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of work covers current bio-technology cues like CRISPR/Cas9, metagenomics, 
metabolomics, transcriptomics, microRNA, and others oriented towards future 
improvement of fruit nutritional value. The editors hope the readers enjoy this work 
and acknowledge the authors’ great contributions to this Research Topic.
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Editorial on the Research Topic

Fruit Ripening: From Present Knowledge to Future Development

Fruit ripening is a very well-orchestrated physiological process of Angiosperm species which is
under developmental, hormonal and epigenetic regulation and is finely tuned by environmental
stimuli (Figure 1; Palma et al., 2011; Bianchetti et al., 2018; Corpas et al., 2018). Over the years,
a number of signaling molecules (e.g., phytohormones) have been implicated in controlling fruit
ripening, some of them playing very well-recognized roles like ethylene, abscisic acid (ABA) and
reactive oxygen species (ROS), and others emerging only more recently as driving forces of this
physiological process, such as nitric oxide (NO) and NO-derived molecules (reactive nitrogen
species, RNS), hydrogen sulfide (H2S) and melatonin (Corpas and Palma, 2018; Corpas et al.,
2018, 2019; Mukherjee, 2019). Among these newcomers, NO has received comparatively more
attention, and it has been found that during fruit ripening this species promotes post-translational
modifications (PTMs) through protein nitration and protein S-nitrosation of proteins (Corpas and
Palma, 2018). Globally, fruit ripening has been a main focus of the plant research community,
motivated not only by its biological and evolutionary significance in seed development and
dispersal, but also by its implications on determining the quality and nutritional value of some
of the most worldwide consumed foods (Agius et al., 2005; Palma et al., 2015, 2018; Karasawa and
Mohan, 2018).

From this overall view, many efforts have been dedicated by plant biologists to understanding
fruit ripening, not only as a physiological phenomenon but also as a target to promote human
health. This Research Topic is a faithful reflection of how plant research has been increasingly
devoted to deciphering fruit ripening biology. Contributions made by 88 scientists from 11
countries belonging to 4 continents for this special issue have accumulated together more
than 23,900 views until mid-March 2019. Using the most recent cutting-edge approaches,
the authors have focused their work on major ripening-related topics, embracing distinct
disciplines such as chemistry, physiology, genetics, biochemistry and molecular biology. Genome
editing, metagenomics, metabolomic and transcriptomic profiles, transcriptional regulation, gene
expression, histology, signaling processes, and the antioxidant metabolism have been some of the
tools used to build up this compendium about fruit biology.

In line with the interest of expanding the investigation of the role exerted by hormones on fruit
ripening, several papers included in this Research Topic have dealt with the ripening-associated
signaling network. For example, the proteomic quantification of the main proteins involved in the
ethylene signal transduction pathway has been achieved byMata et al., revealing that transcriptomic
and proteomic patterns of some, but not all, these proteins positively correlated during tomato fruit
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FIGURE 1 | Integrated model for fruit ripening. A close interaction occurring in

immature fruits among phytohormones, reactive oxygen and nitrogen species

(ROS and RNS, respectively), hydrogen sulfide (H2S), melatonin and genes

leads to a controlled physiological process (ripening) which can be also

affected by the interaction with environmental stimuli.

ripening. Moreover, by the exogenous addition of ABA
to the non-climacteric bilberry (Vaccinium myrtillus) fruits,
Karppinen et al. demonstrated that this phytohormone plays
a significant role in regulating processes linked to ripening
such as anthocyanin biosynthesis and cell wall modification.
It was also proved that sugars, either sucrose or glucose,
have minor regulatory functions in the ripening of bilberry
fruits (Karppinen et al.), in contrast with other non-climacteric
fruits such as strawberry and grape, where both these sugars
promote fruit ripening in a hormone-like signaling manner in
coordination with ABA (Jia et al., 2013, 2017). Plant hormones,
particularly ethylene and auxin, and light signaling have been
proposed to establish a dynamic crosstalk, being identified as
essential regulators of carotenoid biosynthesis during tomato
fruit ripening. In this Research Topic, the potential involvement
of ethylene and auxins in light-mediated regulation of tomato
fruit carotenogenesis was investigated by comparing the impacts
of light treatments and the light-hyperresponsive high pigment-
2 (hp2) mutation on both carotenoid synthesis and hormonal
signaling (Cruz et al.).

The quality as an index of the fruit physiological condition
has also been covered by this Research Topic. The biosynthesis
and regulation of the vitamin C content during fruit ripening has
been reviewed, with the perspective of the critical role exerted by
ascorbate in the activation of epigenetic mechanisms controlling
cell differentiation and dysregulation events, which eventually
might lead to the development of diverse types of cancer.
Thus, the different strategies to boost the ascorbate contents
in crops, with special emphasis on fruits, have being reviewed
by Fenech et al. The profiles of distinct organic acids during
fruit development and ripening are also analyzed as qualitative
and quantitative traits of crop fruits. In this context, it appears
that citrate and malate play major roles on those physiological
processes, as they usually are accumulated in numerous

climacteric and non-climacteric fruits (Batista-Silva et al.). The
relationship between peach (Prunus persica L.) fruit quality and
β-galactosidases (BGALs), which are cell wall hydrolases critically
important for fruit softening, has also been analyzed. The
down-regulation of two BGAL genes in peach via virus-induced
gene silencing (VIGS) delayed fruit softening by reducing the
activity of polygalacturonases and pectinmethylesterases, which
are known to promote cell wall degradation (Liu et al.). The
regulation of anthocyanin production-related gene expression
was also addressed in this special issue. Transcriptomic analysis
revealed a significant down-regulation of genes encoding
phenylpropanoid and flavonoid biosynthetic enzymes in young
fig (Ficus carica) fruits of the color mutant “Purple peel”
compared to “Green Peel,” whereas a simultaneous up-regulation
in almost all of the anthocyanin and flavonoid pathway-related
genes took place in the mutant at the mature stage. Metabolomic
data also showed that anthocyanins, particularly cyanidins, are
the major responsible for the distinctive purple phenotype of the
mutation (Wang et al.).

Another interesting perspective included in this special
volume concerns the plant microbiome, which is a research
theme that has been increasingly gaining attention in recent
years. The plant microbiome is considered a key determinant
for plant health and productivity, thus having profound impacts
on fruit quality. The link between the host and the fruit-
associated microbiome was investigated in watermelon (Citrullus
lanatus) using the carbohydrate metabolism as an index of the
beneficial consequences of such interaction. The use of the
holobiont concept to incorporate the associated microbiomes to
the breeding programs is proposed (Saminathan et al.). Finally,
product quality was also the driving force behind the study on
storage proteins in olive (Olea europaea). The accumulation of
seed storage proteins of the 7S-type (β-conglutin), analyzed by
biochemical and immunocytochemical methods, suggests that
these molecular markers could be used to facilitate assessing the
appropriate ripening stage of olives for commercial and industrial
purposes (Zafra et al.).

Molecular aspects of fruit ripening regulation and
technological advances to improve ripening-associated traits are
also among the topics included in the present issue. For example,
the regulation of gene expression and transcript abundance via
non-coding small (microRNAs among them) and long chain
RNA (lncRNA) was reviewed in the context of ovule, seed and
fruit development and ripening (de Oliveira-Correa et al.). The
regulation of a conserved kinase complex was demonstrated to
participate in the control of the ripening process in tomato fruits.
In tomato, the sucrose non-fermenting-1-related protein kinase
1 (SnRK1) was shown to interact with several transcription
factors and this event regulated the expression of downstream
ripening-related genes, thereby promoting fruit ripening (Yu
et al.). Finally, in the context of applying genome editing tools
to improve commercially relevant crop species, Martín-Pizarro
and Posé discuss the use of CRISPR/Cas9 technology not only
for functional research but also to generate plants with improved
fruit quality traits (Martín-Pizarro and Posé).

All these subjects addressed in this Research Topic provide
new and complementary information to the model depicted
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in Figure 1, but they also open up new windows for future
investigation on fruit ripening, highlighting some of the
most promising areas for both basic and applied research.
Thus, the potential interactions among NO, H2S, H2O2 and
melatonin depicts a scenario where many intermediate players
can be envisaged including small regulatory molecules but
also antioxidant and stress-related enzymes (Muñoz-Vargas
et al., 2018; Corpas et al., 2019; Mukherjee, 2019). The precise
modulation through these novel molecules in coordination with
other endogenous signaling compounds (i.e., phytohormones) in
the different ripening-associated events (e.g., change in firmness,
degradation of chlorophyll, synthesis of new pigments and
flavonoids, etc.), and how it is governed in either climacteric
and non-climacteric fruits remain to be totally understood
and some critical avenues for upcoming research on the
regulation of fruit metabolism and development are presented
in this issue. In the last years, the regulation of the ascorbate
metabolism by NO, and H2S has initiated new ways to
establish direct connection among these signaling molecules

and the antioxidant biochemistry in plants (Rodríguez-Ruiz
et al., 2017; Shan et al., 2018). Therefore, fitting molecules like
ascorbate and other players implicated in redox homeostasis
and signaling, especially H2O2, NO, and H2S, within this
regulatory framework may further clarify the mechanisms
behind fruit ripening control in both climacteric and non-
climacteric species.
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Reaction Monitoring During Tomato
Fruit Ripening
Clara I. Mata1, Bertrand Fabre2†, Harriet T. Parsons2, Maarten L. A. T. M. Hertog1,
Geert Van Raemdonck3, Geert Baggerman3,4, Bram Van de Poel5, Kathryn S. Lilley2 and
Bart M. Nicolaï1*

1 Postharvest Group, Division of Mechatronics, Biostatistics and Sensors, Department of Biosystems, KU Leuven, Leuven,
Belgium, 2 Cambridge Centre for Proteomics, Cambridge Systems Biology Centre, University of Cambridge, Cambridge,
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Institute for Technological Research (VITO), Mol, Belgium, 5 Molecular Plant Hormone Physiology, Division of Crop
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Ethylene, the plant ripening hormone of climacteric fruit, is perceived by ethylene
receptors which is the first step in the complex ethylene signal transduction pathway.
Much progress has been made in elucidating the mechanism of this pathway, but there
is still a lot to be done in the proteomic quantification of the main proteins involved,
particularly during fruit ripening. This work focuses on the mass spectrometry based
identification and quantification of the ethylene receptors (ETRs) and the downstream
components of the pathway, CTR-like proteins (CTRs) and ETHYLENE INSENSITIVE 2
(EIN2). We used tomato as a model fruit to study changes in protein abundance involved
in the ethylene signal transduction during fruit ripening. In order to detect and quantify
these low abundant proteins located in the membrane of the endoplasmic reticulum, we
developed a workflow comprising sample fractionation and MS analysis using parallel
reaction monitoring. This work shows the feasibility of the identification and absolute
quantification of all seven ethylene receptors, three out of four CTRs and EIN2 in four
ripening stages of tomato. In parallel, gene expression was analyzed through real-time
qPCR. Correlation between transcriptomic and proteomic profiles during ripening was
only observed for three of the studied proteins, suggesting that the other signaling
proteins are likely post-transcriptionally regulated. Based on our quantification results
we were able to show that the protein levels of SlETR3 and SlETR4 increased during
ripening, probably to control ethylene sensitivity. The other receptors and CTRs showed
either stable levels that could sustain, or decreasing levels that could promote fruit
ripening.

Keywords: ethylene signal transduction, ethylene receptors, targeted proteomics, parallel reaction monitoring,
ripening, tomato
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INTRODUCTION

Worldwide, tomato is the second most important vegetable crop
in terms of production (Food and Agriculture Organization
of United Nations, 2016). It is widely used as a model
organism to study fleshy fruit development and climacteric
fruit ripening (Giovannoni, 2004; Osorio et al., 2011). The
ripening of tomato, and of climacteric fruit in general,
is regulated by the plant hormone ethylene, which also
regulates numerous aspects of plant growth and development
including responses to biotic and abiotic stress (Van de Poel
et al., 2015; Wen, 2015). Climacteric fruit is characterized
by a burst in respiration which coincides with a burst in
ethylene production at the onset of ripening, decreasing
both afterward when the fruit becomes ripe (Lelievre et al.,
1997).

Post-harvest control of ethylene is of great importance to
assure proper storage conditions and to control fruit quality.
Thus, a good understanding of ethylene perception by the fruit
is essential to eventually improve post-harvest practices. The
ethylene signal transduction pathway starts with the perception
of ethylene by a family of receptors spanning the membrane
of the endoplasmic reticulum (Chen et al., 2002; Zhong et al.,
2008). In tomato there are seven ethylene receptors (ETRs),
with the seventh only recently been validated by phylogenetic
analysis (Wilkinson et al., 1995; Lashbrook et al., 1998; Tieman
and Klee, 1999; Klee and Tieman, 2002; Liu et al., 2015). The
receptors are homologous to bacterial two-component histidine
kinases, formed of a sensory histidine kinase and a response
regulator domain (Chang et al., 1993). Depending on their
histidine kinase activity, the receptors have been classified
into two subfamilies. Three ethylene receptors (SlETR1-SlETR3)
are classified into subfamily I containing a well-conserved
histidine kinase domain, and four receptors (SlETR4-SlETR7)
into subfamily II, missing some of the residues to act as
histidine kinases (Klee, 2002; Liu et al., 2015). Mutant analyses
have shown that the receptors are negative regulators of the
ethylene response, meaning that in the presence of ethylene
the receptors are inactivated, which leads to the induction of
ethylene signaling (Hua and Meyerowitz, 1998; Tieman et al.,
2000). The ethylene receptors interact with the downstream
CTR-like protein kinases (Zhong et al., 2008). Four of these
tomato CTR-like proteins are homologous to the Raf-like kinase
CONSTITUTIVE TRIPLE RESPONSE1 of Arabidopsis, which
is also a negative regulator of the ethylene response (Kieber
et al., 1993; Adams-Phillips et al., 2004; Zhong et al., 2008).
ETRs maintain the conformation of CTR1, which in this state
is able to phosphorylate and inhibit ETHYLENE INSENSITIVE
2 (EIN2), another endoplasmic reticulum spanning protein
(Ju et al., 2012; Qiao et al., 2012; Wen et al., 2012). The
generally accepted model is that ethylene binding to the receptors
reduces their phosphorylation levels, which results in receptor
degradation through the proteasome (Chen et al., 2007; Kevany
et al., 2007; Kamiyoshihara et al., 2012). As a consequence,
CTR1 is inactivated and EIN2 ceases to be phosphorylated,
which results in the cleavage and translocation of the EIN2
C-terminal part to the nucleus (Ju et al., 2012; Qiao et al.,

2012; Wen et al., 2012). In the nucleus the C-terminal part of
EIN2 stabilizes EIN3 and EIN3-like proteins (EILs), preventing
them from proteasomal degradation mediated by the F-box
proteins ETHYLENE BINDING FACTOR 1 (EBF) and EBF2
(Guo and Ecker, 2003; An et al., 2010). Alternatively, the EIN2-C
terminal end can also control ethylene sensitivity via a non-
nuclear mechanism, through the translational repression of EBF1
and EBF2 synthesis (Li et al., 2015; Merchante et al., 2015).
The nuclear transcription factors EIN3 and EILs promote the
expression of ethylene response factor (ERF) family genes which
are downstream regulators of the ethylene responses (Fujimoto
et al., 2000; Tieman et al., 2001; Tournier et al., 2003; Liu et al.,
2016).

