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Editorial on the Research Topic

Breakthrough BCI Applications in Medicine

SCOPE

A brain-computer interface (BCI) provides a direct connection between cortical activity and
external devices. BCIs may use non-invasive methods such as the Electroencephalogram (EEG) or
invasive methods such as the Electrocorticogram (ECoG) or neural spike recordings (Homer et al.,
2013; Guger et al., 2015, 2018). In the last decades, many BCI approaches have been developed,
based on slow waves, evoked potentials (EPs), steady-state evoked potentials (SSEPs), code-based
EPs or motor imagery (MI) paradigms, with the aim of bringing medical applications that help
people to the market. The first BCI systems were used to spell, control prosthetic devices, or move
cursors on a computer screen (Guger et al., 2015; Allison et al., 2020). Early BCI work focused on
locked-in or completely locked-in patients. Nowadays, many more clinical applications of BCIs
technology are being developed.

RESEARCH HIGHLIGHTS

Several neurological disorders impair voluntary movements and communication, despite intact
cognitive functioning. The spectrum of BCI usage for control is extremely wide and includes neural
prostheses, wheelchairs (Fernández-Rodríguez et al.), home environments, humanoid robots, and
much more (Fukuma et al.). Another exciting clinical application of BCIs focuses on facilitating
the recovery of motor function after a stroke or spinal cord injury (Thompson et al.). BCIs
for rehabilitation integrate BCIs with conventional methods and devices for rehabilitation like
functional electrical stimulation (FES)-based neuroprostheses (Colachis et al.; Remsik et al.),
transcranial direct current stimulation (tDCS) (Rodriguez-Ugarte et al.) etc. to enhance the
brain’s reorganization of corticospinal and cortico-muscular connections after acute, sub-acute, or
chronic lesions.

Beside motor deficits, BCI-induced brain plasticity might contribute to the treatment of
high-order cortical dysfunctions, such as improving social and emotional behaviors in autism
spectrum disorder (Amaral et al.), training inhibitory control and working memory in ADHD,
as well as contributing to the rehabilitation of cognitive deficits related to dementia. Moreover,
BCI-based brain training can help preserve cognitive performance in healthy older adults,
promoting successful aging and reducing the social burden of the population’s increasing aging.
BCIs are also used to establish closed-loop control of brain sensing and stimulation technology to

6
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improve, for example, tremor, or to provide sensation. Another
new challenge described in this Research Topic refers to the inner
speech detection, defined as the ability to generate internal speech
representations, in the absence of any external speech stimulation
or self-generated overt speech (Martin et al.).

Finally, BCIs may increase the diagnostic accuracy of brain
disorders. For instance, BCIs could be used to detect neural
signatures of cognitive processes in persons diagnosed with
disorders of consciousness (DOC) (Annen et al.; Guger et al.;
Heilinger et al.), provide real-time functional brain mapping for
neurosurgery (Jiang et al.), improve visual function assessment
in glaucoma, detect the intraoperative awareness during general
anesthesia (Rimbert et al.), screening for cognitive function in
complete immobility (Lulé et al.), etc.

SUMMARY

The articles here present different BCI approaches that could
enter mainstream clinical practice, improving the assessment,
rehabilitation, and management of several neurological
diseases. All presented papers use elaborate, task-specific
experiment setups with both invasive and non-invasive
BCIs. Future research can build on these pioneering works
and bring new standardized BCI applications in medicine.
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Characterization of Hand Clenching
in Human Sensorimotor Cortex Using
High-, and Ultra-High Frequency
Band Modulations of
Electrocorticogram

Tianxiao Jiang 1, Su Liu 1, Giuseppe Pellizzer 2, Aydin Aydoseli 3, Sacit Karamursel 4,

Pulat A. Sabanci 3, Altay Sencer 3, Candan Gurses 5 and Nuri F. Ince 1*

1Clinical Neural Engineering Lab, Department of Biomedical Engineering, University of Houston, Houston, TX, United States,
2 Research Service, Minneapolis VA Health Care System, Departments of Neurology and Neuroscience, University of

Minnesota, Minnesota, MN, United States, 3Department of Neurosurgery, Istanbul Faculty of Medicine, Istanbul University,

Istanbul, Turkey, 4Department of Physiology, Faculty of Medicine, Istinye University, Istanbul, Turkey, 5Department of

Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey

Functional mapping of eloquent cortex before the resection of a tumor is a critical

procedure for optimizing survival and quality of life. In order to locate the hand area

of the motor cortex in two patients with low-grade gliomas (LGG), we recorded

electrocorticogram (ECoG) from a 113 channel hybrid high-density grid (64 large

contacts with diameter of 2.7 mm and 49 small contacts with diameter of 1 mm)

while they executed hand clenching movements. We investigated the spatio-spectral

characteristics of the neural oscillatory activity and observed that, in both patients, the

hand movements were consistently associated with a wide spread power decrease in

the low frequency band (LFB: 8–32 Hz) and a more localized power increase in the

high frequency band (HFB: 60–280 Hz) within the sensorimotor region. Importantly, we

observed significant power increase in the ultra-high frequency band (UFB: 300–800

Hz) during hand movements of both patients within a restricted cortical region close

to the central sulcus, and the motor cortical “hand knob.” Among all frequency bands

we studied, the UFB modulations were closest to the central sulcus and direct cortical

stimulation (DCS) positive site. Both HFB and UFB modulations exhibited different timing

characteristics at different locations. Power increase in HFB and UFB starting before

movement onset was observed mostly at the anterior part of the activated cortical region.

In addition, the spatial patterns in HFB and UFB indicated a probable postcentral shift

of the hand motor function in one of the patients. We also compared the task related

subband modulations captured by the small and large contacts in our hybrid grid. We

did not find any significant difference in terms of band power changes. This study shows

initial evidence that event-driven neural oscillatory activity recorded from ECoG can reach

up to 800 Hz. The spatial distribution of UFB oscillations was found to be more focalized

and closer to the central sulcus compared to LFB and HFB. More studies are needed to

characterize further the functional significance of UFB relative to LFB and HFB.

Keywords: hybrid high-density grid, ECoG, ultra-high frequency band, hand movement, sensorimotor, postcentral

shift
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1. INTRODUCTION

Functional brain mapping is essential to improve the outcome of
the neurosurgery by maximizing the excision while minimizing
neurological deficits (Sanai and Berger, 2008; Chang et al., 2011).
However, the mapping of the eloquent areas of the brain is
a complex procedure due to the large variability of functional
cortical organization between individuals (Brett et al., 2002;
Farrell et al., 2007), as well as to the functional reorganization
caused by brain injury, such as brain tumor (Dancause et al.,
2005; Kong et al., 2016). As of today, direct cortical stimulation
mapping (DCS) is still deemed as the gold standard in clinical
practice. By directly injecting current to the cortical surface, DCS
can either induce involuntary movement or suppress voluntary
movement depending on the functional region (Brunner et al.,
2009). However, some drawbacks of DCS are that it is time-
consuming to adjust stimulation parameters, and test successively
stimulation sites, and that it may induce spread of cortical
activation that elicit seizures.

In the past decade, there has been a growing interest in
the use of electrocorticogram (ECoG) to map functional areas
without delivering electrical current to the cortex. By placing an
electrode grid directly onto the cortex, it becomes possible to
record oscillatory activity of the cortical circuits with unparalleled
temporal and spatial resolution, as well as high signal quality.
Previous work has shown that sensorimotor activity is associated
with sub-band modulations of neural oscillations in the form of
event-related desynchronization (ERD) in the alpha (7–13 Hz)
and beta (13–32 Hz) bands and in the form of event-related
synchronization (ERS) in the gamma band ranging from 40 to
200 Hz (Pfurtscheller and Lopes da Silva, 1999; Miller et al.,
2007a). Recently it has been found that cognitive tasks related
ECoG power modulations existed in an even broader band (60–
500 Hz) (Gaona et al., 2011). High frequency band modulations
are thought to be related to local neuronal processing while
low frequency band changes are thought to reflect cortico-
cortical, and cortico-subcortical interactions (Su and Ojemann,
2013). Although the exact physiological mechanisms underlying
different subband modulations are yet to be elucidated, studies
comparing ECoG functional mapping with DCS results generally
showed that ERD in alpha and beta band were widespread and
had low spatial specificity (Crone et al., 1998a; Leuthardt et al.,
2007; Vansteensel et al., 2013). These clinical studies suggested
that gamma band ERS correlated better with DCS in terms of
specificity and sensitivity (Crone et al., 1998a). In recent years,
ERS in gamma band has been proposed and successfully used
for real-time functional mapping applications as well as brain
machine interfaces (BMI) (Schalk et al., 2008; Miller et al., 2009,
2010; Hochberg et al., 2012; Branco et al., 2017).

Previous ECoG based functional brain mapping studies
generally utilized regular clinical grid electrodes with large inter-
electrode distance (1 cm) and small number of channels (<64)
(Crone et al., 1998b; Aoki et al., 1999; Sinai et al., 2005; Leuthardt
et al., 2007, 2012; Miller et al., 2007a,b, 2012; Schalk et al.,
2008; Vansteensel et al., 2013). The frequency band of interest
investigated in these studies were generally limited to 250 Hz.
In this study, in order to map the hand function on the cortex,
we recorded 113-channel high-density ECoG at 2.4 kHz from

two patients with LGG while they performed voluntary hand
clenching movements. There is ample evidence that these hand
movements are controlled as a unit through motor synergies,
rather than by individual control of fingers (Mason et al., 2001;
Santello et al., 2013; Leo et al., 2016).We computed ECoG derived
functional mapping in typical frequency bands of LFB and HFB.
We also found that a small number of channels were associated
with significant power modulations in an ultra-high frequency
band ranging from 300 to 800 Hz. To the best of our knowledge,
this is the first report showing that ECoG spectral modulations
recorded from the hand area of the motor cortex can reach up
to 800 Hz. These ultra high frequency modulations were found
to be focally localized adjacent to the central sulcus, and close
to the “hand knob” of the motor cortex (Yousry et al., 1997),
and the DCS positive site. Moreover, in one of the patients, our
ECoG based mapping results suggested that there had been a
cortical reorganization of the hand motor function posterior to
the central sulcus.

2. MATERIALS AND METHODS

2.1. Patients
Two right-handedmale patients (P1 and P2) who were scheduled
for resection of LGG requiring a craniotomy over the left motor
and somatosensory brain areas were included in the study. Both
patients gave informed consent before their participation to the
study in accordance with the Declaration of Helsinki. The study
protocol was reviewed and approved by the Institutional Review
Boards (IRB) of Istanbul University, and of the University of
Houston.

Functional mapping using intracranial electrodes were
required to guide the resective surgeries since the tumor in both
patients was in proximity to the motor cortex. A customized 113-
channel hybrid electrode grid (INC electrode, CorTec GmbH)
was used to map the border between the tumor and eloquent
areas. The grid was positioned in a way to cover the border of the
tumor and extend toward the “hand knob” of the primary motor
area (M1). These hybrid ECoG grids have twice the density of
typical clinical ECoG grids, which generally have 1 cm spacing
between contacts, therefore providing higher spatial resolution.
Specifically, the grid has 64 large contacts (MP35N nickel-cobalt
alloy of 2.7 mm diameter, spaced every 1 cm) interlaced with
49 small contacts (platinum-iridium alloy of 1 mm diameter,
spaced every 1 cm) and embedded inmedical grade silicon rubber
substrate (Figure 3). The spacing between adjacent small and
large contacts is around 7 mm. The overall dimension of the
electrode grid was 86× 80× 0.4 mm.

The first patient (P1) was a 19 years old male who was
initially diagnosed and operated for epilepsy at the age of
7. Histopathological investigations revealed a World Health
Organization (WHO) grade II glioma (Louis et al., 2007).
He received another operation 3 years prior to the current
study. In this study, the patient was admitted to the clinic
for a new onset of absence seizures which were resistant to
antiepileptic drugs (oxcarbazepine 600 mg 3×1, levetiracetam
1,000 mg 3×1, topiramate 100 mg 3×1, lacosamide 100 mg 2 +

1+ 2). The preoperative and postoperative MRIs are provided in
Figure 1. The head MRI indicated a recurrent left frontal tumor
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adjacent to the motor cortex. The patient had no functional
deficit postoperatively. However, although reduced, the patient
was not seizure free at follow up of 1 year according to a
routine neurological examination under his antiepileptic medical
therapy.

The second patient (P2) was a 30 years old male who
was admitted to the clinic due to right sided numbness
affecting his hand for the previous 3 months. The head MRI
(Figure 2) revealed a left posterior frontal cortico-subcortical
tumor seated under the motor cortex. The determination of
right hand weakness during surgery prompted its termination
without further tumor resection (Figure 2). The patient had a
postoperative right hand paresis that improved after 3 months.
Pathological investigation revealed a WHO grade II glial tumor.

The clinical profiles of both patients and experiment
information are shown in Table 1.

2.2. ECoG Recordings and Direct Cortical
Stimulation
The ECoG recordings for patient P1 was carried out in the
epilepsy monitoring unit (EMU) immediately after implantation
of the ECoG grid for prolonged monitoring of seizure onset

TABLE 1 | Summary of subjects and experiments.

ID Case Sex Age HNa LGG Site Trials

P1 LGG, EPb Mc 19 Right Left frontal 18

P2 LGG M 30 Right Left posterior frontal 30

aHandedness.
bEpilepsy.
cMale.

FIGURE 1 | Axial fluid-attenuated inversion recovery (FLAIR) brain MRI for P1 shown in radiological convention. Preoperative left frontal hyperdensities (upper) around

the previous operation tumor space were reduced in size in postoperative MRI (lower).

FIGURE 2 | Preoperative (upper) and postoperative (lower) axial MRI FLAIR sequences for P2. Surgery was terminated with incomplete resection due to

determination of right hand weakness.
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zone. For patient P2, ECoG recordings were performed in the
operating room (OR) during awake-surgery to map and monitor
the hand function throughout the resection. For both patients,
ECoG data related to hand movements was obtained prior to
DCS and surgical resection.

During the recordings, patients were asked to perform an
alternate hand clenching and relax task. In each trial, subjects
were instructed verbally to close the hand to a fist (i.e., hand
clenching) and maintain this posture for around 2–3 s until
instruction to relax. A resting period of at least 2 s was
maintained between hand relaxation and the consecutive hand
closing. ECoG, bipolar electrocardiogram (ECG), bipolar surface
electromyogram (EMG) of the forearm flexor muscles, and hand
movement data were recorded during the experiment with an
in-house custom-made interface (Jiang et al., 2017b).

All biosignals including ECoG, bipolar ECG, and forearm
EMG were recorded with a 256 channel bioamplifer gHIamp
(g.tec medical engineering GmbH, Graz Austria) through an
oversampling process at 2.4 kHz and 24 bit A/D resolution. To
be more specific, the amplifier first digitized the signals at 614.4
kHz which is much higher than the required sampling frequency.
Then, internally, the floating point digital signal processor (DSP)
of the amplifier performed averaging of samples to increase
the signal-to-noise ratio (SNR) and decimated the signal to the
desired rate of 2.4 kHz.

The signal acquisition and real-time visualization was
executed with a customized Simulink model (Matlab R2014a,
Mathworks, Inc) and gHIsys real-time signal processing library
(g.tec medical engineering GmbH, Graz Austria). The hand
movements of both patients were recordedwith a dataglove (DG5
VHand 3.0) and a high-definition webcam (Logitech HD C270).
The finger positions and video frame-timestampwere recorded at
200Hzwith custom in-house software that we developed in C++

running under Windows 7 OS and transmitted over Ethernet via

User Datagram Protocol (UDP) at 100 Mbits/s to the Simulink
model (Figure 3). Video frame timestamps and finger position
data were upsampled to 2.4 kHz for synchronization of neural
data with behavioral data. Detailed system specifications can be
found in our earlier publication (Jiang et al., 2017b).

Mapping of the hand area using DCS was performed on both
patients after the ECoG recordings. Stimulation was conducted
between pair of contacts with a current amplitude ranging from
1 to 15 mA, pulse width of 200–300 µs, and duration of 0.2 s,
according to the patient;s individual tolerance. However, since
both patients suffered from tumor related epilepsy, and DCS
sometimes produced after discharges, the first site that elicited
hand movements was labeled as DCS positive site. No additional
stimulation was performed after that due to the risk of inducing
seizures.

2.3. Electrode Localization and Relative
Distance to Central Sulcus
Since the experiments were performed in the EMU for P1,
postoperative CT after ECoG implantation and preoperative
MRI were used to coregister the electrode positions. For P2,
intraoperative photography and preoperative MRI were used
instead for electrode localization as intraoperative CT was not
available (Dalal et al., 2008; Gupta et al., 2014). For P1, CT+MRI
coregistration and electrode segmentation were performed using
Curry (version 7.0, Compumedics Neuroscan, Charlotte, NC,
USA) by a trained neurologist. For P2, craniotomy photos were
taken from the same position before and after the electrode
placement. Each visible contact was manually segmented out and
marked on the craniotomy picture taken before the electrode
placement. Gray matter and white matter were automatically
segmented out using SPM12 (Kiebel et al., 1997). The segmented
volume was rendered in Matlab and visually compared with

FIGURE 3 | Recording setup to collect ECoG and sensor data simultaneously. The layout of the custom hybrid ECoG grid with 113 channels was shown on a

template brain surface. Video and hand position data were captured by the behavioral system and sent to g.HIsys Simulink system via UDP to synchronize with neural

data (Jiang et al., 2017b).
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the craniotomy picture. Landmarks such as blood vessels, sulci
and gyri were used to co-register the electrodes from the photo
and the rendered MRI volume. The positions of contacts that
were not visually exposed were iteratively interpolated from
the neighboring contacts (Figure 4). The photo based electrode
localizations procedure was also performed for P1 and the result
was compared with the CT+MRI based method for an estimate
of concordance of the two methods.

To compute the relative distance between the electrodes and
the central sulcus, the central sulcus outline was delineated on
the individual MRI by a series of discrete points (Figure 4I).
The continuous curve of the central sulcus was approximated
by consecutive linear segments. The relative distance from
each contact to the central sulcus was defined as the minimal
Euclidean distance to all the linear segments.

2.4. Preprocessing
All data were scrutinized in Matlab, and corrupted channels
were excluded from further analysis. Incomplete and noisy
trials were also excluded by visually checking the neural and
behavioral data with synchronized video recordings offline.
Second-order Butterworth IIR notch filters with 2 Hz stop
band were applied to eliminate the effect of 50 Hz power line
noise and its harmonics. Movement onset from hand relaxed
to clenched was determined using the minimum acceleration
criterion with constraints (MACC) method (Botzer, 2009) on
the dataglove data. The earliest movement onset detected among
all five digits was used as the onset of hand clenching. We
found that the output of the dataglove was more reliable than
EMG to determine movement onset partly due to artifacts and
occasional bursts of EMG that were not associated with hand

movements, as could be verified from the video. An epoch of
ECoG data, uncorrupted EMG, synchronized finger positions
and movement onsets automatically determined using MACC is
shown in Figure 5A. For selected trials with uncorrupted EMG,
the onset of EMG signal was found to be 50 ms prior to the onset
of the finger positions changes measured from the dataglove
data (Figure 5B). To account for this delay, movement onset
determined from the dataglove signal was shifted 50 ms earlier
in the following analyses.

2.5. Time-Frequency and Power Spectral
Density Analysis
For each channel, a time-frequency analysis was performed using
short-time Fourier transform (STFT) on 3 s of ECoG data
centered at each hand closing onset. Specifically, a 1,024-sample
FFT was computed in each 1,024-sample Hanning window
shifted with 90% overlap. Denoting movement onset as 0 s, each
channel spectrogram (SC) was computed by averaging across
trials (SA) and then normalized by the spectrum of the baseline
period starting from −1.5 s and extending to −1 s (SR). The
normalized spectrogram (SC) was transformed into dB scale:

SC = 10× log10
SA

SR
(1)

The normalized time-frequency maps (SC) were visualized to
investigate the ERD and ERS patterns in active channels of the
electrode grid.

The power spectral densities of ECoG during baseline and
hand close were estimated using Welch’s method from 0.5 s of
data segments. The baseline segment was the same as for the
time-frequency analysis, while the hand movement segment was

FIGURE 4 | Intraoperative photo based electrode registration procedure for P2. (A) Cortex photo before electrode placement. (B) Photo taken from the same position

after electrode placement. (C) Electrodes (disks in gold) manually segmented out and overlaid on the cortex. (D) Patient’s preoperative MRI. (E) Gray and white matter

segmentation. (F) 3D texture rendering of gray and white matter. Blood vessels were accentuated by red lines as landmarks. (G) Picture overlaid on 3D rendering by

comparing the landmarks. (H) Electrodes registered on 3D rendering of the brain. (I) The side view of the cortex with registered and interpolated electrodes, central

sulcus was delineated by a series of discrete black points.
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FIGURE 5 | (A) Synchronized epoch of data of ECoG, ECG, EMG, and finger

positions data of P2. ECoG were high-pass filtered at 3 Hz, whereas EMG was

high-pass filtered at 50 Hz for visualization. (B) Overlay of rectified EMG (gray)

from uncorrupted trials, average of all five finger positions from the dataglove

(red) and root mean square (RMS) average of rectified EMG (blue).

selected as −0.1 to +0.4 s to cover the movement initiation
period.While the oversampling process executed by the amplifier
provides exceptional SNR, the averaging step before decimation
has a narrow band low-pass filtering effect where its passband
response is not flat and has a droop. Consequently, the estimated
power spectrum of ECoG does not have a visible flat noise
floor and follows the magnitude response of the averaging filter
which causes difficulties in the interpretation of the spectrum.
In practice, in order to compensate the passband droop and
obtain a flat passband response, an FIR filter is generally used
after decimation (Lyons, 2004) with a magnitude response that
is ideally an inverted version of the averaging filter passband
response (Lyons, 2004). For this reason, we corrected the
estimated spectrum with the inverted magnitude of the averaging
filter in the passband.

Based on initial observations, the power spectral densities
were estimated in two groups of channels for each patient:

channels with ERS restricted in HFB and channels with ERS
clearly extended to a higher frequency range.

Furthermore, we investigated three reactive frequency bands.
The 8–32 Hz low frequency band (LFB); the 60–280 Hz high
frequency band (HFB); and the 300–800 Hz ultra-high frequency
band (UFB). The LFB was selected for its well-knownmovement-
related ERD (Pfurtscheller and Lopes da Silva, 1999). The high
frequency band (HFB) was selected to cover the high gamma
activity where typically peri-movement ERS occurs (Miller et al.,
2007a). In addition, we investigated an even higher frequency
band at 300-800 Hz that manifested ERS during movements. We
referred to this latter band as ultra-high frequency band (UFB) to
distinguish it from the traditional high gamma range.

2.6. Spatial Patterns of LFB, HFB, and UFB
and Relative Distance to DCS(+) Site
The movement-related spatial pattern of each frequency band
from 0.1 s before movement onset (−0.1 s) to 0.4 s after it
(+0.4 s) was obtained by computing the subband power ratio
(Rp) between movement (Pm) and baseline (Pb) of individual
channels and expressed in dB scale:

Rp = 10× log10
Pm

Pb
(2)

The spatial matrices obtained from each channel’s Rp in LFB,
HFB, and UFB were interpolated by performing Delaunay
triangulation (Lee and Schachter, 1980) on the registered
electrode positions and visualized on the individual MRI
rendering.

Channels were defined with significant ERD or ERS, when the
change of power during hand clenching (Rp) was significantly
>25% relative to baseline. The statistical significance of ERD in
LFB, and ERS in HFB and UFB was tested using a one-tailed
Student’s t-test with a significance threshold p-value of 0.05 and
corrected for multiple comparison by false discovery rate (FDR)
method at the level of 0.05 (Genovese et al., 2002). For ERD, the
alternative hypothesis (H1) is Rp < 0.75 (−1.25 dB), while for
ERS, H1 is Rp > 1.25 (+0.97 dB). The sample population of the
t-tests for each patient and channel was comprised of all hand
clenching trials (P1: 18, P2: 30).

We also defined two metrics to compare DCS results and
spatial patterns of different frequency bands. The distance
between the peak activated electrode position of each subband
and the DCS(+) site across the grid was defined as dp. In
addition, the distance between the activation map centroid for
each subband and the DCS(+) site was defined as dc. The map
centroid was defined as the weighted summation of significant
channel positions by the activation magnitude Rp of the subband.
Both distance metrics were calculated on the 2D plane of the grid.

2.7. Early vs. Late ERS Onset
The temporal characteristics of the ERS across channels were
studied by categorizing them into two groups, the early ERS
group and the late ERS group. The early ERS group was
determined by a significant power increase in HFB or UFB range
using data segments from −0.5 to 0 s where 0 s represents
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movement onset. While the late ERS group was determined by
a significant power increase exclusively in the data segments
from 0 to 0.5 s. In both cases, the baseline activity was selected
from −1.5 to −1 s as before. The significances of HFB-ERS and
UFB-ERS of each channel were tested using one-tailed Student’s
t-test (p = 0.05) with the null hypothesis that the power in
each subband is equal to the baseline. To correct for multiple
comparisons of channels, the Bonferroni correction was applied.

2.8. Small vs. Large Contact Groups
The power spectral densities for small and large contacts during
baseline were estimated using Welch’s method and averaged
across each contact group. The ECoG noise floor of each channel
was estimated using the band power within 800–1,000 Hz. The
signal-to-noise ratio (SNR) in each band was computed from the
ratio of the band power to the estimated noise floor. Channels
with significant ERS in HFB were selected to compute the SNR
in HFB and UFB between small and large contacts during both
baseline and movement periods. In addition, the magnitude
of ERD and ERS captured between small and large contacts
were also compared within the selected HFB-ERS channels. A
two-tailed Student’s t-test with a p-value of 0.05 was used for
significance test.

3. RESULTS

3.1. Power Spectral Density Estimation and
Time-Frequency Analysis
The average power spectral density estimations and normalized
time-frequency maps for channels with significant ERS in
traditional high gamma band are shown in the first row of
Figure 6. The compensated PSD clearly followed the 1/f nature
of ECoG spectra and reached a noise floor after around 400 Hz in
the baseline state. In the movement state, a visible noise floor was
evident after 800 Hz. ERD covering a range including alpha and
beta band (8–32 Hz) and ERS in traditional high gamma band
(60–280 Hz) during hand movement can be clearly observed in
the spectra and time-frequency maps of Figure 6. In addition, we
observed that in a limited set of channels (i.e., 6 channels for
P1 and 11 channels for P2), ERS presented itself in a broader
frequency range (60–800 Hz) (second row of Figure 6). In order
to differentiate the observed broad band ERS from traditional
HFB-ERS, we further divided the broad band activity of 60–800
Hz into HFB and UFB. HFB was restricted within 60–280 Hz to
be consistent with the high gamma frequency band modulations
found in ours and others previous studies. UFB was selected to
be above 300 Hz reaching up to 800 Hz. The lower bound of UFB

FIGURE 6 | Average power spectral density (PSD) and normalized time frequency maps of channels with exclusively significant HFB ERS (upper row) and broad band

ERS (middle row) for P1 (A) and P2 (B). LFB (8–32 Hz), HFB (60–280 Hz) and UFB (300–800 Hz) ranges are shaded in different background colors in the PSD plots.

All time frequency maps were displayed from 6 to −6 dB. Channels with significant HFB ERS and broad band ERS are represented by green diamond and red

triangle, respectively, on the grid of the bottom row. Central sulcus (CS) was marked by a black curve. Orientations were denoted by “A” (anterior), “P” (posterior), “D”

(dorsal) and “L” (lateral). An epoch of 2 s of subband filtered signal around movement onset (close) from neighboring channels with different ERS characteristics is also

shown at the bottom row for P1 (C19, C74) and P2 (C16, C24). The locations of the channel pairs are highlighted on the grid. The scale of each subband is provided

on the right side of the data plot.
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(i.e., 300 Hz) was at the “elbow” position in the power spectrum
of hand movement (red). The channel positions associated with
HFB-ERS (diamond) and UFB-ERS (triangle) are visualized in
the bottom row of Figure 6.

According to the average time-frequency maps in Figure 6,
it was observed that LFB-ERD in P1 initialized after movement
onset, whereas LFB-ERD in P2 was observed at around 500 ms
before movement onset. In addition, the absolute amplitude of
LFB-ERD for P1 was smaller than ERS in HFB, whereas for
P2 LFB-ERD was more prominent than HFB-ERS. It is also
worthwhile to mention that although the hands of the patients
were kept closed for 2–3 s during the task (Figure 5), the ERS in
HFB or UFB generally vanished after 1.5 s following movement
onset (Figure 6).

The bottom row of Figure 6 shows raw subband filtered
signals from two neighboring channels (C19, C74 for P1 and C16,
C24 for P2) around hand movement onset. The corresponding
channel positions were circled out in black on the grid. For P1,
significant ERS in both HFB and UFB were observed in C74.
However, there was only a significant ERS in HFB in the adjacent
channel C19. Interestingly, for P1, ERD in LFB was weak despite
clear ERS in HFB in some channels. For P2, both channels had
clear ERD in LFB in addition to ERS in HFB. Similarly to P1,
channel 24 had significant ERS in HFB and UFB, whereas the
neighboring channel C16 had a significant ERS only in HFB.

These results suggest that there was well delimited spatially
localized activation in UFB.

3.2. Cortical Localization and
Topographical Analysis of Subband
Modulations
The ECoG grid localization was registered on the segmented 3D
volume of the brain using a CT based method for P1 and a photo
basedmethod for P2 (Figure 7). For P1, intraoperative photo and
postoperative CT based registration methods show concordant
results on localizing the exposed electrodes relative to the central
sulcus. ECoG spectral activity were mapped onto the individual
brain surface using registered electrode locations. The ECoG
grids were positioned to maximize the clinical requirements
and partially covered the motor cortical “hand knob” for both
patients.

The spatial distribution of significant modulation of ECoG
subbands are visualized on the 3D cortical mesh in Figure 7. All
spatial maps are displayed with power scale from −6 to +6 dB.
The ECoG electrodes marked in white color in Figure 7 represent
channels with significantmodulations in the respective subbands.
The central sulcus is identified and accentuated by a black line
on the figure. The DCS positive sites for hand function are also
pointed out.

FIGURE 7 | Spatial spectral activities mapped onto subject’s individual 3D MRI texture rendering. All maps were thresholded to reveal only channels with significant

power changes of 25% or more (one tailed t-test, p < 0.05, fdr < 0.05). DCS (+) site for hand function was pointed out by an arrow for each subject. Contacts

located on the “hand knob” were outlined in cyan. The central sulcus (CS) was accentuated by a brown curve. Significantly activated channels were marked as white.

Peak activated channels (P) were also pointed out. The naming conventions of both large and small contacts are shown in the first map. All maps were displayed from

−6 to 6 dB.
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For each subband, the number of significantly activated
channels anterior (Na) and posterior (Np) to the central sulcus
are shown in Table 2. Compared to the traditional ERS in HFB,
ERS in UFB was lower in magnitude (Figure 6B) and more
focally localized in both subjects. For P1, 6 (5.3%) channels
were associated with significant UFB-ERS, while there were 17
(15%) channels with significant HFB-ERS. More than half of
channels (63) were associated with significant LFB-ERD. For P2,
11 (9.7%) channels were associated with significant UFB-ERS and
27 (23.9%) channels were associated with significant HFB-ERS.
In addition, 66 (58.4%) channels exhibited significant LFB-ERD.

For P1, most of channels with significant ERS in HFB (15
over 17 in total ) and UFB (5 over 6 in total) were posterior
to the central sulcus which is presumed to be a somatosensory
area. For P1 39 channels with LFB-ERD were distributed on
the posterior side while 24 channels were on the anterior side.
Significant modulations in all three subbands were found in one
(C67) out of three contacts located on the “hand knob.” The
significant channel (C67) also appeared to be the closest to the
DCS(+) site. Generally, the sensorimotor related activations in
all three subbands for P1 were distributed posterior to the central
sulcus, in contrast to the activations for P2.

The spatial organization of HFB and UFB ERS channels for P2
covered sensorimotor areas anterior and posterior to the central
sulcus (Figure 7). Specifically, 13 out of 27 HFB-ERS channels
and 6 out of 11 UFB-ERS channels were anterior to the central
sulcus. For P2, 40 out of 66 channels associated with significant
LFB-ERD were distributed on the anterior side. All six contacts
covering the “hand knob” exhibited significant LFB-ERD and

HFB-ERS while five of them exhibited significant UFB-ERS. The
channel without significant UFB-ERS (C40) was at the anterior
boundary of the precentral gyrus. The DCS(+) site was found
slightly laterally to the anatomic “hand knob.”

The left subplot of Figure 8 illustrates the relative distance
of significantly UFB-ERS contacts to the central sulcus on the
MRI 3D rendering of P2. The distributions of average distances
of ECoG mapping in LFB, HFB and UFB relative to the central
sulcus (dcs) are shown in the box plots on the right side of
Figure 8 and listed in detail in Table 2. The UFB modulated
channels were consistently closer to the central sulcus compared
to LFB and HFB modulated channels. Specifically, the average
distance relative to central sulcus of significantly active UFB
channels was 6 mm (±3.2 mm) for P1 and 5.7 mm (±4.1 mm)
for P2. While the average distance of HFB modulated channels
increased to 9.5 mm (±6.4 mm) and 8.6 mm (±6.1 mm) for
P1 and P2, respectively. For both patients, the average distance
of LFB modulated channels relative to central sulcus was greater
than both HFB and UFB modulated channels.

The distance values of dp and dc of the spatial pattern of LFB,
HFB, and UFB relative to DCS(+) sites are also given in Table 2.
For P1, the channel with HFB-ERS peak was the same as for
the UFB-ERS peak, which was recorded in C74. However, the
distance between the centroid of the UFB map and the DCS(+)
site (dc) was smaller (9.0 mm) than the distance between the
centroid of the HFB map and the DCS(+) site (14.4 mm). For
P2, the peak of UFB-ERS was recorded in C31 while the peak of
HFB-ERSwas in C85. The latter was farther from theDCS(+) site
compared to C31 (dp: 3.5 vs. 12.7mm). The centroid distance (dc)

TABLE 2 | Distributions of spatial patterns relative to CS and DCS(+).

ID LFB HFB UFB

Na/Np dcs (mm) dp/dc (mm) Na/Np dcs (mm) dp/dc (mm) Na/Np dcs (mm) dp/dc (mm)

P1 24/39 17± 10.6 44.3/32.9 2/15 9.5± 6.4 12.7/14.4 1/5 6± 3.2 12.7/9.0

P2 40/26 14.5± 8.9 19.0/11.9 13/14 8.6± 6.1 10.6/8.9 6/5 5.7± 4.1 3.5/6.8

FIGURE 8 | The distances of significant UFB-ERS contacts relative to the central sulcus are partially denoted by black arrows on the MRI 3D rendering of P2 (left).

Box and whisker diagram of relative distances to central sulcus (CS) in millimeter within significantly modulated channels in LFB, HFB, and UFB. Sample sizes are

shown above the boxes. Red line denotes the median value. Red star denotes the mean value. Outliers of trials are marked as red crosses.
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was also slightly smaller for UFB (9.5 mm) than for HFB (10.6
mm). For both patients, the LFB spatial pattern was even farther
from the DCS(+) sites compared to HFB in terms of both dp and
dc. In general, both peak distance and centroid distance revealed
that UFB mapping was in closer proximity with the DCS(+) sites
compared to HFB (Table 2).

3.3. Onset Timing Analysis of HFB and UFB
ERS
Channels with early HFB-ERS (blue) and late HFB-ERS (red)
are visualized on the first row of Figure 9. Time-frequency maps
averaged in early and late HFB-ERS groups are also shown.
Channels with significant ERS in UFB were excluded while
averaging the time-frequency maps of HFB-ERS channels. For
P1, five channels had an early HFB-ERS and were localized
adjacent to the central sulcus on both anterior (C67, C68) and
posterior (C88, C10, C11) sides. The channel (C67) located on
the “hand knob” with significant modulations exhibited early
HFB-ERS. For P2, 10 over 11 channels that exhibited early HFB-
ERS were located on or anterior to the central sulcus. Four of
the early HFB-ERS were located on the “hand knob.” For both
patients, most of the channels posterior to the central sulcus were
associated with late HFB-ERS.

Channels with early UFB-ERS (blue) and late UFB-ERS (red)
are visualized on the second row of Figure 9. Average time-
frequency maps for the early and late UFB-ERS channels are
shown on the right side. For P1, three channels exhibited early
UFB-ERS. Specifically, C66 and C88 were posterior while C67
was anterior to the central sulcus and located on the “hand knob.”
In contrast, for P2, all five channels that exhibited early UFB-
ERS were located anteriorly to the central sulcus, and four of
those were located on the “hand knob.”Most of the late UFB-ERS
channels were posterior to the central sulcus. For both patients,

early ERS in HFB and UFB generally appeared at the anterior
channels of the activated region (Figure 9).

3.4. Small vs. Large Contact Groups
The average baseline PSD plots between small and large contacts
for each patient are shown in Figure 10. For both subjects, the
HFB band power was higher in small contacts (blue) compared to
large contacts (red). The noise floor estimated from 800-1000 Hz
of the spectrum for P1 was 1.86± 0.16 µV for small contacts (48
channels) and 1.83 ± 0.15 µV for large contacts (45 channels).
For P2, the noise floor estimated was 1.62 ± 0.25 µV for small
contacts (41 channels) and 1.53 ± 0.23 µV for large contacts (55
channels). For both subjects, although the statistical tests did not
yield any significant difference between the noise floor of small
and large contacts (P1: p = 0.4, P2: p = 0.08), the noise level
tended to be higher in the smaller contacts.

The boxplot of SNR in HFB and UFB during baseline and
movement between small and large contacts are shown in
Figure 11. For P1, the average SNR was slightly higher in small
contacts (9 channels) compared to large contacts (8 channels)
in each band during both baseline (HFB: 17.4 > 16.8 dB, UFB:
1.33 > 1.25 dB) and movement (HFB: 18 > 15.7 dB, UFB: 1.86
> 1.34 dB). For P2, the average SNR was also higher in small
contacts (11 channels) compared to large contacts (16 channels)
during baseline (HFB: 14.9 > 12.8 dB, UFB: 1.05 > 0.65 dB) and
movement (HFB: 18.5> 17.2 dB, UFB 2.19> 2.02 dB). However,
the significance test did not yield any significant difference during
both baseline (P1-HFB: p = 0.15, P1-UFB: p = 0.2, P2-HFB:
p = 0.39, P2-UFB: p = 0.69) and movement (P1-HFB: p = 0.2,
P1-UFB: p= 0.31, P2-HFB: p= 0.69, P2-UFB: p= 0.58).

The normalized time-frequency maps averaged between small
and large contact groups with significant ERS in HFB are shown
for both patients in Figure 12. All groups revealed ERS (red) in
HFB and ERD (blue) in LFB. The results of ERD/ERS magnitude

FIGURE 9 | (A) The early-ERS (blue diamond) and late-ERS (red circle) channel distributions on the grid and average time-frequency maps in HFB (top) and UFB

(bottom) frequency range for P1. (B) Same analysis results for P2. Non significant channels were left as blank in the grid map. Central sulcus (CS) was denoted by a

black curve. Orientations were denoted by “A” (anterior), “P” (posterior), “D” (dorsal) and “L” (lateral). The average time-frequency maps were visualized in a frequency

range of 0–800 Hz and covered a period of −1.5 s to 1.5 s. All time-frequency maps were displayed in −6 to 6 dB.
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FIGURE 10 | The baseline power spectral density estimations between small (blue) and large (red) contact groups using all channels in P1 (A) and P2 (B). Shaded

backgrounds from left to right indicate respectively LFB, HFB, and UFB.

FIGURE 11 | The boxplots of SNR in HFB and UFB between small and large contacts for P1 (left) and P2 (right) computed from baseline (upper) and movement

(bottom). The sample number of each group is displayed above the corresponding box. The p-value of two-tailed Student’s t-test between small and large contacts is

also shown. Red star denotes the mean value while the red band within the box denotes the median. The noise floor (0 dB) is represented by the horizontal dash line.

for each subband compared between small and large contact
groups are provided in Figure 12B. The statistical tests did not
yield any significant difference between small and large contacts
in any of the frequency bands that we investigated [LFB (P1:
p = 0.17, P2: p = 0.67); HFB (P1: p = 0.88, P2: p = 0.57); UFB
(P1: p= 0.44, P2: p= 0.92)].

4. DISCUSSION

The frequency bands of interest in previous ECoG studies have

generally been restricted at up to 250 Hz (Miller et al., 2007a,b;

Leuthardt et al., 2012; Vansteensel et al., 2013). A recent study

revealed that power modulations of up to 500 Hz were associated
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FIGURE 12 | (A) Average time-frequency maps between small and large contact groups with significant ERS in HFB. (B) Box-and-whisker plots of the magnitude of

ERD in LFB, ERS in HFB, and ERS in UFB between small and large contact groups. Red asterisk denotes mean value, the red band within the box denotes the

median and the outliers are represented by red plus signs.

with cognitive tasks (Gaona et al., 2011). In this study, ECoG was
sampled at 2.4 kHz, which enabled us to study movement related
spectral modulations of up to 1.2 kHz. The most important
observation in this study is that in both patients ERS in ultra-
high frequency of 300-800 Hz arose from a tightly localized
cortical region close to the central sulcus. Although pathological
high frequency oscillations (HFO) in epilepsy patients has been
found to be reaching 800 Hz (de la Prida et al., 2015), the
UFB found here was task-related and time-locked to movement
onset. In addition, UFB oscillations lasted for several hundred
milliseconds which is well beyond the typical duration of
pathological fast ripples (<0.1 s) found in epileptogenic zones
(Urrestarazu et al., 2007). Furthermore, no after-discharges were
observed in the significant UFB-ERS channels for both patients
during the ECoG recording phase. These points support the
existence of non-pathological 300–800 Hz modulation of cortical
activity related to handmovements. Due to the delimited spatially
localized feature of UFB modulations, the typical clinical grids
with large inter-electrode spacing might fail to capture them
consistently.

The average time-frequency maps in Figure 6 also revealed
that both HFB and UFB modulations generally appeared at
the beginning of the movement and gradually vanished after
about 1.5 s even though the hand closure state was kept for
2–3 s. This correlation between ERS and the dynamic phase of
movements has been observed in other ECoG studies of hand
open/close movements (Jiang et al., 2017a), as well as of center-
out reaching tasks (Ball et al., 2008). The spatial maps revealed
that significant ERS in 300–800 Hz only occurred in a subset of

electrodes with significant high gamma band ERS (60–280 Hz)
(Figure 7). The distribution of UFB-ERS was closer to DCS(+)
sites compared to HFB-ERS. However, since the DCS procedure
was partially performed in this study due to after-discharges
sometimes observed while stimulating the cortex, further studies
with more comprehensive DCS procedures are required to test its
correlation with UFB-ERS.

It is not yet conclusive as to which of these HFB- and UFB-
ERS reflect motor activation or sensory feedback since they were
localized on both sides of the central sulcus for both patients,
and their modulation started either before or in coincidence
with movement onset. Previous studies have shown that both
primary motor cortex (M1) and somatosensory cortex (S1)
were activated during attempted movements of individuals with
spinal cord injury (SCI) (Cramer et al., 2005) or tetraplegia
(Wang et al., 2013) as well as during motor imagery of able-
bodied subjects (Porro et al., 1996; Lacourse et al., 2005). A
recent ECoG BMI study also demonstrated that high decoding
accuracy can be achieved on differentiating various hand gestures
by using channels from S1 (Branco et al., 2017). For both

patients in this study, most of the early-ERS channels were
located at the anterior part of the activated region. However,
the existence of early-ERS in HFB posterior to the central
sulcus of P2 can be viewed as evidence of S1 activation in top-
down movement preparation. There is still controversy as to
whether pre-movement activations of S1 truthfully represent the
top-down efference copy or merely reflect the somatosensory
feedback of subtle muscle contractions before movement onset
(Ryun et al., 2017).
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Although the statistical test of SNR in HFB and UFB
recorded by small and large contact groups during movement
did not yield any significant difference, the small contacts
were consistently associated with slightly higher average values
in both subjects. This might indicate that small contacts has
a slight advantage in detecting the high frequency rhythms
compared to the large contacts. This could be due to the
localized nature of high frequency rhythms of the cortical
activity (Su and Ojemann, 2013). Statistical test of ERD/ERS in
small and large contact groups did not yield any significance
difference either. These results indicate that, in terms of ERD/ERS
analysis, ECoG studies using a high-density grid with smaller
contact size (Marathe and Taylor, 2013; Bleichner et al., 2014;
Hotson et al., 2016; Wang et al., 2016; Jiang et al., 2017a)
provide comparable information, in terms of time-frequency
characteristics, as studies using standard larger clinical ECoG
grids. It is also worthwhile to mention that UFB generally has
much lower SNR than HFB during movements (Figure 11). This
could lead to extra difficulty in detecting the UFB modulations.
However, although small, the SNR of UFB oscillation in HFB-
ERS channels (Figure 7) was still significantly higher than
the noise level (0 dB) during both baseline and movement
(one-tailed Student’s t-test, p < 0.05). The oversampling
process executed by the amplifier provides improved SNR in
data acquisition which might have helped with the detection
of ERS in UFB range. Nevertheless, besides the possibility
of being generated by small cortical circuits, the localized
spatial characteristic of UFB-ERS could also be due to its low
SNR.

Motor functional reorganization has been extensively studied
in stroke patients but less so in brain tumor patients. However,
functional reorganization is more likely to occur in LGG
patients than in stroke (Desmurget et al., 2007) and high-
grade glioma (HGG) patients (Bryszewski et al., 2012) due
to slowly growing tumor. In this study, the LFB-ERD, HFB-
ERS, and UFB-ERS activation patterns for P1 were found
mainly posteriorly to the central sulcus, in contrast to those for
P2. Although, one channel (C67) on the “hand knob” of P1
remained active, the magnitude of its modulation was smaller
compared to the posteriorly located channels. In addition, for
P1 the majority of early HFB-ERS and early UFB-ERS were
posterior to the central sulcus, again in contrast to those for
P2. This posterior localization of motor-related activity for P1
probably results from a functional reorganization due to the
combined factors of tumor progression and surgical resection
(Seitz et al., 1995; Duffau, 2001; Bryszewski et al., 2012). This
is consistent with other reports of postcentral shift of the
hand motor function in LGG patients (Seitz et al., 1995).
Consequently, we can surmise that the hand motor function
area for P1 has reorganized posteriorly to the central sulcus
through proliferation of novel, injury-induced corticocortical
connections between the premotor and somatosensory cortex
(Dancause et al., 2005). However, there was no obvious sign
of functional reorganization under the brain area covered by
the ECoG grid of P2. We assume that the history of previous
tumor resection and of longer tumor progression for P1 since
childhood elicited a greater brain functional reorganization than
for P2.

Most functional reorganization studies so far were based on
either fMRI (Bryszewski et al., 2012; Kurabe et al., 2016) or
DCS (Duffau et al., 2002, 2003). Although deemed as the gold
standard of functional mapping, DCS does not map functional
motor behavior, and might induce seizures by injecting current
to the cortex (Boulogne et al., 2016). On the other hand,
fMRI is non-invasive and provides high spatial resolution.
However, it indirectly estimates neuronal activity by measuring
related hemodynamic changes and has poor temporal resolution
(seconds). In comparison, ECoG can safely measure neuronal
activity with high temporal resolution, whereas the spatial
resolution is dependent on the density of the electrode grid.
Unique spectral and temporal information related to functional
activity can also be obtained from ECoG using dedicated signal
processing techniques. As a result, ECoG functional mapping
combined with robust electrode registration techniques could
be a useful modality to complement existing techniques on
both functional mapping and functional reorganizations studies.
A better understanding of functional reorganization, especially
in low-grade brain tumor patients, could improve the surgical
outcome by maximizing the excision while preserving the
reorganized functioning area.

5. CONCLUSIONS

In both patients, we were able to record movement-related ERD
and ERS in multiple channels using a hybrid high-density ECoG
grid. Consistently in both patients, ERS reached up to 800 Hz
in a limited number of channels. To the best of our knowledge,
this is the first time that ERS in an ultra-high frequency band up
to 800 Hz of ECoG has been reported. In both patients, LFB-
ERD was spatially broader compared to HFB- and UFB-ERS.
We also explored the movement related patterns projected onto
the individual MRI. We found that UFB-ERS observed around
anatomic “hand knob” was more focally localized and resided
closer to the central sulcus and DCS(+) sites than HFB-ERS. In
addition, most of the sensorimotor-related cortical activation for
P1 was found to be posterior to the central sulcus, in contrast
to P2. This suggests a potential functional reorganization of the
motor cortical functional area in P1. Finally, we did not find
any significant difference between the task-related band power
changes captured by the small and the large ECoG contacts.

This study has provided new understanding toward how
the brain conveys information during functional hand motor
tasks in terms of different frequency ranges of neural oscillatory
activity. Also, we believe that the newly discovered UFB has
great potential for increasing the precision of motor brain
functional mapping. This unique wide band activity needs to be
further explored in a larger population in our ongoing functional
mapping and functional reorganization studies.

AUTHOR CONTRIBUTIONS

NI designed the study. NI, SL, AS, AA, SK, PS, and CG collected
the data. TJ and NI conducted the analysis and TJ, NI, and GP
wrote the manuscript and interpreted the results. AS, AA, SK, PS,
and CG performed the surgeries, contributed to data collection,

Frontiers in Neuroscience | www.frontiersin.org 13 February 2018 | Volume 12 | Article 11020

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Jiang et al. Ultra-High Frequency Modulations in ECoG

imaging andDCS procedures and interpretation of the results. AS
and CG performed the behavioral tests during surgery, evaluated
the condition of subjects, and contributed to interpretation of the
results. All authors reviewed the manuscript and approved the
final version of the manuscript.

ACKNOWLEDGMENTS

We gratefully acknowledge Fatmanur Gunes for patient

interactions, the assistance with the recordings and also the
patients’ cooperations in this study.

REFERENCES

Aoki, F., Fetz, E. E., Shupe, L., Lettich, E., and Ojemann, G. A. (1999).

Increased gamma-range activity in human sensorimotor cortex during

performance of visuomotor tasks. Clin. Neurophysiol. 110, 524–537.

doi: 10.1016/S1388-2457(98)00064-9

Ball, T., Demandt, E., Mutschler, I., Neitzel, E., Mehring, C., Vogt, K., et al.

(2008). Movement related activity in the high gamma range of the human EEG.

NeuroImage 41, 302–310. doi: 10.1016/j.neuroimage.2008.02.032

Bleichner, M. G., Freudenburg, Z. V., Jansma, J. M., Aarnoutse, E. J., Vansteensel,

M. J., and Ramsey, N. F. (2014). Give me a sign: decoding four complex

hand gestures based on high-density ECoG. Brain Struct. Funct. 221, 203–216.

doi: 10.1007/s00429-014-0902-x

Botzer, L. (2009). A simple and accurate onset detection method for a measured

bell-shaped speed profile. Front. Neurosci. 3:61. doi: 10.3389/neuro.20.002.2009

Boulogne, S., Ryvlin, P., and Rheims, S. (2016). Single and paired-pulse electrical

stimulation during invasive EEG recordings. Revue Neurol. 172, 174–181.

doi: 10.1016/j.neurol.2016.02.004

Branco, M. P., Freudenburg, Z. V., Aarnoutse, E. J., Bleichner, M. G., Vansteensel,

M. J., and Ramsey, N. F. (2017). Decoding hand gestures from primary

somatosensory cortex using high-density ECoG. NeuroImage 147, 130–142.

doi: 10.1016/j.neuroimage.2016.12.004

Brett, M., Johnsrude, I. S., and Owen, A. M. (2002). The problem of

functional localization in the human brain. Nat. Rev. Neurosci. 3, 243–349.

doi: 10.1038/nrn756

Brunner, P., Ritaccio, A. L., Lynch, T. M., Emrich, J. F., Wilson, J. A., Williams,

J. C., et al. (2009). A practical procedure for real-time functional mapping of

eloquent cortex using electrocorticographic signals in humans. Epilepsy Behav.

15, 278–286. doi: 10.1016/j.yebeh.2009.04.001

Bryszewski, B., Pfajfer, L., Antosik-Biernacka, A., Tybor, K., Śmigielski, J., Zawirski,

M., et al. (2012). Functional rearrangement of the primary and secondary

motor cortex in patients with primary tumors of the central nervous system

located in the region of the central sulcus depending on the histopathological

type and the size of tumor: examination by mean. Polish J. Radiol. 77, 12–20.

doi: 10.12659/PJR.882576

Chang, E. F., Clark, A., Smith, J. S., Polley, M.-Y., Chang, S. M., Barbaro, N. M.,

et al. (2011). Functional mapping-guided resection of low-grade gliomas in

eloquent areas of the brain: improvement of long-term survival. Clinical article.

J. Neurosurg. 114, 566–573. doi: 10.3171/2010.6.JNS091246

Cramer, S. C., Lastra, L., Lacourse, M. G., and Cohen, M. J. (2005). Brain

motor system function after chronic, complete spinal cord injury. Brain 128,

2941–2950. doi: 10.1093/brain/awh648

Crone, N. E., Miglioretti, D. L., Gordon, B., and Lesser, R. P. (1998a). Functional

mapping of human sensorimotor cortex with electrocorticographic spectral

analysis. II. Event-related synchronization in the gamma band. Brain 121(Pt

1), 2301–2315. doi: 10.1093/brain/121.12.2301

Crone, N. E., Miglioretti, D. L., Gordon, B., Sieracki, J. M., Wilson,

M. T., Uematsu, S., et al. (1998b). Functional mapping of human

sensorimotor cortex with electrocorticographic spectral analysis. I. Alpha

and beta event-related desynchronization. Brain 121 (Pt 1), 2271–2299.

doi: 10.1093/brain/121.12.2271

Dalal, S. S., Edwards, E., Kirsch, H. E., Barbaro, N. M., Knight, R. T., and

Nagarajan, S. S. (2008). Localization of neurosurgically implanted electrodes

via photograph-MRI-radiograph coregistration. J. Neurosci. Methods 174, 106–

115. doi: 10.1016/j.jneumeth.2008.06.028

Dancause, N., Barbay, S., Frost, S. B., Plautz, E. J., Chen, D., Zoubina, E. V.,

et al. (2005). Extensive cortical rewiring after brain injury. J. Neurosci. 25,

10167–10179. doi: 10.1523/JNEUROSCI.3256-05.2005

de la Prida, L. M., Staba, R. J., and Dian, J. A. (2015). Conundrums of high-

frequency oscillations (80-800 Hz) in the epileptic brain. J. Clin. Neurophysiol.

32, 207–219. doi: 10.1097/WNP.0000000000000150

Desmurget, M., Bonnetblanc, F., and Duffau, H. (2007). Contrasting acute and

slow-growing lesions: a new door to brain plasticity. Brain 130(Pt 4), 898–914.

doi: 10.1093/brain/awl300

Duffau, H. (2001). Acute functional reorganisation of the human motor cortex

during resection of central lesions: a study using intraoperative brain mapping.

J. Neurol. Neurosurg. Psychiatry 70, 506–513. doi: 10.1136/jnnp.70.4.506

Duffau, H., Capelle, L., Denvil, D., Sichez, N., Gatignol, P., Lopes, M., et al. (2003).

Functional recovery after surgical resection of low grade gliomas in eloquent

brain: hypothesis of brain compensation. J. Neurol. Neurosurg. Psychiatry 74,

901–907. doi: 10.1136/jnnp.74.7.901

Duffau, H., Denvil, D., and Capelle, L. (2002). Long term reshaping of language,

sensory, and motor maps after glioma resection: a new parameter to

integrate in the surgical strategy. J. Neurol. Neurosurg. Psychiatry 72, 511–516.

doi: 10.1136/jnnp.72.4.511

Farrell, D. F., Burbank, N., Lettich, E., and Ojemann, G. A. (2007). Individual

variation in human motor-sensory (rolandic) cortex. J. Clin. Neurophysiol. 24,

286–293. doi: 10.1097/WNP.0b013e31803bb59a

Gaona, C. M., Sharma, M., Freudenburg, Z. V., Breshears, J. D., Bundy, D. T.,

Roland, J., et al. (2011). Nonuniform high-gamma (60-500 Hz) power changes

dissociate cognitive task and anatomy in human cortex. J. Neurosci. 31,

2091–2100. doi: 10.1523/JNEUROSCI.4722-10.2011

Genovese, C. R., Lazar, N. A., and Nichols, T. (2002). Thresholding of statistical

maps in functional neuroimaging using the false discovery rate. NeuroImage

15, 870–878. doi: 10.1006/nimg.2001.1037

Gupta, D., Hill, N. J., Adamo, M. A., Ritaccio, A., and Schalk, G. (2014). Localizing

ECoG electrodes on the cortical anatomy without post-implantation imaging.

NeuroImage Clin. 6, 64–76. doi: 10.1016/j.nicl.2014.07.015

Hochberg, L. R., Bacher, D., Jarosiewicz, B., Masse, N. Y., Simeral, J. D., Vogel,

J., et al. (2012). Reach and grasp by people with tetraplegia using a neurally

controlled robotic arm. Nature 485, 372–375. doi: 10.1038/nature11076

Hotson, G., McMullen, D. P., Fifer, M. S., Johannes, M. S., Katyal, K. D., Para,

M. P., et al. (2016). Individual finger control of a modular prosthetic limb using

high-density electrocorticography in a human subject. J. Neural Eng. 13:026017.

doi: 10.1088/1741-2560/13/2/026017

Jiang, T., Jiang, T., Wang, T., Mei, S., Liu, Q., Li, Y., et al. (2017a).

Characterization and decoding the spatial patterns of hand extension/flexion

using high-density ECoG. IEEE Trans. Neural Syst. Rehabil. Eng. 4320, 1–1.

doi: 10.1109/TNSRE.2016.2647255

Jiang, T., Siddiqui, H., Ray, S., Asman, P., Ozturk, M., and Ince, Firat, N. (2017b).

“A portable Platform to Collect and Review Behavioral Data Simultaneously

with Neurophysiological Signals,” in Proceedings of 39th Annual International

Conference of the IEEE Engineering in Medicine and Biology Society, EMBS

(Seogwipo), 1784–1787.

Kiebel, S. J., Ashburner, J., Poline, J. B., and Friston, K. J. (1997). MRI

and PET coregistration–a cross validation of statistical parametric

mapping and automated image registration. NeuroImage 5, 271–279.

doi: 10.1006/nimg.1997.0265

Kong, N. W., Gibb, W. R., and Tate, M. C. (2016). Neuroplasticity:

insights from patients harboring gliomas. Neural Plasticity 2016:2365063.

doi: 10.1155/2016/2365063

Kurabe, S., Itoh, K., Nakada, T., and Fujii, Y. (2016). Evidence for cerebellar motor

functional reorganization in brain tumor patients: an fMRI study. Neurosci.

Lett. 622, 45–48. doi: 10.1016/j.neulet.2016.04.036

Lacourse, M. G., Orr, E. L. R., Cramer, S. C., and Cohen, M. J. (2005).

Brain activation during execution and motor imagery of novel

Frontiers in Neuroscience | www.frontiersin.org 14 February 2018 | Volume 12 | Article 11021

https://doi.org/10.1016/S1388-2457(98)00064-9
https://doi.org/10.1016/j.neuroimage.2008.02.032
https://doi.org/10.1007/s00429-014-0902-x
https://doi.org/10.3389/neuro.20.002.2009
https://doi.org/10.1016/j.neurol.2016.02.004
https://doi.org/10.1016/j.neuroimage.2016.12.004
https://doi.org/10.1038/nrn756
https://doi.org/10.1016/j.yebeh.2009.04.001
https://doi.org/10.12659/PJR.882576
https://doi.org/10.3171/2010.6.JNS091246
https://doi.org/10.1093/brain/awh648
https://doi.org/10.1093/brain/121.12.2301
https://doi.org/10.1093/brain/121.12.2271
https://doi.org/10.1016/j.jneumeth.2008.06.028
https://doi.org/10.1523/JNEUROSCI.3256-05.2005
https://doi.org/10.1097/WNP.0000000000000150
https://doi.org/10.1093/brain/awl300
https://doi.org/10.1136/jnnp.70.4.506
https://doi.org/10.1136/jnnp.74.7.901
https://doi.org/10.1136/jnnp.72.4.511
https://doi.org/10.1097/WNP.0b013e31803bb59a
https://doi.org/10.1523/JNEUROSCI.4722-10.2011
https://doi.org/10.1006/nimg.2001.1037
https://doi.org/10.1016/j.nicl.2014.07.015
https://doi.org/10.1038/nature11076
https://doi.org/10.1088/1741-2560/13/2/026017
https://doi.org/10.1109/TNSRE.2016.2647255
https://doi.org/10.1006/nimg.1997.0265
https://doi.org/10.1155/2016/2365063
https://doi.org/10.1016/j.neulet.2016.04.036
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Jiang et al. Ultra-High Frequency Modulations in ECoG

and skilled sequential hand movements. NeuroImage 27, 505–519.

doi: 10.1016/j.neuroimage.2005.04.025

Lee, D. T., and Schachter, B. J. (1980). Two algorithms for constructing a Delaunay

triangulation. Int. J. Comput. Inf. Sci. 9, 219–242. doi: 10.1007/BF00977785

Leo, A., Handjaras, G., Bianchi, M., Marino, H., Gabiccini, M., Guidi, A., et al.

(2016). A synergy-based hand control is encoded in human motor cortical

areas. eLife 5:e13420. doi: 10.7554/eLife.13420

Leuthardt, E. C., Miller, K., Anderson, N. R., Schalk, G., Dowling, J., Miller, J.,

et al. (2007). Electrocorticographic frequency alteration mapping: a clinical

technique for mapping the motor cortex.Neurosurgery 60, 260–270; discussion

270–271. doi: 10.1227/01.NEU.0000255413.70807.6E

Leuthardt, E. C., Pei, X.-M., Breshears, J., Gaona, C., Sharma, M., Freudenberg,

Z., et al. (2012). Temporal evolution of gamma activity in human cortex

during an overt and covert word repetition task. Front. Human Neurosci. 6:99.

doi: 10.3389/fnhum.2012.00099

Louis, D. N., Ohgaki, H., Wiestler, O. D., Cavenee, W. K., Burger, P. C., Jouvet, A.,

et al. (2007). The 2007 WHO classification of tumours of the central nervous

system. Acta Neuropathol. 114, 97–109. doi: 10.1007/s00401-007-0243-4

Lyons, R. G. (2004). Understanding Digital Signal Processing. 2 Edn., Upper Saddle

River, NJ: Prentice Hall.

Marathe, A. R., and Taylor, D. M. (2013). Decoding continuous limb movements

from high-density epidural electrode arrays using custom spatial filters.

J. Neural Eng. 10:036015. doi: 10.1088/1741-2560/10/3/036015

Mason, C. R., Gomez, J. E., and Ebner, T. J. (2001). Hand synergies during

reach-to-grasp. J. Neurophysiol. 86, 2896–2890. doi: 10.1152/jn.2001.86.6.2896

Miller, K. J., DenNijs, M., Shenoy, P., Miller, J. W., Rao, R. P. N., and Ojemann,

J. G. (2007a). Real-time functional brain mapping using electrocorticography.

NeuroImage 37, 504–507. doi: 10.1016/j.neuroimage.2007.05.029

Miller, K. J., Hermes, D., Honey, C. J., Hebb, A. O., Ramsey, N. F.,

Knight, R. T., et al. (2012). Human motor cortical activity is selectively

phase-entrained on underlying rhythms. PLoS Comput. Biol. 8:e1002655.

doi: 10.1371/journal.pcbi.1002655

Miller, K. J., Leuthardt, E. C., Schalk, G., Rao, R. P. N., Anderson,

N. R., Moran, D. W., et al. (2007b). Spectral changes in cortical

surface potentials during motor movement. J. Neurosci. 27, 2424–2432.

doi: 10.1523/JNEUROSCI.3886-06.2007

Miller, K. J., Schalk, G., Fetz, E. E., den Nijs, M., Ojemann, J. G., and Rao, R.

P. N. (2010). Cortical activity during motor execution, motor imagery, and

imagery-based online feedback. Proc. Natl. Acad. Sci. U.S.A. 107, 4430–4435.

doi: 10.1073/pnas.0913697107

Miller, K. J., Zanos, S., Fetz, E. E., den Nijs, M., and Ojemann, J. G. (2009).

Decoupling the cortical power spectrum reveals real-time representation

of individual finger movements in humans. J. Neurosci. 29, 3132–3137.

doi: 10.1523/JNEUROSCI.5506-08.2009

Pfurtscheller, G., and Lopes da Silva, F. H. (1999). Event-related EEG/MEG

synchronization and desynchronization: basic principles. Clin. Neurophysiol.

110, 1842–1857. doi: 10.1016/S1388-2457(99)00141-8

Porro, C. A., Francescato, M. P., Cettolo, V., Diamond, M. E., Baraldi, P., Zuiani,

C., et al. (1996). Primary motor and sensory cortex activation during motor

performance and motor imagery: a functional magnetic resonance imaging

study. J. Neurosci. 16, 7688LP–7698LP.

Ryun, S., Kim, J. S., Jeon, E., and Chung, C. K. (2017). Movement-related

sensorimotor high-gamma activity mainly represents somatosensory feedback.

Front. Neurosci. 11:408. doi: 10.3389/fnins.2017.00408

Sanai, N., and Berger, M. S. (2008). Glioma extent of resection and its

impact on patient outcome. Neurosurgery 62, 753–764; discussion 264–266.

doi: 10.1227/01.neu.0000318159.21731.cf

Santello, M., Baud-Bovy, G., and Jörntell, H. (2013). Neural bases of hand

synergies. Fronti. Comput. Neurosci. 7:23. doi: 10.3389/fncom.2013.00023

Schalk, G., Leuthardt, E. C., Brunner, P., Ojemann, J. G., Gerhardt, L. A., and

Wolpaw, J. R. (2008). Real-time detection of event-related brain activity.

Neuroimage 43, 245–249. doi: 10.1016/j.neuroimage.2008.07.037

Seitz, R. J., Huang, Y., Knorr, U., Tellmann, L., Herzog, H., and Freund, H. J.

(1995). Large-scale plasticity of the human motor cortex. Neuroreport 6, 742–

744. doi: 10.1097/00001756-199503270-00009

Sinai, A., Bowers, C. W., Crainiceanu, C. M., Boatman, D., Gordon, B.,

Lesser, R. P., et al. (2005). Electrocorticographic high gamma activity versus

electrical cortical stimulation mapping of naming. Brain 128(Pt 7), 1556–1570.

doi: 10.1093/brain/awh491

Su, D. K., andOjemann, J. G. (2013). Electrocorticographic sensorimotormapping.

Clin. Neurophysiol. 124, 1044–1048. doi: 10.1016/j.clinph.2013.02.114

Urrestarazu, E., Chander, R., Dubeau, F., and Gotman, J. (2007). Interictal

high-frequency oscillations (10-500 Hz) in the intracerebral EEG of epileptic

patients. Brain 130, 2354–2366. doi: 10.1093/brain/awm149

Vansteensel, M. J., Bleichner, M. G., Dintzner, L. T., Aarnoutse, E. J.,

Leijten, F. S. S., Hermes, D., et al. (2013). Task-free electrocorticography

frequency mapping of the motor cortex. Clin. Neurophysiol. 124, 1169–1174.

doi: 10.1016/j.clinph.2012.08.048

Wang, P. T., King, C. E., McCrimmon, C. M., Lin, J. J., Sazgar, M., Hsu,

F. P. K., et al. (2016). Comparison of decoding resolution of standard

and high-density electrocorticogram electrodes. J. Neural Eng. 13:026016.

doi: 10.1088/1741-2560/13/2/026016

Wang, W., Collinger, J. L., Degenhart, A. D., Tyler-Kabara, E. C., Schwartz,

A. B., Moran, D. W., et al. (2013). An electrocorticographic brain

interface in an individual with tetraplegia. PLoS ONE 8:e55344.

doi: 10.1371/journal.pone.0055344

Yousry, T. A., Schmid, U. D., Alkadhi, H., Schmidt, D., Peraud, A., Buettner,

A., et al. (1997). Localization of the motor hand area to a knob on the

precentral gyrus. A new landmark. Brain 120, 141–157. doi: 10.1093/brain/

120.1.141

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Jiang, Liu, Pellizzer, Aydoseli, Karamursel, Sabanci, Sencer, Gurses

and Ince. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 15 February 2018 | Volume 12 | Article 11022

https://doi.org/10.1016/j.neuroimage.2005.04.025
https://doi.org/10.1007/BF00977785
https://doi.org/10.7554/eLife.13420
https://doi.org/10.1227/01.NEU.0000255413.70807.6E
https://doi.org/10.3389/fnhum.2012.00099
https://doi.org/10.1007/s00401-007-0243-4
https://doi.org/10.1088/1741-2560/10/3/036015
https://doi.org/10.1152/jn.2001.86.6.2896
https://doi.org/10.1016/j.neuroimage.2007.05.029
https://doi.org/10.1371/journal.pcbi.1002655
https://doi.org/10.1523/JNEUROSCI.3886-06.2007
https://doi.org/10.1073/pnas.0913697107
https://doi.org/10.1523/JNEUROSCI.5506-08.2009
https://doi.org/10.1016/S1388-2457(99)00141-8
https://doi.org/10.3389/fnins.2017.00408
https://doi.org/10.1227/01.neu.0000318159.21731.cf
https://doi.org/10.3389/fncom.2013.00023
https://doi.org/10.1016/j.neuroimage.2008.07.037
https://doi.org/10.1097/00001756-199503270-00009
https://doi.org/10.1093/brain/awh491
https://doi.org/10.1016/j.clinph.2013.02.114
https://doi.org/10.1093/brain/awm149
https://doi.org/10.1016/j.clinph.2012.08.048
https://doi.org/10.1088/1741-2560/13/2/026016
https://doi.org/10.1371/journal.pone.0055344
https://doi.org/10.1093/brain/120.1.141
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


ORIGINAL RESEARCH
published: 04 April 2018

doi: 10.3389/fnins.2018.00208

Frontiers in Neuroscience | www.frontiersin.org 1 April 2018 | Volume 12 | Article 208

Edited by:

Christoph Guger,

Guger Technologies, Austria

Reviewed by:

An H. Do,

University of California, Irvine,

United States

David Thomas Bundy,

Kansas University of Medical Center

Research Institute, United States

*Correspondence:

Gaurav Sharma

sharmag@battelle.org

Specialty section:

This article was submitted to

Neural Technology,

a section of the journal

Frontiers in Neuroscience

Received: 25 September 2017

Accepted: 15 March 2018

Published: 04 April 2018

Citation:

Colachis SC IV, Bockbrader MA,

Zhang M, Friedenberg DA,

Annetta NV, Schwemmer MA,

Skomrock ND, Mysiw WJ, Rezai AR,

Bresler HS and Sharma G (2018)

Dexterous Control of Seven Functional

Hand Movements Using

Cortically-Controlled Transcutaneous

Muscle Stimulation in a Person With

Tetraplegia. Front. Neurosci. 12:208.

doi: 10.3389/fnins.2018.00208

Dexterous Control of Seven
Functional Hand Movements Using
Cortically-Controlled Transcutaneous
Muscle Stimulation in a Person With
Tetraplegia

Samuel C. Colachis IV 1,2,3, Marcie A. Bockbrader 2,3,4, Mingming Zhang 1,

David A. Friedenberg 5, Nicholas V. Annetta 1, Michael A. Schwemmer 5,

Nicholas D. Skomrock 5, Walter J. Mysiw 2,4, Ali R. Rezai 2, Herbert S. Bresler 1 and

Gaurav Sharma 1*

1Medical Devices and Neuromodulation Group, Battelle Memorial Institute, Columbus, OH, United States, 2Neurological

Institute, The Ohio State University, Columbus, OH, United States, 3Department of Biomedical Engineering, The Ohio State

University, Columbus, OH, United States, 4Department of Physical Medicine and Rehabilitation, The Ohio State University,

Columbus, OH, United States, 5 Advanced Analytics Group, Battelle Memorial Institute, Columbus, OH, United States

Individuals with tetraplegia identify restoration of hand function as a critical, unmet

need to regain their independence and improve quality of life. Brain-Computer Interface

(BCI)-controlled Functional Electrical Stimulation (FES) technology addresses this need

by reconnecting the brain with paralyzed limbs to restore function. In this study, we

quantified performance of an intuitive, cortically-controlled, transcutaneous FES system

on standardized object manipulation tasks from the Grasp and Release Test (GRT).

We found that a tetraplegic individual could use the system to control up to seven

functional hand movements, each with >95% individual accuracy. He was able to

select one movement from the possible seven movements available to him and use

it to appropriately manipulate all GRT objects in real-time using naturalistic grasps.

With the use of the system, the participant not only improved his GRT performance

over his baseline, demonstrating an increase in number of transfers for all objects

except the Block, but also significantly improved transfer times for the heaviest objects

(videocassette (VHS), Can). Analysis of underlying motor cortex neural representations

associated with the hand grasp states revealed an overlap or non-separability in neural

activation patterns for similarly shaped objects that affected BCI-FES performance.

These results suggest that motor cortex neural representations for functional grips are

likely more related to hand shape and force required to hold objects, rather than to

the objects themselves. These results, demonstrating multiple, naturalistic functional

hand movements with the BCI-FES, constitute a further step toward translating BCI-FES

technologies from research devices to clinical neuroprosthetics.

Keywords: brain-computer interface, functional electrical stimulation, spinal cord injury, neuro-orthotics,

functional hand grasping
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INTRODUCTION

Approximately 130,000 people suffer a Spinal Cord Injury (SCI)
worldwide every year. Nearly half of these SCI cases are at the
C6 level or above, resulting in significant paralysis, impaired
quality of life, and need for self-care assistance (ICCP, 2017).
Moreover, patients with C6 or higher cervical level of SCI lack
the critical ability to grasp objects that prevents them from
living independently (Nas et al., 2015). Indeed, several studies
on SCI patient priorities have consistently reported that upper
limb strength and dexterity restoration is the most desirable
function to regain (Anderson, 2004; Snoek et al., 2004; Simpson
et al., 2012; Collinger et al., 2013; Blabe et al., 2015). In
a survey of individuals with tetraplegia following SCI, more
than 75% indicated that Functional Electrical Stimulation (FES)
neuroprosthetics for hand grasp would be “very helpful” to
restore function that would positively impact quality of life
(Collinger et al., 2013). However, the FES systems that have
been demonstrated to date are either limited to providing only
a few hand functions or lack the ability to enable dynamic
motor control for performing complex functional tasks that
require synergistic integration of paralyzed and non-paralyzed
muscles.

Advances in Brain Computer Interface (BCI)-controlled FES
technology offers a potential new way to reconnect the brain
directly to the paralyzed hand/arm, restoring functional hand
use. FES devices with control mechanisms other than BCI (e.g.,
myoelectric, sip-and-puff, eye trackers) have been proposed, but
are less desirable due to increased cognitive load and non-
intuitive mapping between thought and action (Ajiboye et al.,
2017). Thus, BCI approaches are preferred for their ability to
provide a more intuitive and “high-fidelity” control signal that
can allow for more complex and clinically-relevant functional
limb movements (Chadwick et al., 2011; Ethier and Miller,
2015). Indeed, in recent surveys a majority of paralyzed patients
showed interest in using a BCI technology that can help restore
lost hand/arm function (Collinger et al., 2013; Blabe et al.,
2015).

Several groups have investigated BCI-FES neuroprosthetics
for restoring hand grasp function in paralyzed humans

with varied success. Some groups have coupled an
electroencephalogram (EEG)-BCI with FES systems and
showed that the paralyzed participants were able to use the
systems to enable up to two functional hand movements by
imagining hand/arm movement (Müller-Putz et al., 2005) or
by imagining a non-intuitive motion such as foot (Pfurtscheller
et al., 2003) or cursor movement (Lauer et al., 1999). However,
the low dimensional control signals of the EEG as well as
non-intuitive mapping of thoughts-to-action makes it unlikely
that these BCIs could provide naturalistic continuous control
for complex hand functions. An alternative approach, utilizing
electrocorticography (ECoG)-based signals, can provide better
spatial resolution compared to EEG and thus a potential
neuroprosthetic control mechanism based on high quality
neural signals. Indeed, a paralyzed participant using an ECoG-
BCI controlled transcutaneous FES system was successfully
able to perform three movements (hand open, palmer, and

lateral grasps) (Márquez-Chin et al., 2009). However, this
demonstration was done in an offline mode where ECoG
signals recorded from an able-bodied participant were used to
control FES-evoked movements of the paralyzed participant.
Therefore, the applicability of ECoG-BCI for real-time control
of multiple hand movements via FES orthotics remains to
be demonstrated. To overcome the limitations of EEG/ECoG
control, researchers have implanted intracortical microelectrode
arrays (MEAs) that can allow for higher information transfer rate
(Baranauskas, 2014) and a more precise detection of movements
for decoding and controlling hand/arm FES systems. In a prior
study, we showed proof-of-concept that a person with C5-level
paralysis could use a MEA-BCI to control a transcutaneous
FES system to enable six independent finger, wrist, and hand
movements (Bouton et al., 2016) We also demonstrated that
the system could be used to perform a functional grasp-pour-
and-stir task, providing the user with simultaneous, differential
control of Hand Open, palmar grasp, and lateral key grip.
A similar study showed proof-of-concept that a person with
C4-level paralysis could use a MEA-BCI to control a hybrid
exoskeleton and implanted FES system to evoke upper limb
reaching, Hand Open, and lateral key grip (Ajiboye et al.,
2017). The participant in this study used these movements to
perform functional feeding tasks. However, no prior study has
provided careful quantification and characterization of MEA-
BCI enabled FES upper limb motor control to allow for study
reproducibility and comparison with other neuroprosthetic
devices.

In this study, we show a critical step in the clinic-to-home
translational path of BCI-FES neuroprosthetics by demonstrating
that a patient with tetraplegia can achieve volitional control of
seven hand functions using an easy to train, cortically-controlled,
non-invasive, FES orthotic. We used a MEA, implanted in the
motor cortex of a 26-year old study participant with a C5-
level SCI, to record neural signals. We then used machine
learning algorithms to translate the neural activity to intended
movement commands. These commands were then used to
control the transcutaneous FES orthotic wrapped on the
participant’s forearm which stimulated the appropriate muscles
to evoke the intended movement (Figure 1). With the system,
the participant was able to use a trained decoder to volitionally
select up to seven distinct functional hand states and use them
to manipulate multiple objects of varying size, shape, and weight.
The participant’s functional gains were assessed using the Grasp
and Release Test (GRT; Stroh-Wuolle et al., 1994), a standardized
test developed for evaluating neuroprosthetic performance by
patients with SCI. We found more efficient grasp and transfer
of objects using the BCI-FES compared to the participant’s
baseline. Our results also revealed important insights into
the neural representation of different hand movements. In
particular, we observed that a robust mapping of multiple hand
movements can form under the implanted MEA in a very
small area of the motor cortex. We found overlap between
representations for objects of similar size and weight and we
report a strong correlation between the discriminability in
the neural representations of hand movements and decoder
performance.
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FIGURE 1 | The BCI-FES system and experimental setup. The participant sits on wheelchair in front of the monitor which shows him the cued hand movement.

The participant is required to grasp and transfer the object to the raised platform. (1) Neural activity is recorded from a 96-channel MEA implanted in the motor cortex;

(2) A wavelet decomposition is performed on the raw data to extract neural information related to motor intent; (3) Wavelet scales 3 through 6 are used to generate

Mean Wavelet Power (MWP)-based neural features; (4) Machine-learning algorithms decode the MWP activity for each attempted hand movement; (5) Hand

movement is evoked using targeted transcutaneous FES delivered through cuffs wrapped around the forearm.

MATERIALS AND METHODS

Study Design and Study Participant
The objective of this study was to characterize the level of
upper limb motor control provided by a cortically controlled FES
system in a patient with SCI. A secondary aim was to investigate
the neural representations underlying grasps used for different
objects. The study was approved by the US Food and Drug
Administration (FDA) and The Ohio State University Wexner
Medical Center Institution Review Board (Columbus, Ohio)
and is registered on the ClinicalTrials.gov website (Identifier
NCT01997125). The participant referenced in this work provided
permission for photographs and videos and completed a written
informed consent process prior to commencement of the study.
The participant is a 26-year-old male with stable, non-spastic
tetraparesis from a cervical SCI that he suffered at the age
of 19. His use of the BCI-FES system was first reported in
Bouton et al. (2016). The participant’s International Standards
for Neurological Classification of SCI neurologic level is C5 AIS
A (motor complete) with zone of partial preservation to C6.
He has full active range of motion in bilateral shoulders, full
bilateral elbow flexion, a twitch of wrist extension (insufficient
for tenodesis grip), and no motor function below the level of

C6. His sensory level is C5 on the right (due to altered but
present light touch on his thumb) and C6 on the left. He has
intact proprioception in the right upper limb at the shoulder
for internal rotation through external rotation, at the elbow for
flexion through extension, at the forearm for pronation through
supination, and at the wrist for flexion through extension.
Proprioception for right digit flexion through extension at the
metacarpal-phalangeal joints is impaired for all digits.

System Architecture
The system is comprised of three main components: (i) A Utah
Microelectrode Array (MEA) implanted in the hand region
(identified using preoperative fMRI activation maps) of the
left-brain hemisphere motor cortex and a Neuroport neural
data acquisition system (Blackrock Microsystem Inc., USA).
Figure 2A shows the implant location in the motor cortex which
was confirmed by co-registration of postoperative computed
tomography (CT) imaging with preoperative fMRI. Full details of
the fMRI and surgical procedures can be found in Bouton et al.
(2016), (ii) a computer running data processing and machine
learning algorithm to decode the user’s intended movement
from the neural activity, and (iii) A custom high-definition
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FIGURE 2 | MEA location and signal quality over time. (A) Red regions are

brain areas active during imagined hand movements. The implanted MEA

location from post-op CT is shown in green. (B) MWP data for all channels

were collected over a 108 s period at the beginning of periodic test sessions

where the participant was instructed to imagine cued hand movements. MWP

features were calculated to approximate the power in the multiunit frequency

bands a plotted as a function of post-implant days. A 33% decline in the signal

quality was observed over time from the MWP data.

non-invasive FES system with 130 electrodes used to stimulate
the hand/arm muscles to evoke desired hand movements.
The stimulator was driven by custom MATLAB (ver 2014b,
MathWorks Inc., USA) based code running on a PC.

Neural Data Acquisition and Signal

Processing
The 96 MEA channels recorded the electrical activity in the
cortex at a sampling rate of 30 kHz. The raw voltages were first
filtered using a 0.3Hz first-order high-pass filter and a 7.5 kHz
third-order low-pass Butterworth analog hardware filter.Wavelet
decomposition using the “db4” wavelet and 11 wavelets scales
was applied to the neural data in 100ms bins (Mallat, 1998).
Wavelet scales 3–6 were used, corresponding to the multiunit
activity (MUA) (234–3,750Hz). The mean coefficients of scales
3–6 were standardized per channel, per scale, by subtracting the
mean and dividing by the standard deviation of those scales and
channels, respectively. The four scales were then combined by
averaging the standardized coefficients for each channel, resulting
in 96 values, one for each channel of the MEA, for every 100ms
of data. The resulting values were subsequently used as features,
termed mean wavelet power (MWP), for input into the real-time
decoders. Stimulation artifact in the data was removed by first

applying a threshold at 500 µV that occurred simultaneously on
at least 4 of 12 randomly selected channels. A 3.5ms window of
data encompassing each detected stimulation artifact was then
removed and adjacent data segments were concatenated. To look
at MWP signal quality over the study period, data for all channels
were collected over a 108 s period at the beginning of periodic
test sessions where the participant was instructed to imagine cued
hand movements. MWP features were calculated to approximate
the power in the multiunit frequency bands. We observed a 33%
decline in the signal quality over time (Figure 2B).

Threshold crossings (TCs) were calculated by filtering the raw
voltage recordings through a 250Hz high pass filter, using the
filtered data to determine the root-mean-square (RMS) value of
the noise (defined by Blackrock Microsystems, Inc.), and then
applying a threshold of −4.5 times the RMS of the noise to the
voltage recording. The data was not spike sorted. Approximately
86 and 27 TC spikes could be detected on post-implant days
87 and 1,144, respectively, during the same 108 s test period as
described above. Correlation between average MWP and TCs
was calculated during the first 55 s of a representative training
block. Average MWP was calculated by averaging MWP across
channels. Global TCs were calculated by binning TCs for all
channels in 100ms bins.

Neural Decoding
A non-linear Support Vector Machine (SVM) decoder (Humber
et al., 2010) was used to translate the MWP activity to intended
hand movements. The decoder was trained in blocks consisting
of multiple repetitions of all desired movements. Output classes
were built for each movement and had scores that ranged from
−1 to 1. Appropriate stimulation became activated when an
output score of a given movement exceeded a threshold of
zero. If multiple movement decoder output scores surpassed the
threshold, the system enabled stimulation for the movement with
the highest score. Individual movement accuracy was calculated
from final training blocks as the percentage of 100ms time
points in which the decoder output for the given movement
correctly matched the associated cue. Response probability for
each cue (represented as a confusion matrix) was calculated
from final training blocks as the percentage of activation for
a single movement decoder class out of all active movement
decoder classes within a cue. Individual movement accuracy
scores and response probabilities were averaged across sessions
of the same type. The final blocks of each training session were
used for training the decoders. This was done to minimize the
potential for muscle fatigue associated with repetitive FES of the
same movements over a short period of time, which would have
been required if we performed extra training blocks to measure
decoder accuracy.

Stimulation
The FES system consists of a multi-channel stimulator and a
flexible cuff with up to 130 electrodes that is wrapped around
the participant’s forearm. During use, hydrogel disks (Axelgaard,
Fallbrook, CA) were placed between the electrodes and skin to act
as a conduction enhancer. The electrodes are 12mm in diameter
and were spaced at 22mm intervals along the longitudinal axis
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of the forearm and 15mm intervals in the transverse direction.
Current-controlled, monophasic rectangular pulses (50Hz pulse
rate and 500 µs pulse width) were used to provide electrical
stimulation. Pulse amplitudes ranged from 0 to 20mA and were
updated every 100ms. Stimulator calibrations were performed
for each movement using an anatomy-based trial-and-error
method to determine appropriate electrode spatial patterns.

Experimental Design
The study sessions with the participant were typically conducted
two or three times per week, lasting 3–4 h. Data used for this
study were collected from eight sessions as follows: baseline
GRT data on post-implant days 702 and 703; BCI-FES data on
post-implant days 855, 857, 869, and 897; and imagined GRT
data on post-implant days 1,042 and 1,043. The participant had
prior experience using the BCI-FES system for other studies
as reported in Bouton et al. (2016), Sharma et al. (2016), and
Friedenberg et al. (2017). Sessions began with stimulation pattern
calibrations for each hand movement. Stimulation patterns and
intensity levels were saved in a database. In subsequent sessions
with the participant, the previous calibrations were recalled and
refined, if necessary. Calibrated movements included: (i) Index
finger and thumb lateral key pinch for gripping a Peg, (ii)
middle finger, index finger, and thumb tripod grip for gripping a
Block, (iii) middle finger and thumb lateral key grip for gripping
a Paperweight, (iv) ring finger and middle finger cylindrical
power grip for gripping a depressible Fork, (v) tip-to-tip grip
for gripping a videocassette (VHS), (vi) palmar power grip for
gripping a Can (customized wooden cylinder), and (vii) finger
and thumb extension (Hand Open) to open the hand. All objects
used in this study conformed to specifications of the Grasp and
Release Test (Stroh-Wuolle et al., 1994).

Neural Decoder Training
Training data for the decoder was obtained by prompting the
participant to imagine performing specific hand movements
using an animated virtual hand displayed on a computer
monitor. During the cue duration, FES feedback allowed the
participant to grasp the cued object in the starting area and
transfer it to an elevated platform using the system. In the case
of the Fork grip, the participant gripped the cylindrical handle of
the Fork and applied downward pressure to displace a calibrated
spring. Additionally, during cued Hand Open, the participant
opened his hand by extending his digits. Each movement cue
had a random duration between 3 and 4 s and was bounded by
rest cues with random durations between 4 and 5 s. The ordering
of the movement cues was randomly shuffled to eliminate
cue anticipation. Each training block included 3 cues for each
movement.

Grasp and Release Test (GRT) With FES
Functional grasps were assessed using the GRT (Stroh-Wuolle
et al., 1994). The participant was presented with random,
auditory cues for the different objects and was required to grasp
the object in the starting area, lift and transfer the object to an
elevated platform, and release the object in the target region as
many times as possible in a 30 s test period. The participant was

given a rest period of around 30 s between each 30 s test period.
Dropping the object (or insufficient cylinder displacement for
the Fork) was counted as a failure. The number of successful
transfers, failed transfers, and incomplete transfers along with
the associated transfer times for each object were recorded. For
the Fork, successful “transfers” were counted if the spring-loaded
piston was sufficiently displaced, indicated by a line on the piston.
Two decoder classes were required for the Can transfer. The
participant had to perform a Hand Open to position his hand in
an optimal location around the Can and then initiate the Can
grasp. During each cue, all movement decoder classes (seven
possible) had equal potential to cross threshold and evoke FES
stimulation. The GRT was performed 3 times per session for
each object, with mean successful, failed and incomplete transfers
reported per object and session. GRT testing was conducted over
4 sessions (for a total of 12 trials) for Peg,Block, Paperweight, Fork,
and VHS. Can data was collected over 3 sessions (for a total of 9
trials). Test sessions were performed on post-implantation days
855, 857, 869, and 897.

GRT Without FES
To visualize the neural representation of hand movements in
the motor cortex, MWP activity was examined during cued
movements without any FES or movement feedback. Both
movement and stimulation can create artifacts that can alter the
MWP despite efforts to filter them. Thus, FES was turned off
during the test blocks to remove the potential confounding effects
of artifacts from the analysis. Three independent blocks of trials
per object were conducted using decoders built as described in
the Neural Decoder Training section in Methods, except that
feedback was provided using only the animated hand and not
FES. The subject was instructed to place his hand on the cued
object and then imagine performing the grasp. This dataset
was collected over 2 consecutive sessions (days 1,042, 1,043
post-implantation). The MWP spatial patterns were compared
using a Principal Component Analysis (PCA) applied to the
MWP on all 96 channels when the correct decoder outputs were
above threshold and within the correct cue durations. Principal
components 1 and 2 were used to determine clustering. Each
cluster was fit with a Gaussian mixture distribution model for
visualization purposes. For each movement, MWP was averaged
across all blocks when the associated decoder was above threshold
and within the correct cue duration. The average MWP at each
channel was spatially mapped to the physical layout of the MEA
and displayed as a heat map. Finally, to quantify the separation
between MWP spatial patterns, Euclidian distances between
each movement’s vectorized spatial pattern were calculated. The
MATLAB Pairwise Distance (pdist) function was used for this
analysis. Euclidian distances for each movement compared to all
others were summed to determine the amount of separation in
neural representation.

Statistical Analysis
Paired comparisons between total number of transfers and object
transfer times for the GRT were performed using a paired t-test.
Correlations between MWP similarity and decoder performance
was assessed using a linear regression model. Correlations
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between TC and MWP were assessed using Pearson’s correlation
method. All statistical analyses were performed using MATLAB
(ver 2014b) and P < 0.05 was considered statistically significant.
Results are presented as Mean± Standard Deviation (SD).

RESULTS

The cortically controlled FES system consisted of three main
components: (1) an implanted 96-channel Utah MEA for
recording neural signals, (2) a computer running data processing
and a machine learning algorithm to decode the user’s intended
movement from the neural activity, and (3) a non-invasive
FES cuff wrapped on the participant’s forearm to stimulate
the appropriate muscles to evoke the desired hand movement
(Figure 1). Wavelet decomposition was used to process the raw
cortical data into MWP neural features (see section Methods).
These features were used as inputs to a SVM decoding
algorithm that translated the neural activity to the user’s intended
movement, which was then used to control the electrical
stimulation of the user’s forearm (Figure 1). No device-related
adverse events occurred during the duration of this study.

Performing Functional Hand Movements

With High Accuracy
Using the BCI-FES system, the subject was trained to perform
seven distinct functional hand movements that were specific
to grasp, transfer, and release of standardized test objects. The
objects conformed to specifications for the GRT (Stroh-Wuolle
et al., 1994) and are described in Figure 3. The FES system was
calibrated to evoke seven discrete, dynamic hand states which
included a specific grasp for each of the six GRT objects and
a Hand Open movement (see Figure 3 for grasp schematics
and Figure S1 for stimulation parameters and targeted forearm
muscles groups for enabling each hand movement).

During training, the participant received visual cues to
initiate and terminate each hand movement interleaved with
rest periods. Figures 4A,B shows a snapshot of the neural
activity showing the MWP modulation and the corresponding
threshold crossing (TC) neural activity raster plot. We observed
a strong correlation between TC and MWP neural activity
(correlation coefficient = 0.65, p < 0.001). The full set of
MWP data was used as input for training and generating the
neural decoder. Figure 4C shows representative decoder outputs
during training as the participant attempted hand movements
to manipulate the objects. When the decoder output for a
particular movement crossed the zero threshold, the system
initiated the FES to evoke the corresponding hand movement.
The decoder was trained in 3-min blocks and it took 4–5 blocks
of training (12–15min of total training time) to generate a
robust decoder set that could successfully classify seven hand
movements for grasp, transfer, and release of different objects.
Movie S1 shows the participant manipulating the randomly cued
objects during training. Figure 4D depicts the confusion matrix
showing the probability of the decoder classifying each hand
movement. The results indicate that, in general, the predicted
hand movement was correctly classified as the cued hand

movement. The grips for Hand Open, Fork, and Can were always
predicted correctly with response probabilities of 1. However,
the decoder had more difficulty discriminating between the Peg,
Paperweight, and Block grips (response probabilities= 0.94, 0.91,
and 0.90, respectively). Overall, across all trials, the individual
accuracy for decoding each movement ranged from 96.3 ± 0.7%
(Paperweight) to 99.0 ± 0.5% (Hand Open) demonstrating the
system’s ability to correctly classify the imagined movement from
the eight possible hand states (seven hand movements and a rest)
(Table 1).

Quantifying the Gains in Functional

Performance Using the BCI-FES System
A board-certified physiatrist administered the GRT (see section
Methods) to investigate the participant’s ability to use the BCI-
FES system to manipulate objects across a range of sizes, shapes,
and weights. In addition to providing standardized test objects,
the GRT also allowed us to compare the performance of our
system with others’ who have used this test to investigate their
BCI-FES systems. Figure 5A shows representative snapshots of
the participant transferring the Can object as part of the GRT. To
complete one transfer, the participant used voluntary shoulder
movements to align his hand above the Can, initiated a Hand
Open movement to extend his fingers and position the Can
in his palm, then initiated and maintained a palmar grasp
while he transferred the Can laterally to a raised platform, and
finally, terminated the grasp to release the object from his hand.
Movie S2 shows the participant manipulating the objects during
one GRT block.

Figure 5B summarizes the participant’s ability to manipulate
GRT objects with and without use of the BCI-FES system. At
baseline (Day 702–703 post-implant) and without the BCI-FES
system, the participant could not efficiently manipulate (average
number of successful transfers <1) the Paperweight, Can, VHS,
and Fork. However, he was able to grasp and manipulate the
Block, and Peg using adaptive grip strategies. With the BCI-
FES system (days 855–897 post-implant), the participant was not
only able to evoke the correct hand movement from the possible
eight states available to him, but was also able to successfully
grasp, transfer and release all objects and successfully depress
the Fork multiple times in the 30 s test period. In general,
with the use of the system, the number of successful (failed)
transfers increased (decreased) over baseline (See Figure S2

showing total number of failed transfer attempts with and
without the use of the system). The Block was an exception,
where the participant had fewer successes with the BCI-FES
system than without, as the participant was able to use an
adaptive grasp to transfer the Block on his own. In addition
to being able to rapidly transfer the Paperweight (transfer time
= 4.7 ± 1.2 s) and displace the Fork (displacement time =

5.1 ± 1.1 s) with the BCI-FES system, which he was otherwise
not able to do on his own without the system, the participant
also showed significant improvement in transfer times with the
system for the other two heavier objects, i.e. the VHS, and Can
(Figure 5C). However, it took the participant significantly longer
to complete the Block transfer with the BCI-FES system (6.4 ±
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FIGURE 3 | Standardized GRT objects and functional grasps. Schematic showing the different GRT objects with associated dimensions and weights. Hand

schematics illustrate the grasp/movement enabled by FES for the object. Fingers that were activated and used to perform the grasps/movements are highlighted in

blue. *For the Fork object, a 4.4N force is required to depress the cylinder.

3.0 s per Block) than without (2.8 ± 1.0 s per Block), while there
was no significant change in the completion time for the Peg
transfer.

Investigating the Correlation Between

Neural Discriminability and Decoder

Performance
As the participant performed the GRT, we observed a
few instances of decoder misclassification. In particular, the
decoder would sometimes trigger the Paperweight grip when
the participant tried to release the Block. Similarly, the
VHS grip was sometimes evoked during the Can release.
Figure 6 shows a representative decoder output plot from
an entire GRT test block that provides examples of decoder
misclassification. The participant was cued to transfer the
Block beginning at 170 s. While the Block grip was correctly
triggered for each of the transfers, the Paperweight grip was
also incorrectly evoked 4 out of 5 times after the Block grip
(see Movie S2 which shows the Block transfers during this test
period).

To further investigate these decoder misclassifications, we
analyzed the neural modulation as the participant was asked
to imagine the seven cued hand movements without FES (see
section Methods). By not using the FES system, the neural
modulation data we captured was free from stimulation and/or

any movement induced artifacts. We applied a PCA to the
MWP neural data to qualitatively illustrate clustering among
different imagined hand movements (Figure 7A). We observed
overlaps between the MWP clusters for the Paperweight and
Block as well as the VHS and Can. Figure 7B shows the heat
map of the average MWP for each imagined hand movement
overlaid on the physical layout of the 96-channel cortical
array showing the spatial distribution of MWP activity between
different hand movements. To measure the discriminability
of neural representations of different hand movements we
computed the Euclidean distances between the MWP spatial
distributions for all hand movements (Figure 7C). We found
that the neural representation for the imagined Paperweight and
Block grips as well as the VHS and Can grips were the most
similar and might be one of the factors causing the decoder
misclassifications observed during the GRT functional task.
When compared to the results of the neural decoder training

for the GRT task, we also observed a strong correlation (R2

= 0.74, p < 0.05) between the individual decoder accuracy
scores and the discriminability of neural representation of

hand movements (Figure 7D). Hand Open movement had the
most distinct neural representation and the highest individual

movement accuracy while the Paperweight grasp had the least
separated neural representation and the corresponding lowest
movement accuracy.
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FIGURE 4 | Neural decoder training. Representative plots showing (A) threshold crossing raster plot, (B) the corresponding MWP activity across all channels of the

MEA, and (C) neural decoder output as the participant attempts the seven cued hand movements. Solid lines indicate neural decoder output and dotted lines indicate

the cue start and stop times. Of the seven possible hand movement states that can be predicted by the decoder, the output score from the one with the highest

amplitude greater than zero was used to turn on/off the stimulation; (D) Confusion matrix showing the decoder response probability for each movement cue.

DISCUSSION

The ability to successfully manipulate multiple real-world objects
encountered during activities of daily living remains a key
challenge limiting the practical applicability of BCI-controlled
FES devices for people living with tetraplegia. In our previous
studies, we demonstrated proof-of-concept that implanted BCI-
transcutaneous FES technology can achieve motor control of
a paralyzed upper limb after SCI (Bouton et al., 2016). We
focused on demonstrating that differential control of individual
wrist, finger, and hand movements could be achieved, but
did not attempt to quantify or characterize the behavioral or

neural features of motor control. In this study, we advance
prior knowledge by applying standardized tasks developed
for neuroprosthetic studies (GRT object manipulation) to the
evaluation of system performance. In this way, we not only
allow for comparison between our BCI-FES technology and other
neuroprosthetics but also develop a new understanding of the
strengths and limitations of the BCI-FES system.We showed that
the participant in our study could train to use the BCI-controlled
FES system to perform functional tasks that required dynamic
integration of FES-enabled paralyzed hand/arm muscles with
non-paralyzed shoulder/elbow muscles. The system enabled the
participant to select the desired hand movement, out of the seven
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TABLE 1 | Individual decoder accuracy.

Hand movement Individual decoder accuracy (%)

Hand open 99.0 ± 0.5

Can 96.9 ± 0.9

Block 97.4 ± 1.2

Peg 96.9 ± 0.6

Fork 98.4 ± 0.8

Paperweight 96.3 ± 0.7

VHS 98.1 ± 0.2

Individual decoder accuracies were calculated by determining the percentage of time

points that the decoder output for a given movement correctly matched the associated

cue during decoder training. Values presented as mean ± S.D.

possible trainedmovements as well as a rest state available to him,
using motor intent. The BCI-FES also enabled the participant to
manipulate objects of different sizes, shapes, and weights with
skilled, forceful grasps. In addition, our study revealed insights
into the neural representation of hand movements in the motor
cortex. We showed that stable representations of different hand
movements can form in a very small area of the motor cortex
under the implanted MEA. Furthermore, we demonstrated that
discriminability between these neural representations can affect
decoder performance.

