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Chemometrics is the application of mathematics and statistics to chemical data in 
order to design or select optimal experimental procedures, to provide maximum 
relevant information, and to obtain knowledge about systems under study. This 
chemical discipline has constantly developed to become a mature field of Analytical 
Chemistry after its inception in the 1970s. The utility and versatility of chemometric 
techniques enable spectroscopists to perform multidimensional classification and/
or calibration of spectral data that make identification and quantification of analytes 
in complex mixtures possible.

Wavelets are mathematical functions that cut up data into different frequency 
components, and then study each component with a resolution matched to its 
scale. They are now being adapted for a vast number of signal processing due to 
their unprecedented success in terms of asymptotic optimality, spatial adaptivity 
and computational efficiency. In analytical chemistry, they have increasingly shown 
great applicability and have been preferred over existing signal processing algorithms 
in noise removal, resolution enhancement, data compression and chemometrics 
modeling in chemical studies.

The aim of this Research Topic is to present state-of-the-art applications of 
chemometrics, in the field of spectroscopy, with special attention to the use of 
wavelet transform. Both reviews and original research articles on pharmaceutical 
and biomedical analysis are welcome in the specialty section Analytical Chemistry.
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Editorial on the Research Topic

Chemometrics-based Spectroscopy for Pharmaceutical and Biomedical Analysis

Spectroscopy is associated with a plethora of different techniques studying the interaction between
matter and electromagnetic radiation. Linguistically speaking, the term originates from the Latin
word “spectrum” meaning “specter or image/vision,” and the Greek word “σκoπε̃lν” meaning “to
view or inspect.” In other words, it is concerned with the absorption, emission, or scattering of
electromagnetic radiation of different wavelengths, intimately linked to the structure of atoms or
molecules under study.

Unambiguously, spectroscopy and optical measurement technologies are of great importance
for analysis of chemical composition. Spectroscopic techniques such as UV-Vis and IR are routinely
used in laboratories as well as detailed in a great number of pharmacopeiamonographs (e.g., United
State pharmacopeia, British pharmacopeia and European pharmacopeia) for quality control of
excipients, pharmaceutical ingredients and dosage forms. These techniques can offer a rapid, cheap,
non-invasive/non-destructive analysis, using both off-line and in-/at-/on-line methodologies.
Nevertheless, they are usually limited to the identification and assay by spectral comparison of a
test sample against a reference standard. This approach may not be suitably applied to qualitative
and quantitative analysis of real-world samples due to the complexity of pharmaceutical and
biomedical matrices.

Given the above information, the use of chemometrics in spectroscopy is a must to gain
efficiency in accessing spectral data. By definition, chemometrics is the use of mathematical and
statistical methods to extract relevant chemical information and to correlate quality parameters or
physical properties to analytical data. It means that a chemometrician would refer to the knowledge
of chemical and instrumental influences to display in ways allowing chemical interpretation of the
system under study (Davies, 2012).

With reference to the most straight-forward explanation of chemometrics, in the present
Research Topic, Biancolillo and Marini briefly reviewed the different chemometric approaches
applicable in the context of spectroscopy-based pharmaceutical analysis, discussing the
unsupervised exploration of the collected data as well as the possibility of building predictive
models for both quantitative (calibration) and qualitative (classification) responses.

In another review, Tsenkova et al. described the up-to-date development of multivariate analysis
methodology in aquaphotomics, a novel scientific discipline proposed by Tsenkova (2005). In
aquaphotomics analysis, an aquaphotome (i.e., a database of water absorbance bands and patterns
correlating water structures to their specific functions) is built by using light-water interaction.
To deal with such complex multidimensional spectral data, chemometric methods are exploited
to remove unwanted influences and extract water absorbance spectral patterns related to the
perturbation of interest.
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In spectral analysis, wavelets have increasingly shown great
potential in chemical studies by being superior to existing signal
processing algorithms in noise removal, resolution enhancement,
data compression, and chemometric modeling (Chau et al., 2004;
Vu Dang, 2014). In practice, multicomponent analysis may not
be possible with a traditional UV spectrophotometric method
due to spectral overlapping of both active and inactive ingredients
of pharmaceutical samples. Majorly based on a series of studies
by Dinç and co-workers, the review of Dinç and Yazan clearly
detailed the theoretical aspects of wavelet transform (i.e., discrete,
continuous, and fractional) and its characteristic application to
UV spectroscopic analysis of pharmaceuticals.

For pharmaceutical and biomedical analysis, it is noteworthy
that the combination of various spectroscopic techniques is
advisable in an effort to scrutinize a complex chemical process.
In the present Research Topic, this is truly reflected by the
following works: (i) Wani et al. studying interaction of neratinib
(an anticancer drug) with bovine serum albumin by using both
spectroscopic (spectrofluorometric, UV spectrophotometric and
Fourier-transform infrared) and molecular docking approaches,
and (ii) Shang et al. designing and synthesizing low-cytotoxicity
fluorescent probes based on anthracene derivatives for hydrogen
sulfide detection.

Nowadays, the on-going application of vibrational
spectroscopy has been increasingly generating an enormous
number of papers published in the pharmaceutical and
biomedical sciences (Abramczyk et al., 2017; Brody et al., 2017;
Bunaciu and Aboul-Enein, 2017). It is thus not surprising that
the present Research Topic mainly consists of research articles
related to infrared and Raman spectroscopy. For instance, Tian
et al. explored the use of chemometrics-based Fourier transform
infrared spectroscopy for the investigation of plasma biochemical
changes due to acute lead poisoning in a rat model. Ryabchykov
et al. investigated a data fusion approach for combining the two
most powerful imaging techniques (Raman spectroscopy and
matrix-assisted laser desorption/ionization mass spectrometry)
to better distinguish different regions within biological samples.
Risoluti and Materazzi coupled a miniaturized Near Infrared
(NIR) spectrometer to chemometrics as a novel entirely
on-site approach for assessment of occupational exposure
to hydroxyurea. Zou et al. compiled a NIR spectral library of
amoxicillin and potassium clavulanate by using a universal model

to resolve sample-collection problems, making quantitative
models more specific for Process Analytical Technology control.
Dai et al. discovered the linear region of Near Infrared Diffuse
Reflectance spectra of different particle sizes by using the
Kubelka-Munk theory, to serve as a methodological reference
for the performance of prediction models. Chen et al. introduced
a novel strategy for the real-time quantification of potassium
in infant formula samples, i.e., applying a modified random
frog algorithm, adopted in a higher-density discrete wavelet
transform domain, to select the most important features of
laser-induced breakdown spectra related to potassium. Zhao
et al. proved that a pharmaceutical analysis model could be
more reliable and robust when its parameters (such as spectral
pretreatment, latent factors, variable selection, and calibration
methods) were optimized by processing trajectory, possibly
integrated into PLS software. Bogomolov et al. suggested a
time-domain averaging of spectral variables to improve the
accuracy of in-line NIR spectroscopic moisture monitoring in a
fluidized bed drying process of pharmaceutical powder. Ma et al.
proposed the use of the low-rank estimation method to improve
the accuracy and robustness of Partial Least Squares and Support
Vector Machine chemometric models being applied to Raman
quantitative analysis of pharmaceutical mixtures.

Regarding the instrumentation for vibrational spectroscopy,
Chen et al. developed a moving window fast Fourier transform
cross-correlation to correct non-linear shifts for synchronization
of spectra obtained from different Raman instruments. In
another study, Fujiwara and Kano recommended the nearest
correlation—based input variable weighting method for efficient
and highly-accurate soft-sensor design, which is applicable to
NIR data especially when the number of input variables is large.

The idea for this Research Topic originally came from the
fact that the state-of-the-art application of chemometrics, in
particular wavelet transform, plays a vital role in the field of
spectroscopy being unceasingly perfected and matured.

As the title indicates, hopefully, it will serve as a useful
guide for spectroscopic analysis in the pharmaceutical and
biomedical sciences.

AUTHOR CONTRIBUTIONS

HV wrote and FM revised the manuscript.

REFERENCES

Abramczyk, H., Kopec, M., and Jedrzejczyk, M. (2017). “Raman spectroscopy,

Medical applications: A new look inside human body with Raman imaging,”

in Encyclopedia of Spectroscopy and Spectrometry, 3rd Edn., eds J. C. Lindon,

G. E. Tranter, and D. W. Koppenaal (Cambridge, MA: Academic Press),

915–918.

Brody, R. H., Carter, E. A., Edwards, H. G. M., and Pollard, A. M. (2017).

“FT-Raman spectroscopy applications,” in Encyclopedia of Spectroscopy and

Spectrometry, 3rd Edn., eds J. C. Lindon, G. E. Tranter, and D. W. Koppenaal

(Cambridge, MA: Academic Press), 770–777.

Bunaciu, A. A., and Aboul-Enein, H. Y. (2017). “Vibrational

spectroscopy applications in drugs analysis,” in Encyclopedia of Spectroscopy

and Spectrometry, 3rd Edn., eds J. C. Lindon, G. E. Tranter, and D. W.

Koppenaal (Cambridge, MA: Academic Press), 575–581.

Chau, F. T., Liang, Y. Z., Gao, J., and Shao, X. G. (2004). Chemometrics from

Basics to Wavelet Transform. Hoboken, NJ: John Wiley and

Sons, Inc.

Davies, A.M. C. (2012). What IS and what is NOT chemometrics. Eur. Spectrosc.

24, 33–36.

Tsenkova, R. (2005). “Visible-near infrared perturbation spectroscopy: water in

action seen as a source of information,” in 12th International Conference on

Near-infrared Spectroscopy (Auckland), 607–612.

Vu Dang, H. (2014). Wavelet-based spectral analysis. TRAC-Trend Anal. Chem.

62, 144–153. doi: 10.1016/j.trac.2014.07.010

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Vu Dang and Marini. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Chemistry | www.frontiersin.org March 2019 | Volume 7 | Article 1536

https://doi.org/10.3389/fchem.2018.00503
https://doi.org/10.3389/fchem.2018.00047
https://doi.org/10.3389/fchem.2018.00202
https://doi.org/10.3389/fchem.2018.00261
https://doi.org/10.3389/fchem.2018.00257
https://doi.org/10.3389/fchem.2018.00228
https://doi.org/10.3389/fchem.2018.00184
https://doi.org/10.3389/fchem.2018.00154
https://doi.org/10.3389/fchem.2018.00325
https://doi.org/10.3389/fchem.2018.00262
https://doi.org/10.3389/fchem.2018.00388
https://doi.org/10.3389/fchem.2018.00400
https://doi.org/10.3389/fchem.2018.00515
https://doi.org/10.3389/fchem.2018.00171
https://doi.org/10.1016/j.trac.2014.07.010
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


ORIGINAL RESEARCH
published: 07 March 2018

doi: 10.3389/fchem.2018.00047

Frontiers in Chemistry | www.frontiersin.org March 2018 | Volume 6 | Article 47

Edited by:

Hoang Vu Dang,

Hanoi University of Pharmacy, Vietnam

Reviewed by:

Hui Xu,

Ludong University, China

Simone Brogi,

University of Siena, Italy

*Correspondence:

Tanveer A. Wani

twani@ksu.edu.sa

Specialty section:

This article was submitted to

Analytical Chemistry,

a section of the journal

Frontiers in Chemistry

Received: 24 October 2017

Accepted: 22 February 2018

Published: 07 March 2018

Citation:

Wani TA, Bakheit AH, Abounassif MA

and Zargar S (2018) Study of

Interactions of an Anticancer Drug

Neratinib With Bovine Serum Albumin:

Spectroscopic and Molecular Docking

Approach. Front. Chem. 6:47.

doi: 10.3389/fchem.2018.00047

Study of Interactions of an
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Bovine Serum Albumin:
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Binding of therapeutic agents to plasma proteins, particularly to serum albumin,

provides valuable information in the drug development. This study was designed

to evaluate the binding interaction of neratinib with bovine serum albumin (BSA).

Neratinib blocks HER2 signaling and is effective in trastuzumab-resistant breast cancer

treatment. Spectrofluorometric, UV spectrophotometric, and fourier transform infrared

(FT-IR) and molecular docking experiments were performed to study this interaction.

The fluorescence of BSA is attributed to the presence of tryptophan (Trp) residues.

The fluorescence of BSA in presence of neratinib was studied using the excitation

wavelength of 280 nm and the emission was measured at 300-500 nm at three different

temperatures. Neratinib quenched the BSA intrinsic fluorescence by static mechanism. A

complex formation occurred due to the interaction leading to BSA absorption shift. The

fluorescence, UV- absorption, three dimensional fluorescence and FT-IR data showed

conformational changes occurred in BSA after interaction with neratinib. The binding

constant values decreased as the temperature increased suggesting an instable complex

formation at high temperature. Site I (sub-domain IIA) was observed as the principal

binding site for neratinib. Hydrogen bonding and Van der Waals forces were suggested

to be involved in the BSA-neratinib interaction due to the negative values of entropy and

enthalpy changes.

Keywords: bovine serum albumin, neratinib, human serum albumin, fluorescence, quenching

INTRODUCTION

Neratinib, a tyrosine kinase inhibitor, is used in trastuzumab-resistant breast cancer treatment as
an alternative to block HER2 signaling (Figure 1; Burstein et al., 2010; Iqbal and Iqbal, 2014; Wani
et al., 2015). Neratinib has been recently approved by United States FDA for use in early stage
HER2-overexpressed/amplified breast cancer (Bose and Ozer, 2009; Feldinger and Kong, 2015;
Kourie et al., 2016; US Food and Drug Administration, 2018).
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Wani et al. Interaction of BSA With Neartinib

FIGURE 1 | Chemical structure of neratinib.

Plasma proteins act as carriers for transportation of drugs
and other compounds. Amongst the various plasma proteins,
serum albumin is the most abundant protein and it plays a
vital role in transportation of drug ligands (Jahanban-Esfahlan
et al., 2015; Wani et al., 2017b,c). Several tyrosine kinase
inhibitors have been studied for their interaction with bovine
serum protein (BSA) (Shen et al., 2015) and in this study,
the interaction of neratinib with BSA was explored. BSA was
selected for studying the interaction owing to its structural
similarity to human serum albumin (HSA), low procurement
cost and ready availability (He and Carter, 1992; Chi et al.,
2010). So far, studies on the interaction between plasma proteins
and neratinib only focused on the characterization of neratinib
covalent binding with serum albumin and reversible covalent
binding of neratinib with plasma proteins (Chandrasekaran et al.,
2010; Wang et al., 2010). The BSA contains 583 amino acids
and three homologous domains. These homologous I, II, and
III domains are connected by disulfide bonds. Two tryptophan
residues namely Trp-134 and Trp-212, are present in BSA
molecule and have intrinsic fluorescence (Kragh-Hansen, 1981).
The pharmacokinetics parameters of distribution, transportation
and excretion of small ligands depend on the noncovalent
binding interactions of drug ligands to proteins. Exploration of
the interaction mechanism between the drug ligands with BSA is
of great interest (Berezhkovskiy, 2007; Chamani and Heshmati,
2008; Xiao et al., 2011; Khorsand Ahmadi et al., 2015; Marouzi
et al., 2017).

The interaction between neratinib and serum albumin was
explored in this study. Multispectroscopic (UV-vis absorption,
fluorescence, FT-IR) along with computational approaches were
used to study the binding interaction. The parameters under
study included binding site involvement, complex formation
and binding energies of neratinib with BSA. The molecular
docking data were corroborated with experimental results to
obtain a better understanding of the mechanisms involved in the
interaction.

METHODS

Chemicals and Reagents
Bovine serum albumin (BSA) was procured from Sisco Research
Laboratories, India. Neratinib was obtained from Selleckchem,

USA. Phenylbutazone and ibuprofen were purchased through
National Scientific Company, Saudi Arabia. The stock solutions
for neratinib, BSA, phenylbutazone and ibuprofen were prepared
as per their molecular weight. Phosphate buffer pH 7.4 was used
for preparation of BSA stock solution of 1.5× 10−6 M. Neratinib
was dissolved in 500 µL dimethyl sulphoxide and then diluted
with phosphate buffer pH 7.4 to get a stock concentration of 1.8
× 10−3 M. The stock concentration was further diluted with the
buffer to obtain working standard solutions in the range of 3.8
× 10−5 and 5.2 × 10−4 M. The stock solutions of ibuprofen
and phenylbutazone were prepared in methanol and then diluted
with the phosphate buffer. The deionized water was obtained
from a Flex Type-IV instrument from Elga Lab Water, UK.

Fluorescence Spectra Measurement
The fluorescence analysis was carried out using a JASCO FP-8200
spectrofluorometer (Japan). The chosen excitation wavelength
was 280 nm and the emission fluorescence was attained within
the 300–500 nm range. BSA solution 1.5 × 10−6 M was titrated
with different neratinib concentrations (0, 1.5× 10−6, . . . ., 2.11×
10−5 M) and the fluorescence measurements were carried out at
the temperatures of 298, 303, and 308K. These two solutions were
mixed in a ratio of 1:1 v/v. Thus, the concentrations measured
were half of the initial concentrations of either BSA or neratinib.
The fluorescence intensity (FI) might decrease due to inner
filter effect since a compound present in the solution might
absorb in the ultraviolet region near the excitation/emission
wavelength. Therefore, the correction of FI was done for studying
the neratinib–BSA interaction using the following equation:

Fcor = Fobs× e(Aex+Aem)/2

Where, Fcor and Fobs denote corrected fluorescence intensity
and measured fluorescence intensity respectively; and Aex and
Aem are the modified absorbance values of the protein upon
ligand addition at the excitation and emission wavelengths,
respectively.

Synchronous Fluorescence Spectra
Measurement
The synchronous fluorescence spectra were studied for
conformational changes that could occur in BSA at 298K (room
temperature). Scanning intervals 1λ (1λ = λem-λex) of 15
and 60 nm characterize the tyrosine and tryptophan residues,
respectively.

FT-IR Spectra Measurement
A Bruker Alpha II FT-IR spectrometer (USA) coupled with
the OPUS software was used. The spectra (spectral resolution
2 cm−1; 24 scans) obtained were converted into absorbance. The
spectra for the buffer and BSA solution in buffer were obtained,
and the spectrum of buffer solution was subtracted from the
BSA solution to get FT-IR spectra of BSA. Similarly, the BSA-
neratinib solution was prepared and the spectra for the free
neratinib was subtracted from the bound form. The FT-IR results
provided evidence of possible conformational changes in the
protein molecule.
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Site Probe Experiment
Site probe experiments were also conducted to determine the
binding site involved in the interaction. Different concentrations
of neratinib were added to equimolar concentrations of site
probes (phenylbutazone or ibuprofen) and BSA; the FI was
then determined at room temperature (298K) and excitation
wavelength of 280 nm.

UV–Visible Spectra Measurement
The UV-Visible absorption spectra were attained in the range of
200–400 nm for BSA, neratinib and BSA-neratinib complex at
room temperature (298K) with a UV-1800 spectrophotometer
(Shimadzu, Japan). The BSA-neratinib spectra were acquired
by keeping BSA concentration constant (1.5µM) and varying
neratinib concentration.

Molecular Docking
Molecular docking analysis was performed to studythe
interaction between neratinib and BSA. The docking was
performed on Molecular Operating Environment (MOE-2014).
The structure for neratinib was drawn in the MOE, whereas the
BSA crystalline protein structure was obtained from protein data
bank (pdb) with the pdb code number 4OR0 (http://www.rcsb.
org). Chain A of the BSA molecule was selected for the docking
analysis due to the fact that BSA exist as a homodimer of two
chains. Both protein receptors and ligands were protonated when
prepared; and the energy minimization was performed with the
default parameters of Force field MMFF94X, eps = r and cut
off (8–10). The docking parameters used in the analysis were
kept as default with Triangle Matcher. The rescoring function
1 was set as London dG and the rescoring function 2 was set
as GBVI/WSA dG along with 10 conformation generations in
order to fit the binding groove. mdb output file was generated
for further analysis and evaluation of neratinib–BSA interaction.
The active binding site that might be involved in the interaction
was obtained from the site specific probe experiments (Jahanban-
Esfahlan et al., 2015; Wani et al., 2017b,c). RMSD (root mean
square deviation) parameters were used to select the most
suitable interaction of BSA with neratinib.

RESULTS

Fluorescence Quenching
The FI of BSA and BSA-neratinib complex were recorded
with excitation at 280 nm and emission in the range of 300–
500 nm. The BSA concentration was kept constant whereas,
the concentration of neratinib was varied. A decrease in FI
was observed with increasing neratinib concentration. This was
attributed to the quenching of fluorescence by BSA because of
the formation of a non-fluorescent complex between neratinib
and BSA (Figure 2). The quenching data was analyzed using the
Stern-Volmer equation:

F

F0
= 1+ Ksv [Q] = 1+ Kq τ0 [Q]

F0 and F represent the FIs in absence and presence of
neratinib; Ksv: Stern-Volmer quenching constant; [Q]: quencher

concentration; Kq : quenching rate constant; τ0 : fluorophore’s
lifetime devoid of quencher and is valued 10−8 for a biopolymer
(Lakowicz and Weber, 1973). The values obtained for Ksv
at the three different temperatures are presented in Table 1

(Figure 3). During the synchronous fluorescence experiments, a
stronger quenching of FI was observed for tryptophan residues
1λ = 60 nm compared to tyrosine residues 1λ = 15 nm
indicating the contribution of tryptophan in the intrinsic
fluorescence of BSA (Figure 4). Also a red shift equal to 1 nm
was observed for tryptophan residue. The 3D (3-dimensional)
spectrofluorometric analysis of BSA and BSA-neratinib complex
(Figure 5) was performed indicating changes in the BSA
conformation after addition of neratinib.

Binding Constant
Small drug ligands interact with proteins binding sites
independently and the equilibrium among the free and
bound molecules is represented by the following equation (He
et al., 2010):

log
(F0 − F)

F
= nlog Kb ± n log[

1

[Q]− (F0−F)[P]
F0

]

Where Kb is binding constant and n is binding site number; [Q]
and [P] are the total concentrations of quencher and protein.
A plot between log (F0-F)/F vs. log {1/([Q]–(F0-F) [P]/F0)} is
used to calculate the binding constant (intercept) and number
of binding sites (slope). The binding constants and number of
binding sites were determined at all the three temperatures and

FIGURE 2 | BSA fluorescence quenching spectra in presence of neratinib at

298K, λex = 280 nm.

TABLE 1 | Stern–Volmer quenching constants (KSV ) and bimolecular quenching

rate constant (Kq) for the binding of neratinib to BSA at three different

temperatures.

T(K) R Ksv ± SD × 104 (L mol−1) Kq × 1012 (L mol−1s−1)

298 0.9918 6.54 ± 0.31 6.54

303 0.9907 6.28 ± 0.18 6.28

308 0.9935 5.96 ± 0.37 5.96
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FIGURE 3 | (A) The stern–Volmer curves for the quenching of BSA by neratinib at 298/303/308K; (B) The plot of log[(F0-F)/F] vs. log[Q] for quenching process of

neratinib with BSA at 298/303/308K; (C) Van’t Hoff plots for the binding interaction of neratinib with BSA; (D) The plot of log[(F0-F)/F] vs. log[Q] for quenching process

of neratinib with BSA in presence of site markers phenylbutazone and ibuprofen at 298K.

are presented in Table 2. The number of binding sites were found
equal to unity. The binding constant obtained for BSA-neratinib
complex was found to be 8.1 × 104, whereas, in presence of
phenylbutazone and ibuprofen were found to be 0.38 × 102 and
4.8× 104, respectively (Figure 3).

Binding Mode
The binding mode is established based on the thermodynamic
parameters that include enthalpy change (1H0), entropy change
(1S0) and free energy change (1G0). The thermodynamic
parameters are given in Table 2. Figure 3 represents the van’t
Hoff plot for neratinib and BSA interaction.

DISCUSSION

Neratinib Binding to the Serum Albumins
Fluorescence spectroscopy acts as a tool for investigation of the
interaction between biological macromolecules (proteins) and
small drug ligands. The interaction can be studied in terms
of the mechanism involved in binding interaction, binding
constants, etc. The FI can get reduced due to several molecular
interactions that may include excited-state reactions, complex
formations, energy transfer and molecular rearrangements. This
decrease in the FI is known as fluorescence quenching. The
type of quenching involved (static or dynamic) is derived from
the linearity of the Stern-Volmer plot between F0/F vs. [Q]
(Figure 3). The Stern-Volmer plot alone cannot give sufficient
information about the nature of quenching involved in the
interaction. Thus, other evidences are still required for its

determination. The change in temperature is used as a tool
to investigate and distinguish between the static and dynamic
quenching that may be involved in ligand-BSA interaction. The
Ksv value decreases at higher temperature in static quenching,
and vice versa in case of dynamic quenching. These results infer
that a static quenching and complex formation could occur
between neratinib and BSA. It was further supported by the
quenching rate constants obtained (Table 1). The quenching
constant for collision quenching can achieve a maximum value
2 × 1010 M−1 S−1 for biopolymers. Our quenching constant
values were much higher than those obtained by scattered
procedure clearly showing the involvement of static quenching
in the BSA-neratinib interaction (Shi et al., 2014; Wani et al.,
2017a).

The synchronous fluorescence spectrophotometric
experiments were performed to obtain information regarding
the microenvironment present in the immediate neighborhood
of chromosphere molecules. The conformational changes were
reflected by changes in the maximum emission wavelength.
A higher quenching and red shift of 1 nm was observed
for tryptophan residue suggesting an increase in polarity of
the surrounding environment (Figure 4). Therefore, it was
concluded that the BSA conformation changes upon interaction
of neratinib with BSA (Albert et al., 2006; Meti et al., 2015).

In the 3-dimensional spectral analysis for BSA in presence
of neratinib, two peaks were found namely Peak 1 and Peak
2 (Figure 5). Peak 1 was found at the excitation wavelength of
230 nm and emission wavelength of 344 nm. Peak 1 is formed
due to π-π∗transition of polypeptide structures present in the
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FIGURE 4 | Synchronous fluorescence spectroscopy of BSA and neratinib at 298K (A) 1λ = 15 nm and (B) 1λ = 60 nm.

FIGURE 5 | 3D-spectroflurometric analysis of BSA and neratinib–BSA system. (A,B) are normal 3D spectra and (C,D) represent the contour plot of FI.

BSA molecule. Peak 2 was found at the excitation and emission
wavelength of 280 and 342 nm, respectively. Tryptophan and
tyrosine residues are responsible for the formation of Peak 2.
A sharp decrease in the FI of BSA was witnessed after addition
of neratinib meaning that fluorescence quenching occured.
A sparse spectrum in the contour plot (Figures 5C,D) was
observed for BSA in presence of neratinib, which confirms the
occurrence of conformational changes in BSA after neratinib
addition.

A decrease in the binding constants was noticed as the
temperature increased indicating the instability of BSA-neratinib
complex. Furthermore, the number of binding sites was found to
be equal to 1, indicating a single class of binding sites on BSA.

Site specific probes, phenylbutazone and ibuprofen, were used
for determination of the binding sites present on BSA (Hu
et al., 2004). A decrease in the values of binding constants
was observed in presence of drug site probes. Phenylbutazone
caused a greater reduction in the binding constant compared
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TABLE 2 | Binding and thermodynamic parameters of binding between neratinib and BSA.

T(K) R Log Kb ± SD Kb ± SD × 104 (L mol−1) n 1G (kJ mol−1) 1H (kJ mol−1) 1S (Jmol−1
·K−1)

298 0.9938 4.909 8.10 ± 0.20 1.02 −27.93 −76.9 −164

303 0.9905 4.653 4.50 ± 0.24 0.96 −27.11

308 0.9902 4.383 2.42 ± 0.11 0.92 −25.96

to ibuprofen inferring Site I as the binding site for neratinib
(Figure 3).

Types of Interaction Force Between BSA
With Neratinib
The complex formation relies on the thermodynamic process
due to the fact that binding constants are temperature-
dependent. The thermodynamic processes help characterize
the kind of forces engaged among BSA and neratinib (Ni
et al., 2008). The forces that might be involved in binding
small ligands to proteins include hydrogen bonds and Van
der Waals forces, hydrophobic interaction or electrostatic
forces. The binding mode is established based on the
thermodynamic parameters that include enthalpy change
(1H0), entropy change (1S0), and free energy change (1G0).
The thermodynamic parameters were evaluated by the following
equations:

lnKb = −
1H0

RT
+

1S0

R

1G0
= 1H0

− T1S0 = −RTln Kb

Kb and R represent the binding constant and universal gas
constant, respectively. The negative (–) 1H0 and 1S0 indicate
the presence of hydrogen bonding and Van der Waals forces
between BSA and neratinib. Moreover, (−1H0) cannot occur
during electrostatic interactions since these interactions occur
when 1H0 is either very small or almost zero (Ross and
Subramanian, 1981; Ni et al., 2008). Figure 3, represents the van’t
Hoff plot for neratinib and BSA interaction. The spontaneous
interaction between BSA and neratinib is indicated by (−1G0)
value. Both the enthalpy change and entropy change acquired
negative values in the neratinib-BSA interaction, suggesting an
enthalpy-driven interaction and the entropy value reported as
negative number indicates its unfavorability for the binding
process.

UV–Vis Absorption Studies
The UV–vis absorption spectra suggests a complex formation
occurred between BSA and neratinib (Figure 6). An increase
in the absorption intensity of BSA was observed with higher
neratinib concentrations. The complex formation between BSA
and neratinib is further confirmed as a blue shift was observed in
the λmax of BSA (Kandagal et al., 2006; Peng et al., 2015).

FT-IR Studies
Infrared spectroscopy is used to investigate the secondary
structures and dynamics of protein. The band frequencies as

FIGURE 6 | BSA UV-absorption spectra in presence of neratinib.

a result of amide I, II, and III vibrations in the IR region
provide information about the secondary protein structure (i.e.,
the amide I band 1,600–1,700 cm−1 and amide II band 1,548
cm−1). The information provided by amide I is more valuable
due to its sensitivity to protein structure change than amide II.
Figure 7 provides information regarding the changes in BSA after
neratinib addition. It is clear that there were a shift of peak
occurred in amide I from 1645.51 to 1652.88 cm−1 and a slight
shift in amide II peak from 1544.70 to 1543.02 cm−1, suggesting
a change in the secondary structure of BSA after interaction with
neratinib.

Molecular Simulation Studies
Molecular docking experiments were performed to understand
the interaction between neratinib and BSA. The docking
experiments further supported spectrophotometric and
spectrofluorometric data (Ali et al., 2010; Shahabadi and
Fili, 2014). In molecular docking studies, the ligand gets tied
to the binding pocket of the protein in different positions thus
providing valuable information on the binding site and mode.
The two binding sites present on BSA protein are designated as
Site I and Site II, and are present in sub-domains IIA and IIIA,
respectively. The site probe experiment revealed site I as the
binding site for neratinib which was further confirmed by the
docking results. The sub-domains IIA of site 1 was analyzed with
varied conformational adaptations and the least possible BSA-
neratinib complex energies were obtained. Figure 8A represents
the finest conformation of neratinib-BSA complex. It is evident
that neratinib interacted with Trp-213 through pi-pi interaction
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FIGURE 7 | FT-IR spectra (A) Free BSA in aqueous solution; (B) Difference spectra obtained by subtracting the spectrum of the neratinib-free form from that of the

neratinib-bound form.

and with Asp-450 and Ala-209 by hydrogen bonds (Figure 8B).
It was reported that neratinib forms a reversible covalent bond
with Lys-190 of HSA. Neratinib contains a 4-(dimethylamino)
crotonamide Michael acceptor and a covalent bond is formed
between ε-amine of lysine of HSA and β-carbon of the amide
functional group of neratinib. The covalent bond formed
between neratinib and HSA is dependent on temperature,
pH and time, and is independent of neratinib concentration
(Chandrasekaran et al., 2010; Wang et al., 2010). The peptide
LDELRDEGKASSAK is unique to human and monkey albumin;
and neratinib binds to this peptide covalently. It has also been
reported that neratinib does not bind covalently to plasma
proteins from other species like dogs, rabbits and rodents as the
sequence of amino acid residues from 182 to 195 in the albumin
of these species is different than that in monkey and humans.
The amino acid sequence of residues in BSA from 182 to 195 is
ETMREKVLTSSARQ, meaning that BSA cannot bind covalently
to neratinib due to this variation (Wang et al., 2010). The binding
energy of neratinib-BSA complex at Site I by molecular docking

was found to be −24.12 kj mol−1, which is in an agreement with
the binding energy of −27.93 kj mol−1 found experimentally
at 298K. On the basis of experimental and docking results, it is
concluded that hydrophobic (pi-pi interaction) and hydrophilic
(hydrogen bonding) were involved in the BSA-neratinib complex
stabilization.

CONCLUSION

Neratinib approved for use in early stage HER2-
overexpressed/amplified breast cancer was investigated for
its interaction with BSA. The site probe and molecular docking
experimental results established that neratinib binds to the
site I, subdomain IIA of BSA. The fluorescence quenching,
synchronous fluorescence, UV and FT-IR data together with
the docking studies confirmed the formation of a complex
between BSA and neratinib. Van der Waals forces and
hydrogen bonding were found to be involved in the BSA-
neratinib interaction in a enthalpy-driven manner. Based on
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FIGURE 8 | (A) The docking conformation of neratinib-BSA complex with lowest energy; (B) Represents the amino acid residues that surround neratinib.

our findings, the pharmacological and biochemical aspects
involved in the BSA-neratinib interaction could be better
understood.
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Particle size is of great importance for the quantitative model of the NIR diffuse

reflectance. In this paper, the effect of sample particle size on the measurement of

harpagoside in Radix Scrophulariae powder by near infrared diffuse (NIR) reflectance

spectroscopy was explored. High-performance liquid chromatography (HPLC) was

employed as a referencemethod to construct the quantitative particle sizemodel. Several

spectral preprocessing methods were compared, and particle size models obtained by

different preprocessing methods for establishing the partial least-squares (PLS) models

of harpagoside. Data showed that the particle size distribution of 125–150µm for Radix

Scrophulariae exhibited the best prediction ability with R2
pre = 0.9513, RMSEP = 0.1029

mg·g−1, and RPD = 4.78. For the hybrid granularity calibration model, the particle

size distribution of 90–180µm exhibited the best prediction ability with R2
pre = 0.8919,

RMSEP = 0.1632 mg·g−1, and RPD = 3.09. Furthermore, the Kubelka-Munk theory

was used to relate the absorption coefficient k (concentration-dependent) and scatter

coefficient s (particle size-dependent). The scatter coefficient s was calculated based

on the Kubelka-Munk theory to study the changes of s after being mathematically

preprocessed. A linear relationship was observed between k/s and absorption A within

a certain range and the value for k/s was >4. According to this relationship, the model

was more accurately constructed with the particle size distribution of 90–180µm when

s was kept constant or in a small linear region. This region provided a good reference for

the linear modeling of diffuse reflectance spectroscopy. To establish a diffuse reflectance

NIR model, further accurate assessment should be obtained in advance for a precise

linear model.

Keywords: Kubelka-Munk theory, Near infrared (NIR) diffuse reflectance spectroscopy, particle size, PLS,

harpagoside, Radix Scrophulariae
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INTRODUCTION

The implementation of process analytical technology (PAT)
in the pharmaceutical industry is intended to enhance the
quality of products through the measurement of critical quality
and performance parameters (Roggo and Ulmschneider, 2008).
Near infrared spectroscopy (NIRS) is regarded as a vital tool
for the implementation of PAT, as it is increasingly used in
pharmaceutical research and development due to its high analysis
speed, low-cost, and non-destructive characteristics (De Beer
et al., 2011). NIR spectra of chemical species (consisting of C–H,
N–H, O–H, and S–H bonds; Sarraguça et al., 2011) can be used
to predict their chemical and physical properties (Prieto et al.,
2009).

The NIR technology includes two main parts that are
transmission spectroscopy and diffuse reflectance spectroscopy.
The selection of spectral form is mainly based on the state of
samples (i.e., transmission spectroscopy is suitable for liquid
samples such as herbal extracts and liquid preparations, while
diffuse reflectance spectroscopy is generally used for solid
samples such as pharmaceutical powders or granules). Diffuse
reflectance spectroscopy is an analytical technique that measures
the diffuse reflection of different wavelengths of light to obtain
the surface information of the materials.

Various physical, chemical, and biochemical properties in
Mediterranean soils were NIR predicted (Zornoza et al.,
2008). Chen et al. employed an NIR model for the analysis
of total polyphenol content in green tea (Chen Q. et al.,
2008). Classification accuracy of about 100 % was obtained
by discriminant and classification tree analyses of 82 honey
samples by diffuse reflectance mid-infrared Fourier transform
spectroscopy (DRIFTS) (Bertelli et al., 2007). Borin et al. utilized
NIR technology for the simultaneous quantification of some
common adulterants (starch, whey, or sucrose) found in milk
powder samples (Borin et al., 2006). All these investigations have
illustrated the trend of using NIR technology to predict physical
and chemical information.

Recently, the application of NIR in studying Chinese
herbal medicine (CHM) has dramatically increased such as
discrimination analysis and quality control for various samples
e.g., raw materials, excipients, and dosage forms. Wu et al.
used the NIR and different PLS models to quantify the baicalin
contents of Yinhuang oral solution based on a total error
concept (Wu et al., 2013). Chen et al. employed NIR to
distinguish Ganoderma lucidum samples collected from different
geographical origins using principal component analysis (PCA)
and discriminant analysis algorithms (Chen Y. et al., 2008).

Abbreviations: NIR, Near Infrared Diffuse; PAT, Process Analytical Technology;

DRIFTS, Diffuse Reflectance Mid-infrared Fourier Transform Spectroscopy;

CHM, Chinese Herbal Medicine; NIRS, NIR Spectroscopy; MVA, Multivariate

Data Analysis; HPLC, High Performance Liquid Chromatography; RMSEC, Root

Mean Square Error of Calibration; RMSECV; Root Mean Square Error of Cross-

Validation; RMSEP, Root Mean Square Error of Prediction; MSC, Multiplicative

Scatter Correction; SNV, Standard Normal Variate; 1D, First Derivative; 2D,

Second Derivative; SG, Savitzky–Golay; PRESS, Predicted Residual Sum of

Squares; PLS, Partial Least Squares; SCOT, Second Overtones Region; FCOT,

First Combination-Overtone; RPD, Residual Predictive Deviation; API, Active

Pharmaceutical Ingredient; EMSC, Extended Multiplicative Scatter Correction.

On the other hand, it is well known that the particle size of
sample affects NIR spectra. Several studies have been published
on the effect of particle size on the determination of drug content
in mixed powder products (Norris and Williams, 1984; Aucott
and Garthwaite, 1988; Bull, 1991). Franke et al. (1998) reported
the particle size determination of lactose using chemometrics-
based NIR spectra. However, they did not mention any basic
principle to determine particle size in the experiments. Paskatan
et al. (2001) reviewed theoretical and practical particle size
analysis of powder by NIR spectroscopy. But they did not show
the relationship between the basic light scattering principle and
the particle size of main contents.

Kubelka-Munk theory (Otsuka, 2004) is the basic quantitative
theory of NIRS. The particle size of sample affects the light
scattering, directly influencing model construction. It was shown
that an accurate knowledge of the particles is crucial in the
product development (Blanco and Peguero, 2008). Meanwhile,
the differences in CHM particle size could result in different
optical path lengths and multiplicative light scattering effects (Jin
et al., 2012). Thus, it is important to establish an expeditious
method to determine the particle size of CHM.

However, there were a few NIR studies on the simultaneous
determination of particle size and active pharmaceutical
ingredients of CHM. Wu Z. S. et al. demonstrated that the
particle size affected NIR measurement of saikosaponin A in
Bupleurum chinense DC (Wu et al., 2015). Bittner et al. employed
a successful application of NIR spectroscopy in combination
with multivariate data analysis (MVA) for the simultaneous
identification and particle size determination of amoxicillin
trihydrate particles (Bittner et al., 2011).

Scrophularia radix (Xuanshen), the root of Scrophularia
ningpoensis Hemsl., was a typical CHM with a history going
back over 1000 years (The State Pharmacopoeia Commission
of People’s Republic of China, 2015). It is originally from
Zhejiang province and it is a component of the natural herbal
supplement named “Zhe Ba Wei.” The major ingredients of
Scrophularia radix are iridoids, and harpagoside is one of the
main bioactive components with antioxidant, antimicrobial and
antitumor activities (Miyazawa and Okuno, 2003; Jing et al.,
2011).

In this study, Scrophularia radix was taken as an example and
harpagoside was regarded as an API of Scrophularia radix. HPLC
was used as a reference method to determine the harpagoside

TABLE 1 | HPLC gradient elution of Scrophularia radix extract.

Time/min A/% B/%

0–10 5–10 95-90

10–25 10–33 90–67

25–35 33–50 67–50

35–40 50–60 50–40

40–45 60–70 40–30

45–55 70–80 30–20

55–60 80–5 20–95
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content. NIR was used to monitor the prediction potential
of the models of single particle size and mix particle size
simultaneously. To our best knowledge, this paper is the first
to study on particle size and harpagoside determination in
Scrophularia radix withNIR diffuse reflectance spectroscopy. The
differences between single particle size model and mix particle
size model from the perspective of the Kubelka-Munk theory
were explained.

MATERIALS AND METHOD

Materials
Ten batches of S. ningpoensis Hemsl. radix were gifted
from Daozhen (Guizhou, China), three representative samples
were taken from each batch. All samples were identified by
Prof. Chunsheng Liu (Beijing University of Chinese Medicine,
China). Harpagoside reference standard (lot: 111730-201307)
was purchased from the National Institutes for Food and
Drug Control (Beijing, China). Acetonitrile (Fisher Scientific,
Pittsburgh, PA) was of HPLC-grade. Acetic acid (Beijing
Chemical Works, Beijing, China) was of analytical grade.
Deionised water was purchased fromHangzhouWahaha Co., Ltd
(Zhejiang, China).

FIGURE 1 | NIR diffuse reflectance spectra of Scrophularia radix.

Preparation of Samples
Scrophularia radix samples were crushed into pieces by a
disintegrator after brushing off soil dust from the surface. Thirty
samples of Scrophularia radix were then pulverized with a
blender and screened through a 10-mesh sieve. Finally, the
powders were divided into four parts. One part was used for
HPLC determination of the harpagoside content. The remaining
parts were then smashed and screened through 24-, 50-, 65-, 80-,
100-, 120-, and 150-mesh sieves.

An amount of each sieved sample of Scrophularia radix
powder (1 g) was accurately weighed and placed in a 100-
mL Erlenmeyer flask. The sample was extracted with 50mL
of 50% ethanol under ultrasonic vibration (40 kHZ, 220V)
for 45min. After cooling to room temperature, the solution
was filtered through a 0.45-µm membrane filter for HPLC
analysis.

NIR Equipment and Measurement
TheNIR spectra were recorded by a XDSRapid Content Analyser
and VISION software (Metrohm NIR Systems, Florida, USA).

FIGURE 3 | Harpagoside concentration of 30 samples of different particle

sizes.

FIGURE 2 | Representative HPLC chromatograms of Scrophularia radix sample and harpagoside standard.

Frontiers in Chemistry | www.frontiersin.org May 2018 | Volume 6 | Article 15418

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Dai et al. Linear Region on K-M Theory

The wavelength range for the spectra was 780–2,500 nm. Each
spectrum was an average of 64 scans with air as the background,
and the wavelength increment was of 0.5 nm. Unless stated
otherwise, each sample was measured in triplicate and its mean
value was used in the subsequent analysis.

HPLC Method
A certain amount of harpagoside standard was accurately
weighed with an XS205DU electronic balance (Mettler Toledo,

Greifensee, Switzerland) and then dissolved in 100mL of
methanol to obtain the concentration of 0.02432 mg·mL−1.

HPLC analysis of Scrophularia radix (according to Chinese
Pharmacopoeia, 2010 ed) was carried out using a Waters 2695
HPLC system, Waters 2996 DAD detector and auto-sampler
(Waters Technologies, Palo Alto, CA). Ten microliters aliquots
of the sample solutions were chromatographically analyzed in
gradient elution mode on an octadecylsilyl column [250 ×

4.6mm, 5µm (Dikma, China)] with the mobile phase consisting

FIGURE 4 | The PRESS values of different preprocessing methods for single particle size model.
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of acetonitrile and 0.4% acetic acid (v/v) at a flow rate of
1.0 mL·min−1 (Table 1). The column temperature was kept
at 30◦C and the detection wavelength set at 280 nm. This
chromatographic method exhibited good linearity (Y = 3 ×

106X−104747, R2 = 0.9998) over the concentration range
0.04864–0.02432 mg·mL−1.

Software
Data analysis was performed by the Unscrambler version 9.6
software package (CAMO Software AS, Oslo, Norway) and
home-made routines programmed in MATLAB code (MATLAB

v7.0, Math Works, Natick, MA). Following the Kennard-
Stone algorithm, 210 samples were divided into 140 calibration
samples and 70 validation samples. The root mean square
error of calibration (RMSEC), root mean square error of cross-
validation (RMSECV), root mean square error of prediction
(RMSEP) and corresponding R2 were used to evaluate the PLS
model.

In order to establish a robust harpagoside model, a
number of preprocessing methods were selected. For instance,
multiplicative scatter correction (MSC) and standard normal
variate (SNV) were used to eliminate redundant effects of

TABLE 2 | PLS model using preprocessing methods for different single particle sizes.

Particle size (µm) Preprocessing Model evaluation parameters

RMSEC R2 RMSECV R2 RMSEP R2 RPD

355–850 RAW# 0.0576 0.9750 0.1642 0.8167 0.2094 0.7279 2.02*

MSC 0.1451 0.8414 0.2248 0.6568 0.2187 0.7031 1.93

SNV 0.1450 0.8418 0.2288 0.6444 0.2169 0.7082 1.95

EMSC 0.1345 0.8638 0.2194 0.6730 0.2194 0.7014 1.93

SG9 0.0575 0.9751 0.1635 0.8184 0.2098 0.7269 2.01

250–355 RAW 0.1497 0.9208 0.2601 0.7843 0.1884 0.8541 2.76

MSC 0.1701 0.8978 0.2657 0.7750 0.2050 0.8272 2.54

SNV 0.1704 0.8974 0.2715 0.7651 0.2051 0.8270 2.53

EMSC 0.0625 0.9862 0.1996 0.8730 0.1643 0.8890 3.16*

SG9 0.1498 0.9208 0.2602 0.7841 0.1885 0.8540 2.76

180–250 RAW 0.1050 0.9714 0.5666 0.2497 0.1729 0.9265 3.89

MSC 0.0839 0.9818 0.3406 0.7289 0.2840 0.8017 2.37

SNV 0.0678 0.9881 0.5278 0.3489 0.4332 0.5387 1.55

EMSC 0.0800 0.9834 0.2339 0.8721 0.2198 0.8812 3.06

SG9 0.1074 0.9701 0.5736 0.2312 0.1709 0.9281 3.93*

150–180 RAW 0.0304 0.9965 0.3150 0.6562 0.1699 0.9038 3.40

MSC 0.2911 0.6746 0.3686 0.5291 0.3783 0.5232 1.53

SNV 0.1566 0.9058 0.3459 0.5854 0.2484 0.7945 2.33

EMSC 0.1436 0.9208 0.3801 0.4992 0.2609 0.7733 2.21

SG9 0.0300 0.9965 0.3154 0.6553 0.1696 0.9041 3.40*

125–150 RAW 0.0362 0.9950 0.1537 0.9189 0.2224 0.7726 2.21

MSC 0.1172 0.9477 0.2630 0.7623 0.1470 0.9006 3.34

SNV 0.1082 0.9554 0.2760 0.7384 0.1029 0.9513 4.78*

EMSC 0.0777 0.9770 0.2324 0.8145 0.1247 0.9285 3.94

SG9 0.0362 0.9950 0.1553 0.9171 0.2225 0.7722 2.21

90–125 RAW 0.0644 0.9840 0.3724 0.5164 0.1722 0.7574 2.14

MSC 0.0604 0.9859 0.4020 0.4365 0.1460 0.8257 2.52

SNV 0.0612 0.9855 0.4016 0.4376 0.1728 0.7557 2.13

EMSC 0.0833 0.9732 0.3505 0.5718 0.1655 0.7760 2.23

SG9 0.0651 0.9836 0.3768 0.5049 0.1715 0.7596 2.15

< 90 RAW 0.0620 0.9809 0.3505 0.4493 0.1298 0.8600 2.82*

MSC 0.2352 0.7252 0.2808 0.6466 0.3437 0.0175 1.06

SNV 0.2352 0.7253 0.2810 0.6460 0.3444 0.0133 1.06

EMSC 0.1560 0.8791 0.2745 0.6623 0.2471 0.4920 1.48

SG9 0.0627 0.9805 0.3523 0.4437 0.1302 0.8590 2.81

#The original spectra without any pretreatment.

*The best preprocessing methods using in each different single particle size.
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particle size. Derivative methods including first derivative
(1D) and second derivative (2D) were obtained to reduce
baseline variations observed in original diffuse reflectance
spectra and to enhance spectral features. Meanwhile, a nine-
point Savitzky-Golay smoothing filter (SG) was employed to
depress the background noise amplified by the derivative. For
the particle size model, MSC, SNV, and second derivative
were not appropriate for an effect to be modeled, so 1D +

SG, normalization and baseline subtraction were used. Leave-
one-out cross-validation was used to validate the validity
of methods. The lowest predicted residual sum of squares
(PRESS) value was used to determine the optimum latent
variables.

Quantitative Models of NIR Diffuse
Reflectance Using the Kubelka-Munk
Theory
Kubelka-Munk theory is the theoretical basis for the
establishment of quantitative models of NIR diffuse reflectance
and its function is as follows (Otsuka, 2004):

f (R∞) =
(1− R∞)2

2
R∞ =

k

s

According to the Kubelka-Munk function, reflectance is inversely
to proportional to the light-scattering coefficient (s), and the s
value is inversely proportional to particle size.

FIGURE 5 | The relation map of the reference value and predicted value using each different particle size.
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The absorbance of NIR diffuse reflectance is expressed by the
Kubelka-Munk equation:

A = −lg



1+
k

s
−

√

(

k

s

)2

+ 2

(

k

s

)





RESULTS AND DISCUSSION

Spectral Characteristics of NIR Diffuse
Reflectance Spectra of Different Particle
Size Samples
The representative raw spectra of Scrophularia radix with
different particle sizes are shown in Figure 1 i.e., the spectral
profiles were similar in shape. However, the main influences
of particle size variation on diffuse reflectance spectra was the
baseline offset. The well-known phenomenon that larger particles
showed a stronger absorption, illustrates that the particle size
is vital to the response. Some weak absorption peaks were

demonstrated in the second overtone region (SCOT, 1,000–
1,400 nm) of the fundamental C-H stretching bands, while
much fluctuations in the region of first combination-overtone
(FCOT, 1,400–2,040 cm−1) and combination region (CR, 2,040-
2,500 nm) were observed. Those absorption peaks might be
caused by the diffuse reflectance on different particle sizes.

HPLC Determination of Harpagoside
Content in Scrophularia Radix
The HPLC chromatograms of the representative sample and
standard are shown in Figure 2. The retention time of
harpagoside in a sample extract was the same as that for the
standard solution. Figure 3 shows the harpagoside concentration
of 30 samples. There is a significant difference in harpagoside
concentration of samples of different particle sizes. The biggest
difference of the particle sizes was located in the range of 180–
250µm, but the overall concentration design was suitable for the
modeling.

TABLE 3 | Preprocessing methods for different mix particle size models (3 particle size ranges).

Mix particle size (µm) Preprocessing Model evaluation parameters

RMSEC R2 RMSECV R2 RMSEP R2 RPD

180–850 RAW# 0.2492 0.7777 0.3188 0.6482 0.2699 0.7426 2.00*

MSC 0.2514 0.7737 0.3392 0.6016 0.3002 0.6817 1.80

SNV 0.2861 0.7068 0.3273 0.6291 0.3172 0.6446 1.70

EMSC 0.2319 0.8075 0.3410 0.5973 0.2781 0.7268 1.95

SG9 0.2494 0.7773 0.3193 0.6471 0.2702 0.7421 2.00

150–355 RAW 0.1927 0.8813 0.2338 0.8311 0.2157 0.8639 2.76

MSC 0.2039 0.8671 0.2752 0.7659 0.2594 0.8033 2.29

SNV 0.2654 0.7748 0.3081 0.7065 0.3117 0.7159 1.91

EMSC 0.1467 0.9312 0.2348 0.8296 0.2053 0.8767 2.90*

SG9 0.1933 0.8805 0.2345 0.8300 0.2161 0.8634 2.75

125–250 RAW 0.1592 0.9175 0.2233 0.8430 0.2592 0.7923 2.23

MSC 0.1691 0.9069 0.2358 0.8250 0.2473 0.8109 2.34

SNV 0.1684 0.9077 0.2428 0.8145 0.2902 0.7397 1.99

EMSC 0.1646 0.9118 0.2358 0.8251 0.2408 0.8208 2.40*

SG9 0.1597 0.9171 0.2239 0.8423 0.2595 0.7918 2.23

90–180 RAW 0.1395 0.9266 0.1983 0.8565 0.1843 0.8623 2.74

MSC 0.1721 0.8881 0.2538 0.7649 0.1926 0.8495 2.62

SNV 0.1805 0.8771 0.2706 0.7327 0.1978 0.8413 2.55

EMSC 0.1572 0.9067 0.2342 0.7998 0.1632 0.8919 3.09*

SG9 0.1393 0.9268 0.1974 0.8577 0.1844 0.8621 2.74

0–150 RAW 0.1585 0.8975 0.2009 0.8407 0.1744 0.8272 2.45

MSC 0.1567 0.8998 0.2315 0.7886 0.1699 0.8359 2.51*

SNV 0.1655 0.8883 0.2499 0.7536 0.1757 0.8245 2.43

EMSC 0.1553 0.9016 0.2268 0.7970 0.1736 0.8287 2.46

SG9 0.1588 0.8971 0.2008 0.8409 0.1746 0.8268 2.44

#The original spectra without any pretreatment.

*The best preprocessing method for different mix particle size models.
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PLS Models for NIR Diffuse Reflectance
Data Using Scrophularia Radix of Each
Single Particle Size
Based on different preprocessing methods, the PLS model
for each particle size was constructed. Figure 4 showed the
relationship between the latent variables and PRESS for
different preprocessing methods. In general, the lowest PRESS
value means the best latent variables (Pan et al., 2015). The
model was validated for prediction by internal sample set.
Moreover, the model performance values for each particle
size using different preprocessing methods are illustrated in
Table 2. Data showed that the raw spectra were the best
to construct the particle size model of 355–850µm and
<90µm. While the best preprocessing method for the particle
size model of 250–355µm, 180–250µm, 150–180µm, 125–
150µm, and 90-150µm was EMSC, SG9, SG9, SNV, and MSC,
respectively.

In addition, the model evaluation parameters, i.e., RMSEC,
RMSECV, RMSEP, and RPD, for the particle size of 355–850µm
was 0.0576, 0.1642, 0.2094, and 2.02, respectively. The parameter
values of other particle sizes are summarized in Table 2. The
relation map between predicted value and reference value is
shown in Figure 5, indicating that the best prediction result was
for the particle size of 125–150µm. Therefore, it could be known
that the NIR model was influenced by different particle sizes and
its quantitative characteristics was explored according to different
particle sizes.

PLS Models for NIR Diffuse Reflectance
Data Using Scrophularia Radix of Mix
Particle Size
The comparison of model performance for different types of
mix particle size (i.e., seven, six, five, four, and three types of
particle size) manifests that the mix particle size model was best

FIGURE 6 | The PRESS values of different preprocessing methods for mix particle size model.
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constructed for 3-type mix particle size (Table 3). Preprocessing
methods were also various, such as MSC, SNV, EMSC and SG9. It
can be seen from Figure 6, the optimum preprocessing method
for the mixed particle size of 180–850µm, 150–355µm, 125–
250µm, 90–180µm, and 0–150µm was SG9, untreated original
spectra, EMSC, EMSC, and MSC, respectively, as this model has
the lowest PRESS value.

The best prediction from the mix particle size model was
for 90–180µm with RPD value >3 (Table 3). The RPD values
of other mix particle size models were also about 2, meaning
that the model performance of the mix particle size models was
similar. This result further revealed that particle size was vital
to quantitative model performance of diffuse reflectance spectra
using NIR sensor. In order to make the relationship clearer, a
detailed comparison of the model of the single particle size and
mixed particle size was summarized.

Comparison of the Model Performance for
Single Particle Size and Mix Particle Size
It can be concluded from the comparison between the single
particle size and mixed particle size models that the RPD value
of the former was better than the latter. Although the prediction
results were good in the prediction performance in a certain
particle size range by using a single particle size model, the
prediction results of single particle size model were not stable.
Most of the applications of NIR diffuse reflectance spectra were
for a relatively broad range of particle sizes. As a result, a
mix particle size calibration model was used for prediction in
subsequent studies.

Moreover, the mix particle size correction model was also
used to predict the validation set for each particle size for

examining which particle size samples could be more accurately
predicted as well as achieving the guideline for subsequent
sample preparation. The model for particle size of 90–180µm
was selected to predict the particle size of 150–180µm, 125–
150µm, and 90–125µm and the best preprocessing method is
MSC (Table 4) and RPD values of the three prediction models
are 3.81, 5.78, and 2.81 (Table 5).

On the other hand, the RPD values of the models of single
particle size were 3.40, 4.78, and 2.52. Compared with the single
particle size model, the RPD value of the mix particle size model
was better illustrating that the prediction of the mix particle size
correction model was more accurate (Table 5). The relation map
between the reference and validation sets was shown in Figure 7.
The correlation between reference and prediction values was
good, which further demonstrated that the mix particle size
model was better than the single particle size model. Why
particle size was of great importance to the quantitative model
of the NIR diffuse reflectance? It was performed by the Kubelka-
Munk theory, which is a critical theory in the NIR diffuse
reflectance.

Discovery of the Linear Region of NIR
Diffuse Reflectance Spectra Using the
Kubelka-Munk Theory
In practice, NIR diffuse reflectance is usually used
for solid particle determination and its quantitative
evidence is based on the Kubelka-Munk theory
(Figure 8).

It can be learnt from the equation that the absorbance
had relationship with the k/s value. A linear relationship was
discovered between k/s value and A within a certain range.

TABLE 4 | The prediction model for the single particle size by using the mix particle size model.

Mix particle size(µm) Preprocessing Validation (150–180) Validation (125–150) Validation (90–125)

RMSEP R2 RPD RMSEP R2 RPD RMSEP R2 RPD

90–180 RAW# 0.2484 0.7945 2.33 0.1172 0.9369 4.20 0.1626 0.7839 2.27

MSC 0.2109 0.8519 2.74 0.1723 0.8634 2.85 0.1670 0.7721 2.21

SNV 0.2301 0.8237 2.51 0.1602 0.8820 3.07 0.1968 0.6832 1.87

EMSC 0.1499 0.9243 3.81 0.0850 0.9668 5.78 0.1328 0.8817 2.81*

SG9 0.2482 0.7949 2.33 0.1185 0.9354 4.15 0.1624 0.7844 2.27

#The original spectra without any pretreatment.

*The best prediction model for the single particle size by using the mix particle size model.

TABLE 5 | Predicted results of different samples of single Scrophulariaceae Radix particle size model and calibration particle size model.

Particle size (µm) Single calibration model Mix calibration model

R2
pre RMSEP RPD R2

pre RMSEP RPD

150-180 0.9041 0.1696 3.40 0.9243 0.1499 3.81

125-150 0.9513 0.1029 4.78 0.9668 0.0850 5.78*

90-125 0.8257 0.1460 2.52 0.8817 0.1328 2.81

*The best predicted results.
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As illustrated in Figure 9, the value for k/s was >4 obviously
indicating that a linear region existed. This results also explained
and guided the modeling performance of NIR diffuse reflectance.
It was found that such a linear region provides a reference for
the linear modeling of diffuse reflectance spectra. It is important
to note that the linear region is beneficial for establishing a
NIR diffuse reflectance model. According to our data, when the
scatter coefficient s does not change, the absorption coefficient
k is proportional to the sample concentration. In this study,
the quantitative models for single particle size and mix particle
size were both constructed to minimize the limitation that
the particle size of samples was only available in a certain

FIGURE 7 | The relation map of the calibration particle size models.

range. The model of single particle size was better than the
mix particle size owing to a small change in the scattering
coefficient s.

CONCLUSIONS

Particle size is of great importance to the quantitative model
of the NIR diffuse reflectance. In this study, the single particle
size and mix particle size models of Radix Scrophulariae were
constructed using PLS methods. For the single particle size
model, it was obvious that the best prediction model was for

FIGURE 9 | The relationship between the absorbance (A) and k/s value.

FIGURE 8 | The NIR diffuse reflectance and Kubelka-Munk theory.
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the particle size distribution of 125–150µm. This particle size
distribution illustrated that small particle size was beneficial
to construct the quantitative model of harpagoside in Radix
Scrophulariae.

For the mix particle size model, a better prediction was
obtained for the particle size distribution of 90–180µm
indicating that the mix particle size model could explain more
variation in the sample, and the accuracy and robustness of
the mix particle size model would be improved. Meanwhile,
the quantitative evidence of NIR diffuse reflectance of different
particle sizes was based on the Kubelka-Munk theory. A linear
relationship was discovered between k/s value and A within a
certain range. Data showed that a narrow range of the scatter
coefficients s resulted in a better model. Besides, the value for
k/s was >4 clearly indicating that a linear region exited. This
linear region helped explain and guide themodeling performance
of NIR diffuse reflectance data. Finding such a linear region
provided a methodological reference for the linear modeling
of NIR diffuse reflectance spectra. Thus, further accurate
assessment should be obtained in advance for a precise linear
model.

Our study also showed that the quantitative analysis of CHM
samples was more accurate when the scattering coefficient s
remains unchanged or differs insignificantly at theoretical level.
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In recent years, soft-sensors have been widely used for estimating product quality or

other important variables when online analyzers are not available. In order to construct a

highly accurate soft-sensor, appropriate data preprocessing is required. In particular, the

selection of input variables or input features is one of the most important techniques for

improving estimation performance. Fujiwara et al. proposed a variable selection method,

in which variables are clustered into variable groups based on the correlation between

variables by nearest correlation spectral clustering (NCSC), and each variable group is

examined as to whether or not it should be used as input variables. This method is called

NCSC-based variable selection (NCSC-VS). However, these NCSC-based methods

have a lot of parameters to be tuned, and their joint optimization is burdensome. The

present work proposes an effective input variable weighting method to be used instead of

variable selection to conserve labor required for parameter tuning. The proposedmethod,

referred to herein as NC-based variable weighting (NCVW), searches input variables that

have the correlation with the output variable by using the NC method and calculates the

correlation similarity between the input variables and output variable. The input variables

are weighted based on the calculated correlation similarities, and the weighted input

variables are used for model construction. There is only one parameter in the proposed

NCVW since the NC method has one tuning parameter. Thus, it is easy for NCVW to

develop a soft-sensor. The usefulness of the proposed NCVW is demonstrated through

an application to calibration model design in a pharmaceutical process.