Several studies have analyzed gene expression of the ethylene
receptors during tomato fruit ripening, showing, in general,
an increase in expression at the onset of ripening for SlETR3,
SlETR4, and SlETR6 (Kevany et al., 2007; Rugkong et al.,
2011; Osorio et al., 2012; Liu et al., 2015). Recently, Mata
et al. (2018) showed peaks in expression at the onset of
ripening for the receptors SlETR2-SlETR6 and SlCTR1 and
SlCTR2. Previous transcriptional analysis of CTRs in tomato
revealed that only SlCTR1 was ethylene induced during ripening,
while the SlEIN2 expression levels, which are not so well-
documented, did not change during ripening (Zegzouti et al.,
1999; Leclercq et al., 2002; Adams-Phillips et al., 2004; Lin
et al., 2008; Liu et al., 2015). Recent studies have shown
that the transcribed mRNA and translated protein are not
necessarily directly correlated, as changes in gene expression
are frequently not reflected at the protein level (Ghazalpour
et al., 2011; Vogel and Marcotte, 2012; Peng et al., 2015).
This might be due to factors such as different half-lives, post-
transcriptional modifications or protein degradation, amongst
others. Therefore, transcript analyses need to be supplemented
by protein quantification to fully understand the underlying
regulation. To date, only three ethylene receptor proteins have
been quantified in tomato pericarp through western blot analyses.
Two studies showed high protein levels for SlETR3 (also called
Never Ripe), SlETR4 and SlETR6 in immature fruit, which
significantly decreased during the onset of ripening (Kevany
et al., 2007, 2008), while a third study showed increasing protein
levels for SlETR3 and SlETR4 during ripening (Kamiyoshihara
et al., 2012).

Western blotting, a semi-quantitative technique, is a common
method to quantify proteins through the binding of specific
antibodies (Towbin et al., 1979). However, the assay relies on
the specificity of the antibodies which can be limited by cross-
reactivity and unspecific binding to other proteins, leading to
the production of an imprecise identification and quantification
(Mann, 2008; Liebler and Zimmerman, 2013). Furthermore,
the quality of the antibodies cannot always be easily verified.
Nowadays, liquid chromatography mass spectrometry (LC–
MS) provides an improved alternative to western blotting in
terms of protein identification and quantification as it measures
multiple signals (multiple peptides per protein, multiple fragment
ions per peptide, and multiple measurements of each signal)
as opposed to the intensity of a single band. Moreover,
mass spectrometry has the power of multiplexing, that is, to
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simultaneously measure multiple proteins in a single run at
high-throughput.

A few LC–MS discovery studies in Arabidopsis have found,
among the total proteins identified, some AtETRs, AtCTRs,
and AtEIN2 (Maor et al., 2007; Baerenfaller et al., 2008, 2011;
Marondedze et al., 2014). Chen et al. (2011) and Qiao et al.
(2012) used mass spectrometry to specifically study the cleavage
site of AtEIN2 and its phosphorylation status. Recently, two
studies have identified some of the ethylene signaling elements in
tomato through mass spectrometry (Mata et al., 2017; Szymanski
et al., 2017). Both studies used an untargeted data dependent
acquisition (DDA) approach. Shotgun proteomics attempts to
identify and quantify as many proteins as possible, but is
inherently biased toward the most abundant peptides (Gilmore
and Washburn, 2010). To focus on the identification and
quantification of low abundant proteins, targeted proteomics
techniques such as selected reaction monitoring (SRM) and
parallel reaction monitoring (PRM) have been developed (Lange
et al., 2008; Peterson et al., 2012). These techniques have become
the gold standard in targeted proteomics (Gillet et al., 2012;
Aebersold and Picotti, 2013). Unlike in shotgun proteomics,
in SRM and PRM acquisition modes, peptides of interest
must be defined in advance. The first mass analyzer selects a
narrow mass window around the m/z of the ions of interest,
thereby discarding other ions and thus increasing the signal
to noise ratio (Liebler and Zimmerman, 2013). In PRM mode
all transitions are acquired and measured in the second mass
analyzer, while in SRM mode an extra selection of the transitions
to be measured in the MS2 is applied (Gallien et al., 2012;
Peterson et al., 2012). Moreover, synthetic peptides with an
amino acid sequence identical to the targeted peptides are used
for a first identification screening, while spiking of the samples
with a known concentration of isotopically labeled peptides
can deliver absolute peptide quantification (Kirkpatrick et al.,
2005).

The objective of the present work was to develop a targeted
LC–MS based method to identify and quantify ethylene receptors,
CTRs and EIN2 proteins of the ethylene signal transduction
pathway in tomato pericarp, to study their dynamics during fruit
ripening and eventually their regulation at the gene expression
level. Up to date, this work has not been done due to the difficulty
of the identification of such very low abundant proteins (Mata
et al., 2017). Our previous results from an extensive LC–MS
shotgun approach (Mata et al., 2017) were taken as a starting
point. In this targeted assay, a specific microsomal membrane
protein extraction followed by fractionation of the protein
samples through SDS-PAGE was used to reduce the complexity
of the tomato pericarp samples. After protein digestion, the
peptides were analyzed on the LC–MS in PRM mode to be
able to counteract the low abundance problem. Subsequently,
the proteins were absolutely quantified in tomato fruit of
four different ripening stages using heavy labeled peptides. To
complement the proteomics data, gene expression of the targeted
proteins was investigated using real-time qPCR. This enabled a
comparison of protein abundance and gene expression levels for
the targeted proteins of the ethylene signal transduction pathway
during tomato fruit ripening.

MATERIALS AND METHODS

Plant Material
Tomato plants (Solanum lycopersicum L. cv. Bonaparte) were
grown in a greenhouse at the Research Station for Vegetable
Production of Sint-Katelijne-Waver (Belgium). Plants were
hydroponically cultivated on rockwool under natural light.
Twelve biological replicates from each maturity stage (mature
green, breaker, orange, and red) were harvested (April 2016) after
visual inspection. Mature green corresponded to fully developed
tomatoes that had not started the ripening process yet; breaker, to
tomatoes in which ripening was initiated and the first degreening
was visible; orange, to the ones in which no green color was
visible anymore and red tomatoes, to the ones which matched the
final red-ripe stage. Pericarp tissue of 24 tomatoes (six biological
replicates for each ripening stage) were directly homogenized
and processed for protein extraction. The pericarp tissues of
the other 24 samples (six biological replicates for each ripening
stage) were flash frozen in liquid nitrogen, crushed with a
grindomixer (Retsch, Haan, Germany) and stored at −80◦C for
gene expression analysis.

Protein Extraction
The protein extraction method was adapted from Kamiyoshihara
et al. (2012). The pericarp tissue of each sample was homogenized
at 4◦C using a high speed disperser (IKA Labortechnik, Staufen,
Germany) in 2 volumes of homogenization buffer (100 mM
Tris-HCl [pH 8.2], 300 mM NaCl, 20 mM EDTA, 20% [v/v]
glycerol, 5 mM dithiothreitol [DTT] with complete EDTA-free
protease inhibitor cocktail [Roche, Basel, Switzerland]), and
centrifuged at 5,000 g for 15 min at 4◦C. The supernatants were
filtered over Miracloth (Merc Millipore, Darmstadt, Germany),
and centrifuged at 100,000 g for 1 h at 4◦C. The pellets were
re-suspended in homogenization buffer containing 10% SDS,
10 mM Tris pH 7.5, and the samples were boiled at 95◦C
for 5 min. Protein concentrations of solubilized pellets were
determined with a DC protein assay kit (Bio-Rad, Hercules, CA,
United States) using bovine serum albumin as standard.

Reduction Alkylation, SDS-PAGE
Fractionation and In-Gel Digestion
Hundred µg of protein per sample were denaturated and reduced
by addition of Laemmli buffer for 5 min at 95◦C and then
alkylated by addition of 60 mM iodoactetamide for 30 min at
RT in the dark. The samples were loaded on an SDS-PAGE
gel (4% stacking and 12% resolving) and were migrated until
the smallest protein band of the pre-stained protein standard
(New England BioLab, Ipswich, MA, United States) reached the
end of the gel. Proteins were stained overnight with colloidal
blue Coomassie staining. For each gel lane, one band fraction
containing the proteins ranging from 163 to 52 kDa was excised
from the gel and cut into small pieces. Gel pieces were de-stained
in 25 mM ammonium bicarbonate/50% acetonitrile (ACN) at
37◦C, then incubated in ACN for 15 min. Gel pieces were dried
in a speed-vac until the ACN was completely evaporated. Gel
pieces were incubated overnight in 500 ng of trypsin in 50 mM
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ammonium bicarbonate at 37◦C. Next, 200 µL 10% formic acid
(FA) and 200 µL 100% ACN were added to the gel pieces
and incubated during 15 min at 37◦C. The supernatant was
retained, and gel pieces were re-incubated with 200 µL 100%
ACN and 200 µL 10% FA. Supernatants were pooled and dried
in a speed-vac. Finally, the pellets were re-suspended in 2%
ACN and 0.1% FA and the peptide concentration determined
with a Pierce Quantitative Colorimetric Peptide Assay (Thermo
Scientific, Waltham, MA, United States).

Design of the Targeted Proteomics
Experiment
Parallel reaction monitoring assays were developed using Skyline
version 4.1 (University of Washington, United States, MacLean
et al., 2010). In silico tryptic digestions of protein sequences
obtained from UniProt (Bateman et al., 2015) were performed.
Target peptides were selected using the following criteria: peptide
mass between 7 and 25 amino acids, no missed cleavages,
absence of methionines, cysteines, and histidines and RP
KP (prolines after the arginines and lysines). Modifications
were set to carbamidomethylation of cysteines, oxidation of
methionines and N-terminal acetylation, tolerating three possible
modifications per peptide and one neutral loss. Uniqueness of
the targets was verified using the tomato proteome (downloaded
from UniProt on December 2015, 40,069 sequences, Bateman
et al., 2015). The following settings were used to select the
transitions: precursor charges 2 and 3, ion charges 1 and 2,
ion types y, b, and p (precursor), 3 product ions from m/z
to precursor, ion match tolerance 0.5 Da, pick 10 product
ions, isotope peaks included COUNT, precursor mass analyzer
Orbitrap, peaks 3, resolving power 60,000 at m/z 400, acquisition
method targeted, product mass analyzer Orbitrap, use only scans
within 5 min of MS–MS IDs.

Non-labeled and Labeled Synthetic
Peptides
Unlabeled synthetic peptides (SpiketidesTM) for assay
development were purchased from JPT Innovative Peptide
Solutions (Berlin, Germany, Schnatbaum et al., 2011). A list with
all the unlabeled peptides tested can be found in Supplementary
Table 1. The labeled peptides (SpikeTides_TQL) for the
combined identification and quantification, purchased from the
same company, were heavy-isotope labeled on the C-terminal
lysine or arginine and absolutely quantified using a proprietary
Quanti-Tag. Table 1 presents the list of peptides monitored for
the quantification and their corresponding labeled peptides.
The proteotypic labeled peptides were pooled and digested with
trypsin to be released from the tag.

LC–MS and Parallel Reaction Monitoring
(PRM) Acquisition
Samples (1 µg) were analyzed in PRM acquisition mode on a Q
Exactive Plus mass-spectrometer (Thermo Scientific, Waltham,
MA, United States), using a 75 µm × 2 cm, C18, 3 µm,
100 Ȧ trapping column (Acclaim PepMap, Thermo Scientific)
and an Easy nLC 1000 system (Thermo Scientific). Peptides

were separated with a 50 µm × 15 cm, nanoViper, C18, 2 µm,
100 Ȧ column (Acclaim PepMap) retrofitted to a NanoSpray Flex
source with a flow rate of 300 nL/min (buffer A: HPLC grade
H2O, 0.1% FA, buffer B: 100% ACN, 0.1% FA). Samples were
run using a 60 min gradient from 5% up to 35% solvent B.
Analytes were transferred to the gaseous phase with positive ion
electrospray ionization at 2.0 kV. Precursors were targeted with a
2 m/z selection window around the m/z of interest. Precursors
were fragmented in high-energy collisional dissociation mode
with normalized collision energy of 28. A single MS1 scan was
performed at a mass resolution of 17,500, an automatic gain
control (AGC) target of 106 ions and a maximum C-trap fill time
of 200 ms. Subsequently, 10 PRM scans were performed at a
resolution of 70,000, an AGC target of 105 ions and a maximum
injection time of 200 ms. Initial screening for targets transitions
was unscheduled but retention-time scheduling of PRM (sPRM)
was adopted for peptide quantification, allowing analysis of 42
peptides in a single acquisition.

