Editors
5
Impact
Loading...
Conceptual model of (A) ingestion, and (B) entanglement by marine vertebrates with anthropogenic marine plastics, highlighting the litter sources and abiotic processes (upper part of figures) and the interactions with marine invertebrates (bottom part of figures).
79,230 views
213 citations
26,847 views
223 citations
51,440 views
128 citations
Original Research
26 April 2018
Ecotoxicological Effects of Chemical Contaminants Adsorbed to Microplastics in the Clam Scrobicularia plana
Sarit O'Donovan
6 more and 
Maria J. Bebianno
SOD (A), CAT (B), GPx (C), GST (D), and LPO (E) activities/levels (mean ± SD) in digestive gland tissues of S. plana for control, virgin LDPE, LDPE+BaP, and LDPE+PFOS treatments. Different capital letters indicate a significant difference between treatments within the same time. Different lowercase letters indicate a significant difference for the same treatment between times (p < 0.05).

Although microplastics (MPs) are distributed globally in the marine environment, a great deal of unknowns relating to their ecotoxicological effects on the marine biota remains. Due to their lipophilic nature, microplastics have the potential to adsorb persistent organic pollutants present in contaminated regions, which may increase their detrimental impact once assimilated by organisms. This study investigates the ecotoxicological effects of exposure to low-density polyethylene (LDPE) microplastics (11–13 μm), with and without adsorbed contaminants (benzo[a]pyrene—BaP and perfluorooctane sulfonic acid—PFOS), in the peppery furrow shell clam, Scrobicularia plana. Environmentally relevant concentrations of contaminants (BaP−16.87 ± 0.22 μg g−1 and PFOS−70.22 ± 12.41 μg g−1) were adsorbed to microplastics to evaluate the potential role of plastic particles as a source of chemical contamination once ingested. S. plana were exposed to microplastics, at a concentration of 1 mg L−1, in a water-sediment exposure setup for 14 days. Clams were sampled at the beginning of the experiment (day 0) and after 3, 7, and 14 days. BaP accumulation, in whole clam tissues, was analyzed. A multi-biomarker assessment was conducted in the gills, digestive gland, and haemolymph of clams to clarify the effects of exposure. This included the quantification of antioxidant (superoxide dismutase, catalase, glutathione peroxidase) and biotransformation (glutathione-S-transferases) enzyme activities, oxidative damage (lipid peroxidation levels), genotoxicity (single and double strand DNA breaks), and neurotoxicity (acetylcholinesterase activity). Results suggest a potential mechanical injury of gills caused by ingestion of microplastics that may also affect the analyzed biomarkers. The digestive gland seems less affected by mechanical damage caused by virgin microplastic exposure, with the MPs-adsorbed BaP and PFOS exerting a negative influence over the assessed biomarkers in this tissue.

19,834 views
170 citations
Article Cover Image
Original Research
19 February 2018
Frequency of Microplastics in Mesopelagic Fishes from the Northwest Atlantic
Alina M. Wieczorek
6 more and 
Thomas K. Doyle

Microplastics are a ubiquitous pollutant in our seas today and are known to have detrimental effects on a variety of organisms. Over the past decade numerous studies have documented microplastic ingestion by marine species with more recent investigations focussing on the secondary impacts of microplastic ingestion on ecosystem processes. However, few studies so far have examined microplastic ingestion by mesopelagic fish which are one of the most abundant pelagic groups in our oceans and through their vertical migrations are known to contribute significantly to the rapid transport of carbon and nutrients to the deep sea. Therefore, any ingestion of microplastics by mesopelagic fish may adversely affect this cycling and may aid in transport of microplastics from surface waters to the deep-sea benthos. In this study microplastics were extracted from mesopelagic fish under forensic conditions and analysed for polymer type utilising micro-Fourier Transform Infrared Spectroscopy (micro-FTIR) analysis. Fish specimens were collected from depth (300–600 m) in a warm-core eddy located in the Northwest Atlantic, 1,200 km due east of Newfoundland during April and May 2015. In total, 233 fish gut contents from seven different species of mesopelagic fish were examined. An alkaline dissolution of organic materials from extracted stomach contents was performed and the solution filtered over a 0.7 μm borosilicate filter. Filters were examined for microplastics and a subsample originating from 35 fish was further analysed for polymer type through micro-FTIR analysis. Seventy-three percent of all fish contained plastics in their gut contents with Gonostoma denudatum having the highest ingestion rate (100%) followed by Serrivomer beanii (93%) and Lampanyctus macdonaldi (75%). Overall, we found a much higher occurrence of microplastic fragments, mainly polyethylene fibres, in the gut contents of mesopelagic fish than previously reported. Stomach fullness, species and the depth at which fish were caught at, were found to have no effect on the amount of microplastics found in the gut contents. However, these plastics were similar to those sampled from the surface water. Additionally, using forensic techniques we were able to highlight that fibres are a real concern rather than an artefact of airborne contamination.

107,477 views
168 citations
The number of microplastics in each size class for core samples (A,B).
27,539 views
217 citations
Open for submission
Frontiers Logo

Frontiers in Marine Science

New Pollutants in the Marine Ecosystem: Environmental and Human Health from a One Health Perspective
Edited by Huang Honghui, Zhengqiu Fan, Weizhen Zhang, Xiaowei Zheng, Yanan Chen
Deadline
24 April 2025
Submit a paper