Keywords: soft-sensor, calibration model, variable weighting, partial least squares, near infrared spectroscopy

1. INTRODUCTION

It is important in terms of process safety and quality control to estimate product quality or
other process variables, particularly when online analyzers are not available. Soft-sensors are
mathematical models for estimating variables that are difficult to measure by hard sensors in real-
time from other variables that are easy to measure. They have been used in various industries,
for example, measurement of product composition at distillation columns in chemical processes,
silicon wafer surface flatness in semiconductor processes, and active ingredient content of drugs in
pharmaceutical processes. There are three methodologies for constructing soft-sensors: (i) first-
principal modeling based on physicochemical knowledge of processes, (ii) statistical modeling
based on process data, and (iii) a combination of the two. These methodologies also are called
white-box, black-box, and gray-box modeling, respectively (Ahmad et al., 2014). In particular,
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statistical modeling has attracted wide attention due to recent
advances in machine learning. Although we can utilize various
machine learning techniques for soft-sensor development, partial
least squares (PLS) is still widely used in chemometrics as well as
soft-sensor design. This is because it is possible to construct an
accurate linear regression model even when the multicollinearity
problem occurs (Wold et al., 2001; Kano and Ogawa, 2010; Kano
and Fujiwara, 2013).

One of the major issues in developing a precise soft-sensor is
input variable selection. Although soft-sensors are well-fitted to
modeling data when numerous variables are used as the input,
their performance may deteriorate when unimportant variables
are used for estimation. In particular, input variable selection is a
key when a calibration model is constructed from Near-infrared
spectroscopy (NIRS) which is a powerful online measurement
technology due to its short measuring time and non-invasiveness
(Roggo et al., 2007;Miyano et al., 2014). The number of measured
wavelengths of an NIR spectrum is usually more than 100.

If all of the possible variable combinations are tested, the
computational load increases exponentially as the candidate
variables increase. Appropriate variables must be selected in a
systematic manner, which is referred to as input variable selection
in soft-sensors, and feature selection in machine learning. A
technique for input variable selection should be developed for
improving the efficiency of soft-sensor design (Andersen and
Bro, 2010; Mehmood et al., 2012).

In linear regression, stepwise and least absolute shrinkage
and selection operator (Lasso) are widely used as input variable
selectionmethods (Hocking, 1976; Tibshirani, 1996). In addition,
PLS-Beta and variable influence on projection (VIP) are available
for selecting input variables of PLS (Kubinyi, 1993).

Methods of selecting variables on the basis of correlation have
been proposed because the correlation between variables should
be considered when building a good regression model (Fujiwara
et al., 2009). In correlation-based variable selection methods,
variable groups are constructed according to the correlation,
some of which are selected as the input variables. Nearest
correlation spectral clustering (NCSC) (Fujiwara et al., 2010,
2011) is used for variable grouping. In NCSC-based variable
selection (NCSC-VS), variable groups are constructed by NCSC,
and it is examined whether or not they should be used as the
input variables according to their contribution to the estimates
(Fujiwara et al., 2012b). In addition, NCSC-based group Lasso
(NCSC-GL) uses group Lasso (Yuan and Lin, 2006; Bach, 2008)
for variable group selection after NCSC (Fujiwara and Kano,
2015). Although both NCSC-VS and NCSC-GL can build highly-
accurate soft-sensors, tuning their parameters is complicated and
time-consuming because they have multiple parameters to be
tuned. Therefore, the number of their tuning parameters should
be reduced for efficient variable selection.

Another approach is input variable weighting or input
variable scaling, which multiplies each input variable by weights
according to its importance from the viewpoint of estimation
(Kim et al., 2014). The present work proposes an effective input
variable weighting method to replace variable selection in order
to conserve labor required for parameter tuning. The proposed
method, referred to herein as NC-based variable weighting

(NCVW), searches input variables that have the correlation with
the output variable by using the NC method and calculates the
correlation similarity between each input variable and the output
variable. The input variables are weighted based on the calculated
correlation similarities, and the weighted input variables are used
for modeling. Since there is only one parameter in the proposed
NCVW, an efficient soft-sensor design is realized. In this work,
the usefulness of the proposed NCVW is demonstrated through
application to calibration model design for estimating active
pharmaceutical ingredient (API) content.

This paper is organized as follows. Section 2 introduces
conventional variable selection methods for PLS modeling, and
NCVW is proposed in section 3. Section 4 reports on application
results of the proposed method to pharmaceutical data. The
conclusion and future work are described in section 5.

2. CONVENTIONAL METHODS

This section introduces PLS and conventional input variable
selection methods.

2.1. PLS
PLS is a widely used linear regression method in chemometrics as
well as soft-sensor design. Given an input data matrix X ∈ ℜN×M

whose nth row is the nth input sample xn ∈ ℜ
M and an output

data vector y ∈ ℜN whose nth element is the nth output sample
yn ∈ ℜ, X and y are mean-centered and appropriately scaled.
The input X ∈ ℜN×M and the output y ∈ ℜN are broken down
as follows:

X = TPT
+ E (1)

y = Tb+ f (2)

where T ∈ ℜN×K is the latent variable matrix, whose columns
are the latent variable tk ∈ ℜ

N (k = 1, · · · ,K), P ∈ ℜM×K is
the loading matrix of X whose columns are the loading vectors
pk ∈ ℜ

M , and b = [b1, · · · , bK]
T is the regression coefficient

vector of y. K denotes the number of adopted latent variables.
E ∈ ℜN×M and f ∈ ℜN are errors.

A PLS model can be constructed by the non-linear iterative
partial least squares (NIPALS) algorithm. Let the first to kth latent
variables be t1, · · · , tk, the loading vectors be p1, · · · , pk and the
loading be b1, · · · , bk. The (k+1)th residual input and output are
as follows:

Xk+1 = Xk − trp
T
k (3)

yk+1 = yk − bktk. (4)

tk is a linear combination of the columns of Xk, that is, tk =
Xkwk where wk ∈ ℜ

M is the kth weighting vector. wk is
the eigenvector corresponding the maximum eigenvalue of the
following eigenvalue problem:

XT
k−1y

T
k−1yk−1Xk−1wk = λwk (5)

where λ is an eigenvalue. The kth loading vector pk and the
kth loading bk are pk = XT

k
tk/t

T
k
tk and bk = yT

k
tk/t

T
k
bk.
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This procedure is repeated until the number of adopted latent
variables K is achieved; K can be determined by cross-validation.

2.2. PLS-Beta
PLS-Beta translates a PLS model, Equations (1, 2), into a multiple
linear regression (MLR) model and selects input variables based
on the magnitude of its regression coefficients (Kubinyi, 1993).
The translated model is expressed as

ŷ = T(TTT)−1Ty = Xβpls (6)

where βpls = W(PTW)−1(TTT)−1y, and W = [w1, · · · ,wK] ∈

ℜM×K . The evaluation index of PLS-Beta ν is defined as

ν =
||βselect||

||βpls||
(0 < ν ≤ 1) (7)

where βselect is the regression coefficient vector of the selected
input variables. We select individual input variables in
descending order of the magnitude of βpls until ν achieves
a predefined threshold.

2.3. Variable Influence on Projection (VIP)
The VIP evaluates the contribution of each input variable to the
output (Kubinyi, 1993). The VIP score of the jth input variable is

Vj =

√

√

√

√M

K
∑

k=1

(

w2
jk
b2
k
(tT
k
tk)/||wk||

2
)/

K
∑

k=1

b2
k
(tT
k
tk) (8)

where wjk is the jth element of wk. Variables satisfying Vj > η (>
0) are selected.

2.4. Stepwise
Stepwise is an input variable selectionmethod for theMLRmodel
based on a statistical test which checks whether or not the true
value of the regression coefficient of a newly added candidate
variable is zero (Hocking, 1976).

2.5. Least Absolute Shrinkage and
Selection Operator (Lasso)
Lasso is least squares with L1 regularization so that some
regression coefficients approach zero (Tibshirani, 1996). The
objective function of Lasso is as follows:

βlasso = arg min
β

(

||y − Xβ||22 + λ||β||1

)

, λ (> 0) (9)

Least angle regression (LARS) solves the problem of Equation (9)
efficiently (Efron et al., 2004).

3. NEAREST CORRELATION BASED
VARIABLE WEIGHTING (NCVW)

The present work proposes a new method for weighting input
variables for PLS modeling to be used instead of variable
selection. Since the proposed method uses the nearest correlation
(NC) method for calculating correlation-based variable weights,

this section explains the NC method and variable selection
methods based on the NC method before the proposed method
is described.

3.1. NC Method
The NC method was originally developed as an unsupervised
learning technique for detecting samples whose correlation is
similar to the query (Fujiwara et al., 2012a). The procedure of the
NC method is described in Algorithm 1.

Algorithm 1 Nearest correlation (NC) method

1: Prepare xn(n = 1, · · ·N) and xq.
2: Set γ .
3: for all n = 1, 2, · · · ,N (n 6= q) do
4: x′n = xn − xq.
5: end for

6: for all k, l (k 6= l) do
7: Calculate C′

k,l
from x′

k
and x′

l
.

8: if |C′
k,l
| ≥ γ then

9: Output xk and xl as similar samples to xq
10: end if

11: end for

The concept of Algorithm 1 is explained through a simple
example. In Figure 1 (left), there are seven samples xq, x1, · · · , x6,
of which five xq and x1, · · · , x4 are on the same plane P. That is,
plane P expresses the hidden correlation between the five samples
and x5 and x6 have a different correlation. The aim of the NC
method here is to detect samples whose correlation is similar to
the query xq, that is, to detect x1, · · · , x4 on P.

In steps 3–5, the entire space is translated so that xq becomes
the origin by subtracting xq from all other samples xn as shown
in Figure 1 (right). The translated plane P becomes the linear
subspace V since it contains the origin.

Draw lines connecting each sample and the origin, and check
whether another sample is on the line in steps 6–8. In this
example, pairs x1-x4 and x2-x3 satisfy such a relationship, and
x5 and x6, which are not on V , cannot make pairs. At this time,
the correlation coefficients of these pairs must be 1 or −1. Thus,
the pairs whose correlation coefficients are ±1 are thought to
have a correlation similar to xq. The threshold of the correlation
coefficient γ (0 < γ ≤ 1) is used for constraint relaxation. Steps
6–8 correspond to the above procedure.

Finally, the pairs whose correlations are similar to the query
xq are output in step 9.

3.2. NCSC
NCSC was originally proposed for sample clustering based on
correlation between variables (Fujiwara et al., 2010, 2011), in
which the NC method and spectral clustering (SC) (Ding et al.,
2001; Ng et al., 2002) are integrated. SC is a graph theory-
based clustering method, which can partition a weighted graph,
whose weights express affinities between nodes, into subgraphs
by cutting some of their arcs. In NCSC, the NC method is
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FIGURE 1 | Example of the NC method: A red circle is the query xq. Dashed lines denote pairs of samples, whose correlation is similar to xq (left) (Fujiwara et al.,

2010, 2012a,b).

used for building an affinity graph expressing the correlation-
based similarities between samples, and SC partitions the graph
constructed by the NC method.

Algorithm 2 shows an affinity matrix construction procedure
in NCSC. Steps 6–13 correspond to the NC method, and the
weighted graph constructed by the NC method is expressed as
an affinity matrix S. Although some SC algorithms have been
proposed, the max-min cut (Mcut) algorithm (Ding et al., 2001)
or its extended method (Ng et al., 2002) is used herein.

Algorithm 2 Affinity matrix construction

1: Set γ and J.
2: S ∈ ℜN×N ← ON,N .
3: L = 1.
4: for L = 1 to N do

5: SL ∈ ℜ
N×N ← ON,N .

6: for all n = 1, 2, · · · ,N (n 6= L) do
7: x′n = xn − xL.
8: end for

9: for all k, l (k 6= l) do
10: Calculate C′

k,l
from x′

k
and x′

l
.

11: if |C′
k,l
| ≥ γ then

12: (SL)k,l = (SL)l,k = 1.
13: end if

14: end for

15: S = S+ SL.
16: end for

NCSC has two parameters: the threshold in the NC method γ

and the number of clusters partitioned by SC, J. Previous studies
have suggested the default value of γ to be 0.99 (Fujiwara et al.,
2010, 2011), and that J needs to be determined by trial and error.

3.3. NCSC-VS and NCSC-GL
NCSC has been utilized for variable selection in soft-sensor
design. In these methods, multiple variable groups are
constructed by NCSC, of which some are selected as the
input variables of a soft-sensor. NCSC classifies variables into J
variable groups vj = {xm | m ⊂ Vj} (j = 1, · · · , J), where Vj is

the subset of variable indexes and V = ∪Vj. An affinity matrix is

derived from the transposed input variable matrix XT by the NC
method for variable grouping.

NCSC-VS evaluates each variable group as to whether or not
its members should be used as input variables from the viewpoint
of contribution to the output (Fujiwara et al., 2012b). The jth PLS
model with the number of latent variables P, f Pj , is built from the

jth variable group matrix Xj, and its contribution is evaluated by

CP
j = 1−

||ŷPj ||
2

||y||2
(10)

where ŷPj is the estimate of f Pj . We select D (≤ J) variable groups

in descending order ofCP
j and construct the final PLSmodel from

the selected input variables.
NCSC-GL selects variable groups by using group Lasso instead

of contribution evaluation in NCSC-VS. Group Lasso is an
extension of Lasso for selecting some input variable groups from
predefined multiple variable groups (Yuan and Lin, 2006; Bach,
2008).

Suppose that M variables are divided into J groups; and Xj

and βj denote the input data matrix and the regression coefficient
vector corresponding to the jth group, respectively. The number

of variables in the jth group is Mj, that is, M =
∑J

j=1Mj. The

regression coefficients of group Lasso is derived as:

βglasso = arg min
β

(

||y −

J
∑

j=1

Xjβj||
2
2 + λ

J
∑

j=1

√

Mj||βj||2

)

(11)

where β = [βT
1 , · · · ,β

T
J ]

T , and λ is a parameter. Variable groups
must be constructed in advance in group Lasso. Thus, NCSC-GL
uses variable groups formed byNCSC as the input of group Lasso.

NCSC-VS has four tuning parameters: γ in the NC method,
the number of variable groups partitioned by SC, J, latent
variables in the PLS models for variable group evaluation, P,
and selected variable groups, D. On the other hand, there are
three tuning parameters in NCSC-GL: γ in the NC method, the
number of variable groups J formed by SC and λ in group Lasso.
These three or four parameters need to be tuned for appropriate
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input variable selection. However, their joint optimization is
burdensome and time-consuming. For more efficient soft-sensor
design, the number of tuning parameters should be reduced.

3.4. NCVW
A new input variable weighting method, referred to as NC-based
variable weighting (NCVW), is proposed to be used instead of
variable selection for conserving labor required for parameter
tuning. The proposed method applies the NC method to the
input variables and output variable together for calculating
similarities based on the correlation between the input variables
and output variable, and uses the input variables weighted by the
calculated similarities for modeling.

Let the nth input sample and the nth output sample are xn ∈
ℜM and yn, where M denotes the number of input variables. In
NCVW, the NC method is applied to extended samples

x′n = [x[1]n , · · · , x[M]
n , yn]

T (n = 1, · · · ,N) (12)

and the affinity matrix S′ is constructed. Next, the 1st to Mth
element in the (M + 1)th column of S which corresponds to
the output variable is extracted as a weighting vector w =

[w[1], · · · ,w[M]]. Finally, a new input variable for PLS modeling
is formed as

zn = w ◦ x = [w[1]x[1], · · · ,w[M]x[M]]T . (13)

where a ◦ b denotes an element-wise product between vectors a
and b. Algorithm 3 summarizes the procedure of the proposed
NCVW.

Algorithm 3 Nearest correlation based variable weighting
(NCVW)

1: Prepare xn and yn (n = 1, · · ·N).

2: xn ←− [x
[1]
n , · · · , x

[M]
n , yn]

T (n = 1, · · · ,N)
3: Get S ∈ ℜ(M+1)×(M+1) by applying Algorithm 2 to xn.
4: Extract the 1st toMth element in theM+ 1th column of S as

w = [w[1], · · · ,w[M]].
5: zn = w ◦ x = [w[1]x[1], · · · ,w[M]x[M]]T (n = 1, · · ·N).
6: Construct a model from zn by PLS.

In soft-sensor design, the correlation among multiple input
variables needs to be considered as well as the correlation between
an individual input variable and the output variable. Thus, the
proposed NCVW does not evaluate the correlation between each
input variable and the output variable, but the correlation of
multiple input variables together, which may contribute to an
improvement in the estimation performance of a soft-sensor. In
addition, the proposed NCVW has only one parameter, which is
the threshold of the NCmethod γ . This leads to a huge efficiency
improvement of soft sensor development.

4. CASE STUDY

This case study evaluates the performance of the proposed
NCVW through application to pharmaceutical data provided by
Daiichi Sankyo Co., Ltd. (Kim et al., 2011).

4.1. Objective Data
The objective of this case study is to design a calibration model
that estimates active pharmaceutical ingredient (API) content in
a target drug. NIR spectra (2203 points in 800−2500 nm) and
the API content were measured from the granules of the drug
through experiments. Since the number of wavelengths in NIR
spectra was large, appropriate input wavelengths of NIR spectra
had to be selected for constructing a precise calibration model.
The modeling data and validation data consisted of 576 and 20
samples, respectively.

4.2. Model Construction
Before modeling, a first-order differential Savitzky-Golay
smoothing filter (Savitzky and Golay, 1964) was applied to the
spectra. As a benchmark, a PLS model using all the wavelengths
as the input was constructed, which was called PLS-All. The
number of its adopted latent variables was determined by cross-
validation. Input wavelengths were selected using PLS-Beta, VIP,
stepwise, Lasso, NCSC-VS, and NCSC-GL. Parameters used in
each method were selected by trial and error, which are shown
in Table 1. We calculated the root-mean-square error (RMSE)
for the modeling data in each parameter and determined the
optimal wavelengths based on the calculated RMSE.

We designed PLS models with the wavelengths selected by
each method in which cross-validation was used for determining
the appropriate number of latent variables. Although Lasso
derives regression coefficients, the PLS model was built from the
wavelengths whose regression coefficient was not zero. This is
for the reason that the number of retained wavelengths was still
large and dimension reduction by PLSmay have been needed. On
the other hand, in the proposed NCVW, we calculated variable
weights and constructed the PLS model from the weighted
wavelengths. Finally, the API content was estimated by these
constructed PLS models.

These procedures were repeated 100 times for calculating
average CPU time per one modeling of each method. The
computer configuration was as follows: OS: Windows10 (64bit),

TABLE 1 | Tested parameters.

Parameters

PLS-All –

PLS-Beta ν = {0.70, 0.75, 0.80, 0.85, 0.90, 0.95}

VIP η = {0.6, 0.7, 0.8, 0.9, 1.0, 1.1}

Lasso λ = {0.1, 0.2, 0.4, 0.5, 0.8, 1.0}

Stepwise p̄ = {0.005, 0.05, 0.08, 0.1, 0.12, 0.15}

NCSC-VS γ = 0.99

J = {5, 6, 7, 8, 9, 10}

P = {9, 10, 11}

D = {2, 3}

NCSC-GL γ = 0.99

J = {5, 6, 7, 8, 9, 10}

λ = {20, 25}

NCVW γ = 0.99
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CPU: Intel Core i7-8700 (3.2 GHz×6), RAM: 64G bytes, and
MATLAB 2018a.

Table 2 summarizes the results of the case study. #Wavelength
and #LV mean the numbers of selected wavelengths and
adopted latent variables determined by cross-validation, R2 is
the determination coefficient, “CPU time” is the average CPU
times [s], and “Parameters” denotes the optimal parameters in

TABLE 2 | API content estimation results.

#WL #LV Parameters RMSE R2 CPU time [s]

PLS-All 2203 37 – 1.28 0.83 –

PLS-Beta 928 36 ν = 0.75 1.06 0.81 1.52

VIP 1133 19 η = 0.8 1.01 0.83 0.36

Lasso 1138 39 λ = 0.2 0.98 0.87 0.17

stepwise 561 24 p̄ = 0.15 1.42 0.72 1.64

NCSC-VS 843 25 γ = 0.99, J = 6,

P = 10, D = 2

0.77 0.92 202.39

NCSC-GL 1059 18 γ = 0.99, J = 8,

λ = 25

0.71 0.93 204.04

NCVW 2203 15 γ = 0.99 0.74 0.92 202.27

each method. In addition, Figure 2 shows the detailed estimation
results.

While PLS-Beta, VIP, and Lasso improved the estimation
performance compared to PLS-All, only stepwise was worse
than PLS-All. Both NCSC-VS and NCSC-GL achieved higher
performance than methods above; and, in particular, NCSC-
GL had the best performance. The proposed NCVW achieved
almost the same performance as NCSC-VS and NVSC-GL,
even though NCVW has only one tuning parameter. RMSE
of NCVW was improved by about 42% in comparison with
PLS-All.

It is concluded that the proposed NCVW is a tuning-free soft-
sensor design technique and that its performance is comparable
to the NCSC-based methods.

4.3. Discussion
According to Table 2, the CPU time of NCSC-VS, NCSC-GL,
and the proposed NCVW were much longer than those of other
methods. NCSC occupied more than 99% of their CPU time
since it uses iteration for similarity calculation, which means
NCVW does not improve the computational load. In addition,
the estimation performance of NCVW was not improved in

FIGURE 2 | API content estimation results: (A) PLS-All, (B) PLS Beta, (C) VIP, (D) Lasso, (E) Stepwise, (F) NCSC-VS, (G) NCSC-GL and, (H) NCVW (Fujiwara et al.,

2010, 2012a,b).
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FIGURE 3 | Wavelength group selection by NCSC-VS and variable weights by

NCVW.

comparison with NCSC-GL; however, construction of the actual
soft-sensor therewith is much easier than NCSC-VS and NCSC-
GL. The latter methods respectively have four and three tuning
parameters. In this case study, 36 calculations in NCSC-VS and
12 calculations in NCSC-GL were repeated for searching the
best parameter combination according to Table 1. It becomes
difficult to find the optimal parameter combination when the
number of tuning parameters increases. On the other hand,
NCVW has just one parameter–the threshold of the NC method
γ and its recommended value has been proposed to be γ =

0.99 (Fujiwara et al., 2010, 2011). In fact, the total computation
times of NCSC-VS, NCSC-GL, and the proposed NCVW were
about 121, 42, and 3 min, respectively, for parameter tuning
in this case study. Thus, the proposed NCVW makes the
soft-sensor design much more efficient than NCSC-VS and
NCSC-GL.

Variable weighting based on another type of the weight,
the correlation coefficient between each input variable and the
output variable, was evaluated. This method is called correlation
coefficient-based variable weighting (CCVW). The mth variable
weight of CCVW is defined as follows:

c[m]
=

yTx[m]

||y||||x[m]||
(14)

where x[m] ∈ ℜN denotes the mth column in the input data
matrix X ∈ ℜN×M and y ∈ ℜN is the output data vector. A
PLS model was constructed from the input variables weighted by
c[m]. RMSE and R2 of NCVW were 1.34 and 0.84, respectively.
This showed the effectiveness of the variable weight by NCVW
which consider the correlation of multiple input variables and the
output variable together.

Figure 3 shows the results of wavelength selection of NCSC-
VS and the variable weights calculated by the proposed NCVW.
The colored bands express the selected wavelengths, and the
colors denote groups by NCSC-VS. The red line is the weights of

NCVW. The wavelength groups selected by NCSC-VS contained
almost only specific peaks. On the other hand, in NCVW, the
weights of almost all wavelength regions that contain peaks, were
large while some peaks had small weights. This is consistent
with the physicochemical knowledge that information about
compounds is contained in specific peaks. Some peaks might
have important information about the API content, and other
peaks might not contribute to API content estimation. Therefore,
the weights by NCVW suggest that unnecessary peaks for
API content estimation exist in NIR spectra. This indicates
that NCVW can create meaningful weights for soft-sensor
design.

5. CONCLUSION

In the present work, an input variable weighting method
was proposed for efficient and highly-accurate soft-sensor
design. The proposed NCVW derives the variable weights on
the basis of the correlation between the input variables and
output variable by utilizing the NC method and builds a PLS
model from the weighted input variables. Since NCVW has
just one tuning parameter, its soft-sensor design is efficient.
The performance of NCVW was evaluated through the case
study of calibration model development of the pharmaceutical
process. The result showed that the estimation performance
of NCVW was comparable to that of NCSC-VS and NCSC-
GL, while the labor required for parameter tuning was greatly
conserved. Although the objective data used in the case
study was NIR spectra data, the application area of the
proposed method is not limited to a specific type of data.
The proposed NCVW is applicable to general soft-sensor
design when the number of input variables is large. Therefore,
NCVW will contribute to realizing the efficient soft-sensor
design.
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The accuracy of quantitative models for near-infrared (NIR) spectroscopy is dependent

upon calibration samples with concentration variations. Conventional sample-collection

methods have shortcomings (especially time-consumption), which creates a “bottleneck”

in the application of NIR models for Process Analytical Technology (PAT) control. We

undertook a study to solve the problem of sample collection for construction of NIR

quantitative models. Amoxicillin and potassium clavulanate oral dosage forms (ODFs)

were used as examples. The aim of this study was to find an approach to construct

NIR quantitative models rapidly using a NIR spectral library based on the idea of a

universal model. The NIR spectral library of amoxicillin and potassium clavulanate ODFs

was defined and comprised the spectra of 377 batches of samples produced by 26

domestic pharmaceutical companies, including tablets, dispersible tablets, chewable

tablets, oral suspensions, and granules. The correlation coefficient (rT) was used to

indicate the similarities of the spectra. The calibration sets of samples were selected from

a spectral library according to the median rT of the samples to be analyzed. The rT of the

samples selected was close to the median rT. The difference in rT of these samples was

1.0–1.5%. We concluded that sample selection was not a problem when constructing

NIR quantitative models using a spectral library compared with conventional methods of

determining universal models. Sample spectra with a suitable concentration range in NIR

models were collected rapidly. In addition, the models constructed through this method

were targeted readily.

Keywords: near-infrared spectroscopy, universal model, sample selection, spectral library, quantitative analysis

INTRODUCTION

Near infrared spectroscopy (NIRS) is a rapid, low-cost, and non-destructive
technology that has been used widely in quality control and for the rapid
detection of pharmaceuticals (Jamrógiewicz, 2012; Chong et al., 2016; Dong et al.,
2016). It has also been used to monitor pharmaceutical manufacturing online
(Möltgen et al., 2012; Sarraguça et al., 2014; Wahl et al., 2014). In 2003, US The
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Food and Drug Administration (FDA) announced
Pharmaceutical Current Good Manufacturing Practices
(cGMPs) for the twenty-first century to obtain better knowledge
of production processes. The document offers guidelines
to secure pharmaceutical quality via process control of raw
materials as well as intermediate and final products during
manufacturing (Velagaleti et al., 2002; United States Food and
Drug Administration, 2004). Process Analytical Technology
(PAT) is the key point of process control during pharmaceutical
production (United States Pharmacopeial Convention, 2015).
NIRS is the most frequently used method of PAT because it is
efficient, pollution-free and has no need for sample pretreatment
(Hertrampf et al., 2015).

The accuracy of quantitative analysis depends on NIRmodels.
Sample selection is challenged during the selection of NIR
quantitative models. A sufficient number of samples are needed
to comprise the appropriate concentration range necessary
for the calibration set. However, collecting enough calibration
samples with concentration variability in the PAT process is
difficult.

Five methods have been proposed to collect calibration
samples. The first method uses normal products and the
development of samples, which are normally out of specification
and can extend the concentration range (Gottfries et al., 1996;
Merckle and Kovar, 1998; Corti et al., 1999). The second
method uses standard additions for active pharmaceutical
ingredients (APIs) or excipients to increase or decrease the
sample concentration (Dreassi et al., 1996; Blanco et al., 1997,
2001). The third method uses laboratory-made samples by
changing the concentration of the components in the matrix
(Moffat et al., 2000; Blanco et al., 2001). The fourth method uses
laboratory-made samples with production samples that comprise
granules, tablet cores, and coated tablets (these are all sources of
variation in the model) (Blanco et al., 1998). The fifth method
uses a mixture of API and excipients in different proportions
for preparation of laboratory-scale samples (Mafalda and Lopes,
2009).

These methods can broaden the range of the calibration
concentration. However, the sample-preparation procedure is
time-consuming. Also, the samples prepared in the laboratory are
not “real” commercial products because they cannot encompass
all the chemical and physical properties of commercial products
(e.g., excipients, particle size, polymorphs). Besides, constructing
models using underdosed and overdosed samples may carry
problems in terms of the correlation between the concentrations
of API and other excipients (Mafalda and Lopes, 2009).
When constructing models of compound preparations, the
underdosing/overdosing procedure should be done by means of
a “sample concentration matrix.” This involves calculation of
the cross-correlation between the constituents as their individual
concentrations are increased or decreased, thereby avoiding
spurious correlations among constituents (Blanco and Alcala,
2006). Therefore, sample selection remains a “bottleneck” in the
application of NIR models for PAT control.

We have been studying NIR universal models (Feng et al.,
2010). Such a universal model could be used to rapidly
analyze pharmaceuticals from different manufacturers under the

same international non-proprietary name (INN). A homologous
sample based on the application of universal samples has been
proposed (Zou et al., 2013). A set of samples are considered
“homologous” if they contain the same API, similar excipients,
and similar production processes. The NIR spectra of the
samples in one homologous sample set are, therefore, highly
similar. Calibration sets in the universal model comprise several
homologous samples. Samples can be accurately analyzed via
universal models if they fall into homologous samples from
the calibration set. Errors may occur, and the original model
should be updated if the universal model analyzes a new sample
that cannot be covered by the existing homologous sample sets.
Universal models do not need sample preparation. All of the
calibration and validation samples can be obtained in the market.
The method of sample selection ensures an appropriate range of
calibration concentration, which is important to develop a robust
calibration.

Amoxicillin and potassium clavulanate are compound
preparations of β-lactam and β-lactamase inhibitors, respectively.
They are used for the treatment of bacterial infections of the
respiratory and urinary tracts. The oral dosage forms (ODFs)
for amoxicillin and potassium clavulanate combined in different
ratios are tablets (7:1, 4:1, 2:1), dispersible tablets (14:1, 7:1,
4:1), chewable tablets (8:1, 2:1), granules (7:1, 4:1), and oral
suspensions (7:1, 4:1, 2:1). Universal models of tablets of
amoxicillin and potassium clavulanate are constructed to
measure the content of amoxicillin, potassium clavulanate, water,
and the major impurity: cycle-closed dimer (Chong et al., 2016).
Some NIR methods have been proposed for determination of
amoxicillin in suspensions and capsules, in which calibration
samples are formulated similar to those for commercial products
(Silva et al., 2012; Khan et al., 2016).

Herein, we took the concept of a universal model to
build a NIR spectral library of ODFs for amoxicillin and
potassium clavulanate by collecting various products with
different strengths from different manufacturers. Calibration
samples could be chosen from the NIR spectral library when
establishing NIR universal models to determine the contents
of amoxicillin, potassium clavulanate, and/or water in the PAT
control. Samples were considered to be homologous if they were
similar to calibration samples. The feasibility of constructing NIR
models using a NIR spectral library was discussed. Thus, the
problem of collecting calibration samples could be resolved by
PAT control.

MATERIALS AND METHODS

Samples and Reagents
Three hundred and seventy seven batches of amoxicillin and
potassium clavulanate ODFs produced by 26 manufacturers were
collected in post-marketing surveillance in 2012 and 2014. There
were 74 batches of tablets, 78 batches of dispersible tablets, 10
batches of chewable tablets, 96 batches of granules, and 120
batches of oral suspensions; 211 samples of amoxicillin capsule
were from 100 batches provided by ZhuHai United Laboratories.
The amoxicillin capsules included mixed intermediate granules
of amoxicillin capsules as well as filled capsules and/or packaged
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capsules of the same batch. A reference standard of amoxicillin
trihydrate (lot number: 130409-201011; content: 85.8%) and
potassium clavulanate (lot number: 130429-201307; content:
95.0%) were provided by the US National Institutes for Food and
Drug Control.

Methanol was purchased from Fisher Scientific (Pittsburgh,
PA, USA). Phosphoric acid was obtained from Beijing Chemical
Works (Beijing, China). Sodium dihydrogen phosphate
dihydrate was purchased from Sinopharm Chemical Reagents
(Beijing, China).

Reference Method
The reference contents of amoxicillin and potassium clavulanate
were determined by high-performance liquid chromatography
(HPLC) (Chong et al., 2016) using an Ultimate 3000 HPLC
system (Dionex, Sunnyvale, CA, USA) and an ZORBAX SB-
C18 column (5µm, 150 × 4.6mm; Agilent Technologies, Santa
Clara, CA, USA). The chromatographic conditions were: column
temperature, 30◦C; detection wavelength, 220 nm; flow rate,
1mL min−1; injection volume, 20 µL; mobile phase, 5:95 (v/v)
methanol/phosphate buffer (0.05mol L−1 sodium dihydrogen
phosphate pH adjusted to 4.4 with 10% phosphoric acid).

For each tablet or granule/oral suspension of amoxicillin and
potassium clavulanate, 10 tablets or 10 bags of granules/oral
suspensions were pulverized in a motor, weighed accurately,
dissolved in the mobile phase to get 0.5mg mL−1 of amoxicillin
or potassium clavulanate for HPLC analysis. Two replicate runs
were done for each sample to get the average reference value.
The water content was determined via the Karl Fischer method
according to the Chinese Pharmacopoeia.1

Acquisition and Pre-processing of NIR
Spectra
Acquisition of NIR spectra was done on a MATRIX-F FT-NIR
spectrometer (Bruker Optics, Billerica, MA, USA) equipped with
a 1.5-mm fiberoptic diffuse reflectance probe and an extended
TE-cooled indium gallium arsenide (InGaAs) detector. Data
were collected and processed using OPUS v6.5 software (Bruker
Optics).

The fiberoptic probe was used to record diffuse reflectance
spectra at 8 cm−1 resolution in the spectral range 4,000–
12,000 cm−1. During each measurement, 32 co-added scans
were undertaken. The measurement was carried out by putting
the fiberoptic diffuse reflectance probe close to the sample.
For each tablet, dispersible tablet, and chewable tablet of
amoxicillin and potassium clavulanate, three tablets were selected
randomly and measured. The weight of each tablet was 0.5–
1.0 g. Three sample bags, weighing 3.0–6.0 g, were selected
randomly and measured for a granule and oral suspension
of amoxicillin and potassium clavulanate. For each mixed
intermediate granule of an amoxicillin capsule, 5 g of powder
was placed in a vial and measured in triplicate. For each filled
capsule and packaged capsule of amoxicillin, 5 g of powder of
the capsule was placed in a vial and measured thrice. The three
original spectra were averaged by OPUS v6.5 software. The

1Chinese Pharmacopeia 2015th Volume IV.103–104.

average spectra were then subjected to a Savitzky–Golay first
derivative treatment with 17-point smoothing, followed by vector
normalization transformation. The pre-processed spectra were
used for construction and validation of the model.

Compilation of a NIR Spectral Library
The NIR spectral library comprised the spectra of 377 batches
of amoxicillin and potassium clavulanate ODFs produced by 26
manufacturers (74 batches of tablets, 78 batches of dispersible
tablets, 10 batches of chewable tablets, 96 batches of granules,
and 120 batches of oral suspensions). For the NIR spectra of
the library, the content of amoxicillin was 4.77–57.86%, the
content of potassium clavulanate was 1.03–20.17%, and the water
content was 0.24–9.30%. The correlation coefficient rT between
the spectra of each amoxicillin and potassium clavulanate ODF
in the library and average spectra of tablets of amoxicillin and
potassium clavulanate were calculated from 4,200 to 10,000
cm−1. The rT ranged from 34.42 to 99.69% with an average of
71.78%. The rT (Equation 1) of the two spectra y1 (k) and y2
(k) was calculated as the ratio of their covariance to the product
of the two standard deviations σy1 and σy2. The value of rT
ranges from −1 (inverted spectra) to +1 (identical spectra) and
is expressed as a percentage.

rT =
Cov(y1(k), y2(k))

σy1σy2
(1)

Construction of the NIR Quantitative Model
Calibration models were constructed using the PLS1 algorithm
(PLS regression for one y-variable) (Brereton, 2000; Burns and
Ciurczak, 2008) available in the Quant 2 package of OPUS v6.5
software. The Rank value is the number of main factors in
building the PLS model. Validation methods of calibration model
include a Test Set Validation (TSV) and Leave-One-Out Cross
Validation (LOOCV). In the relevant Figures and Tables, rank is
the number of PLS latent variables (LV), which is determined by
a one-sided F-test on PRESS (Equation 2). R2 (Equation 3) is the
coefficient of determination, and gives the percentage of variance
present in the true component values, which is reproduced in the
prediction.M is the number of samples of the validation set. Ym is
the mean of true concentration values. Differi (Equation 4) is the
difference between the true value and predicted value. RMSEP
(Equation 5) is the root-mean-standard error of prediction in
TSV. RMSECV (Equation 6) is the root-mean-standard error of
LOOCV. Principal Component Analysis (PCA) scores indicate
the position (coordinates) of the samples. PCA is calculated on
the basis of calibration spectra.

PRESS =

∑M

i=1

(

Differi
)2

(2)

R2
=











1−

M
∑

i=1
(Differi)

2

M
∑

i=1
(Yi − Ym)

2











× 100 (3)

Differi = Yi
true

− Yi
pred (4)
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FIGURE 1 | Experimental design and list of all models.
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FIGURE 2 | Representative spectra of a tablet, dispersible tablet, chewable tablet, granule, and oral suspension of amoxicillin and potassium clavulanate, and the

spectrum of amoxicillin.

FIGURE 3 | Spectra of calibration samples of model 1 after being first-derivative preprocessed with a modeling spectral region.

RMSEP =

√

√

√

√

1

Mt
·

Mt
∑

i=1

(Differi)
2 (5)

RMSECV =

√

√

√

√

1

Ml
·

Ml
∑

i=1

(Differi)
2 (6)

Conventional Method of Construction of a Universal

Quantitative Model
A universal model was constructed based on our reported
method (Chong et al., 2016). That is, all sample spectra were
grouped into hierarchical clusters based on the Euclidean
distance calculated from the Ward algorithm, and 19 groups
were set according to the sample-selection strategy (Jia
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FIGURE 4 | TSV of model 1. (A) Plot of prediction values vs. true values. (B) Plot of difference vs. true values. The red line shows the zero line of difference. The blue

line shows deviation of the zero line.

et al., 2011). Three random samples from each cluster
were selected. Two of these samples were composed of the
calibration set, and the remaining one was the validation
set. Sixty-four spectra were selected to establish the NIR
quantitative model to analyze the content of amoxicillin,
potassium clavulanate, and water. Some test spectra for which
the prediction differences were greater than the expected
values, were transferred to the calibration set to optimize the
model.

Construction of a Universal Quantitative Model Using

the NIR Spectral Library
All spectra were sequenced via the rT value. One spectrum was
selected according to differences in rT values to construct a NIR
quantitative model. Two-thirds of these spectra were composed
of the calibration set; whereas one-third of the spectra were in the
test set. Some spectra from the test set, for which the prediction
difference was greater than expected, were transferred to the
calibration set to optimize themodel. These spectra could be used

to analyze the content of amoxicillin, potassium clavulanate, and
water.

Validation of the Accuracy of the NIR Quantitative

Model
The accuracy of NIR quantitative models was evaluated
by Prediction Difference, which was the difference between
the predicted content and reference content of amoxicillin,
clavulanate, and water.

Prediction Difference = |Prediction Content − Reference
Content|

Sample Measurements
Here, 377 batches of amoxicillin and potassium clavulanate
ODFs from post-marketing surveillance were measured in two
time periods: 137 samples were measured for about 3 months
in 2012, and the others were measured for about 6 months
in 2014.
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Spectra of 211 amoxicillin capsule samples were acquired for
PAT control at ZhuHai United Laboratories (Guangdong Sheng,
China) for about 7 months in 2016.

EXPERIMENTAL DESIGN

Four steps were designed in the experiment (Figure 1). At first,
a universal model (model 1) of amoxicillin for all amoxicillin
and potassium clavulanate ODFs was constructed using a
conventional calibration method for sample selection. Then, the
NIR spectral library was used for modeling (model 2). Model
1 was used as a reference model to compare with model 2. If
the results analyzed by model 2 were close to those analyzed by
model 1, the spectral library was effective. Simultaneously, the
appropriate difference between rT values of adjacent spectra in
the calibration set was tested (models 2, 3, and 4). At the second
step, models for a dispersible tablet (models 5 and 6) and models
for a granule (models 7 and 8) were constructed using a general
method for constructing aNIRmodel using spectral library. If the
general models performed well, it was validated by constructing
models for analyzing potassium clavulanate (clavulanate models
1, 2, 3, and 4) and water content (water models 1, 2, 3, and 4) in
the third step. Finally, the spectral-library method was applied to
a real PAT control. Models for analyzing amoxicillin and water
content in mixed intermediate granules of amoxicillin capsules
were constructed.

RESULTS AND DISCUSSION

Representative spectra of a tablet, dispersible tablet, chewable
tablet, granule, and oral suspension of amoxicillin and potassium
clavulanate are shown in Figure 2. The spectra of a tablet,
dispersible tablet, and chewable tablet are similar. Due to their
prescription, low strength, and production process, the spectra
of granule and oral suspension are quite different from those of
a tablet, dispersible tablet, and chewable tablet. The spectrum

of the amoxicillin API (Figure 2) was similar to the spectra of
amoxicillin and potassium clavulanate ODFs in some spectral
regions, such as the bands between 8,300 and 9,500 cm−1

(overtone of C-H stretching vibrations), and between 5,300 and
6,500 cm−1, 4,200 and 4,800 cm−1 (overtone of C = O bonds).
The calibration models analyzing amoxicillin could be set up on
the basis of these spectral ranges.

Universal Quantitative Model for
Amoxicillin ODFs
The universal quantitative model for amoxicillin set up using the
conventional method was called “amoxicillinmodel 1” (model 1).
The spectral range employed for model 1 is shown in Figure 3.
Figure 4 shows the result of test-set validation of model 1.

After optimization, there were 44 sample spectra for the
calibration set (training set) and 20 for the validation set (test
set). R2 was found to be 98.83% with RMSEP 1.23% (Table 1).
The average predicted difference between the predicted content
and reference content of amoxicillin was only 1.3%. Hence, this
NIR method could be a replacement of the HPLC method.

The universal quantitative model for amoxicillin constructed
using the NIR spectral library was called “amoxicillin model 2”
(model 2). Model 2 and the subsequent models were optimized
and validated by the same method as that used for model 1.
The difference in rT values between adjacent spectra using model
2 was about 1.0%. The results of the two models were close
(Table 1), so they had the same analysis capacity for amoxicillin.

The average of the difference between rT values of adjacent
spectra in the calibration set of model 1 was about 1.5%.
The influence of the difference between rT values of adjacent
spectra was also investigated. “Amoxicillin model 3” (model
3) and “amoxicillin model” 4 (model 4) were constructed
with a difference of 2.0 and 0.8%, respectively. The prediction
differences of 377 samples analyzed by models 1, 2, 3, and 4 were
compared (Table 1). We found that the prediction differences of

TABLE 1 | Parameters and prediction differences of models 1, 2, 3, and 4.

Parameter Model 1 Model 2 Model 3 Model 4

Training set Test set Training set Test set Training set Test set Training set Test set

Number of samples 44 20 46 19 25 8 s61 25

Content range (%, mg/mg) 5.78–39.20 5.88–37.65 5.17–53.56 5.23–39.65 4.85–57.86 5.87–29.31 4.85–57.86 5.45–53.33

Wavenumber range (cm−1) 9426.6–8273.4, 7702.5–7124.0,

6549.3–5970.7

9426.6–7124.0, 6549.3–5396.0,

4825.2–4246.6

7702.5–7124.0, 6549.3–5396.0,

4825.2–4246.6

9426.6–7124.0, 6549.3–5396.0,

4825.2–4246.6

Pre-processing method 1st derivative + vector

normalization

1st derivative + vector

normalization

1st derivative + vector

normalization

1st derivative + vector

normalization

Rank 5 5 4 4

R2 (%) 98.83 99.13 99.57 99.00

RMSEP (%) 1.23 1.25 0.509 1.29

rT Difference (%) 1.5 1.0 2.0 0.75

Samples whose prediction

difference is >5%

3.7% (14/377) 3.7% (14/377) 7.4% (28/377) 5.0% (19/377)

Samples whose prediction

difference is <1%

46.2% (174/377) 43.0% (162/377) 29.0% (109/377) 40.0% (151/377)

Average prediction

difference

1.3% 1.6% 2.0% 1.7%
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models 1, 2, and 4 were close and less than that of model 3—
especially with samples, whose deviation was >5%. When there
were large differences between rT values of adjacent spectra, the
calibration samples decreased and became less representative. A
difference of 1.5% was suitable for modeling.

Construction of NIR Quantitative Models
for Specific ODFs of Amoxicillin Using a
Spectral Library
We used dispersible tablets of amoxicillin and potassium
clavulanate as an example to establish a universal quantitative
model for one dosage form (Table 2). Calibration sample spectra
were selected according to the rT value from a spectral library
comprising 377 spectra of amoxicillin and potassium clavulanate
ODFs. At first, only the calibration spectra of dispersible tablets
were selected from the spectral library. The 78 spectra of
dispersible tablets were sequenced by rT value, and 30 spectra
were chosen with a difference between rT values of adjacent
spectra of 1.0–1.5% to construct “amoxicillin model” 5 (model 5).

“Amoxicillin model 6” (model 6) was established in a similar
way. It means that the spectra of all dosage forms were selected
for calibration. The average rT value of 78 dispersible tablets
was nearly the median value of rT of the 30 calibration spectra,
among which there were 12 spectra for a dispersible tablet.
Comparing the PCA-score distribution space of models 5 and
6, the calibration samples of model 5 covered almost all of the
distribution space of dispersible tablets; whereas the calibration
samples of model 6 covered more space than model 5 (Figure 5).
The prediction results of 78 batches of dispersible tablets by
models 1, 2, 5, and 6 are shown in Table 3. The prediction
differences seen in models 5 and 6 were lower than in the other
two models. It is clearly indicated that it was feasible to construct
NIR quantitative models of dispersible tablets of amoxicillin and
potassium clavulanate using a spectral library.

The prescription and production process of tablets/dispersible
tablets and granules/oral suspensions are quite different. As
a result, the spectra of those dosage forms differed greatly
(Figure 2). On this occasion, granules were taken as an example
to validate the feasibility of constructing NIR quantitative models
using a spectral library.

Models 7 and 8 were established similar to models 5 and 6.
Thirty spectra were selected with a difference between rT values

of adjacent spectra of 1.0–1.5%. Calibration spectra frommodel 7
were chosen from 96 spectra of granules. Samples from model 8
were from all dosage forms in the spectral library. Because the

FIGURE 5 | (A) PCA scores of model 5; pink blocks represent training-set

spectra, and white triangles represent other spectra of dispersible tablets in

the spectral library. (B) PCA scores of model 6; blocks represent training-set

spectra, dark-blue blocks represent tablets, pink blocks represent dispersible

tablets, yellow blocks represent chewable tablets, light-blue blocks represent

oral suspensions, orange blocks represent granules, and white triangles

represent other spectra of dispersible tablets in the spectral library.

TABLE 2 | Parameters of models 5, 6, 7, and 8.

Parameter Model 5 Model 6 Model 7 Model 8

Training set Training set Training set Training set

Number of samples 30 30 30 30

Content range (%, mg/mg) 18.57–40.32 7.97–57.86 4.85–8.05 4.77–22.27

Wavenumber range (cm−1) 8277.2–7698.7,

5399.9–4821.2

6549.3–5970.7,

4825.2–4246.6

5797.2–5276.5 8851.9–8273.4,

6549.3–5970.7

Pre-processing method 1st derivative + vector

normalization

1st derivative + vector

normalization

1st derivative + vector

normalization

1st derivative + vector

normalization

Rank 4 4 5 5

R2 (%) 97.48 96.46 96.28 94.07

RMSECV (%) 1.14 2.32 0.197 1.20
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rT value of the oral suspension was close to that of a granule,
13 oral suspension spectra were comprised by model 8. A tablet
spectrum was not included in model 8. The prediction values of
all the granules included by the spectral library by models 1, 2, 7,
and 8 are shown in Table 3. The results of models 7 and 8 were
better.

Dispersible tablets of amoxicillin and potassium clavulanate
could be analyzed equally well by models 5 and 6. Similar results
could be obtained for granules by models 7 and 8. The rT value
was critical for sample selection, but it was not necessary to
choose the same dosage form as the samples to be measured.

A general method for constructing NIR quantitative models
using a spectral library was summarized based on the
experiments above (Figure 6). Firstly, the appropriate spectra of
the samples to be measured were acquired, and the rT value
calculated according to the definition of rT in the spectral
library. Secondly, the calibration samples were selected based
on the median rT value of samples to be measured. The
difference between rT values of adjacent spectra in the calibration
set was about 1.0–1.5%. The number of calibration samples

should be ≥ 30, and their rT value should cover the range of
samples to be measured. Finally, the model accuracy is validated
by the samples to be measured. Appropriate sample spectra
could be added to the calibration set to optimize the model if
necessary.

Validation of the General Method for
Constructing a NIR Quantitative Model
Using a Spectral Library
Constructing NIR Quantitative Models for Potassium

Clavulanate
A universal quantitative model for potassium clavulanate
(“clavulanate model 1”) was set up as shown in section
Conventional Method of Construction of a Universal
Quantitative Model. “Clavulanate model 2” was constructed
by the general method as shown in Figure 6. The parameters
and prediction difference for 377 samples in the spectral
library of the two models (Table 4) indicated that the

TABLE 3 | Predictions of dispersible tablets and granules of amoxicillin and potassium clavulanate by amoxicillin models.

Model rT Difference Dosage form Number of samples Samples whose prediction

difference is >5%

Samples whose prediction

difference is <1%

Average prediction difference

1 1.5% Dispersible tablets 78 2.6% 53.8% 1.3%

Granules 96 0% 53.1% 1.0%

2 1.0% Dispersible tablets 78 6.4% 43.6% 1.9%

Granules 96 0% 51.0% 1.2%

5 0.7% Dispersible tablets 78 0% 64.1% 0.8%

6 0.9% Dispersible tablets 78 0% 52.6% 1.2%

7 1.6% Granules 96 0% 100.0% 0.1%

8 1.1% Granules 96 0% 81.2% 0.8%

FIGURE 6 | General method for constructing a NIR model using a spectral library.
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two methods of constructing models could lead to ideal
results.

Similar to section Universal Quantitative Model for
Amoxicillin ODFs, clavulanate model 3 (for dispersible tablets)
and clavulanate model 4 (for granules) were constructed by the
general method mentioned above. The prediction difference
of 78 batches of dispersible tablets and 96 batches of granules
by clavulanate models 3 and 4 were both <1.0% (Table 4).
These two models were accurate and reliable. The feasibility of
establishing a NIR quantitative model using the spectral library
was also demonstrated.

Constructing NIR Quantitative Models for Water

Content
Universal quantitative models for water content (water model
1, 2, 3, 4) were established as shown in section Conventional
Method of Construction of a Universal Quantitative Model, and
the general method for a spectral library consequently resulted

as shown in section Constructing NIR Quantitative Models for
Potassium Clavulanate (Table 5). Water models 1 and 2 could be
used to analyze all the dosage forms of amoxicillin and potassium
clavulanate in the spectral library. Water models 3 and 4 could
be used to analyze dispersible tablets and granules, respectively.
Table 5 shows that the prediction differences of the four models
was <1.0%. These data further validated the validity of the
general modeling method using a spectral library.

Application of the Method for Constructing
a NIR Quantitative Model Using a Spectral
Library
The production process of amoxicillin capsules can be
summarized as follows: granules are mixed with excipients
after dry granulation of API and sieving; the mixed granules are
then placed into capsules. The content of mixed intermediate
granules of amoxicillin capsules ranged from 80.0 to 84.0%.
The water content ranged from 12.1 to 13.0%. Mixed

TABLE 4 | Parameters and prediction differences of clavulanate models.

Parameter Clavulanate Model 1 Clavulanate Model 2 Clavulanate Model 3 Clavulanate Model 4

Training set Test set Training set Test set Training set Test set Training set Test set

Number of samples 53 16 46 19 30 12 32 10

Content range (%, mg/mg) 1.13–17.62 1.40–15.79 1.13–20.12 5.18–17.61 1.10–19.60 1.16–14.63 1.03–3.14 1.29–3.01

Wavenumber range (cm−1) 7702.5–7124.0,6549.3–5970.7 10001.3–8848.1,

6549.3–5396.0

6549.3–5970.7,4825.2–4246.6 10001.3–8848.1,6549.3–5396.0

Pre-processing method 1st derivative + vector

normalization

1st derivative + vector

normalization

1st derivative + vector

normalization

1st derivative + vector

normalization

Rank 5 6 6 6

R2 (%) 99.63 99.48 99.63 99.78

RMSEP (%) 0.271 0.386 0.226 0.0317

Samples whose prediction

difference is >5%

1.8% (7/377) 1.8% (7/377) 0% (0/78) 0% (0/96)

Samples whose prediction

difference is <1%

69.0% (260/377) 72.1% (272/377) 60.0% (47/78) 93.7% (90/96)

Average prediction

difference

0.8% 0.9% 0.8% 0.2%

TABLE 5 | Parameters and prediction differences of water models.

Parameter Water Model 1 Water Model 2 Water Model 3 Water Model 4

Training set Test set Training set Test set Training set Test set Training set Test set

Number of samples 47 19 46 16 30 10 32 11

Content range (%, mg/mg) 1.39–9.29 1.50–7.17 0.41–8.98 1.29–7.67 1.42–8.73 1.89–7.08 0.50–2.60 1.30–2.28

Wavenumber range (cm−1) 9403.5–7498.1 10502.8–9951.2,

7752.7–5546.4

10502.8–8848.1,

8304.2–7197.3

8851.9–7748.8, 6101.9–5546.4

Pre-processing method 1st derivative + vector

normalization

1st derivative + vector

normalization

1st derivative + vector

normalization

1st derivative + vector

normalization

Rank 3 5 6 2

R2 (%) 99.33 99.67 99.23 93.59

RMSEP (%) 0.174 0.117 0.13 0.0737

Samples whose prediction

difference is >5%

0% (0/377) 0% (0/377) 0% (0/78) 0% (0/96)

Samples whose prediction

difference is <1%

87.0% (328/377) 80.9% (305/377) 47.4% (37/78) 96.9% (93/96)

Average prediction

difference

0.4% 0.5% 1.0% 0.4%

Frontiers in Chemistry | www.frontiersin.org May 2018 | Volume 6 | Article 18445

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Zou et al. NIR Library for Quantitative Models

TABLE 6 | Parameters and prediction difference of models for the amoxicillin capsule constructed using a spectral library.

Parameter Amoxicillin Model Water Model

Training set Test set Training set Test set

Number of samples 38 13 42 11

Content range (%, mg/mg) 7.97–84.40 8.05–84.31 1.42–12.80 1.89–12.60

Wavenumber range (cm−1) 7702.5–7124, 6549.3–5970.7, 4825.2–4246.6 9955.1–8848.1, 7752.7–7197.3

Preprocessing method 1st derivative + vector normalization 1st derivative + vector normalization

Rank 5 5

R2 (%) 99.91 99.38

RMSEP (%) 0.854 0.256

Samples whose prediction difference is >5% 0% (0/211) 0% (0/211)

Samples whose prediction difference is <1% 41.2% (87/211) 65.4% (138/211)

Average prediction difference 0.8% 0.4%

intermediate granules had only slight variability, so their
NIR spectra were not suitable for a calibration set. We tried
to set up NIR quantitative models for analyzing the content
of amoxicillin and water in mixed intermediate granules of
amoxicillin capsules using a spectral library of amoxicillin
and potassium clavulanate ODFs because their spectra were
similar.

The rT values of 211 samples were calculated according
to the definition of rT. The median value of rT of sample
spectra was 91.33%. The maximum and minimum rT values
were 99.29 and 88.98%, respectively. About 40 calibration
spectra were selected from the spectral library. The difference
in the adjacent spectra was 1.0–1.5%. The NIR model for
amoxicillin was optimized by adding 16 spectra of mixed
intermediate granules to the calibration set. The 13 spectra
of mixed intermediate granules were added to the calibration
set of the model for water content. Then, NIR quantitative
models for the content of amoxicillin and water were constructed
(Table 6). The prediction difference between the two models
was small, so they could be used to analyze the content
of amoxicillin and water of mixed granules rapidly during
production.

CONCLUSIONS

A NIR spectral library of amoxicillin and potassium clavulanate
ODFs was established using a universal model. The similarity
between NIR spectra was represented by the correlation
coefficient rT. About 30–50 calibration spectra were selected
from the spectral library according to the median rT value
to construct the NIR quantitative model. The difference in rT
values between adjacent calibration spectra was about 1.0–1.5%.
Compared with conventional modeling, this general method
using a spectral library could be used to resolve sample-
collection problems. This method requires calibration samples
with an appropriate concentration range over a short time for
PAT control. Furthermore, the quantitative models were more
specific than models constructed by conventional methods. The
proposed method offers a new and effective approach to solve the
sample-selection problem in PAT modeling.
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Owing to the role of H2S in various biochemical processes and diseases, its accurate

detection is a major research goal. Three artificial fluorescent probes based on

9-anthracenecarboxaldehyde derivatives were designed and synthesized. Their anion

binding capacity was assessed by UV-Vis titration, fluorescence spectroscopy, HRMS,
1HNMR titration, and theoretical investigations. Although the anion-binding ability of

compound 1 was insignificant, two compounds 2 and 3, containing benzene rings, were

highly sensitive fluorescent probes for HS− among the various anions studied (HS−, F−,

Cl−, Br−, I−, AcO−, H2PO
−

4 , SO
2−
3 , Cys, GSH, and Hcy). This may be explained by the

nucleophilic reaction between HS− and the electron-poor C=C double bond. Due to

the presence of a nitro group, compound 3, with a nitrobenzene ring, showed stronger

anion binding ability than that of compound 2. In addition, compound 1 had a proliferative

effect on cells, and compounds 2 and 3 showed low cytotoxicity against MCF-7 cells in

the concentration range of 0–150 µg·mL−1. Thus, compounds 2 and 3 can be used as

biosensors for the detection of H2S in vivo and may be valuable for future applications.

Keywords: fluorescent probe, hydrogen sulfide, 9-anthracenecarboxaldehyde, nucleophilic substitution,

cytotoxicity

INTRODUCTION

Hydrogen sulfide (H2S) is a toxic gas with smell resembling rotten eggs. It is a bioactive gaseous
signalingmolecule, along with nitrous oxide (NO) and carbonmonoxide (CO) (Kimura et al., 2012;
Lisjak et al., 2013; Kimura, 2015; Mishanina et al., 2015). CO and NO are reactive oxygen species,
whereas H2S gas is a scavenger of reactive oxygen species. Under certain pressure conditions, H2S
can modulate mitochondria in mammalian cells. It also participates in many biochemical processes
such as inflammation, blood pressure control, neuro-transmission, and ischemia reperfusion (Fu
et al., 2012; Andreadou et al., 2015; Li F. et al., 2015;Wallace et al., 2015). H2S is also a relaxing agent
that can act on smooth muscle and can serve as a modulator of cardiac function in cardiovascular
therapy (Polhemus and Lefer, 2014; Barr et al., 2015; Chai et al., 2015; Holwerda et al., 2015). In
addition, abnormal levels of H2S are associated with many diseases, oxygen sensing, and even death
(Olson et al., 2006; Pandey et al., 2012). Therefore, the construction of fluorescent probe to detect
H2S has important practical applications.
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Traditional methods for determining the concentration of
H2S in biological samples include colorimetric, electrochemical,
chromatographic, metal-induced vulcanization, and fluorescence
analyses (Tangerman, 2009; Shen et al., 2011). Fluorescent
molecular probes are commonly used for detection tool in
various fields, including in biological samples owing to their
ability to convert chemical information into light signals with
high sensitivity and selectivity. Hence, the development of
fluorescent probes for the detection of H2S has attracted
substantial research attention (Jiménez et al., 2003; Choi et al.,
2009; Yu et al., 2012, 2014).

However, a few reports have focused on the development
of fluorescent probes based on the binuclear character of H2S
(Asthana et al., 2016; Das et al., 2016). Therefore, we used this
approach to synthesize highly selective and sensitive fluorescent
probes that can detect H2S. Under physiological conditions,
hydrogen sulfides exist as 30% H2S in a non-resolving state
and 70% residual HS−. Thus, HS− detection can serve as a
proxy for H2S. In this study, we designed and synthesized novel
anthracene derivatives in which a -C=C- bond served as an
interaction site (Scheme 1). The abilities of these compounds to
bind to various anions (HS−, (n-C4H9)4NF (F−), (n-C4H9)4NCl
(Cl−), (n-C4H9)4NBr (Br

−), (n-C4H9)4NI (I
−), (n-C4H9)4NAcO

(AcO−), (n-C4H9)4NH2PO4 (H2PO
−

4 ), Na2SO3 (SO
2−
3 ), cysteine

(Cys), glutathione(GSH), and homocysteine (Hcy) were assessed

SCHEME 1 | Synthesis routes of compounds 1, 2, and 3.

through UV-Vis titration, fluorescence spectroscopy, HRMS and
1HNMR titration for HS− sensitivity and selectivity. These
compounds were also investigated for cytotoxicity to MCF-7
cells.

MATERIALS AND METHODS

Most of the starting materials were obtained commercially.
All reagents and solvents were of analytical grade. Sodium
hydrosulfide, all anions, in the form of tetrabutylammonium
salts such as (n-C4H9)4NF, (n-C4H9)4NCl, (n-C4H9)4NBr,
(n-C4H9)4NI, (n-C4H9)4NAcO, and (n-C4H9)4NH2PO4, and
amino acids (Cys, GSH, and Hcy) were purchased from
Aladdin (Shanghai, People’s Republic of China), stored in a
vacuum desiccator containing self-indicating silica, and used
without further purification. Tetrabutylammonium salts were

dried for 24 h under a vacuum with P2O5 at 333K before
use. Dimethyl sulfoxide was distilled in vacuo after being dried
with CaH2.

1H NMR spectra were recorded using a Varian
Unity Plus 400 MHz spectrometer. ESI-HRMS was performed
using a Mariner apparatus. UV-Vis spectroscopy titration was
performed using a Shimadzu UV2550 spectrophotometer at
289K. Fluorometric titration was performed using an Eclipse
fluorescence spectrophotometer (Agilent, Santa Clara, CA, USA)
at 298K. IR spectroscopy was performed using an IRTracer-100
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instrument. The binding constants (Ks) were obtained by the
non-linear least-squares method for data fitting.