Because the test objects varied widely in size and shape, the
FES system was calibrated for each object to evoke a unique hand
shape/movement pattern that provided grip force and dexterity
to enable palmar, lateral, and tip-to-tip type grasps. The FES
system calibration for each grasp involved precise targeting of
separate muscle groups in the forearm to evoke specific finger
movements (see Figure 3 and Figure S1 showing the target
muscle groups for each grasp). The use of MWP as neural
features for decoding provided a high-fidelity spatiotemporal
neural modulation signal that was strongly correlated with
neuronal spiking activity, and could be used to discriminate
between different hand movements in real-time without the
need for thresholding or explicit spike sorting (Figure 4). During
decoder training, the participant attempted to evoke the correct
grasp for a particular object from seven movement states (plus
rest) available to him. The results from decoder training show
that the participant was able to use the decoder to control
the system with high accuracy—the individual accuracy scores
for each movement were all >96% (Table 1) during different
neural decoder training sessions across 4 days. Several groups
have observed that neuronal states associated with different
imagined hand movements may be represented discriminably in
the human brain (Klaes et al., 2015; Bleichner et al., 2016; Leo
et al., 2016). Our finding that multiple hand movements can
be decoded reliably from the motor cortex is further validation
of these observations. The consistently high accuracy of the
decoders in classifying individual hand grasps not only indicates
the robustness of the neural representations in the motor cortex,
but also suggests that this modulation can be reliably leveraged
for precision control of a FES neuro-orthotic device that can
restore multiple hand-grasp functions. The results also highlight
that for our trained participant the decoder training time for

the multiple object manipulation task was limited to 12–15min.
These results have implications as high accuracy and minimal
training time are features that are desirable for potential users of
neuroprosthetic devices (Collinger et al., 2013).

We used the standardized GRT to demonstrate the
participant’s ability to successfully use the trained decoder
to manipulate multiple objects. The use of a standardized
measure of functional outcomes not only helped us better assess
the performance of our system but also provided standardized
reportable scores that can facilitate objective comparison with
other similar technologies, help identify areas of improvements,
enhance reproducibility of research, and aid in decision making
for clinicians and potential end-users. The results show that
using the BCI-FES system, the participant was able to evoke
the correct movement to manipulate each of the six test objects
using naturalistic grips (Figure 5 and Movie S2). It should be
noted that the participant is able to transfer some of the objects
on his own without using the BCI-FES system (see Movie S2,
right panel showing the participant manipulating the objects
on his own without FES). For example, the participant used
adaptive strategies (such as biceps-mediated forearm supination
with shoulder abduction/adduction) to easily grasp and release
the Peg and Block. However, heavier objects that required a
more forceful grip were difficult to transfer without the system
(Figure 5B). Using the BCI-FES system, the participant was
able to transfer the heavier objects (VHS, Paperweight, Can,
Fork) and also showed significant improvement in transfer times
(Figure 5C).

The transfer speed using the BCI-FES system during the GRT
compares favorably to those reported for other BCI-FES systems.
For example, our participant transferred the Paperweight at a
rate of 4.7 ± 1.2 s per transfer compared to ∼36 s it took a
participant to transfer the Paperweight using the EEG-Freehand
system (Müller-Putz et al., 2005). It should be noted that the
neurologic level of the participant in Muller-Putz et al. (C5 ASI
A with residual shoulder and elbow movements) is functionally
similar to the neurologic level of the participant in our study (C5
ASI A with residual shoulder and elbow movements). While the
participant in our study had a twitch of wrist extension (yielding
a zone of partial preservation to C6), he was not able to elicit
the tenodesis grip of a person with a C6 neurologic level. The
improved performance on the GRT with our BCI-FES system
carries further significance as compared to the EEG-Freehand
system where the participant only has a single grasp available,
our participant had seven hand functions available to him and he
can voluntarily choose the one which provides him the optimal
grip for the target object. The transfer speed with our system
also compares favorably with a BCI-controlled robotic arm used
by paralyzed individuals—for example, a transfer rate of 6–10
transfers per minute for the Block vs. 0.1–1 transfers per minute
reported for the BCI-robotic arm used to transfer similar sized
blocks during the Box and Block (BBT) test (Wodlinger et al.,
2015).

Analysis of the participant’s neural modulation, as he
imagined different hand movements, revealed interesting
insights into the neural representations of hand grasps in the
motor cortex. The PCA revealed overlaps in the MWP clusters of
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FIGURE 5 | Functional performance evaluation using the Grasp and Release Test (GRT). (A) Sequential snapshots of the participant manipulating the Can object as

part of the GRT. The participant starts from a rest state, opens his hand and place it around the Can, grasps the Can, transfers it to the raised platform, and then

releases the Can. A new object is then placed in front of the participant to attempt the next transfer. (B) GRT scores showing the mean number of successful transfers

with and without the BCI-FES system. With the use of the system, the participant not only improved his GRT scores over his baseline, demonstrating an increase in

number of transfers for all objects except the Block, but was also able to grip and transfer two objects (Paperweight, Fork) that he could not manipulate at baseline.

(C) Mean transfer times for each object with and without the BCI-FES system. With the use of the system the participant’s transfer speed increased for all objects

except for the Peg and Block which he was able to transfer faster on his own using adaptive grips. #The participant was never able to transfer these objects without

the system. *The Can transfer required two hand movements—Hand Open and Can grasp. **p < 0.05 (paired t-test).

the grips for Paperweight–Block and the Can–VHS (Figure 7A).
The similarities in neural representation for hand grasps were
consistent with the spatial distribution of MWP on the cortical
array where we observed a group of channels that appear to
modulate similarly between these grasps (Figure 7B). The
analysis of the differences in MWP modulation confirmed that
the neural representation of the imagined Block and Paperweight
as well as the Can and VHS grasps were, indeed, the most
similar of all grasps (Figure 7C). This was consistent with
hand morphology observed during performance of the grips,
with Block and Paperweight grasp patterns being a synergy of
lateral key and tip-to-tip precision grips and Can and VHS
grasp patterns representing versions of a palmar power grip.
This similarity in the neural representations for certain hand
grasps may be one of the factors underlying the misclassification
in decoding that we observed during the GRT test blocks.
Other groups have made similar observations. For example,

Leo et al. observed a clustering of neuronal representations
based on postural differences in hand shapes (i.e., precision
grasps and power grasps) which in turn affected the ability
to correctly classify these hand shapes during decoding (Leo
et al., 2016). Similarly, Bleichner et al. used an ECoG-based
BCI to classify four different hand gestures and noted that the
gestures that correlated strongest in neural representation were
misclassified most often (Bleichner et al., 2016). The results
not only expand on the total number of hand movements for
which a stable representation could be observed in the motor
cortex, but also show that it is possible to study and decode
neural representations in a very small area under the implanted
MEA. Regardless, our findings that there are overlaps between
the MWP spatial patterns for some hand movements highlights
that additional neural features (such as signal propagation
or phase) and/or other decoding algorithms (such as deep
learning algorithms) might need to be explored to expand the
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FIGURE 6 | Neural decoder outputs during the GRT. Representative decoder outputs during a GRT test block showing instances of decoder misclassification (black

triangles). All seven hand movements are available to the participant as part of the decoder and he has to evoke the correct movement (solid lines) during the 30 s trial

period (dotted lines) given to him to complete the GRT for that object. Only decoder outputs above the activation threshold of zero are shown for visual clarity.

Successful transfer of Can required the participant to evoke two hand movements—Hand Open and Can grasp (70–100 s). During the Can transfer, the decoder had

two misclassifications (one of each for the PEG and VHS grasps). However, the participant was able to evoke the correct hand movements to successfully complete

two Can transfers during the trial period. Similarly, during the Block transfer (170–200 s), the participant incorrectly evoked the decoder for Paperweight on four

occasions. This did not affect the GRT scores for the Block, however, as the decoder for Paperweight kicked in after the participant had completed the Block transfer.

repertoire of hand functions that can be reliably decoded using a
single MEA.

Interestingly, the neural representation for Hand Open in
our experiments was the most distinct from the six other
hand grasps (Figure 7C). We hypothesize that this is due to
the Hand Open posture being morphologically distinct from
all other grasps. In addition, the FES pattern for Hand Open
was primarily over wrist and hand extensors, while the FES
pattern for grasps often included both flexor and extensor
muscle compartments. Therefore, somatosensory and muscle
stretch receptor feedback from stimulation of sensate areas
could have propagated to the motor cortex and differentially
influenced neural activation patterns in Hand Open vs. grasp
states. Not surprisingly therefore, during neural decoder training
we observed the highest accuracy when the participant attempted
a Hand Open movement (Table 1). Overall, there was a strong
correlation between the discriminability in neural representation
of different hand states and the corresponding decoding accuracy
(Figure 7D). It should be noted that, compared to GRT
test blocks, we rarely observed this misclassification among
hand movements during the decoder training. This may be
due to the differences in how the training and GRT test
blocks are performed. First, in contrast to training blocks, the
participant does not receive visual cues to initiate, sustain,
and terminate the grasp during the GRT test blocks. Second,
the decoder training is more structured and motor imagery is
more consistent and deliberate as the participant must grasp
and transfer the cued object once during the cue period.
The GRT test block, however, may be more challenging
for the participant because he must quickly and repeatedly
activate and deactivate decoders to transfer objects as many
times as he can in a 30-s test window. We believe that it
is the combination of the lack of reinforcing visual cues,
and the rapid task switching during the “beat the clock”

condition of the GRT that increases the misclassification
probability of the decoder for grasps with most similar neural
representations.

Enabling grasp and manipulation abilities using BCI-FES
technology is challenging compared to, for example, a 3-D
reaching task or individual finger/joint movement as it not only
requires high fidelity control signals and strategies (Schaffelhofer
et al., 2015), but may also require additional sensorimotor
information related to the shape of the target object that may
be needed to preshape the hand correctly (Leo et al., 2016).
In addition, a reaching task in space involves coordinating
only three degrees of freedom (DOF) whereas control of an
anthropomorphic hand requires control of 23 DOF (Vargas-
Irwin et al., 2010) thereby increasing the complexity of the
problem. Not surprisingly therefore, there are only a few reports
of successful demonstration of BCI-enabled hand grasp, most of
which were limited by the number of functional handmovements
that could be enabled (Bouton et al., 2016; Sharma et al., 2016;
Ajiboye et al., 2017; Friedenberg et al., 2017). Not only are the
number of hand functions regained by our tetraplegic participant
to manipulate objects substantially more than achieved by any
previous study of FES devices, but we also show that this
improvement did not come at the cost of accuracy, speed,
or training time. Our results also have implications beyond
reanimation in tetraplegia. The enhanced understanding of the
neural representation of hand gestures in the human brain and
the ability to accurately decode these movements can provide
a novel control signal for the development of other BCI tools;
for instance, communication based on sign language (Bleichner
et al., 2016). Another advantage of using an intuitive BCI
paired with real-time FES is the potential to promote synaptic
neuroplasticity in the cortico-spinal tract (McGie et al., 2015)
or to promote neuroprosthetic “learning” in the motor cortex
(Ganguly et al., 2011).
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FIGURE 7 | Neural representation of functional hand movements in the motor cortex. The participant was asked to attempt the cued hand movement. No FES was

provided during this task so that neural data can be captured without any stimulation artifact. (A) Principal component analysis (PCA) of MWP activity shows clustering

of neural activity for each hand movement during decoder activation for each functional movement. Dotted lines indicate a Gaussian mixture distribution model fit.

(B) Heat maps of averaged MWP activity during neural decoder activation overlaid on the physical layout of the electrode array for each attempted hand movement.

Corner reference (non-active) electrodes in the electrode array are labeled with white squares. (C) Heat map showing the pairwise Euclidean distances between

vectorized MWP spatial patterns and highlights the separability in neural representation between different hand movements. Darker colors indicate that the neural

representations are similar while lighter colors indicate that the representations are dissimilar. (D) Correlation between individual decoder accuracy and separation in

neural representation (aggregate Euclidean distance for each movement) shows that higher neural discriminability leads to higher decoder accuracy. The trend line

indicates a linear fit.

It is important to note that this study is limited to one
participant who had over two years of experience using the
BCI to evoke hand and forearm states prior to performing GRT
testing. Novice BCI users may take longer to achieve the same
level of hand dexterity for object manipulation as described
here. In addition, the transcutaneous FES cuff used in this
study is designed to stimulate the paralyzed forearm muscles to
control hand and wrist movements. It is therefore best suited
to persons with C5 or lower levels of tetraparesis and who have
some residual shoulder and biceps movements. Testing to assess
whether the FES cuff can be used along with shoulder and triceps
stimulation or a gravity assisting device in SCI patients with
higher level of injury remains to be investigated. Our device
was also limited by the lack of thenar (base of thumb) muscle
stimulation, limiting the quality of hand grasps for small objects
requiring precision grips (no objects of this type are represented

in the GRT). The need for daily retraining of the decoders is
another limitation of the current system that will need to be
overcome in order to reduce setup time and facilitate translation
of the device for daily use.

In summary, our BCI-FES neuro-orthotic device significantly
improves upon the state-of-the-art for assistive devices capable
of meeting tetraplegic individual’s desired priorities of restoring
multiple, voluntary, and naturalistic hand functions. We also
demonstrate that our BCI-FES system can enable functional,
skilled hand grasps that can generate adequate force to
manipulate everyday objects with high-precision and practical
speed. The fact that the participant could use the system
to perform functional tasks ∼900 days post-implantation
further highlights the translational potential of our system.
Future directions include addressing system limitations to
make the next generation BCI-FES robust to daily neural
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signal variability, portable, wearable, with more electrodes
and sensors, and less obtrusive to further facilitate clinical
translation.
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Figure S1 | FES parameters and target muscle groups for each hand movement.

(A) Representative image showing spatial mapping of active electrodes on the

lower and upper FES cuffs used to enable the Can grasp. Red and black

electrodes indicate high-side and low-side electrodes, respectively. (B) Active

electrodes, stimulation amplitude, and targeted muscle groups for each hand

movement. L, Lower cuff; U, Upper cuff.

Figure S2 | Mean number of failed attempts on the GRT with and without the

BCI-FES system. The participant had fewer failures with the use of the BCI-FES

system. ∗The Can transfer required activation of two hand movements—Hand

Open and Can grasp.

Movie S1 | Representative video of the participant manipulating the GRT objects

during decoder training. Test objects were placed in front of the participant and he

was cued to start and stop by the small virtual hand on the monitor in front of him.

Movie S2 | Representative video of the participant performing the GRT for all

objects with and without the BCI-FES system. The participant was verbally cued

to start and stop the 30 s GRT trial.
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EEG-based Brain-Computer Interfaces (BCIs) are becoming a new tool for

neurorehabilitation. BCIs are used to help stroke patients to improve the functional

capability of the impaired limbs, and to communicate and assess the level of

consciousness in Disorder of Consciousness (DoC) patients. BCIs based on a

motor imagery paradigm typically require a training period to adapt the system to each

user’s brain, and the BCI then creates and uses a classifier created with the acquired

EEG. The quality of this classifier relies on amount of data used for training. More data

can improve the classifier, but also increases the training time, which can be especially

problematic for some patients. Training time might be reduced by creating new artificial

frames by applying Empirical Mode Decomposition (EMD) on the EEG frames and

mixing their Intrinsic Mode Function (IMFs). The purpose of this study is to explore the

use of artificial EEG frames as replacements for some real ones by comparing classifiers

trained with some artificial frames to classifiers trained with only real data. Results

showed that, in some subjects, it is possible to replace up to 50% of frames with artificial

data, which reduces training time from 720 to 360 s. In the remaining subjects, at least

12.5% of the real EEG frames could be replaced, reducing the training time by 90 s.

Moreover, the method can be used to replace EEG frames that contain artifact, which

reduces the impact of rejecting data with artifact. The method was also tested on an

out of sample scenario with the best subjects from a public database, who yielded very

good results using a frame collection with 87.5% artificial frames. These initial results

with healthy users need to be further explored with patients’ data, along with research

into alternative IMF mixing strategies and using other BCI paradigms.
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INTRODUCTION

Brain-Computer Interfaces (BCI) are systems capable of
controlling external devices using direct measures of the brain
signals (Wolpaw et al., 2002; Wolpaw andWolpaw, 2012). A BCI

has three main parts:

1. Brain signals acquisition system.
2. Processing system.
3. Device/feedback control.

The selection of the brain signal acquisition system relies on the
intended BCI application (Wolpaw et al., 2002; Shih et al., 2012;
Wolpaw and Wolpaw, 2012). EEG is a non-invasive approach
with a high temporal resolution that is suited for real-time
application (Shih et al., 2012). EEG signals are electrical potential

differences from different areas of the scalp caused by the firing of
different neurons, often in response to an external stimulus. The
resulting synchronized activity across large groups of neurons
leads to electrical changes over different brain regions that can
be recorded and sent to the processing system.

In a BCI system (Figure 1), EEG signals are processed by a
computer or processing unit (processing system). These signals
are highly noisy, and the use of filtering and pattern recognition
techniques are needed to acquire useful information from them
(Wolpaw et al., 2002; Wolpaw and Wolpaw, 2012). Paradigms
are instructions that the BCI user must follow to elicit known
brain responses that the processing system can detect and use to

control an external device. Many BCIs are designed to control
monitors, but BCIs have been used with other external devices,
such as functional electrical stimulator (FES) or orthosis as part
of a BCI-based motor rehab system.

Recently, EEG-based BCIs have been extended to new tools for
neurorehabilitation patients who have upper limb impairment
due to a stroke (Ramos-Murguialday et al., 2013; Cho et al.,
2016). They are also being used for patients with disorders
of consciousness to assess their mental state and provide
communication (Guger et al., 2013, 2017).

Different BCIs have used different paradigms (Farwell and
Donchin, 1988; Pfurtscheller, 2001; Oehler et al., 2008), and one
of the most widely used involves Motor Imagery or MI (Guger
et al., 2015). In an MI BCI paradigm, the user is asked to imagine
specific movements, such as left or right hand movements. This
movement imagination activates areas of the motor cortex, much
like the activation resulting from real movement. Thus, MI BCIs
may determine whether a user is imaging left vs. right hand
movement to provide a “yes” or “no” reply to a question or move
a cursor horizontally.

In the MI paradigm, a trial is the time period which the
user imagines movement, as well as any additional time needed
for instructions, cues, or other delays. The BCI presents real-
time feedback to the user that indicates how well the MI task
is being performed and classified. This feedback might be visual
information displayed on a screen, auditory feedback through
headphones or proprioceptive or other feedback from other
devices.

When using the MI BCI approach to help patients regain
movement, the feedback often includes an avatar presented on

a monitor that performs simulated hand/arm movements and
FES electrodes placed over the affected limb. In conventional
therapy, the patient is asked to imagine performing a movement
such as wrist dorsiflexion while a therapist provides instructions
and manages an FES device that triggers wrist dorsiflexion. By
adding the MI BCI into the control loop, rewarding feedback
such as avatar movement and FES activation is only possible
when the patient performs the correct MI. This BCI-based
feedback is much more tightly coupled to each patient’s MI
than conventional means, which should increase the functional
improvement from therapy training (Remsik et al., 2016;
Sabathiel et al., 2016).

BCIs, especially MI BCIs, usually require calibration for each
user for at least two reasons. First, classifiers need time to learn
the unique features of each new user’s EEG activity, such as
ERD/S used in MI BCIs. Second, these features may change
within or across sessions or runs due to fatigue, medication,
motivation, different cap placement, or other factors. Different
cap placement from one session to another could be especially
problematic if BCIs gain wider clinical adoption. Many therapists
and other staff are not trained in precise cap positioning, and
this process can require a few additional minutes. Calibration
at the start of a session can lead to better classifier performance,
but also requires additional time. Since MI BCIs typically require
more calibration time than other BCIs, and patients with stroke
may have limited time andmotivation, new approaches to reduce
calibration time with MI BCIs are needed.

In a typical BCI, a new EEG data frame is obtained from each
trial. The quality of the classifier is directly proportional to the
number of frames from each type of MI (such as left vs. right
hand; Ramoser et al., 2000). This paper explores a new approach
that creates artificial frames, which the classifier can use like
real frames to reduce the need for calibration data. Because of
the non-linear and non-stationary aspects of EEG signals, a new
processing method based on the EMD decomposition (Huang
et al., 1998) is proposed to generate those new artificial frames
(Hawley et al., 2008; Huang et al., 2013; Riaz et al., 2015).

MATERIALS AND METHODS

Subjects
The experiment was performed on 7 healthy men aged 29.8 ±

5.76 years. All subjects reported no history of stroke or other
cause of movement disability and signed an informed consent
document prior to participating in the study.

Equipment
The paradigm was implemented using a closed-loop system that
provides real-time feedback to the user and saves the data for later
analysis. This system uses a 16 EEG channel cap (g.SCARABEO,
g.tec medical engineering GmbH) with the electrodes placed over
the sensorimotor cortex according to the 10/10 international
system: FC5, FC1, FCz, FC2, FC6, C5 C3, C1, Cz, C2, C4, C6,
CP5, CP1, CP2, CP6. The Fpz electrode is connected to the
ground and a reference electrode is placed on the right earlobe.
The EEG cap is connected to a biomedical amplifier (g.USBamp,
g.tec medical engineering GmbH), which is connected to a
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computer using a USB cable. The system provides two kinds of
real-time feedback: a visual feedback through an avatar displayed
on a screen, and proprioceptive feedback through FES electrodes
placed on the extensor digitorum communis muscles of each
subject’s left and right arms.

Experimental Paradigm
At the beginning of each session, each subject was seated in a
comfortable chair about 1m in front of a monitor. The EEG cap
was mounted and FES electrodes were affixed to both arms to
stimulate wrist dorsiflexion. The experimenter visually inspected
the subject’s real-time EEG to check data quality and calibrated
the FES parameters (pulse width and current) for each subject.
Each subject was then asked to sit in front of the monitor and
follow the instructions provided by the system.

Each subject completed one session with two runs. A short
break was provided between these two runs, during which the
subjects remained seated with the cap and FES electrodes in place.
Each run presented 80 trials (40 for each side) to each subject.
During the first 2 s of each trial, the subject rested, after which
an acoustic signal (beep) indicated whether the subject should
imagine left or right wrist dorsiflexion. The subject imagined the
movement from seconds 3 to 8 while the system provided real-
time feedback through the monitor and FES electrodes. After
second 8, the trial ended and a new trial began (Figure 2). There
were an equal number of cues to the left vs. right wrist during

each run, and the order was chosen pseudorandomly. Data were
stored for later offline analysis.

Empirical Mode Decomposition
Common analytical tools like FFT and wavelets would not
be adequate to process EEG signals in this scenario because
they are non-linear and non-stationary. The Empirical Mode
Decomposition (EMD) method is based on an algorithm that
allows users to conduct a data-driven analysis that is more fitting
with non-stationary signals that have changes in the frequency
structure within a short period of time.

The algorithm decomposes the original signal into a finite
number of functions called IMFs (Intrinsic Mode Function)
that each of which represents a non-linear oscillation of the
signal (Huang et al., 1998). Theses intrinsic functions fulfill two
conditions:

1. In the whole signal, the number of maxima is the same as the
number of zero-crossing, or differs by at most one.

2. For any sample, the mean value between the envelope of the
local maxima and the envelope of the local minima is zero.

The process to obtain the IMFs from a signal x(t) is:

1. Set s (t) = ri−1 (t). Initially, i = 1 and r0 (t) = x(t).
2. Detect the local maxima and the local minima of s(t).
3. Interpolate all local maxima to generate the upper envelope.
4. Interpolate all local minima to generate the lower envelope.

FIGURE 1 | Block diagram of a generic EEG-based BCI system. The BCI gets EEG data from the subject, processes it and generates the proper signals to control the

external device and give feedback to the subject.

FIGURE 2 | Motor imagery paradigm trial. During the first 2 s, the user is asked to relax. After 2 s, a beep is played and then an auditory cue indicates whether the

user should imagine left or right movement. One frame consists of the data resulting from one trial.
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5. Obtain the local meanm(t) by averaging the upper and lower
envelopes.

6. Get a candidate for IMF by subtracting the local mean m(t)
from the signal: h (t) = s (t) −m (t).

7. If h(t) does not satisfy the IMF’s conditions, begin a new loop
from step 2, setting s (t) = h (t).

8. Otherwise, h(t) is defined as an IMF: IMFi (t) = h (t).
9. ri (t) = ri−1 (t) − IMFi(t).
10. If ri (t) is a monotonic function or does not have enough

extrema to calculate the upper and lower envelopes,
then IMFi(t) is the last IMF function of x(t) and the
decomposition ends.

11. Otherwise, set s (t) = ri (t) and start a new loop from step 2
in order to obtain IMFi+1 (t).

Once all the IMFs have been calculated, the signal can be
recovered using its IMFs (1) and the final residue rn (t), where
n is the number of extracted IMFs (Figure 3).

x (t) =

n
∑

k = 1

IMFk (t) + rn (t) (1)

The number of IMFs depends on the structure of the EEG signal,
and may vary among different EEG data samples. An EEG signal
is completely restored by adding all its IMFs and the final residue.
Likewise, if a single one of these IMFs is replaced with another
IMF from other previously decomposed EEG signal, using the
formula (1), then a different EEG signal is obtained.

New Artificial EEG Frames
Prior work has created EEG artificial frames using some
stationary approaches that use Gaussian noise as a source into
an FFT-based system(Paris et al., 2017), but this approach lacks
the temporal features of the natural EEG signals. Otherwise, in
some studies the artificial EEG is created bymixing different parts
of different temporal EEG signals (Lotte, 2011). In this case, the
method keeps the temporal features of the signal, but without
control of its frequency features.

Using the EMD approach, the new artificial EEG signals can be
created by combining some IMFs from different real EEG signals.
Although those new EEG signals will be different from the real
ones, they will exhibit similar features and the same underlying
structure. Unlike the other approaches described above, the EMD
analysis can keep the features within temporal and frequency

FIGURE 3 | Decomposition of an EEG signal into all of its IMFs.

domains, because each IMF is a representation in the temporal
domain of a specific non-linear oscillation of the signal.

In the paradigm used in this study, eachMI frame is composed
of 16 EEG signals, meaning that any new artificial frame needs 16
new artificial EEG signals.

Starting from a real frame collection, the new frame collection
containing artificial frames is built following these steps:

1. Define the number of frames to be replaced. This requires
replacing the same number of frames from each class (right-
side and left-side) with a maximum of 40 frames.

2. Randomly select the frames to be replaced in the original
frame collection. The rest of the frames contribute with their
IMFs to build the new artificial frames.

3. The selected frames are split in two sets of frames according to
their class (left vs. right).

4. To create an artificial frame of a specific class, a number
of N frames are selected randomly from the set of frames
belonging to the same class (Figure 4). The first selected frame
contributes with all its first IMFs (16 IMFs, one per channel),
the second one with its second IMFs, and successively until the
nth frame, which contributes with its nth IMFs.

5. Add up all the IMFs corresponding to the same channel to
build each new EEG channel of the new artificial frame.

Repeat step 4 for each new artificial frame necessary to complete
the frame collection.

As explained in section Empirical Mode Decomposition,
different EEG signals might have different numbers of IMFs,
and it is necessary to establish beforehand the number of IMFs
of the new artificial frames. In this study, we considered that
an EEG signal to be completely represented using their first 15
IMFs, because none of the decomposed signals had more than
12 IMFs. Thus, in every real decomposed EEG signal with <15
IMFs, additional zero value IMFs were added, reaching 15 IMFs
for every decomposed signal.

We used this procedure to create new frame collections for
each subject’s data. Each of these new frame collections contained
a different number of artificial frames: 2 (2.5%), 4 (5%), 6 (7.5%),
8 (10%), 10 (12.5%), 20 (25%), 30 (37.5%), or 40 (50%). This
process created 9 frame collections: the original data with 0
artificial frames, and eight collections with artificial frames. For
each of those 9 frame collections, we constructed a classifier and
determined the error rate.

Classifier Training and Implementation
The classifier is based on Linear Discriminant Analysis (LDA).
Initially, the frame collection is divided in two groups of frames
according to their class (right or left wrist movement). Next,
every signal is bandpass filtered (8–30Hz) and then artifact
rejection is applied. With the non-rejected frames, a spatial CSP
filter is calculated (Koles et al., 1990; Wang et al., 2005), keeping
only the 2 first and 2 last result vectors as the spatial filter.
Therefore, the 16 EEG signals of a frame are spatially filtered
resulting in four signals. A 1.5 s window variance is calculated
over each of these signals. Finally, these variances are normalized
and scaled logarithmically, then used as features to build the LDA
classifier (Cho et al., 2016).
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FIGURE 4 | A new frame collection containing artificial frames is created using

an original frame collection and randomly selecting the removed frames. The

IMFs of the non-selected frames are randomly mixed to create the artificial

frames that will replace the removed ones.

A frame collection and classifier are needed to calculate the
error rate. Each frame is passed through the classifier, which
outputs a value indicating the estimation of that frame’s class
for each one of its 2,048 samples (256 samples a second). This
result is then compared to the true class and marked as correct if
they match, and incorrect otherwise. After determining the error
of every single sample of a frame collection, a percentage of the
incorrect samples is calculated over the feedback period of each
trial (from second 3.5 to second 8), providing the global error
rate for that classifier. The error rate is expressed as two different
percentage values: right-side error rate and left-side error rate.

Data from each subject’s first run were used to build all the
classifiers, and data from the second run were used to assess
the performance of these classifiers with out-of-sample data
(Figure 5). The out-of-sample error rate of the classifiers without
artificial frames were also calculated.

FIGURE 5 | The paradigm provided two datasets. The first dataset was used

to build the classifier. Next, the classifier was assessed with both datasets:

in-sample (dataset 1) and out-of-sample (dataset 2). Left-side and right-side

error rate (ER) can then be determined to assess classifier performance.

The new frame creation process relies on the random selection
of the removed frames and the IMFs. Repeating the experiment
with a different random seed leads to different frame collections
and very likely to slightly different results. Hence, the frame
creation procedure in section New Artificial EEG Frames and
classification process described in this section were repeated 100
times for each subject.

Median Absolute Deviation
The MAD (Median Absolute Deviation) is a method to detect
outliers from a statistical sample when the sample is small and
has a non-normal distribution (Leys et al., 2013); instead of using
the mean values to fix the boundaries it uses the median value.
Usually, the upper boundary is defined as three times the MAD
above the median, and the lower one as three times below (2). All
samples outside those boundaries are considered as outliers, and
all inside ones as inliers (3).

M − 3×MAD < x < M + 3×MAD (2)
∣

∣

∣

∣

x−M

MAD

∣

∣

∣

∣

< 3 (3)

We used the MAD approach to validate the performance of each
classifier with a specific number of artificial frames. We used the
MAD and the sample’s median to calculate a ratio (4), and two
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values of this ratio were obtained using the error rates of the
classifiers built without artificial frames.

R =

∣

∣

∣

∣

x−M

MAD

∣

∣

∣

∣

(4)

For example, after 100 repetitions of the experiment for a specific
subject, 100 classifiers with N artificial frames were created (using
a frame collection with N artificial frames), and their right and
left error rates were calculated. From this sample, the median and
the MAD values were obtained. Then, the ratio R was calculated
using the error rates of the classifier created with the frame
collection without artificial frames.

This process sought to determine whether the original
classifier could be considered as an inlier of the sample of the
classifiers with N artificial frames. Thus, values of R below 3
meant that the original classifier was not an outlier and the
replacement of the real frame collection with artificial ones is
similar for this specific subject andwith amaximumofN artificial
frames.

RESULTS

In Sample Results
A classifier with a specific number of artificial frames is
considered similar to its original if its right and left ratios are
both below 3 (section Classifier Training and Implementation).
Across all subjects and all classifiers, only one of the classifiers
with 37.5% of artificial frames of subject S02 is considered as

dissimilar (Table 1). From the same subject, the classifiers with
25.0 and 50.0% are just below 3. Using lower maximum ratios
applied stricter conditions to test the classifiers. If we apply a ratio
threshold of 2.6 instead of 3, these two outcomes from S02 would
be considered an outlier. Further, subjects S03 and S06 also have
high ratio values (above 2.6), but below 3. If a maximum ratio of
2 is applied, all the classifiers for all subjects were acceptable if
the frames collection used at most 12.5% of artificial frames. All
classifiers were statistically similar to their corresponding original
classifiers for subjects S01, S04, S05, and S07.

Classifiers with more than 37.5% of artificial frames for
subjects S01 and S06 showed a smaller ratio in the right-side
class than the classifiers with fewer artificial frames. However, the
left-side class of the same classifiers increased considerably.

Out of Sample Results
The previously created classifiers and the second recorded dataset
were used to analyze performance with out-of-sample data. First,
we calculated the error rate of the classifiers built without artificial
frames. We only designated the classifiers with an error rate
below of 33% in both sides as useful. Under these conditions, only
subject S01 and S03 had valid error rates in both sides (Table 2).

Table 3 presents additional details from subjects S01 and S03.
Subject S01 showed very good results, with very small and similar
error rates between the original classifiers and the rest of his
classifiers. Subject S03 showed higher error rates than subject
S01, and the error rates increased slightly with the number of the
artificial frames in the frame collection (Table 3). Nonetheless,
the classifiers built with at most 37.5% of artificial frames had
error rates in both sides below the 33% threshold. However, the
right-side error rate of classifier with 50% of artificial frames is
34.06%, meaning that this classifier should not be considered as
valid.

Considering that only 2 out of 7 subjects were considered valid
to be analyzed in an out of sample scenario, and that an error
rate below 33% can still lead to a valid classifier, we also used an
external EEGMI dataset (Cho et al., 2017) to increase the number
of subjects. We selected the four subjects with best accuracies

and split their dataset in two different sets of data. The first
dataset was used to create the classifier, and the second dataset
was used to calculate the out of sample error rate. Table 4 show
the experimental results, which are very close to the results from
the subjects recorded in the present study. Results are especially
good for subjects E01 and E02. Subject E03 (only) showed a non-
valid value in the classifier built with a density of 50%, meaning
that all his other classifiers should be considered useful. On the
other hand, subject E04 has no value below 33% and any classifier
should be considered valid.

TABLE 1 | Ratio between the error rate for each side and its MAD (Median Absolute Deviation).

S01 S02 S03 S04 S05 S06 S07

AFa Rb Lc R L R L R L R L R L R L

2.5 0.12 0.67 0.22 0.64 0.58 1.27 0.32 0.31 0.32 0.27 0.33 0.64 0.34 0.69

5.0 0.05 1.03 0.82 0.56 1.11 1.02 0.46 0.45 0.18 0.35 0.47 0.83 0.01 0.63

7.5 0.29 0.88 1.03 0.07 1.06 1.51 0.51 0.51 0.00 0.02 1.17 1.49 0.46 0.62

10.0 0.37 1.13 0.99 0.11 1.19 1.75 0.80 0.46 0.38 0.08 1.04 1.66 0.49 0.84

12.5 0.24 0.94 1.42 0.04 1.89 1.86 1.00 0.44 0.46 0.27 0.87 1.52 0.40 0.85

25.0 0.09 1.44 2.79 0.44 2.13 1.94 1.28 0.61 0.96 0.78 0.71 2.09 0.51 1.28

37.5 0.11 1.55 3.12 0.41 1.97 2.01 1.20 0.69 1.07 1.18 0.57 2.66 0.73 1.92

50.0 0.15 1.45 2.86 1.00 2.18 2.68 1.27 1.06 1.42 1.23 0.62 2.76 0.73 1.86

aAF, % of artificial frames in the classifier.
bR, right-side ratio.
cL, left-side ratio.
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TABLE 2 | Error rate of the classifier built with the frame collection without artificial frames.

S01 S02 S03 S04 S05 S06 S07

Ra Lb R L R L R L R L R L R L

5.50 6.68 11.20 66.67 29.83 20.39 42.67 32.96 36.24 35.79 27.27 39.60 58.34 22.74

aR, right-side error rate.
bL, left-side error rate.

TABLE 3 | Error rate of classifiers built with frame collections with artificial frames.

S01 S03

AFa Rb Lc R L

0.0 5.50 6.68 29.83 20.39

2.5 4.02 7.52 22.20 18.64

5.0 4.06 7.46 22.21 19.20

7.5 3.80 7.66 21.94 20.79

10.0 3.79 7.63 24.52 21.52

12.5 3.76 7.77 24.92 19.96

25.0 3.47 8.05 28.15 24.75

37.5 3.86 8.70 31.59 25.79

50.0 3.79 8.84 34.06 31.39

aAF, % of artificial frames in the classifier.
bR, right-side error rate.
cL, left-side error rate.

Additional Out of Sample Results
In the previous experiments we used a maximum density of
artificial frames of 50%. Here we present new experiments
increasing this density above 50% in order to determine
the subject-specific maximum density possible that can still
yield valid classifiers (both mean error rates below 33%). The
experiment was repeated for densities of 62.5, 75, and 87.5%.
As shown in Table 5, subjects S01, E01, and E02 had error rates
below 33%with a frame collection composed of 87.5% of artificial
frames and below. Subject E04 has no valid classifier, and the
other two subjects (S03 and E03) showed error rates above 33%
with densities above 50%. However, data from subject E04 had
not yielded any valid classifier in the latter results with densities
up to 50%.

DISCUSSION

This paper introduced a new method to create EEG artificial
data frames to reduce the calibration time required for a MI
BCI paradigm. The results suggest that the maximum number
of artificial frames that are advisable in a frame collection varies
substantially across different people. This could occur because the
subject’s MI varies within and across each trial, meaning that the
mixing of different IMFs might produce a less helpful artificial
frame. Longer training should help subjects learn to generate
more consistent and distinct MI activity, and shorter trials and
improved feedback could also be helpful.

The in-sample results demonstrate that the method is useful
when creating similar classifiers for four out of seven subjects
when the frame collection has at most 50% of artificial frames,

which allows halving the training time for these subjects. This

could reduce fatigue, stress and discouragement associated with
the training, when feedback is often inaccurate. Additional
research might identify methods to identify priori which subjects
could tolerate frame collections with 50% or even more artificial

frames.
While in-sample results are used to assess the capability of

the neurorehabilitation patient or other users to control the
BCI, out-of-sample processing is used to send the feedback to

the patient. Typically, the BCI uses a classifier created from
the preceding session from the patient. Reducing the error
rate in out-of-sample data results in more accurate feedback,
which should improve the closed-loop synergy between the
user and the BCI. Out-of-sample results showed that subjects
whose classifiers based on real data yielded acceptable error rates
(below 33%) also had acceptable error rates when using the

classifiers with artificial frames. However, only 2 out of the 7
subjects had original classifier error rates below 33%, which is
insufficient to thoroughly validate this method on an out-of-
sample environment.

Our study also included four subjects with good MI accuracy
from an external database. Their out-of-sample error rates
were very close to the ones achieved with the subjects of our
study. Seeing these good out-of-sample results, we extend the
experiment with densities beyond 50%. In 3 of these 6 subjects,

the results showed that classifiers built with 87.5% of artificial
frames still led to error rates below 33%. Additional research
will be needed to explore whether the slight increase in error
rate resulting from the increase of artificial frames in the frame
collection is worth the reduced training time. Further research

could also enlarge the density of artificial frames, which may help
increase the generalization of the classifiers and thereby decrease
their out of sample error rates.

The study showed a similar in-sample behavior in all subjects’
classifiers created with a maximum of 12.5% of artificial frames
in their frame collections and a strict ratio threshold of 2. Using
12.5% artificial frames would improve a motor imagery BCI
system in two ways. First, it would reduce the training time from
720 to 630 s. Second, the method could be used to replace an
artifacted frames with artificial ones. In the CSP calculation, the
number of frames for each side must be exactly the same, and
if there are some artifacted frames in one class, the number of
frames in the other class must be reduced accordingly. This can
reduce classifier accuracy and may necessitate additional training
runs. Instead, up to 12.5% of artifacted frames could simply be
replaced.

This study used an LDA classifier due to its widespread
use in MI BCI paradigms. Further studies could explore test
the artificial frame creation method using different classifiers.

Another interesting direction is the mixing strategy of the IMF
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TABLE 4 | External datasets.

E01 E02 E03 E04

AFa Rb Lc R L R L R L

0.0 12.82 11.43 2.99 18.08 14.56 21.08 4.65 31.51

2.5 12.68 10.85 3.12 17.87 14.04 21.50 4.04 33.49

5.0 12.88 10.65 2.98 18.30 15.37 22.93 4.34 33.66

7.5 13.21 10.48 3.36 17.90 15.13 21.83 4.42 36.77

10.0 13.36 10.80 3.50 17.36 14.65 22.69 4.91 35.91

12.5 13.19 10.64 3.47 17.70 15.54 24.98 4.85 38.27

25.0 14.74 11.10 3.66 17.00 19.47 27.18 7.11 37.38

37.5 15.45 11.72 4.73 16.40 20.90 32.44 7.46 39.52

50.0 15.80 13.34 6.24 17.06 31.04 34.32 9.87 38.20

Out of sample error rates of classifiers built with artificial frames.
aAF, % of artificial frames in the classifier.
bR, right-side error rate.
cL, left-side error rate.

TABLE 5 | Additional results.

S01 S03 E01 E02 E03 E04

AFa Rb Lc R L R L R L R L R L

0.0 5.50 6.68 29.83 20.39 12.82 11.43 2.99 18.08 14.56 21.08 4.65 31.51

25.0 3.47 8.05 28.15 24.75 14.74 11.10 3.66 17.00 19.47 27.18 7.11 37.38

50.0 3.79 8.84 34.06 31.39 15.80 13.34 6.24 17.06 31.04 34.32 9.87 38.20

67.5 10.11 10.76 36.04 46.75 16.15 16.63 7.30 19.28 31.85 41.76 13.15 39.34

75.0 17.98 12.86 39.07 47.67 19.05 18.93 10.87 20.54 34.32 47.03 15.67 44.33

87.5 17.67 28.27 45.30 45.36 23.54 32.25 17.25 26.99 36.56 51.06 26.26 46.39

Out of sample error rate of classifiers built with artificial frames.
aAF, % of artificial frames in the classifier.
bR, right-side error rate.
cL, left-side error rate.

to obtain the artificial frames. The described method mixes 15
IMF from different 15 randomly chosen real frame to build a new
artificial frame. Mixing only the most significant IMFs (instead
of fifteen), or even reducing the number of real frames to three or
four, might both be worth exploring.

This approach might also be extended to other types of BCIs.
For example, some passive approaches for evaluating alertness or
fatigue might benefit. BCIs based on the P300 complex, steady-

state evoked potentials, and similar BCI paradigms that require
focused attention typically require much less training than MI
andmost other BCIs. However, this approach could still be useful
for countering artifact or to improve classifier accuracy in some
users, such as patients using a vibrotactile P300 system.

Most importantly, this new BCI method needs additional
research with more subjects, especially to validate the
out-of-sample behavior. These subjects should include target
patients, including persons with stroke and other persons seeking
rehabilitation. New paradigms could provide training of other
types of rehabilitation, such as lower-limb training. Patients with
locked-in syndrome (LIS) may also benefit from this approach
for communication or other goals.
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Interventional therapy using brain-computer interface (BCI) technology has shown

promise in facilitating motor recovery in stroke survivors; however, the impact of this

form of intervention on functional networks outside of the motor network specifically

is not well-understood. Here, we investigated resting-state functional connectivity

(rs-FC) in stroke participants undergoing BCI therapy across stages, namely pre- and

post-intervention, to identify discriminative functional changes using a machine learning

classifier with the goal of categorizing participants into one of the two therapy stages.

Twenty chronic stroke participants with persistent upper-extremity motor impairment

received neuromodulatory training using a closed-loop neurofeedback BCI device,

and rs-functional MRI (rs-fMRI) scans were collected at four time points: pre-, mid-,

post-, and 1 month post-therapy. To evaluate the peak effects of this intervention, rs-

FC was analyzed from two specific stages, namely pre- and post-therapy. In total,

236 seeds spanning both motor and non-motor regions of the brain were computed

at each stage. A univariate feature selection was applied to reduce the number of

features followed by a principal component-based data transformation used by a

linear binary support vector machine (SVM) classifier to classify each participant into

a therapy stage. The SVM classifier achieved a cross-validation accuracy of 92.5%

using a leave-one-out method. Outside of the motor network, seeds from the fronto-

parietal task control, default mode, subcortical, and visual networks emerged as

important contributors to the classification. Furthermore, a higher number of functional

changes were observed to be strengthening from the pre- to post-therapy stage than

the ones weakening, both of which involved motor and non-motor regions of the

brain. These findings may provide new evidence to support the potential clinical utility
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of BCI therapy as a form of stroke rehabilitation that not only benefits motor recovery but

also facilitates recovery in other brain networks. Moreover, delineation of stronger and

weaker changes may inform more optimal designs of BCI interventional therapy so as to

facilitate strengthened and suppress weakened changes in the recovery process.

Keywords: BCI therapy, stroke recovery, functional MRI, functional connectivity, motor network, non-motor

networks, machine learning, support vector machine

INTRODUCTION

Recent advancements in neurotechnology have led to the
emergence of the brain-computer interface (BCI), which records
neural signals and translates them into signals that can control
assistive devices, such as computers or prostheses. To date,
BCI-based approaches are being investigated as therapeutic
strategies to facilitate recovery for several neurological diseases,
including stroke, epilepsy, and Parkinson’s Disease. For stroke,
the long-term objective of the rehabilitation is to improve
impaired brain functions so as to restore autonomy in daily
activities for stroke survivors. While conventional approaches
such as physical therapy and occupational therapy have proven
to be successful in aiding stroke recovery in the acute and
sub-acute stages (Bütefisch et al., 1995; Gordon et al., 2004)
modern technologies involving robotics (Kwakkel et al., 2008),
transcranial magnetic stimulation (Corti et al., 2012), and virtual
reality (Lohse et al., 2014) have demonstrated promise in
promoting additional motor and cognitive recovery to improve
autonomy and overall quality of life for stroke survivors even in
the chronic stages. The use of an electroencephalogram (EEG)-
based brain-computer-interface (BCI) is an unconventional
rehabilitation strategy that has emerged as a potentially effective
therapeutic modality for promoting motor recovery in patients
with stroke (Silvoni et al., 2011). An EEG-based BCI detects
and uses a patient’s neural signals as inputs to provide real-
time feedback, effectively enabling users to modulate their brain
activity (Felton et al., 2009). Additional feedback presented by
means of functional electrical stimulation (FES; De Kroon et al.,
2002) and tongue stimulation (TS) (Wilson et al., 2012) also
provide users with multi-modal feedback as a form of reward
for producing certain brain activity patterns while performing
tasks. While BCI therapy is often explicitly targeted at restoring
motor functions, simultaneous changes in non-motor-related
functions in the brain may also result after intervention; to
date, neural reorganization of cortical regions outside of the
motor network is not well-characterized. Distinction between the
overall brain state before and after the therapy could facilitate
a more thorough understanding of the mechanisms underlying
both the strengthening and/or weakening in motor and non-
motor networks in participants. Access to this information could

Abbreviations: BCI, brain-computer interface; BOLD, blood-oxygen-level

dependent; EEG, Electroencephalography; FES, functional electrical stimulation;

LOOCV, leave-one-out cross-validation; MAD, median absolute deviation; MNI,

Montreal Neurological Institute; NIHSS, National Institutes of Health Stroke Scale;

PCA, principal component analysis; Rs-FC, resting state functional connectivity;

rs-fMRI, resting state functional magnetic resonance imaging; SVM, support

vector machine; TS, tongue stimulation.

allow us to optimize the design and execution of this therapy for
stroke rehabilitation.

While EEG allows for study of real-time brain activity during
the BCI therapy with a high temporal resolution, neuroimaging
methods have afforded us the ability to study both large-scale
and small-scale reorganization of brain networks (Van Den
Heuvel and Pol, 2010) at a relatively higher spatial resolution.
Resting state functional magnetic resonance imaging (rs-fMRI),
specifically, has been demonstrated as a powerful and attractive
tool to study changes in brain functions as it is non-invasive,
time-efficient, and task-free. Rs-fMRI allows us to measure
the temporal correlation of the spontaneous, low-frequency
(<0.1Hz) blood-oxygen-level dependent (BOLD) signals across
regions in the resting brain. Oscillations in the BOLD fMRI
signals are indicative of cortical dynamic self-organization and
have been associated with the neural reorganization underlying
cognitive and motor function during stroke recovery (Lee et al.,
2013; Bajaj et al., 2015). Previous studies have demonstrated
that there are overlapping networks between the rs-fMRI-
derived motor network and those observed during motor
imagery and motor execution fMRI tasks (Grefkes et al., 2008;
Nair et al., 2015). A growing number of studies have utilized
neuroimaging methods to study the efficacy of BCI therapy in
stroke recovery and foundmodulating changes in neuroplasticity
and improvement in motor functions (Di Bono and Zorzi, 2008;
Várkuti et al., 2013; Song et al., 2014; Young et al., 2014b; Nair
et al., 2015; Soekadar et al., 2015). In the present study, we aim to
use rs-fMRI to examine changes in neuroplasticity in whole-brain
networks and to examine interactions between motor and non-
motor cortical regions in chronic stroke participants following
BCI therapy.

A whole-brain analysis resulting in high-dimensional
data calls for the application of machine learning-based
approaches which have become increasingly more integrated in
neuroimaging analysis as they enable discovery of multivariate
relationships beyond those identifiable by traditional univariate
analysis. Several studies have underscored the utility of machine
learning to not only differentiate among population groups
(Dai et al., 2012; Meier et al., 2012; Rehme et al., 2014; Fergus
et al., 2016; Khazaee et al., 2016; Ding et al., 2017) but also
make predictions about behavioral outcomes using regression
models (Dosenbach et al., 2010; Vergun et al., 2013; Mohanty
et al., 2017), all of which have advanced our understanding of
altered brain functionalities associated with several neurological
diseases. In the context of BCI systems, linear and non-linear
machine learning classification algorithms (Muller et al., 2003;
Lotte et al., 2007) including support vector machines (SVMs;
Rakotomamonjy and Guigue, 2008), nearest neighbors (Mason
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and Birch, 2000), and neural networks (Cecotti and Graser, 2011)
have mainly been limited to improvement and optimization
of the BCI2000 system from a design perspective to make the
system more adaptive and user-friendly (Selim et al., 2008;
Danziger et al., 2009; Alomari et al., 2013). Relatively fewer
studies have applied machine learning techniques to elucidate
the therapeutic impact of BCI interventional therapy in stroke
patients based on the dynamics of brain connectivity changes.
Specifically, SVM-based classifiers have demonstrated the ability
to not only draw a distinction between different classes but
also provide insight into underlying features that lead to the
separation between them (Dosenbach et al., 2010; Vergun
et al., 2013). Given that we aim to extensively investigate
whole-brain effects of BCI therapy, a similar classification
approach is befitting due to its efficiency in handling high-
dimensional rs-fMRI data. Recent developments have brought
deep learning approaches into view with applications in the field
of medical imaging such as tissue/lesion/tumor segmentation
(Birenbaum and Greenspan, 2016; Kamnitsas et al., 2017), image
reconstruction/enhancement (Benou et al., 2016; Hoffmann
et al., 2016) and population-based classification (Brosch et al.,
2013; Payan and Montana, 2015). The efficiency of deep learning
algorithms, however, is highly dependent on samples available
for training a reliable model. Thus, we adhere to supervised
machine learning classifiers given the limited sample size.

With the above considerations in mind, the goal of this
study was to identify the stage of therapy using whole brain
rs-fMRI data in stroke participants undergoing EEG-based BCI
intervention along with additional feedback provided by FES and
TS. We analyzed changes in non-motor regions of the brain in
addition to the well-studied motor regions following BCI therapy
in chronic stroke participants. To this end, we modeled this as a
classification problem of discriminating between pre-therapy and
post-therapy stages of intervention. Specifically, we illustrated
using rs-fMRI that connectivity at the pre-therapy stage can be
differentiated from that at post-therapy with reasonable accuracy.
A SVM-based machine learning classifier was employed to
identify specific functional nodes and connections in the brain
between the two stages. The significance of this study is 4-fold:
this study suggests that (i) a 10-min task-free rs-fMRI scan could
aid in identifying and tracking changes in functional connectivity
in the brain over the course of BCI therapy; (ii) SVM-
based classification can automate the process of categorizing
participants into pre-therapy or post-therapy stages and identify

features discriminating between the stages of therapy; (iii) BCI
therapy, targeted toward upper-extremity motor restoration, can
promote recovery effects related to brain connectivity in both
motor and non-motor networks; (iv) identification of specific
functional changes that strengthen and weaken between stages of
BCI-therapy could inform more tailored designs of BCI systems
that facilitate stronger changes and suppress weaker changes to
maximize the efficacy of this interventional therapy and improve
outcomes for stroke survivors.

METHODS

Study Design
A permuted-block design (Zelen, 1974) that accounted for
participant characteristics such as gender, stroke chronicity, and
severity of motor impairment was used to randomly assign
participants to one of two groups: crossover control group
and BCI therapy group. The study paradigm is schematized in
Figure 1. Ten participants in the BCI therapy group received
interventional rehabilitation therapy and were scanned for
MRI and rs-fMRI at four time points: pre-therapy (T4), mid-
therapy (T5), immediately post-therapy (T6), and 1 month after
completing the last BCI therapy (T7) as per the figure. Ten
participants in the crossover control group first received three
functional assessments and MRI scans during the control phase
in which no BCI therapy was administered (T1 through T3 in
Figure 1), and their assessments were spaced at intervals similar
to those given during the BCI therapy phase. Upon completion
of the control phase of the study, the crossover control group
“crossed over” into the BCI therapy phase of the study. For this
study, participants from the crossover control group and the BCI
therapy were combined (N = 20), treated as a single sample
group and studied at the pre-therapy (T4) and post-therapy
(T6) stages to provide additional power to the analysis. Even
though imaging data were collected at four distinct time-points,
changes between pre-therapy and post-therapy were examined as
maximal changes would be expected to occur between these two
time-points. Therefore, results from this study should be used to
demonstrate proof-of-concept.

Participants
All participants were recruited as part of an ongoing stroke
rehabilitation study to investigate the effects of interventional
therapy using an EEG-based BCI device targeting upper

FIGURE 1 | Study paradigm. The time-points at which neuroimaging data were collected are represented by: T1: Control baseline 1, T2: Control baseline 2, T3:

Control baseline 3, T4: Therapy baseline T5: Mid-therapy, T6: Post-therapy, and T7: 1-month post-therapy. While the crossover control group completed visits T1

through T7, the BCI therapy group completed visits T4 through T7 only.

Frontiers in Neuroscience | www.frontiersin.org 3 May 2018 | Volume 12 | Article 35348

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Mohanty et al. Machine-Learning Classification of BCI-Therapy Stage

extremity motor function. The inclusion criteria for participation
were: (1) at least 18 years of age; (2) persistent upper extremity
motor impairment resulting from an ischemic or hemorrhagic
stroke; (3) ability to provide written informed consent. Exclusion
criteria consisted of: (1) concomitant neurodegenerative or other
neurological disorders; (2) psychiatric disorders or cognitive
deficits that would preclude a participant’s ability to provide
informed consent; (3) pregnant or likely to become pregnant
during the study; (4) allergies to electrode gel, metal and/or
surgical tape, contraindications toMRI; (5) concurrent treatment
for infectious disease. The study was approved by the University
of Wisconsin-Madison Health Sciences Institutional Review
Board. All participants provided written informed consent for
participation prior to the start of their participation in the
study. Participant age was reported corresponding to the first
session of BCI therapy. This analysis was limited to chronic
stroke participants only (time between stroke onset and the first
session of BCI therapy >6 months) since participants in the
acute or sub-acute stages often exhibit spontaneous post-stroke
recovery that may prove difficult to distinguish from the effects
of BCI therapy. While stroke severity was evaluated based on
NIH Stroke Scale (NIHSS) score (Brott et al., 1989), the severity
of motor impairment was assessed on the basis of standardized
scores on the Action Research Arm Test (Carroll, 1965; Lang
et al., 2006) and was dichotomized into severe and moderate.
Group participant characteristics are summarized in Table 1.

BCI Therapy
The primary purpose of using BCI therapy in this work was
to promote restorative function by providing neuromodulatory
training with concurrent assistive stimulation that generated
actual movement in the impaired upper limb. The BCI device
was controlled by actual attempted movement of the user and
not imagined movement. The attempted movement, in turn,
generated neural activity, as recorded by EEG signals, which
translated into computer-generated feedback in real time. Here
we provide a concise summary of the procedure for the BCI
intervention. The steps of interventionwere consistent with those
described in depth in prior studies (Wilson et al., 2009; Young
et al., 2014a). Neural activity was recorded using a 16-channel
EEG cap (g.GAMMA cap, Cortech Solutions) and amplifier
(Guger Technologies) and processed using BCI2000 software
(Schalk et al., 2004). Movements of the impaired upper extremity
were facilitated with two forms of external stimulation: TS (TDU
01.30, Wicab Inc.) and FES (LG-7500, LGMedSupply; Arduino

TABLE 1 | Study sample characteristics.

Characteristic Value

Sample size 20

Age (mean age ± SD) 62.4 ± 14.3 years

Gender (male/female) 12/8

Lesion hemisphere (left/right) 8/12

Time since stroke (mean ± SD) 37.6 ± 40.8 months

Stroke severity (severe/moderate) 11/9

1.0.4). Three main components were implemented: (i) open-loop
attempted movement without any feedback for determination of
channels and frequencies for subsequent steps; (ii) closed-loop
attempted movement with visual feedback in the form of a cursor
task that utilized EEG signals of the user in real time; and (iii)
closed-loop attempted movement as in step (ii) with additional
feedback in the form of TS and FES to themuscles of the impaired
arm.

Data Acquisition: Neuroimaging Data
Structural MRI scans lasting about 5min were acquired on 3T
GE 750 scanners (GE Healthcare, Waukesha, WI) equipped
with an eight-channel head coil. These were T1-weighted axial
anatomical scans and were collected using FSPGR BRAVO
sequence with the following specifications: TR = 8.132ms, TE
= 3.18ms, TI = 450ms over a 256 × 256 matrix and 156 slices,
flip angle = 12◦, FOV = 25.6 cm, slice thickness = 1mm. Ten-
minute rs-fMRI were collected with participants lying in the
scanner with their eyes closed. Participants were instructed to
relax with their eyes closed while trying not to fall asleep during
this scan. Rs-fMRI scans were obtained using single-shot echo-
planar T2∗-weighted imaging with the following parameters: TR
= 2.6 s, 231 time-points, TE = 22ms, FOV = 22.4 cm, flip angle
= 60◦, voxel dimensions 3.5× 3.5× 3.5 mm3 and 40 slices.

Data Availability Statement
The raw data supporting the conclusions of this manuscript will
be made available by the authors, without undue reservation, to
any qualified researcher.

Individual Participant Analysis
Data Preprocessing
All scans were inspected visually to ensure they were free of any
apparent artifacts. Rs-fMRI data were processed using Analysis
of Functional NeuroImaging (AFNI) (Cox, 1996) software.
Functional scans were despiked, slice time corrected, motion
corrected, aligned with the anatomical scan, normalized to the
standard MNI (Montreal Neurological Institute) space using
the T1 scan, resampled to 3.5 mm3, and spatially smoothed
with a 4-mm full-width-half-maximum Gaussian kernel. Motion
censoring (per TR motion >1mm or 1◦), regression of white
matter and cerebrospinal fluid signals, and bandpass frequency
filtering were performed simultaneously in one regressionmodel.
The bandpass filtering was focused to the typical low oscillation
fluctuations within 0.01–0.1Hz. Global signal regression was
omitted due to ongoing controversy in the literature associated
with its use (Murphy and Fox, 2016).

Seed-Based Functional Connectivity
Based on a previous study (Power et al., 2011), 236 seed
regions of interest (ROI) spanning regions from 13 distinct
networks were selected. This seed template provides full coverage
of various motor and non-motor brain regions and has been
utilized to study functional reorganization of the brain in healthy
participants. The regions are depicted in Figure 2, as per the
MNI coordinates, and the networks are encoded as per Table 2.
Spherical seeds of 5mm radius each were created for each
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FIGURE 2 | The 236 seeds regions involving motor and non-motor regions include 13 major brain networks color coded according to Table 2 and visualized using

BrainNet Viewer (Xia et al., 2013). The seed regions falling outside the template of cerebrum were part of the cerebellum.

TABLE 2 | The seed template encompasses the whole brain comprising of 13

distinct brain networks coded by colors and specified number of regions.

Brain network Seed color Number of seeds

Sensory/somatomotor hand 30

Sensory/somatomotor mouth 5

Cingulo-opercular task control 14

Auditory 13

Default mode 58

Memory retrieval 5

Ventral attention 9

Visual 31

Fronto-parietal task control 25

Salience 18

Subcortical 13

Cerebellar 4

Dorsal attention 11

participant. This seed template was applied to the spatially
normalized, smoothed, and filtered residuals of the resting data
and BOLD time series was extracted at each of the 236 seed
regions. A correlation matrix of size 236-by-236 was generated
by temporally correlating time series from all pairs of seeds.
Of the 55,696 correlation coefficients generated, 27,730 unique
coefficients were retained for analysis and the duplicates were
discarded. The unique correlation coefficients were computed
from data at the pre- and post-therapy stages and used as
input features for the discrimination between the stages. The
methodology at single-participant level is outlined in Figure 3.

Group Level Analysis
Applications of classification using machine learning algorithms
such as SVM on rs-fMRI have been demonstrated in multiple
studies (Dosenbach et al., 2010; Vergun et al., 2013). For the
purpose of this study, we adopted a similar strategy, i.e., we
applied a binary linear-kernel SVM to rs-FC in order to classify
between the two classes, namely pre-therapy and post-therapy.

The rs-FC data for all participants were aggregated and the steps
described as follows were implemented.

Outlier Removal
It is acknowledged that with a limited sample size, the data could
be skewed due to the presence of outliers; therefore, possible
outlier features were detected and removed from the data set.
To this end, a median absolute deviation (MAD) (Leys et al.,
2013) method detected any value that is more than three scaled
MADs away from the median in a given feature which is deemed
an outlier. This was repeated for each feature within the pre-
therapy stage and post-therapy stage. The features containing
these outliers were eliminated, saving only common features
across pre- and post-therapy.

Feature Selection and Transformation
The rs-FC per participant consisted of 27,730 coefficients
resulting in a high-dimensional dataset. Drawing useful
conclusions based on a reasonable classifier is incumbent
upon selecting meaningful and important features. One way
to achieve this is by means of dimension reduction. Given
that a large number of features with a small sample size can
result in overfitting to noise, we adopted a feature selection
step followed by a feature transformation step. The feature
selection was a preprocessing step to select a subset of 27,730
features using a univariate paired t-test between the features
of pre-therapy and post-therapy stages. Features were tested
for normality using the Kolmogorov-Smirnov test (Massey,
1951) and a subset of normal features was selected on the basis
of the p-value for each individual feature that indicated its
effectiveness in the separation between the two aforementioned
stages. However, the filtered features were still high-dimensional
and could easily lead to overfitting. Therefore, the reduced
data obtained from the previous step were transformed to a
lower dimensional space using principal component analysis
(PCA; Jolliffe, 1986; Jackson, 2005). A PCA-based feature
transformation was suitably chosen as it assumes that data can
consist of correlated variables (features) and the redundancy
can be simplified by forming an uncorrelated basis composed
of the principal components which is low-dimensional and
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FIGURE 3 | Methodology for single-participant analysis: (A) raw structural T1 scan (top) was preprocessed and spatially normalized to MNI space (bottom); (B) raw

functional scan (top) was preprocessed up to smoothing (bottom); (C) smoothed fMRI was temporally filtered to obtain the low frequency oscillations within the range

of 0.01–0.1Hz using a bandpass filter; (D) 236 seeds comprising of 13 major brain networks were used to extract BOLD time courses at each seed region; (E) 236 ×

236 rs-FC matrix was computed using the BOLD time courses; (F) unique pairwise correlations contained in the lower triangle of the rs-FC matrix were extracted and

vectorized into a 27,730-dimensional vector.

FIGURE 4 | Methodology for group-level analysis: (A) vectorized form of rs-FC matrix for each participant aggregated for T4, i.e., pre-therapy and T6, i.e.,

post-therapy time points. Each group had 20 participants with 27,730-dimesional features; (B) outliers (marked in yellow) at pre- and post-therapy were identified

using MAD approach; (C) reduced rs-FC matrix after cumulative outliers were removed, i.e., each stage consisted of 20 participants and 17,614 features; (D) 679

features that were significantly different between pre- and post-therapy stages as identified by a paired t-test were retained and data across the two stages were

combined together for a feature transformation step; (E) feature transformation using PCA was performed that resulted in data with 40 participants and 39

low-dimensional principal components features. Of them 25 features accounted for more than 85% variance and were used as final features for classification; (F) the

selected features were fed to the binary SVM classifier that labels each test participant to either pre-therapy or post-therapy stage using LOOCV.

accounts for a large fraction of variance in the original data.
Each principal component is simply a linear combination of
the original rs-FC features. PCA is based upon computation of
covariance matrix of the raw data. Only mean centering was
applied to the raw data prior to application of PCA. Variance
was not standardized as it can change the covariance matrix and
lead to misleading principal components. The first few principal
component scores were selected based on the amount of variance
accounted for in the raw data and were used in the classification
step.

Classification
Once the appropriate number of principal components was
extracted in the feature selection and transformation step,
classification between the pre-therapy and post-therapy stages
was performed using the learned principal component-based
features. The inputs to the classifier were no longer the raw rs-
FC coefficients. Instead, the principal component scores, each of
which corresponded to a linear combination of multiple rs-FC

features, were fed into the classifier as features. Additionally,
since SVM-based classifiers do not assume data to be normally
distributed, the traditional Fisher z-transformation was not
necessary. However, the principal component scores were scaled
and standardized so that each component score had the same
mean and variance to avoid some features from potentially
dominating others due to large magnitude. This was realized
by mean centering and scaling by the standard deviation of
each component score. A binary classifier was trained on these
features and cross-validated on an out-of-sample participant.
To allow for more straightforward interpretation of results, a
linear-kernel SVM was applied due to the advantage of ease of
interpretation of results. Additionally, the choice of a linear-
kernel classifier was supported by the linear separability in the
data. As observed in three-dimensional space in Figure 5, the
principal component features are almost linearly separable. Thus,
there is a likelihood that the two classes are linearly separable
in higher dimensions which are used for classification (Noble,
2006).
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FIGURE 5 | First three principal components corresponding to pre-therapy

rs-FC and post-therapy rs-FC for all participants were visualized. Each point in

the 3-D plot corresponds to a participant. There appeared to be an almost

clear separation between the two stages just with three principal components.

Adding higher number of components better explained the variance in the

data. Our analysis used 25 components that explained over 85% of the

variance in the dataset.

FIGURE 6 | The number of principal components are arranged in order of

importance so that the first component accounts for the largest proportion of

variance in the rs-FC data. Of the 39 principal components, 25 were chosen

as marked in the graph as they cumulatively explained over 85% of the

variance in the data, represented by the shaded area under the curve.

Cross-Validation
A leave-one-out cross-validation (LOOCV)method (Hastie et al.,
2001) was adopted to estimate classifier performance as it
provides an approximation of the test error with lower bias and
is more suitable for a dataset with a small sample size such as
here. Since our analysis followed a within-participant design,
we performed a LOOCV by participant to avoid introducing
possible “twinning” bias. This means that the data consisting
of 40 observations (pre-FC and post-FC from 20 participants)
were subdivided into 20-folds such that each fold comprised

TABLE 3 | The number of features derived from the rs-FC data utilized in various

steps of the analysis.

Analysis step Number of

features

Feature space

Original features 27,730 rs-FC

After outlier removal 17,614 rs-FC

After univariate filtering 679 rs-FC

After principal component analysis 39 reduced

Chosen principal components for classification 25 reduced

The feature space indicates whether the corresponding features were measures of

functional connectivity, i.e., rs-FC space or principal components comprised of linear

combination of multiple rs-FC features, i.e., reduced space.

of pre-FC and post-FC data from a single participant. The
classifier was trained using features from 19-folds (equivalent to
38 observations from pre- and post-stages of 19 participants) and
tested on the left-out fold (2 observations from pre- and post-
stages of 1 participant). This was repeated 20 times such that
data from each participant was left out once while a model was
generated using the rest of the data. The performance of the
model was assessed by averaging the accuracies over all iterations.

Model Parameter Optimization
To achieve high classification accuracy, the SVM classifier
relies on both feature selection and learning optimized model
parameters. Specifically, the misclassification cost and kernel
scale parameters of the classifier were optimized with a Bayesian
optimization (Snoek et al., 2012) approach. By minimizing the
cross-validation error over a range of values for 30 iterations, the
optimal parameter values were obtained that further improve the
classification performance.

Feature Contribution
Once a model was learned with the optimal parameters,
the use of a linear-kernel SVM allowed understanding of
underlying discriminatory brain connections. The PCA feature
transformation yielded linear coefficients that weigh features
and the importance of each feature was dependent upon the
magnitude of the associated coefficient.

Seed Contribution
Based upon the feature weights obtained for each of the
discriminating functional connections, seed region weights were
calculated for individual brain regions. This was achieved by
halving the feature weight of each functional connection and
assigning this value to the two seeds involved (Meier et al., 2012).
A cumulative measure of weight corresponding to each seed was
computed by averaging the half-weights across all discriminating
connections.

Overview of Methodology
Overall, a classification model using rs-FC was learned and
optimized, and the contributing rs-FC features and ROIs that
provided the maximum discriminative power based on cross-
validation performance were identified. All computations were
carried out using the Statistics and Machine Learning Toolbox in
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MATLAB R2017a (The MathWorks, Inc., Natick, Massachusetts,
United States). The group-level analysis pipeline is illustrated in
Figure 4.

RESULTS

Performance of Classifier
Outlier Removal
Each of the 27,730 features was tested for the presence of outliers
within the pre- and post-therapy stages separately. Features were
removed if they contained values that were more than three
scaled deviations from the median. MAD was chosen as it is
more robust in comparison to the standard deviation measure.
Outliers constituted 21.99% of the features in the pre-therapy
stage and 19.53% of the features in the post-therapy stage. After
outliers across both time-points were removed, 17,614 features
were retained in each class.

Feature Selection and Transformation
The 17,614 features remaining after outlier elimination were
used as input to the feature selection step. Each feature was
tested for normality and the univariate paired t-test resulted in
679 features that were significantly different between the two
stages. During feature transformation using PCA, the number
of principal components was determined to be the smaller of
these two: number of samples-1 or number of input features.
Thus, application of PCA resulted in 39 principal components
in this case, each of which was uncorrelated to each other and
was realized as a linear combination of the 679 input features. Of
the 39 components, 25 components were able to account for over
85% of the variance in the data and were fed into the classifier.
Due to lack of visualization tools in 25 dimensions, a simpler plot
with the first three components was generated as displayed in
Figure 5. The separation observed in the visualization suggests
that PCA was able to build useful low-dimensional features
that can help in differentiating between the two stages. For
classification, the chosen number of components was based on
the variance explained by them as shown in Figure 6. An account
of number of features retained at each step of processing from

original space (i.e., features are rs-FC coefficients) to reduced
space (i.e., features are principal components) is provided in
Table 3.

Cross-Validation
A binary SVM classifier was built using 25 principal component
features. Classification performance was cross-validated using
the LOOCV method and was used to assess and compare results
as quantified in Table 4. The accuracy of LOOCV represents the
percentage of individual samples that were correctly classified
when left out. Since accuracy is a single-point statistic, the
results were further broken down into a confusion matrix metric
to understand the bias of the classifier toward each class, if
any. In addition, multiple performance evaluation metrics were
evaluated such as specificity, sensitivity, and area under the curve.
The receiver operator curve (ROC) plotted in Figure 7 indicated
that the classifiers developed here have superior performance as
compared to a random classifier.

Model Parameter Optimization
The optimal values of classifier parameters, i.e., the
misclassification cost and scaling factor for the linear kernel
were generated by the Bayesian approach for each classifier and
are listed in Table 4. As observed, optimization of the model
parameters improves the classifier performance further. This is
also reflected in the ROC plot in Figure 7.

Strengthened and Weakened Functional
Changes as Discriminating Features
From the evaluation of classification performance, it is possible
to extract the features that were involved in classification, as
well as the importance of each feature in making the distinction
between classes. Our objective was to identify discriminating
features between groups that strengthened from pre-therapy to
post-therapy and those that weakened from pre-therapy to post-
therapy. All changes in rs-FC were assessed in terms of group
means. Considering the 679 features that went into the final
classification model, the distribution of features is presented in
Table 5. Stronger connections outnumbered weaker connections

TABLE 4 | Overall comparative results obtained from LOOCV of binary SVM classifier.

Metric Performance without optimization Performance with optimization

LOOCV accuracy 90% 92.5%

Confusion matrix Pre Post Pre Post

Pre 18 2 Pre 18 2

Post 2 18 Post 1 19

Specificity 0.90 0.95

Sensitivity 0.90 0.90

Area under the curve 0.9825 0.9850

Misclassification cost 1 (default) 0.0010

Kernel scale 1 (default) 0.0011

The rows of confusion matrix represent the actual class while the columns show the predicted class.
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FIGURE 7 | The ROC for the learned SVM classifier was compared to that of a

random classifier. The SVM classifier with optimized model parameters

showed the best performance. The area under the curves for unoptimized and

optimized SVM are specified in Table 4.

TABLE 5 | Breakdown of discriminating features into functional connections that

strengthened and weakened from pre-therapy to post-therapy are shown for

motor as well as non-motor regions.

Motor Non-motor Total

Strengthened 105 336 441

Weakened 71 167 238

Overall 176 503 679

The colors correspond to the edges in Figure 8. The specific stronger and weaker

connections in terms of networks and anatomical locations are provided in Supplementary

Tables 1, 2, respectively.

in discriminating between the two stages of therapy both
in the motor and non-motor networks. Individual functional
changes that strengthened and weakened over time are listed
in Supplementary Tables 1, 2, respectively in the order of their
importance. These changes are also visualized in Figure 8.

Discriminating Seed Regions
Motor as well as non-motor regions were involved in
differentiating between pre- and post-therapy. Among the 679
total input features, the distribution of frequency of involved seed
regions by network is presented in Figure 9. As observed, seed
regions from all major motor and non-motor networks showed
involvement in the discriminating features. From Figure 9A,
it appeared that the default mode network had the highest
number of involved regions; however, the distribution of number
of seeds across the networks was not equal as listed in
Table 2. The number of discriminating features was normalized
by the number of seeds available within each network and
plotted in Figure 9B. In particular, networks that exhibited
greater normalized involvement included regions from visual,
subcortical, fronto-parietal task control, cingulo-opercular task
control, default mode, and hand-mouth motor networks.

In addition to assessing the frequency of involvement, the
seeds were also assigned weights to study the importance of
each seed region based on the coefficients of the principle
components. The coefficient corresponding to each feature or
connection was halved and assigned to the involved seed regions
as per prior work by Vergun et al. (2013). This was repeated
across all 25 principal components, and the average of those
weights determined the final weight of the seed regions. The
weighted seed regions are shown in Figure 10. The complete
list of weighted seeds, anatomical locations, and corresponding
networks can be found in the Supplementary Table 3. The highly-
weighted regions identified are known to be part of the fronto-
parietal task control, hand motor, subcortical, visual, and default
mode networks.

DISCUSSION

Rs-fMRI as a Tool to Track Stroke Recovery
Results from this study highlight the utility of rs-fMRI as a tool
to track changes in the brain during stroke recovery through
rehabilitative therapy. Rs-fMRI is particularly attractive because
it only requires about 10min for acquisition and is task-free. Our
analysis suggests that a similar analysis might be extendable to
incorporate more than one time-point to gain deeper insight into
the recovery process.

Large-Scale Impact of BCI Stroke
Rehabilitation
The majority of BCI-aided therapy programs are targeted at the
recovery of a particular impairment, such as motor functions, as
was the case for participants studied in this cohort. Our findings
showed that such a therapy can impact not only motor but also
non-motor networks in the brain. We demonstrate a greater
number of functional connections growing stronger than ones
growing weaker over time over the course of this therapy. These
results can better guide the design and implementation of BCI
systems to facilitate greater changes that strengthened in patients
with stroke.

Machine Learning as a Tool to Identify
Stage of Therapy and Relevant Functional
Differences
As evident from the confusion matrix in Table 4, we were
able to differentiate between the two stages of BCI therapy
with high cross-validation accuracy. High-dimensional rs-FC
extracted from whole brain analysis was downscaled by PCA-
based feature transformation that helped elucidate differences
across stages of therapy regarding underlying brain connections
involved. In comparison to a random classifier that is 50%
accurate, our machine learning classifier developed using low-
dimensional features derived from rs-FC performed much better
with over 90% accuracy. These results indicate that with a large
sample size, a SVM classifier could be trained on rs-FC data to
categorize a new participant into either the pre-therapy or post-
therapy stage of the recovery process by identifying the most
discriminative rs-FC features.
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FIGURE 8 | Visualization of (A) 441 strengthening functional connections and (B) 238 weakening functional connections. The overall number of connections involved

in the motor and non-motor networks can be found in Table 5. A detailed list of individual connections can be found in the Supplementary Tables 1, 2, respectively. All

brain visualizations were performed using BrainNet Viewer Toolbox (Xia et al., 2013).

The Bigger Picture
The current study is presented from a neuroimaging perspective
of the changes occurring after BCI therapy. However, other
than the neuroimaging methods, EEG and behavioral data are
the core components of this interventional study. Since this
therapy is based on acquisition of simultaneous EEG, it would be
important to understand the spectral data to support the effects
of the therapy. Group-level EEG analyses were conducted on the
associated cohort (N = 21) and the results are currently reported
under separate covers to the same issue (Remsik et al., submitted,
currently submitted for review to Frontiers in Neuroscience,
section Neural Technology). The analysis studied the levels of
desynchronization and coherence over the motor cortex and
performance with respect to functional outcomes across all time-
points. Similarly, rs-FC in the motor cortex before and after
the therapy associated with subjective and objective behavioral
outcomes have been quantified in another manuscript submitted
to the same journal (Mohanty et al., submitted, currently
submitted for review to Frontiers in Neuroscience, sectionNeural
Technology).

The most common rehabilitative clinical applications of
BCI systems (Bamdad et al., 2015) include speech (Brumberg
et al., 2010; Mugler et al., 2013) and motor (Birbaumer,
2006; Neshige et al., 2007; Sun et al., 2011) rehabilitation.

Fewer studies have adopted the BCI paradigm for cognitive
rehabilitation (Gomez-Pilar et al., 2014). Most of these deal
with improving a specific function and study changes occurring
in the associated limited brain regions. As per Supplementary
Table 3, the motor regions that contributed the most to
classification were found over the bilateral precentral gyrus
which forms the core of the primary motor cortex. This is
in alignment with findings that focus specifically on post-
stroke changes in the motor network (Lotze et al., 1999;
Young et al., 2014b; Nair et al., 2015). In addition, our study
expands the knowledge further by identifying brain changes that
occurred in the non-motor areas involving fronto-parietal task
control, default mode, and visual networks even though the
BCI therapy was primarily targeted at the recovery of motor
function. This demonstrates the importance of comprehending
the gross impact of BCI therapy on a whole-brain level.
Additionally, since the BCI system is adaptive in nature
(Schalk et al., 2004), the knowledge about functional changes
that are strengthening and/or weakening as a result of this
therapy might point toward a better design of the intervention.
Maladaptive changes caused by the compensatory activity of
the unaffected side has been shown to prevent recovery on
the affected side (Takeuchi and Izumi, 2012). One direction to
harness this information could involve regulating the way EEG
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FIGURE 9 | Number of discriminating connections per network is plotted below: (A) shows the distribution of involvement of various networks in discriminating

features; (B) shows the involvement of various networks when normalized with respect to the number of seeds found in each network. The two networks primarily

associated with motor functions are highlighted.

FIGURE 10 | Involved seed regions were weighted as per their contribution in classification. The size of each seed was directly proportional to assigned weight. The

top weighted seeds belonged to fronto-parietal, hand motor, default mode, and visual networks. A detailed list of the networks and labels of ROIs ranked as per their

weights are presented in Supplementary Table 3.

signals are processed within BCI device. The signal processing
module of the BCI system that takes into account the signal
generated at each output channel could be modulated so as

to maximize the changes that grew stronger and minimize the
changes that grew weaker, thus, tailoring the therapy for each
user.
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Limitations
Our results show that standard machine learning approach has
the potential to track recovery through BCI therapy. However,
the study was constrained in terms of the sample size since
conventional machine learning analysis relies on training on
a large dataset so as to have greater power of generalizability.
Although we attempted to include a comparable number of
participants of both genders, different lesion locations and
volumes, and differing levels of stroke severity, heterogeneity
in any of these factors might be relevant considerations
for future analysis as they could potentially influence the
results. In this analysis, the number of samples available for
training impacted the number of principal components (rank
of covariance matrix) evaluated in the feature transformation
step using PCA. Higher number of samples would provide
higher degree of freedom. With continuing recruitment, using
a larger and more homogeneous participant cohort would
allow for more generalizable conclusions. The definition of
rs-FC was based upon Pearson’s correlation, which is a
classical approach and accounts for linear dynamics among
the BOLD signals. Recent studies such as that conducted
by Smith et al. (2011) provide alternate definitions of rs-FC
such as mutual information, cosine similarity, and dynamic
time warping; therefore, applying different definitions of seeds
and rs-FC could impact the underlying discriminatory features
in classification. Although several non-motor networks were
identified as being recruited during recovery, we have not
investigated the behavioral implications of this finding, i.e.,
whether strengthened connections in these networks correlate
with behavioral gains in various brain functions. The notion of
stronger and weaker changes in rs-FC in this study might not
reflect adaptive and maladaptive changes in behavioral aspects
even though we observed overall improvement at the group-level
in measures such as the Action Research Arm Test (mean change
= 0.85), and domains of the Stroke Impact Scale (mean change in
hand function = 0.75; mean change in physical strength ≤0.13)
from pre-therapy to post-therapy.

Future Scope
The ongoing recruitment for this study offers a broad future
scope to incorporate more participants that can form a more
homogenous cohort. Comparison between stroke participants
undergoing rehabilitative therapy and healthy participants
undergoing the same therapy will allow comprehension of
recovery specifically associated with the event of a stroke. An
analysis similar to our study could be extended to incorporate
other time-points during the BCI therapy paradigm, such as the
mid-therapy (T5) and 1-month post-therapy (T7) time points.
Aside from rs-fMRI, alternative neuroimaging methods such
as diffusion tensor imaging, task-fMRI, arterial spin labeling,
and perfusion imaging capture complementary information and
could be used to analyze and compare classification performance.

CONCLUSION

We utilized PCA-based feature transformation coupled with
a SVM classifier to discriminate stroke participants by stage

of BCI intervention (i.e., the pre-therapy stage to the post-
therapy stage) on the basis of rs-FC in both motor and
non-motor regions. The findings from this study can be
summarized as follows: (i) data from a task-free rs-fMRI can
help identify changes across stages of the BCI-aided stroke
intervention and hence, has the potential to track stroke
recovery; (ii) using a machine learning SVM classifier facilitates
automation of discrimination between stages of therapy with
a reasonably high accuracy and examination of discriminating
connections; (iii) both motor and non-motor regions of the
brain undergo reorganization during this intervention. Higher
number of strengthening functional changes in comparison to
the ones weakening between pre- and post-therapy suggests
a greater overall positive impact of BCI intervention on
stroke recovery at a whole-brain level; (iv) the capability of
delineating such specific changes holds promise for better design
of the BCI therapy that could incorporate the information
by reinforcing stronger changes while suppressing weaker
changes.
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Detection and interpretation of signs of “covert command following” in patients with

disorders of consciousness (DOC) remains a challenge for clinicians. In this study, we

used a tactile P3-based BCI in 12 patients without behavioral command following,

attempting to establish “covert command following.” These results were then confronted

to cerebral metabolism preservation as measured with glucose PET (FDG-PET). One

patient showed “covert command following” (i.e., above-threshold BCI performance)

during the active tactile paradigm. This patient also showed a higher cerebral glucose

metabolism within the language network (presumably required for command following)

when compared with the other patients without “covert command-following” but having a

cerebral glucose metabolism indicative of minimally conscious state. Our results suggest

that the P3-based BCI might probe “covert command following” in patients without

behavioral response to command and therefore could be a valuable addition in the clinical

assessment of patients with DOC.

Keywords: covert command following, P3, FDG-PET, disorders of consciousness, consciousness, brain computer

interface

INTRODUCTION

Severely brain-injured patients with disorders of consciousness (DOC) can be distinguished by
their ability to show either only reflexive and thus unconscious behavior (unresponsive wakefulness
syndrome, UWS) (Laureys et al., 2010), or more purposeful reactions to the environment without
(minimally consciousness state minus, MCS–) or with signs of language preservation such as
response to command (minimally consciousness state plus, MCS+) (Giacino et al., 2002; Bruno
et al., 2012). A clinical challenge presents itself when diagnosing patients correctly, yet, accurate
diagnosis is key for treatment and prognosis. Indeed, patients with residual consciousness have
increased chances of recovery and respond better to various treatments such as tDCS (Thibaut et al.,
2014), possibly modulating cortical excitability in DOC patients (Bai et al., 2017a), and amantadine
(Maythaler et al., 2002).
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Structured behavioral assessment, such as the Coma Recovery
Scale-Revised (CSR-R), led to an important reduction of the
misdiagnosis rate (Schnakers et al., 2009), especially when the
behavioral assessment is repeated at least five times (Wannez
et al., 2018). In addition, passive neuroimaging techniques can
quantify structural and functional brain damage, and could
ultimately be used as supplemental tools for diagnosis (Rosanova
et al., 2012; King et al., 2013; Demertzi et al., 2015; Chennu
et al., 2017). Among them, 18F-fluorodeoxyglucose positron
emission tomography (FDG-PET) has been used to indicate that
the absence of overt signs of consciousness does not necessarily
indicate that the patient is unconscious (Stender et al., 2014).
Resting state EEG can be used to passively assess DOC patients’
consciousness level, for which spectral measures and functional
connectivity are most successful and widely employed (for review
see Bai et al., 2017b).

Active ways of assessing covert consciousness and command
following are more challenging as it necessitates cognitive
integrity for command following (e.g., language comprehension,
memory) (Andrews et al., 1996). However, it brings additional
key information as patients showing early signs of (covert)
command following have a better chance of good outcome
(Whyte et al., 2001). Furthermore, command following can
potentially be used to establish functional communication which
could dramatically increase the patient’s quality of life.

About one decade ago, the first evidence for “covert command
following” in absence of overt command following was reported
using functional MRI (Owen et al., 2006), further used a
couple of years later to enable an MCS– patient to functionally
communicate (Monti et al., 2010; Bardin et al., 2011). However,
fMRI is expensive and hardly accessible for repeated assessments.
For this reason, other techniques that can measure voluntary
responses not observable at bedside have been used to assess
“covert command following.” EEG-based detection of motor
imagery showed their potential to establish command following
in about 20% of the patients with DOC (Cruse et al., 2011,
2012). The P3 event related potential (ERP), which is observed
about 300–500ms after the presentation of a deviant sensory
stimulus in a train of standard stimuli, reflects the novelty
of the stimulus. The P3 can be present in varying contexts
and levels of consciousness, for example in response to the
subjects’ own name (Perrin et al., 2006; Li et al., 2015), and
it is less sensitive than spectral and connectivity measures in
discriminating between UWS andMCS patients (Sitt et al., 2014).
Nevertheless, it is also known that attention (which requires
consciousness, by definition) can modify the amplitude of the P3
(for review Chennu and Bekinschtein, 2012). Other systems, that
do not depend on brain activity directly, used subliminal limb
movements (i.e., electromyogram; Habbal et al., 2014; Lesenfants
et al., 2016), modulation of breathing (Charland-Verville et al.,
2014) or of pH saliva (Wilhelm et al., 2006), pupil dilation during
mental effort (Stoll et al., 2013) for detecting command following
and communication in DOC or locked in syndrome patients (i.e.,
fully paralyzed but conscious). However, all these techniques are
relying on experts for data acquisition and offline data analysis,
and tools that can be directly implemented in clinical setting for
non-experts are needed.

In this prospective study, we used a commercially available
P3-based BCI system with direct feedback about the patient’s
performance in clinically well-characterized patients with DOC.
Our aim was to identify patients with signs of “covert command
following,” and compare those results to cerebral glucose
metabolism preservation as measured with FDG-PET (Stender
et al., 2014). A secondary aim was to investigate whether there
is a relationship between the BCI performance and the level of
consciousness (as defined by the CRS-R and the FDG-PET) at
the group level.

METHODS

Subjects
The study was conducted from November 2015 till July 2016
and included a convenience sample of 12 adult patients.
Inclusion criteria were patients with DOC without response to
command (i.e., UWS or MCS–) after a period of coma and the
availability of FDG-PET within 1 week of the BCI assessment.
Exclusion criteria were being less than 16 years old, history
of developmental, neurologic, or major psychiatric disorder
resulting in functional disability before the insult, and being
in a (sub-)acute stage after injury (<3 months). All patients

were hospitalized for 1 week in the University Hospital of
Liège for a thorough clinical assessment of their medical and
cognitive status. This assessment included FDG-PET, MRI, EEG
and repeated behavioral assessments with the CRS-R. Diagnosis
of UWS or MCS– was based on the best out of a minimum of
five CRS-R assessments during this 1-week hospitalization. The
ethics committee of the Faculty of Medicine of the University
of Liège approved the study, and written informed consent was
obtained from the patient’s legal representative in accordance
with the Declaration of Helsinki.

BCI Assessment and Data Processing
Hard- and software were developed by g.tec (mindBEAGLE g.tec
Guger Technologies OG, Graz, Austria). Data were recorded
from 8 active gel electrodes (Fz, Cz, C3, C4, CPz, CP1, CP2,
Pz) sampled at 256Hz, referenced to the mastoids, and filtered
between 0.1 and 30Hz using a Butterworth 4th order filter. The
BCI analyzed the P3 ERP for the assessment of “covert command
following” and potentially communication.

The employed oddball paradigms administered mechanical
vibrations with a frequency of 225Hz, which lasted for 30ms,
with an inter-stimulus interval of 270ms. A total of 480 stimuli
were presented, resulting in a paradigm duration of 2.4min.
In the first paradigm, the vibrotactile with two stimuli (VT2),
stimuli were presented on the left (probability of 7/8) and
right (probability of 1/8) wrist. Before the start of the session,
the patient was aroused if needed (i.e., the patient presented
multiple episodes of eye closure during the CRS-R before the
BCI assessment) and instructed to mentally count the stimuli
presented on the right wrist. If the patient showed eye closure
lasting longer than 10 s, the paradigmwas paused, the patient was
aroused (using the CRS-R arousal facilitation protocol) and the
instructions were repeated before continuation of the paradigm.
In case of a BCI performance above 70% during the VT2
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paradigm (without artifacts from the mechanical vibrations),
the result was considered above chance level and the test
was extended with a third stimulator (VT3). The threshold of
70% was chosen because it is suggested to be the minimal
required performance allowing effective communication using
a BCI (Noirhomme et al., 2015). The VT3 paradigm includes a
stimulator on the right foot which then acts as standard stimulus
(probability of 6/8), and the stimulators on the left and right
wrists deliver deviant stimulations each with a probability of 1/8.
The subject was instructed through headphones which hand to
attend for every block, and mentally count the number of deviant
stimulations. Four blocks of 15 target deviant (and 15 non-target
deviant plus 90 standard) trials randomly assigned to the left and
right wrist, were presented. After this initial training phase, 6
autobiographical questions were asked to the patient. In order to
answer, the patient was instructed to concentrate on the left hand
for answering “yes,” and on the right hand for answering “no”
during a 30-s period.

Data for ERP’s was extracted from −100 to 600 around
stimulus onset. Trials with an amplitude exceeding 100 µV were
rejected from the further analysis. Baseline correction was done
using the 100ms before stimulus onset. The 600ms after stimulus
onset was down sampled to 7 samples. The data processing
classified deviant trials using a linear discriminant analysis with
56 features (7 time-points of the down-sampled ERP, for 8
channels). The BCI performance (i.e., the percentage of detected
deviant trials), ranging from 0 to 100%, was calculated using
a 10-fold cross-validation. For more detailed information on
the stimulus presentation and analysis, please refer to previous
studies (Ortner et al., 2014; Guger et al., 2017).

FDG-PET Acquisition and Processing
Resting 18F-FDG-PET acquisition was performed about 30min
after intravenous injection of approximately 150MBq radioactive
labeled glucose (Gemini TF PET-CT scanner, Philips Medical
Systems) in order to quantify cerebral glucose uptake. A low dose
CT was acquired prior the 12-min emission scan and used for
attenuation correction. PET images were reconstructed using the
iterative LOR RAMLA algorithm and correction for dead-time,
random events and scatter were applied.

Preprocessing and statistical analysis were done in the
Statistical Parametric Mapping toolbox (SPM12, www.fil.ion.ucl.
ac.uk/spm) implemented in MATLAB (R2017a). Preprocessing
was done as described previously (Stender et al., 2014). Briefly,
images were manually reoriented according to the SPM12 FDG-
PET template, spatially normalized (using a template for patients
and controls) and smoothed (with a 14mm FWHM Gaussian
kernel).

Statistics
We identified regions that showed preserved cerebral glucose
metabolism in patients who showed “covert command following”
as compared with patients with a FDG-PET typical for MCS
(Stender et al., 2014) who did not show signs of “covert
command following.” This was done using a factorial design with
four design matrices. Clusters with preserved metabolism were
considered significant at FWE p< 0.05. Themean glucose uptake
(in MBq/cc) of the largest significant cluster was extracted for

these six subjects using Marsbar (version 0.44, http://marsbar.
sourceforge.net/).

Additionally, for every subject, we identified regions with
relative preserved metabolism compared to 34 healthy subjects to
obtain a FDG-PET-based diagnosis, as described in more details
elsewhere (Stender et al., 2014). A Wilcoxon rank-sum test and
chi-square test were used to assess the difference in age and
gender between patients and healthy subjects (the latter solely
used for the FDG-PET analysis). The CRS-R and FDG-PET based
diagnosis were confronted to the VT2 BCI performance at the
group level using a Wilcoxon rank-sum tests.

RESULTS

Twelve patients were included in the study, of which four MCS-
patients (age median = 47.5, IQR = 20 years; disease duration
median = 7.5, IQR = 7.75 months; 3 males; 3 TBI, 1 anoxia),
and eight UWS patients (age median = 43.5, IQR = 25.5 years;
disease duration median = 50, IQR = 30.5 months; 4 males;
2 TBI, 5 anoxia, 1 hemorrhage). The VT3 was performed in
only one patient (MCS1), for whom the BCI performance during
the VT2 and VT3 reached 100 and 70% respectively. The BCI
decoded an answer for one out of six questions, but the BCI did
not decode replies during further attempts. This patient showed
a preserved metabolism within the left hemisphere (i.e., language
network) as compared to the other patients with a FDG-PET
indicative of MCS (Figure 1). This preservation was confirmed
when compared with healthy subjects (Figure 2).

All patients behaviorally diagnosed as MCS showed cortical
metabolism preservation in accordance with a diagnosis of MCS.
Six out of eight patients diagnosed as UWS had a FDG-PET
in agreement with the CSR-R based diagnosis, while the other
two patients showed preserved cortical glucose metabolism
suggestive of MCS. The patients and healthy subjects used for the
FDG-PET-based diagnosis did not differ in age (Z = 0.32, p =

0.75) or gender [χ2
(1)

=1.98, p = 0.16]. Patients’ demographics,

BCI performance, and FDG-PET diagnoses are reported in
Table 1. BCI responses and preserved metabolism as compared
to healthy subjects are presented in Figure 2 for three patients
(i.e., one UWS patient, one MCS– patient, and the patient with
“covert command following”).

At the group level, the BCI performance during the VT2
paradigm was lower for UWS than for MCS patients (UWS
median = 10, IQR = 30; MCS median = 22.5, IQR = 47.5; Z =

2.10, p = 0.04). When comparing the BCI performance with the
FDG-PET diagnosis, the performance during the VT2 paradigm
was also lower for UWS than for MCS patients (UWS median =

10, IQR= 40; MCS median= 20, IQR= 15; Z = 2.09, p= 0.04).

DISCUSSION

In this prospective study, we used a commercially available
P3-based BCI system in a convenience sample of 12 clinically
well-characterized patients with DOC. We identified a patient
with signs of “covert command following,” and compared those
findings to cerebral glucose metabolism preservation of patients
without signs of “covert command following.”
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FIGURE 1 | Preserved glucose metabolism (in red-yellow) as measured with FDG-PET for the MCS– patient with signs of “covert command following” compared to

patients with a FDG-PET indicative of MCS without signs of “covert command following” (top left). Mean glucose uptake of the more significant cluster (in MBq/cc) for

every patient (bottom left, patients with a MCS FDG-PET in absence of “covert command following” represented with circles, the MCS– patient who did show signs of

“covert command following” represented with a cross). Average standardized uptake value for the patients without “covert command following” (right top), and the

standardized uptake value for the patient with “covert command following” (bottom right).

FIGURE 2 | BCI performance and areas of preserved (in red-yellow) cerebral glucose metabolism compared to healthy subjects (significant at <0.001 uncorrected).

Results are presented for a representative UWS (left) and MCS (middle) patient without covert response to command, and for the patient with covert response to

command (right). In the ERP plot blue lines represent the P3 for the attended hand, and red line represent the P3 for the unattended hand.

We have found that one behaviorally MCS- patient (i.e.,
showing visual pursuit but no response to command at the
bedside) was able to show “covert command following” using
the VT3 paradigm (i.e., attended toward the left or the right

stimulated hand, as requested). This patient, who showed “covert
response to command,” had an FDG-PET in agreement with
the diagnosis of MCS (Stender et al., 2014). This patient had
already been assessed by our group about 1.5 years before the
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TABLE 1 | Demographic, BCI and FDG-PET information per patient.

ID Age range Disease

duration

Etiology Handedness Diagnosis

stability

VT2 [%] (#

rejected

trials)

VT3 [%] (#

rejected

trials)

FDG-PET

diagnosis

MCS– 1 40–45 60m TBI Right 4/6 100 (3) 70 (1) MCS

MCS– 2 20–25 40m TBI Left 6/6 20 (1) – MCS

MCS– 3 55–60 8m Anoxia Right 1/6 25 (42) – MCS

MCS– 4 55–60 70m TBI ? 4/6 10 (257) – MCS

UWS 1 65–70 3m Hemorrhage Right 4/4 0 (3) – MCS

UWS 2 30–35 9m TBI Left 5/5 20 (3) – MCS

UWS 3 55–60 6m Anoxia ? 5/5 75+ (0) – UWS

UWS 4 20–25 15m Anoxia ? 6/6 10 (51) – UWS

UWS 5 45–50 6m Anoxia Right 6/6 0 (23) – UWS

UWS 6 65–70 5m Anoxia Left 7/7 0 (21) – UWS

UWS 7 40–45 26m Anoxia Right 6/6 40 (480*) – UWS

UWS 8 30–35 13m TBI Right 6/6 10 (0) – UWS

The clinical diagnosis of the patients is based on the best CRS-R of at least five assessments that were performed within the week of the BCI assessment. Fluctuations in the clinical

diagnosis are presented as the proportion of best diagnosis out of the total number of assessments. Median BCI performance for the two (VT2 and VT3) paradigms and between

brackets the number of rejected trials are presented together with the FDG-PET based diagnosis. Patient MCS- 1 showed signs of response to command when assessed with the BCI.

* Very high amplitude response. + artifacted by mechanical artifact.

BCI assessment and had been diagnosed in a clinical state of
MCS–. The week of the BCI assessment, MRI examination
showed a gray matter atrophy most severe in subcortical
areas and in the middle and posterior cingulum, but relatively
limited in other cortical areas, suggesting a higher level of
consciousness (Annen et al., 2018). The clinical EEG showed
a 5Hz rhythm, which has been associated to a higher chance
of being MCS+ (as compared to MCS–; Chennu et al., 2017).
The FDG-PET also showed an increase in cerebral metabolism
(as compared with previous assessment), mostly pronounced
in the regions of the right dorsolateral prefrontal cortex, the
inferior parietal junction and the inferior temporal gyrus. These
regions, suggested before to be key regions differentiating MCS–
(absence of language understanding) and MCS+ (presence of
language understanding) patients (Bruno et al., 2012), were also
more preserved in the patient with signs of “covert command
following” than in the other patients with cerebral metabolism
suggestive of MCS. However, the outcome at 1 year after
the BCI assessment still suggested a diagnosis of MCS–. The
relatively good results of the paraclinical assessment together
with the limited motor response during clinical assessment
(i.e., 1/6 assessment an automatic motor reaction and 5/6
(abnormal) flexion to noxious stimulation) and severe spasticity
(i.e., Modified Ashworth Scale score of 3/4 for the upper limbs
and 4/4 for the lower limbs) could therefore suggest that this
patient’s behavior was mainly limited by her physical rather than
cognitive impairments.