Provisional Peptide Identification
For the first screening and provisional identification of the
endogenous peptides in the samples, a PRM analysis of a pooled
sample of the unlabeled peptides was performed, followed by
PRM analyses of endogenous peptides from tomato samples. The
individual raw-files were imported into Skyline, and precursor
and product ion chromatograms were extracted. MS–MS spectra
were analyzed in Skyline with manual validation comparing the
extracted ion chromatogram (XIC) of the unlabeled peptides
and the endogenous peptides of the tomato sample. Peptide
identification was based on retention time, the presence of the
main transition ions and a low mass error (less than 5 ppm).
Labeled synthetic versions were ordered for candidate peptides
with the most consistently detectable transitions.

Preparation of the Labeled Synthetic
Peptides Mix
The labeled synthetic peptides were spiked into endogenous
peptides digests (six aliquots of 1 µg) from tomato samples at
the following concentrations: 0, 1, 5, 10, 100, and 200 fmol. The
aliquots were measured by LC–MS in PRM mode using retention
time scheduling. Based on a comparison of the XIC of the labeled
and endogenous peptides, final concentrations of labeled peptides
were chosen for absolute quantitation experiments such that
signal intensity was similar to that of endogenous peptides.

This experiment was also used to evaluate the linearity of the
dilution curves for the individual peptides. The ratio of sum of the
area-under-the-curve (AUC) of the transitions (Table 1) of the
heavy labeled peptide to the sum of the AUC of the transitions of
the endogenous peptide contained in the tomato peptide pool was
calculated to correct for run to run variation of the different LC–
MS analysis of the spiking concentrations. The dilution curves are
provided as (Supplementary Figure 1).

Peptide Identification and Quantification
After spiking the samples with labeled peptides, two sets of
precursor ions were detected upon PRM analysis: heavy-isotope
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labeled (mass difference + 8 if containing a lysine or + 10
if containing an arginine) and non-labeled (from digested
endogenous protein). The XIC from each individual peptide was
manually checked in Skyline to ensure the correct identification
of the peptide across biological replicates. Furthermore, the
mProph algorithm was used to calculate the FDR (q-value) of
the targeted peptide identifications trained with the second best

peak option. The information extracted from this analysis is
provided in Supplementary Table 2. It was found that 83.7% of
the transitions groups were identified with q-values < 0.01 (FDR
of 1%). About 13.9% had a q-value between 0.01 and 0.05, some
of which were eliminated from the analysis and 2.4% displayed
q-values higher than 0.05, which were directly removed. For the
quantification, the ratio of sum of the AUC of the transitions

TABLE 1 | List of the proteins identified and quantified, their peptides and their corresponding labeled peptides monitored in PRM analysis, the precursor’s m/z and
charge, the product ions used for the quantification, the average retention time (RT) of their extracted ion peaks and the amount of labeled peptide in fmol used to spike
into the samples for the quantification of the endogenous peptide.

Protein Peptide sequence Precursor m/z (charge state) Product ions for
PRM

RT Amount of
labeled peptide

used for
quantification

(fmol)

ETR1 ISPNSPVAR ISPNSPVA[Heavy R] 470.7642 ( + 2) 475.7683 ( + 2) y7+, y6+, y5+,
y3+, y7++,

13.25 10

EGNVSISAFVAK EGNVSISAFVA
[Heavy K]

611.3273 ( + 2) 615.3344 ( + 2) Y8+, y7+, y6+ 23.30 50

ETR2 YIPGEVVAVR YIPGEVVAV[Heavy R] 551.8164 ( + 2) 556.8205 ( + 2) y8+, y7+, y6+,
y5+, y4+, y8++

20.47 5

ETR3 YIPPEVVAVR YIPPEVVAV[Heavy R] 571.8320 ( + 2) 576.8362 ( + 2) y8+, y7+, y6+,
y5+, y4+, y8++,
y7++, b2+

21.69 10

VPLLHLSNFTNDWAELSTR
VPLLHLSNFTNDWAELST[Heavy R]

738.3832 ( + 3) 741.7193 ( + 3) y8+, y7+, y6+,
y5+, y4+, y3+,
b12++

34.25 100

LIQTLLNVAGNAVK
LIQTLLNVAGNAV[Heavy K]

727.4405 ( + 2) 731.4476 ( + 2) y12+, y10+, y9+,
y8+, y7+, y4, y3+,
b4+, b5+

30.31 400

ETR4 DSSFNSAYNLPIPR
DSSFNSAYNLPIP[Heavy R]

790.8888 ( + 2) 795.8929 ( + 2) y9+, y8+, y7+, y4+ 29.25 15

SDPDVIQVK SDPDVIQV[Heavy K] 500.7691 ( + 2) 504.7762 ( + 2) y7+, y6+, y5+,
y7++

16.15 15

VLPESVSR VLPESVS[Heavy R] 443.7533 ( + 2) 448.7574 ( + 2) y6+, y5+, y4+,
y6++

14.61 10

ETR5 SLSINDPDVLEITK
SLSINDPDVLEIT[Heavy K]

772.4143 ( + 2) 776.4214 ( + 2) y9+, y8+, y7+ 28.93 50

ETR6 FWLNQEVEIVR FWLNQEVEIV[Heavy R] 716.8828 ( + 2) 721.8869 ( + 2) y8+, y7+ 31 25

GVEVLLADYDDSNR
GVEVLLADYDDSN[Heavy R]

783.3757 ( + 2) 788.3799 ( + 2) y9+, y8+, y7+ 27.9 100

ETR7 SLPIDDPDVLEITK
SLPIDDPDVLEIT[Heavy K]

777.9167 ( + 2) 781.9238 ( + 2) y9+, y8+, y12++ 30.51 15

GLQVLLADDDDVNR
GLQVLLADDDDVN[Heavy R]

771.8916 ( + 2) 776.8957 ( + 2) y9+, y8+, y7+, b8+ 25.98 100

CTR1 IPSIESLR IPSIESL[Heavy R] 457.7689 ( + 2) 462.7731 ( + 2) y7+, y6+, y5+,
y4+, y7++

21.5 15

LNPPQVIAAVGFNR
LNPPQVIAAVGFN[Heavy R]

748.4226 ( + 2) 753.4268 ( + 2) y10+, y9+, y8+,
y12++, y11++

29.76 15

CTR2 YAPNEVPR YAPNEVP[Heavy R] 473.2431 ( + 2) 478.2472 ( + 2) y6+, y5+, y4+,
y6++

14.35 10

LVIPAYVDQLNSR
LVIPAYVDQLNS[Heavy R]

744.4145 ( + 2) 749.4186 ( + 2) y10+, y9+, y8+,
y7+, y10++, b3+

28.38 10

CTR3 ASASAASAETLSHR
ASASAASAETLSH[Heavy R]

679.8366 ( + 2) 684.8407 ( + 2) y8+, y7+, y6+ 12.78 5

EIN2 GVSENAQSFISDGPGSYK
GVSENAQSFISDGPGSY[Heavy K]

921.9289 ( + 2) 925.9360 ( + 2) y11+, y10+, y9+,
y5+

23.66 50

VESSAYIPSGSAR
VESSAYIPSGSA[Heavy R]

662.3306 ( + 2) 667.3347 ( + 2) y9+, y8+, y7+, y6+ 16.31 5

Frontiers in Plant Science | www.frontiersin.org November 2018 | Volume 9 | Article 162613

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-01626 November 5, 2018 Time: 15:30 # 6

Mata et al. PRM of Tomato Ethylene Signaling

of the endogenous peptide to the sum of the AUC of the
transitions of the heavy labeled peptide was used to calculate the
absolute concentration of the peptide in the sample, also known
as single point calibration quantification (Gallien et al., 2013).
Supplementary Figure 2 displays the absolute quantification of
the individual peptides of the target proteins.

RNA Extraction and cDNA Synthesis
Total RNA was extracted from tomato fruit pericarp samples.
Ground tissue samples (500 mg) were homogenized in 800 µL of
extraction buffer containing cetyltrimethylammonium bromide,
as described previously (Gasic et al., 2004). The mixture was
incubated vigorously shaking at 65◦C for 10 min. Chloroform
(800 µL) was added and mixed by inversion, and the mixture
was centrifuged at 21,000 g for 10 min at room temperature. The
supernatant was transferred to a gDNA eliminator spin column
(Plant RNeasy Extraction Kit, Qiagen, Hilden, Germany) and
centrifuged at 8,000 g for 2 min at room temperature. Half a
volume of ethanol was added to the effluent, then the mixture
was loaded and washed through the RNeasy mini column
(Plant RNeasy Extraction Kit) and finally the RNA was eluted
with RNAse free water. The amount of total RNA extracted
was measured by spectrophotometry using the NanoDrop 2000
(Thermo Scientific, Waltham, MA, United States) and its purity
determined by the 260/280 or 260/230 nm ratio. RNA integrity
was checked on an ethidium bromide stained 1% agarose gel. One
microgram of purified RNA was reverse transcribed into cDNA
using the QuantiTect Reverse Transcription Kit (Qiagen) in a
total volume of 20 µL following the manufacturer’s protocol.

Gene Expression Analysis by Reverse
Transcription-qPCR
Gene expression studies were performed following Minimum
Information for publication of Quantitative Real-Time PCR
Experiments (MIQE) guidelines (Bustin et al., 2009). Real-
time qPCR was carried out with SYBR R© Green PCR Master
Mix (Thermo Scientific, Waltham, MA, United States) on a
Rotor Gene Q (Qiagen GmbH, Hilden, Germany). The selected
primers, designed with the Primer3 web tool1, are listed in
Supplementary Table 3. All RT-qPCR reactions contained
1 µL of cDNA template (50 mg/L), 7.5 µL of Absolute
QRT-PCR SYBR Green Mix (Thermo Scientific), and 1 µL
of 0.375 µM primer pairs, in a final volume of 15 µL.
The cycling conditions were as follows: denaturation step at
95◦C for 15 min, followed by 40 cycles of denaturation at
95◦C for 20 s, annealing at 63◦C for 20 s, and extension
at 72◦C for 20 s. Primer pair specificity was performed for
every run using a melting curve analysis ranging from 55
to 95◦C, with temperature increasing in steps of 0.5◦C/s.
Furthermore, a standard dilution curve, based on cDNA pooled
from all samples, was included in every run to calculate the
efficiency of the amplification. The relative quantification of
expression levels was performed using a modified Ct method
as previously described (Mellidou et al., 2012). All RT-qPCR
expression data were normalized against the average expression

1http://bioinfo.ut.ee/primer3/

of three reference genes: Actin, Elongation factor1, and
Glyceraldehyde-3-phosphate dehydrogenase. Results presented
are the mean± standard error (SE) of six independent biological
replicates.

Statistical Analyses
Given an individual protein was represented by up to three
different peptides, protein data were analyzed using the
mixed models procedure. In this approach ‘ripening stage’
was considered a fixed categorical factor while ‘peptide’
was treated as a categorical random factor introducing a
repeated structure ‘sample’ to account for the fact that the
various peptides were covariates measured on the same
fruit samples. In the case of a single peptide per protein
the classical one-way ANOVA was applied. In both cases,
Tukey’s honestly significant difference (HSD) test (p < 0.05)
was used to compare between ripening stages. Statistical
differences in gene expression between ripening stages
were analyzed with the one-way ANOVA procedure and
Tukey’s HSD test (p < 0.05). All analyses were performed
using JMP 12 statistical software (SAS Institute, Cary, NC,
United States).

Correlation between protein and gene expression levels was
calculated and can be visualized in Supplementary Figure 3.
Given protein and gene expression levels were measured on
different biological replicates their structural correlation is not
known. To approximate this relationship, 1500 random data sets
were generated with the same distribution properties (average
and standard error of the mean) based on which the correlation
coefficients were calculated. Using a Fisher transformation, the
95% confidence interval was calculated and from that, the
significance of the correlation coefficient was determined. The
protein, gene expression data and their standard errors were
normalized for visualization.

RESULTS

Identification of the Proteins Through
PRM
In Mata et al. (2017) we provided the identification of 8588
tomato pericarp proteins, including four ethylene receptors
(SlETR1, SlETR3, SlETR4, and ETR7), three CTRs (SlCTR1-
SlCTR3) and SlEIN2. The approach taken, shown schematically
in Figure 1A, consisted of the extraction of the pericarp
proteins from a red tomato through a microsomal membrane
isolation protocol, followed by in-gel digestion and fractionation
of the subsequent peptides through off-line high pH reverse
phase. The 60 sub-fractions obtained through the fractionation
were analyzed on a Q Exactive and a Triple-TOF 6600 mass
spectrometers in shotgun mode. This was the starting point
of our current research as: (i) it allowed us to prove the
identification of some of our proteins of interest through LC–MS
and (ii) it helped to prioritize the peptides to follow in targeted
mode.

The approach taken in the current work is shown
schematically in Figure 1B. After in silico digestion of the
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FIGURE 1 | Schematic representation of (A) the extensive fractionation analyzed though shotgun approach which allowed to identify 8588 proteins and between
them 4 ETR, 3 CTR and EIN2 in tomato pericarp (Mata et al., 2017) and (B) the targeted proteomics approach followed in this work which allowed the identification
and quantification of the 7 ETR, 3 CTRs and EIN2.

target proteins (7 SlETRs, 4 SlCTRs and SlEIN2) a list of
unique peptides was established. Those unique peptides that
also followed the criteria for being identifiable in MS1, were
combined with a selection of unique peptides identified during
the previous shotgun approach (Mata et al., 2017), resulting
in a list of 88 unique peptides for the 12 proteins targeted
(Supplementary Table 1). An unscheduled PRM analysis was
conducted on unlabeled, synthetic versions of these 88 peptides.
By comparing retention times, fragment ions, and mass errors
of their MS2 spectra with those of native peptides derived from
different ripening stages of tomato, we identified promising
candidate peptides for all seven ethylene receptors, three CTRs
(1–3) and EIN2 (Supplementary Table 1). This approach is
exemplified in Figures 2A,B where similarities in transitions and
retention times, with low mass errors, were observed between a
synthetic and endogenous SlETR4 peptide.