Cells in logarithmic growth phase were seeded in 96-well
plates at a density of 2.0 × 104 cells per well and cultured
for 24 h. The culture medium was then replaced with 200
µL of Roswell Park Memorial Institute (RPMI) 1640 medium
containing various concentrations of the compound, and the
cells were further incubated for 24 h. Next, the cells were washed
with phosphate buffered saline (PBS) three times, and 100 µL
of culture medium and 20 µL of MTT solution were added to
each well. After further incubation (4 h), the absorbance of each
well was detected at 490 nm using a microplate reader (Thermo
Multiskan MK3, Thermo Fisher Scientific, MA, USA). Plain cell
culture medium was used as the control.

Compound 1 was synthesized according to previous methods
(Ding et al., 2013). 9-Anthracenecarboxaldehyde (82.4mg, 0.4
mmol) and acetone (35mg, 0.6 mmol) were dissolved in ethanol
(50mL). Then, under stirring, an aqueous sodium hydroxide
solution (2mL, 0.04 mol·L−1) was slowly added to the reaction
flask. The mixture was stirred at room temperature for 6 h and
adjusted to pH 5–6 with dilute hydrochloric acid (0.1 mol·L−1)
until the reaction was complete. The reaction was monitored by
thin-layer chromatography. Typically, a precipitate formed and
was collected by filtration. The solid was washed with high purity
water and ethanol, and dried under a vacuum. Yield: 87%. 1H-
NMR (400 MHz, CDCl3, 298K) δ 8.84 (d, J = 16.2Hz, 1H), 8.52
(s, 1H), 8.38 (d, J = 8.3Hz, 2H), 8.07 (d, J = 7.9Hz, 2H), 7.69–
7.47 (m, J= 88Hz, 4H). 13CNMR (101MHz, CDCl3) δ 194.10, δ
147.53, δ 141.15, δ 135.40, δ 134.28, δ 129.71, δ 128.98, δ 128.60, δ
126.54, δ125.35. IR spectrum, ν cm −1: 1668 (C=O); 1628 (C=C);
1593 (Ar-C=C); 999 (C=C-H). ESI-HRMS (m/z): 457.2 (M +

Na)+.
Compound 2 and 3 were synthesized according to the above

procedure.
Compound 2: 1H NMR (400 MHz, CDCl3, 298K) δ 8.83 (d,

J = 15.8Hz, 1H), 8.52 (s, 1H), 8.40–8.27 (m, J = 52Hz, 2H),
8.18–8.00 (m, J = 72Hz, 4H), 7.68–7.60 (m, 2H), 7.60–7.48 (m,
6H). 13C NMR (101 MHz, DMSO) δ 191.24,δ 140.88,δ 139.87,δ
137.75,δ 131.15,δ 129.15,δ 128.52,δ 127.32,δ 126.53,δ 125.50. IR
spectrum, ν cm −1: 3050 (Ar C-H); 1730 (C=O); 1560 (C=C);
720 (C=C-H). ESI-HRMS (m/z): 309.1 (M + H)+, 331.1 (M +

Na)+.
Compound 3: 1H NMR (400 MHz, CDCl3, 298K) δ 8.92 (d,

J = 15.8Hz, 1H), 8.92 (d, J = 15.8Hz, 1H), 8.55 (s, 1H), 8.47
(s, 1H), 8.51–8.36 (m, J = 60.0Hz, 3H), 8.42–8.22 (m, 6H), 8.28
(dd, J= 23.9Hz, 8.3Hz, 4H), 8.16–8.05 (m, J= 44Hz, 2H), 8.15–
8.04 (m, J = 44Hz, 2H), 7.62–7.52 (m, J = 40Hz, 4H), 7.65–7.52
(m, J = 52Hz, 4H), 7.28 (s, 3H). 13C NMR (101 MHz, DMSO)
δ 188.64,δ 150.36,δ 142.55,δ 131.59,δ 131.32,δ 129.47,δ 127.43,δ
126.15,δ 125.55,δ 124.41. IR spectrum, ν cm−1: 1750 (C=O); 1590
(C=C); 1520 (N-O); 880 (C=N). ESI-HRMS (m/z): 376.1 (M +

Na)+.

RESULTS AND DISCUSSION

UV-Vis Spectral Titration
UV-Vis titration was performed in dimethyl sulfoxide by
the stepwise addition of sodium hydrosulfide (Figure 1). For

compound 1, the presence of HS− resulted in an increase in the
absorption intensity at 315 nm, but the spectral changes were
very small. Furthermore, the addition of F−, Cl−, Br−, I−, AcO−,
H2PO

−

4 , SO
2−
3 , Cys, GSH, or Hcy resulted in very weak spectral

changes for compound 1, and the binding capacity was negligible.
For compound 2, the intensity of the absorption peak

increased at 312 nm after the addition of sodium hydrosulfide.
A hyperchromic effect was observed during the host-guest
interaction process. The change in the UV-Vis spectrum was due
to the interaction between sodium hydrosulfide and the electron-
deficient C=C double bond (Zhao et al., 2012). However, the
addition of F−, Cl−, Br−, I−, AcO−, or H2PO

−

4 did not cause
a substantial spectral response for compound 2 (Figure S1),
suggesting that the host-guest interaction was weak (Shao et al.,
2009; Shang et al., 2013, 2015a). For compound 3, the intensity
of the absorption peak at 336 nm increased, and the absorption
band was enhanced after HS− addition. However, the addition
of F−, Cl−, Br−, I−, AcO−, H2PO

−

4 , SO
2−
3 , Cys, GSH, or Hcy

resulted in a very weak spectral response, indicating that the
host-guest interaction was negligible. These results suggested that
compounds 2 and 3 both showed high sensitivity and selectivity
for HS−.

Fluorescence Response
The photophysical responses of the three probes to various
anions were examined. As shown in Figure 2, compound 1

showed an emission peak centered at 582 nm. After the addition
of HS− to a solution of compound 1, the spectral response of
compound 1 was very weak, indicating that the binding ability
was negligible.

For compound 2, emission peaks were centered at 382 and
404 nm. After the addition of HS−, the fluorescence emission
was significantly quenched. No significant spectral changes were
observed after titration of F−, Cl−, Br−, I−, H2PO

−

4 , AcO
−,

SO2−
3 , Cys, GSH, or Hcy, indicating that compound 2 had an

insignificant binding capacity for these anions (Figure S2A).
For compound 3, there was almost no fluorescence response.

After the addition of HS−, a new emission peak at approximately
420 nm appeared, which was gradually accompanied by two
shoulders centered at 402 and 440 nm. This fluorescence
enhancement may be resulted from two possible signal
transduction mechanisms: the inhibition of photo-electron
transfer and binding induced by the guest’s host molecules
(Watanabe et al., 1998; Lee et al., 2002; Lin et al., 2006). However,
no significant spectral changes were observed when compound 3

was titrated with F−, Cl−, Br−, I−, H2PO
−

4 , AcO
−, SO2−

3 , Cys,
GSH, or Hcy, indicating that compound 3 did not significantly
bind to these anions (Figure S2B). The fluorescence calibration
curve for compound 3 after the addition of HS− indicated that
the emission intensity was non-linear when various quantities of
HS− were added to a solution with a certain concentration of
compound 3 (Shang et al., 2012a).

Binding Constant
The spectral responses of compound 1 after the addition of
anions were very weak; hence, the binding constant could not
be calculated. The UV-Vis spectral changes for compounds
2 and 3 were ascribed to the formation of host-guest (1:2)
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FIGURE 1 | UV-vis spectral changes of compounds 1, 2, and 3 after the addition of HS−. (A) compound 1: 6.90 × 10−5 mol·L−1, HS−: (0–76) × 10−5 mol·L−1;

(B) compound 2: 1.46 × 10−4 mol·L−1, HS−: (0–2) × 10−3 mol·L−1; (C) compound 3: 1.1 × 10−4 mol·L−1, HS−: (0–16) × 10−4 mol·L−1.

FIGURE 2 | Changes in the emission spectra of the three compounds in the presence of HS−: (A) compound 1: 6.9 × 10−5 mol·L−1, HS−: 0–20.7 × 10−5

mol·L−1, λex = 442 nm; (B) compound 2: 1.46 × 10−4 mol·L−1, HS−: 0–50.1 × 10−4 mol·L−1, λex = 324 nm; (C) compound 3: 1.1 × 10−4 mol·L−1, HS−: 0–7.7

× 10−4 mol·L−1, λex = 368 nm.
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complexes; when the absorbance intensity was greatest, the ratio
of [H]/([H]+[G]) was approximately 0.3, according to a Job-
plot (Figure S3). The binding constants were calculated by the
non-linear least-squares method according to the UV-Vis data
provided in Table 1 (Bourson et al., 1993; Liu et al., 2001, 2004).
It was shown that, the spectra changed little for compound 1, and
compounds 2 and 3 showed the strongest binding ability for HS−

among the various anions tested. The anion binding abilities were
in decreasing order: HS− >> SO2−

3 ∼Cys∼GSH∼Hcy∼ F− ∼

Cl− ∼ Br− ∼ I− ∼AcO− ∼H2PO
−

4 . The standard deviations for
the binding constants were R3 = 0.9941 and R2 = 0.9945. Among
the three compounds, the standard deviation for compound
1 was not statistically significant, and those for compounds 2

and 3 were significant (compound 2, S = 31.6011, compound
3, S = 159.3298) (Figure S6). The anion binding ability could
be attributed to the host-guest interactions and the match in
space structures. It means that HS− ions strongly bound to these
compounds, according to their binding constants (Shang et al.,
2012b).

Compound 3 showed a stronger binding ability toward HS−

ions than that of compound 2, owing to the presence of a
nitro group. The nitro group served as an electron-withdrawing
group that enhanced the binding ability between the C=C double
bond in compound 3 and HS−. According to the HRMS data,
the observed negative ion peak (418.0577) was the MS peak of
the 3-HS− complex (theoretical value: 418.0572) (Figure S4). In
addition, there was no peak of –CH2- in the 1HNMR titration
results, suggesting that the C=C double bond was broken during
the interaction between compound 3 and HS− (Figure S5).
Therefore, a possible host-guest binding mechanism was as
follows. The first step was the Michael addition reaction of the
conjugated system (Li J. et al., 2015). The first HS− ion was
added to the C=C moiety as a nucleophile. Then, the second

TABLE 1 | Binding constants of the three compounds with various anions.

Aniona Ks (1) Ks (2) Ks (3)

HS− NDb (4.77 ± 0.77) × 105 (1.07 ± 0.45) × 106

F−, Cl−, Br−, I−,

AcO−, H2PO
−

4 , SO2−
3 ,

Cys, GSH, Hcy

ND ND ND

aAnions was added in the form of sodium sulfide or tetra-n-butylammonium salts.
bThe spectra changed little, and the binding constant could not be determined (ND).

HS− ion attacked the active hydrogen atom (alpha-H) as an
electrophile moiety, forming the final structure as shown in
Scheme 2. The final structure was verified by mass spectrometry.
The reaction of compound 3 with HS− was conducted in a
simulated physiological environment, and the reaction product
was subjected to a fluorescence analysis. A large increase in the
fluorescence spectrum was observed.

Cytotoxicity Assessment
The cytotoxicity of the three compounds against MCF-7 cells
was evaluated by MTT assays (Vibet et al., 2008; Jiang et al.,
2014; Alemany et al., 2015; Jouvin et al., 2015; Moustakim
et al., 2017) (Figure 3). Compound 1 had a proliferative effect
on the cells, and compounds 2 and 3 in the range of 0–
150 µg·mL−1 showed very low cytotoxicity. Cell viability was
minimally affected (80% cell viability), when the concentrations
of compounds 2 and 3 were increased to 150 µg·mL−1. In
agreement with the determined binding constants, compounds
2 and 3 each showed a high binding capacity and low cytotoxicity
and thus can be used to detect HS− in vivo (Gao et al., 2015;
Shang et al., 2017). Compared with previous estimates in the
literature (Zou et al., 2013; Lin et al., 2015), the cytotoxicity of the
synthesized compounds was relatively low. Hence, these probes
are favorable candidates for in vitro hydrogen sulfide detection.

FIGURE 3 | Cell viability values (%), as estimated from MTT proliferation

assays, vs. incubation concentrations of fluorescent probe.

SCHEME 2 | The possible interaction mechanism between compound 3 and HS−.
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Theoretical Investigation
Among the three synthesized compounds, compound 3 showed
the highest sensitivity and selectivity for HS− according to the
binding constants. Consequently, the geometries were optimized
for compound 3 and the combination product 3-HS (Figure 4)
based on the density functional theory method and the level of
B3LYP/3-21G. The calculation was implemented in Gaussian03
(Frisch et al., 2003; Gao et al., 2017). As shown in Figure 4,
the distance of the intramolecular hydrogen bond in compound
3 was 2.390 Å between the hydrogen atom of the interaction
site (-HC=CH-) and the oxygen atom of the carbonyl group.
According to previous studies (Ni et al., 2012; Maity et al.,
2014), the existence of intramolecular hydrogen bonding and

an electron-withdrawing group (-NO2) increases the sensitivity.
Hence, the stronger the electron-withdrawing effect is, the
higher sensitivity for HS− this compound gets. The combination
between compound 3 and HS− was also optimized. Our
results indicated that the spatial structure of the host may
change, as a result of the host-guest interaction. Therefore,
the combination product (3-HS) existed in resonance form.
The distance of the hydrogen bond (2.006 Å) indicated that
a stable six-cycle was formed containing a sulfur atom and a
hydrogen atom in a hydroxyl group (the resonance form of
ketone) after compound 3 interacted with HS−. These results
also explained the strong ability of compound 3 to bind to
HS−.

FIGURE 4 | Optimized geometries of compound 3 and the combination product 3-HS.

FIGURE 5 | The selected molecular frontier orbitals HOMO (a) and LUMO (b).
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In addition, the molecular frontier orbitals were introduced to
explore the hyperchromic effect (by UV-Vis titration as described
above). This effect was observed in the host-guest interaction
process by the electron transition of the frontier orbital. The
selected frontier orbitals for compound 3 and the host-guest
complex are shown in Figure 5. An orbital analysis revealed
that the highest occupied molecular orbital (HOMO) density in
compound 3 was mainly localized on the anthracene moiety,
whereas the lowest unoccupied molecular orbital (LUMO)
density was localized on the nitrophenyl and ketone group
moieties (Shang et al., 2015b). These results indicated that
the electron transition of the highest HOMO resulted in a
hyperchromic effect in the UV-Vis spectra.

CONCLUSIONS

In conclusion, three compounds were synthesized, and their
abilities to bind to various anions were detected by UV-Vis
titration, fluorescence spectroscopy, HRMS, 1HNMR titration
and theoretical investigations. Compounds 2 and 3 showed
selectivity and sensitivity for HS−. Notably, compound 3 showed
the strongest sensing ability for HS− among the synthesized
compounds. The mechanism underlying this interaction was the
nucleophilic reaction between HS− and the electron-poor C=C
double bond. Theoretical investigations also elucidated the role
of molecular frontier orbitals in the hyperchromic effect. In
addition, compounds 2 and 3 showed low cytotoxicity against
MCF-7 cells in the concentration range of 0–150 µg·mL−1 and
can be subsequently used as fluorescent probes to detect H2S,
HS−, or S2− species in vivo. These results provide a probe with
a novel sensing mechanism for hydrogen sulfide, based on the

amphipolar character of the S atom of the new compounds to
be used in practical applications to detect H2S. Our finding
establishes a basis for further applications of molecular probes.
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Portable Near Infrared spectroscopy (NIRs) coupled to chemometrics was investigated

for the first time as a novel entirely on-site approach for occupational exposure monitoring

in pharmaceutical field. Due to a significant increase in the number of patients receiving

chemotherapy, the development of reliable, fast, and on-site analytical methods to

assess the occupational exposure of workers in the manufacture of pharmaceutical

products, has become more and more required. In this work, a fast, accurate, and

sensitive detection of hydroxyurea, a cytotoxic antineoplastic agent commonly used

in chemotherapy, was developed. Occupational exposure to antineoplastic agents

was evaluated by collecting hydroxyurea on a membrane filter during routine drug

manufacturing process. Spectra were acquired in the NIR region in reflectance mode

by the means of a miniaturized NIR spectrometer coupled with chemometrics. This

MicroNIR instrument is a very ultra-compact portable device with a particular geometry

and optical resolution designed in such a manner that the reduction in size does

not compromise the performances of the spectrometer. The developed method could

detect up to 50 ng of hydroxyurea directly measured on the sampling filter membrane,

irrespective of complexity and variability of the matrix; thus extending the applicability of

miniaturized NIR instruments in pharmaceutical and biomedical analysis.

Keywords: MicroNIR, chemometrics, hydroxyurea, occupational exposure, pharmaceutics

INTRODUCTION

Hydroxyurea (HU) or hydroxycarbamide, is a non-alkylating hydroxylated urea analog mainly
recognized as antineoplastic and antiviral agent (Spivak and Hasselbalch, 2011). The cytotoxic and
genotoxic potential efficacy of hydroxyurea makes this molecule one of the most performing agent
commonly used in chemotherapy (Spivak and Hasselbalch, 2011; Karsy et al., 2016; Liew et al.,
2016). In addition, HU is usually involved in the treatment of Sickle Cell Disease (SCD) (Davies
and Gilmore, 2003; Heeney andWare, 2008; Italia et al., 2009; Flanagana et al., 2010; Candrilli et al.,
2011), psoriasis (Yarbro and Leavell, 1969), Philadelphia-chromosome negative myeloproliferative
syndromes (MPs) (Yarbro and Leavell, 1969), some types of solid cancers (Karsy et al., 2016), and
in the therapy of HIV infection (Lori et al., 1994).

An important issue when dealing with HU is related to its harmful potential (Millicovsky et al.,
1981;Woo et al., 2005) especially in prolonged exposure conditions (Elchuri et al., 2015; Broto et al.,
2017), as it inhibits class I ribonucleotide reductase, leading to replication fork stalling (Quattrone
et al., 2013; Liew et al., 2016).Workers involved in themanufacture of drugs, may be exposed to HU
during manufacturing, transport, and distribution. In addition, as the number of patients receiving
chemotherapy has considerably increased, there is a growing concern about the development of
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reliable, fast and accurate methods to assess the occupational
exposure of workers during drug manufacturing process.

A number of analytical methods have been developed
to quantify hydroxyurea in biological fluids, including
spectrophotometric measurements by colorimetric techniques
(Milks and Janes, 1956; Davidson and Winter, 1963; Bolton
et al., 1965; Sivakumar et al., 2013; Legranda et al., 2017),
electroanalytical determination (Naik et al., 2015), Nuclear
Magnetic Resonance (NMR) (Main et al., 1987; Sorg et al.,
2005; De Marco et al., 2011), High Performance Liquid
Chromatography (HPLC) (Pujari et al., 1997; Iyamu et al., 1998;
Manouilov et al., 1998), Gas Chromatography coupled to Mass
Spectrometry (GC-MS) (James et al., 2006; Kettani et al., 2009;
Garg et al., 2015), and Liquid chromatography—tandem mass
spectrometry (LC-MS/MS) (Dalton et al., 2005; Usawanuwat
et al., 2014; Marahatta et al., 2016; Hai et al., 2017). Despite
the copious literature for HU detection, the assay of HU may
be cumbersome due to its molecular dimension, reactivity and
ability to chemical and enzymatic degradation (Iyamu et al.,
1998; Marahatta and Ware, 2017).

The National Institute for Occupational and Safety Health
(NIOSH) (Naumann et al., 1996) has proposed the exposure
control limits (ECL) for HU not exceeding 0.01 mg/m3,
as a consequence of the potential toxicity. Conventional
chromatographic techniques (Osytek et al., 2008) usually
require an accurate sample clean-up to extract HU from a
filter membrane and eliminate matrix interferences. All these
procedures may be critical in estimating a tiny amount of HU
and may lead to sample modification (Osytek et al., 2008).
To overcome these problems, spectroscopic techniques have
been largely proposed to give both qualitative and quantitative
information about complex samples (Zontova et al., 2016;
Materazzi et al., 2017a,b). In addition, multivariate statistical
analysis has already proved to be helpful in interpreting complex
spectral signals (Oliveri et al., 2011; Risoluti et al., 2016a,b, 2018;
Materazzi et al., 2017c).

In this work, Near Infrared Spesctroscpy is proposed as a
rapid and non-destructive technique to detect and quantify HU
on a glass fiber filter in order to assess a novel procedure
for occupational exposure estimation. A very ultra-compact
portable instrument named MicroNIR (45-mm diameter, 42-
mm height and 60-g operating weight) entirely powered (5V)
and controlled via USB port of a portable computer, was used
to acquire spectra; and chemometrics tools were considered
to perform real-time estimation of HU. A key feature of our
portable MicroNIR/Chemometrics approach is mainly related
to the possibility of directly analyze samples without any pre-
treatment or extraction. In addition, the method is simple
and time-saving, and it can achieve the same outcomes as the
conventional spectrometer.

MATERIALS AND METHODS

Materials
Hydroxyurea reference standard was purchased as powder from
Sigma-Aldrich. Glass fiber filters with 2.5-cm diameter, 1-µm
pore size, and 790-µm thickness (Merk Millipore) were used as

membrane to collect HU. Sampling was performed by the means
of a Chronos sampling device (Zambelli Srl) operated at a flow
rate of 3.5 L/min for 15min, in order to mimic occupational
exposure (not exceeding 3.5 µg/filter). Reference materials were
prepared in a glove-box module consisting of a cube-shaped
glass box isolated from the ambient temperature and 40 µl of
HU solution in deionized water at different concentrations were
added to reproduce the potential amounts of HU on a filter (50,
3.5 ng, and 50 µg).

MicroNIR/Chemometrics Method
Spectra were collected by a portable, ultra-compact and low-
cost device MicroNIR spectrometer, developed and distributed
by Viavi Solutions (JDSU Corporation, Milpitas, USA). This
device operates in the spectral region 900–1,700 nm and
consists of a linear variable filter (LVF) as dispersing element
directly connected to a 128-pixel linear indium gallium arsenide
(InGaAs) array detector and two tungsten light bulbs as radiation
source.

In the MicroNIR, measuring the optimum focal point of the
illumination source from the spectrometer’s window to a sample
is achieved by the means of a special collar. As a result, this
particular geometry permits to achieve comparable outcomes as
the reduction in size does not compromise the performances
of the spectrometer. The instrument control was performed by
the MicroNIR Pro software (JDSU Corporation, Milpitas, USA)
and chemometric tools such as Principal Component Analysis
(PCA) and Partial Least Square (PLS) algorithms were used
as unsupervised technique and calibration models by V-JDSU
Unscrambler Lite (Camo software AS, Oslo, Norway).

Spectra were collected at a nominal spectral resolution of
6.25 nm in the reflectance mode. Spectralon was used as NIR
reflectance standard (blank), with a 99% diffuse reflectance, while
a dark reference was obtained from a fixed place in the room. The
acquisitions were performed with an integration time of 10ms,
resulting in a total measurement time of 2.5 s for each sample.

As recommended for spectroscopic data (Rinnan et al.,
2009), mathematical pre-treatments were considered for
chemometric evaluation such as scatter-correction methods
[Standard Normal Variate transform (SNV) (Barnes et al., 1989),
Multiplicative Scatter Correction (MSC) (Geladi et al., 1985), and
Mean Centering (Wold and Sjöström, 1977)], Savitzky-Golay
(SG) polynomial derivative filters (Savitzky-Golay, 1964) as
spectral derivation techniques. Among these pre-treatments,
the combination of second derivative algorithm followed by
Mean Centering was selected because it provided the best
outcomes in terms of Root Mean-Squared Error of Calibration
(RMSEC), Root Mean-Squared Error of Prediction (RMSEP),
and coefficient of determination (R2) (Miller and Miller, 2000;
Mark and Workman, 2007).

Figures of merits were used to estimate model performances.
In particular, Residual Predictive Deviation (RPD) was used
to evaluate correction forecasting model and calculated as
the standard deviation (SD)/RMSEP. In general, the model is
considered stable when RPD ≥3 or not satisfactory when RPD
<2. In this work, the precision of the method was determined
on nine different samples with concentrations regularly
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FIGURE 1 | Sampling procedure of HU on a filter by acquiring nine spectra for each membrane (A) in a preserved glove box (B).

distributed along the linear range, using nine replicates in the
same day.

Sensitivity (SEN) represents the fraction of the analytical
signal responsible for an increase in the concentration of HU
and was calculated as follows: SEN = 1/b, where b is the
vector of regression coefficients with A latent variables. The
minimum detectable concentration (MDC) is defined as the
lowest concentration that can be reliably measured according to
ISO 11843-2:2000 recommendations1.

Experimental Design
Calibration and validation models were developed using the
dataset from 297 samples. The data set was divided into two
groups, the calibration set (216 samples) and validation set
(81 samples). In order to provide a sample selection for the
calibration and validation set as representative as possible and to
ensure uniformity of dataset, the X and Y distances were taken
into account simultaneously, by applying the Kennard–Stone
(KS) uniform sampling algorithm. The calibration set consisted
of a series of reference samples including blanks (filters without
HU) and fortified blanks with increasing amounts of HU (50, 3.5
ng, and 50 µg).

A comprehensive sampling procedure was scheduled as
follows: samples were collected in a preserved glove box and nine
spectra were acquired in reflectance mode for each membrane, as
shown in Figure 1. A total of nine filters were used to optimize
the model of prediction for HU exposure. Six independent

1ISO 11843-2:2000. Capability of Detection, International Standards Organization.

Geneva.

batches were prepared for calibration; while validation was
performed on the same type of samples as the calibration set, but
fully independent batches, using three series of filters.

GC-MS Method
GC-MS analysis was done on a Perkin Elmer system (Waltham,
MA) using a HP-5MS (30m × 0.25mm × 0.25mm) as
capillary separation column. Electron impact (EI) ionization was
employed at a voltage of 70 eV. The carrier gas was helium
delivered at a constant flow of 1 mL/min. The oven temperature
program was initially set at 150◦C for 1min, ramped to 140◦C at
12◦C/min and maintained for 1min, and then ramped to 270◦C
at 35◦C/min for 2.5min. The temperatures for the inlet, interface,
ion source and quadrupole were set at 270, 250, 230, and 150◦C,
respectively. Mass spectral data was collected in the scan mode
from m/z 44 to 400; in the SIM mode, fragments at 277 and
292 m/z were monitored for quantification and confirmation,
respectively.

RESULTS

To develop a novel analytical method to monitor occupational
exposure to cancerogenic agents by evaluating the amount of
HU on a filter, multivariate statistical analysis was performed
for optimal selection of the experimental procedure. As a
consequence, a number of variables were considered in order
to ensure a correct and representative sampling procedure: (a)
membrane type and sampling side; (b) sampling procedure
to reproduce HU exposure in terms of volume to be
added on a filter; (c) spectra acquisition. Preliminarily,
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all the acquired MicroNIR data corresponding to different
experimental conditions were pre-treated and processed by a
simple exploratory tool such as PCA. After that, a prediction
model of HU based on Partial Least Square Regression (PLSR)
was entirely developed and validated.

Sampling Procedure Optimization
To make the method representative, the first investigated issue
consisted of reference material preparation. Two different ways

of HU deposition on a filter were investigated: (i) calibration
on different filters i.e., four different filters (one blank and three
fortified blanks) were considered; and (ii) calibration on a single
filter i.e., only one filter was used and progressively fortified with
increasing amounts of HU. In this case, spectra of blank and
fortified samples were acquired prior to each deposition by the
portableMicroNIR. In the first case, samples were prepared using
40µl of aqueous solution of HUon each filter; while in the second
case, a volume of 15 µl was used for each deposition.

FIGURE 2 | Scores plot of the Principal Component Analysis performed on the dataset related to calibration on different filters (A) and calibration on a single filter (B).
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All the acquired spectra were pre-treated and analyzed
simultaneously by PCA. As displayed in Figure 2, each point
represents an average of the nine respective spectra of a filter
and colors were used to highlight the quantity of HU. The
interpretation of the scores plot provides preliminary important
information with respect to HU deposition and correlation to its
different amounts on a filter.

A good correlation could be observed for samples of the
same class (blank and fortified blanks) as there was no data
dispersion, suggesting a correct repeatability of the method. This
observation is very interesting because it is possible to clearly
discriminate HU quantity on the membrane of a filter. For any
deposition way, hence, the method would be suitable in practice
where occupational exposure of workers may be monitored by
a personal sampling system collecting a real blank (prior to HU
handling) to be fortified and directly analyzed.

In addition, as shown in Figure 2, in both cases moving along
PC1 (97 and 89% of explained variance) all the analyzed samples
could be well grouped according to HU amount. It further
confirms the ability of the approach MicroNIR/Chemometrics
in monitoring occupational exposure to HU according to its
amount collected on a filter.

A deeper investigation of the acquired spectra was performed
by comparing the two series of samples (four- and one-filter
calibration) in a single dataset. Figure 3 displays PCA data
showing that the same samples can be divided into two main
groups according to PC2: four- and one-filter calibration. As
a result of the PCA data, the different locations of samples in

the plot indicate the contribution of HU deposition way on the
spectroscopic signal.

Such a result is not surprising when a reflectance acquisition
mode is involved, because the surface of the filter membrane
may have some influence on the spectral response as a function
of the volume added. Despite the different behaviors, samples
could be clearly differentiated according to PC1 (91% of
explained variance) and the preliminary outcomes suggested
the possibility to further investigate the repeatability of the
method.

With the aim of extending this procedure to real samples,
nine different filters were prepared and subsequently fortified
with different amounts of HU so as to increase the number of
investigated samples and evaluate whether the method would
be batch-dependent. As shown in Figure 4, all the samples
of the same class (displayed in different colors), could be
well grouped and located in the plot according to PC1. In
addition, no dispersion of data was observed thus indicating
the effectiveness of the optimized HU deposition on a filter.
On the basis of preliminary interesting results, a prediction
model of HU on a single filter membrane was successfully
validated.

PLS Model of Prediction
In order to obtain the best results of calibration, the
effect of a number of pre-treatments was evaluated i.e., the
combination of spectral pre-treatments and wavelength range
selection.

FIGURE 3 | Scores plot of the Principal Component Analysis performed on the datasets from the two different ways of HU deposition on a filter.
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FIGURE 4 | Scores plot of the Principal Component Analysis performed on the entire dataset of collected samples.

TABLE 1 | Figures of merit of HU calculated with different spectral pre-treatments

in calibration and prediction steps.

Pre-treatment Calibration Prediction

R2 RMSEC R2 RMSEP RPD

SNV + Mean centering 0.9985 1.98 0.9973 2.14 1.9

MSC + Mean centering 0.9889 2.02 0.9817 1.26 1.5

1st derivative + Mean

centering

0.9999 0.61 0.9998 1.02 2.1

2nd derivative + Mean

centering

1.0000 0.09 1.0000 0.12 5.4

Calibration and validation sets were pre-processed using
Standard Normal Variate (SNV) scaling (Barnes et al., 1989),
MSC (Geladi et al., 1985), and Mean Centering (Wold and
Sjöström, 1977), Savitzky-Golay (SG) polynomial derivative
filters (Savitzky-Golay, 1964) and a combination of these pre-
treatments.

For evaluation of model performances, comparison was made
for different spectral pre-treatments to identify the most effective
one in terms of prediction error using the Predicted Residual
Error Sum of Squares (PRESS) to represent the sum of squares
of the prediction error and the coefficient of determination (R2).
Usually, the smaller the PRESS value is, the better the model’s
predictive ability is. R2 provides the percentage variation in y
explained by x-variables and is largely used to evaluate the fitting
performance. Satisfactory results (R2 and RMSEC) were obtained
for the calibration of HU as shown in Table 1.

Good model agreement is confirmed in the validation step
(R2 > 0.9817 and RMSEP < 2.14 for all the optimized models).
As far as the data are concerned, the best performance can be
achieved by using second derivative pre-treatment followed by

mean centering (4 latent variables) as it provides the lowest RMSE
and highest R2 values. Furthermore, the effect of the variable
spectral selection within the calibration block was evaluated to
improve the model’s ability to predict HU. As illustrated in
Figure 5, the first principal component loadings accounted for
more than 87% of the total variance.

Validation results of the most performing model (second
derivative pre-treatment followed by mean centering) after
variable selection in the range 1,540–1,600 nm are reported in
Table 2, showing that the optimized model could quantify HU
on a glass fiber filter with limit of detection of 50 ng/filter.
This finding points out that an adequate PLS regression model
can help quantify HU directly from MicroNIR measurements
without any prior sample preparation.

Evaluation of Prediction Ability
The validated model was consequently used to process 30 filters
collected during routine HU handling. In order to evaluate
the prediction ability of the model, all the samples were
simultaneously analyzed by the reference method (GC-MS)
and MicroNIR/Chemometrics approach. Data obtained from
the MicroNIR approach (Table 3) show that the PLS model
permitted to achieve the best prediction precision with RMSEP of
0.12 and RPD of 6.1, which ensured the accuracy and robustness
of the model.

In addition, the chromatographic analysis detectedHU in only
19 of the 30 samples as the Limit of Detection (LOD) and Limit
of Quantification (LOQ) of this method were 0.7 and 2.5 µg,
respectively. When the amount of HU was chromatographically
found to be lower than the LOQ of the method, LOD
was used to compare with the predicted values obtained by
MicroNIR/Chemometrics approach. The results showed a R2

of 0.99 and acceptable values of bias at 95% confidence (see
Table 3).
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FIGURE 5 | First principal component loading variation and variable spectral selection.

TABLE 2 | Analytical figures of merit for PLS quantification model.

Figures of merit

RMSEC 0.09

RMSEP 0.12

RPD 5.4

LV* 4

R2 Validation 1.000

Precision 1.24

Sensitivity (%w/w)−1 0.100

MDC** (ng) 50

Range (µg) 0.05-50

Mean ± SD (µg) 23.8 ± 0.65

*Latent variables. **Minimum detection concentration.

TABLE 3 | Results of the MicroNIR approach.

Figures of merit

RMSEP 0.12

RPD 6.1

Slope 0.990

Bias 0.016

Range (µg) 0.08–42.8

Mean ± SD (µg) 3.6 ± 0.73

MicroNIR computed values were found to be significantly
lower than corresponding GC ones as the LOD of the MicroNIR
method is 50 ng, meaning that the MicroNIR/Chemometrics can

be a promising approach for occupational exposure monitoring
at HU low levels.

CONCLUSIONS

An ultra-compact portable device (MicroNIR) was applied to
assess a novel way for HU occupational exposure monitoring.

A comprehensive sampling procedure was pointed out.
Chemometric evaluation of spectra collected by a miniaturized
device operated in the Near Infrared region, was optimized and
entirely validated by PLS regression. The proposed method has
the advantage of simplicity and avoiding sample pre-treatment,
thus limiting even the analyst’s HU exposure. Moreover, this
approach may be considered as the optimal technology to
determine cancerogenic agents or other dangerous molecules
in a single-touch analysis as it is entirely portable and non-
destructive. The achieved results highlight the extremely high
potential of MicroNIRs to detect the HU with lower detection
limits with respect to reference methods. To the best of the
authors’ knowledge, this approach would be the first ever
proposed for the on-site detection of HU. It requires no sample
preparation, is non-destructive and easy to perform (no highly-
skilled personnel required), allowing a rapid evaluation of theHU
occupational exposure.
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In this work, we explored to use chemometrics-based Fourier transform infrared (FTIR)

spectroscopy to investigate the plasma biochemical changes due to acute lead poisoning

(ALP) in a rat model. We first collected the FTIR spectra of the plasma samples from

the rats with and without suffering from ALP. We then performed the chemometric

analysis of these FTIR spectra using principal component analysis (PCA) and partial

least squares discriminant analysis (PLS-DA). We found that the chemometrics-based

FTIR spectroscopy can discriminate the rats with and without ALP. Further analysis

on the PLS-DA regression coefficient revealed that the spectral changes, in particular,

corresponding to the biochemical changes of proteins in the plasma may be used

as potential spectral biomarkers for the diagnostics of lead poisoning. Our work

demonstrates the potential of chemometrics-based FTIR spectroscopy as a promising

tool for the biochemical analysis of plasma that could consequently enable an objective,

convenient and non-destructive diagnostics of lead poisoning. To the best of our

knowledge, this work is the first application of chemometrics-based FTIR spectroscopy

in the diagnostics of lead poisoning.

Keywords: FTIR spectroscopy, infrared spectroscopy, chemometrics, lead poisoning, acute lead poisoning,

principle component analysis, partial least squares discriminant analysis

INTRODUCTION

Lead is an omnipresent metal that has been used since prehistoric times. Prior to the industrial
revolution, human exposure to lead in the environment was relatively low, but significantly
increased over time due to modern industrial activities. It is estimated that over 300 million tons of
lead has been released to the environment by human activities (Tong et al., 2000), which leads to a
rapid increase in lead exposure to the environment. A previous study indicated that the lowest
levels of human blood lead in industrial era were 50–200 times higher than preindustrial era
(Flegal and Smith, 1992b). As for lead poisoning, in 1839, Tanqueral des Planches described the
symptoms of acute lead poisoning (ALP) and studied the signs of ALP in adults (Hunter, 1978).
In the middle and late nineteenth century, lead poisoning became a serious health problem among
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Britain workers. British Parliament eventually enacted relevant
laws and regulations to prevent lead poisoning (Hunter, 1978;
Smith, 1984;Winder, 1984; Tong et al., 2000). Lead poisoning can
be caused by human ingestion and respiration of lead and related
products such as lead-containing paints. Lead can cause a series
of physiological and biochemical changes within human body,
affecting central and peripheral nervous system, cardiovascular
system, reproductive system, immune system, gastrointestinal
tract, liver, kidney and brain (Hunter, 1978; Smith, 1984;Winder,
1984; Kazantzis, 1989; Goldstein, 1992; Tong, 1998; Tong et al.,
2000).

The basic principle in lead poisoning diagnostics is based
on the determination of lead level in human body. There are
currently several methods available for measuring lead in blood
samples. For example, one common method is the so-called
blood film method, in which the morphology of the red blood is
examined with a microscope to reveal basophilic stippling of red
blood cells (i.e., red blood cells with dots in their morphologies).
However, this method is not very specific because other unrelated
conditions (such as folate and vitamin B12 deficiencies) can also
give basophilic stippling of red blood cells. Lead level can be
evaluated indirectly by measuring erythrocyte protoporphyrin
(EP) in blood samples. It is noted that such EP measurement
is not very sensitive and specific because an increase in EP
level can also be observed in the case of iron deficiency. X-ray
fluorescence method can be used to determine the cumulative
exposure and total body burden of lead. However, this method
is not so convenient because X-ray fluorescence instrument is
not widely available in clinic. Apparently, the current methods
in lead poisoning diagnostics still have some limitations and
disadvantages (Patrick, 2006; Brodkin et al., 2007). Searching for
a specific, rapid, convenient, objective and cost-effective method
for lead poisoning diagnostics is no doubt very meaningful
(Flegal and Smith, 1992a).

In recent years, Fourier transform infrared (FTIR)
spectroscopy has been widely used in the biochemical analysis
field (Baker et al., 2014). FTIR spectroscopy is a simple,
convenient, non-destructive, rapid and low-cost detection
method to sample biological materials such as blood and tissue
for diagnostic purposes (Deleris and Petibois, 2003; Ellis and
Goodacre, 2006; Krafft et al., 2007, 2009; Gasper et al., 2009;
Gajjar et al., 2013; Baker et al., 2014; Mitchell et al., 2014;
Ollesch et al., 2014; Sheng et al., 2015; Staniszewska-Slezak
et al., 2015; Depciuch et al., 2017; Elmi et al., 2017; Ghimire
et al., 2017; Guo et al., 2017; Le Corvec et al., 2017; Li et al.,
2017; Liu et al., 2017; Paraskevaidi et al., 2017; Roy et al.,
2017; Sarkar et al., 2017; Titus et al., 2017; De Bruyne et al.,
2018; Rai et al., 2018). When combined with chemometric
analysis, FTIR spectroscopy can be further empowered in disease
diagnostics. Now, FTIR spectroscopy has been used in many
studies to detect the physiological states and disease-specific
biomarkers in the blood. For example, Staniszewska-Slezak et al.
established the rat models for pulmonary arterial hypertension
and systemic hypertension, and then collected the FTIR spectra
of rat plasma samples. By using FTIR spectroscopy combined
with principal component analysis (PCA), they found that they
could distinguish the two different hypertension states as well as

the healthy state. They also envisioned that chemometrics-based
FTIR spectroscopy could potentially provide some spectral
biomarkers for disease diagnostics (Staniszewska-Slezak et al.,
2015). Roy et al. recently used attenuated total reflection Fourier
transform infrared (ATR-FTIR) spectroscopy in combination
with partial least squares discriminant analysis and partial least
squares regression to identify malaria parasites, blood glucose
and urea levels in whole blood samples (Roy et al., 2017). Titus
et al. recently proposed an FTIR approach combined with cluster
and heterogeneity analyses to rapidly screen colitis without
using biopsies or in vivo measurements (Titus et al., 2017).
Paraskevaidi et al. recently demonstrated an excellent diagnostic
performance of chemometrics-based ATR-FTIR spectroscopy by
analyzing plasma samples from patients with Alzheimer’s disease
(Paraskevaidi et al., 2017).

In our work, we focused on the biochemical changes of plasma
after lead poisoning using a rat model suffering from ALP. The
main goal of this study was to find the plasma biochemical
changes induced by lead in rats by FTIR spectroscopy combined
with chemometric approaches such as PCA and partial least
squares discriminant analysis.

EXPERIMENTAL

ALP Rat Model
Male Wister rats (240 ± 20 g) were purchased from the Vital
River Lab Animal Technology Co., Ltd. (Beijing, China). Animals
were housed under constant temperature, humidity and lighting
(12 h per day) and were allowed free access to food and water.
The animal experiment was carried out in accordance with the
guidelines for the care and use of laboratory animals and the
relevant ethical regulations of the Animal Ethics Committee of
Tianjin Tasly Institute. The protocol was approved by the Animal
Ethics Committee of Tianjin Tasly Institute.

The rats (N = 4) before lead injection were used as the control
group and these rats after lead injection used as the test group. To
induce ALP, the rats were intraperitoneally injected with PbCl2
saline solution (5mg lead per kg). For chemometric modeling,
blood samples were collected from the control group and the test
group 24 h post-injection. Blood samples were also collected from
the test group 36 and 48 h post-injection for model validation.
In addition, another control group (N = 4), namely a group
with acute cadmium poisoning, was studied by intraperitoneally
injecting the rats with CdCl2 saline solution (5mg cadmium per
kg). The blood samples from this control group were collected
24 h post-injection. The blood samples were stored at about −80
◦C for further treatment. Both PbCl2 and CdCl2 of analytical
grade were obtained from local vendors.

Plasma Sample Preparation
The blood sample was centrifuged at 3,000 rpm for 10min, and
a 10-µl aliquot of supernatant plasma was pipetted on the top of
a piece of 1 × 1 cm aluminum foil. Each blood sample was used
to prepare five replicate samples on aluminum foil. The foil was
then placed in an oven set at 37◦C for 2 h, and the obtained dry
plasma film was subsequently used for FTIR measurement.
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FTIR Measurement
FTIRmeasurements were carried out on a Bruker Vertex 70 FTIR
spectrometer (Ettlingen, Germany) equipped with a DLaTGS
detector in attenuated total reflection (ATR) mode. 4 cm−1

resolution and 32 scans were used for each measurement.
A Pike Technologies MIRacle single-reflection ATR accessory
(Madison, USA) with a diamond element was employed.
When performing spectral acquisition, the plasma sample was
pressed against the diamond crystal using a pressing device
from Pike Technologies for a close contact. For each piece of
aluminum foil with blood sample, at least seven FTIR spectra
were taken by measuring signals at different locations on the
foil.

Spectral Pretreatment
The obtained FTIR spectra of the plasma samples were first
screened to remove some error-based large deviation spectra. In
ATR-FTIR mode, the contact between the sample and diamond
crystal has a significant effect on the spectral quality, e.g., a poor
contact will lead to poor quality FTIR spectra (abnormally low
absorbance). These spectra need to be removed from the spectral
dataset before chemometric analysis. Such spectral deviation
is not due to the intrinsic deviation of one sample from its
group (i.e., the control or test groups), but purely related to
the spectral artifact caused by an improper contact between
the sample and diamond crystal. These “abnormal” spectra
could be easily identified visually with OPUS software and they

FIGURE 1 | Plasma FTIR spectra of the rat group without ALP (A) and with ALP (B) after spectral pretreatment such as smoothing, baseline correction, and vector

normalization. The spectra with ALP were collected 24 h post-injection and there are a total of 139 spectra included in (A) and a total of 125 spectra included in (B).

FIGURE 2 | Plasma FTIR second derivative spectra of the rat group without ALP (A) and with ALP (B) in the 3,100–2,800 and 1,750–900 cm−1 spectral regions.

FIGURE 3 | Two-dimensional score plots of PC-1 vs. PC-2 (A), PC-1 vs. PC-3 (B), and PC-2 vs. PC-3 (C) obtained after PCA applied to the FTIR second derivative

spectra of the rat groups without and with ALP.
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were then removed from the spectral dataset manually. The
remaining spectra were used for chemometric analysis after
being subjected to spectral pre-treatment including smoothing,
scattering correction, vector normalization and second derivative
treatment with chemometric software.

Chemometric Analysis
Chemometric analysis was performed using Unscrambler
software (version 10.4) for PCA and partial least squares
discriminant analysis (PLS-DA). In our study, we selected the
data from the second derivative FTIR spectra in the regions of
3,100–2,800 and 1,750–900 cm−1 for PCA. In addition, we also
used 4-fold cross validation to test rat inter-individual variability
on the spectra. The above-mentioned chemometric approach is
relatively simple and sufficiently powerful to help differentiate the
rat groups with and without ALP, spectroscopically.

RESULTS AND DISCUSSION

Figure 1 shows the plasma FTIR spectra of the rat groups
without and with ALP after spectral pretreatment such as
smoothing, baseline correction, and vector normalization. On
the other hand, Figure 2 shows the second derivative spectra
of the plasma FTIR spectra presented in Figure 1. These
second derivative spectra were the dataset used in the following
chemometric analysis. The reason to have derivative treatment
on the absorbance spectra in Figure 1 is 2-fold. First, the second
derivative treatment can further magnify the spectral changes
and differences between the control and test groups. Second,
the second derivative treatment can also eliminate possible
interference of the baseline in chemometric analysis. In addition,
in Figure 2, we have only included the spectral regions of 3,100–
2,800 and 1,750–900 cm−1 and removed the spectral region of
2,800–1,750 cm−1 (as this region contains very limited spectral
information). The 3,100–2,800 cm−1 region corresponds to
the C-H stretching absorptions; whereas the 1,750–900 cm−1

corresponds to the protein amide I and amide II regions, and
the fingerprint region. The displayed spectral regions in Figure 2

contain most of the spectral information that is highly correlated
to the ALP-induced biochemical changes in the plasma, thus
making them suitable in our chemometric analysis.

As for the control and test group spectra datasets, we first used
the most basic chemometric approach, PCA, to perform data
analysis.We found the contribution rates of the first five principal
components (namely PC-1, PC-2, PC-3, PC-4, and PC-5) are 64,
20, 7, 3, and 2%, respectively. The cumulative contribution rate of
these five principal components reaches 96%, indicating that they
can reflect most of the spectral variations and differences among
the spectra of the control and test groups.

The two-dimensional score plots of PC-1 vs. PC-2, PC-
1 vs. PC-3 and PC-2 vs. PC-3 were respectively shown in
Figures 3A–C. Among the three score plots, we can clearly see
that the two groups are well separated (Figure 3A) or they still
have some significant overlaps (Figures 3B,C). Figure 3A gives
the best discriminant result for the control and test groups. Our
chemometric analysis study obviously demonstrates that with

just some simple chemometric approaches such as PCA and PLS-
DA, FTIR spectroscopy can be used to discriminate the rat groups
with and without ALP.

For 4-fold cross validation on our data, each sample was used
once as a test set while the remaining samples formed the training
set. The results show that (i) there are significant differences
between the test and control groups of plasma due to ALP and (ii)
rat inter-individual variability has little influence on the spectral
differences between the two groups. First, we analyzed the regions
of 3,100–2,800 and 1,750–900 cm−1 with PLS-DA. As displayed
in Figure 4, the Y-variance plot shows that the line was basically
leveled at PC7, and the more PCs could be overfitting; so seven
PCs were selected for further analysis. Figure 5 shows that PLS-
DA could distinguish between health and ALP rats completely
with seven PCs. However, the blue and red models of cross
validation (CV) were not well matched. So, the fingerprint region
of 1,750–900 cm−1 was selected. As displayed in Figure 6, the Y-
variance plot shows that seven PCs should be selected for further
analysis. Figure 7 shows not only that PLS-DA can distinguish
between health and ALP rats completely with seven PCs, but also
that the blue model fits well with the red CV model. In addition,
the health andALP groups in the red CVmodel are well separated
by the 0.5 threshold line. In summary, the plasma spectra of
health and ALP rats were distinctly different and inter-individual
variability had no impact on the discrimination analysis of health
and ALP rats.

The selectivity and robustness of our proposed PLS-DAmodel
were also tested with additional controls to evaluate whether this
model can give a correct discrimination when (i) when the rats
suffer from another heavy metal poisoning and (ii) when the rats
suffer from different extents of ALP. To address the first issue,
we developed an acute cadmium poisoning rat model. Rats were
injected with CdCl2 solution to induce acute poisoning and the
blood samples were collected 24 h post-injection. The plasma
FTIR spectra and corresponding derivatives of this control group
are presented in Figure S1 in the Supplementary Material. The

FIGURE 4 | PLS-DA Y-variance plot in the 3,100–2,800 and 1,750–900 cm−1

spectral regions.

Frontiers in Chemistry | www.frontiersin.org June 2018 | Volume 6 | Article 26168

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Tian et al. Chemometrics-Based FTIR Spectroscopy

data with this control group were tested with our PLS-DAmodel.
As we have mentioned above, the 0.5 value line is the threshold
in the PLS-DA model in Figure 7. For data points above this
line, the model predicts the rats are in ALP status; for data
points below this line, the model predicts the rats are not in ALP
status. As displayed in Figure 8, the predicted values for the rats
suffering from acute cadmium poisoning are all below the 0.5
threshold, indicating that our PLS-DA model predicts that the
rats suffering from cadmium poisoning are not in ALP status.
This is a correct discrimination. To address the second issue, we
performed a time-dependent study (up to 48 h post-injection)
on the ALP rat model. The rats exposed to lead poisoning for
different periods of time would suffer from lead poisoning to
different extents. The plasma FTIR spectra and corresponding
derivatives of this control group are presented in Figures S2, S3
in the Supplementary Material. We tested the 36 and 48 h data
with our PLS-DAmodel. As we can see in Figure 9, the predicted

FIGURE 5 | PLS-DA predicted and reference plots in the 3,100–2,800 and

1,750–900 cm−1 spectral regions.

FIGURE 6 | PLS-DA Y-variance plot in the 1,750–900 cm−1 spectral region.

values for these two control rat groups are all above the 0.5
threshold, indicating that these samples are in ALP status. This
is a correct discrimination. These additional control experiments
support the fact that our PLS-DA model is robust for ALP
prediction.

Basically, some lead-induced biochemical changes in the
plasma can be sensitively captured with chemometrics-based
FTIR spectroscopy. To gain more insight into the biochemical
changes induced by ALP in the plasma, the PLS-DA regression
coefficient plot could be used to reflect corresponding spectral
changes. As shown in Figure 10, this plot corresponds to
the ALP-induced change in the composition and structure
of the biochemical components in the plasma including
biomacromolecular constitutes (such as proteins, DNAs and
RNAs) as well as small molecular constitutes and metabolites

FIGURE 7 | PLS-DA predicted and reference plot in the 1,750–900 cm−1

spectral region.

FIGURE 8 | Discrimination of the rats with acute cadmium poisoning using the

proposed PLS-DA model for ALP.
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FIGURE 9 | Discrimination of the rats suffering from different extents of ALP using the proposed PLS-DA model: (A) 36h post-injection; (B) 48h post-injection.

FIGURE 10 | PLS-DA regression coefficient plot in the 1,750–900 cm−1

spectral region.

(such as lipids and carbohydrates). These plasma constitutes have
characteristic vibrational absorptions in the PLS-DA regression
coefficient plot. For example, through the spectral analysis of
the 1,700–1,600 cm−1 amide I region, we could obtain the
information relevant to proteins; through the spectral analysis of
the 1,300–1,000 cm−1 region, we could obtain the information
relevant to DNA and RNA. In addition, the intensity of the PLS-
DA regression coefficient plot in different spectral regions could
also provide information about the most prominent changes in
the plasma. A summary is provided in Table 1 for the spectral
assignments for prominent peaks (either positive or negative)
in the PLS-DA regression coefficient plot. They are based on
the assignments in previous studies (Barth and Zscherp, 2002;
Zandomeneghi et al., 2004; Zou et al., 2013; Staniszewska-Slezak
et al., 2015). The peaks in the amide I (1,700–1,600 cm−1) and
amide II (around 1,550 cm−1) correspond to absorptions of
plasma proteins. In this region, we observed several prominent
peaks in the PLS-DA regression coefficient plot including the
amide I and amide II peaks at 1,706, 1,689, 1,672, 1,656, 1,643,
1,613, 1,550, and 1,534 cm−1. This observation in the PLS-DA
regression coefficient plot suggests that ALP induced significant

compositional and structural changes of the proteins in the
plasma of the ALP rat model. Such changes may be due to the
direct coordination effect of lead ion with protein or be due to
the perturbation of lead ion on the biosynthesis of proteins in the
rat. In addition, lead ion may interact (or coordinate) with the
side chains of some amino acids (such as tryptophan, histidine,
aspartic acid, and glutamic acid) or affect the biosynthesis of these
amino acids. Such interactions or perturbations are suggested by
the observation of the peaks at 1,505, 1,354, and 1,241 cm−1

(corresponding to the side chain of tryptophan), at 1,583 and
1,433 cm−1 (corresponding to the side chain of histidine) and
at 1,417 cm−1 (corresponding to the side chains of aspartic acid
and glutamic acid). The PLS-DA regression coefficient plot also
suggests that the nucleic acid, DNA and RNA changes in the
plasma as the peaks at 1,221, 1,120, 1,080, and 1,062 cm−1 are
observed in the regression coefficient. These peaks correspond
to the PO−

2 and C-O absorption of DNA and RNA. At last, the
peaks at 1,034 cm−1 (which may be related to the metabolism
of glucose and polysaccharides) and at 989 and 972 cm−1 (which
corresponds to the phosphorylation modification of proteins) are
also observed in the regression coefficient plot. In summary, on
the one hand, the PLS-DA regression coefficient plot suggests
a very complex biochemical changes that occurred in the body
of the lead-poisoned rats; one the other hand, ALP-induced
protein changes seem to be the most important cause for the rat
poisoning. This finding further implies that the spectral changes
corresponding to the biochemical changes of proteins may be
used as potential spectral biomarkers for the diagnostics of ALP.

CONCLUSION

In this exploratory study, we have demonstrated that FTIR
spectroscopy empowered with PCA and PLS-DA analysis
can capture ALP-induced biochemical changes in the plasma
spectroscopically and is capable of differentiating the rats with
and without suffering fromALP. Furthermore, the revealed FTIR
spectral changes, in particular, corresponding to the biochemical
changes of proteins, may be used as potential spectral biomarkers
for the diagnostics of lead poisoning. Our method has sufficient
discriminant ability and the potential to be employed as a blood-
based objective, convenient, and non-destructive diagnostic tool
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TABLE 1 | Spectral assignment for the observed peaks in the PLS-DA regression

coefficient plot.

Peak position (cm−1) Spectral assignment

1,706 Protein amide I

1,689 Protein amide I

1,672 Protein amide I

1,656 Protein amide I

1,643 Protein amide I

1,613 Protein amide I

1,583 C=C vibration of histidine

1,562 Protein amide II

1,550 Protein amide II

1,534 Protein amide II

1,505 Indole vibration of tryptophan

1,433 C-N vibration of histidine

1,417 C-C, C-H, and N-H vibrations of tryptophan

1354 Indole vibration of tryptophan

1,241 C-H and C-C vibrations of tryptophan

1,221 PO−

2 antisymmetric stretch of nucleic acids, DNA,

and RNA

1,120 C-O stretch of DNA and RNA

1,080 PO−

2 vibrations of nucleic acids, phospholipids, and

saccharids

1,062 PO−

2 symmetric stretch of nucleic acids, DNA, and

RNA

1,034 C-O-H bend of glucose and polysaccharide

989 Protein phosphorylation

972 Protein phosphorylation

for lead poisoning. To the best of our knowledge, this work is the
first application of chemometrics-based FTIR spectroscopy in the
diagnostics of lead poisoning. We hope the chemometrics-based

FTIR spectroscopy can evolve into an objective, convenient,
cost-effective and non-destructive disease diagnostics tool in the
future.

ETHICS STATEMENT

This study was carried out in accordance with the
recommendations of institutional guidelines of the Animal
Ethics Committee of Tianjin Tasly Institute. The protocol was
approved by the Animal Ethics Committee of Tianjin Tasly
Institute.

AUTHOR CONTRIBUTIONS

WT and GM designed the project. WT, DW, HF, LY, and GM
conducted the experiments and analysed the data. GM, WT, and
HF wrote the manuscript.

ACKNOWLEDGMENTS

We gratefully acknowledge the financial support from the
National Natural Science Foundation of China (No. 21075027),
the Natural Science Foundation of Hebei Province (Nos.
B2011201082 and B2016201034), Juren plan, and Program
for Changjiang Scholars and Innovative Research Team in
University (No. IRT_15R16). GM thanks Xiangke Chen for
helpful discussions.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fchem.
2018.00261/full#supplementary-material

REFERENCES

Baker, M. J., Trevisan, J., Bassan, P., Bhargava, R., Butler, H. J., Dorling, K. M., et al.

(2014). Using fourier transform IR spectroscopy to analyze biological materials.

Nat. Protoc. 9, 1771–1791. doi: 10.1038/nprot.2014.110

Barth, A., and Zscherp, C. (2002). What vibrations tell us about proteins. Q. Rev.

Biophys. 35, 369–430. doi: 10.1017/s0033583502003815

Brodkin, E., Copes, R., Mattman, A., Kennedy, J., Kling, R., and Yassi, A. (2007).

Lead andmercury exposures: interpretation and action.Can.Med. Assoc. J. 176,

59–63. doi: 10.1503/cmaj.060790

De Bruyne, S., Speeckaert, M. M., and Delanghe, J. R. (2018). Applications of mid-

infrared spectroscopy in the clinical laboratory setting. Crit. Rev. Clin. Lab. Sci.

55, 1–20. doi: 10.1080/10408363.2017.1414142

Deleris, G., and Petibois, C. (2003). Applications of FT-IR spectrometry to

plasma contents analysis and monitoring. Vib. Spectrosc. 32, 129–136.

doi: 10.1016/s0924-2031(03)00053-5

Depciuch, J., Kaznowska, E., Koziorowska, A., and Cebulski, J. (2017).

Verification of the effectiveness of the Fourier transform infrared spectroscopy

computational model for colorectal cancer. J. Pharm. Biomed. Anal. 145,

611–615. doi: 10.1016/j.jpba.2017.07.026

Ellis, D. I., and Goodacre, R. (2006). Metabolic fingerprinting

in disease diagnosis: biomedical applications of infrared and

Raman spectroscopy. Analyst 131, 875–885. doi: 10.1039/b60

2376m

Elmi, F., Movaghar, A. F., Elmi, M. M., Alinezhad, H., and Nikbakhsh,

N. (2017). Application of FT-IR spectroscopy on breast cancer serum

analysis. Spectrochim. Acta A Mol. Biomol. Spectrosc. 187, 87–91.

doi: 10.1016/j.saa.2017.06.021

Flegal, A. R., and Smith, D. R. (1992a). Current needs for increased accuracy and

precision in measurements of low levels of lead in blood. Environ. Res. 58,

125–133. doi: 10.1016/s0013-9351(05)80209-9

Flegal, A. R., and Smith, D. R. (1992b). Lead levels in preindustrial humans. N.

Engl. J. Med. 326, 1293–1294.

Gajjar, K., Trevisan, J., Owens, G., Keating, P. J., Wood, N. J., Stringfellow,

H. F., et al. (2013). Fourier-transform infrared spectroscopy coupled with

a classification machine for the analysis of blood plasma or serum: a

novel diagnostic approach for ovarian cancer. Analyst 138, 3917–3926.

doi: 10.1039/c3an36654e

Gasper, R., Dewelle, J., Kiss, R., Mijatovic, T., and Goormaghtigh, E. (2009). IR

spectroscopy as a new tool for evidencing antitumor drug signatures. Biochim.

Biophys. Acta Biomembr. 1788, 1263–1270. doi: 10.1016/j.bbamem.2009.0

2.016

Ghimire, H., Venkataramani, M., Bian, Z., Liu, Y., and Perera, A. G. U. (2017).

ATR-FTIR spectral discrimination between normal and tumorous mouse

models of lymphoma and melanoma from serum samples. Sci. Rep. 7:16993.

doi: 10.1038/s41598-017-17027-4

Goldstein, G. W. (1992). Neurological concepts of lead poisoning in children.

Pediatr. Ann. 21, 384–388.

Frontiers in Chemistry | www.frontiersin.org June 2018 | Volume 6 | Article 26171

https://www.frontiersin.org/articles/10.3389/fchem.2018.00261/full#supplementary-material
https://doi.org/10.1038/nprot.2014.110
https://doi.org/10.1017/s0033583502003815
https://doi.org/10.1503/cmaj.060790
https://doi.org/10.1080/10408363.2017.1414142
https://doi.org/10.1016/s0924-2031(03)00053-5
https://doi.org/10.1016/j.jpba.2017.07.026
https://doi.org/10.1039/b602376m
https://doi.org/10.1016/j.saa.2017.06.021
https://doi.org/10.1016/s0013-9351(05)80209-9
https://doi.org/10.1039/c3an36654e
https://doi.org/10.1016/j.bbamem.2009.02.016
https://doi.org/10.1038/s41598-017-17027-4
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Tian et al. Chemometrics-Based FTIR Spectroscopy

Guo, F., Zhu, Y., Chen, C.,Wang, S., and Liang, S. (2017). Construction of different

calibration models by FTIR/ATR spectra and their application in screening

of phenylketonuria. Spectrochim. Acta A Mol. Biomol. Spectrosc. 177, 33–40.

doi: 10.1016/j.saa.2017.01.020

Hunter, D. (1978). The Disease of Occupations. Sevenoaks: Hodder and Stoughton.