Previous literature have reported that about 20% of the DOC
patients show covert response to command if tested using active
EEG-based paradigms (Cruse et al., 2011, 2012). However, one
of the main challenges in this field is the heterogeneity in data
analyses and statistical assumptions used. These choices can

influence the results and lead to false positives or negatives
(Cruse et al., 2013; Goldfine et al., 2013), even in locked in
syndrome patients assessed with the same and a different system
as employed in the current manuscript (Spüler, in review). It is
key to keep this inmindwhen interpreting such data, especially in
the context of DOC patients, where such false negative or positive
results might have harmful effects in the short and long term,
triggering end-of-life decisions or inversely nurturing false hopes
(Jox et al., 2012). Oneway to avoid false negatives or positives is to
confront the results obtained through different techniques and/or
modalities as presented here. Multimodal approaches, even if
they necessitate more time and resources, may help reduce the
underestimation of the patient’s levels of consciousness (Stender
et al., 2014; Annen et al., 2018). In the present study, the FDG-
PET data ensure the validity of the presented BCI results.

The fact that only one out of twelve patients showed signs
of “covert command following” [i.e., 8%, vs. 19% (Cruse et al.,
2011) or vs. 30% (Spataro et al., 2018)] as previously reported
in UWS patients using BCI approaches) in our small sample
could be explained by the high proportion of patients with anoxic
brain damage in the included sample, which previously have been
reported to show “covert command following” less often than
patients with a traumatic etiology (Cruse et al., 2012). When
considering TBI patients only, 20% of the patients show signs of
covert command following (i.e., 1 of 5 in the current study, and
2 of 10 in Cruse et al., 2011). Additionally, we included solely
chronic (i.e.,> 3 months after injury) DOC patients as compared
to the study including acute DOC patients which suggested
that 30% of the patients show “covert command following”
(Spataro et al., 2018). Even if recovery of consciousness in
the chronic phase of the disease can happen (Estraneo et al.,
2010), recovery is more common to start in the acute phase
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after the injury (Whyte et al., 2013). Hence discordant results
suggestive of covert command-following are expected to be more
frequent in the acute phase, during which the P3 response
is predictive for a good outcome (Tzovara et al., 2016). Still,
the current small and heterogeneous convenience sample could
limit the generalizability of the results. Especially since the
provided data does not include offline analysis allowing for a
tailored single-subject significance threshold for each session,
the interpretation of these results remains limited. Furthermore,
vigilance fluctuation (Piarulli et al., 2016) could also have
an impact on the number of negative results. For behavioral
assessment, it is advised to repeat the assessment at least five
times, in order to avoid false negatives (Wannez et al., 2018).
In this study, every patient was assessed only once with the
P3 system. Moreover, the VT3 paradigm was only tested when
the results for the VT2 paradigm were promising, here in one
patient only. In the future, the BCI measurements should be
repeated regularly to reduce false negatives as a result of arousal
fluctuations, and to monitor the patient’s recovery. This could
aid diagnosis in the acute phase of the injury, as well as improve
the quality of life of patients in the chronic phase of the disease
by providing assistive technologies and communication tools
(Whyte et al., 2013).

On the other hand, we would like to highlight several strong
points of the current study. Both the VT2 and VT3 paradigm
take only 2.4min per session, which is much shorter than
a motor imagery paradigm that usually takes about 10min
(Cruse et al., 2011, 2012), or fNIRS session which takes 9min
(Chaudhary et al., 2017). Secondly, the employed system has
the potential to analyze (albeit imperfect) the data directly, and
provides feedback about the patient’s performance promptly.
Last, the BCI results have been confronted to FDG-PET data on
the single-subject level, and we have shown that neuroimaging
and neurophysiological markers of consciousness and “covert
command following” were in accordance with each other.

At the group level, the results for the VT2 paradigm showed
higher BCI performance in MCS based on the CRS-R and/or
FDG-PET than in UWS. Previous literature during various states
of (un)consciousness such as sleep, anesthesia, and DOC (for
review see Chennu and Bekinschtein, 2012) has shown evidence
for the absence of a link between the P3 and consciousness.
However, in the acute phase of the disease, outcome prediction
using auditory irregularities has been successful in more than
90% of the cases (Tzovara et al., 2016). In a recent pilot study
including a small sample of 12 patients, the accuracy of the
vibrotactile paradigm, as employed here, was proposed to be

higher in patients with an increased CRS-R score after 6 months
(Spataro et al., 2018).

Together, this study highlights the interest of using a
multimodal approach when interpreting results obtained
through different techniques and points toward a potential
added value of the VTP3 paradigm in the clinical assessment of
DOC patients at the single-subject level.
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Certain brain disorders resulting from brainstem infarcts, traumatic brain injury, cerebral

palsy, stroke, and amyotrophic lateral sclerosis, limit verbal communication despite the

patient being fully aware. People that cannot communicate due to neurological disorders

would benefit from a system that can infer internal speech directly from brain signals. In

this review article, we describe the state of the art in decoding inner speech, ranging from

early acoustic sound features, to higher order speech units. We focused on intracranial

recordings, as this technique allows monitoring brain activity with high spatial, temporal,

and spectral resolution, and therefore is a good candidate to investigate inner speech.

Despite intense efforts, investigating how the human cortex encodes inner speech

remains an elusive challenge, due to the lack of behavioral and observable measures. We

emphasize various challenges commonly encountered when investigating inner speech

decoding, and propose potential solutions in order to get closer to a natural speech

assistive device.

Keywords: inner speech, electrocorticography, decoding, neuroprosthetics, brain-computer interface

INTRODUCTION

Neural engineering research has made tremendous advances in decoding motor (Ajiboye et al.,
2017) or visual neural signals (Lewis et al., 2015) for assisting and restoring lost functions in
patients with disabling neurological conditions. An important extension of these approaches is
the development of assistive devices that restore natural communication in patients with intact
language systems but limited verbal communication due to neurological disorder. Several brain-
computer interfaces have allowed relevant communication applications, such as moving a cursor
on the screen (Wolpaw et al., 1991) and spelling letters (Farwell and Donchin, 1988; Gilja et al.,
2015; Jarosiewicz et al., 2015; Vansteensel et al., 2016; Pandarinath et al., 2017). Although this
type of interface has proven to be useful, patients had to learn to modulate their brain activity
in an unnatural and unintuitive way—i.e., performing mental tasks like a rotating cube, mental
calculus, movement attempts to operate an interface (Millán et al., 2009), or detecting rapidly
presented letters on a screen, such as in the P300-speller (see Fazel-Rezai et al., 2012 for a review)
and steady-state visual evoked potentials paradigm(Srinivasan et al., 2006; Nijboer et al., 2008).
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As an alternative, people with speech deficits would benefit
from a communication system that can directly infer inner
speech from brain signals—allowing them to interact more
naturally with the world. Inner speech (also called imagined
speech, internal speech, covert speech, silent speech, speech
imagery, or verbal thoughts) is defined here as the ability
to generate internal speech representations, in the absence of
any external speech stimulation or self-generated overt speech.
While much has been learnt about actual speech perception
and production (see Price, 2000; Démonet et al., 2005; Hickok
and Poeppel, 2007, for reviews), investigating inner speech
has remained a challenging task due to the lack of behavioral
output. Indeed, it remains difficult to study this internal neural
process due to the difficulty to time-lock precise events (acoustic
features, phonemes, words) to neural activity during inner
speech. Therefore, substantial efforts have aimed to develop new
strategies for analyzing these brain signals.

Investigating the underlying neural representations associated
with these different speech features during inner speech is central
for engineering speech neuroprosthetic devices. For instance,
speech processing includes various processing steps—such as
acoustic processing in the early auditory cortex, phonetic, and
categorical encoding in posterior areas of the temporal lobe
and semantic and higher level of linguistic processes in later
stages (Hickok and Poeppel, 2007). One can ask what are the
appropriate speech stimulus-neural response mappings to target
for efficient decoding and designing optimal communication
technologies. For example, a decoding model can target
continuous auditory spectrotemporal features predicted from the
brain activity. Alternatively, decoding discrete phonemes allows
building words and sentences directly.

In this review article, we describe recent research findings
on understanding and decoding the neural correlates
associated with inner speech, for targeting communication
assistive technologies. We focused on studies that have used
electrocorticographic (ECoG) recordings in the human cortex,
as this promising technique allows monitoring brain activity
with high spatial, temporal, and spectral resolution, as compared
to electroencephalographic recordings, and the electrodes
cover broader brain areas compared to intracortical recordings
(Ritaccio et al., 2015). We discuss different decoding and
experimental strategies to deal with common challenges that are
encountered when tackling inner speech decoding. We consider
new avenues and future directions to meet the key scientific and
technical challenges in development of a realistic, natural speech
decoding device.

In the next section, we first briefly present the properties
of electrocorticography, together with its advantages for
investigating the neural representation of human speech. We
next describe several neuro-computational modeling approaches
to neural decoding of speech features.

Electrocorticographic Recordings
Electrocorticography (ECoG), also called intracranial recording
or intracranial electroencephalography (iEEG), is used in
patients with intractable epilepsy to localize the seizure
onset zone, prior to brain tissue ablation. In this procedure,

electrode grids, strips or depth electrodes are temporarily
implanted onto the cortical surface, either above (epidural)
or below (subdural) the dura mater (Figure 1). Because of
its invasiveness, only in rare cases, patients are implanted
with such electrodes, and it remains exclusively for clinical
purposes; nevertheless, the implantation time provides a
unique opportunity to investigate human brain functions,
with high spatial (millimeters), temporal (milliseconds), and
spectral resolution (0–500Hz). In addition, it covers broad
brain areas (typically frontal, temporal, and parietal cortex),
which is beneficial given the complex and widely distributed
network associated with speech. Finally, electrocorticography
is suitable for neuroprosthetic and brain-computer interface
applications (Leuthardt et al., 2004, 2006; Felton et al., 2007;
Schalk et al., 2007; Blakely et al., 2009; Wang et al., 2013;
Kapeller et al., 2014; Moses et al., 2018). Therefore, this
technique is an ideal recording candidate for investigating
speech functions and for targeting speech neuroprosthetic
devices.

ECoG activity contains different signal components (Marshall
et al., 2006; Miller et al., 2007; Buzsáki and Wang, 2012;
Giraud and Poeppel, 2012) that may relate to different
underlying physiological mechanisms, and therefore different
mappings between speech stimulus and neural response.
For example, the neural representation of speech has been
mainly studied using both high frequency (∼70–500Hz) and
low frequency (∼4–8Hz).

High frequency activity (HFA; ∼70–500Hz) has been
correlated with multiunit spike rate and asynchronous post-
synaptic current of the underlying neuronal population
(Manning et al., 2009; Whittingstall and Logothetis, 2009;
Buzsáki et al., 2012; Lachaux et al., 2012; Rich and Wallis, 2017).
In particular, HFA has been shown to robustly encode various
speech representations, such as early spectrotemporal acoustic
features of speech in the superior temporal gyrus (Pasley et al.,
2012; Kubanek et al., 2013)—a region commonly associated
with speech perception. In addition, the superior temporal gyrus
plays an important role in transforming these acoustic cues
into categorical speech units (Chang et al., 2010; Pasley et al.,
2011; Mesgarani et al., 2014). HFA in the ventral sensorimotor
cortex has been shown to encode acoustic (Pasley and Knight,
2013; Martin et al., 2014; Cheung et al., 2016) and phonetic
representations during speech perception, and somatotopically
arranged articulator representations (lips, tongue, larynx, and
jaw) during speech production (Bouchard et al., 2013; Cheung
et al., 2016; Conant et al., 2018).

Low frequencies, such as theta band, have been shown to
track the acoustic envelope of speech, to correlate with syllabic
rate, and to discriminate spoken sentences (Luo and Poeppel,
2007; Ding and Simon, 2012; Giraud and Poeppel, 2012; Zion
Golumbic et al., 2013). In addition, theta rhythms showed
significant power changes in Broca’s area and temporal language
areas during a verb generation task, and showed interactions
with high frequency band, through amplitude-amplitude and
phase-amplitude coupling (Hermes et al., 2014).

The next section briefly introduces neural decoding models,
which have been widely used in the field of speech.
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FIGURE 1 | Electrocorticographic recordings. Example of electrocorticographic grid locations overlaid on cortical surface reconstructions of a subject’s MRI scan (A).

Examples of single trial high frequency activity (HFA) for an electrode highlighted in black in (A). Single trials represent examples of overt speech word repetition

(B) and inner speech word repetition (C).

Decoding Models—General Framework
Traditionally, cognitive functions have been investigated using
a set of stimuli that typically vary along a single dimension of
interest (e.g., attended versus not attended target). Brain activity
evoked by different stimuli are then averaged and compared
in order to provide new insights about the neural mechanisms
under study. Conversely, decoding these cognitive functions
in real-time for targeting brain-machine interfaces requires
more sophisticated predictive modeling. Decoding models allow
researchers to apply multivariate neural features to rich, complex
and naturalistic stimuli or behavioral conditions (Kay et al., 2008;
Kay and Gallant, 2009; Naselaris et al., 2011).

A commonly used modeling approach uses a regression
framework to link brain activity and a stimulus or mental state
representation. For instance, the stimulus features at a given time
can be modeled as a weighted sum of the neural activity, as
follows:

Y (t) =
∑

p

w(p) • X(t, p)

where Y (t) is the stimulus feature at time t, X(t, p) is the neural
activity at time t and feature p, w(p) is the weight for a given
feature p. Classification is a type of decoding model in which
the neural activity is identified as belonging to a discrete event
type from a finite set of choices. Both types of models can
use various machine learning algorithms, ranging from simple
regression techniques, to more complex non-linear approaches,
such as hidden Markov models, support-vector algorithms and
neural networks. Holdgraf et al. (2017) provide a review article
that illustrates best-practices in conducting these analyses, and
included a small sample dataset, along with several scripts in the
form of jupyter notebooks. The general framework is common to
all methods (Figure 2) and consists of the following steps:

1. Feature extraction: input and output features are extracted
from the neural activity and from the stimulus features,
respectively. Examples of speech representations typically
used in decoding models are the auditory frequencies, the
modulation rates, or phonemes for natural speech. For neural
representations, firing rate from single unit spiking activity, or
amplitudes in specific frequency bands are typically extracted
from the recorded electrophysiological signal (for example,
the high gamma band).

2. Model estimation: models are estimated by mapping input
features to output features. The weights are calculated by
minimizing a metric of error between the predicted and actual
output on a training set. For example, in a linear regression
model, the output is a weighted sum of input features.

3. Validation: Once a model is fit, it is then validated on new
unseen data not used for training, in order to avoid overfitting
and aid generalization to new data. To evaluate the accuracy,
the predicted output is compared directly to the original
representation.

In the next section, we review ECoG studies that have employed
decoding models to understand and decode cognitive states
associated with various inner speech representations.

DECODING INNER SPEECH USING

ELECTROCORTICOGRAPHY

A key challenge to understanding the neural representation
of inner speech is to quantify the relationship between neural
response and the imagined stimulus, from low-level auditory
to higher-level speech representations. Several studies have
exploited the advantageous properties of intracranial recordings
to characterize inner speech representations. For instance, a
recent study described the spatiotemporal evolution of high
frequency activity during an overt and covert word repetition
using trial averaging (Pei et al., 2011b; Leuthardt et al., 2012). In
particular, they revealed high frequency changes in the superior
temporal lobe and the supramarginal gyrus during covert speech
repetition. During a covert verb generation task, high frequency
activity (65–95Hz) showed significant brain activity in Broca’s
area, in the middle temporal gyrus, and temporal parietal
junction, and interacted with theta frequency activity (4–8Hz)
through cross-frequency coupling (Hermes et al., 2014). Finally,
a recent study compared the electrocorticographic activity related
to overt vs. covert conditions, and revealed a common network of
brain regions (Brumberg et al., 2016).

To directly quantify the relationship between inner speech and
neural response, the decoding model framework can be applied.
Recently, we used a decoding model approach to reconstruct
continuous auditory features from high gamma neural activity
(70–150Hz) recorded during inner speech (Martin et al., 2014).
Due to the lack of any measurable behavioral output, standard
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FIGURE 2 | Decoding framework. The general framework for fitting a decoding model is depicted. The first step consists in designing a protocol (A) and recording the

data (B). Then, input and output features are extracted (C), and the data are split in training and testing set. The training set is used to fit the weights of the model and

the testing set is used to validated the model (D). Figures adapted from Holdgraf et al. (2017) with permissions.

decoding models (e.g., linear regression) that assume temporal
alignment of input and output data are not immediately
applicable. One simple approach is to take advantage of prior
research demonstrating that speech perception and imagery, to
some extent, share common neural mechanisms (Hinke et al.,
1993; Yetkin et al., 1995; McGuire et al., 1996; Rosen et al.,
2000; Palmer et al., 2001; Aleman, 2004; Aziz-Zadeh et al.,
2005; Hubbard, 2010; Geva and Warburton, 2011; Perrone-
Bertolotti et al., 2014). Under the assumption that perception
and imagery share overlapping neural representations, we
built a decoding model from an overt speech condition, and
applied this decoder to neural data generated during inner
speech. To evaluate performance, the reconstruction in the
inner speech condition was compared to the representation
of the corresponding original sound spoken out loud—using
dynamic time warping (Ellis, 2003)—a temporal realignment
algorithm. Results showed that spectrotemporal features of
inner speech were decoded with significant predictive accuracy
from models built from overt speech data in seven patients
(Figure 3A). These findings provided further support that
overt and inner speech share underlying neural mechanisms.
However, this approach assumes that imagery neural data are
generated from a similar neural process as perception. The
predictive power of this “cross-condition” model is negatively
impacted by discrepancies between perception and imagery
neural mechanisms, and is therefore expected to be less optimal
compared to directly modeling imagery data in train and test
phases.

Beyond relatively low-level acoustic representation, invariant
phonetic information is extracted from a highly variable
continuous acoustic signal at a mid-level neural representation
(Chang et al., 2010). During inner speech, behavioral studies have
provided evidence that phoneme substitution errors occurred
between phonemes sharing similar features (phonemic similarity
effect; Corley et al., 2011), and a similar behavior occurs during
overt speech. In addition, brain imaging studies have revealed
anatomical brain regions involved in silent articulation, such
as the sensorimotor cortex, the inferior frontal gyrus, and

temporo-parietal brain areas (Pulvermuller et al., 2006). Recently,
electrophysiological studies have shown that the neural activity
of a listener that perceives a specific phoneme that has been
acoustically degraded, replaced or masked by noise is grounded
into acoustic neural representations (Holdgraf et al., 2016;
Leonard et al., 2016). This phenomenon, called the phonetic
masking effect shows that even in the absence of a given
speech sound, the neural patterns correlate with those that
would have been elicited by the actual speech sound. These
findings suggest that phonemes are represented during inner
speech in the human cortex. From a decoding perspective,
several studies have succeeded in classifying individual inner
speech units into different categories, such as covertly articulated
vowels (Ikeda et al., 2014), vowels and consonants during covert
word production (Pei et al., 2011a), and intended phonemes
(Brumberg et al., 2011). These studies represent a proof of
concept for basic decoding of individual speech units, but further
research is required to define the ability to decode phonemes
during continuous, conversational speech.

While several studies have demonstrated phoneme
classification during inner speech (Brumberg et al., 2011;
Pei et al., 2011a; Tankus et al., 2012; Ikeda et al., 2014), fewer
results are available for word-level classification. Words have
been decoded during overt speech from neural signals in the
inferior frontal gyrus, superior temporal gyrus, and motor areas
(Kellis et al., 2010; Pasley et al., 2012; Martin et al., 2014). In
recent work, we classified individual words from high frequency
activity recorded during an inner speech word repetition task
(Martin et al., 2016). To this end, we took advantage of the
high temporal resolution offered by ECoG, and classified neural
features in the time domain using a support-vector machine
model. In order to account for temporal irregularities across
trials, we introduced a non-linear time alignment into the
classification framework. Pairwise classification results showed
that the classification accuracy was significant across five
patients. An example of classification accuracy is depicted in
Figure 3B (left panel), where the classification accuracy across
the 15 pairs of word were above chance level (average across
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FIGURE 3 | Decoded inner speech representation. (A) Examples of overt speech and inner speech spectrogram reconstruction using linear regression models.

Original spectrogram of the recorded overt speech sound is displayed (top panel). Reconstruction of the spectrogram for the overt speech condition (middle panel)

and inner speech condition (bottom panel). (B) Examples of word pair classification during inner speech (left panel). Chance level was 50% (diagonal elements),

whereas pairwise classification accuracy (off-diagonal elements) reached 88% and was significantly above chancel level across the 15 pairs of word (mean = 69%).

Discriminant information displayed on the surface reconstruction of the participant’s brain (right panel) for the classification accuracy shown in the left panel. Figures

adapted from Martin et al. (2014, 2016) with permissions.

all pairs = 69%; chance level = 50%). Most of the discriminant
information came from the posterior temporal gyrus (Figure 3B;

right panel). This study represents a proof of concept for basic

decoding of speech imagery, and highlights the potential for
targeting a speech prosthesis that allows to communicate a few
words that are clinically relevant (e.g., hungry, pain, etc.).

Finally, an alternative study that shows further evidence of
acoustic processing during imagery comes from a music imagery
study. In this study, we investigated the neural encoding of
auditory features during imagery using a novel experimental
paradigm that allowed direct modeling of auditory imagery
data (as opposed to cross-condition) (Martin et al., 2017).
This study is not directly related to speech representations,
yet it helps understanding the neural representation of inner
subjective experiences, such as general auditory imagery. In

addition, evidence has shown that music and speech share
common brain networks (Callan et al., 2006; Schön et al., 2010).
This study relied on a rare clinical case in which a patient
undergoing neurosurgery for epilepsy treatment was also an
adept piano player. While previous brain imaging studies have
identified anatomical regions active during auditory imagery
(Zatorre et al., 1996; Griffiths, 1999; Halpern and Zatorre, 1999;
Rauschecker, 2001; Halpern et al., 2004; Kraemer et al., 2005),
underlying neural tuning to auditory frequencies in imagined
sounds was uncharacterized. ECoG activity was recorded during
a task that allowed direct alignment of neural response and
the spectrotemporal content of the intended music imagery.
The patient played two piano pieces with and without auditory
feedback of the sound produced by the electronic piano. The
audio signal from the keyboard was recorded in synchrony

with the ECoG signal, which allowed synchronizing the audio
output with neural activity in both conditions. In this task
design, it is assumed that the patient’s auditory imagery closely

matches the output of the keyboard in both timing and spectral
content. This study therefore provided a unique opportunity
to apply direct (as opposed to cross-condition) receptive field
modeling techniques (Aertsen et al., 1981; Clopton and Backoff,
1991; Theunissen et al., 2000; Chi et al., 2005; Pasley et al.,
2012), which describe neural response properties, for example
auditory frequency tuning. We found robust similarities between
perception and imagery neural representations in both frequency
and temporal tuning properties in auditory areas. Furthermore,
these findings also demonstrated that decoding models, typically
applied in neuroprosthetics for motor and visual restoration,
are applicable to auditory imagery, representing an important
step toward development of algorithms that could be used in
neural interfaces for communication based on auditory or speech
imagery.

CHALLENGES AND SOLUTIONS

An important but challenging step in future research is to
describe the extent to which speech representations, such
as acoustic processing, phonetic encoding and higher level
of linguistic functions apply to inner speech. The lack of
behavioral output during imagery and inability to monitor the
spectrotemporal structure of inner speech represent a major
challenge. Critically, inner speech cannot be directly observed by
an experimenter. As a consequence, it is complicated to time-lock
brain activity to a measurable stimulus or behavioral state, which
precludes the use of standard models that assume synchronized
input-output data. In addition, natural speech expression is
not just operated under conscious control, but is affected
by various factors, including gender, emotional state, tempo,
pronunciation, and dialect, resulting in temporal irregularities
(stretching/compressing, onset/offset delays) across repetitions.
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As a result, this leads to problems in exploiting the temporal
resolution of electrocorticography to investigate inner speech.
In this section, we highlight several additional challenges that
are encountered when investigating inner speech, as well as new
avenues to improve the decoding outcome.

Improving Task Design
The lack of behavioral output and temporal irregularities may
be alleviated by designing tasks that maximize the accuracy
when labeling the content of inner speech, such as cueing the
participants in a rhythmical manner. Despite this, results may
still show inconsistencies between the actual cue and the intended
speech onset/offset. Alternatively, a verb generation task (Hermes
et al., 2014) or picture naming task (Riès et al., 2015) might
improve the signal-to-noise ratio, as the cognitive load is more
demanding than during a simple word repetition task.

Training Participants
In order to improve accuracy, patients should be familiarized
with the tasks before entering in the epilepsy monitoring unit.
Indeed, studies have shown that participants with musical
training exhibited better pitch and temporal acuity in auditory
imagery and enlarged tonotopic maps located in the STG than
did participants with little or no musical training (Pantev et al.,
1998; Janata and Paroo, 2006; Herholz et al., 2008). As such, we
argue it would be beneficial to train subjects on speech imagery,
in order to have an increased signal-to-noise ratio and for them to
be more consistent in the way of performing the mental imagery.
This will improve the performances of any pattern recognition
algorithm.

Finding Behavioral Markers
Finding a behavioral or neural metric that allows marking
more precisely the inner speech time course would reduce
temporal variability during inner speech. This will be increasingly
important when moving toward asynchronous protocols, i.e.,
when patients spontaneously produce inner speech, as opposed
to experimental protocols that generally employ timing cues.
For instance, behavioral and psychology studies rely on indirect
measures to infer the existence and properties of the intended
inner experience (Hubbard, 2010). For example, participants
were instructed to image the pitch of a sine wave tone for a
given instrument, and they had to subsequently judge if the
timber of a second presented tone matched the timber of the
first one (Crowder, 1989). Response times were faster, when the
timbre of the second tone matched the timbre of the first one
they had to imagine (see Hubbard, 2010 for a complete review).
Therefore, objective monitoring of performance and vividness
through external markers may allow certain sources of variability
during inner speech to be estimated and accounted for in the
modeling process.

Incorporating Speech Recognition Models
Recently, electrophysiological studies on speech decoding have
shown promising results by integrating knowledge from the
field of speech recognition (Herff et al., 2015; Moses et al.,
2016, 2018). Speech recognition has been concerned with the

statistical modeling of natural language for many decades,
and has faced many problems that are similar to decoding
neural pattern associated with speech. As such, we argue that
integrating those tools into the field of neuroscience is a
necessary element to succeed in the ultimate goal of a clinically
reliable speech prosthesis. For instance, speech recognition
has developed methodologies that enable the recognition and
translation of spoken language into text. This was achieved
by incorporating extensive knowledge about how speech is
produced and perceived at various phonetic levels (acoustic,
auditory, articulatory features), and from advances in computer
resources and big data management to build now common
applications, such as spellcheck tools, text-to-speech synthesizers,
and machine translation programs. Similarly, advanced machine
learning models might be more adapted in order to deal
with problems associated with speech production temporal
irregularities compared to approach like dynamic time warping,
which is less robust for noisy data.

Increasing the Amount of Data
More complex models with increasing number of parameters
can be used, but require more data to train and evaluate the
models. When using electrocorticographic recordings, available
data are limited. Experimental paradigms usually do not last
long to avoid overloading the patients. As an alternative to
traditional protocols, researchers are slowly moving toward
continuous brain monitoring during the electrode implantation
time. This allows increasing the amount of recorded data and
is less constraining to the participant as he or she is recorded
in the existing hospital environment, e.g., watching television,
interacting with relatives and clinicians, reading, etc. Continuous
monitoring of speech perception and production may provide
sufficient data to develop more complex and robust decoding
models.

Using Unsupervised Learning
The major problem with recording continuous data is how
to label precisely the recordings. Indeed, while it is currently
possible to monitor conversations with a microphone, the
continuous labeling of categories or events during a movie
or a dialogue is a tedious process, and often requires human
intervention. In addition, as mentioned earlier, monitoring and
labeling internal mental states, such as mood, emotions, internal
speech, is problematical. We suggest that unsupervised learning
methods might be adapted in this context, and alleviate issues
associated with speech segmentation. Unsupervised learning is
a type of machine learning algorithms that allows drawing
inferences from unlabeled responses, i.e., the labels of the
observations are not available. This approach has been used in
the field of computer vision, such as to learn the features in order
to recognize objects (e.g., a car or a motorcycle).

Improving the Electrode Design
Although electrocorticography provides the opportunity to
investigate speech neural representation, the configuration,
location and duration of implantation are not optimized for
experiments, but rather solely for clinical purposes. The design
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of the intracranial recording electrodes has been shown to be an
important factor in motor decoding performance. Namely, the
spatial resolution of a cortical surface electrode array depends
on the size and spacing of the electrodes, as well as the volume
of tissue to which each electrode is sensitive (Wodlinger et al.,
2011). Many researchers have attempted to define what the
optimal electrode spacing and size could be (Slutzky et al.,
2010), but this is still an open area of research. Emerging
evidence showed that decoding performance was improved when
neural activity was derived from very high-density grids (Blakely
et al., 2008; Rouse et al., 2013). However, although a smaller
inter-electrode spacing increases the spatial resolution, it poses
additional technical issues related to the electrode grid design.
Higher density grids placed at specific speech locations would
provide higher spatial resolution and potentially enhance the
signal’s discriminability. Ongoing work in many labs is aimed
at increasing the number of recording contacts (Khodagholy
et al., 2014) and using biocompatible materials and wireless
telemetry for transmission of recordings from multiple electrode
implants (Brumberg et al., 2011; Khodagholy et al., 2014).
Finally, long-term implantation capability in humans is lacking,
as compared to non-human primate studies that showed stable
neural decoding for extended periods of time (weeks to months;
Ashmore et al., 2012). Reasons for these technical difficulties are
the increased impedance leading to loss of signal and increase in
the foreign body response to electrodes (Groothuis et al., 2014).
Indeed, device material and electrode-architecture influences the
tissue reaction. Softer neural implants with shape and elasticity
of dura mater increase electrode conductivity and improve the
implant-tissue integration (Minev et al., 2015).

OPPORTUNITIES

Neural decoding models provide a promising research tool
to derive data driven conclusions underlying complex speech
representations, and for uncovering the link between inner
speech representations and neural responses. Quantitative,
model-based characterizations have showed that brain activity is
tuned to various levels of speech representation.

The various types of language deficits exemplify the challenge
in building a specific speech prosthesis that addresses individual
needs. In this regard, the first step is to identify injured neural
circuits and brain functions. Once damaged and healthy brain
functions are identified, decoding models can be used for the
design of effective speech prostheses. In particular, the feasibility
to decode various speech representations during inner speech—
i.e., acoustic features, phonetic representations, and individual
words—suggests that various strategies and designs could be
employed and combined for building a natural communication
device depending on specific, residual speech functions. Every
speech representation has pros and cons for targeting speech
devices. For instance, decoding acoustic features opens the door
to brain-based speech synthesis, in which audible speech is
synthetized directly from decoded neural patterns. This approach
has already been demonstrated, where predicted speech was
synthesized, and acoustically fed back to the user (Guenther et al.,

2009; Brumberg et al., 2010) from intracortical brain activity
recorded from the motor cortex. Yet the understandability of the
produced speech sounds and the best speech parameters tomodel
remain to be demonstrated. Alternatively, decoding units of
speech, such as phonemes or words provides greater naturalness,
but the optimal speech unit size to be analyzed, is still a matter of
debate—i.e., the longer the unit, the larger the database needed to
cover the required domain, while smaller units offermore degrees
of freedom, and can build a larger set of complex utterances, as
shown in Herff et al. (2015) and Moses et al. (2016). A tradeoff
is the decoding of a limited vocabulary of words (Martin et al.,
2016), which carry specific semantic information, and would be
relevant in a basic clinical setting (“hungry,” “thirsty,” “yes,” “no,”
etc.).

An alternative to a speech-interface based solely on brain
decoding is to build a system, which acquires sensor data from
multiple elements of the human speech production system, and
combine the different signals to optimize speech synthesis (see
Brumberg et al., 2010, for a review). For instance, recording
sensors allow characterizing the vocal tract by measuring its
configuration directly or by sounding it acoustically using
electromagnetic articulography, ultra-sound, or optical imaging
of the tongue and lip. Alternatively, electrical measurements can
infer articulation from actuator muscle signals [i.e., using surface
electromyography (EMG)] or signals obtained directly from the
brain (mainly EEG and ECoG). Using different sensors and
different speech representations allow exploiting an individual’s
residual speech functions to operate the speech synthesis.

Unique opportunities for targeting communication assistive
technologies are offered by combining different research
fields. Neuroscience reveals which anatomical locations and
brain signals should be modeled. Linguistic fields support
development of decoding models that incorporate linguistic
and contextual specifications—including segmental elements
and supra-segmental elements. Combining insights from these
research fields with machine learning and speech recognition
algorithms is a key element to improve prediction accuracy.
Finally, the success of speech neuroprostheses depends on
the continuous technological improvements to enhance signal
quality and resolution, and allow developing more portable and
biocompatible invasive recording devices. Merging various fields
together will allow tackling the challenges central to decoding
inner speech.

CONCLUSION

To conclude, we described the potential of using decoding
models to unravel neural mechanisms associated with complex
speech functions. Speech representations during inner speech,
such as acoustic features, phonetic features and individual words
could be decoded from high frequency neural signals. Although,
these results reveal a promising avenue for direct decoding
of natural speech, they also emphasize that performance is
currently insufficient to build a realistic brain-based device.
Accordingly, we highlighted numerous challenges that likely
precluded better performances, such as the low signal-to-noise-
ratio, and the difficulty in monitoring precisely inner speech.
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As such challenges are solved, decoding speech directly from
neural activity opens the door to new communication interfaces
that may allow for more natural speech-like communication in
patients with severe communication deficits.
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A brain-computer interface (BCI) is a technology allowing patients with severe motor

dysfunctions to use their electroencephalographic signals to create a communication

channel to control devices. The objective of this paper is to study the feasibility of

continuous and switch control modes for a brain-controlled wheelchair (BCW) using

sensorimotor rhythms (SMR) modulated through a right-hand motor imagery task.

Previous studies, which used a continuous navigation control with SMR, have reported

the difficulty of maintaining the motor imagery task for a long time, especially for the

forward command. The switch control has been presented as a proposal that may help

to solve this issue since this task is only used temporary for either disabling or enabling the

movement. Regarding the methodology, 10 of 15 able-bodied users, who had overcome

the criterion of 30% error rate in the calibration phase, controlled the BCW using both

paradigms. The navigation tasks consisted of a straight path divided in five sections:

in three of them the users had to move forward, and in the other two the users had

to maintain their position. To assess user performance in the device management, a

usability approach was adopted, measuring the factors of effectiveness, efficiency, and

satisfaction. Then, variables related to the time employed and commands selected by

the user or parameters related to the confusion matrix were applied. In addition, the

scores in NASA-TLX and two ad hoc questionnaires were considered to discuss the

user experience controlling the wheelchair. Despite the results showed that the best

system for a specific user relies on his/her abilities and preferences, the switch control

mode obtained better accuracy (0.59± 0.17 for continuous and 0.72± 0.05 for switch).

Furthermore, the switch paradigm can be recommended for the advance sections as with

it users could complete the advance sections in less time (42.2 ± 28.7 s for continuous

and 15.47± 3.43 s for switch), while the continuous mode seems to be better at keeping

the wheelchair stopped (42.45± 16.01 s for continuous and 24.35± 10.94 s for switch).

Keywords: brain-computer interface (BCI), wheelchair, navigation control, switch, continuous, usability
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INTRODUCTION

Diseases such as amyotrophic lateral sclerosis (ALS) or brainstem
lesions may result in a deterioration of the motor functions of
affected patients, who could need to use assistive technology to
facilitate tasks in their daily lives. However, some patients could
not be benefitted from conventional systems, such as joystick
or eye-tracker systems, due to the severe reduction of their
motor functions. Therefore, the solution could be systems that
do not require the motor capacity of the users to control them.
Brain-computer interface (BCI) fullfils this requirement since it
is a technology that allows the use of electroencephalographic
(EEG) signals to create a communication channel between users
and the device that they want to control. These systems have
been implemented in devices such as a speller matrix (Farwell
and Donchin, 1988), a home automation system (Corralejo
et al., 2011) or a wheelchair (Millán et al., 2009). The study
of the control of a wheelchair through EEG, i.e., a brain-
controlled wheelchair (BCW) is the objective of the present
work. Since the first BCW-related publication in 2005 by Tanaka
et al. (2005), numerous proposals can be classified considering
different aspects of the system. The main taxonomies divide
these wheelchairs depending on the EEG signals registered or
the navigation system implemented (Fernández-Rodríguez et al.,
2016).

Firstly, the EEG signal most used for the control of a BCW in
real environments has been the sensorimotor rhythms (SMRs)
(e.g., Millán et al., 2009). This endogenous signal is based on
the event-related (de)synchronization (ERD/ERS) phenomenon:
mu (7–13Hz) and beta (13–35Hz) bands amplitude variations in
the sensorimotor cortex area while performing a motor imagery
(MI) task. Therefore, the SMR can be freely modulated by users
and applied as a control command in a BCW without needing
external visual, tactile or auditory stimuli (Pfurtscheller et al.,
2006). As a result, a SMR-based BCW could allow sensorial
channels to be dedicated to the maintenance of attention to the
environment, an important factor when controlling a wheelchair.
This is an advantage vs. other BCW based on an exogenous
signal, such as the P300 (e.g., Iturrate et al., 2009 or Zhang et al.,
2016) or steady-state evoked potentials (e.g., Ng et al., 2015 or
Kim and Lee, 2017, who used visual and somatosensory signal,
respectively), which usually require a graphic user interface
(GUI) for its control.

Secondly, the main taxonomy of navigation systems
distinguishes low and high level categories. On the one hand,
in low-level navigation systems, wheelchair control is achieved
through simple navigation commands such as “move forward”
or “turn right.” In this way, users can have a fine control and
perform any path they want. On the other hand, high-level
navigation lets users have a rough control of the BCW, selecting
destination commands such as “take me to the kitchen” or
“leave this room.” Although the high-level navigation might
induce a smaller workload, since the user simply selects the
destinations, the present study is framed within the low-level
systems because they could be more appropriate for uncontrolled
environments. In particular, low-level navigation should allow
the desired flexibility to avoid obstacles or adapt the trajectory of

the wheelchair if new modifications occur in the environment.
This navigation could help to maintain an adequate engagement
and improve the user’s experience, since he/she has a main role
controlling the wheelchair and a strongest feeling of autonomy.
Likewise, there are two main types of low-level systems for
controlling a BCW: discrete and continuous control. In discrete
control, the selection of a navigation command implies a prefixed
action, e.g., a turn of 45◦ or a fixed advance distance of 1m (e.g.,
Tsui et al., 2011 and Ron-Angevin et al., 2017). Otherwise, in
the continuous control the user can control the extension of the
movement after the selection of a navigation command, e.g., the
turn amplitude or the advance distance (e.g., Millán et al., 2009
and Li J. et al., 2013). Usually, in this last control the movement
continues as long as the user keeps the command active.

Another paradigm was proposed by Mason and Birch (2000),
Müller-Putz et al. (2010), and Solis-Escalante et al. (2010): the
brain switch. Usually, the aim of this paradigm applied in
asynchronous BCWs has been to offer an on/off device control
(Xu et al., 2012; Cao et al., 2014). However, the brain switch
concept can be also applied directly on the control commands
of a BCW. That is, not only to turn on/off the system but,
for example, to activate/deactivate the wheelchair’s forward
command. Following this idea, a hybrid exogenous (SSVEP and
P300) based BCW using a similar interpretation to the brain
switch control applied in the control command was presented by
Li Y. et al (2013).

Nevertheless, the application of the brain switch paradigm
in the control commands of a MI based BCW could offer a
remarkable improvement. Thanks to the brain switch the user
could be able to maintain a state, e.g., the advance command,
without using the MI task for a long time. The switch paradigm
has been previously used in a MI based virtual wheelchair by
Velasco-Álvarez et al. (2010) and Huang et al. (2012). Besides
the paper of Velasco-Álvarez et al. (2010) the BCI group of the
University of Malaga (UMA-BCI) has applied this paradigm on
the management of a real mobile robot using SMR (Ron-Angevin
et al., 2015).

The switch paradigm adapted by the UMA-BCI group to
control a BCW is used for the selection of the forward navigation
command without needing to maintain the MI task during the
displacement. Specifically, if the user wants to select a forward
(when he/she has stopped) or stop (when he/she is moving)
command, he/she has to perform theMI task. Otherwise, in order
to keep the current state of the wheelchair (i.e., to continue the
advance or the stop), the user has to carry out an alternative
task (e.g., arithmetic operation). Therefore, the main point of the
switch handling is that the MI task is only used to change the
movement state of the wheelchair, not to maintain it. Moreover,
this management allows the user, as in continuous mode, to
control the exact distance of displacement. In continuous mode,
the user must maintain the desired task stably: on the one hand, a
task to select an active command (i.e., move forward) and, on the
other hand, a task to remain immobile. However, in switch mode,
participants must have the ability to perform one task quickly
(related to changing the present state of the wheelchair), but
should have a stable control of the other (related to maintaining
the present state of the wheelchair). Although in the present
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work only one active command (besides the stop command)
is used, the forward command, the obtained conclusions could
be transferred to other paradigms with a larger number of
commands. In addition, the simplicity of the design allows to
isolate the object of study (i.e., the advance command in two
control modes) and to establish a more reliable comparison.
The detailed functioning of these paradigms will be presented in
section Navigation Application.

Continuous concentration on a mental task for controlling
BCI devices could be a tiring task that not all users can manage.
This could be a considerable problem during the control of
continuous navigation, for which at least two tasks must be stably
controlled. Therefore, either because of the user’s skills or the
complexity of the task, sometimes it is difficult to find two tasks
in which the user can maintain an acceptable performance over a
long period of time. The switchmode could be a solution in which
only one of these tasks should be maintained in a prolonged
way: the task for keeping the current state. Due to the previously
exposed, the switch navigation might improve the time needed
to complete a path and the effort that the user has to employ
carrying out the task.

In short, the brain switch paradigm could be a suitable option
for controlling a real MI based BCW, especially for the forward
command. Therefore, the present work will be focused on testing
this hypothesis by comparing two navigation methods for a real
wheelchair control: continuous and switch paradigms.

The approach used to study these paradigms will be based
on the definition of usability given by the International
Organization for Standardization (1998). According to them, this
construct is divided into three factors: effectiveness, efficiency
and satisfaction. For effectiveness, the user performance in
controlling the BCW will be studied. The efficiency factor will
take into account the resources used and costs to achieve the yield
obtained. Finally, satisfaction will focus on measuring the user
experience regarding comfort and subjective opinions about how
they experienced controlling the wheelchair.

METHODS

Participants
Fifteen able-bodied participants took part in the study (mean
age 23 ± 3.44 years; 7 men, 8 women), identified as P1–
P15 here. Most of them were students from the University of
Malaga and only P4 had previous experience in BCI systems, but
none in a BCW control. They were mainly recruited through
the use of social networks and word of mouth, having been
offered an economic reward for their participation. The study
was approved by the Experimental Ethics Committee of the
University of Malaga and met the ethical standards of the
Helsinki Declaration. Participants stated that they had nomedical
history of neurological or psychiatric disorders in the written
informed consent, nor did they take anymedication regularly. All
these subjects participated in an initial calibration task consisting
in a first test examining the ability of subjects to control their
SMR signal (see section Calibration Task). This study needed
users to have acceptable control of their SMRs, which would
enable them to control the BCW in the navigation task (see

section Navigation Task With the Brain-Controlled Wheelchair).
For this reason, as a design criterion in the calibration task, a
conventional limit of 30% in the classification error rate was
considered to be the maximum that could allow efficient control
of the paradigm; the same limit was used in Kübler et al. (2001)
for efficient communication using a two-class BCI for spelling.
In a similar way, this study needed users to have acceptable
control of their SMRs, which would enable them to control the
BCW in the navigation task (see section Navigation Task With
the Brain-Controlled Wheelchair). In the case of a classification
error rate over 30%, participants were rewarded (5 €) and the
experiment ended; otherwise, they continued to the real BCW
control (10 €, regardless of their performance controlling the
wheelchair).

Data Acquisition and Signal Processing
EEG signals were recorded at a 200Hz sampling rate using the
following electrode positions: F3, F4, C3, C4, P3, P4, T7, T8,
and Cz according to the 10/20 international system. Ground
and reference were placed at AFz and Fz positions respectively.
Signals were amplified by an actiCHamp amplifier (Brain
Products GmbH, Munich, Germany). These electrode positions
were combined to generate two large Laplacian channels (for
extended details seeMcFarland et al., 1997) over C4 andC3which
correspond to the right and left sensorimotor areas, respectively.
Neither online nor offline artifact detection techniques were
employed.

As mentioned above, users participated in an initial training
session for calibration purposes. This exercise consisted in
performing two mental tasks (80 trials for each task) during
which the EEG signals of the users were recorded. These
data were used to obtain a reactive frequency band and the
classification error rate for each subject (detailed below) by
an automatic process. The selected subjects were those with
a classification error rate under 30% and their calibration
parameters were obtained to be used during the control
navigation task. Data processing and feedback generation in the
navigation exercise were based on the procedure detailed in
Ron-Angevin and Díaz-Estrella (2009):

a. Although in some cases it is possible to find subjects whose
reactive band belongs to the β band, the search for the optimal
frequency band was limited to the µ band for simplicity. The
reactive frequency band of each participant was automatically
selected from all possible frequency intervals between 5 and
17Hz (with a minimum bandwidth of 2Hz). For each tested
frequency interval, feature extraction, and classification were
carried out, giving a frequency band-dependent error rate as a
result. The band that led to the lowest classification error rate
was regarded as the subject’s reactive frequency band.

b. Feature extraction: the average power of the signal from the
two EEG channels (right and left sensorimotor areas) was
estimated in the specific frequency interval for each trial.
This average was calculated by (i) digitally band-pass filtering
the EEG using a fifth-order Butterworth filter, (ii) squaring
each sample, and (iii) averaging over several consecutive past
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samples. A total of 100 samples were averaged, giving an
estimation of the band power for intervals of 500ms.

c. Classification: the error rate time course of a linear
discriminant analysis (LDA) classifier (Lange et al., 1997) was
computed using features from both channels by means of a
ten-times ten-fold cross-validation scheme. In this way, the
estimated minimum error rate of the classifier from the given
frequency band was obtained.

d. Feedback generation: the previously selected frequency band
and the obtained parameters were used to set up LDA whose
classification results determined the feedback “L,” which was
used in the next sessions. This feedback was computed
online every 31.25ms. All data processing was carried out in
MATLAB.

Navigation Application
In the present work two control paradigms have been studied:
continuous and switchmode. However, the criterion to detect the
mental tasks remained similar. Two mental tasks were used: an
active task which was a right-hand motor MI, and an alternative
task used as a distractor to prevent thinking about the right
hand task (detailed in section Calibration Task). Performing the
MI task was used to control the extension of a bar—called “L,”
not visible to the user since the interface was only acoustic—
as a result of the LDA classification. Specifically, if the classifier
determined that the task performed was right-hand MI, the bar
was extended; in other cases, its length remained at its minimum
size. When the bar exceeded a selection threshold during a time
larger than a “selection time” (around 1 s), a command selection
was executed (the selected command depended on the paradigm
handled). Besides, if the bar length was lower than the selection
threshold for a period less than a “reset time,” the accumulated
“selection time” was not reset, but otherwise it was set to zero.
Both control modes started in a rest state (not possible to manage
the BCW) from which the users have to activate the availability
of the two control commands to begin the movement with the
wheelchair. To change from the rest state to the control state,
after hearing the word “wait” in Spanish, the MI task needed to
be executed. As the user executed this, the word “advance” was
played to indicate the availability of the forward command and
the possibility to start to move. At this point, the control mode
used conditioned the next event.

In the continuous mode, the MI task was destined only to
move the BCW, i.e., when the user performed this task, it
extended the abovementioned bar (“L”) and the device advanced
continuously as long as the bar was over the selection time and
threshold. Otherwise, to select the stop command, the user must
perform the alternative task.

Regarding the switch mode, its control was similar to that
employed for a light switch. If the user wanted to start an
advance or to stop the wheelchair, i.e., to change the state of the
wheelchair, he/she had to perform the MI task. On the contrary,
if the user wanted to maintain the forward or stop command,
he/she had to perform the alternative task.

An illustrative example of the movement of the bar and
command selections is shown in Figure 1.

Robotic Wheelchair
The BCW used consisted of a customized Invacare Mistral3
electric wheelchair (Figure 2) equipped with a custom-built
control board emulating its analog two-axis joystick in real time
and receiving multiple sensor information through an I2C bus.
This board was connected through a USB port to a control
application written in C that ran on an external laptop. This
application received, via a TCP connection, the commands (e.g.,
move forward) issued by the navigation application running in
a MATLAB session, and then transformed them in real time
into low-level commands that were fed back to the control
board. Two AS5048 magnetic rotary encoders were attached
to the wheelchair’s driving wheels in order to carry out the
odometry and thus compute the wheelchair’s heading at every
moment. This information was used by the application control to
correct small drifts both online and just after having performed
a displacement. The BCW took around 5–6 s to make a 1-meter
advance.

Procedure
The study consisted in two sessions per participant (Figure 3)
carried out in 1 day with a total duration of approximately
2 h: (i) a calibration session to know the initial skill of users
to control their SMR and to obtain their parameters, and (ii)
a navigation session with the BCW to assess the feasibility of
the paradigms through their execution and three questionnaires
(presented below). Both the calibration and the navigation were
performed in a quiet and spacious room of the Higher Technical
School of Telecommunication Engineering of the University of
Malaga. Prior to their session, users were informed via email
about the task and the proceedings of the experiment. However,
the relevant details were re-explained at the beginning of the
session before signing the consent. All this preparation process,
including the EEG montage, had an approximate duration of
20–25min.

Calibration Session
The present calibration session was based in the one previously
used by Velasco-Álvarez et al. (2013) and consisted in a virtual
environment guiding the user to perform two different mental
tasks without any feedback. Hence, the aim of this phase was
for the system to learn to recognize both user tasks when used
as control commands. The user tasks were right hand MI and
an alternative mental task (word chain or mental arithmetic) and
were freely chosen by users who received some advice. Regarding
the motor imagery task, they were advised to employ a fine MI-
related fingers movement, using visual, and kinaesthetic imagery,
while for the alternativemental tasks, on the one hand, themental
arithmetic should be difficult enough to maintain the user’s focus
but not to provoke frustration (e.g., to do a series of subtractions
of 13 units starting from a random number between 90 and 300).
On the other hand, the word chain task consisted of picking up
some randomword in Spanish and choosing another word whose
first syllable was the same as the last syllable of the previous word
(e.g., “fies-ta,” “ta-pa,” and “pa-e-lla”). If they were stuck with
some word, they should pick another word, as the main objective
of this task was just to remain concentrated on it. In addition,
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they were instructed to always use the same two specific tasks, to
continue to watch the screen, to avoid any muscular movement,
to try to reduce blinks and to maintain a relaxed and motivated
state.

The timing of the calibration virtual session ran as detailed
below (Figure 4). Initially, a car was placed in the middle of
the road and its engine started at the beginning of the trial.
Then, after 2 s, the car started to move, resulting in the possible
appearance of a water puddle on the left side of the screen, located
next to the car from the instant 4.25 s until the end of the trial. If
the water puddle was presented, the participant had to perform

the right-hand MI task from the time he/she starts to see the
puddle until the sound of the car’s engine ceases. Otherwise,
if the puddle did not appear, the user should concentrate on
performing the alternative task along the trial, i.e., in the time
interval from 2 to 8 s of the trial. The calibration was divided
into four blocks of 40 trials −20 of MI and 20 of the alternative
task randomly ordered—to prevent fatigue and let the users
rest between blocks. Also, there was a short random variable
rest of 0.5–3 s between trials so as to be able to perform any
movement that should not be performed during the trials. This
phase lasted for approximately half an hour, excluding the time

FIGURE 1 | Operation of the interface through a detailed example. This example represents the bar length (axis y) over time (axis x) on the control of a brain-controlled

wheelchair (BCW). At the beginning, the BCW is stopped. The horizontal lines a and b represent the executed command for the wheelchair for continuous and switch

mode, respectively: a solid line for the forward command and a dashed line for the stop command. A detailed explanation of the events for continuous and switch

control modes is offered at the bottom of the figure.
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FIGURE 2 | Module structure of the developed brain-controlled wheelchair.

FIGURE 3 | Experimental procedure.

needed to set up the EEG recording equipment. Data from this
phase were processed by the aforementioned algorithm to obtain
the participant’s reactive frequency band and optimal parameters
of the LDA classifier. At this point, those participants whose EEG
data could not be classified with an error rate lower than 30%
were excluded. The virtual car environment was developed with
VRML 2.0 and presented to users on a 15.6-inch laptop screen.

Navigation Session With the Brain-Controlled

Wheelchair
The path to complete consisted in an 8.4m straight section in
which the user had to get through three forward and two stop
sections (Figure 5). The participants’ objective was to complete
the advance sections in the shortest time possible while in the stop
sections the BCW should be stopped for up to 60 s, it not being
necessary to perform this stop time in a single stop. Acoustic cues
were used to inform the subject about sections changes and the
time reached. Specifically, 40 cm before the stop zone, the word
“arriving” was used and once inside it “inside” could be heard.
Once the goal time (60 s) was reached, the user received the
“timeout, continue” command, indicating the stop task had been
successfully completed. If this time had not been completed when
the user went out of this area, “out, continue” could be heard,
indicating he/she was no longer in the stop zone and should

now focus on the forward section. All indications were given in
Spanish language, known by all participants.

The path should be completed at least twice by participants,
one time in each control mode, i.e., continuous and switch
modes. The order presentation was counterbalanced to prevent
fatigue or a learning effect. The total time of the navigation
session was around 45min, including both the training and the
testing. The training consisted in a first contact with the BCW,
controlling it at free will and understanding how it worked in
practice. Instead, the testing phase involved the completion of
the path described above. Users were invited to carry out the
test a second time after each control mode and before trying out
the next one. In the cases where the user decided to complete
the second run for the current control paradigm, only the one
with the highest performance (using the performance factor, see
section Evaluation) was included in the results. Therefore, the
comparison was made with the runs with the best performance
for each control mode.

In addition, a NASA-TLX questionnaire (Hart and Staveland,
1988) was completed after ending each navigation paradigm. In
the same way, at the end of the session, two ad hoc tests were
completed in order to know the users’ opinions and experience
during the navigation session.

Evaluation
The evaluation was based on the definition of usability given
by the International Organization for Standardization (1998),
which considered three factors: effectiveness, efficiency and
satisfaction.

Effectiveness
In order to analyse the performance controlling the BCW, we
considered two basic parameters: (i) the number of command
selections and (ii) measures related to the time employed in
the advance and stop sections. From the number of command
selections, we obtained statistical metrics based on the confusion
matrix. Regarding the time measures, three ad hoc metrics were
obtained that reflected the users’ performance.

Confusion matrix metrics
Metrics related to the confusion matrix correspond to users’
command selections (i.e., the bar exceeds the threshold for a
longer time than a given “selection time”) depending on their
intent and what actually happened (Mason et al., 2006). In this
matrix, selections and non-selections are denoted as “positive”
and “negative” respectively and the output as “true” or “false”
depending on whether these selections were desired or not. This
desired-output relation classified each selection as one of four
possible categories in the matrix: true positive (TP), false positive
(FP), true negative (TN), and false negative (FN). In order to
make the comparison among subjects’ performance easier, we
considered 1 s time slots when analyzing the results; i.e., if a
command was held for 4 s, this was considered as four command
selections. It is worth remembering that in the case of the
continuous mode, the forward command is “positive” and the
stop command is “negative.” On the other hand, in the switch
mode the “positive” selections are those changing the state of
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FIGURE 4 | Timing of calibration trials. Right-hand MI (Top) and alternative tasks (Bottom).

FIGURE 5 | Path to complete in the navigation task. Advances sections from first to third were denoted as A1, A2, and A3, respectively, while the two stop sections

were denoted as S1 and S2.

the BCW, so the first selection of a command is considered
a “positive,” but keeping the same command active for several
seconds is considered as “negative.”

The following metrics were used:

(i) True positive rate (TPR; Equation 1) indicates the user’s
ability to select the desired command.

TPR =

∑

TP
∑

(TP + FN)
(1)

(ii) True negative rate (TNR; Equation 2) indicates the user’s
ability to avoid unwanted commands.

TNR =

∑

TN
∑

(TN + FP)
(2)

(iii) Positive predictive value (PPV ; Equation 3) indicates which
of the user’s selections are correct.

PPV =

∑

TP
∑

(TP + FP)
(3)

(iv) Negative predictive value (NPV ; Equation 4) indicates which
of the user’s non-selections are correct.

NPV =

∑

TN
∑

(TN + FN)
(4)

(v) Accuracy (ACC; Equation 5) shows the level of overall
performance.

ACC =

∑

TP + TN
∑

(TP + TN + FP + FN)
(5)
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An illustrative example of a classification sequence into the four
possibilities of the confusion matrix (i.e., TP, FP, TN, and FN) is
shown in Table 1. As said above, the classification was updated
one time per second, so as the example has 10 s, there will be 10
different classifications. The objective of the table is to show how
the classification will depend on the paradigm handled.

Time-related metrics
Besides the confusion matrix metrics, we considered that new
metrics related to each specific command (forward and stop)
could be appropriate in order to better evaluate the performance
of each control mode in the different commands. These metrics
are related with the time employed in the advance and stop
sections in relation to theminimum andmaximum time required
in each section, respectively. Two ratios are defined:

Advance performance ratio (APR) =
Atmin

Ato
(6)

where Atmin is the minimum time necessary to complete advance
sections, 11 s, while Ato will be the observed time, i.e., the time
executed by the user.

Stop performance ratio (SPR) =
Sto

Stmax
(7)

where Stmax is the maximum time required to complete the stop
section task, 60 s, and Sto is the observed time, i.e., the time
executed by the user. If the user stayed in the stop section for
60 s, the time needed to leave it was not included in any metric,
neither for the SPR nor APR.

These equations induce the idea that a good performance will
show a lower time to complete the advance sections (never under
11 s, which is theminimum time necessary to complete 2m by the
wheelchair) and a longer stop time (never exceeding 60 s, the time
subjects were asked to remain stopped). In this way, Equation 6
will show the user performance in the advance sections, while
Equation 7 will do it in the stop sections. The results of both

TABLE 1 | Example of classification according to the confusion matrix.

Time (s) Command Classification

Desired Observed Continuous Switch

0–1 Forward Forward TP TP

1–2 Forward Forward TP TN

2–3 Forward Forward TP TN

3–4 Forward Forward TP TN

4–5 Stop Forward FP FN

5–6 Stop Stop TN TP

6–7 Stop Stop TN TN

7–8 Forward Stop FN FN

8–9 Forward Forward TP TP

9–10 Forward Forward TP TN

True positive (TP), false positive (FP), true negative (TN), and false negative (FN).

equations will range between 0 and 1, where 1 indicates the best
performance.

Furthermore, to obtain a general measure of the users’
performance, a factor considering these two ratios was defined:

Performance factor = APR · SPR (8)

The fact of multiplying both ratios means that this factor presents
a high value only in the case that both ratios are high as well. This
means that a good performance is considered when both tasks
can be voluntarily controlled. For example, in continuous mode,
a system with an excellent performance in advances but deficient
in stops (i.e., an uncontrollable BCW that always advanced)
would have a high APR, but low SPR. If the mean value between
these factors had been calculated, it would have offered a value
near to 0.5; however, this performance would have been useless
to allow users adequate control in a real environment. For this
reason, as mentioned in section Navigation Session With the
Brain-Controlled Wheelchair, the performance factor was used to
select the best run with the BCW, since only one for each control
mode was evaluated in the results section.

Efficiency
This factor has been mainly measured with the NASA-TLX
questionnaire (Hart and Staveland, 1988), whose aim is to

measure the user’s workload executing a specific task once he/she
has ended it. It is composed of six subscales (mental demand,
physical demand, temporal demand, performance, effort, and
frustration) in a scale ranging from 1 to 10 by users. Then,
the participants have to indicate the relative contribution of
the factors to their workload through 15 paired comparisons
(e.g., mental demand vs. physical demand). A weighting average
technique was used to compute the contribution of each subscale
to the total workload. The total workload ranges between 0
and 100, while the weighted subscales are from 0 to 33.3. This
questionnaire was applied two times, one for each control mode
in the navigation task.

In addition, an ad hoc questionnaire about the experience
controlling the wheelchair relative to relaxation, tiredness and
performance (ease to stop, ease to move forward, presence of
false positives, and presence of false negatives) was filled out by
each participant at the end of the session. The variables of these
questionnaires were ranged from 1 to 10 and written so that users
could easily understand them (i.e., avoiding technical language).

Satisfaction
Satisfaction was measured employing another ad hoc
questionnaire, whose items ranged from 1 to 10, to determine the
comfort and subjective opinions of the user. These metrics were:
understanding of paradigm, control sense, motion smoothness,
suitability, and efficacy of the paradigm. In addition, at the end of
the test users were asked to choose their favorite paradigm and
to explain their choice.

RESULTS

This section will be divided into two parts in reference to
the calibration and navigation tasks. Likewise, the navigation
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task part will be in sections for the usability factors mentioned
above: effectiveness, efficiency and satisfaction. All the analysis
performed was sample characteristics dependent, i.e., parametric
or non-parametric, which means that mainly t Student and
Wilcoxon tests were used for paired means comparison,
respectively.

Calibration Session
The reactive band power features and minimum error rate
obtained for each subject are presented in Table 2. On average,
the minimum error rate was 23.70 ± 8.68%. Of the 15
subjects, five (P2, P9, P10, P13, and P15) had error rates
above the cut-off point of 30% and did not continue with the
study.

Navigation Session
Effectiveness
In Table 3, the values of the different confusion matrix
parameters obtained during the navigation task for each subject
are shown. Regarding these measures, significant differences
between continuous and switch mode were obtained for each
of them: TPR [t(9) = 3.583; p = 0.006], PPV [t(9) = 11.983;
p < 0.001], TNR [Z = 2.803; p = 0.005], NPV [t(9) = −3.154;
p= 0.012] and ACC [t(9) = −2.517; p= 0.033].

Table 4 shows the time spent by users executing each of the
two BCW commands—move forward or idle state—as well as
the number of move forward selections done in each section of
the path. The users’ average time to complete an advance section
offered significant differences between both control modes: 42.2
± 28.7 s and 15.47 ± 3.43 s for continuous and switch modes,
respectively [Z = −2.803; p = 0.005]. Significant differences
were obtained for stop sections too: 42.45 ± 16.01 s and
24.35 ± 10.94 s, for continuous and switch modes, respectively
[t(9) = 2.756; p = 0.022]. Regarding to the reaction time to stop
the wheelchair when the user was advised that he/she was in

TABLE 2 | Results of the calibration session.

User Frequency band (Hz) Minimum error (%)

P1 7–17 8.81

P2 13–16 31.31

P3 12–14 18.44

P4 12–17 17.94

P5 5–15 20.94

P6 11–15 22.38

P7 10–14 22.13

P8 10–16 23.06

P9 7–10 30.31

P10 11–16 35.19

P11 9–12 25.06

P12 7–12 15.81

P13 5–12 35.44

P14 10–14 11.63

P15 10–17 39.06

Mean 9.27 ± 2.52 to 15.47 ± 2.17 23.7 ± 8.68

the stop section, there was no significant differences between
control modes: continuous (2.55 ± 1.5 s) and switch mode (3.55
± 1.32 s).

The average number of forward commands required to
complete the advance sections was significantly different between
conditions: 4.33 ± 1.58 s and 1.23 ± 0.52 s for the continuous
and switch modes, respectively [Z = −2807; p = 0.005]. For
the stop sections, similar results were obtained as the average
number of forward commands was 2.75 ± 1.53 and 1.25 ±

0.42 for continuous and switch mode, respectively [Z = −2.439;
p= 0.015].

Likewise, from the data in Table 4, performance ratios for
each section and user can be calculated (Figure 6). A repeated
measures ANOVA was performed to study the presence of
main and interaction effects, involving the factors control mode
(continuous or switch) and section type (advance or stop).
The dependent variables included in this ANOVA were APR
and SPR. The results showed significant differences in the
interaction effect between the control mode and performance
ratio variables [F(1,9) = 23.777; p = 0.001; η2p = 0.725]
(Figure 6C). These results showed that the control mode affects
each of the variables differently, as we saw in the previous
specific analysis relative to the time required to go over a
section, offering a better performance ratio with the switch
mode in advances [t(9) = −6.363; p < 0.001] (Figure 6A) but
better with continuous mode in stops [t(9) = 2.756; p = 0.022]
(Figure 6B). In addition, there are no significant differences
between the performance factor related to the continuous
mode (0.31 ± 0.18) and the switch mode (0.29 ± 0.12)
(Figure 6D).

Efficiency

Workload
The average weighted factor results obtained with the
NASA-TLX questionnaire are shown in Table 5, while the
resulting total workload of each user is shown in Figure 7.
No significant differences could be noticed between control
modes.

Subjective questionnaire
The average answers given by participants at the end of the
session in the usability questionnaire related to specific control
mode features are shown in Table 5. Regarding these measures,
only the scores of seven participants (P5, P6, P7, P8, P11, P12,
and P14) are given as previous users were part of preliminary
tests not using this questionnaire. No differences could be
found in any factor of the two control modes with a Wilcoxon
test.

Satisfaction
The different mean values obtained in another subjective
questionnaire are shown in Table 5. As with efficiency, no
significant differences were found between control modes in
any factor of the subjective questionnaire (Wilcoxon test). In
addition, 4 out of the 7 users who filled out the questionnaire
preferred continuous mode vs. switch mode. A pattern can be
observed in the explanation offered by three of the four users
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TABLE 3 | Results of the confusion matrix’s parameters for each user and control mode.

User Classification matrix’s measures

TPR PPV TNR NPV ACC

Continuous Switch Continuous Switch Continuous Switch Continuous Switch Continuous Switch

P1 0.55 0.32 0.79 0.54 0.84 0.94 0.63 0.86 0.69 0.83

P3 0.58 0.22 0.82 0.57 0.93 0.94 0.81 0.76 0.82 0.74

P4 0.28 0.17 0.84 0.60 0.92 0.94 0.45 0.70 0.53 0.69

P5 0.55 0.15 0.72 0.60 0.83 0.94 0.71 0.66 0.71 0.65

P6 0.47 0.27 0.82 0.64 0.89 0.94 0.62 0.76 0.68 0.74

P7 0.30 0.22 0.68 0.56 0.64 0.93 0.25 0.74 0.39 0.72

P8 0.72 0.15 0.71 0.56 0.67 0.94 0.68 0.70 0.69 0.69

P11 0.44 0.23 0.77 0.55 0.57 0.91 0.24 0.72 0.47 0.70

P12 0.19 0.35 0.77 0.53 0.73 0.86 0.16 0.74 0.28 0.70

P14 0.59 0.35 0.70 0.53 0.70 0.87 0.59 0.76 0.64 0.72

Mean 0.47 ± 0.17 0.24 ± 0.08 0.76 ± 0.06 0.57 ± 0.04 0.77 ± 0.13 0.92 ± 0.03 0.51 ± 0.22 0.74 ± 0.06 0.59 ± 0.17 0.72 ± 0.05

Satatistical test value 3.583 11.983 2.803 3.154 2.517

p-value 0.006 0.001 0.005 0.012 0.033

True positive rate (TPR), positive predictive value (PPV), true negative rate (TNR), and negative predictive value (NPV). The two last row corresponds to the t(9) Student comparison

between continuous and switch modes for TPR, PPV, NPV, and ACC. In the case of TNR comparison, the Z-test value was calculated instead t.

who preferred continuous mode (P5, P8 and P11; P7 did not
explain their choice) according to the difficulty of changing
mental tasks quickly and the requirement to maintain higher
attentional levels in switch mode. Otherwise, two participants
who preferred switch mode (P6 and P12; P14 did not explain
his/her choice) declared that this mode implies a lower mental
effort (P12) and that it was easier to control the BCW (P6).

DISCUSSION

This section will be divided into two subparts, one regarding
the results obtained in this work, comparing the two control
paradigms, and the other referring to previous works using the
switch system or ERD/ERS signal based BCW.

Discussion of the Navigation Control
Presented in This Paper
First, the results obtained for the two control paradigms
presented in the study will be discussed and compared in detail.

Effectiveness
According to the measure related to the general performance
time, the performance factor, significant differences between
paradigms are not observed but in specific sections of the path.
On the one hand, the switch paradigm could be more effective
in advance sections since it was possible to complete the same
sections with fewer commands and better time-related metrics
(i.e., time and APR). However, the opposite conclusion was
obtained in the stop sections, where the continuous paradigm
seems more convenient since users managed to stand still
longer; however, the number of commands was significantly
bigger too. The number of executed commands needed to
leave the stop sections requires a more careful interpretation.

Although the continuous mode was related with a larger
number of forward commands in the stop section, when users
selected a non-desired forward command in switch mode, they
might not be able to stop the chair as quickly as needed,
thus it made the BCW leave the stop section earlier than
expected.

In general, these results may be explained by the false
activations, i.e., FPs, which had a higher cost in switch mode
than in continuous, in which the user could make these false
selections with the slight cost of advancing just a few centimeters.
Otherwise, in switch mode, these false activations could involve
a larger displacement of the wheelchair, since quickly changing
the movement state of the device could be difficult for some users
(they should wait until the bar was lower than the threshold, then,
they had to raise the bar again above the threshold during the
“selection time” at least).

Measures related to the confusion matrix offered significant
differences in all the considered variables. A pattern could be
observed according to which the continuous mode obtained a
better performance in the variables related to the TPs (TPR and
PPV), while the switch mode obtained a better performance in
the variables related to the TNs (TNR and NPV). These results
make sense considering the desired results for each paradigm:
the priority in the continuous mode was to have an adequate
selection of the TPs in such a way that the displacement of the
wheelchair was as fluid as possible. However, in the switch mode
the intention was that the users could keep the state of the device
as long as they wanted since, as we saw earlier, this could lead to
a better performance. Nevertheless, in the most general measure
of the confusion matrix, i.e., the ACC, the switch mode offered a
better performance.

Despite these general differences in performance between
control modes, it should be admitted that some users presented a
better performance using one paradigm vs. the other. Thus, these
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TABLE 4 | Results of the user performance: times and forward command selections.

User Control mode Section of the path

Advance 1 Stop 1 Advance 2 Stop 2 Advance 3

A B C A B C A B C A B C A B C

P1 Continuous 16 5 5 4 56 3 11 4 2 7 1 1 13 21 5

Switch 11 0 1 7 26 1 10 2 1 8 43 2 13 5 2

P3 Continuous 13 4 2 6 54 2 11 0 0 2 58 1 16 17 5

Switch 11 0 1 8 14 1 10 0 0 7 2 1 12 2 1

P4 Continuous 13 0 1 6 54 2 14 13 1 4 56 1 23 100 9

Switch 13 8 2 7 19 1 7 7 1 7 53 2 15 13 2

P5 Continuous 16 6 4 12 48 8 16 18 5 7 53 3 18 11 5

Switch 11 0 1 8 2 1 11 0 0 7 0 0 12 4 1

P6 Continuous 12 0 1 5 55 3 22 28 6 8 50 2 18 21 7

Switch 11 0 1 8 26 1 11 4 1 8 6 2 11 2 1

P7 Continuous 14 48 3 12 10 4 22 64 7 13 34 4 18 17 4

Switch 14 0 1 9 6 1 13 0 0 11 9 2 15 2 1

P8 Continuous 14 8 3 9 33 2 14 2 2 8 1 1 13 6 2

Switch 11 0 1 6 36 1 12 17 2 7 0 0 11 2 1

P11 Continuous 19 23 5 9 20 2 13 2 3 6 0 0 18 38 5

Switch 13 0 1 8 7 1 11 0 0 9 31 2 14 7 2

P12 Continuous 18 16 7 10 1 3 27 105 10 9 51 4 19 156 7

Switch 14 3 2 7 24 2 12 2 1 8 4 1 13 5 3

P14 Continuous 14 1 2 14 39 7 18 16 4 9 15 2 22 21 8

Switch 15 3 3 9 6 1 14 1 1 10 14 2 14 2 2

While the letters “A” and “B” indicate the time (s) moving forward and keeping the position with the wheelchair, respectively; the letter “C” indicates the number of forward command

selections. Thus, for example, the column relative to “Advance 2” and subcolumn “B,” would make reference to the time with the wheelchair stopped (B) in the second advance section.

FIGURE 6 | Results of the user performance: time-related metrics. (A) Advance performance ratio (APR) for each user. (B) Stop performance ratio (SPR) for each

user. (C) Average values, with the corresponding standard deviation, for the APR and SPR. (D) Performance factor for each user.
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TABLE 5 | Average values and statistical result for the subjective measures reported by users.

Subjective measures Control Wilcoxon test

Continuous Switch Z p

NASA-TLX

Mental demand 22.03 ± 4.86 21.17 ± 6.95 −0.459 0.646

Physical demand 0.8 ± 2.2 0.17 ± 0.36 −0.816 0.414

Temporal demand 6.33 ± 4.01 7.53 ± 6.03 0.28 0.779

Performance 12.5 ± 5.24 8.87 ± 5.04 −1.955 0.051

Effort 14.97 ± 6.3 16.33 ± 8.49 0.561 0.575

Frustration 5.77 ± 7.06 5.87 ± 5.43 0.059 0.953

Total workload 62.4 ± 8.24 59.93 ± 17.95 −0.561 0.575

SUBJECTIVE QUESTIONNAIRE FOR EFFICIENCY

Relaxed 8.29 ± 1.91 7.43 ± 2.44 −0.73 0.465

Tired 4.14 ± 2.03 4.86 ± 1.88 −0.73 0.465

Ease to stop 6.86 ± 2.17 5.43 ± 2.92 −1.084 0.279

Ease to move forward 5.57 ± 1.29 6.00 ± 1.85 −0.426 0.67

False positives presence 5.71 ± 1.67 6.29 ± 1.98 −0.687 0.492

False negatives presence 5.29 ± 1.75 5.43 ± 2.25 −0.69 0.49

SUBJECTIVE QUESTIONNAIRE FOR SATISFACTION

Paradigm understanding 9.57 ± 0.49 9.14 ± 1.36 −1 0.317

Control sense 5.86 ± 1.73 4.86 ± 2.29 −0.681 0.496

Motion smoothness 5.43 ± 1.76 5.43 ± 1.76 −0.085 0.932

Suitability of the paradigm 7.29 ± 1.67 5.43 ± 2.44 −1.16 0.246

Efficacy of the paradigm 7.14 ± 1.73 6.86 ± 1.81 −0.632 0.527

results could support the idea that the paradigm should be chosen
according the user preferences.

Efficiency
Regarding the usability questionnaires concerning efficiency,
some points should be highlighted. At first, as expected,
the most influential factor in the workload construct,
measured with the NASA-TLX, was the mental demand,
followed by effort, in both navigation paradigms. Most
participants did not show appreciable differences in total
workload between paradigms (Figure 7). However, for some
participants one or the other paradigm noticeably involved more
workload.

Regarding the subjective ad hoc questionnaire for efficiency,
both paradigms shown similar values offering: (i) adequate
results for relax state during the experiment, (ii) quite positive
values for the metrics related to the ease to move or stop the
wheelchair, although there were (iii) certain level of tiredness and
(iv) quite negative values in reference at the presence of FPs and
FNs.

Satisfaction
In reference to the subjective questionnaire for satisfaction:
(i) all users adequately understood both paradigms, (ii) the
control sense could be improved, especially for the switch
mode, although there were no significant difference between
them, (iii) both paradigms could be equally effective, (iv) the
paradigm was not related to the motion smoothness as one

might initially think, (v) the suitability of the paradigm offered
acceptable scores, especially for the continuous mode despite
there were no significant differences. The statements of those
users who declared the continuous paradigm as their preference
and explained their choice (P5, P8, and P11) agreed that the fast
changes of mental tasks needed in the switch mode were difficult
to perform.

Discussion of Previous Works
Several BCI groups had studied a switch paradigm to control
a BCW. The cases where the user can achieve an appropriate

control of the alternative task present a certain parallelism with

FIGURE 7 | Total workload measured by NASA-TLX.
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TABLE 6 | Results of the brain switch proposals: confusion matrix’s measures.

System Control mode TPR PPV TNR NPV

Present proposal Continuous 0.47 0.76 0.77 0.51

Switch 0.24 0.57 0.92 0.74

Müller-Putz et al., 2010 Switch 0.79 0.84 – –

Solis-Escalante et al., 2010 Switch 0.46 – 0.86 –

Ron-Angevin et al., 2017 Discrete 0.79 0.77 0.85 0.81

Brain-controlled wheelchair (BCW), event-related (des)synchronization (ERD/ERS), true positive rate (TPR), positive predictive value (PPV), true negative rate (TNR), and negative predictive

value (NPV).

high level navigation paradigms (generally based on exogenous
signal such as P300 or steady-state evoked potentials), since
in these systems the user sends the order and he/she just
has to wait while the command is executed. As it was shown
in the introduction section, the brain switch control has
been implemented in exogenous based BCWs with low level
navigation to turn on/off the system, for example, in hybrid
SSVEP based wheelchairs (Xu et al., 2012; Cao et al., 2014). The
paper presented by Li Y. et al (2013) tested a hybrid (P300 and
SSVEP) BCW where one the simultaneous detection of P300
and SSVEP stimulus was employed to change the advance state
of the wheelchair (maintaining the advance or stop). Thus, this
BCW applied the same concept used in the present paper with
a MI based BCW. Furthermore, the SSVEP based BCWs are
usually controlled through 4 or 5 control commands (Fernández-
Rodríguez et al., 2016), so using the same stimulus to execute
two allows that the number of commands can be incremented
without the need of more stimuli.

Due to the specific experimental design to control the different

devices and other factors such as the experience level of the

participants, the comparison among switch systems will be

limited to general aspects and to those which employed similar
metrics. This problem has been declared in previous reviews

about brain-controlled mobile devices (Bi et al., 2013; Fernández-

Rodríguez et al., 2016) and BCI assessment (Thompson et al.,

2013). As it is shown in Table 6, one of the main characteristics
of the switch control presented here is the unbalance between
the metrics related to the confusion matrix, especially between
the TPR and TNR. This pattern was also obtained by Solis-
Escalante et al. (2010). Regarding Müller-Putz et al. (2010), who
calculated the TPR and the PPV, the presented switch proposal
on the present paper shows more unbalanced TPR and PPV than
them; however, the trend was the same: the PPV was higher
than the TPR. Additionally, all switch control systems presented
in Table 6 show the TNR as the highest measurement, and the
TPR as the lowest. These results could be convenient since the
switch control modemust have the ability tomaintain the current
state during the desired time. However, this capability of true
negative detection and this low occurrence of false selections
can lead to a system that is activated with difficulty. This could
cause many false non-selections and thus result in a low value
in the TPR. This imbalance can be a problem especially when
the user needs to stop the BCW urgently, so in future proposals
it would be necessary to include intelligent systems that assist
navigation. However, as Ron-Angevin et al. (2017) concluded in

their proposal on discrete control for the control of a BCW, the
optimal values of these parameters depend on the type of system
used, so they should be studied in future assessments.

Regarding the workload, since there are no other studies
using the NASA-TLX and controlling a BCW, it is difficult to
discuss the observed values in the present study. In principle,
it could only be compared with other studies that involve
other tasks, such as the training to control the ERD/ERS
signal (Felton et al., 2012), the handling of a complex P300
communication application (Riccio et al., 2011) or a simple P300
speller controlled by patients (Pasqualotto et al., 2015). Taking
into account these previous works, whose total workload ranges
between 30 and 67, approximately, it could be admitted that our
values around 60 were adequate, especially if we keep in mind
that the present work involve the control of a real wheelchair (i.e.,
the users move along with the BCW, they are not quietly seated
in front of a computer).

CONCLUSIONS

The performance shown by users during the navigation was
heterogeneous, as were the workload and the evaluations through
subjective questionnaires. Moreover, the results suggest that
each control paradigm had specific advantages and drawbacks
that must be taken into account. Specifically, a tendency was
observed for the switch mode to enable a better performance
than continuous mode in the advance sections, since the user
could travel a longer distance with a single command selection.
Otherwise, this advantage is converted into a drawback in
the stop sections since in some cases users went through the
stop section and could not stop the BCW. Thus, in these
sections continuous mode offered better results. Another aspect
to emphasize is the variability found in the performance factor
between both controls for the same user, pointing to the
possibility that what matters is not only the suitability of
the paradigm, but also the preference and users’ ERD/ERS
modulations skills.

In short, this work has offered a detailed evaluation of
two paradigms controlling a BCW considering the usability
approach. To this end, many metrics were employed: those
related to the objective performance of the user (such as time,
number of selected commands, metrics of confusion matrix and
even ad hoc measures such as the APR, SPR and performance
factor), in addition to the subjective questionnaires, from the
widely used NASA-TLX to specific ad hoc questionnaires.
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For future works, it would be convenient to re-examine the
control over different types of paradigms with trained users
during several sessions, since it should be taken into account
that all users (except user P4) were inexperienced at controlling
these interfaces through their EEG signals. In addition, it may be
interesting to study the application of new navigation paradigms
that could have advantages over these two modes of control, so
that users’ performance and, therefore, their experience during
the management would be as convenient and comfortable as
possible.
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Persons diagnosed with disorders of consciousness (DOC) typically suffer from motor

disablities, and thus assessing their spared cognitive abilities can be difficult. Recent

research from several groups has shown that non-invasive brain-computer interface

(BCI) technology can provide assessments of these patients’ cognitive function that can

supplement information provided through conventional behavioral assessment methods.

In rare cases, BCIs may provide a binary communication mechanism. Here, we present

results from a vibrotactile BCI assessment aiming at detecting command-following and

communication in 12 unresponsive wakefulness syndrome (UWS) patients. Two different

paradigms were administered at least once for every patient: (i) VT2 with two vibro-tactile

stimulators fixed on the patient’s left and right wrists and (ii) VT3 with three vibro-tactile

stimulators fixed on both wrists and on the back. The patients were instructed to mentally

count either the stimuli on the left or right wrist, which may elicit a robust P300 for the

target wrist only. The EEG data from −100 to +600ms around each stimulus were

extracted and sub-divided into 8 data segments. This data was classified with linear

discriminant analysis (using a 10 × 10 cross validation) and used to calibrate a BCI to

assess command following and YES/NO communication abilities. The grand average

VT2 accuracy across all patients was 38.3%, and the VT3 accuracy was 26.3%. Two

patients achieved VT3 accuracy ≥80% and went through communication testing. One

of these patients answered 4 out of 5 questions correctly in session 1, whereas the

other patient answered 6/10 and 7/10 questions correctly in sessions 2 and 4. In 6 other

patients, the VT2 or VT3 accuracy was above the significance threshold of 23% for at

least one run, while in 4 patients, the accuracy was always below this threshold. The
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study highlights the importance of repeating EEG assessments to increase the chance of

detecting command-following in patients with severe brain injury. Furthermore, the study

shows that BCI technology can test command following in chronic UWS patients and

can allow some of these patients to answer YES/NO questions.

Keywords: communication, unresponsive wakefulness syndrome, vegetative state, brain computer interface,

evoked potentials, vibro-tactile P300

INTRODUCTION

Assessing consciousness and communication in persons with
disorders of consciousness (DOC) is difficult. The current
gold-standard is based on bedside observation of the patients’
responses, but these patients may lack the ability to perform
voluntary motor responses at the bedside. Standardized scales
such as the Coma-Recovery-Scale-revised (CRS-R; Giacino et al.,
2004) have been developed, but these tools are highly dependent
on the patient’s motor abilities. This dependence may prevent
the detection of signs of consciousness or the possibility of
communication in this population (Monti et al., 2010; Giacino
et al., 2012; Risetti et al., 2013; Gibson et al., 2014; Ortner et al.,
2017), and therefore also limit the diagnosis of some patients with
locked in syndrome (LIS; i.e., paralyzed with remaining vertical
eye movement control but conscious with preserved cognitive
abilities; Patterson and Grabois, 1986).

Brain-computer interfaces (BCIs) were originally developed
to establish a communication channel with LIS patients via
brain activity alone, usually by measuring and analyzing the
electroencephalographic (EEG) response for applications such as
selecting letters (Wolpaw et al., 2002;Wolpaw andWolpaw, 2012;
Nam et al., 2018). Such BCIs have been validated with different
types of EEG paradigms, including motor imagery (MI) (Guger
et al., 2003; Acqualagna et al., 2016), steady-state visual evoked
potentials (SSVEPs; Bin et al., 2009; Ahn et al., 2016) or P300
event-related potentials (ERPs; Guger et al., 2009, 2016; Lugo
et al., 2014). The P300 may be elicited if an unlikely event occurs
that is embedded in frequent events. P300 based-BCIs have
been used widely due to several appealing features, including
a short calibration time, robustness, and ease of use (Fazel-
Rezai et al., 2012). Over the last decade, such BCIs have been
developed using visual, auditory (Risetti et al., 2013; Rutkowski,
2016) or vibrotactile stimuli (Lugo et al., 2014; Gibson et al.,
2016). A vibro-tactile P300 study with LIS patients showed that
the BCI system can still extract information from the EEG,
even if visual inspection of the averaged ERPs suggests this
is impossible. This is because the EEG data from each single
trial was analyzed using linear discriminate analysis (LDA),
in contrast visual inspection of averaged ERPs (Lugo et al.,
2014).

Vibro-tactile P300 testing has also been used with LIS/CLIS
patients and healthy subjects, where the participant is asked to
count a target (rare) tactile stimuli either on the right or left
hand to answer YES/NO questions. Using this technique, healthy
subjects without prior training achieved high accuracies and
were able to communicate (Allison et al., 2017; Guger et al.,
2017b). 12 LIS/CLIS patients achieved a mean accuracy of 76.6%

in VT2 (vibro-tactile paradigm with 2 stimulators), 63.1% in
VT3 (vibro-tactile paradigm with 3 stimulators), and 58.2% in
MI modes after 1–2 training runs. 9 out of 12 LIS patients
could communicate by using the vibro-tactile P300 paradigms
(answering 8 out of 10 questions correctly on average) and 3 out
of 12 could communicate with the MI paradigm (answering 4.7
out of 5 questions correctly on average). In previous work using
vibrotactile P300 BCIs for LIS patients, 6 LIS patients attained a
mean accuracy of 80% in a paradigm with 2 tactile stimulators
(left and right hand) and 55.3% in a paradigm with 3 tactile
stimulators (left and right hand, neck) (Lugo et al., 2014). In
both paradigms, chance accuracy was 12.5%, and the results were
statistically significant. Recently, a system using functional near
infrared spectroscopy was used for communication with CLIS
patients and patients entering CLIS in more than 40 sessions
(Chaudhary et al., 2017).

BCIs are also of growing interest for the DOC population, as
they may provide an online assessment of the patient’s cognitive
abilities when motor impairments prevent the patient from
showing voluntary signs of consciousness at bedside (Guger et al.,
2014, 2017a; Real et al., 2016; Chennu et al., 2017; Nam et al.,
2018). This approach could be easily implemented in a clinical
setting to supplement the behavioral diagnosis and decrease
potential misdiagnosis, as shown in previous studies using active
tasks (e.g., Monti et al., 2010; Cruse et al., 2011).

The current study uses vibro-tactile P300 tests with 2
(VT2) and 3 (VT3) tactors for the assessment of remaining
brain response (classic oddball paradigm using 2 tactors) and
command following with binary communication testing (active
task using 3 tactors). The BCI classification accuracy and evoked
potentials from the VT2 and VT3 paradigms are evaluated. We
also aimed to assess the necessary classification accuracy for
communication in unresponsive wakefulness syndrome (UWS)
patients, and we investigated whether repeated assessments yield
better results.

METHODS

Participants
Patients were recruited by the University of Palermo, Italy.
Inclusion criteria were age >18 years and clinical diagnosis
of UWS (awakening without any volitional response at the
bedside examination), irrespective of delay from disease onset
and etiology.

The clinical definition of UWS was based on the repetitive
administration (at least five times) of the Italian version of the
CRS-R scale (Lombardi et al., 2007). The patients had no history
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of neurologic disorder prior to coma. The mechanical ventilation
did not interfere with the EEG recordings because we used active
EEG electrodes.

Ethical approval was available from the Ethical Committee
Palermo from the University Hospital of Palermo. Written
informed consent was obtained from a legal guardian.
Measurements were performed by a medical doctor who
was trained on the proper handling of the system.

A convenience sample of 12 patients enrolled in the study
(12 UWS, 9 men; median age: 53.3 years, range: 19–91 years;
time since injury: 1–28 months, median: 2 months) as shown
in Table 1. The etiologies of the patients were: traumatic brain
injury (n = 4), stroke (n = 2), hypoxia-ischemia brain injury
(n = 4), subdural hematoma (n = 1), and meningoencephalitis
(n= 1).

Materials
All data were acquired with the mindBEAGLE prototype (g.tec
Guger Technologies OG, Austria). The system consists of active
gel-based EEG electrodes connected to a biosignal amplifier

(g.USBamp, g.tec) with 24 Bit resolution and a high oversampling
rate to increase the signal to noise ratio of the data. The
amplifier sends the EEG data via USB at 256Hz to a computer
system that runs the experimental paradigm in real-time. The
system also presents the EEG data on a monitor for quality
inspection, stores the data in floating point format for off-
line processing, performs the real-time signal processing and
manages all stimulus presentation.

The acquired EEG data are bandpass filtered between 0.1
and 30Hz to remove baseline shifts and eliminate most EMG
artifacts. The EEG electrodes used for the experiments were
positioned at sites Fz, C3, Cz, C4, CP1, CPz, CP2, and Pz
according to the extended International 10–20 System. The
reference electrode was fixed on the right earlobe and the ground
electrode was mounted on the forehead.

Behavioral Assessment
The CRS-R was administered after careful neurologic
examination by trained neurologists (R.S., V.L.B.), about
30min before the first BCI session. Patients were assessed when
free of sedation for at least 24 h. Table 1 presents the resulting
scores.

BCI Assessment
Three paradigms were used: VT2 and VT3 assessment, and VT3
communication according the experimental procedure shown in
Figure 1. VT2 uses two vibro-tactile stimulators that are fixed
on the left and right wrists. Before each sequence of stimulations
begins, the system verbally instructs the patient to silently count
the stimuli on the target wrist. In the VT2 and VT3 assessment
paradigms, the target wrist is selected pseudo-randomly, and
each run has an equal number of left and right targets (15 each).

During stimulus presentation, the BCI system activates the
vibro-tactile stimulation for 100ms on the left or right wrist (also
chosen pseudo-randomly), but the non-target wrist is stimulated
more often (87.5%) than the target wrist to generate an oddball
paradigm. The vibro-tactile stimulators are 3 cm long and 5mm

wide, and operate at 80Hz. This paradigm is intended to generate
a vibro-tactile P300 and other ERPs only when the target wrist
is stimulated. In both VT3 modes, one additional stimulator is
fixed on the back or shoulder as a distractor, which is active in
75% of stimulations. The other two stimulators are again fixed
on the right and left wrist and each receive 12.5% of the stimuli.
In all three modes, the BCI system instructs the subject to count
the stimulations on either the left or right hand, which may
elicit a P300 to the target hand. Each subject received 15 target
stimulations and 7 × 15 non-target stimulations prior to a brief
pause as an instruction to focus on the upcoming target wrist.
During both the VT2 and VT3 assessment paradigms, each run
lasted about 2.5min. Each VT2 run contained 30 groups of eight
stimuli (120 left, 120 right). Each VT3 run contains 30 groups of
8 stimuli (30 left, 30 right, 180 distractors).

TABLE 1 | Overview of patients participating in this study.

Clinical

state and #

Age range

(years)

Etiology Disease duration at

first session (months)

Mechanical

ventilation

CRS-R score on day of

first BCI assessment

UWS1 18-20 TBI 28 No 6

UWS2 18-20 TBI 9 No 6

UWS3 31-40 TBI 2 No 3

UWS4 31-40 HBI 9 No 6

UWS5 91-100 Stroke 1 No 6

UWS6 81-90 SDH 2 Yes 5

UWS7 61-70 ME 2 No 6

UWS8 51-60 HBI 1 Yes 4

UWS9 61-70 HBI 2 Yes 6

UWS10 71-80 HBI 1 Yes 5

UWS11 71-80 Stroke 1 No 6

UWS12 21-20 TBI 2 No 8

TBI, Traumatic Brain Injury; HBI, Hypoxia-Ischemia Brain Injury; SDH, Subdural Hematoma; ME, Meningoencefalitis; BT, Brain Trauma; UWS, Unresponsive Wakefulness Syndrome;

The age is given as a range to avoid indirectly identifiable patient data.
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FIGURE 1 | Experimental procedure. The first session for a new patient always

starts with a VT2 assessment followed by a VT3 assessment. If the accuracy is

above 70%, then VT3 communication was tested. Some follow-up sessions

also began with VT2 assessment, whereas the other follow-up sessions

instead began with a VT3 assessment to assess communication quickly.

The VT2 paradigm is usually performed first as an assessment
run to see if the patient responds to the paradigm. The systemwill
create ERPs from the assessment run and will also calculate the
classification accuracy to show how well the target ERPs can be
separated from the non-target ERPs. Then, a VT3 assessment run
is performed to assess whether the patient is following commands
in a paradigm with a distractor stimulus, and ERPs and the
classification accuracies are calculated. These data are also used
to calibrate the system on the subject specific EEG data. When
the clinical conditions (i.e., alertness, heart rate, need of suction
etc.) allowed it, we repeated the VT3 assessment only, in order
to avoid prolonged sessions. All patients were assessed once in a
day, except UWS 1, who was available for 4 sessions in a period
of 2 months. This calibration information is used in further
communication runs that allow the patient to say either YES
(by counting the stimuli on the right hand) or NO (by counting
the stimuli on the left hand). To limit the total recording time,
we decided to conduct a VT3 communication run if a patient’s
accuracy was >70% in an assessment run (well above the 95%
confidence interval with a binomial test that yields about 23%
accuracy).

In the VT3 communication paradigm, the operator asks the
subject a question just before each run begins, and the subject
can answer either YES or NO by counting the stimuli on either
the left or right hand. Thus, unlike the other two paradigms, the
subject chose which wrist was the target. Ten customized and

standardized questions to which the answers are known were
used to evaluate system accuracy (e.g., Is your name Maria?;
Is your son named Ricardo?,. . . ). In the VT3 communication
paradigm, one question can be answered after 120 stimuli, which
requires 38 s. The system only selects YES or NO if the result is
significant, and provides an “undetermined” response otherwise.
The examiner then verbally repeated the answer displayed on the
monitor.

Data Analysis and Classification
Across all paradigms, we extracted data epochs of −100–600ms
around each stimulus and rejected trials in which the amplitude
of the EEG signal exceeds ±100 µV. Each of these 700ms data
epochs was then sub-divided into 8 data segments of equal
duration. We then created sub-averages for each of these data
segments. Then, the data were classified using linear discriminant
analysis (LDA), resulting in a classification accuracy ranging from
0 to 100% that describes how well the target vs. non-target data
can be separated. The ratio of target to non-target stimuli is
1:7, resulting in a chance accuracy of 12.5%. (The classifier does
not group the seven non-target stimuli together for classification
purposes nor use a priori information about the target to improve
accuracy.) In VT2 and VT3 mode, the data were randomly
shuffled such that 50% of the data were used for training and 50%
were used for testing to have independent training and testing
data. This procedure was repeated 10 times.

A discriminable response was defined as a classification
accuracy above 23% for VT2 and VT3 assessment (i.e., suggesting
target vs. non-target ERPs could be discriminated). 23% is the
95% confidence interval tested with a binomial test. For VT3
communication testing, we defined communication as reliable if
at least 70% of the questions were correctly answered.

In addition, we calculated the difference in ERPs between
target and non-target stimuli during the VT2 and VT3 using
a Kruskal-Wallis significance test using p<.05. Areas with
significant differences between targets and non-targets are shaded
green in Figure 2.

RESULTS

Behavioral Assessment
All the patients had at least 4 CRS-Rs within about 1 month
(Median = 14.5 days, range = 7–34 days) before the first BCI
study (8 patients had 5 CRS-Rs). The diagnosis was UWS before
starting the study and remained the same for each BCI session.

Three patients could be assessed again a few weeks to a
year post assessment. Two patients remained in a UWS after
1 year (UWS1 and UWS3), whereas one recovered signs of
consciousness 15 days after the study (UWS12; visual fixation).

BCI Assessment
Eleven patients were seen for one or two runs in 1 day. The
remaining patient (UWS1) was assessed for 2 runs per days on
4 different days (time between first and last day: 4 months).

The VT2/VT3 assessment and VT3 communication data are
reported in Table 2. Figure 2 presents the ERPs from all patients
over three central electrode sites, as well as the BCI classification
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FIGURE 2 | Event-related potentials (ERPs) over electrode sites C3, Cz, and C4 and BCI accuracies for VT2 and VT3 runs from all participants. The x-axes of the ERP

plots present the time relative to stimulus onset, and the vertical red lines show stimulus onset at 0ms. The blue lines reflect non-target ERPs, the green lines show

target ERPs, and the green shaded areas show significant differences between these two traces. For example, in UWS1, the green shaded areas are most

pronounced in the VT2 task, particularly over C3.The accuracy plots to the right of these ERPs show the resulting BCI accuracy. In each plot, the y-axis shows the %

accuracy and the x-axis shows the number of trial groups (groups of eight stimuli) that were used to derive that accuracy.

accuracies. In the first session, a VT2 run was always performed
to check the patient’s ERPs elicited by the oddball task, then the
VT3 run was performed to confirm active command-following

ability (i.e., counting the target). In subsequent sessions, the VT2
run was sometimes skipped to go directly to VT3 assessment and
communication testing. Each of the 12 UWS patients performed
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TABLE 2 | Median classification accuracies are shown for VT2 and VT3

assessment sessions for 12 UWS patients.

Patient Session

#

VT2

assessment

accuracy 4

instructions [%]

VT3 assessment

accuracy 4

instructions [%]

VT3

Communication

UWS1 1 100 0 -

- 40 -

2 25 20 -

80 80 6/10 (4 wrong)

3 60 0 -

- 5 -

4 - 100 7/10 (3 wrong)

UWS2 1 30 20 -

- 0 -

UWS3 1 45 0 -

- 10 -

UWS4 1 20 20 -

- 30 -

UWS5 1 30 0 -

UWS6 1 20 0 -

UWS7 1 20 50 -

- 0 -

UWS8 1 0 15 -

UWS9 1 50 30 -

- 60 -

UWS10 1 10 0 -

UWS11 1 5 0 -

UWS12 1 80 70 -

- 80 4/5 (1 undetermined)

Median 38.3 26.3 17/25 (7 wrong/1

undetermined)

VT3 communication accuracy is presented as the number of questions answered correctly

out of either 5 or 10 questions. For example, 4/ 1 /5 means that 4 answers out of 5

questions were given correctly and 1 answer was either undetermined or wrong. Runs

(recordings within a session) are shown in different rows for a session (recordings on

one day). A “-” shows that the paradigm or communication was not performed. The VT2

and VT3 assessment runs each last 2.5min (4 instructions with 15 targets each). In VT3

communication, it takes 38 s to answer 1 question. ERPs of segments shaded in gray are

shown in Figure 2.

the VT2 and VT3 assessments at least once (between 1 and 4 runs
for VT2, 1–7 runs for VT3).

Using VT2, target vs. nontarget ERPs could be discriminated
effectively in seven out of the 12 patients. Using VT3, 5 out of
the 12 patients showed ERP differences suggesting command
following. All the patients who showed performance above
chance during VT3 assessment had a discriminable response to
VT2.

Two patients (UWS1 and UWS12) reached a VT3 assessment
accuracy >70%, allowing for communication testing. UWS1
reached 80% in the second session, run 2, and was able to
answer 6 out of 10 questions correctly (60%). In session 4, run
1, UWS1 achieved 100% assessment accuracy and answered 7
out of 10 questions correctly (70%; the remaining answers were
incorrect). UWS12 reached a VT3 accuracy of 80% in run 2 and

could answer 4 out of 5 questions correctly (80%; 1 question was
undetermined).

When looking at the ERPs of the patients who communicated
(UWS1 and UWS12), UWS1 showed significant ERP differences
for VT2 with an assessment accuracy of 80% in session 2 (see
Figure 2). In the same session, the VT3 ERPs did not show
significant differences in visual inspection, but the assessment
accuracy was also 80%. In session 4, the VT3 assessment
accuracy reached 100%, and the ERP showed significant
differences.

In UWS12, the VT2 assessment accuracy reached 80% and
a significant difference in the ERP could be observed. In VT3
run 1, the assessment accuracy was 70% and there was no clear
difference between target and non-target ERPs based on visual
inspection. In run 2, the VT3 accuracy increases to 80% and the
ERP showed a difference.