To confirm the identification and to be able to quantify
the endogenous peptides, heavy labeled C-terminal lysine or
arginine peptides of 21 of the peptides candidates were ordered
afterward and were spiked in tomato samples from four different
ripening stages, from mature green to red. The PRM analysis
of these samples proved the legitimate identification of all
the 21 endogenous peptides and, therefore, of the 11 ethylene
signaling proteins. The PRM.raw data and Skyline results files
are available via ProteomeXchange in PeptideAtlas/PASSEL
repository (PASS01249) and the output of the mProphet analysis
can be found in Supplementary Table 2. An example of the
XIC of the fragment ions of one of the identified peptides of
the protein SlETR4 and its corresponding labeled peptide is

shown in Figures 2C–E. This figure shows that retention time,
fragment ions and the intensity order of the fragment ions are
the same for endogenous and labeled peptide confirming its
identification.

The location of the 21 peptides, used for the quantification, in
the specific protein sequences can be checked in Supplementary
Table 4. As it can be appreciated, the quantified peptides came
from different protein domains, as in the case of SlETR1 in which
one of the peptides derived from the predicted GAF domain and
the other from the kinase domain. Qiao et al. (2012) revealed for
Arabidopsis the amino acid residue where the proteolytic cleavage
of the C-terminal domain of EIN2 is produced after ethylene
binds to the receptor-CTR complex. We performed a Clustal
alignment with UniProt between the EIN2 protein of Arabidopsis
and tomato and both proteins only have 48% sequence similarity
(Supplementary Table 5). There is no information about the
proteolytic residue of the SlEIN2, but based on the alignment,
the first tomato peptide identified in this study may contain the
proteolysis residue. The second tomato peptide identified likely
belongs to the C-terminal end of SlEIN2.

Absolute Quantification of the Protein
Levels
The representation of the absolute quantification of the
individual peptides of the target proteins, in fmol of
target protein/µg of total membrane proteins, is shown in
Supplementary Figure 2. Most proteins were identified with
two peptides (SlETR1, SlETR6, SlETR7, SlCTR1, SlCTR2, and
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FIGURE 2 | Extracted ion chromatogram of the PRM four most intense fragment ions identified from (A) the synthetic non-labeled peptide DSSFNSAYNLPIPR,
(B) an endogenous peptide sample derived from a mature green tomato. (C) XIC of the combined fragment ions of the endogenous peptide (red peak)
DSSFNSAYNLPIPR of the protein SlETR4 in a mature green tomato peptide sample and the combined fragment ions of its heavy labeled peptide (blue peak) spiked
in the sample. (D) XIC of the four most intense fragment ions used for quantification of the endogenous peptide and (E) the equivalent fragments for the heavy
labeled peptide. All data were analyzed by the Skyline software.

SlEIN2), while some proteins with one (SlETR2, SlETR5, and
SlCTR3) or three (SlETR3 and SlETR4) peptides. It can be
observed that for some of the proteins identified with more than
one peptide, the absolute concentration levels of their peptides
are variable, highlighting the limit of absolute quantification
using spiked peptides. For these proteins identified with
multiple peptides, the absolute peptide quantifications were
combined in a final protein quantification representation

through the use of mixed models. Figures 3, 4 shows the
graphical representation of the absolute protein quantification
of the 11 proteins identified, for the four ripening stages of
tomato, in combination with their gene expression levels
measured in the same ripening stages. SlCTR4 protein levels
could not be quantified, probably because of the low abundancy
of this protein, so only its gene expression levels are shown
(Figure 4).
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FIGURE 3 | Absolute protein quantification (fmol of target protein/µg of total membrane proteins) and relative gene expression of ETR1-ETR7, and EIN2 during
tomato fruit ripening. MG, mature green; BR, breaker; OR, orange; R, red tomatoes. Error bars represent the standard error of the mean based on six biological
replicates. Difference uppercase letters indicate significant differences between the absolute protein concentration levels of the four tomato ripening stages
determined by Tukey’s HSD test (p < 0.05). Different lowercase letters indicate significant differences between the relative gene expression levels of the four tomato
ripening stages determined by Tukey’s HSD test (p < 0.05).
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FIGURE 4 | Absolute protein quantification (fmol of target protein/µg of total membrane proteins) and relative gene expression of CTR1–CTR4 during tomato fruit
ripening. MG, mature green; BR, breaker; OR, orange; R, red tomatoes. Error bars represent the standard error of the mean based on six biological replicates.
Difference uppercase letters indicate significant differences between the absolute protein concentration levels of the four tomato ripening stages determined by
Tukey’s HSD test (p < 0.05). Different lowercase letters indicate significant differences between the relative gene expression levels of the four tomato ripening stages
determined by Tukey’s HSD test (p < 0.05).

Figure 3 demonstrates that the most abundant ethylene
receptor proteins are SlETR3, SlETR6 and SlETR7, followed
by SlETR4, SlETR1, SlETR5 and finally SlETR2. SlCTR1 is
the most abundant SlCTR protein, followed by SlCTR2 and
SlCTR3 (Figure 4). SlETR3 and SlETR4 are the only proteins
whose abundance profiles seemed to follow a climacteric protein
pattern, both increasing significantly at the onset of ripening
followed by a subsequent decrease toward the red ripening stage.
The receptors SlETR1, SlETR2 and SlETR5, SlCTR2 and SlEIN2
proteins are most abundant during the mature green stage,
decreasing significantly at the start of ripening and maintaining
low levels during the breaker, orange and red stages. On the other
hand, the protein abundance of SlETR6, SlETR7, and SlCTR1
only decrease during the red ripening stage, so at the onset of
ripening no significant changes are observed. SlCTR3 abundance
is maintained constant throughout fruit ripening.

Analysis of the Transcripts Levels
Figure 3 demonstrates that SlETR4 shows the highest expression
of all the SIETRs, followed by SlETR3 and SlETR6, and then
SlETR7, SlETR1, and SlETR2. The expression level of SlETR5 is
the lowest. Within the SlCTRs, SlCTR1 and SlCTR2 are more
expressed compared to SlCTR3 and SlCTR4 (Figure 4). None of

the SlETRs show significant changes in gene expression between
different ripening stages, except for SlETR3 of which transcript
levels are higher in the orange ripening stage compared to the
mature green fruit. Both SlCTR1 and SlCTR4 expression levels
show a climacteric expression pattern, while SlCTR2 and SlCTR3
do not significantly change during the four ripening stages. The
mRNA levels of SlEIN2 are significantly higher in mature green
fruit as compared to red fruit.

When comparing the correlation between gene expression and
protein levels (Supplementary Figure 3) a significant correlation
is found only for SlETR3, SlCTR1, and SlEIN2.

DISCUSSION

Benefits and Limitations of the Ethylene
Signaling Protein Quantification
Szymanski et al. (2017) performed a proteomics discovery
experiment similar to the one of Mata et al. (2017) as outlined
in Figure 1A, identifying SlETR3, SlETR4, SlCTR2 and SlEIN2,
and showed that SlETR3 has a climacteric profile during ripening.
However, such methods are not ideal for the quantification of
low abundant proteins in a large number of samples, because
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the production and MS analysis becomes very costly due to
the fractionation required. Furthermore, some of the peptides
used for the identification of the proteins appeared in more
than one sub-fraction which might generate quantification and
reproducibility issues. However, such preliminary discovery work
provided a solid starting point on which the current targeted
proteomics workflow was based (Figure 1B). The current
workflow provides a simplified protein fractionation step through
SDS-PAGE, without the need of producing extra sub-fractions,
and provides a targeted search of the proteins on the LC–MS
which, thanks to the increased sensitivity and signal to noise
ratio, allows the identification and quantification of low abundant
proteins of interest (Gallien et al., 2012). Furthermore, it is a
relatively easy and reproducible technique.

The introduction of isotopically labeled peptides provided a
strong identity confidence and allowed an absolute quantification
of the endogenous peptides in the sample. However, spiking of
the samples can only be done just before the LC–MS analysis, and
is therefore not accounting for any technical variance nor protein
losses during earlier steps. As a result, the estimated absolute
protein levels can still be prone to errors. For some proteins,
the endogenous peptides resulted in considerably different
concentrations (Supplementary Figure 2). We hypothesize that
this could be due to (i) different trypsin digestion efficiency in
different parts of the protein, (ii) incomplete re-solubilization of
the labeled peptides during their initial preparation, and/or (iii)
partial adsorption of the labeled peptides onto vials. The tryptic
digestion efficiency problem would produce an underestimation
of some of the endogenous peptides due to their incomplete
digestion, while the incomplete re-solubilization or adsorption
of the labeled peptides would cause an overestimation, as the
calculated spiking concentrations would be smaller in reality.
It would, therefore, be interesting to also test QCAT proteins,
which is a concatenation of standard tryptic peptides encoded
by an artificial gene, and PSAQ which are isotope-labeled
full length proteins with the same amino acid composition
as the endogenous proteins (Beynon et al., 2005; Brun et al.,
2007). These proteins can be incorporated earlier during sample
processing and should display biochemical properties more
similar to the endogenous proteins (Brun et al., 2007).

Ethylene Receptor Abundance Is Linked
to Fruit Ripening of Tomato
Our quantitative analyses demonstrated that SlETR3, SlETR4,
SlETR6, and SlETR7 were the most abundant receptors during
tomato fruit ripening. Our gene expression results also showed
that these receptors were the most expressed. These results
are in accordance with the high expression levels for SlETR3
and SlETR4 observed in other studies (Kevany et al., 2007;
Yan et al., 2013; Liu et al., 2015; Mata et al., 2018). It is thus
plausible that these receptors are the most important and thus
play an important role in regulating ethylene sensitivity during
climacteric fruit ripening of tomato. Both protein abundance and
gene expression data showed that SlCTR1 was the most abundant
member of the SlCTR family during fruit ripening. Our gene

expression data for S1CTR1 are similar to data from Adams-
Phillips et al. (2004) and Liu et al. (2015). The high expression and
protein abundance data for SlCTR1 might indicate that SlCTR1
is the main fruit ripening specific SlCTR member. Previous
work demonstrated that transgenic antisense tomato lines with
a reduced expression of SlETR3, SlETR4, and SlETR6 showed
an increased ethylene sensitivity and an accelerated ripening
phenotype (Tieman et al., 2000; Kevany et al., 2007). Fu et al.
(2005) also demonstrated that silencing SlCTR1 expression using
virus-induced gene silencing, promoted fruit ripening in green
tomatoes. Because the receptors and SlCTRs act as negative
regulators of ethylene signaling (Kieber et al., 1993; Hua and
Meyerowitz, 1998; Tieman et al., 2000; Lin et al., 2008), a higher
abundance of these proteins would lead to a reduced ethylene
sensitivity.

Receptor phosphorylation has been also linked to ethylene
sensitivity, as Kamiyoshihara et al. (2012) showed that both
SlETR3 and SlETR4 are differentially phosphorylated during
fruit ripening and by an ethylene, 1-MCP or 2,5-norbornadiene
treatment, likely influencing receptor stability or activity. So,
it seems that ethylene receptor turnover, but also receptor
activity, is most likely regulated by specific post-translational
modifications and by the hormone itself.

Climacteric Protein Levels of SlETR3 and
SlETR4 Control Fruit Ripening
Kevany et al. (2007) showed that an ethylene treatment of
tomato resulted in a rapid decline in receptor protein abundance
of SlETR3, SlETR4 and SlETR6, likely caused by protein
degradation through the proteasome-dependent pathway. They
also quantified receptor abundance during ripening, using
western blot, and hypothesized that the decreasing protein levels
during ripening were caused by receptor degradation (Kevany
et al., 2007). Our mass spectrometry quantification analysis
reported results more similar to the ones of Kamiyoshihara
et al. (2012), which showed by western blot that SlETR3
and SlETR4 receptor abundance increased during tomato fruit
ripening. Specifically, in our results SlETR3 and SlETR4 showed
a peak in the protein levels, suggesting that the concentration
of these proteins follows the climacteric ethylene production
levels observed during ripening. This bring us to the hypothesis
that receptor degradation of SlETR3 and SlETR4 after ethylene
binding, cannot counteract the high synthesis rate of new
receptors during the onset of ripening. Therefore, as the receptors
are negative regulators of the ethylene response, both the
climacteric increase in the protein levels of SlETR3 and SlETR4
and their high abundance suggest that these receptors might
control and reduce ethylene sensitivity at the onset of fruit
ripening and as a consequence, control the timing and rate
of fruit ripening. The increase in receptor abundance during
ripening may allow the fruit to bind more ethylene which is
autocatalytically produced and so control ethylene sensitivity
and its downstream responses. On the other hand, the drop of
SlETR3 and SlETR4 receptor abundance at the end of ripening,
when tomatoes have turned red, might be related to the decline
in ethylene production levels after the climacteric peak. When
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less free ethylene is produced, fewer receptors are necessary
to control ethylene sensitivity and control ripening. During
this post-climacteric ripening stage, it is possible that receptor
degradation is higher than de novo synthesis.