Kazantzis, G. (1989). “Lead: ancient metal—modern menace?” in Lead Exposure

and Child Development: an International Assessment, eds M. A. Smith, L. D.

Grant, and A. L. Soris (Lancaster: MTP Press), 119–128.

Krafft, C., Sobottka, S. B., Geiger, K. D., Schackert, G., and Salzer, R.

(2007). Classification of malignant gliomas by infrared spectroscopic imaging

and linear discriminant analysis. Anal. Bioanal. Chem. 387, 1669–1677.

doi: 10.1007/s00216-006-0892-5

Krafft, C., Steiner, G., Beleites, C., and Salzer, R. (2009). Disease recognition

by infrared and Raman spectroscopy. J. Biophotonics 2, 13–28.

doi: 10.1002/jbio.200810024

Le Corvec, M., Jezequel, C., Monbet, V., Fatih, N., Charpentier, F., Tariel, H.,

et al. (2017). Mid-infrared spectroscopy of serum, a promising non-invasive

method to assess prognosis in patients with ascites and cirrhosis. PLoS ONE

12:e0185997. doi: 10.1371/journal.pone.0185997

Li, Z., Lv, H., Li, T., Si, G., Wang, Q., Lv, J., et al. (2017). Reagent-free

simultaneous determination of glucose and cholesterol in whole blood

by FTIR-ATR. Spectrochim. Acta A Mol. Biomol. Spectrosc. 178, 192–197.

doi: 10.1016/j.saa.2017.02.002

Liu, H., Su, Q., Sheng, D., Zheng, W., and Wang, X. (2017). Comparison of

red blood cells from gastric cancer patients and healthy persons using FTIR

spectroscopy. J. Mol. Struct. 1130, 33–37. doi: 10.1016/j.molstruc.2016.10.019

Mitchell, A. L., Gajjar, K. B., Theophilou, G., Martin, F. L., andMartin-Hirsch, P. L.

(2014). Vibrational spectroscopy of biofluids for disease screening or diagnosis:

translation from the laboratory to a clinical setting. J. Biophotonics 7, 153–165.

doi: 10.1002/jbio.201400018

Ollesch, J., Heinze, M., Heise, H. M., Behrens, T., Brüning, T., and Gerwert,

K. (2014). It’s in your blood: spectral biomarker candidates for urinary

bladder cancer from automated FTIR spectroscopy. J. Biophotonics 7, 210–221.

doi: 10.1002/jbio.201300163

Paraskevaidi, M., Morais, C. L. M., Lima, K. M. G., Snowden, J. S., Saxon, J. A.,

Richardson, A. M. T., et al. (2017). Differential diagnosis of Alzheimer’s disease

using spectrochemical analysis of blood. Proc. Natl. Acad. Sci. U S A. 114,

E7929–E7938. doi: 10.1073/pnas.1701517114

Patrick, L. (2006). Lead toxicity, a review of the literature. Part 1: exposure,

evaluation, and treatment. Altern. Med. Rev. 11, 2–22.

Rai, V., Mukherjee, R., Routray, A., Ghosh, A. K., Roy, S., Ghosh, B. P., et al.

(2018). Serum-based diagnostic prediction of oral submucous fibrosis using

FTIR spectrometry. Spectrochim. Acta A Mol. Biomol. Spectrosc. 189, 322–329.

doi: 10.1016/j.saa.2017.08.018

Roy, S., Perez-Guaita, D., Andrew, D.W., Richards, J.S., McNaughton, D., Heraud,

P., et al. (2017). Simultaneous ATR-FTIR based determination of malaria

parasitemia, glucose and urea in whole blood dried onto a glass slide. Anal.

Chem. 89, 5238–5245. doi: 10.1021/acs.analchem.6b04578

Sarkar, A., Sengupta, S., Mukherjee, A., and Chatterjee, J. (2017). Fourier

transform infra-red spectroscopic signatures for lung cells’ epithelial

mesenchymal transition: a preliminary report. Spectrochim. Acta

A Mol. Biomol. Spectrosc. 173, 809–816. doi: 10.1016/j.saa.2016.1

0.019

Sheng, D., Xu, F., Yu, Q., Fang, T., Xia, J., Li, S., et al. (2015). A study of structural

differences between liver cancer cells and normal liver cells using FTIR

spectroscopy. J. Mol. Struct. 1099, 18–23. doi: 10.1016/j.molstruc.2015.05.054

Smith, M. A. (1984). “Lead in history,” in The Lead Debate: the Environmental

Toxicology and Child Health, eds R. Lansdown and W. Yule (London: Croom

Helm), 7–24.

Staniszewska-Slezak, E., Fedorowicz, A., Kramkowski, K., Leszczynska,

A., Chlopicki, S., Baranska, M., et al. (2015). Plasma biomarkers of

pulmonary hypertension identified by Fourier transform infrared

spectroscopy and principal component analysis. Analyst 140, 2273–2279.

doi: 10.1039/c4an01864h

Titus, J., Viennois, E., Merlin, D., and Perera, A. G. U. (2017). Minimally

invasive screening for colitis using attenuated total internal reflectance

fourier transform infrared spectroscopy. J. Biophotonics 10, 465–472.

doi: 10.1002/jbio.201600041

Tong, S. (1998). Lead exposure and cognitive development: persistence

and a dynamic pattern. J. Paediatr. Child Health 34, 114–118.

doi: 10.1046/j.1440-1754.1998.00187.x

Tong, S., von Schirnding, Y. E., and Prapamontol, T. (2000). Environmental lead

exposure: a public health problem of global dimensions. Bull. World Health

Organ. 78, 1068–1077.

Winder, C. (1984). The Developmental Neurotoxicity of Lead. Lancaster: MTP

Press.

Zandomeneghi, G., Krebs, M.R., McCammon, M.G., and Fändrich, M. (2004).

FTIR reveals structural differences between native beta-sheet proteins

and amyloid fibrils. Protein Sci. 13, 3314–3321. doi: 10.1110/ps.0410

24904

Zou, Y., Li, Y., Hao, W., Hu, X., and Ma, G. (2013). Parallel beta-sheet fibril and

antiparallel beta-sheet oligomer: new insights into amyloid formation of hen

egg white lysozyme under heat and acidic condition from FTIR spectroscopy.

J. Phys. Chem. B 117, 4003–4013. doi: 10.1021/jp4003559

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Tian, Wang, Fan, Yang and Ma. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Chemistry | www.frontiersin.org June 2018 | Volume 6 | Article 26172

https://doi.org/10.1016/j.saa.2017.01.020
https://doi.org/10.1007/s00216-006-0892-5
https://doi.org/10.1002/jbio.200810024
https://doi.org/10.1371/journal.pone.0185997
https://doi.org/10.1016/j.saa.2017.02.002
https://doi.org/10.1016/j.molstruc.2016.10.019
https://doi.org/10.1002/jbio.201400018
https://doi.org/10.1002/jbio.201300163
https://doi.org/10.1073/pnas.1701517114
https://doi.org/10.1016/j.saa.2017.08.018
https://doi.org/10.1021/acs.analchem.6b04578
https://doi.org/10.1016/j.saa.2016.10.019
https://doi.org/10.1016/j.molstruc.2015.05.054
https://doi.org/10.1039/c4an01864h
https://doi.org/10.1002/jbio.201600041
https://doi.org/10.1046/j.1440-1754.1998.00187.x
https://doi.org/10.1110/ps.041024904
https://doi.org/10.1021/jp4003559
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


ORIGINAL RESEARCH

published: 06 July 2018
doi: 10.3389/fchem.2018.00262

Frontiers in Chemistry | www.frontiersin.org July 2018 | Volume 6 | Article 262

Edited by:

Hoang Vu Dang,

Hanoi University of Pharmacy, Vietnam

Reviewed by:

Huawen Wu,

BaySpec, Inc., United States

Francesco Crea,

Università degli Studi di Messina, Italy

*Correspondence:

Yanjiang Qiao

yjqiao@263.net

Zhisheng Wu

wzs@bucm.edu.cn

Specialty section:

This article was submitted to

Analytical Chemistry,

a section of the journal

Frontiers in Chemistry

Received: 28 November 2017

Accepted: 12 June 2018

Published: 06 July 2018

Citation:

Zhao N, Ma L, Huang X, Liu X, Qiao Y

and Wu Z (2018) Pharmaceutical

Analysis Model Robustness From

Bagging-PLS and PLS Using

Systematic Tracking Mapping.

Front. Chem. 6:262.

doi: 10.3389/fchem.2018.00262

Pharmaceutical Analysis Model
Robustness From Bagging-PLS and
PLS Using Systematic Tracking
Mapping

Na Zhao 1, Lijuan Ma 2,3, Xingguo Huang 2,3, Xiaona Liu 4, Yanjiang Qiao 1,2,3* and

Zhisheng Wu 1,2,3*

1 Key Laboratory of Xinjiang Phytomedicine Resources and Utilization, Ministry of Education, School of Pharmacy, Shihezi

University, Shihezi, China, 2 Beijing University of Chinese Medicine, Beijing, China, 3 Pharmaceutical Engineering and New

Drug Development of TCM of Ministry of Education, Beijing, China, 4 School of Integrated Traditional Chinese and Western

Medicine, Binzhou Medical University, Yantai, China

Our work proved that processing trajectory could effectively obtain a more reliable and

robust quantitative model compared with the step-by-step optimization method. The

use of systematic tracking was investigated as a tool to optimize modeling parameters

including calibration method, spectral pretreatment and variable selection latent factors.

The variable was selected by interval partial least-squares (iPLS), backward interval partial

least-square (BiPLS) and synergy interval partial least-squares (SiPLS). The models were

established by Partial least squares (PLS) and Bagging-PLS. The model performance

was assessed by using the root mean square errors of validation (RMSEP) and the ratio

of standard error of prediction to standard deviation (RPD). The proposed procedure was

used to develop the models for near infrared (NIR) datasets of active pharmaceutical

ingredients in tablets and chlorogenic acid of Lonicera japonica solution in ethanol

precipitation process. The results demonstrated the processing trajectory has great

advantages and feasibility in the development and optimization of multivariate calibration

models as well as the effectiveness of bagging model and variable selection to improve

prediction accuracy and robustness.

Keywords: multivariate calibration, near infrared spectroscopy, processing trajectory, Bagging-PLS, variable

selection

INTRODUCTION

Multivariate calibration is the process of relating the measured response to the analyte amounts,
concentrations, or other measured values of physical or chemical properties. Partial least squares
(PLS) regression is the most effective and commonly used regression techniques in multivariate
calibration because of its calibration model quality and ease of implementation. The statistical
results show that approximately 20,000 published papers reports used PLS models from 2005 to
2017. The PLS technique has been effectively applied to different fields, especially in pharmaceutical
analysis.

Kachrimanis et al. developed a fast and precise method using FT-Raman spectroscopy alongside
with PLS for the quantitation of monoclinic and orthorhombic paracetamol in powder mixtures
(Kachrimanis et al., 2007). Yu et al. established a PLSmodel using near infrared spectroscopy (NIR)
and gas chromatography data to determine l-borneol in Blumea balsamifera (Ai-na-xiang) samples
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(Yu et al., 2017). Sarkhosh et al. developed a PLS model of redox
potential with genetic algorithms selecting pixels in multivariate
image analysis for a quantitative structure-activity relationships
(QSAR) study of trypanocidal activity for quinone compounds
(Sarkhosh et al., 2014). Üstün et al. built a fast quantification
method combining 1HNMR spectroscopy with PLS to determine
the chondroitin sulfate and dermatan sulfate in danaparoid
sodium (Üstün et al., 2011). Wu et al. used NIR as a process
analytical technology and developed the PLS model of 11 amino
acids to monitor their concentration change during hydrolysis
process of Cornu Bubali (Wu et al., 2013b).

The successful application of PLS depends on the
development and validation of multivariable models. Recently,
the multivariate data needs a more suitable method to establish a
robust and reliable PLS model. However, many parameters need
to be optimized for a quantitative PLS model, which include
spectral pretreatment, variable selection, calibration methods,
etc. To improve model performance, the pretreatments are used
to reduce the undesirable variations effects from instrument,
environment, sample preparation protocol, etc. (Faber, 1999;
Blanco et al., 2007; Fernández-Cabanás et al., 2007; Lim et al.,
2016).

Besides, variable selection in modeling is also an
important step to identify informative features and/or remove
uninformative variables for better prediction performance
and model complexity reduction. Recently, based on the PLS
algorithm, some variable selection methods have been developed
including interval partial least-squares (iPLS) (Saudland et al.,
2000), backward interval partial least-square (BiPLS) (Leardi
and Nørgaard, 2004) and synergy interval partial least-squares
(SiPLS) (Munck et al., 2001), etc. Many studies have confirmed
the efficiency of these variable selection methods for improving
model performance (Chen et al., 2008; Di et al., 2010; Wu et al.,
2013a; Mahanty et al., 2016).

In addition, a single model is often not robust because
of the change of calibration data and model parameters. An
alternative effective approach to improve model robustness
is ensemble modeling that establishes multiple models and
combines their predictions into a single value. Bagging-PLS is
one of most important ensemble modeling techniques. About

FIGURE 1 | Raw NIR spectra of tablet samples (A) and Lonicera japonica solution in ethanol precipitation process (B).

60 papers were published on the use of Bagging-PLS model in
the period 2005–2017. Galvão et al. used bagging strategies in
conjunction with Multiple Linear Regression (MLR) and PLS
to develop the multivariate calibration models for four diesel
quality parameters, showing that the prediction accuracy was
improved by subagging procedure (Galvão et al., 2006). Pan
et al. combined ensemble method of Bagging with PLS to detect
naringin, hesperidin and neohesperidin in pilot-scale extraction
process of Fructus aurantii with online NIR sensors (Pan et al.,
2015).

Most of the published works dealing with PLS model used
a univariate to optimize these modeling parameters step by
step according to the root-mean-square error. The number of
modeling paths of this method was limited and the results were
often not the global optimal. Then, we proposed processing
trajectory that can provide a systematic way to optimize
parameters in a quantitative model (Zhao et al., 2015).

Based on the above considerations, we extend the
optimization of spectral pretreatment, latent factors and variable
selection using tracking procedure to spectral pretreatment,
latent factors, variable selection and calibration method. The
methods of variable selection included iPLS, BiPLS, and SiPLS.
The models were established by using PLS and Bagging-PLS. The
model performance was assessed using the root mean square
errors of validation (RMSEP) and the ratio of standard error of
prediction to standard deviation (RPD) (Esbensen et al., 2014;
Williams et al., 2014). Two diferent NIR spectral datasets (one
standard and one open source) were analyzed. The proposed
procedure was used to predict active pharmaceutical ingredients
(API) in tablets and chlorogenic acid of Lonicera japonica
solution in ethanol precipitation process.

DATASETS AND ANALYSIS

Datasets
Tablet
The NIR transmittance spectra of a pharmaceutical tablet were
described in Dyrby et al. (2002) and publicly available at http://
www.models.life.ku.dk/Tablets. This tablet dataset consists of 310
samples measured in the range of 7,000–10,500 cm−1 with a
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FIGURE 2 | The processing trajectory and assessment of PLS and Bagging-PLS model, tablet samples (A) and Lonicera japonica solution in ethanol precipitation

process (B).
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resolution of 16 cm−1 i.e., a total number of 404 variables per
sample. The objective of the analysis was to predict the API
content of the tablet. The content of API in the tablets (%
w/w) was assayed by high performance liquid chromatography
(HPLC). The tablet dataset was supplied in Data Sheet 1. This
dataset was divided into two groups: 207 and 103 samples for
training and validation with Kennard-Stone (KS) algorithm,
respectively.

Lonicera japonica

The NIR spectral dataset of Lonicera japonica has been
reported previously (Wu et al., 2012). The data consisted
of 216 samples with 2,800 variables in the range of 1,100–
2,500 nm that measured on an XDS rapid liquid analyzer with
VISION software in the transmission mode (Foss NIR Systems,
Silver Spring, MD, USA). NIR spectra of Lonicera japonica
solution obtained from ethanol precipitation process, were
measured to estimate chlorogenic acid content. HPLC was used
as the reference method for chlorogenic acid determination
as recommended by the Chinese Pharmacopoeia (CHP, 2010
Edition) for Lonicera japonica monograph. The dataset of
Lonicera japonica was supplied in Data Sheet 2. In this study,
the training data consisted of 144 samples and the remaining 72
samples were used for validation.

Multivariate Data Analyses
The spectral pretreatment of data was performed using
chemometric tool in this study (SIMCA P + 11.5, Umetrics,
Sweden). Data analysis was conducted using Unscrambler 9.7
software package (Camo Software AS, Norway) and Matlab
version 7.0 (MathWorks Inc., USA). Some of the algorithms
were developed by Norgaard et al., readily downloadable from
http://www.models.life.ku.dk/iToolbox.

Multivariate Calibration
A procedure for the development and optimization of
multivariate calibration models using processing trajectory
is summarized in Figure 2. The rationale behind this approach
is that there was more than one path to obtain good model
with different parameter combinations. Thus, the procedure was
used to track and evaluate modeling processes with different
parameters including spectral pretreatments, variable selections,
latent factors, and calibration methods. The evaluation indexes
of model includes RMSEP and RPD.

RESULT AND DISCUSSION

Raw Spectra
The raw NIR spectra of the tablet and Lonicera japonica solution
were shown in Figure 1, which represent their characteristic peak
locations regarding the active substance in each spectral dataset.
In the NIR transmittance spectra of tablet (Figure 1A), there
were several broad peaks located at around 10,000, 8,830, 8,200,
and 7,840 cm−1, which originated from several components
in the corresponding drug tablet. In addition, there were large
fluctuations in the combined region of fundamental vibrations

in the raw spectra of Lonicera japonica solution. Therefore, the
spectral region of 1,100–1,900 nm was selected.

Processing Trajectory of PLS Model
The modeling procedure using processing trajectory was showed
in Figure 2. Taking the tablet dataset as an example, the data
set were split in to calibration and validation sets and the

FIGURE 3 | The processing trajectory of PLS and Bagging-PLS model tablet

samples (A) and Lonicera japonica solution in ethanol precipitation process

(B).
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FIGURE 4 | Correlation between the prediction and reference values of the datasets: tablet samples (A) and Lonicera japonica solution in ethanol precipitation

process (B).

spectra were preprocessed using different methods including
first derivative (1st), second derivative (2nd) and Savitzky-Golay
smoothing with 9 points [SG(9)]. The iPLS, BiPLS and SiPLS
were then used to select variables. Finally, the PLS and Bagging-
PLS models were developed with latent factors from 1 to 10.
Both RPD and RMSEP were calculated to evaluate the model.
Figure 2 showed different modeling paths andmodel results. The
parameters for PLS and Bagging-PLS models of API in tablet
and chlorogenic acid of Lonicera japonica solution were shown
in Tables S1, S2.

The RPD and RMSEP had similar trends in PLS and Bagging-
PLS models. In Figure 2A, the RMSEP decreased with increasing
latent factor coupled with different pretreatment methods and
variables selections. The RPD also increased with an increase
of small latent factors. However, when the latent variable was
greater than a certain value, the RPD became smaller. Variances
in RMSEP and RPD indexes were not obvious when using 1st
and 2nd derivative preprocessed spectra. Other pretreatment
methods were superior to 1st and 2nd derivative processing.
The model for Lonicera japonica dataset is shown in Figure 2B.
Similar results were found for the tablet dataset. The model
results of other pretreatment methods were also better than 2nd
derivative processing.

Moreover, this finding indicates that more than one modeling
path could ensure a successful model. Data obtained from
different modeling paths and model classification were shown
in Figure 3. There were six good models with RPD between
3 and 3.5 (Figure 3A), and some very good model paths
with RPD values greater than 3.5 (Figure 3B). In the previous
modeling process routine, the parameters were optimized one
at a time according to the resultant prediction accuracy.
This was a poor approach to path modeling vs. step-by-step
parameter optimization (Table S3). The optimal parameters of
the API model obtained step-by-step optimized were the raw
spectra and iPLS-selecting variable under 3 latent factors. The
model performance was fair. However, the result of processing
trajectory showed that six good models could be obtained

by combination of SG(9) pretreatment and BiPLS-selecting
variables.

Development and Validation of Calibration

Models
The best nonsystematic parameter combination for the
chlorogenic acid Bagging-PLS model was raw spectra and iPLS
or BiPLS variables selection under 2 latent factors. The model
performance was good. However, there were 24 very good
models with different systematic parameter combinations in the
result of processing trajectory. The best parameter combination
of the chlorogenic acid model was that the model was developed
by Bagging-PLS with SG(9) spectral pretreatment and SiPLS-
selecting variables under 6 factors. It demonstrated that the
model obtained through the processing trajectory was better
than that step-by-step optimized. It means that the optimal
systematic model parameter combination can be obtained
via the processing trajectory and bagging ensemble modeling
techniques, and variable assignment could improve prediction
accuracy and robustness.

The model validity was evaluated in terms of RMSEP and
RPD values. Taking the tablet dataset as an example, Figure 2A
showed that the model established using Bagging-PLS with
SG(9) pretreatment and BiPLS-selecting variables under 10 latent
factors had the best performance. The RMSEP and RPD values
of the validation set were 0.4126% and 3.2234, respectively.
In contrast, the RMSEP and RPD of the model step-by-step
optimized were 0.5164% and 2.5755, respectively. These results
also showed that the model developed with Bagging-PLS had a
good predictive performance. Similarly, the model of Lonicera
japonica solution was developed using Bagging-PLS with SG(9)
spectral pretreatment and SiPLS-selecting variables under 6
latent factors. The RMSEP and RPD were 0.0728 mg/mL and
3.9166, respectively. The RMSEP and RPD of the model step-by-
step optimized were 0.0891% and 3.1966, respectively. Figure 4
presents the data obtained with Bagging-PLS models using
the two datasets. The prediction values reasonably agreed with
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HPLC results. The parameters indicated that NIRS could be
used for the determination of API in tablets and chlorogenic
acid of Lonicera japonica solution in ethanol precipitation
process.

CONCLUSION

We proposed processing trajectory to optimize the parameters
of multivariate calibration such as spectral pretreatment, latent
factors, variable selection and calibration methods. The models
were developed using PLS and Bagging-PLS with different
spectral pretreatments and variable selection methods under
different latent factors. The chemometric indicators (RMSEP
and RPD) were used to evaluated the model. The different
PLS and Bagging-PLS models were used to quantify the
API in tablets and chlorogenic acid of Lonicera japonica
solution in ethanol precipitation process. The result illustrated
that the processing trajectory has great advantages and
feasibility in the development and optimization of multivariate
calibration models and the effectiveness of bagging model
and variable selection to improve prediction accuracy and
robustness.

In conclusion, the application of processing trajectory for
model optimization shows excellent results to develop a reliable

and robust model. The proposed should be translated into an
algorithm to be integrated into PLS software, helping to obtain
better models.
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Despite of a large number of imaging techniques for the characterization of biological

samples, no universal one has been reported yet. In this work, a data fusion approach

was investigated for combining Raman spectroscopic data with matrix-assisted laser

desorption/ionization (MALDI) mass spectrometric data. It betters the image analysis

of biological samples because Raman and MALDI information can be complementary

to each other. While MALDI spectrometry yields detailed information regarding the lipid

content, Raman spectroscopy provides valuable information about the overall chemical

composition of the sample. The combination of Raman spectroscopic and MALDI

spectrometric imaging data helps distinguishing different regions within the sample with a

higher precision than would be possible by using either technique. We demonstrate that

a data weighting step within the data fusion is necessary to reveal additional spectral

features. The selected weighting approach was evaluated by examining the proportions

of variance within the data explained by the first principal components of a principal

component analysis (PCA) and visualizing the PCA results for each data type and

combined data. In summary, the presented data fusion approach provides a concrete

guideline on how to combine Raman spectroscopic and MALDI spectrometric imaging

data for biological analysis.

Keywords: MALDI-TOF, Raman imaging, data combination, data fusion, normalization, PCA

INTRODUCTION

Different analytical methods could be utilized for biomedical analysis (e.g., cells, and tissues,
etc.) to highlight a certain aspect of the sample e.g., morphological microstructure, distribution
of electronic chromophores, molecule classes, or special proteins. Among the label-free imaging
approaches, matrix-assisted laser desorption/ionization (MALDI) spectrometry, and Raman
microscopy are certainly among the most powerful imaging techniques for the investigation
of biomedical samples. Raman spectroscopy is a non-destructive spectroscopic method, which
provides complex molecular information about the general chemical composition of the sample
with a rather high spatial resolution (Abbe limit) to highlight subcellular features (Kong
et al., 2015). The drawback of Raman imaging lies in its weak scattering efficiency that
makes sampling time rather long for large area imaging. Raman spectroscopic imaging has
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demonstrated its potential for biomedical diagnosis in numerous
cancer-related studies (Tolstik et al., 2014), biological material
analysis (Butler et al., 2016), cell characterization studies (Ramoji
et al., 2012), and many other biomedical applications (Matousek
and Stone, 2013; Ember et al., 2017).

On the other side, MALDI mass spectrometry provides
information on specific substances, such as lipids or proteins
(Fitzgerald et al., 1993). MALDI is a soft ionization technique
utilized for mass-spectrometric imaging (Gessel et al., 2014) to
determine large organic molecules and biomolecules undetected
by conventional ionization techniques. This technique was
employed in clinical parasitology (Singhal et al., 2016), microbial
identification (Urwyler and Glaubitz, 2016), and cancer tissue
investigation (Hinsch et al., 2017).

Raman spectroscopic and MALDI mass spectrometric
imaging both offer a high molecular sensitivity. Moreover,
Raman spectroscopy has been sequentially applied together with
different mass spectrometric techniques to address a variety of
biological tasks such as characterization of succinylated collagen
(Kumar et al., 2011), investigation of microbial cells (Wagner,
2009), identification of fungal strains (Verwer et al., 2014) and
characterization of lipid extracts from brain tissue (Köhler et al.,
2009). In all the aforementioned studies, the Raman and mass
spectrometric data are analyzed separately, and then summarized
or compared to each other (Masyuko et al., 2014; Bocklitz et al.,
2015; Muhamadali et al., 2016). To significantly increase the
information content, Raman spectroscopic and MALDI mass
spectrometric imaging data have to be co-registered (Bocklitz
et al., 2013) followed by a high-level (distributed) data fusion. It
means that each data type is analyzed separately to obtain the
respective scores, which are then fused together. Alternatively,
spectroscopic imaging can be used for mapping an area that
is suitable for further investigation by means of MALDI
spectrometric imaging (Fagerer et al., 2013) or a certain mass
peak is used to define an area, from which the Raman spectra
are analyzed (Bocklitz et al., 2013). Such a hierarchical pipeline
corresponds to a decentralized data fusion approach.

In the present work, we introduced an analytical method
to perform a low-level (centralized) fusion of Raman and
MALDI imaging data. Because the experimental implementation
of correlated imaging is challenging in many aspects (Masyuko
et al., 2013), we utilized a computational approach to combine
imaging data obtained by MALDI spectrometry and Raman
spectroscopy. The correlation of Raman spectroscopy with mass
spectrometric imaging techniques such as MALDI (Ahlf et al.,
2014) or secondary ion mass spectrometry (SIMS) (Lanni et al.,
2014) have proved its usefulness for biological applications.
Moreover, a combination of MALDI imaging data with optical
microscopy could attenuate instrumental effects (Van De Plas
et al., 2015), and a joint analysis of vibrational and MALDI mass
spectra could provide valuable information on brain tissue (Van
De Plas et al., 2015; Lasch and Noda, 2017). Nevertheless, even if
Raman and MALDI spectra are obtained by correlated imaging,
each type of spectra shows its own specific features and should
be preprocessed separately. Because the measurement techniques
are based on different physical effects, the difference in data
dimensionality and dynamic range can affect the contribution

of each datatype in the analysis. Therefore, a weighting
coefficient that balances the influence of Raman spectroscopic
and MALDI spectrometric data in the data fusion center is
required.

MATERIALS AND METHODS

Experimental Details
We demonstrated the data fusion on an example dataset
of MALDI spectrometric and Raman spectroscopic scans
obtained from the same mouse brain sample (Mus musculus)
of 10µm cryosection. The sample was cut on a cryostat, and
then dried on a precooled conductive ITO-coated glass slide.
Subsequently, Raman spectra were obtained using a confocal
Raman microscope CRM-alpha300R (WITec, Ulm, Germany)
and excited with a 633 nm HeNe laser (Melles Griot). The laser
irradiation was adjusted in order to have about 10mW power.
The laser was coupled through an optical fiber into a Zeiss
microscope. A spectral map was obtained by a raster scan with
a 25µm grid with a dwell time of 2 s and a pre-bleaching time of
1 s.

After the Raman scan, MALDI mass spectrometric imaging
was performed with a common matrix alpha-cyano 4-hydroxy
cinnamic acid (5 mg/mL) in 50% acetonitrile and 0.2%
trifluoracetic acid. The ImagePrep station (Bruker Daltonics)
was used to prepare and apply the matrix on the sample. The
MALDI-time-of-flight (MALDI-TOF) spectrometric map was
obtained on a Ultraflex III MALDI-TOF/TOFmass spectrometer
(Bruker Daltonics, Bremen, Germany). A “smartbeam” laser
(λ = 355 nm, repetition rate 200Hz) was used. The spectrometer
was calibrated with an external standard, a peptide calibration
mixture (Bruker Daltonics). The measurements were performed
in the positive reflectron mode with 500 shots per spectrum and
spatial resolution of 75µm.

Further experimental details for both data types and an
example of a hierarchical data fusion implementation can be
found in the report by Bocklitz et al. (2013). Nevertheless,
in the context of a further discussion, it is important to
highlight that in MALDI mass spectrometric imaging a
matrix suitable for the analysis of the lipid content was
applied.

Preprocessing of Raman Spectroscopic

Data
The influence of corrupting effects (e.g., cosmic spikes,
fluorescence) on Raman spectra cannot be avoided completely.
Thus, the development of complex preprocessing routines
(Bocklitz et al., 2011) is required. To allow further analysis
of the Raman spectra obtained with different calibrations, all
spectra need to be interpolated to the same wavenumber axis
(Dörfer et al., 2011). Moreover, keeping all the spectra in a
single data matrix simplifies a further processing routine, so it is
advantageous to perform the calibration as one of the first steps of
the preprocessing workflow (Figure 1). Besides the wavenumber
calibration, intensity calibration should be performed for the
comparison of the measurements obtained with different devices
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FIGURE 1 | A general pipeline for Raman data preprocessing. The workflow shows the main steps of the preprocessing routine necessary for robust Raman spectral

analysis. Although some steps should be defined while planning the experiment, subsequent preprocessing methods (highlighted in gray area) and their parameters

can be optimized for extracting the required information from the data.

or in the case where some changes in the measurement device
have occurred (Dörfer et al., 2011).

The calibration is always needed for a reliable analysis,
especially if the measurements were performed over a large
time period, or settings of the device were changed between
the measurements. In contrast, the following step within the
preprocessing workflow (i.e., noise removal) is an optional step.
However, among smoothing methods, only the running median
with a relatively large window is applicable for cosmic ray
noise removal. Unfortunately, filtering with a large window may
corrupt the Raman bands themselves. Alternatively, 2–3 spectra
per point can be acquired to eliminate the spikes that are not
present in each spectrum. Nevertheless, this approach increases
the measurement time dramatically. Therefore, this approach is
not suitable for Raman imaging when a large number of spectra
are recorded. Thus, specialized spike correction approaches
like wavelet transform (Ehrentreich and Summchen, 2001),
correlation methods (Cappel et al., 2010), calculation of the
Laplacian of the spectral data matrix (Schulze and Turner, 2014;
Ryabchykov et al., 2016), or a difference between the original and
a smoothed spectrum (Zhang and Henson, 2007) must be used
for spike removal.

The next step in the preprocessing workflow for Raman
spectra is fluorescence background removal. In this work, the
sensitive nonlinear iterative peak (SNIP) clipping algorithm
(Ryan et al., 1988) was used for baseline estimation. The SNIP
algorithm can be utilized for background estimation for a
number of spectral measurements, like X-ray and mass spectra.

After baseline correction, the Raman spectra must be
normalized (Afseth et al., 2006) to complete the basic
preprocessing. There are several normalization approaches
(e.g., vector normalization, normalization to integrated spectral
intensity, or a single peak intensity value) that enhance the
stability of the spectral data. In this work, we used vector
normalization and l1-normalization (Horn and Johnson, 1990)
for Raman spectra. The difference between normalization
to integrated spectral intensity and l1-normalization is that
the latter utilized absolute intensity values. As a result, the
difference between both normalization approaches becomes
more significant when negative values appear in the baseline
corrected spectra due to noise or baseline correction artifacts.

Preprocessing of MALDI Spectrometric

Data
Although the measurement techniques themselves differ
dramatically for Raman andMALDI mass spectroscopic imaging
data, the preprocessing of these data has a lot in common. The
m/z values are set according to an internal calibration and may
“float” slightly from one measurement to another. Therefore, a
phase correction along the m/z axis must be performed within
the preprocessing workflow (Figure 2) to ensure that the spectra
obtained in different measurements are comparable. For this
purpose, it is advisable to use the stable intense peaks within the
phase correction routine (Gu et al., 2006).

From a theoretical point of view, MALDI spectra should not
feature a spectral background. Nevertheless, inmeasuredMALDI
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FIGURE 2 | A general pipeline for MALDI data preprocessing. The workflow shows the main steps of the preprocessing routine necessary for robust MALDI spectral

data analysis and the main differences as compared to the Raman data preprocessing routine, described in Figure 1.

spectra a background is present. In literature, a background
present in MALDI mass spectra is also known as “chemical noise
background” (Krutchinsky and Chait, 2002). This type of noise
results from matrix impurities and unstable ion clusters created
during the sample scanning.

Similarly to Raman spectral preprocessing, the SNIP
algorithm (Ryan et al., 1988) can be used to eliminate the
background from mass spectra. Another complication in the

analysis of MALDI spectra results from the fact that even
after the phase correction, peak positions vary insignificantly
among different spectra. An interpolation procedure, which
is applied in Raman data preprocessing, would corrupt the

sharp peaks found in MALDI spectra and is therefore not

applied. To enable a direct comparison of the spectra, a
binning procedure is applied. This procedure is based on
the equalization of the m/z-values of peak positions within a
certain range. Since the average peak width along the m/z axis
increases with increased mass, the binning range is set with

a so-called tolerance relative to the mass values. In contrast
to Raman spectroscopy, intensity calibration for MALDI
mass spectrometric imaging is not required. Nevertheless,
normalization may be applied. Various types of normalization
are used for MALDI mass spectroscopic imaging data: total
ion count (TIC), vector norm (RMS), median, square root,
logarithmic, and normalization to a noise level. In contrast to
the Raman spectral data, MALDI mass spectra do not feature
negative values. Thus, TIC normalization and normalization
to l1-norm, which is a sum of absolute values, are equal for
MALDI spectra. If the significance level of the data is high,

the normalization may be not necessary for the subsequent
analysis.

Computational Details
For MALDI data acquisition and calibration, a flexImaging
software version 3.0 (Bruker Daltonics) was used. The
data processing was also performed in R (R Core Team,
2017) using packages akima (Gebhardt)1, Peaks (Morhac)2,
readBrukerFlexData (Gibb)3, rsvd (Erichson)4, spatstat
(Baddeley and Turner, 2005), and Spikes (Ryabchykov et al.,
2016).

Prior to the data preprocessing and data fusion, the MALDI
and Raman spectra were interpolated to the same (spatial) grid
by utilizing a co-registration framework. Based on the false
color images of Raman spectroscopic and MALDI spectrometric
scans, 6 points clearly representing the same positions on every
scan were manually selected. The coordinates of the Raman
spectroscopic map were then transformed to the coordinate
system of the MALDI mass spectrometric map. Subsequently,
the Raman spectra were interpolated to the grid of the MALDI
mass spectral map. To perform this interpolation, every point
within the Raman grid was assigned to the nearest point
within the MALDI grid. After that, the average of the Raman
spectra, assigned to the same point within the MALDI grid, was

1Gebhardt, H. A. “akima: Interpolation of Irregularly and Regularly Spaced Data.”
2Morhac, M. “Peaks: Peaks.”
3Gibb, S. “readBrukerFlexData: Reads Mass Spectrometry Data in Bruker ∗flex

Format.”
4Erichson, N. B. “rsvd: Randomized Singular Value Decomposition.”
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calculated. Two spectral maps were thus obtained and aligned in
a point-wise manner.

After the alignment, the Raman spectroscopic and MALDI
mass spectrometric imaging data were preprocessed. During
the preprocessing, the wavenumber calibration of the Raman
spectra and the phase correction of MALDI spectra were
performed. The MALDI mass spectrometric imaging data
were subsequently subjected to noise removal, background
correction, and TIC normalization. The Raman spectra were
corrected for fluorescence background and vector normalized.
The SNIP algorithm was used for background estimation in both
cases.

After the preprocessing, Raman and MALDI mass spectral
data differed in their dimensionality and in dynamic range. Data
with different dynamic ranges would contribute unequally in
a further analysis and consequently the spectral matrices have
to be additionally weighed before performing the PCA. The
weighting coefficient was selected as a ratio between the l1-
norms of the matrices, which are sums over the absolute values
in the matrix. After the weighting, the data were combined
in a single matrix and analyzed with a PCA. To illustrate
the benefit of data fusion and weighting, we also analyzed
the un-weighted data in a combined manner and each data
type separately. We also investigated the case, where the same
normalization approach was applied to both data types and no
additional weighting is required. When the Raman spectra were
normalized to the total spectral intensity, which is equivalent to
TIC normalization of mass spectra, the data matrices had equal
l1-norms.

RESULTS AND DISCUSSION

Both Raman spectroscopic and MALDI mass spectrometric
imaging data provide different insights into the chemical
composition of the sample. Information on a broad range
of molecules can be obtained from the Raman spectra. This
information can be complemented by detailed information on
lipid content, obtained from the MALDI data. To utilize both
types of information together, a data fusion must be applied.
This data fusion may be performed during different stages of
the analysis workflow. Therefore, the architecture of the data
processing workflow is dependent on the selected data fusion
approach. These approaches can be divided into the following
types (Castanedo, 2013):

• Centralized architecture (Figure 3A). The preprocessed data
from different sources are combined in the data fusion center
and are analyzed together.

• Decentralized architecture (Figure 3B). This scheme does not
have a single data fusion center. The processing workflows
are interacting at different processing stages. This architecture
may provide multiple outputs or be represented as a
hierarchical structure.

• Distributed architecture (Figure 3C). Each data type is
preprocessed and analyzed separately. Subsequently, the
output values are evaluated and combined to obtain a single
result.

The decentralized and distributed architecture already showed
their effectiveness for biomedical investigations (Bocklitz et al.,
2013; Ahlf et al., 2014). The current work focuses on
the centralized data fusion approach, also called low-level
data fusion. In contrast to decentralized and distributed
architectures, the centralized architecture shows a simpler
workflow (Figure 3A). The data are combined in early steps of
the analysis, directly after the preprocessing and even before
the dimension reduction. At the data fusion center, where the
different types of data are combined, an additional normalization
or scaling of the data may be required to weight the influence
of the different data types on the global model. The need
for this weighting step arises from the differences in the data
dimensionality, measurement units and dynamic ranges of
the different measurement techniques. It is worth mentioning
that the weighting is not a major issue in high-level data
fusion approaches, which usually deal with standardized low-
dimensional outputs of preliminary analysis in the data fusion
center. However, a low-level data fusion (such as the applied
centralized data fusion model) deals directly with preprocessed
spectra of different types. Thus, the data scaling may dramatically
influence extraction efficiency of the features.

To investigate the impact of data weighting, we searched for
a marker that would allow an objective comparison of different
data fusion and normalization approaches. This weighting
scheme is designed for biological samples (i.e., a complex
chemical composition), of which a large number of independent
features have to be identified for appropriate description. By
applying a PCA for dimension reduction, a large portion of the
data variance is expected to be spread among multiple principal
components (PCs) and the optimal approach should correspond
to the slowest raise of the cumulative proportion of variance with
a number of PCs.

The variances of the data explained by PCA are shown in
the Figure 4 where the normalization and fusion approaches
(described in section Computational Details) are shown.
Unfortunately, a direct comparison between cumulative
proportions of variance obtained from Raman and MALDI
mass spectral data, and their combined data is not suitable
due to the different number of variables. However, different
trends in the observed variance by the PCs in data with the
same dimensionality can be interpreted. The left side of Figure 4
shows that the variance of vector normalized Raman data is
spread among a larger number of PCs than that of the total area
normalized Raman data. This finding indicates that the vector
normalization allows extracting a larger number of significant
features from Raman data. Because the Raman spectra were
vector normalized and the MALDI spectra were TIC normalized,
the Raman data contribute more to the overall data variance
than the MALDI data. Consequently, the PCA will focus on the
variations in the Raman data and the variations in the MALDI
data will have only a small influence. Alternatively, two datasets
can be balanced by normalizing spectra of both types to their
l1-norms. By definition, this norm is a sum of absolute values. It
takes dimensionality and scaling of the data into account, so no
additional weighting is required. TIC normalization performed
on MALDI data is already equal to l1-normalization because
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FIGURE 3 | Various data fusion architectures: centralized (A), decentralized (B), and distributed (C) architectures.

FIGURE 4 | Influence of weighting in the data fusion center on the PCA. The left side of the figure shows cumulative proportion of data variance explained by first 20

PCs for Raman data (normalized in two different ways) and for MALDI data. On the right side of the figure, a slower raise of cumulative proportion of weighted data

variance in comparison to the non-weighted case is shown. This trend reflects that more independent features can be extracted from the data by applying weighting

prior to the data fusion. As it is also shown in the plot on the right side, a similar effect can be reached by applying the same type of normalization for both data types.

there are no negative values present in the mass spectra. The
right side of Figure 4 clearly shows that there is a marked
difference between the approach not taking the data scaling into
account and the approaches based on weighting or identical
normalization. However, no significant benefit was observed
when comparing the weighting to identical normalization
approach.

To further investigate the influence of weighting on data
fusion, the weighting coefficient was varied in a range from
1 to 20 and a PCA utilized for every case. The extracted
curves of the cumulative proportion of the variance were
organized as a surface plot (Figure 5). Tomake the interpretation
easier, the curves, which correspond to the data combination
without weighting and with weighting based on the ratio of l1-
norms, are additionally highlighted in Figure 5. Although no

single weighting coefficient is globally the best, the proposed
weighting coefficient lies close to the area where the data variance
is spread between multiple PCs. Thus, fusing data in this
manner enables the PCA to extract a larger number of reliable
features.

Although an optimal data fusion has been achieved as above-
mentioned, a direct comparison of cumulative proportions
of variance explained by the PCA for data with different
dimensionalities may be misleading. Hence, the results obtained
from the combined approach and separated data analysis
(Figure 6) were checked by means of inspecting the PCA
loadings and scores. The first three PCs were visualized separately
for the MALDI spectrometric imaging data (Figures 6A,C),
Raman spectroscopic imaging data (Figures 6B,D), and their
combination (Figures 6E–G).
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The comparison of the PCA scores in Figure 6 shows that
the image of the MALDI-Raman combination (Figure 6G)
depicts clearer spatial features of the sample (compared to
Figures 6C,D). The corresponding false-color score composite
(Figure 6G) is less noisy, and looks subjectively better than the
images obtained separately from the MALDI mass spectrometric
(Figure 6C) and Raman spectroscopic data (Figure 6D).
Moreover, the loading vector of the third PC of the MALDI
spectra (shown in blue color in Figure 6A) has positive and
negative values related to isotopes of the same molecules. It
means that it represents mostly noise and variations in the
signal to noise ratio. On the other hand, the MALDI part of the
loadings of the third PC in the combined analysis (shown in blue
color in Figure 6E) reflects a joint behavior for the isotopes of
the same ions. Moreover, the Raman part of this PC contains
the peaks associated with lipids (Notingher and Hench, 2006),
namely the C = C stretching region (1,655–1,680 cm−1), and
CH deformation band (1,420–1,480 cm−1). Although these two
peaks may also be associated with Amide I and CH deformations
of proteins, there is a decrease in the protein-associated range
(Notingher and Hench, 2006) in the wavenumber region
1,128–1,284 cm−1. Furthermore, there are notable changes in the
CH-stretching region (2,800–3,100 cm−1). Thus, the third PC
of the combined data represents the actual diversity in the lipid
composition of the sample. The relationship of the CH stretching
region of the Raman spectra to the changes in the lipid content
can also be observed by a high correlation of the Raman spectral
region with MALDI mass spectra (Figure 7).

Since both data types simultaneously reflect variations in
lipid content, the specific changes in the correlation profiles
(Figure 7) of the Raman and MALDI data are observed in
the areas related to lipid bands in Raman spectra. Besides the
contributions of lipids, which are found in the third PC, the
fingerprint region of Raman spectra contains numerous peaks
related to proteins and DNA. These Raman bands correlate
with MALDI peaks both positively and negatively (Figure 7).
The correlation of a certain MALDI peak with the Raman data
shows a similar structure, but with an opposite sign. This sign
change reflects changes in the contribution of specific lipids
with respect to the overall increase of lipid content in the
sample.

One of the non-lipid compounds, which feature strong Raman
bands, is phenylalanine. Its symmetrical ring breathing mode
and C-H in-plane mode are visible in the first two PCs at 1,004
and 1,030 cm−1. Another peak related to phenylalanine can be
found in the first two PCs at 1,104 cm−1 (Movasaghi et al., 2007).
Aside of that, the first PC contains contributions of tryptophan
at 760 cm−1 (Bonifacio et al., 2010). The protein backbone C-Cα

stretching of collagen is present in the second PC at 936 cm−1

and the ν(C–C) protein backbone is located in the first two PCs
at 816 cm−1 (Bonifacio et al., 2010). Also, prominent collagen-
associated bands like Amide I and Amide III can be seen in
the first PC at 1,655–1,680 and 1,220–1,284 cm−1, respectively
(Krafft et al., 2005; Notingher and Hench, 2006). Moreover, the
peak at 1,647 cm−1 is associated with the random coil structure
of proteins in general (Movasaghi et al., 2007). This peak is also
present in the first two PCs.

FIGURE 5 | Dependence of the variance explained by PCA using the

weighting scheme. The surface plot covers the first 20 PCs and weighting

coefficients between 1 and 20. The cumulative proportions of variance for the

weighted and non-weighted cases are shown as blue and green lines,

respectively (please refer to the online version for colors). Furthermore, the

lowest variance is highlighted for each number of PCs with a dot. These dots

represent an optimal unmixing for the related number of PCs. Although this

optimum changes with respect to PC numbers, the used weighting coefficient

based on l1-norms clearly lies near the minimum of cumulative proportion of

variance for a given number of PCs.

The main contribution to the first PC is the ratio between
the fingerprint region of Raman spectra and C-H stretching
region. On the other side, the fingerprint region of the second PC
contains both positive and negative peaks, reflecting the changes
in protein content. Along with the protein content, valuable
information about DNA is obtained from the first two PCs of
the Raman spectra. The peak at 1,180 cm−1 represents cytosine
and guanine. Another DNA peak is located at 1,263 cm−1 and
represents adenine and thymine (Movasaghi et al., 2007). All
Raman spectral features provide a complex overview of the
chemical composition of the mouse brain section. The MALDI
data, on the other hand, extends the overview of the distribution
of biomolecules based on Raman spectroscopy with detailed
information about the lipid content composition.

CONCLUSION

In this paper, a data fusion scheme was investigated to analyze
Raman spectroscopic and MALDI mass spectrometric imaging
data together. We described the most significant corrupting
effects influencing the analysis of Raman spectroscopic and
MALDI mass spectrometric imaging data. The preprocessing
workflows were shown for the suppression of these corrupting
effects by means of calibration, noise reduction, background
correction, and normalization for both data types. After the
pretreatment steps, the importance of data weighting prior
to data fusion is highlighted, especially when the data are
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FIGURE 6 | PCA analysis: first three PCs calculated for MALDI spectra (A), Raman spectra (B), combined Raman-MALDI data (E,F) and their false-color score

composites (C,D,G). Red, green, and blue colors indicate the first, second and third PCs, respectively. Separate plots for the loadings and false color images can be

found as Supplementary Material. The PCs composite image of the combined data (G) shows a smoother appearance, and the loadings after data fusion (E,F) are

easier to interpret. See text for further details.

FIGURE 7 | Correlation between Raman spectroscopic and MALDI mass spectrometric data. Correlation of two data types after being preprocessed is depicted in

yellow (positive values), red (zero), and violet (negative values) colors. Average preprocessed MALDI spectrum (on the top of the figure) and Raman spectrum (on the

right side of the figure) are plotted for easier interpretation.

obtained from different sources and have different scales and
dimensionalities. As there is no universal way of balancing
the influence of data types on the analysis, optimization, and
validation of weighting approaches should be done according
to the specific data. In order to allow a judgment of the

quality of a weighting, we proposed an approach that allows
estimating the goodness of data weighting. This approach is
based on analyzing proportions of data variance explained by
PCs and we applied this approach by examining the cumulative
variance. It was shown that the weighting, based on the ratio
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of l1-norms of the data matrices, allows optimal unmixing of
the example data set into features. Besides the comparison
of different weighting schemes, the proposed method can be
used for the comparison of normalization approaches. It was
found that vector normalization allows better unmixing of the
example Raman data as compared to the normalization to the
integrated spectral intensity (l1-norm). Besides the establishment
of a weighting approach, we discovered that a nearly optimal
result compared to the weighting is achieved if the spectra of both
types are normalized to the same norm. We could demonstrate
this by normalizing both types of spectra of an example dataset to
the same norm. This was the l1-norm in our example. However,
it is important to keep in mind that this method of comparing the
cumulative proportions of variance should be used only when a
researcher is interested in maximizing the number of extracted
independent features.

The revealing of additional meaningful features by means of

optimal data fusion was demonstrated for the combination of
Raman spectroscopic and MALDI mass spectrometric imaging
data. We showed this by comparing the third PC extracted from
each type of data separately and from the combined data. The

MALDI-related part of the third combined component showed

a clearer interpretation in comparison to the third loading
obtained from the MALDI data alone. Moreover, the Raman-
related part of the combined component reflected variations in
lipid to protein ratio. This PC depicts a decrease in a protein-
associated range that occurs along with an increase of bands

related to the CH deformation and C=C stretching in lipids,
which can be found in the regions 1,128–1,284, 1,420–1,480, and
1,655–1,680 cm−1, respectively. Therefore, changes in the lipid to
protein ratio and changes in lipid content itself can be observed
simultaneously through the data fusion of Raman spectroscopic
and MALDI mass spectrometric imaging data.

Finally, the advantage of the combined analysis was illustrated
by a comparison of the PCA results visualized as false-color
RGB images. These images were obtained separately for the
preprocessed Raman and MALDI imaging data and for the

combined data. Visual investigation of the images showed that
the combined approach provides a sharper image with less noise
contributions. This allows the conclusion that the data fusion
increases reliability not only for the spectral but also for the
spatial features present in the data.
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Potassium represents one of the most crucial minerals in infant formula that supports

healthy growth and development of infants. Here, a novel strategy for the real-time

quantification of potassium in infant formula samples is introduced. Using laser-induced

breakdown spectroscopy (LIBS) in a data-driven approach, a modified random frog

algorithm (MRFA) is adopted in a higher-density discrete wavelet transform (HDWT)

domain for the selection of the most important features related to potassium, which

is named as DD-LIBS. In DD-LIBS, the HDWT oversamples the LIBS signals in both

time and frequency domains by a factor of two, enhancing the spectral expandability

in an approximately shift-invariant way. The MRFA is thus capable of isolating the

features of potassium with experience accumulated from the collected LIBS data.

Such pretreatment combined with a partial least squared (PLS) model can significantly

suppress the uncontrolled shift and broadening effects on multivariate calibration,

improving the capability of LIBS for accurate quantification of potassium. The present

work demonstrates the feasibility of DD-LIBS for the quantification of potassium content

of 90 commercial infant formula samples. A satisfactory result illustrates DD-LIBS as a

feasible tool for real-time analysis of potassium content with little sample preparation. This

strategy may be well extended to other element detection in the presence of uncontrolled

interference.

Keywords: laser-induced breakdown spectroscopy, higher density wavelet transform, modified random frog

algorithm, infant formula, potassium

INTRODUCTION

Infant formula, as a breast-milk substitute, plays a significant role since it is the sole source
of nutrition for some infants (Deckelbaum et al., 2004; Meucci et al., 2010; Codex, 2015;
AOAC International, 2016). The international standard for infant formula set by Codex
Alimentarius Commission (CAC) has a strict requirement of the essential composition and
nutrition content (Codex, 2015). Meanwhile, all infant formulas marketed must also meet local
standards, which are based on the national physique and health level (The Ministry of Health
People’s Republic of China, 2010b). As an essential cation in intracellular fluid, potassium is one

Abbreviations: LIBS, Laser-induced breakdown spectroscopy; RFA, random frog algorithm; MRFA, modified random frog

algorithm; HDWT, higher density wavelet transform; PLS, partial least square.
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of the most important minerals to support healthy growth and
development of infants, because potassium is critically involved
with acid-based balance function, osmotic pressure regulation,
nerve impulse conduction, muscle construction and Na+/K+

ATPase (Soetan et al., 2010). An incorrect intake of potassium
can also cause diseases (such as hyperkalemia and hypokalemia),
which therefore turns the correct control of potassium content of
infant formula into a superior importance for both international
and local standards (Deckelbaum et al., 2004; Koletzko et al.,
2005; The Ministry of Health People’s Republic of China, 2010b;
Codex, 2015).

To determine the potassium content, the current standard
analytical methods are mostly based on atomic absorption
spectrophotometry (AAS) (The Ministry of Health People’s
Republic of China, 2010a), inductively coupled plasma atomic
emission spectrometry (ICP-AES) (The Ministry of Health
People’s Republic of China, 2010a; ISO, 2018a) and inductively
coupled plasma mass spectrometry (ICP-MS) (ISO, 2018b), etc.
These methods require a laborious and time-consuming sample
processing procedure, together with strictly controlled laboratory
environment and large sample volume (Panne et al., 2001;
Awan et al., 2013; Matsumoto et al., 2016). However, the huge
consumption of infant formula at a level of million tons greatly
challenges the efficiency of current analytical methods (Tan et al.,
2017), and leads to the necessity to develop an efficient and simple
method for quantifying the potassium content in infant formula.

Laser-induced breakdown spectroscopy (LIBS), an optical
emission spectroscopy technique, presents a potential solution
to this challenge (Aragón and Aguilera, 2008). In LIBS, a high-
power density laser pulse is focused on a target material in less
than a nanosecond, during which a high-temperature plasma is
generated by vaporizing a small portion of the target (Zheng
et al., 2014). As a result, the radiant characteristics of elements
are emitted by the excited atomic, ionic, andmolecular fragments
produced by the plasma (Harmon et al., 2006; Bousquet et al.,
2007). Hence, LIBS offers a strong capability to rapidly detect the
element contents in many type of samples (Panne et al., 2001;
Bousquet et al., 2007; Hussain and Gondal, 2008; Eseller et al.,
2010), with little sample preparation (Hahn and Omenetto, 2010;
Hou et al., 2016).

The development of lasers, optics and charge-coupled array
detectors has driven a critical revolution in the sensitivity of
LIBS, making it a “future superstar” analytical method (Hou
et al., 2016). However, the complex process of laser-sample and
plasma-particle interactions may distort LIBS peaks (Hahn and
Omenetto, 2012). The spectral interference presented in the LIBS
signals often leads to an unresolved, broadened and often shifted
center of gravity that introduces wavelength shift of spectral
peaks (Cremers and Radziemski, 2013), which compromises
the LIBS calibration performance. Alternatively, a calibration-
free LIBS (CF-LIBS) based on strict theoretical assumptions
of laser induced plasma may estimate analyte concentrations
correctly. However, CF-LIBS data are severely affected by the self-
absorption effect and estimation of plasma temperature (Sun and
Yu, 2009), which is challenging for pharmaceutical applications.
To improve calibration results, the higher-density discrete
wavelet (HDWT) signal processing method with shift-invariant

capability becomes a good candidate (Selesnick, 2006). With
HDWT, aminor wavelength shift in the raw spectra will not cause
a significant variance of the HDWT coefficients at different scales
(Qin et al., 2010), which guarantees the reliability of the future
calibration models with the HDWT coefficients.

The unique feature of HDWT is that it processes the spectral
data in an approximately shift-invariant way, while oversampling
the spectral signals in both time and frequency domains by a
factor of two, as opposed to the shift-variant downsampling in
the conventional discrete wavelet transform (DWT) (Selesnick,
2006). It allows to generate triple wavelet coefficients and thus
enables to isolate the localized LIBS spectral features more
accurately and robustly (Han et al., 2017). After being processed
by HDWT, the LIBS spectral bands of potassium can be well
extracted by specific HDWT coefficients, which can be optimized
by the feature selection methods (Yun et al., 2013). Since the
underlying mechanism of LIBS signals is too complex to be
interpreted directly, the observed LIBS data themselves must
drive variable selection to optimize multivariate calibration
(Parab et al., 2009).

Several feature selection procedures have been developed,
including random frog algorithm (RFA) (Li et al., 2012),
competitive adaptive reweighted sampling (CARS) (Li
et al., 2009), uninformative variable elimination (UVE) and
its derivation (Cai et al., 2008; Moros et al., 2008), and
randomization tests (Kennedy and Cade, 1996) etc. Among
above-mentioned procedures, RFA presents a unique advantage
in processing high dimensional spectral data without any
prior knowledge that matches the demand of data-driven well.
However, the RFA tends to generate a semi-random result that
may not correlate accurately with targeted chemicals. In this
case, a modified random frog algorithm (MRFA) is adopted by
the multiple resampling strategy, in which the RFA has executed
hundreds of times to select variables with the highest probability.
Therefore, the MRFA is expected to improve the reliability of the
LIBS models.

In this work, a data-driven strategy is proposed to isolate
the spectral features of potassium with experience accumulated
from the observed LIBS data. This strategy aims to estimate
the relationship between LIBS spectral datasets and potassium
concentrations from the existing input-output data (Gani et al.,
2009), which is named as data-driven LIBS (DD-LIBS). In
DD-LIBS, the MRFA was adopted in the HDWT domains
instead of raw LIBS spectra to avoid spectral interference. A
calibration model was then constructed with the selected HDWT
coefficients. The DD-LIBS strategy was validated by using 90
commercial infant formula samples.

MATERIALS AND METHODS

Sample Resource and Preparation
Samples of 90 commercially available infant formulas were
purchased from the local market, which includes 24 mainstream
brands in China. The potassium content was measured by
flame atomic absorption spectrometry according to the Chinese
national test standard method GB5009.91-2017. To reduce
the effects of particle size on LIBS signals, solid infant
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formula samples were pressed into compact pellets by using a
hydraulic press machine under 30 MPa pressure. The measurable
characteristics of diameter, thickness, andmass of the pellets were
20mm, 10mm, and 4 g, respectively.

Laser-Induced Breakdown Spectrometry
System
In this study, an Ocean Optics LIBS 2500-7 spectrometer
system was equipped with CFR Nd. YAG Laser source (LIBS-
LAS200MJ, Big Sky Laser Technologies). The laser was operated
at a fundamental wavelength of 1,064 nm, and the pulse energy
utilized in this experiment was 50 mJ. The pulse duration was 9.5
ns, and the pulse repetition rate was 10Hz. The LIBS 2500-7 has
seven channels to provide a broad spectral wavelength range from
200 to 880 nm, covering the emission spectra of all elements. Each
channel is equipped with a 2048-element linear CCD array to
present a high optical resolution of 0.1 nm (FWHM). The frame
rate was 10Hz. The integration time was 2.1ms, and it could
be changed in a free-run mode to match sample properties. The
trigger delay was from −121 to +135 µs in 500 ns steps. The
delay time was set at 0.83 µs, which was determined through
optimizing the signal-background ratio (SBR) and characteristic
spectral intensity.

Experimental Procedure
For each LIBS analysis, the pellets were put on the sample stage,
and 10 different spots of one pellet were evenly selected for LIBS
measurement, which reduces the effects of inhomogeneity and
surface variations on LIBS signals. Each spot was ablated with
10 laser pulses. As a result, total 100 LIBS spectra were collected
and averaged into a single LIBS spectrum, which improves the
stability of LIBS experiments.

Calibration Approach
Samples were randomly divided into two sets, i.e., a 65-sample
set was used to build a calibration model and a 25-sample set was
used to validate the calibration model.

Normalization Methods
In order to use LIBS in a timely manner, minimal sample
pretreatment is preferred. Thus, in LIBS measurement,
normalization is performed to compensate for physical
variations and sample matrix differences. In this work, five
normalization methods, such as average, normalization by
norm, spectral area, spectral height, and carbon emission lines
(Abdel-Salam et al., 2013; Castro and Pereirafilho, 2016; dos
Santos Augusto et al., 2017), were compared.

Data Analysis Through Data-Driven LIBS
The LIBS spectra are affected bymatrix effect and other unknown
interference, resulting in broadened and shifted LIBS peaks. DD-
LIBS is thus proposed to reduce the effect of peak broadening and
shift on multivariate calibration. To correct shifted and expanded
spectral peaks, HDWT was applied by implementing the three
channel filter banks to conduct an oversampling operation for
generating nearly shift-invariant wavelet coefficients.

FIGURE 1 | Flowchart of modified random frog algorithm (MRFA), where X is

the HDWT coefficients of calibration set, Y is the reference values of calibration

samples, A is the number of PLS factors, N is the number of MRFA runs, P is

the sum of the selected probability of each variable.

After the HDWT calculation, the raw LIBS spectra were
decomposed into localized components labeled by a scale,
facilitating the feature selection methods to isolate the spectral
bands related to potassium. Then, the MRFA was performed by
using the bagging strategy, assigning 70% samples to a training
subset and 30% samples to a validation set. The procedure was
repeated for 1,000 times to generate 1,000 different selection
probabilities of each HDWT coefficient for accumulation. The
flowchart of MRFA is shown in Figure 1.

In this work, only the HDWT coefficient with the highest
probability was selected for further calibration because it
provided valuable robustness against the uncontrolled and
unknown spectral interference, and the feature selection result
can be easily validated by the reference LIBS spectra of potassium.

As mentioned above, DD-LIBS was established by integrating
HDWT,MRFA and PLS together. TheHDWT codes were written
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in Matlab 2013a based on the Selesnick’s theory (Selesnick, 2006).
The programs of PLS and RFA were available in the libPLS
toolbox for Matlab (Li et al., 2014), and the MRFA was modified
from RFA in Matlab 2013a.