Some additional patients showed differences in the ERPs.
UWS7 showed no clear target vs. non-target differences for
VT2, but showed stronger differences for VT3. In VT2 run 1,
the mean accuracy was only 20%, but was 50% for the first
VT3 run. Therefore, the VT3 assessment run was repeated,
but accuracy declined and therefore communication was not
tested. UWS4 showed a P300 response for the VT3 paradigm
and achieved 30% accuracy. All other patients did not reach the
significance threshold of 23% during the VT3 testing. Patient
UWS2 showed a significant ERP on channel C3 in VT2 and VT3
mode, but the classification accuracy was not high enough to
test communication. The same was true for UWS10. The other
patients did not show significant differences in the ERPs.

DISCUSSION

The current study employed vibrotactile paradigms designed to
elicit the P300 and other ERPs to evaluate covert command
following and communication in UWS patients.

We reported that 41% of our patients showed signs of covert
command following using the VT3 paradigm. In addition, 2 (out
of 12; 16%) of the patients could establish reliable communication
with the VT3 paradigm.

In the case of UWS1, 2 sessions were necessary to achieve
a VT3 classification accuracy >70% to test for communication.
In session 3, the accuracy decreased, which might suggest
fluctuation in the patient’s ability to follow commands, although
the time in between sessions (i.e., about 2 weeks after session 2)
prevents us from making strong assumptions. Finally, in session
4, the patient achieved a classification accuracy of 100%, allowing
him to answer 7 out of 10 questions correctly. Interestingly,
88 days elapsed between sessions 1 and 4, and the patient
immediately reached 100% in the last session in VT3 and could
communicate. This result further highlights that performance
can vary across sessions, and thus it is important quickly
calibrate the system, assess the patient and proceed directly to
communication mode if possible.

In the case of UWS12, communication could be tested after
only 2 VT3 runs within a single session, leading to 4/5 correctly
answered questions.
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Our data appear to contradict what have been reported in
previous literature on covert consciousness in DOC. We observe
a higher number of patient showing signs of covert command
following (41 vs. 17–20%). This could be due to the fact that we
repeated the assessment, allowing us to take into account, at least
partially, fluctuations in vigilance (Piarulli et al., 2016; Wannez
et al., 2017). However, the 2 patients who could communicate
both had a traumatic brain injury, consistent with previous
literature on the effect of the etiology in covert cognitive abilities
in severely brain injured population (Cruse et al., 2012). Further
research should explore the relationships between BCI accuracy
fluctuations and etiology, as well as exact diagnosis, time since
injury and other factors.

The high variability across runs (as well as sessions) in the
results highlights a significant challenge associated with this
patient group. Patient UWS1 reached 80% VT3 assessment
accuracy and could successfully communicate. In the next run,
the accuracy was only 0%. UWS1 achieved 100% VT2 accuracy
in the first run, which showed that he was able to execute the
task correctly at that time, but the accuracy dropped to 0% in
the subsequent VT3 test. In a second assessment performed 2
weeks later, he repeatedly achieved accuracy scores > 80%. Since
UWS patients in Italy are admitted to intensive rehabilitation, the
detection of command following in this clinically unresponsive
patient did not directly affect the care plan.

If this neurophysiological finding had suggested a different
prognostic scenario for this patient, it would not have been not
correlated with outcome at 1 year, as the patient was still in the
UWS. We cannot determine whether changes in medication or
other treatment might have led to a different outcome, which is
an interesting question for further study.

However, UWS12, who could communicate on the second
run, started showing signs of consciousness 15 days after the
BCI session, suggestive of MCS minus (i.e., visual fixation).
Therefore, our data not only highlight the importance of repeated
assessments to increase our understanding about the patient’s
profile and abilities; the data also show the importance of more
research on the prognostic value of such tools in the clinical
setting.

Table 3 summarizes results for UWS patients from the current
study and from a previously published study on LIS/CLIS and

healthy subjects (Guger et al., 2017b). Healthy subjects attained
VT2 accuracies of 94% and VT3 accuracies of 88% (both in
assessment mode) and a VT3 communication accuracy of 80%.
With LIS and CLIS patients, we showed that 9 out of 12 are
able to establish communication with VT3. Two of 12 UWS
patients were able to communicate and the mean VT3 accuracy
was 43.9%. LIS patients had a higher VT2 and VT3 accuracy
when they communicated, but lower accuracies than healthy
subjects. The CLIS patients that communicated attained VT3
accuracy higher than UWS patients. Among patients that could
not communicate, VT2 and VT3 results were worst for UWS
patients.

With healthy subjects and LIS/CLIS patients, the VT3
assessment paradigm appeared to be more difficult to perform
than the VT2 assessment paradigm. Therefore, we suggest
starting with VT2 to familiarize the patient with the easier
approach, and then moving to VT3 within the limited time
available.

Limitations
This study would have benefited from additional patients. The
study presents 12 patients with UWS resulting from different
etiologies. The results showed that, regardless of the cause of
the DOC, a considerable proportion of clinically unresponsive
patients might show neurophysiological signs of command
following. Due to the limited number of patients with each
etiology, we cannot currently make strong claims about the
relationship between etiology and command following. Further
studies will explore this issue with more patients with different
etiologies.

Similarly, we were only able to collect a limited amount
of data from each patient. Communication was only tested if
the accuracy was >70%, and communication was only tested
in 1 or 2 sessions. In a previous study, the same VT2 and
VT3 paradigms were used with 12 LIS/CLIS patients, and 9
of them could establish communication above an assessment
accuracy threshold of 60% (Guger et al., 2017b). In addition,
several patients were only assessed once. Hence, future work
will assess the prospect of testing communication with lower
assessment accuracies and collect data from more sessions.
Training effects are also difficult to assess because UWS patients

TABLE 3 | VT2 and VT3 assessment accuracies, and VT3 communication accuracies, from healthy subjects and different patient groups (UWS, LIS, CLIS) from this study

and a previous study (Guger et al., 2017a).

Patient group # Subjects VT2 Assess [%] VT3 Assess [%] VT3 Comm. [%]

Healthy 3 94 88 80

UWS 12 38.8 26.3

UWS that communicated 2 69.0 43.9 75

UWS that did not communicate 10 23.0 15.7 -

LIS/CLIS 12 76.6 63.1 -

LIS that communicated 9 85.4 81.8 80

CLIS that communicated 2 60 85 80

LIS that did not communicate 3 56.7 24 -

CLIS that did not communicate 1 40 30 -
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show fluctuations of awareness, and it is difficult to maintain a
training schedule or study many sessions.

In UWS1, the first session was not promising, but sessions
2 and 4 showed that communication can be established.
Furthermore, the communication testing could be improved
by instructing the patient to say YES or NO to confirm
that the patient understood the task correctly. In addition,
more work should focus on defining the best threshold for
assessing significance in such BCI systems. The CRS-R was
done about 30min before the VT2/VT3 testing and it lasts
about 20min, which might cause fatigue. Additional behavioral
assessments in a shorter time-window, together with outcome
data, may provide additional data to corroborate results from
EEG assessments.

Another possible limitation is the lack of adequate
somatosensory function. We did not test each patient’s
somatosensory capability, and thus cannot rule out the
possibility that one or more patients would have exhibited better
results with an auditory-based or motor imagery paradigm. The
overall system used in this study can work with auditory evoked
potentials and auditory-based motor imagery paradigms, but
these were not tested here due to the very limited time available
with each patient.

SUMMARY

Vibro-tactile P300 assessment using BCI technology provides
a useful way to quickly test command following and establish
YES/NO communication with some DOC patients. The
paradigm provides a quick assessment that can be easily used
to monitor fluctuations and to find the optimal times to
communicate with these patients.
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Objective: Brain-machine interfaces (BMIs) are useful for inducing plastic changes in

cortical representation. A BMI first decodes hand movements using cortical signals

and then converts the decoded information into movements of a robotic hand. By

using the BMI robotic hand, the cortical representation decoded by the BMI is

modulated to improve decoding accuracy. We developed a BMI based on real-time

magnetoencephalography (MEG) signals to control a robotic hand using decoded hand

movements. Subjects were trained to use the BMI robotic hand freely for 10min to

evaluate plastic changes in the cortical representation due to the training.

Method: We trained nine young healthy subjects with normal motor function. In

open-loop conditions, they were instructed to grasp or open their right hands duringMEG

recording. Time-averaged MEG signals were then used to train a real decoder to control

the robotic arm in real time. Then, subjects were instructed to control the BMI-controlled

robotic hand bymoving their right hands for 10min while watching the robot’s movement.

During this closed-loop session, subjects tried to improve their ability to control the robot.

Finally, subjects performed the same offline task to compare cortical activities related to

the hand movements. As a control, we used a random decoder trained by the MEG

signals with shuffled movement labels. We performed the same experiments with the

random decoder as a crossover trial. To evaluate the cortical representation, cortical

currents were estimated using a source localization technique. Hand movements were

also decoded by a support vector machine using the MEG signals during the offline task.

The classification accuracy of the movements was compared among offline tasks.

Results: During the BMI training with the real decoder, the subjects succeeded in

improving their accuracy in controlling the BMI robotic hand with correct rates of 0.28

± 0.13 to 0.50 ± 0.11 (p = 0.017, n = 8, paired Student’s t-test). Moreover, the

classification accuracy of hand movements during the offline task was significantly

increased after BMI training with the real decoder from 62.7 ± 6.5 to 70.0 ± 11.1%
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(p = 0.022, n = 8, t(7) = 2.93, paired Student’s t-test), whereas accuracy did not

significantly change after BMI training with the random decoder from 63.0 ± 8.8 to 66.4

± 9.0% (p = 0.225, n = 8, t(7) = 1.33).

Conclusion: BMI training is a useful tool to train the cortical activity necessary for BMI

control and to induce some plastic changes in the activity.

Keywords: brain-machine interface, robotic hand, magnetoencephalography, cortical plasticity, neurofeedback,

closed-loop training, online decoding

INTRODUCTION

Brain–machine interfaces (BMIs) can reconstructmotor function
in paralyzed subjects (Hochberg et al., 2006, 2012; Yanagisawa
et al., 2012a; Collinger et al., 2013; Bouton et al., 2016) as well as
induce functional alterations in cortical activity (Ganguly et al.,
2011; Wander et al., 2013; Orsborn et al., 2014; Yanagisawa
et al., 2016). A BMI works by first recording neural activity
and then converting the recorded activity into control of some
machine, such as a robotic hand or computer (Yanagisawa et al.,
2009, 2011, 2012a,b; Nakanishi et al., 2013, 2014; Fukuma et al.,
2015, 2016). Recent studies demonstrated that neurofeedback
training using BMI induces plastic changes in neural activities in
accordance with some functional alterations in the neural system.
The neurofeedback of decoded information using functional
magnetic resonance imaging (fMRI) demonstrated that the
training induced alteration of cortical activities in accordance
with alterations in cognition (Shibata et al., 2011, 2016; Amano
et al., 2016; Ordikhani-Seyedlar et al., 2016). In addition, using
a certain power spectrum of electroencephalographic signals,
motor rehabilitation was improved in stroke patients (Shindo
et al., 2011; Ramos-Murguialday et al., 2013). Moreover, we
recently reported that BMI training to control a robotic hand
induced plastic changes in the motor cortical representation
of phantom limb pain patients and changed their pain in
accordance with the plastic changes (Yanagisawa et al., 2016).

Such plastic changes are attributed to reinforcement learning
with the BMI feedback (Watanabe et al., 2017). The closed-loop
system with decoded information enables subjects to modulate
the decoded information based on the feedback as a reward.
Therefore, we expect that training to use a BMI based on the
decoding information would improve the decoding accuracy
better than training to use a BMI that is not based on the decoding
information.

In this study, we demonstrate that BMIs based on
magnetoencephalography (MEG) signals precisely decode
hand movements in real time (Bradberry et al., 2009; Toda et al.,
2011; Fukuma et al., 2015) and training to use the BMIs induces
plastic changes in cortical activity of healthy subjects (Nishimura
et al., 2013; Clancy et al., 2014; Luu et al., 2017), especially in the
accuracy to decode hand movements.

SUBJECTS AND METHODS

Subjects
Nine young right-handed volunteers with normal neurological
function (2 males and 7 females; mean age, 24.1 years; range,

21–30 years) participated in this study. The study adhered to
the Declaration of Helsinki and was performed in accordance
with protocols approved by the Ethics Committee of Osaka
University Clinical Trial Center (no. 12107, UMIN000010180).
All participants were informed of the purpose and possible
consequences of this study, and written informed consent was
obtained. We recruited subjects aged 20 years and older with
normal neurological functioning. Inclusion criteria did not
consider gender, race or any special experience.

MEG Recording
For the MEG recording, subjects were in the supine position
with the head centered in the gantry. A projection screen
in front of the face provided stimuli using a visual stimulus
presentation system (Presentation; Neurobehavioral Systems,
Albany, CA, USA) and a liquid crystal projector (LVP-HC6800;
Mitsubishi Electric, Tokyo, Japan) (Figure 1). MEG signals were
measured by a 160-channel whole-head MEG equipped with
coaxial-type gradiometers (MEGvision NEO; Yokogawa Electric
Corporation, Kanazawa, Japan) housed in amagnetically shielded
room.

The MEG signals were sampled at 1,000Hz with an online
low-pass filter at 200Hz and acquired online by FPGA DAQ
boards (PXI-7854R; National Instruments, Austin, TX, USA)
after passing through an optical isolation circuit. For the online
control of the robotic hand, signals from 84 selected sensors
(Figure 1) were used, except for one experiment in which 81
sensors were used for technical reasons. The same 84 sensors
were used for offline analysis. Subjects were instructed to not
move the head to avoid motion artifacts. A cushion was placed
under the elbows to reduce motion artifacts.

Five head marker coils were attached to the subject’s face
before beginning the MEG recording, to provide the position
and orientation of MEG sensors relative to the head (Figure 1).
The positions of the five marker coils were measured to evaluate
differences in the head position before and after each MEG
recording. The maximum acceptable difference was 5mm.

We also recorded electromyograms of the face and forearm to
monitor muscle activities. Subjects were monitored by two video
cameras to confirm their arousal.

Experimental Design
A crossover trial consisting of two experiments was performed
with a washout period of more than 2 weeks. Each experiment
consisted of three tasks, an offline task (pre-BMI), BMI training,
and an offline task (post-BMI). For each training task, the
participant controlled the robotic hand using two different
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FIGURE 1 | System overview for training to use a robotic hand. MEG signals

from 84 parietal sensors (shown with red dots) were acquired in real-time to

decode performed movement. The robotic hand was controlled according to

the results of the decoder. The participant received visual feedback of the

robotic hand presented on the screen. Blue dots on the participant’s face

denote head marker coils used to determine position and orientation of MEG

sensors relative to the head. Three marker coils (at the center of the forehead,

above the left eyebrow, and on the left preauricular area) are shown.

decoders: a real decoder and a sham decoder. To balance which
decoder type was selected first, the order for the real and sham
decoders was randomized. Subjects were not informed about
the order. Seven subjects participated in both experiments, one
subject only participated in the experiment with the real decoder,
and another only participated in the experiment with the sham
decoder.

First, in the pre-BMI offline task, the subjects attempted to
move their right hands (grasping and opening) at the presented
times (Yanagisawa et al., 2012a) while MEG signals of the selected
sensors were recorded (Figure 1). The subjects were visually
instructed which movement to perform with the Japanese word
for “grasp” or “open.” After the instruction for movement type,
four execution cues were given to the subject every 5.5 s. The
execution cue was given both visually and aurally, and was
presented 40 times for each movement type. The order of the
requested movement type was randomized. We instructed the
subjects to slightly move the hand once at the cued time, without
moving other body parts.

The MEG signals from the selected sensors were recorded
during the task (Figure 1) and then time-averaged using windows
of 500ms from −2,000 to 1,000ms at 100-ms intervals, with
respect to the time of the execution cues. The averaged signals
were converted into z-scores using the mean and standard
deviations estimated from the initial 50 s of the offline task. The
acquired z-scores were used to construct the decoder to control
the robotic hand (Fukuma et al., 2015).

During the BMI training task, the subjects were instructed to
control the prosthetic hand in real time using the trained decoder.
The screen fixed in front of the subject showed a picture of the
robotic hand in real time as visual feedback (Figure 1). Subjects
were instructed to control the robotic hand freely for 10min
to improve their ability to control it by moving their hands
(see Supplementary Video 1). Just before starting the training,
the experimenter changed the threshold for detecting movement
onset, because the threshold estimated from the offline task
was sometimes too low, resulting in the detection of movement
onsets even during the resting state in the online task. The other
parameters estimated from the offline task were not changed
(Fukuma et al., 2016). The selected parameters were fixed for
the 10min of training. The post-BMI offline task was performed
in the same way as the pre-BMI task, after the BMI training
task.

The BMI training to control the robotic hand was performed
as a randomized crossover trial consisting of two training sessions
on different days. Each training session was performed with two
different decoders to control the robotic hand: a real decoder and
a sham decoder. Using the z-scored MEG sensor signals of the
offline tasks to move the right hand, we constructed a decoder to
infer handmovements at an arbitrary time, in order to control the
robotic hand in real time (Fukuma et al., 2015). Each experiment
was performed after more than 2 weeks had passed since the
previous experiment. For the experiments with the real decoder
and sham decoder, the order of the experiments was randomly
assigned to the subjects. The experimenter was not blinded to the
group allocation.

At the time of enrollment in this trial, we instructed the
subjects to use their brain activity to control the robotic hand,
but they were not informed of the decoder they used.

Decoder to Control the Prosthetic Hand
MATLAB R2013a (Mathworks, Natick, MA, USA) was used to
calculate the decoding parameters and for online robotic hand
control. First, MEG signals from the 84 selected sensors during
the offline task were averaged in a 500-ms time window and
converted to the z-score using the mean and standard deviations
estimated from the initial 50 s of data during the offline task.
The time-averaged MEG signals were calculated for the period
from −2,000 to 1,000ms at 100-ms intervals according to the
execution cue.

The z-scored signals from the offline task were used to train
the online decoder, which consisted of an onset detector and
class decoder, to control the robotic hand online in the following
BMI training task. The class decoder was trained at the peak
classification accuracy of the offline task by the support vector
machine (SVM). The onset detector was trained using the z-
scored signals to differentiate time period of the hand movement
from period of resting by SVM and Gaussian process regression
(GPR). The details of the construction of the decoder are available
in our previous reports (Fukuma et al., 2015; Yanagisawa et al.,
2016).

Here, we constructed two types of online decoders depending
on the data used to train the decoder. The real decoder was
trained by the MEG signals of the offline task to move the
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hand. The sham decoder was trained by the MEG signals of the
same offline task with randomized types of movements (grasp or
open).

Evaluation of Online BMI Control
The movements of subject’s hand and robotic hand were
evaluated from the video recording. We counted the subject’s
hand movements. Then, we evaluated the robotic hand
movements within 1 s after each movement of the subject’s
hand. If the robotic hand moved into the same posture (grasp
or open) as the subject’s hand, we counted the movement as
correctly controlled movement. The correct rate of BMI control
was evaluated by the number of correctly controlled movements
divided by the total number of handmovements. The correct rate
was counted for 1min at the beginning and at the end of the
10-min training.

Cortical Current Estimation by VBMEG
A polygonal model of the cortical surface was constructed
based on structural MRI (T1-weighted; Signa HDxt Excite
3.0T; GE Healthcare UK Ltd., Buckinghamshire, UK) using the
Freesurfer software (Martinos Center Software) (Dale et al.,
1999). To align MEG data with individual MRI data, we
scanned the three-dimensional facial surface and 50 points
on the scalp of each participant (FastSCAN Cobra; Polhemus,
Colchester, VT, USA). Three-dimensional facial surface data
were superimposed on the anatomical facial surface provided
by the MRI data. The positions of five marker coils before
each recording were used to estimate cortical current with
variational Bayesian multimodal encephalography (VBMEG)
(Sato et al., 2004). VBMEG is free software for estimating
cortical currents from MEG data (ATR Neural Information
Analysis Laboratories, Kyoto, Japan; Cohen et al., 1991; Yoshioka
et al., 2008). VBMEG estimated 4004 single current dipoles
that were equidistantly distributed on and perpendicular to the
cortical surface. An inverse filter was calculated to estimate
the cortical current of each dipole from the selected 84 MEG
sensor signals. The hyperparameters m0 and γ0 were set to
100 and 10, respectively. The inverse filter was estimated by
using MEG signals in all trials from 0 to 1000ms in the
offline task, with the baseline of the current variance estimated
from the signals from −1,500 to −500ms. The filter was then
applied to sensor signals in each trial to calculate cortical
currents.

Evaluation of Cortical Representation
We evaluated the cortical representation during the offline task
using cortical current source estimation. First, VBMEG was
used to estimate the cortical currents from the obtained MEG
signals. Next, the estimated cortical currents were averaged using
a 500-ms window starting from the execution cue and compared
between two types of movements with a one-way analysis of
variance (ANOVA) for each vertex. The F-value of the ANOVA
was averaged for all subjects and color-coded on the normalized
brain surface.

Evaluation of Classification Accuracy of
Movement Types in the Offline Task
A nested cross-validation (Quian Quiroga and Panzeri, 2009)
was performed with a linear support vector machine using the
z-scores of the MEG signals from selected sensors (Fukuma
et al., 2015) to evaluate the accuracy of classifying the performed
movement types. The z-scores from 11 time windows (ranging
from −500 to 500ms at 100-ms intervals, with respect to
the timing of the instruction to move) were concatenated
to form a decoding feature. To calculate the classification
accuracy, 10-fold cross-validation was applied. For each fold, the
testing data set was classified with a decoder that was trained
completely independently from the testing data set. To optimize
hyperparameters of the decoder independently from the testing
data set, another 10-fold cross-validation was applied to the
training data set so that hyperparameters that achieved the
highest classification accuracy within the training data set were
selected. Finally, classification accuracies during the two offline
tasks before and after the BMI training session were compared
using a paired Student’s t-test. Significance threshold for this t-
test was set to 0.025, because this study employs two t-tests: one
for training with a real decoder and another with a sham decoder
(Bonferroni correction).

RESULTS

BMI Training With a Robotic Hand
During the 10-min BMI training, the accuracy in controlling the
robotic hand was improved. The handmovements at an arbitrary
timing were successfully detected and classified, with a correct
rate of 0.28 ± 0.13 during the first 1min of the BMI training
with the real decoder. The correct rate increased significantly to
0.50 ± 0.11 for the final 1min of the BMI training (p = 0.017,
n = 8, paired Student’s t-test). On the other hand, the correct
rates during the BMI training with the random decoder were not
significantly changed among the first 1min and the last 1min
(0.51 ± 0.13 to 0.52 ± 0.10, p = 0.92, n = 8, paired Student’s
t-test). Notably, the increase of the correct rate during the BMI
training with the real decoder was significantly larger than that
during the BMI training with the random decoder (Figure 2).
Also, it should be noted that correct rates during the first 1min
of the BMI training were not significantly different between the
BMI trainings with the real decoder and the random decoder
(p= 0.11, n= 7, paired Student’s t-test).

BMI Training Changed the Cortical
Representation of Hand Movements
After BMI training with the real decoder, the F-values increased
in the contralateral sensorimotor cortex (Figure 3A), although
the difference of the F-values (Figure 3B) between pre-BMI and
post-BMI offline tasks was not statistically significant (p > 0.05,
paired t-test, FDR corrected). After training with the random
decoder, the F-value of the contralateral sensorimotor cortex did
not increase (Figures 3A,B), although the subject was instructed
in the same way as during the experiment with real decoder.
These findings suggest that the BMI training with the real
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decoder increased the discriminability of the cortical activity
representing the hand movements.

BMI Training Altered Classification
Accuracy of Hand Movements
We compared the accuracies for classifying the hand movements
using the z-scored MEG signals at the selected sensors. Figure 4

FIGURE 2 | Improved accuracy of controlling the robotic hand during online

BMI training. The correct rate for robotic hand control was calculated for the

first 1min of the training and the last 1min of the 10-min training. Each bar

shows the averaged improvement of the correct rate for the training with real

and sham decoder. Error bars are 95% confidence intervals of the improved

correct rate. *p < 0.05 significant difference between two different decoders

(unpaired Student’s t-test).

shows the classification accuracies of hand movements in
the offline task before and after training task. The accuracy
significantly increased after BMI training with the real decoder
from 62.7 ± 6.5 to 70.0 ± 11.1% (p = 0.022, n = 8, t(7) = 2.93,
paired Student’s t-test). In contrast, the BMI training with the
random decoder did not increase the accuracy from 63.0 ± 8.8
to 66.4 ± 9.0% (p = 0.225, n = 8, t(7) = 1.33). The BMI training
with the real decoder significantly improved the cortical activity
to decode the hand movements.

DISCUSSION

Our findings demonstrated that MEG-based BMI training to
control a robotic hand significantly improved the accuracy
to control the robotic hand and induced significant changes
of the cortical representation of hand movements in terms
of classification accuracy. These results suggest that the BMI
training will be useful for two important applications.

First, the non-invasive BMI training will be beneficial
in training patients before applying invasive BMI. Previous
studies demonstrated that the ability to control the BMI varies
among patients (Yanagisawa et al., 2012a; Fukuma et al., 2016;
Pandarinath et al., 2017). Before applying an invasive BMI for
paralyzed patients, we need to evaluate their ability to control
the BMI and to train them when the ability is poor. Our BMI
training succeeded in improving the accuracy of controlling the
BMI with improved cortical activities, which are also used for
invasive BMI. Therefore, the proposed MEG-based BMI training
will be beneficial for preoperative evaluation of the invasive BMI.

FIGURE 3 | Difference in cortical activation evoked by two types of movements during the offline task. (A) The averaged F-values of one-way ANOVA between

500-ms time-averaged cortical currents estimated during hand grasping or opening were color-coded and plotted on the normalized brain surface. (B) The differences

of F-values shown in plot (A) were color-coded on the normalized brain surface.
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FIGURE 4 | Classification accuracy of hand movements before and after

training. Each bar shows the averaged classification accuracy of hand

movements during the offline task. Error bars are 95% confidence intervals of

classification accuracy. Dotted line denotes chance level. *p < 0.05 significant

difference between offline tasks before and after 10-min BMI training with

feedback (paired Student’s t-test with Bonferroni correction).

Second, the BMI training will be useful for inducing plastic
changes in the cortical representation. Even for these subjects
with normal motor function, the BMI training succeeded in
improving the classification accuracy of the hand movements
using the MEG signals. Our findings suggest that the BMI
training did not induce the changes by normalizing the cortical
activity but by modulating the activity depending on the decoder.
The BMI training could be applied in clinical therapy to
change maladapted cortical representation (Kuner and Flor,
2016).

Recent studies have revealed that BMI training in a
closed-loop condition improves BMI performance. It has been
demonstrated that closed-loop training improves the control of a
neuroprosthetic device using multi-unit activities in accordance
with some network plasticity and reorganization (Orsborn et al.,
2014; Balasubramanian et al., 2017). Similarly, the performance
of non-invasive BMI can be predicted by cortical activities and
improved by closed-loop neurofeedback training (Hwang et al.,
2009; Blankertz et al., 2010; Sugata et al., 2016; Wan et al., 2016).
On the other hand, performance improvement depends on the
properties of the cortical activities used by the BMI (Sadtler et al.,
2014). Further studies are necessary to optimize the improvement
of BMI performance for some clinical uses.

It should be noted that BMI training was effective to induce
significant differences even with a limited number of subjects.
Although the correct rate of robotic control varied among
subjects, our BMI training induced a consistent effect on the
correct rates. Indeed, our results successfully demonstrated
that BMI training significantly improved classification accuracy
during the offline task and the correct rates during the
online BMI training even among a limited number of
subjects.

In summary, neurofeedback training using MEG-based BMI
provides a novel method to directly change the information
content of motor representations by induced plasticity in the
sensorimotor cortex.

DATA AVAILABILITY

The data that support the findings of this study are available on
request from the corresponding author.

AUTHOR CONTRIBUTIONS

RF and TaY performed the research, wrote the manuscript, and
prepared all the figures. TaY designed the study. HY, MH, ToY,
YS, YK, and HK reviewed the manuscript.

FUNDING

This research was conducted under SRPBS by MEXT and
AMED. This research was also supported in part by JST
PRESTO; Grants-in-Aid for Scientific Research KAKENHI
(JP24700419, JP26560467, JP22700435, JP17H06032 and
JP15H05710); Brain/MINDS and SICP from AMED; ImPACT;
Ministry of Health, Labor, and Welfare (18261201); the Japan
Foundation of Aging and Health; the CANON Foundation; and
the TERUMO Foundation for Life Sciences and Arts.

ACKNOWLEDGMENTS

We thank Ms. Yuki Kataoka and Ms. Miho Aoki of the Division
of Functional Diagnostic Science, Osaka University Medical
School for helping the MEG recordings in this study.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2018.00478/full#supplementary-material

REFERENCES

Amano, K., Shibata, K., Kawato, M., Sasaki, Y., and Watanabe, T. (2016). Learning

to associate orientation with color in early visual areas by associative decoded

fMRI neurofeedback. Curr. Biol. 26, 1861–1866. doi: 10.1016/j.cub.2016.05.014

Balasubramanian, K., Vaidya, M., Southerland, J., Badreldin, I., Eleryan, A.,

Takahashi, K., et al. (2017). Changes in cortical network connectivity with

long-term brain-machine interface exposure after chronic amputation. Nat.

Commun. 8:1796. doi: 10.1038/s41467-017-01909-2

Blankertz, B., Sannelli, C., Halder, S., Hammer, E. M., Kubler, A., Muller, K. R.,

et al. (2010). Neurophysiological predictor of SMR-based BCI performance.

Neuroimage 51, 1303–1309. doi: 10.1016/j.neuroimage.2010.03.022

Bouton, C. E., Shaikhouni, A., Annetta, N. V., Bockbrader, M. A., Friedenberg,

D. A., Nielson, D. M., et al. (2016). Restoring cortical control of

functional movement in a human with quadriplegia. Nature 533, 247–250.

doi: 10.1038/nature17435

Bradberry, T. J., Rong, F., and Contreras-Vidal, J. L. (2009). Decoding

center-out hand velocity from MEG signals during visuomotor

Frontiers in Neuroscience | www.frontiersin.org 6 July 2018 | Volume 12 | Article 478107

https://www.frontiersin.org/articles/10.3389/fnins.2018.00478/full#supplementary-material
https://doi.org/10.1016/j.cub.2016.05.014
https://doi.org/10.1038/s41467-017-01909-2
https://doi.org/10.1016/j.neuroimage.2010.03.022
https://doi.org/10.1038/nature17435
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Fukuma et al. BMI Training Improves Movement Decoding

adaptation. Neuroimage 47, 1691–1700. doi: 10.1016/j.neuroimage.

2009.06.023

Clancy, K. B., Koralek, A. C., Costa, R. M., Feldman, D. E., and Carmena, J.

M. (2014). Volitional modulation of optically recorded calcium signals during

neuroprosthetic learning. Nat. Neurosci. 17, 807–809. doi: 10.1038/nn.3712

Cohen, L. G., Bandinelli, S., Findley, T. W., and Hallett, M. (1991). Motor

reorganization after upper limb amputation inman. a study with focal magnetic

stimulation. Brain 114, 615–627. doi: 10.1093/brain/114.1.615

Collinger, J. L., Wodlinger, B., Downey, J. E., Wang, W., Tyler-Kabara,

E. C., Weber, D. J., et al. (2013). High-performance neuroprosthetic

control by an individual with tetraplegia. Lancet 381, 557–564.

doi: 10.1016/S0140-6736(12)61816-9

Dale, A. M., Fischl, B., and Sereno, M. I. (1999). Cortical surface-based

analysis. I. Segmentation and surface reconstruction. NeuroImage 9, 179–194.

doi: 10.1006/nimg.1998.0395

Fukuma, R., Yanagisawa, T., Saitoh, Y., Hosomi, K., Kishima, H., Shimizu,

T., et al. (2016). Real-Time control of a neuroprosthetic hand by

magnetoencephalographic signals from paralysed patients. Sci. Rep. 6:21781.

doi: 10.1038/srep21781

Fukuma, R., Yanagisawa, T., Yorifuji, S., Kato, R., Yokoi, H., Hirata,

M., et al. (2015). Closed-Loop control of a neuroprosthetic hand

by magnetoencephalographic signals. PLoS ONE 10:e0131547.

doi: 10.1371/journal.pone.0131547

Ganguly, K., Dimitrov, D. F., Wallis, J. D., and Carmena, J. M. (2011). Reversible

large-scale modification of cortical networks during neuroprosthetic control.

Nat. Neurosci. 14, 662–667. doi: 10.1038/nn.2797

Hochberg, L. R., Bacher, D., Jarosiewicz, B., Masse, N. Y., Simeral, J. D., Vogel,

J., et al. (2012). Reach and grasp by people with tetraplegia using a neurally

controlled robotic arm. Nature 485, 372–375. doi: 10.1038/nature11076

Hochberg, L. R., Serruya, M. D., Friehs, G. M., Mukand, J. A., Saleh, M., Caplan, A.

H., et al. (2006). Neuronal ensemble control of prosthetic devices by a human

with tetraplegia. Nature 442, 164–171. doi: 10.1038/nature04970

Hwang, H. J., Kwon, K., and Im, C. H. (2009). Neurofeedback-based motor

imagery training for brain-computer interface (BCI). J. Neurosci. Methods 179,

150–156. doi: 10.1016/j.jneumeth.2009.01.015

Kuner, R., and Flor, H. (2016). Structural plasticity and reorganisation in chronic

pain. Nat. Rev. Neurosci. 18, 20–30. doi: 10.1038/nrn.2016.162

Luu, T. P., Nakagome, S., He, Y., and Contreras-Vidal, J. L. (2017). Real-

time EEG-based brain-computer interface to a virtual avatar enhances

cortical involvement in human treadmill walking. Sci. Rep. 7:8895.

doi: 10.1038/s41598-017-09187-0

Nakanishi, Y., Yanagisawa, T., Shin, D., Chen, C., Kambara, H., Yoshimura, N.,

et al. (2014). Decoding fingertip trajectory from electrocorticographic signals

in humans. Neurosci. Res. 85, 20–27. doi: 10.1016/j.neures.2014.05.005

Nakanishi, Y., Yanagisawa, T., Shin, D., Fukuma, R., Chen, C., Kambara, H.,

et al. (2013). Prediction of three-dimensional arm trajectories based on ECoG

signals recorded from human sensorimotor cortex. PLoS ONE 8:e72085.

doi: 10.1371/journal.pone.0072085

Nishimura, Y., Perlmutter, S. I., Eaton, R. W., and Fetz, E. E. (2013). Spike-timing-

dependent plasticity in primate corticospinal connections induced during free

behavior. Neuron 80, 1301–1309. doi: 10.1016/j.neuron.2013.08.028

Ordikhani-Seyedlar, M., Lebedev, M. A., Sorensen, H. B., and Puthusserypady, S.

(2016). Neurofeedback therapy for enhancing visual attention: state-of-the-art

and challenges. Front. Neurosci. 10:352. doi: 10.3389/fnins.2016.00352

Orsborn, A. L., Moorman, H. G., Overduin, S. A., Shanechi, M. M., Dimitrov,

D. F., and Carmena, J. M. (2014). Closed-loop decoder adaptation shapes

neural plasticity for skillful neuroprosthetic control. Neuron 82, 1380–1393.

doi: 10.1016/j.neuron.2014.04.048

Pandarinath, C., Nuyujukian, P., Blabe, C. H., Sorice, B. L., Saab, J., Willett,

F. R., et al. (2017). High performance communication by people with

paralysis using an intracortical brain-computer interface. Elife 6:e18554.

doi: 10.7554/eLife.18554

Quian Quiroga, R., and Panzeri, S. (2009). Extracting information from neuronal

populations: information theory and decoding approaches. Nat. Rev. Neurosci.

10, 173–185. doi: 10.1038/nrn2578

Ramos-Murguialday, A., Broetz, D., Rea, M., Laer, L., Yilmaz, O., Brasil, F. L., et al.

(2013). Brain-machine-interface in chronic stroke rehabilitation: a controlled

study. Ann. Neurol. 74, 100–108. doi: 10.1002/ana.23879

Sadtler, P. T., Quick, K. M., Golub, M. D., Chase, S. M., Ryu, S.I., Tyler-Kabara,

E. C., et al. (2014). Neural constraints on learning. Nature 512, 423–426.

doi: 10.1038/nature13665

Sato, M. A., Yoshioka, T., Kajihara, S., Toyama, K., Goda, N., Doya, K., et al. (2004).

Hierarchical Bayesian estimation for MEG inverse problem. Neuroimage 23,

806–826. doi: 10.1016/j.neuroimage.2004.06.037

Shibata, K.,Watanabe, T., Kawato,M., and Sasaki, Y. (2016). Differential activation

patterns in the same brain region led to opposite emotional states. PLoS Biol.

14:e1002546. doi: 10.1371/journal.pbio.1002546

Shibata, K., Watanabe, T., Sasaki, Y., and Kawato, M. (2011). Perceptual learning

incepted by decoded fMRI neurofeedback without stimulus presentation.

Science 334, 1413–1415. doi: 10.1126/science.1212003

Shindo, K., Kawashima, K., Ushiba, J., Ota, N., Ito, M., Ota, T., et al.

(2011). Effects of neurofeedback training with an electroencephalogram-

based brain-computer interface for hand paralysis in patients with chronic

stroke: a preliminary case series study. J. Rehabil. Med. 43, 951–957.

doi: 10.2340/16501977-0859

Sugata, H., Hirata, M., Yanagisawa, T., Matsushita, K., Yorifuji, S., and Yoshimine,

T. (2016). Common neural correlates of real and imagined movements

contributing to the performance of brain-machine interfaces. Sci. Rep. 6:24663.

doi: 10.1038/srep24663

Toda, A., Imamizu, H., Kawato, M., and Sato, M. A. (2011). Reconstruction of two-

dimensional movement trajectories from selected magnetoencephalography

cortical currents by combined sparse bayesian methods. Neuroimage 54,

892–905. doi: 10.1016/j.neuroimage.2010.09.057

Wan, F., da Cruz, J. N., Nan, W., Wong, C. M., Vai, M. I., and Rosa, A. (2016).

Alpha neurofeedback training improves SSVEP-based BCI performance. J.

Neural Eng. 13:036019. doi: 10.1088/1741-2560/13/3/036019

Wander, J. D., Blakely, T., Miller, K. J., Weaver, K. E., Johnson, L. A., Olson, J.

D., et al. (2013). Distributed cortical adaptation during learning of a brain-

computer interface task. Proc. Natl. Acad. Sci. U.S.A. 110, 10818–10823.

doi: 10.1073/pnas.1221127110

Watanabe, T., Sasaki, Y., Shibata, K., and Kawato, M. (2017). Advances in

fMRI real-time neurofeedback. Trends Cogn. Sci. (Regul. Ed). 21, 997–1010.

doi: 10.1016/j.tics.2017.09.010

Yanagisawa, T., Fukuma, R., Seymour, B., Hosomi, K., Kishima, H., Shimizu, T.,

et al. (2016). Induced sensorimotor brain plasticity controls pain in phantom

limb patients. Nat. Commun. 7:13209. doi: 10.1038/ncomms13209

Yanagisawa, T., Hirata, M., Saitoh, Y., Goto, T., Kishima, H., Fukuma,

R., et al. (2011). Real-time control of a prosthetic hand using

human electrocorticography signals. J. Neurosurg. 114, 1715–1722.

doi: 10.3171/2011.1.JNS101421

Yanagisawa, T., Hirata, M., Saitoh, Y., Kato, A., Shibuya, D., Kamitani, Y.,

et al. (2009). Neural decoding using gyral and intrasulcal electrocorticograms.

Neuroimage 45, 1099–1106. doi: 10.1016/j.neuroimage.2008.12.069

Yanagisawa, T., Hirata, M., Saitoh, Y., Kishima, H., Matsushita, K., Goto, T., et al.

(2012a). Electrocorticographic control of a prosthetic arm in paralyzed patients.

Ann. Neurol. 71, 353–361. doi: 10.1002/ana.22613

Yanagisawa, T., Yamashita, O., Hirata, M., Kishima, H., Saitoh, Y., Goto, T.,

et al. (2012b). Regulation of motor representation by phase-amplitude

coupling in the sensorimotor cortex. J. Neurosci. 32, 15467–15475.

doi: 10.1523/JNEUROSCI.2929-12.2012

Yoshioka, T., Toyama, K., Kawato, M., Yamashita, O., Nishina, S., Yamagishi, N.,

et al. (2008). Evaluation of hierarchical Bayesian method through retinotopic

brain activities reconstruction from fMRI and MEG signals. Neuroimage 42,

1397–1413. doi: 10.1016/j.neuroimage.2008.06.013

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Fukuma, Yanagisawa, Yokoi, Hirata, Yoshimine, Saitoh, Kamitani

and Kishima. This is an open-access article distributed under the terms of

the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 7 July 2018 | Volume 12 | Article 478108

https://doi.org/10.1016/j.neuroimage.2009.06.023
https://doi.org/10.1038/nn.3712
https://doi.org/10.1093/brain/114.1.615
https://doi.org/10.1016/S0140-6736(12)61816-9
https://doi.org/10.1006/nimg.1998.0395
https://doi.org/10.1038/srep21781
https://doi.org/10.1371/journal.pone.0131547
https://doi.org/10.1038/nn.2797
https://doi.org/10.1038/nature11076
https://doi.org/10.1038/nature04970
https://doi.org/10.1016/j.jneumeth.2009.01.015
https://doi.org/10.1038/nrn.2016.162
https://doi.org/10.1038/s41598-017-09187-0
https://doi.org/10.1016/j.neures.2014.05.005
https://doi.org/10.1371/journal.pone.0072085
https://doi.org/10.1016/j.neuron.2013.08.028
https://doi.org/10.3389/fnins.2016.00352
https://doi.org/10.1016/j.neuron.2014.04.048
https://doi.org/10.7554/eLife.18554
https://doi.org/10.1038/nrn2578
https://doi.org/10.1002/ana.23879
https://doi.org/10.1038/nature13665
https://doi.org/10.1016/j.neuroimage.2004.06.037
https://doi.org/10.1371/journal.pbio.1002546
https://doi.org/10.1126/science.1212003
https://doi.org/10.2340/16501977-0859
https://doi.org/10.1038/srep24663
https://doi.org/10.1016/j.neuroimage.2010.09.057
https://doi.org/10.1088/1741-2560/13/3/036019
https://doi.org/10.1073/pnas.1221127110
https://doi.org/10.1016/j.tics.2017.09.010
https://doi.org/10.1038/ncomms13209
https://doi.org/10.3171/2011.1.JNS101421
https://doi.org/10.1016/j.neuroimage.2008.12.069
https://doi.org/10.1002/ana.22613
https://doi.org/10.1523/JNEUROSCI.2929-12.2012
https://doi.org/10.1016/j.neuroimage.2008.06.013
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-00455 July 9, 2018 Time: 15:26 # 1

ORIGINAL RESEARCH
published: 11 July 2018

doi: 10.3389/fnins.2018.00455

Edited by:
Christoph Guger,

Guger Technologies, Austria

Reviewed by:
Noman Naseer,

Air University, Pakistan
Jing Jin,

East China University of Science
and Technology, China

*Correspondence:
Natalie Mrachacz-Kersting

nm@hst.aau.dk

Specialty section:
This article was submitted to

Neural Technology,
a section of the journal

Frontiers in Neuroscience

Received: 13 April 2018
Accepted: 14 June 2018
Published: 11 July 2018

Citation:
Mrachacz-Kersting N and

Aliakbaryhosseinabadi S (2018)
Comparison of the Efficacy of a

Real-Time and Offline Associative
Brain-Computer-Interface.

Front. Neurosci. 12:455.
doi: 10.3389/fnins.2018.00455

Comparison of the Efficacy of a
Real-Time and Offline Associative
Brain-Computer-Interface
Natalie Mrachacz-Kersting* and Susan Aliakbaryhosseinabadi

Center for Sensory-Motor Interaction, Department of Health Science and Technology, Faculty of Medicine, Aalborg
University, Aalborg, Denmark

An associative brain-computer-interface (BCI) that correlates in time a peripherally
generated afferent volley with the peak negativity (PN) of the movement related cortical
potential (MRCP) induces plastic changes in the human motor cortex. However, in this
associative BCI the movement timed to a cue is not detected in real time. Thus, possible
changes in reaction time caused by factors such as attention shifts or fatigue will lead to
a decreased accuracy, less pairings, and likely reduced plasticity. The aim of the current
study was to compare the effectiveness of this associative BCI intervention on plasticity
induction when the MRCP PN time is pre-determined from a training data set (BCIoffline),
or detected online (BCIonline). Ten healthy participants completed both interventions in
randomized order. The average detection accuracy for the BCIonline intervention was
71 ± 3% with 2.8 ± 0.7 min−1 false detections. For the BCIonline intervention the PN
did not differ significantly between the training set and the actual intervention (t9 = 0.87,
p = 0.41). The peak-to-peak motor evoked potentials (MEPs) were quantified prior to,
immediately following, and 30 min after the cessation of each intervention. MEP results
revealed a significant main effect of time, F(2,18) = 4.46, p = 0.027. The mean TA MEP
amplitudes were significantly larger 30 min after (277 ± 72 µV) the BCI interventions
compared to pre-intervention MEPs (233 ± 64 µV) regardless of intervention type and
stimulation intensity (p = 0.029). These results provide further strong support for the
associative nature of the associative BCI but also suggest that they likely differ to the
associative long-term potentiation protocol they were modeled on in the exact sites of
plasticity.

Keywords: human, plasticity, brain-computer-interface, offline, online, Hebbian plasticity, tibialis anterior

INTRODUCTION

Since Daly et al. (2009) proposed the possibility of a Brain-Computer-Interface (BCI) designed
for neuromodulation of stroke patients, the field has rapidly expanded with numerous novel BCIs
being introduced and tested in the clinic (Ang et al., 2010; Broetz et al., 2010; Cincotti et al., 2012; Li
et al., 2013; Ramos-Murguialday et al., 2013; Mukaino et al., 2014; Young et al., 2014; Pichiorri et al.,
2015; Mrachacz-Kersting et al., 2016). To date the main focus has been on upper limb rehabilitation
with relatively few targeting lower limb function (for a review see, Teo and Chew, 2014; Cervera
et al., 2018). In addition, only one group has investigated patients in the sub-acute phases of stroke
(Mrachacz-Kersting et al., 2017b), presumably due to the relatively stable condition that a chronic
stroke patient presents. Effects from the use of a BCI are thus easier to control since patients in the
acute and subacute phase are prone to spontaneous biological recovery (Krakauer and Marshall,
2015).
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Typically, BCIs function by collecting the brain signals during
a specific state such as performing a movement or motor
imagery, extracting features of interest and then translating
these into commands for external device control (Daly and
Wolpaw, 2008). The available non-invasive BCIs for stroke
patients have implemented both electroencephalography (EEG)
or near-infrared spectroscopy (NIRS) to acquire the brain
signals, extracted various spectral and temporal features [e.g.,
sensorimotor rhythm, movement related cortical potentials
(MR)] and provided diverse types of afferent feedback to the
patient such as those generated from using robotic devices,
virtual reality or by driving direct nerve or muscular electrical
stimulation (for review see, Cervera et al., 2018).

A vital component of any BCI designed for rehabilitation of
lost motor function in stroke patients, is that the physiological
theories behind learning and memory must be satisfied. One
of the most influential theories was proposed in 1949 by Hebb
(2005) from which we know that “Cells that fire together, wire
together.” Although Hebb proposed his theory on theoretical
grounds, animal data later verified that if the pre-synaptic neuron
is activated simultaneously with the post-synaptic cell, plasticity
is induced, often referred to as long-term potentiation (for a
review see, Cooke and Bliss, 2006). In 2000, a group from Rostock
University were the first to demonstrate long-term potentiation
like plasticity in the intact human brain (Stefan, 2000) with later
applications to lower limb muscles (Mrachacz-Kersting et al.,
2007). In this intervention [paired associative stimulation (PAS)],
a peripheral nerve that innervates the target muscle is activated
using a single electrical stimulus and once the generated afferent
volley has arrived at the motor cortex, a single non-invasive
transcranial magnetic stimulus (TMS) is provided to that area of
the motor cortex that has a direct connection to the target muscle
(for a review see, Suppa et al., 2017).

In a modified version of PAS, the TMS stimulus has been
replaced by the movement related cortical potential (MRCP)
(Mrachacz-Kersting et al., 2012). The MRCP, that can be readily
measured using EEG, is a slow negative potential that arises
approximately 1–2 s prior to movement execution or imagination
and attains its peak negativity at the time of movement execution
(Walter et al., 1964). This intervention, also termed an associative
BCI, induces significant plasticity of the cortical projections to the
target muscle and leads to significant functional improvements in
chronic and subacute stroke patients (Mrachacz-Kersting et al.,
2016, 2017b). In the first phase, patients are asked to attempt
30–50 movements (dorsiflexion of the foot), timed to a visual
cue and they receive no sensory feedback. The time of the peak
negativity (PN) of the resulting MRCP for every trial is extracted
and an average calculated. During the second phase (the actual
associative BCI intervention), this time is used to trigger the
electrical stimulation of the target nerve such that the generated
afferent volley arrives at the motor cortex at precisely peak
negativity. Typically, 30–50 such pairings are performed over
3–12 sessions. Since the trigger of the electrical stimulator is not
based on the online detection of the MRCP during the second
phase, this intervention does not represent a BCI in the classical
sense. In the current study the aim was to compare the effects
of this associative BCI intervention on plasticity induction as

quantified by the motor evoked potential (MEP) following TMS
when the MRCP PN time is determined from the phase one trials
(BCIoffline modus) or detected during the second phase by using
the phase one trials as a training data set (BCIonline modus).

MATERIALS AND METHODS

Participants
Ten participants (four females and six males, average age:
22.3 ± 1.2 years) without any known physical or neurological
disorders all participants were classified as right side dominant
with a mean laterality quotient of 0.97 (range: 0.59–1) according
to the Edinburgh handedness inventory questionnaire (Oldfield,
1971). This study was carried out in accordance with the
recommendations of the Scientific Ethics Committee of Northern
Jutland guidelines. The protocol was approved by the Scientific
Ethics Committee of Northern Jutland (Reference number:
VN-20070015). All subjects gave written informed consent in
accordance with the Declaration of Helsinki.

Apparatus and Instrumentation
Surface Electromyography
The electromyographic (EMG) activity of the target muscle,
the tibialis anterior (TA) on the dominant side was quantified
using disposable surface electrodes (Neuroline 720, Ambu, Ambu
A/S, Denmark) that were placed according to the SENIAM
guidelines1. For quantification of plasticity induction using non-
invasive TMS, the EMG amplifier pod supplied by Rogue
Research Inc. as part of the BrainsightTM system (Rogue
Research, Inc.), was used to collect MEP data. During the BCI
intervention, a single channel EMG was recorded to control for
the participant’s movement using the g.USBamps (g.tec GmbH,
Austria) at a sampling frequency of 256 Hz.

Electroencephalography (EEG)
Monopolar EEG was obtained from 10 channels (FP1, Fz, FC1,
FC2, C3, Cz, C4, CP1, CP2, and Pz according to the standard
international 10–20 system) with the reference electrode on Fz
and ground on the left earlobe. Channel Cz was the central
channel based on the large Laplacian (McFarland et al., 1997).
Signals were acquired using an active EEG electrode system (g.
GAMMAcap2, Austria) and g.USBamp amplifier (gTec, GmbH,
Austria) at a sampling frequency of 1200 Hz (16 bits accuracy)
and a hardware filter of 0 to 100 Hz.

Electrical Stimulation (ES)
The deep branch of the common peroneal nerve (dCPN) was
stimulated using disposable surface electrodes (32 mm, PALS R©

Platinum, Patented Conductive Neurostimulation Electrodes,
Axelgaard Manufacturing, Co., Ltd., United States) with the
cathode proximal. A NoxiTest isolated peripheral stimulator
(IES 230) supplied single pulses (1 ms width, 20–30 mA)
every 3–5 s while a suitable stimulating position (where the
TA M-wave attained the highest peak to peak amplitude and

1seniam.org
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activity pf the synergistic peroneal muscles and the antagonist
soleus was minimal) was determined. Next, the motor threshold
was quantified as that stimulating intensity where an M-wave
became visible in the TA EMG. This intensity was used in the
subsequent BCI interventions (refer to see section “Associative
BCI Interventions”).

Transcranial Magnetic Stimulation (TMS)
To quantify the TA MEP, single TMS pulses with a posterior
to anterior directed current were applied using a Magstim 200
(Magstim Company, Dyfed, United Kingdom) and a focal figure
of eight coil (110 mm diameter).

Experimental Procedures
Participants attended two separated sessions spaced at least 48 h
apart. Each session was comprised of pre-measures where TA
MEP sizes were quantified, phase one and two of the associative
BCI intervention, and post and 30 min post-measures of TA
MEPs. During all parts, participants were seated in a comfortable
chair with both feet resting on foot plates.

Following EMG electrode placements, the optimal placement
of the TMS coil was determined using a stimulator output of 50%.
Three stimuli were initially provided over the vertex and the peak
to peak size of the TA MEP monitored online. This was repeated
for 3–5 positions around the vertex and the site that resulted in
the largest and most consistent TA MEPs deemed the hotspot. To
ensure that the stimulation was always applied over the same area
of the motor cortex the coil position was maintained by marking
this spot using BrainsightTM (Rogue Research, Inc.). Next the
resting motor threshold (RMT) was established which was the
highest stimulation intensity that produced TA MEPs with an
amplitude of at least ∼50 µV while the muscle was at rest, in 5
out of 10 consecutive stimuli. Finally, 10 stimuli were provided
randomly every 5–7 s at each intensity of 90, 100, 110, 120, 130,
and 140% RMT (total of 60 stimuli).

Following the pre-measures, the participants were prepared
for EEG recordings and once completed, were exposed to one
of the associative BCI interventions as outlined in Section
“Associative BCI Interventions.” The EEG cap was then removed,
and the post and 30 min post TA MEP measures taken (i.e., 10
stimuli provided randomly every 5–7 s at each intensity of 90,
100, 110, 120, 130, and 140% RMT (total of 60 stimuli)). Figure 1
provides an overview of the intervention sessions.

Associative BCI Interventions
Phase One
Phase one of each session was the same for all participants
regardless of the intervention. A cue provided on a computer
screen placed at least 1.5 m in front of the participant indicated
when to prepare, execute, and release a single ballistic dorsiflexion
of the dominant foot. The cue consisted of five parts, (1) The
word ‘Focus’ appeared (duration randomized between 2 and
3 s), (2) The drawing of a ramp appeared where the initial
2 s prior to the upwards turn served as the preparation time,
(3) The upwards turning part of the ramp indicated when to
execute the movement, (4) A holding phase of 2 s where the new
position had to be held and 5. The word ‘Rest’ appeared (duration

randomized between 4 and 5 s). A total of 30 such movements
were performed.

Phase Two
This phase differed between the two sessions depending on
whether the participant was exposed to the offline (BCIoffline) or
online (BCIonline) modus of the associative BCI intervention as
outlined below.

BCIoffline Session
The onset of each movement was quantified from the TA EMG
data and the continuous EEG data divided into epochs of 4 s (2 s
prior to and 2 s following the onset of the movement). A band
pass filter (0.05–10 Hz) and a Laplacian channel (McFarland
et al., 1997) was used to enhance the MRCP in each epoch.
Next, each epoch where the PN was not within a time window
of −500 to 500 ms or contained electrooculographic (EOG)
activity exceeding 70 mV were discarded. For the remaining
epochs, the time of PN was extracted and averaged. This time
was used during phase two to time the onset of the electric
stimulator. More precisely, the timing was calculated as the
mean PN-50 ms. The 50 ms represents the mean latency for
the afferent inflow resulting from the peripheral stimulus to
reach the somatosensory cortex plus a cortical processing delay
and is based on previous work (Mrachacz-Kersting et al., 2007).
Following the quantification of the PN, participants were asked to
complete another 30 movements as for phase one, however this
time imagined, and timed to the cue as for phase one. During
each repetition they also received a single electrical stimulus as
outlined in Section “Electrical Stimulation (ES).” In the offline
modus, phase two thus contained 30 pairings of the MRCP
and ES.

BCIonline Session
The EEG signals recorded in phase 1 were filtered [2nd order
band-pass Butterworth filter (0.05–5 Hz)]. The EEG signals
in the range of (−2 1) s with regards to movement onset
were considered as ‘signal intervals’ while the remaining data
were ‘noise intervals.’ Next, spectral and temporal analysis was
performed on each trial of both signal and noise intervals to
extract 25 spectral and 17 temporal features. This procedure was
repeated for all recorded channels.

Twenty-five spectral features were computed from the power
of the EEG trials in five main frequency ranges; Delta (0.05–3 Hz),
Theta (4–8 Hz), Alpha (8–13 Hz), Beta (1331 Hz), and Gamma
(32–100 Hz). These were extracted from five time intervals; [−2
0] s, [−2−1] s, [−1 0] s, [−1−0.5] s, and [−0.5 0] s with respect
to the movement onset obtained from EMG signals. Seventeen
temporal features were obtained from each trial by extracting the
time and amplitude of the peak negativity of the MRCP. Pre-
movement slopes were attained from linear regression in five time
intervals; [−2−1] s, [−2 0] s, [−1 0] s, [−1−0.5] s, and [−0.5 0]
s where 0 is the time of peak negativity. In addition, the variability
of the MRCP defined as the standard deviation as well as the
average MRCP across all trials were computed in the same five
time ranges. Figure 2 visualizes the time intervals implemented
as well as the amplitude and time of peak negativity. Lastly, 27
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FIGURE 1 | Overview of the intervention sessions. Prior to the interventions 10 TMS stimuli were applied at each of six different intensities. The interventions (spaced
at least 48 h apart) consisted of two phases. In phase one participants completed 30 dorsiflexion movements while EEG data were collected. In phase two,
participants were exposed to concurrent motor imagination and peripheral nerve stimulation. In the associative BCIoffline intervention, the stimulation was provided
during each motor imagery trial and the timing set in relation to the peak negativity obtained from the EEG data of phase one. In the associative BCIonline intervention,
the stimulation was only provided if an MRCP was detected. The detection algorithm was trained from the data obtained in phase one. For each modus participants
completed 30 imagery trials. Immediately following and 30 min after the cessation of the interventions, another 10 TMS stimuli were applied at each of six different
intensities.

tempo-spectral features were extracted by combining temporal
and spectral features.

These features were subsequently used as the input for three
types of classifiers, K-nearest neighbor (KNN, five neighbor
points with Euclidean distance), Support vector machine (SVM,
2nd order polynomial as the kernel function with automatic
scale) and Decision Tree (the split criteria was Gini’s diversity
index). Data were classified to either signal or noise by
applying fivefold cross validation divided into fivefold (4 for
training and 1 for testing). The classification output for all
channels was computed and the three channels with the highest
accuracy and corresponding classifier and feature type was
selected. In phase two of the intervention, the continuous
incoming data of the selected channels (3 s long with 2.5 s
overlapping) were classified by using the selected features and
classifiers. The decision was made if more than one channel
showed one of the two classes. True and false detections were
recorded during phase two of the BCIonline session and used

to calculate the true positive rate (TPR), false positive (FP),
true negative rate (TNR), and false negative (FN) to assess BCI
performance.

Statistical Analysis
To quantify the reliability of the PN time of the MRCP as
well as the number of pairings of MRCP and ES for the
BCIoffline session, a Student’s paired t-test was applied. To ensure
that the pre-intervention MEP values were matched between
sessions, a two-way repeated analysis of variance (rmANOVA)
was conducted with the factors intervention (BCIoffline and
BCIonline) and TMS stimulation intensity (90, 100, 110, 120, 130,
and 140% RMT). A three-way rmANOVA with the factors time
(pre, post and 30 min post-intervention), intervention (BCIoffline
and BCIonline) and TMS stimulation intensity (90, 100, 110,
120, 130, and 140% RMT), tested the effectiveness of the two
interventions in inducing alterations of the corticospinal tract
excitability. Greenhouse–Geisser corrections were used in the
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FIGURE 2 | A sample of a single trial of the MRCP with the time domains
used for feature extraction. D21: [–2 –1] s, D15: [–1 –0.5] s, D50: [–.5 0] s,
D20: [–2 0] s, and D05: [0.5] s where 0 represents the peak negativity
obtained from the onset of the movement.

case of sphericity being violated. The significance level was set
to p < 0.05.

RESULTS

MRCP Reliability
Figure 3 shows a sample of the MRCP of single trials (thin traces)
and the average across all trials (thick trace) for one participant
during phase one of the BCIoffline (Figure 3A) and BCIonline
(Figure 3B) experimental sessions respectively. The dashed
vertical lines indicate the time of the cue to move. Across all
participants the PN of the MRCP attained values of−10± 70 ms
(BCIoffline session) and −20 ± 60 ms (BCIonline session).

A Student’s paired t-test revealed no significant differences
between sessions (t9 = 1.68, p= 0.13).

BCI Performance During Phase Two of
the Associative BCIoffline and BCIonline
Interventions
The time of PN of the MRCP during phase two of the BCIoffline
session was −10 ± 40 ms which was not significantly different
to those values attained during phase one (t9 = 0.87, p = 0.41).
Table 1 displays TPR, FP, TNR, and FN in phases 1 and 2 of the
BCIonline session for single participants.

The performance of the BCI in the BCIonline session for all
participants expressed as TPR, TNR, FP, and FN respectively,
were 71± 3, 76± 5% and 2.8± 0.7, 3.1± 0.4 min−1.

Changes in the Output Properties of the
Motor Cortex Following the Associative
BCIoffline and BCIonline Interventions
Prior to the interventions, the amplitude of the TA MEPs induced
at the highest stimulation intensity across all participants were
515 ± 186 and 464 ± 164 µV (mean ± SE) for the BCIoffline
and BCIonline training interventions, respectively. There was
no significant interaction between intervention and stimulation
intensity, F(5,45) = 0.47, p = 0.799 for the pre-intervention
measures. The experimental sessions started with a similar
baseline excitability across all participants since the main effect
of intervention was not significant, F(1,9) = 0.048, p= 0.83, after
pooling the interaction term.

Figures 4A,B show single TA MEP traces from one participant
prior to, immediately following and 30 min after the cessation
of the BCIoffline and BCIonline training. Figures 4C,D contain the
mean TA MEP amplitudes across all participants following and
30 min after the BCIoffline and BCIonline training interventions for

FIGURE 3 | Single trial MRCPs and the average MRCP for one participant for the BCIoffline (A) and BCIonline (B) interventions respectively. The dashed vertical line
indicates the time of the cue to perform the movement. Trials with EOG activity have been removed.
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TABLE 1 | TPR, FP, TNR, and FN in phases 1 and 2 of the BCIonline session for single participants.

Phase 1 Phase 2

Participant TPR FP TNR FN TPR FP TNR FN

1 84 1.5 86 1.7 73 2.4 78 3.0

2 83 1.6 85 1.8 72 2.4 78 3.1

3 80 2.1 81 2.2 73 2.7 75 2.3

4 88 0.9 92 1.3 77 1.5 86 2.5

5 81 1.9 83 2.3 70 2.4 78 3.3

6 81 1.9 83 2.1 71 2.7 75 3.2

7 78 2.3 79 2.4 68 3.2 71 3.5

8 80 2.0 82 2.2 71 2.8 74 3.2

9 79 2.2 80 2.3 68 4.2 72 3.5

10 77 2.3 75 2.5 67 3.3 70 3.6

Average 81.1 1.9 82.6 2.1 71.0 2.8 75.7 3.1

SD 3.2 0.4 4.6 0.4 3.0 0.7 4.6 0.4

FIGURE 4 | Single TA MEP traces for 90–140% RMT prior to, following, and 30 min after the BCIoffline (A) and BCIonline (B) interventions for one participant. (C,D)
Mean TA MEP amplitudes for 110–140% RMT across all participants immediately following and 30 min after both interventions. Data are expressed as a percentage
of pre-intervention values (black dashed line). Black bars represent the offline modus and the white bars represent the online modus. Error bars represent SEM.

all stimulation intensities, expressed as a percentage of the pre-
intervention TA MEP amplitudes for all stimulation intensities.

The three-way interaction and all two-way interactions were
not significant (all p’s ≥ 0.26). After pooling the two- and three-
way interaction terms, there was a significant main effect of
time, F(2,18) = 4.46, p = 0.027. The mean TA MEP amplitudes
were significantly larger 30 min after (277 ± 72 µV) the BCI
interventions compared to pre-intervention MEPs (233± 64 µV)
with p = 0.029 (Bonferroni post hoc analysis). There was no
significant difference between TA MEP amplitudes immediately
following and pre-intervention (p= 0.148).

As expected, there was a significant main effect of stimulation
intensity, F(5,45) = 5.323, p = 0.001. The average TA MEP
amplitudes were significantly larger at stimulation intensities of

140% RMT (463 ± 162 µV) compared to 130% (405 ± 135 µV),
120% (271± 61 µV), 110% (189± 27 µV), 100% (112± 13 µV),
and 90% RMT (63 ± 10 µV) regardless of intervention type and
stimulation time (all p’s ≤ 0.037, Bonferroni post hoc analysis).
TA MEP amplitudes were also significantly larger at stimulation
intensities of: 130% RMT compared to 120, 110, 100, and 90%
RMT (all p’s≤ 0.047); 120% RMT compared to 110, 100, and 90%
RMT (all p’s≤ 0.02); 110% RMT compared to 100 and 90% RMT
(both p’s ≤ 0.02); and 100% compared to 90% RMT (p < 0.026).

MEP changes occurred independently of the type of BCI
intervention used since there was no significant main effect
of intervention, F(1,9) = 0.057, p = 0.816. These analyses
demonstrate the effectiveness of both BCI interventions in
inducing significant neurophysiological changes. Both BCI
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interventions resulted in a significant increase of the TA MEP
amplitude that outlasted the intervention time by at least 30 min.

DISCUSSION

The aim of the current study was to compare the effects of
an associative BCI intervention on plasticity induction when
the MRCP PN time is pre-determined from a training data set
(BCIoffline), or detected online (BCIonline). The results show that
both interventions resulted in significant increases in the cortical
projections to the target muscle.

BCI Performance During Phase Two of
the Associative BCIoffline and BCIonline
Interventions
One of the advantages of asking participants to perform the
BCI task to a cue is that it facilitates motor imagery or motor
attempt (Heremans et al., 2009). Hence in our previous studies,
we used the initial training data set to quantify the timing of
the ES. Aside from the lower computation power required, this
also ensures that patients do not become frustrated in the event
that the detection rate is too low in the subsequent intervention.
However, in a BCIoffline modus a major concern is that since
the movement is not detected in real time, possible changes in
reaction time to the cue caused by factors such as attention shifts
or fatigue will lead to a decreased accuracy in the timing between
the peripherally generated afferent volley and the activation of the
brain.

An important prerequisite in the associative BCI intervention
we first introduced in 2012 in healthy participants (Mrachacz-
Kersting et al., 2012) and later applied in a group of chronic stroke
patients where it led to significant functional improvements
(Mrachacz-Kersting et al., 2016), is thus that the PN of the
MRCP is reliable across single trials. Typically, within a session,
a training data set of 30–50 trials of attempted movements is
performed and the extracted time of PN used in the subsequent
intervention. The intervention is comprised of 30–50 pairings
of an artificially generated afferent volley timed to arrive at PN.
This timing is imperative as neither early nor late arrival results
in plasticity induction (Mrachacz-Kersting et al., 2012). The
average PN time in the initial training set was similar to what we
have reported previously and did not differ significantly for the
BCIoffline and BCIonline sessions (Mrachacz-Kersting et al., 2012,
2017c). Since participants did not alter their reaction time to
the visual cue within the BCIoffline intervention set (the PN time
was similar to the initial 30 trials), we may assume that indeed
30 pairs with the appropriate time were applied. However, for
the BCIonline session, the TPR was only 71 ± 3% indicating that
for almost 30% of the actual movements, no artificial volley was
generated. In a self-paced BCI that follows the same principles of
associativity the TPRs attained similar values of 67.15 ± 7.87%
(Niazi et al., 2012) and 73.0± 10.3% (Xu et al., 2014).

In the previous self-paced associative BCI, participants were
required to continue performing the task until at least 50
successful attempts were detected (Niazi et al., 2012; Xu et al.,
2014). This number of pairings was based on previous studies of

PAS targeting a hand muscle (Kujirai et al., 2006). As a result,
the duration of the intervention session was between 8.9 and
22.1 min. In the current study, irrespective of the number of true
detections, only 30 trials were completed with a total duration of
approximately 5 min. In a BCI designed for neurorehabilitation
of stroke patients it is imperative that each BCI session does not
last longer than approximately 30 min. This includes all aspects
such as preparation time, training and the intervention itself. This
has several reasons, on the one hand, at least in Denmark, any
therapy session for stroke patients takes maximally 30 min and
maintaining the BCI session within this time frame will allow it
to be scheduled alongside the classical therapy sessions. On the
other hand, stroke patients fatigue at a faster rate compared to
healthy controls with 30 min being the maximum time they are
able to concentrate prior to necessitating a rest period.

Changes in the Output Properties of the
Motor Cortex Following the Associative
BCIoffline and BCIonline Interventions
In the current study, participants were exposed to a significantly
reduced number of pairings of the MRCP and the afferent inflow
in the BCIonline intervention, compared to previous studies and
the BCIoffline intervention. However significant plasticity of the
corticospinal tract to the TA muscle occurred. It is currently not
established how many pairs of peripheral and central inputs are
required for such changes to be induced. In previous studies
both 50 pairings (Mrachacz-Kersting et al., 2012, 2016) and
30 pairings (Mrachacz-Kersting et al., 2017c) have resulted in
significant changes. In the original PAS studies (see review by
Suppa et al., 2017), 90 pairs were applied when targeting hand
muscles (Stefan, 2000), and this could be further reduced to 50
when the muscle was pre-contracted (Kujirai et al., 2006). As
a minimum, 360 pairs were required when targeting the lower
limb muscle TA (Mrachacz-Kersting et al., 2007) and 200 for
soleus (Kumpulainen et al., 2012, 2015). At least for PAS, other
factors such as attention to the task, fatigue and history of muscle
contraction have been shown to contribute to the changes in the
excitability of the cortical projections to the target muscle (Suppa
et al., 2017). Thus, any attention away from the main task as
well as fatigue will lead to a decrease in the amount of plasticity
induced (Stefan et al., 2004), while prior muscle activation will
lead to an increase (Kujirai et al., 2006). Since the duration and
the number of trials performed were exactly the same for the
BCIonline and BCIoffline intervention, it is likely that participants
were able to attend to the task without experiencing attentional
shifts or fatigue.

During the BCIonline intervention, a movement was falsely
detected at a rate of 1.2 ± 0.9 min−1. Thus, on average six ES
were not timed to the PN of the MRCP. Previously, afferent
inflow that arrived either too early or too late resulted in
no significant plasticity induction (Mrachacz-Kersting et al.,
2012), while an ES timed randomly in relation to PN led to
decreases of the excitability of the cortical projections to the
TA in some chronic stroke patients while triggering no changes
on average across all patients (Mrachacz-Kersting et al., 2016).
These results taken together imply that although our associative
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BCI intervention is modeled on PAS and associative LTP-like
mechanisms, there are likely significant differences in the locus
of effects (Suppa et al., 2017). Further studies are required to
determine the exact sites of plasticity. Lastly, since participants
performed the task in both the training and intervention sets,
afferent inflow was generated naturally by the activation of the
muscles, arriving at the motor cortex at the appropriate time.
This afferent feedback is a combination of muscle, joint, and
skin receptor activation. It may be speculated that in the event
that the artificially generated afferent volley occurs at the wrong
time in relation to the MRCP, it is simply filtered out by the
nervous system. This is supported by our original findings that
afferent feedback timed either too early or too late in relation
to the PN of the MRCP leads to no plasticity induction. It is
also substantiated by reports that the effects of afferent feedback
to the brain and ongoing movement is modulated in a task
dependent manner (Nielsen and Sinkjaer, 2002; Nielsen, 2004).
Thus for example, during an active dorsiflexion movement,
afferent information from antagonistic muscles is suppressed
by disynaptic reciprocal inhibition (Crone and Nielsen, 1994;
Geertsen et al., 2011). Indeed, afferent feedback from the
activation of ankle plantarflexors of one leg will depress the
activation of the homonymous muscle of the other leg through
a short latency interlimb pathway (Stubbs and Mrachacz-
Kersting, 2009) that includes the same interneuron responsible
for disynaptic reciprocal inhibition (Mrachacz-Kersting et al.,
2017a).

CONCLUSION

Here, we compared the effectiveness of an associative BCIonline
and BCIoffline intervention in inducing plasticity of the cortical

projections to the TA. Regardless of whether the PN of the MRCP
was determined offline from a training data set or detected online,
similar changes in the excitability of the cortical projections
to the TA were induced. These results provide further strong
support for the associative nature of the interventions but also
suggest that they likely differ to the PAS protocol they were
modeled on in the exact sites of plasticity. Further studies are
required to assess whether the associative BCIonline and BCIoffline
interventions have similar effects to PAS on the motor cortical
network.
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Deficits in the interpretation of others’ intentions from gaze-direction or other social

attention cues are well-recognized in ASD. Here we investigated whether an EEG brain

computer interface (BCI) can be used to train social cognition skills in ASD patients. We

performed a single-arm feasibility clinical trial and enrolled 15 participants (mean age 22y

2m) with high-functioning ASD (mean full-scale IQ 103). Participants were submitted to

a BCI training paradigm using a virtual reality interface over seven sessions spread over

4 months. The first four sessions occurred weekly, and the remainder monthly. In each

session, the subject was asked to identify objects of interest based on the gaze direction

of an avatar. Attentional responses were extracted from the EEG P300 component. A

final follow-up assessment was performed 6-months after the last session. To analyze

responses to joint attention cues participants were assessed pre and post intervention

and in the follow-up, using an ecologic “Joint-attention task.” We used eye-tracking to

identify the number of social attention items that a patient could accurately identify from

an avatar’s action cues (e.g., looking, pointing at). As secondary outcome measures

we used the Autism Treatment Evaluation Checklist (ATEC) and the Vineland Adaptive

Behavior Scale (VABS). Neuropsychological measures related to mood and depression

were also assessed. In sum, we observed a decrease in total ATEC and rated autism

symptoms (Sociability; Sensory/Cognitive Awareness; Health/Physical/Behavior); an

evident improvement in Adapted Behavior Composite and in the DLS subarea from

VABS; a decrease in Depression (fromPOMS) and inmood disturbance/depression (BDI).

BCI online performance and tolerance were stable along the intervention. Average P300

amplitude and alpha power were also preserved across sessions. We have demonstrated
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the feasibility of BCI in this kind of intervention in ASD. Participants engage successfully

and consistently in the task. Although the primary outcome (rate of automatic responses

to joint attention cues) did not show changes, most secondary neuropsychological

outcome measures showed improvement, yielding promise for a future efficacy trial.

(clinical-trial ID: NCT02445625—clinicaltrials.gov).

Keywords: autism, clinical trial, brain-computer interface, EEG, virtual reality, social attention

INTRODUCTION

Autism spectrum disorder (ASD) is a set of pervasive
and sustained neurodevelopmental conditions characterized by
persistent deficits in social communication and social interaction,
alongside restricted, repetitive patterns of behavior, interests,
or activities (American Psychiatric Association, 2013). This
condition has a significant economic and social impact due to
its high prevalence [estimated at ∼1.5% in developed countries
around the world (Baxter et al., 2015; Christensen et al., 2016;
Lyall et al., 2017) and ∼10 per 10,000 children in Portugal
(Oliveira et al., 2007)]. It is associated with high morbidity and
impact on daily family life (Karst and Van Hecke, 2012; Boshoff
et al., 2016; Harrop et al., 2016; Jones et al., 2016; Schlebusch et al.,
2016).

Joint attention (JA) is an early-developing social
communication skill defined by the non-verbal coordination
of attention of two individuals toward a third object or event
(Bakeman and Adamson, 1984). People with ASD show severe
deficits in JA abilities (Baron-Cohen, 1989; Baron-Cohen et al.,
1997; Swettenham et al., 1998; Leekam and Moore, 2001; Klin,
2002; Dawson et al., 2004) which plays a critical role in the
development of their social and language capabilities (Charman,
1998, 2003).

Electroencephalography (EEG) based brain-computer
interfaces (BCI), represent widely studied communication
technologies (Farwell and Donchin, 1988; Kleih et al., 2011; Mak
et al., 2011; Wolpaw andWolpaw, 2012). Virtual reality (VR) has
been increasingly used in neuro-rehabilitation, in particular of
motor control and has shown promising results (Larson et al.,
2011, 2014; Astrand et al., 2014; Tankus et al., 2014; Salisbury
et al., 2016). However, concerning cognitive applications in
the field of neuro-rehabilitation the use of combined VR and
BCIs has only been used with children with attention deficit
hyperactivity disorder (which includes the presence of frequent
inattentive, impulsive, and hyperactive behaviors; American
Psychiatric Association, 2013).

The review provided by Friedrich et al. (2014), grounded
on a series of neurofeedback training studies, postulates that
quantitative EEG-based neurofeedback training is viable as a
personalized therapeutic approach in ASD. They also suggest the
development of a game platform that includes social interactions
and specific feedback based on behavior, neurophysiological,
and/or peripheral physiological responses of the users. The
ultimate goal is to reinforce significant behaviors, such as
social interactions using neurobehavioral signals to promote

behavioral, cognitive, and emotional improvement in ASD
people. Along this line several studies do advocate (Wainer and
Ingersoll, 2011; Bekele et al., 2014; Georgescu et al., 2014) that the
use of ecological, realistic, and interactive virtual environments
may be the solution for the well-known generalization problem
of the rehabilitation of social skills in ASD subjects to real
life settings. Golan and Baron-Cohen (2006) suggested that
the use of computerized intervention in ASD individuals
enables the development of skills in a highly standardized,
predictable, and controlled environment, while simultaneously
allowing an individual to work at his own pace and ability
level.

Based on these suggestions, we propose a virtual reality
P300-based BCI paradigm (which technical implementation
is described in Amaral et al., 2017) that tries to couple
the advantages of ecological, realistic and interactive virtual
environments with the attention related nature of the P300 brain
waveform to create a cognitive training tool for ASD. The P300-
based paradigm that we present here consists on an immersive
environment were the subject must follow a non-verbal social
agent cue (head turn) and direct his/her attention to the target
object. The attentional mental state of the subject is monitored
through the detection of oddballs, which leads to a P300 signal
which allows giving feedback about his/her attentional focus.
The P300 signal is a well-known neural signature of attention
processes for detection of rare items in a stimulus series—oddball
paradigm—(for a review see Patel and Azzam, 2005; Polich,
2007; Duncan et al., 2009). We decided to couple the training
of joint attention skills to the P300 signal because the latter
is widely used in focused attention studies, and is related to
integration of information with context and memory (Halgren
et al., 1995). Moreover, with the automatic detection of P300
signals one can provide direct feedback about the participant’s
attentional focus. This provides information that the subject
can use to self-monitor his/her performance about where to
look and subsequently allow ASD subjects to adjust behavior.
Given the repetitive nature of this type of oddball paradigm,
and its operant learning properties, our motivation for the
construction of this paradigm is based on the hypothesis that
ASD subjects can assimilate joint attention skills by automating
the response to the social cue that is given during the task we
created. The current trial set out to assess the feasibility and
potential clinical effects of the use of this type of technology
in ASD and attempts to assess the use of neurophysiologic-
based rehabilitation tools for improving social behavior in
ASD.
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APPARATUS AND METHODS

This was a single-arm clinical feasibility trial study conducted in
Portugal.

Prior to subject recruitment, ethical approvals were obtained
from the Ethics Commission of the Faculty of Medicine of
the University of Coimbra (Comissão de Ética da Faculdade
de Medicina da Universidade de Coimbra), the INFARMED-
Autoridade Nacional do Medicamento e Produtos de Saúde,
I.P. (Portuguese Authority of Medicines and Health Products)
and CEIC—Comissão de Ética para a Investigação Clínica
(Portuguese Ethics Committee for Clinical Research).

This study and all the procedures were approved and was
conducted in accordance with the declaration of Helsinki.
All subjects agreed and signed a written informed consent
prior to screening procedures and recruitment (clinical-trial ID:
NCT02445625-clinicaltrials.gov).

This study and all the procedures were approved and was
conducted in accordance with the declaration of Helsinki.

All subjects agreed and signed a written informed consent
prior to screening procedures and recruitment (clinical-trial ID:
NCT02445625—clinicaltrials.gov).

Participants
Study included 15 adolescents and adults (mean age = 22
years and 2 months, ranging from 16 to 38 years old) with
high-functioning ASD (Full-Scale Intelligent Quotient [FSIQ]
(Wechsler, 2008): Mean= 102.53; SD= 11.64).

These participants met the inclusion criteria: positive
diagnostic results for ASD assigned on the basis of the gold
standard instruments: parental or caregiver interview—Autism

Diagnostic Interview-Revised (Le Couteur et al., 2003); direct
structured subject assessment—Autism Diagnostic Observation
Schedule (Lord and Rutter, 1999); and/or the current diagnostic
criteria for ASD according to the Diagnostic and Statistical
Manual of Mental Disorders, Fifth Edition (DSM-5) (American
Psychiatric Association, 2013).

All diagnostic and neuropsychological assessments were
performed by a psychologist (SM or IB) under the supervision
of a medical doctor—a neurodevelopmental pediatrician (GO)
in a face to face standardized situation in our clinical research
institute.

Participants were excluded if they had intellectual disability,
with a FSIQ inferior to 80 (Wechsler, 2008) and associated
medical conditions such as epilepsy, neurocutaneous, or other
genetic known syndromes, or other usual comorbidity in ASD
samples.

Intervention and Apparatus
The baseline visit was used to obtain consent and collect
baseline data. Collected baseline data included demographics,
medication, neuropsychological measures related to the
ASD diagnosis [ADI-R (Le Couteur et al., 2003); ADOS
(Lord and Rutter, 1999); and DSM-5 (American Psychiatric
Association, 2013) criteria] and intellectual ability (IQ measured
by WAIS-III; Wechsler, 2008) and the outcome measures
detailed below.

The intervention comprised seven BCI sessions spread over
4 months. The first four sessions weekly and the remaining
monthly. Adherence and compliance were evaluated using the
following definitions: Adherence was defined as attending all
seven BCI sessions. Compliance was assessed based on the

FIGURE 1 | Representation of the used scenarios. (A) Cafe scenario; (B) Classroom scenario; (C) Kiosk scenario; (D) Zebra crossing scenario.
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percent of subjects who have performed the scheduled number
of interventional sessions.

Participants outcome assessments were performed at baseline
(session 0), post-training (session 7), and follow-up (6 months
post-training).

The baseline visit was in the same day of the session 1. The
7 sessions included BCI intervention, before and after which the
participants were asked to complete a questionnaire about how
were they feeling in themoment—Profile ofMood States (POMS)
(McNair et al., 1992; Faro Viana et al., 2012).

The Primary outcome measure was a customized ecologic
“Joint-attention assessment task” (JAAT), assessing the detection
of initiation of joint attention cues (from avatars—gazing
or pointing cues). We recorded (using eye-tracking) the
number of items of social attention that a patient could
accurately identify from an avatar’s action cues (e.g., looking at,
pointing at).

JAAT consisted in four virtual scenarios. The scenarios were
as follows:

Cafe: interior of a cafe with a maid (avatar) inside the balcony.
The viewer’s position is in front of the balcony. Several common
objects in a cafe (packets of chips, several drinks, chewing gums,
bottles, and a lamp) are distributed the around the avatar’s
position. (Figure 1A);
Classroom: standing in front of a table with a professor (avatar)
and with a ruler, a book, a notebook, a protractor, a pencil, and
an eraser on top of the table (Figure 1B). The scenario also has
another tables and chairs;
Kiosk: standing in front of a street kiosk with the employee
inside and several newspapers and magazines scattered on the
kiosk, around the employee position (Figure 1C);
Zebra crossing: standing in one side of a street, waiting to cross
the zebra crossing, with one person on the other side. The other

side of the street has a traffic light, a traffic signal, a garbage can,
and a map in a bus stop (Figure 1D).

Participants were sat in an adjustable rotary office chair wearing
theOculus Rift DK 2 headset. Eyemovements were recordedwith
Eye Tracking HMD package from SMI embedded in the Oculus
Rift itself, with sampling rate of 60Hz, and accuracy of 0.5–1◦.
The scenes had a 360◦ perspective and a real-time fully immersive
experience. JAAT started with the eye-tracker calibration and
validation (5-point validation method built in-house). Next, the
presentation of each scenario was done. The order by each
scenario was presented was random. The task started with a 30 s
free-viewing period followed by a series of avatar animations
spaced by between 2 and 2.5 s. The animations were divided
in joint attention animations and control animations. The joint
attention animations comprise the head turning of the avatar or
pointing to one object of interest in the scene.

The animations were repeated two times in a random order
which gives a total of 18 joint attention animations in the café
scenario, 10 in classroom scenario, 16 in kiosk, and 10 joint
attention animations in zebra crossing scenario. The overall
joint attention events were 54, and control (no joint attention)
animations 32. Control animations included the avatar coughing,
rolling the head, scratching the head and yawning. Participants
were instructed to act naturally. They were not aware that their
eye movements were being recorded.

The number of items of social attention that a patient could
accurately identify from an avatar’s action cues were obtained by
defining areas of interest (AI) with 3D boxes. These AI overlap
with objects in the scenes that were relevant in the context. For
example, the drinks in the cafe, the notebook and the ruler in
the classroom, the magazines in the kiosk and the traffic lights
on the zebra crossing scenario. AI in each scenario are shown in
Figure 2.

FIGURE 2 | Areas of interest in each scenario of JAAT.

Frontiers in Neuroscience | www.frontiersin.org 4 July 2018 | Volume 12 | Article 477121

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Amaral et al. BCI Clinical Trial in Autism

The number of items of social attention were defined as
eye fixations inside the AI after the start of the joint attention
animation and until between 2 and 2.5 s. We assumed a fixation
duration as a fixation with more than 300ms (based on the
range of mean fixation duration in scene perception presented in
Rayner, 2009). Inside the JA responses we considered two types
of responses:

JAAT_No face—Fixation on the target object of the joint
attention animation after the animation starts.
JAAT_Face—Fixation on the target object of the joint attention
animation after the animation beginning that is preceded by a
fixation on the face of the avatar.

As secondary outcome measures we included the Autism

Treatment Evaluation Checklist (ATEC) (Rimland and

Edelson, 1999), specifically designed to measure treatment

effectiveness, and Vineland Adaptive Behavior Scales (VABS),

which focuses on adaptive functioning (Sparrow et al., 1984).

Other neuropsychological measures related to mood, anxiety

and depression were also assessed: Profile of Mood States

(POMS) (McNair et al., 1992; Faro Viana et al., 2012); Hospital

Anxiety & Depression Scale (HADS) (Zigmond and Snaith,
1983; Pais-Ribeiro et al., 2007) and Beck Depression Inventory

(BDI) (Beck, 1961; Vaz-Serra and Abreu, 1973; Beck and Steer,
1990).

FIGURE 3 | BCI apparatus overview. (Top) Person wearing Oculus Rift and g.Nautilus EEG system (part of the virtual reality P300-based BCI) and the observer’s

viewing window on the screen. (Bottom) Block design of the system. Informed consent was obtained from the individual for the publication of this image.
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The experimental apparatus used for the BCI interventions is
shown in Figure 3.

BCI sessions were carried out in a spacious and quiet room
with minimal electrical interference and participants were seated
in an adjustable office chair in front of a table.

The virtual reality P300-based BCI paradigm used comprises
an immersive virtual environment presented to the participants
via the Oculus Rift Development Kit 2 headset (from Oculus
VR) which participants wear in front of the eyes during the
intervention sessions. An EEG cap was also placed in participants

FIGURE 4 | Sequence of events of the trials in the BCI online phase.
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head. The cap had 16 active electrodes that do not require
abrasive skin treatment and with completely wireless signal
transmission (g.Nautilus from gTEC, Austria). The EEG data

TABLE 1 | Baseline demographic data.

n % or Mean (SD)

Age 15 22 years and 2 months (5 years and 6 months)

Gender 15 100% Male

Education 15 Junior Highschool (9 years) 6.67%

Incomplete Highschool (11 years)13.33%

Highschool (12 years) 66.67%

Bachelor 6.67%

Master 6.67%

TABLE 2 | Baseline outcome measures.

n Mean (SD) Data

completeness %

CORE OUTCOMES

ADIR_Social interaction 14 16.14 (4.56) 93

ADIR_Communication 14 12.14 (5.39) 93

ADIR _Repetitive and restricted

behavior

14 6.14 (2.41) 93

ADIR_Developmental delay 14 2.21 (1.89) 93

ADOS _Communication 15 3.20 (0.86) 100

ADOS_Social interaction 15 6.27 (1.34) 100

ADOS_Total 15 9.47 (1.92) 100

DSM_5 Criteria 15 5.73 (0.59) 100

WAIS-III (FSIQ) 15 102.53 (11.64) 100

WAIS-III (VIQ) 15 102.33 (16.63) 100

WAIS-III (PIQ) 15 102.47 (10.97) 100

HADS_Total 15 10.93 (5.78) 100

BDI_Total 15 9.13 (6.56) 100

POMS_Tension 15 6.40 (3.23) 100

POMS_Depression 15 7.53 (6.13) 100

POMS_Anger 15 4.00 (3.46) 100

POMS_Vigour 15 12.53 (6.80) 100

POMS_Fatigue 15 4.47 (3.96) 100

POMS_Confusion 15 6.80 (2.68) 100

POMS_Total 15 116.67 (18.54) 100

STUDY SPECIFIC OUTCOMES

JAAT_NoFace 15 16.33 (9.36) 100

JAAT_Face 15 10.67 (9.35) 100

ATEC_SPEECH/LANGUAGE/

COMMUNICATION

15 4.07 (1.82) 100

ATEC_SOCIABILITY 15 12.64 (6.20) 100

ATEC_SENSORY/COGNITIVE

AWARENESS

15 9.50 (5.13) 100

ATEC_HEALTH/PHYSICAL/BEHAVIOR 15 9.36 (6.25) 100

ATEC_Total 15 35.57 (12.53) 100

VABS_COM_S1 15 68.27 (21.53) 100

VABS_DLS_S1 15 77.53 (14.05) 100

VABS_SOC_S1 15 65.80 (16.79) 100

VABS_ABC_S1 15 65.73 (15.56) 100

were acquired from 8 electrodes positions (C3, Cz, C4, CPz,
P3, Pz, P4, POz), the reference was placed at the right ear and
the ground electrode was placed at AFz. Sampling rate was set
at 250Hz. EEG data were acquired notch filtered at 50Hz and
passband filtered between 2 and 30Hz.

The virtual environment consists in a bedroom with common
type of furniture (shelves, a bed, a table, a chair, and a dresser)
and objects (frames, books, lights, a printer, a radio, a ball, a door,
a window, and a laptop). The BCI task was divided in 3 phases.
The first two were part of the calibration process of the BCI, and
the last one the online phase. In the first phase the participants
were directly and explicitly instructed to attend the target object
in order to remove potential errors identifying the target object
related with social attention deficits present in ASD. In the second
phase the participants were asked about which object was chosen
by the avatar (after avatar’s animation) to guarantee the user
learned to read the social joint attention cue of the avatar and
use this information correctly. In the third phase the participants
were asked to respond to the head cue of the avatar in the center
of the scene, looking to the object of interest. In all the three
phases of BCI, after the redirection of attention of participant in
each trial, they were asked to mentally count the blinks of the
object of interest. Each trial consisted in 10 sequential runs, and
each such run consisted of flashing all the 8 objects in the scene
(green flashes) in a randomized order: 1. a wooden plane hanging
from the ceiling; 2. a printer on a shelf; 3. a corkboard on the wall;
4. a laptop on a table; 5. a ball on the ground; 6. a radio on top of a
dresser; 7. a picture on the wall; 8. books on a shelf. The highlight
(flash) of each object occurred with an inter-stimulus interval of
200ms. Each flash had the duration of 100ms. This gives a total of
80 flashes per trial. Participants performed a total of 70 trials (10
in the first phase, 10 in the second, and 50 in the online phase).

The data recorded from the first 20 calibration trials stores
the P300 responses that occurs when the object of interest
flashed, and statistical classifiers are used to identify this response.
These classifiers are then used in the online phase to identify
whether participants were counting the flashes of avatar’s object
of interest. If it was done properly by the participant the BCI gave
a positive feedback (object of interest turns green at the end of the
trial). If not, the object turned red. This mechanism is shown in
Figure 4. The overall functioning of BCI is explained in detail in
Amaral et al. (2017), where we tested the best setup to use in this
BCI and also performed pilot tests in ASD participants.

TABLE 3 | Primary outcome—feasibility.

% (n/n)

Recruitment/Consent 100

Retention (primary end point) 100

Retention (secondary end point) 100

Intervention uptake 100

Adherence/Completion 100

Compliance 100

Intervention delivery 100

Acceptability 100
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Statistical Analysis
Our initial sample size was calculated using the G∗Power
tool (Faul et al., 2007). Based in other effects described in
the literature, the effect size considered is 0.8 (the mean
difference is 0.8 standard deviations). In these conditions,

for power of 0.8 the estimated sample size is 15. Without
the normality assumption of the distribution of the means
differences, we would also need 15 subjects, considering
a non-parametric test. However, these calculations were
used only as a guide for sample size and in keeping with

TABLE 4 | Outcomes (for complete baseline and primary follow-up dataset).

Baseline/Session 1 Primary follow-up time point

(Session 7—post intervention)

Mean difference and 95% CI

n Mean (SD) n Mean (SD) Mean difference 95% CI

CORE OUTCOMES

HADS_Total 15 10.93 (5.78) 15 9.13 (4.22) 1.80 (−0.40, 4.00)

BDI_Total 15 9.13 (6.56) 15 6.67 (5.25) 2.47 (0.38, 4.56)

POMS_Tension 15 6.40 (3.23) 15 5.20 (5.51) 1.20 (−2.06, 4.46)

POMS_Depression 15 7.53 (6.13) 15 3.80 (5.20) 3.73 (0.49, 6.97)

POMS_Anger 15 4.00 (3.46) 15 2.93 (6.12) 1.07 (−2.47, 4.60)

POMS_Vigour 15 12.53 (6.80) 15 12.87 (7.97) −0.33 (−3.67, 3.00)

POMS_Fatigue 15 4.47 (3.96) 15 4.67 (5.92) −0.20 (−3.20, 2.80)

POMS_Confusion 15 6.80 (2.68) 15 6.07 (3.60) 0.73 (−1.26, 2.72)

POMS_Total 15 116.67 (18.54) 15 109.80 (25.77) 6.87 (−7.20, 20.93)

STUDY SPECIFIC OUTCOMES

JAAT_NoFace 15 16.33 (9.36) 15 13.73 (8.19) 2.60 (−2.20, 7.40)

JAAT_Face 15 10.67 (9.35) 15 7.80 (8.77) 2.87 (−0.07, 5.80)

ATEC_SPEECH/LANGUAGE/COMMUNICATION 15 4.07 (1.82) 15 2.93 (1.64) 1.07 (−0.23, 2.37)

ATEC_SOCIABILITY 15 12.64 (6.20) 15 8.50 (5.30) 4.33 (2.32, 6.35)

ATEC_SENSORY/COGNITIVE AWARENESS 15 9.50 (5.13) 15 6.14 (4.93) 3.47 (0.90, 6.03)

ATEC_HEALTH/PHYSICAL/BEHAVIOR 15 9.36 (6.25) 15 6.57 (5.39) 2.80 (0.65, 4.95)

ATEC_Total 15 35.57 (12.53) 15 24.29 (12.90) 11.53 (5.33, 17.74)

VABS_COM 15 68.27 (21.53) 15 71.33 (21.62) −3.07 (−8.37, 2.24)

VABS_DLS 15 77.53 (14.05) 15 81.60 (14.46) −4.07 (−6.40, −1.73)

VABS_SOC 15 65.80 (16.79) 15 67.67 (16.18) −1.87 (−4.44, 0.70)

VABS_ABC 15 65.73 (15.56) 15 69.00 (15.20) −3.27 (−5.48, −1.06)

TABLE 5 | Outcomes for complete baseline and secondary follow-up dataset.

Baseline Secondary follow-up time

point (post intervention)

Mean difference and 95% CI

n Mean (SD) n Mean (SD) Mean difference 95% CI

STUDY SPECIFIC OUTCOMES

JAAT_NoFace 15 16.33 (9.36) 15 15.00 (10.02) 1.33 (−4.47, 7.14)

JAAT_Face 15 10.67 (9.35) 15 7.53 (8.11) 3.13 (−2.00, 8.27)

ATEC_SPEECH/LANGUAGE/COMMUNICATION 15 4.07 (1.82) 14 1.79 (1.42) 2.29 (0.94, 3.63)

ATEC_SOCIABILITY 15 12.64 (6.20) 14 6.57 (5.14) 6.07 (3.23, 8.91)

ATEC_SENSORY/COGNITIVE AWARENESS 15 9.50 (5.13) 14 5.21 (4.28) 4.29 (1.31, 7.26)

ATEC_HEALTH/PHYSICAL/BEHAVIOR 15 9.36 (6.25) 14 4.86 (4.35) 4.50 (2.65, 6.35)

ATEC_Total 15 35.57 (12.53) 14 18.43 (11.77) 17.14 (10.38, 23.91)

VABS_COM 15 68.27 (21.53) 14 73.14 (17.29) −7.36 (−12.53, −2.18)

VABS_DLS 15 77.53 (14.05) 14 86.29 (14.02) −10.14 (−12.58, −7.71)

VABS_SOC 15 65.80 (16.79) 14 71.14 (16.11) −6.79 (−10.13, −3.44)

VABS_ABC 15 65.73 (15.56) 14 72.00 (13.65) −8.21 (−10.66, −5.77)
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the feasibility design no explicit hypothesis testing was
used.

The specific aim of the study was to assess the feasibility and
effects of the use of virtual reality P300-based BCI paradigm in
ASD. Based on this aforementioned aim, 95% confidence interval
for differences in means are presented.

The assumptions of the statistical techniques used were
validated. All statistical analysis was realized with the support of
the version forMicrosoftWindows R© of the Statistical Package for
Social Sciences, version 19 (SPSS R©, Chicago, IL, USA).

Brain Computer Interface Evaluation of Signal

Stability
We tested the stability across the seven sessions of three
parameters: the BCI’s balanced accuracy (see definition below)
of target object detection, the average P300 maximum amplitude
across trials and the mean alpha power variation in the band
[8 12] Hz per trial. For the latter two, a cluster of the 8
channels was formed. For each subject, a linear regression was
computed using the value of each parameter across sessions.
The first order coefficient of the linear regressed model was
extracted, and its distribution was tested against the hypothesis
that its median value was equal to zero, using a Wilcoxon
signed rank test. Graphical illustration of the stability of measures
across sessions is provided. The tests were performed in Matlab
2014a.

RESULTS

Demographic data are provided in Table 1. Fifteen adolescents
and adults (mean age = 22 years and 2 months, ranging
from 16 to 38 years old) with high-functioning ASD (Full-
Scale Intelligent Quotient [FSIQ] (Wechsler, 2008): Mean =

102.53; SD = 11.64) participated in the study between February
2016 and January 2017. Five patients were medicated (three

FIGURE 5 | Balanced accuracy of target object detection on online phase

across sessions.

with a neuroleptic, one with a psychostimulant and another
with an antidepressant). We recruited 17 patients, because of
two dropouts, which meets the target sample size. Dropouts
were due to an eye abnormality in one patient, not reported
during the recruitment, and a misdiagnosis of ASD in another
patient.

Table 2 depicts the basic statistics related to core baseline and
study specific outcome measures.

Concerning measures of feasibility, they are reported in
Table 3.

Although an effect was not found for our primary measure of
choice (JAAT), most secondary measures demonstrated a change
(Table 4).

Table 4 shows the analysis of the clinical outcomes for
complete baseline and primary follow-up. The analysis revealed
no noticeable change in the total number of social attention
items that a patient can accurately identify from avatar’s action
cues (JAAT_NoFace and JAAT_Face). On the other hand, there
was variation in total ATEC scores, as well as in Sociability,
Sensory/Cognitive Awareness, and Health/Physical/Behavior.
Significant effects in Adapted Behavior Composite and in DLS
(total and a subarea from VABS) were also observed. The
depression subscale from POMS scores (POMS_Depression)
showed a difference between the baseline and the primary
follow-up time point. The mood disturbance/depression (BDI)
scale also showed a change after the intervention.

In sum, we observed a 32% average decrease
in total ATEC, rated autism symptoms (34% in
Sociability; 37% in Sensory/Cognitive Awareness; 29% in
Health/Physical/Behavior); 5% average improvement in Adapted
Behavior Composite and 5% in DLS, subarea from VABS; 50%
average decrease in Depression subscale from POMS and 27%
average decrease in mood disturbance/depression (BDI).

