7A presents the percentage change to transfer
resonance quality. In general, when distal gCa(H) and gCa(L)
density is reduced, there is a decrease in the transfer
resonance quality between soma and distal apical dendrite, as
well as between the dendritic compartments and the soma.
Notably, the somatic transfer resonance quality decreased
almost uniformly by 7–8%. In addition, the transfer resonance
quality between distal apical dendrite and soma experienced
reduced values at −70mV (17% reduction) and −20mV (22%
reduction). In addition, the impact of removing the distal
hot zone on HB values in the case of transfer resonance
is not as clear as in the case of input resonance (Table
S2D).

The change to transfer resonant frequency and transfer
resonant impedance is presented in Figures 7B,C. For all
compartments, both transfer resonant frequencies and transfer
resonant impedance magnitudes changed very modestly in
response to reduced distal gCa(H) and gCa(L) density. In the
case of transfer resonant frequencies, the changes were no
more than ±1.5Hz. In the transfer resonant impedance profiles,
the distal apical compartments showed reduced values at
the same membrane potentials (−70 and −20mV) at which
reductions were observed in their input and transfer resonance
quality, as well as input resonant impedance. In particular,
the transfer resonant impedance of distal apical dendrite and
apical tuft (as well as the soma) decreased by 1–2 M� when
the compartment membrane potential was −70mV. When
membrane potential was −20mV, transfer resonant impedance
for distal apical dendrite and apical tuft decreased by 2–3
M�.

DISCUSSION

Using the concept of a distal “hot zone,” we have configured
a model neocortical layer 5 pyramidal neuron to display
enhanced coupling of perisomatic and distal apical spiking
zones (Hay et al., 2011). Using this model, we applied
both input and transfer resonance analysis in the soma and
in several key locations within the dendritic tree to assess
functionally-relevant differences in the response of different
zones of the model. Furthermore, to gain insight about

the role of distal gCa(H) and gCa(L) density in the coupling
of perisomatic and distal apical regions, we performed the
resonance analysis twice, once with the distal hot zone and once
without.

General Pattern in Resonance

Characteristics
At least four distinct regions of the model neuron can be
distinguished based on the results of our resonance analysis.
In describing these zones, we use the following convention for
defining relevant brainwave bands (Buzsaki, 2011): theta (4–
7Hz), alpha (7–14Hz), and beta (14–30Hz).

Basal dendrite (and oblique dendrite, based on previous work
not included in the current study) is very weakly resonant only
at subthreshold membrane potentials and has input resonant
frequencies that increase rapidly throughout alpha and beta
range as membrane potential increases. It is more accurate to
consider these compartments as having a very weak frequency
preference spectrum at subthreshold membrane potentials and
transitioning to a high-pass filter at suprathreshold potentials.
Basal dendrite also had much higher input and transfer resonant
impedance at near rest/hyperpolarized membrane potentials
than any other compartment in the analysis. The high input
and transfer impedance is partially due to the small size of this
compartment and its close proximity to the soma, respectively.

The apical tuft has weak input resonance across the entire
range of membrane potentials considered and has a flat input
resonant frequency profile that is almost entirely confined to
alpha frequencies. On the other hand, apical tuft has very strong
transfer resonance with a flat transfer resonant frequency profile
that varies depending on soma membrane potential—low alpha
when soma hyperpolarized, high alpha when soma depolarized,
in our simulations. The apical tuft had moderately high values of
input and transfer resonant impedance across a very broad range
of membrane potentials, particularly when membrane potential
was > −50mV.

The soma and middle apical dendrite can be said to
belong to a perisomatic zone along the soma-apical dendrite
axis. These compartments have very strong input resonance
at hyperpolarized/resting membrane potentials, and their
resonant frequency profiles increase from theta to mid beta
as compartment membrane potential is increased. Both
compartments had low overall input resonant impedance, but
moderate to high transfer resonant impedance at resting and
hyperpolarized membrane potentials.

Distal apical dendrite showed strong input resonance at
moderate levels of depolarization, and a relatively flat input
resonant frequency profile in low alpha range when membrane
potential was < −50mV, but an increasing profile from low
alpha tomid beta whenmembrane potential was>−50mV. Like
apical tuft, distal apical dendrite also showed very strong transfer
resonance with a relatively flat transfer resonant frequency profile
that varies depending on somamembrane potential—theta/alpha
border when soma hyperpolarized, alpha/beta border when
soma depolarized. Distal apical dendrite had moderate values
of resonant input and transfer impedance and the peak in both
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FIGURE 7 | Change to transfer resonance analysis when hot zone is removed. (A) Percentage change to input resonance quality, (B) change to input resonant

frequency, and (C) change to input resonant impedance, vs. initial compartment membrane potential (note the change in scale along the ordinate relative to

Figure 6C).

of these profiles occurs at depolarized membrane potentials—
approximately−40mV.

Because our model was configured to have a distal apical hot
zone where gCa(H) and gCa(L) density is higher than the rest of
the model, it is not surprising that resonance analysis is able to
distinguish between perisomatic regions and distal apical regions.
However, our results show that resonance analysis is also able to
further divide the distal apical hot zone into two distinct zones,
namely, distal apical dendrite and apical tuft. Our results indicate
that the frequency preference of these distal regions of layer 5
pyramidal neurons becomes more specific at moderate to high
levels of depolarization as evidenced by their input and transfer
resonance quality scores, and their HB values. This increase in
frequency preference is directly correlated to the impact of these
distal apical regions on the soma as evidenced by their transfer
resonant impedance. On the other hand, our results indicate
that the frequency preference of proximal apical dendrite and
soma is strongest at near resting and hyperpolarized membrane
potentials (high input and transfer resonance quality, and small
HB) and that, at least in the case of the soma, this is the condition
under which signals transmitted to distal apical regions will
have the highest transfer resonant impedance, and therefore, the
largest functional impact on action potential generation. In short,
the shifts along the soma-apical dendrite axis in maximum input
resonance quality and flatness of input resonance quality profiles
indicates that the further a compartment is from the soma on
this axis, the weaker the frequency preference that it can attain,

the more depolarized it needs to be to attain its peak frequency
preference, and the weaker its dependence on a particular range
of membrane potentials for resonance to occur. Furthermore, our
results indicate that the basal dendrite (and presumably oblique
dendrites) of layer 5 pyramidal neurons do not have strong
frequency preferences. Their close proximity to the soma may
not require the same level of specificity in frequency preference
to have a large impact on the soma.

The four distinct zones identified in the current study are
consistent with a three-layer model of layer 5 pyramidal neuron
presented by Spruston and Kath (2004), which is based on
synaptic integration and afferent connectivity throughout the
neuronal membrane. The first layer of this model is an input layer
comprising two distinct zones—perisomatic dendrites (basal and
oblique), and apical tuft. The output of the first layer feeds into
a second layer that acts as an integration layer. The second layer
is comprised of two distinct integration zones—proximal apical
dendrite and soma, and distal apical dendrite. The third layer is
the action potential initiation zone in the axon hillock. The four
zones identified in our resonance analysis correspond to the four
zones used by Spruston and Kath (2004) to define the first two
layers of their model layer 5 pyramidal neuron. In this view, layer
5 pyramidal neurons can be considered as having two input zones
with weak input frequency preference, one close to the soma
comprising basal and oblique dendrites, and one far from the
soma in the apical tuft. However, significant frequency preference
in signals transmitted from both of these input zones to the soma
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emerges due to the rather strong frequency preference displayed
by the two integration zones of the neuron—distal apical dendrite
and proximal apical dendrite/soma.

Conditions for Optimum Subthreshold

Communication Between Soma and Distal

Apical Dendrite
Transfer resonance analysis also provides an indication of the
conditions that should be most conducive to electrical coupling
between the subthreshold perisomatic zone and the distal
apical dendrite zone in pyramidal neurons. Communication
between these two regions should be best when the soma is at
hyperpolarized/resting membrane potentials while distal apical
dendrite is depolarized to −40mV and the signal encoding the
information has a frequency of 7–12Hz. Because of the shift
in maximum input resonance quality along the soma-apical
dendrite axis, the conditions for maximum electrical coupling
between soma and distal apical dendrite also coincides with
conditions for maximum frequency preference (input resonance
quality) and response strength (input resonant impedance) to
injected chirp currents for these two regions. In addition, there
are key membrane potential values for which transfer resonant
frequencies for some or all compartments converge onto the
same value. For example, when the soma and distal apical
regions are both hyperpolarized to−80mV, the resonant transfer
frequency for communication in both directions is 7.5Hz (low
alpha); when all compartments are near the resting membrane
potential of the soma, −68mV, they all have a transfer resonant
frequency around 10Hz (middle alpha); on the other hand,
when the soma and distal apical regions are at −55mV, they
have a transfer resonant frequency of 15Hz (low beta). It has
been suggested that global coherence within dendritic oscillators
plays a major role in the modulation of perisomatic spike
generation (Remme et al., 2009). Our results suggest that a
more homogeneous distributions of critical membrane potential
values throughout the different regions of layer 5 pyramidal
neurons may be associated with global coherence within these
neurons.

It should be noted that when a DC offset is used to bring distal
apical dendrite membrane potential to −40mV, the somatic
compartment remains near rest because it experiences very little
of this distally-applied current. Therefore, situations when a layer
5 pyramidal neuron is at or below rest when it experiences input
to its distal apical regions is sufficient to create the conditions
for optimum modulation of somatic membrane potentials. Such
a situation can arise when a quiescent period for a region
of neocortex gives way to increased stimulation via input to
distal regions of layer 5 pyramidal neurons, such as non-specific
thalamocortical input or corticocortical feedback from distant
neocortical areas (Spruston, 2008). If the input to the distal apical
dendrite and apical tuft raises the local membrane potential to an
average value of−40mVwhile encoding an information signal at
7–12Hz, it would maximize the subthreshold electrical coupling
of distal apical dendrite and soma. During such conditions,
oscillations in the soma will result from, and be phase-locked
to, oscillations in distal apical dendrite, making it possible for

perisomatic spike generation to be gated by distal apical synaptic
inputs (Richardson et al., 2003; Remme et al., 2009).

Alternatively, the soma could receive its own modulating
signal that would effectively tune its frequency preference for
input to distal apical regions. For example, a slow sinusoidal
modulating signal could cause the soma’s membrane potential
to oscillate between hyperpolarized potentials and some level
of depolarized potential depending on the amplitude of the
modulation. At the peaks and troughs of this modulation, the
soma would be most responsive to distal apical input within
distinct frequency ranges, such as low alpha at the troughs and
mid-high alpha at the peaks. Somatic frequency preference to
distal apical input would therefore be phase-locked to the signal
modulating somatic membrane potential. This type of process
has implications for the ways in which multi-frequency coupling
could occur in the brain (VanRullen and Koch, 2003). In short,
these results indicate that the interactions between different
functional zones should be considered in a more complete
understanding of neuronal integration. Resonance analysis, in
particular transfer resonance, may, therefore be a useful tool for
assessing the integration of inputs across the entire neuronal
membrane.

Calcium Conductances [gCa(H) and gCa(L)]

Amplify HCN and Muscarinic Resonance
The resonance observed in our model at hyperpolarized and
resting membrane potentials is mediated by two currents:
hyperpolarization-activated cyclic nucleotide-gated nonselective
cation (HCN) and low-threshold calcium (Hutcheon et al., 1994,
1996; Hutcheon and Yarom, 2000; Ulrich, 2002). HCN (gh)
generates resonance below about −60mV, the strength of which
is highly dependent on location due to the exponential gradient
of increasing conductance density along the soma-apical dendrite
axis (Narayanan and Johnston, 2008; Zhuchkova et al., 2013).
Low-threshold calcium [gCa(L)] generates a resonance within a
narrow band of membrane potentials (approximately −80 to
−65mV) where the activation and inactivation functions overlap
(Figure S10 Supplementary Materials). The inactivation curve
generates the resonance while the activation curve amplifies it.
The strength of the resonance amplified by gCa(L) in our model
is also highly dependent on location due to the distal region of
high-density for the Ca2+ ionic conductances.

Our results indicate that the high conductance density
of gCa(L) present in the distal apical compartments in our
model effectively amplifies subthreshold resonance, both in
soma and distal apical regions, and increases the preferred
input frequency of distal apical regions by up to 2Hz in
our model. The largest impact of gCa(L) occurs within the
window current for this conductance, centered at −70mV. This
finding is consistent with the observation that gCa(L) and gh act
together to produce the slow depolarization that underlies burst
firing in some neocortical pyramidal neurons that are excited
from hyperpolarized/resting membrane potentials (Foehring and
Wyler, 1990; Foehring and Waters, 1991).

Resonance in our model at depolarized membrane potentials
is mediated by themuscarinic (K+) current, orM current [gK(M)].
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For example, in the somatic compartment of our model, this
current produces a voltage-dependent resonant frequency that
varies from approximately 8Hz at resting membrane potentials
to 23Hz at−40mV (see Figure 3A, black line), which agrees well
with the resonant characteristics attributed to the M current in
neocortical pyramidal neurons (Gutfreund et al., 1995; Hutcheon
and Yarom, 2000). Awell-known amplifier of the gK(M) resonance
is the persistent sodium conductance [gNa(P)] (Hutcheon and
Yarom, 2000). The reductions to input and transfer resonance
quality, and input and transfer impedance at −20mV observed
in this study indicate that another important amplifier of gK(M)

resonance is the high-threshold calcium conductance [gCa(H)].
This amplification peaks at −20mV, the membrane potential
at which gCa(H) is activating at the fastest rate (largest slope
in activation function) and experiences its maximum time
constant of 2.1ms in our simulations (Figure S11 Supplementary
Material).

The low membrane voltage ( < −60mV) resonance mediated
by gh and gCa(L) is strongest in distal apical regions where
both conductances have high densities. On the other hand, the
depolarized resonance ( > −60mV) mediated by gK(M) and
amplified by gNa(P) and gCa(H) is strongest in the perisomatic
region of the neuron (compartments 0–2 in Table S1), because
this is where gK(M) and gNa(P) conductance densities are highest.
This type of complementary resonance in the 3–12Hz range has
been observed in (andmodeled for) CA1 hippocampal pyramidal
neurons (Hu et al., 2009). The gK(M) resonance in our study
was observed to also extend into the range of beta frequencies
(for example, see Figure 3A, black line), mostly due to the
higher levels of membrane depolarization that we examine in
this study. Extending the range of membrane potentials that our
compartments were varied allowed us to identify the amplifying
effect gCa(H) has on gK(M) resonance. It has been noted before that
gCa(H) has the kinetics to qualify it as an amplifier of resonance
(Hutcheon and Yarom, 2000). Our results suggest a critical role
for the interaction of gCa(H) with gK(M) in the electrical coupling
of distal apical and perisomatic regions of layer 5 pyramidal
neurons—the amplification of gK(M) resonance by gCa(H).