Evaluation Parameters
The root mean square error of cross-validation (RMSECV) was
used to determine the HDWT parameters, and the coefficient
of determination (R2) was used to evaluate the calibration
performance of the developed models (Chu, 2011):

RMSECV =

√

∑m
i=1 (yi,actual − yi,predicted)

2

m− 1
(1)

R2 = 1−

∑n
i=1 (yi,actual − yi,predicted)

2

∑n
i=1 (yi,actual − yi,actual)

2
(2)

Where yi,actual is the reference value of the potassium
concentration of sample i, yi,predicted represents the predicted
value of sample i, m is the number of calibration samples, and
ȳi,actual represents the average reference concentration of all
samples. When we obtain a RMSECV from the prediction set,
we refer it as a RMSEP. The evaluation criterion is very simple:
the smaller the value of RMSEP is, the stronger the prediction
capability of the model is.

The limit of detection (LOD) was calculated by using the
following equation (ICH Guideline, 2005):

LOD =
3.3× SDblank

s
(3)

Where SDblank is the standard deviation of the baseline near
peaks, and s is the slope of the calibration curve.

RESULTS AND DISCUSSION

LIBS Spectrum of Infant Formula
In this work, a typical full spectrum and regional potassium
peaks of an infant formula are presented in Figure 2A. The
LIBS spectrum of infant formula has sharp characteristic peaks
with different intensities, and each peak uniquely corresponds
to a specific element. According to the Atomic Spectra Database
(ASD) of National Institute of Standards and Technology
(NIST), the peaks located at 766.57 and 769.95 nm were selected
for quantifying the potassium content in infant formula. As
shown in Figure 2B, the spectra of five representative samples
with different potassium concentrations were illustrated from
0.415/100 g to 0.815/100 g. It was clear that the intensity of the
potassium peaks related to its concentrations accordingly but
not linearly, because the potassium peaks were affected by both
potassium concentrations and physical parameters (such as laser
energy fluctuation and effects related to the sample texture and
density). Unfortunately, the contribution of any interference to
LIBS was unclear, and DD-LIBS was thus developed to perform
the quantitative analysis of potassium by using the existing input-
output LIBS data.

FIGURE 2 | (A) A typical LIBS spectrum of infant formula and partially

enlarged emission lines of potassium, (B) Regional potassium peaks of five

samples with different concentrations.

Selection of Normalization Method
Five normalization methods were compared by calculating the
RMSEP of each PLS calibration model. The RMSEPs of these
five normalization methods including average, normalization
by norm, spectral area, spectral height, and carbon emission
lines, were 0.056, 0.065, 0.076, 0.059, and 0.096, respectively.
It is clear that the average normalization strategy was most
suitable with the lowest RSMEP value and was subsequently
applied in this work. After data normalization, the calibration
performance of the univariate, PLS and DD-LIBS models was
then compared to facilitate the understanding of the LIBS
quantification.

Univariate Analysis
The univariate analysis represents the most conventional
modeling strategy, in which the analyte’s concentration and the
peak intensity or the peak area are set as x and y, respectively
(El Haddad et al., 2014). In this work, two calibration curves
were made with two potassium peaks as shown in Figures 3A,B.
Figure 3C demonstrates another calibration curve using the
areas of these two peaks. The LOD obtained from the first
peak of potassium was 37 ppm. As shown in Figures 3A,B,
the R2 of both peak height curves are pretty low, which
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FIGURE 3 | A univariate calibration curve based on (A) the intensity of the first

peak at 766.57 nm, (B) the intensity of the second peak at 769.95 nm and (C)

the areas of two peaks at 766.57 and 769.95 nm.

means that the correlation is poor (El Haddad et al., 2014).
The R2 of area (C) is also not satisfactory for quantification
even it is slightly higher than the two peaks above-mentioned.
The reason is that the univariate analysis is compromised
by both matrix effect and sample complexity (Hou et al.,
2016; Sanghapi et al., 2016). It is therefore expected that the
multivariate analysis could improve the calibration performance
through latent projection instead of univariate regression,
and PLS was chosen as it is mostly adopted in multivariate
calibration.

FIGURE 4 | Prediction results of the PLS model with the raw LIBS spectra.

PLS Calibration
The spectral features of potassium were assigned from 751.90 to
774.86 nm, which contains 512 variables. To evaluate prediction
capability of the PLS model, R2 and RMSEP were calculated.
Figure 4 demonstrates that the prediction results of the PLS
model exceed those of univariate analysis. However, the
prediction performance could be further improved through the
suppression of the uncontrolled spectra shift and broadening.

DD-LIBS Strategy
In DD-LIBS, the HDWT aims to suppress the effects of
peak shift and broadening on multivariate calibration through
the oversampling and shift-invariant operation. With the
combination of MRFA, DD-LIBS is expected to isolate the
spectral features related to the potassium accurately.

Determination of HDWT Parameters
The performance of HDWT depends on wavelet filters and
decomposition scales, which should be optimized before
calibration. In HDWT, four wavelet filters with different
vanishing moments are available (Selesnick, 2006). Theoretically,
the wavelet filter with higher vanishing moment shrinks the peak
more efficiently than that with lower vanishing moment (Han
et al., 2017). Here, the “bi4” wavelet filter with four vanishing
moments was selected, since it possesses the highest vanishing
moment in the current HDWT filter bank (Selesnick, 2006). By
using the “bi4” filter, the spectral resolution would be expanded
by a factor of three, which significantly improved the spectral
expandability in an approximately shift-invariant way.

The decomposition scale is also critical in HDWT, so it
was optimized by the minimum RMSECV criterion. Figure 5
indicates the relationship between the scale and RMSECV using
the leave-one-out cross-validation of the calibration set. As a
result, the scale four was selected for the HDWT calculation.
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FIGURE 5 | RMSECV of the calibration set with different HDWT

decomposition scale parameters.

FIGURE 6 | Selection probability of HDWT coefficients obtained from the

MRFA.

Feature Selection Obtained by MRFA
After the HDWT calculation, the original 512 variables
were expanded into 1,520 new variables, providing additional
flexibility to isolate the features of potassium in the presence of
uncontrolled spectral interference. In the sequence, MRFA was
adopted to select the accurate features of potassium. Figure 6
illustrates the accumulated probability of each variable after 1,000
times of MRFA calculation, and the variable with the highest
probability was selected for further multivariate calibration.

With the variables selected by MRFA, a PLS model was
built. Only one PLS factor was required for calibration, which
reveals that DD-LIBS is capable of isolating the spectral peaks
of potassium accurately. As compared to Figure 4, the R2 of
DD-LIBS is improved from 0.887 to 0.962 as shown in Figure 7.

It is also of great interest to investigate the reconstructed
spectra obtained from the selected variables, which is

FIGURE 7 | Predicted results of the DD-LIBS model.

FIGURE 8 | LIBS Spectral information obtained from (A) potassium and (B)

DD-LIBS reconstructed spectra.

fundamental to understand how DD-LIBS suppresses the
effects of uncontrolled peak shift and broadening on multivariate
calibration efficiently. The broadening and shift effect on the
LIBS spectral peaks vary from sample to sample as shown in
Figure 8A, which may impair the LIBS calibration models. As a
comparison, the DD-LIBS filtered data is illustrated in Figure 8B.
It is clear that the reconstructed signals of DD-LIBS locate at
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TABLE 1 | Prediction results for K content in infant formula.

Methods PLS factor R2 RMSEP

Univariate (1st peak) / 0.099 0.423

Univariate (2nd peak) / 0.123 0.380

Univariate (area) / 0.400 0.178

PLS 11 0.887 0.056

RFA-PLS 7 0.882 0.059

HDWT-RFA-PLS 4 0.917 0.050

DD-LIBS 1 0.962 0.036

the same positions as the highest LIBS peak of potassium, and
the intensity values at 766.48 and 766.53 nm are the same.
It reveals that DD-LIBS cleverly selected the shift-invariant
spectral features to overcome the effects of peak shift and peak
broadening on multivariate calibration. It is reasonable to
expect that DD-LIBS could provide a promising tool to measure
potassium content in infant formula accurately, no matter how
the uncontrolled interference exists.

Comparison of Different Methods
Table 1 shows the prediction results for potassium content in
infant formula obtained by different methods. It is obvious
that the univariate method presents a poor calibration result,
revealing the LIBS spectral analysis should be carefully designed.
The PLS model improves the prediction performance of
univariate method through multivariate calibration, but the
PLS factors are abnormally high. The results illustrate that
the additional PLS factors have to be adopted for estimating
unknown spectral interference, tending to generate an over-
fitting result that relies on the current data set too much. It is
unexpected that the combination of RFA and PLS produces a
worse result when compared with that of the PLS model. This
could be attributed to the effect of spectral interference, e.g.,
matrix effect, laser energy fluctuation, sample texture and density,
and noise, etc. on the feature selection in raw spectra.

The HDWT is explored to suppress the spectral interference.
The RFA selects the most important HDWT coefficients,
resulting in a better prediction precision than that of the RFA-PLS
model. As expected, DD-LIBS provides the best prediction results

with only one PLS factor, revealing that the LIBS spectral features
of potassium are isolated efficiently. As a result, only one PLS
factor is required to construct a high-quality calibration model,
thus enhancing the reliability and robustness of the LIBS spectral
analysis in the presence of uncontrolled interference.

CONCLUSION

This study presented a novel strategy, named DD-LIBS, as
an approach for real-time quantification of potassium content
in commercial infant formula samples. With the combination
of HDWT and MRFA, DD-LIBS selected the most important
feature related to the potassium accurately, independent of
spectral interference. As a result, DD-LIBS generated a high-
quality calibration model with only one PLS factor, and the

DD-LIBS reconstructed spectra were highly consistent with the
original spectral bands of potassium. These satisfactory results
suggested a broad expandability of DD-LIBS in the quantification
of any targeted element in solid samples in the presence
of uncontrolled interference. Once DD-LIBS model has been
constructed, it can cleverly predict unknown LIBS spectra as long
as these spectra are within a range of relationships learned in the
training phase.
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Aquaphotomics is a novel scientific discipline involving the study of water and aqueous
systems. Using light-water interaction, it aims to extract information about the structure
of water, composed of many different water molecular conformations using their
absorbance bands. In aquaphotomics analysis, specific water structures (presented
as water absorbance patterns) are related to their resulting functions in the aqueous
systems studied, thereby building an aquaphotome—a database of water absorbance
bands and patterns correlating specific water structures to their specific functions. Light-
water interaction spectroscopic methods produce complex multidimensional spectral
data, which require data processing and analysis to extract hidden information about
the structure of water presented by its absorbance bands. The process of extracting
information from water spectra in aquaphotomics requires a field–specific approach.
It starts with an appropriate experimental design and execution to ensure high-quality
spectral signals, followed by a multitude of spectral analysis, preprocessing and
chemometrics methods to remove unwanted influences and extract water absorbance
spectral pattern related to the perturbation of interest through the identification of
activated water absorbance bands found among the common, consistently repeating
and highly influential variables in all analytical models. The objective of this paper
is to introduce the field of aquaphotomics and describe aquaphotomics multivariate
analysis methodology developed during the last decade. Through a worked-out example
of analysis of potassium chloride solutions supported by similar approaches from
the existing aquaphotomics literature, the provided instruction should give enough
information about aquaphotomics analysis i.e. to design and perform the experiment and
data analysis as well as to represent water absorbance spectral pattern using various
forms of aquagrams—specifically designed aquaphotomics graphs. The explained
methodology is derived from analysis of near infrared spectral data of aqueous systems
and will offer a useful and new tool for extracting data from informationally rich water
spectra in any region. It is the hope of the authors that with this new tool at the disposal
of scientists and chemometricians, pharmaceutical and biomedical spectroscopy will
substantially progress beyond its state-of-the-art applications.

Keywords: aquaphotomics, water, near infrared spectroscopy, multivariate analysis, water spectral pattern,

aquagram, aquap2
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INTRODUCTION TO AQUAPHOTOMICS

Aquaphotomics is a novel scientific discipline founded by
Professor Roumiana Tsenkova at Kobe University, Japan, in 2005
(Tsenkova, 2005, 2006a,b,c, 2009) with the objective of studying
and systematizing knowledge about water-light interaction,
which was found to be a huge source of information on the
subject of the structural and related functional properties of
aqueous systems. This is a complementary “omics” discipline
dealing with the large-scale, comprehensive study of water
as the “molecular and energy mirror” of the rest of the
aqueous system. While proteomics studies proteins, glycomics—
carbohydrates and lipidomics—lipids; aquaphotomics explores
the roles, relationships and functions of the water—an equally
important biomolecule and one of nature’s fundamental building
blocks.

The word “aquaphotomics” is derived from the words aqua—
water and photo-light since this new discipline studies water
by using its interaction with the light. Thus, aquaphotomics
is a science which uses water-light interaction to explore the
structure of water—as a system and matrix composed of many
different water molecular conformations, thereby resulting in
various functionalities (Tsenkova, 2009). The main objective of
establishing aquaphotomics as a novel scientific discipline was to
provide a common platform and strategy to lead to an improved
general understanding of the water functionality by utilizing
water-light interaction at every frequency of the electromagnetic
spectrum. The majority of aquaphotomics works so far have been
done by using near infrared (NIR) spectroscopy, especially in
the area of the 1st overtone of the OH stretching band (1,300–
1,600 nm) where many water absorbance bands are identified
and consistent with previously reported or calculated overtones
of water absorbance bands in the infrared region (Weber et al.,
2000, 2001; Smith et al., 2005; Tsenkova, 2009; Tsenkova et al.,
2015). What aquaphotomics research studies showed is that NIR
spectroscopy, and in general water-light interaction over the
entire electromagnetic spectrum, can significantly contribute to
the field of water science and better understanding of water
molecular systems (Tsenkova, 2009).

The NIR wavelength region from around 680 to 2,500 nm
is considered as an excellent tool for water observation that
provides an enormous amount of information about water
molecular structure (Büning-Pfaue, 2003; Tsenkova, 2009). The
NIR light allows a longer penetration length, as compared to
infrared, even up to 10mm in the short wavelength region
(750–1,100 nm) (Workman, 2000), making it a rapid and
non-destructive measurement technique particularly suitable
for studying intact biological systems. Numerous NIR spectra
can be obtained in various conditions and states of the
systems (under different perturbations)—all in real time. NIR
spectroscopy has a rich history of applications in pharmaceutical
and medical fields. Water, however, with its NIR characteristic
spectrum was often seen as a problematic component and
the common source of measurement error, because it could
alter sample spectra, hide weak absorbance bands and shift
other absorbance bands (Ciurczak and Igne, 2014). In fact,
water is cited as one of the main disadvantages of NIR

spectroscopy in pharmaceutical applications since it prevents a
direct quantification (Jamrógiewicz, 2012).

Traditionally, water bands in the NIR region around 1,440 nm
(the first overtone of OH stretch) and 1,940 nm (a combination of
OH bending and stretching) have been very useful in the studies
of the state of water in various samples (Ozaki, 2002). One of
the major and most common applications of NIR spectroscopy
was moisture determination (Osborne et al., 1993; Reeves, 1995).
NIR spectroscopy has been used to investigate water content,
hydrogen bonds and hydration state in a variety of fields such
as agriculture and food industry, medical and pharmaceutical
sciences, and polymer and textile industries (Ozaki, 2002).

Although some early works on water analysis reported the rich
informational potential of its NIR spectrum (Hirschfeld, 1985;
Iwamoto et al., 1987; Grant et al., 1989; Maeda et al., 1995),
it was only with the development of aquaphotomics that the
properties of water as a “collective matter and energy mirror”
were truly explored (Tsenkova, 2009). The so-called “water
mirror approach” of aquaphotomics utilizes the high sensitivity
of water’s hydrogen bonds, where all the components of the
aqueous system and surrounding energies influence the water
structure, i.e., the covalent bonds. Every aqueous system is a
dynamic arrangement of water molecular network hydrogen-
bonded to other constituents and influenced by perturbations.
Any perturbation of the aqueous system results in changes of
water molecular conformations, which in turn produce changes
in the corresponding NIR spectra at their respective water
absorbance bands. As a consequence of the strong potential of
water molecules for hydrogen bonding, water, a natural matrix
of any aqueous or biological system, changes its absorbance
pattern every time it adapts to a physical or chemical change
in the system itself or its environment (Tsenkova, 2008c). It
is this quality of water that indirectly permits measurements
of small quantities or structural changes of other molecules
present in the aqueous system. By tracking the changes of water
absorbance bands in the spectra of aqueous or biological systems,
the information is extracted about not only water structure but
also other components present in water or the state of the system
as a whole (Tsenkova, 2006c, 2007, 2008b, 2009).

Being rapid and non-destructive, NIR spectroscopy is a
powerful technique with an incredible range of applications,
whose horizons have been further expanded by aquaphotomics.
Since its establishment more than a decade ago, aquaphotomics
has grown into a vast and multidisciplinary scientific field,
encompassing many research areas (Table 1). Changes in the
absorption spectrum of water are used for quantification of
the solutes present in water, even when the solutes do not
absorb NIR light at all (Grant et al., 1989; Tsenkova, 2009;
Gowen et al., 2015). This so-called water-mirror approach
enables measurements of concentrations previously impossible
with NIR spectroscopy at ppm levels (Sakudo et al., 2006b;
Tsenkova, 2008b; Gowen et al., 2013; Bázár et al., 2014, 2015),
and even at ppb levels under certain experimental conditions
(Sakudo et al., 2005, 2006b; Tsenkova et al., 2007b; Tsenkova,
2008a,b). Furthermore, the aquaphotomics research of biological
systems introduced a concept of water spectral pattern as
a holistic biomarker (Tsenkova, 2006c, 2007), which relates
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certain structures of water with functionalities of the respective
biological systems, thus opening new directions toward non-
destructive quality monitoring applications and non-invasive
biodiagnosis.

The aquaphotomics research fields have two things in
common. First, water is the common matrix of all the systems
studied. Second, the approach to extract the information hidden
in complex and multidimensional spectra of such systems
requires a specific aquaphotomics methodology developed over
the years and based on rich experience in dealing with a
great variety of aqueous systems. The objective of this paper
is to provide guidance about how to perform aquaphotomics
analysis of NIR data. Using an example dataset of aqueous
salt solutions, each step of the analysis will be explained and
supplemented by similar examples from the existing literature
illustrating how specific steps in data analysis provide new
insights, improve spectral quality, or reveal new information.
The basic methodology explained in this work is applicable to
the analysis of NIR data of any aqueous system, with minor
aqueous system- and purpose-specific adjustments. A step-by-
step explanation of aquaphotomics analysis supplemented by
citations of similar works will provide a solid basic knowledge
about how to start and perform the analysis as well as where
to look for further information. It is the hope of the authors
that, with this new tool at the disposal of scientists and
chemometricians, pharmaceutical and biomedical spectroscopy
will utilize the richness of NIR water spectra to extend its
applications far beyond moisture determination, leading to a
substantial progress beyond the current state of the art.

GLOSSARY OF AQUAPHOTOMICS TERMS

This glossary is intended to define the terms and certain
abbreviations commonly used in the aquaphotomics literature,
which will appear throughout this paper. New terminology has
emerged over time and with the development of aquaphotomics
and the resulting need to better describe its subject of exploration
using newly discovered knowledge. The origin and definitions for
the terms are compiled from several sources, which are listed in
the respective columns of Table 2.

With the main terms explained, we can now formulate
the objective of aquaphotomics analysis i.e., the water mirror
approach to analyze aqueous systems as a whole, using their
multidimensional spectra and focusing on water absorbance
bands located at specific regions, allows observation and
absorbance measurements. When activated water absorbance
bands are found in response to some perturbation of interest,
then a water absorbance spectral pattern caused by the respective
perturbation is identified. By compiling water absorbance
patterns in an aquaphotome, aquaphotomics builds up a
comprehensive database of the states of the analyzed system
as a whole, in terms of identified water structures shaped by
various internal or external perturbations. In future applications,
aquaphotome database will provide a rapid identification of
causes for changes and influences on the system based on
the recognized water spectral patterns, which serve as holistic

markers of the state of the aqueous system or biomarkers in the
case of biological systems (Tsenkova, 2006c; Kovacs et al., 2016).

AQUAPHOTOMICS METHODS

Basic Workflow and General Guidance
The basic workflow of aquaphotomics analysis from the
experimental design to the final act of building an aquaphotome
is illustrated in Figure 1. Similar to every conventional NIR
spectroscopy work, everything starts with a proper experimental
design and instrumental setup.

Although NIR spectroscopy, in general, does not require
sample preparation, there are some specific aspects in
aquaphotomics experimental design requiring more attention.

First of all, it is an absolutemust to ensure that the instruments
have high-quality spectral signals. In general, not all spectrometer
systems are suited for aquaphotomics experiments. It is advisable
to check the instrument’s performance beforehand to ensure the
high quality of the spectra in the entire Vis-NIR region (400–
2,500 nm). All subsequent analysis will be highly influenced by
the quality of raw spectral data. It is therefore of the utmost
importance to evaluate raw spectra prior to any real experimental
work. The basic analytical procedures for detecting errors of NIR
data and evaluation of signal quality have been recently provided
in an extensive study performed by Bazar et al., which tested and
compared the performance of three spectrometer systems (Bazar
et al., 2016). This paper can be used as a general guidance on
how to test the quality and performance of NIR instrument before
venturing further.

Ensuring good spectral quality is particularly important since,
in addition to the already known complexity of NIR spectra
due to the overtone and combination modes resulting in broad
bands, the changes in the spectra of aqueous systems caused
by some perturbation of interest are small and subtle. The
useful information may end up being buried in noise if the
instrument does not provide a high signal-to-noise ratio. Another
prerequisite is the use of a high-resolution instrument. Water
absorbance bands in the NIR range are usually located very close
to each other, so high spectral resolution of 0.5 or 1 nmwill ensure
an optimal detection and separation of the bands in a subsequent
analysis.

An experiment should be carried out according to previously
defined protocols to ensure the same environmental conditions.
The purpose of carefully designed and established protocols is
to minimize the influence of unknown factors that may affect
sample spectra.

The specificity of experimental design may vary depending
on the type of aqueous system involved; however, the design
must ensure that each sample is presented with several replicates
(sample replicates) and each measurement is performed by
using several consecutive illuminations (consecutive replicates,
consecutive spectra). Collecting and averaging multiple scans
is part of the standard practice to remove noise—recoding
64 or more scans per one spectrum reduces the noise levels
significantly (Manley, 2014). Measuring liquid samples should
always start with pure water (18.2 M�·cm) and all subsequent
measurements should be done with a cuvette always placed in
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TABLE 1 | Fields of aquaphotomics applications.

Application References

Fundamental biochemical
studies of water solutions

Sugars (Bázár et al., 2015; Cui et al., 2017a), proteins (Tsenkova et al., 2004; Chatani et al., 2014), DNA (Goto et al., 2015), salts
(Gowen et al., 2013, 2015), alkali-metal halides (Kojić et al., 2014), acids (Omar et al., 2012), and metal ions (Sakudo et al., 2006b;
Tsenkova et al., 2007a; Putra et al., 2010)

Water quality Water filtration process (Cattaneo et al., 2011), detection and quantification of pesticides (Gowen et al., 2011), discrimination of
mineral waters (Munćan et al., 2014), detection of contaminants (Gowen et al., 2015), and holistic water monitoring (Kovacs et al.,
2016)

Food quality Various foodstuff (Gowen, 2012), cheese (Atanassova, 2015), honey (Bázár et al., 2016), mushrooms (Gowen et al., 2009a), bacteria
in food (Nakakimura et al., 2012), milk (Tsenkova, 1994; Tsenkova et al., 2001a,b), and food packaging influence (Cattaneo et al.,
2016; Barzaghi et al., 2017)

Materials and nanomaterials Soft contact lenses (Munćan et al., 2016b; Šakota Rosić et al., 2016) fullerene based nanomaterials (Matija et al., 2012, 2017), and
polystyrene particles (Tsenkova et al., 2007b)

Microbiology Bacteria (Nakakimura et al., 2012; Remagni et al., 2013; Slavchev et al., 2015, 2017),and HIV virus (Sakudo et al., 2005)

Plant biology Mosaic virus detection in soybeans (Jinendra et al., 2010), and abiotic and biotic stress (Jinendra, 2011)

Animal medicine Mastitis in cows (Tsenkova et al., 2001a,b,c, 2005; Tsenkova and Atanassova, 2002; Atanassova et al., 2009; Meilina et al., 2009),
udder health (Tsenkova, 1994), ovulation period in Bornean orangutan (Kinoshita et al., 2016), ovulation period in giant pandas
(Kinoshita et al., 2010, 2012), estrus detection in cows (Takemura et al., 2015), and tissue discrimination (Sakudo et al., 2006a)

Human medicine DNA mutations (Goto et al., 2015), HIV virus detection (Sakudo et al., 2005), tissue discrimination (Sakudo et al., 2006a), the state of
metals in tissues (Sakudo et al., 2007), prion protein disease (Tsenkova et al., 2004), skin cream effects (Matija et al., 2013) dialysis
efficacy monitoring (Munćan et al., 2016a), colorectal cancer diagnostics (Munćan et al., 2016a)

the same position (the same side). The same cuvette should be
used throughout the experiment. It should be first rinsed at least
in triplicate with sample before final filling. After that, it is placed
in the sample holder and allowed to equilibrate before scanning
in order to minimize inter-sample variation.

Reference measurement (blank air) should be done before
each sample measurement. The order of sample measurement
and sample replicates should be completely randomized; but
pure water should be always scanned after a previously defined
number of samples (e.g., every 5, 7, or 10 sample measurements).
There are two reasons formeasurements of pure water in between
samples. First, these spectra are used as an environmental
control, monitoring known and unknown influences on water
and could later be used to correct or remove unwanted
influences from sample spectra. Second, it builds a large library
of pure water spectra. There are many advantages of building
such a library—it contains the spectra of pure water under
various changing conditions over a longer period of time under
different temperatures, humidity conditions and various day-
to-day variations of the instrument and working environment.
Building such a database has been proved very useful for
correction in general NIR applications (Tillmann and Paul,
1998). In addition, a novel method for enhancement of spectral
signals has been recently developed, which also relies on building
a similar library (Kojić et al., 2017).

It is also advisable to monitor and log major external
influences such as laboratory temperature, atmospheric pressure
and humidity, as well as sample holder temperature or cuvette.
Measuring and logging external parameters can be very useful for
identification of major sources of spectral variation as well as for
exploration of the dynamics of different aqueous systems under
the same environmental perturbations.

As opposed to traditional NIR spectroscopy, which places
emphasis on the control of the environment during the

measurements, “perturbation” is often used in aquaphotomics
and is sometimes even a necessary component of experiments,
which helps in revealing hidden information. The analysis of
aqueous systems’ spectra under the influence of some chosen,
intentional, perturbation can be defined as an evaluation of
the system by applying changes to the selected parameters and
re-estimation of the results (Tsenkova, 2007). In practice, the
most frequently used perturbations to induce changes in the
respective systems are changes in temperature (Gowen et al.,
2013; Chatani et al., 2014; Putra et al., 2017; Wenz, 2018),
consecutive illuminations (Tsenkova, 2005; Chatani et al., 2014;
Wenz, 2018), and changes in dilution (Gowen et al., 2013; Wenz,
2018). Other types of perturbations can also be used to test
the robustness of the models developed. Besides temperature
perturbation, for example Putra et al. (2017) and Meilina et al.
(2011) introduced perturbations by differentmetal ions to test the
regression model developed for the measurement of cadmium
concentrations in aqueous solutions. The use of intentional,
artificially created perturbations provides a change in entropy
and leads to the revelation of hidden spectral information
(Tsenkova, 2006c). A recent work by Wentz on water in model
membranes employed four types of perturbation in the same
work in order to probe and thoroughly examine changes in
the water matrix [i.e., temperature, consecutive illuminations,
concentration (dilution)], and difference in molecular structure
of phospholipids (fourteen identical carbon acyl chains but
with polar heads differing in the presence of an hydroxyl
or a choline group) (Wenz, 2018). The most frequently
used intentional perturbations (consecutive illuminations or
increasing temperature) result in similar changes in water
matrix—an increase in the number of free water molecules,
which are then available for “scanning” of the rest of the
system; in other words—to interact with its components, which
results in changes in sample spectra and provision of additional
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TABLE 2 | Glossary of aquaphotomics terms.

Term Definition

Water Mirror Approach
(Tsenkova, 2008b, 2009)

Aquaphotomics spectral analysis is often called “water mirror approach” because of the indirect manner of acquiring information
about solute composition or surroundings of the aqueous system, namely by measuring the changes in absorbance at water
absorbance bands in the spectrum of the aqueous system (Tsenkova, 2009).

WAMACS - Water Matrix
Absorbance Coordinates
(Tsenkova, 2009)

The WAMACS are spectral ranges, where specific water absorbance bands related to specific water molecular conformations (water
species, water molecular structures) are found with the highest probability (Tsenkova, 2009). For the first overtone of water
(1300-1600nm), 12 WAMACs (labeled Ci, i=1, 12) have been experimentally discovered (each 6-20nm width) and they have been
confirmed by overtone calculations of already reported water bands in the infrared range (Tsenkova, 2009).

WABS – Water Absorbance
Bands (Tsenkova, 2009)

Studies in the infrared range have identified the absorbance bands of numerous water species (Buijs and Choppin, 1963; Fornés and
Chaussidon, 1978; Doster et al., 1986; Maeda et al., 1995; Sartor et al., 1995; Luck, 1998; Czarnik-Matusewicz et al., 1999; Heiman
and Licht, 1999; Murayama et al., 2000; Segtnan et al., 2001; Chandler, 2002; Cupane et al., 2002; Šašić et al., 2002; Robertson
et al., 2003). When their overtones are calculated, it is confirmed that together with already known bands, these bands occur within
the whole Vis-NIR range (Tsenkova, 2005). So far, the spectral database of water absorbance bands has more than 500 bands in the
area of the first, second and third overtones of water (Tsenkova, 2009; Tsenkova et al., 2015). The systematization of already
identified and discovery of new water absorbance bands related to specific water species structures is one of the ongoing
aquaphotomics endeavors.

Activated water bands When a certain perturbation of interest is shown to produce the changes at specific water absorbance bands, and when this is
determined consistently and repeatedly throughout the aquaphotomics analysis, these water absorbance bands are considered
“activated” by the respective perturbation.

WASP–Water Absorbance
Spectral Pattern (Tsenkova,
2009)

The combination of the activated water bands caused by a certain perturbation defines water absorbance spectral pattern, which
describes the condition of the whole aqueous system. WASP can contain huge amounts of chemical and physical information about
the respective aqueous system and can be thought of as a holistic marker because it captures the structure and dynamics of the
respective system as a whole. At the moment, even without the assignment and understanding of water absorbance bands, WASPs
can be used as holistic (bio) markers for system functionality.

Aquagrams (Tsenkova,
2010)

An aquagram is a novel graphical representation of data, invented to present in a succinct manner a water absorbance spectral
pattern – WASP (Tsenkova, 2010).

Aquaphotomes (Tsenkova,
2009)

An aquaphotome is the entire complement of water molecular structures produced by aqueous or biological systems in different
conditions. It can be defined as a comprehensive database of all water spectral patterns with the interpretation of their functionality
given a particular set of conditions of the respective system, (Tsenkova, 2009). Every aquaphotome is system-specific. Once a large
database of characteristic water bands has been acquired, they can be related to specific biological functions and subsequently used
for prediction, diagnosis, and understanding of biology, chemistry and physics of biological and aqueous systems (Tsenkova, 2009).

information. Regarding unintentional perturbations, it is always
advisable to investigate what perturbations (i.e., factors) have an
influence on the developed models. These perturbations may
include individual differences or the presence of disease in the
case of biological systems studied, or even sample thickness
(Tsenkova, 2004).

The first step of analysis begins with the inspection of raw
spectral data. Although NIR spectra of aqueous systems are
comprised of broad, overlapping spectral bands, visual spectral
inspection still remains a vital step before any further data
analysis. Visual inspection gives the first clues about the presence
of outliers, helps in deciding what preprocessing steps to proceed
with, gains a general insight into how samples are grouped and on
what spectral regions to focus the attention. All the subsequent
steps—data preprocessing, conventional spectral analysis and
chemometrics application, which will be described in more
detail later-serve to extract the information of interest. From
the aspect of conventional data analysis—with building, testing
and validation of a model—either qualitative or quantitative,
depending on the objective of the experiment, the work is
done when suitable prediction accuracy is achieved. However,
this is only half of the work done in an aquaphotomics
analysis. Each step of the analysis—raw data inspection,
preprocessing, conventional and chemometrics analysis (an array
of exploratory, classification and regression analysis)—provide

certain quantitative outputs like derivatives, subtracted spectra,
regression vectors or loading vectors, discriminating power and
others, which all unravel water absorbance bands most affected
by perturbation of interest (WABS, Figure 1).

The NIR spectra of aqueous systems are very complex, and
changes in their absorbance spectra caused by some perturbation
will usually be very subtle, but nonetheless persistent and
consistent. From all the WABs discovered during multiple steps
of aquaphotomics analysis, a noticeable pattern of repeating,
common absorbance bands will emerge to reveal perturbation-
induced water absorbance bands i.e., how and what water
molecular conformations are affected. When this absorbance
spectral pattern water absorbance pattern (WASP) is recognized,
it can be presented in a simple, yet concise and informative
manner by using aquagrams. This aspect of aquaphotomics
analysis adds one more dimension to the results obtained in
that it provides understanding of the water functionality in the
respective system. It allows linking discovered WASPs with the
conditions of the aqueous systems analyzed, revealing how and
why water changes the way it does under certain perturbation.
This is of special importance for living, biological systems. The
storing of WASPs into a large aquaphotome database allows
for a fast comparison and identification of the state of aqueous
or biological systems, thereby in essence providing biodiagnosis
based on the state of water.
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FIGURE 1 | An overview of the aquaphotomics basic methodology for design, performance and analysis of experimental data with the aim of extracting water
spectral pattern for the defined perturbation.

Aquaphotomics Analysis of Potassium
Chloride Solutions—A Worked-Out
Example
To better illustrate the working process of aquaphotomics
analysis, we will present an example of analysis performed on
the spectral dataset of aqueous solutions of potassium chloride
in the next sessions. The perturbation of the water matrix by salt
and measurement of salt concentration are already available in
aquaphotomics literature (Gowen et al., 2015) and even in very
early near infrared spectroscopy applications (Grant et al., 1989).
We have chosen this perturbation since it perfectly illustrates the
aquaphotomics water-molecular and energy mirror concept in
that the salts are practically transparent for NIR light. Therefore,
the results obtained thereby are based entirely on the changes
in the water molecular matrix. Experimental condition will be
described next.

Materials and Methods

Sample preparation
Potassium-chloride (KCl, M = 74.56 g.mol−1, purity ≥ 99.0%
w/w, Wako Pure Chemical Industries, Ltd. Kobe, Japan) was
used.

All samples were prepared by using deionized water from a
Milli-Q water purification system (Millipore, Molsheim, France).
A stock solution of 100mM was prepared at first. Working
solutions were made by serial dilution of the stock solution in
10-mM steps to produce the following KCl concentrations: 10,
20, 30, 40, 50, 60, 70, 80, and 90mM. All samples of the stock
and working solutions were freshly prepared in two independent
sample replicates (i.e. a total of 20 samples for the analysis).

NIR spectra collection
Transmittance spectra of KCl aqueous solutions were acquired
by using a FOSS-XDS spectrometer (FOSS NIRSystems, Inc.,
Hoganas, Sweden) equipped with a Rapid Liquid Analyzer
module consisting of a temperature-controlled cuvette holder.
The temperature of the sample holder was kept constant at

28◦C during all measurements. This temperature was chosen
to be close to the ambient temperature (ca. 28◦C), allowing
a fast and easy way of maintaining constant temperature
during measurements. Each sample was firstly incubated in
the sample holder for 90 s before scanning to get the required
temperature of 28◦C. Deionized water samples were measured
as an environmental control for every five sample measurements.
Spectral acquisition order was randomized with respect to salt
concentration. The 1-mmpath length quartz sample cell was used
as a container.

The spectra were acquired in the range of 400–2,500 nm, with
a resolution of 0.5 nm. Each saved spectrum was an average of
32 successive scans. This number of scans was chosen to shorten
the acquisition time. Three consecutive spectra were recorded
for each sample and for each measurement. The reference
spectrum was recorded before each measurement. The spectral
data were transformed to pseudo-absorbance units (logT−1,
where T = transmittance). One sample was represented by six
spectra in total, from two independent sample replicates and
three consecutive spectra. The total number of recorded spectra
was 75 (10 concentrations× 2 sample replicates× 3 consecutive
scans+ 15 control scans of deionized water).

The FOSS-XDS instrument was operated by using VISION 3.5
software (FOSS NIRSystems, Inc., Hoganas, Sweden).

Data analysis
For the purpose of this paper, the data analysis of KCl solutions
was performed by using only the wavelength range from 1,300 to
1,600 nm, which represents the absorption region of OH bonds
of water (1st overtone of OH).

Smoothed spectra were calculated by using a Savitzky-Golay
polynomial filter (2nd order polynomial fit and 21 points).
Difference spectra were calculated by subtraction the average
spectrum of deionized water from the average spectra of
potassium-chloride solutions for each concentration level.
The 2nd derivative spectra of potassium-chloride solutions
were calculated by using a Savitzky-Golay filter (2nd order
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polynomial fit and 21 points). Principal component analysis
(PCA) was used to describe multidimensional patterns in
the spectral data and to discover outliers. The relationship
between the actual and predicted concentrations of KCl
was examined by using Partial Least Squares Regression
(PLSR) based on leave-one (concentration)-out cross
validation, i.e., without six spectra of the two independent
sample replicates at a time during the iterative validation
process.

The regression was performed on the previously smoothed
(Savitzky-Golay filter, 2nd order polynomial filter, 21 points) and
multiplicative scatter corrected (MSC) spectra in the spectral
range of 1,300–1,600 nm. The precision and accuracy of the
developed PLSR model were evaluated by the coefficient of
determination (R2) and root mean square error (RMSE) of cross-
validation.

Raw spectra, difference spectra, loading vectors of PCA
analysis, and regression vector of PLSR analysis were examined
in order to find and assign characteristic water absorbance
bands showing considerable changes in response to changes
in KCl concentration. Thus, identified bands were used to
describe water spectral pattern of salt solutions. To visually
represent changes of water spectral pattern as a function of salt
concentration, different types of aquagrams were constructed,
namely classic aquagrams, aquagrams with confidence intervals
and temperature-based aquagrams. The instructions for all
necessary calculations and steps to produce these charts
are explained in a separate section (Water spectral pattern
represented by aquagrams).

All data analysis was performed by using R Project for
Statistical Computing (R Core Team, 2017) (RRID:SCR_001905)
and an “aquap2” package (Pollner and Kovacs, 2016).

Aquap2 Package
The “aquap2” package developed by Pollner and Kovacs
(2016) (free download and instructions available at www.
aquaphotomics.com) provides an easy-to-use data preparation
and analysis tools developed for extending the functionalities
of the R project software to the needs of aquaphotomics. It is
a non-commercial, free-to-use software, which can dramatically
speed up analysis time, especially in the case of large datasets.
It is very flexible and allows an automation of highly repetitive
tasks, while also providing special functionalities not available
in other commercially available chemometrics software, such as
frequently used graph—aquagrams.

Aquap2 package offers the following functionalities:

- Experimental design with randomization of samples, planned
number of replicates, consecutives, and environmental control
samples

- Data import from various file formats suited for a variety of
spectral acquisition softwares

- Fusion of spectral data with data from data loggers monitoring
the environment or sample holders

- Flexible data analysis customized for different grouping /
splitting / slicing of data with encapsulated, i.e., stable color-
coding of samples/groups

- Very flexible data visualization from raw spectra to
automatically detected and labeled peaks in various
multivariate models’ outputs

- A variety of data pre-treatments (e.g., smoothing, standard
normal variate transformation (SNV), multiplicative scatter
correction (MSC), extended multiplicative scatter correction
(EMSC), detrend transformation, derivatives (using different
methods), averaging, resampling, artificial noise loading

- Chemometrics methods: principal component analysis (PCA),
partial least squares regression (PLSR), soft independent
modeling of class analogies (SIMCA) and different versions of
aquagrams

- Different cross-validation and independent prediction options
to support model optimization

THE POWER OF RAW SPECTRA AND
CONVENTIONAL SPECTROSCOPIC
ANALYSIS

With so many chemometrics methods available, one often
neglects the possibility that something can be extracted from
the raw spectra, especially since changes in the water spectra in
the near infrared region are subtle and difficult to observe with
the naked eyes. However, the first, most natural step in all data
analysis is to inspect the raw data.

In the NIR region, the water spectrum consists of four main
maxima located approximately at 970, 1,190, 1,450, and 1,940 nm,
which are due to the second overtone of the OH stretching band
(3ν1,3), combination of the first overtone of the OH stretching
and OH bending band (2ν1,3 + ν2), the first overtone of the OH
stretching band (2ν1,3) and combination of the OH stretching
and OH bending band (2ν1,3+ ν2), respectively (Luck, 1974). All
these regions are informationally valuable. So far, more than 500
water absorbance bands have been identified under these broad
peaks (Tsenkova, 2009; Tsenkova et al., 2015). Depending on
the type of aqueous system, some regions can prove to be more
suitable for analysis and provide more information; hence it is
always advisable to closely examine each of these regions.

Let us now look at the raw, untreated spectra acquired for our
potassium chloride example dataset (Figure 2).

The raw spectra were plotted to visualize the spectral changes
introduced by adding different concentrations of salt to pure
water. Two large peaks (around 1,450 and 1,940 nm attributed to
the first overtone and combination region of OH stretching and
bending vibrations) dominate the spectra of potassium chloride
solutions. It is logical because salts do not exhibit the NIR spectra.
Very small, broad features can also be observed around 1,190 nm.
The region of the combination band shows significant noise due
to the high absorption of water, which far exceeds 3 absorbance
units and will be excluded from subsequent analysis. Further
analysis will be performed only in the region of the first overtone
of water, where for the most part, water absorbance bands can be
clearly resolved and for which good literature sources exist about
the specific assignments of water molecular conformations.

In this stage of data evaluation, two types of calculations
are usually performed: averaging and spectral subtraction. The
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FIGURE 2 | Raw absorbance (logT-1) spectra in the entire spectral range of Milli-Q water and aqueous solutions of potassium-chloride in the concentration range of
10–100mM.

averaging can be done across all spectral consecutives and sample
replicates. At this stage, the goal of averaging is to eliminate
the influence of variations, which are not of primary interest,
such as those attributable to different temperatures, humidity, or
consecutive illumination. The average spectra of different groups
of samples calculated this way will better reveal differences
among different sample groups. However, the averaged spectra
are influenced by outliers, so some measures of detecting and
eliminating them should be taken before this step.

The next step is a spectral subtraction, which produces
difference spectra. This is a very effective way for detection of
subtle differences between the two spectra (Ozaki et al., 2003).

There are many approaches to spectral subtraction, and the
simplest, classical approach is to subtract from the average
spectrum of all samples, the averaged spectrum of pure water
measured as a control during the experiment or of the solvent.
This is the most simple and efficient method of bringing
immediately a better visualization and observation of the water
bands hidden under broad overtone and combination peaks.

Another subtraction method, recently developed, proposes
a “closest spectrum” subtraction (Kojić et al., 2017). This
subtraction method involves creating all the possible pairs of
differences (solution—pure solvent) and finding the closest
spectral pair (minimal difference) based on the smallest area
under the curve of the difference spectrum. Thus, the found
spectrum, the “closest spectrum,” is then subtracted from
the remaining spectra. Pure solvent spectra can be acquired
during the experiment or found in a library of solvent spectra
which must be previously created by performing an acquisition
under various, mainly temperature, perturbations. This method
provides, on average, a 4-fold increase in precision as compared
to traditionally used average spectrum subtraction (Kojić et al.,
2017).

Another way of enhancing differences is to calculate the
difference spectrum along some perturbation of interest. This
type of subtraction can reveal water absorbance bands activated
by a particular perturbation. This simple approach, for example,

allowed an immediate identification of main differences in the
water structure between the groups of bacterial cultures S. auerus
and E. coli (Nakakimura et al., 2012). In addition, in the study
of the effect of soybean mosaic virus, the difference spectrum
between the average spectra of healthy and diseased plants
clearly revealed water absorbance bands due to virus-induced
changes (Jinendra et al., 2010). Another example can be found
in a study of the spectral behavior of mushrooms subjected to
physical perturbation by different levels of mechanical vibration
(Gowen et al., 2009b). The difference spectra obtained by
subtracting the averaged spectrum of undamaged mushrooms
from averaged spectra of damaged mushrooms subjected to
different perturbation levels revealed sharp features around
1,398 nm for the two highest level of perturbations, which
corresponds to absorption of free single water molecules trapped
by ions (Kojić et al., 2014) at the mushroom surface originated
from physically damaged cell walls.

Another highly efficient approach in revealing different
water dynamics in samples is a subtraction of the 1st
consecutive spectra from all other consecutive measurements.
This subtraction technique was first applied in a study of different
prion protein isoforms in water solutions (Tsenkova et al., 2004;
Tsenkova, 2005), when it was shown for the first time that
illumination changes the water system and each consecutive
spectrum of the sample is influenced by light absorption. The
effect of absorbed photons on water molecular systems increased
a number of free watermolecules available to interact with solutes
in the aqueous system, performing “scanning” of solutes and
the rest of the water molecular system resulting in changes of
the corresponding spectra. In this way, additional information
can be extracted, which is especially beneficial when the aqueous
systems analyzed are very similar. In the case of the prion protein
study, this approach revealed drastic differences in the free O-
H absorbance bands and superoxides for different prion protein
isoforms (Tsenkova et al., 2004; Tsenkova, 2005).

The spectra transformed as just described can also be further
analyzed by using other data-mining approaches.
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SPECTRAL
PREPROCESSING—IMPROVING AND
ENHANCING SPECTRAL INFORMATION

The fundamental problem, not only in aquaphotomics
analysis but also generally in all spectral analysis, is how to
extract the useful information hidden in the complex spectral
measurements. The objective of preprocessing is to enhance
the information of interest, and decrease or remove unwanted
influences on spectral signals.

The spectral preprocessing methods include mathematical
pretreatments, such as centering and normalization (mean-
centering, standard normal variate transformation (SNV)(Barnes
et al., 1993); noise-reduction methods, such as smoothing or
wavelet transform (Patil, 2015); baseline correction methods
which include de-trending (Barnes et al., 1989); multiplicative
scatter correction (MSC) (Dhanoa et al., 1994); extended
multiplicative scatter correction (EMSC) (Martens and Martens,
2001); and spectral derivatives which, in addition to baseline
correction, also resolve overlapping peaks.

Spectral patterns collected are usually affected by noise or
instrumental variations that may have a detrimental effect on
further analysis and conclusions that may be drawn (Gowen and
Amigo, 2012). The weakly absorbing bands in the NIR region
are far more affected as compared to the stronger ones. The
best approach in ensuring high-quality and noiseless spectra,
begins with the conditions of spectral collection which should
be carefully controlled. Usually, collecting and averagingmultiple
scans successfully reduce the noise. However, some level of
noise should be expected so that the common practice is to use
smoothing techniques (Manley, 2014).

The most common de-noising techniques used in
aquaphotomics methods are based on the Savitzky–Golay
approach (Savitzky and Golay, 1964), which fits the spectral
pattern to a polynomial function (second-order polynomial) in
a step-wise manner. Continuous wavelet transform (CWT) is
also one of the de-noising techniques, proved to be very efficient
for processing analytical signals (Shao et al., 2003), and is of
recently frequently used for enhancing spectral resolution and
background removal in aquaphotomics works (Shao et al., 2010;
Kang et al., 2011; Shan et al., 2015; Cui et al., 2016).

Mean centering of spectra is a pre-processing technique
mostly used with principal component analysis (Agelet and
Hurburgh Jr, 2010). It involves a subtraction of the average
spectrum from the entire dataset, which results in reduced
number of variables and complexity of subsequently built models
(Manley, 2014).

Apart from random noises, the spectra of aqueous systems
often exhibit baseline variations (in slope and offset) due to
the scattering originated from differences in sample surface
or particle size variations (Ozaki et al., 2003). Baseline offset
problems are commonly solved by the application of SNV or
MSC corrections methods. MSC is a better choice for correction
when variations in the spectral slope are also present as a result
of additive variation, which increases with wavelength due to
the scattering present in samples. The disadvantage of MSC
transformation is that it is sample-dependent; hence any change

in the sample set requires a recalculation of all MSC related
subsequent calculations (Dhanoa et al., 1994).

Detrending is also a possible choice for correction of baseline
shift and curvilinearity. This method consists of modeling the
baseline as a function of wavelength with a second-degree
polynomial and a subsequent subtraction of this function from
each spectrum individually.

With correction for baseline variations, one should be careful
as sometimes they can contain information of interest. For
example, in a study of prion protein isoforms, the benefit of
multiplicative scatter correction was 2-fold. First, it confirmed
the presence of scattering for one isoform of prion protein,
which helped better understanding of its interaction with water
by explaining that an increase in bulk water and changes in
protein structure are the cause of scattering. Second, when
correction for the scattering was applied, a subsequent analysis
revealed differences in different protein isoforms not related
to the scatter (Tsenkova et al., 2004). However, in a problem
of somatic cell count determination, removal of the baseline
variation by application of the second derivative transformation
led to a diminished accuracy of prediction of somatic cell count
in milk, leading to the conclusion that the baseline correction
removed significant information (Tsenkova et al., 2001a).

The use of derivation as a pre-processing technique for
NIR data is quite common. There are two ways of calculating
derivatives: the Norris–Williams derivation (Norris and
Williams, 1984) and Savitzky–Golay derivation (Savitzky and
Golay, 1964). Derivatives can solve two basic problems with
NIR spectra of aqueous systems: overlapping peaks and large
baseline variations. The effect of derivatives is most clearly seen
in the second derivative of a spectrum, which is able to separate
overlapping bands. The second effect of the second derivative
is removal of baseline shifts (Williams and Norris, 1987; Heise
and Winzen, 2002). Two side effects of the derivatives are the
loss of the original shape of a spectral curve, which may result
in a difficult data interpretation and a reduction in signal-to-
noise ratio. Choosing window size when performing derivatives
should also be done with caution in the case of spectra of aqueous
systems because this parameter influences a number of points
in the resulting spectral vector (Rinnan et al., 2009), which may
lead to a wavelength loss and a subsequent loss of information
about some water bands.

Iwamoto et al. (1987) showed that the derivative
transformation of spectra was a useful method of separating
multiple absorptions in broad spectral peaks of water and used it
successfully to better understand the state of water in foodstuffs.
In aquaphotomics applications, the second derivative is a very
popular and efficient approach for discovering activated water
absorbance bands that are not visible in the original spectrum
(see for example Jinendra et al., 2010; Jinendra, 2011; Kinoshita
et al., 2012; Bázár et al., 2016; Kovacs et al., 2016).

Let us now look at the examples of application of these
preprocessing steps on the spectra of potassium chloride
solutions. The smoothed spectra were calculated by using a
Savitzky-Golay filter (2nd order polynomial fit and 21 points)
and presented in Figure 3. Only the area of the first overtone
1,300–1,600 nm is plotted to provide a better visualization of
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how smooth the spectra should look. Next, a subtraction of the
average spectrum of Milli-Q water from all the averaged spectra
of potassium-chloride solutions was done and is presented in
Figure 4.

The subtracted spectra reveled the existence of at least
two major peaks under the broad overtone spectral curve of
potassium-chloride solutions around 1,412 and 1,500 nm. It is
also possible to observe a slight peak shift at 1,412 nm with
increasing salt concentration.

The 2nd derivative spectra of potassium-chloride solutions
were calculated by using a Savitzky-Golay filter (2nd order
polynomial and 21 points) and presented in Figure 5. The
second derivative spectra also indicate an existence of the band
at 1,412 nm and we can also see the second band located at
1,462 nm.

With these simple preprocessing steps, we have so far
identified at least two water absorbance bands activated by salt
perturbation.

CHEMOMETRICS- THE IMPORTANCE OF
CONSISTENCY

Similar to the classical spectroscopy, the use of chemometrics
methods is a crucial part of the aquaphotomics data analysis
as well. It includes many well-known exploratory, classification
and regression methods depending on the objective of the
experiment.

Principal components analysis (PCA) (Cowe and McNicol,
1985) is one of the most useful and probably mostly commonly
used exploratory technique in spectroscopy during the early
stages of data analysis. Its objective is to determine a possible
relationship between samples, i.e., to provide the first clues
about major directions and sources of variation in the dataset. It
compresses data by constructing new variables and the results are
presented in scores and loadings plots. The scores plots visualize
the spectra in the form of scores in the transformed space
of newly constructed variables—principal components, while
the corresponding loadings plots denote the contributions of
original variables—wavelengths. The novelty of PCA application
in aquaphotomics analysis is that a particular attention is given
to the analysis of all loading vectors as they can reveal activated
water absorbance bands.

PCA in the case of our salt dataset was used to describe
multidimensional patterns in the spectral data and discover
outliers. PCA data presented in the scores (Figures 6, 7) and
loadings plots (Figure 8) reveal major sources of variation in
the data. The first two principal components describe more than
99.9% of variation in the dataset. The first principal component,
whose loading shows two dominant features (a peak positive
peak at 1,415 nm and a negative peak at 1,498 nm), is related
to changes in water matrix caused by consecutive illumination.
This effect is similar to that of temperature (Segtnan et al., 2001)
in that free or weakly hydrogen bonded species absorbing at
1,415 nm increase at the expense of strongly hydrogen bonded
water molecules absorbing at 1498 nm. The second principal
component, which explains 11.403% of variation, shows the

influence of concentration. It can be seen from the PC1-PC2
scores plot that while the scores move toward the negative part of
the PC2 with increasing concentration, the pure water scores are
entirely located in the positive part of this PC. The loading vector
of PC2 presented in Figure 8 reveals major water absorbance
bands affected by the presence of salt in water i.e., 1,402, 1,444,
and 1,530 nm. Regarding loading vectors, it is very important to
look at all PC loadings since changes in water are very subtle
and might be also described by a higher number of PC loading
vectors.

The next steps of the analysis depend on the objective of
the experiment. They can involve classification methods to
group samples together according to their spectra, or regression
methods to link sample spectra to some quantifiable properties
(Roggo et al., 2007).The application of these methods in
aquaphotomics analysis does not differ much as compared to the
classical NIR applications. However, the unique characteristics
for the aquaphotomics approach are as follows.

First, the initial step of the aquaphotomics approach involves
qualitative analysis. This step may include the application of
PCA or some unsupervised classification analysis, performed
with the objective of data exploration and better understanding of
spectral variability. This step may even include some preliminary
regression analysis, which can show very poor prediction results
and non-linearity existence. However, it can provide information
about the existence of natural clusters of samples indicating
the need for separate modeling for different groups of samples
thus discovered. For example, the most accurate prediction of
milk components such as protein, lactose and fat in cow milk
was achieved when the models were separately built by using
milk spectra from healthy and mastitis animals (Tsenkova et al.,
2001a,c). A subtraction of the averaged spectra of these two
groups will give us the first information about the “important”
WAMACS to be used in further analysis. The presence of mastitis
disease (bacterial infection) significantly alters the structure of
water in milk and milk composition, causing non-linearity in the
regression models if the spectra of healthy and mastitis animals
are used together. In this case, separately built regression models
form a part of the aquaphotome database, where a different
regression model is applicable depending on the physiological
status of the animal. In this respect, aquaphotomics does not aim
nor considers it possible to build global models. This is especially
true in the analysis of biological systems that are far too complex
to be described with only one model.

Second, themost important feature of aquaphotomics analysis
is the special attention paid to original and transformed spectral
vectors as well as model outputs. This reveals the contribution
of original variables—wavelengths, to model development and
tracks consistently repeating variables. The identified variables
with high contribution, which constantly repeat through all
the steps of aquaphotomics analysis, are the most informative
ones. For aquaphotomics, these variables are the places in
the spectra, where various water molecular conformations
absorb. Their identification is crucial for better understanding
of the aqueous system and response of its water matrix
to the perturbation. In other words, the variables, which
consistently appear in all aquaphotomics analysis (i.e., in
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FIGURE 3 | Smoothed (calculated with a Savitzky-Golay filter using 21 points) absorbance (logT-1) spectra in the spectral range of 1,300–1,600 nm (OH first overtone)
of Milli-Q water and aqueous solutions of potassium-chloride in the concentration range of 10–100mM.

FIGURE 4 | Smoothed (calculated with a Savitzky-Golay filter using 21 points) average difference absorbance (logT-1) spectra in the spectral range of
1,300–1,600 nm (OH first overtone) of Milli-Q water and aqueous solutions of potassium-chloride in the concentration range of 10–100mM. Average spectrum of
Milli-Q water was subtracted from the spectra of potassium-chloride solutions.

subtracted spectra or transformed spectra, spectral derivatives,
model outputs in the form of PCA loadings, PLSR regression
vectors, SIMCA discriminating powers etc.), are the locations
of water absorbance bands, where spectral variations under
controlled and uncontrolled perturbations could be observed.
If they persistently and consistently appear through all of the
analysis, we can consider these water absorbance bands as
activated.

Let us now look at the PLSR application on our salt
dataset. The regression was performed on previously smoothed
(Savitzky-Golay filter, 2nd order polynomial, 21 points) and
MSC transformed spectra in the spectral range of 1,300–
1,600 nm to build a model for prediction of potassium-chloride
concentration. The results of PLSR analysis are presented in
Figures 9, 10, showing a close correlation and a relatively

low error of cross-validation using five latent variables (r2 =

0.9989, RMSECV = 1.147mM, Figure 9). The main absorbance
bands showing a significant weight in the PLS regression vector
(Figure 10) match very well with those found in the previously
applied methods, and all belong to the ranges of WAMACS
found in the first overtone of water (Tsenkova, 2009). The
favorable prediction results are not surprising since it is well
established that salts influence the spectrum of water and these
changes can be used for prediction of salt concentration (Grant
et al., 1989; Gowen et al., 2015). Because salts do not absorb
the NIR light, these results and the previously mentioned
studies demonstrate the feasibility of aquaphotomics water-
mirror approach. In other words, the absorbance bands of water
can be used to obtain indirectly the information about changes in
solute concentrations.
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FIGURE 5 | 2nd derivative (calculated with a Savitzky-Golay filter using 2nd order polynomial and 21 points) average absorbance (logT-1) spectra in the spectral range
of 1,300–1,600 nm (OH first overtone) of Milli-Q water and aqueous solutions of potassium-chloride in the concentration range of 10–100mM.

FIGURE 6 | PCA analysis of Milli-Q water and aqueous solutions of potassium-chloride in the concentration range of 10–100mM derived from the smoothed
(calculated with a Savitzky-Golay filter using 2nd order polynomial and 21 points) and MSC transformed absorbance (logT-1) spectra in the spectral range of
1,300–1,600 nm (OH first overtone)—Scores plots for the first two principal components.
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FIGURE 7 | PCA analysis of Milli-Q water and aqueous solutions of potassium-chloride in the concentration range of 10–100mM derived from the smoothed
(calculated with a Savitzky-Golay filter using 2nd order polynomial and 21 points) and MSC transformed absorbance (logT-1) spectra in the spectral range of
1,300–1,600 nm (OH first overtone)—Scores plots for the first six principal components.

It is worth mentioning that the analysis may include several
more chemometrics methods that can also contribute to the
identification of water absorbance bands activated by the
perturbation of interest.

Employing discriminant analysis such as Partial Least Squares
Discriminant Analysis (PLS-DA) (Martens and Martens, 2001)
for discriminating between solvent and solutions can help in
gaining more insight about how the solutes affect the water
matrix of the solvent. For example, this method was employed to
discriminate between solvent and pesticide–containing solutions
(Gowen et al., 2011). Examination of the regression vectors
of PLS discriminant analysis provides an additional help in
revealing water absorbance bands activated by the presence of
solutes.

Similarly, Soft Modeling of Class Analogies (SIMCA) (Wold
and Sjöström, 1977) can be employed for the same purpose.
The discriminating power of SIMCA analysis, in that case,
reveals water absorbance bands with the highest discriminating
power which distinguishes between pure solvent and solutions.
One such example can be found in an aquaphotomics study
concerned with measurements of different saccharides at
millimolar concentrations (Bázár et al., 2015). Sometimes, both
discrimination methods (SIMCA and PLS-DA) are employed for
the same purpose of discriminating the solvent from the solutions
and the discovery of additional information about activated
water absorbance bands by solutes. In a study concerned
with the detection of UVC damaged DNA, both PLS-DA and
SIMCA were applied to distinguish between non-irradiated and
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FIGURE 8 | PCA analysis of Milli-Q water and aqueous solutions of potassium-chloride in the concentration range of 10–100mM derived from the smoothed
(calculated with a Savitzky-Golay filter using 2nd order polynomial and 21 points) and MSC transformed absorbance (logT-1) spectra in the spectral range of
1,300–1,600 nm (OH first overtone)—Loadings plot.

FIGURE 9 | PLSR analysis of Milli-Q water and aqueous solutions of
potassium-chloride in the concentration range of 10–100mM derived from the
smoothed (calculated with a Savitzky-Golay filter using 2nd order polynomial
and 21 points) and MSC transformed absorbance (logT-1) spectra in the
spectral range of 1,300–1,600 nm (OH first overtone) built for the prediction of
potassium-chloride concentration: Y fit of training and one-sample-out
cross-validation.

UVC-irradiated DNA solutions (Goto et al., 2015). Applying two
chemometrics methods for the examination of one aspect of
the experimental study demonstrates the stability of the applied
methodology, namely, consistency in results.

Both the SIMCA and PLS-DA methods are naturally used
in most cases when the objective of the study is discrimination

between different samples. For classification and discrimination
purposes in aquaphotomics, the most commonly used methods
are SIMCA and PLS-DA. The SIMCA method was employed,
e.g., for discrimination between healthy andmosaic virus infected
soybean plants (Jinendra et al., 2010), for discrimination between
healthy and mastitic animals based on the spectra of urine, blood
and milk of dairy cows (Tsenkova, 2004), for discrimination
between different brands of commercially available mineral
waters (Munćan et al., 2014), for discrimination of different
bacteria strains (Remagni et al., 2013; Slavchev et al., 2015, 2017)
and others. The PLS-based discriminant analysis was applied
for discrimination between irradiated and non-irradiated DNA
solutions (Goto et al., 2015), discrimination between solvents
and pesticides containing solutions (Gowen et al., 2011), and
discrimination between worn and new soft contact lenses based
on conventional hydrogels (Šakota Rosić et al., 2016).

Quantitative aquaphotomics analysis usually includes partial
least squares regression (PLSR) (Martens and Martens, 2001)
or principal component regression (PCR) (Næs et al., 2002).
The principal uniqueness of the aquaphotomics approach in
the application of these two methods is the utilization of water
absorbance bands for indirect quantification of analytes in water,
which change the water matrix. The feasibility of this approach
was demonstrated in a study whose objective was quantification
of different types of salt in water solutions (NaCl, KCl, MgCl2,
and AlCl3), where the overall detection limit of 1,000 ppm was
reported (Gowen et al., 2015). The experiment was reproduced in
three independent laboratories by using 3 different spectrometer
systems and in different ambient conditions. The reported
detection limit of 1,000 ppm indicates that under specified
conditions, the aquaphotomics approach substantially improved
the detection limit for NIRS (around 5 times) (Pasquini, 2018).