Table 5 shows the analysis of the clinical outcomes
for complete baseline and secondary follow-up.
JAAT_NoFace and JAAT_Face scores also revealed

FIGURE 6 | Average P300 maximum amplitude across sessions.
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no differences between baseline and the secondary
follow-up time point. There were positive effects in all
subscales (Speech/Language/Communication, Sociability,
Sensory/Cognitive Awareness, and Health/Physical/Behavior)
from ATEC and in ATEC total scores. There were also changes
in Adapted Behavior Composite and in all subareas from VABS
(COM, DLS, SOC).

No serious adverse events were reported.

Brain Computer Interface Evaluation of

Signal Stability
We analyzed whether the signal quality and performance of our
brain computer interface remained stable across intervention
sessions. Figure 5 shows across session balanced accuracy of our
online classifier.

The unbalanced nature of the data set (the non-target objects
flashes are 8 times more than the target ones, because of the
different occurrence probability) makes the balanced accuracy
the more reliable metric for assessing the classifier performance
(Brodersen et al., 2010). Balanced accuracy is calculated following
the formula: (Specificity + Sensitivity)/2. This value did not vary
greatly across sessions. Although the overall trend decreased
very slightly from session 1 to 7, our system retained stable
performance across visits.

Concerning the P300 signal, which is pivotal for decoding
attention related information, it also remained stable across
sessions, as shown in Figure 6. Average P300 maximum
amplitude was calculated averaging the maximum amplitude
values (between 250 and 500ms after the flashes onset) of the
averaged event-related potentials of the target object flashes in
the third phase of BCI (online).

In Figure 7 it is possible to observe the P300 waveform across
sessions.

Accordingly, P300 maximum amplitude did not vary and was
statistical verified, demonstrating the presence of stable attention
related signals across visits. Stability of neurophysiological
patterns was further examined by investigating changes in alpha
modulation (Figure 8), and remained around similar levels
across sessions.

DISCUSSION

In this study we assessed a virtual reality P300-based BCI
paradigm in ASD. Our device coupled an interactive virtual
environment with the attention signature of the P300 brain
waveform, featuring a cognitive training tool for ASD.
Participants had to follow a non-verbal social agent cue. As
a cautionary note, the fact that a P300 signal can be detected with

FIGURE 7 | Grand-average of event-related potentials in each BCI session of Cz channel.
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FIGURE 8 | Average alpha power across sessions.

high accuracy does not necessarily imply that the stimulus is
suitable and well tolerated. Nevertheless, the current trial proved
the feasibility and potentially useful clinical effects of the use of
this type of technology in ASD.

Although the main goal of the study was not to test efficacy
measures, some relevant effects were observed, even in spite
of the fact that our eye-tracking based assessment tool did not
show a change in the total number of social attention items
that a patient can accurately identify from avatar’s action cues
(JAAT_NoFace and JAAT_Face, only a small non-significant
trend is visible possibly due to familiarity).

However, in the primary follow-up time point, there was an
effect on total ATEC scores, which translates to a decrease in
the severity of autism symptoms (specifically the ones related to
Sociability and Sensory/Cognitive Awareness) as wells as the ones
reported as more general symptoms (Health/Physical/Behavior).
Effects in Adapted Behavior Composite and in DLS (subareas
from VABS) were observed. The daily living skills (DLS) are one
of the most compromised areas in ASD and an improvement in
this area translates in a better integration in the daily routines,
and improved self-sufficiency.

In the secondary follow-up time point, analysis replicated the
maintenance of positive changes observed at the in the primary
follow-up time point, which is noteworthy, because a decay of
effects did not occur, and significance was still present.

JAAT_NoFace and JAAT_Face scores did not alter between
baseline and the secondary follow-up time point.

There were positive effects in all subscales from ATEC and in
ATEC total scores. There were also changes in Adapted Behavior
Composite and in all subareas from VABS.

Our study suggests a long term beneficial effect in patient’s
mood/mental state. This effect cannot at this stage be causally
attributed to specific mechanisms related the intervention, but
gives a good insight about the structure of the intervention, the
compliance and reliability of the measures used, which show long
term significant effects.

Strengths and Limitations
As strengths, we can list the high compliance, low/null dropout
rates, and signal to noise stability and decoding accuracy of our
BCI system across all seven sessions. Moreover, and in spite of
the fact that our custom primary outcome measure failed to
show improvement, most secondary clinical outcome measures
(ATEC and VABS) suggested improvement. This improvement
was maintained in the 6-months follow-up assessment, which
reinforces the potential utility of these kind of interventions and
the validity of this measures.

As limitations, we note the customized nature of our chosen
primary outcomemeasure, which had no prior clinical validation,
unlike the secondary measures. Moreover, in spite of the
relatively realistic nature of our VR environment it can further
be improved to train in a more effective way social attention
skills.

Implications for Practice and Research
Given the very low rate of dropouts and the good classification
accuracy over sessions, with stable neurophysiological signals,
the system proves to be feasible as a tool in future efficacy
trials. Given that several of the secondary clinical outcome
measures showed improvement, we propose to use one of
them (ATEC, VABS) or a combination of scores as the
primary outcome measure in a future Phase 2 b clinical
trial.
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United Kingdom, 3 Burke Neurological Institute, White Plains, NY, United States, 4 Blythedale Children’s Hospital, Valhalla, NY,

United States, 5National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health,
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People can learn over training sessions to increase or decrease sensorimotor rhythms

(SMRs) in the electroencephalogram (EEG). Activity-dependent brain plasticity is thought

to guide spinal plasticity during motor skill learning; thus, SMR training may affect spinal

reflexes and thereby influence motor control. To test this hypothesis, we investigated

the effects of learned mu (8–13Hz) SMR modulation on the flexor carpi radialis (FCR)

H-reflex in 6 subjects with no known neurological conditions and 2 subjects with chronic

incomplete spinal cord injury (SCI). All subjects had learned and practiced over more

than 10 <30-min training sessions to increase (SMR-up trials) and decrease (SMR-down

trials) mu-rhythm amplitude over the hand/arm area of left sensorimotor cortex with

≥80% accuracy. Right FCR H-reflexes were elicited at random times during SMR-up

and SMR-down trials, and in between trials. SMR modulation affected H-reflex size. In

all the neurologically normal subjects, the H-reflex was significantly larger [116% ± 6

(mean ± SE)] during SMR-up trials than between trials, and significantly smaller (92%

± 1) during SMR-down trials than between trials (p < 0.05 for both, paired t-test). One

subject with SCI showed similar H-reflex size dependence (high for SMR-up trials, low

for SMR-down trials): the other subject with SCI showed no dependence. These results

support the hypothesis that SMR modulation has predictable effects on spinal reflex

excitability in people who are neurologically normal; they also suggest that it might be

used to enhance therapies that seek to improve functional recovery in some individuals

with SCI or other CNS disorders.

Keywords: EEG mu-rhythm, H-reflex, brain-computer interface (BCI), spinal cord injuries, task-dependent

adaptation

INTRODUCTION

The past several decades of non-invasive brain-computer interface (BCI) research show that people
can learn through a series of brief training sessions to control mu (8–13Hz) and/or beta (18–26Hz)
sensorimotor rhythms (SMR) recorded by electroencephalogram (EEG) over sensorimotor cortex
(Wolpaw et al., 1991; Wolpaw and McFarland, 1994). Such BCI-based SMR training might help
to improve motor function recovery in people with CNS disorders by guiding activity-dependent
brain plasticity (Dobkin, 2007; Daly and Wolpaw, 2008). Boulay et al. (2011) showed that trained
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SMR control affects reaction time, indicating that SMR
modulation influences a simple motor performance.
Furthermore, activity-dependent brain plasticity is thought
to guide the spinal cord plasticity that contributes to motor
skill learning (Wolpaw, 2010). To determine whether SMR
modulation might be used to guide spinal cord plasticity so
as to enhance functional recovery, the present study explored
the impact of SMR amplitude on the size of the H-reflex (an
electrical analog of spinal stretch reflex) in the forearm muscle
flexor carpi radialis (FCR).

MATERIALS AND METHODS

Study Overview
The subjects were 6 people with no known neurological
conditions (5men and 1 woman; age 22–68 years) and two people
with stable chronic incomplete spinal cord injury (SCI) [a 42-
year-old man with a 2-yr-old incomplete SCI (AIS: American
Spinal Injury Association Impairment Scale D) at C4 and a 33-
year-old woman with a 10-yr-old incomplete SCI (AIS D) at
C5-7]. Both people with SCI had been on stable doses of baclofen
for >6 months prior to their study participation. Their inclusion
was intended to provide some initial insight into the therapeutic
potential of SMR training. The study was reviewed and approved
by the Institutional Review Boards of Helen Hayes Hospital and
the Wadsworth Center, New York State Department of Health.
All subjects provided informed consent.

First, each subject learned and practiced over >10 training
sessions (<30 min/session, 2–3 sessions/week) of a BCI
cursor-control task (Figure 1, fully described in, Wolpaw and
McFarland, 1994, 2004; McFarland et al., 2003) to increase
(SMR-up trials) and decrease (SMR-down trials) mu-rhythm (8–
13Hz) amplitude over the hand/arm area of left sensorimotor
cortex (electrode C3 or CP3, Jasper, 1958; Ebner et al., 1999;
Nuwer et al., 1999; Jurcak et al., 2007) with ≥80% accuracy.
The number of sessions before reaching ≥80% cursor control
accuracy varied across subjects (from 2 to 8). Regardless of how
soon the ≥80% accuracy was achieved, all subjects completed at
least 10 training sessions. In these sessions, 32 channels of EEG
were collected with active electrodes (g.tec Medical Engineering
GMBH, Austria) and the general-purpose BCI software platform
BCI2000 (Schalk et al., 2004). EEG was sampled at 256Hz,
referenced to the left earlobe (ground at the forehead electrode
AFz) (Jasper, 1958; Ebner et al., 1999; Nuwer et al., 1999; Jurcak
et al., 2007). EEG features (logarithms of the amplitudes in 3-
Hz-wide frequency bands) were extracted by a surface-Laplacian
spatial filter (McFarland et al., 1997) and autoregressive spectral
estimation (model order 16) (Marple, 1987; McFarland and
Wolpaw, 2008). Features in the mu-rhythm frequency range at
C3 or CP3 controlled cursor movement. Every 100-ms, their
values for the previous 200-ms segment were calculated and
converted into vertical cursor movement by a linear equation. At
the beginning of each cursor-movement trial, a target appeared
randomly at the top right or the bottom right of the screen and
the cursor appeared in the middle of the left edge of the screen.
The cursor moved from left to right at a constant rate; the subject
learned to control SMR amplitude tomove the cursor up or down

so that it hit the target when it reached the right edge. Each
training session included 10 blocks of 16-18 trials each.

After >10 training sessions, (i.e., fully trained to hit the target
at ≥80% accuracy), the subject began the H-reflex component
of the study in which the right FCR H-reflex was elicited during
SMRup and SMRdown trials and in between trials.

H-Reflex Recording
Surface EMG activity from FCR and its antagonist extensor carpi
radialis (ECR) was amplified, band-pass filtered (10–1,000Hz),
and sampled at 3,200Hz. To elicit the FCR H-reflex, the median
nerve was stimulated in the cubital fossa, using surface Ag-AgCl
electrodes (2.2 × 2.2 cm) and 0.5-ms square pulses. Stimulation
was delivered when the subject hadmaintained 5–15%maximum
voluntary contraction (MVC) level of FCR EMG activity with
resting level ECR activity (typically <10 µV) for at least 2 s. For
all H-reflexmeasurements, the subject’s right armwas strapped to
a custom-made arm support platform with the shoulder at ≈90◦

in the sagittal plane and ≈40◦ in the transverse plane, the elbow
at full extension, and the hand in full supination.

To determine the stimulus intensity that elicited a submaximal
H-reflex with a small M-wave, the FCR H-reflex/M-wave
recruitment curve was obtained while the subject maintained the
preset levels of FCR and ECR EMG activity (Zehr and Stein, 1999;
Kido et al., 2004). This stimulus intensity was used to elicit the H-
reflex during SMRup trials, SMRdown trials, and in between trials
(see below). Then, the subject with right arm on the platform
completed; a block of 16–18 SMRup or SMRdown trials with
no voluntary EMG activation (i.e., similar to the SMR cursor
task training sessions except for the arm and hand position);
and a second block of 16–18 SMRup or SMRdown trials with
the preset levels of FCR and ECR EMG activity without H-reflex
elicitation. After these blocks confirmed that the subject was able
to perform the SMR cursor task with≥80% accuracy in this arm-
hand position while maintaining the preset levels of FCR and
ECR EMG activity, FCR H-reflex testing began.

While the subject performed cursor-movement trials [i.e.,
trials that required SMR increase (SMRup) or decrease
(SMRdown)], median nerve stimulation occurred at random
times during the trials and in between trials when FCR and ECR
EMG activity met the preset requirements. About 30 H-reflexes
were obtained from each subject in each of the three conditions
(SMRup trials, SMRdown trials, in between trials).

Data Analysis
Rectified EMG activity in the 50-ms pre-stimulus period was
averaged for each trial to measure the background activity level.
The FCR H-reflex and the M-wave amplitudes were measured
as peak-to-peak values in time windows determined for each
subject. Typical time windows were 3-13ms post-stimulus for the
M-wave and 18–27ms for the H-reflex. To ensure that the H-
reflexes were measured with the same background EMG levels
and the same stimulus intensity in all three SMR conditions, FCR
and ECR background EMG and M-wave size were compared
across the three conditions for each subject. Any trials that
occurred with too large or small M-waves or background EMG
levels were eliminated from the analysis. After removing these
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FIGURE 1 | Subjects learn over a series of training sessions to use SMR amplitudes in the µ (8–12Hz) frequency band over left sensorimotor cortex (at/around the C3

or CP3 electrodes) to move a cursor vertically while it moves from left to right at a constant rate (Wolpaw et al., 1991; Wolpaw and McFarland, 1994; McFarland et al.,

2003). (1) a target appears; (2) 1 s later the cursor appears and moves in two dimensions with vertical movement controlled by the subject’s SMR amplitude; (3) the

cursor reaches the target and the target flashes for 1 s; (4) the screen is blank for 1 s; and then (5) the next trial begins. (If the cursor misses the target, the flash does

not occur, the screen simply goes blank for 2 s.) In each training session, the participant goes through 10 blocks of ≈18 SMR trials each, separated by ≥1-min rest

periods.

trials, 15–30 trials were averaged for each condition of each
subject.

RESULTS

Background EMG levels and M-wave size did not differ among
SMRup, SMRdown, and in between conditions (p> 0.12 for FCR
and ECR background EMG and the M-wave size by repeated
measures ANOVA). Thus, the difference in H-reflex size among
conditions can be confidently attributed to the SMR control.

In all 6 normal subjects, the FCR H-reflex was larger during
SMRup trials and smaller during SMRdown trials, compared with
in between trials. Figure 2A shows typical H-reflex responses
during SMRup and SMRdown trials. A repeated-measures
ANOVA and t-test with Bonferroni correction showed that H-
reflex sizes in SMRup and SMRdown trials differed significantly
from each other (p = 0.02 by ANOVA and p = 0.0068
by t-test). Figure 2B displays SMRup and SMRdown H-reflex
sizes normalized to the between-trial H-reflex size in individual
subjects. Group mean ± SE H-reflex size was 116 ± 6(SE)% for
SMRup and 92± 1% for SMRdown trials.

In one of the subjects with SCI (Subject G), FCR H-reflex was
modulated across the three SMR conditions (Figure 2B) as it was
in normal subjects. In the other person with SCI (Subject H),
H-reflex modulation across the conditions was not significant.

DISCUSSION

SMR activity in the µ and β rhythm frequency range
decreases before and during active movement (Pfurtscheller,
1989; Pfurtscheller and Neuper, 1994; Pfurtscheller et al., 2006;
Klimesch et al., 2007; Boulay et al., 2011; McFarland et al., 2015).
Such SMR decrease, called event-related desynchronization
(ERD), is also associated with motor imagery (McFarland et al.,
2000). Indeed, in the initial stages of BCI-based SMR training,
people often imagine moving (or not moving) to decrease
(or increase) SMR amplitude (Wolpaw and McFarland, 2004).

As they acquire SMR control, such imagery tends to drop
away (Wolpaw and McFarland, 2004). Motor imagery increases
corticospinal excitability (Kasai et al., 1997; Rossini et al., 1999;
Stinear and Byblow, 2004; Stinear et al., 2006a,b; Bakker et al.,
2008; Kang et al., 2011; Gündüz and Kiziltan, 2015; Kato
et al., 2015; Im et al., 2016; Tatemoto et al., 2017) and resting
motoneuron excitability (Gündüz and Kiziltan, 2015). Studies of
the impact of motor imagery on the H-reflex are less consistent
in their results (Oishi et al., 1994; Abbruzzese et al., 1996;
Yahagi et al., 1996; Bonnet et al., 1997; Kasai et al., 1997;
Hashimoto and Rothwell, 1999; Hale et al., 2003; Patuzzo et al.,
2003; Cowley et al., 2008; Aoyama and Kaneko, 2011; Jarjees
and Vuckovic, 2016). The discrepancies among studies probably
reflect differences in the imagery (e.g., visual vs. kinesthetic,
Neuper et al., 2005), as well as in H-reflex testing methods. Many
studies measure the H-reflex when the muscle is inactive; they do
not control for subthreshold changes in motoneuron excitability,
which may markedly affect H-reflex size (Stein and Thompson,
2006).

In the present study, the FCRH-reflex was always measured in
the presence of a given level of ongoing FCR EMG activity andM-
wave size was kept stable; thus, motoneuron pool excitability and
effective stimulus intensity were the same across the three SMR
conditions (i.e., SMRup trials, SMRdown trials, and in between
trials). The results were quite clear: the H-reflex was larger when
SMR amplitude was high and smaller when SMR amplitude was
low. Boulay et al. (2015) found a similar positive correlation
between H-reflex size and SMR amplitude in rats.

In general, SMR amplitude in the mu-beta range is inversely
correlated with cortical activation; high SMR [i.e., event-related
synchronization (ERS)] reflects cortical inhibition, low SMR
(ERD) reflects cortical activation (reviewed in Klimesch et al.,
2007). SMR in the hand area of sensorimotor cortices decreases
during movement planning or execution (Pfurtscheller, 1989;
Pfurtscheller and Neuper, 1994; Pfurtscheller et al., 2006); and
voluntary modulation of pre-movement SMR affects subsequent
behavior (Boulay et al., 2011; McFarland et al., 2015). When
SMR amplitude decreases, cortical drive to spinal motoneurons
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FIGURE 2 | Effects of learned SMR control on the FCR H-reflex. (A) FCR H-reflex during the SMRup (red, solid) and SMRdown (blue, dashed) trials in subject D.

About 20 responses were averaged together for each sweep. (B) Average FCR H-reflex sizes during SMRup (red) and SMRdown (blue) trials in normal subjects (A–F)

and subjects with SCI (G and H). Group data for normal subjects are also included: H-reflex size averages 116 ± 6 (mean ± SE)% for SMRup trials and 92 ± 1% for

SMRdown trials.

increases (Rossini et al., 1991; Rau et al., 2003; Zarkowski et al.,
2006; Sauseng et al., 2009; Takemi et al., 2013). When cortical
drive to the motoneurons is increased by demanding motor
tasks [e.g., beam-walking vs. treadmill-walking, (Llewellyn et al.,
1990), greater postural complexity during standing (Yamashita
and Moritani, 1989)], the H-reflex is smaller. This H-reflex

suppression is thought to be mediated through corticospinal
excitation of Ia inhibitory interneurons (Iles and Pisini, 1992;
Nielsen et al., 1993) and/or interneurons affecting presynaptic
inhibition of Ia afferents (Iles, 1996; Meunier and Pierrot-
Deseilligny, 1998; see also Chen and Wolpaw, 2002; Chen et al.,
2002).

Because learned SMR control can influence H-reflex size, it
might serve as an aid in operant conditioning of the H-reflex,
which can help to improve impaired locomotion after incomplete
SCI (Manella et al., 2013; Thompson et al., 2013). As discussed
by Thompson et al. (2009), an operant conditioning protocol
can increase or decrease a targeted H-reflex. H-reflex change
has two components: task-dependent adaptation that begins in
several sessions and is thought to reflect plasticity in the brain;
and subsequent long-term change that progresses gradually over
sessions, is thought to reflect spinal plasticity, and persists after
conditioning ends (Thompson et al., 2009). In this context, it is
interesting to note that the magnitude of H-reflex change found
in the present study (i.e., Figure 2B), is similar to the magnitude
of task-dependent adaptation in the H-reflex produced by the

H-reflex operant conditioning protocol (Thompson et al., 2009).

This suggests that SMR training might be used to guide, and
possibly even enhance, task-dependent adaptation in the H-
reflex. It might thereby increase the conditioning success rate
and augment the rapidity and magnitude of the long-term spinal
plasticity that can trigger wider plasticity so as to improve
complex motor functions (e.g., locomotion) after SCI or in other

disorders (Thompson et al., 2013; Wolpaw, 2018). Such effects
could increase the clinical efficacy and practicality of spinal reflex
operant conditioning protocols.
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Patients with locked-in syndrome (LIS) are typically unable to move or communicate and
can be misdiagnosed as patients with disorders of consciousness (DOC). Behavioral
assessment scales are limited in their ability to detect signs of consciousness in this
population. Recent research has shown that brain-computer interface (BCI) technology
could supplement behavioral scales and allows to establish communication with these
severely disabled patients. In this study, we compared the vibro-tactile P300 based
BCI performance in two groups of patients with LIS of different etiologies: stroke
(n = 6) and amyotrophic lateral sclerosis (ALS) (n = 9). Two vibro-tactile paradigms
were administered to the patients to assess conscious function and command following.
The first paradigm is called vibrotactile evoked potentials (EPs) with two tactors (VT2),
where two stimulators were placed on the patient’s left and right wrist, respectively. The
patients were asked to count the rare stimuli presented to one wrist to elicit a P300
complex to target stimuli only. In the second paradigm, namely vibrotactile EPs with
three tactors (VT3), two stimulators were placed on the wrists as done in VT2, and one
additional stimulator was placed on his/her back. The task was to count the rare stimuli
presented to one wrist, to elicit the event-related potentials (ERPs). The VT3 paradigm
could also be used for communication. For this purpose, the patient had to count the
stimuli presented to the left hand to answer “yes” and to count the stimuli presented to
the right hand to answer “no.” All patients except one performed above chance level
in at least one run in the VT2 paradigm. In the VT3 paradigm, all 6 stroke patients and
8/9 ALS patients showed at least one run above chance. Overall, patients achieved
higher accuracies in VT2 than VT3. LIS patients due to ALS exhibited higher accuracies
that LIS patients due to stroke, in both the VT2 and VT3 paradigms. These initial data
suggest that controlling this type of BCI requires specific cognitive abilities that may be
impaired in certain sub-groups of severely motor-impaired patients. Future studies on
a larger cohort of patients are needed to better identify and understand the underlying
cortical mechanisms of these differences.
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INTRODUCTION

The term locked-in syndrome (LIS) was introduced to describe a
clinical state of quadriplegia and anarthria due to a disruption of
the corticospinal and corticobulbar tracts in the brainstem (Plum
and Posner, 1983). The principal etiology of acute onset LIS is
stroke (ischemic or hemorrhagic) affecting the ventral part of
the pons (Patterson and Grabois, 1986). LIS can also result from
the late stage of chronic degenerative neurological diseases such
as amyotrophic lateral sclerosis (ALS), which affects the upper
and lower motor neurons, leading to progressive paralysis of
voluntary muscles and eventually to respiratory failure (Bäumer
et al., 2014).

Based on the severity of motor deficits, three varieties
of LIS have been described: classical LIS, in which the
patient is unable to move – except for eye movements or
blinking – or to speak; incomplete LIS, in which residual
voluntary movements in addition to eye movements can be
present; and total or complete LIS (CLIS), where patients show
total immobility, including lack of voluntary eye movement
(Bauer et al., 1979). Patients with CLIS/LIS can be mistaken
with patients in coma or with other DOC such as the
vegetative state/unresponsive wakefulness syndrome (VS/UWS),
in which patients are eyes opened but do not show any sign
of voluntary movement. Hence, reliable diagnostic tools for
the differentiation of these clinical conditions are of utmost
importance.

Despite the existence of well-defined clinical criteria
for the diagnosis of DOC and LIS, differential diagnosis
remains challenging and misdiagnosis still occurs. Standardized
behavioral scales like the Glasgow Coma-Scale (GCS) (Teasdale
and Jennett, 1974) and the Coma-Recovery-Scale revised (CRS-
R) (Giacino et al., 2004) are widely used in clinical settings.
However, such tools are limited when assessing patients with
CLIS as they are highly dependent on motor abilities. For these
patients, supplementary tools are needed.

Once the diagnosis of LIS has been established, another
major challenge with this population is providing them with
appropriate devices for communication and environmental
management. These tools can increase quality of life and facilitate
the assessment of cognitive impairments (e.g., fronto-temporal
dementia), which has been described to be often associated with
ALS (Phukan et al., 2007).

In this context, brain-computer interface (BCI) systems
have been used for decades to establish communication with
patients with LIS, usually via the electroencephalogram (EEG)
(Wolpaw et al., 2002; Wolpaw and Wolpaw, 2012). Different
EEG paradigms have been employed that use different stimuli
or mental tasks, including motor imagery, steady-state visual
evoked potentials (EPs) (Guger et al., 2003; Bin et al., 2009;
Combaz et al., 2013; Ahn et al., 2015) and event-related potentials
(ERPs), notably the P300 waveform (Fazel-Rezai et al., 2012;
Blankertz et al., 2016). Most P300-BCIs rely on the visual
modality, but auditory or vibro-tactile modalities have been
explored for patients with visual/auditory impairments, which
have been described to be present in an important percentage of
patients with LIS (Lugo et al., 2015).

Kaufmann et al. (2013) compared different BCI modalities
on a single LIS patient, reporting that the tactile modality was
clearly superior compared to visual or auditory modalities. Prior
work has shown that healthy subjects without prior training
could achieve a mean classification accuracy of 93% with a vibro-
tactile paradigm (Alison et al., 2017). Using the same method,
12 ALS patients (9 LIS/3 CLIS) achieved a median accuracy of
76.6% (min: 40/max: 100) using a vibro-tactile paradigm with
two stimulators (VT2) (Guger et al., 2017). The same publication
showed that 2/3 CLIS patients reached a classification of 100%
using VT3. These two CLIS patients could also communicate
correctly (9/10 and 8/10 questions answered correctly). In other
work using vibrotactile P300 BCI for LIS patients, six patients
achieved an average accuracy of 80% (min: 20%/max: 100%) in
a paradigm with VT2 and 55.3% (min: 20%/max: 100%) in a
paradigm with VT3 (Lugo et al., 2014).

Silvoni et al. (2016) investigated the neurophysiological
correlates of vibrotactile stimulation processing in a group of
14 ALS patients and 10 healthy subjects, using a single vibro-
stimulator placed on the left hand. They reported that responses
to tactile stimuli were not altered in ALS, suggesting that this
neurophysiological signal could be used in at least some ALS
patients to control such a BCI.

In the current study, we investigated BCI performance
in patients with LIS from different etiologies. We explored
differences in classification accuracy and EPs using a vibro-
tactile based BCI in two sub-groups of LIS due to ALS and
stroke. Based on the literature suggesting preserved cognitive
abilities in LIS patients from both etiologies (Phukan et al., 2011),
we hypothesized that both groups would perform equally well
using a vibro-tactile based BCI, even though the underlying
pathological mechanisms differ between these two patient
groups.

The results of this study could help to improve the assessment
to detect the presence of consciousness in patients with stroke,
ALS and other conditions. These findings may also help to shed
light on the differences and clinical characteristics that should be
considered with each patient group and underline the importance
of a multimodal approach – using stimuli from different sensory
modalities – to evaluate non-responsive patients.

MATERIALS AND METHODS

Population
This retrospective study included data acquired in LIS patients
at the University of Palermo, Italy (PA) and by the French
Association of Locked-In Syndrome (ALIS) in Paris, France,
as part of other studies previously published (Lugo et al.,
2014; Guger et al., 2017). For the ALS patients, the following
inclusion criteria were used: patients had to be over 18 years
old, diagnosed with definite ALS according to the El Escorial
Diagnostic Criteria and LIS/CLIS state verified by experienced
neurologists in motor neuron diseases, without evidence of
cognitive and behavioral abnormalities along the disease’s course.
For stroke patients, the following inclusion criteria were used:
the patients had to be over 18 years old and diagnosed
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with stroke in the chronic (>1 year since diagnosis) LIS
state.

Table 1 reports the patients’ demographic data. We included
a convenience sample of six stroke patients (three ischemic,
three hemorrhagic; median age = 40, min: 21, max: 48) with
a disease duration between 4 and 19 years (median = 10), and
nine ALS patients (median age = 59, min: 37, max: 68) with a
disease duration between 2, 3, and 12 years (median = 7). The
difference between gender and age was tested using a Chi-Square-
Test (significance = p < 0.05). There was no difference in age and
gender between the two groups.

Brain-Computer Interface System
The mindBEAGLE system (g.tec Guger Technologies OG,
Austria) was used for all data collection and real-time feedback.
The system uses active gel-based EEG electrodes connected
to a biosignal amplifier (g.USBamp, g.tec medical engineering
GmbH). The amplifier has a 24-bit resolution and a high
oversampling rate to increase the signal-to-noise ratio. The
amplifier is connected to the computer via USB and sends the
data in real-time at a sampling rate of 256 Hz. The EEG signal
is presented on a monitor for quality inspection during the
measurement, and the data are stored in floating point format for
later data analysis.

The recorded EEG data were filtered between 48 and 50 Hz
using a notch filter. Afterward the data were bandpass filtered
between 0.1 and 30 Hz to remove baseline shifts and eliminate
most of the EEG artifacts. Eight electrodes were used for the
recording, placed on the Fz, C3, Cz, C4, CP1, CPz, CP2, and Pz
position according to the extended international 10–20 electrode
system. The reference electrode was fixed on the right earlobe and
the ground electrode was mounted on the forehead.

Paradigm
Two P300 oddball paradigms were used: vibrotactile EPs with
two tactors (VT2) and vibrotactile EPs with three tactors (VT3).
Both paradigms presented 480 stimuli per run, with 60 groups
of 8 stimuli. In both paradigms, the patient was instructed via
earbuds to silently count vibrotactile pulses to either the left or
right wrist. The left and right wrists had an equal chance of being
chosen pseudo-randomly as the “target” wrist. All vibrotactile
stimuli lasted 100 ms, with a 100 ms delay between stimuli. Both
paradigms required about 2.5 min per run and were designed
to elicit an oddball P300 to stimuli delivered to the target wrist
only.

In the VT2 paradigm, the two tactors were placed on the left
and right wrists. Each of the 60 groups of eight stimuli per run
contained one target and seven non-target stimuli, presented in
pseudorandom order. Thus, the target to non-target ratio was 1:7.

In the VT3 paradigm, an additional (third) tactor was placed
on a third location on the patient’s body. For the ALS patients,
the third tactor was placed on the upper part of the back. For
the stroke patients, the third tactor was placed on the neck. The
position of the third tactor can be arbitrary, since it acts as a
distractor. The other two tactors were fixed on the right and
left wrists. In VT3, each sequence of eight stimuli included one
stimulus to the left wrist, one stimulus to the right wrist, and

six stimuli to the third tactor, in pseudorandom order. Thus,
each sequence of eight stimuli also contained one target, like
the VT2 paradigm, but six of the seven non-targets were meant
as “distractor” stimuli that could never be designated as the
target. The runtime for both VT modes was 2.5 min for one
run.

In addition to these two paradigms to assess patients, we
also explored communication using the VT3 paradigm. The
experimenter asked yes/no questions and the patient was asked
to answer by counting the stimuli on either the left or right
wrist. One question can be answered after 120 stimuli, which
requires 38 s. The system only selects YES or NO if the result
is significant and presents no response otherwise. This result is
presented to the experimenter via the monitor. Each patient was
asked 10 questions. The communication was considered reliable
if the patient could accurately answer at least 7/10 questions.

Each patient participated in one experimental session that
included one VT3 communication run and at least one run
(each) of VT2 and VT3 assessment. Some patients participated in
additional VT2 and/or VT3 runs, as shown in Table 1. The total
number of runs per session was limited to five per participant, to
address concerns with possible fatigue or discomfort.

Data Analysis
For both paradigms, data segments of −100–600 ms around
each stimulus were extracted. Each of these single trials was
baseline corrected and averaged. Trials in which the EEG
signal amplitude exceeded ±100 µV were rejected from the
EP and classifier calculation. The EPs were visually inspected.
For the classification, the data were classified using the linear
discriminant analysis (LDA), which resulted in a classification
accuracy between 0 and 100%. This result showed how well
the data could be discriminated using the classifier. In one
assessment run, 60 sequences of tactile stimuli were presented to
the patient. Each sequence contained eight trials in randomized
order, in which one trial was the target trial and seven were
non-target trials. This resulted in 480 trials total (60 target
trials/420 non-target trials). After removal of artifact trials, the
ratio between non-target and target trials was set to 7:1 again.
Trials in both pools were shuffled and split 50:50 into training
and testing data. The training data were used to create an
LDA classifier and tested on the testing data as follows: seven
non-target trials and one target trial were randomly chosen
and the LDA score was calculated for each of the trials. The
trial with the highest LDA score was classified as target trial.
If the classified target trial was the real target trial, the test
classification was correct (100%), otherwise incorrect (0%).
This step was repeated 1000 times, resulting in a classification
plot.

Brain-computer interface performance was considered above
chance when the classification accuracy was higher than 23%
based on binomial distribution (Ortner et al., 2014). Non-
parametric statistical method was chosen due to the small
sample size. To compare the classification accuracies between
the two groups, a Wilcoxon rank sum test was used. VT2 and
VT3 paradigm results were compared separately. We considered
significance at p < 0.05.
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TABLE 1 | Overview of all patients including demographic information, classification accuracies, and communication mode results.

Patient Sex Age Diagnosis Disease duration
(years)

Clinical syndrome Paradigm Accuracy [%] Communication
using VT3

S1 F 47 Stroke (ischemic) 4 LIS VT2-1 79.9 4C/6U

VT2-2 45.6

VT3-1 52.8

VT3-2 23.1

S2 F 21 Stroke (ischemic) 4 LIS VT2-1 42.2 10U

VT2-2 16.5

VT3-1 28.3

VT3-2 13.4

S3 M 46 Stroke (ischemic) 16 LIS VT2-1 13.6 2C/8U

VT2-2 10.1

VT3-1 35.5

VT3-2 7.9

S4 M 33 Stroke (hemorrhagic) 12 LIS VT2-1 44.4 6C/4U

VT2-2 40.6

VT3-1 30.5

VT3-2 21.45

S5 F 48 Stroke (hemorrhagic) 5 LIS VT2-1 61.1 2C/8U

VT2-2 9.0

VT3-1 14.2

VT3-2 14.2

S6 F 46 Stroke (ischemic) 19 LIS VT2-1 25.0 10U

VT2-2 22.9

VT3-1 24.5

VT3-2 19.0

A1 F 68 ALS 7.5 LIS VT2 100.0 9C/1W

VT3 99.6

A2 F 65 ALS 7 LIS VT2 21.6 10U

VT3-1 12.4

VT3-2 1.6

A3 F 65 ALS 7 LIS VT2 100.0 7C/1W/2U

VT3 90.0

A4 F 76 ALS 12 LIS VT2 100.0 8C/1U/1W

VT3 87.5

A5 F 46 ALS 11.3 LIS VT2 98.2 7C/3U

VT3-1 81.4

VT3-2 51.5

A6 M 63 ALS 2.3 LIS VT2 97.2 9C/1W

VT3 91.0

A7 M 68 ALS 4.3 LIS VT2 94.2 8C/2W

VT3 100.0

A8 M 37 ALS 8.5 LIS VT2 100.0 8C/2W

VT3-1 52.4

VT3-2 95.1

A9 F 47 ALS 2.5 LIS VT2 21.2 7C/2U/1W

VT3 99.7

F, female; M, male; C, correct answers; U, undecided answers; W, wrong answers. Each participant completed one communication run with 10 questions.

RESULTS

Classification Accuracy
All patients performed the VT2 and VT3 paradigms, either once
or multiple times. Table 1 summarizes data obtained from all

patients. All patients except one showed at least one run above
chance in the VT2 paradigm. In the VT3 paradigm (i.e., active
task), all 6 stroke patients and 8/9 ALS patients showed at
least one run above chance. The ninth ALS patient (patient A2)
attained at best 12.4% accuracy. Overall, patients achieved higher
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accuracies in VT2 than VT3. The accuracy observed during VT2
was higher in ALS patients than in stroke patients, with a median
accuracy of 98% (min: 22%, max: 100%) and 32.8% (min: 15%,
max: 45%), respectively (p < 0.05). For VT3, ALS patients also
achieved a higher accuracy than stroke patients, with a median
classification accuracy of 82% (min: 42%; max: 97%) and 22%
(min: 15%; max: 28%), respectively (p < 0.01). The results are
reported in Figure 1.

Communication Mode
All patients participated in one communication run with
10 questions. None of the stroke patients could reliably
communicate with the system. The classifier did not get any
wrong answers for any of the stroke patients, but it did provide
between 4 and 10 “undecided” answers.

For ALS patients, 8/10 patients could answer at least
7/10 questions accurately, while 2 were not able to reliably
communicate with the system (the classifier provided
“undecided” answers for all 10 questions).

Evoked Potentials
All EPs were visually inspected. With the VT2 paradigm, all
patients showed a high P300 complex. Figure 2 presents examples
with classification accuracy and the EPs on the Cz electrode from
patients A9 and S3.

With the VT3 paradigm, 4/10 ALS patients (A1, A7–A9)
showed a high P300 or other components of the P300 complex,
whereas none of the stroke patients did. These results can be seen
in Figures 3 and 4.

DISCUSSION

The aim of this study was to compare performance with vibro-
tactile BCI paradigms in patients with LIS resulting from ALS
or stroke. Our hypothesis was that both groups would perform
equally well using a vibro-tactile based BCI. Our results show
higher performance in ALS than stroke patients, which might
reflect the different pathological mechanisms underlying the LIS
in each group.

The first explanation for the difference in both paradigms is
the possible presence of reduced tactile sensitivity in patients with
LIS due to stroke. Paterson and Grabois reported abnormalities
of sensitivity in 34 of 62 patients (54%) (Patterson and Grabois,
1986) with LIS from various etiologies. This has also been
reported in another study (Hawkes, 1974). Although it is not
the main characteristic of the syndrome, the presence of such
alterations is highly probable due to the possible lesion of
the central lemniscus that runs just behind the pyramidal
tracts.

We also observed lower accuracies in all patients during
the consecutive runs except one in the ALS group. This could
partly be explained by an increased fatiguability influenced by
the lesion site of the stroke (Staub and Bogousslavsky, 2001).
Even though the subject was asked to count the target, the
responses to the VT2 paradigm could also be elicited without
active participation of the person, which is not possible in VT3.

FIGURE 1 | VT2 and VT3 classification accuracies for both LIS groups. The
red lines indicate the mean values for the group. The upper and lower end of
the box represents the first quartile. The black lines are the end of the first and
fourth quartile. The red cross marks an outlier.

This could also explain the decrease in performance. Additional
research with more runs per patient, possibly across multiple
sessions, could further elucidate the effects of consecutive
runs.

Patient A9’s performance improved considerably between the
two VT3 runs (VT3-1 = 52.4%; VT3-2 = 95.1%), which could be a
short-term learning effect. The results from all other patients may
reflect fatigue or an absence of learning effects, since the VT3 task
entails a more challenging discrimination task. Further studies
could explore whether this accuracy reduction correlates with
mental exhaustion or other factors and develop new paradigms
that might be less tiring. Figure 4 show that the classifier could
attain high accuracy with fewer than 30 groups of eight trials
for most ALS patients, which suggests that shorter runs may be
feasible.

During visual inspection of the EPs, all patients showed
a P300 complex during VT2, but four ALS patients elicited
a high P300 or other signal during VT3, whereas when
none of the stroke patients did. If the high classification
accuracies observed in the four ALS patients correspond with
the EPs observed, the BCI system also found some additional
components in the signal to produce high classification accuracy
in the other patients. As VT3 is an active task, and therefore
more cognitively demanding, the data suggest that there are
some underlying cortical activities in ALS contributing to a
high classification accuracy even if the EPs did not exhibit
robust differences based on visual inspection of averaged
data.

While the approach used here is often called a P300 BCI in
the literature, many of the participants produced target vs. non-
target differences in other ERP components of the P300 complex,
notably the N100 and P200. Other articles have also noted that
so-called P300 BCIs often rely on non-P300 components within
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FIGURE 2 | Examples of EPs and Classification Accuracies from ALS patient A9 and stroke patient S3, both from the VT2 paradigm. The classification accuracy plot
on the top left shows that one ALS patient achieved 100% accuracy (top left). The classifier could effectively discriminate target from non-target stimuli after about 10
trials with A9’s data. Visual inspection of the averaged EPs (bottom left) shows a clear N1 followed by a robust P2 (Amplitude > 15 µV over site Cz) in patient A9 to
target trials (blue lines). The non-target trials (red lines) did not exhibit these features. The top right panel shows that one stroke patient attained 13.6% accuracy.
Concordantly, the ERPs in the bottom right do not exhibit robust differences between target and non-target ERPs.

the P300 complex (Fazel-Rezai et al., 2012; Allison et al., in
review). Additional research is needed to further understand
how these patients’ ERPs are generated and resulting clinical
impact.

In summary, ALS patients showed high P300 amplitudes
or other often atypical complexes, which could both be
classified with high accuracies by the BCI system. Prior
work has shown that LIS patients diagnosed with ALS
could control a P300-based BCI system, sometimes over
months (Sellers and Donchin, 2006; Nijboer et al., 2008;
Silvoni, 2009). Comparing the EPs of the ALS group
with the results of the stroke group, the most likely
explanation for these differences is an alteration in tactile
sensitivity.

Classification accuracy could indicate whether the patient
will successfully communicate. Prior work showed that
communication could be successful at a classification accuracy
>60% (Guger et al., 2017). Within the stroke patient group,
all answers that were not “correct” were “undecided.” As
the stroke patients showed classification accuracies below
60% in the assessment runs, this could further suggest that
the success of communication is dependent on classification
accuracy. The ALS patient group showed a more heterogeneous
response, with both “undecided” and “wrong” responses.

This outcome could indicate that more stroke patients had
concentration problems, fell asleep, forgot the instructions or
were distracted. The possible presence of cognitive deficits
in these patients must be also taken into account, since they
have been described in previous studies of patients with LIS
of vascular or traumatic etiology, especially with the presence
of thalamic or hemispheric lesions (Schnakers et al., 2008;
Rousseaux et al., 2009). In the case of patients with ALS, the A4
patient has associated a frontotemporal dementia, which may
explain his poor performance and low response rate. The low
classifier accuracy in the stroke patients and in ALS patients
A2 and A4 might also accurately reflect that these patients
are at least periodically unaware and/or unable to perform at
least some of the mental tasks required for the paradigms used
here.

This study used a montage with eight electrodes that were
positioned to optimally record the P300. Previous work with
a visual P300 BCI for spelling showed that a similar eight
EEG electrode montage could yield a classification accuracy of
100% with 17 subjects (Guger et al., 2012). Additional electrodes
did not substantially improve classifier accuracy (Guger et al.,
2003). However, future work could explore expanded montages
that could lead to better performance, especially with patient
groups.
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FIGURE 3 | EPs and classification accuracies of all stroke patients from the VT3 communication runs. All stroke patients produced a P300 ≤ 5 µV, and a
classification accuracy of 23.1% (patient S1) or lower in the VT3 runs. Visual inspection of Figures 3 and 4 shows that the differences in the target vs. non-target
EPs in the stroke patient group appear small compared to the ALS group, and the classifier could not find consistent and robust differences.

Several limitations have to be considered for this study.
First, a small convenience sample of 15 LIS patients was
included. We acknowledge the limitations of using a small
sample size but emphasize the difficulty of measuring this
specific patient population. Second, the threshold chosen for
defining above chance level performance and communication
runs might not be adapted for single patient performance, as
it would require additional offline analyses. Finally, it would be
interesting to document more extensively the cognitive abilities
and the severity of disease of the patients. As this was a
retrospective study, no further information could be extracted
regarding each patient’s status, which also limits potential data
analyses.

These results could contribute to improved mechanisms
to assess the presence of consciousness in non-responsive
patients, perhaps supplementing the CRS-R, GCS or other
established clinical assessments. Our findings may also help to
shed light on the differences and clinical characteristics that
should be taken into account with each patient group and
underline the importance of having a multimodal approach –
using stimuli from different sensory modalities – to evaluate

non-responsive patients to overcome sensory deficits and to
adapt the means of communication to the remaining sensory
capabilities.

The approach used here can objectively identify
command following activity without any movement and
could provide communication for some patients. All
three parameters, i.e., classification accuracy, EPs and
communication accuracy, might provide a more detailed
and accurate information about each patient. However,
results indicated that all three paradigms were more
successfully used in ALS than stroke patients. As both
the system and the paradigms used here are relatively
new, substantial improvements are needed to answer these
discrepancies.

SUMMARY

LIS Patients due to ALS attained better performance with the BCI
paradigms employed in this study than LIS patients due to stroke.
This could be explained by the lesion of the sensory pathways
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FIGURE 4 | EPs and classification accuracies of all ALS patients from the VT3 communication runs. ALS patients A1, A8, A9, and A10 had a P2 and/or P3 greater
than 5 µV over C3, Cz, and C4. Consistently, these ALS patients all achieved an accuracy ≥95%. In ALS patients A2–A7, the P300 response is lower than 5 µV or
non-existent, and only A7 exhibits modest target vs. non-target differences in visual inspection. Nonetheless, the classifier found some activity to facilitate accurate
classification, resulting in mean accuracies of 81.4% (patient A6) or higher, excluding patients A2 (VT3 = 1.6%) and A4 (VT3 = 16.3%).
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in patients with LIS due to brainstem stroke, and perhaps also
a greater propensity toward fatigue in this group (such as due
to brainstem damage). Future studies should elucidate these
differences to design BCI paradigms that consider the underlying
disease pathology, so as to best tailor BCIs accordingly for each
patient.
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Martin Gorges, Ingo Uttner and Albert C. Ludolph
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Background: In many neurological conditions, there is a combination of decline in
physical function and cognitive abilities. For far advanced stages of physical disability
where speaking and hand motor abilities are severely impaired, there is a lack of
standardized approach to screen for cognitive profile.

Methods: N = 40 healthy subjects were included in the study. For proof of principle,
N = 6 ALS patients were additionally measured. For cognitive screening, we used the
Edinburgh cognitive and behavioral ALS screen (ECAS) in the standard paper-and-pencil
version. Additionally, we adapted the ECAS to a brain–machine interface (BMI) control
module to screen for cognition in severely advanced patients.

Results: There was a high congruency between BMI version and the paper-and-pencil
version of the ECAS. Sensitivity and specificity of the ECAS-BMI were mostly high
whereas stress and weariness for the patient were low.

Discussion/Conclusion: We hereby present evidence that adaptation of a
standardized neuropsychological test for BMI control is feasible. BMI driven
neuropsychological test provides congruent results compared to standardized tests with
a good specificity and sensitivity but low patient load.

Keywords: brain–machine interface, brain–computer interface, cognition, ECAS, neuropsychology, P300, oddball,
amyotrophic lateral sclerosis

INTRODUCTION

In many neurological conditions such as amyotrophic lateral sclerosis (ALS), there is a combination
of decline in physical function and cognitive abilities. About 50% of ALS patients present with
cognitive deficits which are mostly mild and restricted to one cognitive domain; only 5–15%
present with full blown fronto-temporal dementia (FTD; Phukan et al., 2012; Goldstein and
Abrahams, 2013). In several studies on ALS, there has been evidence for specific impairments in
fluency, language, executive function including social cognition, and verbal memory (Beeldman
et al., 2016). It has been discussed controversially whether these impairments decline in the course
of physical function loss. Whereas some find no evidence (Kasper et al., 2016; Xu et al., 2017), others
report cognitive decline in the course of the disease (Elamin et al., 2013; Trojsi et al., 2016), but
possibly only in a subsets of patients, e.g., with bulbar onset (Schreiber et al., 2005). Discrepancies
between studies could either be explained by different subgroups or by a training effect in a
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retest design. Most importantly, most studies so far did not
use motor adapted neuropsychological tests which can be
performed either written or verbally. The Edinburgh cognitive
and behavioural ALS screen (ECAS) as a standardized test with
parallel versions to be performed either written or verbally was
a first approach to bridge this knowledge gap (Abrahams et al.,
2014). Thus, for mildly advanced stages of physical impairments,
standard neuropsychological tests are at hand. For moderately
advanced stages of motor decline, eye-tracking controlled devices
can be used for neuropsychological screening (Keller et al.,
2015). However, for far advanced stages of physical disability
where speaking and hand motor abilities are severely impaired,
a state referred to as locked-in state, standardized approaches
to measure cognitive function are lacking. Instead, in this state,
there have been single case studies on cognitive profiles only,
using near infrared spectroscopy (Fuchino et al., 2008), event-
related potentials (ERPs; Kotchoubey et al., 2003; Ogawa et al.,
2009) or visual recording of eye-blink responses (Lakerveld et al.,
2008). Cohort studies have not been performed so far and there
is lack of informative data on the cognitive abilities of the vast
majority of these patients. Instead, many locked-in (LIS) patients
including those with ALS are clinically regarded to have dementia
despite no valid data on cognitive profile. Single case studies
provide evidence for preserved cognitive function in LIS, e.g.,
Lakerveld et al. (2008) tested for memory and attentional abilities
in LIS by asking the patient to respond via eye blink which
was visually detected by the interviewer; they provided evidence
for superior cognitive abilities in LIS. However, only recently
have there been standardized approaches to screen for cognitive
abilities in far advanced stages of motor impairments. First
paradigms used state-of-the-art eye-tracking controlled setups
in lab environment (Cipresso et al., 2012; Keller et al., 2015)
and at bedside (Keller et al., 2017) to reliably detect cognitive
impairment. LIS state Brain–machine interfaces (BMIs) have
been widely used for patients with severe physical restriction
for environment control (Mugler et al., 2010; Münßinger et al.,
2010) and communication (Nijboer et al., 2008) and might
provide additional information on state of alertness in complete
LIS state (Chaudhary et al., 2016). BMIs might also be used to
screen for cognitive function which has been tested in ALS for
single cognitive domains already (Poletti et al., 2016). We hereby
present a unique approach for the use of BMIs to conduct a
standardized neuropsychological screening method on several
cognitive functions in patients with ALS. We hereby use a
commercially available EEG device which has been shown to be
sufficient for BMI communication (Duvinage et al., 2013) and
combine it with the widely used ECAS to enable clinicians and
researchers to screen for disease specific cognitive functions to
bridge the gap of knowledge with regard to cognitive profile in
complete immobility.

MATERIALS AND METHODS

Subjects
In total, N = 40 healthy controls were included who were
matched to ALS patients with regard to age, gender, and

education according to previous studies (Keller et al., 2015).
To test for feasibility in physically impaired patients, N = 6
ALS patients were included (Table 1). None of the participants
had signs of any neurological or psychiatric illness (other than
ALS) or dementia. They were all native German speakers.
Patients were consecutively recruited from the clinics of the
Department of Neurology at the Universitätsklinikum Ulm,
Germany. The study was approved by the Ethics Committee
of the University of Ulm (No. 19/12). All participants gave
written informed consent to the study according to institutional
guidelines.

Study Design
First, participants were screened for affective (ALS depression
inventory 12 items, ADI-12; Kübler et al., 2005; Hammer et al.,
2008), physical (ALS functional rating scale revised version, ALS-
FRS-R; Cedarbaum et al., 1999), and cognitive function [German
version of the Edinburgh cognitive and behavioral ALS screen
(ECAS); Abrahams et al., 2014; Lulé et al., 2015; Loose et al., 2016]
by a board certified neuropsychologist. In randomized order, half
of the participants performed the ECAS in a standard paper-
and-pencil version first (ECAS parallel version C) and then the
adapted BMI ECAS version (ECAS original version A), whereas
the other half performed both versions in reverse order. The
procedure took about 2 h.

BMI Setup
For bedside BMI neuropsychological testing, the mobile BMI
device Neuroheadset Emotiv Epoc+ was used (AF3, F7, F3,
FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4, reference, for
further information see www.emotiv.com). Electrode impedance
was decreased by using saline liquid until the level required by
the software was reached (in the 10–20 kOhm range) and was
checked along the experiment.

Participants were positioned in front of a 8 × 5 speller
matrix adapted according to Farwell and Donchin (1988)
which was presented on a laptop screen (letters A–Z, German
“Umlaute”, ß, digits 0–9). Rows and columns of symbols were
disguised for 62.5 ms by faces (a face of Albert Einstein)

TABLE 1 | m, male; f, female; ADI-12, ALS depression inventory 12 items;
ALS-FRS-R, ALS-Functional Rating Scale – revised form ranging from 0 to 48,
where 0 indicates complete immobility.

Controls (N = 40) ALS patients (N = 6) p

Mean SD Range Mean SD Range

Age 61.2 6.9 44–72 56.2 4.3 53–64 0.06

Gender (m/f) 15/25 4/2 0.36

Education years 15.7 2.7 8–20 12.8 1.3 12–15 0.01∗

ADI-12 16.75 3.7 12–26 22.3 9.3 16.41 0.03∗

Site of onset (Spinal/bulbar) 5/1

Months since onset 13.7 8.9 6–27

ALS-FRS-R 40§ 4.5 33–46

§ indicates moderate physical impairment. Chi2 test for gender and site of onset
and Mann–Whitney U-test for all other comparisons were used. ∗p < 0.05.
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with a 125 ms interstimulus interval (Kaufmann et al., 2013;
Figure 1). Participants were asked to fixate a target which was
then highlighted twice (rare event eliciting a P300) in a row of 11
non-target highlight events. Selected stimulus according to P300
was presented above the speller matrix.

Each session was composed of one calibration set and one
ECAS trial. Calibration of the Speller was performed by asking the
participant to spell the sentence “Ulm is nice” (“Ulm ist schön”)
with the BMI. During this run, participants received no feedback
(i.e., subjects did not see which character the system actually
selected), since data were only collected for system calibration.
The percentage of letters correctly selected by the system out of
the phrase, considered as the measure of BMI calibration (‘BMI
calibration accuracy’) was automatically calculated. Only when
BMI calibration accuracy’ was >85%, ECAS BMI was performed.
In this study, all participants were above this accuracy threshold.

BMI Data Analysis
EEG data were recorded with the freeware BCI2000 (Schalk et al.,
2004). Using an oddball paradigm, a P300 signal was measured.
BCI200 classifier was used to determine P300 signal as a positive
deflection in voltage (up to 5 µV) with a latency of 800 ms from
the stimulus onset. The sampling rate was 128 Hz. The EEG signal
was high-pass filtered at 1 Hz and analysed offline with a common
average reference (CAR) spatial filter.

Correctness of the ECAS BMI Selection
Participants were asked to verbally indicate to the investigator
when the selected item by the system was not the intended one.
The percentage of correctly selected items by the system was
recorded.

Stress and Weariness Rating
Following the BMI ECAS version, participants were asked to rate
their emotional stress and weariness following the ECAS BMI use
on a 5 point Likert scale.

Paper-and-Pencil Version of the ECAS
The ECAS is a widely used and well-validated ALS specific
cognitive screening tool measuring five domains of ALS specific
(executive function, language, and verbal fluency) and non-
ALS specific cognitive functions (memory and visuospatial
perception; Abrahams et al., 2014; Lulé et al., 2015; Loose et al.,
20161). In total, the ECAS encompasses 15 subtasks which
are subsumed under the five domains. Maximum total ECAS
score is 136 with decreasing score indicating lower cognitive
performance.

BMI Version of the ECAS
For the BMI adaptation, specific subtasks of the original
ECAS were selected such as language (naming and language
comprehension), restricted phonematic fluency and executive
functions (sentence completion and social cognition) for the
ALS specific tasks. For the non-ALS specific tasks, memory
(immediate recall and delayed recognition, key words of the
ECAS instead of whole story) and visuospatial function (cube
counting) was selected. For the patient BMI-ECAS version, the
length of the test needed to be reduced by selecting the most
discriminative items in the text according to previous research
(Lulé et al., 2015). According to performance in healthy subjects,
tables for verbal fluency scores and cut-off scores for cognitive

1www.ECAS.network

FIGURE 1 | BMI set-up. Left: Positions of the 14 electrodes of the Emotiv Epoc headset according to the 10–20 system. Middle: 8 × 5 speller matrix for the P300
speller. Rows and columns of symbols were disguised for 62.5 ms by faces (Albert Einstein) with a 200 ms interstimulus interval signal.
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TABLE 2 | Congruency of Standard paper and pencil ECAS version and BMI adapted ECAS version.

BMI
naming

BMI
comprehension

BMI
fluency

BMI
sentence

completion

BMI social
cognition

BMI
immediate

recall

BMI
delayed
recall

BMI cube
counting

Standard naming −0.076 – 0.081 −0.114 0.256 −0.135 −0.058 −0.065

Standard comprehension – – – – – – – –

Standard fluency 0.042 – 0.321∗ 0.248 −0.051 0.178 0.040 −0.010

Standard sentence completion −0.069 – 0.206 0.329∗ 0.036 0.301 0.092 −0.105

Standard social cognition 0.364∗ – 0.061 0.232 0.678∗∗ 0.382∗ 0.066 0.465∗∗

Standard immediate recall −0.103 – 0.144 0.028 0.299 0.300 −0.022 0.353∗

Standard delayed recall −0.018 – −0.208 0.212 −0.088 0.152 0.160 0.076

Standard cube counting 0.060 – 0.032 0.300 0.344∗ 0.447∗ 0.171 0.355∗

Language comprehension is not possible to correlate as variance in values is too low; Spearman-Rho correlation with ∗p < 0.05, ∗∗p < 0.01.

impairments were defined according to ECAS criteria (<2 SD
from mean for cognitive impairments; Abrahams et al., 2014;
Table 2).

Naming: scorpion and igloo had to be named (maximum 2
points; original ECAS 8 objects).

Language comprehension: 4 objects were presented numbered
1–4. Four sentences (original ECAS, 8 sentences) were
acoustically presented of which one sentence described a
property of one object each. Participants were asked to
select the correct object for each consecutively presented
sentence (maximum 4 points; original ECAS, 8 objects and 8
sentences).

Memory: 10 words (all words to be remembered from
the original ECAS) were acoustically presented. Following,
participants were asked to produce all words which they could
remember (immediate recall). For delayed recognition, ten words
were presented of which only 5 had actually been presented
before. Subjects had to indicate “y” for yes or “n” for no according
to whether this word had been presented before (maximum
10 points; original ECAS, a story is given but only the ten
words of the BMI test are valid for scoring in the original
ECAS).

Visuoconstruction: Two objects that were made of cubes were
presented separately. Subjects had to determine the number
of cubes of each object (maximum 2 points; original ECAS, 4
objects).

Sentence completion: three sentences with the last word
missing were to be completed by the subject by providing a
word which did not logically complete the sentence (maximum
3 points; original ECAS, 6 sentences).

Restricted phonematic fluency: subjects had to name 4
letter words with the given initial letter “G” within 8 min
(maximum 12 points; same for original ECAS within 90 s
time). Verbal fluency index was calculated according to
healthy subjects’ performance analogous to Abrahams et al.
(2014).

Social cognition: subjects first had to indicate personal
preference for one out of four numbered objects. Three sets
of four objects were presented (original ECAS six sets of four
objects). Subsequently, subjects had to indicate the preference of
a face that was presented adjacent to the same sets of four objects
(maximum 6 points).

All answers were spelled via the spelling matrix of the P300
speller (Figure 1).

According to performance in healthy subjects, tables for verbal
fluency scores and cut-off scores for cognitive impairments were
defined according to ECAS criteria (<2 SD from mean for
cognitive impairments; Abrahams et al., 2014; Table 2).

Statistics
Data were managed in SPSS (SPSS version 21.0 IBM). Mann–
Whitney U-test was used for group comparison with effect size
r. For correlation analysis, Spearman–Rho test was used. All
analyses were two-sided and significance level was set at p = 0.05.

RESULTS

General Cognitive Screening
When compared to healthy controls, patients scored
significantly lower in the language function (U = 65.00,
z = −2.22, p = 0.027, r = −0.33). Scores of the other domains
(executive function, verbal fluency, memory, and visuospatial
function) did not significantly differ between the groups (all
p > 0.05).

Congruence of BMI and Paper–Pencil
ECAS
To determine whether performance accuracy of the BMI ECAS
could associate performance accuracy of the written paper–pencil
version, a Spearman–Rho correlation analysis was performed,
showing a significant correlation between the performance in
both versions of healthy controls (Spearman–Rho r = 0.64,
p < 0.001) and of both groups (Spearman–Rho r = 0.51,
p < 0.001). For patients, congruency was also acceptable but did
not reach significance due to the small sample size (Spearman–
Rho r = 0.40, p = 0.43).

For different cognitive functions, there was a significant
congruency for verbal fluency, sentence completion, social
cognition, immediate recall, social cognition, and cube counting,
for the other cognitive functions, congruency was low (Figure 2
and Table 3).
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TABLE 3 | Predictive validity of the ECAS BMI version.

Max Cut-off Specificity [%] Sensitivity [%] PPV [%]

BMI Paper pencil BMI Paper pencil a b c d

Language 6 28 5.6 25.8 0 4 1 35 90 0 0

Fluency 12 24 8.5 17.9 2 5 0 33 87 100 29

Executive 12 48 10.6 39.2 2 4 4 30 88 33 33

ALS specific 30 100 23.6 84.3 2 3 0 35 92 100 40

Memory 14 24 6.7 18.8 3 3 2 32 91 60 50

Visuospatial 2 12 1.7 10.9 1 2 3 34 94 25 33

Non-ALS specific 16 36 8.7 30.1 4 2 5 29 94 44 67

ECAS total 46 136 32.9 115.8 1 2 1 36 95 50 33

Cut-offs were defined according to performance in healthy subjects (<2 SD of mean score). BMI, brain–machine interface ECAS version; Paper Pencil, paper and pencil
ECAS standard version; for a–d, cognitive impairment was defined as <cut-off for both BMI and paper and pencil version with a, correct positives; b, false positives; c,
false negatives; d, correct negatives; PPV, positive predictive value.

FIGURE 2 | Congruency of ECAS paper and pencil version and BMI version in
healthy controls.

Validation of ECAS BMI Version in
Healthy Controls
Cognitive impairments for the total score and the five domains
were determined according to cut-off scores. Overall, one healthy
subject performed 2 SD below the overall ECAS score and for the
domain language, fluency, and executive function. Memory and
visuospatial performance was impaired in three and four subjects,
respectively.

Sensitivity and Specificity of the ECAS
BMI Version
There was a high convergent validity of the BMI version of
the ECAS, especially for fluency, sentence completion, social
condition, and cube counting. Predictive validity of the ECAS
BMI version was good. This was seen in a high sensitivity,
specificity, and positive predictive values, especially for social
cognition and verbal fluency (Table 2). The functions immediate
recall and cube counting in addition to the domain executive
function showed high specificity whereas sensitivity was in
a medium range. Only language showed low sensitivity and

positive predictive value. The overall specificity of the BMI
version compared to the paper-and-pencil version was very high
at 95%.

Correctness of the ECAS BMI Selection
The median of correct answers of the control group for the P 300
speller was 85% for healthy subjects and 86% for ALS patients.

Subjective Rating of the Test
Patients (88%) and healthy subjects (86%) mostly reported that
they were not stressed by the ECAS BMI version and only a
minority reported to be slightly stressed by the procedure (12
and 14%, respectively); 48% of healthy subjects and 18% of ALS
patients regarded the BMI procedure to be wearisome.

DISCUSSION

So far, little is known about the cognitive state in complete
immobility in the course of physical decline in ALS (Fuchino
et al., 2008; Lakerveld et al., 2008). BMIs have been mainly used
to communicate with the patients to unlock the patients mind.
We hereby present a new BMI approach for neuropsychological
assessment in physically severely handicapped patients. Using
this approach, there is a standardized way to measure the
cognitive profile in these subjects.

We used a mobile P 300-based BMI algorithm to drive an ALS
specific neuropsychological test, the ECAS. Patients presented
a reduced performance in the language function in the paper-
and-pencil version compared to healthy controls. This is in
line with the previous findings that language function is the
most sensitive cognitive ability in the course of ALS (Keller
et al., 2015; Lulé et al., 2015; Niven et al., 2015; Wei et al.,
2015). For executive and visuospatial functions there was a trend
but other cognitive functions were not significantly different
between groups which was mainly attributed to small sample
size. There was a high congruency (Schmidt-Atzert and Amelang,
2012) between the adapted ECAS BMI and the original version.
Lack of congruency for some functions might be explained by
the adaptations in the BMI versions, mainly the reduction of
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items. The ECAS BMI version showed a high convergent and
predictive validity. This was indicated by a high sensitivity,
specificity, and positive predictive value, especially for social
condition and verbal fluency. Functions of the domains memory
and visual spatial abilities, and executive functions showed high
specificity whereas sensitivity was in a medium range. Only
language showed low sensitivity and low positive predictive
value which was partly explained by the fact of low numbers
of impaired controls in this domain. Interestingly, specificity
of single functions was similarly high as for the domain itself.
This implies that the measurement of one single function was
sufficient to get an overall estimation of the cognitive domain.
Future studies in larger samples are needed to verify this
hypothesis.

The correctness of the P300 speller was 85% in healthy subjects
and 86% in ALS patients, fulfilling the criterion of a minimum
of 70% accuracy as a predictor for satisfactory communication
(Choularton and Dale, 2004) and above the level of far advanced
ALS patients in other studies (Marchetti and Priftis, 2014).
Accordingly, patients were just as precise in spelling as the
healthy subjects (McCane et al., 2015), despite that a commercial
EEG device was used. For scientific P300 EEG analysis, there
are more open source products available which might better suit
these purposes than the hereby used Emotiv Epoc. However, for
satisfying communication with BMI, an accuracy rate of 70% is
required which was achieved by the hereby presented approach.
Due to a high intrinsic motivation to learn BMI control for
the future, the patients might have been especially concentrated
during the task. Overall, the ECAS BMI seems to be a feasible way
to easily and reliably detect cognitive deficits in ALS, especially
since most subjects rated the BMI version to be valid and neither
stressful nor explicitly strenuous.

The major limitation of the current study is the lack
of validation in a large patient sample with severe physical
impairments. We hereby present a first proof of principle
design with promising results but future studies in patients
with advanced physical impairments are warranted. Another
limitation is that most tasks of the original ECAS were simplified
and shortened and therefore not identical to the original version.
Due to high congruency of both of versions, it can be assumed
that both approaches measure similar cognitive constructs.
However, in future trials similar ECAS versions need to be used
for BMI and paper and pencil versions.

CONCLUSION

In this proof of principal study, we provide evidence that
neuropsychological screening can be performed using BMI
algorithms, even with off-the-shelf commercially available EEG
systems. So far, the studies are incongruent whether there is

cognitive decline in the course of physical function loss (Schreiber
et al., 2005; Elamin et al., 2013; Trojsi et al., 2016) or not (Kasper
et al., 2016; Xu et al., 2017). In which way cognitive function
develop, especially in the final state of physical function decline,
is so far mostly unknown. The main target of future trials will
be to see whether BMI controlled cognitive screening methods
are superior to previously introduced methods with eyetracking
control for those patients with residual eye movement (Keller
et al., 2016). For patients in complete locked-in state, BMI
driven approaches are a cost-effective and simple means of
neuropsychological examination of CLIS patients (Poletti et al.,
2016). The hereby presented BMI version of a standard
neuropsychological test is the next milestone to learn more about
cognitive decline in the course of ALS (Cipresso et al., 2012;
Poletti et al., 2016) but future studies are required to further
develop this approach.
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The primary goal of this work was to apply data-driven machine learning regression

to assess if resting state functional connectivity (rs-FC) could estimate measures of

behavioral domains in stroke subjects who completed brain-computer interface (BCI)

intervention for motor rehabilitation. The study cohort consisted of 20 chronic-stage

stroke subjects exhibiting persistent upper-extremity motor deficits who received the

intervention using a closed-loop neurofeedback BCI device. Over the course of this

intervention, resting state functional MRI scans were collected at four distinct time

points: namely, pre-intervention, mid-intervention, post-intervention and 1-month after

completion of intervention. Behavioral assessments were administered outside the

scanner at each time-point to collect objective measures such as the Action Research

Arm Test, Nine-Hole Peg Test, and Barthel Index as well as subjective measures

including the Stroke Impact Scale. The present analysis focused on neuroplasticity

and behavioral outcomes measured across pre-intervention, post-intervention and

1-month post-intervention to study immediate and carry-over effects. Rs-FC, changes

in rs-FC within the motor network and the behavioral measures at preceding stages

were used as input features and behavioral measures and associated changes at

succeeding stages were used as outcomes for machine-learning-based support vector

regression (SVR) models. Potential clinical confounding factors such as age, gender,

lesion hemisphere, and stroke severity were included as additional features in each of the

regression models. Sequential forward feature selection procedure narrowed the search

for important correlates. Behavioral outcomes at preceding time-points outperformed

rs-FC-based correlates. Rs-FC and changes associated with bilateral primary motor

154

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2018.00624
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2018.00624&domain=pdf&date_stamp=2018-09-11
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:rmohanty@wisc.edu
https://doi.org/10.3389/fnins.2018.00624
https://www.frontiersin.org/articles/10.3389/fnins.2018.00624/full
http://loop.frontiersin.org/people/473252/overview
http://loop.frontiersin.org/people/539337/overview
http://loop.frontiersin.org/people/170399/overview
http://loop.frontiersin.org/people/437721/overview
http://loop.frontiersin.org/people/111372/overview
http://loop.frontiersin.org/people/524023/overview
http://loop.frontiersin.org/people/524292/overview
http://loop.frontiersin.org/people/78206/overview
http://loop.frontiersin.org/people/170447/overview
http://loop.frontiersin.org/people/68076/overview


Mohanty et al. Correlates of Post-stroke BCI-Therapy Outcomes

areas were found to be important correlates of across several behavioral outcomes and

were stable upon inclusion of clinical variables as well. NIH Stroke Scale and motor

impairment severity were the most influential clinical variables. Comparatively, linear SVR

models aided in evaluation of contribution of individual correlates and seed regions

while non-linear SVR models achieved higher performance in prediction of behavioral

outcomes.

Keywords: brain-computer interface, stroke recovery, functional connectivity, motor impairment, machine

learning, support vector regression

INTRODUCTION

Brain Computer Interface
Electroencephalogram (EEG)-based brain-computer interface
(BCI) technology has emerged as a therapeutic modality for
stroke rehabilitation that has been demonstrated to facilitate
additional recovery that conventional therapies have not been
able to accomplish thus far (Silvoni et al., 2011). EEG-based BCI
detects and uses a patient’s neural signals as inputs to provide
real-time feedback, effectively enabling users to modulate their
brain activity. This is a promising intervention for patients with
motor impairment, as they can control external devices such as
computers and robots during rehabilitative tasks without relying
on residual muscle control (Felton et al., 2009) which could
be tailored to individuals potentially yielding greater benefits
from the system (Bhagat et al., 2016). Specifically, EEG-based
BCI intervention using attempted movement with functional
electrical stimulation (FES) (Biasiucci et al., 2018) and tongue
stimulation (TS) enables us to detect intent-to-move brain
signals and provide users with both visual and tactile sensory
feedback as a form of reward for producing certain brain
activity patterns while performing specific tasks. Thus far, several
neuroimaging studies in the realm of stroke rehabilitation have
shown potential functional benefits associated with the use of BCI
technology including, but not limited to, modulating changes in
neuroplasticity and restoringmotor function (Várkuti et al., 2013;
Young et al., 2014c; Nair et al., 2015; Soekadar et al., 2015).

Functional Magnetic Resonance Imaging
In recent years, neuroimaging has become integral in studying
the progression in neurodegenerative processes and efficacy
of rehabilitation procedures (Caria et al., 2011; Song et al.,
2014; Young et al., 2014c; Nair et al., 2015). Task-free methods
such as resting state functional magnetic resonance imaging

Abbreviations: 9HPT, Nine Hole Peg Test; ARAT, Action Research Arm Test;

BCI, brain-computer interface; BI, Barthel Index; BOLD, blood-oxygen-level

dependent; EEG, Electroencephalogram; FES, functional electrical stimulation;

fMRI, functional magnetic resonance imaging; LOOCV, leave-one-out cross

validation; M1, primary motor area; MCA, middle cerebral artery; MNI, Montreal

Neurological Institute; MSE, mean squared error; NIHSS, National Institute of

Health Stroke Scale; PMC, premotor cortex; RMSE, root mean squared error;

rs-FC, resting state functional connectivity; 1rs-FC, change in resting-state

functional connectivity; SIS, Stroke Impact Scale; SMA, supplementarymotor area;

SVM, support vector regression; SVR, support vector regression; T1-T3, control

period (no intervention); T4, pre-intervention; T6, post-intervention; T7, one-

month post-intervention; TS, tongue stimulation; SF, Supplementary Figure; ST,

Supplementary Table.

(rs-fMRI) allow us to measure the temporal correlation of
the spontaneous, low-frequency (<0.1Hz) blood-oxygen-level-
dependent (BOLD) signals across distinct brain regions at
rest. Oscillations in these BOLD fMRI signals are believed
to reflect cortical dynamic self-organization and have been
associated with the neural reorganization underlying cognitive
and motor function during stroke recovery (Lee et al., 2013;
Bajaj et al., 2015). Additionally, recent neuroimaging studies
have demonstrated overlap among networks identified during
rs-fMRI, motor imagery fMRI tasks, and motor execution fMRI
tasks (Grefkes et al., 2008; Nair et al., 2015). The motor network
is a complex and highly dynamic system with a unique balance of
excitatory and inhibitory mechanisms which has been postulated
to be significantly disturbed after the event of stroke (Grefkes and
Fink, 2011). This specific neuronal network commonly includes
the primary motor area (M1), premotor cortex (PMC) and
supplementary motor area (SMA), as it is established that activity
in these cortical regions maintains a dynamic equilibrium at
resting-state and is modulated during task performance (Debaere
et al., 2001). Recently, we have demonstrated that changes in
task-related brain connectivity can be used as a diagnostic tool
to track cortical changes and behavioral outcomes following
BCI intervention in patients with stroke (Young et al., 2014c).
However, while there is evidence of overlap among resting-
state and motor-related fMRI task (Grefkes et al., 2008), these
resting state networks have yet to be completely characterized
in the context of motor recovery facilitated by the use of a BCI
device. Therefore, further investigation into changes in resting-
state connectivity in relation to changes in associated behavioral
function following BCI intervention is necessary.

Multivariate Data Analysis
The ability of data-driven machine learning techniques to model
multivariate relationships can be attributed to their application
in neuroimaging analysis. Several studies have shed light on
the utility of machine learning to perform classification tasks
(Dai et al., 2012; Meier et al., 2012; Rehme et al., 2014;
Fergus et al., 2016; Khazaee et al., 2016; Ding et al., 2017;
Mohanty et al., 2018). These advance our understanding of brain
function by identifying brain patterns associated with specific
neurological diseases and differentiating among patient groups.
However, performing simple binary classification might not
suffice to answer clinically relevant questions such as prediction
of recovery associated with neuropathological disease and time
until onset of specific disease-related symptoms. In comparison
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to classification-based studies, relatively fewer studies have
examined neuroimaging data from the perspective of prediction
of outcomes (Dosenbach et al., 2010; Vergun et al., 2013) using
machine learning approaches. This underscores the need to
use data modeling techniques that can predict outcomes on a
more continuous scale while handling the high dimensionality
of input data. Within machine learning, there exist a variety of
algorithms to perform real-valued outcome prediction such as
naïve Bayesian (Frank et al., 2000), k-nearest neighbors (Hastie
and Tibshirani, 1996), Gaussian process (Marquand et al., 2010)
regression models. Rapid developments in the field are utilizing
neural networks (Pereira et al., 2016) in large datasets. However,
in this work we focus on using the a support vector machine-
based regression model which is proficient in modeling linear as
well as non-linear relationships between variables with a modest
sample size and present an extension of the work previously
presented (Mohanty et al., 2017). In place of relying solely
on non-linear models, we compared their performance to the
linear case, which enabled us to pinpoint specific correlates
of behavioral outcomes and improve interpretability for future
clinical applications. Additionally, the relative contribution of
individual seed regions was analyzed, and comparative analysis
helped establish the trade-off involved in choosing one model
over the other.

Overview of This Study
In the realm of stroke rehabilitation research, there have been
concerted efforts focusing on evaluating the neurophysiological
changes post-stroke (Rossini et al., 2003; Teasell et al., 2005;
Kwakkel et al., 2008; Wang et al., 2010) and investigating
novel therapeutic interventions to promote motor recovery and
ultimately improve overall quality of life for patients (Levy et al.,
2001; Kwakkel et al., 2008; Young et al., 2014d). While EEG-
based BCI intervention has shown early promise as a form
of rehabilitation post-stroke, neuroplastic changes in the form
of functional connectivity and resulting therapeutic effects on
behavioral outcomes following this intervention coupled with
FES and TS remain to be elucidated. In this study, correlates of
behavioral measures and associated changes following this EEG-
based BCI intervention are investigated using brain connectivity
as well as behavioral measures at preceding stages. Resting-
state functional connectivity (rs-FC) was examined in previously
identified (Grefkes et al., 2008) motor network comprised of
eight seed regions that play a dominant role in motor initiation,
specification, and execution. Immediate as well as carry-over
effects were investigated by examining fMRI and behavioral
measures at three stages: prior to the start of intervention, upon
completion of intervention and 1-month post completion of
intervention. To this end, amultivariate regression scheme, based
on support vector machines, was employed to handle the multi-
dimensional data and examine utility in estimating individual
behavioral outcomes and associated changes. The purpose of this
study was four-fold: (i) to identify neural correlates based on rs-
FC within the motor network to estimate behavioral outcomes
following BCI intervention; (ii) to identify neural correlates based
on changes in rs-FC within the motor network to estimate
changes in behavioral measures following the BCI intervention;

(iii) to identify behavioral correlates at a preceding time-point
to estimate behavioral measures at a succeeding time-point; and
(iv) to study the impact of potential confounds relative to rs-FC
and behavior as correlates of behavioral outcomes following the
intervention.

MATERIALS AND METHODS

Study Design
This study followed a permuted-block design that accounted
for gender, stroke chronicity, and severity of motor impairment
in stroke subjects to randomly assign subjects to one of two
groups: crossover control group or BCI therapy (intervention)
group. The study paradigm is schematized in Figure 1. Subjects
in the BCI therapy group received this intervention and were
administered a battery of behavioral assessments and MRI
scans at four time-points throughout the intervention: pre-
intervention (T4), mid-intervention (T5), immediately post-
intervention (T6), and 1-month after completing the last BCI
intervention session (T7). Subjects in the crossover control
group first received three functional assessments and MRI scans
during the control phase in which no BCI intervention was
administered (T1 through T3), and their assessments were spaced

at intervals similar to those given during the BCI intervention
phase. Upon completion of the control phase of the study, the
crossover control group “crossed over” into the BCI therapy
phase of the study. In this study, neuroimaging and behavioral
data corresponding to pre-intervention, post-intervention and
1-month post-intervention time-points across the crossover
control and the BCI intervention groups were combined and
treated as a single sample group to provide additional power to
the analysis.

Participants
Subjects for this analysis were recruited as part of an ongoing
multi-arm stroke rehabilitation study intended to evaluate the
effects of intervention using an EEG-based BCI device on
the recovery of upper-extremity motor function. The inclusion
criteria for participation in the study were: (1) at least 18
years of age; (2) persistent upper-extremity motor impairment
resulting from an ischemic or hemorrhagic stroke; (3) ability
to provide written informed consent. Exclusion criteria for the
study consisted of: (1) concomitant neurodegenerative or other
neurological disorders; (2) psychiatric disorders or cognitive
deficits that would preclude a subject’s ability to provide informed
consent; (3) pregnant or likely to become pregnant during
the study; (4) allergies to electrode gel, metal and/or surgical
tape, contraindications to MRI; (5) concurrent treatment for
infectious disease. The study was approved by the Health
Sciences Institutional Review Board of University of Wisconsin-
Madison. Written informed consent was obtained from all
subjects prior to the start of their participation in the study.
Twenty chronic stroke subjects (10 from crossover control group
and 10 from BCI intervention group), who completed the BCI
intervention, were included in this analysis. We limited the
cohort for this study to chronic-stage (time since stroke onset
> 6 months) stroke subjects only. Excluding stroke subjects in
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FIGURE 1 | Study paradigm. The time-points at which neuroimaging and behavioral data were collected are represented by - T1: Control baseline 1, T2: Control

baseline 2, T3: Control baseline 3, T4: Intervention baseline T5: Mid-intervention, T6: Post-intervention, and T7: 1-month post-intervention.

TABLE 1 | Demographic and clinical characteristics of the study cohort.

Number of stroke subjects 20

Chronicity Chronic (>6 months since stroke

onset)

Age (mean ± std. dev in years) 62.4 ± 14.27

Gender 8 Females, 12 Males

Lesion hemisphere 8 Left, 12 Right

Stroke severity (mean NIHSS ±

std. dev)

3.75 ± 3.5

Motor impairment severity 11 Severe, 9 Moderate

Time since stroke (mean ± std.

dev in months)

37.65 ± 40.84

Post-stroke handedness 16 Right, 2 Left, 2 Ambidextrous

the acute (time since stroke onset < 14 days) and sub-acute
(time since stroke onset < 6 months) stages was critical for
this analysis to ensure that spontaneous recovery in these stages
does not confound the effects of the BCI intervention. In other
words, changes observed in both rs-FC and motor behavioral
performance during the acute and sub-acute phases might result
from spontaneous neuroplasticity processes rather than from the
BCI intervention. Time since stroke was defined to be the period
between stroke onset and baseline visit. In addition, subjects
were excluded from this analysis if they exhibited bilateral brain
lesions for the potential reason that they could be outliers and
confound the results. All neuroimaging scans were inspected
by a neuroradiologist for the purposes of lesion localization.
The distribution of lesion site in the cohort was as follows:
middle cerebral artery territory (MCA; N = 10), frontal lobe
(N = 3), cerebellum (N = 2), putamen (N = 2), occipital lobe
(N = 1), basal ganglia (N = 1), and internal carotid artery
occlusion (N = 1). Stroke severity was determined by NIH Stroke
Scale (NIHSS) (Brott et al., 1989) scores at baseline. Severity of
motor impairment was assessed based on performance on Action
Research Arm Test (Carroll, 1965; Lang et al., 2006) and visual
inspection at the preliminary visit. Participants’ handedness post-
stroke was established before the start of intervention based on
Edinburgh Handedness Inventory (Oldfield, 1971). Participant
characteristics are summarized in Table 1.

BCI Intervention
All participants received at least 9 and up to 15 two-hour EEG-
based BCI interventional sessions, with up to three sessions per

week; the complete intervention lasted up to 6 weeks The BCI
intervention was administered using BCI2000 software (Schalk
et al., 2004) with modifications for administering TS (TDU 01.30,
Wicab Inc.) and FES (LG-7500, LGMedSupply; Arduino 1.0.4).
EEG signals, which served as the input for the BCI device, were
detected and recorded from a 16-channel EEG cap and amplifier
(Guger Technologies) during intervention.

A brief account of the three-step intervention is provided as
follows. (i) Each intervention session began with an open-loop
calibration screening task in which subjects were instructed to
attempt movement of either their left or right hand with resting
periods in-between by following randomly ordered visual cues
on the screen, such as “Right,” “Left,” or “Rest,” in 4-s blocks.
During the initial screening session, participants did not receive
any form of feedback. The EEG activity, recorded in the open-
loop screening task, was used by the classifier for identifying
activation patterns corresponding to volitional movement of the
respective left and right hands in the closed-loop task. Both in the
initial screening and closed-loop feedback conditions, attempted
movement was utilized to simulate the training conditions of the
neurofeedback task similar to the cognitive processes involved
in real-world movement. (ii) Following the initial screening,
subjects performed a closed-loop task, in which they received
real-time visual feedback in the context of a cursor task game.
The goal of the cursor task game was to move a cursor (ball)
onto a target area, with target areas positioned on either the left
or right side of the computer screen. Subjects were instructed
to move their left or right hand to control the corresponding
movement of the cursor in the direction of the target on the
screen. A 70% accuracy was set as the criteria to establish control
of a BCI system in this phase (Kübler et al., 2001, 2005). Real-
time EEG signals were used to calculate and control lateral
cursor movement, which served as the visual feedback for the
remainder of the session. During each BCI intervention session,
subjects completed 10 runs of this game, which included 8–12
trials per run, while receiving continuous visual feedback. (iii)
After successful completion of 10 runs of the game with visual
feedback, both TS and FES were simultaneously incorporated
into the intervention session for the remaining trials (as many
trials as possible within a 2-h session). FES, with a pulse rate
of stimulation 60Hz and varied up to 5mA in increments of
0.5mA as per the participant’s comfort level, was administered
to muscles of the subject’s impaired forearm when their neural
activity signals corresponding to impaired arm movement intent
were detected during a trial in which subjects attempted to
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move the cursor to a target on the screen corresponding to the
side of the impaired arm. The stimulation thresholds for FES
and TS were determined during the first intervention session
and maintained at the same level in all the subsequent sessions
for consistency. This EEG-based BCI system with FES and TS
provides subjects with both visual and tactile sensory feedback.
To keep subjects engaged throughout the task, the size of the
target on the screen and speed of the cursor could be changed to
modulate the difficulty of the task depending on their accuracy.
Additional details of the procedure of the intervention can be
found in prior studies such as those described by Wilson et al.
(2009), and Young et al. (2014a,c).

Neuroimaging Data Acquisition
Neuroimaging data were acquired at the four aforementioned
time points (T4 through T7). For the purposes of this work,
we chose to use the data from three of these points, i.e.,
prior to starting the intervention or pre-intervention assessment
(T4), immediately upon completion of intervention or post-
intervention assessment (T6) and a month after completion of
full intervention (T7) to study the potential peak and carry-
over effects of the EEG-based BCI intervention. Rs-fMRI scans
were acquired on GE 750 3T MRI scanners (GE Healthcare,
Waukesha,WI) using an 8-channel head coil. Ten-minute resting
state scans were acquired while participants’ eyes were closed
using single-shot echo-planar T2∗-weighted imaging: TR =

2600ms, 231 time-points, TE = 22ms, FOV = 224mm, 64 × 64
matrix size, flip angle = 60◦, and 40 slices with voxel dimensions
of 3.5 × 3.5 × 3.5 mm3. Five-minute T1-weighted anatomical
images were obtained at the start of each scan using a BRAVO
FSPGR sequence with the following parameters: TR = 8.16ms,
TE = 3.18ms and TI = 450, matrix size = 256 × 256, 156 slices,
flip angle= 12◦, FOV= 256mm with slice thickness= 1mm.

Behavioral Assessments
To assess the behavioral impact of the BCI intervention, a
battery of objective and subjective measures was administered
to participants at each time-point. Corresponding to the
neuroimaging, we focused on behavioral measures at pre-
intervention (T4), post-intervention (T6) and 1-month post-
intervention (T7) in this study. To systematically quantify motor
functional outcomes, the following standard behavioral measures
were evaluated as summarized in Table 2: the Action Research
Arm Test (ARAT) (Carroll, 1965; Lang et al., 2006), 9-Hole Peg
Test (9HPT) (Chen et al., 2009), Barthel Index (BI) (Mahoney,
1965), and Stroke Impact Scale (SIS) (Duncan et al., 1999; Carod-
Artal et al., 2008). The ARAT serves as a standardized and reliable
functional measure for stroke rehabilitation that measures
changes in specific upper limb function among individuals who
sustained cortical damage resulting in hemiplegia. The 9HPT
measure is used for quantifying hand dexterity. ARAT and 9HPT
were observed for the affected [ARAT(A), 9HPT(A)] as well as
unaffected [ARAT(U), 9HPT(U)] upper extremity. In this study,
BI was administered in questionnaire form and not observed
from functional performance as it was originally designed and
validated. The BI score quantifies the ability of an individual
to care for her/himself in their daily life. The SIS scores are

TABLE 2 | Summary of all the behavioral assessments used as outcomes.

Behavioral assessment Category

ARAT(U): Action Research Arm Test for the upper extremity

unaffected by stroke

Objective

ARAT(A): Action Research Arm Test for the upper extremity

affected by stroke

Objective

9HPT(U): 9-Hole Peg Test for the upper extremity unaffected

by stroke

Objective

9HPT(A): 9-Hole Peg Test for the upper extremity affected by

stroke

Objective

BI: Barthel Index Objective

SIS(ADL): Activities of daily life domain of Stroke Impact Scale Subjective

SIS (HF): Hand function domain of Stroke Impact Scale Subjective

SIS(Mob): Mobility domain of Stroke Impact Scale Subjective

SIS(PS): Physical strength domain of Stroke Impact Scale Subjective

self-reported outcomes that measure the health status of stroke
subjects. SIS includes the following standard domains: Activities
of Daily Living (ADL) for difficulty carrying out activities in a
typical day, Hand Function (HF) for difficulty in using the hand
most affected by stroke, Mobility (Mob) for difficulty in ability to
be mobile at home and in community, and Physical Strength (PS)
for overall strength in the upper and lower limbs of the affected
side.

Individual Level Analysis
The main steps involved in the processing of data on a single-
subject level are outlined in Figure 2 and described in detail in
the following subsections.

Neuroimaging Preprocessing
Rs-fMRI scans of 20 subjects were visually inspected for artifacts
and preprocessed in the following sequential manner: the
first three volumes of each scan were removed, images were
despiked, slice time corrected, aligned with the corresponding
anatomical T1 scan, spatially smoothed with a 4-mm FWHM
(full width at half maximum) Gaussian kernel, transformed into
the standard MNI space (3.5mm isotropic), motion censored
(per TR motion > 1mm or 1◦), regressed for nuisance variables
(regressed out the signal from locally averaged white matter and
cerebrospinal fluid) and bandpass filtered (0.009–0.08Hz). Given
the controversial nature of global signal regression (Murphy and
Fox, 2016), this processing step was not included in the analysis
pipeline. All rs-fMRI data were preprocessed using Analysis of
Functional NeuroImages (AFNI) (http://afni.nimh.nih.gov/afni)
(Cox, 1996).

Rs-FC
A seed-based analysis was adopted based on prior work that
investigated rs-FCwithin themotor network in stroke population
(Grefkes et al., 2008; Nair et al., 2015). The seed regions
were identified on the basis of a network of cortical and
subcortical areas that exhibited activation during visually paced
hand movements. The seed regions for this study included the
primary motor cortex (M1), supplementary motor area (SMA),
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FIGURE 2 | Steps for individual subject analysis are shown below. (A) rs-FC correlates of behavior: (a) raw rs-fMRI (top) from pre-, post- and 1-month

post-interventions were preprocessed (bottom); (b) 8 seed regions were chosen from the motor network to compute rs-FC at each time-point; (c) 8 × 8 rs-FC matrix

was computed and corresponding behavioral scores were transformed as needed for each time-point; (d) rs-FC reflected in the lower triangle of 8 × 8 matrix was

vectorized into 28 unique correlation coefficients per subject and 8 distinct behavioral measures were aggregated for group-level analysis. (B) 1rs-FC correlates of

1behavior: (a) raw rs-fMRI (top) from pre-, post- and 1-month post-interventions were preprocessed (bottom); (b) 8 seed regions were chosen from the motor

network to compute rs-FC at each time-point; (c) 8 × 8 rs-FC matrix was computed and corresponding behavioral scores were transformed as needed for a

preceding time-point; (d) 8 × 8 rs-FC matrix was computed and corresponding behavioral scores were transformed as needed for a succeeding time-point; (e)

change in rs-FC and behavioral scores were calculated between the two time-points; (f) change in rs-FC reflected in the lower triangle of 8 × 8 matrix was vectorized

into 28 unique correlation coefficients per subject and change in 8 distinct behavioral measures were aggregated for group-level analysis. (C) behavioral correlates

at preceding time-point of behavior at succeeding time-point: transformed scores for 8 behavioral measures at pre-, post- and 1-month post-interventions

were aggregated for group-level analysis.

FIGURE 3 | Regions of interest in the motor network included four bilateral seeds: M1 (yellow), PMC (blue), SMA (green), and Thalamus (red).

thalamus, and lateral premotor cortex (PMC) in the right and
left hemispheres, as illustrated in Figure 3 using BrainNet Viewer
(Xia et al., 2013) and abbreviated as per Table 3. The MNI
coordinates, also specified in Table 3, for the eight regions were
used to create 8-mm spherical seeds. For each subject, BOLD

time series signal from each region was extracted from the
spatially standardized residuals obtained in the preprocessing
stage. The extracted time series for each region was used to
compute an 8× 8 ROI correlation matrix for each subject. From
this symmetric matrix, 28 unique correlation coefficients were
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TABLE 3 | Shorthand representation of the eight ROIs in the motor network used

for the analysis is presented below.

ROI Shorthand X (MNI) Y (MNI) Z (MNI)

Left primary motor cortex L.M1 −39 −22 57

Right primary motor cortex R.M1 40 −23 55

Left premotor cortex L.PMC −48 1 36

Right premotor cortex R.PMC 58 1 35

Left supplementary motor area L.SMA −6 −14 53

Right supplementary motor area R.SMA 8 −14 52

Left thalamus L.Thal −8 −26 12

Right thalamus R.Thal 8 −26 12

extracted to represent pairwise rs-FC within the motor network
at each of the three stages of interest.

Potential Clinical Confounds
The study cohort was heterogeneous with respect to multiple
clinical factors which could confound the contribution of rs-
FC alone. Based on prior studies, we identified the following
factors as potential confounds: age and stroke severity (Ferraro
et al., 2003), severity of motor impairment, and time since stroke
(Rehme et al., 2012), lesion hemisphere (Crinion et al., 2007),
and gender (Kelly-Hayes et al., 2003). We included these clinical
variables as features, built the regressionmodel for each outcome,
and compared the performances of models with and without the
confounding variables. This strategy would help understand the
impact of potential confounds on the performance of regression
model as well as the contribution of confounds as correlates
relative to rs-FC or behavioral features.

Group-Level Analysis
Applications of machine learning regression models such as
SVR on rs-fMRI have been demonstrated in neuroimaging-based
studies (Dosenbach et al., 2010; Vergun et al., 2013) as SVR-
based methods can efficiently handle multi-dimensional data and
model the linearity as well as non-linearity in a given dataset. For
the purposes of this study, we adopt a strategy, similar to these
studies. To understand the correlates of behavioral outcomes
and changes, the following analyses were undertaken by applying
SVR to correlate:

ANALYSIS I: rs-FC at preceding time-points with behavioral
outcomes at succeeding time-points (T4 with
T6; T4 with T7; T6 with T7).

ANALYSIS II: change (1) in rs-FC between pairs of time-
points with corresponding change (1) in
behavioral outcomes (T4 and T6; T4 and T7; T6,
and T7).

ANALYSIS III: behavioral measures at preceding time-points
with behavioral measures at succeeding time-
points (T4 with T6; T4 with T7; T6 with T7).

In case of behavioral measures, total scores across comprising
domains for BI and ARAT, average scores across two trials for
9HPT, and transformed scores to yield a percentage of possible

points for the SIS domains of PS, Mob, HF, and ADL were
considered.

To characterize changes among the three stages of interest (T4,
T6 and T7), the following definitions were employed:

1rs− FC =
rs− FCsucceeding stage − rs− FCpreceding stage

rs− FCpreceding stage
(1)

where rs − FCsucceeding stage and rs − FCpreceding stage denote the
values of rs−FC correlation at succeeding (T6, T7) and preceding
(T4, T6) stages respectively.

Unlike in case of 1rs − FC, the definition for changes in
behavioral measures differed by case. For 9HPT(A), 9HPT(U),
ARAT(U), BI, SIS (PS, Mob, and ADL) scales, the normalized
change was gauged by:

1behavior =
behaviorsucceeding stage − behaviorpreceding stage

behaviorpreceding stage

(2)
However, in case of ARAT(A) and SIS(HF), the possibility of

behaviorpreceding stage being 0 invalidates the above normalization.
Thus, for these two outcomes, a simple deviation was computed
as follows:

1behavior = behaviorsucceeding stage − behaviorpreceding stage

(3)
where behaviorsucceeding stage and behaviorpreceding stage correspond
to the scores achieved by a participant in each behavioral task at
succeeding (T6, T7) and preceding (T4, T6) stages respectively.
Due to lack of variability across most time-points, the ARAT(U)
was discarded as a behavioral outcome for all analyses.

Each of the three aforementioned analyses was examined by
including the identified potential confounding variables as well.
In each case, the input features for all subjects were aggregated
and the steps described as follows were implemented.

Feature Selection
Each regression model was built using a subset of input features
(28 rs-FC features, 281 rs-FC features and 8 behavioral measures
as described by ANALYSES I, II and III) through a feature
selection procedure. A forward sequential feature selection (SFS)
was helpful in reducing the dimensions of the original data for
better interpretation of features involved (He et al., 2013; Lu
et al., 2015). This method searches for a subset of features that
optimally models a given outcome. The algorithm adds each
candidate feature and checks the specified criteria by building a
regressionmodel based on selected features. The criteria specified
for selection of a feature involved minimization of the mean
squared error (MSE) arising from estimation error for SVR
model. The SVR model is described in the following section.
A nested leave-one out cross-validation approach allowed for
testing of estimation error on the left-out sample, where the
inner loop was used to choose the features during a training-
validation phase. One advantage of methods such as SFS is that
since it works in the raw feature space, it can be applied to both
continuous and categorical features. During cross-validation, the
features that were common across all the folds were reported as
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the contributing features for each model. The weights assigned
to these features were averaged across all folds and sorted to
determine the rank or importance of individual features in the
regression model.

Support Vector Regression (SVR)
Once a subset of features was selected by SFS, the SVRmodel was
trained using the selected features for each behavioral outcome.
SVR was chosen due to its ability to predict real valued behavioral
outcomes based on multi-dimensional input features using the
principle of supervised learning support vector machines (SVM)
(Scholkopf and Smola, 2001). Typically used as a classifier,
SVM can also be used for regression analysis (Vapnik, 2013).
SVR forms a non-parametric method via the kernel trick. This
method not only provides resilience to overfitting and good
generalization performance, but also helps in interpreting the
contribution of individual features in high-dimensional data with
a linear kernel. The principle behind using the SVR analysis
is described in Supplementary Section 1. In the case of linear
regression, the mapping function lies in the input space, so it
is possible to derive the weights corresponding to each input
feature. However, in the case of non-linear regression, similar
weights cannot be derived explicitly since the mapping function
is no longer found in the input space but in the feature space in
the kernel space. Both linear and non-linear kernel SVR models
were employed for our analyses.

Cross-Validation
A leave-one-out cross-validation (LOOCV) approach (Hastie
et al., 2001) was adopted to estimate the performance of the
regression model in the outer loop of the nested cross-validation
as it provides an approximation of the test error with a lower
bias and is more suitable for a dataset with a limited number
of samples such as that used in this analysis. We performed a
LOOCV by subject in this validation-testing phase. This means
that the data consisting of 20 observations were subdivided into
20 folds such that each fold comprised of data from a single
subject. The regression model was trained using selected features

from 19 folds and tested upon the left-out fold. This was repeated
20 times such that data from each subject was left out once while
a model was trained using the rest of the data. The performance
of the model was quantified in terms of the average root-mean-
squared error (RMSE) for linear and non-linear SVR over all
iterations of LOOCV given by:

RMSE =

√

√

√

√

1

l

l
∑

i= 1

(yesti − yi)
2 (4)

where the yesti − yi term is the measure of error between
the estimated outcome and the true outcome. Reasonable
performance of SVR is characterized by values of RMSE closer
to 0. In addition to RMSE, the linear SVR can also be assessed
in terms of goodness of fit in terms of the coefficient of
determination (R2). However, it is not an appropriate measure
for non-linear models as illustrated by simulations performed by
Spiess and Neumeyer (2010). Thus, we quantified performance

of linear SVR models by R2 and RMSE but compared linear and
non-linear models in terms of RMSE.

Model Parameter Optimization
The generalization performance is dependent upon both the
selected features andmodel parameters C, ε (Burges, 1998; Smola
and Schölkopf, 2004), and the kernel parameters. The parameter
C is used to trade-off between the complexity of the model

and the extent to which estimated deviations larger than ε

are tolerated in formulation of the optimization. Parameter ε

controls the width of the ε -insensitive zone, used to fit the
training data. Both C, ε values have an impact on complexity
of the model. The data points are scaled by the parameter
depending upon the kernel used for regression. A randomized
search method based on Bayesian optimization process attempts
to minimize the MSE in the separate LOOCV by varying the
parameters for 30 evaluations (Bull, 2011; Snoek et al., 2012;
Gelbart et al., 2014) which corresponded to the inner loop of the
training-validation phase, training on all samples but one with
the best chosen parameters and testing on the left out sample.