CONCLUSION

We have shown that tuning of a neuron’s post-synaptic
physiological properties to enhance association between distant
inputs across the neuronal membrane impacts resonance. Our
results indicate that interactions between different functional
zones need to be considered in a more complete understanding
of neuronal integration and that resonance analysis may be a
useful tool for assessing the integration of inputs across the entire

neuronal membrane. The distinct zones that we have identified
through resonance analysis are consistent with functional zones
described by previous research, and the resonant interaction that
we have observed between some of these zones has revealed
new insights about the function of Ca2+ ionic conductances
within layer 5 pyramidal neurons. By examining changes to
resonance quality and resonant impedance when the distal Ca2+

hot zone is toggled, we showed that both gCa(H) and gCa(L)
amplify resonance that is generated by two complementary
conductances: gh which becomes active below resting membrane
potentials and is concentrated in distal apical regions, and
gK(M) which becomes active above resting membrane potentials
and is concentrated in perisomatic regions. Reductions to both
gCa(H) and gCa(L) densities in distal apical regions reduces
amplification of these resonances and consequently, reduces the
electrical coupling of distal apical and perisomatic regions of
the neuron that is necessary for it to function as a coincidence
detector for input to both of these regions. Natural next
steps for this research include determining how resonance
properties impact suprathreshold neuronal and network
behavior.
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Elucidating the prefrontal cortical microcircuit has been challenging, given its role in
multiple complex behaviors, including working memory, cognitive flexibility, attention,
social interaction and emotional regulation. Additionally, previous methodological
limitations made it difficult to parse out the contribution of certain neuronal
subpopulations in refining cortical representations. However, growing evidence supports
a fundamental role of fast-spiking parvalbumin (PV) GABAergic interneurons in regulating
pyramidal neuron activity to drive appropriate behavioral responses. Further, their
function is heavily diminished in the prefrontal cortex (PFC) in numerous psychiatric
diseases, including schizophrenia and autism. Previous research has demonstrated
the importance of the optimal balance of excitation and inhibition (E/I) in cortical
circuits in maintaining the efficiency of cortical information processing. Although we
are still unraveling the mechanisms of information representation in the PFC, the E/I
balance seems to be crucial, as pharmacological, chemogenetic and optogenetic
approaches for disrupting E/I balance induce impairments in a range of PFC-dependent
behaviors. In this review, we will explore two key hypotheses. First, PV interneurons are
powerful regulators of E/I balance in the PFC, and help optimize the representation and
processing of supramodal information in PFC. Second, diminishing the function of PV
interneurons is sufficient to generate an elaborate symptom sequelae corresponding to
those observed in a range of psychiatric diseases. Then, using this framework, we will
speculate on whether this circuitry could represent a platform for the development of
therapeutic interventions in disorders of PFC function.

Keywords: excitation/inhibition balance, GABA, PV interneurons, prefrontal cortex, cognition, psychiatric
disorders

INTRODUCTION

Cognitive impairment stifles independance by making even the simplest everyday tasks seem
challenging and burdensome. Through limiting one’s ability to focus, encode, retain and
manipulate information to make menial decisions, simple endeavors like traveling from one
place to another, or completing a typical work assignment become arduous. This decreases
productivity, and forces afflicted individuals to rely partially or wholly on the care of others. For
most, this loss of independance can be crippling to one’s morale, resulting in increasing isolation
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from family, friends and society. Not surprisingly, disorders with
reduced cognitive ability share high comorbidity with decreased
sociability, as well as anxiety and depression. What remains
unclear is whether these behaviors rely on a common circuitry,
and if that circuitry could represent a platform for development
of therapeutic interventions.

A large body of research suggests that the prefrontal cortex
(PFC) is critical in regulating these behaviors and that the
balance between excitatory and inhibitory neurotransmission
(E/I balance) plays a fundamental role. The PFC is a unique
associative cortical region that receives multimodal inputs
from sensory regions, limbic structures and neuromodulatory
nuclei (Carmichael and Price, 1996; Hoover and Vertes, 2007),
and is taxed with processing these heterogeneous inputs to
effectively guide ongoing behavior. The seamless execution
of a range of behaviors relies on the integration of past
experiences and current goals to select appropriate behavioral
programs. Across species, we deem the myriad abilities linked
to the PFC as ‘‘executive functioning,’’ and this category
includes working memory, cognitive flexibility, planning, error-
monitoring, decision-making, attention and social cognition.
Although we have yet to unravel the precise mechanisms
of information representation and processing in the PFC,
recent optogenetic and imaging breakthroughs along with
decades of lesion, pharmacological, and electrophysiological data
highlight certain fundamental principles that may have relevance
across PFC-dependent functions. Here, we argue that the E/I
balance is essential for the proper execution of a range of
PFC-dependent behaviors, and targeting this balance may be an
effective approach in disorders that harbor related behavioral
impairments.

We will begin with a discussion of GABAergic signaling
and E/I balance using foundational research from sensory
cortices to inform our interpretation of data from the PFC.
Then, we will summarize data supporting our hypotheses, with
a primary focus on research in rodents, as currently these
types of studies allow for the most experimental flexibility and
direct manipulation of specific neuronal types that regulate E/I
balance.We acknowledge that the agranular rodent frontal cortex
has no apparent structural equivalent of the dorsolateral PFC
(dlPFC), a region in humans and primates linked to many of
the behaviors that will be discussed in this review. Additionally,
the human and non-human primate PFC are substantially more
developed and complex relative to the comparable region in
the rodent. Nevertheless, using a combination of tracing studies
and lesion-symptom mapping, many scientists have concluded
that the prelimbic region of the rodent medial PFC (mPFC)
serves as the closest functional homolog to the dlPFC in
humans and non-human primates (Uylings et al., 2003; Seamans
et al., 2008). Human and primate studies will be utilized for
comparison and framing purposes, but a detailed review of
data from all three species is beyond the scope of this review.
For a discussion involving a more comprehensive overview
of clinical research discussing E/I balance and implications
for psychiatric disease, see the following recent reviews (Foss-
Feig et al., 2017; Krystal et al., 2017; Takarae and Sweeney,
2017).

GABAergic SIGNALING AND E/I BALANCE

Within the cortex, there are two primary types of neurons:
glutamatergic excitatory pyramidal neurons and GABAergic
inhibitory interneurons. While a network of purely excitatory
connections offers little computational complexity, GABAergic
interneurons confer a circuit with tremendous flexibility,
dynamically modulating the gain of pyramidal neuron responses
from simple all-or-none responsiveness (Klausberger et al.,
2003; Isaacson and Scanziani, 2011). Through inhibition of
neighboring pyramidal neurons, GABAergic interneurons act
as an important brake on excitatory signaling, control spike
generation and timing (Pouille and Scanziani, 2001), and prevent
incoming excitation from afferent structures from causing
runaway feed-forward excitation (Dichter and Ayala, 1987).

GABAergic interneurons are a diverse family that can be
classified by their morphology, electrophysiological properties,
or histological markers (Markram et al., 2004, 2015). The most
common nomenclature segregates interneurons into three broad
types, parvalbumin (PV), somatostatin (SST) and ionotropic
serotonin receptor 5HT3a (5HT3aR) expressing interneurons
(Rudy et al., 2011). Although not entirely distinct, this population
minimizes overlap between the groups and accounts for nearly
the entirety of known interneuronal subtypes.

The most common subtype, PV interneurons, are known
for their fast-spiking phenotype, low input resistance, and
high-amplitude rapid after-hyperpolarization (AHP; Kawaguchi
et al., 1987; Kawaguchi and Kubota, 1997). This combination
of properties confers an ability to fire a rapid train of action
potentials unlike any other neuron in the cortex. PV interneurons
can be further divided into two subtypes: basket cells that
innervate the soma and proximal dendrites, and chandelier
cells that synapse onto the axon initial segment (Kawaguchi
and Kubota, 1997; Petilla Interneuron Nomenclature Group
et al., 2008). Relatively less is known about the properties
and function of chandelier cells, and data demonstrate their
action may not be purely inhibitory at the axon initial segment
(Szabadics et al., 2006). PV basket cells are more common,
and by virtue of being easier to identify and study, their
properties and role in circuit integration in the normal brain
have been characterized in greater detail. Data from paired
recordings indicate that a single PV interneuron contacts
nearly every local pyramidal neuron providing PV basket
cells with an unparalleled ability to regulate the activity of
nearby pyramidal neurons (Packer and Yuste, 2011). This
allows for a tremendous level of feedforward and feedback
inhibition that serves several important functions (Hu et al.,
2014).

An ability of PV interneurons that appears to be universal
across cortical regions is controlling spike timing in neighboring
excitatory neurons (Pouille and Scanziani, 2001; Wehr and
Zador, 2003). Pyramidal neurons receive constant barrages of
excitatory synaptic input or excitatory post-synaptic potentials
(EPSPs), and are tasked with deciding whether or not to fire
an action potential. Given the density of excitatory connections
both from afferent structures and within the local circuit,
along with the high level of synaptic divergence, excitation
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of a sufficient magnitude to generate an action potential will
likely recruit a large portion of the cortical network, making
it challenging to represent information with any specificity.
This creates two computational dilemmas, creating a network
state such that all excitatory neurons are not firing constantly,
as well as allowing for distinct neurons or groups of neurons
to have differential responsiveness to EPSPs. One issue is
addressed by feedforward inhibition (FFI), a principle illustrated
canonically in thalamocortical circuits. A major source of
excitatory cortical input is the thalamus, whose neurons branch
and synapse onto both excitatory and inhibitory neurons.
Seminal physiological studies demonstrated that when thalamic
fibers are electrically stimulated, this causes a direct excitatory
response in cortical pyramidal neurons, followed shortly by a
strong hyperpolarization due to the activation of neighboring
PV basket cells (Agmon and Connors, 1991; Castro-Alamancos
and Connors, 1997). This enhances the temporal fidelity of
pyramidal neuron responsiveness by limiting the window in
which incoming excitation can generate an action potential, and
has also been observed in the mPFC (Cruikshank et al., 2012;
Delevich et al., 2015). The second issue is mitigated through
another property of PV interneuron activity, gain control, or
‘‘the rate at which the firing of a neuron increases in response
to increasing excitatory input’’ (Isaacson and Scanziani, 2011).
This transforms pyramidal neuron responsiveness from a simple
go or no-go pattern of activity to having the capacity to represent
a broad range of input levels in their firing patterns, a feature
that is likely to be crucial in the mPFC, which processes complex
multimodal information.

By innervating pyramidal neurons at the soma, PV basket
cells are strategically positioned to exert both FFI and gain
control. Additionally, PV basket cells have been implicated
in the generation of gamma oscillations (30–80 Hz, Buzsáki
and Draguhn, 2004), an oscillation range linked to cognition
and information processing across species (Howard et al.,
2003; Gaetz et al., 2011; Lundqvist et al., 2016). PV basket
cells have the ability to fire at frequencies corresponding to
gamma oscillations (Gulyás et al., 2010). These interneurons
also synapse primarily onto alpha1-gamma-Aminobutyric acid
receptors (α1-GABAARs) that are present at high levels on the
soma (Fritschy and Mohler, 1995; Nusser et al., 1996), and have
a decay constant corresponding to the rising phase of gamma
waves (Gonzalez-Burgos and Lewis, 2008). Demonstrating a
definitive link, a pair of studies utilized a battery of optogenetic
tools to silence or activate cortical PV interneurons, and
found them necessary and sufficient in the generation and
maintenance of gamma oscillations (Cardin et al., 2009; Sohal
et al., 2009). Increasing their activity not only amplified cortical
gamma oscillations, but also enhanced information processing
by increasing the gain of incoming information and improving
behaviors dependent on the manipulated brain regions. Data also
indicate the presence of significant gamma alterations in diseases
with cognitive impairment, such as schizophrenia and autism
spectrum disorders (ASD; Rojas and Wilson, 2014; McNally and
McCarley, 2016).

In order for these processes to occur efficiently, levels of
inhibition and excitationmust remain in the appropriate balance,

which in the mPFC has been measured as approximately 20/80%
(excitation/inhibition; Le Roux et al., 2008; den Boon et al.,
2015). This balance is not static and requires that inhibition be
responsive to fluctuations in cortical state and levels of excitatory
input (Galarreta and Hestrin, 1998; Shu et al., 2003; Atallah
and Scanziani, 2009; Xue et al., 2014). PV interneurons are well
suited for helping maintain the proper balance, as their activity
is associated with ‘‘divisive’’ rather than subtractive inhibition,
which would allow PV interneurons to respond proportionally to
dynamic excitation within cortical circuits (El-Boustani and Sur,
2014). Within this balance, however, there must be the capacity
for change or plasticity. Data suggests that E/I balance helps
facilitate the induction of long-term potentiation, which could
be critical in allowing the PFC to remain flexible and adapt to
new stimulus-response contingencies (Staff and Spruston, 2003;
Marder and Buonomano, 2004).

PHARMACOLOGICAL MANIPULATION OF
E/I BALANCE AND BEHAVIOR

Two cognitive abilities that are among the most consistently
associated with damage to the PFC are working memory (Kolb
et al., 1974; Stokes and Best, 1990; Kesner et al., 1996) and
cognitive flexibility (Ragozzino et al., 1999; Birrell and Brown,
2000; Block et al., 2007; Bissonette et al., 2008).Workingmemory
is the ability to maintain, manipulate and recall information to
guide behavior (Baddeley, 1992; Goldman-Rakic, 1994), while
cognitive flexibility involves the capacity to update strategies in
order to obtain a reward (Bissonette et al., 2013). Both represent
key building blocks of higher-level cognitive processes and are
often severely impacted in the context of psychiatric disease.
Social cognition is similar in denotation to working memory,
but applies the principles of acquiring, storing, and manipulating
information specifically to the context of interacting in a flexible
and appropriate manner with conspecifics (Adolphs, 1999).
Supporting its reliance on the frontal cortex are lesion data from
humans and non-human primates indicating that damage to
the ventromedial and orbital frontal cortex consistently result in
abnormal social behavior (Ackerly and Benton, 1948; Butter and
Snyder, 1972).

PFC infusion of bicuculline, a GABAAR antagonist, disrupts
working memory and cognitive flexibility in multiple species
(Sawaguchi et al., 1988, 1989; Enomoto et al., 2011; Paine et al.,
2011; Auger and Floresco, 2015). In vivo multi-unit recordings
in primates revealed that following bicuculline administration
(which would increase the E/I balance), putative FS interneurons
that were not linked to any specific task epochs of a spatial
working memory task begin to show spatial tuning. Additionally,
pyramidal neurons that once exhibited directional sensitivity,
began to respond to their non-preferred directions, and neurons
that had no task-modulated activity respond erroneously to
random directions and task epochs (Rao et al., 2000). In
concert, these activity alterations would greatly reduce the signal-
to-noise ratio, severely limiting the ability of the circuit to
generate and relay correct motor commands with precision.
Circuits supporting normal patterns of social interaction may be
regulated similarly, as bicuculline infusion into the rat mPFC
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reduces the number and duration of interactions as well as
weakens the preference for a social stimulus compared to a
non-social object (Cochran et al., 2002).

Conversely, studies that utilize enhancement of GABAergic
transmission have been informative, as this approach would
also disrupt the E/I balance. Muscimol, a GABAA agonist, is
used commonly as a means for transient inactivation of brain
regions. Direct infusion in the mPFC in rodents has resulted in
impairments in working memory (Urban et al., 2014), retention
of strategy-switching behavior (Rich and Shapiro, 2007) and
social play behavior (van Kerkhof et al., 2013, 2014).