Using an aquaphotomics approach, PLSR gave excellent
results for quantification of various analytes in water solutions
such as sugars [glucose, fructose, sucrose and lactose and their
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FIGURE 10 | PLSR analysis of Milli-Q water and aqueous solutions of potassium-chloride in the concentration range of 10–100mM derived from the smoothed
(calculated with a Savitzky-Golay filter using 2nd order polynomial and 21 points) and MSC transformed absorbance (logT-1) spectra in the spectral range of
1,300–1,600 nm (OH first overtone) built for the prediction of potassium-chloride concentration: Regression vector.

mixtures (total sugar and each sugar concentrations)] (Bázár
et al., 2015), insulin protein (Chatani et al., 2014), DNA,
isolated cyclobutane pyrimidine dimers, and UVC-irradiation
dose (Goto et al., 2015). The same approach also provided a
favorable accuracy of measurements in more complex biological
samples, such as human serum albumin (HSA) and γ-globulin
in phosphate buffer solutions (Murayama et al., 1998), urinary
estrone-3-glucuronide (E1G) concentrations in urine of giant
pandas (Kinoshita et al., 2010, 2012), HIV virus in human plasma
(Sakudo et al., 2005), somatic cell counts in cow milk samples
(Tsenkova et al., 2001a; Tsenkova, 2004), as well as fat, lactose,
protein and urea nitrogen content of milk (Tsenkova, 2004).

Very recently, a critical review on NIRS and its modern
perspectives expressed concerns regarding the capability of
aquaphotomics for measurement of analytes in very low
concentrations, given the fact that the concentrations of
5,000 ppm (mg L−1) or 0.5% (w/v) are roughly regarded
as a common limit of quantification for NIRS (Pasquini,
2018). Capability comparison of the traditional NIRS and
aquaphotomics approach is based on an incorrectly assumed
equivalence. While the established limit of detection for the
traditional approach is based on the utilization of absorbance
bands of analytes in the NIR region, the aquaphotomics approach
utilizes water absorbance bands. In this sense, the quantification
of analytes is based on entirely different principles, and as such,
logically offers different limits of detection. Different approaches
and their accuracy of detection were well demonstrated in studies
on the measurement of concentrations of polystyrene particles
in water (Tsenkova et al., 2007b). When the first overtone of
water (i.e., aquaphotomics approach) was used to develop a
model for low concentrations of polystyrene particles in aqueous
suspensions (1 – 0.0001%), the measurements achieved a high
accuracy even in the case of very low concentrations. However,
when the traditional approach was applied and measurements
were based on the polystyrene band near 1,680 nm (C-H
stretching from aromatic C-H (2ν) (Workman, 2016)—i.e.,

decreasing particle concentration led to a substantial decrease in
accuracy of prediction.

Aquaphotomics can work with very water-rich systems. The
intensity of water bands in the NIR spectra of such systems is
much stronger than that of any constituent (Tsenkova, 2004),
especially if they are in very low concentrations. The possibility
of detecting and measuring such low concentrations arises from
the fact that every molecule of analyte is hydrated with an
abundance of water molecules, which adapt to its structure
and assume various conformations that can be observed based
on their respective absorbance bands in the NIR region. Since
many water molecules are involved with hydration of just one
molecule of analyte, the water acts as a sort of amplifier, and
instead of measuring analytes directly, the information on their
concentration is obtained indirectly by measuring changes in
always abundant solvent molecules.

NIR spectroscopy as a non-destructive tool offers the
advantage of in vivo spectral monitoring of living objects.
Aquaphotomics combined with time-resolved NIR spectroscopy
allows a better understanding of biological functions and
underlying water dynamics.

One of the excellent methods for exploring water dynamics
is generalized two-dimensional (2D) correlation spectroscopy
(Noda et al., 1995; Liu et al., 1996). In 2D correlation
spectroscopy, an external perturbation is applied to a system
during spectral measurements, which enables exploration of
spectral signals as a function of time or perturbation level (where
perturbation can be a number of consecutives, temperature,
concentration etc.). This method has significant advantages over
one-dimensional spectra. Spreading the spectral region over
another dimension allows a deconvolution of overlapped bands
and monitoring a specific order of spectral intensity changes.
Moreover, 2D correlation spectroscopy offers the possibility
of investigating various intra- and inter-molecular interactions
through selective correlation of peaks. This technique, in addition
to PCA, considerably contributed to the understanding of the
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structure of liquid water (Segtnan et al., 2001). Furthermore, it
was applied for extraction of useful information fromNIR spectra
of protein aqueous solutions during heat-induced denaturation
of ovalbumin (Wang et al., 1998) and acid-induced denaturation
of human serum albumin (Murayama et al., 2000). The method
can be applied even in the case of complex biological fluids
such as milk (Czarnik-Matusewicz et al., 1999; Tsenkova, 2004)
or complex biological samples such as fruits (Giangiacomo
et al., 2009). 2D correlation analysis was also employed for the
investigation of wafer etchant solutions composed of several
inorganic acids (HCl, H2SO4, H3PO4, and HNO3) (Chang et al.,
2018). This study, using a typical water-mirror approach, applied
2D correlation analysis to examine NIR water bands perturbed
by four acids and determined their dissimilar characteristics.
The results showed that components with higher acidity in
single-component samples perturbed water hydrogen bond
network more significantly, and in turn allowed more accurate
concentration measurements. Heterospectral correlation (Noda
and Ozaki, 2004) i.e., investigation of correlation between water
absorbance bands in different regions of the electromagnetic
spectrum (IR and NIR) or by different techniques (NIR
and Raman spectroscopy) can significantly contribute to
the development of aquaphotomics through discovery and
identification of new water absorbance bands. However, it should
be pointed out that there is one inherent weakness of the method,
i.e., high level of sensitivity to noise.

Other approaches for examination of water dynamics are also
often in use. For example, plotting SIMCA interclass distance as
a function of time revealed time-dependent spectral dynamics
of virus infection in soybean plants (Jinendra et al., 2010). The
SIMCA interclass distance between the groups of infected and
non-infected plants showed small values of around 1.2 (2 weeks
after inoculation), then gradually decreased to the lowest value
of 0.8 (3 weeks after inoculation). After this critical point, the
value of interclass distance increased steadily. Thus, revealed
water dynamics mirrored the dynamics of viral infection where,
due to the defense reaction from the plants, the disease impact
was initially suppressed exactly 3 weeks after inoculation. The
same approach was utilized in a study of the ovulation period
in giant pandas (Kinoshita et al., 2010). Interclass distances were
calculated between spectra of urine collected each day in the time
series and urine spectra collected at the first day of investigation
when the female animals had been in an estrous state. This
analysis showed that the SIMCA distance between these two
groups increased simultaneously with an increase in E1G
concentration, a major estrogen metabolite excreted in the urine
during estrus. Another study was concerned with investigation
of protein fibrillation and employed spectral monitoring of water
structural changes in real time during fibrillation of insulin
(Chatani et al., 2014). This study monitored the process of
fibrillation of insulin indirectly by monitoring water molecular
structure dynamics in the region of the first overtone (1,300–
1,600 nm), while the verification of formation of fibrils was
performed by two methods i.e., FTIR spectroscopy and Atomic
Force Microscopy. The PCA analysis of NIR spectra of protein
solutions found that for the first two PCs, score changes can be
mainly attributed to a change in light scattering; however, the

scores of PC3, when expressed as a function of time (in minutes),
showed a time course of changes in water structure coinciding
well with the proposed nucleation, elongation and equilibrium
phase of protein fibrillation (Chatani et al., 2014). It is worth
mentioning that other ways of exploring water dynamics are
possible. For example, expressing SIMCA interclass distance as
a function of consecutive illumination or temperature can reveal
different responses to perturbation in different samples, which
otherwise, without perturbation, may be difficult to discriminate
due to a high similarity. Also, expressing SIMCA interclass
distance between solvent and solutions of varying concentrations,
as a function of concentration, may reveal concentration ranges
in which solutes have structure-breaking and structure-making
effect, thus indicating the need for building separate regression
models for different ranges of concentrations.

Recently, several novel chemometrics methods were
introduced to aquaphotomics studies. Multivariate curve
resolution-alternating least squares (MCR-ALS) was applied to
characterize the effects of temperature and salt perturbations
on the NIR spectra of water in order to gain more insight into
hydrogen bonding (Gowen et al., 2013). This advanced data
analysis technique applies a factor model approach with the
objective of recovering pure concentration and spectral profiles
of the components in complexmixture systems without any prior
knowledge of these features (Czarnecki et al., 2015). To perform
MCR, however, one has to estimate firstly a number of significant
components, usually based on PCA analysis, In contrast to
PCA, MCR can provide results that have actual physical and
chemical meaning (Czarnecki et al., 2015). The “components” in
terms of water structures could be interpreted as the changing
forms of water when perturbations were applied. Three distinct
components were found with varying temperature dependence
in the range 30-45◦C in the region of first overtone of water,
while different salts and salt concentration levels affected the
water hydrogen bonded network in different ways according to
its acidity (Gowen et al., 2013). By resolving different systems
into idealized pure components, MCR-ALS allowed better
examination of water molecular matrix and resulted in the
conclusion that the water structure can be reasonably interpreted
as a multi-state system.

Evolving factor analysis (EFA) was applied for exploration of
hydration and secondary structures of bovine serum albumin
in aqueous solutions (Yuan et al., 2003). Application of this
method allowed an extraction of spectral information, which
indicated significant changes of bovine serum albumin in
secondary structure. The application of independent component
analysis (ICA)was reported in spectroscopic analysis of hydrogen
bonding in water-acetone mixtures for resolving the spectra
to independent components and obtaining their concentration
profiles (Monakhova et al., 2014). A Gaussian fitting method
was applied to study glucose-induced variation of water under
temperature perturbation (Cui et al., 2016). This method, applied
on aNIR difference absorbance spectra (in region 700–1,100 nm),
helped identify and quantify 16 inorganic salts in water in the
concentration range from 30 to 500mM (Steen et al., 2015).

A series of articles were also published on employing
and developing various chemometrics methods specifically for
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FIGURE 11 | Aquagrams without confidence intervals of Milli-Q water and aqueous solutions of potassium-chloride in the concentration range of 10–100mM
calculated on the MSC transformed absorbance (logT-1) spectra in the spectral range of 1,300–1,600 nm (OH first overtone) using the “classic” mode.

FIGURE 12 | Aquagrams with 95% confidence intervals of Milli-Q water and aqueous solutions of potassium-chloride in the concentration range of 10–100mM
calculated on the MSC transformed absorbance (logT-1) spectra in the spectral range of 1,300–1,600 nm (OH first overtone) using the “classic” mode.
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temperature-perturbed samples (Peinado et al., 2006; Shao
et al., 2010, 2018; Kang et al., 2011; Shan et al., 2015; Cui
et al., 2017b). Instead of trying to eliminate the influence of
temperature, a Parallel Factor (PARAFAC) model was used
to extract and separate relevant sources of both physical and
chemical information (Peinado et al., 2006). PARAFAC analysis
was also used to rationalize concentration-dependent peak
shifts and quantification of different water species in acetone
(Andrews et al., 2014), and also for a quantitative analysis of the
NIR spectra of temperature-perturbed mixtures, water-ethanol-
propanol and water-ethanol-glycerin (Peinado et al., 2006).
Multilevel simultaneous component analysis (MSCA) has been
applied to the investigation of a relationship between temperature
and NIR spectra of different samples in different concentrations:
water-ethanol-isopropanol, (Shan et al., 2015) and water-glucose
(Cui et al., 2017a) under temperature-perturbation. This method
was proposed specifically for analyzing multivariate data at
different levels (Timmerman, 2006). The method offers a
unique way to study the composition of solvent, temperature
effect and quantitative analysis (Shan et al., 2015). Cui et al.
tested three high-order chemometric algorithms: multiway
principal component analysis (MPCA) (Wold et al., 1987),
parallel factor analysis (PARAFAC) (Bro, 1997) and alternating
trilinear decomposition (ATLD) (Wu et al., 1998) in the
analysis of temperature-dependent NIR spectra of binary and

ternary water-alcohol mixtures (Cui et al., 2017b). All three
algorithms proved to be very powerful tools for capturing
temperature– and concentration–induced spectral variations,
from which a structural variation could be observed and a
quantitative determination performed. Another work of Shao
et al. proposes mutual factor analysis (MFA) for quantification
based on temperature-dependent NIR spectra (Shao et al.,
2018). In this work, multi-component mixtures were analyzed
for quantification of components and better understanding
of molecular interactions in solutions. From the spectra of
water–glucose mixtures, both spectral variations induced by
temperature and concentration were obtained while serum
samples were used for method validation (Shao et al., 2018).

The ultimate choice of chemometrics method to be applied
in aquaphotomics analysis depends on the type of the aqueous
system explored, spectral dataset and the research objective.
Obviously, there are many chemometric methods available. The
important aspect of every aquaphotomics analysis is emphasis
on consistency so that each preprocessing method, conventional
spectroscopic method or chemometrics method applied to
extract the information from water spectra can contribute
to the development of an emerging aquaphotome. Each step
of aquaphotomics data analysis is important, because it can
contribute to better understanding of the complexity of aqueous
systems, irrespective of chemometrics method applied.

FIGURE 13 | Aquagrams without confidence intervals of Milli-Q water and aqueous solutions of potassium-chloride in the concentration range of 10–100mM
calculated on the MSC transformed absorbance (logT-1) spectra in the spectral range of 1,300–1,600 nm (OH first overtone) using the “temperature-based” mode.
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With reference to our example of potassium chloride
solutions, after examining the raw spectra, difference spectra,
second derivative spectra, loadings of PCA analysis and
regression vector of PLSR analysis, we have identified the
main water absorbance bands activated by the perturbation of
potassium chloride in the concentrations up to 100mM. The last
step of analysis for our worked-out example is to represent water
absorbance spectral patterns using aquagrams.

WATER SPECTRAL PATTERN
REPRESENTED BY AQUAGRAMS

Classic Aquagrams
In data analysis, many situations arise where data visualization
is helpful, even essential, for better understanding. In
aquaphotomics, the need arose for a clear and comprehensive
graphical representation of the water spectral patterns as well
as for their easy comparison. That is why the aquagrams were
introduced (Tsenkova, 2010).

When activated water absorbance bands are found based on
the previously described steps, the last step is to apply MSC
or SNV transformation of the raw spectra, and extract the
absorbance at selected activated water bands. Thus, the calculated
absorbance is normalized and averaged for different samples
or sample groups, and the values are displayed on radial axes

defined by the activated water absorbance bands in a radar
chart.

The normalized absorbance is calculated as follows:

A,
λ =

Aλ − µλ

σλ

(1)

Where A,
λ - is a normalized absorbance displayed on the

aquagram, Aλ- absorbance after multiplicative scatter correction
(MSC) or standard normal variate transformation (SNV), µλ

– mean of all spectra for the examined group of samples after
transformation, σλ – standard deviation of all spectra for the
examined group of samples after transformation, λ – selected
wavelengths chosen for display from activated water absorbance
bands.

An exact number of axes as well as water absorbance bands
will be chosen for display, depending on a specific system
and perturbation; however, the axes always display various
conformations of water molecules, making aquagrams very
convenient tools for a quick insight into the water structure
of the system. For the first overtone of water, the axes of
the aquagram are usually based on previously discovered 12
WAMACs. The aquagrams are visually very convenient to
allow a fast and comprehensive comparison of different systems
or conditions of the same system by comparison of their
WASPs.

FIGURE 14 | Aquagrams with 95% confidence intervals of Milli-Q water and aqueous solutions of potassium-chloride in the concentration range of 10–100mM
calculated on the MSC transformed absorbance (logT-1) spectra in the spectral range of 1,300–1,600 nm (OH first overtone) using the “temperature-based” mode.
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As it can be seen from Equation (1), the classic aquagram
is a relative construction, depending on the samples included
in calculation. Also, it is a matter of choice whether the
display of absorbance calculated based on the above equation
is done by using a circular chart (radar chart) or a linear one.
The package aquap2 offers both options (Pollner and Kovacs,
2016).

The more advanced version of a classic aquagram is an
aquagram with confidence intervals (Pollner and Kovacs, 2016).
This aquagram adds one more function, the possibility to
observe whether the differences among WASPs presented in the
aquagrams are statistically significant. This type of aquagram,
in addition to averaged WASPs for selected groups of samples,
displays its confidence intervals with 95% upper and lower
limits, as calculated by using the Bootstrap method for data
validation and uncertainty estimation (Davison and Hinkley,
1997; Pollner and Kovacs, 2016). With this novel function, the
aquagrams with confidence intervals are not only convenient for
visualization, but also especially suitable for classification and
discrimination.

For our example dataset of potassium chloride solutions,
after selecting wavelengths from the WAMACS regions in the
1st overtone of water based on the previous steps of the
analysis, the classic aquagrams without and with confidence

intervals, calculated by using aquap2 package, are presented in
Figures 11, 12.

In both types of aquagrams, it is easy to observe a large
difference between the spectral patterns of water (red line) and
salt solutions. Increasing the concentration of salt in water
leads to increased absorbance in the region between 1,342 and
1,374 nm which corresponds to C1, C2, and C3 WAMACS,
i.e., absorbance of the free OH stretch (OH-(H2O)n, n =

1. . . 4) (Xantheas, 1995; Robertson et al., 2003). An increase
in the absorbance with increasing salt concentration can also
be seen in the region stretching from 1,440 to 1,452 nm, i.e.,
C7-C8 WAMACS that are known as bands of water hydration
(Gowen et al., 2009a) and water dimers (S1) (Segtnan et al.,
2001; Cattaneo et al., 2009) and symmetric and asymmetric
stretching of the first overtone of water (Siesler et al., 2008;
Cattaneo et al., 2009; Gowen et al., 2009a). However, in the
range between 1,476 and 1,512 nm, i.e., C10-C12, samples with
higher salt concentration show lower absorbance values and
this region is usually connected to strongly hydrogen bonded
water (Segtnan et al., 2001; Tsenkova, 2009). The spectral
pattern of salt solutions represented in the aquagrams shows
that for the range of concentrations of salt under study,
increasing salt concentration has a structure-breaking effect on
water.

FIGURE 15 | Aquagrams with 95% confidence intervals of Milli-Q water and aqueous solutions of potassium-chloride in the concentration range of 10–100mM
calculated on the MSC transformed absorbance (logT-1) spectra in the spectral range of 1,300–1,600 nm (OH first overtone) using the linearized version of the
“temperature-based” mode with average values.
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Temperature-Based Aquagrams
In the previous section, we briefly mentioned that classic
aquagrams are relative constructs, meaning that the WASPs
displayed depend on the samples included in calculation.
This is disadvantageous if the WASPs of samples or groups
of samples ought to be compared over time or in different
experiments. The development of a new temperature-
based aquagram (Pollner and Kovacs, 2016) overcomes this
difficulty by transformation of how spectral changes are
expressed.

For the calculation of temperature-based aquagrams, it is
necessary to first acquire a spectral library consisting of spectra
of pure water (Milli-Q) at different temperatures covering
a wider range of temperatures than the one expected to
be used during the experiment. This created library, or so-
called reference dataset, provides the basis for temperature
aquagram calculation. The spectra from this dataset are to be
compared with the spectra acquired during the experiment—
experimental dataset, giving the ground to express the effect
of certain perturbation on spectral pattern of experimental
samples in terms of the effect of temperature on pure
water spectra. In this way, the effect of any perturbation on
samples can be expressed in the “temperature equivalent units,”
in other words, changes in pure water spectra caused by
temperature.

The calculation of a temperature-based aquagram is based
on a comparison of areas covered by 12 WAMACS (Ci, i =
1, 12) coordinates in the region of the 1st overtone of water.
The average spectra across all sample replicates and consecutive
scans are calculated for the reference and experimental datasets.
The area under the curve (AUC) for every single average
spectrum for both reference and experimental datasets, at the
wavelength range of each WAMACS (Ci) is calculated by
taking into account the baseline estimated by linear fitting
on the two edges of the first overtone region (i.e. through
1,300 and 1,600 nm points). The ratio of AUCs for every
single water matrix coordinate and AUC for the first overtone
region (i.e., 1,300–1,600 nm) are calculated for each averaged
spectrum of both datasets in order to provide normalized values
for comparison of reference and experimental datasets and to
eliminate possible differences due to the scattering or path
length differences. Using local polynomial regression for the
reference dataset, a continuous array of values for the relative
area of each Ci is calculated for a continuous temperature
range chosen to include a specific temperature. In this way,
a temperature calibration equation is obtained establishing a
relationship between temperature and each Ci area, including the
temperature at which the experiment was performed. When it is
known how each Ci area for the pure water dataset is changed
as a function of temperature, it is possible to pair these changes
to spectral changes in the experimental dataset, i.e., to perform
linking (mapping) and express the changes in Ci areas of the
experimental datasets in the unit of temperature (degree Celsius)
equivalent.

With this type of aquagram, it is also possible to include
confidence interval limits. In that case, it is also necessary to
perform transformation of upper and lower 95% confidence

limits in the same manner just described above for the average
spectra from the experimental dataset.

The whole calculation procedure for temperature-based
aquagrams is implemented in the aquap2 package of R
programing language (Pollner and Kovacs, 2016; R Core Team,
2017). An obvious disadvantage of temperature-based aquagrams
is that they are based on previously discoveredWAMACS regions
in the first overtone of water (Tsenkova, 2010), meaning that
at the moment this type of aquagram cannot be used for other
windows of the electromagnetic spectrum where water absorbs.

The temperature based aquagrams without and with
confidence intervals for our dataset of aqueous solutions of
potassium-chloride spectra are presented in Figures 13, 14,
respectively. The linearized version of the temperature-based
aquagram for Figure 14 is plotted in Figure 15, where the
additional table shows average values at all WAMACs.

Further understanding can be obtained from the temperature-
based aquagram. The addition of, for instance, 90mM
potassium-chloride to Milli-Q water results in structural
changes equivalent to temperature changes of about 0.54,
0.48, 0.3, 0.02, 0.1, 0.58, 1.53, 1.14, 0.19, −0.08, −0.26 and
−0.49◦C at C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, and
C12 coordinates, respectively. Furthermore, the differences are
statistically significant for calculated confidence intervals, e.g.,
the above listed differences between pure Milli-Q and 90mM
aqueous solution of potassium-chloride was significant (p <

0.05) at the coordinates C1, C2, C3, C6, C7, C8, C11, and C12.

CONCLUDING REMARKS

In this paper, the fundamentals of the aquaphotomics approach
to data analysis have been presented and discussed. A variety
of applications illustrate the potential of aquaphotomics as a
powerful new spectroscopic tool to study various aspects of
aqueous and biological systems, which are of interest in the
pharmaceutical and biomedical fields. The process of analysis
illustrated by the application of aquaphotomics analysis on
aqueous salt solutions was intended as guidance for certain
steps of the analysis with the simplest experimental system,
which anyone can easily reproduce. Together with the examples
from sources of literature referenced throughout the text, this
paper should provide the basis for independent experimental
work in this field. The existing aquaphotomics literature shows
the results which are probably only the tip of the iceberg
of possible applications. With the explained methodology of
aquaphotomics analysis presented herein, we hope that scientists
and chemometricians will implement it in their fields and come
up with new ideas of applications as well as new and more
sophisticated mathematical tools to contribute to this growing
field.
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“The prospects of aquaphotomics in biomedical science and engineering,”

in Aquaphotomics: Understanding Water in Biology – 2nd International

Symposium. (Kobe University, Kobe, Japan).
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Segtnan, V. H., Sasić S., Isaksson T, and Ozaki, Y. (2001). Studies on

the structure of water using two-dimensional near-infrared correlation

spectroscopy and principal component analysis. Anal. Chem. 73, 3153–3161.

doi: 10.1021/ac010102n

Shan, R., Zhao, Y., Fan, M., Liu, X., Cai, W., and Shao, X. (2015). Multilevel

analysis of temperature dependent near-infrared spectra. Talanta 131, 170–174.

doi: 10.1016/j.talanta.2014.07.081

Shao, X., Cui, X., Yu, X., and Cai,W. (2018). Mutual factor analysis for quantitative

analysis by temperature dependent near infrared spectra. Talanta 183, 142–148.

doi: 10.1016/j.talanta.2018.02.043

Shao, X., Kang, J., and Cai, W. (2010). Quantitative determination by

temperature dependent near-infrared spectra. Talanta 82, 1017–1021.

doi: 10.1016/j.talanta.2010.06.009

Shao, X. G., Leung, A. K., and Chau, F. T. (2003). Wavelet: a new trend in

chemistry. Acc. Chem. Res. 36, 276–283. doi: 10.1021/ar990163w

Siesler, H. W., Ozaki, Y., Kawata, S., Heise, H. M. (2008). Near-Infrared

Spectroscopy: Principles, Instruments, Applications.Weinheim: John, Wiley and

Sons.

Slavchev, A., Kovacs, Z., Koshiba, H., Bazar, G., Pollner, B., Krastanov, A., et al.

(2017). Monitoring of water spectral patterns of lactobacilli development as

a tool for rapid selection of probiotic candidates. J. Near Infrared Spectrosc.

25:0967033517741133. doi: 10.1177/0967033517741133

Slavchev, A., Kovacs, Z., Koshiba, H., Nagai, A., Bázár, G., Krastanov, A., et al.

(2015). Monitoring of water spectral pattern reveals differences in probiotics

growth when used for rapid bacteria selection. PLoS ONE 10:e0130698.

doi: 10.1371/journal.pone.0130698

Smith, J. D., Cappa, C. D., Wilson, K. R., Cohen, R. C., Geissler, P. L., and Saykally,

R. J. (2005). Unified description of temperature-dependent hydrogen-bond

rearrangements in liquid water. Proc. Natl. Acad. Sci. U.S.A. 102, 14171–14174.

doi: 10.1073/pnas.0506899102

Steen, G.W., Fuchs, E. C.,Wexler, A. D., and Offerhaus, H. L. (2015). Identification

and quantification of 16 inorganic ions in water by Gaussian curve fitting

of near-infrared difference absorbance spectra. Appl. Opt. 54, 5937–5942.

doi: 10.1364/AO.54.005937

Takemura, G., Bázár, G., Ikuta, K., Yamaguchi, E., Ishikawa, S., Furukawa, A., et al.

(2015). Aquagrams of raw milk for oestrus detection in dairy cows. Reprod.

Domest. Anim. 50, 522–525. doi: 10.1111/rda.12504

Tillmann, P., and Paul, C. (1998). The repeatability file—a tool for reducing the

sensitivity of near infrared spectroscopy calibrations to moisture variation. J.

Near Infrared Spectrosc. 6, 61–68. doi: 10.1255/jnirs.122

Timmerman, M. E. (2006). Multilevel component analysis. Br. J. Math. Stat.

Psychol. 59, 301–320. doi: 10.1348/000711005X67599

Frontiers in Chemistry | www.frontiersin.org August 2018 | Volume 6 | Article 363121

https://doi.org/10.1039/c2ay05771a
https://doi.org/10.1021/j100010a016
https://doi.org/10.3390/molecules17067440
https://doi.org/10.1016/j.aca.2018.04.004
https://doi.org/10.1016/j.procs.2015.06.099
https://doi.org/10.1016/j.chemolab.2006.01.006
https://doi.org/10.1366/0003702953963788
https://doi.org/10.1016/j.trac.2009.07.007
https://doi.org/10.1126/science.1080695
https://doi.org/10.1016/j.jpba.2007.03.023
https://doi.org/10.1080/1539445X.2016.1198377
https://doi.org/10.1111/j.1348-0421.2005.tb03648.x
https://doi.org/10.1292/jvms.68.1375
https://doi.org/10.1271/bbb.50619
https://doi.org/10.2131/jts.32.135
https://doi.org/10.1021/jp013436p
https://doi.org/10.1021/ac60214a047
https://doi.org/10.1021/ac010102n
https://doi.org/10.1016/j.talanta.2014.07.081
https://doi.org/10.1016/j.talanta.2018.02.043
https://doi.org/10.1016/j.talanta.2010.06.009
https://doi.org/10.1021/ar990163w
https://doi.org/10.1177/0967033517741133
https://doi.org/10.1371/journal.pone.0130698
https://doi.org/10.1073/pnas.0506899102
https://doi.org/10.1364/AO.54.005937
https://doi.org/10.1111/rda.12504
https://doi.org/10.1255/jnirs.122
https://doi.org/10.1348/000711005X67599
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Tsenkova et al. Aquaphotomics Methods

Tsenkova, R. (2004). Near Infrared Spectroscopy of Raw Milk for Cow’s

Biomonitoring. Ph.D. thesis, Hokkaido University (?????).

Tsenkova, R. (2005). “Visible-near infrared perturbation spectroscopy: Water in

action seen as a source of information,” in 12th International Conference on

Near-infrared Spectroscopy (Auckland), 607–612.

Tsenkova, R. (2006a). Aquaphotomics. Aquaphotomics and chambersburg. NIR

News 17, 12–10. doi: 10.1255/nirn.916

Tsenkova, R. (2006b). Aquaphotomics: exploring water-light interactions for a

better understanding of the biological world. Part 2: Japanese food, language

and why NIR for diagnosis? NIR News 17, 8–14. doi: 10.1255/nirn.904

Tsenkova, R. (2006c). AquaPhotomics: water absorbance pattern as a biological

marker. NIR News 17, 13–10. doi: 10.1255/nirn.1014

Tsenkova, R. (2007). AquaPhotomics: water absorbance pattern as a biological

marker for disease diagnosis and disease understanding. NIR News 18, 14–16.

doi: 10.1255/nirn.1014

Tsenkova, R. (2008a). Aquaphotomics: acquiring spectra of various biological

fluids of the same organism reveals the importance of water matrix absorbance

coordinates and the aquaphotome for understanding biological phenomena.

NIR News 19, 13–15.

Tsenkova, R. (2008b). Aquaphotomics: the extended water mirror effect explains

why small concentrations of protein in solution can be measured with near

infrared light. NIR News 19, 13–14.

Tsenkova, R. (2008c). “Aquaphotomics: VIS-near infrared spectrum of water as

biological marker,” inConference on the Physics, Chemistry and Biology ofWater

(Sofia).

Tsenkova, R. (2009). Aquaphotomics: dynamic spectroscopy of aqueous and

biological systems describes peculiarities of water. J. Near Infrared Spectrosc.

17, 303–313. doi: 10.1255/jnirs.869

Tsenkova, R. (2010). Aquaphotomics: water in the biological and aqueous world

scrutinised with invisible light. Spectrosc. Eur. 22, 6–10.

Tsenkova, R., and Atanassova, S. (2002). “Mastitis diagnostics by near infrared

spectra of cow’s milk, blood and urine using soft independent modelling of

class analogy classification,” in Near Infrared Spectroscopy: Proceedings of the

10th International Conference, eds A. M. C. Davies and R. K. Cho (Chichester:

NIR Publications).

Tsenkova, R., Atanassova, S., Kawano, S., and Toyoda, K. (2001a). Somatic cell

count determination in cow’s milk by near-infrared spectroscopy: a new

diagnostic tool. J. Anim. Sci. 79, 2550–2557. doi: 10.2527/2001.79102550x

Tsenkova, R., Atanassova, S., Ozaki, Y., Toyoda, K., and Itoh, K. (2001b).

Near-infrared spectroscopy for biomonitoring: influence of somatic cell

count on cow’s milk composition analysis. Intl. Dairy J. 11, 779–783.

doi: 10.1016/S0958-6946(01)00110-8

Tsenkova, R., Atanassova, S., and Toyoda, K. (2001c). Near infrared

spectroscopy for diagnosis: influence of mammary gland inflammation

on cow’ s milk composition measurement. Near Infrared Anal. 2, 59–66.

doi: 10.11357/jsam1937.61

Tsenkova, R., Fockenberg, C., Koseva, N., Sakudo, A., and Parker, M. (2007a).

“Aquaphotomics: water absorbance patterns in NIR range used for detection of

metal ions reveal the importance of sample preparation,” in 13th International

Conference on Near Infrared spectroscopy (Umea), 03–02.

Tsenkova, R., Iso, E., Parker, M., Fockenberg, C., and Okubo, M. (2007b).

“Aquaphotomics: a NIRS investigation into the perturbation of water spectrum

in an aqueous suspension of mesoscopic scale polystyrene spheres,” in 13th

International Conference on Near Infrared Spectroscopy (Umea), A–04.

Tsenkova, R., Kovacs, Z., Kubota, Y., (2015) “Aquaphotomics: near infrared

spectroscopy and water states in biological systems,” in Membrane Hydration,

ed E. Anibal Disalvo (Berlin: Springer), 189–211.

Tsenkova, R., Morita, H., Shinzawa, H., Hogeveen, H., Hillerton, J. E., and Ikuta, K.

(2005). “Near infrared spectroscopy for cow identification and in-vivomastitis

diagnosis,” in Mastitis in Dairy Production. Current Knowledge and Future

Solutions, 4th IDF International Mastitis Conference (Maastricht), 901.

Tsenkova, R. N. (1994). “Near-infrared spectroscopy of individual cow milk as

a means for automated monitoring of udder health and milk quality,” in

Proceedings of Third International Dairy Housing Conference (Orlando, FL).

Tsenkova, R. N., Iordanova, I. K., Toyoda, K., and Brown, D. R. (2004). Prion

protein fate governed by metal binding. Biochem. Biophys. Res. Commun. 325,

1005–1012. doi: 10.1016/j.bbrc.2004.10.135

Wang, Y., Murayama, K., Myojo, Y., Tsenkova, R., Hayashi, N., and Ozaki, Y.

(1998). Two-dimensional fourier transform near-infrared spectroscopy study

of heat denaturation of ovalbumin in aqueous solutions. J. Phys. Chem. B 102,

6655–6662. doi: 10.1021/jp9816115

Weber, J. M., Kelley, J. A., Nielsen, S. B., Ayotte, P., and Johnson, M.

A. (2000). Isolating the spectroscopic signature of a hydration shell

with the use of clusters: superoxide tetrahydrate. Science 287, 2461–2463.

doi: 10.1126/science.287.5462.2461

Weber, J. M., Kelley, J. A., Robertson,W. H., and Johnson, M. A. (2001). Hydration

of a structured excess charge distribution: infrared spectroscopy of the

O−

2 ·(H2O)n, (1≤ n≤ 5) clusters. J. Chem. Phys. 114, 2698–2706. doi: 10.1063/1.

1338529

Wenz, J. J. (2018). Examining water in model membranes by near infrared

spectroscopy and multivariate analysis. Biochim. Biophys. Acta Biomembr.

1860, 673–682. doi: 10.1016/j.bbamem.2017.12.007

Williams, P., Norris, K. (1987). Near-Infrared Technology in the Agricultural and

Food Industries. St. Paul, MI: American Association of Cereal Chemists Inc.

Wold, S., Geladi, P., Esbensen, K., and Öhman J. (1987). Multi-

way principal components-and PLS-analysis. J. Chemom. 1, 41–56.

doi: 10.1002/cem.1180010107

Wold, S., Sjöström, M. (1977). “SIMCA: a method for analyzing chemical data in

terms of similarity and analogy,” in Chemometrics: Theory and Application, ed

B. R. Kowalski (Washington DC: American Chemical Society), 243–282.

Workman, J. Jr. (2000). The Handbook of Organic Compounds: NIR, IR, Raman,

and, UV-, VIS Spectra Featuring Polymers and Surfactants. London: Elsevier.

Workman, J. (2016). The Concise Handbook of Analytical Spectroscopy, Vol. 3.

Singapore: World Scientific Publishing Co. Pte. Ltd.

Wu, H. L., Shibukawa, M., and Oguma, K. (1998). An alternating trilinear

decomposition algorithm with application to calibration of HPLC–DAD for

simultaneous determination of overlapped chlorinated aromatic hydrocarbons.

J. Chemometr. Soc. 12, 1–26.

Xantheas, S. S. (1995). Ab initio studies of cyclic water clusters (H2O)n, n=1–6.

III. Comparison of density functional with MP2 results. J. Chem. Phys. 102,

4505–4517. doi: 10.1063/1.469499

Yuan, B., Murayama, K., Wu, Y., Tsenkova, R., Dou, X., Era, S., et al.

(2003). Temperature-dependent near-infrared spectra of bovine serum

albumin in aqueous solutions: spectral analysis by principal component

analysis and evolving factor analysis. Appl. Spectrosc. 57, 1223–1229.

doi: 10.1366/000370203769699072

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
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Raman spectroscopy has been widely used for quantitative analysis in biomedical

and pharmaceutical applications. However, the signal-to-noise ratio (SNR) of Raman

spectra is always poor due to weak Raman scattering. The noise in Raman spectral

dataset will limit the accuracy of quantitative analysis. Because of high correlations in

the spectral signatures, Raman spectra have the low-rank property, which can be used

as a constraint to improve Raman spectral SNR. In this paper, a simple and feasible

Raman spectroscopic analysis method by Low-Rank Estimation (LRE) is proposed. The

Frank-Wolfe (FW) algorithm is applied in the LRE method to seek the optimal solution.

The proposed method is used for the quantitative analysis of pharmaceutical mixtures.

The accuracy and robustness of Partial Least Squares (PLS) and Support Vector Machine

(SVM) chemometric models can be improved by the LRE method.

Keywords: Raman spectroscopy, quantitative analysis, pharmaceuticals, low-rank estimation, chemometric

model

INTRUDUCTION

Raman spectroscopy is one of the vibrational spectroscopic techniques that has been commonly
applied in quantitative analysis (Strachan et al., 2004; Numata and Tanaka, 2011; Ai et al., 2018).
Being non-invasive andmarker-free, it has been proved to be an effective tool in the field of physics,
chemistry, and biology (Graf et al., 2007; Neugebauer et al., 2010; Ryu et al., 2012; Tan et al., 2017).
Coupled with chemometrics methods, it has the advantages of high sensitivity and resolution in
biomedical and pharmaceutical quantitative analysis.

The quantitative analysis based on Raman spectra at low signal-to-noise ratio (SNR) levels is
still problematic (Li, 2008; Chen et al., 2014). Generally, a Raman spectrum can be divided into two
parts: the signal containing desired information and the noise containing unwanted information.
Basically, the latter may include photon-shot noise, sample-generated noise, instrument-generated
noise, computationally generated noise, and externally generated noise (Pelletier, 2003). Due to
the inherently weak property of Raman scattering, the noise will lead to a deterioration in SNR
of Raman spectra, affecting the accuracy of quantitative analysis. For instance, data of online
monitoring in limited integration time always tend to be inaccurate (Han et al., 2017; Virtanen
et al., 2017).

Some approaches of preprocessing Raman spectra tominimize this problem have been proposed
(Clupek et al., 2007; Ma et al., 2017), such as first and second derivatives (Johansson et al., 2010),
polynomials fitting (Vickers et al., 2001), Fourier transform (Pelletier, 2003), and wavelet transform
(Chen et al., 2011; Li et al., 2013). Among these approaches, wavelet transform can extract peak
information and remove background noise, which has been the most widely used preprocessing
method (Du et al., 2006). However, the processing of Raman spectra can be further optimized to
improve the accuracy of pharmaceutical quantitative analysis.
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In this paper, we introduce a simple and feasible Raman
spectroscopic analysis method based on Low-Rank Estimation
(LRE). Our experiments are implemented based on the Partial
Least Squares (PLS) and Support Vector Machine (SVM)
chemometric models. The aim of this experimental design is
to enhance the quality of pharmaceutical quantitative analysis
by significantly improving the accuracy and robustness of the
chemometric models used.

MATERIALS AND METHODS

Pharmaceutical substances (norfloxacin, penicillin potassium,
and sulfamerazine) were purchased from Dalian Meilun
Biotechnology Co., Ltd (China) and used without further
purification. These substances were well blended in different
proportions, pulverized, and compressed into three-component
tablets. Other physical properties of these tablets (such as density,
height, and diameter) were kept completely consistent. Mixed
solutions were also prepared with methanol and ethanol in 100
different proportions. Raman spectral data were recorded by
using a Renishaw inVia Raman spectrometer (Gloucestershire,
U.K.). This system consisted of a 785-nm diode laser (∼40 mW)
and a 1,200 l/mm grating. In this work, the integration times of
Raman spectra were 0.1–0.5 s.

PLS and SVM regression methods were used to model and
predict pharmaceutical concentration of the samples based on
their Raman spectra. Eighty-five samples were selected as the
training set and the remaining 15 samples as the testing set, based
on Kennard-Stone (KS) algorithm. The parameters of PLS and
SVM models were tuned based on grid search algorithm. The
optimal parameters were obtained by k-folder cross-validation.

The accuracy and robustness of above-mentioned
chemometric models were further improved by conventional
Wavelet Transform (WT) method and Low-Rank Estimation
(LRE) method, respectively. In the WT method, the signals
were split into different frequency components to remove
simultaneously low-frequency background and high-frequency
noise components. The Symlet wavelet filter (sym11, scale = 7)
was optimally selected to provide the sharpest peaks associated
with the analytes of interest. The LRE method was originally
developed by our group in three-dimension to speed up Raman
spectral imaging (Li et al., 2018). In this study, we used the
LRE method in two-dimension to process the observed Raman
spectral data matrix. In this method, the alternating least squares
(ALS) algorithm is used to estimate the largest singular value of
the matrix (Kroonenberg and Leeuw, 1980; Halko et al., 2011).
The matrix estimation has two sets of parameters. Each set is
estimated in turn by solving a least-squares problem and holding
the other set fixed. After both sets have been estimated once, the
procedure is repeated until convergence.

The Frank-Wolfe (FW) algorithm is applied in the LRE
method to seek the optimal solution. Recently, the FW algorithm
has been popularly used in machine learning due to its
characteristics of simple implementation and modest memory
requirement (Jaggi, 2013; Guo et al., 2017). The steps of the LRE
method are detailed in Table 1.

TABLE 1 | The detail steps of the LRE method.

Algorithm: The algorithm for the LRE method

Input: the raw Raman spectral data matrix A;

the maximum number of iteration N, ranging from 5 to 20;

the low-rank constraint factor m, ranging from 0.01 to 0.001;

1: Initialize X0 = 0. X0 is an initial solution of the algorithm.

2: for i = 0,1,…,N do, ai represents the i-th iteration of any variable a.

3: Compute the search direction s, si+1 = ALS(A− X i )

4: Compute the step length r, ri+1 = argminr∈[0,1](A− (X i + r(si+1 − X i )))

5: X i+1 = (1− ri+1)X i + ri+1si+1

6: stopping criterion: ALS(X i+1 )
si+1 > m

7: end for

8: The last iteration of X is the final solution of the LRE method.

Output X

Through being processed by the LRE method, the low-rank
training and testing sets can be obtained from the raw training
and testing data matrices, respectively. In general, an abundant
data matrix can enhance the effect of the LRE method. When
a number of testing spectral data is small, the training spectral
data can be added to the raw testing data matrix as a supplement.
The added spectral data are only used to strengthen the impact of
the LREmethod. The conventional regressionmodels are applied
to the low-rank training and testing sets to perform quantitative
Raman analysis.

RESULTS AND DISCUSSION

Noise-free Raman spectral dataset is a low-rank matrix. In
Figure 1, the red line shows the ranks of Raman spectral data
matrix in an integration time of 1 s, suggesting that the Raman
spectra have low-rank property when the noise is low. The low-
rank property comes from high correlations among spectral
signatures. Each spectral signature can be represented by a linear
combination of a small number of pure spectral endmembers,
which is known as linear spectral mixing model (Iordache et al.,
2011; Golbabaee and Vandergheynst, 2012). The blue and green
plots show singular values of the matrix in a shorter integration
time, which implies that the ranks of Raman spectra increase
with decreasing integration time owing to a greater proportion
of the noise. The low-rank property can be used as a constraint to
improve the accuracy of pharmaceutical quantitative analysis (Yi
et al., 2017).

Raw Raman spectra recorded for three pure pharmaceutical
substances are shown in Figure 2A. Thirty Raman spectra
obtained from three-component tablets with different
proportions are shown in Figure 2B. It is clear that each
pharmaceutical component has its own special characteristic
peaks. However, their respective Raman bands are overlapped.
Particularly, Raman signals of lower-concentration component
are almost swamped and covered by those of higher-
concentration one, which represents a common problem in
practice for biomedical and pharmaceutical quantitative analysis.
For clarity, the Raman spectra in Figure 2B were collected
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FIGURE 1 | The ranks of the Raman spectra in different integration time.

FIGURE 2 | Raman spectra of (A) pure pharmaceuticals substances: (a) penicillin potassium, (b) norfloxacin, and (c) sulfamerazine, (B) their three component tablets

containing different proportions in the integration time of 5s.

in an integration time of 5 s, which have a high SNR. In our
experiments, the integration times of Raman spectra are in the
range of 0.1–0.5 s, which is over 10 times shorter than that shown
in Figure 2. Under this condition, the spectral signals are weaker
and have poor SNR.

The comparisons of predicted and actual values for
norfloxacin are illustrated in Figure 3, which indicates the
advantage of the LRE method for pharmaceutical quantitative
analysis. The coefficient of determination (R2) and root mean

square error (RMSE) of the chemometric models used for
quantitative analysis of three pharmaceutical components
are listed in Table 2. The unsatisfactory results of the raw
spectral data show that the pre-treatment of Raman spectra
is necessary. In this study, the LRE method and conventional
wavelet transform (WT) method are applied to improve the
accuracy of quantitative analysis. As shown in Figure 3, both the
conventional WT and LRE methods can improve the predicted
results. However, it is clear that the LRE method has a better
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FIGURE 3 | Actual vs. predicted values of norfloxacin based on the PLS (A) and SVM (B) model, where the black solid line are diagonals. Raw Raman spectra are

collected in an integration time of 0.2 s.

TABLE 2 | R2 and RMSE values of the chemometric models for three pharmaceutical components.

Norfloxacin Penicillin potassium Sulfamerazine

Model Methods R2 RMSE R2 RMSE R2 RMSE

PLS Raw 0.7504 0.0780 0.8692 0.1218 0.7323 0.0608

WT 0.8598 0.0642 0.9548 0.0974 0.8862 0.0376

LRE 0.9553 0.0259 0.9848 0.0522 0.9609 0.0225

SVM Raw 0.8297 0.1097 0.8460 0.1264 0.8135 0.0679

WT 0.8808 0.0841 0.9125 0.0821 0.8907 0.0444

LRE 0.9558 0.0468 0.9749 0.0755 0.9701 0.0397

TABLE 3 | R2 and RMSE values of the chemometric models for norfloxacin in

different integration times.

0.1 s 0.2 s 0.5 s

Model Methods R2 RMSE R2 RMSE R2 RMSE

Raw 0.7286 0.0939 0.7606 0.0733 0.8731 0.0476

PLS WT 0.8503 0.0630 0.8747 0.0627 0.9610 0.0446

LRE 0.9496 0.0296 0.9626 0.0236 0.9784 0.0229

Raw 0.7803 0.0959 0.8116 0.0894 0.9136 0.0781

SVM WT 0.8673 0.0976 0.8987 0.0789 0.9251 0.0668

LRE 0.9588 0.0449 0.9665 0.0229 0.9764 0.0210

performance than the conventional WT method in enhancing
the prediction accuracy for pharmaceutical quantitative
analysis.

As shown in Table 2, the raw Raman spectra are all collected
in an integration time of 0.2 s. The LRE method is significantly
better than the conventional WT method in terms of R2 and
RMSE for all components. Quantitation limit (QL) for each
pharmaceutical substance is calculated. By definition in ICH
guideline (ICH Harmonised Tripartite Guideline, 2005), QL is
the lowest concentration of an analyte that can be quantitatively
determined with suitable precision and accuracy. It is most

TABLE 4 | R2 and RMSE values of the chemometric models for methanol in

different integration times.

0.1 s 0.2 s 0.5 s

Model Methods R2 RMSE R2 RMSE R2 RMSE

Raw 0.7078 1.9980 0.8086 1.4655 0.8458 1.3075

PLS WT 0.8311 0.6551 0.8776 0.5750 0.9178 0.4553

LRE 0.9017 0.5794 0.9301 0.4692 0.9401 0.4117

Raw 0.7158 0.8631 0.8382 0.7669 0.8813 0.6148

SVM WT 0.8361 0.7030 0.8701 0.6204 0.9428 0.4506

LRE 0.9277 0.6417 0.9628 0.5112 0.9768 0.3964

often determined as 10 times the standard deviation of the
noise from the blank. The LRE method can be used reliably
with more than a 15-fold improvement of the practicalQL.
Through being processed by the LRE method, QL values for
norfloxacin, penicillin potassium, and sulfamerazine are 0.17,
0.13, and 0.19%, respectively. These results reveal that the
LRE method can simultaneously improve the performance
of quantitative analysis for pharmaceutical multi-component
mixtures.

Table 3 lists R2 and RMSE values of the chemometric
models used for quantitative analysis of norfloxacin in different
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integration times. The integration times of rawRaman spectra are
0.1, 0.2, and 0.5 s. Raman spectrum’s SNR is always proportional
to integration time. For evaluating spectral quality, the SNR
is defined as the ratio of the peak value of the signal to
the root mean square of the noise. For integration times of
0.1, 0.2, and 0.5 s, the average SNR of Raman spectra are
2.47, 3.66, and 6.21, respectively. R2 and RMSE values of the
chemometric models for methanol in different integration times
are listed Table 4. The average SNR of the Raman spectra in the
integration times of 0.1, 0.2, and 0.5 s are 2.13, 3.34, and 5.89,
respectively.

As shown in Tables 3, 4, the accuracy of the quantitative
analysis raises with increasing SNR. According to R2 and RMSE
values, it can be proved that the LRE method has a better
performance than the conventional WT method. The degree
of improvement is higher for low-SNR Raman spectra, which
indicates that the LRE method has good noise immunity.

In summary, all predicted results of the Raman spectra
preprocessed by the LRE method are in good agreement
with corresponding actual values. This method can be applied
to improve the accuracy of quantitative analysis based on
both PLS and SVM models. It is unrelated to the selection
of chemometric models. The LRE method is not restricted
by the state of a sample, meaning that it is applicable to
both solid and liquid samples. Therefore, it can be regarded
as an efficient tool with satisfactory prediction accuracy for
pharmaceutical quantitative analysis, especially in the case of
low-SNR spectra.

CONCLUSION

The LRE method has been successfully applied in Raman
spectroscopy for pharmaceutical quantitative analysis. It is a
simply and feasibly method that can improve the accuracy and
robustness of PLS and SVM chemometric models. Our data show
that the LRE method has advantages in improving R2 and RMSE
for quantitative analysis of pharmaceutical multi-component
mixtures, especially in the case of low-SNR spectra. The LRE
method will promote the development of Raman spectroscopy
in biomedical and pharmaceutical quantitative analysis.
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An exploratory analysis of a large representative dataset obtained in a fluidized bed drying

process of a pharmaceutical powder has revealed a significant correlation of spectral

intensity with granulate humidity in the whole studied range of 1091.8–2106.5 nm. This

effect was explained by the dependence of powder refractive properties, and hence light

penetration depth, on the water content. The phenomenon exhibited a close spectral

similarity to the well-known stochastic variation of spectral intensities caused by the

process turbulence (the so-called “scatter effect”). Therefore, any traditional scatter-

corrective preprocessing incidentally eliminates moisture-correlated variance from the

data. To preserve this additional information for a more precise moisture calibration, a

time-domain averaging of spectral variables has been suggested. Its application resulted

in a distinct improvement of prediction accuracy, as compared to the scatter-corrected

data. Further improvement of the model performance was achieved by the application of

a dynamic focusing strategy when adjusting the model to a drying process stage. Probe

fouling was shown to have a minor effect on prediction accuracy. The study resulted in

a considerable reduction of the root-mean-square error of in-line moisture monitoring

to 0.1%, which is close to the reference method’s reproducibility and significantly better

than previously reported results.

Keywords: fluidized bed drying, moisture monitoring, NIR spectroscopy, light scatter, scatter correction,

lighthouse probe, process analytical technology

INTRODUCTION

Fluidized bed drying is a common unit operation routinely performed in the pharmaceutical
production of solid dosage forms. In a typical batch granulation process, the drying stage
immediately follows either the fluidized bed or high-shear granulation stage. It is often considered
as one of the most critical steps for achieving stable product quality, i.e., for obtaining granules
with desired properties at their minimal variability. Therefore, a close monitoring of the residual
moisture content in the process medium is necessary for any quality assurance system in granulate
production.

In modern industrial practice, moisture is commonly analyzed in isolated samples. Karl Fischer
titration is a classic water analysis technique that has been widely used for decades. A viable
alternative accepted by pharmacopeias is thermogravimetric analysis with a drying balance that
determines moisture content in the sample as percentage weight loss on drying (LOD). At present,
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both techniques are realized as compact desktop devices enabling
the at-line analysis of samples taken from a running process.

For the process type studied here, the at-line analysis
of granulate moisture content typically takes 20–30min,
representing a good alternative to off-line laboratory analysis of
the final product. However, such operability is insufficient to
carry out real-time process control, for example by generating
alarms on abnormal process states and performing timely
corrections. For the same reason, at-line analysis is hardly
suitable for accurately determining the process end-point—
the time point at which the product reaches its optimal
properties. Therefore, instant in-line monitoring of the moisture
content in fluidized bed drying is strongly desired to provide a
necessary level of process control and to meet growing quality
requirements.

Near-infrared (NIR) spectroscopy is an undoubted favorite
among real-time sensor systems for moisture monitoring in the
production of solids, specifically, in the drying step (Roggo et al.,
2007; Burggraeve et al., 2013; Da Silva et al., 2014). In such
systems, the diffuse reflectance spectra of the process material
are typically measured through an immersion probe. The key
advantages of NIR spectroscopy as an in-line analytical technique
include the suitability for measurements in media of highly
variable bulk density, nondestructiveness, and the capability to
place the probe into an appropriate position within the process
space while keeping it connected to a remote spectrometer
through a fiber optic cable.

The classic NIR spectroscopic moisture analysis relies on
two intensive water absorption bands around 1,440 and
1,930 nm, enabling quantitative determination of the moisture
in a wide concentration range. In low-selective NIR spectra,
the component bands are essentially overlapped and their
quantitative analysis requires the application of multivariate
modeling, also known as chemometrics. In particular, the partial
least-squares (PLS) regression algorithm (Sjöström et al., 1983) is
widely accepted in process chemometrics (Bogomolov, 2011).

Over the last decades, the practical acceptance of NIR
spectroscopy for in-line moisture monitoring in fluidized bed
processing of powders and solids have been constantly growing.
Published works (Frake et al., 1997; Rantanen et al., 2000; Zhou
et al., 2003; Green et al., 2005; Nieuwmeyer et al., 2007; Skibsted
et al., 2007; Luukkonen et al., 2008; Mantanus et al., 2009;
Alcalà et al., 2010; Corredor et al., 2011; Peinado et al., 2011;
Burggraeve et al., 2012; Demers et al., 2012; Möltgen et al., 2012;
Obregón et al., 2013) have focused on the general feasibility of
the analysis or on the investigation of specific experimental or
modeling aspects (e.g., important process influences, sampling,
control strategy, and model transfer). At the same time, the
resulting models are typically built and validated on relatively
small sets of samples and batches, which can be accounted for
by the technical complexity of industrial experiments. Hence,
the accuracy estimates reported for similar process setups and
conditions are very diverse (Zhou et al., 2003; Green et al.,
2005; Nieuwmeyer et al., 2007; Skibsted et al., 2007; Mantanus
et al., 2009; Alcalà et al., 2010; Corredor et al., 2011; Peinado
et al., 2011; Burggraeve et al., 2012; Demers et al., 2012; Möltgen
et al., 2012) and the “ultimate” moisture determination accuracy

by in-line NIR spectroscopy under widely variable process
conditions remains unknown. Therefore, despite significant
progress, the method can hardly be regarded as completely
established yet.

In-depth considerations of NIR spectroscopic analysis in
terms of light propagation in the complex fluidized bed process
medium are rare (Rantanen et al., 2000; Luukkonen et al., 2008;
Burggraeve et al., 2013). One of the main obstacles complicating
the NIR spectroscopic monitoring of fluidized bed drying is
related to process turbulence. A highly variable density of the
material around the probe, and consequently the quantity of light
reaching the detector, causes intensive random fluctuations of
the overall intensity of in-line spectra that are often referred to
as the “scatter effect.” The problem is commonly resolved by
preprocessing the spectra prior to the modeling step. The three
most-used scatter correction methods are multiplicative scatter
correction (MSC), standard normal variate (SNV), and spectral
derivatives (Rinnan et al., 2009). The application of a scatter
correction method to in-line process NIR spectra is ubiquitous;
no exception has been found in the literature. In most cases, the
choice of the preprocessing method is empirical or arbitrary.

In some publications, it was noticed that the NIR spectra
expressed in the logarithmic reflectance units (lg(1/R)) exhibited
a significant downward shift of the background as the drying
progressed (Frake et al., 1997; Rantanen et al., 2000; Zhou et al.,
2003; Luukkonen et al., 2008; Burggraeve et al., 2012). Two
plausible explanations were suggested, both related to the altering
of light scatter conditions in the course of drying. On one hand,
the uniform decrease in spectral intensities could be caused
by an increase in scattering particle size; this explanation was
given by Burggraeve et al. (2012) and Frake et al. (1997). On
the other hand, the presence of water on crystal surfaces affects
the reflective properties of the granulated powder, resulting in a
deeper light penetration and a subsequent higher absorbance of
wetter samples (Rantanen et al., 2000; Luukkonen et al., 2008).
Rantanen et al. (2000) provided an experimental evidence of
the latter phenomenon by using the pharmaceutical excipient
(microcrystalline cellulose) as well as inorganic glass beads
(“ballotini”) with a known size distribution.

The present work aims at building an accurate and
robust functional prediction model for in-line moisture
content monitoring in fluidized bed drying based on a large
representative set of designed process data. Both experimental
and modeling factors have been scrutinized to improve the
performance of the prediction model. A thorough exploratory
data analysis has been applied to help understand the process
multivariate trajectory delivered by in-line diffuse-reflectance
NIR spectroscopy better. In this study, we focus on efficiently
using of the whole spectral information, including both
absorption and scatter-related effects of water, to improve the
performance of in-line moisture monitoring.

MATERIALS AND METHODS

Twenty-five pilot-scale fluidized bed drying batches of a
pharmaceutical powder mixture were studied by using a 256-
pixel diode-array TIDAS 1121 SSG NIR spectrophotometer with
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a wavelength range of 1091.8–2106.5 nm (J&M Analytik AG,
Germany) that was equipped with the Lighthouse ProbeTM

(LHP) from GEA Pharma Systems nv – Collette, Belgium
(Engler et al., 2009) immersed into the process medium. The
LHP was periodically cleaned and recalibrated without process
interruption (see section S1.4 of Supplementary Material). The
total number of cleaning cycles in all batches was 19.

The data of each batch included from 396 to 1,213 NIR
spectra collected at 5-s intervals (16,303 spectra in total).
In the course of the process, 301 samples of about 5 g
(between 5 and 26 samples from each batch) were isolated
and analyzed for moisture content as weight loss on drying
using a HR73 halogen moisture analyzer (Mettler Toledo GmbH,
Switzerland). Reproducibility checks for three LOD analyzers
performed during the whole study showed that the measurement
standard deviation error does not exceed 0.06% (section S1.2 of
Supplementary Material).

The main process and the sample information are
summarized in Table S-1. Out of the 301 samples, three
were rejected from further analysis as evident outliers (section
S2.3.1 of Supplementary Material).

Individual batch conditions were set in accordance with
a developed experimental design to cover the whole range
of practical process variability. Moisture content in the
selected samples varied between 2.38 and 25.92%. The active
pharmaceutical ingredient (API) was present in four assay
levels: 0 (placebo), 0.1, 1.0, and 10.0mg. The range of process
temperatures was 30.5–49.7◦C. Eight batches (88 reference
samples) formed a validation subset that was representative
of the process conditions and used for model validation; the
other 17 batches were used as the calibration set in that case
(Table S-1).

A subset of 101 experimental samples were additionally
analyzed off-line by using an MPA Fourier-transform (FT-)
IR spectrometer (Bruker, Germany) with an integrating sphere
(section S1.5 of Supplementary Material).

Principal component analysis (PCA) and PLS regression
are multivariate data analysis algorithms described in the
literature (Sjöström et al., 1983; Wold et al., 1987). The
multivariate spaces, namely, PCA model principal components
(PCs) and PLS latent variables (LVs) represented by their
score (t) and loading (p) vectors, were used for exploratory
data analysis. Conventional data preprocessing methods
employed were MSC, SNV, and first-derivative using the
Savitzky–Golay smoothing filter, as described by Rinnan et al.
(2009).

Three validation techniques were applied with each
regression model: leave-one(-sample)-out (LOO), a.k.a.
full cross-validation (CV), leave-a-batch-out (LBO) CV,
and validation by a preselected set (Table S-1). The
performance of the models was characterized by root-
mean-square errors (RMSE) of calibration, validation, and
prediction, as well as corresponding determination coefficients
R2.

A detailed description of data acquisition and analysis is given
in section S1 of Supplementary Material.

RESULTS AND DISCUSSION

Exploratory Analysis of In-line Spectral
Data
Figure 1 presents a set of 1,213 in-line NIR spectra obtained
in batch B03 (Table S-1). An expected intensity reduction of
the main water band in the 1,920–1,940 nm range during the
process is clearly observed. Another distinct feature is the high
variability of spectral intensities over the whole wavelength range
(the so-called “scatter effect”), caused by strong instant density
fluctuations of the granulate (and its spatial distribution) around
the probe.

At the same time, the overall spectral intensity tends to fall
gradually during the process, generally following the dynamics
of water reduction. This trend can be illustrated by the
time dependencies of the spectral intensity at two separate
wavelengths: 1932.0 nm at the maximum of the main water band
and 1708.1 nm where no noticeable water absorption is expected.
Both intensities strongly correlate with the reference moisture
content (Figure 2A). Data smoothing along the time scale makes
this correlation even more distinct.

The moisture- and time-dependent changes in the batch
processes can be effectively visualized by using data animation
(section S2.1 and Video S-1, Supplementary Material).
Animated spectral data reveal the same trends, namely
water band reduction and stochastic background variation
accompanied by a gradual fall of the spectrum intensity in the
whole range.