Evaluation of Regression Model
In order to validate the results against chance levels, non-
parametric permutation tests were performed. For each
regression model, the outcome labels were randomly permuted
1,000 times and feature selection and LOOCV were repeated
for each permuted dataset to create a null distribution. The
performance of the regression model corresponding to the
non-permuted data was considered significantly better than
chance if the RMSE of the model was lower than at least 95% of
those obtained from the null-hypothesis.

Overview of Methodology
Overall, we trained SVR models using selected rs-FC, 1rs-FC,
or behavioral measures, optimized the model and identified the
contributing input features that provided the minimum RMSE
upon LOOCV. All computations were carried out using the
Statistics and Machine Learning Toolbox in MATLAB R2017a
(The MathWorks, Inc., Natick, Massachusetts, United States).
The group-level pipeline of analysis is visualized in Figure 4.

RESULTS

We present the findings from the linear-kernel SVR here (results
corresponding to the non-linear kernel models can be found in
Supplementary Materials ST1–3).

Choice of Time-Points of Interest
The analyses, undertaken here, revolved around three time-
points, namely T4, T6, and T7, i.e., pre-intervention, post-
intervention and 1-month post-intervention. The objective was
to study the immediate as well as potential residual impact of
the intervention after a month. A comparison of group medians
of behavioral outcomes at these three time-points, evident from
SF 1, showed increased values at T7 relative to T4 or T6 for
SIS(Mob), SIS(HF), ARAT(A) although not significant (based
on a Mann Whitney U-test). The time-points from the control
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FIGURE 4 | The overview of group-level analysis is provided here. (A) rs-FC correlates of behavior: (a) aggregated data from single-subject analysis gave 28 rs-FC

features for each of the 20 subjects; (b) SFS was used to select specific correlates corresponding to each behavioral outcome; (c) aggregated behavioral scores for 20

subjects served as outcomes in separate models; (d) data from (b) and (c) were fed into the SVR model; (e) linear (top) and non-linear (bottom) kernels were specified

to perform regression. Steps (a through e) were repeated by adding identified clinical variables to rs-FC data as input features. (B) 1rs-FC correlates of 1behavior:

(a) aggregated data from single-subject analysis gave 28 change in rs-FC features for each of the 20 subjects between pairs of time-points; (b) SFS was used to select

specific correlates corresponding to each behavioral outcome; (c) aggregated change in behavioral scores between corresponding pair of time-points for 20 subjects

served as outcomes in separate models; (d) data from (b) and (c) were fed into the SVR model; (e) linear (top) and non-linear (bottom) kernels were specified to

perform regression. Steps (a–e) were repeated by adding identified clinical variables to change in rs-FC data as input features. (C) behavioral correlates at

preceding time-point of behavior at succeeding time-point: (a) aggregated behavioral scores from a preceding time point gave 8 distinct measures;

(b) aggregated behavioral scores from a succeeding time-point gave the corresponding 8 measures; (c) data from steps (a) and (b) were fed to the SVR model;

(d) linear (top) and non-linear (bottom) kernels were specified to perform regression.

period, i.e., T1 through T3 were not included in the regression
analyses due to limited samples (N = 10). However, we did not
find significant differences (using Mann Whitney U-test on each
pair of time-points) when the group medians of the behavioral
outcomes during the control period were compared with T4
as illustrated in SF 2. Thus, presumably, we could consider
measures at T4 to serve as representative scores for the control
period.

Performance of Correlates
Behavioral outcomes were estimated using rs-FC, 1rs-FC
as well as behavioral measures at preceding time-points. In
terms of R2, better estimation of outcomes was observed
using behavioral correlates, followed by rs-FC and 1rs-FC in

order. This held true with and without the impact of clinical
variables.

Rs-FC as Correlates of Behavioral Outcomes
The performances of SVR using rs-FC as correlates of behavioral
outcomes are presented in Table 4 (and ST 1). All the SVR
models, developed here, performed better than chance-level
based on permutation test (p < 0.05) as depicted in SF3

of Supplementary Section 2. Individual predictors involved in
estimating the different outcomes are listed in Table 5 (and
ST 4). Overall, rs-FC associated with L.M1, R.M1, and R.PMC
were the main contributors toward estimation, both with and
without clinical variables. Among the three time-points, better
performances were found in cases of correlating rs-FC at T6 and
behavioral measures at T7.
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TABLE 4 | Linear-kernel SVR performances based on leave-one out cross-validation to correlate rs-FC at preceding time-point with behavioral measures at succeeding

time-point are presented.

Outcome T4 rs-FC∼T6 behavior T4 rs-FC∼T7 behavior T6 rs-FC∼T7 behavior

Features RMSE R2 Features RMSE R2 Features RMSE R2

(A) WITHOUT CLINICAL VARIABLES

9HPT(A) 9 110.93* 0.21 14 116.69* 0.14 6 109.25* 0.25

9HPT(U) 5 4.2* 0.27 3 4.05* 0.26 6 2.86* 0.63

ARAT(A) 2 20.58* 0.33 6 17.87* 0.49 4 15.48* 0.61

BI 3 8.01* 0.24 5 6.31* 0.31 11 6.39* 0.3

SIS(ADL) 4 10.93* 0.14 4 10.62* 0.51 5 109.25* 0.25

SIS(HF) 4 31.81* 0.37 6 26.84* 0.36 5 33.47* 0.64

SIS(Mob) 6 7.88* 0.19 8 13.17* 0.10 4 11.34* 0.34

SIS(PS) 10 18.44* 0.18 5 11.93* 0.47 4 11.7* 0.49

(B) WITH CLINICAL VARIABLES

9HPT(A) 10 69.627* 0.69 14 71.349* 0.68 7 61.391* 0.76

9HPT(U) 4 4.187* 0.28 4 3.822* 0.34 9 1.508* 0.9

ARAT(A) 2 5.143* 0.96 4 5.723* 0.95 2 7.009* 0.92

BI 7 9.452* 0.43 7 13.378* 0.22 12 14.099* 0.13

SIS(ADL) 7 16.146* 0.78 2 23.484* 0.51 11 15.1018 0.8

SIS(HF) 5 9.766* 0.03 8 9.4* 0.54 5 10.514* 0.43

SIS(Mob) 1 16.361* 0.37 4 13.523* 0.32 6 12.528* 0.41

SIS(PS) 4 6.796* 0.41 7 4.591* 0.64 10 3.817* 0.75

Specific correlates are listed in Table 5.

(*) = significant against chance-level based on permutation-test (p < 0.05); T4 = pre-therapy; T6 = post-therapy; T7 = 1-month post-therapy.

1rs-FC as Correlates of 1Behavioral Outcomes
The performance of SVR using 1rs-FC as correlates of
1behavioral outcomes are presented in Table 6 (and ST 2).
SVR models corresponding to ARAT(A) and SIS(HF) performed
better than chance-level based on permutation test (p < 0.05)
as depicted in SF 4. Individual predictors involved in estimating
the different outcomes are listed in Table 7 (and ST 5). Overall,
rs-FC associated with L.M1, R.M1, L.Thal and L.M1, R.M1,
R.Thal were the main contributors toward estimation without
and with clinical variables respectively. Among the three time-
points, better performances were found in cases of correlating
1rs-FC between T6 and T7 and 1behavioral measures between
the same time-period.

Behavioral Correlates at Preceding Stages of

Behavioral Outcomes at Succeeding Stages
The performance of SVR using behavioral measures at preceding
time-points as correlates of behavioral outcomes at succeeding
time-points are presented in Table 8 (and ST 3). All the SVR
models performed better than chance-level based on permutation
test (p < 0.05) as depicted in SF 5. Individual predictors involved
in estimating the different outcomes are listed in Table 9 (and
ST 6). Overall, the behavioral measures from the preceding time-
point were almost always the highest-ranked correlates, relative
to the clinical variables. Among the three time-points, better
overall performances were found in cases of correlating behavior
at T4 with those at T6.

Impact of Clinical Variables
We tested each SVR model with and without the impact
of the identified clinical variables to account for potential
confounding effects they might have. In general, the SVR
performance improved upon addition of clinical variables as
input features. Contribution of individual clinical variables,
relative to rs-FC, 1rs-FC and behavioral input features
can be found in ST 4-6 respectively. The most involved
clinical features were: NIHSS, motor impairment severity
for ANALYSIS I and III and NIHSS, motor impairment
severity and lesion hemisphere for ANALYSIS II. In terms
of ROI contribution, rs-FC associated with L.M1, R.M1 and
R.PMC were the important contributors for ANALYSIS I even
after adjusting for clinical confounds. For ANALYSIS II, the
important contributors included L.M1, R.M1 and L.Thal without
clinical variables and L.M1, R.M1, and R.Thal with clinical
variables.

Linear vs. Non-linear Regression
The overall performances of the linear and non-linear SVR
models were compared in terms of their RMSE values
computed via LOOCV (SF 6–8). Comparing the RMSE values
revealed that the linear and non-linear SVR models performed
approximately similarly with the non-linear model being slightly
more generalizable with lower error when rs-FC and 1rs-
FC were used as input variables. When behavioral measures
were used as input variables, linear SVR appeared to perform
better.
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TABLE 5 | List of rs-FC correlates of behavior between all pairs of time-points identified by using linear-kernel SVR are presented below.

Rank 9HPT(A) 9HPT(U) ARAT(A) SIS(ADL) SIS(HF) SIS(Mob) SIS(PS) BI

(A) WITHOUT CLINICAL VARIABLES

Outcomes at T6 and Input rs-FC Features at T4

1 L.SMA-R.M1 L.SMA-R.PMC R.PMC-L.PMC R.PMC-R.M1 L.SMA-L.PMC R.PMC-R.M1 R.SMA-R.M1 L.SMA-R.M1

2 R.SMA-R.M1 R.PMC-R.M1 L.SMA-R.M1 L.Thal-L.M1 R.SMA-R.M1 R.SMA-L.SMA L.Thal-R.SMA R.PMC-L.PMC

3 R.M1-L.M1 R.SMA-R.PMC R.SMA-L.M1 L.SMA-L.M1 L.Thal-R.PMC R.SMA-L.M1 R.Thal-L.SMA

4 R.PMC-R.M1 L.PMC-R.M1 R.M1-L.M1 R.M1-L.M1 L.Thal-R.M1 L.SMA-L.PMC

5 R.Thal-L.Thal L.Thal-L.M1 R.Thal-R.PMC L.Thal-L.M1

6 R.Thal-L.M1 R.SMA-R.M1 L.PMC-L.M1

7 R.SMA-R.PMC R.M1-L.M1

8 R.PMC-L.PMC L.Thal-R.M1

9 L.Thal-L.M1 R.PMC-L.PMC

10 R.Thal-L.M1

Outcomes at T7 and Input rs-FC Features at T4

1 L.SMA-R.M1 L.Thal-L.SMA R.SMA-R.PMC R.Thal-L.M1 R.SMA-R.M1 R.PMC-R.M1 R.Thal-R.PMC L.PMC-L.M1

2 R.SMA-R.M1 R.SMA-L.SMA L.SMA-R.M1 R.PMC-R.M1 L.PMC-L.M1 L.SMA-L.M1 R.SMA-R.M1 R.SMA-R.M1

3 R.PMC-R.M1 R.Thal-L.PMC R.SMA-R.M1 L.Thal-R.M1 R.M1-L.M1 R.SMA-L.SMA R.Thal-L.Thal R.Thal-L.SMA

4 R.Thal-L.SMA R.PMC-R.M1 R.SMA-L.M1 L.SMA-L.M1 R.SMA-L.M1 L.Thal-R.M1 L.Thal-L.M1

5 R.M1-L.M1 R.PMC-L.PMC L.Thal-R.PMC L.Thal-R.PMC R.M1-L.M1 R.Thal-L.M1

6 R.SMA-R.PMC L.PMC-L.M1 R.SMA-L.SMA L.SMA-L.PMC

7 L.Thal-R.M1 R.Thal-L.SMA

8 R.Thal-L.Thal R.Thal-R.PMC

9 R.Thal-R.SMA

10 R.Thal-R.M1

11 R.PMC-L.PMC

12 R.Thal-L.M1

13 L.SMA-R.PMC

14 L.Thal-L.M1

Outcomes at T7 and Input rs-FC Features at T6

1 R.PMC-R.M1 L.Thal-R.PMC R.PMC-R.M1 L.SMA-R.M1 R.PMC-L.M1 R.PMC-R.M1 R.Thal-L.SMA L.Thal-R.M1

2 R.PMC-L.PMC L.SMA-R.PMC R.Thal-R.PMC R.PMC-L.M1 R.Thal-L.PMC R.Thal-L.PMC R.Thal-L.PMC L.Thal-L.SMA

3 R.Thal-R.PMC R.SMA-L.M1 L.SMA-R.PMC R.SMA-R.PMC L.SMA-R.M1 R.SMA-L.PMC R.Thal-L.M1 L.SMA-R.PMC

4 R.M1-L.M1 R.Thal-L.M1 R.M1-L.M1 L.SMA-R.PMC R.Thal-R.M1 R.SMA-L.SMA R.PMC-L.M1 R.SMA-R.M1

5 L.SMA-R.PMC R.Thal-R.M1 R.Thal-R.PMC L.Thal-L.SMA R.Thal-R.PMC

6 R.SMA-L.PMC R.PMC-L.M1 L.PMC-L.M1

7 R.SMA-R.PMC

8 R.PMC-R.M1

9 R.M1-L.M1

10 L.Thal-L.M1

11 R.Thal-L.PMC

(B) WITH CLINICAL VARIABLES

Outcomes at T6 and Input rs-FC and Clinical Features at T4

1 Motor Imp. L.PMC-R.M1 Motor Imp. TSS Motor Imp. L.Thal-R.PMC NIHSS Motor Imp.

2 NIHSS Age NIHSS R.SMA-R.PMC L.SMA-R.PMC Lesion Hemi R.Thal-L.SMA

3 Lesion Hemi L.SMA-L.M1 R.Thal-R.PMC R.M1-L.M1 R.SMA-R.M1 NIHSS

4 R.M1-L.M1 NIHSS Motor Imp. R.PMC-R.M1 L.Thal-R.PMC Age

5 R.SMA-R.PMC Lesion Hemi R.Thal-R.M1 L.SMA-R.M1

6 L.SMA-R.M1 R.Thal-L.M1 R.Thal-L.PMC

7 TSS R.PMC-R.M1 L.PMC-L.M1

8 R.Thal-L.Thal

9 R.SMA-R.M1

10 R.PMC-R.M1

(Continued)
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TABLE 5 | Continued

Rank 9HPT(A) 9HPT(U) ARAT(A) SIS(ADL) SIS(HF) SIS(Mob) SIS(PS) BI

Outcomes at T7 and Input rs-FC and Clinical Features at T4

1 Motor Imp. R.SMA-L.SMA Motor Imp. R.SMA-L.M1 R.PMC-L.M1 R.PMC-R.M1 Motor Imp. TSS

2 NIHSS R.SMA-L.M1 NIHSS R.Thal-L.M1 Motor Imp. L.SMA-L.M1 R.Thal-L.Thal Motor Imp.

3 Lesion Hemi R.PMC-R.M1 L.Thal-R.PMC R.SMA-R.M1 R.SMA-L.M1 L.Thal-R.SMA Age

4 TSS NIHSS R.Thal-R.PMC R.PMC-L.PMC L.SMA-L.PMC L.Thal-R.PMC R.PMC-R.M1

5 R.SMA-R.M1 R.SMA-L.M1 L.Thal-R.M1 R.PMC-L.PMC

6 R.M1-L.M1 L.PMC-L.M1 R.Thal-L.PMC R.M1-L.M1

7 L.PMC-L.M1 TSS NIHSS R.SMA-R.M1

8 L.SMA-R.M1 NIHSS

9 L.Thal-L.M1

10 R.Thal-L.SMA

11 R.Thal-L.PMC

12 R.Thal-R.SMA

13 R.SMA-L.M1

14 R.PMC-R.M1

Outcomes at T7 and Input rs-FC and Clinical Features at T6

1 Motor Imp. L.Thal-L.M1 Motor Imp. R.PMC-L.M1 Motor Imp. R.Thal-L.PMC L.SMA-L.PMC Motor Imp.

2 NIHSS L.Thal-R.SMA NIHSS R.SMA-R.PMC L.SMA-L.PMC R.Thal-L.SMA R.SMA-L.SMA R.Thal-L.PMC

3 Lesion Hemi L.Thal-R.PMC TSS TSS R.Thal-L.M1 Motor Imp. R.PMC-L.PMC

4 R.SMA-L.PMC R.Thal-L.M1 L.SMA-R.M1 R.Thal-L.PMC R.PMC-L.PMC L.Thal-R.M1 R.Thal-R.M1

5 R.PMC-L.PMC R.SMA-L.M1 NIHSS NIHSS L.Thal-L.M1 R.SMA-R.M1 R.Thal-R.PMC

6 L.SMA-R.PMC NIHSS L.SMA-L.PMC R.PMC-L.M1 R.PMC-L.M1 R.Thal-R.SMA

7 R.PMC-R.M1 Gender R.Thal-R.M1 R.PMC-L.PMC Age

8 L.Thal-L.SMA L.PMC-L.M1 NIHSS TSS

9 R.SMA-R.PMC R.PMC-R.M1 L.Thal-R.SMA R.PMC-R.M1

10 R.SMA-L.M1 R.Thal-R.PMC R.M1-L.M1

11 R.Thal-L.PMC NIHSS

12 R.SMA-R.M1

T4 = pre-therapy; T6 = post-therapy; T7 = 1-month post-therapy.

DISCUSSION

Impact of BCI Intervention Based on
Identified Correlates
The objective of this study was to assess behavioral outcomes
following the described BCI intervention. To do so, rs-FC,
1rs-FC, and behavioral measures were utilized. Evaluation of
outcomes at the third time-point, namely the 1-month post-
intervention, would be particularly important to understand
the potential long-term impact of the intervention. As would
be expected, behavioral measures at preceding time-points
estimated the behavioral measures at succeeding time-points
better than rs-FC or 1rs-FC. However, using behavioral
measures alone does not provide the knowledge of possible
neural reorganization in the brain. Neuroimaging-based rs-FC
features can offer this complementary information and serve
as an alternative means to assess outcomes. In comparison to
pre-intervention measures, the post-intervention input (rs-FC,
1rs-FC, behavioral) measures were more indicative of outcomes
at 1-month post-intervention. That could suggest neural
reorganization occurring between pre- and post-intervention
that is at least partially retained at 1-month post-therapy.

Rs-FC as a Tool for Predicting Behavioral
Changes
FMRI has been shown as a useful biomarker in predicting the
impact of several forms of rehabilitation on the recovery of
function in the stroke population (Johansen-Berg et al., 2002;
Ward et al., 2003a; Sharma et al., 2009; Várkuti et al., 2013; Young
et al., 2014b). Rs-fMRI, in particular, is a useful non-invasive
method used to study impaired subjects such as stroke survivors,
as it is time-efficient and task-free, reducing the burden on study
participants. In our study, the impact of BCI intervention was
examined using rs-FC and associated changes corresponding
to several objective and subjective behavioral outcomes. Rs-FC
as correlates formed reliable SVR models across all outcomes.
However, with 1rs-FC, models corresponding to ARAT(A) and
SIS(HF) were only significant above chance-level. ARAT(A) and
SIS(HF) are objective and subjective measures of impairment
due to stroke and ability to use the impaired hand respectively.
Improvement in these outcomes following the intervention
demonstrates the impact of BCI-aided therapy. The models that
were not significant against chance level could potentially be
due to low variability in the normalized outcomes as well as
limited sample size. Additionally, the main contributing regions
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TABLE 6 | Linear-kernel SVR performances based on leave-one out cross-validation to correlate 1rs-FC between two time-points with 1 behavioral measures between

corresponding time-points are presented.

Outcome 1rs-FCT6−T4∼1behaviorT6−T4 1rs-FCT7−T4∼1behaviorT7−T4 1rs-FCT7−T6∼1behavior T7−T6

Features RMSE R2 Features RMSE R2 Features RMSE R2

(A) WITHOUT CLINICAL VARIABLES

19HPT(A) 3 110.93 0.22 1 116.69 0.14 4 109.25 0.25

19HPT(U) 1 4.2 0.28 1 4.05 0.26 6 2.86 0.63

1ARAT(A) 7 20.58* 0.33 4 17.87* 0.49 6 15.48* 0.61

1BI 5 8.01 0.18 5 0.05 0.53 6 6.39 0.3

1SIS(ADL) 2 10.93 0.24 5 10.62 0.51 8 0.08 0.73

1SIS(HF) 5 8.52* 0.26 4 26.84* 0.36 6 33.47* 0.42

1SIS(Mob) 4 7.88 0.37 2 13.17 0.1 3 11.34 0.34

1SIS(PS) 3 18.44 0.2 3 11.93 0.47 6 0.81 0.2

(B) WITH CLINICAL VARIABLES

19HPT(A) 5 69.63 0.69 3 71.35 0.68 3 61.39 0.76

19HPT(U) 3 4.19 0.28 3 0.1 0.22 3 1.51 0.9

1ARAT(A) 16 5.14* 0.96 8 5.72* 0.95 16 7.01* 0.92

1BI 3 0.05 0.1 7 4.59 0.64 8 3.82 0.75

1SIS(ADL) 4 9.45 0.43 5 13.38 0.22 4 14.1 0.13

1SIS(HF) 5 16.15* 0.78 5 23.48* 0.51 4 15.1* 0.8

1SIS(Mob) 4 9.77 0.03 7 9.4 0.54 5 10.51 0.43

1SIS(PS) 4 16.36 0.37 4 13.52 0.32 8 12.53* 0.41

Specific correlates are listed in Table 7. (*) = significant against chance-level based on permutation-test (p<0.05); T4 = pre-therapy; T6 = post-therapy; T7 = 1-month post-therapy.

remained focused on bilateral M1 areas with and without the
influence of the clinical features. These findings illustrate that rs-
FC serves as a stable imaging biomarker in understanding the
functional correlates of the recovery process and could, thus,
guide future rehabilitative studies in tracking changes over time.

Machine Learning as a Tool For Predictive
Modeling
In the context of fMRI studies, fewer studies have used
prediction of outcomes on a continuous scale (Ganesh et al.,
2008; Dosenbach et al., 2010; Michel et al., 2011; Vergun
et al., 2013), where SVR-based models have been adopted to
address different parts of data analysis, the majority of which,
are based on a simple linear-kernel SVR. Even fewer studies
have explored the improved performance offered by non-linear
kernels. For instance, non-linear SVR has been incorporated
in the preprocessing pipeline of fMRI data to accurately
detect activation by accounting for intrinsic spatio-temporal
autocorrelations (Wang et al., 2003) and cognitive states of
participants in a virtual reality environment have been predicted
based on fMRI data using non-linear SVR (Di Bono and Zorzi,
2008). With inclusion of non-linear-kernel SVR, our work adds
to the growing literature that provides insight on adopting the
more generalizable non-linear approaches for regression based
on fMRI data. This could indicate that while the underlying
relationship between rs-FC and behavioral measures might not
necessarily be linear, the relationship within a given behavioral
measure could be better expressed linearly. While linear models
were useful in interpreting the contributing features, non-linear

models performed slightly better in explaining possible non-
linear interactions with better generalizability. Our findings
suggest promise in that, given fMRI data from a large cohort,
machine learning-based regression models may be trained to
predict behavioral change resulting from BCI intervention on
a single-subject level. From the clinical perspective, such an
application could serve as a supplementary prognostic tool for
patients and their families in estimating the timeline and/or
capacity of potential recovery through this intervention.

The Bigger Picture
Our work adds to the ongoing investigation of understanding
the trajectory of motor recovery in the chronic stage of stroke
as a result of BCI-aided rehabilitative intervention using a data-
driven approach. These findings are in line with works that
suggest that using rehabilitative therapies have enabled recovery
even at the chronic stage of stroke (Fasoli et al., 2003; Caria et al.,
2011). This means that even though motor recovery associated
with the paretic side might have plateaued, there could still
be potential for further recovery. This was evident from the
predominant involvement of rs-FC and 1rs-FC associated with
the bilateral M1, which is primarily known to be a center for
voluntary motor behavior including but not limited tomovement
planning, movement initiation and motor learning. While the
roles of neuroimaging methods such as task-fMRI (Young et al.,
2014b) and diffusion images (Song et al., 2014) in relation to
motor recovery facilitated by BCI in our cohort have been
explored, the current study fills a gap by examining rs-fMRI as
a potential biomarker for recovery. Since it is established that
activations identified by task-fMRI have overlapping functional
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TABLE 7 | List of 1rs-FC correlates of 1behavior between all pairs of time-points identified by using linear-kernel SVR are presented below.

Rank 19HPT(A) 19HPT(U) 1SIS(ADL) 1SIS(Mob) 1SIS(PS) 1BI 1ARAT(A) 1SIS(HF)

(A) WITHOUT CLINICAL VARIABLES

Outcomes at T6 and Input 1rs-FC Features at T4

1 R.Thal-R.SMA L.SMA-L.PMC L.SMA-R.PMC R.PMC-R.M1 L.SMA-R.M1 R.Thal-L.PMC L.Thal-L.M1 R.PMC-L.M1

2 R.Thal-R.M1 L.Thal-R.PMC L.Thal-L.M1 R.SMA-L.SMA L.SMA-L.PMC L.Thal-L.PMC R.SMA-R.M1

3 R.SMA-R.PMC R.PMC-L.M1 R.PMC-L.M1 L.SMA-L.PMC L.PMC-L.M1

4 L.Thal-R.PMC L.SMA-R.M1 L.Thal-R.SMA

5 L.SMA-R.PMC L.PMC-R.M1

6 R.M1-L.M1

7 L.Thal-R.PMC

Outcomes at T7 and Input 1rs-FC Features at T4

1 R.Thal-L.SMA L.Thal-R.PMC R.Thal-R.M1 L.Thal-L.M1 R.Thal-L.PMC L.Thal-R.PMC R.Thal-R.SMA R.Thal-L.M1

2 L.Thal-R.PMC R.Thal-R.M1 R.SMA-L.M1 L.PMC-L.M1 L.Thal-L.PMC L.PMC-L.M1

3 R.PMC-R.M1 R.SMA-R.M1 R.SMA-R.PMC L.Thal-L.M1 R.Thal-R.PMC

4 R.PMC-L.PMC R.SMA-R.M1 R.Thal-L.SMA L.SMA-L.M1

5 L.SMA-L.M1 L.SMA-R.M1

Outcomes at T7 and Input 1rs-FC Features at T6

1 L.SMA-L.PMC R.PMC-R.M1 R.Thal-R.SMA R.SMA-R.M1 L.Thal-R.SMA R.SMA-L.SMA L.Thal-L.M1 L.SMA-L.M1

2 L.SMA-R.PMC R.PMC-L.PMC L.Thal-R.SMA R.Thal-R.M1 L.Thal-R.M1 L.PMC-R.M1 L.Thal-L.SMA L.Thal-L.M1

3 R.M1-L.M1 L.SMA-R.PMC R.SMA-R.PMC R.PMC-L.M1 R.Thal-R.PMC R.SMA-R.M1 R.Thal-L.PMC L.SMA-L.PMC

4 R.SMA-L.M1 R.SMA-L.PMC R.SMA-R.M1 L.SMA-L.M1 R.Thal-L.PMC L.Thal-R.PMC L.Thal-R.PMC

5 L.Thal-L.M1 R.PMC-L.PMC R.PMC-L.M1 R.SMA-R.PMC R.Thal-R.SMA L.Thal-L.SMA

6 L.Thal-L.SMA L.SMA-L.PMC L.Thal-L.M1 L.PMC-L.M1 R.PMC-R.M1 L.PMC-L.M1

7 L.Thal-L.PMC

8 L.PMC-R.M1

(B) WITH CLINICAL VARIABLES

Outcome at T6 and Input 1rs-FC at T4 + Clinical Features

1 R.Thal-R.SMA NIHSS L.SMA-R.PMC R.Thal-L.M1 L.SMA-R.M1 R.PMC-L.M1 NIHSS R.PMC-L.M1

2 Gender R.Thal-L.PMC L.Thal-R.PMC L.Thal-R.M1 L.SMA-L.M1 R.Thal-L.PMC Motor Imp. R.Thal-L.SMA

3 R.SMA-L.M1 L.SMA-R.PMC TSS R.PMC-R.M1 R.SMA-L.SMA R.SMA-L.M1 L.SMA-R.PMC R.Thal-R.SMA

4 R.Thal-R.M1 R.M1-L.M1 L.SMA-R.M1 L.Thal-R.M1 R.Thal-L.PMC L.Thal-R.M1

5 R.Thal-L.PMC Lesion Hemi R.SMA-L.PMC

6 R.Thal-L.SMA

7 L.SMA-L.PMC

8 L.SMA-L.M1

9 R.Thal-R.SMA

10 R.PMC-R.M1

11 L.SMA-R.M1

12 R.M1-L.M1

13 R.SMA-R.M1

14 L.Thal-L.M1

15 R.PMC-L.M1

16 TSS

Outcome at T7 and Input 1rs-FC at T4 + Clinical Features

1 R.Thal-L.SMA R.SMA-R.PMC Motor Imp. R.Thal-R.M1 R.SMA-L.M1 L.PMC-L.M1 L.Thal-L.PMC R.Thal-L.M1

2 NIHSS R.Thal-R.M1 R.Thal-R.M1 Age R.Thal-L.PMC L.Thal-R.PMC NIHSS L.PMC-L.M1

3 R.Thal-R.PMC Lesion Hemi L.SMA-R.PMC L.Thal-L.M1 R.PMC-L.M1 R.SMA-R.M1 R.SMA-L.M1 R.Thal-R.PMC

4 R.SMA-L.M1 R.Thal-L.SMA Lesion Hemi L.Thal-L.M1 R.Thal-R.SMA L.Thal-R.PMC

5 R.SMA-R.PMC L.Thal-L.PMC R.M1-L.M1 R.Thal-L.M1 R.SMA-L.M1

6 Motor Imp. R.Thal-L.PMC L.Thal-R.PMC

7 L.Thal-R.SMA NIHSS L.PMC-R.M1

8 L.SMA-L.PMC

(Continued)
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TABLE 7 | Continued

Rank 19HPT(A) 19HPT(U) 1SIS(ADL) 1SIS(Mob) 1SIS(PS) 1BI 1ARAT(A) 1SIS(HF)

Outcome at T7 and Input 1rs-FC at T6 + Clinical Features

1 R.Thal-R.SMA R.PMC-R.M1 L.SMA-L.PMC R.SMA-R.M1 L.SMA-R.M1 R.SMA-L.SMA L.Thal-L.SMA L.SMA-L.M1

2 L.PMC-L.M1 L.SMA-R.PMC R.SMA-R.M1 R.Thal-R.M1 Lesion Hemi L.PMC-R.M1 L.Thal-L.PMC L.Thal-L.M1

3 R.PMC-L.PMC R.SMA-L.PMC L.SMA-R.M1 Motor Imp. R.SMA-L.PMC L.Thal-L.PMC L.Thal-L.M1 R.SMA-R.PMC

4 L.Thal-L.PMC R.Thal-L.Thal R.Thal-L.Thal R.Thal-L.PMC R.SMA-R.PMC R.Thal-L.Thal

5 R.PMC-L.M1 L.Thal-R.PMC R.SMA-L.M1 Age

6 L.SMA-L.M1 R.Thal-L.SMA TSS

7 L.PMC-L.M1 R.Thal-R.PMC L.PMC-R.M1

8 NIHSS L.Thal-R.M1 L.SMA-L.M1

9 R.Thal-L.Thal

10 R.M1-L.M1

11 L.PMC-L.M1

12 Gender

13 L.Thal-R.SMA

14 NIHSS

15 L.Thal-R.PMC

16 L.Thal-R.M1

TABLE 8 | Linear-kernel SVR performances based on leave-one out cross-validation to correlate behavioral measures at preceding time-point and clinical variables with

behavioral measures at succeeding time-point are presented.

Outcome T4 behavior∼T6 behavior T4 behavior∼T7 behavior T6 behavior∼T7 behavior

Features RMSE R2 Features RMSE R2 Features RMSE R2

9HPT(A) 2 2.52* 0.74 1 3.28* 0.52 3 3.25* 0.53

9HPT(U) 4 37.36* 0.91 5 23.4* 0.97 5 9.05* 0.99

ARAT(A) 3 2.73* 0.99 3 3.31* 0.98 3 3.13* 0.98

BI 1 5.48* 0.62 2 5.19* 0.54 3 4.83* 0.6

SIS(ADL) 3 8.56* 0.54 3 10.24* 0.54 3 11.42* 0.43

SIS(HF) 4 12.74* 0.86 4 13.03* 0.85 4 7.9* 0.94

SIS(Mob) 4 5.36* 0.71 2 11.8* 0.28 3 10.09* 0.47

SIS(PS) 2 14.7* 0.49 2 12.03* 0.46 3 8.85* 0.71

Specific correlates are listed in Table 9. (*) = significant against chance-level based on permutation-test (p < 0.05); T4 = pre-therapy; T6 = post-therapy; T7 = 1-month post-therapy.

areas with rs-fMRI within the motor network (Biswal et al.,
1995), it allows us to draw parallels between our study and
those based on task-fMRI. Additionally, thalamic 1rs-FC also
emerged as a region with strong involvement in estimating
changes in ARAT(A) and SIS(HF), which was demonstrated
using task-fMRI activation associated with the same outcomes
in our precedent study (Young et al., 2014b). Another task-
fMRI-based study by Ward et al. (2003b) also reported thalamic
correlations with motor recovery especially in stroke subjects
(time since stroke onset > 3 months) with MCA lesions. It could
be possible that our findings are similar as half of the subjects
included in our study exhibited MCA lesions as well. From data
modeling perspective, while traditional methods such as general
linear models assume a certain distribution of data, SVR offers
a non-parametric method that can model both linear and non-
linear relationships in the data and adds to the growing body
of studies using machine learning prediction models to analyze

fMRI (Di Bono and Zorzi, 2008; Dosenbach et al., 2010; Vergun
et al., 2013).

Limitations
This study highlights how machine learning holds potential to
provide useful information by correlating neuroimaging changes
to behavioral changes. However, the results can be limited by
the sample size that can, in turn, affect the capability of drawing
generalizable conclusions as machine learning models such as
SVR are typically based on training on data from a much larger
cohort. Involvement of NIHSS stroke severity as a feature across
multiple outcomes could suggest that lesion size and/or volume
might be an important consideration (Chen et al., 2000; Shelton
and Reding, 2001) and should be included in future analysis.
Feature selection, realized by SFS, was important in deciding the
role of relevant correlates of each behavioral scale. However, SFS
suffers from the drawback that it cannot remove features from
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TABLE 9 | List of behavioral and clinical correlates at preceding time-points using linear-kernel SVR for estimation of measures at succeeding time-points are presented

below.

Rank 9HPT(A) 9HPT(U) ARAT(A) SIS(ADL) SIS(HF) SIS(Mob) SIS(PS) BI

Outcome at T6 and Input Behavior at T4 + Clinical Variables

1 9HPT(A) 9HPT(U) Motor Imp. SIS(ADL) SIS(HF) SIS(Mob) SIS(PS) BI

2 NIHSS Motor Imp. ARAT(A) Lesion Hemi NIHSS NIHSS NIHSS

3 NIHSS NIHSS NIHSS TSS TSS

4 Lesion Hemi Motor Imp. Lesion Hemi

Outcome at T7 and Input Behavior at T4 + Clinical Variables

1 9HPT(A) 9HPT(U) ARAT(A) SIS(ADL) SIS(HF) SIS(Mob) SIS(PS) BI

2 NIHSS Motor Imp. Motor Imp. NIHSS Motor Imp. Motor Imp. TSS

3 Motor Imp. NIHSS TSS TSS

4 Lesion Hemi Motor Imp.

5 TSS

Outcomes at T7 and Input Behavior at T6 + Clinical Variables

1 9HPT(A) 9HPT(U) ARAT(A) SIS(ADL) SIS(HF) SIS(Mob) SIS(PS) BI

2 TSS Lesion Hemi Motor Imp. Motor Imp. Motor Imp. Motor Imp. Age TSS

3 Motor Imp Motor Imp. NIHSS TSS NIHSS NIHSS Motor Imp. Motor Imp.

4 TSS TSS

5 NIHSS

T4 = pre-therapy; T6 = post-therapy; T7 = 1-month post-therapy.

the model that become obsolete upon addition of new features.
Recent work suggested that rs-FC can be quantified in several
ways using metrics such as cosine similarity and dynamic time
warping (Smith et al., 2011). Thus, the choice of metric used for
rs-FC might affect the features selected for each outcome.

Future Scope
With ongoing recruitment, a larger and more generalizable
prediction model could be developed by considering the
following. The complete BCI-aided intervention involved both
imaging as well as behavioral data at multiple distinct time
points, of which only pre-, post- and 1-month post-intervention
data have been used in the current analysis. With a larger
sample size, the analysis, therefore, could be expanded further
by considering the changes in rs-FC over other time-points
and correlating them with corresponding behavioral outcomes
and changes. Since recovery is a multi-faceted process, other
imaging methods, such as diffusion tensor images, structural
images, and perfusion images can provide complementary
information about brain changes and could be incorporated as
features to SVR. Potentially, multiple of these neuroimaging
methods could be combined so as to assess the relative
importance of each as a biomarker of stroke recovery through
the BCI-intervention. Correlation and interaction among the
different behavioral measures could be simultaneously accounted
for by implementing a multiple-output SVR that uses a
single model to predict multiple outcomes. Additionally,
differences and similarities among predictors between stroke
subjects and matched healthy subjects undergoing the BCI-
intervention will help to further understand the impact of this
intervention.

CONCLUSION

We showed that rs-FC, changes in rs-FC and early-stage behavior
can estimate behavioral outcomes and changes in chronic-
stage stroke subjects following this BCI-aided intervention for
rehabilitation. Machine learning-based SVR models helped to
identify specific correlates of for objective as well as subjective
behavioral scales. Among the neural substrates identified,
important regions contributing to the estimation involved the
left and right primary motor areas. Linear and non-linear
kernels for SVR indicated similar results with non-linear SVR
being slightly more accurate in estimating the outcomes and
forming more generalizable models. The results, however, were
more interpretable using the linear-kernel models. For further
research, the kernel for SVR must be chosen based on the trade-
off between lower error rates and interpretability. Given the
promise of this kind of BCI intervention in stroke rehabilitation,
the coupling of machine learning with neuroimaging and
behavioral measures can aid further identification of neuroplastic
changes corresponding to behavioral outcomes to estimate and
track stroke recovery, both in terms of neural reorganization and
improvements to motor function.
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The aim of this work was to test if a novel transcranial direct current stimulation (tDCS)

montage boosts the accuracy of lower limb motor imagery (MI) detection by using a

real-time brain-machine interface (BMI) based on electroencephalographic (EEG) signals.

The tDCS montage designed was composed of two anodes and one cathode: one

anode over the right cerebrocerebellum, the other over the motor cortex in Cz, and

the cathode over FC2 (using the International 10–10 system). The BMI was designed

to detect two MI states: relax and gait MI; and was based on finding the power at the

frequency which attained the maximum power difference between the two mental states

at each selected EEG electrode. Two different single-blind experiments were conducted,

E1 and a pilot test E2. E1 was based on visual cues and feedback and E2 was based on

auditory cues and a lower limb exoskeleton as feedback. Twelve subjects participated

in E1, while four did so in E2. For both experiments, subjects were separated into two

equally-sized groups: sham and active tDCS. The active tDCS group achieved 12.6 and

8.2% higher detection accuracy than the sham group in E1 and E2, respectively, reaching

65 and 81.6% mean detection accuracy in each experiment. The limited results suggest

that the exoskeleton (E2) enhanced the detection of the MI tasks with respect to the

visual feedback (E1), increasing the accuracy obtained in 16.7 and 21.2% for the active

tDCS and sham groups, respectively. Thus, the small pilot study E2 indicates that using

an exoskeleton in real-time has the potential of improving the rehabilitation process of

cerebrovascular accident (CVA) patients, but larger studies are needed in order to further

confirm this claim.

Keywords: transcranial direct current stimulation (tDCS), real-time, brain-machine interface (BMI), lower limb,

exoskeleton, motor imagery (MI)

1. INTRODUCTION

Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique
based on weak direct electrical current transferred between electrodes (from anode to cathode)
over the scalp in order to modulate the neural membrane resting potential (Nelson et al., 2014;
Rodríguez-Ugarte et al., 2016b; Lefaucheur et al., 2017). It modifies cortical excitability in a
polarity-specific manner (Coffman et al., 2014). This means that neural excitability is generated
under the area of the anode because the current flow goes into the brain, whereas in the underlying
cortex where the cathode is, inhibition of neural activity is produced because the current flow goes
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out from the brain (Filmer et al., 2014; Wiethoff et al., 2014).
Furthermore, the use of this technique implies adjusting four
parameters: current density, stimulation duration, electrode size
and electrode position. The vastmajority of the studies focus their
tDCS experiments on improving the performance of the upper
limbs, the speech, or the balance; where the areas stimulated are
either the motor cortex, the frontal area or the cerebellum (Monti
et al., 2013; Hortal et al., 2015; Foerster et al., 2017). In these
studies, the range of current density used is typically between 0.04
and 0.06mA/cm2 with a duration of 15 or 20min (Marquez et al.,
2013) and electrode sizes of about 35 cm2. However, there are
just few studies that center their goals in meliorating lower limb
performance and therefore, much remains to be investigated. In
addition, stimulation with such big electrode surface areas gives
only a vague idea of the areas of the brain that are important in
producing the results.

Brain machine interfaces (BMIs) are a non-invasive technique
that records and decodes electroencephalographic (EEG)
signals to control an external device (Barrios et al., 2017). Two
of the most common EEG-based BMIs are motor imagery
(MI) and motor execution (ME). MI is defined as a mentally
repetitive action without any overt motor movement (Park
et al., 2013). Various functional magnetic resonance imaging
(fMRI) studies have demonstrated that MI and ME activate
common neural networks including the primary motor
cortex (M1), supplementary motor area (SMA), premotor
area (PM) and cerebellum (Allali et al., 2013; Hétu et al.,
2013; Sharma and Baron, 2013; Zapparoli et al., 2013).
Furthermore, MI is characterized by the decrease of power in
the bands θ high (6–7 Hz), µ (8–12 Hz), and β (13–35 Hz)
(Reynolds et al., 2015).

The purpose of this work is to test if a novel tDCS montage
boosts the accuracy of lower limb MI detection using a real-time
BMI. The tDCS montage is composed by three small electrodes
that focus on the lower limbs: two anodes and one cathode. One
anode is located over the right cerebrocerebellum, the other one
over M1 in Cz, and the cathode over FC2 (using the International
10–10 system). Many studies have researched the stimulation
just over the motor cortex or the cerebellum (Boehringer et al.,
2013; Sehm et al., 2013; Clancy et al., 2014; Ferrucci and Priori,
2014), but never the two areas at the same time, like in this
study. The effects of the stimulation over the cerebellum are still
unclear, but recent studies showed an improvement of the task
performed when the anode was over the cerebellum (Hardwick
and Celnik, 2014; Bradnam et al., 2015). However, the anode over
the cerebellum is also believed to cause neural inhibition over the
motor cortex (Galea et al., 2009; Grimaldi et al., 2016). This is why
a second anode was added over Cz. This anode supplied a slightly
higher current than the one over the cerebellum to counteract
this effect and to excite neural activity in M1.

Abbreviations: tDCS, transcranial direct current stimulation; MI, motor

imagery; ME, motor execution; BMI, brain-machine interface; EEG,

electroencephalographic; fMRI, functional magnetic resonance imaging; M1,

primary motor cortex; SMA, supplementary motor area; PM, premotor area; CVA,

cerebrovascular accident; SVM, support vector machine.

Two single-blind studies, E1 and E2, were conducted where
subjects were randomly separated into two groups: sham and
active tDCS. The sham group received a fake stimulation while
the active tDCS group was given 0.3 mA over Cz and 0.2
mA over the right cerebrocerebellum. A BMI based on power
difference in θ , µ and β bands was designed to detect two MI
tasks: relax and gait MI. Both experiments had a duration of
five consecutive days (for each subject). The first one, E1, was
based on visual cues and feedback. The second one, E2, was
a smaller pilot test which was based on auditory cues, where
subjects wore a lower limb exoskeleton as feedback. It should
be noted that the combination of a real-time BMI with a lower
limb exoskeleton and tDCS is quite challenging and has the
strong potential of improving (via tDCS) the quality of many
clinical applications that involve the real-time control of these
machines. Indeed, the intention of this second setup is the
later use on real-time rehabilitation therapies of cerebrovascular
accident (CVA) patients with lesions on the right leg. The main
output to measure the effectiveness of the experiments was the
MI detection accuracy, but given the experiments’ duration, the
development of brain plasticity over the course of the 5 days was
also analyzed. Our hypothesis was that the active tDCS group
would obtain better detection accuracy results than the sham
group.

2. MATERIALS AND METHODS

This work studies a novel tDCS montage with two different
experimental setups regarding cues and feedback. The first one,
called in this paper E1, gives visual cues and visual feedback, while
the second, named E2, gives auditory cues with the feedback
coming from the movement/non-movement of an exoskeleton.
E2 is a smaller pilot test to check if the feedback of the exoskeleton
provides an improvement of the results, so that it can possibly be
used later in the rehabilitation of CVA patients.

FIGURE 1 | E1 experimental setup. Subjects stood in front of a screen that

supplied instructions while their EEG signals were recorded. The instructions

given were: Relax, Imagine and + (transition). During Relax, subjects had to

clear their mind as much as possible. During Imagine, they had to visualize

they were walking. Tasks appeared at random but two tasks of the same type

never appeared more than twice in a row. The + (transition) period represented

a transition to separate the Relax and Imagine tasks. Written informed consent

was given by the subject to publish the photo.
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FIGURE 2 | E1 temporal sequence on each day. Subjects were randomly separated into two groups: sham or active tDCS. During 15 min participants received the

corresponding stimulation according to their group. After that, subjects performed 10 trials of motor imagery (MI) tasks. The tasks were composed of Relax and

Imagine tasks separated by transition periods represented by + displayed on the screen. One trial consisted of 10 Relax and 10 Imagine tasks.

FIGURE 3 | E2 experimental setup. Subjects stood wearing an exoskeleton

while their EEG signals were recorded. Once the experiment started, subjects

had to relax, clearing their mind as much as possible. Then, a beep auditory

signal indicated to the subject to start gait imagery until they heard a double

beep auditory signal. After this second beep, subjects had to relax again until

the experimental trial finished.Written informed consent was given by the

subject to publish the photo.

2.1. Subjects
Twelve healthy subjects with a mean age of 26.9 ± 5.8 years
old (age range 20–39) volunteered to perform E1 and four
volunteers with a mean age of 25.8 ± 0.7 years old (age range
22–34) participated in E2. All of them received information
prior to the experiment and gave written informed consent
according to the Helsinki declaration. None of the subjects had
a history of neurological and/or psychiatric diseases or was
receiving medication during the experiment that could alter the
central nervous system. The Ethics Committee of the Office for
Project Evaluations (Oficina Evaluadora de Proyectos: OEP) of
the Miguel Hernández University of Elche (Spain) approved the
study.

2.2. Experimental Design
The aim of both single-blind experiments was to detect two
different cognitive states: relax and gait MI, using a real-time
BMI based on EEG signals. For both experiments, initially
subjects were randomly separated into sham or active tDCS
groups of the same size (six participants in each group of E1
and two participants in each group of E2). For five consecutive
days (Monday to Friday), each participant was subjected to
one experimental session, which initiated with a period of
stimulation. The sham group received 15min of fake stimulation,
while the active tDCS group received 15 min of real stimulation
(more details in section 2.3).

2.2.1. E1 Experiment
Participants performed one session each day for five consecutive
days. One session was composed of the initial stimulation,
followed by 10 MI trials. For each trial, subjects stood in front
of a screen that provided instructions while their EEG signals
were being recorded (Figure 1). Three types of instructions
were supplied: Relax, Imagine and + (transition). During
Relax periods, subjects had to clear their minds as much
as possible; during Imagine periods, they had to imagine a
gait movement. Relax and Imagine tasks appeared at random,
but to avoid mind tiredness or getting bored, two tasks of
the same type never appeared more than twice in a row.
The transition periods, or + periods, separated different tasks
of Relax or Imagine. Relax and Imagine lasted between 6
and 7.4 s, while the + (transition) periods lasted 3 s. Subjects
were instructed to avoid blinking, swallowing, performing head
movements or any other kind of artifact during the Relax and
Imagine periods, postponing these actions to the + (transition)
periods. Each trial consisted of 10 Relax and 10 Imagine
periods. Figure 2 represents the temporal sequence of this
experiment.
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FIGURE 4 | E2 temporal sequence on each day. Subjects were randomly separated into two groups: sham or active tDCS. During 15 min participants received the

corresponding stimulation according to their group. After that, subjects performed 80 trials of motor imagery (MI) tasks. The trial was composed of two relax periods

separated by one task of gait imagination.

2.2.2. E2 Experiment
On the very first day, before any stimulation protocols, subjects
were familiarized with the lower limb exoskeleton. They were
mounted in the exoskeleton, and the exoskeleton was activated.
Through verbal cues, the subjects were instructed to imagine gait
until they felt comfortable that they were not trying to execute
the motor task, but rather were imagining it. This pre-training
phase was intended to remove any strong noise associated to
the subjects trying to solely execute the movement later in the
experiment.

Participants performed one session each day for five
consecutive days. Throughout each session subjects stood
wearing a lower limb exoskeleton while their EEG signals were
recorded, as shown in Figure 3. One session was composed of
the initial stimulation, followed by 80 MI trials. Each trial lasted
around 35 s and was comprised of: an initial relax period where
they had to clear their mind as much as possible; then, a beep
auditory signal which indicated the subject to start the gait
(walking) imagination until they heard a double beep auditory
signal; after this, they had to relax again until the experiment
finished. Therefore, there were two Relax periods which lasted
8 s each, separated by a longer Imagine period that lasted 16 s.
A couple of seconds were needed to establish the connection
between the BMI and the exoskeleton. Figure 4 represents the
temporal sequence of this experiment.

In this experiment, the first 40 trials were used to train the
BMI and the rest to test it. During the training, the exoskeleton
moved by itself during the gait imagery period in order to
provide the subjects with a more realistic feeling. Then, during
the remaining 40 trials, the exoskeleton was turned off during the
Relax periods and was activated according to the subject’s EEG
signals (i.e., using the BMI output) during the Imagine periods.
The subjects were supposed to imagine the motor task instead

of trying to execute it. More details on the BMI can be found in
section 2.5.

2.3. Supply of tDCS
As previously mentioned, the idea was to excite simultaneously
the right cerebrocerebellum and the motor cortex because both
areas are involved in motor imagery. To do that, one anode was
located over the right cerebrocrebellum (two centimeters right
and one centimeter down of the inion) and the other one over
Cz on M1. The cathode was placed over FC2 (right hemisphere).
Figure 5 shows a scheme of the position and placement of the
electrodes. The cathode produces neural inhibition, meaning that
the left hemisphere is being favored. This is because, in the
future, the idea is to focus on patients that have suffered a CVA
over the left hemisphere, which in turn affects their right lower
limb.

The intensity was established to 0.2 and 0.3 mA for
the cerebrocerebellum and Cz anodes, respectively. These
intensities were chosen because anodal tDCS over the right
cerebrocerebellum produces inhibition over the brain motor area
(Angulo-Sherman et al., 2017), so to counteract this effect and
excite the motor area, the second anode was placed over Cz with
a slightly higher current. Using this configuration resulted in a
cathode current density of 0.16 mA/cm2, which is higher than
that used in most studies (about 0.06 mA/cm2). Having said that,
this current density is well within the range of neurological safety
that avoids brain damage (Bikson et al., 2016).

In order to corroborate that the areas of interest in the brain
(motor area, right cerebrocerebellum, thalamus, contralateral
hemisphere, red nucleus) were involved during the stimulation,
an electric field simulation was carried out first. SimNIBS free
platform (Thielscher et al., 2015) was used for the simulation.
The parameters of the electrodes were set according to the
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FIGURE 5 | The tDCS montage. Placement of tDCS electrodes as a scheme (Left) and experimentally (Right). The first anode (A1) is over the right

cerebrocerebellum (two centimeters right and one centimeter down of the inion), the second anode (A2) is over Cz, and the cathode is over FC2.

FIGURE 6 | Axial, coronal and sagittal view of the tDCS simulation using SimNIBS. The scale represents the magnitude of the electric field (V/m) induced by the

anodes A1 and A2. A1 was located over the right cerebrocerebellum and A2 over Cz. The cathode was located over FC2. A1 supplied 0.2 mA and A2 0.3 mA. The

most affected area (red) is close to the red nucleus.
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FIGURE 7 | Mean accuracy for each group in the E1 experiment. The error

bars indicate a standard deviation from the mean.

TABLE 1 | Pairwise comparison of detection accuracy for each day between the

tDCS and sham groups (E1).

Day p-value

1 0.06

2 0.04*

3 0.04*

4 0*

5 0.02*

The values statiscally significant were indicated with the * symbol.

materials employed in the experiments. All the electrodes were
1 cm of radius (surface area of π cm2), 3 mm of thickness and
with 4 mm of space for the conductive gel. Figure 6 shows the
magnitude of the electric field generated by the two anodes and
one cathode in axial, coronal and sagittal views. The electric
field produced was analyzed and it was confirmed that the sign
of the electric field was negative over the cathode (showing
directionality). Furthermore, the most affected area (red) is close
to the thalamus and the red nucleus. Both areas belong to the
cerebellum ascending output pathways toM1 and PM (Llinas and
Negrello, 2015).

At the beginning of each experimental session, the StarStim
R32 (Neuroelectrics, Barcelona, Spain) supplied direct current
stimulation to the subject’s brain. The duration was taken to be
15 min (each of the 5 days of the experiment), since various
studies which treat different diseases obtained satisfactory results
applying tDCS for that duration during 5 consecutive days
(Marangolo et al., 2011; Bolognini et al., 2015; Ferrucci et al.,
2016). Subjects in the active tDCS group were subjected to 15min
of such stimulation, while those in the sham group received a fake
stimulation to create a placebo effect. This consisted of a 3 s ramp
up followed by a 3 s ramp down to zero; then, 15 min of zero
current; and lastly, another repetition of 3 s ramp up and ramp
down.

2.4. EEG Acquisition
The StarStim R32 (Neuroelectrics, Barcelona, Spain) was also
used to acquire 30 EEG signals based on the International 10-10
system (P7, P4, CZ, PZ, P3, P8, O1, O2, C2, C4, F4, FP2, FZ, C3,
F3, FP1, C1, OZ, PO4, FC6, FC2, AF4, CP6, CP2, CP1, CP5, FC1,
FC5, AF3, PO3) with two reference electrodes (CMS and DRL) at
a frequency of 500 Hz. The device was connected to the computer
through a USB isolator.

2.5. Brain-Machine Interface (BMI)
Custom software in MATLAB (MathWorks Inc., Massachusetts,
United States) was utilized for all data analysis. The first four
trials of E1 and the first 40 trials of E2 were used to train a support
vector machine (SVM) classifier with a radial basis function
as kernel. This classifier was chosen because it was effective
in previous studies and is one of the most robust classifiers
(Rodríguez-Ugarte et al., 2016a). The SVM was in charge of
categorizing data and determining if it belonged to relax or gait
MI tasks. The remaining trials, six of E1 and 40 of E2, were
utilized to test the BMI by measuring the detection accuracy,
which was defined as the percentage of total correct classifications
divided by the total number of classifications in each run.

Both training and test data in the two experiments were
processed in very similar ways. The first 2 s of each task were
discarded to assure the total concentration of the subject in the
task and to get rid of the cue (visual or auditory) artifacts on the
EEG. Data was processed in 1 s epochs each 0.2 s. For each epoch,
the following process was carried out:

• a 4th order Butterworth high-pass filter with a cut-off
frequency of 0.05 Hz was applied to remove the direct current;

• a Notch filter was used to eliminate the power line interference
at 50 Hz;

• a 4th order Butterworth low-pass filter with cut-off frequency
of 45 Hz was utilized;

• a Laplacian spacial filter was employed as in McFarland et al.
(1997) to eliminate the influence of the other electrodes by
means of weighting by their distance;

• nine electrodes from the M1, SMA and PM were selected: Cz,
CP1, CP2, C1, C2, C3, C4, FC1, and FC2.

In both experiments, the training data was further analyzed.
For each electrode, the power at each integer frequency from
6 to 35 Hz was calculated. This data was separated into relax
and imagine groups for each frequency, and the frequency
that attained the maximum power difference between relax
and imagine was designated as the optimum frequency of that
electrode. Finally, the power at the optimum frequency for each
electrode was computed. Therefore, each epoch was associated
with nine features (one for each electrode). Using the features,
the SVM classifier was trained.

For the actual testing of the real-time BMI, the nine features of
each epoch were computed using the power at the precomputed
optimum frequencies from the training phase. Then the data was
classified using the SVM classifier into relax or gait MI. As visual
feedback, in E1 every correct classification resulted in the increase
in size of a green bar shown in the screen. Meanwhile, in E2 the
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FIGURE 8 | Mean accuracy for each day and group in E1.

exoskeleton moved one step forward whenever three consecutive
gait MI classifications were detected.

2.6. Exoskeleton
The lower limb robotic exoskeleton used was the H2 (Technaid,
Madrid, Spain) designed by Bortole et al. (2015). The H2 has six
degrees of freedom where hip, knee and ankle of each leg are
powered joints. It was constructed for adults of heights between
1.5 m and 1.95 m and a maximum weight of 100 kg. The H2
has a lithium polymer battery of 22.5 VDC voltage and 12 Ah
of capacity. It also has direct current (DC) motors to activate the
joints actuators and sensors: potentiometers, Hall effect sensors,
strain gauges and foot switches to determine the joint angles and
human-orthosis interaction torques on the links.

The communication between the BMI and the H2 was
through a bluetooth port. The connection was established in
an Intel Core i7 laptop using MATLAB (MathWorks Inc.,
Massachusetts, United States) software. Each 0.5 s and during
gait imagination periods, the BMI sent the user’s output from the
classifier to the exoskeleton.

2.7. Post-processing
2.7.1. Statistical Analysis
For the E1 experiment, data was analyzed via the Statistical
Package Social Science (SPSS), version 22.0 (IBM Corporation,
Armonk, NY, United States). The dependent variable was the
classification accuracy and the independent variables were the
group (sham or active tDCS) and the day of the experiment (from
day 1 to day 5). Therefore, there were two types of studies: the
difference between groups and the evolution of the performance
of the subjects (here called plasticity) within groups. Hence,
the appropriate statistical test to make was a mixed factorial
ANOVA, but before doing so, the Kolmogorov-Smirnov (K-S)
normality test was computed to check the existence of outliers.
Then, for the study within groups, Mauchly’s sphericity test was
carried out to check the equality of the variances (Field, 2013).
Lastly, the mixed factorial ANOVA analysis was completed.

Furthermore, Bonferroni adjustments were applied for multiple
pairwise comparisons between groups andwithin groups. A value
of p < 0.05 was considered statistically significant.

For the E2 pilot experiment, the sample sizes were too small
(two users per group) to rigorously justify the statistical analysis
mentioned above. Therefore, the average accuracies were used
directly to make the appropriate and relevant comparisons.
Having said that, these results and their implications should come
with a warning that this is only a preliminary study, and the
sample sizes are small, so larger samples are needed to increase
the accuracy of predictions.

2.7.2. Analysis of Optimal Frequencies
As mentioned in section 2.5, based on the training data, an
optimal frequency (where the greatest differences between relax
and gait imagery was observed) was assigned to each electrode
of each subject on any given day. These frequencies form a
fundamental part of themodel used to construct the BMI. Having
said that, analyzing these frequencies independently provides
more useful information. Indeed, after removing any outliers,
it is possible to make a histogram of the optimal frequencies
associated to each group on each day (each relevant subject in
the group will have 9 optimal frequencies, one for each electrode,
on any given day) that discriminates between three distinct
frequency bands: high theta and mu rhythm (6–12 Hz), low and
mid-range beta rhythm (13–20 Hz) and high beta rhythm (21–30
Hz). With this histogram, one can then determine the preferred
frequency bands for each group and their evolution throughout
the experiment.

2.7.3. ERD/ERS Analysis
Event-related desynchronization and synchronization
(ERD/ERS) are EEG fluctuations during cognitive or motor
processes. They are highly frequency-band specific and while
ERD represents an increase of excitability, ERS represents the
opposite (Pfurtscheller, 2001). For an electrode e, and for a fixed
frequency f , let

ERDe(f ) =
(G(f )− R(f )

R(f )

)

(1)

where G(f ) is the average of the power at the frequency f over
all gait-imagery-epochs, and R(f ) is the same but averaged over
all relax-imagery-epochs. Low values of G, resulting in negative
values of ERDe, represent ERD, while higher values ofG, resulting
in positive values of ERDe, represent ERS. To obtain an average
value of ERDe over a frequency band, simply average over all
integer frequencies, f , of interest (e.g., in the 6–12 Hz band, it
would be the average of ERDe(f ) for f = 6, 7, 8, 9, 10, 11, 12).
A frequency-band ERDe can be calculated for each electrode
on each day of the experiment for each subject. This allows to
produce a topographic map of the variable in the scalp, which
one can then analyze to determine patterns of activation across
the different areas of the brain.
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TABLE 2 | E1 histogram of optimal frequencies for each day and group.

Group Frequency range Day 1 (%) Day 2 (%) Day 3 (%) Day 4 (%) Day 5 (%)

Active tDCS (6–12) Hz 81.5 77.8 81.5 85.2 79.6

(13–20) Hz 11.1 13.0 11.1 7.4 16.7

(21–30) Hz 7.4 9.3 7.4 7.4 3.7

Sham (6–12) Hz 75.6 57.8 68.9 64.4 64.4

(13–20) Hz 4.4 17.8 4.4 28.9 20.0

(21–30) Hz 20.0 24.4 26.7 6.7 17.8

FIGURE 9 | Mean accuracy for each group in the E2 experiment. The error

bars indicate a standard deviation from the mean.

FIGURE 10 | Mean accuracy for each day and group in E2.

3. RESULTS

3.1. E1 Experiment
The normality test indicated that there was an outlier within the
sham group. This subject was removed from the data.

3.1.1. Effects of tDCS in MI
This section studies if there exist any effects of tDCS on the
subjects. Results from the mixed factorial ANOVA showed that
subjects were significantly affected by the group they belonged,
F(1,9) = 9.47, p < 0.05. Figure 7 shows the mean accuracy
achieved by each group, with the tDCS and sham groups getting
65 and 52.4% of detection accuracy, respectively.

Moreover, the comparison was broken down on a day by day
basis, by making pairwise comparisons. Table 1 shows the p-
values of those comparisons and Figure 8 illustrates the mean
accuracy achieved by each group on each day. The results show
that there were significant differences (p < 0.05) between the
sham and tDCS groups from the second day onwards.

3.1.2. MI Plasticity
This section analyzes the interaction effects between the days
within groups. The results of Mauchly’s test of sphericity show
that the condition of sphericity wasmet, χ2(9) = 17.52, p > 0.05,
so it was not necessary to apply a correction factor.

The mixed factorial ANOVA showed no significant
interaction between the days and the group, F(4, 36) = 0.27,
r = 0.1, p > 0.05, meaning that there does not seem to be
any major plasticity development throughout the 5 days of the
experiment.

3.1.3. Optimal Frequencies and ERD/ERS Results
A histogram showing the percentage of electrode optimal
frequencies lying in the relevant frequency bands (high theta
and mu rhythm, low and mid-range beta rhythm, and high beta
rhythm) for each group and day of the E1 experiment is shown
in Table 2. Clearly, the preferred frequency band is the high theta
and mu rhythm (6-12 Hz).

Since the high theta and mu rhythm (6–12 Hz) was the
preferred frequency band, on each day of the E1 experiment and
for each electrode, e, the variable ERDe was averaged over all
subjects common to a group (excluding outliers) and over the
relevant frequency band (6–12 Hz). The resulting topographic
map for the active tDCS and the sham groups is shown in
Figure 11 (top).

3.2. E2 Experiment
3.2.1. Effects of tDCS in MI
Figure 9 shows the mean accuracy achieved by each group, with
the tDCS and sham groups getting 81.6 and 73.4% of detection
accuracy, respectively. Furthermore, Figure 10 illustrates the
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TABLE 3 | E2 histogram of optimal frequencies histogram for each day and group.

Group Frequency range Day 1 (%) Day 2 (%) Day 3 (%) Day 4 (%) Day 5 (%)

Active tDCS (6–12) Hz 100.0 100.0 100.0 100.0 94.4

(13–20) Hz 0.0 0.0 0.0 0.0 0.0

(21–30) Hz 0.0 0.0 0.0 0.0 5.6

Sham (6–12) Hz 66.7 66.7 50.0 50.0 50.0

(13–20) Hz 0.0 0.0 0.0 0.0 0.0

(21–30) Hz 33.3 33.3 50.0 50.0 50.0

mean accuracy achieved by each group on each day, and there
does not seem to be any significant changes in the accuracy as
the days progress for either group (i.e., no plasticity is evident).
Having said this, due to the preliminary nature of the E2 pilot
study, these results have limitations as they involve very small
sample sizes (two subjects per group), and larger data sets are
necessary to be able to produce more robust results from the
statistical standpoint.

3.2.2. Optimal Frequencies and ERD/ERS Results
As in section 3.1.3, the associated histogram for E2 is shown in
Table 3. The preferred frequency band was once again the high
theta and mu rhythm (6–12 Hz).

Meanwhile, the analogous topographic map for E2 for the
preferred frequency band (6–12 Hz) is shown in Figure 11

(bottom).

4. DISCUSSION

The results of E1 and the preliminary results of the pilot test
in E2, seem to support the hypothesis that this novel tDCS
montage improves the real-time classification of lower limb MI
tasks. Before discussing the specific results further, a deeper
neurological explanation for why the tDCS montage seems to
have successfully worked is merited. The aim of the setup was
to enhance the brain’s learning abilities while stimulating the
motor cortex which is responsible for lower limb movement
(and imagination). With this in mind, an anode was placed over
the cerebellum, since this improves the brain’s learning abilities
according to several studies (Mandolesi et al., 2003; Ferrucci
et al., 2013; Shah et al., 2013; Hardwick and Celnik, 2014).
However, placing this anode over the cerebellum also has other
consequences. Namely, it produces the activation of Purkinje cells
which inhibit the dentate nucleus and provoke disfacilitation of
the motor cortex (Grimaldi et al., 2014; Cengiz and Boran, 2016;
Lefaucheur et al., 2017), which is the opposite of what is desired
regarding the activation of the motor cortex. For this reason,
to counteract the effect of the first anode and excite the neural
activity of the motor cortex, a second anode was placed directly
in Cz over the motor cortex, and with a slightly higher current.
Indeed, the currents used were 0.2 mA for the first anode and
0.3 mA for the second anode. The tDCS electrodes were not in
direct contact with the skin, but rather with the hair. This reduced
the probability of skin burns (Wang et al., 2015), which were not
observed during the experiments (participants were encouraged

to report any discomfort, but none was reported in association
with the tDCS).

The active tDCS group achieved average detection accuracies
of 65 and 81.6% for E1 and E2, respectively. When compared
to the sham group, the active tDCS group obtained 12.6 and
8.2% higher accuracy performance in E1 and E2, respectively
(Figures 7, 9). In addition, the active tDCS group of E1 was at
least 10% better than the sham group at each given day (see
Figure 8), while in E2, it was at least 4% better on each day
(see Figure 10). Lastly, this data and the p-values from Table 1

indicate that from the second day onwards, the active tDCS group
obtained significantly different and better results than the sham
group in E1.

These conclusions are further supported with the results of
analyzing the optimal frequencies and the ERD/ERS patterns in
the brain. Regarding the optimal frequencies, Table 2 and the
preliminary results of Table 3 show the stability of the frequency
band trained, which in both cases corresponded to the high
theta and mu rhythms (6–12 Hz). In E1 (Table 2) the preferred
frequency band for the active tDCS group represented at least
78% of the optimal frequencies on any given day, while for the
sham group it varied between 57 and 76%. The results of E2
show an even starker difference, with at least 94% of optimal
frequencies lying in the preferred frequency band for the active
tDCS group, while they ranged between 50 and 66% for the sham
group. This seems to indicate that the tDCS favors a specific
frequency band to train the new task.

Moreover, the ERD/ERS analysis shows that overall for both
E1 and E2, there seems to be more desynchronization (ERD)
on the mu rhythms of the tDCS group than in the sham group
(see Figure 11). Furthermore, this mu wave desynchronization is
occurring mostly in the sensorimotor area, as is reported widely
in the literature when there is either motor execution or motor
imagery (Pfurtscheller and Da Silva, 1999; Matsumoto et al.,
2010). This desynchronization seems to be more evident in the
preliminary study E2 than in E1, but in both cases it is observed.
Thus, the active tDCS group for both experiments appears to
enhance the modulation of the mu rhythm and the BMI control.

As observed from Figures 8, 10, for both experiments, the
changes in accuracy for each group as the days progressed
seems to have been minimal. Thus, one can say that there was
little plasticity developed in the brain during the 5 days of the
experiment. This is probably due to the simplicity of the task and
the fact that the brain could have quickly adapted to this task early
on in the training phase of the experiment of the first day.
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FIGURE 11 | Topographic maps showing ERD (red) and ERS (blue) for the 6–12 Hz frequency band averaged over all participants for each day and group of each

experiment. The results of E1 are shown in the top and those of E2 are shown in the bottom.

Comparing the differences between E1 and E2 is very
interesting but one must be careful in rushing to any
conclusions, as the experimental protocols were different, and
more importantly, the results of E2 are only preliminary at the
time. Overall, E2 produced better accuracy results than E1: the
active tDCS and sham groups of E2 were 16.7 and 21.2% more
accurate than the respective groups of E1. Some differences
in the protocol that could have led to these results, are that
the duration of Relax and Imagine periods between the two
experiments was different; and more notably, that the nature of
the cues and feedback was different as well. Indeed, it should be
mentioned that all subjects in E1 reported frustration about the
visual feedback (a green bar that increased with each real-time
correct detection), saying that they became anxious when the
green bar did not move. Naturally, this could have affected the
results. Meanwhile, in E2 the feedback was much more natural
as it involved movement of the body. In fact, no such frustration
was reported by the users in E2.

Comparing the results of E1 and the preliminary results of E2
through the ERD/ERS analysis is also of interest (see Figure 11).

Indeed, the desynchronization is observed to be stronger and
more consistent in E2 than in E1. This seems to be consistent with
some results in the literature involving upper limb exoskeletons
(Gomez-Rodriguez et al., 2011), which found the discriminative
power of the sensorimotor area to be higher when using an
exoskeleton, thus providing a benefit in terms of the resulting
BMI designed.

It should be noted that the pilot test E2 was a challenging
experiment as it involved combining tDCS with a real-time BMI
connected to an exoskeleton. Exoskeletons are often simply pre-
programmed or controlled directly through third party interfaces
(joysticks, cellphone applications, etc.), but only until relatively
recently have they begun to be controlled via BMIs. Designing a
real-time BMI is also not trivial in itself (it is sometimes preceded
by the design of offline BMIs). Thus, the study of real-time BMI
control of exoskeletons is only starting and has many potential
clinical applications, especially in the rehabilitation of patients.
Thus, combining this concept with tDCS, which is aimed to
improve and accelerate cognitive ability, enriches and increases
those applications even more. Indeed, the intention is to use this
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setup in the future to enhance the recovery of CVA patients with
an affected lower right limb. Having said that, the study carried
out here was only a preliminary pilot study involving only a few
subjects. To confirm the results, a larger sample of subjects or
even patients is necessary, but the limited results obtained for
now look promising.

Some final comments are warranted regarding the real-time
functioning of the exoskeleton in E2. To have a realistic usability
of the BMI with the exoskeleton, the analysis of the false
detections during relax periods is important, and reducing it is
an essential objective. The rate of such detections is referred to
as the false positive rate, or FPR (which is the complement of the
accuracy when restricted to only relax periods). When averaging
both groups in E2, the FPR was 11.7% (equivalently, an accuracy
of 88.3% during relax), with an FPR of 11.3% for the tDCS group
and of 12.1% for the sham group. The values for both groups were
very similar, which shows that the overall increase in accuracy
resulting from the stimulation of the tDCS group, was due to
an increase in accuracy during the imagination periods (indeed,
the accuracy on those periods was 92.7% for the tDCS group
and of 80.4% for the sham group). In any case, overall, these
values of FPR seem reasonable for this preliminary experiment,
but reducing them further should be a future design goal.

5. CONCLUSION

Anovel tDCS configuration was successfully designed to improve
the detection of two MI tasks (relax and gait MI) using a real-
time BMI. Two anodes and one cathode were used: one anode
was located over the right cerebrocerebellum and supplied 0.2
mA, the other anode was over Cz and supplied 0.3 mA, and
the cathode was located over FC2. Two single-blind experiments,
E1 and E2, were carried out, where subjects were randomly
separated into two groups of the same size: sham and active tDCS.
The sham group received a fake stimulation while the active tDCS
group was truly stimulated. E1 involved twelve healthy subjects
in total who received visual instructions and real-time feedback
through a screen. Meanwhile, E2 was a pilot study involving
only four healthy subjects who received auditory cues and wore
a lower limb exoskeleton as feedback. E2 has potentially many

clinical applications in the future. In particular, it can be used in
the rehabilitation of patients that have suffered a cerebrovascular
accident (CVA) affecting their right lower limb. The analysis
indicated differences between the active tDCS and sham group
in both experiments. The active tDCS group achieved 12.6 and
8.2% higher detection accuracy than the sham group in E1
and E2, respectively, reaching 65 and 81.6% mean accuracy in
each experiment. Furthermore, the preliminary results indicate
that the exoskeleton (in E2) enhanced the detection of the MI
tasks with respect to the visual feedback (in E1), increasing
the accuracy obtained in 16.7 and 21.2% for the active tDCS
and sham groups, respectively. Having said that, more studies
with larger samples of actual patients are needed to validate this
observation.
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Stroke is a leading cause of persistent upper extremity (UE) motor disability in adults.
Brain–computer interface (BCI) intervention has demonstrated potential as a motor
rehabilitation strategy for stroke survivors. This sub-analysis of ongoing clinical trial
(NCT02098265) examines rehabilitative efficacy of this BCI design and seeks to identify
stroke participant characteristics associated with behavioral improvement. Stroke
participants (n = 21) with UE impairment were assessed using Action Research Arm
Test (ARAT) and measures of function. Nine participants completed three assessments
during the experimental BCI intervention period and at 1-month follow-up. Twelve
other participants first completed three assessments over a parallel time-matched
control period and then crossed over into the BCI intervention condition 1-month later.
Participants who realized positive change (≥1 point) in total ARAT performance of the
stroke affected UE between the first and third assessments of the intervention period
were dichotomized as “responders” (<1 = “non-responders”) and similarly analyzed.
Of the 14 participants with room for ARAT improvement, 64% (9/14) showed some
positive change at completion and approximately 43% (6/14) of the participants had
changes of minimal detectable change (MDC = 3 pts) or minimally clinical important
difference (MCID = 5.7 points). Participants with room for improvement in the primary
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outcome measure made significant mean gains in ARATtotal score at completion
(1ARATtotal = 2, p = 0.028) and 1-month follow-up (1ARATtotal = 3.4, p = 0.0010),
controlling for severity, gender, chronicity, and concordance. Secondary outcome
measures, SISmobility, SISadl, SISstrength, and 9HPTaffected, also showed significant
improvement over time during intervention. Participants in intervention through follow-up
showed a significantly increased improvement rate in SISstrength compared to controls
(p = 0.0117), controlling for severity, chronicity, gender, as well as the individual effects
of time and intervention type. Participants who best responded to BCI intervention,
as evaluated by ARAT score improvement, showed significantly increased outcome
values through completion and follow-up for SISmobility (p = 0.0002, p = 0.002) and
SISstrength (p = 0.04995, p = 0.0483). These findings may suggest possible secondary
outcome measure patterns indicative of increased improvement resulting from this BCI
intervention regimen as well as demonstrating primary efficacy of this BCI design for
treatment of UE impairment in stroke survivors.

Clinical Trial Registration: ClinicalTrials.gov, NCT02098265.

Keywords: brain–computer interface (BCI), stroke, recovery, rehabilitation, motor function, hemiparesis, upper
extremity

INTRODUCTION

Stroke
Each year there are approximately 800,000 new incidences of
stroke in the United States (Benjamin et al., 2017), and in
2010 there were an estimated 16.9 million stroke events globally
(Mozaffarian et al., 2015). Stroke occurs as a result of a blockage
of blood flow in an area of the brain or by rupture of brain
vasculature causing death or damage to local and distal brain
tissue. In either etiology, survivors may experience some level
of upper extremity (UE) physical impairment. Despite recent
advances in acute care, an increasing number of stroke survivors
face long-term motor deficits (Benjamin et al., 2017). Costs of
care for long-term disability resulting from stroke are substantial
with the direct medical costs of stroke estimated to $17.9 billion
in 2013 (Benjamin et al., 2017). It is crucial that motor therapy
for stroke enhances a survivor’s capacity to autonomously
participate in activities of daily living (ADLs), thereby decreasing
dependency on caregivers as well as the cost and level of care
necessary (Dombovy, 2009; Stinear, 2016). Efficacious motor
therapy should be designed to improve the overall quality of
life for the individual survivor based on their goals and needs
(Remsik et al., 2016; Stinear, 2016).

Need for Treatment
Survivors in the chronic stage of stroke are the most desperate
for rehabilitation. Existing pharmacological treatments and
behavioral therapy methods primarily serve to treat symptoms
associated with stroke (Benjamin et al., 2017) and may not bring
about optimal changes in brain function or connectivity (Power
et al., 2011; Nair et al., 2015). While a growing population
of research suggests the greatest potential for recovery in the
post-stroke brain occurs within the first months after insult
(Stinear and Byblow, 2014), neuroplastic capacity has been

demonstrated in both acute and chronic phases (Caria et al., 2011;
Ang et al., 2015). Spontaneous biological recovery (SBR) (Beebe
and Lang, 2009; Cramer and Nudo, 2010) in the initial days and
weeks following stoke (acute phase) is thought to represent a
critical period in the complex progression of motor recovery,
which combines neurobiological processes and learning-related
elements. After this window of SBR, it is posited a sensitive
period of neurorecovery persists, plateauing around 6 months
post-stroke (Wolf et al., 2006, 2010; Dromerick et al., 2009;
Cramer and Nudo, 2010). Traditional rehabilitation therapies
generally lose efficacy after such time and the course of standard
of care treatment options is exhausted leaving chronically
impaired persons with few options.

Potential for Treatment
Motor and cognitive recovery after these initial windows may
no longer occur in the same spontaneous nature as is observed
during SBR. However, innovative therapeutic techniques show
some efficacy generating functional motor recovery beyond the
traditional rehabilitation windows (Cramer and Nudo, 2010;
Ang et al., 2015; Irimia et al., 2016). Brain–computer interfaces
(BCIs), a novel rehabilitation tool, have shown proof of concept
for rehabilitating volitional movements in stroke survivors
(Muralidharan et al., 2011; Song et al., 2014, 2015; Young
et al., 2014a,b,c,d, 2015; Irimia et al., 2016). In this growing
area of research, developing technologies demonstrate promising
potential for treating hemiparesis in a clinically viable and
efficient manner and they may offer an avenue to increased
autonomy for patients reducing their cost and burden of care.

Effectiveness of Current BCI Therapies
There is currently considerable variability in design and
efficacy of BCI therapies as well as little consensus with
respect to proper arrangement, administration, and dosing
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(Muralidharan et al., 2011; Ang and Guan, 2013; Young et al.,
2014a; Ang et al., 2015; Irimia et al., 2016; Remsik et al., 2016;
Bundy et al., 2017; Dodd et al., 2017). Although acute stroke
care has improved morbidity outcomes significantly, current
treatments for persistent UE motor impairment resulting from
stroke offer only limited restoration of UE motor function the
further from stroke a survivor progresses (Wolf et al., 2006,
2010; Dromerick et al., 2009; Benjamin et al., 2017; Stinear et al.,
2017). Evidence suggests both acute and chronic stroke patients
respond to various neuro-rehabilitative BCI therapy strategies
and can achieve clinically significant changes in measures of UE
impairment (Young et al., 2014c; Irimia et al., 2016; Remsik
et al., 2016). Furthermore, recent research also suggests that BCI
therapy targeted at motor recovery may provide benefits in other
brain regions outside of only the motor network (Mohanty et al.,
2018).

Overview of This Study
This post hoc analysis of an ongoing clinical trial (NCT02098265)
(Song et al., 2014, 2015; Young et al., 2014a,b,c,d, 2015) evaluates
the effects of an interventional, non-invasive closed-loop
electroencephalography (EEG)-based BCI intervention for the
restoration of distal UE motor function in stroke survivors.
Participants who showed measurable change in the primary
outcome measure were grouped post hoc. This sub-analysis seeks
to identify whether there are participant characteristics strongly
associated with motor improvement as measured by primary
and secondary outcome measures of UE function. These analyses
are intended to inform future BCI research approaches and
intervention designs as well as suggest and encourage appropriate
participant selection.

MATERIALS AND METHODS

Ethics Statement
Participants were recruited as part of an ongoing prospective
randomized, cross-over control design stroke rehabilitation
study. This study was designed to investigate interventional
BCI intervention targeting UE motor function in stroke
survivors. This study was approved by the University of
Wisconsin Health Sciences Institutional Review Board (Study ID
2015-0469); all subjects provided written informed consent upon
enrollment. A CONSORT flow diagram is made available in the
Supplementary Material.

Study Design and Subjects
Recruitment and Enrollment
This ongoing study, registered with ClinicalTrials.gov (study
ID NCT02098265), utilizes an open call for participants with
a wide range of (1) UE hemiparesis resulting from stroke,
(2) time-since-stroke, (3) stroke type, (4) lesion location, (5)
number of previous stokes, and (6) stroke severity. Subsequent to
informed, written consent, stroke survivors were randomized, by
permuted-block design accounting specifically for gender, stroke
chronicity (<1 year, ≥1 year), and severity of motor impairment
(mild, severe) as measured by the Action Research Arm Test

(ARAT) (mild = ARATtotal of >28, severe = ARATtotal ≤ 27)
[n = 21, mean age = 61.6 years ± 15 years, 10 female, 4
concordant lesions (stroke lesion impairs preferred dominant
hand as assessed by the Edinburgh Inventory (Oldfield, 1971),
mean chronicity = 1127 ± 1327 days, 12 participants presented
with severe UE motor deficit, mean baseline ARAT score of
impaired side = 26.6 ± 26.1, Delayed Therapy Group (DTG)
n = 12, Immediate Therapy Group (ITG) n = 9]. Chronicity is
measured as time since stroke, in days, to baseline measurement
day. Participant characteristics are displayed in Table 1.

Inclusion–Exclusion Criteria
Potential participants met inclusion criteria if they were aged
18 years or older, had persistent UE motor impairment resulting
from stroke, and no other known neurologic, psychiatric, or
developmental disabilities. Exclusion criteria were: allergies to
electrode gel, surgical tape, and/or metals, concurrent treatment
for infectious disease, apparent lesions or inflammation of the
oral cavity, pregnancy or intention to become pregnant during
the study, and any contraindication for magnetic resonance
imaging (MRI). Subjects were excluded from the presented
analyses if they (1) failed to complete at least 9 of 15, 2-h
BCI intervention sessions occurring at least twice each week,
(2) failed to complete all four MRI and behavioral testing
sessions occurring in the intervention phase (Figure 1; see
Supplementary CONSORT Flow Diagram).

Randomization and Study Schema
Participants were randomly assigned to either receive BCI
intervention immediately (ITG) following consent or to a DTG
wherein participants were neither prohibited continuation of
customary care, nor did they receive any BCI intervention.
Participants, when receiving the BCI intervention condition, had
at least 9 and up to 15 BCI intervention sessions (two-to-three
sessions/week) wherein they received BCI intervention
(Figure 2) lasting up to 2 h for a potential total dosing of
30 h of BCI intervention. Along with the BCI intervention
sessions, subjects also received fMRI and behavioral testing
at four-time points: prior to the first BCI intervention session
(baseline, T4), after the first few weeks of intervention (midpoint,
T5), immediately following the final intervention session
(completion, T6), and again 1 month after the endpoint
assessment (follow-up, T7) (Figure 1). Later in this publication,
the authors will refer to time points 1–4 with the intention of
describing time points 1–4 of the intervention phase (T4–7
from Figure 1). Because T1–4 in Figure 1 refer to the control
phase, the authors from here forward will refer to any data from
these points by explicitly stating when the control phase is being
considered.

Crossover Design
Following the final testing session, participants in the DTG
cross over to the experimental or intervention phase and begin
study visits for the BCI intervention condition as illustrated in
Figure 1. For participants in the DTG, the crossover time point
(T4) represents baseline as it is measured immediately prior to
participation in BCI intervention sessions.
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TABLE 1 | Participant demographics and baseline characteristics.

Participants Age
(years)

Chronicity
days

Severity Clinical cause
lesion location

Baseline
ARAT

Completion
ARAT

Follow up
ARAT

ARAT change FMA-UE
change

1 47–51 160 Severe L-Lateral medulla 3 2 7 −1 (4∗∗) −2 (9∗∗∗)

2 49–53 490 Severe R-MCA stroke 3 4 8 1∗ (5∗∗) 2∗ (11∗∗∗)

3 76–80 658 Mild Leg/periventricular
white, MHR

57 57 57 0 (0) 0 (0)

4 67–51 2723 Severe R-PLIC putamen 23 40 39 17∗∗∗ (16∗∗∗) I3∗∗∗ (12∗∗∗)

5 81–85 580 Mild Cerebellar vermis 47 52 52 5∗∗ (5∗∗) 2∗ (2∗)

6 73–77 197 Severe R-prefrontal,
midfrontal, temporal

0 0 3 0 (3∗∗) 0 (7∗∗∗)

7 62–66 101 Mild R-white matter 56 57 57 1∗ (1∗) 7∗∗∗ (7∗∗∗)

8 40–44 2645 Severe R-frontal parietal 7 7 7 0 (0) 0 (0)

9 55–59 588 Severe R-MCA 3 4 0 1∗ (−3) 2∗ (−7)

10 45–49 452 Severe L-hemorrhagic stroke 0 2 0 2∗ (0) 4∗∗ (0)

11 30–34 494 Mild L-ICA 57 57 57 0 (0) 0 (0)

12 60–64 44 Mild L-PCA 57 57 57 0 (0) 0 (0)

13 57–61 849 Mild L-MCA 57 57 57 0 (0) 0 (0)

14 44–48 3017 Severe R-MCA/R-FI 3 4 5 1∗ (2∗) 2∗ (4∗∗)

15 69–73 790 Severe R-MCA/R-TP 3 0 3 −3 (0) −7 (0)

16 78–82 631 Mild R-Occipital 57 57 57 0 (0) 0 (0)

17 75–79 5125 Severe R-MCA/ACA 9 11 10 2∗ (1∗) 4∗∗ (2∗)

18 42–46 177 Mild L-MCA 57 57 57 0 (0) 0 (0)

19 62–66 392 Severe R-frontal hematoma
R-VAOA

3 5 16 2∗ (13∗∗∗) 4∗ (29∗∗∗)

20 55–59 2767 Mild Subarachnoid
hemorrhage

57 57 57 0 (0) 0 (0)

21 69–73 783 Severe R-MCA 0 0 0 0 (0) 0 (0)

Mean 61.6 1127 26.6 28.1 26.8 1.3 (2.2) 1.5 (3.6)

(A) Median 61.9 588 9 11 16 0 (0) 0 (0)

SD 15 1327 26.4 26.3 25.9 3.9 (4.5) 3.8 (7.4)

Mean 61.1 1289 11.4 13.4 14.8∗ 2 (3.4) 2.2 (5.4)

(B) Median 64 584 3 4 7 1 (1.5) 2.0 (3.0)

SD 13.5 1497 18 20.2 19.6 4.7 (5.2) 4.5 (8.5)

ARAT indicates Action Research Arm Test; FMA-UE indicates fugl-meyer assessment of upper extremity; MCA indicates middle cerebral artery; ICA indicates internal
carotid artery; PCA indicates posterior cerebral artery; FI indicates frontoparietal infarct; TP indicates temporalfrontal-parietal; ACA indicates anterior cerebral artery;
MHR indicates motor hand region; VAOA indicates vertebral artery origin aneurysm; L, left; R, right. ARAT change: completion-baseline (follow up-baseline). (A) indicates
descriptive statistics for all (n = 21) participants; (B) indicates descriptive statistics for (n = 14) participants able to achieve ARAT improvements (ceilings removed). FMA-UE
is a predicted change that was used to approximate equivalent score that assesses the association between the categorical range of ARAT scores, ∗ indicates responder
(1ARAT = 1); ∗∗ indicates minimal detectable change (MDC) (1ARAT = 3); ∗∗∗ indicates minimal clinically important difference (MCID) (1ARAT = 5.7).

FIGURE 1 | Study design. The time-points at which neuroimaging data were collected are represented by Tl, control baseline 1; T2, control baseline 2; T3, control
baseline 3; T4, therapy baseline; T5, mid-therapy; T6, post-therapy; and T7, one-month post-therapy. While the crossover control group (DTG) completed visits
T1–T7, the immediate therapy group (ITG) completed visits T4–T7 only.

Outcomes
For these sub-analyses, and consistent with original study design,
a primary objective outcome measure of UE function, the ARAT

(Mathiowetz et al., 1985; Beebe and Lang, 2009; Malhotra et al.,
2016), and secondary outcome measures of function (capacity
and performance) including the self-report Stroke Impact Scale
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(SIS) (Duncan et al., 1999; Lin et al., 2010), Hand Grip Strength
(An et al., 1980; Malhotra et al., 2016), and the 9-Hole Peg
Test (9HPT) (Mathiowetz et al., 1985) were assessed in the 21
participants who met the aforementioned criteria. The primary
outcome measure, with registered minimal detectable change
(MDC) and minimal clinically important difference (MCID)
values (ARAT MDC90 ≥ 3 point change, MCID ≥ 5.7 point
change) (Lang et al., 2006; Simpson and Eng, 2013), was chosen to
obtain clinically reliable measures of UE motor function change
as a result of BCI intervention. 9HPT was included in this report
as an additional objective (time) measure of motor function. The
9HPT is an assessment of fine motor control and speed of distal
UE movement capacity and performance. The 9HPT requires
finger dexterity and grip, and supplements the ARAT as they both
assess gross UE capacity and function. This study analyzes ARAT
scores, 9HPT performance by the affected UE (9HPTaffected), and
SIS sub-scores of the impaired hand from the four time points,
illustrated in Figure 1. The Fugl-Meyer Assessment of the Upper
Extremity (FMA-UE) is another objective measure of function
commonly used to assess UE capacity in several BCI studies.
Although the FMA-UE was not intended as an assessment in this
design, associations between categorical ranges of ARAT score
and FMA-UE score, as presented in Hoonhorst et al. (2015), were
used to approximate equivalent FMA-UE scores for the purpose
of convenient comparison between the presented ARAT outcome
scores and behavioral changes presented in previous publications.
ARAT scores within the Upper-Limb category defined by baseline
measures (Hoonhorst et al., 2015) were mapped to the FMA-UE
score within the same category, rounded to the nearest whole
integer, as FMA-UE measurements give scores in integer values.

Description of the Behavioral Outcome
Measures
The primary outcome measure was the ARAT. The ARAT is a
57-point metric capable of assessing specific changes in upper
limb function with sub-components for grasp, grip, pinch, and
gross motor movement all of which sum to the total ARAT (Hsieh
et al., 1998). The secondary outcome measures included the SIS,
widely used to measure quality of life in stroke survivors, that
consists of eight dimensions and a composite disability score
(Vellone et al., 2015). The SIS is a 59-item patient-reported
outcome measure, covering eight domains: strength (4 items),
hand function (5 items), mobility (9 items), ADLs (10 items),
memory (7 items), communication (7 items), emotion (9 items),
and handicap (8 items). The domains are scored on a metric of
0–100, with higher scores indicating better self-reported health
(Vellone et al., 2015). As it is possible the ARAT does not
entirely capture the extent to which participants can functionally
interact with their surroundings outside the laboratory, this
subjective measure was chosen to support and record the
participants’ personal experience and opinion of their functional
capacities relative to real-world application (Waddell et al., 2017).
Self-report metrics are important for understanding the extent to
which a participant is recovering UE motor activities subjectively
in a real-world setting (outside the testing room setting) (Stinear
et al., 2017). An additional secondary outcome measure was
the 9HPT, which is a brief, standardized, quantitative test

of UE function (Mathiowetz et al., 1985). The score for the
9HPT is an average of the two trials (Mathiowetz et al., 1985).
Finally, a Smedley spring-type dynamometer tested the average
grip strengths in pounds (lbs.) over three repeated trials per
assessment to measure participant grip strength (An et al., 1980;
Malhotra et al., 2016).

Analysis of Outcome Measures
Data analysis of outcome measures examined four central
relationships: (1) Change in outcome measure scores over time
(Table 2); (2) primary outcome measure improvement rate
differences between intervention and control (Table 3); (3)
improvement rate differences in outcome scores between subjects
who realized an increase in primary outcome (responders) and
non-responders (Table 4); and (4) differences in covariates and
outcome measurements between responders and non-responders
(Table 4) for the purpose of discerning characteristic trends of
those participants who best respond to this BCI intervention. It
is important to note that for all responder analyses, participants
who scored a perfect 57 total score at baseline and completion
were excluded from the sample (n = 7 excluded) due to an
inability to show improvement in primary outcome leaving n = 14
subjects remaining for all the responder sub-analyses. Likelihood
ratio tests of linear mixed effect (LME) models offered rigorous
analysis for each research question while paired and independent
samples t-tests provided analysis of more general trends that LME
may miss. Testing excluding the follow-up time period (time
periods 1–3 of intervention) allowed for examination of direct
effects of the BCI intervention while parallel analyses including
the follow-up time point (time periods 1–4) gave insight into
potential lasting effects of the BCI intervention.

Outcome measures used in all analyses included ARAT, Hand
Grip Strength, and the 9HPT as well as SIS measures of Hand
Function, Mobility, ADLs, and Strength of the hemiparetic
side. For each analysis, and for each outcome measure utilized,
ceiling scores (participants who recorded a maximum outcome
score at baseline and completion for ARAT) were removed
given the impossibility for measured improvement. On the
other hand, floor scores (participant data that demonstrated a
minimum outcome score at the intervention baseline measure)
remained in all analyses akin to an intent-to-treat standard.
Given this selection, the sample size across all data remained
at n = 21 and n = 14 for the responder sub-analyses for most
outcome measures. The outcome measurements with sample size
adjustments following the above criteria include ARAT (n = 14
for both analyses) and SIShf (n = 20). Additionally, the sample
size of 9HPTaffected (n = 9 overall, n = 2 in the responder
dichotomization) was greatly reduced from the original sample
of 21 due to participants’ inability to complete the task given the
extent and severity of their UE impairment.

Independent samples t-tests utilized only DTG control
data and ITG intervention data (neglecting the use of DTG
intervention data) so as not to introduce an inter-subject
dependence of the analyses. Meanwhile, the LME analyses used
a random effect for subjects to account for the non-independence
of the longitudinal data and used all subject time points. For each
mixed model testing a specific outcome, relevant covariates to
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TABLE 2 | Summary of outcome measures during assessment and including follow-up of BCI therapy.

Outcome measures Improvement score LME T-test Time LME

Mean ± SD Estimate ± SE Covariates p-Value p-Value

Stroke impact scale (SIS)

SISHand Function 5.7 ± 16.4 2.9 ± 1.9 Severity, gender 0.134 0.139

(5.7 ± 13.9) (2 ± 1.1) (0.180) (0.07)

SISmobility 8.7 ± 9.8 4.4 ± 0.9 Severity, age, chronicity, 0.001∗∗∗ 0.00001∗∗∗

(7.2 ± 11.2) (2.6 ± 0.7) gender (0.010)∗∗ (0.00009)∗∗∗

SISADL 5.9 ± 10.1 3.1 ± 0.2 Severity, concordance, age, 0.041∗ 0.0086∗∗

(4.9 ± 9.6) (1.7± 0.8) gender (0.035)∗ (0.054)∗

SISS trength 7.4 ± 13.9 3.7 ± 1.6 Severity, chronicity, gender 0.024∗ 0.021∗

(11.3 ± 12.l) (1.7 ± 0.8) (0.001)∗∗∗ (0.00039)∗∗∗

Grip strength 3.8 ± 8.1 1.9 ± 0.9 Severity, chronicity, 0.046∗ 0.037∗

(2.1 ± 7.7) (1.0 ± 0.6) concordance (0.246) (0.062)

9-HPTAffect −5.9 ± 8.9 −2.9 ± 1.2 Chronicity 0.0081∗∗ 0.0201∗

(−4.5 ± 5.3) (−1.9 ± 0.7) (0.046)∗ (0.0118)∗∗

Action research arm test (ARAT)

ARATTotal 1.3 ± 2.4 0.6 ± 0.3 Severity, gender, chronicity, 0.046∗ 0.275

(3.3 ± 4.9) (1.1 ± 0.3) gender (0.020)∗ (0.001)∗∗∗

ARATGrip 0.1 ± 0.5 0.03 ± 0.1 Severity, gender, 0.582 0.802

(0.9 ± 1.4) (0.3 ± 0.1) concordance, chronicity,
age

(0.025)∗ (0.0059)∗∗

ARATGrasp 0.8 ± 1.6 0.4 ± 0.3 Severity, gender, 0.106 0.129

(1.5 ± 3.6) (0.5 ± 0.2) concordance, chronicity, (0.163) (0.03)∗

ARATPitch 0.4 ± 1.6 0.2 ± 0.2 age Seventy, gender, 0.289 0.215

(0.6 ± 1.5) (0.2 ± 0.1) concordance (0.106) (0.039)∗

ARATGross 0 ± 1.6 0 ± 0.02 Severity, age, chronicity, 1.00 1.00

(0.3 ± 1.4) (0.1 ± 0.1) concordance, gender (0.453) (0.437)

Scores, Covariates, and p-values are reported for n = 21 participants during BCI intervention: Mean improvement scores between time points 1 and 3, (parentheses)
indicate mean improvement scores between time points 1 and 4. The time LME p-value is a p-value for the likelihood test between two models differing only in the
inclusion of time as a covariate. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.00l.

control for were chosen based on stepwise regression analysis.
For each outcome measure with the selected covariates, two
nearly identical mixed models were created that differed only in
the inclusion of a single covariate of interest. When examining
how subjects’ outcome scores changed with time, the covariate
of interest was the time period (1, 2, 3, or 4) of interventional
assessment. For comparing the intervention to control, both LME
models included the independent effects of time and therapy type
(control or intervention) and stringently tested for improvement
rate differences by inclusion of an interaction term between time
and type as the covariate of interest. Similarly, both models in the
responder sub-analyses included independent effects of time and
response (responder or non-responder) and stringently tested for
improvement rate changes through an interaction term between
time and response. Meanwhile, response was used as the covariate
of interest to test if responders showed general differences
in secondary outcome measures compared to non-responders.
Finally, a similarly run generalized linear model (GLM) analysis
examined potential significant covariates that helped predict
whether a subject would become a responder through this
BCI intervention. The specific covariates tested included stroke
severity, chronicity, and concordance, as well as age, gender,
and baseline ARAT scores. All mixed modeling analyses were
completed in RStudio (Version 0.99.903 –© 2009–2016 RStudio,

Inc.). The t-tests were run using SPSS (Version 22). Thresholds
for significance were set a priori at p ≤ 0.05 for all statistical
analyses.

Post Hoc Rational: Dichotomizing
Responders
Two groups, deemed “responders” and “non-responders”
(Snapinn and Jiang, 2007), were generated post hoc from
this sample based on whether positive change in the
primary objective measure of UE function was realized
following BCI intervention (completion assessment score –
baseline assessment score). The grouping of responders vs.
non-responders is represented in Tables 1 and 5. Table 1, the
main demographics table, denotes responders with asterisks
in the completion ARAT score column. Table 5 demonstrates
relevant summary characteristic differences between the
dichotomized groups.