OPTOGENETICS, IMAGING AND
PHYSIOLOGY HIGHLIGHT THE ROLE OF
GABAergic SIGNALING IN
PFC-DEPENDENT BEHAVIOR

Advances in tools available for bidirectional modulation of
neuronal activity with cell-type specificity have expanded our
understanding of the role of PV interneurons in regulating
PFC E/I balance and PFC-dependent behaviors. Additionally,
the development of genetically encoded calcium indicators,
like gCaMP (Chen et al., 2013), allows researchers to monitor
activity or calcium transients selectively in PV interneurons
or other neuronal subtypes. With these technologies,
researchers can catalog the entire population of mPFC
interneurons from learning and strategy acquisition through
successful performance. Many findings confirm and fine-tune
long-standing hypotheses about how PV interneurons regulate
pyramidal neuron activity, oscillatory dynamics, and cortical
information representation, but allow for more detailed
investigation of their causal role in behavior with enhanced
temporal and cellular control.

One extremely useful feature of optogenetics (Deisseroth,
2011) has been the in vivo identification of different neuronal
subtypes, or ‘‘optical tagging’’ (Zhao et al., 2011; Roux et al.,
2014), allowing researchers to confirm the circuit consequences
of PV interneuron activation as well as how these interneurons
contribute to particular behaviors using recording or imaging.
For example, optical tagging revealed that PV interneurons
provide rapid synchronous inhibition of mPFC excitatory
neurons in contrast with the more variable and less forceful
inhibition provided by SST interneurons (Kvitsiani et al.,
2013). A similar approach was used to demonstrate that PV
interneurons increase their firing during goal-directed behavior.
In this same study, researchers also showed that increases
in PV activity were correlated with inhibition of certain
pyramidal neurons and enhancement of others, potentially
representing ensembles of relevant vs. irrelevant information
for successful responding respectively (Kim H. et al., 2016).
Increases in PV activity have also been implicated in the
extinction of cue-based responding (Sparta et al., 2014), a
process that may mediate rule-shifts during cognitive flexibility
tasks.

During working memory assays, PV interneurons in the
mPFC fire prominently throughout short delays (5 s or less)

between sample and choice presentation (Kim D. et al., 2016),
and show preferential firing toward go trials in go, no-go
task (Kamigaki and Dan, 2017). However, more complicated
tasks reveal they may encode information about distinct task
epochs. Lagler et al. (2016) utilized a multidimensional delay
task, where a differential gustatory cue signaled the location
of reward in a Y-maze, and quantified PV interneuron activity
during discrete phases of the assay. Interestingly, mPFC PV
interneurons exhibited episodic modulation, and a large group
showed preferential activation during the ‘‘goal run, ’’ when the
mouse was proceeding through the base of the Y-maze before
making a choice (Lagler et al., 2016). PV interneurons in the
mPFC also increase their firing in response to typical social
interactions, compared to the investigation of a non-social object
(Selimbeyoglu et al., 2017).

Modulation of PV activity has also been useful in
demonstrating one of the more obvious principles of E/I
balance, that too much inhibition can also impair PFC circuit
function. Optogenetic or pharmacogenetic activation of PV
interneurons has been an effective method of disrupting the
function of particular brain regions, suggesting that alterations
in E/I balance in either direction can alter behavior. We recently
demonstrated that increasing the excitability of mPFC PV
interneurons (thereby reducing the E/I balance) significantly
impairs working memory, cognitive flexibility and social
interaction (Ferguson and Gao, 2018). Similarly, optogenetic
activation of PV interneurons or GABAergic neurons more
broadly disrupts delay-related activity and working memory
performance (Rossi et al., 2012; Liu et al., 2014). These data
corroborate pharmacological studies using muscimol, a GABA
agonist, as a method of inactivating PFC to elucidate its role in
various behaviors (Narayanan and Laubach, 2006; Urban et al.,
2014). Correspondingly, working memory and social interaction
deficits can be recapitulated by enhancing pyramidal neuron
excitability (enhancing E/I balance; Yizhar et al., 2011; Liu et al.,
2014; Kamigaki and Dan, 2017).

BUILDING THE mPFC MICROCIRCUIT

In combination with numerous elegant studies from the
visual, auditory and somatosensory systems, we can begin to
develop a picture of how the mPFC microcircuit might be
organized to represent and process information relevant for
executive function. The largest source of afferents originates
from the mediodorsal thalamus (MD), but mPFC neurons
also receive convergent inputs from limbic structures including
the hippocampus and amygdala, that may convey spatial
and emotional information. Additionally, the mPFC has
dense innervation from neuromodulatory regions, the ventral
tegmental area (VTA), locus coeruleus (LC), dorsal raphe (DR)
and basal forebrain (BF), which may influence the state of the
animal including level of attention, arousal, or the salience of
the current task or resulting rewards or punishment (Kuroda
et al., 1996; Hoover and Vertes, 2007). Using working memory
as an example, early studies in rodents found that neurons
representing differential task-related information in a consistent
manner were sparse (Jung et al., 1998, 2000; Baeg et al., 2003).
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FIGURE 1 | Diagram shows how parvalbumin (PV) interneurons help maintain the excitation and inhibition (E/I) balance within prefrontal local circuits for optimal
information processing and how they are modulated by subcortical inputs. Under normal conditions, PV interneurons are highly active to help maintain a high level of
inhibition relative to excitation in pyramidal neurons (potentially mediated by MD inputs). This may help dampen the activity of neurons in functional units representing
distracting information (left and right cortical columns), increasing the signal to noise of incoming task-related information from prefrontal cortex (PFC) afferents (listed
on right). PV interneurons likely help regulate spike timing as well as oscillatory patterns, which in concert would increase the likelihood that neurons representing
relevant information are active and can relay correct information to downstream structures, driving the proper execution of PFC-dependent behaviors.
Vasoactive-intestinal peptide (VIP) interneurons may help further refine cortical representations by inhibiting somatostatin (SST) neurons that target distal dendrites to
disinhibit groups of excitatory pyramidal neurons. Darker and lighter shaded neurons represent high vs. low levels of activity respectively. This model is modified from
Ferguson and Gao (2018) and is based on data discussed in the text and known connectivity within and projections to the medial PFC (mPFC; Kuroda et al., 2004;
Rotaru et al., 2005; Hoover and Vertes, 2007). Ongoing questions involve what subcortical structures provide the majority of excitatory input to each neuronal
subtype to regulate their function, as well as the precise contribution of recurrent excitation in regulating inhibitory neurons to affect E/I balance. Note: Amyg,
amygdala; BF, basal forebrain; DR, dorsal raphe; Hpc, hippocampus; LC, locus coeruleus; MD, mediodorsal thalamus; VTA, ventral tegmental area.

However, more recent work has identified numerous mPFC
neurons that change their firing frequency during distinct phases
of a delayed-alternation task. Of these neurons, Yang et al.
(2014) was able to separate these into units showing preferential
firing on left vs. right trials, and encode information such as the
choice, delay, and presence of reward. Other studies highlight a
segregation of spatial and rule information encoding in mPFC
neurons, of which the rule representation depends critically on
the activity of the MD (Bolkan et al., 2017; Schmitt et al., 2017).
Taken together, this suggests that pyramidal neurons in the
mPFC form functional units that represent different features
relevant to successful working memory performance and other
PFC-dependent behaviors (Figure 1).

How might the appropriate E/I balance be maintained in
the mPFC? As a general principle, thalamic inputs provide
stronger activation to PV interneurons vs. pyramidal cells in
sensory cortices (Hestrin, 1993; Kloc andMaffei, 2014). Similarly,
enhancing excitability of MD neurons results in enhanced
spiking of PV interneurons in mPFC, and not pyramidal cells
(Schmitt et al., 2017), while dampening MD activity increases
E/I balance by selectively reducing inhibitory currents onto
pyramidal cells (Ferguson and Gao, 2018). Thus, the MD
seems to function drive PV interneurons in the mPFC to
maintain an E/I balance biased towards inhibition. Maintaining
a network state with a high level of inhibition, would strengthen
computational capacity through enhancing temporal precision
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and increasing the gain of pyramidal neuron responsiveness, as
well as enhancing the signal to noise ratio of neurons encoding
task or rule representations (Figure 1). Supporting that this
large-scale inhibition is mainly PV interneuron mediated, we
observed that enhancing PV interneuron excitability can fully
normalize shifts in E/I balance with corresponding behavioral
improvements (Ferguson and Gao, 2018).

PV interneurons are powerful regulators of pyramidal
neuron activity and appear to be the most vulnerable across
psychiatric disorders, but research highlights other major
inhibitory interneurons that help fine-tune circuits supporting
PFC-dependent behaviors (Wang et al., 2004). Axo-somatic
inhibition accounts for only up to 10% of total inhibition received
by excitatory neurons, while the remaining 90% occurs at
proximal and distal dendrites and spines and ismediated by other
inhibitory neuronal subtypes (Kubota et al., 2016). For example,
SST interneurons exhibit phasic firing during distinct phases
of a delayed alternation task, and seem to show segregation of
firing among left vs. right trials (Kim D. et al., 2016). Further, in
the hippocampus, SST interneurons provide powerful dendritic
inhibition that helps to regulate both synaptic integration as
well as the gain of pyramidal neuron responsiveness (Lovett-
Barron et al., 2012). Additionally, vasoactive-intestinal peptide
(VIP, 5HT3aR expressing) interneurons (Férézou et al., 2002),
which inhibit both SST and PV interneurons seem to serve an
important disinhibitory function in cortical circuits (Pi et al.,
2013), that may help modulate the gain of pyramidal neuron
responses (Fu et al., 2014). Recent data demonstrates VIP
interneuron activity enhances mPFC circuit performance during
two delay tasks involving working memory (Kamigaki and Dan,
2017). VIP interneurons may also facilitate forming associations
in pyramidal neurons, as VIP interneurons show the greatest
increase in activity along with pyramidal neurons in a go/no-
go task following punishment (Pinto and Dan, 2015). As they
inhibit both PV and SST cells, disinhibition of pyramidal cells by
VIP interneuronsmay be amechanism for facilitating the activity
of neuronal ensembles relevant for optimal task performance in
multiple PFC-dependent tasks (Figure 1). Further, targeting VIP
interneuron activity has shown promising results in an animal
model of hypofrontality in schizophrenia (Koukouli et al., 2017).

TARGETING E/I BALANCE IN ANIMAL
MODELS TO IMPROVE BEHAVIOR

Multiple approaches for enhancing the normal function of
prefrontal PV interneurons have been effective in mitigating
a constellation of behavioral symptoms animal models of
cognitive dysfunction and social abnormalities. For example,
altering expression of Dlx5/6, a protein that regulates PV
interneuron development leads to cognitive and other behavioral
abnormalities in mice. Optogenetic activation of mPFC PV
interneurons in Dlx5/6 mice is sufficient to ameliorate cognitive
flexibility and social interaction deficits (Cho et al., 2015).
Similarly, mice deficient in Contactin-associated protein-like
(CNTNAP)–2 display marked social impairments that can be
rescued by increasing PV interneuron activity optogenetically
(Selimbeyoglu et al., 2017) in agreement with findings from

naïve mice with optogenetically disrupted mPFC E/I balance
(Yizhar et al., 2011). Dampening activity in the MD (modeling
findings of mediodorsal hypofunction in schizophrenia) has
been shown to impair working memory, cognitive flexibility,
social interaction and alter anxiety-related behavior (Parnaudeau
et al., 2013, 2015; Bolkan et al., 2017; Ferguson and Gao, 2018).
However, pharmacogenetic activation of mPFC PV interneurons
normalizes all mPFC-dependent behavioral deficits (Ferguson
and Gao, 2018), highlighting the therapeutic potential of PV
interneurons as a strategy for repairing E/I balance and treating
a range of behavioral deficits. These results are complemented
by pharmacological augmentation of GABAergic signaling, most
commonly with benzodiazepines, that has been shown to repair
behaviors including social interaction and cognitive flexibility
(Wen et al., 2010; Han et al., 2012; Cho et al., 2015).

An ongoing question has been whether altering the properties
of PV interneurons is responsible for the initial manifestation
of behavioral deficits in psychiatric disease and animal
models, in particular, those beyond the cognitive realm. For
example altering the excitability of PV interneurons by genetic
deletion of N-methyl-D-aspartate receptors (NMDARs), leads to
selective deficits in working memory and associative learning
(Carlen et al., 2012), while a broader deletion in various
subtypes of cortical and hippocampal interneurons, induces
cognitive impairments along with anxiety-related behavior,
depressive symptoms and social impairments (Belforte et al.,
2010). Similarly, reducing the expression of the voltage-gated
sodium channel (NaV) 1.1, a channel linked to autism-related
behaviors in Dravet syndrome, broadly in forebrain GABAergic
interneurons induces spatial memory and social interaction
deficits, along with increased repetitive behaviors and anxiety
(Han et al., 2012). Optogenetic suppression of PV interneuron
activity recapitulates only cognitive impairments, specifically
a deficit in extradimensional set-shifting (Cho et al., 2015).
Additionally, selective expression of tetanus toxin light chain
(TeLC) in mPFC PV interneurons, disrupts working memory
and cognitive flexibility, while sparing behaviors representing
positive and negative symptoms in schizophrenia (Murray et al.,
2015). However, in this study, recording of mPFC local field
potentials revealed gamma oscillations did not differ between
groups, so without further physiological analysis, the ultimate
circuit consequences are somewhat ambiguous. Although it
is unclear whether disrupting PV activity can disrupt a
broader range of behaviors given different findings with articles
employing disparate methodologies, the specificity of the insult
seems to be critical. Solely targeting PV interneurons will reliably
recapitulate phenotypes of cognitive disruption, while broader
interneuronal insults increase the likelihood of impacting other
behaviors. Another possibility is that the magnitude of the PV
interneuron deficit may correlate directly with the propensity for
disrupting behaviors beyond cognition.

E/I BALANCE IN PSYCHIATRIC DISEASE

The pattern of rodent PFC lesions and deficits mirrors the
impairments observed following damage to the homologous
structures in primates and humans, suggesting the functions
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of these brain regions are highly conserved across species.
Even more compelling is how myriad findings recapitulate
commonly observed morphological alterations and behavioral
endophenotypes seen in psychiatric disease. One of the
most demonstrative parallels is found in the pathophysiology
and symptom sequelae of schizophrenia. Schizophrenia is
a debilitating psychiatric disease that affects approximately
1.1% of the world’s population, and is characterized by
positive, negative, and cognitive symptoms (Regier et al.,
1993). Working memory and cognitive flexibility represent
core dysfunctions in schizophrenia that remain intractable by
treatment with current antipsychotics (Lee and Park, 2005;
Insel, 2010). These along with a range of additional cognitive
symptoms emerge prior to the onset of psychosis in early
adulthood, and are the largest predictor of functional outcome
in individual patients (Green, 1996). Negative symptoms involve
anhedonia and social withdrawal, and are also minimally
responsive to presently available treatments (Remington et al.,
2016).