In this situation, preprocessing is desirable, but it should be
applied to the data variable vectors, i.e., along the time scale, as
shown in Figure 2A. As the turbulence effect is supposed to be
pure noise, the smoothing of variables is a straightforward way to
eliminate it with a minimal loss of the informative variance.
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FIGURE 1 | In-line NIR spectra in batch B03.
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FIGURE 2 | Exploratory analysis of B03 data: (A) raw (gray line) and smoothed (red line) spectral intensities at the two selected wavelengths and reference moisture

content (crosses) vs. process time; and (B) correlation coefficients between the moisture content and spectral intensities at individual wavelengths for raw (gray circles)

and smoothed (red squares) data; vertical lines at 1,708 and 1,932 nm correspond to the dependencies presented in (A); data were smoothed with a 47-point window.

One of the simplest smoothing techniques, the moving
window averaging algorithm, has been used to preprocess the
matrix of spectral data X. In this method, each element xij in
X, where i and j are respectively the object (spectrum) and
variable (wavelength) indices, is replaced by a corrected value xsij
calculated as a mean of the surrounding points within a window
having the width defined by an odd number k (Equation 1):

xsij =

∑i=i+(k−1)/2
i=i−(k−1)/2

xij

k
(1)

The transformation is performed for each variable in X. (k – 1)/2
end-points on each side of the variable vector were smoothed
with a reduced window of (l – 1) . 2 + 1 points, where l is the
point ordinal number from either spectrum end.

Data averaging within a selected time window is similar
to a respective enhancement of the spectrum acquisition time,
thus enlarging the virtual sample size captured by a single
measurement. However, in contrast to the measurement time
adjustment, the mathematical averaging does not place any limit
on the time step of data acquisition, i.e., it can be performed with
a time window that is much wider than the physical step size.
A positive effect of the variable smoothing for the modeling of
a fermentation process data has been reported (Skibsted et al.,
2001).

Pair-wise correlations between the LOD values and the
intensities at individual variables in the corresponding (closest
to the sampling times) in-line spectra were analyzed in the
whole wavelength range. Figure 2B presents linear correlation
coefficients (r) as a function of wavelength in B03. All spectral
variables exhibit a strong intensity correlation with the moisture
content, even in the raw data. Eliminating the process noise
using the suggested averaging method (Equation 1) results
in a dramatic enhancement of r. It also looks natural that
correlation maxima are observed around major water bands.
However, even beyond the water absorbance regions, this

correlation is very high. Thus, the lowest r observed in B03 at
the short-wave end of the spectral region is still greater than
0.8 (Figure 2B); after the smoothing, this value increases to
0.98. Similar dependencies were observed for all the 25 studied
batches.

A high correlation of lg(1/R) with the moisture content
in the whole studied NIR range is in agreement with some
published observations. This phenomenon can be explained by
altering the refractive properties of the granulate (Rantanen
et al., 2000). Indeed, in the course of drying, the liquid
bridges holding the primary particles together (Burggraeve
et al., 2013) are replaced by air. The crystal–air interface is
characterized by a higher difference of refractive indices than
the crystal–water pair. Thus, drying leads to a higher scatter—
and hence an increased quantity of diffusely reflected light
reaching the detector—that corresponds to a decrease in the
spectral intensity expressed in absorbance type of units. For
relatively large particles constituting the granules, this effect
should be wavelength-independent. An intuitive illustration of
the particle wetting effect and its uncomplicated explanation
using the representative layer theory was given by Dahm (2013).
A similar correlation of the Raman spectral background with
the moisture content was observed in our earlier studies on
pellet coating (Bogomolov et al., 2010) and granulation process
monitoring (Bogomolov, 2011), and was also explained by the
effect of moisture on the light propagation conditions in the
process medium. Considering the strength of the spectrum
variable correlation with the moisture content observed in
the whole range of process conditions studied, an earlier
explanation of the phenomenon in terms of changing particle
size distribution during the drying course (Frake et al., 1997;
Burggraeve et al., 2012) has not been confirmed. This hypothesis
does not agree with the complex shape of the correlation curve
in Figure 2B. Particle size distribution can be a minor water-
correlated factor affecting the spectra of the drying process,
though.
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The effect of humidity on the light penetration depth in
porous materials can be compared to the watermark technique
commonly used for banknote authentication. The very name of
watermarks comes from the visual similarity of paper thickness
variation and its wetting effects, both resulting in a decrease
in the back-scattered light. Darkening of wetted powders (e.g.,
sand) is another manifestation of the same phenomenon that is
not limited to the visible light and should be inherent in any
material with a highly developed surface. The spectral variance
related to the changing refractive properties of the powder
is also expected to be present in the in-line process spectra.
However, being wavelength-independent, the moisture-related
spectral changes are masked by the stochastic “scatter effect” and
then eliminated by any scatter correction. Earlier studies on in-
line moisture analysis by using NIR spectroscopy neither paid
any significant attention to the analytical information hidden in
the “watermarks” nor attempted to use it in the modeling.

A deeper insight into the data structure and its modification
by adopting different preprocessing methods was obtained
by the PCA of augmented process data (section S2.2 of
Supplementary Material) that makes possible the investigation
of process trajectories of individual batches in the same
multivariate factor space.

As one can see from the scores of batch B10 taken as an
example here (Figure 3 and Figure S-3), the first PC (95.49%
of X-variance) of the raw-data model (Figure 3A) is strongly
associated with the moisture content, while PC2 (4.23%) basically
describes the process turbulence. A remarkable similarity of the
first two loadings (Figure S-4a) with the correlation coefficient r
= 0.998 is a confirmation of a close spectral affinity of these two
phenomena. A scatter-driven correlation of spectral intensities
with the moisture content is confirmed by the uniformly positive
p1. A simultaneous presence of the water absorption peaks in this
plot implies that PC1 tends to capture the whole variance due to
the moisture reduction, related to both absorbance and scatter
phenomena.

Although the process noise is basically described by PC2,
it strongly pollutes PC1 and all further components in the
raw-data model. The suggested smoothing method effectively
eliminates this noise from the model scores (Figures 3B,C and
Figures S-3b,c) without any essential change to the loadings
(Figures S-4b,c). In contrast, the SNV, MSC, and first derivative
(Figures S-4d-f)) strongly modify the whole factor space; they
essentially remove random fluctuations from the first two
score vectors (less noisy for the first derivative) but further
PCs stay very noisy (Figures 3D–F). The smoothed data is
suitable for exploring the process trajectories in the PCA
factor space. Most of the minor features revealed in the
refined scores t2-t7 (Figures 3B–F) can be assigned to certain
process events, i.e., to changing process phases or LHP cleaning
cycles. The PCA score plots for all batches can be found in
Figure S-3.

X-variances captured by individual PCs (Table S-3 in
section S2.2.2 of Supplementary Material) indicate at least six
significant factors for all preprocessing methods, while the
PC8–PC10 are definitely negligible. The PC7 seems to be a
boundary case, and its significance should be proved by using
other criteria. Considering spectrum-like loadings (Figure S-4)

and process-reflecting scores, in particular in the time-wise
averaged data (Figure 3C), seven PCs are likely to be relevant.
Additional considerations helping to deduce a number of PCs
in the augmented process data are considered in section S2.2 of
Supplementary Material.

In general, the low variances captured by minor principal
components PC2-PC7 (Table S-3) illustrate a much higher
sensitivity of NIR spectroscopy to water than to other chemical
or physical variability sources in the drying process medium.
Nevertheless, a thorough study of the complete PCA model
resulted in some practically important observations. Thus, LHP
fouling and cleaning during the process has a minor effect on the
observed in-line spectra, in particular, at the final process stage
(section S2.2.1 of Supplementary Material).

An exploratory data analysis performed has revealed an
essential correlation of all spectral variables with the moisture
content. The PCA analysis of the united dataset (16,303 spectra)
has shown that this effect is overlaid with a variation on
the stochastic spectrum intensity caused by the process noise.
Since both scatter-driven effects have similar spectral signatures,
the application of conventional normalization or derivative
preprocessingmethods of scatter correction incidentally removes
useful information contained in the spectrum background.
Instead, it was suggested to perform the smoothing of spectral
variables along the time domain, e.g., using a moving window
average.

Building an Accurate PLS Regression
Model of Moisture Content
For efficiently using the additional moisture-related information
contained in the spectral variables, the dependence of model
accuracy on averaging window width (WW= k points) has been
studied. PLS models for all possible odd k values between 3 and
101 in different moisture ranges were compared (section S2.3.2 in
Supplementary Material). Since the in-line smoothing of time
dependencies results in a delay of 2k – 1 trajectory points (half
WW) between the process and analysis times (Bogomolov, 2011),
light smoothing is technically preferred. WW = 15 was found to
be optimal in all cases as it provided an essential improvement
of the model accuracy with a reasonable delay of 35 s. The full
WW of 70 s approximately corresponds to a material circulation
period in this process and dryer type. Thus, each portion of the
granulate has a good chance of being exposed to spectroscopic
measurement during this time. Due to the averaging, a virtual
sample size captured by spectroscopic measurement, and hence
the level of scrutiny of analysis, is extended. From this point
of view, an optimal WW should correspond to an averaged
spectrum that is representative of the bulk material volume, while
remaining a nearly instant measurement compared to the total
process time. This principle can be suggested as a rule of thumb
for optimal data averaging in the drying process analysis and
similar applications. A 47-point averaging was found to be a
“global” optimum in our case; stronger smoothing does not lead
to any significant gain. Based on these observations, 15- and
47-point smoothing windows have been chosen as benchmarks
for model comparison (the respective preprocessing methods
are designated as S15 and S47). Table 1 presents a summary
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FIGURE 3 | PCA scores (vertical axis, arbitrary units) vs. process time (horizontal axis, process time from 1,130 to 4,331 s, with the tick at 2,000 s) for batch B10. The

plots in a line present individual scores t1-t7 (left to right) for different data preprocessing methods: (A) none; (B,C) variable smoothing with 15- and 47-point

windows, respectively; (D) MSC; (E) SNV; and (F) first derivative using the Savitzky–Golay smoothing filter. Process parameters are shown overlaid: moisture content

in reference samples (crosses); drying air temperature (black line), product and exhaust air temperatures (light and dark blue lines, respectively); exhaust air humidity

(violet line); and LHP cleaning start/end points (vertical green lines).

of full-spectrum modeling results for different moisture ranges,
preprocessing techniques, and validation methods.

The data covers a wide range of moisture contents from 2
to 26% (Table S-1). As the prediction error may be nonuniform
depending on the drying stages (Mantanus et al., 2009), several
PLS models were built corresponding to moisture LOD ranges
<20% (D20), <15% (D15), and <10% (D10), in addition to the
full-data (D) models. The abundance of measurement points
makes possible the use of this data reduction without a significant
impact to the model quality. The upper value of moisture content
noticeably reduces the RMSE (e.g., for LBO CV, it falls from
0.21 in D to 0.13 in D10), keeping R2 at the same high level
of 0.997–0.998 (Table 1). A strong error dependence on the
moisture content can be practically employed to improve the

performance of moisture monitoring in general. Thus, prediction
software can switch to a more precise model as soon as a
certain moisture content level is reached, providing an automatic
model “focusing” in the process course. By this way, the most
critical final stage of drying can be monitored with the highest
accuracy.

A number of LVs to be kept in PLSmodels was estimated from
the RMSE of different validationmethods and from the explained
X- and y-variances (Table S-4). Figure 4 compares the LBO CV
RMSE dependencies on the number of LVs for the models in
different moisture ranges (Figure 4A) and data averaging degrees
(Figure 4B). Their common trend is that the validation error
reaches a plateau starting from the seventh LV; faint minima at
higher factor numbers do not seem significant. Note that LBO
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TABLE 1 | PLS regression statistics for in-line moisture content determination: model comparison for different moisture ranges and preprocessing techniques using

different validation methods; all models were built with 7 LVs.

Dataa nSb PPc Calibrationd LOO CVe LBO CVf Validation setg

RMSE R2 RMSE R2 RMSE R2 RMSE R2

D 298 None 0.207 0.9981 0.222 0.9979 0.236 0.9976 0.246 0.9977

S15h 0.181 0.9986 0.194 0.9984 0.209 0.9981 0.198 0.9984

S47i 0.178 0.9986 0.191 0.9984 0.210 0.9981 0.197 0.9984

MSC 0.264 0.9970 0.292 0.9963 0.341 0.9950 0.290 0.9969

SNV 0.312 0.9958 0.342 0.9949 0.395 0.9933 0.334 0.9961

1D2.15j 0.203 0.9982 0.221 0.9979 0.251 0.9973 0.256 0.9977

D20 289 None 0.190 0.9979 0.205 0.9976 0.216 0.9973 0.269 0.9967

S15 0.169 0.9983 0.182 0.9981 0.195 0.9978 0.208 0.9979

S47 0.166 0.9984 0.178 0.9982 0.190 0.9979 0.211 0.9979

D15 268 None 0.152 0.9978 0.161 0.9975 0.170 0.9973 0.146 0.9979

S15 0.146 0.9980 0.155 0.9977 0.163 0.9975 0.137 0.9981

S47 0.139 0.9982 0.147 0.9979 0.155 0.9977 0.129 0.9984

MSC 0.175 0.9971 0.188 0.9967 0.210 0.9958 0.209 0.9963

SNV 0.175 0.9971 0.191 0.9965 0.215 0.9957 0.184 0.9970

1D2.15 0.153 0.9978 0.164 0.9974 0.181 0.9969 0.158 0.9976

D10 213 None 0.116 0.9967 0.124 0.9962 0.141 0.9951 0.129 0.9946

S15 0.109 0.9971 0.116 0.9967 0.132 0.9957 0.122 0.9950

S47 0.109 0.9971 0.116 0.9967 0.137 0.9954 0.121 0.9952

aDataset used: D – full dataset, D20, D15, and D10 – datasets limited to LOD moisture content below 20, 15, and 10%, respectively; bthe number of samples without outliers (see

section S2.3 of Supplementary Information); cpreprocessing applied; dcalibration statistics; efull cross-validation statistics; f leave-a-batch-out cross-validation statistics; gvalidation

set (Table 1) prediction statistics; hvariable averaging with 15-point window; ivariable averaging with 47-point window; jSavitzky–Golay first derivative with second-order polynomial and

15-point smoothing window.

CV is generally themost conservative (i.e., resulting in the highest
errors) validationmethod inTable 1. Data scatter correction does
not result in any model simplification as expected. Figure 4B
shows that the validation RMSE for MSC-preprocessed D15

data is even higher than the RMSEV of the model obtained
after moderate (S15) data smoothing. This effect is observed for
any number of LVs higher than one. Starting from the sixth
LV, the prediction error after MSC becomes even worse than
in the raw-data model. This behavior agrees with the earlier
PCA-based conclusion that conventional scatter correction
refines only the two first factors of the multivariate space,
transferring the process noise into higher yet significant model
dimensions.

The analysis of the captured X- and y-variances (Table S-4)
exhibited similar trends. It was also shown that seemingly
insignificant variances captured by the seventh LV in the
calibration data are still in agreement with the respective
precisions of the NIR spectrometer and the LOD analyzer
(section S2.3.3 of Supplementary Material).

The first two PLS loadings (Figure S-6) are almost identical
to those in the augmented PCA (Figure S-4); therefore,
both multivariate modeling spaces are essentially the same.
Meaningful shapes of the first seven loadings, which are similar
in PCA (Figure S-4) and PLS models (Figure S-6) as well as
PCA scores (Figure 3), provide an additional justification of the
chosen model’s complexity. The noticeable positive offset of p1
in raw and smoothed data models (Figures S-6a-c) indicates

that PLS regression makes use of both absorbance and scatter-
correlated variances for moisture calibration. The loadings p3 to
p7 still exhibit similar (as in PCA) interpretable spectrum-like
features. Therefore, seven LVs were found to be optimal for all
moisture ranges and data preprocessingmethods, consistent with
the earlier PCA result for all spectral data. This number is also
reasonable, considering the physical and chemical complexity of
the process as well as the anticipated nonlinearity of spectral
responses. It is also acceptable from the point of view of
calibration set size.

Table S-4 also confirms the efficiency of variable smoothing.
Cumulative y-variances grow with the averaging WW, reducing
a misbalance between the X- and y-variances for any number
of LVs, in particular, for LV1. Starting from LV3, the y-variance
captured in smoothed data becomes higher than that in the
models preceded by scatter correction (e.g., MSC). In detail, the
problem of deducing the optimal number of LVs is considered in
section S2.3.3 (Supplementary Material).

Validation statistics presented in Table 1 evidences that the
suggested data averaging approach is advantageous as compared
to the MSC, SNV, and first derivative using the Savitzky–Golay
smoothing filter. It is remarkable that any scatter correction
(most essentially, MSC or SNV) leads to higher calibration
and validation errors than those for raw spectral data (This
comparison is provided for D and D15, but it holds for all
datasets). Figure 5 illustrates the model performance achieved in
D15.
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FIGURE 4 | RMSE dependencies (LBO CV) on the number of LVs in PLS models: (A) for nonpreprocessed data in different moisture content ranges: D (squares), D20

(diamonds), D15 (circles), and D10 (triangles); and (B) D15 data with different smoothing degrees: none (solid), S15 (dashed), and S47 (dash-dotted), as well as for

MSC preprocessing (red dotted, filled markers).
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FIGURE 5 | PLS predicted (7 LVs) vs. measured moisture content for D15 with

15-point smoothing; calibration and validation samples are presented by

hollow and red-filled markers, respectively.

A subset of 101 process samples was additionally analyzed
off-line by using a high-resolution FT-NIR spectrometer (section
S2.3.5 of Supplementary Material). The integration sphere
applied in this case excluded any scatter-related stochastic
variation of spectral intensities. Nevertheless, all spectral
variables (including the background signal) exhibited the
same strong correlation with the sample moisture content
(Figures S-9, S-10), as in the case of in-line spectra (Figure 2).
This fact confirms our previously given explanation of this

effect in terms of changing light propagation conditions.
Moreover, the performance of the PLS model built on 96
off-line spectra (samples with LOD > 15% were used) was
found to be essentially the same (cross-validation RMSE =

0.108) as in the model built on respective averaged in-line
spectra (S15) of the same process samples (Table S-6). This
remarkable result provides an additional confirmation of the
efficiency of the suggested method. For more details on the
off-line analysis results, see Supplementary Material, section
S2.3.5.

The time dependencies of the predicted moisture content
in B12 (Figure S-7) illustrate the additional advantages of the
suggested preprocessing technique. Variable smoothing most
efficiently eliminates the noise contained in process trajectories at
the beginning of the drying process, when the moisture content
is greater than 15%. It also helps avoid prediction artifacts related
to probe cleaning during the “wet” process stage. Section S2.3.4
in Supplementary Material provides a detailed discussion of the
predicted drying trajectories.

In numerous publications on in-line diffuse-reflectance NIR
monitoring of fluidized bed drying and similar processes, data
analysis is always prefaced by MSC, SNV, or derivatives without
exception. A mandatory application of corrective preprocessing
may only be justified in preliminary feasibility studies, when the
small calibration/validation dataset does not allow for building
models of adequate complexity. The results reported here could
be used as evidence for the destructiveness of scatter correction
for the moisture calibration, as it eliminates a significant portion
of the useful variance. Similar ideas have been formulated in the
literature (Chen and Thennadil, 2012), where the information
content of MSC coefficients was analyzed. The PLS capability of
employing the quantitative information delivered by the scatter
has earlier been illustrated in other applications, in particular
in particle size analysis (Nieuwmeyer et al., 2007) and the
quantitative determination of fat and protein inmilk (Bogomolov
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et al., 2012). In these cases, the predictive models built on raw
data exhibited a noticeably better performance, as compared to
those in which any scatter-correction was applied. For in-line
process data, the suggested smoothing approach, performed in
a time rather than spectral domain, presents a viable alternative
to the classic scatter correction of spectra, to eliminate noise
while preserving useful information contained in the spectral
variables.

CONCLUSIONS

In light of our presented results, the following recommendations
to practical NIR spectroscopic monitoring of moisture content in
fluidized bed drying and similar process types can be formulated.
A very common practice of a priori scatter correction of in-
line process spectra prior to the multivariate calibration is
generally discouraged, because it may eliminate an essential
part of the water-related variance from the data and thus
deteriorate the resulting prediction model. To avoid this,
quantitative modeling should be prefaced by an exploratory
analysis of the raw data to investigate the relevance of both
absorbance and scatter-related effects of moisture by using a
sufficiently large representative set of designed samples and
process conditions. These considerations are equally valid in
cases when water content is not directly determined, but it
should be taken into account by an accurate multivariate model
as an important process factor. Process noise, i.e., stochastic
background and intensity variations of in-line spectra, can be
efficiently eliminated with a minimal loss of useful information
by means of data smoothing along the time scale. The parameters
of smoothing strengths should be adjusted depending on the
process scale and dynamics. Building accurate quantitative
models should rely on a methodically determined number

of latent variables. A deliberate application of less LVs than
their optimal number following from the model diagnostics—
sometimes done by researchers to guarantee an avoidance of
overfitting—is not always justified. An underfitting may often be
more undesirable for model prediction accuracy.
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Obtaining consistent spectra by using different spectrometers is of critical importance

to the fields that rely heavily on Raman spectroscopy. The quality of both qualitative

and quantitative analysis depends on the stability of specific Raman peak shifts across

instruments. Non-linear drifts in the Raman shifts can, however, introduce additional

complexity in model building, potentially even rendering a model impractical. Fortunately,

various types of shift correction methods can be applied in data preprocessing in

order to address this problem. In this work, a moving window fast Fourier transform

cross-correlation is developed to correct non-linear shifts for synchronization of spectra

obtained from different Raman instruments. The performance of this method is

demonstrated by using a series of Raman spectra of pharmaceuticals as well as

comparing with data obtained by using an existing standard Raman shift scattering

procedure. The results show that after the removal of shift displacements, the spectral

consistency improves significantly, i.e., the spectral correlation coefficient of the two

Raman instruments increased from 0.87 to 0.95. The developed standardization method

has, to a certain extent, reduced instrumental systematic errors caused bymeasurement,

while enhancing spectral compatibility and consistency through a simple and flexible

moving window procedure.

Keywords: Raman instruments, shift correction, cross-correlation, fast fourier transform, moving window

INTRODUCTION

Over the last few decades, the use of Raman spectroscopy in combination with chemometric
methods has increased significantly for analysis of pharmaceutical products (Sacré et al., 2010;
Dégardin et al., 2011; Loethen et al., 2015), detection of food adulteration (Zou et al., 2009;
Cheng et al., 2010), and other applications (Mrozek et al., 2004; Taleb et al., 2006; Muehlethaler
et al., 2011). Raman spectroscopy is a powerful tool for sample analysis and benefits from several
advantages such as high speed, simplicity, non-destructive nature, and cost-effectiveness. To date,
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it has been extensively applied in pharmaceutical analysis by
constructing multivariate calibration models. However, these
models will be invalid if an existing calibration model is applied
to spectra that are collected on a different occasion or a
separate instrument, or when the response of an old instrument
suffers from variations (Du et al., 2011; Brown, 2013). These
variationsmay, if left untreated, dominate the calibrationmodels,
thereby making analysis of samples impractical. Consequently,
chemometric techniques have been used to circumvent these
problems through instrumental transfer or standardization
so as to isolate and compensate for any instrumental and
environmental variations.

A number of methods, including both instrumental transfer
and standardization, have been discussed in the literature (Wang
et al., 1991, 1992; De Noord, 1994; Mann and Vickers, 1999;
Nguyen Quang et al., 1999; Hutsebaut et al., 2005; Kompany-
Zareh and van den Berg, 2010; Rodriguez et al., 2011b;Weatherall
et al., 2013). The direct standardization (DS) and piecewise
direct standardization (PDS) developed by Wang et al. (1991,
1992) are the most extensively used procedures for spectral
response standardization. Using the PDS method, Gryniewicz-
Ruzicka (Gryniewicz-Ruzicka et al., 2011) obtained a very
low detection limit for diethylene glycol in pharmaceutical-
grade glycerin by using five portable Raman spectrometers.
This method, however, requires the user to measure several
standards prior to analyzing samples. In addition, both the use
of the moving window strategy and the selection of principal
components have a noticeable impact on the performance of
PDS, which needs to be determined carefully. Furthermore,
neither the DS nor the PDS method can deal with different
(i.e., non-linear) shifts in the peaks in Raman spectra. It is
worth mentioning that in contrast to the various instrumental
spectral responses, Raman shift inconsistencies arise mainly
from different charge-coupled device (CCD) detectors (Vickers
and Mann, 1999). Nonetheless, the use of inconsistent spectra
will diminish significantly the predictive power of a calibration
model. As a result, the removal of Raman shifts or wavelength
inconsistencies for spectra synchronization has become a
particularly significant aspect of Raman spectroscopy analysis.
In 1996, a mathematical procedure to correct wavelength
drifts to synchronize Raman spectra was presented by Booksh
et al. (1996). Typically, empirical data are required to select
a number of principal components and channels to increase
the synchronization precision. Westad and Martens (1999)
developed a more general concept of shift determination and
tested it on Raman spectra. The results revealed, however, that
the spectra were not reproduced exactly after removal of peak
drifts exceeding a discrete spectral resolution. Hutsebaut et al.
(2005) used a Raman shift standard scattering (SSS for short)
method in combination with a linear fitting to determine shift
drifts between measured Raman peak and reference positions. A
similar approach was used by Rodriguez et al. (2011b) to transfer
Raman spectral libraries among instruments. Nevertheless, the
use of Raman shift standards is inappropriate for in-line
monitoring applications as a result of the difficulties associated
with incorporating one or more of the materials proposed as
shift standards in a system for in-line measurements. Recently,

another approach for the removal of disturbing factors in
the CCD responses and instrumental apparatus functions was
proposed by Weatherall et al. (2013). Unfortunately, the use of
baselineWavelet continuous wavelet transform as a function to
identify major peaks’ positions accurately requires idealized line
profiles of the corresponding peaks, which is not practical for real
Raman spectra. In addition, several parameters that influence the
final results, such as the width of the window and the choice of
the signal-to-noise threshold, need to be specified, mostly by the
users.

As a result of the multifarious theoretical and practical
limitations of the existing instrument standardization methods
(Chen et al., 2015), there is a significant demand for methods that
are easier to implement (i.e., fewer or even no tunable parameters
required) in order to acquire better analytical performance.
Accordingly, we introduced a cross-correlation method in order
to address the problems (such as tunable parameters, need
idealized line profiles, etc.) discussed above. Generally, in signal
processing, cross-correlation is a measure of similarity of two
waveforms as a function of a time-lag applied to one of them, and
is also known as a sliding dot product or sliding inner-product
(Welch, 1974; Goshtasby et al., 1984). When coupled with fast
Fourier transform (FFT) algorithms, the efficiency of FFT can
be exploited in the numerical computation of cross-correlations,
accelerating thus the convolution calculation (Bracewell, 1980).
FFT cross-correlation may therefore be the fastest method in
signal processing for shift correction (Bergland, 1969), and
benefits from many advantages such as high speed and accuracy.
Moreover, it also eliminates the requirement for alignment
parameters. Previously, two alignment methods were proposed
to estimate the shifts between segments in large chromatographic
and spectral datasets, namely, peak alignment by FFT (Wong
et al., 2005b) and recursive alignment by FFT (Wong et al.,
2005a). However, these twomethods move segments by insertion
and deletion of data points at the start and end of segments,
without considering peak information, which may cause changes
in the shapes of peaks by introducing artifacts and removing peak
points. Zhan et al. (Zhang et al., 2012) developed anothermethod,
known as the multi-scale peak alignment (MSPA) method, to
synchronize peaks against a reference chromatogram (aligning
peaks from large to small scales), which is accelerated by the
application of FFT cross-correlation while preserving peak shape
during synchronization. Similarly, Li et al. (2013a) developed
a moving window FFT cross-correlation (MWFFT) method
to effectively synchronize high-throughput chromatograms
without segment size optimization. However, the Raman spectra
profiles were different from the chromatograms, which required
peak fitting to obtain perfect profiles and a precise Raman
shift.

In the present work, the MWFFT was improved and
subsequently applied to spectral standardization to address the
issues associated with spectral drifts in Raman spectrometers.
The performance of this method was compared to that
of the SSS method (Hutsebaut et al., 2005) by using two
Raman datasets from primary and secondary spectrometers.
The aim of our study was to make the MWFFT as a
powerful and practical method for standardization across
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Raman spectrometers, which can be easily implemented and
well-suited for solving Raman shifts displacements between
spectrometers.

MATERIALS AND METHODS

Standards and Samples
Standards (acetaminophen and cyclohexane) were provided by
the National Institute for the Control of Pharmaceutical and
Biological Products. Pharmaceutical tablets (listed in Table 1)
from five different manufacturers were provided by the Shanghai
Institute for Food and Drug Control.

Raman Spectrometers
Two Raman instruments with an excitation wavelength of
785 nm were used, and their physical parameters are listed in
Table 2. In this work, the i-Raman is regarded as the “master”
(primary) instrument, while the GemRam is regarded as the
“slave” (secondary) instrument.

The integration times of the standards and drugs were of 2
and 3 s, respectively. Unless stated otherwise, six Raman spectra
were collected for each drug during the experiment. It is worth
noting that the final spectrum of each drug was calculated as
the average of spectra collected from a variety of positions.
Moreover, only the spectral region containing the most abundant
information (i.e., 300–1,700 cm−1) was used in subsequent data
analysis.

Cross-Correlation
In signal processing, cross-correlation is a standard technique
to calculate the similarity between and estimate the linear shift
of two signals as a function of one relative to the other, which
is also known as the sliding dot product. It is obvious that
any changes involving the shifting of one signal will affect the
correlation coefficient calculated for any combination of two
signals that includes this shifted signal. For two discrete signals
such as those in the Raman spectra, the cross-correlation is
defined as:

c(j) =

∑

i

(

r(i)− r̄
) (

s(i+ j)− s̄
)

/

√

∑

i

(

r(i)− r̄
)2

√

∑

i

(

s(i+ j)− s̄
)2

(1)

where r is the reference signal, s is the signal to be synchronized,
c is the cross-correlation values for all lags. As a simple example,
consider two simulated Raman spectra r and s that differ only
by a known displacement of 90 points along the x-axis. We can
determine by how much s be shifted along the x-axis in order
to maximize its similarity to r by using cross-correlation. The
above formula slides s along the x-axis, calculating the sum of
their product at each position. When the value of c is maximized,
i.e., the signals match well due to peak synchronization, they
make the most significant contribution to the sum of their
product. A visual description of the calculation procedure of
cross-correlation and estimation of shifts between signals via
cross-correlation is shown in Figure 1.

TABLE 1 | Correlation coefficients of drug tablets before and after shift correction.

Drugs Batches i-Raman & GemRam

ru Rs R m

Acyclovir tablets 20100301 0.9424 0.9893 0.9905

20120102 0.9430 0.9888 0.9906

130302 0.9186 0.9567 0.9570

20111201 0.9172 0.9593 0.9605

20101102 0.9027 0.9585 0.9619

20110501 0.9358 0.9903 0.9932

20101103 0.9356 0.9906 0.9938

20100901 0.9422 0.9923 0.9944

20110401 0.9377 0.9914 0.9942

20120101 0.9398 0.9914 0.9937

100301R 0.9435 0.9924 0.9944

090601P 0.9365 0.9899 0.9927

110101 0.9479 0.9932 0.9945

100101P 0.9477 0.9915 0.9923

091101P 0.9489 0.9900 0.9904

Captopril tablets 20101009 0.8964 0.9597 0.9644

090406 0.9178 0.9672 0.9681

63120501 0.8776 0.9642 0.9692

110804 0.8919 0.9604 0.9644

63120401 0.8769 0.9592 0.9620

110202 0.9131 0.9666 0.9680

63111001 0.9078 0.9770 0.9796

110805 0.9196 0.9725 0.9747

090404 0.9093 0.9658 0.9684

121003 0.8918 0.9668 0.9720

63120301 0.8843 0.9621 0.9642

110901 0.9096 0.9489 0.9509

090307 0.8923 0.9535 0.9558

20101006 0.8970 0.9663 0.9714

63110702 0.8704 0.9490 0.9522

110801 0.9062 0.9789 0.9804

20110515 0.8954 0.9669 0.9679

20101005 0.9060 0.9517 0.9518

110506 0.9213 0.9546 0.9560

110702 0.9311 0.9701 0.9717

110903 0.9271 0.9573 0.9582

110804 0.9181 0.9543 0.9564

110604 0.9274 0.9649 0.9651

110803 0.9084 0.9506 0.9512

20101004 0.9254 0.9503 0.9503

uCorrelation coefficient before shift correction; sCorrelation coefficient by SSS;
mCorrelation coefficient by MWFFT.

Moving Window FFT Cross-Correlation
The FFT is typically used to calculate the cross-correlation
between 1D and 2D signals (Papoulis, 1962; Cooley et al.,
1969; Dutt and Rokhlin, 1993). In the present work, FFT
was used to increase the speed of cross-correlation between
two datasets, in which one signal may be shifted relative
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TABLE 2 | Physical parameters for the two Raman spectrometers used in this work.

Spectrometer Manufacturer Laser power

(mw)

Spectral range

(cm−1)

System resolution

(cm−1)

CCD pixel

number

i-Raman B&W Tek Inc 100 175–2700 3 2048

GemRam B&W Tek Inc 100 175–2700 3.5 2048

FIGURE 1 | Estimation of displacements between simulated Raman spectra

by cross-correlation.

to another. In addition, and perhaps more significantly for
its application to the spectral synchronization problem,
FFT cross-correlation is not heuristic and thus can
identify consistently the best match between signals by
finding the maximum correlation coefficient (Wong et al.,
2005b).

Usually, the cross-correlation method can only estimate
linear shifts between Raman spectra. However, Raman
shift displacements are often non-linear in real samples.
Consequently, we adopted the moving window procedure
in this work to address this problem. In this procedure, the
shifts relative to the reference can be estimated by FFT cross-
correlation, allowing us to obtain the shift profiles of all samples.
Furthermore, MWFFT can be implemented and optimized
simply and effectively only if a moving window of appropriate
size is utilized. With a window moving from the beginning to the
end of the two spectra, one can obtain a matrix of shift points.
Accordingly, the shift profile can be obtained by calculating the
mode value of each column of the shift matrix. Figure 2A shows
an example Raman shift profile estimated by using the moving
window strategy and FFT cross-correlation. It is apparent from
the obtained shift profile that non-linear shifts exist across the
entire spectral region, while the change points are observed in
two regions with different shifts. By moving the continuous
region around the change points, the synchronization procedure
can be finished smoothly to obtain the synchronized spectrum,
which can be seen in Figure 2B, with all the non-linear shifts
successfully synchronized.

RESULTS

There are two common ways of correcting the x-axis in Raman
spectrometers (McCreery, 2005). The first one is to simply use
the SSS method (Hutsebaut et al., 2005); the second one is
based on absolute frequency calibration using the emission line
spectra of gases. The SSS method, which requires the acquisition
of Raman spectra of common materials with well-established
Raman shift peak frequencies in order to correct the Raman
shift axis directly, is used as a comparative method in this work.
Several well-known Raman shift chemical standards, namely,
cyclohexane and acetaminophen, are chosen over others for
this study since their spectral combination can provide more
signals in the region from 300 to 1,700 cm−1 (see Table 3).
The left panel in Figure 3 shows the spectra acquired for the
used chemical standards on two instruments, while the right
panel shows a plot of their differences. It should be noted that
when the SSS method was used, the spectra acquired on the
primary instrument were regarded as the reference, i.e., the peak
positions in these spectra were used for synchronization. The
relevant peak positions obtained on the secondary instrument
are compared to those obtained on the primary instrument and
are subsequently subtracted from the primary peak positions to
afford the corresponding shift displacements. Linear fitting is
then used to describe the shift displacements between the two
instruments. Finally, the shift correction is carried out by linear
interpolation.

Synchronization of Pharmaceutical
Datasets
Data synchronization of the raw Raman spectra are presented
to evaluate the performance of the MWFFT method (Figure 2).
In order to gain further insight into the two shift correction
algorithms, and the properties and advantages of MWFFT
in particular, different batches of pharmaceutical tablets were
examined to verify the practicability and effectiveness of
MWFFT. Figure 4 describes the application of MWFFT—each
tablet from a total of 40 drugs was analyzed on average six times
on two instruments to obtain six different spectra. Subsequently,
these spectra were detected for outlier. The average spectrum
obtained from six spectra acquired on the primary instrument
can be regarded as a reference without outliers. Analogously,
we obtained the spectrum of the same tablet on the secondary
instrument, and this represents the spectrum to be synchronized.
Finally, MWFFT was applied to remove the shift displacements
in order to synchronize the spectra across the two instruments.

Prior to data analysis, adaptive iteratively reweighted
penalized least squares (airPLS) (Zhang et al., 2010a,b; Li et al.,
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FIGURE 2 | Application of MWFFT to synchronize Raman spectra: (A) estimation of nonlinear shift profile between two spectra. (B) The continuous regions are moved

around change points to obtain the synchronized spectrum.

2013b) baseline correction and Savitzky–Golay smoothing
(Savitzky and Golay, 1964) (a 9-point wide window and a
second-order polynomial) were used in the preprocessing of
a variety of pharmaceutical datasets. All processing tasks were
implemented on a personal computer (CPU: 2.53G, RAM: 8GB)
with MATLAB R2013a. Firstly, we demonstrate the effect of
MWFFT by using the pharmaceutical datasets (Figure 5). The
primary instrument spectra (black lines) are used as references
for synchronization. Figure 5 shows the magnified versions
of the sample profiles, focusing on a particular set of peaks in
order to allow the performance of the MWFFT method to be
evaluated by visual inspection. For the acyclovir and captopril
datasets, it can be seen that before synchronization (top panel in
Figure 5), the peaks in the spectrum collected on the secondary
instrument are de-synchronized with respect to that obtained
on the primary instrument, and vary from sample to sample.
After synchronization (middle panel in Figure 5) using the
MWFFT method, it is apparent that all the spectra are now
properly synchronized. This outcome is attributed to the action
of the MWFFT method, which appropriately slides the peaks to
match the reference spectrum with a window size of 70 points. In
addition, for the sake of comparison, the results obtained using
the SSS method for the same spectra are displayed in the bottom
panel of Figure 5.

Correlation Coefficient After
Synchronization
The correlation, or distance, between a signal and the
reference point is often used as an optimization objective
function—when the signals match, the correlation coefficient
is maximized. In this case, correlation coefficient can be
used to assess the synchronization problem (Lee Rodgers
and Nicewander, 1988). Generally, the correlation coefficient
is a good descriptor of similarity, with a value of 1.00
indicating a perfect match, while 0 indicates significant

dissimilarity. The correlation coefficient is simple to use and
possesses several desirable properties, which we discussed
in detail in our previous work (Gao et al., 2014). The
correlation coefficient can be calculated by using the following
equations:

r =

∑n
i=1 (X

p
i − x̄p)(Xs

i − x̄s)/

√

∑n
i=1 (X

p
i − x̄p)

2∑n
i=1 (X

s
i − x̄s)

2

(2)

R =

∑n
i=1 (X

p
i − x̄p)(Xsa

i − x̄sa)/

√

∑n
i=1 (X

p
i − x̄p)

2∑n
i=1 (X

sa
i − x̄sa)

2

(3)

Here, Xp and Xs represent the spectra of n drugs measured on
the primary and secondary instruments, respectively. Parameters
xp, xs, and xsa represent the average spectra of Xp, Xs, and
Xsa, respectively. Xsa indicates the secondary shift corrected
spectrum, while r and R denote a similarity between the primary
original spectrum and the secondary spectrum (before or after
shift correction). The correlation coefficient of each drug’s
spectrum was calculated, and the results are summarized in
Table 1. During the preprocessing, linear interpolation was used
to re-compute intensity based on the master Raman shift x-
axis in order to unify the spectra obtained using the primary
and secondary instruments. It is apparent from Table 1 that the
correlation coefficients between the two instruments improved
significantly after shift correction.

As can be seen in Table 1, the correlation coefficient
assessment prior to the shift correction exhibited a slight
variation among different batches of a drug. Nevertheless,
these variations are within the three-sigma range. Portable
spectrometers are often based on the use of library-based
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spectral correlation methods (Carron and Cox, 2010), which
frequently utilize the hit-quality index (HQI) as the figure
of merit to characterize the correlation with each other. The

TABLE 3 | Raman shifts (cm−1) used to calibrate standard samples.

Standard Raman shift (± standard deviation)a

4-ACETAMIDOPHENOL

329.2 ± 0.5 1168.5 ± 0.6

390.9 ± 0.8 1236.8 ± 0.5

465.1 ± 0.3 1278.5 ± 0.5

504.0 ± 0.6 1323.9 ± 0.5

651.6 ± 0.5 1371.5 ± 0.1

710.8 ± 0.7 1515.1 ± 0.7

797.2 ± 0.5 1561.5 ± 0.5

834.5 ± 0.5 1648.4 ± 0.5

857.9 ± 0.5 1278.5 ± 0.5

968.7 ± 0.6 1168.5 ± 0.6

1105.5 ± 0.3 1236.8 ± 0.5

CYCLOHEXANE

384.1 ± 0.8 1157.6 ± 0.9

426.3 ± 0.4 1266.4 ± 0.6

801.3 ± 0.96 1444.4 ± 0.3

1028.3 ± 0.5 384.1 ± 0.8

aValues as reported by ASTM E1840-96.

typical minimum threshold that classifies an unknown sample
as a “Pass” is 0.95 (Rodriguez et al., 2011a, 2013), which
is similar to the correlation coefficient. Clearly, the MWFFT
method makes a significant contribution to the level of similarity
for the spectra obtained using the slave instrument. The
synchronization increased the similarities for all drugs above
the verification threshold of 0.95, while the similarity for one
captopril tablet remained under 0.95 when the SSS procedure
was used. Consequently, it is obvious that the MWFFT method
can correct the non-linear shifts successfully, synchronizing
thus the secondary spectra to the reference spectra in a time-
effective manner. In addition, MWFFT can reduce the systematic
differences across spectrometers, which can increase the spectral
consistency of different instruments as well as the compatibility
with library search. Furthermore, this method can be used as an
on-line standardizationmethod across Raman instruments in the
future.

DISCUSSION

Selection of Reference Spectrum
A wide application of the MWFFT method necessitates the
selection of an appropriate reference spectrum. When a drug
sample is measured on a secondary instrument to obtain
an average spectrum for synchronization, its corresponding
standard spectrum contained in the existing spectral library can

FIGURE 3 | Spectra of acetaminophen (A) and cyclohexane (C) acquired on two different instruments. Magnified spectral differences in (B,D) correspond to the

shaded areas in (A,C), respectively.
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FIGURE 4 | Flowchart describing the framework of MWFFT.

be certainly used as the reference to correct shift displacements.
However, when the spectral library does not contain the required
reference spectrum, it would be preferable to use the reference
spectra of existing drugs with the same generic name in the
database in order to obtain a new matrix of shift points. As a
result, the shift profile of the new drug can be calculated from
the mode of each column of the matrix. Through this profile,
one can obtain a new reference spectrum by shift correction,
which can be subsequently applied. Otherwise, one can regard
the new sample spectrum directly as a reference, and save it in

the database for subsequent analysis. The entire procedure is
depicted in Figure 6.

Avoiding Peak Detection Using the Moving
Window Strategy
The existing peak detection methods, e.g., the wavelet and
ridge line peak picking method, need idealized line profiles of
the corresponding peaks in order to detect the displacements
accurately, which is not practical for the spectroscopic analysis of
real samples. Moreover, several parameters need to be specified
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FIGURE 5 | Shift correction data for both acyclovir and captopril datasets with MWFFT and SSS: (A–C) acyclovir dataset (A) before synchronization, (B) synchronized

by MWFFT, and (C) synchronized by SSS; (D–F) captopril dataset (D) before synchronization, (E) synchronized by MWFFT, and (F) synchronized by SSS. The black

lines indicate the reference spectra. The inset shows the full Raman spectra, whereas the shaded areas indicate the region magnified in the main panel.

with a priori knowledge, which largely influence the final
results and can be difficult to implement in C programming
language. By contrast, the use of the moving window strategy
can allow an estimation of non-linear shifts between spectra
flexibly and without peak detection for peak synchronization.
With a window that moves from the beginning to the end of
two spectra, one can obtain an N-dimensional matrix of shift
points, where the data points of a Raman spectrum are N. In
this case, the shift profile can be calculated from the mode of
each column of the matrix, while the mean and median of the
matrix can outline the paths of the shifts. The Raman shift
profile of metronidazole tablet is shown in Figure 2A using a
green dotted line. It is apparent that the profiles in all regions
are corrected by the MWFFT method, meaning this method is
sufficiently flexible for estimation of non-linear shifts between
spectra.

Advantages of the MWFFT Method
The MWFFT method has several distinctive advantages
when compared to the traditional methods as a result
of the continuity and redundancy of the moving window
procedure. Usually, the direct evaluation of cross-correlation
requires O (N2) time complexity for a Raman spectrum
of length N, which is time-consuming for spectra with
thousands of data points. Fortunately, cross-correlation can
be calculated by using FFT much more efficiently since
it can significantly decrease the time complexity of cross-
correlation from O (N2) to O (NlogN). The use of the moving
window strategy with FFT cross-correlation, with a window
size w, leads to a time complexity of one window wlogw.
Accordingly, the time complexity of MWFFT is Nwlogw,
where N represents the number of data points in a Raman
spectrum.
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FIGURE 6 | Flowchart of selecting a new drug reference spectrum.

The MWFFT method evaluates the shift of each point. In
the moving window strategy, only one parameter needs to
be taken into account, which makes this procedure simple
and practical, as there is no need for chemical standards. By
contrast, the SSS method requires the use of some chemical
standards in order to locate the position of each peak, which
is used in turn to obtain the corresponding shift displacement.
After the shift of each point is estimated by MWFFT, the
points in the spectrum are shifted according to their shifts
by insertion and deletion. The present work introduced a
change point, i.e., a discontinuity point in the shift profile.
It is possible to see that the change points (Figure 2A),
around which insertions and deletions occur frequently, are
not in the peak region. Consequently, peak distortions can be
effectively avoided, allowing the peak shape to be preserved
during the synchronization procedure with MWFFT. Overall,
the advantages associated with the use of non-linear shift
estimation, insertion and deletion around change points, and
shape preservation make MWFFT a flexible, rapid, practical, and
precise method for correcting shifts in synchronization of Raman
datasets.

Evaluation of the Synchronization Quality
Generally, Raman spectra will become more consistent, exhibit
higher correlation coefficients, and be more similar to each other
after a successful synchronization. The correlation coefficient can
be used as a criterion for assessing the synchronization quality
between the primary and secondary spectra. The synchronized
spectra are commonly used to perform library-based searches
and are further analyzed by chemometric algorithms. Usually,
distance and Euclidean distance in particular (Juday, 1993),

TABLE 4 | Mean Euclidean distances of the used drug datasets shift corrected by

SSS and MWFFT.

Datasets Shift correction methods

Uncorrected SSS MWFFT

Dmean
ac 1.9222 1.1637 1.1488

Dmean
ca 2.5565 1.8900 1.8798

acMean Euclidean distances of acyclovir datasets; caMean Euclidean distances of

captopril datasets.

can also be a good criterion for evaluating the quality of
synchronization. Generally, the more similar the spectra are, the
smaller is the Euclidean distance between them, and vice versa.
In this work, the mean Euclidean distance (Dmean) is calculated
as follows:

Dmean = 1/n

n
∑

i=1

√

√

√

√

√

k
∑

j=1

(X
p
i,j − Xs

i,j)
2

(4)

where the rows of matrix X correspond to observations
(n), while the columns correspond to variables (k). X

p
i and

Xs
i are the ith primary (reference) spectrum and secondary

spectrum, respectively. It is worth mentioning at this stage
that the normalization algorithm (Heraud et al., 2006) is
used to scale the spectra within a similar range before
calculating the distances. The results are summarized in Table 4.
It is apparent that the mean Euclidean distance of the
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pharmaceutical datasets shift-corrected by SSS and MWFFT
were considerably reduced when compared to the uncorrected
ones. In addition, for the two datasets, MWFFT performed
slightly better than the SSS method in terms of non-linear shift
correction.

CONCLUSIONS

Methods for the synchronization of spectra are indispensable
for successful applications using different spectrometers. In
the present work, we used the moving window strategy
in combination with FFT cross-correlation to synchronize
Raman spectra. This technique, abbreviated as MWFFT, was
shown to eliminate accurately and effectively non-linear shift
displacements between Raman spectra. Owing to the continuity
of the moving window technique, non-linear shifts are corrected
and shift profiles are obtained for each spectrum. In general,
the use of the FFT cross-correlation methodology is time-
saving and results in a significant improvement in speed.
Moreover, this method can reduce or even remove systematic
differences between Raman spectrometers (a dramatic increase
in similarity from 0.87 to 0.95 after synchronization of the spectra
between master (primary) and slave (secondary) spectrometers),
as well as the compatibility with Raman spectral library.
It is better than the SSS method in terms of correcting
non-linear shifts and does not require the use of Raman shift
standards. These advantages make MWFFT a promising shift
correction method that addresses the demand for automated,
flexible, rapid, and reliable data preprocessing, which plays an
important role in Raman spectroscopy analysis using different
spectrometers. Finally, MWFFT can be easily implemented

with C and C++ programming languages (available as open
source package at http://code.google.com/p/mwfft), which may
be well-suited to solving the Raman shift displacements between
spectrometers in the fields that rely heavily on the use of Raman
spectrometers.
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In research and development laboratories, chemical or pharmaceutical analysis has
been carried out by evaluating sample signals obtained from instruments. However,
the qualitative and quantitative determination based on raw signals may not be always
possible due to sample complexity. In such cases, there is a need for powerful signal
processing methodologies that can effectively process raw signals to get correct results.
Wavelet transform is one of the most indispensable and popular signal processing
methods currently used for noise removal, background correction, differentiation, data
smoothing and filtering, data compression and separation of overlapping signals etc.
This review article describes the theoretical aspects of wavelet transform (i.e., discrete,
continuous and fractional) and its characteristic applications in UV spectroscopic analysis
of pharmaceuticals.

Keywords: discrete wavelet transform, continuous wavelet transform, fractional wavelet transform, UV

spectroscopy, pharmaceutical analysis

INTRODUCTION

In experimental studies, instruments or devices can provide signals (or graphs) in different
formats e.g., spectrum, chromatogram, voltammogram, and electroferogram etc. The analysis of
chemicals and pharmaceuticals in various samples is based upon the utilization of the measured
signals of substances of interest. In practice, such an analysis for a multicomponent mixture
may not be determined without a prior separation step due to spectral overlapping. Therefore,
high performance liquid chromatography (HPLC) is one of the most commonly used techniques
for quantitative estimation in the quality control of raw materials and commercial products in
laboratories. In some cases, chromatographic determination could not be possible due to not only
similar physicochemical behavior of analytes but also time- and solvent-consumption for optimal
experimental conditions.

In practice, UV spectroscopic methods are widely used in chemical and pharmaceutical
analysis. As compared to chromatographic ones, the use of spectroscopic methods provides a
rapid analysis with low-cost and acceptable results. However, multicomponent analysis may not
be possible with a traditional UV spectrophotometric approach due to spectral interferences of
both active and inactive ingredients in samples. In some cases, derivative spectrophotometry
(O’Haver and Green, 1976; O’Haver, 1979; Levillain and Fompeydie, 1986; Ragno et al., 2006)
and its improved versions e.g., ratio spectra-derivative spectrophotometry (Salinas et al., 1990),
ratio spectra-derivative spectrophotometry-zero crossing (Berzas Nevado et al., 1992; Dinç and
Onur, 1998; Dinç, 1999), and double-divisior-ratio spectra-derivative spectrophotometry (Dinç
and Onur, 1998; Dinç, 1999; Gohel et al., 2014; Shokry et al., 2014) could be used in place of

150
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conventional UV spectrophotometric method for analysis of
binary and ternary mixtures without using a separation step.
However, these spectral approaches may not always yield
successful data due to severely overlapping spectral bands,
spectral noise and baseline variation. Additionally, high-order
differentiation of spectra may lead to spectral deterioration i.e., a
decrease in signal intensity and signal-to-noise ratio. As a result,
a number of mathematical manipulations (or signal processing
methods) are often required to make instrumental signals more
meaningful for analysis purpose.

Generally speaking, transform (i.e., Fourier, Hilbert, short-
time Fourier, Wigner distribution, Radon, and wavelet) is a
very suitable technique in the pre-treatment step to simplify
signals. Fourier transform (FT) is the first method to modify
chemical signal (Griffiths, 1977; Cooper, 1978; Griffiths and De
Haseth, 1986; Ernst, 1989) with the mathematical essence such as
filtering, convolution/deconvolution etc. FT analysis can localize
signal in frequency domain very well, but not so much in time
domain. In contrast, wavelet transform (WT) has the advantage
of localizing signals both in time (position) and frequency (scale)
domains, making it a preferable mathematical tool to replace FT
in the study of the local property of a signal and the removal of the
perturbation of measuring error in spectral analysis. Nowadays,
WT is one of the most signal analysis algorithms commonly used
in the different fields of chemistry and engineering, providing
alternative ways or opportunities to resolve complex spectral
bands or diverse data types of signals.

For readers interested in learning the general theory of
wavelets, more details can be found in the literature (Mallat,
1988; Chui, 1992; Daubechies, 1992; Newland, 1993; Byrnes et al.,
1994; Chui et al., 1994; Vetterli and Kovačević, 1995; Strang and
Nguyen, 1996).

In the signal smoothing and de-noising of spectral peaks,
the elimination of noise requires an application of appropriate
filters to the raw spectral data such as some conventional
signal filters Savitzky–Golay, Fourier and Kalman (Brown et al.,
1994, 1996). The use of WT in signal analysis is two-fold:
(i) to detect the singularities of a signal very likely caused by
high-frequency noise and (ii) to separate the signal frequencies
at different scales (Palavajjhala et al., 1994; Yan-Fang, 2013;
Li and Chen, 2014). To illustrate this, Barclay et al. (1997)
performed a comparative study in de-noising and smoothing
of Gaussian peak by using wavelet, Fourier and Savitzky–Golay
filters i.e., smoothing eliminates high-frequency components
of the transformed signal irrespective of their amplitudes,
while de-noising eliminates small-amplitude components of the
transformed signal irrespective of their frequencies.

Historically, WT principal applications in chemistry were first
explored by Walczak and Massart (1997a), who presented an
approach based on the application of wavelet packet transform
(WPT) to the best-basis selection for the compression and de-
noising of a set of signals in time-frequency domain. In their
paper, the proposed technique was compared to Wickerhauser’s
approach (Wickerhauser, 1994) of fast approximate principal
component analysis (PCA). These authors also published two
more papers on the application of wavelets for data processing
i.e., the introduction of WPT for noise suppression and signal

compression (Walczak and Massart, 1997b) and the use of
WT for signal compression and denoising, image processing,
data compression and multivariate data modeling in analytical
chemistry (Walczak and Massart, 1997c). On the other hand,
Alsberg et al. (1997) tried to introduce WT to chemometricians
by suggesting the short-time FT technique as a resolution to
obtain information about frequency changes over time as well
as the WT for de-noising, baseline removal, determination of
derivative zero crossings and signal compression. In 1997, WT
application in chemical analysis was also confirmed by Wang
et al. (1997) and Depczynski et al. (1997). Up to date, WT
processing of the different types of raw signals has been reported
for liquid chromatography (Shao et al., 1997, 1998a,b,c) and
NMR spectroscopy (Neue, 1996; Barache et al., 1997), Raman
spectra (Cai et al., 2001; Ehrentreich and Summchen, 2001),
and voltammetry (Chen et al., 1996; Fang and Chen, 1997;
Zheng et al., 1998; Zhong et al., 1998; Aballe et al., 1999;
Zheng and Mo, 1999) IR and Raman spectroscopy (Shao and
Zhuang, 2004; Hwang et al., 2005; Chalus et al., 2007; Jun-fang
et al., 2007; Lai et al., 2011). In this context, as in the various
fields of mathematics and engineering, the implementations
of WT in analytical chemistry and neighbor disciplines has
become increasingly attractive as an alternative way to analyze
complex mixtures previously unresolved by traditional analytical
techniques.

With reference to the above-mentioned review, the aim of
this paper is to describe the fundamentals of WT methodologies
and its typical implementations for UV spectroscopic analysis of
pharmaceuticals.

BRIEF HISTORY OF WAVELETS

In the literature, the first study was related to the Haar Wavelet
transform. This family was suggested by the mathematician
Alfred Haar in 1909. However, the word “wavelet” was not used
in the period of Haar. In fact, the word “wavelet” was invented by
Morlet and the physicist Alex Grossman in 1984. After the first
orthogonal Haar wavelet, the second orthogonal wavelet known
as “Meyer wavelet” was formulated by the mathematician Yves
Meyer in 1985. In 1988, Stephane Mallat and Meyer elaborated
the concept of multiresolution. In the same year, a systematical
method to construct compactly supported continuous wavelets
was found by Ingrid Daubechies. Afterwards, Mallat proposed
the fast wavelet transform. The emergence of this algorithm
increased the implementations of theWT in the signal processing
field.

In other words, the history of the wavelet families could be
given in the following chronological order: Haar families in 1910,
Morlet wavelet concept in 1981, Morlet and Grossman, “wavelet”
in 1984, Meyer, “orthogonal wavelet” in 1985, Mallat and Meyer,
multiresolution analysis in 1988, Daubechies, compact support
orthogonal wavelet in 1988 and Mallat, fast wavelet transform in
1989 (c.f. Chun-Lin, 2010).

Basically, WT can be mainly classified into discrete wavelet
transform (DWT) and continuous wavelet transform (CWT) in
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the signal analysis. The theory and implementations of wavelets
in chemistry and related fields were well documented as review
papers (Leung et al., 1998; Dinç and Baleanu, 2007b; Dinç, 2013;
Li and Chen, 2014; Medhat, 2015) and reference books (Walczak
and Massart, 2000a,b; Walczak and Radomski, 2000; Brereton,
2003, 2008; Chau et al., 2004; Danzer, 2007; Mark andWorkman,
2007; Dubrovkin, 2018).

WAVELET TRANSFORM ALGORITHMS

FT is based upon the decomposition of a signal into a set of
trigonometric (sine and cosine) functions i.e., FT represents a
signal in terms of sinusoids. The representation of FT of a signal
from time mode to frequency mode is illustrated in Figure 1. For
the determination of a local information in the FT, it is required
to use an analyzing function ψ having localization properties in
both frequency and time domains. This ψ function is named as a
wavelet and it must be wave of finite duration.

WT contains the decomposition of a signal into a set of
basic functions (wavelets). Basis functions of WT are small
waves detected in different times. On the contrary to FT, WT
gives information on both time and frequency, making it as an
alternative approach to eliminate the resolution problem in signal
analysis.

By definition, wavelets are the mathematical methods that
convert the data into various coefficients and then analyze each
coefficient at a resolution corresponding to its scale. Projection
of a signal onto wavelet basic functions is called the wavelet
transform. In other words, wavelets are mathematical functions
generated from a mother wavelet Ψ (x) by the scaling parameter
(dilatation) and shifting parameter (translation) i.e., the signal
is expanded on a set of the dilatation (scaling parameter) of
functions

ψ

(

x− a

b

)

(1)

The scaling parameter has a significant role for the variation of
time and frequency resolution when processing the signal.

For a given mother wavelet (Daubechies, 1992) ψ (x) by
the scaling parameter and shifting parameter o fψ (x), a set of
functions expressed by ψa,b (x) is obtained from the following

equation.

ψa,b (x) =
1

√
|a|

ψ

(

x− b

a

)

, a 6= 0, a, b ∈ R (2)

where a is the scaling parameter, b is the shifting parameter and
R is domain of real number. The mathematical expression of a
CWT on a function f (x) is given below

CWT
{

f (x) ; a, b
}

=

∞
∫

−∞

f (x)ψ∗

a,b(x)dx = 〈f (x),ψa,b〉 (3)

here the superscript ∗ is related to the complex conjugate and
〈f (x),ψa,b〉 represents the inner product of function f(x) onto the
wavelet function ψa,b(x).

The original signal can be completely reconstructed by a
sampled version of the CWT. Usually, the exemplar is follows as

a = 2−mand b = n2−m (4)

Here a and b denote scale and dilatation parameters, respectively,
and R is the real number. The expression of DWT can be given as

DWT =

∫

+∞

−∞

f (X) ψ∗
m, n (x) dt (5)

Where ψ
∗
m, n (X) = 2−m ψ (2m x− n) is the dilated and

translated version of the mother wavelet. In the application of
the DWT, only outputs from the low-pass filter are processed
by WT. However, in the wavelet packet decomposition of
signals, both outputs from the low-pass and high-pass filters are
manipulated by WT (Strang and Nguyen, 1996). Multiresolution
decomposition with wavelets is an interesting topic for signal and
image analysis (Mallat, 1988; Daubechies, 1992).

Some families of wavelets with names and their coding list are
illustrated in Table 1.

For signal processing, there is also another WT approach
i.e., fractional wavelet transform (FWT) specifically designed for
rectification of the limitations of the WT and fractional FT (Blu
and Unser, 2000, 2002; Unser and Blu, 2000). FWT is based on
the fractional B-splines. As it is already known, the splines play
an important role on the early development of the theory of WT.

FIGURE 1 | Representation of Fourier transform of a signal from time domain to frequency domain.
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TABLE 1 | Families of wavelets with names and their coding list.

Wavelet families Coding

Haar haar

Daubechies db

Symlets sym

Coiflets coif

BiorSplines bior

ReverseBior rbio

Meyer meyr

Dmeyer dmey

Gaussian gaus

Mexican hat function mexh

Morlet morl

Complex Gaussian cgau

Shannon shan

Frequency B-Spline fbsp

Complex Morlet cmor

A B-spline is generalization of the Beziers curve. Let a vector
known as the knot be defined by T = {t0, t1, . . . , tm} where T is a
non-decreasing sequence with ti ǫ [0, 1], and define control point
P0, Pn. The knots t0, t1, . . . , tm is called internal knots. If p = m -
n - 1 denotes the degree, the basis function is defined as follows:

Ni, 0(t) = f (x) =

{

1, if ti ≤ t < ti+1 and ti+1

0 otherwise
(6)

and

Ni, p (t) =
t − ti

ti+p − ti
Ni, p−1 (t)+

t i+p+1 − t

ti+p + 1 − ti+1
Ni+1, p−1 (t)

(7)
Therefore, the curve defined by

C (t) =
∑n

i=0
Pi Ni, p (t) (8)

is a B-spline
Fractional B-spline: The fractional B-spline is defined as

βα+ (x) =

∑

+∞

k=0 (−1)k
(

α + 1
k

)

(

x− k
)α

+

Ŵ (α + 1)
(9)

where Euler’s Gamma function is obtained by

Ŵ (α + 1) =

∫

+α

0
xα e−x dx (10)

and

(x− k)+α = max (x− k, 0)α (11)

The forward fractional finite difference operator of order α is
defined as

1α+ f (x) =
∑+∞

k=0
(−1)k (αk ) f

(

x− k
)

, (12)

where

(α

k

)

=
Ŵ (α + 1)

Ŵ
(

k+ 1
) (

α − k+ 1
) (13)

B-splines fulfill the convolution property, namely

βα1+ ∗βα2+ = βα1+α2+ (14)

The centered fractional B-splines of degree α is defined as

βα∗ (x) =
1

Ŵ (α + 1)

∑

k∈Z
(−1)k

∣

∣

∣

∣

α + 1

k

∣

∣

∣

∣

∣

∣x− k
∣

∣

α
∗ (15)

where

|x|α− =







| x|α

−2 sin ( π2 α)
, α not even

X log x

(−1)1+n π
, α even

(16)

The fractional B-spline wavelet is defined as

ψα+

(x

2

)

=

∑

kǫZ

(−1)k

2α

∑

1ǫZ

(

α + 1
1

)

β2α+1
∗

(

1+ k− 1
)

βα+ (x− k) (17)

We mention that the fractional splines wavelets of degree obey
the following

∫

+∞

−∞

Xn ψα+ (x) dx = 0, . . . , [α] (18)

and the Fourier transform fulfills the following relations

ψ̂α+ (̟) = C (j̟ )α+1, as̟ → 0 (19)

and

ψ̂α∗ (̟) = C (j̟ )α+1, as̟ → 0 (20)

where ψ̂α+ (̟) is symmetric. The fractional spline wavelet
behaves like a fractional derivative operator.