The positive feedback that ethylene exerts on receptor
abundance during ripening is likely caused by an increase in
receptor gene expression. Our results showed that the mRNA
levels of SlETR3 increased during ripening, while the mRNA
levels of SlETR4 followed a climacteric trend but did not
show significant differences during ripening. However, it seems
odd to find an increase in the SlETR4 protein levels during
the onset of ripening without any increase in the mRNA
levels (Figure 3). When studying the correlation between gene
expression and protein abundance levels during ripening, only
SlETR3 was significantly correlated (Supplementary Figure 3).
The expression of both SlETR3 and SlETR4 have been studied
the most during tomato fruit ripening, confirming an increase in
expression during fruit ripening for both genes (Kevany et al.,
2007; Osorio et al., 2012; Yan et al., 2013; Liu et al., 2015;
Mata et al., 2018). Assuming a short change in gene expression
can induce a longer lasting response at the protein level, our
interpretation is that the current four ripening stages were too
coarse to identify such short lasting significant changes at the
transcript levels for SlETR4. Adding intermediate ripening stages
would have helped to provide a more accurate picture of this
regulation, like in the case of Mata et al. (2018).

Steady State Protein Levels Sustain Fruit
Ripening
Protein levels of the receptors SlETR6 and SlETR7 and SlCTR1
and SlCTR3 stayed constant during ripening, only showing a
perceivable decrease when the fruit reached its red ripe stage,
except for SlCTR3. SlETR6 protein abundance seemed to increase
in breaker fruit compared to mature green, but this change
was not significant. Furthermore, the gene expression levels of
both receptors (SlETR6 and SlETR7) and SlCTR3 displayed no
significant changes during ripening. The correlation between
gene expression and protein abundance levels was not significant
either, indicating that the protein turnover is possibly driven by
post-translational modifications including protein degradation,
instead of by gene expression directly. A possible explanation for
the trend observed for these receptors and SlCTR3 could be that
constant protein levels were sustained as a mechanism to control
ethylene sensitivity in a more gentle way than through receptors 3
and 4, thus they would sustain the ripening process. The final low
protein levels in the red stage would again be the consequence of
the end of ripening, where no extra action would be needed to
control the process.

In the case of SlCTR1 the increase in the expression levels
is not reflected at the protein level. However, a significant
correlation between both kind of data was found during ripening,
indicating that the protein abundance was directly controlled by
gene expression. We hypothesize that in this specific case, the
high transcription was counteracted by a fast rate of protein
degradation of the newly formed protein after the binding of
ethylene to the receptor-CTR complex. This could be the reason

why no peak in protein levels was observed. Given SlCTR1 is
the most abundant CTR and because of its specific behavior, it
might be the strongest regulator of the tomato CTRs. Likewise
the transcript levels of SlCTR4 behaved, but its low abundancy did
not allow its identification in spite of using the highly sensitivity
targeted acquisition proteomics method PRM.

Decreasing Protein Levels Enable the
Onset of Fruit Ripening
It is remarkable that SlETR1, SlETR2 and SlETR5 and SlCTR2
protein levels rapidly declined as soon as ripening started in
the breaker stage. However, no comparative decline of their
transcript levels could be observed during ripening, neither
correlation between protein and mRNA. This suggests that
protein abundance of these signaling components is likely
controlled by post-translational modifications, like degradation,
and not by a transcriptional regulation. Although SlETR1,
SlETR2, and SlETR5 are the three least abundant ethylene
receptors, it is possible that their higher protein levels in the
mature green stage influence ethylene sensitivity by restraining
ethylene signaling in this maturity stage due to their negative
action. Their subsequent decrease in abundance during ripening
could release this inhibitory action of ethylene sensitivity and
perhaps eventually trigger fruit ripening. In this scenario, these
receptors together with SlCTR2, could influence the initiation of
tomato fruit ripening.

EIN2 Levels Might Control Ethylene
Sensitivity During Ripening
EIN2, on the other hand, is a positive regulator of ethylene
signaling and is believed to play a central role in transmitting
the ethylene signal from the ER to the nucleus (Alonso et al.,
1999; Zheng and Zhu, 2016). Transgenic tomato plants in which
SlEIN2 expression is silenced, show a delayed fruit ripening
phenotype, confirming that SlEIN2 is a positive regulator of
ethylene signaling in tomato (Fu et al., 2005; Hu et al., 2010;
Wang et al., 2016). We show now that SlEIN2 protein levels
decreased directly in the breaker stage suggesting that ethylene
sensitivity is gradually lost during fruit ripening. SlEIN2 protein
abundance is directly correlated to SlEIN2 expression, which also
declines, but the drop became only significant in the red stage.
Contrarily, Liu et al. (2015) reported, based on publicly available
gene expression data, that SlEIN2 expression did not change
much during ripening, which does not match our findings using
qPCR.

SlEIN2 is the largest protein analyzed in this work and in
theory, based on the alignment with AtEIN2 (Supplementary
Table 5), the C-terminal end of SlEIN2 could, given its size,
also be present in the fractionated gel part. However, due to the
microsomal membrane protein extraction used in this study, it
is unlikely that the C-terminal cytosolic soluble portion was co-
extracted with the membrane fraction, unless it had a strong
membrane association. Therefore, what we can assure is the
quantification of the complete protein SlEIN2, but not of its
C-terminal portion, which anyway would be present in a lower
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percentage than the intact SlEIN2 protein. The fact that the
quantification was mainly of the intact protein would mean that
SlEIN2 levels are declining during ripening, possible through
the ETP-mediated degradation (Qiao et al., 2009). This would
explain why the decrease in the protein levels could already
be seen in the breaker stage, while for the gene expression,
levels became only significant at the red stage. Hence, the
apparent discrepancy between the more constant transcription
levels and the falling protein levels of SlEIN2. The discovery
of the exact cleavage site of SlEIN2 in tomato, as well as the
retirement of additional peptides that are exclusively located
in the N-terminal part, would allow us to distinguish the
abundance of both the N- and C-terminal part of EIN2, and
give more insight in the regulatory dynamics of this enigmatic
protein.

CONCLUSION

This work describes a feasible and reproducible technique
to identify and quantify the low abundant ethylene signaling
proteins ethylene receptors (ETRs), CTRs and EIN2 in tomato
pericarp. The strategy is composed of (i) microsomal membrane
extraction, (ii) fractionation of the protein sample through
1-D gel, (iii) in-gel tryptic digestion and (iv) identification
and absolute quantification through the monitoring of several
unique peptides of the target proteins by PRM. The combined
quantification of protein and mRNA levels of the ethylene
signaling components during ripening has revealed different
patterns between gene expression and protein abundance which
might collectively modulate and control ethylene sensitivity and
thus the timing and rate of fruit ripening. Our hypothesis
is that some receptors would largely control the ethylene
sensitivity and, therefore, the ripening process, like SlETR3 and
SlETR4 with the help of SlCTR1, some of the most abundant
proteins, and possibly SlCTR4. Other signaling components such
as SlETR6, SlETR7, and SlCTR3 show an unaltered protein
abundance during the onset of ripening and might therefore
be important to sustain the ripening process. Finally, proteins
such as SlETR1, SlETR2, SlETR5, and SlCTR2 show a rapid
decline in protein abundance, which might suggest that they
could control the initiation of ripening. SlEIN2, being a positive
regulator of ethylene signaling, also show a declining abundance
profile, and could therefore also control ethylene sensitivity
during climacteric fruit ripening of tomato. In conclusion, it
seems that ethylene sensitivity is differently controlled by a
balanced turnover of the different components of the ethylene
signaling pathway, combining positive and negative feedback
regulations.

Future mass spectrometry analyses are needed to reveal
the specific proteolytic cleavage site of SlEIN2 and to study
the phosphorylation dynamics of both the receptors and
SlEIN2 during ripening. Finally, a broad quantitative proteomics
study including additional downstream signaling transcription
factors such as the EILs and ERFs could help us to better
understand ethylene sensitivity and signaling during climacteric
fruit ripening of tomato.
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FIGURE S1 | Dilution curves for the PRM analysis of 0–200 fmol/µL of the
selected heavy labeled peptides for the proteins SlETR1-SlETR7, SlCTR1-SlCTR3
and SlEIN2 and linearity expressed by coefficient of determination (R2).

FIGURE S2 | Absolute quantification (fmol of target protein/µg of total membrane
proteins) of the peptides of SlETR1-SlETR7, SlCTR1-SlCTR3 and SlEIN2 during
tomato fruit ripening. MG, mature green; BR, breaker; OR, orange; R, red
tomatoes. Error bars represent the standard error of the mean based on six
biological replicates. Different uppercase letters indicate significant differences
between the absolute protein concentration levels of the four tomato ripening
stages determined by Tukey’s Honestly Significant Difference (HSD) test
(P < 0.05).

FIGURE S3 | Correlation between protein and gene expression levels of the
SlETR1-SlETR7, SlCTR1-SlCTR3 and SlEIN2. Significant correlations are
represented with an asterisk in the chart title and non-significant correlation with
the letters N.S. The protein, gene expression data and their standard errors were
normalized for visualization.

TABLE S1 | List of unlabeled peptides tested for the assay development. The
ones marked in yellow were the identified and quantified peptides (labeled
peptides were order afterwards for these ones). The ones in green were
promisingly identified but labeled peptide for them were not obtained.
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TABLE S2 | Selected results output of the use of the mProphet algorithm of the
targeted peptide identifications trained with the second best peak option.

TABLE S3 | RT-qPCR primers for the 12 ethylene signaling and 3 reference genes
used in this study. Primers were designed with the Primer3 web tool
(http://bioinfo.ut.ee/primer3/). Primer specificity was checked by BLAST-ing
against all tomato EST’s and known cDNA sequences.

TABLE S4 | Amino acid sequences of the proteins SlETR1-SlETR7,
SlCTR1-SlCTR3 and SlEIN2 obtained from Uniprot (Bateman et al., 2015). Their

Uniprotannotated transmembrane domains are underlined, their possible
phosphorylation sites are highlighted in green and their GAF domain, kinase
domain and response regulatory domains are represented in green, blue and
orange fonts, respectively. The peptides used for the quantifications of the
proteins in the current study are highlighted in yellow.

TABLE S5 | Cluster alignment of Q9S814 (AtEIN2) and Q6Q2C1 (SlEIN2) with the
alignment tool of Uniprot. The C-terminal part of AtEIN2 is highlighted in green
based on the results of Qiao et al. (2012). The two peptides of SlEIN2 identified
and quantified in this work are highlighted in yellow.
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Ripening of non-climacteric bilberry (Vaccinium myrtillus L.) fruit is characterized by a
high accumulation of health-beneficial anthocyanins. Plant hormone abscisic acid (ABA)
and sucrose have been shown to be among the central signaling molecules coordinating
non-climacteric fruit ripening and anthocyanin accumulation in some fruits such as
strawberry. Our earlier studies have demonstrated an elevation in endogenous ABA
level in bilberry fruit at the onset of ripening indicating a role for ABA in the regulation of
bilberry fruit ripening. In the present study, we show that the treatment of unripe green
bilberry fruits with exogenous ABA significantly promotes anthocyanin biosynthesis
and accumulation both in fruits attached and detached to the plant. In addition,
ABA biosynthesis inhibitor, fluridone, delayed anthocyanin accumulation in bilberries.
Exogenous ABA also induced the expression of several genes involved in cell wall
modification in ripening bilberry fruits. Furthermore, silencing of VmNCED1, the key gene
in ABA biosynthesis, was accompanied by the down-regulation in the expression of key
anthocyanin biosynthetic genes. In contrast, the treatment of unripe green bilberry fruits
with exogenous sucrose or glucose did not lead to an enhancement in the anthocyanin
accumulation neither in fruits attached to plant nor in post-harvest fruits. Moreover,
sugars failed to induce the expression of genes associated in anthocyanin biosynthesis
or ABA biosynthesis while could elevate expression of some genes associated with
cell wall modification in post-harvest bilberry fruits. Our results demonstrate that ABA
plays a major role in the regulation of ripening-related processes such as anthocyanin
biosynthesis and cell wall modification in bilberry fruit, whereas sugars seem to have
minor regulatory roles in the processes. The results indicate that the regulation of bilberry
fruit ripening differs from strawberry that is currently considered as a model of non-
climacteric fruit ripening. In this study, we also identified transcription factors, which
expression was enhanced by ABA, as potential regulators of ABA-mediated bilberry
fruit ripening processes.

Keywords: Vaccinium, non-climacteric fruit, berry ripening, hormonal regulation, signaling molecules,
anthocyanins, abscisic acid, sucrose

Frontiers in Plant Science | www.frontiersin.org August 2018 | Volume 9 | Article 125925

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2018.01259
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpls.2018.01259
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2018.01259&domain=pdf&date_stamp=2018-08-29
https://www.frontiersin.org/articles/10.3389/fpls.2018.01259/full
http://loop.frontiersin.org/people/186448/overview
http://loop.frontiersin.org/people/599227/overview
http://loop.frontiersin.org/people/186399/overview
http://loop.frontiersin.org/people/129833/overview
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-01259 August 27, 2018 Time: 19:48 # 2

Karppinen et al. ABA Regulates Bilberry Fruit Ripening

INTRODUCTION

Fleshy fruits and berries have important roles in human health
and nutrition, and therefore their ripening regulation have been
intensively studied. Development and subsequent ripening of
fleshy fruits are complex processes including major metabolic
and structural changes, such as accumulation of pigments, flavor
and aroma compounds as well as changes in fruit texture.
These processes are controlled by a series of signaling events
regulated by plant hormones. Fleshy fruits are physiologically
defined as either climacteric or non-climacteric according to the
differences in respiration rate and production of plant hormone
ethylene during ripening (Osorio et al., 2013). A burst of ethylene
accompanied by an increase in the respiration rate at the onset of
ripening has long been known to be a critical signal controlling
ripening of climacteric fruit, such as tomato, mango, melon,
apple, and peach. In contrast, ripening mechanisms of non-
climacteric fruits, lacking the burst of respiration and ethylene
production, have remained less understood (Cherian et al.,
2014).