Analogous to experimental observations from animal studies,
parallel deficits in PFC GABAergic signaling (Lewis et al.,
2012), and E/I balance (Lisman, 2012) are both implicated in
the pathophysiology of cognitive dysfunction in schizophrenia.
Functional imaging reveals that schizophrenics exhibit patterns
of hypofunction in the PFC (Van Snellenberg et al., 2016)
as well as reduced volume in frontal cortex postmortem
tissue (Selemon et al., 2002). Copious research demonstrates
reductions in the marker for the GABA synthesizing enzyme,
GAD-67, in PV interneurons in the PFC (Akbarian and
Huang, 2006; Lewis et al., 2012). Levels of GAD-67 are
activity-dependent (Benson et al., 1989; Sloviter et al., 1996),
and coupled with the common finding that PV levels are
also decreased within these interneurons (Glausier and Lewis,
2017), it suggests that the function of PFC PV interneurons
is diminished in schizophrenia. Correspondingly, patients
with schizophrenia show decreases in task-evoked in gamma
oscillations, an oscillation band believed to be dependent
on PV interneuronal firing, that correlate with the level of
functional impairment in working memory (Basar-Eroglu et al.,
2007).

Analogous to human pathology, rodent models of cognitive
dysfunction in schizophrenia show an extremely high prevalence
of reductions in PV or GAD67 expression in the mPFC.
As more evidence reveals this disorder likely stems from
heterogeneous etiologies, pharmacological, environmental, and
transgenic models exhibit this common feature (Cochran et al.,
2002; Francois et al., 2009; Carlson et al., 2011), suggesting
that GABAergic hypofunction represents a convergence point.
The constellation of data from human populations, animal
models, experimental disruption of GABAergic signaling, and
electrophysiological recordings across these contexts, highlight
this system as a pathway to intervention in afflicted individuals.

Intriguingly, this pattern repeats among multiple psychiatric
disorders including ASD, depression, and intellectual disability
(Gao and Penzes, 2015; Luscher and Fuchs, 2015). ASD
in particular harbors significant overlapping behavioral
impairments and underlying neurobiological alterations. Autistic

patients also exhibit prominent deficits in executive function,
including working memory impairments and behavioral
inflexibility (Hughes et al., 1994). Social abnormalities are also a
behavioral hallmark of autistic pathology, primarily manifested
as a deficit in non-verbal communication (Mundy et al., 1986).
Autistic patients also suffer from a greater level of anxiety and
depression relative to general population (Kim et al., 2000).

E/I balance disruption has also emerged as a prominent
hypothesis in ASD (Rubenstein and Merzenich, 2003).
Dysregulation of GABAergic signaling has been implicated in the
etiology of ASD, and disorders sharing high comorbidity with
the disease including anxiety and epilepsy (Coghlan et al., 2012).
The chromosomal region 15q11-q13 is comprised of multiple
genes encoding subunits of the GABAAR. Microduplications in
this region (Cook et al., 1998; Menold et al., 2001) or aberrant
expression of the associated gene products (Hogart et al., 2007;
Mendez et al., 2013) have been frequently observed in ASD
clinical populations. In addition to the finding of copy number
variations in the 15qllq13 chromosomal locus, the majority of
autism-linked genes are preferentially expressed in interneurons
(Xu et al., 2014).

Supporting this are in vivo findings of reduced GABA and
GABAAR levels in the frontal cortex of autistic patients (Harada
et al., 2011; Mori et al., 2012), along with reductions in gamma
oscillations (Sun et al., 2012). Similar deficiencies in inhibitory
neurotransmission have been reported in mice with mutations
in ASD-linked genes, mice that also exhibit relevant behavioral
impairments (Peñagarikano et al., 2011; Han et al., 2012). For
example, T(+)Itpr3(tf)/J (BTBR) mice, a model of idiopathic
autism, exhibit decreased GABAergic currents and increased
excitatory neurotransmission in the hippocampus, indicating a
shift in the E/I balance. Concurrent with these physiological
changes, these mice display reductions in sociability, cognitive
impairments, and alterations in anxiety-related behaviors (Han
et al., 2014). Additionally, mousemodels with disruption of genes
such as methyl-CpG-binding protein-2 (MECP2), Scn1a+/−

and CNTNAP–2, all harbor interneuron deficits along with
behavioral impairments (Chao et al., 2010; Peñagarikano et al.,
2011; Han et al., 2012). Modeling of Fragile X syndrome,
a genetic disorder associated with intellectual disability, also
reveals cognitive impairments are associated with prominent
GABAergic hypofunction in mice (Selby et al., 2007; Curia et al.,
2009).

GABAergic SIGNALING AS A
THERAPEUTIC TARGET

Multiple studies suggest that augmenting GABAergic
signaling via PV interneuron modulation can be effective
in ameliorating deficits in working memory, cognitive flexibility
and sociability in animal models of psychiatric disease. This has
substantial implications for schizophrenia, given that cognitive
symptoms are treatment-resistant with both typical and atypical
antipsychotics, and are a significant predictor of quality of life
in individual patients (Green, 2006). These results complement
a rich history of data and hypotheses surrounding GABAergic
hypofunction in the human PFC representing a final common
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pathway in the cognitive symptoms in schizophrenia (Lewis,
2014). Yet, we still await the discovery of a GABAergic modulator
that displays effectiveness in alleviating cognitive dysfunction
across multiple disorders.

Of the recent clinical trials targeting cognitive symptoms, very
few utilize GABAergic drugs, relative to agonists and modulators
of glutamatergic signaling. Although benzodiazepines have
shown potential in treating psychosis (Wolkowitz and Pickar,
1991; Carpenter et al., 1999), their potential in reducing cognitive
impairments remains largely unexplored with the exception of
a few studies. Interestingly in one study, a benzodiazepine,
lorazepam, exacerbated working memory impairments in
schizophrenic patients and healthy controls and altered
activity within networks supporting cognition. Researchers
concluded that hyper-inhibition was responsible for cognitive
dysfunction, and correspondingly, flumazenil an antagonist of
the benzodiazepine site attenuated deficits (Menzies et al., 2007).
However, a separate study found iomazenil, a flumazenil analog,
increased psychoses in schizophrenic patients (Ahn et al., 2011).
Given the high comorbidity of ASD with epilepsy (Canitano,
2007), researchers have gleaned that drugs effective in reducing
seizure activity that typically works through elevating GABA
levels also mitigate autistic symptoms (Jambaqué et al., 2000).
Promisingly, GABA agonists have reached Phase II clinical trials
for the treatment of social disability in ASD, but so far have only
focused on α2/α3-GABAARs.

The synapse between PV-expressing chandelier cells and the
axon initial segment have become frequent but unsuccessful
target for therapeutics in schizophrenia. In patients with
schizophrenia, chandelier cell axon terminals exhibit decreased
levels of the reuptake enzyme, GABA transporter 1 (GAT1)
mRNA, along with higher expression of α2-GABAARs
on the axon initial segment of pyramidal neurons (Volk
et al., 2002). These alterations would result in less GABA
reuptake, and increased post-synaptic GABAergic inhibition
respectively, which together would serve to augment GABAergic
neurotransmission at these particular synapses. This has been
interpreted as a compensatory mechanism, implying these
synapses may be the site of the initial GABAergic deficit (Volk
and Lewis, 2005). However, despite promising results from
early studies (Lewis et al., 2008), larger sample sizes have
yielded no differences between schizophrenic patients treated
with an α2/α3-GABAAR agonists compared to those treated
with the placebo (Buchanan et al., 2011). Given the failure
of enhancing α2-GABAAR-mediated signaling in improving
cognitive dysfunction in clinical trials as well as in the context
of compensatory mechanisms in schizophrenia, it is reasonable
to conclude these receptors are not a viable therapeutic
target.

One difficulty in utilizing GABAergic therapeutics, including
benzodiazepines, is their sedative properties, which are mediated
by their action at the α1 GABAAR subunit (Löw et al.,
2000). This may account for the lack of exploration of
α1-GABAAR modulators in clinical trials. However the actions
of dopamine across different subjects and contexts provide a
compelling example of how optimal levels of neurotransmitter
can be associated with normal cognition, attention and

alertness, but levels either too high or low, can result
in impaired cognition, inability to focus, and drowsiness
(Cools and D’Esposito, 2011). Our findings using indiplon,
an α1-GABAAR positive allosteric modulator (Ferguson and
Gao, 2018), and other studies using benzodiazepines (Han
et al., 2012, 2014) suggest that the therapeutic window
for influencing cognitive function may be distinct from
doses that induce sedation. It is likely that GABAergic
signaling in the PFC and its correlated functions follow
an inverted-U trajectory, and with better biomarkers for
individual differences in GABA levels, indiplon, novel α1-
GABAARmodulators or benzodiazepines may harbor significant
therapeutic potential.

FUTURE DIRECTIONS

Additional questions remain that could help inform a circuit
model of information processing in the mPFC. For example, how
organized are the actions of PV interneurons in the mPFC? Are
they providing a general blanket inhibition that helps maintain
a cortical state conducive to information processing due to
their properties described above? Evidence supporting this is
imaging of PV interneurons revealing that PV interneurons
show the largest modulation, and have uniform firing patterns
that persist throughout delay periods during PFC-dependent
tasks in comparison to other interneuron subtypes (Pinto
and Dan, 2015; Kim D. et al., 2016). If PV interneurons do
provide indiscriminate inhibition throughout the mPFC, to
what extent to disinhibitory circuits through VIP and SST
interneurons help further enhance information representation,
and through what mechanisms and inputs? Other data indicate
segregated groups of PV interneurons encode distinct task phases
(Lagler et al., 2016), suggesting instead of blanket inhibition,
patterns of activity are differentially regulated across different
PV interneurons. Future studies should also further explore the
actions of PV chandelier cells in the mPFC during behavior.
New research indicates this subtype may preferentially inhibit
amygdala-projecting pyramidal neurons in themPFC, suggesting
chandelier cells have a distinct role in the mPFC microcircuit
from PV basket cells (Lu et al., 2017).

Currently available imaging and physiological methods
provide promising approaches for measuring changes in
neuronal activity that are correlated with successful behavior.
However, given the diversity of neocortical interneuron subtypes
and function, how PV interneurons and other cell types
contribute to modulation of E/I balance, and whether and how
modulation of each subtype impact different PFC-dependent
behaviors warrants further investigation. We still lack effective
treatments for cognitive deficits, social interaction impairments,
and other associated behavioral dysfunctions in numerous
psychiatric disorders, underscoring the importance of continuing
to unravel how these behavioral processes occur under normal
conditions. If researchers can identify how to effectively
manipulate PFC circuit activity, we can develop reliable strategies
for engineering optimal patterns of cortical activity to ameliorate
performance. Ultimately, if successful manipulations can be
linked to physiological signatures that can be observed using less
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invasive recording approaches such as oscillatory patterns, we
can potentially determine biomarkers for successful behavioral
therapies in humans.
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Nature exhibits countless examples of adaptive networks, whose topology evolves

constantly coupled with the activity due to its function. The brain is an illustrative

example of a system in which a dynamic complex network develops by the generation

and pruning of synaptic contacts between neurons while memories are acquired and

consolidated. Here, we consider a recently proposed brain developing model to study

how mechanisms responsible for the evolution of brain structure affect and are affected

by memory storage processes. Following recent experimental observations, we assume

that the basic rules for adding and removing synapses depend on local synaptic currents

at the respective neurons in addition to global mechanisms depending on the mean

connectivity. In this way a feedback loop between “form” and “function” spontaneously

emerges that influences the ability of the system to optimally store and retrieve sensory

information in patterns of brain activity or memories. In particular, we report here that, as

a consequence of such a feedback-loop, oscillations in the activity of the system among

thememorized patterns can occur, depending on parameters, remindingmind dynamical

processes. Such oscillations have their origin in the destabilization of memory attractors

due to the pruning dynamics, which induces a kind of structural disorder or noise in the

system at a long-term scale. This constantly modifies the synaptic disorder induced by

the interference among the many patterns of activity memorized in the system. Such new

intriguing oscillatory behavior is to be associated only to long-term synaptic mechanisms

during the network evolution dynamics, and it does not depend on short-term synaptic

processes, as assumed in other studies, that are not present in our model.

Keywords: brain developing, brain structure and function, synaptic pruning, storage capacity, dynamic memories

1. INTRODUCTION

A complex interrelation between “form” and “function” is known to play an important role in
nature (Gross and Blasius, 2008; Vazquez et al., 2008; Sayama et al., 2013). The idea has been
efficiently developed in the field of adaptive networks, in which a sort of coupling feedback loop sets
in between the network dynamic activity and its topological structure. Outstanding phenomena
then emerge, including self-organization into complex topologies that exhibit robust dynamics,
spontaneous differentiation of the nodes, or complex mutual dynamics in both activity and
topology, in any case mimicking many different conditions in nature (Bullmore and Sporns, 2009;
Sayama et al., 2013; Millán et al., 2018a). This framework has revealed quite useful to understand
fundamental questions concerning mammal brains, e.g., how structural and functional properties
relate to each other both at the level of models involving sets of neurons and synapses and at the
coarse-grained scale of connectomes and functional nets which is captured by imaging techniques
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(Bullmore and Sporns, 2009). A main question that we can thus
address is how an efficient brain develops by synaptic pruning
after a sort of “wild” proliferation of synaptic connections
between neurons following conception (Chechik et al., 1998;
Iglesias et al., 2005; Santos and Noggle, 2011; Presumey et al.,
2017). In humans, for example, synaptic density at birth is
about twice that at puberty, and certain brain disorders, such as
autism spectrum disorder (ASD) and schizophrenia, have been
related to details of synaptic pruning (Keshavan et al., 1994;
Geschwind and Levitt, 2007; Faludi and Mirnics, 2011; Kolb
et al., 2012; Fornito et al., 2015). In particular, ASD has been
associated with a defect of synaptic pruning in certain brain areas
(Tang et al., 2014), whereas schizophrenia could be related to
an excessive pruning (Sekar et al., 2016). In any case, it now
seems clear that such synaptic pruning involves in some way
an optimization process, probably aimed at minimizing both
energy consumption and the genetic information that otherwise
would be needed to build an efficient and robust network
(Chechik et al., 1999; Chklovskii et al., 2004; Johnson et al.,
2010; Knoblauch et al., 2010; Navlakha et al., 2015). In particular,
recent studies on associative memory have shown that this
process could greatly improve memory retrieval under a noisy
environment, such as it is the case in biological systems (Millán
et al., 2018a). Moreover, ongoing structural plasticity in the
adult brain has also been suggested to improve substantially the
storage capacity (Chklovskii et al., 2004; Knoblauch et al., 2010),
and has been related to graded amnesia, catastrophic forgetting,
and the spacing effect (Knoblauch et al., 2014; Knoblauch and
Sommer, 2016). These results are based on the fact that the
number of potential synapses a neuron could develop, i.e., its
potential connectivity, is much greater than the actual number
of synapses, and structural plasticity allows the system to explore
different wiring possibilities (Stepanyants et al., 2002; Fares and
Stepanyants, 2009).