STRATEGIES IN CWT APPLICATIONS TO

UV SPECTROSCOPY ANALYSIS OF

MULTICOMPONENT MIXTURES

For the past 15 years, the potential application of CWT in
chemistry, especially in combination with other mathematical
methods, leads us to a conclusion that WT has interestingly
became a useful algorithm for UV quantitative analysis of
pharmaceuticals. Four different models [i.e., continuous wavelet
transform-zero crossing (CWT-ZC), ratio spectra-continuous
wavelet transform (RS-CWT), ratio spectra-continuous wavelet
transform-zero crossing (RS-CWT-ZC), and double divisor
ratio spectra-continuous wavelet transform (DDRS-CWT)] were
described in the implementation of CWT to UV spectroscopic
data for the resolution of overlapping spectra to quantify drugs
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in different types of samples. The modeling of CWT—UV
spectroscopic approaches are detailed below. Fundamentally,
these approached can be successfully applied to the UV
spectroscopic analysis of binary and ternary mixtures, provided
that the law of additivity of absorbance is obeyed.

CONTINUOUS WAVELET

TRANSFORM-ZERO CROSSING

The application of CWT-ZC approach to UV spectroscopic
signals was first proposed by Dinç and Baleanu (2003a).

If a mixture of two analytes (M and N) is considered
(see Figure 2A) and the absorbance of this binary mixture is
measured at λi, we can have the following equation (Charlotte
Grinter and Threlfall, 1992):

Amix, λi = αM, λiCM + βN, λiCN (21)

FIGURE 2 | (A) Absorption spectra and (B) CWT spectra of M (–) and N (–)
compounds and their mixture (–).

where Amλi is the absorbance of the binary mixture at
wavelength λi, and the coefficients are the absorptivities of M and
N, respectively. CM and CN represent the concentrations of M
and N, respectively.

If CWT is applied to Equation (21), the following function can
be obtained as

ψ(a.b), MIX, λi = ψ(a.b),M, λi CM + ψ(a.b), N, λi CN (22)

If ψ(a.b),N,λiCN = 0, then we obtain the following equation

ψ(a.b), MIX, λi = ψ(a.b), M, λi CM (23)

Equation (23) shows that CWT (ψ(a.b), M, λi CM) amplitudes of

M in the binary mixture are dependent only on CM regardless of
CN (see Figure 2B).

RATIO SPECTRA-CONTINUOUS WAVELET

TRANSFORM

Apart from CWT-ZC approach, overlapping spectral bands in a
binary mixture could be solved by the application of a combined
hybrid approach i.e., RS-CWT (Dinç and Baleanu, 2004a,c).

The absorption spectra of M and N compounds, and their
mixture are indicated in Figure 3A. By being divided by the
standard spectrum (AN,λi = βλi C

o
N) of one of the compounds

in the binary mixture, Equation (21) becomes

Am,λi

βλi CN
o =

αλi CM

βλi CN
o +

βλi CN

βλi CN
o (24)

Figure 3B shows the ratio spectra of analytes and their binary
mixture. If CWT is applied to Equation (24), the following
equation can be obtained

CWT

[

Am,λi

βλi C
o
N

]

= CWT

[

αλi

βλi

]

CM

Co
N

+ CWT

[

βλi

βλi

]

CN

Co
N
(25)

If CWT
[

βλi
βλi

]

CN
Co
N
= 0, then we obtain

CWT

[

Am,λi

βλi C
o
N

]

= CWT

[

αλi

βλi

]

CM

Co
N

(26)

The ratio-CWT amplitudes of the binary mixture given in
Equation (26) depend only on CM and CN

o regardless of CN (e.g.,
see Figure 3C).

RATIO SPECTRA-CONTINUOUS WAVELET

TRANSFORM-ZERO CROSSING

In RS-CWT-ZC approach (Dinç et al., 2005a), if a mixture of
three analytes (X, Y, and Z) is considered and the absorbance
of this ternary mixture is measured at λi, the following
mathematical expression (Charlotte Grinter and Threlfall, 1992)
would be given

Amix, λi = αX, λiCX + βY , λiCY + γZ, λiCZ (27)
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FIGURE 3 | (A) Absorption spectra, (B) ratio spectra, and (C) Haar CWT spectra of M and N compounds and their binary mixture.

Where Amix, λi is the absorbance of the ternary mixture at
wavelength λi, and coefficients αX, λi, βY , λi, and γZ, λi denote
the absorptivities of X, Y, and Z, respectively. CX, CY, and CZ

represent the concentrations of X, Y, and Z, respectively.
If Equation (27) is divided by the spectrum of a standard

solution (Co
X) of one of the compounds in the ternary mixture,

we have the following equation:

Amix, λi

αX, λiCX
o =

αX, λiCX

αX, λiCX
o +

βY , λiCY

αX, λiC
o
X

+
γ Z, λiCZ

αX, λiC
o
X

(28)

If CWT is applied to Equation (28), the following equation can
be obtained

CWT

[

Amix, λi

αX, λiC
o
X

]

= CWT

[

βY, λiCY

αX, λiC
o
X

]

+ CWT

[

γ Z, λiCZ

αX, λiC
o
X

]

(29)
Equation (29) indicates that the CWT amplitudes of the ratio
spectra of the ternary mixture are dependent only on CZ and CX

o

regardless of the concentrations of other compounds.

DOUBLE DIVISOR RATIO

SPECTRA-CONTINUOUS WAVELET

TRANSFORM

In addition to RS-CWT-ZC approach, the spectral resolution
of ternary mixtures could be effectively done by DDRS-CWT
approach (Dinç and Baleanu, 2008a) as follows.

When two compounds in the ternary mixture is used as a
double divisor, we have

Ao
mix, λi = αX, λiC

o
X + βY, λi C

o
Y (30)

By dividing Equation (27) and (30), we obtain as follows

Amix, λi

αX, λiC
o
X + βY, λi C

o
Y

=
αX, λiCX

αX, λiC
o
X + βY, λi C

o
Y

+
βY, λiCY

αX, λiC
o
X + βY, λi C

o
Y

+
γZ, λiCZ

αX, λiC
o
X + βY, λi C

o
Y

(31)
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TABLE 2 | Applications of the continuous wavelet transform-zero crossing technique to UV spectroscopic analysis of pharmaceuticals.

Pharmaceuticals Method Wavelet Families Type of data References

Thiamine HCl, pyridoxine
HCl

CWT-zero crossing Daubechies, Biorthogonal UV absorption spectra Dinç and Baleanu, 2003a

Hydrochlorothiazide,
spironolactone

CWT-zero crossing Daubechies, Biorthogonal UV absorption spectra Dinç et al., 2003

Thiamine HCl; pyridoxine
HCl

CWT-zero crossing Mexican hat function, Meyer UV absorption spectra Dinç and Baleanu, 2003b

Thiamine HCl, pyridoxine
HCl

CWT-zero crossing Gaussian1, Gaussian2 UV absorption spectra Dinç and Baleanu, 2004a

Caffeine, propyphenazone DWT-CWT-zero crossing Mexican and Haar UV absorption spectra Dinç et al., 2004a

Benazepril,
hydrochlorothiazide

DWT-CWT-zero crossing Coiflets2 and Gaussian2 UV absorption spectra Dinç and Baleanu, 2004b

Hydrochlorothiazide,
Spironolactone

CWT-zero crossing Haar, Mexican hat function UV absorption spectra Dinç et al., 2004c

Benazepril,
hydrochlorothiazide

CWT-zero crossing Mexican, Haar, Daubechies3 UV absorption spectra Dinç and Baleanu, 2004c

Ascorbic acid, acetylsalicylic
acid

CWT-zero crossing Mexican hat function UV absorption spectra Dinç et al., 2005b

Diminazene aceturate and
phenazone

CWT-zero crossing Reverse Biorthogonal UV absorption spectra Dinç et al., 2005c

Quinapril,
hydrochlorothiazide

CWT-zero crossing Mexican hat wavelet function UV absorption spectra Dinç and Baleanu, 2007a

Oxfendazole and
oxyclozanide

CWT-zero crossing Mexican hat function UV absorption spectra Dinç and Baleanu, 2007c

Levodopa, benserazide CWT-zero crossing Symlets UV absorption spectra Dinç et al., 2007d

Chlortetracycline,
benzocaine

CWT-zero crossing Coiflets UV absorption spectra Dinç et al., 2007c

Pyridoxine hydrochloride,
isoniazide

CWT-zero crossing Mexican hat function UV absorption spectra Üstündag et al., 2008

Risedronate sodium CWT-zero crossing Morlet, Biorthogonal UV absorption spectra Ugurlu et al., 2008

ampicillin sodium,
sulbactam sodium

CWT-zero crossing Mexican hat function, Symtles UV absorption spectra Dinç and Baleanu, 2009a

Paracetamol, chloroxozone CWT-zero crossing Mexican hat function,
Daubechies, Symplets, Coiflets,
Biortogonal, Gaussian

UV absorption spectra Dinç et al., 2009a

Levamisole, triclabendazole CWT-zero crossing Biorthogonal UV absorption spectra Dinç et al., 2009b

Telmisartan,
hydrochlorothiazide

CWT-zero crossing Gaussian, Biorthogonal UV absorption spectra Dinç and Baleanu, 2009b

Perindopril, indapamide CWT-zero crossing Haar and Biorthogonal1.5 UV absorption spectra Pektaş et al., 2009

Valsartan, amlodipine CWT-zero crossing Daubechies, Dmeyer UV absorption spectra Dinç and Baleanu, 2010a

Metformin hydrochloride,
glibenclamide

DWT-CWT-zero crossing Daubechies, Reverse
Biorthogonal, Gaussian

UV absorption spectra Sohrabi et al., 2011

Trimethoprim,
sulphamethoxazole

CWT-zero crossing Biorthogonal, Coiflets,
Daubechies, Haar

UV absorption spectra Dinç et al., 2011b

Amlodipine, atorvastatine CWT-zero crossing Mexican hat function UV absorption spectra Shariati-Rad et al., 2012

Estradiol valerate,
cyproterone acetate

CWT-zero crossing Symlets UV absorption spectra Dinç et al., 2013a

Lamivudine, zidovudine CWT-zero crossing Mexican hat wavelet, Symlets,
Daubechies

UV absorption spectra Dinç et al., 2013b

Diphenhydramine
hydrochloride

CWT-zero crossing Biorthogonal UV absorption spectra Devrim et al., 2014

Ambroxol hydrochloride,
doxycycline

CWT-zero crossing Haar wavelet function UV absorption spectra Darwish et al., 2014

Oxfendazole, oxyclozanide MOFrFT-CWT-zero-
crossing

Mexican hat UV absorption spectra Dinç et al., 2015

Atenolol, chlorthalidone CWT-zero crossing Coiflet, Mexican Hat function UV absorption spectra Dinç et al., 2017b

Valsartan,
hydrochlorothiazide

CWT-zero crossing Mexican hat function,
Daubechies

UV absorption spectra Dinç et al., 2017a
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Equation (31) can be simplified to

Amix, λi

αX, λiCX
o
+ βY, λi CY

o = k+
γZ, λiCZ

αX, λiCX
o
+ βY, λi CY

o (32)

Where k =
αX, λiCX+ βY, λiCY

αX, λiC
o
X+ βY, λi C

o
Y
represents a constant for a given

concentration range with respect to λi in a certain region or point
of wavelength.

A typical case is when CX
o and CY

o are the same or very close
to each other, namely CX

o
= CY

o or ∼= CX
o ∼= CY

o. Therefore,
we obtain

αX, λiC
o
X + βY, λi C

o
Y = Co

X (αX, λi + βY, λi) (33)

and Equation (32) can be written as

Amix, λi

αX, λiC
o
X + βY, λi C

o
Y

= k+
γZ, λiCZ

Co
X

(

αX, λi + βY, λi
) (34)

After applying CWT to Equation (31), we have

CWT(a,b)

(

Amix, λi

αX, λi + βY, λi

)

1

Co
X

= CWT(a,b)

(

γZ, λiCZ
(

αX, λi + βY, λi

)

)

1

Co
X

(35)
or

CWT(a,b)

(

Amix, λi

αX, λi + βY, λi

)

= CWT(a,b)

(

γZ, λi
(

αX, λi + βY, λi

)

)

CZ

(36)
In Equation (36), CZ is to proportional to the coefficients,

CWT(a,b)

(

Amix, λi
αX, λi+ βY, λi

)

, at λi. If this procedure is separately

applied for pure Z and its ternary mixture, the CWT(a,b)

coefficients are coincided at some characteristic point or region
of wavelength, independent upon both CX and CY.

WAVELET TRANSFORM-BASED UV

SPECTROSCOPIC ANALYSIS OF

PHARMACEUTICALS

Typical applications of CWT and FWT algorithms for UV
spectroscopic analysis of pharmaceuticals are displayed in
Tables 2–5. It is worth mentioning that WT could be solely
applied to raw spectra and ratio spectra (as above-specified) as
well as utilized as a hybrid approach (FWT-derivative, FWT-
CWT-zero crossing,WT combined withmultivariate calibration)
for the simultaneous determination of analytes in pharmaceutical
binary and ternarymixtures. It was shown that wavelet analysis of
UV spectroscopic data was performed by using Wavelet Toolbox
and m-file in MATLAB software. The numerous works provided
by Dinç and co-workers have clearly highlighted the success
of WT-based UV spectroscopic analysis for multicomponent
synthetic mixtures, veterinary and pharmaceutical dosage forms
as well as different types of test (e.g., assay, in vitro dissolution,
stability indicating). Most studies proved it to be suitable for
the routine analysis of dosage forms with good precision and
accuracy, comparable to HPLC.

CONCLUSIONS

In the point of view of UV spectroscopic analysis of
multicomponent mixtures, CWT-based UV spectroscopic

TABLE 3 | Applications of the wavelet transform-multivariate approaches to UV spectroscopic analysis of pharmaceuticals.

Pharmaceuticals Method Families Type of data References

Tetramethrin, propoxur; piperonil butoxide CWT-PCR, CWT-PLS Mexican hat function UV absorption spectra Dinç et al., 2004b

Paracetamol, ascorbic acid, acetylsalicylic acid DWT-CLS, DWT-PLS Haar UV absorption spectra Dinç et al., 2006a

TABLE 4 | Applications of the ratio spectra-continuous wavelet transform, ratio spectra- continuous wavelet transform-zero crossing approaches to UV spectroscopic
analysis of pharmaceuticals.

Pharmaceuticals Method Families Type of data References

Paracetamol, acetylsalicylic acid,
caffeine

Ratio spectra-CWT-ZC Mexican hat function UV ratio spectra Dinç et al., 2005a

Diminazene aceturate and phenazone Ratio spectra-CWT Reverse Biorthogonal UV ratio spectra Dinç et al., 2005c

Paracetamol, metamizol, caffeine Ratio spectra-CWT-ZC Mexican hat function,
Reverse biorthogonal,
Biorthogonal

UV ratio spectra Dinç et al., 2006b

Levamizol, oxycloanide Ratio spectra-CWT Daubechies UV ratio spectra Dinç et al., 2007a

oxfendazole and oxyclozanide Ratio spectra-CWT Morlet UV ratio spectra Dinç and Baleanu, 2007c

Ascorbic acid, acetylsalicylic acid and
paracetamol

Double divisor-ratio
spectra-CWT

Haar, Mexican hat function UV- double divisor-ratio
spectra

Dinç and Baleanu, 2008a

vitamin C, aspirin Ratio spectra-CWT Biorthogonal UV ratio spectra Dinç and Baleanu, 2008b

valsartan and hydrochlorothiazide Ratio spectra-CWT Mexican hat function,
Coiflets

UV ratio spectra Dinç et al., 2017a
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TABLE 5 | Applications of the fractional wavelet transform and its combination with other chemometric techniques to UV spectroscopic analysis of pharmaceuticals.

Pharmaceuticals Method Families Type of data References

Ampicillin, sulbactam FWT-derivative method – UV absorption data Dinç and Baleanu, 2006

Lacidipine and its photodegradation product FWT-CWT Mexican hat function UV absorption data Dinç et al., 2006c

Cilazapril, hydrochlorothiazide FWT-PLS – UV absorption data Dinç et al., 2007b

Paracetamol, propiphenazone, caffeine and
thiamine

FWT-PCR, FWT-PLS,
FWT-ANN

– UV absorption data Dinç et al., 2008

Amlodipine, valsartan FWT-PLS1, FWT-PLS2 – UV absorption data Çelebier et al., 2010

Trimethoprim, sulfachloropyridazine sodium FWT-derivative method – UV absorption data Kanbur et al., 2010

Atorvastatin, amlodipine FWT-CWT Mexican wavelet hat
function

UV absorption data Dinç and Baleanu, 2010b

Trimethoprim, sulphamethoxazole FWT-PCR, FWT-PLS – UV absorption data Dinç et al., 2010

of oxytetracycline and flunixin megluminein FWT-PCR, FWT-PLS – UV absorption data Kambur et al., 2011

Olmesartan modoxomil, hydrochlorothiazide FWT-CWT Mexican wavelet hat
function

UV absorption data Dinç et al., 2011a

Thiamine HCl, pyridoxine HCl, lidocaine HCl FWT-PCR, FWT-PLS, – UV absorption data Dinç and Baleanu, 2012

FWT-CWT-PCR,
FWT-CWT-PLS

Melatonin and its photodegradation FWT-CWT Biorthogonal, symplets UV absorption data Dinç et al., 2012

methods have outperformed both conventional and derivative
UV spectroscopy in resolving spectrally binary and ternary
mixtures. Nevertheless, wavelet analysis may not also
have a sufficient power to resolve overlapping spectra of
analytes in samples due to similarity of molecular structures
and signal frequencies in some cases. They may not give
desirable results for a complex mixture containing more
than three compounds and/or a significant difference in
ratios of active ingredients. In such a case, the use of WT

coupled with chemometric PLS and PCR calibrations is
advisable. Undoubtedly, however, wavelets can still be used as

a mathematical prism for signal analysis because they can offer
many possibilities such as baseline correction, noise removal
and resolution of overlapping peaks, when the frequencies
of analyzed components are significantly different from each
other.
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Spectroscopy is widely used to characterize pharmaceutical products or

processes, especially due to its desirable characteristics of being rapid, cheap,

non-invasive/non-destructive and applicable both off-line and in-/at-/on-line.

Spectroscopic techniques produce profiles containing a high amount of information,

which can profitably be exploited through the use of multivariate mathematic and statistic

(chemometric) techniques. The present paper aims at providing a brief overview of the

different chemometric approaches applicable in the context of spectroscopy-based

pharmaceutical analysis, discussing both the unsupervised exploration of the collected

data and the possibility of building predictive models for both quantitative (calibration)

and qualitative (classification) responses.

Keywords: spectroscopy, chemometrics and statistics, component analysis (PCA), partial least squares (PLS),

classification, partial least squares discriminant analysis (PLS-DA), soft independent modeling of class analogies

(SIMCA), pharmaceutical quality control

INTRODUCTION

Quality control on pharmaceutical products is undoubtedly an important and widely debated
topic. Hence, in literature, various methods have been proposed to check quality of medicines,
either qualitative (e.g., for the identification of an active pharmaceutical ingredient, API; Blanco
et al., 2000; Herkert et al., 2001; Alvarenga et al., 2008) or quantitative (quantification of the API;
Blanco et al., 2000; Yao et al., 2007; Cruz Sarraguça and Almeida Lopes, 2009); involving either
destructive or non-invasive online techniques. Recently, due to the benefits they bring, several
non-destructive methodologies based on spectroscopic techniques (mainly Near-Infrared NIR)
combined with chemometric tools have been proposed for pharmaceutical quality check (Chen
et al., 2018; Rodionova et al., 2018).

Despite the development of analytical methodologies and the commitments of national and
supranational entities to regulate pharmaceutical quality control, substandard and counterfeit
medicines are still a major problem all over the world.

Chemometrics as Tool for Fraud/Adulteration Detection
Poor-quality pharmaceuticals can be found on the market for two main reasons: low production
standards (mainly leading to substandard medicines) and fraud attempts. Counterfeited
drugs may present different frauds/adulterations; for instance, they could contain no active
pharmaceutical ingredient (API), a different API from the one declared, or a different (lower)
API strength. As mentioned above, several methodologies have been proposed in order to
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detect substandard/counterfeit pharmaceuticals; among these,
a major role is played by those based on the application
of spectroscopic techniques in combination with different
chemometric methods. The relevance of these methodologies is
due to the fact that spectroscopy (in particular, NIR) combined
with exploratory data analysis, classification and regression
method can lead to effective, high performing, fast, non-
destructive, and sometimes, online methods for checking the
quality of pharmaceuticals and their compliance to production
and/or pharmacopeia standards. Nevertheless, the available
chemometric tools applicable to handle spectroscopic (but, of
course not only those) data are numerous, and there is plenty
of room for their misapplication (Kjeldahl and Bro, 2010). As
a consequence, the aim of the present paper is to report and
critically discuss some of the chemometric methods typically
applied for pharmaceutical analysis, together with an essential
description of the figures of merit which allow evaluating the
quality of the corresponding models.

EXPLORATORY DATA ANALYSIS

In the large part of the studies for the characterization of
pharmaceutical samples for quality control, verification of
compliance and identification/detection of counterfeit, fraud or
adulterations, experimental signals (usually in the form of some
sorts of fingerprints) are collected on a series of specimens.
These constitute the data the chemometric models operate on.
These data are usually arranged in the form of a matrix X,
having as many rows as the number of samples and as many
columns as the number of measured variables. Accordingly,
assuming that samples are spectroscopically characterized by
collecting an absorption (or reflection/transmission) profile (e.g.,
in the infrared region), each row of the matrix corresponds
to the whole spectrum of a particular sample, whereas each
column represents the absorbance (or reflectance/transmittance)
of all the individuals at a particular wavenumber. This
equivalence between the experimental profiles and their matrix
representation is graphically reported in Figure 1.

Once the data have been collected, exploratory data analysis
represents the first step of any chemometric processing, as
it allows “to summarize the main characteristics of data
in an easy-to-understand form, often with visual graphs,
without using a statistical model or having formulated a
hypothesis” (Tukey, 1977). Exploratory data analysis provides
an overall view of the system under study, allowing to catch
possible similarities/dissimilarities among samples, to identify
the presence of clusters or, in general, systematic trends, to
discover which variables are relevant to describe the system and,
on the other hand, which could be in principle discarded, and
to detect possible outlying, anomalous or, at least, suspicious
samples (if present). As evident also from the definition
reported above, in the context of exploratory data analysis a
key role is played by the possibility of capturing the main
structure of the data in a series of representative plots, through
appropriate display techniques. Indeed, considering a general
data matrix X, of dimensions N×M, one could think of its

entries as the coordinates of N points (the samples) into a M-
dimensional space whose axes are the variables, which makes
this representation unfeasible for the cases when more than
three descriptors are collected on each individual. This is why
exploratory data analysis often relies on the use of projection
(bilinear) techniques to reduce the data dimensionality in a
“clever” way. Projection methods look for a low-dimensional
representation of the data, whose axes (normally deemed
components or latent variables) are as relevant as possible for the
specific task. In the case of exploratory data analysis, the most
commonly used technique is Principal Components Analysis
(PCA) (Pearson, 1901; Wold et al., 1987; Jolliffe, 2002).

Principal Component Analysis
Principal component analysis (PCA) is a projection method,
which looks for directions in the multivariate space progressively
providing the best fit of the data distribution, i.e., which best
approximate the data in a least squares sense. This explains
why PCA is the technique of choice in the majority of cases
when exploratory data analysis is the task: indeed, by definition,
for any desired number of dimensions (components) F in the
final representation, the subspace identified by PCA constitutes
the most faithful F-dimensional approximation of the original
data. This allows compression of the data dimensionality at the
same time reducing to a minimum the loss of information.
In particular, starting from a data matrix X(N×M), Principal
Component Analysis is based on its bilinear decomposition,
which can be mathematically described by Equation (1):

X = TPT
+ E (1)

The loadings matrix P(M×F) identifies the F directions, i.e., the
principal components (PC), along which the data should be
projected and the results of such projection, i.e., the coordinates
of the samples onto this reduced subspace, are collected in the
scores matrix T(N×F). In order to achieve data compression,
usually F ≪ M so that the PCA representation provides an
approximation of the original data whose residuals are collected
in the matrix E(N×M).

Since the scores represent a new set of coordinates along
highly informative (relevant) directions, they may be used in
two- or three-dimensional scatterplots (scores plots). This offers
a straightforward visualization of the data, which can highlight
possible trends in data, presence of clusters or, in general, of an
underlying structure. A schematic representation of how PCA
works is displayed in Figure 2.

Figure 2 shows one of the simplest possible examples of
feature reduction, since it describes the case where samples
described by three measured variables can be approximated by
being projected on an appropriately chosen two-dimensional
sub-space. However, the concept may be easily generalized
to higher-dimensional problems, such as those involving
spectroscopic measurements. Figure 3 shows an example of
the application of PCA to mid infrared spectroscopic data. In
particular, the possibility of extracting as much information as
possible from the IR spectra recorded on 51 tablets containing
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FIGURE 1 | Graphical illustration of the equivalence between the collected experimental data (in this case, NIR spectra for 6 samples) and the data matrix X. Each

row of the data matrix corresponds to the spectrum of a sample, whereas each column contains the value of a specific variable over all the individuals.

either ketoprofen or ibuprofen in the region 2,000–680 cm−1

(661 variables) is represented.
A large portion of the data variability can be summarized

by projecting the samples onto the space spanned by the first
two principal components, which account for about 90% of
the original variance, and therefore can be considered as a
good approximation of the experimental matrix. Inspection of
the scores plot suggests that the main source of variability
is the difference between ibuprofen tablets (blue squares)
and ketoprofen ones (red circles), since the two clusters are
completely separated along the first principal component. To
interpret the observed cluster structure in terms of the measured
variables, it is then necessary to inspect the corresponding
loadings, which are also displayed in Figure 3 for PC1. Indeed,
for spectral data, the possibility of plotting the loadings for
the individual components in a profile-like fashion, rather than
producing scatterplot for pairs of latent variables (as exemplified
in Figure 2) is often preferred, due to its more straightforward
interpretability: spectral regions having positive loadings will
have higher intensity on samples which have positive scores
on the corresponding component, whereas bands associated to
negative loadings will present higher intensity on the individuals
falling at negative values of the PC. In the example reported
in Figure 3, one could infer, for instance, that the ketoprofen
samples (which fall at positive values of PC1) have a higher
absorbance at the wavenumbers where the loadings are positive,
whereas ibuprofen samples should present a higher signal in
correspondence to the bands showing negative loadings.

Based on what reported above, it is evident how the quality
of the compressed representation in the PC space depends on

the number of components F chosen to describe the data.
However, at the same time, it must be noted that when the
aim of calculating a PCA is “only” data display, as in most
of the applications in the context of exploratory analysis, the
choice of the optimal number of components is not critical:
it is normally enough to inspect the data distribution across
the first few dimensions and, in many cases, considering the
scores plot resulting from the first two or three components
could be sufficient. On the other hand, there may be cases
when the aim of the exploratory analysis is not limited to just
data visualization and, for instance, one is interested in the
identification of anomalous or outlying observations, or there
could be the need of the imputation of missing elements in
the data matrix; additionally, one could also need to obtain a
compressed representation of the data to be used for further
predictive modeling. In all such cases, the choice of the optimal
dimensionality of the PC representation is critical for the specific
purposes and, therefore, the number of PCs should be carefully
estimated. In this respect, different methods have been proposed
in the literature and a survey of the most commonly used can be
found in Jolliffe (2002).

Among the applications described above, the possibility
of using PCA for the identification/detection of potential
outliers deserves a few more words, as it could be of
interest for pharmaceutical quality control. Actually, although
outliers—or anomalous observations, in general—could be,
in principle, investigated by visually inspecting the scores
plot along the first components, this approach could be
subjective and anyway would not consider some possible data
discrepancies. Alternatively, when it is used as a model to
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FIGURE 2 | Graphical illustration of the basics of PCA. The samples, here represented in a three-dimensional space, are projected onto a low-dimensional subspace

(highlighted in light red in the leftmost panel) spanned by the first two principal components. Inspection of the data set can be carried out by looking at the distribution

of the samples onto the informative PC subspace (scores plot) and interpretation can be then carried out by examining the relative contribution of the experimental

variable to the definition of the principal components (loadings plot).

build a suitable approximation of the data, PCA provides a
powerful toolbox for outlier detection based on the definition
of more objective test statistics, which can be easily automatized
or, anyway, embedded in control strategies, also on-line. This
is accomplished by defining two distance measurements: (i) a
squared Mahalanobis distance in the scores space, which follows
the T2 statistics (Hotelling, 1931) and accounts for how extreme
the measurement is in the principal component subspace, and
(ii) a squared orthogonal Euclidean distance (the sum of squares
of the residuals after approximating the observation by its
projection), which is normally indicated as Q statistics (Jackson
and Muldholkar, 1979) and quantifies how well the model fits
that particular individual. Outlier detection is then carried out by
setting appropriate threshold values for the T2 and Q statistics
and verifying whether the samples fall below or above those
critical limits. Moreover, once an observation is identified as a
potential outlier, inspection of the contribution plot can help
in relating the detected anomaly to the behavior of specific
measured variables.

Selected Examples
PCA is customarily used for the quality control of drugs
and pharmaceuticals; several examples of the application of
this technique to solve diverse issues have been reported in
the literature. One of the most obviously relevant ones is
fraud detection. For example, in Rodionova et al. (2005) PCA
was applied to both bulk NIR spectroscopy and hyperspectral
imaging (HSI) in the NIR range to spot counterfeit drugs.
In particular, bulk NIR was used to differentiate genuine
antispasmodic drugs from forgeries, whereas HSI on the
ground uncoated tablets was employed to identify counterfeited
antimicrobial drugs. In both cases, the spectroscopic data were
subjected to PCA, which allowed to clearly identify clusters in
the scores plot, corresponding to the two kinds of tablets, i.e.,
genuine and counterfeited. In the case of the imaging platform,
where the signal is stored as a data hypercube [i.e., a three-way
numerical array of dimension number of horizontal pixels Nx,
number of vertical pixels Ny and number of wavelengths Nλ, in
which each entry corresponds to the spectral intensity measured
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FIGURE 3 | Graphical illustration of the application of PCA on a spectral (mid-infrared) data. Fifty-one spectra recorded on samples containing either ibuprofen (blue)

or ketoprofen (red) are recorded in the region 680–2,000 cm−1 (A). When PCA is applied to such a dataset, one obtains a scores plot (B) showing that two cluster of

samples, corresponding to tablets containing ibuprofen (blue squares) or ketoprofen (red circles) are separated along the first component. Interpretation of the

observed differences in terms of the spectroscopic signal is made possible by the inspection of the loadings on PC, which are shown in a “spectral-like” fashion in (C).

at a certain wavelength and a specific spatial position (x-y
coordinates)], a preliminary unfolding step is needed. Unfolding
is the procedure allowing to reorganize a higher-order array into
a two-way matrix, which can be then processed with standard
chemometric techniques. In the case of hyperspectral data cubes,
this is carried out by stacking the spectra corresponding to the
different pixels one on top of each other, in a way to obtain a
matrix of dimensions (Nx × Ny and Nλ).

Another relevant application of exploratory analysis is related
to quality check. For instance, PCA can be applied to investigate
formulations not meeting predefined parameters. In Roggo et al.
(2005), PCAwas used to inquire a suspicious blue spot present on
tablets. Samples were analyzed by a multi-spectral (IR) imaging
microscope and PCA analysis was performed on the unfolded
data-cube, indicating that the localized coloration was not due
to contamination, but actually given by wet indigo carmine dye
and placebo (expected ingredients of the formulation).

PCA can also be used for routine quality checks at the end of
a production process. For example, in Myakalwar et al. (2011)

laser-induced breakdown spectroscopy (LIBS) and PCA were
combined with the aim of obtaining qualitative information
about the composition of different pharmaceuticals.

REGRESSION

As discussed in the previous section, exploratory analysis is
a first and fundamental step in chemometric data processing
and, in some cases, it could be the only approach needed to
characterize the samples under investigation. However, due to
its unsupervised nature, it provides only a (hopefully) unbiased
picture of the data distribution but it lacks any possibility of
formulating predictions on new observations, which on the other
hand may be a fundamental aspect to solve specific issues.
In practice, very often quality control and/or authentication
of pharmaceutical products rely on some forms of qualitative
or quantitative predictions. For instance, the quantification
of a specific compound (e.g., an active ingredient or an
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excipient) contained in a formulation is a routine operation
in pharmaceutical laboratories. This goal can be achieved by
combining instrumental (e.g. spectroscopic) measurements with
chemometric regression approaches (Martens and Naes, 1991;
Martens and Geladi, 2004). Indeed, given a response to be
predicted y and a vector of measured signals (e.g., a spectrum)
x, the aim of regression methods is to find the functional
relationship that best approximates the response on the basis of
the measurements (the predictors). Mathematically, this can be
stated as:

y = ŷ+ e = f (x) + e (2)

where ŷ is the predicted response (i.e., the response value
approximated by the model), f (x) indicates a general function
of and x and e is the residual, i.e., the difference between the
actual response and its predicted value. In many applications, the
functional relationship between the response and the predictors
f (x) can be assumed to be linear:

ŷ = f (x) = b1x1 + b2x2 + . . . + bMxM = xTb (3)

where x1, x2 . . . xM are the components of the vector of
measurements x and the transpose indicates that it is normally
expressed as a row vector, while the associated linear coefficients
b1, b2 . . . bM , which weight the contributions of each of theM X-
variables to y, are called regression coefficients and collected in
the vector b. Building a regression model means to find the
optimal value of the parameters b, i.e., the values which lead
to the lowest error in the prediction of the responses. As a
direct consequence of this consideration, it is obvious how it
is mandatory to have a set of samples (the so-called training
set) for which both the experimental data X and the responses
y are available, in order to build a predictive model. Indeed,
the information on the y is actively used to calculate the model
parameters. When data from more than a single sample are
available, the regression problem in Equations (2, 3) can be
reformulated as:

y = ŷ + e = Xb+ e (4)

where the vectors ŷ and e collect the predictions and residuals
for the different samples, respectively. Accordingly, the most
straightforward way of calculating the model parameters in
Equation (4) is by the ordinary least-squares approach, i.e., by
looking at those values of b, which minimize the sum of squares
of the residuals e:

min
b

eTe = min
b

∑N

i=1
e2i (5)

ei being the residual for the ith sample and N being the number
of training observations. The corresponding methods is called
multiple linear regression (MLR) and, under the conditions of
Equation (5), the regression coefficients are calculated as:

b = (XTX)−1XTy (6)

Here it is worth to highlight that, if one wishes to use the same
experimental matrix X to predict more than one response, i.e., if,

for each sample, instead of a single scalar yi, there is a dependent
vector

yTi =
[

yi1yi2 · · · yiL
]

(7)

L being the number of responses, then each dependent variable
should be regressed on the independent block by means of a
set of regression coefficients. Assuming that the L responses
measured on the training samples are collected in a matrix Y ,
whose columns yl are the individual dependent variables,

Y =
[

y1 · · · yl · · · yL
]

(8)

the corresponding regression equations could be written as:

y1 = Xb1 + e1
...

yl = Xbl + el
...

yL = XbL + eL

(9)

which can be grouped into a single expression:

Y = XB+ E (10)

where the residuals, i.e., the differences between the measured
and predicted responses are collected in the matrix E, and the
regression coefficients vectors are gathered in a matrix B, which
can be estimated, analogously to Equation (6), as:

B = [b1 · · · bl · · · bL] = (XTX)−1XTY . (11)

Equations (9–11) indicate that, as far as MLR is concerned,
building a model to predict one response at a time or another
model to predict multiple responses altogether would lead to the
same results since, in the latter case, each dependent variable is
anyway modeled as if it were alone. In either case, the solutions
of the least-squares problem reported in Equations (6, 11) rely
on the possibility of inverting the matrix

(

XTX
)

, i.e., on the
characteristics of the predictors. Indeed, in order for that matrix
to be invertible, the number of samples should be higher than
that of variables and the variables themselves should be as
uncorrelated as possible. These conditions are rarely met by
the techniques which are used to characterize pharmaceutical
samples and, in particular, never met by spectroscopic methods.
Due to these limitations, alternative approaches have been
proposed in the literature to build regression models in cases
where standard multiple linear regression is not applicable. In
particular, since in order for the regression solution to exist, the
predictor matrix should be made of few, uncorrelated variables,
most of the alternative approaches proposed in the literature
involve the projection of the X matrix onto a reduced space
of orthogonal components and the use of the corresponding
scores as regressors to predict the response(s). In this regard,
one of the most widely used approaches is principal component
regression (PCR) (Hotelling, 1957; Kendall, 1957; Massy, 1965;
Jeffers, 1967; Jolliffe, 1982, 2002; Martens and Naes, 1991;
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Martens and Geladi, 2004) which, as the name suggests, involves
a two-stage process where at first principal component analysis is
used to compress the information in the X block onto a reduced
set of relevant scores, as already described in Equation (1):

T = XP (12)

and then these scores constitute the predictor block to build a
multiple linear regression:

Ŷ = TC (13)

C being the matrix of regression coefficients for this model. By
combining Equations (12, 13), it can be easily seen how PCR still
describes a linear relationship between the responses Y and the
original variables X:

Ŷ = TC = XPC = XBPCR (14)

mediated by a matrix of regression coefficients BPCR (=PC),
which is different from the one that would be estimated by
Equation (11), since it is calculated by taking into account only
the portion of the variability in the X block accounted for by the
selected principal components. The use of principal component
scores as predictors allows to solve the issues connected to the
matrix

(

XTX
)

being usually ill-conditioned when dealing with
spectroscopic techniques, but may be still suboptimal in terms
of predictive accuracy.

Indeed, as described in Equations (12, 13), calculating a
PCR model is a two-step procedure, which involves at first the
calculation of PC scores and then the use of these scores to build
a regression model to predict the response(s). However, these
two steps have different objective functions, i.e., the criterion
which is used to extract the scores from the X matrix is
not the same which guides the calculation of the regression
coefficients C in Equation (13). Stated in different words, the
directions of maximum explained variance (especially when
there are many uninformative sources of variability in the data)
may not be relevant for the prediction of the Y . To overcome
this drawback, an alternative approach to component-based
regression is represented by the Partial Least-Squares algorithm
(Wold et al., 1983; Geladi and Kowalski, 1986; Martens and Naes,
1991) which, due to its being probably the most widely used
calibration method in chemometrics, will be described in greater
detail in the following subparagraph.

Partial Least Squares (PLS) Regression
Partial Least Squares (PLS) regression (Wold et al., 1983; Geladi
and Kowalski, 1986; Martens and Naes, 1991) was proposed as
an alternative method to calculate reliable regression models in
the presence of ill-conditioned matrices. Analogously to PCR,
it is based on the extraction of a set of scores T by projecting
the X block on a subspace of latent variables, which are relevant
for the calibration problem. However, unlike PCR, the need
for the components not only to explain a significant portion
of the X variance but also to be predictive for the response Y

is explicitly taken into account for the definition of the scores.

Indeed, in PLS, the latent variables (i.e., the directions onto
which the data are projected) are defined in such a way to
maximize the covariance between the corresponding scores and
the response(s): maximizing the covariance allows to obtain
scores which at the same time describe a relevant portion of
the X variance and are correlated with the response(s). Due to
these characteristics, and differently than what already described
in the case of MLR (see Equation 11) and, by extension, PCR,
in PLS two distinct algorithms have been proposed depending
on whether only one or multiple responses should be predicted
(the corresponding approaches are named PLS1 and PLS2,
respectively). In the remainder of this section, both algorithms
will be briefly described and commented.

When a single response has to be predicted, its values on the
training samples are collected in a vector y; accordingly, the PLS1
algorithm extracts scores from the X block having maximum
covariance with the response. In particular, the first score t1 is the
projection of the data matrix X along the direction of maximum
covariance r1:

max
r1

[Cov(t1, y)] = max
r1

(tT1 y) (15)

While the successive scores t2 · · · tF , which are all orthogonal,
account in turn for the maximum residual covariance. Therefore,
PLS1 calculates a set of orthogonal scores having maximum
covariance with y, according to:

T = XR (16)

R being the weights defining the subspace onto which the matrix
should be projected, and then uses these scores as regressors for
the response:

ŷ = Tq (17)

q being the coefficients for the regression. Similarly to what
already shown in the case of PCR, Equations (16, 17) can be then
combined in a single one to express the regression model as a
function of the original variables, through the introduction of the
regression vector bPLS1 (=Rq):

ŷ = Tq = XRq = XbPLS1. (18)

In contrast, in the multi-response case (PLS2), it is assumed that
also the matrix Y , which collects the values of the dependent
variables on the training samples, has a latent structure, i.e., it
can be approximated by a component model:

Ŷ = UQT (19)

U and Q being the Y scores and loadings, respectively. In
particular, in order for the calibration model to be efficient, it
is assumed that the X and the Y matrices share the same latent
structure. This is accomplished by imposing that the component
be relevant to describe the variance of the independent block
and predictive for the responses. In mathematical terms, pairs of
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scores are simultaneously extracted from the X and the Y blocks
so to have maximum covariance:

max
ri ,qi

[Cov(ti, ui)] = max
ri ,qi

(tTi ui) (20)

Where ti and ui are the X and the Y scores on the ith latent
variable, respectively, qi is the ith column of the Y loading matrix
Q while ri is the ith column of the X weight matrix R, which has
the same meaning as specified in Equation (16). Additionally,
these scores are made to be collinear, through what is normally
defined as the inner relation:

ui = tici ∀i (21)

ci being a proportionality constant (inner regression coefficient).
When considering all the pairs of components, Equation (21) can
be rewritten in a matrix form as:

U = TC (22)

where:

C =







c1 · · · 0
...

. . .
...

0 · · · cF






. (23)

Also in this case, by combining all the equations defining the
model, it is possible to express the predicted responses as a linear
function of the original variables:

Ŷ = UQT
= TCQT

= XRCQT
= XBPLS2 (24)

where the matrix of regression coefficients BPLS2 is defined as
RCQT .

Based on the above description, it is clear that, when more
than one response has to be modeled, it is essential to decide
whether it could be better to build an individual model for each
dependent variable, or a single model to predict all the responses,
as the results would not be the same. In particular, it is advisable
to use the PLS2 approach only when one could reasonably assume
that there are systematic relationships between the dependent
variables.

On the other hand, independently on what model one decides
to use, once the values of the regression coefficients (here
generally indicated as B) have been estimated based on the
training samples, they can be used to predict the responses for
any new set of measurements (Xnew):

Ŷnew = XnewB. (25)

Here, it should be stressed that, in order for the calibrations built
by PLS (but the same concept holds for PCR) to be accurate
and reliable, a key parameter is the choice of an appropriate
number of latent variables to describe the data. Indeed, while
selecting a low number of components one can incur in the risk of
not explaining all the relevant variance (underfitting), including
too many of them (so that not only the systematic information

is captured, but also the noise), can lead to overfitting, i.e., to
a model which is very good in predicting the samples it has
been calculated on, but performs poorly on new observations. To
reduce this risk, a proper validation strategy is needed (see section
Validation) and, in particular, the optimal number of latent
variables is selected as the one leading to the minimum error
during one of the validation stages (usually, cross-validation).

Selected Application of Regression
Methods to Pharmaceutical Problems
Regression methods in general, and especially PLS, are often
combined with spectroscopy in order to develop rapid
and (sometimes) non-destructive methodologies for the
quantification of active ingredients in formulations. For
instance, Bautista et al. (1996) quantified three analytes of
interest (caffeine, acetylsalicylic acid and acetaminophen) in
their synthetic ternary mixtures and different formulations
by UV-Vis spectroscopy assisted by a PLS calibration model.
Mazurek et al. proposed two approaches based on coupling
FT-Raman spectroscopy with PLS and PCR calibration for
estimation of captopril and prednisolone in tablets (Mazurek
and Szostak, 2006a) and diclofenac sodium and aminophylline in
injection solutions (Mazurek and Szostak, 2006b). The authors
compared results obtained from calibration models built by
using unnormalised spectra with the values found when an
internal standard was added to each sample and the spectra
were normalized by its selected band intensity at maximum or
integrated. Another study on injection samples was proposed
by Xie et al. (2010), using NIR spectroscopy combined with
PLS and PCR to quantify pefloxacin mesylate (an antibacterial
agent) in liquid formulations. PLS regression was also coupled
to MIR (Marini et al., 2009) and NIR spectroscopy (Rigoni et al.,
2014) to quantify the enantiometric excess of different APIs
in the solid phase, also in the presence of excipients, based on
the consideration that, in the solid phase, the spectrum of the
racemic mixture could be different from that of either pure
enantiomer. Specifically, it was possible to accurately quantify
the enantiomeric excess of S-(+)-mandelic acid and S-(+)-
ketoprofen by MIR spectroscopy coupled by PLS on the whole
spectrum and after variable selection by sequential application
of backward interval PLS and genetic algorithms (biPLS-GA)
(Marini et al., 2009), while NIR was used to quantify the
enantiomeric excess of R-(–)-epinephrine and S-(+)-ibuprofen
(Rigoni et al., 2014). In the latter case, it was also shown that,
when using the validated model to quantify the enantiomeric
excess of API in the finished products, the influence of excipients
and dosage forms (intact tablets or powders) has a relevant
impact on the final predictive accuracy.

CLASSIFICATION

As already introduced in the previous section, in chemometric
applications, in general, and in the context of pharmaceutical
analysis, in particular, one is often interested in using the
experimentally collected data (e.g., spectroscopic profiles) to
predict qualitative or quantitative properties of the samples.
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While the regression methods for the prediction of quantitative
responses have been already presented and discussed in section
Regression, the main chemometric approaches for the prediction
of qualitative properties of the individuals under investigation
are outlined herein. These approaches are generally referred
to as classification methods, since any discrete level that the
qualitative variable can assume may also be defined as a class
(or category) (Bevilacqua et al., 2013). For instance, if one
were interested in the possibility of recognizing which of three
specific sites a raw material was supplied from, it is clear that
the response to be predicted could only take three possible
values, namely “Site A,” “Site B,” and “Site C”; each of these
three values would correspond to a particular class. A class
can be then considered as an ensemble of individuals (samples)
sharing similar characteristics. In this example, samples from
the first class would all be characterized by having been
manufactured from a raw material produced in Site A, and
similar considerations could be made for the specimens in
the second and third classes, corresponding to Site B and
Site C, respectively. As it could already be clear from the
example, there are many ambits of application for classification
methods in pharmaceutical and biomedical analysis, some of
which will be further illustrated in section Selected Applications
of Classification Approaches for Pharmaceutical Analysis, after
a brief theoretical introduction to the topic as well as the
chemometric methods most frequently used in this context
(especially, in combination with spectroscopic techniques).

As anticipated above, classification approaches aim at relating
the experimental data collected on a sample to a discrete value
of a property one wishes to predict. This same problem can be
also expressed in geometrical terms by considering that each
experimental profile (e.g., spectrum) can be seen as point in
the multivariate space described by the measured variables.
Accordingly, a classification problem can be formulated as the
identification of regions in this multivariate space, which can be
associated to a particular category, so that if a point falls in one of
these regions, it is predicted as being part of the corresponding
class. In this respect, classification approaches can be divided
into two main sub-groups: discriminant and class-modeling
methods. In this framework, a fundamental distinction can be
made between discriminant and class-modeling tools, which
constitute the two main approaches to perform classification
in chemometrics (Albano et al., 1978). In detail, discriminant
classification methods focus on identifying boundaries in the
multivariate space, which separate the region(s) corresponding
to a particular category from those corresponding to another
one. This means they need representative samples from all the
categories of interest in order to build the classification model,
which will be then able to predict any new sample as belonging
only to one of the classes spanned by the training set. In a
problem involving three classes, a discriminant classification
method will look for those boundaries in the multivariate space
identifying the regions associated to the three categories in
such a way as to minimize the classification error (i.e., the
percentage of samples wrongly assigned). An example is reported
in Figure 4A. On the other hand, class-modeling techniques
look at the similarities among individuals belonging to the same

category, and aim at defining a (usually bound) subspace where
samples from the class under investigation can be found with
a certain probability; in this sense, they resemble outlier tests,
and indeed they borrow most of the machinery from the latter.
Operationally, each category is modeled independently on the
others and the outcome is the definition of a class boundary
which should enclose the category sub-space:, i.e., individuals
falling within that space are likely to belong to the class (are
“accepted” by the class model), whereas samples falling outside
are deemed as outliers and rejected. It is then evident that one
of the main advantages of class modeling approaches is that they
allow building a classification model also in the asymmetric case,
where there is only a category of interest and the alternative
one is represented by all the other individuals not falling under
the definition of that particular class. In this case, since the
alternative category is ill-defined, heterogeneous, and very likely
to be underrepresented in the training set, any discriminant
model would result suboptimal, as its predictions would strongly
depend on the (usually not enough) samples available for that
class. On the other hand,modeling techniques define the category
space only on the basis of data collected for the class of interest,
so those problems can be overcome.

When the specific problem requires to investigate more than
one class, each category is modeled independently on the others
and, accordingly, the corresponding sub-spaces may overlap
(see Figure 4B). As a consequence, classification outcomes are
more versatile than with discriminant methods: a sample can be
accepted by a single category model (and therefore be assigned to
that class), by more than one (falling in the area where different
class spaces overlap and, hence, resulting “confused”) or it could
fall outside any class-region and therefore be rejected by all the
categories involved in the model.

Discriminant Methods
As mentioned above, predictions made by the application of
discriminant methods are univocal; namely, each sample is
uniquely assigned to one and only one of the classes represented
in the training set. This is accomplished by defining decision
surfaces, which delimit the boundaries among the regions of
space associated to the different categories. Depending on the
model complexity, such boundaries can be linear (hyperplanes)
or assume more complex (non-linear) shapes. When possible,
linear discriminant models are preferred as they have less
parameters to tune, require a lower number of training samples
and are in general more robust against overfitting. Based on
these considerations, the first-ever and still one of the most
commonly used discriminant techniques is Linear Discriminant
Analysis (LDA), originally proposed by Fisher (1936). It
relies on the assumption that the samples of each class are
normally distributed around their respective centroids with the
same variance/covariance matrix (i.e., the same within-category
scatter). Under these assumptions, it is possible to calculate
the probability that each sample belongs to a particular class g
p
(

g
∣

∣ x
)

, as:

p
(

g
∣

∣ x
)

=
πg

C
e−

1
2 (x−xg)

T
S−1(x−xg) (26)
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FIGURE 4 | Illustration of the difference between discriminant (A) and modeling (B) classification techniques. Discriminant classification techniques (A) divide the

available hyperspace into as many regions as the number of the investigated categories (three, in the present example), so that whenever a sample falls in a particular

region of space, it is always assigned to the associated class. Modeling techniques (B) build a separate model for each one of the categories of interest, so that there

can be regions of spaces where more than a class is mapped and others where there is no class at all.

where xg is the centroid of class g, S the overall within-class
variance/covariance matrix, πg the prior probability (i.e., the
probability of observing a sample from that category before
carrying out any measurement), C is a normalization constant

and the argument of the exponential
(

x−xg
)T

S−1
(

x−xg
)

is
defined as the squared Mahalanobis distance of the individual to
the center of the category. Classification is then accomplished by
assigning the sample to the category, to which it has the highest
probability of belonging.

LDA is a well-established technique, which works well also
on data for which the normality assumption is not fulfilled but,
unfortunately, it can rarely be used on spectroscopic data for the
same reasons MLR cannot be utilized for regression (see section
Regression): calculation of matrix S−1 requires the experimental
data matrix to be well-conditioned, which is not the case, when
dealing with a high number of correlated variables measured on a
limited number of samples. To overcome these limitations, LDA
can be applied on the scores of bilinear models used to compress
the data (e.g., on principal components), but the most commonly
used approach involves a suitable modification of the PLS
algorithm which makes it able to deal with classification issues;

the resulting method is called partial least squares discriminant
analysis (PLS-DA) (Sjöström et al., 1986; Ståle and Wold, 1987;
Barker and Rayens, 2003), and it will be briefly described in the
following paragraph.

Partial Least Squares Discriminant Analysis (PLS-DA)
In order for the PLS algorithm to deal with discriminant
classification problems, the information about class belonging
has to be encoded in a response variable Y , which can be
then regressed onto the experimental matrix X to provide the
predictive model (Sjöström et al., 1986). This is accomplished
by defining Y as a “dummy” binary matrix, having as many
rows as the number of samples (N) and as many columns as the
number of classes (G). Each row in Y is a vector encoding the
information about class belonging of the corresponding sample,
whereas each column is associated to a particular class (the first
column to class 1, the second to class 2 and so on up to the Gth).
As such, the row vector corresponding to a particular sample will
contain all zeros except for the column associated to the class it
belongs to, where there will be a one. For instance, in the case
of a problem involving three categories, a sample belonging to
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Class 2 will be represented by the vector yi = [0 1 0]. A PLS
regression model is then calculated between the experimental
data matrix X and the dummy Y [as described in section Partial
Least Squares (PLS) Regression], and the matrix of regression
coefficients obtained is used to predict the value of the responses
on new samples, Ŷnew. Since the dependent variable is associated
to the categorical information, classification of the samples is
based on the predicted responses Ŷnew which, however, are not
binary but real-valued. As a consequence, different approaches
have been proposed in the literature to define how to classify
samples in PLS-DA based on the values of Ŷnew. The naivest
approach (see e.g., Alsberg et al., 1998) is to assign each sample to
the category corresponding to the highest value of the predicted
response vector. For instance, if the following predictions were
obtained for a particular sample: ŷnew,k= [0.1 − 0.4 0.8], it would
be assigned to Class 3. On the other hand, other strategies have
been also suggested, like the application of LDA on Ŷnew or on
the PLS scores (Nocairi et al., 2004; Indahl et al., 2007), or the use
of thresholds based on probability theory (Pérez et al., 2009).

Class-Modeling Methods
As already stated, class-modeling methods aim at identifying
a closed (bound) sub-space, where it is likely to find samples
from a particular category, irrespective of whether other classes
should also be considered or not. They try to capture the
features, which make individuals from the same category similar
to one another. Operationally, they define the class space by
identifying the “normal” variability which can be expected
among samples belonging to that category and, accordingly,
introducing a “distance-to-the-model” criterion which accounts
for the degree of outlyingness of any new sample. Among the
different class-modeling techniques proposed in the literature,
soft independent modeling of class analogies (SIMCA) is by far
the most commonly used, especially for spectroscopic data, due
to its ability of dealing with ill-conditioned experimental data
matrices and, therefore, it will be briefly described below (for
more details, the reader is referred to Wold, 1976; Wold and
Sjöström, 1977, 1987).

Soft Independent Modeling of Class Analogies

(SIMCA)
The main idea behind SIMCA is that the systematic variability
characterizing the samples for a particular category can be
captured and accurately accounted for by a PCA model of
appropriate dimensionality. This model is built by using only the
samples from the investigated category:

Xg = TgP
T
g + Eg (27)

where the symbols have the same meaning as in Equation (2),
and the subscript indicates that the model is calculated by using
only the training data from class g. The use of PCA to define
the similarities among the samples belonging to the category
of interest provides also the machinery to assess whether any
new sample is likely to come from that class or not through the
definition of two statistics normally used for outlier detection,
namely T2 and Q. As already introduced in section Principal

Component Analysis, the former is the squared Mahalanobis
distance of a sample to the center of the scores space, indicating
how far the individual is from the distribution of the “normal”
samples in the space spanned by the significant PCs (Hotelling,
1931), while the latter is the (Euclidean) distance of the sample
to its projection onto the PC space, describing how well that
individual is fitted by the PCA model (Jackson and Muldholkar,
1979). In the context of SIMCA, once the PCA model of the gth

category is calculated according to Equation (27), any specimen
to be predicted is projected onto that model and its values of
T2 and Q are used to calculate an overall distance to the model
di,g (Yue and Qin, 2001), which constitutes the basis for class
acceptance or rejection:

di,g =

√

(

T2
i,g

)2
+

(

Qi,g

)2
(28)

where the subscript indicates that the ith sample is tested against
the model of the gth category. Accordingly, the boundary of
the class space is identified by setting a proper threshold to the
distance, so that if a sample has a distance to the model lower
than the threshold it is accepted by the category and, otherwise,
it is rejected.

Selected Applications of Classification
Approaches for Pharmaceutical Analysis
As mentioned before, classification approaches are widely
applied in quality controls of pharmaceuticals, in particular
to detect counterfeit drugs, as, for instance, it is reported in
da Silva Fernandes et al. (2012), where NIR and fluorescence
spectroscopy were combined with different classification
methods to distinguish among pure and adulterated tablets.
In Storme-Paris et al. (2010), a non-destructive approach is
proposed to distinguish genuine tablets from counterfeit or
recalled (from the market) medicines. In order to achieve this,
NIR spectra (directly collected on the tables) are analyzed by
SIMCA. Results obtained suggest the validity of this approach; in
fact, it allowed highlighting small differences among drugs (e.g.,
different coating), and it provided an excellent differentiation
among genuine and counterfeits products. For the same purpose,
namely counterfeit drug detection, NIR spectra were also widely
combined with PLS-DA. Only to mention one, de Peinder
et al. (2008) demonstrated the validity of this approach to spot
counterfeits of a specific cholesterol-lowering medicine. Despite
the fact that the authors highlighted the storage conditions
sensibly affecting NIR spectra (because of humidity), the PLS-
DA model still proved to be robust and provided excellent
predictions.

VALIDATION

Chemometrics relies mainly on the use of empirical models
which, given the experimental measurements, should summarize
the information of the data, reasonably approximate the system
under study, and allow predictions of one or more properties of
interest. Bearing this in mind, given the “soft” (i.e., empirical)
nature of the models employed, there are manymodels one could
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in principle calculate on the same data and their performances
could be influenced by different factors (number of samples
and their representativeness, the method itself, the algorithm,
and so on) (Brereton et al., 2018). Thus, selecting which model
is the most appropriate for the data under investigation and
verifying how reliable it is, is of fundamental importance and the
chemometric strategies for doing so are collectively referred to
as validation (Harshman, 1984; Westad and Marini, 2015). To
evaluate the quality of the investigated models, the validation
process requires the definition of suitable diagnostics, which
could be based on model parameters but more often rely on the
calculation of some sort of residuals (i.e., error criteria). In this
context, in order to avoid overoptimism or, in general, to obtain
estimates which are as unbiased as possible, it is fundamental that
the residuals which are used for validation are not generated by
the application of the model to the data it has been built on, since
in almost all cases, they cannot be considered as representative of
the outcomes one would obtain on completely new data. For such
reason, a correct validation strategy should involve the estimation
of the model error on a dataset different than the one used for
calculating the model parameters. This is normally accomplished
through the use of an external test set or cross-validation.

The use of a second, completely independent, set of data for
evaluating the performances and, consequently, calculating the
residuals (test set validation) is the strategy which best mimics
how the model will be routinely used, and it is therefore the one
to be preferred, whenever possible. On the other hand, cross-
validation is based on the repeated resampling of the dataset,
into a training and a test sub-sets, so that at each iteration
only a part of the original samples is used for model building
while the remaining individuals are left out for validation.
This procedure is normally repeated up to the moment when
each sample has been left out at least once or, anyway, for a
prespecified number of iterations. Cross-validation is particularly
suited when the number of available samples is small and
there is no possibility of building an external test set, but the
resulting estimates can be still biased as the calibration and
validation sets are never completely independent on one another.
In general, it is rather used for model selection (e.g., estimating
the optimal number of components) than for the final validation
stage.

OTHER SELECTED APPLICATIONS

In addition to some specific applications described above, in
this paragraph additional examples will be presented to further

emphasize the usefulness of chemometrics-based spectroscopy
for pharmaceutical analysis.

Morris and Forbes (2001) coupled NIR spectroscopy with
multivariate calibration for quantifying narasin chloroform-
extracted from granulated samples. In another study, Forbes et al.
(2001) proposed a transmission NIR spectroscopy method using
multivariate regression for the quantification of potency and
lipids in monensin fermentation broth.

Ghasemi and Niazi (2007) developed a spectrophotometric
method for the direct quantitative determination of captopril
in pharmaceutical preparation and biological fluids (human
plasma and urine) samples. Since the spectra were recorded at
various pHs (from 2.0 to 12.8), different models were tested,
including the possibility of a preliminary spectral deconvolution
using multi-way approaches. In particular, the use of PLS on
the spectra at pH 2.0 allowed to build a calibration curve
which resulted in a very good accuracy. Li et al. (2014) used
Raman spectroscopy to identify anisodamine counterfeit tablets
with 100% predictive accuracy and, at the same time, NIR
spectroscopy to discriminate genuine anisodamine tablets from
5 different manufacturing plants. In the latter case, PLS-DA
models were found to have 100% recognition and rejection rates.
Willett and Rodriguez (2018) implemented a rapid Raman assay
for on-site analysis of stockpiled drugs in aqueous solution,
which was tested on Tamiflu (oseltamivir phosphate) by using
three different portable and handheld Raman instruments. PLS
regression models yielded an average error with respect to the
reference HPLC values, which was lower than 0.3%. Other
examples of application can be found in Forina et al. (1998),
Komsta (2012), Hoang et al. (2013), and Lohumi et al. (2017).

CONCLUSIONS

Chemometrics provide a wealth of techniques for both the
exploratory analysis of multivariate data as well as building
reliable calibration and classification strategies to predict
quantitative and qualitative responses based on the experimental
profiles collected on the samples. Coupled to spectroscopic
characterization, it represents an indispensable and highly
versatile tool for pharmaceutical analysis at all levels.
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