Studies have shown that plant hormone abscisic acid (ABA),
in addition to its central role in plant growth and development
and in the adaptation to stress conditions (Vishwakarma et al.,
2017), is a major regulator of non-climacteric fruit ripening
(Cherian et al., 2014; Leng et al., 2014). ABA has been indicated
as a ripening promoter in many non-climacteric fruits, such as
strawberry (Jia et al., 2011; Li et al., 2011; Kadomura-Ishikawa
et al., 2015), grape (Koyama et al., 2010; Jia et al., 2017), sweet
cherry (Luo et al., 2014; Shen et al., 2014), cucumber (Wang
et al., 2013), citrus (Zhang et al., 2014), pear (Dai et al., 2014),
and litchi (Singh et al., 2014) but also for climacteric fruits, such
as tomato, peach, melon, and mango (Zhang et al., 2009; Soto
et al., 2013; Sun et al., 2013; Zaharah et al., 2013; Mou et al.,
2015). The direct molecular level evidence for the role of ABA
in fruit ripening was shown in strawberry by suppressing the
expression of the key ABA biosynthetic gene, FaNCED1, blocking
ABA biosynthesis and leading to partly uncolored strawberry
fruits that could be rescued by exogenous ABA (Jia et al.,
2011).

Progress has been made during recent years in the
understanding of the molecular mechanisms underlying ABA
perception and signal transduction during non-climacteric fruit
ripening (Li et al., 2011; Cherian et al., 2014; Leng et al.,
2014). The ABA receptors were identified by down-regulating
the expression of receptors FaPYR1 and FaCHLH/ABAR that
led to delay in strawberry fruit ripening and fruit coloring
that could not be rescued by exogenous ABA (Chai et al.,
2011; Jia et al., 2011). Studies have also identified some
ABA-regulated fruit ripening-related transcription factors (TFs)
belonging to different gene families, such as MADS, MYB, and
bZIP (Daminato et al., 2013; Nicolas et al., 2014; Medina-Puche
et al., 2016). However, the ABA-mediated regulatory network
promoting non-climacteric fruit ripening still remains poorly
understood.

Sugars have traditionally been considered as a carbon and
energy source for plants, and in fruits sugars have been thought
merely to affect fruit quality. A growing number of studies

have indicated that sugars, such as glucose and sucrose, can
act as signaling molecules and possess hormone-like signaling
functions in plant development and stress responses (Van den
Ende and El-Esawe, 2014; Huang et al., 2016). Especially sucrose-
specific signaling pathway has been proposed in the regulation
of anthocyanin biosynthesis, and in Arabidopsis anthocyanin
biosynthesis was shown to be up-regulated by sucrose (Solfanelli
et al., 2006; Loreti et al., 2008). Fruit ripening signals have
been studied extensively in strawberry, which is currently
considered as a model of non-climacteric fruit ripening (Li
et al., 2011; Cherian et al., 2014). In strawberry, studies have
demonstrated that especially sucrose but also glucose promotes
fruit ripening (Jia et al., 2011, 2013a,b). Currently, sucrose
in co-operation with ABA are indicated as the core signaling
molecules regulating strawberry fruit ripening (Jia et al., 2011,
2013b). The coordinated regulation of fruit ripening by ABA and
sucrose has recently been suggested also for grapes (Jia et al.,
2017).

Bilberry (Vaccinium myrtillus L.) is one of the most abundant
wild berries in the Northern Europe and it is valued for
its nutraceutical and health-beneficial properties (Kolehmainen
et al., 2012; Jimenez-Garcia et al., 2013; Törrönen et al., 2013).
Ripening of non-climacteric bilberry fruit is characterized by
a high accumulation of health-beneficial anthocyanins both
in peel and flesh providing deep blue color to the ripe
fruits. Anthocyanins are biosynthesized via the well-known
phenylpropanoid/flavonoid pathway consisting of a number of
enzymatic steps that catalyze a sequential reaction leading to
the production of different anthocyanin classes (Supplementary
Figure S1). Our earlier studies have identified altogether 33
different anthocyanins in bilberry fruits belonging to delphinidin,
cyanidin, petunidin, peonidin, and malvidin classes (Zoratti et al.,
2014).

So far, there are no studies concerning the role of ABA
or sugars on the regulation of fruit ripening and anthocyanin
biosynthesis in bilberry fruit. Furthermore, earlier studies
have given contradictory results on the role of ABA in the
anthocyanin accumulation in other Vaccinium species (Percival
and MacKenzie, 2007; Forney et al., 2009; Buran et al., 2012; Oh
et al., 2018). In our previous study, an increase in endogenous
ABA level accompanied by an increase in the expression of
VmNCED1, the key gene in ABA biosynthesis, was demonstrated
at the onset of bilberry fruit ripening suggesting a role for ABA in
bilberry ripening regulation (Karppinen et al., 2013).

The aim of the current study was to examine the role of
ABA and various sugars on bilberry fruit ripening and ripening-
related processes. For this purpose, the effect of exogenous
ABA and sugars on bilberry fruit ripening and anthocyanin
accumulation was examined in both pre- and post-harvest
experiments. The effects of the post-harvest treatments on the
expression of the key genes in anthocyanin, ABA and sucrose
biosynthesis as well as the expression of the genes encoding
major cell wall modifying enzymes was studied. The role of
ABA in anthocyanin biosynthesis was further examined by
silencing VmNCED1 in ripening bilberry fruits. Finally, we also
identified potential TFs in ABA-regulated bilberry fruit ripening
processes.
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MATERIALS AND METHODS

Plant Material
Bilberry (V. myrtillus L.) plant material used for the experiments
was originated from the natural forest stands in Oulu (65◦01′ N,
25◦28′ E) and Tromsø (69◦42′ N, 18◦51′ E). For the virus-induced
gene silencing (VIGS) experiments, bilberry plants with their root
system were harvested at the stage when fruits were unripe and
green. The plants were placed in boxes (50 cm × 70 cm) with
forest peat soil and watered well. The five developmental stages of
bilberry fruit were collected as described earlier (Karppinen et al.,
2013).

Pre-harvest Treatments With ABA and
Sugars
In order to study the effect of exogenous ABA on bilberry fruits
still attached to plants, an experiment was conducted on field
conditions with bilberries growing on the natural forest stand in
Oulu, Finland July 2014. For the treatments, ABA [(±)-abscisic
acid; Sigma, St. Louis, MO, United States] at concentrations
of 0.5 and 2 mM with 0.5% (v/v) Tween 20 were utilized.
A solution containing water with 0.5% (v/v) Tween 20 was used
as a control treatment. The solutions were applied individually
on unripe green bilberry fruits by spraying until run-off with
a hand-held sprayer on alternate days for 6 days (three times)
in the late afternoon to minimize ABA photo-degradation.
Approximately 50 berries were utilized per treatment with four
replicates by employing around 15 m2 areas adjacent to each
other. Berries were evaluated for their color 7 days from the
beginning of the first treatment. Berry samples were collected
after 0, 24, 48, 96, and 168 h (7 days) from the first treatment,
immediately frozen in liquid nitrogen and stored at −80◦C
until used for RNA extraction and determination of anthocyanin
content.

The effect of glucose and sucrose on bilberry fruits still
attached to plants was studied on field conditions with bilberries
growing on the natural forest stand in Tromsø, Norway August
2015. Sucrose and glucose at concentration of 200 mM with 0.5%
(v/v) Tween 20 were used. A solution containing water with 0.5%
(v/v) Tween 20 was used as a control treatment. The solutions
were applied individually on unripe green bilberry fruits similarly
as described above by spraying until run-off with a hand-held
sprayer on alternate days for 6 days (three times). Approximately
50 berries per treatment were utilized with four replicate areas as
described above. When obvious induction in berry ripening was
not detected after 7 days from the first treatment, the treatments
were repeated (three times on alternate days). Berries were
evaluated for their color and collected after 0, 7, and 19 days from
the beginning of the first treatment, immediately frozen in liquid
nitrogen and stored at−80◦C until used for the determination of
anthocyanin content.

Post-harvest Treatments With ABA and
Sugars
For studying the effect of ABA and sugars on detached bilberry
fruits, fruits at unripe green stage were harvested from natural

forest stand in Oulu, Finland July 2017. Fruits of similar size
and color with absence of physical injuries or insect infections
were selected for the experiment. The experiment was set-
up aseptically under a laminar flow. After rinsing the fruits
three times with sterile distilled water, the fruits were randomly
divided and immersed with their pedicels (Roubelakis-Angelakis
and Kliewer, 1986; Jia et al., 2013a) into the following filter
sterilized solutions in sterile Petri plates: 0.5 and 2 mM ABA
[(±)-abscisic acid; Sigma], 50 and 200 mM sucrose (VWR
International, Lutterworth, United Kingdom), 50 and 200 mM
glucose (Sigma), 50 and 200 mM fructose (Merck, United States),
200 µM fluridone (Sigma), 0.5 mM ABA + 200 mM sucrose,
and water (control). All solutions contained 0.5% (v/v) Tween
20. Three replicate Petri plates with approximately 50 berries
per plate were employed. The plates were placed at 18◦C under
30 µmol m−2 s−1 light. The berries were evaluated for their
color on the 4th and 6th day from the beginning of the
experiment. Berry samples were collected after 0, 24, 48, 96,
and 144 h (6 days) from the beginning of the experiment,
immediately frozen in liquid nitrogen and stored at −80◦C
until used for RNA extraction and determination of anthocyanin
content.

Construction of VmNCED1 VIGS Vector
and Agrobacterium-Mediated Infiltration
A 165 bp cDNA fragment of VmNCED1 (GenBank
accession no. JX982599) was PCR-amplified using forward
primer 5′-GGATCCCGATCAGCAAGTGGTGTTTA-3′
(BamH1 site is underlined) and reverse primer 5′-
TGGAAGCTTAATGTATCCGGACACTCG-3′ (HindIII site
is underlined) under standard PCR conditions. The PCR product
was gel-purified, digested with BamHI and HindIII and ligated
into pTV00 vector. The resulting pTV00-VmNCED1 vector was
confirmed by sequencing and transformed into Agrobacterium
tumefaciens strain GV3101 by the freeze-thaw method.

Agrobacterium-mediated infiltration by syringe injection with
a needle into bilberry fruits was performed as described
earlier by Jaakola et al. (2010). Briefly, a 5 ml cultures of
Agrobacterium strain GV3101 containing pTV00-VmNCED1
and strain C58c1 containing pBINTRA6 were grown overnight
at 28◦C in liquid Luria-Bertani (LB) medium (pH 5.6) with
appropriate antibiotics. The overnight cultures were inoculated
into 50 ml of LB medium containing 10 mM MES, 20 µM
acetosyringone and appropriate antibiotics and grown at 28◦C
until the OD600 of the cultures reached 1.0–1.3. The cells
were collected by centrifugation (3500 rpm, 5 min, 20◦C),
resuspended in infiltration buffer (10 mM MgCl2, 10 mM MES,
200 µM acetosyringone) to a OD600 of approximately 1.5 and
incubated at room temperature at least for 2 h. Agrobacterium
mixture containing pTV00-VmNCED1 and pBINTRA6 (1:1
ratio) was injected into unripe green bilberry fruits at two
spots on the same side of the berry by a 1-ml syringe with
a needle. As a control, only Agrobacterium with pBINTRA6
was injected into the fruits. The bilberry plants were placed
at 18◦C with 60% humidity and 125 µmol m−2 s−1 light
intensity. Fruits were evaluated 4 weeks after injection, then
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frozen in liquid nitrogen and stored at−80◦C until used for RNA
extraction.

Isolation of RNA and cDNA Preparation
Total RNA was isolated from berries according to the
method described earlier for bilberry (Jaakola et al., 2001).
The cDNA was synthesized from the total RNA by using
SuperScript III reverse transcriptase (Invitrogen, Carlsbad, CA,
United States) according to the manufacturer’s instructions.
The cDNA was purified from the contaminating genomic
DNA by using the method described by Jaakola et al.
(2004).

Relative Quantification of Gene
Expression
Real-time quantitative reverse transcription PCR (qRT-PCR)
analyses were performed with a LightCycler 480 instrument
and software (Roche Applied Sciences, Indianapolis, IN,
United States). The transcript abundance of the genes was
detected using a LightCycler R© SYBR Green I Master qPCR Kit
(Roche). The qRT-PCR conditions were an initial incubation at
95◦C for 10 min followed by 40 cycles at 95◦C for 10 s, 60◦C
for 20 s, and 72◦C for 10 s. The studied genes we identified
from the publicly available Vaccinium transcriptome databases.
The gene-specific primer sequences used for the qRT-PCR
analyses are listed in Supplementary Table S1. Glyceraldehyde-
3-phosphate dehydrogenase (VmGAPDH; GenBank accession
no. AY123769) was employed as a reference gene for the relative
quantification of the PCR products. The results were calculated
with LightCycler R© 480 software (Roche), using the calibrator-
normalized PCR efficiency-corrected method (Technical note
No. LC 13/2001, Roche). The amplification of only one
product in qRT-PCR was confirmed by a melting curve
analysis.

Determination of Total Anthocyanins
Frozen berries were ground to fine powder with a mortar
and pestle in the presence of liquid nitrogen. Berry powder
of 0.1 g was extracted with methanol acidified with 0.1%
HCl (v/v) by sonication in the dark for 10 min followed
by shaking at room temperature in the dark for 1 h. After
centrifugation, the supernatant was collected and the total
anthocyanin content was determined according to the pH
differential method (Lee et al., 2005, 2008) that has been tested
for bilberry material (Dandena et al., 2012). Analyses were
performed with three to four biological replicates. The results
were expressed as mg (cyanidin-3-glucoside equivalent) g−1 fresh
weight.

Statistical Analysis
The quantitative results of gene expression and measurements of
anthocyanins in bilberry fruits were analysed either with Student’s
t-Test or one-way analysis of variance (ANOVA) followed by
Tukey’s HSD test by using SPSS Statistics program, version 25
(IBM, New York, NY, United States).