Here, we use an adaptive—sometimes also called co-evolving—
brain network model, which has already been used by us to
describe synaptic pruning in humans (Millán et al., 2018a,b), to
analyze how the dynamical processes of adding and removing
synapses during brain development can affect the ability of
the network to store and optimally retrieve a given set of
memories. Our system combines the auto-associative Amari-
Hopfield neural network (Amari, 1972; Hopfield, 1982) with a
preferential-attachment dynamics for the network evolution in a
way that has been shown to accurately reproduce the observed
variation of neuron connectivity data on human brains during
infancy (Johnson et al., 2010; Millán et al., 2018b). As empirically
observed—see (Holtmaat and Svoboda, 2009) and references
therein—this model assumes that the probabilities of growth and
death of synapses depend on both the mean connectivity in the
system and the neural activity. Previous studies have analyzed the
effect of thermal noise in the system and its emergent behavior,
and they have shown that the coupling between neuronal activity
and connectivity creates a feedback loop between form and
function since the system activity influences its topology and, in
turn, it is affected by the network structure through the synaptic
currents the neurons receive (Millán et al., 2018a). As a matter of
fact, depending on parameters, this system is then able to produce

heterogeneous networks with the presence of hubs, similar to the
ones observed in actual neural systems (Van Den Heuvel and
Sporns, 2011; Crossley et al., 2014; Oh et al., 2014; Stafford et al.,
2014), with high memory retrieval and noise tolerance. Another
recent work has also studied the effect of a transient period
of high connectivity before synaptic pruning begins (Millán
et al., 2018b), as observed in mammal brains (Huttenlocher and
Dabholkar, 1997; Navlakha et al., 2015), demonstrating that it has
beneficial effects for memory recovery and the emergence of an
organized stationary state in the system.

Here we develop on the effect that synaptic (or quenched)
disorder resulting from the interference among many patterns of
activity—stored by Hebbian learning on the synaptic weights—
has on the emergent behavior of the system. We show that, as a
consequence of the interplay between structural (i.e., pruning),
thermal and quenched disorder, oscillations can emerge in the
activity of the model which imply visiting different memorized
patterns, an emergent behavior that had not been reported
before in this model. This intriguing behavior is precisely due
to long-term synaptic mechanisms associated with the network
evolution dynamics, and not to short-term synaptic processes,
such as synaptic depression and facilitation (Pantic et al., 2002;
Marro et al., 2007; Torres et al., 2007, 2008; Torres and Marro,
2015) or spike frequency adaptation (Knoblauch and Palm, 2002;
Ha and Cheong, 2017), which are not present in our model.
These have already been described to induce oscillations among
stored patterns of network activity, however the biophysical
mechanisms behind them are different from the topological
rewiring process considered here, and in particular they act
on shorter time-scales—on the order of ms as opposed to the
time scale of hours or days in which synaptic rewiring operates.
It would be straightforward to extend the present study by
adding short-term mechanisms, and we hypothesize that the
interplay between different neuron and synaptic processes during
learning and brain evolution could give rise to other types of
oscillatory phenomena associated with non-equilibrium phases
not yet reported, a fact that we glimpse could have strong
computational implications.

2. MODEL AND METHODS

Our system consists in a time-dependent, symmetric, undirected,
N-node complex network (Boccaletti et al., 2006) of neurons,
defined at time t by the adjacency matrix eee(t), with elements
eij(t) = {0, 1}, in which each node represents a neuron and each
edge [eij(t) = 1] stands for a synapse. The degree of node i at time
t is defined as

ki(t) =
N

∑

j=1

eij(t) (1)

and themean degree of the network is

κ(t) =
1

N

N
∑

i=1

ki(t). (2)
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Following a familiar (Amari-Hopfield) prescription (Amari,
1972; Amit, 1989), each neuron i is modeled as a stochastic
binary unit, si(t) = {0, 1} (representing respectively a silent and
a firing neuron), whose state evolves in time according to the
probabilistic dynamics

P
[

si(t + 1) = 1
]

=
1

2

{

1+ tanh
[

T−1
(

hi(t)− θi(t)
)]}

, (3)

where

hi(t) =
N

∑

j=1

wijeij(t)sj(t) (4)

is the local field at neuron i quantifying the incoming input from
neighbor neurons and

θi(t) =
1

2

N
∑

j=1

wijeij(t) (5)

is the neuron’s threshold for firing. This definition of the threshold
is typically considered, in the case of static networks, when the
more biologically plausible {0, 1} code is used instead of the
canonical {±1} one, since it allows one to recover the phase
diagram of the canonical, fully connected Amari-Hopfield model
(Amit, 1989). Therefore, we maintain it when extending the
model to a time dependent topology, and it naturally leads
to a dynamic threshold. This is not a strong assumption since
dynamic or adaptive thresholds have been widely described in
several neural systems. For instance, they have been shown to
create a nontrivial motion between the attractors of the system
(Horn and Usher, 1989; Itskov et al., 2011) and to have a
major role in stochastic resonance (Mejias and Torres, 2011)
and in the functioning of sensory systems (Fricker et al., 1999;
Azouz and Gray, 2000, 2003; Cardin et al., 2008; Kobayashi
et al., 2009). Mechanisms of threshold adaptation have been
found to help to avoid saturating activity during developmental
changes (Turrigiano et al., 1998), and to be related to homeostatic
regulation mechanisms observed in cortical neurons (Abbott and
LeMasson, 1993; Turrigiano et al., 1998), and to the emergence
of self-organized criticality in neural systems (Uhlig et al., 2013;
Hobbiss et al., 2018). In our context, θi(t) depends only on the
existing synapses, which can be seen as a means of homeostasis
since the response of a neuron is regulated by the number and
strength of its synaptic contacts, thus avoiding silencing low-
degree neurons and saturation of hubs. Furthermore, in our
model the term eijwij in Equation (5) characterizes the intensity
of the synaptic transmission between neurons i and j, so that the
threshold dynamics depends indirectly on the neural activity.

On the other hand, the noise parameter or temperature T (T >

0) sets the level of stochasticity on the activity of the neurons, so
that if T = 0 the evolution of the system is deterministic and the
state of a neuron at time t is completely determined by the states
of its neighbors at time t−1. For T > 0, however, the evolution is
stochastic and, as T is increased, the thermal noise has a stronger
effect. The strength of each synapse, or its synaptic weight, wij,
is a real variable defined by means of a set of P binary patterns of

neural activity, ξ
µ
i ∈ {0, 1},µ = 1, ..., P, according to the Hebbian

learning prescription (Amit, 1989),

wij = [κ0a0 (1− a0)]
−1 ∑P

µ=1

(

ξ
µ
i − a0

)

(

ξ
µ
j − a0

)

, i 6= j

wii = 0,
(6)

where κ0 = κ(t = 0) and a0 is the mean activation of the
patterns, i.e., a0 = (NP)−1

∑P
µ=1

∑N
i=1 ξ

µ
i . This definition of the

synaptic weights makes the patterns ξ
µ
i attractors of the activity

dynamics of the system, and therefore it constitutes the final step
of a process of “learning” or “storing” of a set of activity patterns
by the system in the synaptic weights. Notice also that wij = wji

by construction so that the network is symmetric, in the spirit
of previous studies (Sompolinsky and Kanter, 1986). This is for
simplicity and also as a reference to compare with the canonical
Amari-Hopfield model (Amari, 1972; Hopfield, 1982).

The overlap of the network state with each of these patterns
determines the global state of the system, and it is defined as

mµ(t) =
[

Na0(1− a0)
]−1

N
∑

i=1

(

ξ
µ
i − a0

)

si. (7)

It follows from this definition that −1 ≤ mµ(t) ≤ 1. We say
that the system is in a memory state or, equivalently, that it has
retrieved pattern µ, if mµ > 2/3 and mν → 0 ∀ν 6= µ. This
indicates that the activity state of the network strongly resembles
that of pattern µ. In the case of a non-trivial topology, it is also of
interest the degree dependent overlap,mµ(k, t), defined as

mµ(k, t) =
[

Np(k, t)a0(1− a0)
]−1

N
∑

i=1

(

ξ
µ
i − a0

)

siδk,ki (8)

where p(k, t) is the degree distribution of the network, which
indicates the probability that a node has degree k at a certain time
t (p(k, t) ≥ 0 ∀k, t,

∑N
k=1 p(k, t) = 1 ∀t). Therefore, mµ(t) =

∑N
k=1 p(k, t)m

µ(k, t). Notice also that if the patterns of activity are
not homogeneously distributed through the neurons, mµ(k, t) is
not bounded by±1.

The “canonical” setting of the Amari-Hopfield model, in
the case of a fully connected network and random orthogonal
patterns, exhibits three characteristic phases. In the absence of
thermal noise, T = 0, the patterns ξ

µ
i are stable attractors of

the dynamics of the system for P < Pc = 0.138N, and the
system is in what is called the memory phase. Pc defines the
maximum storage capacity of the network (Amit, 1989), that is,
the maximum quantity of information—or number of patterns—
that can be stored and effectively retrieved from the network.
This phase is (mathematically) equivalent to the ferromagnetic
or ordered phase of interacting spin networks (as in the Ising
model). The storage of a large number of different patterns in
the network gives rise to quenched noise as a consequence of
the interference between them in wij, which can destabilize such
memory phase. Therefore, if P is further increased above Pc there
is a discontinuous phase transition to a spin-glass (SG) phase, in
which there appear metastable states which are combinations of
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the stored patterns (therefore called mixed states) that trap the
dynamics of the system. Similarly, in the case of P = 1 when T >

Tc = 1, there is a continuous phase transition from the memory
phase to a noisy or paramagnetic phase (also called disordered
phase) in which there are no stable attractors, and the dynamics
of the system is driven by noise (Amit, 1989). In the more general
case in which both T > 0 and P > 1, the location of the phase
transitions depends both on T and P. The emergent behavior of
the Amari-Hopfield model has also been studied on non-trivial
network topologies, such as scale-free and small-world networks
(Torres et al., 2004; Boccaletti et al., 2006; Oshima and Odagaki,
2007). Such systems have been shown to present the same phases
as the canonical fully connected model, with transition lines
that depend on the topology. In particular, it has been reported
that, for heterogeneous networks and a single stored pattern, the
overlap reduces for T < Tc, so that memory is recovered but
with more errors than in a fully connected network. However,
the critical temperature diverges, Tc → ∞ as N → ∞, due to
the presence of hubs that retain pattern information. Therefore,
the memory phase expands to much higher values of thermal
noise. On the other hand, the capacity of the network is known
to decrease as the mean connectivity of the network decreases
(Torres et al., 2004).

We here consider an evolving network whose structure,
contrary to the canonical model above, changes constantly in
time subjected to the pruning dynamics, as we shall describe.
Moreover, we consider a highly sparse network, with values
of κ/N ∈

[

10−3, 10−2
]

, which can be homogeneous (i.e.,
every node having roughly the same connectivity degree), or
heterogeneous, with the formation of hubs. Both sparseness and
heterogeneity damage severely the memory retrieval ability of
the neural network that, for such cases, diminishes fast with P
compared with the case of highly connected and homogeneous
neural networks (Stauffer et al., 2003; Castillo et al., 2004; Morelli
et al., 2004; Torres et al., 2004; Oshima and Odagaki, 2007; Akam
and Kullmann, 2014) However, there is experimental evidence
that the configurations of neural activity related to particular
memories in the animal brain involve many more silent neurons,
ξ

µ
i = 0, than active ones, ξ

µ
i = 1 (Chklovskii et al., 2004;

Akam and Kullmann, 2014). Notice that in this case there is
a positive correlation between different patterns due to the
sparseness, since a0 6= 0.5, which is also known to improve
the storage capacity of a neural network (Knoblauch et al.,
2014; Knoblauch and Sommer, 2016), and in particular that of
heterogeneous and sparse neural networks (Morelli et al., 2004).
Consequently, we consider here this kind of activity patterns,
and we further define them as non-overlapping regions of active
neurons, each consisting of N/P neurons, so that they cover the
whole network (and therefore the mean activity of the patterns is
a0 = P−1). This corresponds to a particular definition of sparse
or biased patterns, which in other works have been considered
to be randomly distributed with a given a0 (Knoblauch et al.,
2014; Knoblauch and Sommer, 2016), what allows for a good
visualization of the activity of the network by means of the
raster plots.

Moreover, this scheme allows us to define another measure of
the overlap between the state of the system and the memorized

patterns, considering only the corresponding active neurons as

m
µ
1 (t) ≡

1

N

N
∑

i=1

si(t)ξ
µ
i , (9)

with m
µ
1 ∈ [0, 1]. If is also of interest its binearized extension,

m
µ
B , defined as m

µ
B (t) ≡ 1 if m

µ
1 (t) > mth and 0 otherwise,

so that mB(t) =
(

m1
B(t),m

2
B(t), ...,m

P
B(t)

)

indicates, in a binary
code, which combination of patterns is recovered at time t.
Equivalently, the decimal variable ds can be defined,

ds(t) ≡
P

∑

µ=1

2µ−1m
µ
B (t), (10)

which one can interpret as a one-dimensional variable indicating
the global memory state of the system.

Interestingly, the activity patterns defined here are such that
when a number Pr of them are recovered at the same time, in
a SG-like state, the maximum overlap that they can have is less
than one. In order to see this, one can decompose Equation (7)
in P sums, each over the neurons corresponding to the region
associated with each of the activity patterns, as

mµ =
[

Na0(1− a0)
]−1

P
∑

ν=1

N
∑

i=1

(

ξ
µ
N ν−N+i − a0

)

sN ν−N+i,

(11)
where N = a0N = N/P is the size of each region and the
time dependency has been dropped for clarity. Here, the first
sum is over the P patterns stored in the network, whereas the
second one goes over the N neurons in the region associated
with each pattern. If the pattern µ is recovered together with
other Pr − 1 patterns, then the sum over ν can be split in
three terms: the region associated with the pattern µ, the ones
corresponding to the other retrieved patterns, and finally those
of the non-retrieved patterns (which do not contribute to the
sum). Therefore, the overlap corresponding to this pattern is

mµ =
(

1− P−1
)−1 [

1− P−1 − (Pr − 1) P−1
]

. This yields

mµ = 1− (Pr − 1) (P − 1)−1 ≤ 1, (12)

which only meets the equality in the case Pr = 1, that is, if only
the pattern µ is retrieved.

The network structure changes in time following a preferential
attachment process. This is characterized by the probability each
node i has to gain or lose an edge at each time t – namely,

P
g
i = u(κ)π(Ii),

Pli = d(κ)η(Ii),
(13)

where Ii =
∣

∣hi − θi
∣

∣ is the scaled input that each neuron receives
as a consequence of the coupling with its neighbors, a sort of
recurrent current in the network, and the time dependence has
been dropped for clarity. Here, u and d account for global factors
that affect synaptic growth and death, such as the diffusion of
different molecules through large areas of tissue, for which the
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mean degree κ is taken as a proxy. The second terms π and η

introduce a dependence on the pre-synaptic activity of the nodes,
closing the activity-topology coupling. This creates a feedback
loop between the evolution of the structure of the network
(form), mediated by the local currents, and the neural activity on
the network (function).