The BCI System
BCI Software and EEG Hardware
The BCI system and intervention sequence were consistent
with those previously described (Wilson et al., 2012; Song
et al., 2014, 2015; Young et al., 2014a,b,c,d, 2015), using BCI
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TABLE 3 | Summary of Outcome Measures During Assessment and Including Follow-Up of BCI Therapy for Intervention vs. Control

Outcome measures Control Intervention Covariates

Improvement score Improvement score LME T-test Interaction LME

Mean ± SD Mean ± SD Estimate ± SE p-value p-value

Stroke impact scale (SIS)

SISHand Function 0.4 ± 10.6 3.8 ± 10.8 2.6 ± 3.3 Severity, age, time, type 0.419 0.407

(−0.9 ± 18.0) (5.6 ± 7.3) (2.1 ± 1.9) (0.180) (0.278)

SISmobility 5.1 ± 9.2 11.7 ± 12.0 1.8 ± 1.6 Seventy, chronicity, age, 0.197 0.237

(2.7 ± 8.1) (8.6 ± 13.1) (1.5 ± 1.1) gender, concordance, time,
type

(0.085) (0.148)

SISADL 3.5 ± 12.5 9.2 ± 13.4 1.2 ± 2.1 Severity, concordance, 0.397 0.567

(0.2 ± 12.4) (5.0 ± 10.3) (1.8 ± 1.3) chronicity, gender, age,
time, type

(0.156) (0.175)

SISS trength 2.6 ± 17.1 12.5 ± 8.8 2.4 ± 2.8 Severity, chronicity, gender, 0.149 0.379

(4.1 ± 18.3) (14.6 ± 10.3) (4.4 ± 1.7) time, type ∗(0.019) ∗∗(0.012)

Grip strength −0.3 ± 6.4 1.7 ± 5.0 2.1 ± 1.5 Severity, age, time, type 0.526 0.163

(3.4 ± 11.0) (1.3 ± 3.6) (−0.3 ± 0.9) (chronicity) (0.749) (0.792)

9-HPTAffected −7.7 ± 12.4 −2.6 ± 4.8 0.9 ± 2.8 Time, type (chronicity) 0.826 0.741

(−2.5 ± 19.2) (−3.8 ± 5.41) (−0.8 ± 1.81) (0.183) (0.640)

Action research arm test (ARAT)

ARATTotal 3.1 ± 4.08 0.4 ± 2.1 −0.8 ± 0.6 Severity, gender, age, 0.228 0.154

(1.8 ± 3.8) (3.2 ± 5.5) (0.5 ± 0.5) chronicity, time, type,
concordance

(0.699) (0.256)

ARATGrip 0.3 ± 6.5 0.2 ± 0.4 −0.5 ± 0.3 Severity, gender, age, 0.514 0.075

(3.4 ± 11.0) (1.2 ± 1.6) (0.1 ± 0.2) concordance, chronicity,
time, type

(0.195) (0.458)

ARATGrasp 1.1 ± 2.1 1.2 ± 1.9 0.03 ± 0.4 Severity, gender, age, 0.579 0.949

(0.1 ± 0.4) (1.0 ± 3.5) (0.5 ± 0.3) concordance, chronicity,
time, type

(1.00) (0.146)

ARATPitch 0.8 ± 2.1 −0.2 ± 0.4 −0.2 ± 0.3 Seventy, concordance, 0.391 0.508

(0.3 ± 2.1) (0.3 ± 0.8) (0.2 ± 0.2) time, age, gender, type
(chronicity)

(0.704) (0.501)

AKATGross 0.3 ± 0.5 1.0 ± 1.9 −0.2 ± 0.3 Severity, age, concordance, 1.00 0.46

(0.8 ± 1.2) (0.2 ± 0.5) (−0.2 ± 0.2) chronicity, time, type
(gender)

0.252 (0.303)

Scores, covariates, and p-values are reported for n = 21 participants during BCI intervention: mean improvement scores between time points 1 and 3, (parentheses)
indicates mean improvement scores between time points 1 and 4. Interaction LME p-value is a p-value for the likelihood ratio test between two LME models differing only
in the inclusion of a time:type interaction term (where type is either intervention period or control) as a covariate. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

2000 software (Schalk et al., 2004) version 2 with in-house
modifications for input from a 16-channel EEG cap and amplifier
(Guger Technologies) and integration with tongue stimulation
(TDU) (TDU 01.30 Wicab Inc.) (Kaczmarek, 2011) and
functional electrical stimulation (FES) of distal UE muscles (LG-
7500, LGMedSupply; Arduino 1.0.4) associated with grasping
behavior.

Functional Electrical Stimulation
Functional electrical stimulation of the UE was delivered using
the LG-7500 Digital Muscle Stimulator (LGMedSupply, Cherry
Hill, NJ, United States). Stimulus was conducted through a pair of
2” × 2” square electrodes placed securely on the affected forearm
using highly conductive Electrolyte Spray. The electrodes were
placed to facilitate either a grasping motion (finger flexion),
or finger extension according to participant preference. Specific
placement sites were superficial to digitorum superficialis to
facilitate hand and finger flexion, or superficial to extensor

digitorum communis to facilitate hand and finger extension.
The natural absence of a flexor digitorum superficialis tendon
to the fifth digit in some individuals was not considered by
this study design. Stimulation was controlled through the PC
using an Arduino Uno R3 (Adafruit Industries, New York,
NY, United States) and a simple reed relay circuit, with the
amplitude set to elicit observable muscle activation (e.g., finger
grasping) without pain. The pulse rate of the stimulation
was set to 60 Hz to produce tetanic contraction of the
muscle; the pulse width was set to 150 µs. The input
signal, initially set to zero, was adjusted by steps of 0.5 mA,
unless the stimulation became uncomfortable for the subject.
The device was never set to deliver an output greater than
5.0 mA.

Tongue Display Unit
In previous publications, the TDU has been described and its
use in a BCI paradigm detailed (Schalk et al., 2004; Kaczmarek,
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TABLE 5 | Demographic distribution by ARAT score response.

Age (years) Females Acute Mild Concordant

Response Participants mean ± SD (males) (chronic) (severe) (non-concordant)

Responder 9 62.6 ± 14.3 5 (4) 1 (8) 2 (7) 2 (7)

Non-responder 5 58.3 ± 12.9 3 (2) 2 (3) 0 (5) 0 (5)

Total 14 61.1 ± 13.5 8 (6) 3 (11) 2 (12) 2 (12)

Concordant strokes are classified as those predominantly affecting the preferred arm as assessed by the Edinburgh Handedness Inventory [30]. Individual responder and
non-responder demographics are highlighted on ARAT outcome denoting the responders.

2011; Wilson et al., 2012). This BCI system uses the same TDU
stimulation parameters as were previously reported (Wilson et al.,
2012).

BCI Intervention Procedure
Familiarization With the BCI Device and Procedures
The first BCI session was focused on assisting the participant
to comprehend and engage the BCI device and protocol.
Stroke survivors often present with a myriad of cognitive,
affective, and physical impairments (Nair et al., 2015;
Stinear, 2016) and out of respect for individual participant
needs and abilities, the researchers provide at outset an
opportunity for a generous orientation rather than rigorous
acquisition. During this preliminary session, the EEG cap,
FES device, and TDU device were faithfully administered
as described previously (Wilson et al., 2012). Participants
were instructed before each session, and as needed, to
aim for successful completion of BCI tasks and for each
attempted movement to be performed to the participant’s
autonomously elected level of comfort, ability, and pleasure.
The proposed design entails at least 10 runs for each
closed-loop condition per session; however, enforcement
discretion was encouraged until a participant demonstrated task
comprehension.

Cursor Task and User Integration
In the closed-loop BCI intervention task, participants perform
attempted actual hand movements in response to a left or
right target cue displayed on a computer screen as a virtual
ball-and-target (Young et al., 2015; Figure 2). To accommodate
initial movement capacity and recovery goals, best possible
attempts at repeated hand grasping (finger extension and
flexion) were used. Participants learn to control horizontal
movement of a virtual ball displayed on the monitor by
modulating their sensorimotor rhythm (SMR) activity (SMR
activity represents Mu and Beta rhythm changes over the motor
cortex – this process is indicative of healthy normal brain
electrophysiology of attempted movement) as they perform
the task (Wilson et al., 2012). The SMR activity related to
attempted left (or right) hand movements, as recorded by
the EEG, is then translated into leftward (or rightward) ball
movement via the BCI (Wilson et al., 2012). Mu and beta SMRs
in human subjects (Muralidharan et al., 2011) are recorded
exclusively over sensorimotor areas at frequencies of about 8–12
and 16–24 Hz (Pfurtscheller et al., 1997; Riehle and Vaadia,
2004; Birbaumer et al., 2006), with the source of human

SMR in the sensorimotor regions following the homuncular
organization of the motor and somatosensory cortical strip
(Pfurtscheller et al., 1997; Riehle and Vaadia, 2004). At the start
of each intervention trial, a virtual target randomly appears
on the left or right side of the screen. After 1 s, a virtual
ball appears in the center of the screen, and the subject is
instructed to move the ball toward the target by eliciting SMR
modulation using attempted hand movement. For a trial to
be considered successful, the ball must hit the target within
5 s of its appearance. Trials are aborted and considered
unsuccessful if, after 5 s, the ball has not reached the target. The
inter-trial interval is 3 s regardless of aborted or successful trial
(Figure 2).

Adjuvant Stimulus Schedule
Following completion of at least 10 runs of the visual only
BCI task described above, adjuvant FES stimulation was applied
to the muscles of the impaired hand, and electro-tactile
feedback (visual replication and supplementation) was presented
when available through the TDU for the duration of the
trials possible in a 2-h session. In this way, subjects might
utilize visual feedback, muscle stimulation, and electro-tactile
feedback (or visual replacement or supplementation in the
case of uncorrected visual impairment) to monitor their
task performance. FES-driven stimulation, however, was only
applied to the impaired limb and concordant with both ball
movement toward the impaired side, and the virtual target
presenting on the impaired side. In this way, externally
facilitated muscle stimulation never occurred while the subject
was attempting to move the ball toward their unimpaired
side.

RESULTS

Primary Effect of BCI Intervention
Of the n = 21 participants, 14 participants had room for
improvement in the ARAT of which 64% (9/14) realized
improved scores in the primary outcome measure (ARATtotal)
from baseline to completion of intervention, both at immediate
completion and/or 1-month post-completion (Table 1). 43%
(6/14) had changes in the ARAT that are considered to meet
significant ARAT specific thresholds [four of these participants
had MDC ≥ 3 (MDC90 = 3.0; Simpson and Eng, 2013) and two of
these participants had MCID ≥ 5.7 both at immediate completion
and/or 1-month post-completion]. The seven participants who
had no room for improvement, or had a max score of 57 at
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ARAT, stayed at the same max level in ARAT both at immediate
completion and 1-month post-completion.

Effect of Intervention Time on Outcome Scores
A paired samples t-test found a significant effect of time on ARAT
outcome improvement score (p = 0.046). Secondary outcome
measures found to have significant effect over time included
SISmobility (p = 0.001), SISadl (p = 0.041), SISstrength (p = 0.024),
as well as Hand Grip Strength (p = 0.046) and 9HPTaffected
(p = 0.0081) (Table 2).

Likelihood ratio tests of LME models over time periods 1–3
controlling for severity, gender, chronicity, and concordance did
demonstrate a significant effect of time on ARAT outcome score
improvement (p = 0.02754) (Table 2). Specifically, the full LME
model revealed an estimate improvement rate of ARAT score by
0.64 ± 0.28 (µ ± SE) between time periods. In addition, the LME
model found significance for the secondary outcome measures
of SISmobility (p = 0.00001), SISadl (p = 0.008613), SISstrength
(p = 0.0212), Hand Grip Strength (p = 0.0368), and 9HPTaffected
(p = 0.0201) while controlling for the most significant covariates
as determined by forward stepwise regression (Table 2).

Including Follow-Up
A paired samples t-test evaluated between baseline and follow-up
demonstrated a significant effect of ARAT improvement score
(p = 0.020). Many secondary measurements at follow-up
demonstrated similarly significant improvements including
SISmobility (p = 0.010), SISadl (p = 0.035), SISstrength (p = 0.001),
and 9HPTaffected (p = 0.046) (Table 2).

The likelihood ratio tests of the LME models across follow-up
also demonstrated significant improvement in ARAT, controlling
for severity, gender, chronicity, and concordance (p = 0.0010)
(Table 2). The estimated improvement rate of ARAT score was
1.06 ± 0.31 (µ ± SE) between time periods. The likelihood ratio
tests also revealed significance among SISmobility (p = 0.00009),
SISstrength (p = 0.00039), and 9HPTaffected (p = 0.01178) (Table 2).

ARAT Improvement Rate Between
Control and Intervention (Therapy Type)
During Assessment Period
When testing between Control (n = 12) vs. Intervention (n = 9)
therapy types, the independent samples t-tests did not find that
subjects during intervention improved in ARAT outcome score
at a significantly faster rate than controls. Additional measures
via t-tests found no significant differences between control and
intervention from time points 1–3 (Table 3).

A likelihood ratio test controlling for severity, gender,
age, chronicity, concordance, and the independent effects of
time and therapy type (control or intervention) also did
not find a significant effect of the specific interaction term
between time and therapy type for ARAT outcome score
(p = 0.1543) (Table 3). Similarly, improvement rates for
secondary measurement outcome scores between intervention
and control from time points 1–3 were not significant while
controlling with forward stepwise regression selected covariates
and the independent effects of time and therapy type (Table 3).

Including Follow-Up
The t-test assessed at follow-up did not find a significant effect
of ARAT outcome improvement score. However, there was a
significant effect of SISstrength improvement score (p = 0.019)
(Table 3). The likelihood ratio tests at follow-up for ARAT,
controlling for severity, gender, age, chronicity, concordance, and
the independent effects of time and type were not significant
(p = 0.256) (Table 3 and Figure 3A). Like the t-test, there was a
significant effect between control and intervention for SISstrength
(p = 0.0117) when controlling for severity, chronicity, gender, and
the independent effects of time and therapy type (Table 3 and
Figure 3B).

ARAT Improvement Rate Between
Responders and Non-responders
(Response Type)
During Assessment Period
When testing between responders (n = 9) vs. non-responders
(n = 5), neither t-tests nor likelihood ratio tests of generalized
mixed effect models found the individual covariates of age,
gender, chronicity, severity, concordance of strokes, or baseline
ARAT scores to significantly predict a subject’s ability to
improve in ARAT outcome over the course of intervention.
LME analyses demonstrated that, while controlling for severity,
gender, chronicity, concordance, and the independent effects
of time and response, responders improved significantly faster
than non-responders by 1.62 ± 0.51 (µ ± SE) points per time
point through intervention (Table 4). LME analyses further
revealed significant positive differences between responders
and non-responders in SISmobility by intervention completion
(p = 0.0002) and SISstrength (p = 0.04995) (Table 4 and Figure 3C).
Specifically, responders demonstrated increased SISmobility scores
of 19.63 ± 5.75 (µ ± SE) and increased SISstrength scores of
15.38 ± 9.67 through intervention.

Including Follow-Up
When testing between responders (n = 9) vs. non-responders
(n = 12), neither t-tests nor likelihood ratio tests of generalized
mixed effect models found the individual covariates of age,
gender, chronicity, severity, concordance of strokes, or baseline
ARAT scores to significantly predict a subject’s ability to
improve in ARAT outcome through follow-up. LME analyses
did not demonstrate a significant difference in improvement
rates in ARAT between responders and non-responders
through follow-up while controlling for severity, gender,
chronicity, concordance, and the independent effects of time
and response (p = 0.07821) (Table 4). However, LME analyses
did reveal significant positive differences between responders
and non-responders in SISmobility (p = 0.00155) and SISstrength
(p = 0.04828) through follow-up while controlling for the
forward-step selected covariates (Table 4 and Figure 3C).
Specifically, responders demonstrated increased SISmobility and
SISstrength scores of 18.59 ± 6.88 and 14.80 ± 9.23 (µ ± SE),
respectively, through follow-up while controlling for the selected
covariates (Table 4 and Figure 3D).
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FIGURE 2 | BCI intervention block design: (1) A pre-session open-loop screening task of two attempted and then two imagined grasping tasks (left, right, rest) is
used to set control features (BCI classifier) for the forthcoming intervention task (Cursor Task). (2) The closed-loop cursor and target (visual only) intervention
condition consists of at least 10 runs of 10 trials of attempted grasping movements for the purpose of guiding a virtual cursor (Ball) either left, or right as cued by the
target (Goal) presentation on the horizontal edge of the screen. (3) Following 10 successfully completed runs of the visual only condition, adjuvant stimuli are added
to enrich the feedback environment and facilitate volitional movement of the affected extremity (grasping). Subsequent runs are attempted at the preferred pace of
the participant, completing as many runs as time allows. (4) With 15 min remaining in the 2-h intervention session, the participant is switched into the post-session
open-loop screening task of two imagined and then two attempted grasping tasks (left, right, rest).

Identifying Patients for BCI Intervention
These data suggest that particular participant characteristics
may be associated with greater gains of functional capacity.
The covariates of severity, concordance of strokes, age, gender,
and chronicity, within this limited sample size, may not,
at this sampling, significantly predict whether a participant
will improve in ARAT primary outcome scores due to BCI
intervention. However, increased SISmobility and SISstrength scores
do significantly help predict response outcome (Table 4). It is
further possible that other outcome scores relatively close to
significance (p ≤ 0.1), such as SISadl and Hand Grip Strength
(Table 4), may prove significant with an increase in sample
size. Additionally, although gender, chronicity, severity, or
concordance did not significantly predict if a participant would
become a responder, 73% (8/11) of chronic and 100% (2/2) of
mild participants who had room for ARAT improvement became
responders. Responders to this intervention schedule were, like
the larger cohort sample, a heterogeneous group and included
survivors with severe motor impairment of non-dominant hand
(Table 5) as measured post stroke. It may be possible to

extrapolate upon these data, strengthened by systematic review of
existing literature, to identify patients prepared to realize optimal
recovery outcomes with BCI intervention.

DISCUSSION

Prescribing BCI as UE Therapy
Brain–computer interface intervention can impact functional
motor capacities of the impaired UE (Remsik et al., 2016), and
in this sample, primary outcome measurements of distal UE
function did significantly improve from baseline to completion
as well as baseline to follow-up (Table 2). Results also suggest the
delayed therapy condition utilized in this cross-over controlled
design did not adversely affect UE impairments in individuals
randomized into the DTG. Participants in intervention showed
greater rate of change compared to control (Figure 3A) as well as
greater average gains by completion. However, these differences
were not statistically significant. Insufficient power, especially
following the removal of ceilings, as well as the duration of
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FIGURE 3 | Intervention vs. control and responder vs. non-responder plots. Four of the most notably significant relationships are plotted with boxplots of all patient
data overlaid by simple linear best fit lines to depict general trends in the data. A and B specifically demonstrate differences in the data between all controls (in red)
and all interventions (in blue) whereas C and D represent trends in the data between responders (in orange) and non-responders (in green). (A) Although the
improvement rate in ARAT for subjects in intervention was not significantly higher than controls, participants in intervention did significantly improve over time, and
the trend of the boxplot medians suggests a possible continuation of improvement through follow-up not present in the control period. (B) Participants in intervention
significantly improved faster over time in SISstrength than those in the control period despite both groups starting at similar levels of ability. (C, D) Responders
demonstrated significantly higher average SISmobility and SISstrength scores than non-responders. This suggests patients with lower SISmobility and SISstrength scores
may not benefit from BCI intervention as well as those with higher scores.

specific neural plastic changes (weeks, months, or longer) (Jones,
2017), may contribute to this lack of significant differences.

Although BCI intervention appears to lead to functional
reorganization of the central nervous system, or brain (Caria
et al., 2011; Song et al., 2014, 2015; Zich et al., 2017; Cervera et al.,
2018), it is not unreasonable to suggest that more time in therapy
is needed for these CNS changes to manifest as measurable,
clinically relevant changes in UE behavior. This possibility may
explain the delay in primary outcome improvement between
baseline and midpoint medians (2–3 weeks apart) compared to
the differences between baseline and completion or even the
middle time point and completion (Figure 3A). This assumption
is supported by the continued improvement between midpoint
and follow-up for those in intervention, a change which is
not observed in the control group (Figure 3A). This delay of
2–3 weeks of the larger primary outcome score change is also
consistent with a similar BCI therapy research design (Li et al.,

2014). Further analysis about the rate of change at various time
points is needed.

Mean projected FMA-UE changes from baseline to follow-up
in this sample (5.4) are comparable to improvements in
FMA-UE baseline to completion score changes (Cervera et al.,
2018) in other published experimental BCI intervention studies.
Subchronic patients generally experience greater therapeutic
effects of BCI interventions than do chronic participants (Cervera
et al., 2018), and a similar limiting relationship may exist between
mild and severe UE impairment patients (Cramer and Nudo,
2010; Stinear and Byblow, 2014). Such trends may account for
some differences between the presented projected FMA-UE score
changes estimated from this sample (mean change of 2.2 and
5.4 at completion and 1-month post-completion, respectively)
(Table 1), which are potentially labored by the heterogeneity of
time since stroke and level of physical impairment post-stroke,
and greater changes reported in similar studies (Li et al., 2014;
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Kim et al., 2016) by other groups. For example, Li et al.
(2014) (n = 7) demonstrated a 12.7 FMA-UE change, however
with a sample of subjects that was much less chronic (all
chronicity ≤ 6 months) than those participants examined herein
(Li et al., 2014). Similarly, Kim et al. (2016) (n = 15) saw a
7.87 change in FMA-UE scores, however on average (baseline
µFMA−UE = 26.8), those subjects had less severe strokes (Kim
et al., 2016) than the participants in this sample. In general, most
BCI intervention studies remain underpowered and inadequately
constrained (Cervera et al., 2018), presenting threats to both
internal and external validity.

The results of this study suggest that SISmobility and SISstrength
may be important factors to consider when designing or
prescribing BCI regimes as higher scores were significantly
indicative of increased likelihood for treatment success. While
still unclear, other factors that may also play predictive roles in
BCI interventional motor recovery include, but are not limited to,
Hand Grip Strength and SISadl scores, as well as stroke chronicity
and severity. While insignificant due to the small sample size,
the large proportions of chronic and mild patients who became
responders, 73% (8/11) and 100% (2/2), respectively, does follow
previously reported trends (Caria et al., 2011; Ang and Guan,
2013; Young et al., 2014d; Ang et al., 2015; Remsik et al., 2016).
The fact that BCI intervention appears to be able to specifically
benefit chronic patients is especially interesting as many stroke
patients reach a functional recovery plateau by completion of
standard of care treatment (Wolf et al., 2006, 2010; Dromerick
et al., 2009; Cramer and Nudo, 2010). The heterogeneity of
these data and relatively small sample size may limit the external
validity of all reported trends as well as limit the realization of
other important predictors.

To date, the literature exploring the behavioral and
rehabilitative implications of BCI treatments remains
underpowered. Nonetheless, this body of research has shown
rapid growth in the last decade and a half (Ang and Guan,
2013; Remsik et al., 2016; Bundy et al., 2017; Cervera et al.,
2018). Research assessing which presenting stroke patients will
profit most from BCI treatments remains mostly inconclusive.
However, increased microstructural integrity of the ipsilesional
posterior limb of the internal capsule (PLIC) has been correlated
with greater motor recovery from BCI therapy (Song et al.,
2014, 2015). Similarly, Young et al. (2016) demonstrated that
changes to the integrity of the contralesional corticospinal tract
(CST) during BCI therapy correlates to behavioral improvement
scores for ARAT and 9-HPT. Thus far, most BCI treatment
studies have observed participants in the chronic stage of stroke.
As BCI is still a relatively new concept for treatment of UE
paresis, it is possible that the majority of individuals participating
in BCI research have exhausted standard clinical care. Thus,
samples may be weighted disproportionately by participants with
chronic persistent UE motor disability. It is also possible that the
therapeutic impact of BCI intervention is dependent on several
factors (i.e., residual motor capacity, lesion volume, and time
since stroke) which should be considered before BCI treatment
is prescribed (Stinear and Byblow, 2014). A forthcoming intent
to treat analysis of this study should help address some of these
unanswered questions in a more robust manner.

Motivational Influences of BCI Use
Changes in primary outcome scores (ARAT) during treatments
suggested that this BCI design may deliver moderate objective
positive UE motor changes, as seen in the 64% (9/14) of
participant (out of those who had room for improvement)
“Responders” who completed the BCI treatments protocol
as designed. 43% (6/14) had changes in the ARAT who are
considered to meet significant ARAT-specific thresholds [four
of these participants had MDC of at least 3 (MDC90 = 3.0;
Simpson and Eng, 2013) and two of these participants
had MCID of at least 5.7 both at immediate completion
and/or 1-month post-completion]. Additionally, the largest
positive changes compared to baseline in ARAT were
observed 1-month post treatment for a few participants.
This might suggest that continuation of biological and
behavioral recovery mechanisms induced by BCI systems
may remain active in participants beyond their time in the lab
setting.

Limitations
Suitability of Dichotomized Responder Analysis as a
Sufficient Measure of Clinical Importance of
Treatment Effects
A significant portion of this publication is dedicated to an analysis
of participants according to post hoc dichotomized assignment
by main effect in the primary outcome. Responder analyses are
challenged by several inherent limitations (Snapinn and Jiang,
2007). First, the arbitrariness of a “responder” threshold value
levies a substantial cost as dichotomization decreases efficiency
and increases sample size requirements (limited power relative
to analysis of the original selection). Further, the motivation for
a responder analysis is to assess clinical relevance (to ensure
clinical relevance of treatment effect), and as clinical relevance
is ubiquitous with every clinical trial and setting, such logic
may be seen as inherently circuitous. Beyond the inherent
shortcomings of a post hoc responder analysis, this study was
constrained by heterogeneity in many covariates including lesion
location, level of impairment, age, gender, and time since stroke
among the participants studied. Certainly, greater power is
needed to adequately generalize results to a more adequate
standard.

Nature of the Academic Research Environment
This is an ongoing study in its seventh year of data
acquisition and enrollment. Multiple different project personnel
have undergone and supervised the staffing, training, and
data acquisition of this trial during its course. The authors
work hard to best minimize differences in acquisition of
study measures through extensive and repeated training of
personnel.

CONCLUSION

Both primary (ARAT) and secondary (SISmobility, SISadl,
SISstrength, Hand Grip Strength, and 9HPTaffected) outcome
measures were significantly improved over the course of this
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BCI interventional therapy. For SISstrength scores specifically,
participants in intervention demonstrated significantly increased
improvement rates through follow-up compared to controls
while controlling for severity, chronicity, gender, and the
independent effects of time and therapy type as measured
through likelihood ratio tests of LME models. None of the
analyses revealed any significant negative effect of delaying
BCI treatments for participants. This particular result may
be attributed to the chronicity of most of the recruited
participants (n = 16 ≥ 1 year, n = 17 ≥ 6 months) since
patients typically reach a functional plateau before the chronic
phase of stroke and are not expected to realize a large
degree of change, rehabilitative or otherwise, to their UE
motor capacity. This particular study did not reveal significant
differences between those who demonstrated improvement in
ARAT outcome and those who did not in terms of age,
gender, chronicity, severity, or concordance of stroke impairment
suggesting that the BCI intervention design may be suitable
for a large range of patients. However, 8/11 chronic, and both
mild, participants with room for ARAT score improvement
achieved “responder” designation, and the explicit capacity of
BCI treatments to assist chronic (and mild) stroke patients,
even after they have reached a functional plateau, is reported
in other literature (Caria et al., 2011; Ang and Guan, 2013;
Young et al., 2014d; Ang et al., 2015; Remsik et al., 2016).
Despite statistical limitations of the heterogeneity of the relatively
small sample size in this study, those who responded to the
BCI intervention did have significantly higher self-reported
SISmobility and the SISstrength scores through follow-up. These
findings may suggest that particular measures can assist in
the prescription of a BCI intervention regimen necessary for
an individual participant, as well as aid in the prediction
and measurement of BCI interventional success as assessed by
primary outcome measures of capacity and performance, like the
ARAT.

Additional research is required to identify how BCI
intervention dose–response relationships are influenced by
the various potential classifications of stroke survivors. It
is quite possible that prescribing BCI intervention as a
one-size fits all treatment for UE motor impairment may
not be an ideal approach for this rehabilitative technology.
Rather, these data suggest that at least some outcome
measures, along with stroke severity and chronicity, may
prove valuable in determining if BCI treatments could be
effective for a stroke survivor with persistent UE paresis.
Therefore, patients receiving BCI treatments in future research
or clinical contexts might benefit most from a treatment
regimen tailored to the individual’s presenting performance
capacity as measured by the easily administered and scored
SIS. Supplementary outcome measures (both objective and
self-reported), impairment characteristics, and treatment
goals should all be taken into account when designing a
BCI intervention for a potential participant. Future studies
should seek to more thoroughly examine the effects of
patient characteristics on BCI effectiveness, and examine
how to deliver targeted treatments based on individual

impairments and treatment goals in a concerted effort to
maximize rehabilitative effect with similar BCI intervention
strategies.
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Despite the established effectiveness of the brain-computer interface (BCI) therapy

during stroke rehabilitation (Song et al., 2014a, 2015; Young et al., 2014a,b,c, 2015;

Remsik et al., 2016), little is understood about the connections between motor network

reorganization and functional motor improvements. The aim of this study was to

investigate changes in the network reorganization of the motor cortex during BCI

therapy. Graph theoretical approaches are used on resting-state functional magnetic

resonance imaging (fMRI) data acquired from stroke patients to evaluate these changes.

Correlations between changes in graph measurements and behavioral measurements

were also examined. Right hemisphere chronic stroke patients (average time from stroke

onset = 38.23 months, standard deviation (SD) = 46.27 months, n = 13, 6 males,

10 right-handed) with upper-extremity motor deficits received interventional rehabilitation

therapy using a closed-loop neurofeedback BCI device. Eyes-closed resting-state fMRI

(rs-fMRI) scans, along with T-1 weighted anatomical scans on 3.0T MRI scanners

were collected from these patients at four test points. Immediate therapeutic effects

were investigated by comparing pre and post-therapy results. Results displayed that

th average clustering coefficient of the motor network increased significantly from pre

to post-therapy. Furthermore, increased regional centrality of ipsilesional primary motor

area (p= 0.02) and decreases in regional centrality of contralesional thalamus (p= 0.05),

basal ganglia (p = 0.05 in betweenness centrality analysis and p = 0.03 for degree

centrality), and dentate nucleus (p = 0.03) were observed (uncorrected). These findings

suggest an overall trend toward significance in terms of involvement of these regions.

Increased centrality of primary motor area may indicate increased efficiency within its

interactive network as an effect of BCI therapy. Notably, changes in centrality of the

bilateral cerebellum regions have strong correlations with both clinical variables [the

Action Research Arm Test (ARAT), and the Nine-Hole Peg Test (9-HPT)]

Keywords: BCI therapy, brain-computer interface, stroke recovery, graph theory, motor functional recovery, motor

network
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INTRODUCTION

Eight lakhs Americans experience a stroke each year, a number
that is predicted to rise by 22% by 2030 (Go et al., 2013).
Recent medical advances have decreased stroke mortality rates
(Go et al., 2013). However, the growing number of stroke
survivors continue to struggle as their independence are
notably diminished. These survivors often suffer from persistent
functional deficits, resulting in billions of dollars of economic
costs each year (Towfighi and Saver, 2011). Kelly-Hayes et al.
(2003) shows that acquisition of a lasting motor impairment is
one of the most prominent sources of such functional deficits,
with up to 50% of survivors suffering from hemiparesis, and
26% requiring assistance with activities of daily living (ADLs)
6 months post-stroke. Consequently, this expanding population
of stroke survivors increases the demand for effective stroke
rehabilitation therapies and mechanistic break-down of stroke
recovery.

The most critical time-frame for significant post-stroke
recovery has been shown to occur within the first few months
following stroke onset (Stinear and Byblow, 2014). During this
period before plateauing around 6 months post-stroke (Wolf
et al., 2006, 2010; Dromerick et al., 2009; Cramer and Nudo,
2010), spontaneous biological recovery (SBR) plays a major role

in the complex process of motor recovery. spontaneous motor

and cognitive recovery may no longer occur within the same
manner as it is observed during SBR. Although patients in

the chronic stages of stroke recovery retain the capability of
neuroplasticity (Caria et al., 2011; Ang et al., 2015), traditional

therapies have not been effective after 6 months post-stroke. As a
result, chronic stroke survivors have fewer options for recovery.

In the absence of effective traditional rehabilitation therapy
for chronic stroke survivors, novel therapeutic techniques show
success in generating some functional motor recovery beyond
traditional rehabilitation window (Cramer and Nudo, 2010; Ang
et al., 2015; Irimia et al., 2016).

Brain-computer interface (BCI) therapy is being used
in non-traditional therapies for stroke rehabilitation. An
increasing number of studies indicate that with different neuro-
rehabilitative BCI therapy strategies, both acute and chronic
stroke patients can achieve significant changes in behavioral
measures [such as the Action Research Arm Test (ARAT), and
the Nine-Hole Peg Test (9-HPT)] of persistent upper extremity
(UE) impairment (Young et al., 2014a,b; Irimia et al., 2016;
Remsik et al., 2016). One such strategies that was applied in
the ongoing clinical trial [(NCT02098265) interventional, non-
invasive closed-loop electroencephalography (EEG) based BCI
therapy for the restoration of distal UE motor function in stroke
survivors Song et al., 2014a, 2015; Young et al., 2014a,b,c,d, 2015;
Remsik et al., 2016] is to use electroencephalography (EEG) to
detect neural activity. The signals from the EEG are translated
into a video-game simulation which responses to user’s neural
patterns. The video game simulation provides real-time feedback
which allows the user to observe and learn to modulate their
brain activity. This method may stimulate neuroplastic changes
and exploit any recovery potential that remains after a patient
reaches a functional plateau with traditional therapies.

BCI therapies are designed to reward the consistent
production of specific brain activity patterns relative to other
patterns in the context of an intended task. While growing
number of studies (Muralidharan et al., 2011; Song et al.,
2014a, 2015; Young et al., 2014a,b,c,d, 2015; Irimia et al., 2016)
have shown the effectiveness of BCI therapies in rehabilitating
volitional movements in stroke survivors, little is known about
the network reorganization patterns that occur in stroke patients
by such therapies.

Overview of This Study
The aim of this study was to determine topological changes in the
motor network of chronic stroke patients who participated in BCI
therapy. Task-free (resting-state) fMRI was chosen to map brain
network changes as it is easily acquired on all patients irrespective
of the degree of impairment. In order to evaluate reorganization
of the motor network, a pure data-driven methodology known
as the graph theoretical analysis was applied. The graph theory
has been recognized in recent years as a novel method to study
functional networks of the brain (Bullmore and Sporns, 2009;
Wang et al., 2010).

The fundamental basis of graph theory is to represent
a network in terms of nodes (or vertices) and links (or
edges) between pairs of nodes. This approach helps researchers
to describe topologies of complex networks by quantifying
properties of a network (Wang et al., 2010). When representing a
large-scale brain networks in this way, nodes are usually defined
as anatomical brain regions and links can be represented as
functional connectivity (FC) between these nodes, in which FC is
defined as themagnitude of temporal correlation of the activity of
two brain regions (Boccaletti et al., 2006). Functional segregation
and integration have been recognized as the two most important
principles when considering networks in the human brain (Wang
et al., 2010). Graph theoretical methods also enable researchers
to evaluate hubs in a network (Wang et al., 2010). In a complex
network, hubs have an essential importance in controlling over
flowing information.

In this study, functional segregation and integration of the
executive motor network was examined via clustering coefficient
(measure of segregation) and shortest path lengths of the network
(measures of the integration) (Bassett and Bullmore, 2006), and
two measures of centralities (i.e., betweenness centrality and
degree centrality) was used to evaluate alteration of hubs.

The main hypotheses in this study were:

I. Gradual improvement in the ipsilesional primary
sensorimotor cortex during the stroke recovery–potentially
as a result of SBR–has been observed in recent longitudinal
studies (Carey et al., 2002; Wang et al., 2010). An increase
in the regional centrality of the ipsilesional primary
sensorimotor following the administration of BCI therapy
was hypothesized.

II. Behavioral measurements (i.e., ARAT and 9-HPT) were
predicted to be correlated with changes in the topology of the
motor network. Specifically, it was hypothesized that changes
in graph properties (regional centrality, etc.) will correlate
with gains in motor function. Similar associations between
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regional centralities of the motor network and improvement
in some clinical outcomes have been reported in spontaneous
stroke recovery during the acute stroke stage (Wang et al.,
2010). Also the association with improvement in the pattern
of activity in fMRI data and improvement in some clinical
variable during chronic stage has been observed previously
(Carey et al., 2002; Gauthier et al., 2008; Richards et al., 2008).

MATERIALS AND METHODS

Recruitment Methods, Exclusion Criteria,

and Ethic Statement
Thirteen patients who suffer from persistent upper extremity
motor impairment caused by ischemic or hemorrhagic stroke
were enrolled for the BCI therapy. All of these subjects were
recognized as proper for participation in this study by one or
more physicians at the University of Wisconsin Hospital and
Clinics. Patients with concurrent neurodegenerative disorders,
such as dementia, or other neurological or psychiatric disorders,
such as epilepsy, schizophrenia, or substance abuse, were
excluded from this study. All subjects provided written informed
consent. This study was approved by the Health Sciences
Institutional Review Board of the University of Wisconsin–
Madison. Participant characteristics are summarized in Table 1.

Randomization and Study Paradigm
All participants in this study were randomly assigned to one
of two groups (BCI therapy group or crossover control group)
using a permuted-block design accounting for gender, stroke
chronicity, and severity of motor impairment. Those in the BCI
therapy group immediately received interventional rehabilitation
therapy using the BCI device with functional assessment andMRI
scanning at four time points: before the start of BCI therapy (Pre
therapy), at the midpoint of BCI therapy, upon completion of all
BCI therapy (Post therapy), and 1 month following the last BCI
therapy session. Those in the crossover control group completed
three additional functional assessments and MRI scans during

the control phase of the study and then crossed over to complete
the same BCI therapy phase of the study as the first group.
For more information about the study paradigm and details
about interventions, please refer to Young et al. (2014a). Data
analyzed in this paper is from the intervention phase for both
groups and using only two time points: before therapy (or therapy
baseline) and post-therapy. This is because several of our studies
have shown the most significant gains following therapy at these
time-points (Young et al., 2014b,d; Remsik et al., 2016).

Functional Assessments
Subjects’ motor function of the impaired arm was assessed
with behavioral objective measures. These measures included
subjects’ performance in the Action Research Arm Test (ARAT)–
a standardized series of scored movements designed to evaluate
upper extremity motor function in the domains of grip, grasp,
strength, and gross movement (Carroll, 1965; Beebe and Lang,
2009; Young et al., 2014b), and the Nine-Hole Peg Test (9-HPT)–
a timed task in which the subject attempts to first place the pegs
in each of the 9 holes on a pegboard and then removes each peg
using only one hand (Carroll, 1965; Young et al., 2014b). These
scores were standardized as follows: scores for the ARAT were
reported as the total points scored when using the impaired hand,
and scores for 9-HPT were taken as an average of two timed trials
using the impaired hand (Young et al., 2014b).

At each of the visits for behavioral evaluation, anatomical and
functional MRI scans were also obtained for each subject.

Image Acquisition and Processing
MRI data were collected on 3 Tesla GEMR750 scanners equipped
with high-speed gradients (Sigma GE Healthcare, Milwaukee,
Wisconsin) using an 8-channel head coil. In order to minimize
head movements, padding was used around each subject’s
head. Ten minutes resting-state (R-s) fMRI data were collected
using a T2∗-weighted gradient-echo planar imaging (EPI) pulse
sequence sensitive to BOLD contrast. Technical parameters used
to acquire these EPI scans were as follows: field of view 224mm,

TABLE 1 | Clinical and demographic data.

ID Infarcted

hemisphere

Localization of infarct ARAT affected hand Score 9-HPT Score

1 Right Temporal, Frontal 3 3 29.31 21.06

2 Right Occipital 57 57 27.5 22.99

3 Right Temporal, Frontal 9 10 37.12 32.52

4 Right Frontal 3 16 20.93 20.6

5 Right Putamen – – 24.61 23.62

6 Right Pons 27 40 30.51 28.00

7 Right Cerebellum 57 57 26.48 21.79

8 Right PLIC putamen 23 40 26.69 20.71

9 Right Prefrontal, Midfrontal, Temporal – – 37.84 34.97

10 Right Internal capsule, Thalamus 56 57 20.05 18.22

11 Right Frontal, Parietal 7 7 19.46 18.62

12 Right Frontaltemporal, Occipital 3 4 20.29 18.58

13 Right Anterior temporal, Frontoparietal 0 2 26.77 24.25
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matrix 64× 64, TR 2600ms, TE 22ms, flip angle 60◦, and 40 axial
plane slices of 3.5mm thickness with 3.5mm spacing between
slices. A T1-weighted high-resolution anatomical image was also
obtained for each subject using a BRAVO FSPGR pulse sequence.
Technical parameters used to acquire these scans are as follows:
field of view 256mm, matrix 256× 256, TR 8.16ms, TE 3.18ms,
flip angle 12◦, and 156 axial plane slices of 1mm thickness with
1mm spacing between slices.

R-s fMRI data were processed using the AFNI package
(Cox, 1996). Images were despiked, slice time-corrected, motion-
corrected, aligned with the anatomical scan, normalized to MNI
space, re-sampled to 3.5mm, and spatially smoothed with a 4mm
FWHM Gaussian kernel. Motion censoring (per TR motion >

1mm or 1◦), nuisance regression, and bandpass filtering (0.009–
0.08Hz) were performed simultaneously in one regression
model. Nuisance signals that were regressed out included six
motion estimates and their temporal derivatives, the voxel-
wise locally averaged white matter signal, and the cerebrospinal

fluid signal. Global signal regression was omitted due to the
controversial position associated with it in the literature (Murphy
and Fox, 2017).

Graph Construction
Figure 1 illustrates the standard procedure of graph theory
analysis applied on f-MRI data that has been well-stablished
and used in many studies (Humphries et al., 2006; Achard and
Bullmore, 2007; He et al., 2008; Bullmore and Sporns, 2009, 2012;
Meunier et al., 2009; Alexander-Bloch et al., 2010; VanWijk et al.,
2010; Wang et al., 2010; Bernhardt et al., 2011; De Vico Fallani
et al., 2014; Song et al., 2014b). Reign of interest (ROI) from the
network under investigation is first identified. These ROIs would
be nodes in the graph. Then the correlation matrix (or functional
connectivity (FC) matrix) between these ROIs is acquired using
temporal correlations among all ROIs. Next, the proportional
thresholding is applied to exclude weak or irrelevant FCs from
the analysis of the graph. A threshold value in the context of

FIGURE 1 | Pipeline for the graph theory analysis applied on functional brain network. Red rectangulars specify the submethodology used in this study at each step.

Nodes correspond to specific region in the brain (predifined ROI in our study). Links are estimated by measuring the FC between different regions in the brain

(undirected links); connectivity matrix would be constructed using this information. By means of filtering procedures, based on thresholds, only the most important

links constitute the brain graph. The topology of the brain graph is quantified by different graph metrics that can be represented as numbers. These graph indices can

be input to statistical analysis in order to look for significant differences between populations/conditions (e.g., red points correspond to brain graph indices of diseased

patients or tasks, blue points stand for healthy subjects).
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proportional thresholding (known as network sparsity) is defined
as the number of correlations that is considered as connections in
the final graph divided by number of all possible correlations exist
in the correlation matrix (Latora and Marchiori, 2001; Achard
et al., 2012). After proportional thresholding and excluding weak
FCs, each remaining FC is identified as a link (or edge) between
its associated ROIs and the graph is constructed. From this graph,
topological properties of the network under investigation can be
evaluated.

Optimally thresholding correlation matrix to only include
important FCs is critical in this methodology. Having too few FCs
may obscure group differences, whereas too many FCs may lead
to a random graph structure (Humphries et al., 2006). However,
applying this method on a brain network model has a potential
to move the graphical model away from the actual network
that it represents. In the section Preserving graph connectedness
and network thresholding, this limitation of the thresholding is
explained and a technique (the Maximum Spanning Tree, MST)
to circumvent this potential limitation is introduced.

In the following subsections, the criterion for choosing ROIs
in our study is explained, and the proportional thresholding is
discussed in more details.

Regions of Interest in Executive Motor

Network
Twenty-one anatomical ROIs associated with the motor
execution network were defined by creating 5mm diameter
spheres around coordinates for regions in the motor network
previously defined by Wang et al. (2010) (Table 2). One ROI
(located in the right ventrolateral premotor cortex) was excluded
due to overlap with subject’s stroke lesions. The 20 ROIs
include the primary motor cortex, bilateral superior parietal
lobule, bilateral basal ganglia, bilateral thalamus, anterior inferior
cerebellum, postcentral gyrus, and dentate nucleus (Wang
et al., 2010). These ROIs were used to derive Pearson’s R
correlation coefficient matrices from each subject’s r-s fMRI,
using AFNI’s doROICorrMat command. Fisher z transform was
then applied on R correlations across each patient and used z-
score correlation matrices in further analysis (Since hypotheses
about the significance of the population correlation wanted to
be evaluated, Fisher z-score was more proper than r-correlation
value). In this study, the alteration in the magnitude of the
functional connections was tended to be evaluated; hence,
absolute values of these matrices were used in all analyses.

Preserving Graph Connectedness and

Network Thresholding
As it is described earlier in this section, applying thresholding
without any consideration for the reality of the circulation
of information in the network has some potential issues.
Thresholding raises two critical issues; (1) It may lead the
final graph to be disconnected–in which a region that is part
of the brain network will be left without any connection to
any other region in the graph, (2) In addition, there is no
comprehensive agreement in the field on the cutoff value above
which correlations should be considered as edges.

TABLE 2 | Regions of interest for the motor network.

ID Region Abbreviation Side MNI coordinate

x y z

1 Superior cerebellum SCb R 16 −59 −21

2 Primary motor cortex M1 L −38 −22 56

3 Primary motor cortex M1 R 38 −22 56

4 Thalamus Th L −10 −20 11

5 Superior parietal lobule SPL L −22 −62 54

6 Supplementary motor area SMA L −5 −4 57

7 Supplementary motor area SMA R 5 −4 57

8 Dorsolateral premotor cortex PMd R 28 −10 54

9 Ventrolateral premotor cortex PMv L −49 −1 38

10 Superior cerebellum SCb L −25 −56 −21

11 Superior parietal lobule SPL R 16 −66 57

12 Dentate nucleus DN R 19 −55 −39

13 Anterior inferior cerebellum AICb L −22 −45 −49

14 Anterior inferior cerebellum AICb R 16 −45 −49

15 Postcentral gyrus PCG R 37 −34 53

16 Dorsolateral premotor cortex PMd L −22 −13 57

17 Basal ganglia BG R 22 −2 12

18 Basal ganglia BG L −25 −14 8

19 Thalamus Th R 7 −20 11

20 Dentate nucleus DN L −28 −55 −43

MNI, Montreal Neurological Institute; R, Right; L, Left.

To address the first issue a growing number of studies have
used the maximum spanning tree (MST) method (Alexander-
Bloch et al., 2010; Achard et al., 2012; Song et al., 2014b; Iyer et al.,
2018). An MST is a weighted spanning tree that would serve as
a backbone for the main graph. In this method, to calculate the
existing tree in the graph with the maximum weights, N-1 FCs
is chosen by the prime algorithm to connect all N nodes of the
network together.

As for the second issue, analysis of the graph in the whole-
network level (such as evaluation of the shortest path length,
clustering coefficient, small-worldness, etc.) has been done in
various numbers of threshold values in almost all previous studies
(Loui et al., 2012; Rutter et al., 2013; Vaessen et al., 2014; He et al.,
2017). This was to capture a proper and complete understanding
of the network topology.

For regional properties of the network (e.g., centrality, or
local efficiency) however, there is still a debate about the proper
threshold value. For instance, Bullmore and his colleagues
(Bullmore and Sporns, 2012) believe that each node in a graph
conforms to the profile of its realistic brain region only in small
threshold values not more than 16% (same thresholding criteria
has been used in Meunier et al., 2009). Another example is Iyer
et al. (2018) in which the author used 6% as the threshold value.
However, in the growing numbers of studies researchers have
used all significant correlations to construct the brain graphical
model (Alexander-Bloch et al., 2010; Wang et al., 2010; Achard
et al., 2012; Song et al., 2014b).

In this study, all significant correlations were used to generate
the graph of each patient’s brain in order to analysis of regional
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properties. From each patient’s connectivity matrix, z-values >

1.96 (two-tailed significant value for z-score) were used as the
threshold to identify percentage of correlations that are above
this threshold, i.e., the ratio of significant connections to all the
possible connections were calculated (Supplementary Figure 1).
By this approach, it has been found that the minimum sparsity
was more than 42%. Hence, the sparsity threshold of 42% was
used to convert connectivity matrices into weighted networks.

In summary, after applying the MST and extracting
the backbone, any other FCs identified as a connection
in the thresholding step are added to this tree to get
weighted undirected connection matrices that represent a sparse,
connected, and biologically meaningful graph for each patient
(Song et al., 2014b).

While most of brain network studies have investigated the
brain’s topology by analyzing binaries graph (in which every edge
in the network has an equal weight of 1), here alteration in the
executive motor network was evaluated by a weighted network
analysis approach, in which every edge in the network has a
weight equal to its equivalent FC in the connectivity matrix, and
hence the network would contain more information about the
actual brain circuity.

Graph Measurements
Weighted Clustering Coefficient and Weighted

Shortest Path Length
The clustering coefficient (C) is a measure of the degree to
which nodes in a graph tend to cluster together (Watts and
Strogatz, 1998). For an undirected weighted graph, the clustering
coefficient of a node i (ci) is defined as follows:

Ci =
1

Si(Ki − 1)

∑

(j,k)

Wij +Wik

Here, Si is the strength of the node i (defined as sum of the FC
between node i and other regions), Wij is the FC between node i
and node j, and Ki is the number of edges connected to the node
I. The sum over (j,k) carries out sum of weights for any two pairs
of j and k connected to the node i (Wang et al., 2010; Bernhardt
et al., 2011).The clustering coefficient over all nodes in a network
is then defined as:

C =
1

N

N
∑

i=1

ci

The characteristic path length (L) reflects the level of global
integration in the network. A shortest path between two nodes
A and B is the path between A and B with the smallest number
of edges. The characteristic path length li of a node i is defined as
Watts and Strogatz (1998):

li =
1

N − 1

∑

i6=j

min {Iij}

Where min {Iij} is the shortest path length between the ith and
jth nodes. The characteristic path length L of a network is then

defined as the mean of characteristic path lengths over all nodes
in the network:

L =
1

N

N
∑

i=1

li

Regional Centrality Measurements
In network analysis, indicators of centrality identify the most
important nodes within a graph (Brandes, 2001). In the present
study, each node’s importance in the network was evaluated using
degree centrality and betweenness centrality.

Degree centrality (DC) counts the number of neighbors of
each node. In this context, a node with higher degree centrality,
would have more FCs with other parts of the network and hence
is more involved in the network communication.

Betweenness centrality (BC) captures the influence that one
node has over the flow of information between all other nodes in
the network. The betweenness centrality of a node v is calculated
as follows (Brandes, 2001):

BC (v) =
∑

S6=v 6=t

σst (v)

σst

Where σst is the total number of shortest paths from node s to
node t and σst(v) is the number of shortest paths from node s to
node t that passes through node v. A node with high centrality
is considered to be a hub in the network. Since this summation
scales with the number of pairs of nodes, the quantity is rescaled
and normalized by the average of BC over all nodes (Wang et al.,
2010).

In this work, all graph measurements were calculated by using
the Brain Connectivity Toolbox (2016) in MATLAB R2015.

Statistical Analysis
All tests between two time-points were assessed using non-
parametric Wilcoxon signed-rank test. For all statistical tests
α was set to 0.05 and then for each family of tests (i.e., tests
of betweenness centrality, degree centrality, and correlations),
correction for multiple comparisons were performed separately
using false discovery rate (FDR) (Benjamini and Hochberg,
1995). All p-values reported in this study are unadjusted p-
values (i.e., p-values are not FDR adjusted p-values, also known
as q-values) and after FDR correction, any significant test was
reported and marked with asterisk in the figures and tables.
Tests with p-values < 0.07 were also considered trend toward
significance and marked with plus in figures and tables.

RESULTS

Participant Characteristics and Behavioral

Outcomes
The average age of the 13 participants in this study was 64.92
years (SD= 12.19 years), and the average time from stroke onset
was 38.23 months (SD = 46.28 months). Of the 13 patients, two
patients were unable to perform the ARAT (Table 1). For the
other participants, a Wilcoxon sign rank test was performed on
each of the behavioral scores (i.e., 9-HPT, and ARAT) (Figure 2).
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FIGURE 2 | The longitudinal changes of patients’ performance in (A) ARAT, and (B) 9-HPT scores analyzed via Wilcoxon signed-rank test. 9-HPT, Nine-Hole Peg

Test; ARAT, Action Research Arm Test. *Indicates that p-value is significant (p <0.05).

Compared to pre-therapy, both the 9-HPT and ARAT scores
demonstrated significant recovery (p = 0.0156 for ARAT and
p= 0.0002 for 9-HPT).

Adjacency Matrices
Changes in group-level FCs between two scans were evaluated
by median–a more robust measure of central tendency compared
to mean–of each group’s z-score connectivity matrices. As
depicted in Figure 3, patients showed higher FCs among the
contralesional subcortical regions (thalamus and basal ganglia)
and other contralesional sensorimotor regions before therapy
(Figure 3B). The median metric after therapy showed a decrease
in the FCs of these regions while ipsilesional sensorimotor and
subcortical regions of the motor network showed increased their
FC with other parts of the network (this is clear from comparing
the entries in the bottom right of the matrix in Figure 3D with
same entries of the matrix in Figure 3B).

Global Network Parameters
Analysis of the shortest path length of the brain network showed
no significant differences at any sparsity level over the study
period (Figure 4B).

For the clustering coefficient (Figure 4A), mean clustering
coefficient at post-therapy showed significant increase,
comparted to pre-therapy, across several threshold values.
Specifically, the network consisting of strongest FCs (sparsity
lower than 12% in Figure 4B) showed no significant difference
from pre to post. However, after including more mild edges
(network sparsity between 12 and 36%), clustering coefficients
in post-therapy gradually increased, and the gap between each
time-point’s distribution broadened as the sparsity increased.

Local Centrality Parameters
Betweenness centrality showed a trend toward significant
increase from pre to post-therapy (Figure 5A) in the ipsilesional
primary motor cortex (p = 0.0201). While the contralesional

dentate nucleus, basal ganglia, and the thalamus in post-therapy
showed a trend toward significant decrease in BC compared
to pre-therapy (p = 0.0324, p = 0.0502, and p = 0.0537,
respectively).

Changes in the degree centrality of the motor network over
the study period were investigated (Figure 5B). Results indicate
that compared to pre-therapy, the degree centrality of the
contralesional dentate nucleus (p = 0.0593) and basal ganglia
(p= 0.0334) decreased over the study period.

Behavioral Correlations With Changes in

Network Parameters
To examine the behavioral implications of the changes in
graph theoretical measures, the linear associations between
changes in network parameters and actual recovery reflected
in the behavioral assessments were examined. A summary of
Pearson’s correlations between changes in outcome measures
(ARAT and 9-HPT scores) and changes in network parameters
found to be significant or showing a trend toward significance
after FDR correction is presented in Table 3. The majority of
these relationships involved the bilateral cerebellum. Changes in
centrality of the contralesional anterior inferior cerebellum were
highly correlated with both objective measurements (ARAT and
9-HPT). Figure 6 presents graphs of the relationships that were
found to be significant.

DISCUSSION

Effectiveness of rs-fMRI in Evaluation of

Recovery in Stroke
This study demonstrates the effectiveness of rs-fMRI using
graph theoretical methods to capture brain changes during the
stroke recovery following rehabilitative therapy. rs-fMRI requires
about 10min for image acquisition without any exogenous task
demands on the subject. This method is particularly well-suited
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FIGURE 3 | (A) Median z-score of r-correlation matrices in pre-therapy. (B) Median z-score of r-correlation matrices for pre-therapy at threshold value = 42%.

(C) Median z-score of r-correlation matrices in post-therapy. (D) Median z-score of r-correlation matrices for post-therapy at threshold value = 42%. R = Right,

L = Left. See Table 2 for the abbreviations of the regions. Note that the correlation matrices presented only serve as a visual representation, and are not corrected for

multiple comparisons.

for stroke patients, who often suffer from motor impairment and
hence may not be capable of doing specific tasks during MR
scanning.

Impact of BCI-Based Stroke Rehabilitation

on FC Among Regions of the Motor

Network
This study shows that during the course of BCI therapy, the
motor network strengthens its FC among different regions
mostly in the ipsilesional part of the network. A similar study
(Wang et al., 2010) in patients with subcortical infarcts in acute
stage of recovery found significantly decreased FC involving

the contralesional subcortical structures (such as the thalamus)
during the recovery. Findings in the study highlights a similar
pattern of decreasing median of FC in these regions (Figure 3,
z-score connection matrices of left thalamus for pre-therapy
Figure 3A compared to post-therapy Figure 3C). From this
result, it seems that during the period of therapy, ipsilesional
cortical and subcortical regions in the network have strengthened
their FCs with other parts of the network.

Graph Theory as a Tool to Evaluate Stroke

Recovery
Several studies have shown changes in the brain activation and
functional connectivity following BCI therapy (Young et al.,
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FIGURE 4 | Changes in clustering coefficient (A) and average shortest path length (B) from pre-therapy (Blue) to post-therapy (red) across range of networks’

sparsity. Vertical lines denote the standard deviation of each group. Statistical analyses were carried out using Wilcoxon signed-rank test. *Indicates significant after

correction for multiple comparison.

2014a,b). The focus in this study was on investigating brain
reorganization using network analysis methods. Specifically,
graph theoretical methods were used to capture topological
properties associated with therapy over time. Previous study
(Wang et al., 2010) have used this mathematical method to

determine changes in patients who were in the acute stage of

stroke, when abnormal changes are more observable. Here, this

method has been used to identify abnormal changes in chronic
stroke patients with average time since stroke onset of 38.23

months. Results of this study demonstrate the efficacy of this

method in detecting brain network changes in stroke patients
over time following rehabilitative therapy.

Effect of BCI-Based Therapy on the

Large-Scale Motor Network
Changes in the topology of the motor network has been
determined on a larger scale by evaluating the average clustering
coefficients and the average shortest path lengths across all
regions in the network. Results highlight that during the course
of therapy, the clustering coefficient of the network increases
significantly across different network sparsities (Figure 4). The
higher clustering coefficient suggests that the brain follows
principles of efficient network structures (Watts and Strogatz,
1998). Therefore, BCI therapy might help the motor network to
facilitate more enhanced communication between communities
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FIGURE 5 | Changes in betweenness centrality (A) and degree centrality (B) measures from pre-therapy (Blue) to post-therapy (Red) across all regions in the network

calculated at a density level of 42% analyzed via Wilcoxon signed-rank test. R, Right, L, Left. See Table 2 for the abbreviations of the regions. + trend toward

significance (i.e., raw p-value < 0.07). P-values are round up with 2 integers in order to be shown in the figure.
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TABLE 3 | Correlation analysis between centrality changes and behavioral

changes from pre- to post-BCI therapy assessments.

Behavioral

measure

Graph measure Pearson

R-value

P-value

ARAT L.AIcb (BC) 0.8295 *0.0016

ARAT R.Scb (BC) −0.6832 +0.0205

ARAT R.BG (BC) 0.6458 +0.0318

ARAT L.AIcb (DC) 0.6022 +0.0499

9-HPT R.BG (BC) 0.7400 *0.0038

9-HPT R.DN (BC) 0.5720 +0.0411

9-HPT L.AIcb (DC) −0.5589 +0.0471

9-HPT R.BG (DC) 0.6237 +0.0227

ARAT, Action Research Arm Test; 9-HPT, 9-Hole Peg Test; R, Right; L, Left; *Significant

p-value after correction for multiple comparison with FDR, + trend toward significant (i.e.,

p < 0.07). See Table 2 for the abbreviations of the regions.

of nodes (i.e., nodes sharing similar neighbors), resulting in faster
transmission of information between brain regions.

Alteration in Regional Centrality
Alterations in the importance of different regions in the
motor network have been investigated in our study. The
word “importance” has different meaning in different contexts,
leading to different definitions of centrality (Borgatti, 2005).
The importance of regions in facilitating information transfer
within the network were evaluated using two different forms of
centralities. Degree centrality, in the group of radial centralities
(Borgatti and Everett, 2006), computes the number of edges
connected to each node. This definition of centrality is
particularly attractive, since a change in degree centrality is
associated with a decrease or increase in the number of significant
FCs of that node. A trend toward significant Decrease in degree
centrality of the contralesional basal ganglia (p = 0.03) were
observed in our study, similar pattern was observed in Wang
et al. (2010). Also, a trend toward significant decrease (p = 0.06)
has been found in the degree centrality on contralesional dentate
nucleus.

This study also investigated the hub properties of nodes from
the viewpoint of betweenness centrality. Betweenness centrality
is a measure of the functional importance of a node in terms
of being a bridge for information processing. In this context,
most of the information flowing in the network passes through
a node with high BC. Results showed a trend toward significant
increased BC in the ipsilesional primary motor cortex (p= 0.02),
which is similar to other studies (Wang et al., 2010), (Dong et al.,
2007). Also, a trend toward significant decrease has been found in
BC of contralesional subcortical regions (e.g., thalamus and basal
ganglia). The decrease of BC in the contralesional dentate nucleus
(p = 0.03) seen in our study was not observed in Wang et al.
(2010). This may be due to the differences in study samples, with
chronicity and stroke location in the patients varying between the
two studies.

These findings suggest an increase in the role of ipsilesional
primary motor area as a hub during the period of therapy. The
increased important of ipsilesional primary motor areas may

instigate the gradual recovery of contralesional affected hand in
terms of contralateral motor control. Also it suggests a decrease
in the role of the contralesional subcortical and cerebellum
regions following therapy. One possible explanation for these
findings might be that the recovery of overall brain connectivity
in the ipsilesional subcortical and cerebellum regions. In other
words, the connections going through the ipsilesional subcortical
and cerebellum regions become stronger as a result of the
therapy. This recovery might lead to a decreased role for the
contralesional subcortical and cerebellar regions in transferring
information within the motor network.

Correlations Between Brain Network

Changes and Behavioral Outcomes
Significant correlations between changes in centrality measures
and changes in behavioral outcome measures are consistent
with the view that the motor network changes with BCI
therapy to facilitate information transfer between key regions
in the motor network. Significant positive correlations between
centrality of specific regions (e.g., anterior inferior cerebellum,
and basal ganglia) and performance on the ARAT suggest
that behavioral performance improves as the centrality of these
regions increases. Similarly, significant negative correlations
between centrality and 9HPT suggest that as centrality increases,
processing time is reduced (i.e., time taken to perform the 9HPT
is decreased). Interestingly, results showed similar correlations
between centrality of the bilateral cerebellar regions and
behavioral performance to that reported byWang et al. (2010), in
which the authors used the same ROIs. Also results from Dong
et al. (2007) show reorganization of adaptive activity within the
primarymotor cortex and the cerebellum is in relation to relevant
behavioral changes of patients with the upper extremity.

Cerebellar activity is solely associated with ipsilateral motor
actions (Shibasaki et al., 1993; Allen et al., 1997). Addition studies
have displayed that increased contralesional cerebellar activity is
linked with the restoration of motor function (Chollet et al., 1991;
Jaillard et al., 2005). Small et al. (2002) study further indicated
that the larger the contralesional cerebellar activation, the better
the recovery is Small et al. (2002). The results from this research
study also mimic this trend.

However, it is common in individuals with upper-extremity
motor impairments to overuse the unaffected arm more which
may result in increases of centrality of the ipsilesional cerebellum.
The negative correlation found between the centrality of
ipsilesional superior cerebllum and ARAT performance—and
ipsilesional basal ganglia with 9HPT performance—suggests that
the recovery is enhanced by reducing over-recruitment of the
contralateral extremity.

Overall these brain changes in subcortical structures (such as
basal ganglia) and cerebellum and its interaction with cortical
regions as well as the brain-behavioral correlations are consistent
with these brain structures’ involvements in movement related
functions (i.e., basal ganglia has been implicated in functions
including control of voluntary movements, procedural learning
and the cerebellum contributes to functions such as coordination,
precision, and timing of movements). However, given the small

Frontiers in Neuroscience | www.frontiersin.org 11 November 2018 | Volume 12 | Article 861211

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Mazrooyisebdani et al. Motor Network Alteration Following BCI-Based Therapy

FIGURE 6 | Significant correlations between changes in regional centralities

and changes in behavioral measures. (A) Relationship between changes in BC

measure of right basal ganglia and individual changes in 9-HPT score.

(B) Relationship between changes in BC measure of left anterior inferior

cerebellum and individual changes in ARAT score. Red line representing the

slope of correlation between measurements. 9-HPT, Nine-Hole Peg Test;

ARAT, Action Research Arm Test; R, Right; L, Left. See Table 2 for the

abbreviations of the regions.

sample size and the fact that some of subjects were showing floor
effects, these correlational results must be considered exploratory
and interpreted carefully.

Limitations and Methodological

Considerations
This study had a limited sample size, given that we chose to
focus on a relatively homogenous group of stroke patients,
with all patients having right-sided lesions and being in a
chronic stage. We thus eliminated the confounding effect of
lesion hemispheres by choosing only right hemisphere patients.
However, the localization of the infarct in the sample size is still
heterogeneous within the right hemisphere. Therefore, results of
this study should be interpreted with cautious. Future studies

should be done with larger sample size and more homogenous
infarct.

The rsFCs within the motor regions were constructed using
the seed regions reported in the work ofWang et al. (2010), which
studied spontaneous recovery in stroke patients. A large number
of studies report slightly varying coordinates for the motor
network; however, given that the Wang et al. seed regions cover
crucial regions of the motor network, it was decided to construct
RSFC matrices using these regions. By focusing on a within-
groups analysis, effects of other confounding variables such as
age, gender, and stroke severity were mitigated. Also, attempts
to reduce false positives in results were made by applying the
FDR correction and reported only those results that survived the
corrected p-value. However, given the small sample size and the
rehabilitative focus of the study, we have also reported results
showing a trend toward significance, since these results, although
statistically not significant, may have practical implications.

The findings of this study showcase effective theoretical
approaches that may be further optimized in designing
neurofeedback devices and paradigms for stroke recovery. These
methods are also particularly useful when used to discern brain
activity patterns for training and conditioning purposes. A
review performed by Dimyan and Cohen (2011), determined
that increased ipsilesional lateralization may be more optimal
for motor recovery by its association with spontaneous recovery
(Dimyan and Cohen, 2011). The conclusions made by Dimyan
and Cohen (2011) are consistent with the possibility that is
a diversity in neuronal pattering/organization that facilitate
more effective recoveries following stroke. Furthermore, these
progressive patterns may be modulated with interventional
therapeutic technologies in ways that are not evicted by
spontaneous recovery.

CONCLUSIONS

This study provides a graph theoretical approach toward
investigating brain changes following BCI therapy in chronic
right hemisphere stroke patients with upper extremity motor
impairments. Results showed that improvement in ipsilesional
brain connectivity in the motor network can be observed
concurrently with a period of training using a BCI device,
and that these changes might be correlated with improved
in behavioral outcomes. Due to small sample size and
hetorogenous localization of the infarct in the sample size,
these results should be interpreted with cautious and further
studies will be needed with larger sample size to follow up
on these findings. This study sheds light on the underlying
mechanisms of recovery following BCI therapy, and may
contribute toward developing more patient-specific BCI
therapy protocols to facilitate recovery in chronic stroke
patients.
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Loss of motor function is a common deficit following stroke insult and often manifests as
persistent upper extremity (UE) disability which can affect a survivor’s ability to participate
in activities of daily living. Recent research suggests the use of brain–computer interface
(BCI) devices might improve UE function in stroke survivors at various times since
stroke. This randomized crossover-controlled trial examines whether intervention with
this BCI device design attenuates the effects of hemiparesis, encourages reorganization
of motor related brain signals (EEG measured sensorimotor rhythm desynchronization),
and improves movement, as measured by the Action Research Arm Test (ARAT).
A sample of 21 stroke survivors, presenting with varied times since stroke and
levels of UE impairment, received a maximum of 18–30 h of intervention with a
novel electroencephalogram-based BCI-driven functional electrical stimulator (EEG-
BCI-FES) device. Driven by spectral power recordings from contralateral EEG electrodes
during cued attempted grasping of the hand, the user’s input to the EEG-BCI-
FES device modulates horizontal movement of a virtual cursor and also facilitates
concurrent stimulation of the impaired UE. Outcome measures of function and capacity
were assessed at baseline, mid-therapy, and at completion of therapy while EEG
was recorded only during intervention sessions. A significant increase in r-squared
values [reflecting Mu rhythm (8–12 Hz) desynchronization as the result of attempted
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movements of the impaired hand] presented post-therapy compared to baseline. These
findings suggest that intervention corresponds with greater desynchronization of Mu
rhythm in the ipsilesional hemisphere during attempted movements of the impaired hand
and this change is related to changes in behavior as a result of the intervention. BCI
intervention may be an effective way of addressing the recovery of a stroke impaired UE
and studying neuromechanical coupling with motor outputs.

Clinical Trial Registration: ClinicalTrials.gov, identifier NCT02098265.

Keywords: brain–computer interface, hemiparesis, r-squared, coherence, chronic, acute,
neuroplasticity, homunculus

INTRODUCTION

Stroke
Stroke is a leading cause of acquired adult long-term disability in
the United States (Benjamin et al., 2017) and occurs when blood
supply to the brain is compromised, leading to functional deficits
that may affect activities of daily living (ADLs). Approximately
85% of patients who suffer and survive a new or recurrent
stroke in the United States each year require rehabilitation
(Yang et al., 2017). Six months post-stroke, nearly 50% of
survivors have some residual motor deficits (Benjamin et al.,
2017). By 2050, stroke burden on the United States economy will
approach $2.2 trillion (Benjamin et al., 2017). Despite advances
in acute stroke care, the estimated direct and indirect costs of
stroke continue to escalate and are disproportionally associated
with long-term care and rehabilitation (Benjamin et al., 2017).
Current standard of care seems insufficiently developed to treat
long-term motor deficits, potentially further burdening patients
as untreated motor impairment can lead to deconditioning
and underutilization of the affected upper extremity (UE), a
consequence deemed, learned non-use (LNU) (Schaechter, 2004).

Customary Care and the Opportunities
for Improvement
Several rehabilitation techniques are traditionally used for
stroke recovery including conventional physical-occupational-
speech therapies, provided in acute care settings as well as
newer motor therapies such as constraint-induced movement
therapy (CIMT), robot-aided therapy, transcranial direct current
stimulation (tDCS), transcranial magnetic stimulation (TMS),
and virtual reality (VR) (Kollen et al., 2006; Lindenberg et al.,
2010; Fleet et al., 2014; Young et al., 2014a,b,c; Laver et al.,
2015; Song et al., 2015; Babaiasl et al., 2016; Smith and
Stinear, 2016). Importantly, a much different level of evidence
exists for CIMT and traditional therapies than experimental
therapies such as tDCS and VR-based approaches. Existing
pharmacological treatments, Botox injections for example, and
traditional physical therapy methods primarily serve to treat
symptoms associated with stroke (Benjamin et al., 2017) and may
not focus on bringing about basic changes to the underlying
impaired brain function associated with relevant post-stroke
pathologies. Patients with UE motor impairment traditionally
receive rehabilitation regimens that involve passive, repetitive
movement of the impaired limb without directly linking brain

activity to these movements (Dromerick et al., 2009). Whereas
passive movement repetition can be an effective rehabilitation
strategy, recovery can be slow, and suboptimal. In contrast,
linking brain activity to movement is important for motor skill
learning (e.g., walking, running, throwing, writing, etc.) and the
formation of central to peripheral connections. Leveraging this
innate and robust motor learning circuitry, harnessing brain
plasticity (Thakor, 2013), may be the next step toward improve
patient outcomes.

Motor Recovery
Research suggests that motor recovery post-stroke, similar
to motor learning, requires specific internal and external
environmental conditions (Power et al., 2011; Wenger et al.,
2017). For example, lesion load is a limiting factor as sufficient
existing neural-architecture is needed for motor recovery to
occur (Power et al., 2011). Recovery likely manifests either
by the return of function to surviving neural architecture, or
via neural reorganization and neural network remapping of
proximal (i.e., near-by) neural architecture (Gazzaniga, 2005;
Jones, 2017). Perhaps such processes may even be related. If
neuroplasticity in the motor system, though likely attenuated by
age, is continuous (Gazzaniga, 2005) over the life course (Power
et al., 2011; Wenger et al., 2017), long-studied learning theories
such as Hebbian plasticity and classical conditioning might be
better integrated in treatment designs to aid recovery of stroke
impaired UE motor capacities (Power et al., 2011; Remsik et al.,
2016). The incorporation of neurorehabilitation techniques has
yielded operational clinical therapies and devices (Pfurtscheller
et al., 1997, 2005; Neuper and Pfurtscheller, 2001; Pineda, 2005;
Felton et al., 2007; Schalk et al., 2008; Power et al., 2011; Kuiken
et al., 2013; Young et al., 2014a; Wenger et al., 2017). As a
number of existing approaches suffer from issues of high cost,
passive movement repetition, large equipment, personnel and
time constraints it is crucial efforts are made to pursue more
expedient and efficacious means of rehabilitation, improve our
quality of care, and better serve our survivors.

Sensorimotor Rhythms
Human brain rhythms associated with motor output,
sensorimotor rhythms (SMRs), are recorded superficial to the
motor and somatosensory cortical strip of the brain (electrode
sites C3 and C4) and originate according to homuncular

Frontiers in Neuroscience | www.frontiersin.org 2 March 2019 | Volume 13 | Article 53216

https://clinicaltrials.gov
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00053 March 7, 2019 Time: 16:46 # 3

Remsik et al. Mu BCI Intervention: Stroke

organization (Pfurtscheller et al., 1997; Birbaumer et al., 2006).
At the motor cortical strip (generally, Brodmann areas 3–6), each
brain hemisphere desynchronizes with imagined, attempted,
and also preparation of movement. This phenomenon is known
as event-related desynchronization (ERD). Specific frequency
bands have been associated with specific aspects of event-related
motor behaviors (Pfurtscheller et al., 1997, 2005; Felton et al.,
2007; Schalk et al., 2008; Song et al., 2014; Young et al., 2014b).
In normal effortful movement, Mu rhythms of the contralateral
cortex are desynchronized and attenuated (ERD) as movements
are planned and executed (Pfurtscheller et al., 1997). This is
followed by an increased presence of Beta rhythm ERD in the
contralateral motor cortex which is associated with the later
stages of motor command output and control (Pineda, 2005).
After the completion, or at the cessation of movement, the
SMRs in Mu and Beta frequency bands synchronize (ERS).
ERD and ERS were key elements in the development and
use of early BCIs for the rehabilitation of motor functions
(Pfurtscheller et al., 1997, 2005; Nam et al., 2011). The early
designs confirmed that ERD or ERS in specific spatial areas and
neural networks (e.g., thalamocortical networks, frontoparietal
networks) associated with a task or triggered events can be
utilized to control a device or output command (Pfurtscheller
et al., 1997; Neuper and Pfurtscheller, 2001).

Mu and Beta sensorimotor rhythms (SMRs) in human subjects
are recorded exclusively over sensorimotor areas at frequencies of
about 10–20 Hz (Pfurtscheller et al., 1997; Birbaumer et al., 2006).
Two basic strategies in SMR-based control have been introduced
for motor rehabilitation in stroke patients: motor imagery
(Wolpaw et al., 1991; Ortner et al., 2012; Irimia et al., 2016) and
attempted movement-based approaches (Wolpaw et al., 1991;
Schalk et al., 2004; Young et al., 2014a,b,c). Either approach
utilizes essentially overlapping neural architecture to provide
input signals (electrophysiological recordings by the EEG cap) to
the BCI. The authors of this study designed the protocol to utilize
attempted hand movements during the intervention according
to the logic that a motor therapy intended to restore volitional
motor function of the affected UE should utilize voluntary
attempted movements of that impaired hand in a continuous
effort to improve the participant’s UE capacity and performance.

Brain–Computer Interface (BCI) and
Electroencephalography for Assistive
Design
Noninvasive brain–computer interfaces (BCIs), which utilize
ancillary adjuvant peripheral devices and electrical muscle
stimulation, as well as invasive BCI approaches with electrodes
implanted in the skull, have been introduced (Wolpaw et al.,
1991; Leuthardt et al., 2004; Schalk et al., 2004, 2008; McFarland
et al., 2006; Felton et al., 2007) as contemporary intervention
and rehabilitation techniques following neural disease or trauma,
such as stroke. Devices similar to what was utilized in
this research are controlled by input signals generated by
scalp electroencephalographic (EEG) recordings from electrodes
superficial to the sensorimotor cortices. EEG signals associated
with various components of voluntary movement are identified

and translated into a device command or specified output
(Pfurtscheller et al., 1997, 2005; Felton et al., 2007; Schalk
et al., 2008; Wilson et al., 2012), like activation of an FES pad
(Song et al., 2014; Young et al., 2014a,b). BCIs can monitoring
volitional modulation of electrical brain rhythms and execute
an augmentative, facilitative, or rehabilitative command in the
presence or absence of such signals.

Adjuvants
In this study, EEG driven BCI was linked to tongue stimulation
(TS) via a Tongue Display Unit (TDU) (Kaczmarek, 2011;
Wilson et al., 2012) (designed as a visual supplementation for
any participant with visual impairments) and FES, which can
act not only as therapeutic adjuvants but, when tied to intent-
to-move brain signals, also provide users with multi-modal
feedback as a form of monitoring and reward for producing
relevant brain activity patterns (SMR modulation) during tasks.
Adjuvant stimulation may not only aid execution of the motor
plan by causing the contraction of the impaired UE musculature
but may also help the user learn new movement strategies
for the impaired extremity. Adjuvant-induced proprioceptive
and general afferent inputs to the motor system complete the
BCI design’s replication of the native neurobiological closed-
loop motor system. Such adjuvant-aided volitional movement
may not only make a movement possible but also contribute
ancillary components for motor learning. Rewards of tactile,
kinesthetic feedback to the system and the visual revelation of
a previously impaired appendage now voluntarily animated may
prove powerful (Moe and Post, 1962; Krafi et al., 1992; Popovic
et al., 2009; Howlett et al., 2015) reinforces.

Evidence
Growing evidence from our lab (Young et al., 2014a,b,c;
Song et al., 2015) and other groups (Hill et al., 2006; Daly
and Wolpaw, 2008; Daly et al., 2009; Caria et al., 2011;
Muralidharan et al., 2011; Ang and Guan, 2013; Varkuti et al.,
2013; Bundy et al., 2017) suggest that noninvasive EEG-BCI-FES
systems hold potential for facilitating recovery in the chronic
phase after stroke by linking central nervous system (CNS)
commands, or brain activity, with distal motor effectors (the
manifestation of the motor plan via trained muscle synergies)
of the peripheral nervous system (PNS). Integration of the
aforementioned command with facilitated movements within
strict reinforcement constraints (e.g., task accuracy: drop the
cup, move the ball or not) might thereby better harness
neuroplastic capacities leading to functional gains in recovery
for individuals with stroke related hemiparesis. Previous studies
suggest that change in the pattern of brain activity linked to
attempted movements of the affected hand contributes to motor
re-conditioning and induces brain plasticity or reorganization
which, if properly directed and reinforced, should lead to
improvement in a stereotyped motor function of interest (Daly
et al., 2009; Caria et al., 2011; Muralidharan et al., 2011; Varkuti
et al., 2013). This is of special importance for patients in the
chronic phase (generally >6 months post stroke) of recovery
who may have little to no residual function in the affected
arm, in addition to learned compensatory motor strategies
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(Muralidharan et al., 2011). Given that these participants have
also likely exhausted other forms of intervention available to
them through standard healthcare channels, it is imperative to
explore novel intervention technologies that show promise in
this population.

Overview of This Study
It was hypothesized that (1) the EEG-BCI-FES
intervention sessions would result in increased hemispheric
desynchronization levels of Mu (8–12 Hz) rhythm and, or Beta
(18–26 Hz) band signals over the ipsilesional motor cortices,
as reflected by increased r-squared values (i.e., lower power
in the impaired hand movement trials compared to rest), and
(2) changes in functional connectivity (coherence) are greatest
in the affected contralateral (ipsilesional) motor cortex and,
over time, are associated with beneficial behavior and quality
of life improvements as measured by objective and subjective
measures of upper extremity motor function and activities
of daily living. This interim analysis, of the larger ongoing
prospective randomized crossover-controlled clinical trial,
seeks to determine whether greater desynchronization of motor
related SMRs in the ipsilesional hemisphere during attempted
movements of the impaired hand are related to changes in
behavior as a result of intervention.

MATERIALS AND METHODS

Subjects and Design
Ethics Statement
Participants were recruited from the greater Madison,
WI, United States area as part of an on-going prospective
randomized, cross-over controlled design stroke rehabilitation
study investigating interventional BCI targeting UE motor
function. This study is approved by the University of Wisconsin
Health Sciences Institutional Review Board (Study ID 2015-
0469); all subjects provided written informed consent upon
enrollment. A CONSORT flow diagram is made available in
Supplementary Figure S1.

Recruitment and Enrollment
This on-going study, registered with ClinicalTrials.gov (study ID1

NCT02098265), employs an open call for participants with a wide
range of (1) UE hemiparesis resulting from stroke, (2) time-since-
stroke, (3) stroke type, (4) lesion location, (5) number of previous
strokes, (6) and stroke severity. Subsequent to informed, written
consent, stroke survivors were randomized by permuted-block
design accounting specifically for gender, stroke chronicity, as
well as severity of motor impairment as measured by the Action
Research Arm Test (ARAT) (Lang et al., 2008) (n = 21, mean
age = 61.6 years± 15.3 years, 12 female, 13 right lateralized lesion,
mean chronicity = 1127 days ± 1326.5 days, median chronicity
588 days, 11 with severe UE motor deficit, mean baseline
ARAT score of impaired side = 26.6 ± 26.1). Chronicity is
measured as time since stroke, in days, to baseline measurement

1https://clinicaltrials.gov/ct2/show/NCT02098265

day. Participant characteristics are displayed in Table 1. This
interim analysis of the larger ongoing study seeks to elucidate
the electrophysiological consequences and associations of BCI
participation and the authors focus specifically on the behavioral
(primary outcome) associations in another manuscript published
in tandem with this effort (Remsik et al., 2018).

Inclusion–Exclusion Criteria
Participants age 18 years or older with persistent UE motor
impairment resulting from stroke and no other known
neurologic (cognitive, expressive), psychiatric (affect),
or developmental disabilities were included. Exclusion
criteria were: allergy to electrode gel, surgical tape, metals,
concurrent treatment for infectious disease, apparent lesions
or inflammation of the oral cavity, pregnancy or intention
to become pregnant during the course of the study, or any
contraindication for magnetic resonance imaging (MRI).
Subjects from the greater study cohort were excluded from the
presented analyses if they (1) failed to complete at least 9 of 15,
two-hour BCI intervention sessions occurring at least twice each
week, (2) failed to complete all four MRI and behavioral testing
sessions occurring in the intervention phase (Figure 1).

Randomization and Study Schema
Participants, when assigned to the intervention phase, have
at least 9 and up to 15 EEG-BCI-FES intervention sessions
(two-to-three sessions/week) wherein they receive EEG-BCI-
FES intervention lasting up to 2 h for a potential total
dosing of 30 h of EEG-BCI-FES intervention. Along with
the EEG-BCI-FES intervention sessions, subjects also receive
fMRI and behavioral testing at four time points: prior to the
first EEG-BCI-FES intervention session (baseline), after the
first few weeks of intervention (midpoint), following the final
intervention session (endpoint), and again 1 month after the
endpoint assessment (follow-up). Subjects assigned to the delayed
intervention group (DTG) are encouraged to continue with their
normal and customary care while in the delay period. While
in the delay period, participant EEG data are not recorded and
participants are instructed not to use a BCI device. During
this time, there are three assessment visits consisting of MRI
and behavioral testing which are matched in sequence and
duration to those conducted in the BCI intervention period
as demonstrated in Figure 1. After completion of the delay
period, these participants cross over into the intervention
phase and are assessed in accordance with previously described
methods. All data and time points analyzed and presented
herein were recorded during the BCI intervention period only,
for all participants. EEG data were only collected during the
intervention phase.

The BCI System
The BCI system and intervention sequence were consistent with
those previously described (Wilson et al., 2012; Song et al., 2014,
2015; Young et al., 2014a,b,c) using BCI2000 software (Schalk
et al., 2004) version 2 with in-house modifications for input
from a 16-channel EEG cap and amplifier (Guger Technologies)
and integration with the ball and target gaming visual display as
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TABLE 1 | Participant characteristic and ARAT score.

Participants Age (years) Chronicity (days) Severity Clinical cause Baseline Completion Follow-up ARAT

Lesion location ARAT ARAT ARAT change

1 47–51 160 Severe L-Lateral medulla 3 2 7 −1 (4)

2 49–53 490 Severe R-MCA stroke 3 4 8 ∗1 (5)

3 76–80 658 Mild Leg/periventricular white, MHR 57 57 57 0 (0)

4 67–51 2723 Severe R-PLIC putamen 23 40 39 ∗17 (16)

5 81–85 580 Mild Cerebellar vermis 47 52 52 ∗5 (5)

6 73–77 197 Severe R-Prefrontal, midfrontal, temporal 0 0 3 0 (3)

7 62–66 101 Mild R-White matter 56 57 57 ∗1 (1)

8 40–44 2645 Severe R-Frontal parietal 7 7 7 0 (0)

9 55–59 588 Severe R-MCA 3 4 0 ∗1 (−3)

10 45–49 452 Severe L-Hemorrhagic stroke 0 2 0 ∗2 (0)

11 30–34 494 Mild L-ICA 57 57 57 0 (0)

12 60–64 44 Mild L-PCA 57 57 57 0 (0)

13 57–61 849 Mild L-MCA 57 57 57 0 (0)

14 44–48 3017 Severe R-MCA/R-FI 3 4 5 ∗1 (2)

15 69–73 790 Severe R-MCA/R-TP 3 0 3 −3 (0)

16 78–82 631 Mild R-Occipital 57 57 57 0 (0)

17 75–79 5125 Severe R-MCA/ACA 9 11 10 ∗2 (1)

18 42–46 177 Mild L-MCA 57 57 57 0 (0)

19 62–66 392 Severe R-Frontal hematoma 3 5 16 ∗2 (13)

20 55–59 2767 Mild R-VAOA, subarachnoid hemorrhage 57 57 57 0 (0)

21 69–73 783 Severe R-MCA 0 0 0 0 (0)

(A) Mean 61.6 1127 26.6 27.9 28.9 1.3 (2.2)

Median 61.9 588 9 11 16 0 (0)

SD 15 1327 26.4 26.6 25.9 3.9 (4.5)

(B) Mean 61.1 1289 11.4 13.4 14.8 2 (3.4)

Median 64 584 3 4 7 1 (1.5)

SD 13.5 1497 18 20.2 19.6 4.7 (5.2)

ARAT, Action Research Arm Test; MCA, middle cerebral artery; ICA, internal carotid artery; PCA, posterior cerebral artery; FI, frontoparietal infarct; TP, temporal frontal-
parietal; ACA, anterior cerebral artery; MHR, motor hand region; VAOA, vertebral artery origin aneurysm; L, left; R, right; ARAT change, completion-baseline (follow-up
baseline). (A) Indicates descriptive statistics for all (n = 21) participants; (B) indicates descriptive statistics for (n = 14) participants able to achieve ARAT improvements
(ceilings removed). Positive change in outcome measure at competition of BCI intervention denoted by ‘∗’.

FIGURE 1 | Study design. The time-points at which neuroimaging data were collected are represented by, T1, control baseline; T2, control middle; T3, control
completion; T4, intervention baseline; T5, mid-intervention; T6, completion of intervention; T7, 1-month post-intervention. While the crossover control group (DTG)
completed visits T1 through T7, the immediate therapy (ITG) group completed only visits T4 through T7. EEG-BCI-FES intervention is only administered during the
BCI Therapy Phase (green), from baseline (T4) to completion (T6), and EEG recordings are neither acquired between T1 and T4, nor between T6 and T7 during
which only MRI and behavioral testing batteries are administered. EEG data were only collected during the intervention phase.

well as tongue stimulation (TDU 01.30 Wicab Inc.) (Kaczmarek,
2011) and functional electrical stimulation (FES) (LG-7500,
LGMedSupply; Arduino 1.0.4). FES of the UE was delivered
through a pair of 2” × 2” square electrodes, commercially

available stimulus isolator units, which ensure clean, opto-
electrical isolation, placed securely on the affected forearm using
highly conductive Electrolyte Spray and produced by the LG-
7500 Digital Muscle Stimulator LGMedSupply, Cherry Hill, NJ,
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United States). The electrodes were placed to facilitate either a
grasping motion (finger flexion), or finger extension according to
participant preference. Specific placement sites were superficial to
flexor digitorum superficialis to facilitate hand and finger flexion,
or superficial to extensor digitorum communis to facilitate hand
and finger extension. The natural absence of a flexor digitorum
superficialis tendon to the fifth digit in some individuals was
not considered in this study design. Stimulation was controlled
through the PC using an Arduino Uno R3 (Adafruit Industries,
New York, NY, United States) and a simple Reed-Relay circuit,
with the amplitude set to elicit observable muscle activation (e.g.,
finger grasping) without pain. The pulse rate of the stimulation
was set to 60 Hz in order to produce tetanic contraction of the
muscle and the pulse width was set to 150 µs. The input signal,
initially set to zero, was adjusted by steps of 0.5 mA, unless the
stimulation became uncomfortable for the subject. The device
was never set to deliver an output greater than 5 mA. In previous
publications, the TDU (Kaczmarek, 2011) has been described and
its use in a BCI paradigm detailed (Wilson et al., 2012). This
BCI system uses the same TDU stimulation parameters as were
reported previously (Wilson et al., 2012).

Brief Overview of the Procedure (EEG
Tasks)
EEG-BCI-FES Intervention
Subjects went through intervention sessions on separate days.
The number of EEG-BCI-FES intervention sessions varied
across subjects with a mean of 13.8 ± 1.3. Each EEG-BCI-FES

intervention session consisted of multiple runs of the ‘Cursor
Task’ (mean of 31.3 ± 10.5 runs per session), about 1/3rd of
which included only visual feedback, and roughly two thirds
of which were comprised of BCI facilitated functional electric
stimulation of the impaired hand and lingual electrotactile
stimulation through a tongue display unit (TDU) (Kaczmarek,
2011; Wilson et al., 2012) (Figure 2). The EEG-BCI-FES device
was driven by spectral power recordings from contralateral (to
the hand active in the grasping task) EEG electrodes during cued
attempted grasping movements of the hand which was designed
to modulate the horizontal movement of a cursor (Schalk et al.,
2008) in a computer display space as well as facilitate concurrent
functional electrical stimulation of the participant’s impaired UE
(should the target appear on the side corresponding to their
stroke-impaired hand). BCI classifier inputs were therefore at
C3 and C4, respectively in Mu (8–12Hz) and Beta (18–26Hz)
frequency bands in this design. Each EEG-BCI-FES (closed-
loop) intervention session was preceded by an open-loop pre-
therapy screening phase and followed by an open-loop post-
therapy screening phase (Figure 2). The successive order of
intervention procedure was as follows: visual only, visual + FES,
visual + FES + tongue feedback. All intervention sessions
included in this analysis contained a similar distribution of these
conditions across all participants.

Familiarization With BCI Device and Procedures
The first BCI session was focused on assisting the participant
to comprehend and engage the BCI device and protocol.

FIGURE 2 | BCI intervention block design. (1) Pre-screening (two actual movement trials, two imagined movement trials). (2) Cursor task (≥10 trials with visual-only
feedback). (3) Cursor task with adjuvant stimuli (≥10 trials with adjuvant stimuli). (4) Post-screening (two imagined movement trials, two actual movement trials).

Frontiers in Neuroscience | www.frontiersin.org 6 March 2019 | Volume 13 | Article 53220

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00053 March 7, 2019 Time: 16:46 # 7

Remsik et al. Mu BCI Intervention: Stroke

Stroke survivors often present with a myriad of cognitive,
affective, and physical impairments (Nair et al., 2015) and out
of respect for individual participant needs and abilities, the
researchers intended to provide at outset an opportunity for a
generous orientation rather than rigorous acquisition. During
this preliminary session, the EEG cap (Figure 3), FES device, and
TDU device were faithfully administered as described previously
(Wilson et al., 2012). Participants were verbally instructed before
each session, and as needed, to aim for successful completion of
BCI tasks and for each attempted movement to be performed
to the participant’s autonomously elected level of comfort
and ability. There were no participants in this study whom
were unable to comprehend or participate successfully in the
intervention protocol as a result of any associated cognitive
or aphasic impairments associated with their stroke. The study
design requires at least 10 runs for each closed-loop condition,
per session; however, enforcement discretion was encouraged
until a participant demonstrated task comprehension during the
first BCI intervention session.

Description of the Raw EEG Data
EEG data were recorded using a 16-ch bioamplifier (g.USBamp;
G.TEC Medical Engineering GmbH, Austria) from 16 active
electrodes using a g.GAMMA cap (F5, C5, FC1, C3, P5, F6, C6,
P6, Pz, P4, P3, FC2, Cz, CP2, C4, CP1) (Figure 3) according
to 10-20 EEG electrode placement system with a right ear-lobe
reference in a BCI2000 system environment (Schalk et al., 2004).
The frequency bandwidth of the recorded signals was 0.1–100 Hz,
with an additional notch-filter applied at 60 Hz. The sampling
rate was 256 Hz. During each of the screening phases (pre- and
post-therapy) EEG data were collected in four separate runs. Each
screening EEG data file contained 15 trials for rest, left hand
and right hand movements (i.e., five trials for each of the three
conditions), separated by an interstimulus interval of 1.5–2 s.
The order of trials in a run was random. Each of the trials had
a duration of 4 s. The first two runs of the pre-therapy screening
phase and the last two runs of the post-therapy screening phase
incorporated cued “attempted” hand movements. The last two
runs of the pre-therapy screening phase and the first two runs of
the post-therapy screening phase incorporated cued “imaginary”
hand movements.

Description of the EEG Data Analysis
The raw EEG data files were loaded into Fieldtrip (a MATLAB-
based toolbox for advanced neurophysiological data analyses),
and fully processed using tools incorporated in this toolbox
(Oostenveld et al., 2011) and MATLAB environment2. The main
processing steps for the EEG data collected during screening
phases were as follows:
(1) Digital filtering with a high-pass filter cutoff of 4 Hz, and a
low-pass filter cutoff of 30 Hz. (2) Extraction and grouping of
trials according to condition (rest, left hand movement, right
hand movement), movement type (attempted, imaginary), and
the screening phase (pre, post). This resulted in 10 trials for
each of condition/movement/screening phase combinations. (3)

2https://www.mathworks.com/

FIGURE 3 | BCI cap array. Electrode array and cap arrangement for all n = 21
participants. Control signals generated at C3 and C4 electrodes for right and
left hand movement trials, respectively. Ear clip always placed on the right ear.

Identification (variance based: thresholds set to 10 and 250
µV2 for low and high variance signals, respectively) and repair
of bad (noisy) channels (spline interpolation), followed by the
removal of three trials showing the highest variance (Thomson,
1982; Mitra and Pesaran, 1999). The channel was identified as
bad (noisy, poor connection, etc.) if the variance was <10 or
>250 µV2 in more than three trials (Thomson, 1982; Mitra
and Pesaran, 1999). The units of the variance were those of
the data squared: as the EEG data units were in micro Volts,
the variance units were squared micro Volts. If more than
four channels were identified as bad, the data for that session
were removed from further analysis (i.e., 20.4% of data were
discarded by not meeting the defined criteria). At session level,
this step resulted in 28 s of EEG data (7 trials × 4 s) for
each condition/movement/screening phase combination set. (4)
An average-reference montage was applied to the data (i.e., re-
referencing from the original monopolar recordings). (5) Spectral
analyses with Fourier transforms computed using a multi-taper
method (Thomson, 1982; Mitra and Pesaran, 1999) at a 0.25 Hz
resolution: this finally resulted in estimates of absolute spectral
power sampled for every 1 Hz bin during the interval of 4–
30 Hz, and cross-spectral density. The trial length was 4 s
and the resolution of Fourier Transforms was 1/4 = 0.25 Hz.
(6) Coherence estimation was calculated between all pairs of
channels (120 pairs from 16 available scalp channels) at every
1 Hz frequency bin of the mentioned interval. Coherence was
calculated as the absolute value of the ratio of the cross-spectrum
to the square-root of the product of the two auto-spectra (as
applied in Fieldtrip software). (7) Calculation of signed r-squared
(r-squared: coefficient of determination) values from the absolute
power estimates between left or right hand movements and rest
trials, and between the two movement conditions (left vs. right).
The r-squared values were signed in a such way that a large
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negative number (−) would mean larger “desynchronization”
of the rhythm (Mu or Beta) (Pfurtscheller et al., 1997, 2005;
Neuper and Pfurtscheller, 2001; Pineda, 2005). (8) Calculation
of change (POST–PRE) in signed r-squared values: the following
formula was used: −(POST–PRE), so one would obtain positive
numbers for “increases” in desynchronization. This was done for
easier interpretation of the associations of r-squared changes with
behavior changes as the result of EEG-BCI-FES intervention.
Here the “flipping” of values (in order to assess the “impaired
hand,” L or R) was applied to the impaired R-hand scores to put
them together with scores from the impaired L-hand subjects. (9)
Calculation of the laterality index (LI) for averaged coherence
values (i.e., average coherence of each site with all others),
used to evaluate shifts in coherence, as: (C3 − C4)/(C3 + C4).
(10) Change (POST–PRE) in coherence LI values: LI as a
number becomes more positive if there is a shift toward Left,
and more negative if there is a shift toward Right (as the
result of intervention). Therefore, for POST–PRE change in
LI, the impaired L-hand values were multiplied with (−1)
and the impaired R-hand values remained unchanged, as they
were originally calculated. This way, the “expected change” is
positive and the associations with behavioral changes can be
more seasily interpreted.

Statistics
The independent variables were the signed r-squared values
and the coherence estimates. At individual subject level, the
data consisted of average estimates per each session for
condition/movement/screening phase combination sets, and at
group level the estimates consisted of grand averages over
sessions of each individual subject data in the group (pre-
and post-therapy scores averaged separately across sessions).
Non-parametric statistical tests were run by calculating Monte-
Carlo estimates of the significance probabilities and critical
values from the permutation distribution (Maris and Oostenveld,
2007), followed by correction for multiple comparisons using
false discovery rate (FDR) when no prior hypothesis was
available. The priori hypotheses of expected changes in the
r-squared values and coherence as the result of intervention
time at C3 and C4 sites were tested using paired t-tests in
MATLAB. Associations between the r-squared changes and
the total number of intervention runs as well as behavioral
changes (e.g., ARAT scores) were assessed using Pearson’s and
Spearman’s correlation, respectively. Finally, the associations
between the signed r-squared values with behavioral scores
from several tests at baseline were assessed using Spearman’s
or Pearson’s correlation coefficients, as appropriate. Thresholds
for significance and trend toward significance were set a priori
at p ≤ 0.05 and 0.05 < p < 0.1, respectively, for all
statistical analyses.

Description of the Behavioral Outcome
Measures
The primary outcome measure was the ARAT. The ARAT is a
57-point test designed to assess specific changes in upper limb
function with sub-components for grasp, grip, pinch, and gross

motor movement (Hsieh et al., 1998). The secondary measures
include: The Stroke-Impact Scale (SIS), widely used to measure
quality of life in stroke survivors that consists of 8 dimensions and
a composite disability score (Vellone et al., 2015). The SIS is a 59-
item patient-reported outcome measure, covering eight domains;
strength (4 items), hand function (5 items), mobility (9 items),
ADLs (10 items), memory (7 items), communication (7 items),
emotion (9 items), and handicap (8 items); the domains are
scored on a metric of 0–100, with higher scores indicating better
self-reported health (Vellone et al., 2015). The National Institutes
of Health Stroke Scale (NIHSS) is a tool used by healthcare
providers to objectively quantify impairments caused by a stroke
(Ortiz and Sacco, 2008). The NIHSS is composed of 11 items,
each of which scores a specific ability between zero and four with
higher scores indicating increased impairment (Ortiz and Sacco,
2008). The Barthel scale, or Barthel ADL index, is a scale used
to measure performance in ADLs (Shah et al., 1989). It utilizes
ten variables describing ADL and mobility. The ten variables
addressed in the Barthel scale are: presence or absence of fecal
incontinence, presence or absence of urinary incontinence, help
needed with grooming, help needed with toilet use, help needed
with feeding, help needed with transfers (e.g., from chair to
bed), help needed with walking, help needed with dressing, help
needed with climbing stairs, help needed with bathing. This scale
yields a score of 0–100 with higher scores indicating improved
performance (Shah et al., 1989). Gross grasp grip strength was
measured using a dynamometer (Nam et al., 2011). The Nine-
Hole Peg Test (9-HPT) is a brief, standardized, quantitative test
of UE function (Mathiowetz et al., 1985). The score for the 9-HPT
is an average of the two trials (Mathiowetz et al., 1985). Mini-
Mental State Examination (MMSE) is scored out of 30 (Pangman
et al., 2000). An MMSE score of 27–30 is generally associated with
normal memory: a score 10–26 could indicate mild to moderate
dementia, and a score less than 10 suggests severe dementia
(Pangman et al., 2000). The Center for Epidemiologic Studies-
Depression (CES-D) scale is one of the most frequently used self-
report measures of depressive experiences (Shinar et al., 1986).
The CES-D contains 20 items that are summed so that scores
have a potential range from 0 to 60, with higher scores indicating
greater frequency of depressive experiences (Shinar et al., 1986).