RESULTS

Effect of Pre-harvest Treatments With
ABA and Sugars on Bilberry Fruit
Ripening and Anthocyanin Accumulation
To investigate the role of ABA on bilberry fruit ripening and
anthocyanin accumulation, exogenous ABA was sprayed three
times on alternate days on unripe green bilberry fruits still
attached to plants. Seven days after the first treatment with
0.5 mM ABA, and especially with 2 mM ABA, most of the fruits
had turned red/blue indicating fruit ripening and anthocyanin
accumulation while most of the control fruits treated with water
were still green (Figure 1A). The anthocyanin content was
significantly higher at day seven in ABA treated fruits compared
to control fruits sprayed with water (Figure 1B). Also, both the
ABA treatments up-regulated the expression of the anthocyanin
biosynthetic genes VmCHS, VmANS, and VmUFGT during the
7 days experiment (Figure 1C).

Glucose and sucrose were similarly applied by spraying on
attached unripe green bilberry fruits to investigate their effect
on bilberry fruit ripening and anthocyanin accumulation. Seven
days after the beginning of the experiment, the fruits were still
green in color and neither 200 mM glucose nor 200 mM sucrose
had induced significant changes in the fruit anthocyanin content
compared to control fruits treated with water (Figure 2A).
Therefore, the treatments were repeated second time by again
spraying berries with sugars three times on alternate days.
After 19 days of the first treatment, there were only slightly
more red/blue berries in the sugar treatments compared to
control berries treated with water (Figure 2B). There were no
significant differences between the treatments in the anthocyanin
content of the berries at day 19, however, there was a high
variation between individual berries in the response to sucrose
(Figure 2A).

Effect of Post-harvest Treatments With
ABA and Sugars on Bilberry Fruit
Ripening and Anthocyanin Accumulation
To examine in more detail the role of ABA and sugars on
bilberry fruit ripening and anthocyanin accumulation and verify
the results attained with attached fruits, unripe green bilberry
fruits were harvested and submerged into various post-harvest
treatments in Petri plates. The treatments were: ABA (0.5
and 2 mM), glucose (50 and 200 mM), fructose (50 and
200 mM), sucrose (50 and 200 mM), 0.5 mM ABA + 200 mM
sucrose, 200 µM fluridone (ABA biosynthesis inhibitor) or water
(control). An increase in red coloration in bilberry fruits treated
with 2 mM ABA was obvious already after 1 day from the
beginning of the treatment. After 4 days, all the fruits in 2 mM
ABA treatment and most of the fruits in 0.5 mM ABA and 0.5 mM
ABA + 200 mM sucrose treatments had obtained red coloration
indicating anthocyanin accumulation (Figures 3A,B). The fruits
treated with water (control), fluridone or different types and
concentrations of sugars were still mostly unripe and green
with only few individual berries obtained some red coloration
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FIGURE 1 | Effect of pre-harvest treatment with ABA on bilberry fruit color (A), anthocyanin content (B), and expression of anthocyanin biosynthetic genes (C).
Unripe green berries attached to plants were sprayed with 0.5 mM ABA, 2 mM ABA or water (control). Fruit color and anthocyanin content was evaluated after
7 days from the beginning of the experiment. Total anthocyanin content is expressed as milligrams of cyanidin-3-glucoside equivalents g-1 FW. Relative expression of
the genes was quantified by qRT-PCR and normalized to VmGAPDH. Values represent means ± SEs of four replicates. Asterisks indicate significant differences from
control in Student’s t-Test (P ≤ 0.05).

(Figures 3A,B). The berries treated with either 0.5 mM or 2 mM
ABA had significantly higher levels of anthocyanins compared
to control berries in water after 4 days from the beginning of
the experiment (Figure 3C). The treatment either with glucose,
fructose or sucrose, except 50 mM glucose, did not significantly
increase the anthocyanin content in bilberry fruits (Figure 3C).
The increase with 50 mM glucose was due to increase in
anthocyanin accumulation in few individual berries and the
increase was not seen with 200 mM glucose. Berries treated with
fluridone had significantly lower level of anthocyanins compared
to control fruits in water (Figure 3C). Furthermore, the fruits
treated with 0.5 mM ABA + 200 mM sucrose did not have
significantly higher anthocyanin level compared to the berries
treated only with 0.5 mM ABA, suggesting that sucrose does not
significantly enhance the effect of ABA in bilberry anthocyanin
accumulation (Figure 3C).

After 6 days from the beginning of the experiment, almost all
the ABA treated berries had turned fully red/blue while most of

the berries in the treatment with water (control), fluridone or
sugars were still unripe and green (Supplementary Figure S2).
None of the berries in fluridone treatment had reached the fully
red/blue coloration. The anthocyanin content in berries treated
with 0.5 mM ABA had highly increased from day 4. Instead, the
anthocyanin accumulation in berries in 2 mM ABA treatment
had slowed down from day 4 and the anthocyanin content was
significantly lower in berries in 2 mM ABA compared to berries
in 0.5 mM ABA treatment (Supplementary Figure S2) indicating
over-ripening of the berries in 2 mM ABA treatment and cease in
anthocyanin biosynthesis.

Expression of Anthocyanin Biosynthetic
Genes in Response to Post-harvest
Treatments With ABA and Sugars
The transcript levels of anthocyanin biosynthetic genes
(Supplementary Figure S1) were examined by qRT-PCR in the
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FIGURE 2 | Effect of pre-harvest treatments with glucose and sucrose on bilberry fruit anthocyanin content (A) and fruit color (B). Unripe green berries attached to
plants were sprayed with 200 mM glucose, 200 mM sucrose or water (control). Total anthocyanin content in fruits was measured after 7 and 19 days from the
beginning of the experiment and is expressed as milligrams of cyanidin-3-glucoside equivalents g-1 FW. Fruit color was evaluated after 19 days from the beginning of
the experiment. Values represent means ± SEs of four replicates.

FIGURE 3 | Effect of post-harvest ABA and sugar treatments on bilberry fruit color and anthocyanin accumulation. Detached unripe green berries were immersed
into solutions containing ABA (0.5 and 2 mM), glucose (50 and 200 mM), fructose (50 and 200 mM), sucrose (50 and 200 mM), 0.5 mM ABA + 200 mM sucrose,
200 µM fluridone or water (control). After 4 days from the beginning of the experiment, fruits in Petri plates (A) were evaluated for their color (B) and measured for
their anthocyanin content (C). Total anthocyanin content is expressed as milligrams of cyanidin-3-glucoside equivalents g-1 FW. Values represent means ± SEs of
three replicates. Asterisks indicate significant differences from control in Student’s t-Test (P ≤ 0.05).

detached berries during 4 days in different treatments in Petri
plates. Significant induction in the expression of all anthocyanin
biosynthetic genes was detected in berries in ABA treatments
indicating a major role for ABA as a positive regulator of bilberry
anthocyanin biosynthesis (Figure 4). Especially the transcripts
levels of VmCHS, VmF3H, VmF3′H, VmF3′5′H, VmANS, and

VmUFGT were significantly elevated (P ≤ 0.001) by both
ABA treatments at day 4 and 2 mM ABA treatment already
at day 2. For example, after 4 days in 2 mM ABA treatment
the up-regulation of VmCHS, VmF3′5′H, and VmUFGT were
180-, 460-, and 850-fold, respectively, compared to water
control. Instead, although slight elevation in gene expression
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FIGURE 4 | Effect of post-harvest ABA and sugar treatments on the expression of anthocyanin biosynthetic genes VmCHS (A), VmCHI (B), VmF3H (C), VmF3′H
(D), VmF3′5′H (E), VmDFR (F), VmANS (G), and VmUFGT (H) in bilberry fruit. The treatments were: ABA (0.5 and 2 mM), glucose (50 and 200 mM), fructose (50
and 200 mM), sucrose (50 and 200 mM), 0.5 mM ABA + 200 mM sucrose, 200 µM fluridone or water (control). Relative expression of the genes was quantified by
qRT-PCR and normalized to VmGAPDH. Values represent means ± SEs of three replicates. Asterisks indicate significant differences from respective control
(∗P ≤ 0.05, ∗∗P ≤ 0.01, ∗∗∗P ≤ 0.001, one-way ANOVA with Tukey’s HSD test).
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was detected in sugar treatments at day 2 and 4 compared to
control fruits, no obvious induction in the expression of the
anthocyanin biosynthetic genes in fruits was detected (Figure 4).
In fact, the expression of the anthocyanin biosynthetic genes was
more or less decreased during the 4 days in sugar treatments
indicating that sugars have less obvious positive signaling role
to induce bilberry anthocyanin biosynthesis compared to ABA
(Figure 4).

Expression of ABA and Sucrose
Biosynthetic Genes in Response to
Post-harvest Treatments With ABA and
Sugars
In order to examine the interaction between ABA and sucrose,
the transcript levels of ABA and sucrose biosynthetic genes
was analyzed in post-harvest bilberry fruits in the different
treatments. Bilberry fruits in 0.5 and 2 mM ABA treatments
had significantly elevated transcript levels of VmNCED1, the
key gene in the ABA biosynthetic pathway, compared to
control fruits in water (Figure 5A) indicating autocatalytic
biosynthesis of ABA. In the berries in treatments with different
sugars the expression of VmNCED1 was not induced but
decreased during the 4 days experiment. The expression of
the two key genes in the sucrose metabolism, VmSS and
VmSPS was also studied, especially in response to ABA
treatments. The expression of VmSS was significantly elevated
in berries in 2 mM ABA treatment compared to control
berries after 4 days indicating sucrose degradation while
no significant increase in the expression of the gene was
observed in other treatments (Figure 5B). The expression
profiles of the three identified bilberry SPS genes slightly
differentiated from each other. The expression of VmSPS1
and VmSPS2 showed initially up-regulation in berries
in ABA treatments and then down-regulation after 96 h
compared to control berries, while the VmSPS3 expression was
significantly down-regulated by ABA (Figures 5C–E) indicating
that ABA does not advance sucrose formation in bilberry
fruits.

Silencing of VmNCED1 in Bilberry Fruit
by Virus-Induced Gene Silencing (VIGS)
The effect of ABA on bilberry fruit ripening and anthocyanin
biosynthesis was further studied by silencing VmNCED1, the
key gene in ABA biosynthetic pathway. VmNCED1-VIGS vector
was injected into unripe green bilberry fruits attached to
bilberry plants. After 4 weeks of injection, chimeric fruits with
green sectors at the site of injection were found (Figure 6A).
The transcript levels of the VmNCED1 were confirmed to be
suppressed in these fruits compared to control fruits as well as
in green sectors of the chimeric fruits compared to red sectors
(Figure 6B). The silencing ofVmNCED1 was accompanied by the
down-regulation in the expression of anthocyanin biosynthetic
genes VmCHS, VmF3H, VmF3′5′H, VmANS, and VmUFGT in
intact bilberry fruits injected with VmNCED1-VIGS vector as
well as in green sectors of the fruits compared to red sectors
(Figure 6B).

FIGURE 5 | Effect of post-harvest ABA and sugar treatments on the
expression of key ABA and sucrose biosynthetic genes VmNCED1 (A), VmSS
(B), VmSPS1 (C), VmSPS2 (D), and VmSPS3 (E) in bilberry fruit. The
treatments were: ABA (0.5 and 2 mM), glucose (50 and 200 mM), fructose (50
and 200 mM), sucrose (50 and 200 mM), 0.5 mM ABA + 200 mM sucrose,
200 µM fluridone or water (control). Relative expression of the genes was
quantified by qRT-PCR and normalized to VmGAPDH. Values represent
means ± SEs of three replicates. Asterisks indicate significant differences
from respective control (∗P ≤ 0.05, ∗∗P ≤ 0.01, ∗∗∗P ≤ 0.001, one-way
ANOVA with Tukey’s HSD test).
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FIGURE 6 | Effect of VmNCED1 silencing on anthocyanin biosynthesis in ripening bilberry fruit. Green unripe fruits still attached to the bilberry plants were injected
with VmNCED1-VIGS vector or pBINTRA6 vector only (control). Arrows indicate injection sites. Fruits were evaluated 4 weeks after injection for color (A), and the
expression of VmNCED1 and the key anthocyanin biosynthetic genes in intact fruits as well as in green and red sectors of chimeric fruits (B). Relative expression of
the genes was quantified by qRT-PCR and normalized to VmGAPDH. Values represent means ± SDs of three replicates.

Expression of Genes Associated With
Cell Wall Modification in Response to
Post-harvest Treatments With ABA and
Sugars
In order study the effect of ABA and sugars on other ripening-
related processes, we analyzed the expression of several genes
encoding cell wall modifying enzymes in bilberry fruit in
response to the post-harvest treatments. As shown in Figure 7,
ABA significantly increased the expression of some of the genes
associated with cell wall modification, including genes indicated
in pectin modification VmPL, VmRGLyase, VmβGAL1, and
VmβGAL2 as well as genes involved in the depolymerization of
hemicellulose VmXTH, VmCEL, and three expansins (VmEXP1,
VmEXP2, and VmEXP3). The tested isoforms of PE, PG, or
XYL responded to ABA treatment by down-regulating their
expression. Instead, the sugar treatments could elevate expression
of some genes associated with cell wall modification and the
treatment with glucose and fructose significantly elevated the
expression of VmPE1 and VmPG1 (Figure 7).

Effect of Post-harvest Treatments With
ABA and Sugars on the Expression of
Potential Bilberry Fruit Ripening
Regulators
In order to get an insight into the ABA signaling transduction
in bilberry fruit ripening-related processes, we identified from
the publicly available Vaccinium transcriptome databases the

closest homologs for the genes encoding TFs that have earlier
been demonstrated to have a role in ripening regulation or
anthocyanin biosynthesis in other fruits. From the tested TFs,
expression of VmSCL8, VmMADS18, VmMADS9, VmSHP, and
VmBL were significantly up-regulated by ABA indicating their
potential involvement in ABA-regulated fruit ripening processes
in bilberry (Figure 8A). Also VmTDR4, that has earlier been
shown to be involved in anthocyanin accumulation in ripening
bilberry fruit (Jaakola et al., 2010), was significantly up-regulated
by ABA treatments. Expression of VmMADS18 and VmBL
were also significantly up-regulated by fructose and sucrose,
respectively (Figure 8A).