Taking the local probabilities to be normalized over the
network, the number of edges that are added and removed at
each time t depends only on the global probabilities u(κ(t)) and
d(κ(t)). In this way, they determine the temporal evolution of
the mean connectivity κ(t), whereas the local probabilities π(Ii)
and η(Ii) characterize the second order statistics of the network
structure, such as the variance of the degree distribution or the
degree-degree correlations, as we show below (see also Millán
et al., 2018a). These definitions allow us to simulate the dynamics
of the system via a Monte Carlo method (in particular, we make
use here of the BKL algorithm Bortz et al., 1975) as follows. First,
the number of edges to be created and destroyed at time t is
sorted according to the global probabilities u(κ(t)) and d(κ(t)).
Then, we select as many nodes as indicated with these draws,
independently of each other, according to π(Ii) and η(Ii). This
process is done in a serial manner, and the same node can be
selected more than once. Notice that for each node i that gains
or looses an edge eij, the degree of the second node j to which
that edge links also changes accordingly. Therefore, there are in
fact two paths that can lead to the change of a node’s degree:
either through the primary process with probability π(Ii) for a
gain (or η(Ii) for a loss), or when it is randomly connected to
(or disconnected from) an already chosen node. Therefore, the
effective values of the second factors in Equation (13) are

π̃i = 1
2

[

π(Ii)+ 1
N

]

,

η̃i = 1
2

[

η(Ii)+ ki
κN

]

,
(14)

where the 1/2 factor is included to assure normalization.
Following our previous work, we consider

π̃i =
Iαi

〈Iα〉N ,

η̃i = Ii
〈I〉N ,

(15)

which are normalized over the network,
∑N

i=1 π̃i =
∑N

i=1 η̃i = 1.
The power-law relation in π̃i allows us to explore both sub-
and super-linear responses by just modifying a single parameter,
namely α. The probability η̃i, on the other hand, is fixed in a linear
response, which corresponds to edges being chosen at random
for removal, which can be seen as a first order approximation
to the pruning dynamics (Millán et al., 2018a). Therefore, α is
the control parameter for the pruning dynamics. If α < 1,
high degree nodes are more likely to lose edges than to gain
new ones, thus creating a homogeneous network structure. On
the other hand, if α > 1, high degree nodes are more likely
to continue to gain edges than to lose them, which gives rise
to a highly heterogeneous, bimodal structure. Finally, the case
α = 1 corresponds to the critical case in which networks develop
a scale-free topology as shown in previous works (Johnson et al.,
2010) that reproduces the scaling behavior observed in the long-
range connections of the human brain (Gastner and Ódor, 2016)

and in protein interaction networks (Albert, 2005), which decay
as a power-law with exponent µ ≈ 2.5.

The local probabilities are then given by

π (Ii) = max
{

2
Iαi

〈Iα〉N − 1
N , 0

}

,

η
(

Ii, ki
)

= max
{

2 Ii
〈I〉N − ki

κN , 0
}

,
(16)

which hold that π(Ii), η(Ii, ki) > 0 ∀i and normalization,
∑N

i=1 π(Ii) =
∑N

i=1 η(Ii, ki) = 1.
We impose further restrictions on the network. First of all,

eij is a binary matrix, so that only one edge per pair of nodes
is allowed and the strength of the connection between two
neurons, resembling the number of multiple contacts between
actual neurons (Fares and Stepanyants, 2009), is considered to
be given by wij. Moreover, we set the minimum degree of the
network, ki = 1, so that there cannot be any disconnected nodes,
and we forbid self-connections, eii = 0 ∀i. The maximum degree
a node can have is therefore N − 1. We do not impose a hard
bound on it as other works have done (Knoblauch et al., 2014;
Knoblauch and Sommer, 2016). This would exclusively affect
hubs, which only appear for α > 1, as discussed above (Johnson
et al., 2010; Millán et al., 2018a), reducing their connectivity. This
might affect the memory capabilities of the network in the limit
P → ∞ but, since we do not work on this limit, we do not
expect any changes on the qualitative behavior and main findings
of our model.

Under this framework, the evolution of the mean degree is

dκ(t)

dt
= 2

[

u
(

κ(t)
)

− d
(

κ(t)
)]

. (17)

For a careful derivation of this equation, we direct the reader
to Johnson et al. (2010). Intuitively, u

(

κ(t)
)

and d
(

κ(t)
)

set the
number of edges that are created and destroyed at every time step,
so that u

(

κ(t)
)

− d
(

κ(t)
)

gives the net change in the number
of edges. Since for each of these edges two nodes change their
degree, there is a factor 2 in the variation of the mean degree. The
simplest way to approximate the pruning dynamics is to consider
an exponential decay of κ(t) from κ0 to κ∞, where κ0 = κ(t = 0)
is the initial mean degree of the network and κ∞ = κ(t → ∞)
the stationary mean degree after synaptic pruning has occurred,
so that κ0 ≥ κ∞. This is achieved by defining

u(κ(t)) = max
{

n
N

(

1− κ(t)
2κ∞

)

, 0
}

d(κ(t)) = n
N

κ(t)
2κ∞

,
(18)

where the parameter n sets the timescale for the pruning
dynamics. Notice also that Equation (18) assures that u(κ) ≥
0 ∀κ . By substituting these definitions into Equation (17), we
obtain the time evolution of κ(t),

κ(t) = κ∞
[

1− (1− κ0/κ∞) e−t/τp
]

, (19)

where τp = Nκ∞/(2n). This set-up has been previously used to
reproduce experimental data on the connectivity of the human
pre-frontal cortex using values of κ0 ∈ (60, 80) and κ∞ ∈
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(30, 50), depending on the region, and also of the mouse somato-
sensory cortex, with κ0 = 3.10 and κ∞ = 1.64 (for the
other parameters see Johnson et al., 2010; Millán et al., 2018a).
The definitions in Equation (18) take into account that synaptic
growth and death relay in some way on the concentrations
of various molecules (that can have an important role in
synaptogenesis, as axonal growth factors), which can diffuse
through large areas of tissue and therefore cannot in general be
considered local (Klintsova and Greenough, 1999), and here we
consider κ(t) as a proxy for the amount of resources consumed
by the existing synapses in the network. In an environment
with a finite presence of nutrients, it is reasonable to think
that there is a competition for the existing resources, and that
neurons are sensitive to the amount of nutrients available to
them, so that synapses are less likely to grow, and more likely to
atrophy, when the connectivity is high, and viceversa, as assumed
by Equation (18).

Finally, the network macroscopic state is described via the
degree distribution p(k, t) and its homogeneity, defined as

g(t) = exp(−σ 2(t)/κ2(t)), (20)

where σ 2(t) = 〈k2(t)〉 − κ2(t). For homogeneous networks,
in which all nodes have similar degrees, σ (t) is small and the
homogeneity approaches one, with the trivial case of g = 1 if
p(k, t) = δk,k1 . For heterogeneous networks, on the other hand,
there are big fluctuations in the degrees of the nodes and g(t) →
0.

The timescale for structure changes is set by the parameter
n, whereas the time unit for activity changes, hs, is the
number of Monte Carlo Steps (MCS) that the states of all
neurons are updated according to the Amari-Hopfield dynamics
between each structural network update. Our studies show a low
dependence on these parameters in the cases of interest, so we
only report here results for hs = 10 MCS and n = 10. Measures
on the stationary state of the system are carried out by temporal

averages of the macroscopic variables, f̄ = 1
∑t0+1

t=t0
f (t).

A recent work (Millán et al., 2018a) showed that, within this
framework, three phases emerge: a homogeneous memory phase
when both α and T are low (T,α < 1), in which the network is
capable of memory retrieval and the topology dynamics keeps a
homogeneous configuration; a heterogeneous memory phase for
high α (α > 1) in which the dynamics leads to bimodal networks
(with the appearance of hubs or highly connected nodes); and
a homogeneous noisy phase for high noise T. However, as we
will depict in the next section, the combination of thermal noise
together with the introduction of a larger number of patterns
of activity—which induces interference among them—induces
other non-reported non-equilibrium phases characterized by the
emergence of complex oscillations among the activity associated
with the stored patterns.

3. RESULTS

Previous preliminary analysis of the storage capacity of
developing brains under the present framework revealed that the
capacity of the network can be greatly improved if a feedback

loop between structure and function is considered (Millán et al.,
2018a). This is because the interplay between form and function
gives rise to a topological structure that enhances the stability of
the memory attractors which are recovered during the evolution
of the system. In order to explore this interesting picture under
other conditions, here we analyze in detail the phase diagram of
the system with respect to four relevant parameters in the model,
namely, α, κ∞, T, and P. The first two characterize the network
structure dynamics, whereas the temperature, T, and the number
of stored patterns, P, account respectively for thermal and
quenched disorder. As already said, the latter is a consequence of
the interference amongmany stored patterns, and it can affect the
recall process. Other parameters, such as the initial connectivity
κ0 or the speed of the pruning, n, where shown to have little or no
effect on the dynamics (Millán et al., 2018a,b).

3.1. Steady State Solutions for T = 0
We first analyze the behavior of the system at T = 0, that is,
in absence of thermal fluctuations that can affect the stability
of the fixed point solutions of the system dynamics. As stated
above, there are, however, other sources of noise in our system
which can have a prominent influence in its behavior. One is
the interference among stored patterns, which can significantly
reduce the memory retrieval ability of the system (Amit, 1989).
Another is the pruning dynamics that adds a second source of
noise; this is an intrinsic, structural noise that emerges due to
the stochastic adding and removal of synapses associated with
the network dynamics during brain development, and which can
dynamically affect the performance of the system duringmemory
acquisition and consolidation.

In Figure 1 we show the corresponding phase diagrams of
the system (depicting different phases or kinds of behavior) for
different values of κ∞ = 20, 40, and 60, respectively from left
to right. These depict some non-equilibrium phases associated
with different computational abilities during memory recall. The
top panels show, in the steady state, the ratio of patterns that can
be retrieved with high overlap (mµ ≥ 0.66), namely gP ≡ Pr/P
(where Pr is the number of retrieved patterns), as a function of α
and P. A value gP = 1/P indicates a pure memory state, whereas
larger values correspond to mixtures and SG-like states (Amit,
1989), and gP = 0 corresponds to the noisy or non-memory
state. Meanwhile, themiddle panels show themean overlap of the
recovered patterns duringmemory recall, namelymP and, finally,
the bottom panels show the stationary mean homogeneity, ḡ.

These diagrams show up different types of dynamical
behavior. In order to illustrate the characteristics of each one,
in Figure 2 we depict the time series mµ(t) (top graph of
each panel), raster plots showing the whole activity of the
system (bottom graph of each panel) and the steady-state degree
distribution (inset of each panel) for some particular values of α

and P corresponding to different characteristic behaviors in the
phase diagrams in Figure 1. For a given stationary connectivity
(e.g., κ∞ = 60, Figures 1C,F,I) we find that, for P = 1, the system
is able to retain memory for almost every value of α, as it can be
seen by the yellow region at P = 1 in Figure 1F, which indicates
an overlap equal to 1. For small P and small α, SG-like states,
or mixture states (in which some of the memories are partially
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FIGURE 1 | Phase diagrams depicting the steady-state of the system with respect to P and α at T = 0. The first row of panels (A–C) shows the fraction of patterns,

gP, retrieved after a given transient; the second one (D–F) shows the average overlap with the recovered patterns, mP; and finally the third one (G–I) shows the

stationary homogeneity ḡ. Each column is for a different value of κ∞, with κ∞ = 20, 40, and 60, respectively from left to right. The network size was set here to

N = 1, 600 and each point has been averaged over 10 realizations of the system. In this figure a memory phase appears as a blue region in the diagram of gp and a

high value of mp, indicated by a yellow color. A SG phase appears as a blue region in gp and a lower value of mp, indicated by a green color, whereas a noisy phase

appears as black in gp and mp. Similarly, homogeneous structures take place for high values of ḡ, indicated by a yellow region in the corresponding diagram, whereas

heterogeneous structures are for low values of ḡ, indicated by a black region. Finally, the pink stars in diagrams (C,F,I) indicate the (P,α) points corresponding to the

time series shown in Figure 2.

retrieved at the same time), start to emerge as it is illustrated in
Figure 2A, which corresponds to the point α = 0.5, P = 10.
As a consequence, both gP and mP take intermediate values;
the former since only a finite number of patterns is retrieved,
gp < 1 (light blue region of the diagram in Figure 1C), the later
because these are retrieved at the same time, and therefore the
overlap is reduced, mp < 1 (green and light-blue region of the
diagram in Figure 1F). In general, however, the observed SG-like
states present high values of the overlap with all the recovered
patterns due to the high correlation between memories we have
considered in this work. Moreover, in this region the network
structure is homogeneous since α < 1, so that ḡ approaches
1 and the degree distribution resembles a Poisson distribution
(see Figure 1I and the inset of Figure 2A). In these conditions,
when P is increased the memories lose stability until there is
a transition from the SG-like state to the noisy one, where the
network structure remains homogeneous, as shown in Figure 2B

for the point α = 0.5 and P = 30. This is indicated by gP → 0
(black region in Figure 1C),mP → 0 (black region in Figure 1F),
and ḡ → 1 (yellow region on the bottom-right side of Figure 1I).

On the other hand, for high α (α > 1), just one (or very few)
pattern is retrieved, with mP ≈ 1, and the network structure
becomes heterogeneous since α > 1 (see inset of Figure 2C).
As a consequence, gP → 1/P, (dark-blue region in Figure 1C),
mP approaches 1 (yellow region in Figure 1F), and ḡ → 0 (black
region in Figure 1I). Memory is achieved due to heterogeneity
and the presence of hubs, which can maintain the information

content of the retrieved pattern even in the presence of the strong
noise induced by the interference with other stored patterns
and the dynamic changes of the network structure. Therefore,
when P is increased the recovered patterns remain stable, so
that mP remains close to 1 (Figure 1F) and gP decreases as 1/P
since only one pattern is retrieved (Figure 1C, see also the inset
of Figure 2D, showing the appearance of hubs, and Figure 1I,
indicating ḡ → 0).

The stationary mean connectivity of the network, κ∞, also
affects the behavior of the system, as it determines location of the
phase transition from the SG phase to the noisy one for α < 1.
As the diagrams in Figure 1 show, larger values of κ∞ increase
the tolerance of the system to quenched disorder, so that a bigger
number of patterns can be stored. This is in line with the known
result that the information is stored in the synaptic weights, and
therefore increasing the number of synapses also increases the
amount of information that the system can store (Amit, 1989).