Analyses of Outcome Measures
Primary analysis was a paired-sample t-test to evaluate the
statistical significance of ARAT and secondary outcome measure
changes (i.e., SIS, NIHSS, Barthel scale, grip strength, 9-HPT,
MMSE, and CES-D) between baseline, completion, and follow-up
scores (Table 2).

RESULTS

Results of Outcome Measures
Of the 21 participants who completed the study and met
the aforementioned criteria, 14 participants had room for
improvement in the primary outcome measure, ARAT
(ARATtotal), of which nine (64%) realized improved scores
after intervention, both at immediate completion and 1 month
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TABLE 2 | Summary of mean outcome measure scores for baseline, completion, and follow-up of the BCI training conditions.

Outcome measures Baseline score Completion score Follow-up score Change score p-Value

Stroke Impact Scale
(SIS) (Max = 100)
SISHand function

33.6(15) ± 38.1 39(25) ± 37.5 39.8(25) ± 39.7 5.4 (62) 0.482 ∗(0.050)

SISrecovery 50.1(50) ± 23.7 53.4(60) ± 24.9 54.6(60) ± 21.8 3.3 (4.5) 0.509 (0.216)

NIH Stroke
Scale/Score (NIHSS)
(Max = 4)

3.8(3) ± 3.5 3.8(2.5) ± 3.1 3.7(2.5) ± 3.1 0 (−0.1) 1.0 (0.749)

Barthel Index-Total
(Max = 100)

91.4(100) ± 14 92(97) ± 13.9 92.8(100) ± 14.8 0.6 (1.3) 0.431 (0.167)

Grip strength (lbs) 18.8(8.3) ± 21.5 22.6(14.3) ± 23.5 20.5(5) ± 24.6 3.8 (1.7) ∗0.046 (0.246)

9-HPT (seconds) 17.7(0) ± 22.8 15(0) ± 19.1 14.4(0) ± 20.3 −2.5 (−3.2) 0.083 (0.054)

MMSE (Max = 30) 27.2(29) ± 3.8 27.8(29) ± 2.7 28.3(29) ± 2.7 0.6 (1) 0.467 (0.494)

CES-D (Max = 60) 7.6(7.5) ± 5.8 7.8(3) ± 9.9 5.6(3) ± 5.9 0.2 (−2) 0.802 (0.096)

Action Research Arm
Test (ARAT) ARATTotal

(Max = 57)

16.9(9) ± 23 18.3(11) ± 23.4 21.4(16) ± 23.4 1.3 (4.3) ∗0.046 ∗(0.020)

ARATGrasp (Max = 18) 22(3) ± 5.1 2.9(5) ± 5.3 3.6(6) ± 6.3 0.7 (01.5) 0.106 (0.163)

ARATGrip (Max = 12) 2.9(2) ± 4.7 2.9(3) ± 4.8 3.8(4) ± 4.6 0.1 (0.9) 0.582 ∗(0.025)

ARATPinch (Max = 18) 4.5(1) ± 7.3 4.9.(0) ± 7.9 5.1(4) ± 7.7 0.4 (0.6) 0.289 (0.106)

ARATGross (Max = 9) 3.4(5) ± 2.7 3.4(6) ± 3 3.6(6) ± 3 0 (0.3) 1.000 (0.453)

Measures are reported as mean (median) ± SD. Change score and p-value are reported as mean scores change between baseline and completion (mean scores change
between baseline and follow-pp). ARAT scores are reported as mean scores change with ceilings removed. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

after completion. Participant characteristics are summarized in
Table 1 and group outcome measures are further described in
Table 2. All participant assessments at each time point were
averaged to give a metric of cohort motor function change
at the group level. Secondary measures were similarly group
averaged to determine cohort measure changes as a result of time
in intervention as well as at the 1 month follow-up (Table 2).
The primary analysis showed significant change in baseline
scores and completion scores (Figure 1: T4, T6) in the primary
outcome measure (ARAT) (p = 0.046), and change at follow-up
(p = 0.020) (Figure 1: T7), change in Grip Strength was found
to be significant by completion of intervention (p = 0.046).
This particular finding did not persist at the 1-month follow-up
time point. Statistical significance was observed in the baseline
to follow-up score analyses (Figure 1: T4 to T7) not only for
the primary outcome measure but also in secondary outcome
measures of hand function (i.e., SIS Hand Function p = 0.05)
(Table 2). All statistically significant findings were observed in
measures of hand function. Additionally, the secondary analyses
presented no significant results.

EEG Measures
Results reported below in Section “R-Squared” echoed in the
graph in Figure 4, compared the signed r-squared values for
the impaired hand separately from the non-impaired hand.
The signed r-squared values from the Right-hand impaired
participants at C3 (i.e., the ipsilesional motor site) were “pooled
together” with the signed r-squared values from the Left-
hand impaired participants at C4 (i.e., the ipsilesional motor
site) consistent with methods described previously. Figures 4–8
display topoplots of group level averages of signed r-squared
values and coherence values and do not use flipped-maps.

Therefore, the maps for the left hand movements represent
“an average” of these measures from impaired hand movements
(as the majority of participants in this group were left-hand
impaired) and non-impaired left hand movements (minority
of subjects). In the same fashion, the maps for the right
hand movements represent an average of these measures from
impaired hand movements (minority of participants in this
group were right-hand impaired) and non-impaired right hand
movements (majority of subjects). In essence, the authors didn’t
flip the maps that are displayed in the figures.

EEG Results
R-Squared
The signed r-squared value (at the ipsilesional C4 or C3 sites)
for the Mu (8–12 Hz) rhythm significantly decreased in the
post-therapy stage compared to the pre-therapy stage [one-
tailed paired t-test: t(20) = 1.85; p = 0.039; meanPRE = −0.142;
meanPOST = −0.161], while the subject attempted movements
of the impaired hand (Figure 4). This suggests that as the
result of the intervention sessions, the “desynchronization”
of the Mu rhythm signals significantly increases post-therapy
at the ipsilesional motor site. The bar graph displays the
significant difference in the group mean r-squared values. The
signed r-squared values of the Mu band signals decreased also
post-therapy at the contralesional motor site during attempted
movements of the impaired hand, but these differences did not
reach significance [one-tailed paired t-test: t(20) = 1.24; p = 0.114;
meanPRE = −0.131; meanPOST = −0.145]. Figure 5 shows
topographies of group-level grand averaged r-squared values
obtained from data of 21 participants. Topoplots for both Mu and
Beta bands are shown. While the presented results only describe
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FIGURE 4 | Topographical plots (topoplots) of grand averages for Mu rhythm (8–12 Hz) signed r-squared values at group level (n = 21). The bar plot shows the group
means for the Mu rhythm signed r-squared values from the impaired hand attempted movement trials (vs. rest) at ipsilesional electrode site. Asterisk denotes
statistical significance from a one-tailed paired t-test (p < 0.05). Error bars denote standard error of the mean. The majority of participants were left hand impaired.
Prescreening, open-looped training (PRE) and open-looped post screening BCI training (POST) runs (color bar: [–0.2 = blue – 0.2 = red]). The majority of participants
had a right lateralized lesion.

FIGURE 5 | Topoplots of grand averages for signed r-squared values at group level (n = 21) for attempted movements. In the top two rows of topoplots, a larger
negative value (blue) denotes stronger desynchronization (rest vs. left or right hand actual movement); in the bottom row of topoplots a larger positive value (red)
denotes desynchronization (left vs. right hand actual movements). The mentioned distinction reflects the way in which the signed r-squared values were calculated in
a rest vs. left/or right comparison, and in a left vs. right comparison. Prescreening, open-looped training (PRE) and open-looped post screening BCI training (POST)
runs (color bar: [–0.2 = blue – 0.2 = red]). The majority of participants had a right lateralized lesion.

changes in the Mu band, statistics from beta band did not reach
significance. The Mu band and Beta band signals were both used
for BCI control.

LI
Laterality index (LI) values, calculated from coherence estimates
at C3 and C4 sites from Beta band (18–26 Hz) signals, decreased
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FIGURE 6 | Topoplots of grand averaged coherence values at group level (n = 21) for Mu (8–12 Hz) and Beta (18–26 Hz) bands during attempted movement trials.
Prescreening, open-looped training (PRE) and open-looped post screening BCI training (POST) runs (color bar: [0 = blue – 0.5 = red]). The majority of participants
had a right lateralized lesion.

FIGURE 7 | Topoplots of grand averages for signed r-squared values at group level (n = 21) for imaginary movements. Prescreening, open-looped training (PRE) and
open-looped post screening BCI training (POST) runs (color bar: [0 = blue – 0.5 = red]). The majority of participants had a right lateralized lesion.
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FIGURE 8 | Topoplots of grand averaged coherence values at group level (n = 21) for Mu (8–12 Hz) and Beta (18–26 Hz) bands during imaginary movement trials.
Prescreening, open-looped training (PRE) and open-looped post screening BCI training (POST) runs (color bar: [0 = blue – 0.5 = red]). The majority of participants
had a right lateralized lesion.

in post-therapy stage compared to the pre-therapy stage [one-
tailed paired t-test: t(20) = 0.983, p = 0.168; meanPRE = 0.017;
meanPOST = 0.009] while the subjects attempted movements
of the impaired hand, although this change did not achieve
statistical significance (Figure 6). This suggests that as a result
of the intervention sessions, coherence in the affected motor
site compared to the contralesional site showed a statistically
insignificant increase at group level. Figure 6 shows topographies
of group-level grand averaged coherence values from data of
21 subjects. The value entered in each electrode site of the
mentioned topographies represents the average coherence of that
site with all others.

Imaginary Movement
Although no significant results were obtained from the analyses
of data from imaginary movement trials, the topographical maps
of r-squared and coherence values showed meaningful spatial
distributions (Figures 7, 8). Figures 7, 8 show topographical
maps (topoplots) of grand averages for signed r-squared values
at group level (n = 21) and topoplots of grand averaged
coherence values at group level for Mu (8–12 Hz) rhythm
and Beta (18–26 Hz) band during imaginary movement trials,
respectively. As the protocol was designed to train and
reward attempted movements, it is possible participants were
not sufficiently able to master imagined movement related
SMR modulation.

Amount of Intervention: Number of Runs
The change in r-squared values (Beta band) in the ipsilesional
hemisphere motor site during impaired hand attempted

FIGURE 9 | Association between the change in r-squared values (Beta band,
18–26 Hz) as the result of BCI training with the total number of cursor trial (i.e.,
intervention) runs [r(20) = 0.393; p = 0.043].

movements, following the intervention, showed a significant
correlation with the total number of cursor trials (i.e.,
amount of BCI practice) runs [r(20) = 0.393; p = 0.043]
(Figure 9). Item number eight in Section “Description of
the EEG Data Analysis” clarifies that for the calculation of
change (POST–PRE) in signed r-squared values the following
formula was used: −(POST–PRE), so one would again obtain
positive numbers for “increases” in desynchronization. This
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FIGURE 10 | Association between the change in r-squared values (Mu
rhythm, 8–12 Hz) as the result of BCI training with the change in ARAT scores
(obtained post-intervention in comparison to baseline) [ρ(20) = 0.30;
p = 0.098].

was done for easier interpretation of the associations of
r-squared changes with behavior changes as the result of EEG-
BCI-FES intervention and in accord with the previously
described methods. In essence, the positive correlation
suggests that a greater amount of BCI practice relates
to “greater” ERD.

Influences on Primary Outcome Measure
In addition, the change in r-squared values (Mu rhythm)
in the ipsilesional hemisphere motor site during impaired
hand attempted movements, as the result of EEG-BCI-
FES intervention, showed a positive, non-statistically
significant correlation with the change in ARAT scores
(obtained post-therapy in comparison to baseline)
[ρ(20) = 0.30; p = 0.098] (Figure 10).

Influences of Stroke and ERD on Baseline Behavioral
Measures of Function and Capacity
Finally, to test some of the fundamental assumptions of
the study design and BCI device (that diminished SMR
desynchronization is related to the post-stroke impairment of
simple motor outputs), signed Mu and Beta r-squared values for
the impaired hand attempted at baseline (i.e., first intervention
session) were compared to measures of behavior (SIS, ARAT,
Grip Strength), and measures of stroke-related impairments
to functional capacities (NIHSS, Barthel Index) at baseline
(Table 3). A few measures of behavior (Grip Strength, SIS)
and independence, capacity to perform ADLs (Barthel Index,
NIHSS), correlated significantly in the anticipated direction
(Table 3). Relevant statistical significance tests were chosen
for normal and non-normal distributions, respectively. These
results suggest that SMR desynchronization may represent a
fundamental neuromechanical component of motor capacity as
well as motor learning and, therefore, any subsequent motor
recovery potential.

TABLE 3 | Summary Pearson’s r and Spearman’s ρ correlates of baseline
outcome measures and EEG-based signed r-squared scores (n = 21).

Variables Pre-screening MU Pre-screening BETA

Baseline SIS hand function ρ = −0.449, p = 0.041 ρ = −0.408, p = 0.066

Baseline SIS recovery ρ = −0.237, p = 0.301 ρ = −0.384, p = 0.085

Baseline ARAT total ρ = −0.367, p = 0.102 ρ = −0.405, p = 0.068

Baseline Barthel Index ρ = −0.292, p = 0.199 ρ = −0.573, p = 0.007

Baseline grip strength r = −0.369, p = 0.10 r = −0.437, p = 0.047

Baseline NIHSS ρ = 0.244, p = 0.28 ρ = 0.473, p = 0.03

Pearson’s r was used for grip strength and Spearman’s ρ was used for all other
variables (two-tailed tests).

Adverse Events
No adverse events were reported during or after participation in
the research experiment.

DISCUSSION

EEG Measure and Behavior Measure
Fidelity
The findings that motor cortex EEG measures during attempted
movements of the impaired hand (more specifically, r-squared
values reflecting desynchronization levels of Mu rhythm and Beta
band signals at key motor cortical sites) are positively correlated
with behavioral changes and seem to offer a measurable link
between electrophysiology and behavior is in line with the
hypotheses set forth in this analysis. More importantly, the
significant group level changes in r-squared values post-therapy
compared to pre-therapy suggest an effect of the applied EEG-
BCI-FES intervention protocol which may be beneficial for
motor recovery, though data are currently inconclusive. As
stated in Section “Amount of Intervention: Number of Runs,”
the amount of BCI practice was positively correlated with Beta
band ERD of the ipsilesional motor cortex. Thus, it may be
possible to conceive that, following adequate amounts of training;
electrophysiological measures of connectivity such as coherence
may allow additional insights into the potentials and mechanisms
of functional change to the neuromuscular and neuromechanical
coupling of effortful motor movement.

EEG Utility in Stroke Rehabilitation
A strength of this design and analyses for evaluation of objective
physiological or functional changes as the result of the EEG-BCI-
FES intervention is that the EEG-based measures extracted and
compared were obtained immediately before, and immediately
following each BCI intervention session (e.g., EEG-BCI-FES
based rehabilitative intervention), at the pre an post screening
periods (Figure 2). By comparing the EEG-based measure
(i.e., r-squared, coherence) changes at post- to pre-intervention
session, this allowed a more controlled evaluation of the specific
effects of EEG-BCI-FES intervention. In addition, because the
EEG signals are continuously recorded as part of the procedure,
EEG-based measures can be obtained with no additional cost at
any desired time (restricted only by the short interval required to
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extract reliable individual measure scores from spectral analyses
of the signals). Furthermore, the study design allowed extraction
and comparison of spectral estimates separately from attempted
actual, as well as imaginary, hand movements. The current study
did not, however, obtain statistically significant results when
evaluating changes in EEG-based measures from imaginary hand
movements at group level. This may be influenced by limited and
insufficient time spent training participants to use imagination to
properly control their SMR activity. Participants were explicitly
and repeatedly instructed to attempt actual hand movements in
an unblinded effort to regain or relearn volitional movement of
their hands. None-the-less, reasonably distributed spatial maps
of EEG activity in the SMR frequencies of interest from motor
imagery attempts were observed (Figure 8). It is important,
however, to note that motor imagery approaches are increasingly
popular (Hatem et al., 2016; Irimia et al., 2016) and might be
a relevant means of EEG-BCI translation, particularly in stroke
patients with severely impaired motor function.

Limitations
These results suggest that EEG-BCI-FES has the potential to
induce neuroplastic change and aid recovery of UE paresis.
However, this analysis was constrained by sample size and
heterogeneity in lesion location, level of impairment, and time
since stroke. Greater power is needed to adequately generalize
these results. Utilizing a larger and more homogeneous subject
cohort could allow for more generalizable conclusions in future
research. Further, 16 electrodes were used in EEG signal data
acquisition and EEG were recorded only during the intervention
phase and at no other time during the study. While there is
no EEG data recorded in the control period to compare with
the recordings during intervention, there are brain (EEG) –
behavior correlations specifically in EEG measures associated
with motor function originating specifically from electrodes
(C3/C4) (Figure 3) overlying regions conventionally attributed
to motor function. Scalp or surface level EEG recordings are
understood to read the dipolar or regional sources assumed to
represent the synchronous activity of hundreds of thousands
of underlying neighboring neurons. It is therefore possible that
even if stroke lesions damage traditional cortical areas associated
with motor output (primary motor cortex), perilesional brain
regions, as well as established functional areas (pre-motor area
and supplementary motor areas) may contribute to ipsilesional
signal recordings sufficient to drive successful classifier activation
(i.e., brain signal oscillations ‘discrete’ enough for the BCI to
interpret SMR change and execute the relevant device or output
command – in this case, horizontal cursor movement and
facilitated FES activation) of a BCI.

Spatial Coverage and Sampling
It is generally understood that using 16 electrodes is insufficient
for source localization, especially given the limited spatial
coverage and non-equidistant spacing of the electrodes in this
cap array (Figure 3) and thus, the present analysis does not
consider such undertakings. In future research, the directionality
and polarity of EEG-BCI-FES associated changes may lead to
better understanding of the nature and sequence of motor related

neuroplasticity as well as the neuroplastic influences of BCI
technologies. Source reconstruction will be done once the sample
size increases to sufficiently examine this aspect in a subset of
stroke participants with homogeneity in lesion location. Given
the heterogeneity of lesion location in the existing sample set,
source localization might be premature.

Statistical approach
Such heterogeneity and restricted sample size similarly dissuaded
the authors from attempting further conservative controls, such
as multiple comparisons corrections. The authors conceived
that further conservative data manipulations may wash out any
potential (‘trending to’) significant relationships the authors or
other groups may want to follow-up with future research. This
manuscript, part of a larger on-going clinical trial, is an interim
analysis which sought to elucidate any significant trends in
the data as the study progressed so as to inform our future
questioning of the data and to be better prepared to identify and
test potentially significant interactions and factors in the larger
post-stroke population.

Nature of the academic research environment
This is an on-going study in its seventh year of data acquisition
and participant enrollment. Various project personnel have
undergone and supervised the staffing, training, and data
acquisition of this trial during its course. The authors work hard
to best minimize differences in acquisition of study measures
through extensive and repeated training of personnel.

Future Scope
Despite the existing challenges to providing evidence-based
treatment strategies in the stroke rehabilitation field, combined
therapies may be used to achieve the maximal motor function
recovery for participants (Oostenveld et al., 2011). Development
of effective strategies for rehabilitation of impaired motor
functions in stroke patients, as well as for monitoring
and evaluation of changes during an applied intervention
is yet needed.

CONCLUSION

EEG Conclusions
Non-invasive EEG-based measures of motor cortex function,
such as r-squared (reflecting desynchronization levels of the
relevant SMR rhythms), could provide an efficient means of
tracking and even predicting functional changes in stroke
patients during the course of the EEG-BCI-FES intervention.
As ERD changes were reported at the group level, and given
the heterogeneity in the sample, it may be argued that the
reported changes not only suggest a change in function for the
majority of participants (despite few changes attaining clinically
significant differences) but also, given more selective sampling
and independent variable control, an even more clinically
relevant relationship between ERD and recovery may exist.
Tracking SMR modulations may be a potential predictor of
recovery or indicator of recovery potential in a patient.
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BCI Conclusions
The observed effects to motor measures might also be a
consequence of challenging and rewarding movements associated
with (ADLs), which the participants previously may have
thought to be impossible or too difficult to produce successfully.
BCI intervention may help challenge a survivor’s individual
conception of their limitations by pushing a participant to
use the affected hand and rewarding them (according to an
anticipatable, clear, and consistent schedule) for doing so. This is
to suggest that the minimal gains observed by most participants,
in comparison to the significant gains obtained by some, and
their absence in others, may be related to the encouragement
of attempting previously ineffective motor behaviors. It is
possible the statistically significant gains observed, supported
by the higher incidence of significance in subjective measures
than the number of lab-based objective measures, could be
the result of the specific reward structure of the design in
addition to, or more so than any reliable neuromechanical or
electrophysiological contributions.

Biological Limitations and Contribution of Learning
Theories
If normal muscle synergies (e.g., the same muscles act to abduct
one’s arm each time, in a healthy adult) are disrupted by an insult
such as stroke, robbing the motor circuity of its primary output
components (e.g., central nervous system efference to peripheral
nervous system effectors), residual functional capacities are
limited by the ability of the system to retrain or re-map (link)
the CNS commands to PNS effectors (Power et al., 2011).
Successful BCI intervention must connect the peripheral muscle
activation with the muscle effectors necessary to execute a
motor function according to the user’s CNS command to do
so. Unfortunately, retraining the processes of the descending
motor system is not always an option as stroke often results
in irreparable tissue damage or death to motor pathways and
even their sensorimotor confederates. Post-stroke neuronal loss
alters recruitment of downstream muscle synergies (Cheung
et al., 2009), and alters a synergy’s internal structure (Roh
et al., 2013) depending on stroke severity (Roh et al., 2015).
One biological mechanism left to these survivors is to adapt
existing synergistic capacities toward a compensatory strategy
(e.g., recruitment of novel synergistic families to accomplish a
familiar movement). Thus, future BCI methodologies should
rely on classical conditioning and Hebbian learning theories
as well as predictive modeling for developmental guides to
practice. Future BCI designs may also benefit from classification
of distal muscle capacities and synergistic integrities so as
to better measure, represent, facilitate, or compensate for
the functional consequences of the stroke disturbed CNS
and PNS circuitry.

From previously published findings (Young et al., 2014a,b,c;
Song et al., 2015), we can comprehend that BCIs induce neuronal
changes which, in turn, might help the participants challenge
their paresis or perceived disabilities (Dromerick et al., 2009;
Remsik et al., 2016), as they access or develop (i.e., train) new
functional aptitudes, or reinvigorate old synergies and neural
networks dampened by insult (Remsik et al., 2016). Participants

may have the perception that their ability has improved or
changed; however, when assessed by objective measures, those
perceptions, at least here, are not always confirmed at equal
magnitude. The authors posit that neural changes reported
by other groups and in our previous publications may not
always manifest as clinically significant objective changes in
motor function (Wenger et al., 2017) because there is either, or
both a threshold effect, or a missing component to this type
of intervention (such as sufficient dosing parameters, subject
selection, etc.). This opinion is potentially fortified by these
results which suggest more time in intervention is related to
greater electrophysiological change. Electrophysiological changes
are understood to be possible biological precursors to function
network change and eventually, functional behavioral change
(Gazzaniga et al., 2009). Other than the simple explanation
that objective lab-based measures might not reliably capture
UE impairment well in stroke survivors, perhaps, as a result
of engaging with this BCI intervention, this discrepancy might
also arise because participants are beginning to engage their
environment with the distal musculature of the impaired
hand in ways they had been previously averse (unwilling)
or unable to.

More Intervention
Losing strategies, more often than not, do not win (e.g., adaptive
vs. maladaptive behaviors). Maladaptive associations may
simply need more time to be pruned away and relevant
adaptive associations strengthened by increased and more
highly structured reinforcement (Gazzaniga et al., 2009; Wenger
et al., 2017). If one assumes such a threshold effect, the neural-
remodeling realized in these participants may suggest that
more intervention trials were needed to translate to clinically
significant, not just relevant, changes in objective measures of
function. Results suggest a relationship between more trials
and greater outcome measure change, paralleling a concept
associated with training, or learning a new motor skill: practice
makes permanent. It may be that amount of intervention, or
inadequate ‘dosage’ in this case, explains the weak translation
of observed brain level changes into behavioral gains for this
cohort. Little evidence has thus far been offered to suggest an
optimal BCI regimen. Perhaps there is even an upper limit,
or even some consequence of fatigue. It is therefore suggested
that future research address these questions and aim to better
understand dose-response relationships and independent
variable (lesion location, lesion volume, time since stroke,
comorbid impairments, etc.) contributions to predict recovery
potential and more efficaciously prescribe BCI intervention as
therapy. All BCI research would benefit by a concerted effort
to identify a therapeutic index for various BCI interventions
(regimens) as well as attempt to target ideal patient profiles for
prescription of BCI intervention as a therapy.
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The main applications of the Brain–Computer Interface (BCI) have been in the domain
of rehabilitation, control of prosthetics, and in neuro-feedback. Only a few clinical
applications presently exist for the management of drug-resistant epilepsy. Epilepsy
surgery can be a life-changing procedure in the subset of millions of patients who
are medically intractable. Recording of seizures and localization of the Seizure Onset
Zone (SOZ) in the subgroup of “surgical” patients, who require intracranial-EEG (icEEG)
evaluations, remain to date the best available surrogate marker of the epileptogenic
tissue. icEEG presents certain risks and challenges making it a frontier that will
benefit from optimization. Despite the presentation of several novel biomarkers for the
localization of epileptic brain regions (HFOs-spikes vs. Spikes for instance), integration
of most in practices is not at the prime time as it requires a degree of knowledge about
signal and computation. The clinical care remains inspired by the original practices of
recording the seizures and expert visual analysis of rhythms at onset. It is becoming
increasingly evident, however, that there is more to infer from the large amount of
EEG data sampled at rates in the order of less than 1 ms and collected over several
days of invasive EEG recordings than commonly done in practice. This opens the door
for interesting areas at the intersection of neuroscience, computation, engineering and
clinical care. Brain–Computer interface (BCI) has the potential of enabling the processing
of a large amount of data in a short period of time and providing insights that are not
possible otherwise by human expert readers. Our practices suggest that implementation
of BCI and Real-Time processing of EEG data is possible and suitable for most standard
clinical applications, in fact, often the performance is comparable to a highly qualified
human readers with the advantage of producing the results in real-time reliably and
tirelessly. This is of utmost importance in specific environments such as in the operating
room (OR) among other applications. In this review, we will present the readers with
potential targets for BCI in caring for patients with surgical epilepsy.

Keywords: high frequency oscillations, high frequency brain stimulation, single pulse electrical stimulation, BCI,
epilepsy surgery, coherence analysis, epileptogenicity index, connectivity index

Technology alone is not enough–it’s technology married with liberal arts, married with the humanities,
that yields the results that make our heart sing.

Steve Jobs
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CURRENT STANDARDS AND RECENT
ADVANCES IN SEIZURE LOCALIZATION
AND INTRACRANIAL EEG

Intracranial-EEG (icEEG) indicated in the subset of patients with
drug-resistant epilepsy (i.e., patients who failed two anti-seizure
medications, as mono-therapy or in a combination, composing
approximately a one-third of all patients with epilepsy), may
present a few challenges:

(i) icEEG is invasive and may present complications, which
increase in rate as a function of duration of recording (Fong et al.,
2012) (ii) The chances of sustained seizure freedom after epilepsy
surgery falls between 30 and 80% (Jehi et al., 2009; Simasathien
et al., 2013) depending on the lobe involved suggesting that the
current methods of localization are not optimal and approaching
epileptogenicity implying zones, while practical, falls short of
“ideal” (ii) recording of seizures remain to date the best surrogate
marker of the epileptogenic zone which may not be always
feasible even after a few weeks of EEG recording (Asano et al.,
2009). There are only a few exceptions where the interictal profile,
may be adequate for localization of the epileptic tissue in the
operating room (OR) such as in focal cortical dysplasia (FCD)
(Tripathi et al., 2010).

A standard single electrode (Figure 1) provides an estimate of
the field potential of the summation of excitatory and inhibitory
post-synaptic evoked potentials roughly from 100 million to
1 billion of neurons. Electrocorticography (ECOG) has the
advantage of proximity to the source of electrical activity only
separated by highly conductive media and low impedances. Using
simultaneous scalp and intracranial recording, cortical spike
sources having an area of 10 cm2 or more commonly resulted
in scalp-recordable EEG spikes (Tao et al., 2007). ECOG is
less susceptible to artifact and provides higher signal-to-noise
ratio. Additionally, depth electrodes allow exploring mesial brain
structures and deeply seated foci not accessible otherwise.

FIGURE 1 | Different type of electrodes currently employed in practices. The
depth electrodes and stereo-EEG commonly employed in Europe especially in
France, and more recently in the United States. Whereas subdural electrodes
constituted the mainstay of evaluations in the United States until the last few
years.

TABLE 1 | Summary of Cortical Zones and their assessment with clinical tools.

Cortical zone Methods of assessment

Ictal onset zone EEG, ictal SPECT

Irritative zone EEG, Magnetoencephalography,
functional MRI triggered by EEG

Symptomatogenic zone History and semiology

Epileptogenic lesion MRI

Eloquent cortex Cortical stimulation, functional MRI,
evoked potentials,
Magnetoencephalography

Functional deficit zone Physical examination,
neuropsychiatric testing, EEG, PET,
SPECT, MRS

Epileptogenic zone None (theoretical construct)

Indication: The traditional goal of epilepsy surgery is to
disconnect the epileptogenic zone which is the area of the cortex
indispensable for seizure generation, and which resection leads
to seizure freedom (Table 1). The decision about implantation
is discussed during a multi-disciplinary surgical conference
attended by neurosurgeons, neurologists, neuropsychologists,
radiologists, trainees, and nurses among others. The typical
indications include:

• Discordant non-invasive pre-surgical work-up
• MRI-negative neocortical epilepsy and select cases of mesial

temporal epilepsy
• MRI-lesional cases if:

◦ Adjacent to eloquent cortex
◦ Detailed language or functional mapping needed
◦ Plan to maximally define the epileptic zone for

completeness of resection such as in focal cortical
dysplasia (FCD)
◦ Dual pathology or multi-focality (i.e., tuberous

sclerosis)
◦ If discordance with EEG data (i.e., scalp EEG is non-

localizable).

The standard approach is to record seizures in the epilepsy
monitoring unit.

Intra-Operative ECOG
There is somewhat conflicting evidence to support precision of
pre- and post-resection ECOG for localization of the epileptic
focus, owing to the heterogeneity and the retrospective non-
randomized or non-controlled designs in the available studies
and the multiple clinical variables to control. That is, some studies
correlated resection of spikes with seizure freedom (Palmini et al.,
1995; Bautista et al., 1999; Sugano et al., 2007; Stefan et al.,
2008; Tripathi et al., 2010) but not others (Cascino et al., 1995;
Kanazawa et al., 1996; Tran et al., 1997). Several studies have
suggested that residual spikes in the final post-ECoG predict
poor surgical outcome (Wennberg et al., 1998; Oliveira et al.,
2006), but this is again contradicted by others. Recording in the
intra-operative settings may be adequate in

• Select-cases in children especially younger ones
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• Lesions with concordant non-invasive evaluations in focal
cortical dysplasia
• As an adjunct in multiple-subpial-transections (MSTs)
• Adjunct during intra-operative monitoring and mapping of

eloquent cortex
• As an adjunct in placement of Responsive Neuro-

Stimulation (RNS) electrodes.

Limitations of intra-operative ECOG: Seizure onset almost
always not recorded in the operating room. Chemical induction
fell out of trend. There is a tunnel-vision related to the limited
spatial sampling. Thus, successful localization must be guided by
a strong clinical hypothesis. Anesthesia may limit the analysis of
epileptic activity. The ideal agents for intra-operative recording
are those with minimal effect on baseline spike frequency.
Inhaled agents tend to suppress background EEG activity, with
reports of enflurane (Flemming et al., 1980) and sevoflurane
(Dahaba et al., 2013) exhibiting activating effect. Synthetic
opiates such as remifentanil and alfentanil may increase the
yield of recording epileptiform activity (McGuire et al., 2003).
The latter may induce non-habitual seizures from healthy brain
regions. A few studies have shown that dexmedetomidine has
no or little activating effect on epileptiform activity (Chaitanya
et al., 2015). Propofol, barbiturates, and benzodiazepines increase
EEG background beta-sigma frequency-power and may obscure
epileptiform discharges (Dahaba et al., 2013; Nishida et al., 2016;
Bayram et al., 2018a).

Surgical Outcomes and Safety
Over the past decade, there has been a plethora of literature
reporting on long-term outcomes following epilepsy surgery
with chances of long-term and sustained seizure freedom
ranging from 30% in frontal lobe epilepsy and up to 80% in
lesional mesial temporal lobe epilepsy. This outcome compares
favorably to a 5%-per-year chance of seizure freedom using
anti-seizure medications alone in medically intractable cases
(Callaghan et al., 2011). Duration of implantation correlates
with the histopathological changes such as micro-hemorrhages
and inflammatory response (Herman et al., 2017). Commonly,

electrodes are removed within 3 weeks following implantation.
There has been a steady decrease in risk of complications with
advances in surgical techniques (Yuan et al., 2012; Arya et al.,
2013; Herman et al., 2017).

For the aforementioned, any future electrophysiological
markers ideally would emphasize both efficiency and reliability
in classification of brain tissue. Studies of markers that are more
specific of localization of the epileptogenic brain regions in
the interictal phase are always welcome and still badly needed
preferably as part of large, multi-center consortia.

RECENT ADVANCES IN
BRAIN–COMPUTER INTERFACE (BCI)

The brain–computer interface (BCI) (Figure 2) is a device that
reads voluntary changes in brain activity then translates these
signals into a message or computational command in real-
time. It is a method to communicate with the brain, that does
not depend on the brain’s normal output pathways. Current
BCI’s record electrophysiological signals using non-invasive or
invasive methods. These BCIs can provide a much more detailed
picture of the brain activity, which can facilitate prosthetic
applications or surgery for epilepsy and tumor removal. The
emphasis in this article is to describe possible applications to
enhance care for patients affected by drug-resistant epilepsy via
invasive sensors and electrophysiology. For other applications
and for BCI engineering aspects please refer to other sections.

The applications of BCI are more relevant nowadays given
recent advances in the sampling of icEEG and in computational
power. The amount of information encoded within the icEEG
that is untapped into on a regular basis is enormous. It appears
that interacting with live-streaming electrophysiological data,
sampled at high-frequency, and processed in real-time will be the
future, by natural, or artificial for this matter, evolution.

In general, the critical components of BCI are:

1. Sensors: In this case is an intracranial icEEG electrode
placed at the surface of the brain.

FIGURE 2 | A schematic showing a universal design for BCI systems. Adapted from BCI2000 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 51,
NO. 6, JUNE 2004.
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2. Translation for communication: Programming
language and commands.

3. Real-time acquisition and processing of EEG signal.
This includes EEG amplifiers enabling access to data as
they are recorded.

Different methods of interfacing are available:

1. Many of the commercially available EEG amplifiers may
provide Software Development Kits (SDKs) to enable
an interface with EEG signal as it is acquired. Skills in
programming and software development are required.

2. EEG amplifiers designed for interfacing with widely
used languages in signal and image processing such
as MATLAB R©, Simulink R©, and python R©. This approach
is commonly employed for development, in academia,
and for research.

3. One or multi-purpose integrated end-to-end hardware
and software. The best consumer experience (patient
and practitioner in this case), as learned from industry,
come from the “whole widgets” kind of products with
the software carefully tailored to the hardware and vice
versa. Commercializing the BCI applications in the field of
epilepsy surgery will likely follow this path.

A remarkable amount of funds has been raised to support
research in BCI and its applications in the private sector over the
past few years. It is only logical if parallel strides are taking place
in the epilepsy world, so that the community and researchers
with a specific interest in management of drug-resistant epilepsy,
could tap into and benefit from the growing popular interest.

CURRENT BCI APPLICATIONS IN
DRUG-RESISTANT EPILEPSY

This is an area at the intersection of multiple disciplines of
science and has yet to be integrated in clinical practices in
the broader sense. Ongoing parallel research is in progress.
Developing algorithms tailored for clinical use, beyond abstract
research-statistics, and validated by surgical outcomes continue

to be needed; one challenge is that parametric statistics are
often not clinically compelling, hence, expert-driven non-
parametric evaluation of results will most likely benefit the
clinical applications (Maris and Oostenveld, 2007). Multi-center
efforts are required in order to increase the number of cases and
hence the statistical power of the findings. Among other methods,
the iEEG.org portal provides a potential seed for collaboration
and data sharing.

Some of the known BCI applications in caring for patients
with drug-resistant epilepsy include:

∗ Real-time localization of the language centers especially in
patients in whom current gold standards are not applicable.
The most practical use at the present point is to make
mapping by electrical cortical stimulation (ECS) more
efficient, by supplementing the planning process. It is
our experience, however, (Figure 3) to encounter false-
detections in the clinical-sense in the 1. Occipital and
junctional regions 2. Frontal attention network and 3.
The epileptic brain regions. In fact, the issue of spatial
sampling is a pertinent one in any research involving
icEEG, as generally speaking there is a consistent bias
toward sampling from epileptic brain regions, and this fact
should be incorporated into the interpretation of available
literature reporting on predictive values of markers of
function or epilepsy.
It is an active area of research to optimize detections
within functional brain regions that are most important
for the surgical decision and to exclude less relevant
ones (i.e., increase the clinical specificity). This will
require employing more steps than simple parametric and
energy-based detection of gamma activity (Alkawadri and
Gaspard, 2018). Elaborating on current non-parametric
methods and expert validated outcomes will likely benefit
practices. For instance, we have been able to optimize
methods to localize the hand motor area (Alkawadri, 2017;
Alkawadri et al., 2015), and the entire sensorimotor strip
successfully during sleep (Figure 4).

FIGURE 3 | Function: (Left) hand motor according to commonly employed parametric methods of analysis of task-related gamma activation. (Right) Improving on
the results by custom made algorithm. The results of direct electrical cortical stimulation are highlighted in cyan both figures for references. All shown in the electrode
space. The size of the dot is proportional with the strength of task-related activation.
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FIGURE 4 | Identification of hand-motor area and the central sulcus (blue-line
in electrode plain) and co-registration of the results with brain MRI in real-time
based on free-running ECOG and custom-made software (Alkawadri et al.,
2015). (A) Size of circles corresponds to the value M specific to the anterior lip
of the central sulcus – whereas the color represents local field normalized
power in the electrode space. (B) Co-registration of M values in the MRI space
and proper thresholding to demonstrate the localization of the hand area.

∗ Responsive Neuro-Stimulation (RNS) for seizure detection
and electrical stimulation for modulation and management
of drug-resistant epilepsy.
∗ Near-Instantaneous classification of perceptual states from

cortical surface recordings.
∗ Real-time seizure detection.

In the next few sections, we will present areas and markers in
surgical epilepsy with BCI potential.

Epileptiform Discharges
Interictal EEG spikes are known to be categorically correlated
with the presence of epilepsy. However, interictal discharges can
be seen also in areas other than SOZ and tissues distant from the
epileptic tissue (Jasper et al., 1961). Jasper’s early work had led to
the conclusion that not all spikes are equal and that there are ones
that are more localizing of the epileptic region than others.

The agreement between the seizure zone and the irritative
zone, however, is estimated at approximately 56% based on
a surgical series and more so in focal cortical dysplasia FCD
∼75% (Bartolomei et al., 2016). The prominent spikes tend to
arise mostly from contacts located in the close vicinity of the
seizure onset area rather than from within it. We found that
the most sharply looking ones are those in the vicinity of the
seizure onset zone rather than precisely within it (Gaspard et al.,
2017) (Figure 5). More recently, there has been a suggestion that
high-frequency oscillations co-occurring with spikes are highly
specific for the seizure-onset zone (Wang et al., 2013). In fact,
co-occurrence increases the specificity for both (Ren et al., 2015).
Due to Gibbs phenomenon, fine-tuning of reliable detectors of
spike-HFOs, especially those that are based on non-sine methods,
such as wavelet spectral analysis or Hilbert transformation and
power ratios in different bands, appear more efficient than
standard energy-based ones (Birot et al., 2013).

FIGURE 5 | Representative case: 34-year old woman with left neocortical
temporo-parietal epilepsy. The size of the blue dots represents the “spikiness”
of the automatic-detected spikes which are located in the left inferior and
lateral temporal lobes, as well as in the left inferior parietal lobe, and overlap
partly with, and within the vicinity of the seizure onset zone (red circles).

Intraoperative Spike Monitoring
Extra-operative video-EEG monitoring and recording of the
seizure onset remain to date the best surrogate marker of
the epileptogenic zone. Until a reliable interictal biomarker is
available for the clinical decision making, there remain situations
where the intra-operative monitoring is desired. “Spike chasing”
and “tailored resections” may not lead to desired outcomes if
not supported by a valid hypothesis. Randomized controlled
trials are still needed as there is a somewhat a lack of
strong evidence on the best use of it. Some studies have
suggested that residual spikes in the final post-ECOG predict
poor surgical outcomes, but this was contraindicated by other
studies. A primary concern is that surgical manipulation of
the cortex may agitate the tissue, evoking spikes in the
resection margin, which are not correlated with the seizure
outcome. Spike-HFOs may present somewhat a more reliable and
specific interictal biomarker for the epileptogenic brain region
in that settings.

Until these studies are completed, the concept of
intraoperative localization of the epileptic focus will remain
an active area for fine-tuning. The clinical implementation
of HFOs will be hampered by the existing gaps of knowledge
such as the need to discriminate between physiological and
pathological HFOs and the requisite for reliable computational
detection methods that address existing concerns. The first
randomized, controlled, clinical trial (The HFO Trial) to
evaluate our hypothesis that use of HFOs intraoperatively can
improve outcome is underway. Furthermore, it is important
to fill a critical gap of the effect of anesthesia and the ideal
anesthetic regimen for intraoperative ECOG monitoring. There
is no consensus in regard to the ideal anesthesia regimen
for intraoperative monitoring. Existing studies often do not
employ common gold standard for localization, and the
concept of pharmacological spike activation is challengeable.
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FIGURE 6 | Demonstration of spatial distribution of physiologic high frequency oscillations. A reliable classifier to distinguish those from epileptic ones is desired
(Alkawadri et al., 2014).

In our review of literature, of the five studies only provided
specifics on site of resection and correlation with surgical
outcomes out of 23 stduies reporting on spike activation
of a total altogether 54 studies that met inclusion criteria
(Bayram et al., 2018b).

High-Frequency Oscillations (HFOs) and
Very High-Frequency Oscillations
(VHFOs) – See Also the Previous Section
There has been a growing interest in the utility of interictal
high-frequency oscillations HFOs (80–500 Hz, classically) for
localization of the epileptic focus (Bragin et al., 1999; Jacobs et al.,
2008, 2009a,b). Several challenges arose as similar oscillations
have been associated with specific tasks or occur naturally during
sleep (Figure 6), and no known signal parameter can reliably
distinguish between physiologic and epileptic subtypes in a given
individual (Alkawadri et al., 2014) (Figure 7). Hence, interictal
HFOs, although useful, are not highly specific and do not
replace current standards. Ironically, it appears that to-date, the
most effective factor that increases the specificity of HFOs for
detection of epileptogenicity is their co-occurrence with other
markers, i.e., spikes. One common denominator among studies
reporting on HFOs is that the analysis often performed at
the group level and case-wise results are not always presented.
The latter perhaps is more relevant for the decision-making in
clinical practice. Furthermore, the approach of assessing surgical
resections and relatively short-term seizure-free outcomes while
commonly employed, has inherent limitations. This holds true
especially in the face of the concept of ongoing epileptogenesis

even after seemingly successful resections (Najm et al., 2013;
Simasathien et al., 2013).

Very-high-frequency oscillations (VHFOs), i.e., Oscillations
500–2000 Hz or above may be more specific for localization of
the epileptogenic region (Usui et al., 2015; Brazdil et al., 2017).
The frequency exceeds the firing-rate of individual single neurons
and likely represent a rhythm generated by in- and out- of phase
action potentials of neuron clusters.

Some of the variable results with HFOs and VHFOs in the
existing literature stem from; the extent of spatial sampling
(Figure 8); methods undertaken to exclude detections with
filtering artifact; the review montage; methods implemented in
detection and analysis and effort made to exclude filter-related
false detections; areas sampled; size of contacts; time of study and
relation to tasks/meds/seizures. Some have employed a battery-
powered amplifier system to eliminate the noise of alternating
current cycles. Others have subtracted the averaged signal in the
white matter from all signals, providing thus additional noise
reduction and an optimal reference in theory. It is important
to investigate the occurrence of VHFOs outside the epileptic
regions, to avoid bias and inflation of positive predictive values
resulting from the natural inclination toward sampling epileptic
brain regions. The extent of spatial sampling at Yale, has led to
detection of ripples and fast ripples consistently at a significantly
higher rate outside the epileptic network.

In summary, the ability to sample EEG at high frequencies is
perhaps the most suitable tool, in theory, to tap into neuronal
communications. Current data seems to suggest, that shorter
HFOs bursts, higher-peak-frequencies, and higher entropy in
HFOs bands are more suggestive of pathology. No single feature,
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FIGURE 7 | To-date no single EEG feature can reliably distinguish epileptic from non-epileptic HFOs.

FIGURE 8 | Examples demonstrating a false detection in red (not discerned on raw data and does not occupy a blob in the Morley-Wavelet based spectral window),
and true ripple marked by a green line. The spectral analysis is even more important in analysis of fast ripples (lower).

however, can reliably classify the groups other than perhaps co-
occurrence with epileptiform spikes. Presently employing a real-
time detection of spike-HFOs and addressing the issue of false
detections are of interest. Until then, it appears we are arriving at

the time of integrating real-time detection of HFOs/spike-HFOs
in clinical practice. Clinician-friendly and commercially available
automatic real-time detection algorithms (highly specific) are
needed as we continue to advance knowledge on that end.
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Brain Connectivity
Functional connectivity is defined as the study of temporal
correlations between spatially distinct neurophysiological events.
There are several conceptual distinctions between the different
functional connectivity measures: They either reveal directed
or undirected, linear or non-linear connections in the time or
frequency domains. The calculation is either amplitude or phase-
based, and the measure can be bivariate or multivariate. Standard
coherence is the equivalent of correlation within a specific band.
The temporal resolution of EEG presents a unique modality for
analysis of different connectivity and association indices beyond
the uni-dimensional correlation coefficient, which is the practical
choice in slow fluctuating signals such as those encountered in
functional imaging.

The connectivity measures could be conceptually subdivided
into four subgroups (van Mierlo et al., 2014):

1. Correlation and coherence: Pearson correlation coefficient,
and loosely its equivalent when applied on specific
frequency bands. A variant of this measure is the cross-
correlation that investigates the correlation between two
time-series that are shifted in time concerning each other.
The phase of the coherence can be used to infer the
directionality. The temporal resolution of EEG presents
a unique modality for analysis of different connectivity
and association measures beyond the uni-dimensional
correlation coefficient, which is the practical choice in a
slow fluctuating signal such as the one encountered in
functional imaging.

2. Instead of investigating the relationship between the
amplitudes of the signals, one could also examine how the
phases of the considered signals are coupled, the so-called
phase synchronization measures. The most commonly
used measures are the phase-locking value and phase-
lag index.

3. Information-theory-based, with the most
frequently employed is mutual-information and
the transfer-entropy which enable investigating
non-linear relations.

4. The fourth category of functional connectivity measures
is based on the concept of Granger causality for which
Clive Granger received a Nobel-prize when invented
to be applied in Economics. One time-series is said
to Granger-cause the second one if the inclusion of
the past values of the first into the modeling of the
second significantly reduces the variance of the modeling
error. Most of the Granger causality measures are
constructed based on an autoregressive (AR) model, in
which the present samples of the signals are predicted
using a linear combination of the past samples. From
the coefficients of the AR model many measures can
be derived: The Granger-causality index the directed
coherence, the directed transfer function and the partial
directed coherence.

None of these methods are perfect, and one should employ
depending on the questions, for instance, whether directionality

or non-linearity are of interest. Studies have suggested that there
is an increase in synchronization in the inter-ictal phase within
the resection bed (Avoli, 2014). Recently, it has been shown that
high-frequency Granger causality before the actual seizure onset
and higher values correlated highly with contacts at seizure onset
(Rummel et al., 2015; Park and Madsen, 2018). Also, interictal
connectivity within temporal lobe showed more loose patterns
as a function of the duration of epilepsy before the surgical
evaluation (Englot et al., 2015). Most EEG-based connectivity
techniques are research-based, but many will be potentially
useful for evaluation of cerebral abnormalities. Further studies
to correlate connectivity findings with seizure localization and
functional mapping results are still desired and in concept will
be a suitable application for BCI.

Some technical issues that should be paid attention to:

1. The quality of recording and montage of review are
of particular significance in the setting. For instance,
a slightly contaminated reference may result in a false
inflation of direct correlation or coherence-based values
(Arunkumar et al., 2012).

2. Studies are lacking to correlate spontaneous ECOG-based
connectivity measures and other measures of functional
connectivity such as fMRI or anatomical connectivity such
as Diffusion Tensor Imaging (DTI). We did not find
a meaningful correlation between coherence in different
frequency bands and cortico-cortical evoked potentials
(unpublished work). We hypothesize that this is because
stimulation activates complex poly-synaptic networks at
a distance, whereas spontaneous connectivity measures
identify local networks.

The Connectivity Index (CI) as New Measure to Grade
Epileptogenicity Based on Single-Pulse Electrical
Stimulation (SPES)
Victor Horsley used faradic electrical stimulation to confirm
the localization of the epileptic focus in one of John Hughlings
Jackson’s patients who underwent resection of an epileptic focus
in 1886 (Vilensky and Gilman, 2002). Harvey Cushing used this
technique in 1909 to define the sensorimotor cortex surrounding
a tumor and to confirm the localization of epileptic seizures that
manifested with sensory auras (Feindel et al., 2009). Following the
advances in EEG acquisition after 1929 and the standardization
of the use of electrical stimulation in brain mapping by Wilder
Penfield, induction of seizures through electrical stimulation fell
out of favor in North America (Isitan et al., 2018). In Europe,
and particularly in France, electrical stimulation continued to be
used for seizure induction with variable reports of reliability and
specificity for localization of epileptic brain regions (Kovac et al.,
2016). Controlled studies on stimulation parameters, efficacy, and
specificity of seizure induction are methodologically challenging
due to the difficulty in controlling for several covariates. However,
our experience aligns with previous reports that suggest seizures
produced by 50-Hz stimulation are not specific for localization
of the epileptic focus though perhaps more sensitive than 1-Hz
stimulation. There is a school that suggests seizures induced by
high-frequency stimulation if similar to habitual seizures, i.e.,
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electro-clinical syndrome may be more specific. Our experience
in extra-temporal epilepsy aligns well with the limited reports
emphasizing the specificity of seizures and auras induced by
low-frequency single pulse stimulation in temporal lobe epilepsy.

Recently, we have shown that a new metric we labeled the
connectivity index (Alkawadri et al., 2013) which is based on
the normalized number of averaged evoked responses to single
pulse electrical stimulation weighted by the normalized distance
at which the responses recorded at.

CI =
n.d
N.D

Ci Connectivity index, n, number of contacts with evoked
responses, N total number of contacts, d, D average Euclidian
distance of contacts with evoked responses and all contacts
from site of stimulation, respectively. This measure accentuates
responses recorded at different sites. Also, it may bypass some
limitations related to the sampling bias (i.e., epileptic areas are
more sampled than non-epileptic brain regions).

We analyzed responses in thirty-nine stimulation sessions
in 19 patients. Stimulation of the epileptic contacts generated
reproducible responses at significantly higher rates than the
control sites (medians of normalized number of contacts 0.74
vs. 0.32, p = 0.0007). These differences were even stronger when
normalized to average distance of recorded responses from the
stimulation site (medians of normalized values 0.71 vs. 0.15
p = 0.0003) (Figure 9). The evoked responses after stimulation
of the epileptic contacts were seen at further distance from the
site of stimulation (medians of normalized distances 0.93 vs. 0.58,
p = 0.0004, median absolute values: 58 mm vs. 44 mm). It was 2.2
times more likely to record an evoked response from the seizure
onset zone than other contacts after stimulation of a remote-
control site. Habitual partial seizures or auras were triggered
in 26% of the patients and 33% of the seizure onset contacts
(median stimulation intensity 3.5 mA), but in none of the

control or within network contacts. Stimulation of control sites
in multifocal or poor surgical outcome cases tended to exhibit
higher number of evoked responses at distant sites compared
to the localizable onsets or good surgical outcome (median
number of contacts normalized to total number of contacts and
average distance 0.5 vs. 0.12, p = 0.06). Stimulation of epileptic
contact generated responses with longer latencies (medians 48
vs. 38 ms, p < 0.0001), and longer duration (medians 73 vs.
62 ms, p < 0.0001). There was a correlation between the current
intensity and normalized number of evoked responses (r =+0.50,
p < 0.01) but not with distance (r = +0.1, p < 0.64), suggesting
perhaps that stimulation at lower currents may possibly help
in identifying distant nodes within the epileptic network and
help differentiating between epileptic and non-epileptic sites.
Furthermore, we demonstrated that it is possible to co-register
volumes based on abnormal responses to single-pulse stimulation
with patient’s MRI for reliable visualization.

The Epileptogenicity Index (EI), and
Other Seizure-Related Metrics
Quantitative seizure analysis is of interest in clinical practice.
An expert review remains to-date the mainstay of analysis. Low-
frequency high-amplitude repetitive spiking (LFRS) is the most
frequently reported pattern in mesial temporal lobe epilepsy and
seems to correlate with degree of volume loss. In neocortical
epilepsy, focal low voltage fast activity is the most localizing
rhythms and it appears that the slower and the more wide-spread
the rhythms are, the more likely that site of onset is not sampled,
or alternatively this may be viewed as a sign of a complex epileptic
networks (Singh et al., 2015). Some authors employed non-
parametric and parametric methods for seizure localization and
incorporated time to involvement (Bartolomei et al., 2008; David
et al., 2011). In our practice, in the majority of the seizures that are
poorly localized by conventional clinical analysis, the quantitative
EEG analysis identified strongly overlapping networks.

FIGURE 9 | Abnormal (left, A,B) and normal evoked responses (right, E,F) to single pulse electrical stimulation. Panels (C,D) represents source localization of late
and slow responses after stimulation of epileptic and non-epileptic orbitofrontal brain regions in two patients, respectively (Alkawadri et al., 2015).
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FIGURE 10 | This figure demonstrates the strong correlation between the
duration of epilepsy and the degree of epileptogenicity from non-SOZ tissue
as graded by the connectivity index.

Other benefits of quantification of seizure onset:

1. Evidence showing a correlation between duration of
epilepsy and non-SOZ contacts (Bartolomei et al., 2008)
compilable with other reports and our observations
(Figure 10).

2. Limited evidence suggesting that resection of ictal
high-frequency oscillations phsae-locked to lower
frequencies/spikes correlate with better surgical outcomes
(Weiss et al., 2013).

3. Interestingly, our practice has led us that in difficult to
localize cases and even those seizures that are classified of
seizure analysis, quantitative analysis of ictal rhythms tends
to show somewhat more stable networks (Figure 11).

Provoked Seizures and Seizure
Detection
As presented above, the implementation of electrical stimulation
in awake craniotomies predate the discovery of EEG in 1929.
As recently reviewed by Kovac et al. (2016), there has been
several studies published on the subject and almost all agree
that seizures induced by 50-Hz stimulation are not specific for
the localization – though more sensitive for induction than
1 Hz. On the other hand, there is a suggestion that seizures

recorded with 1-Hz stimulation may be specific for the SOZ, but
the technique is less powerful for seizure induction especially
outside the medial temporal lobe structures. Seizures can be
induced by ECS but there is controversy regarding the utility
of ECS induced seizures in defining the epileptogenic zone
and hence practice varies considerably between centers. We
reviewed the Yale experience with seizures included by electrical
cortical stimulation in 24 patients undergoing intracranial EEG
evaluation Seizures Provoked by Low Frequency Stimulation.
Habitual partial seizures or auras were triggered in 27% of the
patients and 35% of all seizure onset contacts that were stimulated
with 1 Hz stimulation (median stimulation intensity 4 mA, range
0–59 s from onset of electrical stimulation), but in none of the
control or IZ contacts. Only habitual seizures and auras were
recorded. None of the evoked auras led to generalized seizures.
All but one was focal with retained awareness. There are no non-
habitual seizures recorded by 1-Hz stimulation. In relation to
BCI, the issue of auto-seizure detection and prediction in real-
time becomes of interest. Seizure detection is of interest and
has different clinical applications whether based on intracranial
EEG, scalp EEG, or other markers. Different seizure detection
algorithms exist, most of which achieve sensitivities in the order
of 60%-> 90% and false detection rate of <1 seizure – many
seizures per hour. It appears that methods based on trained
support-vector-machine-learning and artificial neural networks
are the ones that achieve the highest performance. As a general
rule, the more sensitive a method is the more computationally
simple (Ramgopal et al., 2014).

FUTURE RESEARCH AND DIRECTIONS

A quick look at a recent submission to the annual BCI society
award and research trends available from the BCI community
annual conference shows:

1. There is a steady increasing trend in BCI research with
emphasis on epilepsy and movement disorders.

2. This constituted, however, only 3.8% of the projects
submitted. These numbers eclipsed by other uses.

There is a responsibility that most probably falls on the
shoulder of subspecialized funding agencies and supporting
communities to augment research in this area which will
continue to benefit patients with drug-resistant epilepsy, in the

FIGURE 11 | Quantitative analysis based on cumulative ictal high frequency oscillations in two difficult-to-localize seizures. The size represents the length of
electrode’s involvement in ictal HFOs, and the color represents normalized cumulative power up to 20 s after seizure onset. Note the strong spatial overlap and that
these seizures were interpreted differently by the clinical team as temporal (above), and fronto-parietal (below).
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foreseen future, until, researchers identify less invasive, and more
preemptive and efficient methods to treat epilepsy in the future.

In summary, icEEG data is an ideal medium for applications
of artificial intelligence and machine learning in real-time.
The applications within the domain of epilepsy surgery
and seizure localization have lagged behind, however, the
transformation is inevitable. Investment from funding agencies
is needed to help revamping of care in this sub-group of
general population.

Invasive electrophysiology presents some caveats though it
remains the standard of care in subset of cases with drug-
resistant epilepsy; firstly, the spatial resolution is at the level of
local field potential, i.e., in the order of hundreds of millions of
neurons and is inherently influenced by the clinical hypothesis
and expertise, secondly analysis often performed group-wise
not patient-wise and render networks not always outcome-
validated clinically meaningful data. That is in addition to the
risks presented above. In the long term, and besides advances
on this front, it would be desired to continue to investigate
new mechanisms of action for pharmacological control of
seizures, as well as investigating interventions that prevent
epilepsy altogether. Reliable identification of pathologic brain
regions is also of interest, functional imaging on the other
hand presents unique advantages especially in regard to the
spatial resolution, non-invasiveness and safety profile. However,
as a general rule non-of the available techniques is a match to
the superiority of EEG excellent temporal resolution and are
all, to our knowledge, with the exception of MRI imaging –
considered complimentary in the presurgical evaluation and do
not replace icEEG when the latter is indicated on a clinical basis.
Direct cortical brain cooling may prove beneficial in studying
the effect of isolating brain regions. Optogenetic approaches
present excellent potential for localization of function and
dysfunction in epilepsy and modulation of epileptic networks
via open- or close-loop circuits if optimized for use in
humans – as it enables highly specific and high-resolution
activation or deactivation of brain regions/cluster of cells that

is induced by light of specific wavelength via light-sensitive
genetically modified neuronal receptors and channels (opsins)
(Zhao et al., 2015). Genetically encoded voltage gated channels
if successfully translated into humans may further improve
our ability to map seizure events. These approaches have been
successfully applied experimentally in rodents. Several important
challenges presently exist: significant progress is still needed
in the technical scalability of the approach, safe and effective
opsin gene delivery, reliable light delivery in clinical settings,
and specific cluster activation in vivo. In summary, and while
promising, much remains to be understood before application of
optogenetics in humans.
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Hundreds of millions of general anesthesia are performed each year on patients all over

the world. Among these patients, 0.1–0.2% are victims of Accidental Awareness during

General Anesthesia (AAGA), i.e., an unexpected awakening during a surgical procedure

under general anesthesia. Although anesthesiologists try to closely monitor patients

using various techniques to prevent this terrifying phenomenon, there is currently no

efficient solution to accurately detect its occurrence. We propose the conception of an

innovative passive brain-computer interface (BCI) based on an intention of movement

to prevent AAGA. Indeed, patients typically try to move to alert the medical staff during

an AAGA, only to discover that they are unable to. First, we examine the challenges

of such a BCI, i.e., the lack of a trigger to facilitate when to look for an intention to

move, as well as the necessity for a high classification accuracy. Then, we present a

solution that incorporates Median Nerve Stimulation (MNS). We investigate the specific

modulations that MNS causes in the motor cortex and confirm that they can be altered

by an intention of movement. Finally, we perform experiments on 16 healthy participants

to assess whether an MI-based BCI using MNS is able to generate high classification

accuracies. Our results show that MNS may provide a foundation for an innovative BCI

that would allow the detection of AAGA.

Keywords: brain-computer interface, median nerve stimulation, motor imagery, anesthesia, intraoperative

awareness

1. INTRODUCTION

Waking up during a surgery is a haunting experience, both for patients, who consider it as the worst
in their lives (Pomfrett, 1999), and for healthcare personnel, who fear this situation (Tasbighou
et al., 2018). This phenomenon, called “accidental awareness during general anesthesia” (AAGA),
can be defined as an unexpected awakening of the patient during a surgical procedure under general
anesthesia (Pandit et al., 2014; Almeida, 2015). This situation occurs when the depth of anesthesia
induced by anesthetic concentration is not enough to compensate for surgical and environmental
stimuli and prevent awakening (Myles et al., 2004; MacGregor, 2013). Although the statistics are
still under debate, the estimated number of AAGA in high-risk practices is up to 1% (Sebel et al.,
2004; Avidan et al., 2008; Xu et al., 2009). The percentage of patients affected by AAGAmay appear
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low, but considering the hundreds of millions of general
anesthesia performed each year around the world (Weiser et al.,
2016), the occurrence of this phenomenon is in fact high.
Therefore, new solutions are required to better prevent it (Sebel
et al., 2004; Monk and Weldon, 2011).

The main problem for patients experiencing AAGA is the
explicit or implicit memory of this distressing experience which
can cause severe trauma, termed post-traumatic stress disorder
(PTSD) (Osterman et al., 2001). The PTSD following AAGA
should not be underestimated: it can last several years and
have a severe impact on the victim’s life (Avidan and Mashour,
2013; MacGregor, 2013; Almeida, 2015). After experiencing
AAGA, more than 70% of patients are reported to be suffering
from PTSD (Leslie et al., 2010). They are frequently associated
with an increased risk of suicide (Hendin, 1991) and often
lead to anxiety, insomnia, flashbacks, chronic fear, avoidance
tendencies, loneliness, irritability, concentration difficulty, and
lack of confidence in the medical staff (Schwender et al., 1995;
Lau et al., 2006; Bischoff and Rundshagen, 2011; MacGregor,
2013; Pandit et al., 2014; Almeida, 2015). AAGA also generates
a high anxiety level in anesthesiologists (Xu et al., 2009), and is in
the top 3 causes of legal action taken against hospitals (Pandit
et al., 2014) which can be expensive if the claim is successful
(Mihai et al., 2009).

There are currently two ways to monitor the depth of
anesthesia: observing clinical features (e.g., heart rate, blood
pressure, movement, sweating; Schafer and Stanski, 2008);
or using electroencephalographic (EEG) analysis, mainly of
the frontal cortex activity. Unfortunately, an anesthesiologist’s
observation of clinical signs is not enough to prevent AAGA
during surgery (Punjasawadwong et al., 2014). Indeed, observing
clinical signs is but an indirect way of monitoring the patients’
cerebral state. Hence, it does not always permit the prediction of
AAGA before it occurs. New indexes using part of the EEG signal
at the frontal level have been employed to prevent AAGA, such
as the Bispectral Index (BIS), the Patient State Index (PSI) or the
Entropy (Li et al., 2008; Kent and Domino, 2009). Although these
devices are already in use (Punjasawadwong et al., 2014; Liang
et al., 2015), some studies have failed to demonstrate a superiority
of these monitors compared to clinical surveillance or end-
tidal anesthetic gas (ETAG) (Avidan et al., 2008; Mashour and
Avidan, 2015). Moreover, a number of studies have shown the
unreliability of these techniques (Schneider et al., 2004; Schuller
et al., 2015). The concentration measurement of anesthetic gases
can also be an interesting way to quantify the depth of anesthesia,
since it is a measurement and not an estimation, the latter
being the case formonitoring anesthesia depth under intravenous
products like propofol (Avidan et al., 2008). However, anesthetic
gases are much less widespread in Europe (Absalom et al., 2016).
In addition, current practices aim to reduce the concentration of
anesthetic agents as much as possible in order to reduce post-
operative cognitive dysfunction andmorbidity (Pandit and Cook,
2013). In fact, most monitoring techniques are less reliable when
the concentration of anaesthetic is increased (Mashour et al.,
2011) which is why no technique is currently satisfactory and
sufficient to evaluate the depth of general anesthesia and detect
intraoperative awareness.

Intraoperative awareness leads to this kind of testimony: “I
couldn’t breathe, couldn’t move or open my eyes, or tell the
doctor that I wasn’t asleep.” Such testimonies show that, during
AAGA, the first reaction from a patient is usually to move
to alert the medical staff of this terrifying situation (Ghoneim
et al., 2009; Pandit et al., 2014). However, in the majority of
surgeries, the patient is curarized, which causes a neuromuscular
blockage and inhibits any movement (Tasbighou et al., 2018).
Presently, a real movement (RM) or aMotor Imagery (MI) can be
detected by analyzing the EEG signal, such as in Brain-Computer
Interfaces (BCI, Jonathan Wolpaw, 2012). Detecting RM or MI
using EEG is feasible because both the preparation phase and
the motor execution phase present power variations in the mu
and the beta frequency bands (Pfurtscheller and Lopes da Silva,
1999). These sensorimotor rhythms are characterized, before and
during an imagined movement, by a gradual decrease of power
in the mu-alpha (7–13 Hz) and beta (15–30 Hz) bands; and
after the end of the motor imagery, by an increase of power–
mainly–in the beta band. These modulations are respectively
known as Event-Related Desynchronization (ERD) and Event-
Related Synchronization (ERS) or post-movement beta rebound
(Pfurtscheller, 2003; Hashimoto and Ushiba, 2013; Kilavik et al.,
2013; Clerc et al., 2016) (Figure 1A).

According to these observations, it would be possible to
discover AAGA by detecting an intention of movement from
the patient. In 2016, Blockland et al., studied the effect of
propofol, a commonly used anesthetic, on the EEG signals of
the motor cortex. They verified the relevance of this approach
for improving monitoring of AAGA (Blokland et al., 2016). In
this study, patients were not completely anesthetized and were
asked to perform movements according to sound beeps while an
increasing dosage of anesthetic was administered to them. This
first approach shows that the BCI domain could contribute to
the issue of AAGA. However, the study conducted by Blockland
et al. was based on synchronous active communication, i.e., the
voluntary subject was explicitly asked to perform a movement
during the experiment after a visual and audible signal, which
does not realistically reflect the conditions during intraoperative
awareness. Therefore, a strategymust be found to design a passive
BCI whose task would be to detect the intention of movement
of an AAGA victim. In particular, this new BCI should not be
based on motor actions previously planned over time by the
experimenter and performed by the patient according to specific
auditory or visual markers, but rather on the accidental reaction
of a patient experiencing AAGA.

The design of such a BCI presents us with two challenges. The
first challenge is to be able to detect the intention of movement
of a person who is a victim of AAGA without any time markers.
This is equivalent to continuously analyzing the EEG signal with
few indications regarding the time phases to be studied. While
there exist some BCIs that do not use time markers or triggers
(known as asynchronous BCIs), the literature clearly shows that
their classification rate is lower than that of a synchronous BCI
with triggers (Nicolas-Alonso and Gomez-Gil, 2012). The second
challenge is therefore to obtain a high level of accuracy, which
would guarantee the reliability of the BCI device so that it
can be used with patients. The accuracy obtained for a MI vs.
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FIGURE 1 | (A) Illustration of the timings and amplitudes of the

desynchronization and the followed synchronization induced by a real

movement, a motor imagery, and a median nerve stimulation according to

Salenius et al. (1997),Schnitzler et al. (1997), and Neuper and Pfurtscheller

(2001) in the mu and beta frequency bands. (B) Illustration of the expected

timing and amplitudes of the desynchronization and the followed

synchronization induced by a median nerve stimulation during a motor imagery

according to Salenius et al. (1997),Schnitzler et al. (1997),Neuper and

Pfurtscheller (2001), and Kilavik et al. (2013) in the mu and beta frequency

bands. The time scale is not precisely detailed.

Rest classification in the BCI field in general remain low and
should be improved to create a reliable device which can be used
in hospitals.

To satisfy these two requirements, we propose the use of
median nerve stimulation (MNS) and show that it is a very
promising approach. Indeed, previous studies have shown that
a painless stimulation of the median nerve induces an ERD
during the stimulation while an ERS appears after the stimulation
(Salenius et al., 1997; Schnitzler et al., 1997; Neuper and
Pfurtscheller, 2001) (Figure 1A). More interestingly, a very long
motor task performed during a MNS abolishes the patterns
previously generated by this stimulation. The gating hypothesis
suggests that patterns are contracting (Kilavik et al., 2013)
(Figure 1B). If this hypothesis is verified it could make the
detection of AAGA with a passive BCI possible. Indeed, we
can imagine a routine system where the patient would be
stimulated at the median nerve, and the analysis of ERD and ERS
modulations of the motor cortex would be used to find out if the

patient has an intention to move. Unfortunately, very few studies
exist on this topic, and the effect of a MNS during a MI needs to
be investigated further, especially for a shorterMI. In addition, no
study has shown that a MI + MNS vs. MNS classification results
in better accuracies than a MI vs. Rest classification, suggesting
that MNS could be used as a trigger.

The objective of this study is to analyze the EEG activity over
the motor cortex and (i) verify that median nerve stimulation
generates desynchronizations (ERD) and synchronizations
(ERS); (ii) confirm that they are modulated by an intention
of movement; and (iii) demonstrate that a classification
based on this phenomenon would be more effective than
conventional classification based on modulations generated
by an intention of movement vs. resting state. In order to
achieve the above, we recorded 128 EEG signals from 16
voluntary healthy subjects who had performed 3 motor tasks
(a real movement, a motor imagery, a MNS during a MI)
and reacted to a MNS. To show the influence of a MI on
the ERD and ERS generated by a MNS, we computed time-
frequency and topographic maps and a classification based
on MNS+MI and MNS only. Our results indicate that a MI
significantly modulates the ERDs and ERSs generated by
a MNS and also that classification based on MNS is more
efficient than conventional classification based on MI vs.
rest. These results are promising for creating a BCI that
detects AAGA.

2. MATERIALS AND METHODS

2.1. Participants
Sixteen right-handed healthy volunteers (8 females; 19 to 57
years-old; 28.56 ± 13.3 years old) were recruited for this
study. All voluntary subjects satisfied the inclusion criteria
(right-handed, between 18 and 60 years-old, without medical
history which could have influenced the task, such as diabetes,
antidepressant treatment, or neurological disorders). This
experiment followed the statements of the WMA declaration
of Helsinki on ethical principles for medical research involving
human subjects (World Medical Association, 2002). In addition,
participants signed an informed consent which was approved
by the ethical committee of Inria (COERLE, approval number:
2016-011/01) as it satisfied the ethical rules and principles of
the institute.

2.2. Experimental Tasks
The aim of this research is to investigate the occurrence of
motor patterns under 4 different conditions : real movement
(RM), motor imagery (MI), median nerve stimulation during
a motor imagery (MI + MNS), and median nerve stimulation
during rest (MNS) (Figure 2). The first two conditions were
designed to assess the reliability of our experimental setup
and data processing by comparing these results to the
literature. The last two conditions were the core of our
study and aim at showing that a MNS can be used and
is more helpful as a trigger to improve the detection of
intraoperative awareness.
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FIGURE 2 | A healthy voluntary subject is lying on a comfortable chair with his

eyes closed. His legs rest on a footrest and his right forearm rests on a

cushion to prevent movement. The OpenViBE software records 128 EEG

electrodes and delivers starting and stopping beeps and stimulations of the

median nerve when necessary according to the experimental conditions. The

subject physically or mentally presses and releases a remote button. The

operator displays the EEG signals during the experiment.

2.2.1. Condition 1: Real Movement
The RM condition (C1) consisted of an isometric grasp between
the thumb and the index finger on a pointer button (Figure 2).
A low frequency beep indicated when the subject had to start the
movement. The grasping task was maintained during 2 s. Then
a second beep indicated when the subject had to stop pressing
the pointer button and the task’s end (Figure 3). The states of the
pointer button were recorded as triggers and allowed us to know
exactly when the participant executed and stopped the RM. This
simple movement, easy to understand and execute, generates
enough brain activity changes which can be observed in EEG
(Shibasaki et al., 1993).

2.2.2. Condition 2: Motor Imagery
For the MI condition (C2), subjects had to imagine the previous
movement, i.e., they had to try to feel a maximum of sensations
caused by the real movement, but without any movement.
Similarly to condition 1, a low frequency beep indicated when
the subject had to start the motor imagery, the grasping MI was
maintained during 2 s, then a second beep indicated the end of
the imagined task (Figure 3).

Condition 3: Motor Imagery With a Median Nerve

Stimulation
During the MI + MNS condition (C3), subjects had to perform
a motor imagination while their median nerve was stimulated
750 ms after the start of the motor imaginary task (Figure 3).
Uniformly to the previous conditions, a low frequency beep
indicated when the subject had to start the motor imagery and
a high frequency beep indicated when to stop it. We chose the
750 ms of delay according to the reaction time of the average
person, in order to stimulate during the ERD corresponding to
the imagination’s start. The duration of the stimulation was 100
ms and stimulation intensity was adapted for each subject and
varied between 8 and 15 mA.

2.2.3. Condition 4: Median Nerve Stimulation Only
The MNS only condition (C4) consisted of a series of stimulation
of the median nerve during rest. We placed the two electrodes of
stimulation on the wrist according to the standards (Schnitzler
et al., 1997; Kumbhare et al., 2016). We considered as an
inclusion criterion for our population of subjects the fact that
the stimulation was not felt as painful and that it caused a
slight movement between the thumb and the index finger of the
voluntary subject. The stimulation intensity was adapted for each
subject and varied between 8 and 15 mA.

2.3. Experimental Design
Each participant took part in one session of 120 min divided in
4 phases: (1) installation of the EEG cap (40 min); (2) selection
of the intensity of median nerve stimulation needed to produce a
micro movement between the thumb and index finger (10 min);
(3) execution of RM, MI, MI + MNS, and MNS in runs during
which participants had to perform the different motor tasks (60
min); (4) uninstallation and debriefing (10 min).

The study contained 4 conditions: real movement (RM),
motor imagery (MI), median nerve stimulation during motor
imagery (MI + MNS), and stimulation only (MNS). These
conditions were completed on the same day and divided into two
runs of 26 trials each, representing 52 trials for each condition.
The duration of one trial was 8 ± 1 s (Figure 3). The runs were
randomized for each subject in order to avoid fatigue, gel drying,
or other confounding factors that might have caused possible
biases in the results. At the beginning of each run, the subject
remained relaxed for 15 s. Breaks of a few minutes were taken
between runs to prevent fatigue of the subject.

For the entirety of the experiment, the subject were seated in
a comfy chair including a leg rest, with their right arm resting on
a pillow, a presentation remote placed in their right hand. The
subject didn’t actively hold the remote, it was simply resting in
their hand with the button placed under their thumb. Subjects
were asked to keep their eyes closed (Figure 2).

2.4. Data Acquisition
EEG signals were acquired using theOpenViBE platform (Renard
et al., 2010) with a Biosemi Active Two 128-channel EEG system,
arranged in the Biosemi’s ABC system covering the entire scalp at
2,048 Hz. Among all registered sites, some of the electrodes were
localized around the primary motor cortex, the motor cortex, the
somatosensory cortex, and the occipital cortex, which allowed us
to observe the physiological changes due to the real movement,
the kinesthetic motor imagery, and the median nerve stimulation
(Salenius et al., 1997; Schnitzler et al., 1997; Guillot et al., 2009;
Filgueiras et al., 2017). In the BiosemiTM system the ground
electrodes used were two separate electrodes: Common Mode
Sense (CMS) active electrode andDriven Right Leg (DRL) passive
electrode located over the parietal lobe. Impedance was kept
below 10 k� for all electrodes to ensure that the background
noise in the acquired signal was low. An external electromyogram
(EMG) electrode was added in order to verify that there was no
movement during the MI task.
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FIGURE 3 | Representation scheme for one trial. Timing schemes of a trial for C1, C2, C3, and C4. For all motor tasks, one low frequency beep indicates when to

start the task. For the MNS+MI condition, the MNS occurs at 750 ms after the first beep. The end of the MI is announced by a high frequency beep and followed by a

rest period of 6 s.

2.5. Data Pre-Processing
All offline analyses were performed using the EEGLAB toolbox
(Delorme and Makeig, 2004) and Matlab2015b (The MathWorks
Inc. Natick, MA, USA). The data was processed in General Data
Format (GDF). Considering the large number of electrodes used
in this study (e.g., =128) and the purpose of this research (motor
patterns over the motor cortex) we chose to use a common
average referencing (CAR) performed using EEGLAB (Dien,
1998; Lei and Liao, 2017). The results were also visualized by
applying a Laplacian filter and a Mastoidal re-referencing and
confirmed those described below (Perrin et al., 1989). Then, EEG
signals were resampled at 128 Hz and divided into 9 s epochs
corresponding to 2 s before and 7 s after the motor task for each
run. Finally, we removed the trials containing muscle artifacts
that may have affected ERD/ERS modulations. For this purpose,
we used the EMG electrode present throughout the experiment.
We also eliminated trials which included ERDs and ERS outlayers
(i.e., ERDs and ERSs that significantly exceeded the confidence
interval for the same run). The number of trials deleted are
described in the corresponding result section (see section 3.1).

2.6. Time-Frequency Analysis
To analyze the differences between all four conditions, we
performed an event-related spectral perturbation (ERSP) analysis
between 8 and 35 Hz using EEGLAB.We used a 256 point sliding
fast Fourier transform (FFT) window with a padratio of 4 and

computed the mean ERSP 2s before the task to 7 s after the task.
ERSP allows to visualize event-related changes in the average
power spectrum relative to a baseline of 1.5 s taken 2 s before
the auditory cue for C1 and C2, and 2 s before stimulation for C3
and C4 (Brunner et al., 2013). A surrogate permutation test (p <

0.05; 2,000 permutations) from the EEGLAB toolbox was used to
validate differences in terms of time-frequency of this ERSPs.

2.7. Topographies
Brain topography allowed us to display the possible changes
over different electrodes on the scalp in order to localize which
part of the brain was involved when the subject performed the
requested task. In particular, it allowed us to understand how MI
+ MNS and MNS conditions can be discriminated and which
time parameters we can choose to guide the classification. We
have decided to compute ERSPs in a merged band (mu+beta,
8–30 Hz) for MI + MNS and MNS conditions (Figure 5). A
surrogate permutation test (p < 0.05; 2,000 permutations) from
the EEGLAB toolbox was used to validate differences in terms
of localization of this ERSPs. In addition to this analysis, we
applied a false discovery rate (FDR) correction test in order to
clarify how the false discovery rate was controlled for multiple
comparisons. This test consists of repetitively shuffling values
between conditions and recomputing the measure of interest
using the shuffled data. It was performed by drawing data
samples without replacement and is considered suitable to
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show the difference between MI + MNS and MNS conditions
(Manly, 2006).

2.8. ERD/ERS Quantification
We compute the ERD/ERS% using the “band power method”
(Pfurtscheller and Lopes da Silva, 1999).

ERD/ERS% =
x2 − BL2

BL2
× 100, (1)

where x2 is the average of the squared signal smoothed using a

250 ms sliding window with a 100 ms shifting step, BL2 is the
mean of a baseline segment (1.5 s) taken 2 s before the auditory
cue of the corresponding trial, and ERD/ERS% is the percentage
of the oscillatory power estimated for each step of the sliding
window. A positive ERD/ERS% indicates a synchronization
whereas a negative ERD/ERS% indicates a desynchronization.
This percentage was computed separately for all EEG channels.
The EEG signal was filtered in the mu rhythm (7–13 Hz), in the
beta band (15–30 Hz), and in the mu+beta band (8–30 Hz) for all
subjects using a 4th-order Butterworth band-pass filter.

ERD and ERS are difficult to observe from the raw EEG
signal. Indeed, an EEG signal expresses the combination
of activities from many neuronal sources. We used the
averaging technique to represent the modulation of power
of the mu and beta rhythms during MI, MNS + MI, and
MNS conditions (Figure 6) since it is considered one of the
most effective and accurate techniques used to extract events
(Pfurtscheller, 2003; Quiroga and Garcia, 2003).

2.9. Classification
The classification was performed for the following classes: RM
vs. Rest, MI vs. Rest, and MI + MNS vs. MNS. For RM and
MI conditions, each trial was segmented into a motor task time
for classification during the RM or the MI task and a rest time
for classification during the resting state, both lasting 2.5 s. The
time-window of motor task started 0.5 s after the go signal for
the MI activity (1st beep), and the rest time windows started 3
s before the go signal. For MI + MNS and MNS conditions, we
selected a time window of 3 s starting 0.5 s before the median
nerve stimulation for all trials of both conditions. The recorded
EEG signals were bandpassed using a 5th-order Butterworth filter
between 8 and 30 Hz. For each classes, we collected a total of
52 trials.

We computed the performance of four different classification
methods in a 4-fold cross-validation scheme. The first one
uses a Linear Discriminant Analysis classifier (LDA) trained
and evaluated using Common Spatial Pattern (CSP) features
generated from the first and last 4 CSP filters (Blankertz et al.,
2008) (referred to as CSP+LDA). The CSP method is widely
used in the field of MI-base BCI, as it provides a feature
projection onto a lower dimensional space that minimizes the
variance of one class while maximizing the variance of the
other. The other three classifiers are Riemannian Geometry based
classification methods. Riemannian geometry based methods
work with the covariance matrices of each trial, which live on the
Riemannian manifold of symmetric positive definite matrices.

These features have therefore the advantage of being immune
to linear transformations (Barachant et al., 2010) First, we used
the covariance matrix of each trial and applied the Minimum
Distance to Riemannian Mean algorithm (MDM) to classify
them, as in Barachant et al. (2010). Since this method produces a
high-dimensional feature space, we trained a second instance of
the MDM algorithm using a spatially filtered signal. The signal
was, once more, generated using the first and the last 4 CSP
filters. Finally, we computed the Riemannian barycenter of all
covariance matrices in the dataset, and projected them onto
the tangent space at that point. Then, since the tangent space
is a Euclidean space, we trained and used a Linear Regression
classifier (TS+LR). We chose to apply a paired t-test (two-sided)
to show the significant difference about accuracy obtained for
MI vs. Rest and MI + MNS vs. Rest with the TS + LR classifier
(Figure 8, p-value < 0.01).

2.10. Software
Signal recording (EEG and EMG), synchronization/control
of the median nerve stimulator and sound beep generation
was designed with OpenViBE software (Renard et al., 2010).
Data processing and analysis of ERD/ERS modulations were
performed using MATLAB 2015b (MathWorks, Inc., Natick,
MA, United States). All the classification algorithms were
performed using the same computer and same software, making
use of the Scikit Learn Python 2.7 machine learning package
(Pedregosa et al., 2011).

3. RESULT

3.1. Behavioral result
Behavioral result includes two reaction times for the real
movement between the auditory cues (first and second beep)
and the subsequent motor task (pressing or releasing the
button). It also includes the number of trial rejected because of
acquisition artifacts.

3.1.1. Reaction Time
For the Real Movement condition, the reaction time between
the first beep and the movement start was 0.5948 s ± 0.1929.
The reaction time between the second beep and the movement
stop was 0.5038 s ± 0.1174. These two reaction times can be
considered as normal in the light of the literature on this domain
(Jain et al., 2015).

3.1.2. Removing Trials
For each condition, 832 trials were acquired (52 for each subject).
Due to the presence of artifacts acquired during the experiment,
we used an artifact rejection script to remove the most important
ones. We removed 125 (15%) trials for the RM condition, 119
trials (14,3%) for the MI condition, 114 trials (13,7%) for the
MNS condition, 138 trials (16,6%) for the MI+MNS condition.
The removed artifacts are homogeneously distributed among
the subjects.
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FIGURE 4 | Time-frequency grand average analysis (ERSP) for Real movement, Motor Imagery, Motor Imagery + MNS, and MNS conditions for electrode C3. A black

line indicates when the motor task started and finished. A flash picture indicates when the median nerve stimulation started. A red color corresponds to a strong ERS

and a blue one to a strong ERD. Significant difference (p < 0.05) are shown in the final part of the figure.

3.2. Time frequency
The time-frequency maps display the signal’s power evolution
and are useful to establish the frequency and time windows in
which ERSP appears (Figure 4).

3.2.1. Real Movement and Motor Imagery
For the Real Movement condition (C1), we can observe two
separate ERDs during the motor task in both mu (7–13Hz) and
beta (15–30Hz) band (Figure 4). In the beta band, the first ERD
starts 300 ms after the auditory cue and switches to an ERS 1 s
later. The second ERD appears after the end-of-task beep and
disappears 750 ms later. In the mu frequency band, instead of
an ERS there is only a slight decrease of the desynchronization.
A post-movement beta rebound (PMBR) arises in the beta band
and shortly after in the mu band.

Throughout the Motor Imagination condition (C2), a
continuous ERD occurs in both mu and beta band (Figure 4).
It starts 300 ms after the auditory cue and lasts 1,200 ms after the
end-of-task beep. The statistical comparison (p < 0.05) shows a

significant difference between the MI constant ERD and the RM
interrupting ERS. Additionally after the motor task in C1, there is
an ERS in the mu band which doesn’t exist for C2. Finally, PMBR
for MI seems weaker than the rebound for RM.

3.2.2. Median Nerve Stimulation During Motor

Imagery
In the case of median nerve stimulation (MNS) during rest state
(C3), a powerful and robust ERS appears immediately (0–250ms)
after the stimulation in low mu (7–10 Hz) and low beta (15–
22 Hz) (Figure 4). For the rest of this article, this very first ERS
will be named post-stimulation rebound (PSR). Then, the MNS
generates an ERD (first in high beta) lasting 500 ms followed by
a second rebound in both bands. MI + MNS is characterized by
the presence of an pre-stimulation ERD. Interestingly, the PSR
is almost nonexistent in this condition (p < 0.05) but the ERD
(250–500 ms after the MNS) is very similar. The MNS-generated
beta rebound appears less powerful than the one from C3 and,
instead of a return to baseline, a continuous mu ERD last until
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FIGURE 5 | Topographic map of ERD/ERS% (grand average, n = 16) in the alpha/mu+beta band during two conditions: MI + MNS and MNS only. A red color

corresponds to a strong ERS and a blue one to a strong ERD. A black line indicates when the motor imagery started or finished for the MI + MNS condition. Red

electrodes indicate a significant difference between the two conditions (p < 0.05).

FIGURE 6 | Grand average (n = 16) ERD/ERS% curves in the mu (7–13 Hz), the beta (15–30 Hz), and the mu+beta (8–30 Hz) bands for MI (in violet), MI + MNS (in

blue), and MNS (in red) conditions for electrode C3. The yellow bar at 750 ms corresponds to the median nerve stimulation performed. For the MI and MI + MNS

conditions, the MI starts at 0 s and ends at 2 s.

the end of the motor task. Finally a third rebound appears in both
frequency bands 1,200 ms after the motor task.

3.3. Topographic Map
Analysis of these time-frequencies maps showed that both mu
(7–13 Hz) and beta (15–30 Hz) bands were impacted in term
of synchronization/desynchronization in all four conditions.
Since the previous results for C1 and C2 are consistent with
the literature and the purpose of this study is to discriminate
C3 and C4, we will only look into the last two conditions.

Consequently, a larger frequency band (8–30Hz) was chosen to
analyse the ERD and ERS localization. Figure 5 shows that the
MNS doesn’t have the same impact depending of the subject
being in a rest or MI state. Indeed, 250 ms after the MNS
there is a significant difference on several electrodes in term
of PSR (mostly on motor, pre-motor, and sensorimotor areas
both central and bilateral). A bilateral ERD appears for both
condition 500 ms after the MNS followed by a beta rebound
slightly diminished for the MI + MNS condition than for
MNS only.
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According to this Figure 5, and in the views of discriminating
these two conditions, we distinguished a promising time window
which should start just before the MNS and stop after the
end-of-task beep. For the MI + MNS condition, this time
window includes the (i) pre-stimulation MI-generated ERD, (ii)
the abolished PSR, and (iii) the diminished MNS-generated
beta rebound.

3.4. ERD and ERS modulation
In accordance with the results obtained from the time-frequency
and topographic analyses, the ERD and ERS modulations have
been computed for three frequency bands, mu: 8–12Hz, beta: 15–
30 Hz and mu+beta band: 8–30 Hz for all subjects. The Figure 6
represents the grand average of all subjects for the C3 electrode.

3.4.1. Mu band
In the mu frequency band, a desynchronization appears and
reaches –15% during both MI task (C2 in purple and C4 in blue
during 0–2,000 ms). This observation confirms that the ERD
created by the MI task isn’t impacted by the following MNS
(besides the slight PSR in C4) in the mu band. Logically, this
desynchronization doesn’t exist for the MNS condition. After
the motor task, a slight rebound appears for MNS and MI +
MNS condition.

3.4.2. Beta Band
The ERD in the beta frequency band behaves similarly to the ERD
in the mu band, only C2 and C4 display this desynchronization.
However, during MI + MNS, the ERD is shorter (1,700 ms)
than the one in MI only. Logically, during C3 no ERD appears.
As seen on the topography and time-frequency figures, an ERS
appears for all conditions 3 and 4 after the stimulation. This ERS
is partially diminished forMI +MNS but is followed by a stronger
post-motor task rebound (33% at 4,500 ms), also present for C2.

3.4.3. Mu+Beta Band
If we merge the two frequency bands, the behavior of ERD
and ERS is particularly interesting since the difference between
condition 3 and 4 is strong on a 0–3,000 ms time window. On
the same note, after 3,000 ms, the condition 3 ERS starts to
disappear but the MI + MNS ERS keeps a level of 24%. Those
results highlight the interest of the 8-30Hz frequency band if we
seek to discriminate C3 and C4.

3.5. Classification
In order to verify that a MNS is useful as a trigger to detect a
movement intention, we decided to compare the classification
score obtained for the traditional MI vs Rest class and our MI
+ MNS vs. MNS class.

We pre processed our data in the following manner: (a)
the frequency band is restricted to 8–30Hz; (b) we consider
only the premotor frontocentral, primary motor cortex, and
somatosensorial central and occipital electrodes; and (c) the
classification time window is [–0.5 to 2.5 s] for MI+MNS
vs. MNS, [0.5–3 s] for MI vs. Rest. These values are based
on the existing literature for MI-based BCI. The average
classification accuracies between a MI and a rest period, and
between MI + MNS and MNS were computed for 4 different

classifiers (MDRM, CSP+LDA, FgMDRM, TS+LR, see Figure 7).
TS+LR gave the best results for both classifications, which was
not an unexpected result. Indeed, this classification method
combines the invariance properties of Riemannian Geometry-
basedmethods and the well-established linear regressionmethod.
For the rest of the results, we only use the output of the TS+LR
classification method.

Figure 8 shows that a MI +MNS vs. MNS classification allows
better accuracies than a MI vs. Rest classification, and proves that
a MNS can be used as a trigger and improves MI detection.

Individual classification shows a greater classification
performance with MNS for 14 subjects (Figure 9). Only subject
3 and subject 13 shows better performance for a MI vs. Rest
classification, but the results don’t exceed 60%.

DISCUSSION

This work confirmed that median nerve stimulation indeed
generates ERD and ERS in the motor cortex. When the median
nerve is stimulated during an intention of movement, those ERD
and ERS are significantly impacted. Based on these differences,
we confirmed that a classifier is able to discriminate a stimulation
during a rest state from a stimulation during an intention of
movement. Our results show that the TS+LR classifier performs
better for the two conditions involving a MNS, in comparison to
the typical discrimination task between rest state and MI state.
This confirms the feasibility of implementing a MNS-based BCI
to detect intraoperative awareness. In this section we discuss
the consistency of the ERD and ERS modulation for all our
conditions, including the MNS impact on MI, the benefits of our
classifier and how our work could be used in the intraoperative
awareness situation.

ERD/ERS Modulations During a Real
Movement and a Motor Imagery
According to Erbil’s work (Erbil and Ungan, 2007), maintaining
a real movement creates an ERS. This would explain the results
obtained in Figure 4, showing two distinct ERDs separated by
an ERS during the real movement task. During the MI task,
a continuous ERD is observed (Figures 4, 6) which suggests
that the subjects applied the instruction of maintaining the
MI during 2 s. The continuous ERD and the weaker post-MI
ERS, in comparison with the post-RM ERS, are consistent with
the findings of several articles (Pfurtscheller and Neuper, 1997,
2001; Neuper and Pfurtscheller, 2001; Filgueiras et al., 2017). In
addition, a previous study showed that a closed-eyed condition
generated a stronger ERD in the mu band (Rimbert et al., 2018).

ERD/ERS Modulations During a Median
Nerve Stimulation
Our results showed that MNS modulates the ERD and ERS in
the EEG signal from the motor cortex. More precisely, MNS
produces a first PSR (Figure 4) which is visible in all subjects
(not presented in this article). This PSR was not mentioned in the
very few articles that discussed this topic (Salenius et al., 1997;
Neuper and Pfurtscheller, 2001) and could be interpreted as an

Frontiers in Neuroscience | www.frontiersin.org 9 June 2019 | Volume 13 | Article 622254

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Rimbert et al. BCI for Intraoperative Awareness Detection

FIGURE 7 | Grand average accuracies obtained by 4 differents classifiers

(MDM, CSP + LDA, CSP + MDM, TS + LR) for the 3 conditions (RM, MI and

MI + MNS) in the mu + beta band (8–30 Hz).

FIGURE 8 | Boxplots showing the distribution of average classification

accuracies (n = 16) for MI vs Rest and MI + MNS vs. MNS class.

***p-value < 0.001.

attention marker (Saleh et al., 2010). Five hundred milliseconds
after the MNS, a strong ERD appears in the mu and beta band
and had already been mentioned by Salenius in the beta band for
MEG (Salenius et al., 1997) and by Neuper in both bands for EEG
(Neuper and Pfurtscheller, 2001).

Impact of a Median Nerve Stimulation
During a MI
Several articles have already shown that performing a MI
during median nerve stimulation has an impact on motor
patterns previously generated by MNS (Salenius et al., 1997;
Schnitzler et al., 1997; Neuper and Pfurtscheller, 2001). Our
results confirm that the intention to move tends to modify
the ERD/ERS normally present during a single MNS. Indeed,
the PSR is almost abolished during the MI (Figure 4). In
contrast, the post-stimulation ERD is unchanged while the
second ERS tends to be decreased as already shown in the
literature (Neuper and Pfurtscheller, 2001). Interestingly, our
results indicate that the mu band (500–1,400 ms) is unaffected by

the MNS effect, which suggests a functional difference between
the two frequency bands. Finally, the post MI rebound is
stronger than in MI condition alone, which implies a rebound
additive phenomenon.

Median Nerve Stimulation As an Innovative
Trigger for Intraoperative Awareness
Detection
Intraoperative awareness is an uncertain phenomenon. There
is no absolute way to predict when it will occur (Pandit
et al., 2014). However, several studies have shown that
moving is a patient’s first reflex to warn about his awakening
(Ghoneim et al., 2009). Theoretically, if a BCI could detect
a patient’s intention of movement during his awakening, it
would need to use classification without any trigger, since
it’s impossible to know the moment when the patient tries
to move. While there exist some BCIs that do not use
time markers or triggers (known as asynchronous BCIs),
the literature clearly shows that their classification rate
is lower than that of a synchronous BCI with triggers
(Nicolas-Alonso and Gomez-Gil, 2012).

Our results show a performance of 70% for MI vs Rest
classification with a trigger. In the absence of this trigger these
results would be weaker (Figure 8). On the other hand, our
MI+MNS vs. MNS classification displays accuracy results of 80%.
This method brings about the possibility of a more efficient way
to detect intraoperative awareness.

According to our results, we can imagine a routine system
where the patient would be stimulated at the median nerve
(e.g., every 5 s), while a passive BCI device would analyze
the ERD and ERS modulations of the motor cortex to see
if the patient intends to move or not. In case of such
BCI could detect a modulation suggesting an intention of
movement, the anesthesiologist could therefore adjust the doses
of anesthetics.

Perspectives
Getting Closer to the Anesthetized State
Our study was conducted on non-anesthetized subjects, and as
shown by Blokland et al., we can expect some difference in the
cerebral activity behavior once propofol is used (Blokland et al.,
2016). Our results will be confirmed during a clinical protocol
where the same conditions will be used on voluntary anesthetized
subject. If we can find similar results on anesthetized subject,
we also plan to repeat the experimentation on subjects with
induced neuromusclar blockade in order to study real movement
intention instead of motor imagination. A final experiment we
could combine both condition with paralyzed and anesthetized
patient in order to investigate if the combination could change
the results.

Getting Closer to the Implementation
Another perspective we are interested in is to create a new way to
classify our data online. We need to have an easy-to-implement
classification pipeline in order to make this hypothetical device
as practical to use as possible. One of the most important parts
of a BCI pipeline is the calibration of the pre-processing and
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FIGURE 9 | Accuracies obtained for all subjects (n = 16) by TS + LR analyses in the 8–30 Hz for the 3 conditions (RM, MI and MI + MNS).

FIGURE 10 | Average performances and standard deviation for thee

classification tasks: MI+MNS vs. MNS, RM vs. Rest, and MI vs. Rest. The

three first bars show the results obtained for the 7–130, 15–30, and 8–30 Hz

frequency bands. The fourth bar labeled “Personalized bands” is the average

and standard deviation of results when the best frequency band for each

subject is chosen, i.e., the frequency band yielding the highest performance.

Statistical significances are displayed as well, obtained in a student’s t-test.

The classifier is the TS+LR, described in section 2.9. *p-value < 0.05,

**p-value < 0.01, ***p-value < 0.001.

classification parameters. It is clear that in this application,
calibration data from the same user can be difficult to obtain.
A thorough analysis of existing datasets, such as leave-one-
subject-out analyses could enable us to determine pre-processing
parameters, including the optimal frequency bands or the
number of electrodes required to obtain good results.

A preliminary analysis, presented in Figure 10 shows the
optimal results for each patient for three frequency bands: µ,

β and 8–30 Hz. These results are compared to selecting a
single frequency band for all subjects. We see that, although
for a fixed frequency band selection, the 8–30 Hz range is the
apparent best choice, it is clear that personalizing the choice
of a frequency band yields better results. This warrants the use
of methods that improve classification accuracy by adapting
the classification pipeline to each subject (Ang et al., 2012;
Duprès et al., 2016). Nevertheless, our results indicate that the
difference is not significant for the MI vs Rest and MI+MNS vs
MNS classifications (p < 0.05). Moreover, the implementation of
methods that depend on data coming from the same BCI session
might be hard to implement in clinical settings.

In future works, we intend to address such issue by using
transfer learning approaches such as Riemannian geometry based
methods (Rodrigues et al., 2018) or optimal transport based
methods (Gayraud et al., 2017). Indeed, transfer learning has
proven to be very effective in designing BCIs with little or no
calibration for a new user (Lotte, 2015).

Finally, one last thing we wish to study is the impact of MNS
at various times during a MI task. In this study we stimulated
our subjects at the same time for the entire experimentation (750
ms after the MI task start), but in a real surgery, the MNS would
intervene at different times and the cerebral activity could be
modulated differently.

CONCLUSION

In this study, we verified that median nerve stimulation
modulates the motor cortex by first generating an ERD during
stimulation and then an ERS post-stimulation. In addition,
we discovered a new Post-Stimulation Rebound ERS which
appears 250 ms after the stimulation in the mu and low beta
band. Median nerve stimulation combined with the intention
to move, i.e., the MI, has a significant impact on the ERD
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and ERS generated by the MNS. Indeed, despite the fact that
the ERD was unaltered, the PSR is almost abolished and the
rebound in the beta band is diminished. Those differences have
resulted into a high accuracy classification. With these findings,
we show that a BCI based on MNS is more effective than a
BCI based on a MI state vs. rest. This innovative approach
may improve the detection of intraoperative awareness during
general anesthesia.
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