Notice also that the qualitative state of the system is
approximately independent of P for P > 20, as shown in Figure 1
where one can see that gp,mp and ḡ remain essentially constant as
P is increased with constant α above P = 20, in agreement with
previous studies (Millán et al., 2018a). Therefore, in the following
we restrict our analysis to the most interesting region P < 20 and
do not analyze the large storage limit of the system (Knoblauch
et al., 2014; Knoblauch and Sommer, 2016). This is because our
interest here is in characterizing the dynamic behavior arising as
a consequence of the interplay between structure and function
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FIGURE 2 | Time evolution of the system at T = 0 and κ∞ = 60 in four typical cases corresponding to different values of α and P as marked with pink stars in the

phase diagrams of Figure 1. Each composite panel illustrates the overlap time series, mµ (t), (top graph), raster plots of neuron activity (bottom graph) and the

steady-state degree distribution of the network (inset), computed at t = 106 Monte Carlo Steps and averaged over 10 realizations of the system. The panels

correspond respectively to α = 0.5 and P = 10 (A), α = 0.5 and P = 30 (B), α = 1.5 and P = 10 (C), and α = 1.5 and P = 30 (D). In all presented simulations we set

N = 1, 600.

under the presence of thermal and quenched noise, rather than its
storage capacity. Similarly, the inclusion of a hard bound on the
maximum degree of the nodes would primarily affect the degrees
of the hubs of bimodal networks. However, these typically form a
highly connected core in the network, so the average path length
between nodes would not increase heavily. Therefore, we expect
that this bound would not have an important effect in the regime
P≪ N in which we set the system here.

In summary, for T = 0, that is, when there are only two
sources of noise in the system (structural and quenched disorder),
the stationary state for a given P depends strongly on the network
structure, determined by α. As so, for α > 1, the network
develops heterogeneous structures in which hubs arise. These
are very densely connected with the rest of the network, and
can maintain information about the memories even when P is
very high. For α < 1, on the other hand, the network is always
homogeneous, with every node having similar, low degree, and
a SG-like phase soon arises, which is then suddenly lost as the

quenched disorder becomes too strong and finally the system falls
into the noisy state.

3.2. Behavior of the System for T > 0
Our previous analysis has determined the phase diagram of the
system at T = 0, which characterizes the effect of the dynamical
topological structure on the memory capabilities of the system.
In this section, we consider the effect of thermal noise in our
system’s emergent behavior. In order to do so, we analyze in
Figure 3 the phase diagrams of the system with respect to α and
T, for some representative numbers of stored patterns, namely
P = 5, 10, 15, and 20 (each column of the figure corresponds to
a different P), and for three values of κ∞ = 20, 40, and 60, as
before. The selected values of P correspond to the left region of
diagrams in Figure 1, where the phase transitions from memory
to the SG and noisy states takes place. In order to illustrate
better the behavior of the system in the cases of interest, we also
include in Figure 4 the time series of mµ(t) is some exemplary
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FIGURE 3 | Phase diagrams of the system with respect to α and T for four different values of P, in particular for P = 5, 10, 15, and 20, respectively from left to right,

and for three values of κ∞ = 20, 40, 60, respectively from top to bottom (A–L). In each panel we show three diagrams: gp, mp, and ḡ, as indicated in the label of the

color bar. Pink stars in (A–D) indicate the (T,α) point of the corresponding time series in Figure 4. Results are for N = 1, 600 and have been averaged over 5

realizations of the system dynamics. In this figure a memory phase appears as a blue region in the diagram of gp and a high value of mp, indicated by a yellow or

green color. A SG phase appears as an orange region in gp and a lower value of mp, indicated by a green or blue color, whereas a noisy phase appears as black in gp
and dark-blue in mp. Finally, the oscillatory phase appears for high values of gp, (light yellow regions in the corresponding diagrams) and relatively low values of mp

(associated blue regions of the corresponding diagrams). Similarly, homogeneous structures take place for high values of ḡ, indicated by a yellow region in the

corresponding diagram, whereas heterogeneous structures are for low values of ḡ, indicated by a black or dark blue region.

points for κ∞ = 20, as indicated in the phase diagrams by a
pink star. Each panel corresponds to a given value of P, and
each graph on them to a point in the (T,α) space. We find that
the combination of thermal and quenched disorder, associated
with the interference among patterns, can give rise to oscillations
among the memorized patterns for α < 1—that is, when the
networks are homogeneous—and T < 1, which are correspond
to the yellow regions in the gp panels of Figure 3. Note that the

observed oscillations occur at level of the neuronal population
as measured by the global network parameter mµ(t), and not on
the single neuron level—which appear as small, high-frequency
oscillations ofmµ(t).

In order to illustrate the emergent behavior of the system,
we refer here to Figure 3A, which corresponds to κ∞ = 20
and P = 5. The top graph in the panel represents gP, the
number of patterns visited by the system after the transient
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FIGURE 4 | Time series of the overlap mµ(t) for some representative cases of the system dynamical behavior, corresponding to κ∞ = 20 and to P = 5, 10, 15, and

20, respectively from (A–D). In each composite panel, we illustrate the behavior of the system on for 4 points of the (T,α) space, as indicated by pink starts in the

corresponding phase diagrams of Figure 2. Namely, (A) is for the points (0.7, 0.3), (0.9, 0.3), (0.3, 1.1), (1.1, 1.1); (B) is for (0.3, 0.3), (0.9, 0.3), (0.3, 1.1), (1.1, 1.1); and

finally (C,D) are for the points (0.1, 0.3), (0.9, 0.3), (0.3, 1.1), (1.1, 1.1). We have selected slightly different points for each P so as to show an example of the oscillatory

behavior in each case, and the region of its appearance depends on P. Results are for N = 1, 600.

evolution takes place. For α > 1, we find that this number
remains finite, and greater than zero, up to very high values
of the temperature (T ≈ 2.0) corresponding to the light-
blue region in the top panel of Figure 3A, for instance. This
indicates that the system is in a memory state (or in a SG-like
state in which only a small number of patterns are retrieved),
such as the ones depicted in the bottom graphs of Figure 4A.
The stability of the memory state for T > 1 is possible due
to the emergence of heterogeneous structures (since α > 1),
and consequently hubs, as indicated in the black region of the
bottom plot of Figure 3A, since ḡ → 0 for α > 1. Notice also
in the middle graph of Figure 3A how, as T is increased, the
overlap corresponding to these states, mP, decreases, indicating
that these states are also becoming less stable as the thermal noise
becomes stronger. In these conditions, only the more densely
connected hub nodes are able to maintain information about
the memories, and these are the ones contributing the most to
the overlap.

As α is decreased, however, the behavior shown in the
diagrams becomes more complex and different regions (phases)
start to emerge. We find, as expected, that memory is completely
lost for T ≫ 1, i.e., due to the strong noise the system falls into
the noisy or non-memory state (as indicated respectively by the
black region and by the dark-blue region of the top and middle
diagrams of Figure 3A). In fact, now networks are homogeneous
(α < 1) and there are no hubs that preserve memory (as
indicated by ḡ → 1 in the bottom plot of Figure 3A, indicating
that the degree distribution is homogeneous). A typical time

series of mµ(t) for this situation is shown in the top-right graph
of Figure 4B.

For small values of T and α (T, α < 1) on the other
hand, gP → 1 (orange and yellow region of the top panel
of Figure 3A), indicating that a great number of patterns are
being retrieved (Pr → P) with a moderate value of the
overlap mP, as indicated by the green and blue region in
the middle panel of Figure 3A. Moreover, results in Figure 2

indicate that, at least in some cases, gP actually increases when
T goes from 0 to 1 (see, e.g., the yellow area in the top
panel of Figure 3A). That is, as the temperature increases,
more memories take place in the state of the system, with a
relatively high overlap mP. This is because, for α < 1, there
is a wide region of oscillatory behavior between the SG-like
and the noisy phases corresponding to the yellow region of
the gp diagrams in Figure 3. An exemplary series of oscillations
is illustrated in the top-left graph of Figure 4A. This emerges
as a consequence of the interplay between structural and
thermal noise and the activity of network, since the process
of addition and removal of synapses, that creates a dynamical
network structure, together with the thermal noise, can make
the recovered patterns unstable. Moreover, given that α < 1,
the structure of the networks remains homogeneous and no real
hubs emerge. Notice however that due to the non-trivial interplay
between activity and topology, in the region of oscillatory
behavior the networks display a more heterogeneous structure,
and ḡ < 1. This effect will be discussed in more detail in the
following section.
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As in the previous section, we have also analyzed the role
of the stationary mean connectivity, κ∞, on the phase diagram
of the system for T > 0 (see Figure 3). This parameter holds
physiological interests since it can be taken as a measure of the
extension of the process of synaptic pruning. From this point of
view, a brain that has undergone a more drastic synaptic pruning
would have smaller κ∞ than one that has been less pruned.
This is to be related to recent experiments that have associated
an excessive pruning in certain brain areas with schizophrenia
(Sekar et al., 2016), whereas ASD has been related to a defect of
synaptic pruning (Tang et al., 2014). We find in our model that
the area associated with the oscillatory behavior (for α,T < 1)
for a given κ∞ is maximum at intermediate values of P: for very
small P there is a dominance of stable SG-like states, whereas
for large P the system falls easily on the noisy phase. Similarly,
for a given P the greater extension of the oscillatory phase is
found for an intermediate κ∞. For instance, for P = 10 the
noisy phase extends to T < 1 for κ∞ = 20 (Figure 3B) and
the oscillatory region is small, whereas for κ∞ = 60 (Figure 3J)
there is a combination of stable SG-like states and oscillations
for α,T < 1. Finally for κ∞ = 40 (Figure 3F) the oscillatory
phase is most robust. Consequently, the absence of dynamical
memories in the system could be associated with a defect of the
pruning process that causes κ∞ to be greater than usual, and
could be therefore associated with ASD. Interestingly, it has been
recently reported that short-term memory and episodic memory
are impaired in ASD subjects (Poirier et al., 2011; Lind et al.,
2014), which is consistent with our findings here since, in order
to be able to recall a sequence of memories, it is first necessary
to destabilize the already recalled ones so as to allow the system
to remember new ones. On the other hand, schizophrenia is
typically associated with erratic behavior (Loh et al., 2007), which
could be related to the high frequency memory oscillations found
here for smaller values of κ∞.

3.3. Emergence of Hubs
The appearance of hubs and heterogeneity plays a significant role
in the emergent dynamics of the system. In particular, with a
given level of noise (T > 0), the topological structure of the
network determines whether the system relaxes to a memory
state, wanders among different patterns or falls into a noisy state.
Therefore, here we discuss in more detail the emergence of hubs
during the network evolution and their effect on the emergent
state of the system.

We first notice that, according to the previous analysis,
for α < 1 networks are homogeneous, as evidenced by
the homogeneous degree distributions shown in the insets of
Figures 2A,B. This is also revealed by the high value of the
homogeneity parameter ḡ shown in Figures 1, 3 for α < 1,
indicating that the variance of ki is small. As a consequence,
no real hubs can be defined, since all nodes have similar low
degree (given that κ∞ ≪ N, so that the connectivity of the
nodes is bounded). On the contrary, for α > 1 and in the
case of memory, networks are heterogeneous as evidenced by
ḡ → 0 (black regions in the corresponding diagrams ḡ(α, P) and
ḡ(α,T) respectively in Figures 1, 3). This indicates that there are
nodes with very different degrees and, in particular, the degree

distribution p(k, t) is bimodal and it splits in two, as shown in the
insets of Figure 2C,D, with the emergence of hubs. Therefore,
one can set the connectivity threshold kth—that defines the
minimum node’s degree to characterize it as a hub—at the value
of k at which p(k, t → ∞) presents a local minimum between the
two modes. This establishes a clear separation between high and
low degree nodes. In particular, in all cases studied here, we find
that a threshold kth = 2κ∞ also suffices to differentiate between
homogeneous and heterogeneous structures, since for α < 1
(homogeneous case) the maximum degree of a network is always
below 2κ∞.

Interestingly, due to the underlying stochastic rewiring
process and to the system’s finite size, there is always some
variability in the degrees of the nodes and, particularly in the
region of oscillatory behavior, there is a relative increase in
the variability of ki with respect to the SG phase (as evidence
by a decreased ḡ in the corresponding diagrams of Figure 3).
We argue that this is due to the intrinsic coupling between
activity and topology, and to the combination of thermal (since
T > 0), topological (due to the ongoing rewiring process) and
quenched (due to the learning of different patterns) disorder in
the system. In the region of oscillatory behavior, the instability
of the memories influences the synaptic currents Ii creating
variability, thus causing the observed increased heterogeneity.
This causes the emergence of relatively-high degree nodes that
correspond to the tail of the homogeneous distribution p(k, t →
∞) and which might have an important effect on the system.
Therefore, in order to explore as well the dynamics of these
relatively-high degree nodes, we have selected a lower threshold,
kth = 1.75κ∞, for the analysis of hub dynamics.

Hubs (and relatively-high degree nodes for the homogeneous
case) dynamics is investigated in Figure 5, where we compare two
different cases for P = 5 and κ∞ = 20. The first one, shown in
Figures 5A,B, corresponds to the region of oscillatory behavior
for homogeneous networks (α < 1) and it is for T = 0.7 and
α = 0.3, corresponding to the bottom-left graph of Figure 4A.
The second one, shown in Figures 4C,D, corresponds to the
heterogeneous-memory phase for α > 1, and it is for T = 0.3
and α = 1.1, corresponding to the top-left graph of Figure 4A.
In particular, we analyze in Figures 4A,C the temporal evolution
of the system as given by the overlap mµ(t), the homogeneity
g(t) and the hub raster plots, where we represent the existing
hubs at each time t, in different colors according to their active
or inactive state (respectively pink and green). Furthermore, in
Figures 4B,D we show the degree-dependent overlap mµ(k, t0)
[defined in Equation (8)] and the degree histogram N(k, t0) =
Np(k, t0), for a particular time, t0 = 5 · 106MCS, corresponding
to the systems respectively depicted in Figures 4A,C.

We observe, for α > 1 (Figure 5C), that a great number of
hubs emerge in the system, and that almost all hubs correspond
to the active nodes of the retrieved pattern. Moreover, in this
case mµ(k, t0) of the recovered pattern µ is larger for high-
degree nodes (Figure 5D), indicating that they contribute most
to the overlap mµ(t0). On the contrary, for the non-recovered
patterns ν, mν(k, t0) remains small for all k. On the other hand,
for α < 1, no real hubs emerge and only transient relatively-
high degree nodes are observed in Figure 5A. These do not
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FIGURE 5 | Emergence and effect of hubs in the system. (A,C) Show the temporal evolution of the system in two representative cases of the dynamics for P = 5 and

κ∞ = 20, corresponding to the emergent oscillatory behavior for T = 0.7 and α = 0.3 (A) and to the heterogeneous memory phase for T = 1.1 and α = 1.1 (C). In

these panels, the top plots represent mµ(t), the middle ones the homogeneity parameter g(t), and finally the bottom ones show the existing hubs in the network at

each time t, where active and inactive hubs are plotted in different colors (respectively, pink and green). (B,D) Show a snap-shot of the state of the system in (A,C),

respectively, at time t0 = 5 · 105, as represented by the degree-dependent overlap mµ(k, t0) and the number of nodes with degree k, N(k, t0) = Np(k, t0). Results are

for N = 1, 600.

only correspond to the recovered patterns but are scattered
throughout the network, and no significant correlation can
be measured between the pattern oscillations and the hubs
dynamics. This causes instabilities that ultimately lead to the
oscillatory behavior (see Figure 5B, indicating that relatively
high-degree nodes contribute more to mµ(k, t) of the recovered
patterns but not only).

In summary, Figure 5 shows that for α > 1 there are active
hubs in the system that correspond to the recovered pattern,
making it stable. On the other hand, for α < 1 no real
hubs can emerge in the system, and the transient relatively-
high degree nodes are scattered throughout the network, not
only corresponding to the recovered pattern, thus inducing the
observed oscillatory behavior.

3.4. Analysis of the Oscillatory Behavior
In the previous sections we have shown the emergence of
oscillations for α < 1 and T > 0 and their relation to
the existence of transient relatively-high degree nodes on the
network. Here, we develop further on the structure and patterns
of these oscillations. For simplicity, we focus on the case of
κ∞ = 20 and P = 5 as before, and in Figure 6 we show a long
time series corresponding to this oscillatory phase (T = 0.7 and
α = 0.3 as in the top graph of Figure 4A and in Figure 5A).
Plots of the active-overlap parameter m

µ
1 (t) (Figure 6A) defined

in Equation (9), its binearized versionm
µ
B (t) (Figure 6B) and the

global memory state parameter ds(t) defined in Equation (10)
(Figure 6C) indicate that the state of the system corresponds to
oscillations between SG-like states in which either 2 or 3 patterns
are transiently retrieved. These plots also evidence that the
oscillations do not follow any clear periodic or regular pattern.

In order to analyze the pattern of oscillations, we show the
power spectra of m

µ
B (t), Sµ(f ), and of ds(t), Ss(f ), in Figure 6F,

which displays a power-law decay with an exponent equal to
−0.9, indicating that there is not a dominant frequency of the
oscillations, but that jumps between different patterns occur
at all time scales. This is in accordance with previous studies
that have repeatedly reported 1/f -type noise in brain activity
under healthy conditions. It has been reported, for instance, in
electroencephalogram (EEG) and functional magnetic resonance
(fMRI) measures of human brain activity (Linkenkaer-Hansen
et al., 2001; Voytek et al., 2015) and also in behavioral processes
related to human cognition and motion as well as animal motion
(Chialvo, 2010). 1/f noise indicates the existence of temporal
correlations within the data, and has been related to emerging
self-organized criticality in the brain (Chialvo, 2010).

Moreover, we also investigate the frequency of appearance
of each global state, as seen in Figure 6E, which indicates
that global states have different probabilities of occurrence in
each realization of the system. However, when averaged over
realizations, the mean probability of each state, p̄s, converges to
a uniform distribution p̄s → 1/Ns, where Ns = 20 is the total
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FIGURE 6 | Analysis of the oscillatory behavior of the system in a representative point (T = 0.7, α = 0.3, P = 5, κ∞ = 20). (A–C) Show the temporal evolution of the

system as given by the retrieved patterns at each time, m
µ
1 (t) (A), the binearized variable m

µ
B
(t) indicating whether each pattern is active or not (B), and finally the

global memory state ds(t) (C) as defined in the text, for a total time of 107 MCS. These show that the system wanders through the different attractors without a

periodic order. (D) Shows the power spectra of m
µ
B
(t), Sµ(f ), and of ds(t), Ss(f ), indicating a power-law scaling of Sµ(f ) and Ss(f ) with an exponent of −0.9. Finally, (E)

shows the probability of appearance of each global state, evidencing that only 2− and 3−pattern SG states are recovered, and (F) shows the transition matrix of

global states, that is, the probability of jumping (times 10−3) from a given global state s to another s′. Results are for N = 1, 600, and have been averaged over 20

realizations of the system in (D,F).

number of possible 2− and 3−pattern states (p̄s = 0.054(3) when
averaged over 20 realizations). Similarly, individual patterns may
have different probability of appearance, pµ, in each realization of
the dynamics, but when averaged over realizations p̄µ converges
to 1/P [p̄µ = 0.21(1)]. Finally, we also computed the transition
matrix between global SG-like states (Figure 6F) which indicates
that, in a given realization of the system, some transitions are
preferred by the system depending on the emergent coupling
between activity and topology.

In summary, these results show that the oscillations are
not periodic, but occur at all time scales, and that all SG-
like states are visited in a non-periodic order. Interestingly
however, in a given realization of the system not all transitions
are allowed, but only some of them occur. It could be
interesting to analyze in more detail in further studies
whether the coupling between structure and activity induces
a particular pattern of oscillations, and how the scaling
of the frequency of oscillations depends on the parameters
of model.

4. DISCUSSION

We report here on recent studies of the emergent behavior
of developing brain models in which structure and function
cooperate and influence each other through a feedback loop,
thus affecting the system’s memory storage and retrieval abilities.
This is a prominent example of how inter-synaptic factors at
the network level can affect the processing of information in
developing brains in a nontrivial way. In particular, our study
focuses on the analysis of the conditions under which such
feedback loop can enhance the storage and retrieval of a set
of correlated patterns. Our work also pays attention to the
emerging dynamics of the system, which is a consequence of
the interplay between structural, quenched, and thermal disorder
during its maturation. The results presented here demonstrate
that a heterogeneous network can greatly improve the stability
of the memory patterns, since its structure is optimized to
preserve information about them in the network hubs which,
as we have shown, correspond to the active neurons of the
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retrieved memories during the recall process. Moreover, due to
the structural plasticity, once a pattern is retrieved, the ability
of the system to recall it again increases thanks to pruning
optimization. This illustrates the constructive role of synaptic
pruning to consolidate memories in the “memory phase” of
the system.

Our study also shows that the interplay between thermal
noise, the interference among stored patterns and the dynamics
driving the evolution of the topology creates instabilities on the
memory attractors, which can make the system wander among
different configurations for certain values of the parameters. In
our model, these oscillations among stored patterns are caused
by the topological synaptic plasticity due to the death and birth
of synapses, which change the energy landscape of the system. In
fact, in the absence of this rewiring process, this oscillatory phase
is not present and the model would reduce to an Amari-Hopfield
model on top of a non-trivial fixed topology. This has been shown
to present the same phases as the canonical fully connected
version of the model, with transition lines that depend on the
topology, so that for instance the critical temperature diverges,
Tc → ∞ as N → ∞, due to the presence of hubs that retain
pattern information. Interestingly, in our model the oscillatory
behavior that takes place on the homogeneous networks phase
of the system is also associated with an increased transient
heterogeneity of the underlying structure, in which transient
relatively-high degree nodes (whose degree is however smaller
than typical hubs) emerge and disappear in time. Moreover,
these relatively-high degree nodes do not correspond in general
to the active nodes of the transiently recovered patterns, but
appear distributed throughout the whole network, corresponding
also to active nodes of the rest of non retrieved patterns. This
creates a non-trivial time-dependent competition among the
different patterns which, together with the subsequent removal
of some synapses during brain development, can make the
currently recalled attractor less stable, thus inducing the observed
wandering among the memories.

We have also analyzed the characteristics of the oscillations
and shown that the oscillatory pattern is not periodic but
presents a power spectrum following a power law scaling decay
with an exponent of −0.9, so there are not any preferred
frequencies. This in accordance with previous studies repeatedly
reporting 1/f noise in brain activity under healthy conditions
(Linkenkaer-Hansen et al., 2001; Voytek et al., 2015) and also
in behavioral processes (Chialvo, 2010), which is related to
the existence of temporal correlations within the data, and has
been related to emerging self-organized criticality (SOC) in the
brain (Chialvo, 2010).

Interestingly, the appearance of an oscillatory phase
characterized by dynamical memories could be useful to enhance
the learning and recalling of sequences of patterns of activity,
as in episodic memories, without the necessity of any external
input or current forcing the retrieval of the memories in the
sequence. This type of oscillations has already been reported
for brain models with synapses enduring short-term synaptic
plasticity (STP) (Pantic et al., 2002; Cortés et al., 2006; Marro
et al., 2007; Torres et al., 2007, 2008). This occurs at the synapse
level and depends on the activity of the pre-synaptic neuron
(which therefore depends closely on the synaptic current Ii

used in our model Amit, 1989). However, STP is caused by
biophysical mechanisms controlling the release and recycling of
neurotransmitters at the synapses during synaptic transmission
and operates at short time scales of the order ofms (Tsodyks and
Markram, 1997). The activity dependent topological plasticity
reported here, however, is the result of the interplay between
form and function in a developing brain, and the ongoing
synaptic rewiring in mature brains, which happens at the
time scale of hours or days (Holtmaat and Svoboda, 2009).
Moreover, topological plasticity allows the system to explore
more efficiently its dynamical phase space and it has been shown
to improve the capacity of neural networks by allowing them
to organize in a more efficient structure. Both mechanisms
could happen at the same time in actual systems, together with
neuron level phenomena such as spike adaptation (Knoblauch
and Palm, 2002; Ha and Cheong, 2017). We hypothesize that the
combination of these mechanisms could lead to the extension of
the oscillatory behavior to other regions of the phase diagram,
although results would strongly depend on the relative time
scale between structural plasticity and STP, and it could be an
interesting approach for future works.

It is also worth noting that the reported oscillations in our
system are for the overlap function that is a measure of the
activity of the whole neuron population during memory recall
processes. These occur in actual neural systems at a long time
scale—normally days or even years—as it is the case in our
model. Temporal changes at the single neuron level appear in
our system as high frequency fluctuations in the time dependent
value of the overlap parameter. If the level of stochasticity is low
(low T) and the network size is large enough (N ≫ 1), such
single neuron fluctuations are very unlike to be significant on
mµ(t). In any case, the model output could be easily tuned up
to obtain faster of slower oscillations in the overlap function to
match more realistically actual experiments during learning and
recalling. This could be done by varying some model parameters
to make the recall process more or less efficient in time, or to
allow the system to recall dynamic memories—such as episodic
memories—that are learned and recalled at different stimuli
input frequencies.

We have analyzed in detail how the dynamical behavior of
the system depends on the synaptic factors affecting the addition
and removal of synapses and on the number of stored patterns.
In particular, the stationary mean connectivity of the network,
κ∞, has been shown to have a great effect on the emergent
behavior of the system. For instance, we have found that the
absence of dynamical memories in the system, or the presence
of memory oscillations with long periods, is associated with a
defect of the pruning process. Similarly, we have shown that
high frequency oscillations among patterns and more tendency
to noisy behavior occur when there is a pruning excess. In
particular, the destabilization of recovered memories is necessary
for instance to recall a sequence of memories, each during a short
period of time, so as to allow the system to remember new ones.
One may argue that the induced instability and the associated
oscillatory behavior observed in our system could be positive for
information processing, since it would allow neuronal media to
explore different memories or attractors, for instance following
hetero-clinic orbits, and consequently, to process more complex
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information, such as spatio-temporal patterns of information (see
Rabinovich et al., 2006 and references therein). Such emergent
behavior could also be useful to respond more efficiently to
changing external stimuli, as in episodic memory tasks, as it has
been widely stated in previous works in different neural systems
(Cortés et al., 2006; Marro et al., 2008; Torres et al., 2008).

The different emergent behavior in the model with varying
connectivity could perhaps be associated with cognitive abilities
related to autism spectrum disorders (ASD) and schizophrenia.
In the former, a pruning defect has been observed in some
brain areas (Tang et al., 2014), and it has recently been reported
that short-term memory and episodic memory are impaired in
ASD subjects (Poirier et al., 2011; Lind et al., 2014). Our results
are consistent with these observations since, if the brain is less
pruned, the mean connectivity of the corresponding network is
higher, thus making the memory attractors more stable. This
implies a lower ability of the brain to remember sequences of
patterns as described in episodic memory tasks in ASD patients
because it is harder for the brain to forget the already recalled
pattern due to its strong stability. Results in our model indicate
that a lightly pruned brain could be forced out of the memory
phase into an oscillatory regimewith an increase in the number of
stored patterns (see Figure 3). These observations might provide
an interesting insight for experimental psychologists to design
a cognitive strategy or therapy to learn and recall sequences of
patterns, that might improve the cognitive abilities of patients
with ASD. On the other hand, we have demonstrated that high
frequency oscillations among patterns occur when there is a
pruning excess, and this could be perhaps associated with the
erratic behavior observed in schizophrenia (Loh et al., 2007), in
which case the brain seems to present some areas with an excess
of pruning (Sekar et al., 2016). In this case our results here suggest
that a learning therapy based on increasing the number of stored
memories would not be useful but may in fact be detrimental,
as it would make the memory activity patterns more unstable.
A learning therapy that moves the patient brain state near to its
stable memory phase, for instance, by stabilizing a few old useful
memories, could therefore be more convenient.

Finally, we note also that some drastic assumptions have been
made in order to simplify the relevant scenario. Firstly, our study
is for sparse correlated patterns, as suggested by experimental
studies (Chklovskii et al., 2004; Akam and Kullmann, 2014),
which are also known to improve the memory retrieval
capabilities of the network (Knoblauch et al., 2014; Knoblauch
and Sommer, 2016) and particularly so in the case of highly sparse
and heterogeneous networks (Morelli et al., 2004). Moreover,
we have selected the patterns of activity to be non-overlapping
regions of activity, following previous works (Torres and Marro,
2015). This set up corresponds to a particular case that allows
for a better visualization of the network dynamics and that has
proven out to be useful to investigate the interplay between
structure and dynamics, i.e., between form and function, together
with the presence of thermal and quenched disorder, on a
developing neural network. Similarly, results are for the low
storage regime of the neural network, P ≪ N, what allows us to
study in detail the dynamical behavior of the system that gives
rise to memory wandering. However, given that our qualitative

results depend little on P for P > 20, we expect them to hold
when P is increased.

Further extensions of this work could also include the
consideration of different details of the synaptic pruning process,
including for instance the growth of synapses taking place after
birth (Millán et al., 2018b), multiple synaptic contacts between
neurons (Knoblauch et al., 2014; Knoblauch and Sommer,
2016), or a hard bound on the maximum degree of the nodes
(Stepanyants et al., 2002; Fares and Stepanyants, 2009).Moreover,
more elaborated definitions of the probabilities of growth and
death of synapses (Equations 16 and 18) could also be considered,
such as a mechanism of self-organization toward the stationary
mean connectivity (Chechik et al., 1999; de Arcangelis et al.,
2006; Lewis and Todd, 2007; Tetzlaff et al., 2010) or by explicitly
including a dynamics for the available nutrients (Tetzlaff et al.,
2010). However these definitions would still need to reproduce
the basic characteristics of brain development and synaptic
pruning, that is, an initial fast decay of connectivity and an
ongoing rewiring of edges after the stationary mean connectivity
has been reached. We expect that our main results (existence of
a feed-back loop between structure and activity, bistability, and
emergence of oscillations) would still hold, at least qualitatively,
with these modifications, in accordance with previous studies
(Millán et al., 2018b). Similarly, the local probabilities in Equation
(16) could also consider more detailed functions, to characterize
for instance a specific dependence on the concentration of
different proteins and growth factors controlling synaptic
growth. These could be obtained experimentally, although to
the best of our knowledge it has not yet been done. Our work
could thus motivate neurobiologists to design experiments to
describe the exact probabilities involved in synaptogenesis and
pruning, information that could be easily incorporated in our
theoretical framework. Similarly, it could also be particularly
interesting to include a learning dynamics that is also coupled
to the development of the neural network, thus modeling
learning during infancy, or to include an external current
on the system, that could certainly be time dependent, to
analyze the effect of external inputs on associative memory and
memory wandering.
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