The expression of these TFs was further analyzed during
bilberry fruit development and ripening. The expression of
VmSCL8 and VmMADS18 was significantly elevated in ripe
fruit (VmMADS18 also at stage 2) indicating a role in ripening
processes at late stage of bilberry fruit ripening (Figure 8B). The
expression of the genes VmMADS9, VmSHP, and VmBL was
significantly up-regulated (P ≤ 0.001) earlier during the fruit
development and at the onset of fruit ripening together with
VmTDR4 (Figure 8B).

DISCUSSION

ABA Is a Positive Regulator of Bilberry
Fruit Ripening Processes
A central role for the plant hormone ABA in promoting fruit
ripening has been demonstrated during recent years. Exogenous
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FIGURE 7 | Effect of post-harvest ABA and sugar treatments on the expression cell wall modifying genes VmPE1 (A), VmPE2 (B), VmPL (C), VmPG1 (D), VmPG2
(E), VmRGLyase (F), VmβGAL1 (G), VmβGAL2 (H), VmXTH (I), VmCEL (J), VmXYL (K), VmEXP1 (L), VmEXP2 (M), and VmEXP3 (N) in bilberry fruit. The treatments
were: ABA (0.5 and 2 mM), glucose (200), fructose (200 mM), sucrose (200 mM), 0.5 mM ABA + 200 mM sucrose, or water (control). Relative expression of the
genes was quantified by qRT-PCR after 4 days of the beginning of the experiment and normalized to VmGAPDH. Values represent means ± SEs of three replicates.
PE, pectin esterase; PL, pectate lyase; PG, polygalacturonase; RGLyase, rhamnogalacturonate lyase; βGAL, β-galactosidase; XTH, xyloglucan
endotransglycosylase/hydrolase; CEL, endo-β-1,4 glucanase: XYL, β-xylosidase; EXP, expansin. Asterisks indicate significant differences from control in Student’s
t-Test (∗P ≤ 0.05, ∗∗P ≤ 0.01, ∗∗∗P ≤ 0.001).

application of ABA has been shown in many studies to advance
especially non-climacteric fruit ripening and the associated
anthocyanin accumulation in grape berries (Wheeler et al.,
2009; Koyama et al., 2010; Villalobos-González et al., 2016),
strawberries (Chai et al., 2011; Jia et al., 2011; Kadomura-
Ishikawa et al., 2015; Chen et al., 2016), sweet cherries (Luo
et al., 2014; Shen et al., 2014), and litchi fruit (Wei et al.,
2011; Singh et al., 2014). Moreover, treatments with inhibitors
of ABA biosynthesis, such as fluridone and nordihydroguaiaretic
acid (NDGA), delay fruit ripening and decrease anthocyanin
accumulation (Jia et al., 2011; Shen et al., 2014; Kadomura-
Ishikawa et al., 2015).

In bilberry, the accumulation of anthocyanin pigments
is an important indicator of fruit ripening. Our previous
studies have demonstrated an increase in ABA content and
ABA biosynthesis at the onset of bilberry fruit ripening
preceding anthocyanin accumulation (Karppinen et al., 2013,
2016). Similarly, Zifkin et al. (2012) demonstrated a substantial
increase in ABA level in highbush blueberries (V. corymbosum)
at the initiation of fruit ripening suggesting a role for
ABA in fruit ripening regulation. However, contradictory
results on the effect of ABA in anthocyanin accumulation
have been reported when fruits of genus Vaccinium have

been treated with ABA. Oh et al. (2018) demonstrated that
exogenous application of ABA increased northern highbush
blueberry (V. corymbosum) fruit coloration and accumulation
of anthocyanins, especially malvidin, delphinidin, and petunidin
glycosides. Instead, exogenous ABA application delayed ripening
of southern highbush blueberries (V. darrowii; Buran et al., 2012)
while ABA had no effect on the anthocyanin accumulation in
lowbush blueberry (V. angustifolium; Percival and MacKenzie,
2007) or in white cranberries (V. macrocarpon; Forney et al.,
2009).

The data from the current study clearly demonstrates that
ABA induces bilberry fruit anthocyanin biosynthesis. Exogenous
ABA applied to unripe bilberry fruits either as pre- or post-
harvest treatment promoted berry coloration and anthocyanin
accumulation. In addition, the post-harvest treatment with ABA
biosynthesis inhibitor, fluridone, delayed bilberry fruit coloration
and reduced fruit anthocyanin content. The anthocyanin
accumulation in bilberry fruit was supported by the gene
expression data demonstrating that all the genes related to
anthocyanin biosynthesis were significantly induced by ABA.
Especially the expression ofVmUFGT andVmF3′5′H were highly
induced in bilberry fruit by post-harvest ABA treatment. At
the branch point in flavonoid biosynthetic route, F3′H leads
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FIGURE 8 | Expression of potential ripening-related transcription factors (TFs) in response to post-harvest ABA and sugar treatments (A) and during bilberry fruit
development (B). The gene expression was analyzed 4 days after the beginning of the treatments. The treatments were: ABA (0.5 and 2 mM), glucose (200 mM),
fructose (200 mM), sucrose (200 mM), 0.5 mM ABA + 200 mM sucrose, or water (control). Relative expression of the genes was quantified by qRT-PCR and
normalized to VmGAPDH. Values in (A) represent means ± SEs of three replicates and asterisks significant differences from control in Student’s t-Test (∗P ≤ 0.05,
∗∗P ≤ 0.01, ∗∗∗P ≤ 0.001). Values in (B) represent means ± SEs of four replicates and asterisks significant increase from previous developmental stage in Student’s
t-Test (∗P ≤ 0.05, ∗∗P ≤ 0.01, ∗∗∗P ≤ 0.001). Stages 1–5 indicate the bilberry fruit developmental stages from flower to ripe berry.

to cyanidin-derived anthocyanins while F3′5′H activity leads
to delphinidin-derived compounds (Supplementary Figure S1).
Earlier, exogenous ABA treatment has been shown to modify
fruit anthocyanin profile (Koyama et al., 2010; Singh et al.,
2014; Ju et al., 2016). Our results may imply that in bilberry
ABA promotes especially biosynthesis of delphinidin-derived
compounds similarly as reported in highbush blueberries by Oh
et al. (2018). Also in grape berries, the treatment with high
ABA concentration increased the ratio of delphinidin-derived
anthocyanins to cyanidin-derived anthocyanins (Ju et al., 2016).
The earlier reported contradictory results concerning the role
of ABA as a regulator of anthocyanin accumulation among
different Vaccinium fruits may reflect the differences among the
species or a dose of ABA. Also, timing of ABA application
has been reported to be critical in ripening promotion among
other fruits (Soto et al., 2013; Wang et al., 2013; Luo et al.,
2014).

Our results of silencing of VmNCED1 gene also evidenced
the role of ABA in bilberry anthocyanin biosynthesis. 9-cis-
epoxycarotenoid dioxygenase (NCED), catalyzing the oxidative
cleavage of 9-cis-isomers of violaxanthin and neoxanthin to
xanthoxin, is considered as the key enzyme responsible for ABA
biosynthesis (Leng et al., 2014), also in fruits of genus Vaccinium
(Zifkin et al., 2012; Karppinen et al., 2013). In the present
study, silencing of VmNCED1 in bilberry fruits by virus-induced

gene silencing (VIGS) resulted in chimeric fruits with green
sectors at the site of infection. The silencing of VmNCED1
was accompanied by the down-regulation in the expression of
the key anthocyanin biosynthesis genes. Our results are similar
to previously reported. Previously, Shen et al. (2014) showed
that silencing of PacNCED1 led to the decrease in anthocyanin
biosynthesis and resulted in partly colorless sweet cherries. In
strawberries, the down-regulation of FaNCED1 by VIGS was
demonstrated to reduce ABA accumulation, delay fruit ripening
and anthocyanin biosynthesis, and to lead partly uncolored
fruits (Jia et al., 2011; Medina-Puche et al., 2014; Kadomura-
Ishikawa et al., 2015). Furthermore, the suppression of SlNCED1
expression in tomato has been shown to slow down ripening,
elongate fruit shelf life and enhance fruit firmness (Sun et al.,
2012; Ji et al., 2014).

In the current study, post-harvest ABA treatment was also
found to increase expression of VmNCED1 indicating that ABA
regulates its own biosynthesis in bilberry fruit. Earlier, similar
results have been reported and externally applied ABA has been
found to elevate NCED gene expression and ABA synthesis in
grapes (Wheeler et al., 2009), cucumber (Wang et al., 2013),
and sweet cherry (Luo et al., 2014). Up-regulation of FaNCED1
expression by ABA has also been demonstrated in strawberry
fruits (Chen et al., 2016; Medina-Puche et al., 2016) and it was
suggested that the autocatalytic biosynthesis of ABA may be
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necessary for the induction of high increase in ABA production
at fruit ripening (Medina-Puche et al., 2016).

Both transcriptomic and proteomic level studies have revealed
that ABA regulates many aspects of non-climacteric fruit
ripening (Giribaldi et al., 2010; Li et al., 2015; Medina-Puche
et al., 2016; Rattanakon et al., 2016). In addition to pigment
formation, fruit ripening is associated with other ripening-related
processes, including fruit softening. Structural changes in cell
wall polysaccharides pectin, hemicellulose and cellulose due to
the action of hydrolytic enzymes and expansins lead to a loss
of firmness of fruit pulp at late stage of fruit ripening (Goulao
and Oliveira, 2008; Payasi et al., 2009). Studies in non-climacteric
grapes (Koyama et al., 2010), strawberry (Li et al., 2014), and
cherries (Luo et al., 2014) have implicated that the fruit ripening-
related softening is regulated by ABA, and in northern highbush
blueberry exogenous ABA was shown to decrease fruit firmness
(Oh et al., 2018). In climacteric tomato, involvement of ABA
in cell wall degradation was proven by silencing of SlNCED1
leading to higher pectin content, enhancement in fruit firmness
and down-regulation in expression of genes encoding cell wall
degrading enzymes (Sun et al., 2012).

Bilberry fruit has a short post-harvest shelf life due to relatively
rapid softening. However, gene expression associated with
ripening-related fruit softening has not been studied previously
in bilberry or other Vaccinium species. In the present study,
post-harvest ABA treatment during bilberry fruit ripening led
to the induction in the expression of genes associated with cell
wall modifications. Among these, ABA induced genes encoding
pectin-modifying enzymes VmPL, VmRGLyase, VmβGAL1, and
VmβGAL2 as well as genes involved in depolymerization of
hemicellulose, including VmXTH, VmCEL, and three expansins
(VmEXP1, VmEXP2, and VmEXP3). Earlier, fruit softening
related gene expression has been studied extensively in
strawberry having also a short shelf life. Indications that
ABA activates expression of FaPL, FaCEL, FaRGlyase, FcXTH1,
FaβGal4, FaXYL1 and expansins have been reported (Bustamante
et al., 2009; Molina-Hidalgo et al., 2013; Opazo et al., 2013; Chen
et al., 2016; Medina-Puche et al., 2016; Paniagua et al., 2016).
However, earlier studies have shown that the textural changes
occurring during fruit ripening are characteristic to particular
fruit species, and are due to differences in type and extent of cell
wall modifications and the expression of the modifying enzymes
during ripening (Goulao and Oliveira, 2008; Payasi et al., 2009).
Overall, our results indicate that the expression of many genes
involved in cell wall disassembly is enhanced during bilberry fruit
ripening by ABA while the expression of some of the genes/gene
isoforms is not induced by ABA.

Sugars Do Not Induce Bilberry Fruit
Ripening Processes
Soluble sugars have been indicated during recent years as fruit
ripening regulators in some non-climacteric fruits acting as
signaling molecules rather than a carbon source. The role of
sugars in fruit ripening has been studied in strawberry and
grapes where especially sucrose has been shown to accelerate
fruit ripening and anthocyanin biosynthesis. In strawberry, the

signaling function of sucrose in fruit ripening was proposed when
exogenous sucrose injected at 50 mM dramatically accelerated
the fruit ripening while glucose had smaller but also obvious
role in ripening and anthocyanin accumulation (Jia et al.,
2011, 2013b). Exogenous sucrose at 100 mM was shown to
accelerate strawberry fruit ripening in both pre- and post-harvest
experiments with injected and immersed berries, respectively
(Jia et al., 2013a). Similar results have been reported for some
grape varieties (Lecourieux et al., 2014). Recently, Jia et al.
(2017) showed that treatments with sugars, especially sucrose,
induced anthocyanin biosynthesis and fruit softening in detached
Fujiminori grapes. Also, Zheng et al. (2009) demonstrated
elevated anthocyanin biosynthesis and accumulation in Cabernet
Sauvignon grape berry disks after immersion in solutions
containing 50–200 mM glucose, sucrose, or fructose. Spraying
with sucrose either alone or in combination with ABA has been
shown to increase anthocyanin biosynthesis and accumulation
in Crimson Seedless grape berries (Ferrara et al., 2015; Olivares
et al., 2017).

The role of sugars in bilberry fruit ripening and anthocyanin
biosynthesis has not been studied earlier. Based on the results
of the present study, immersion of bilberry fruits into 50 mM
or 200 mM glucose, fructose, or sucrose solution does not
induce anthocyanin biosynthesis and accumulation but slightly
elevates the expression of some genes associated with cell wall
modification. Furthermore, sucrose in the ABA + Suc treatment
did not enhance the ripening response induced by ABA alone.
These results indicate that the role of sugars in the regulation
of bilberry fruit ripening differentiates from that reported to
strawberry and grapes, and sugars seem to have less important
regulatory role in bilberry fruit ripening. However, intensity of
the response may also vary between different studies based on the
application method of the sugar solutions.

A cross-signaling between ABA and sucrose in anthocyanin
biosynthesis has been suggested (Loreti et al., 2008). In strawberry
fruit, exogenous sucrose has been shown to stimulate ABA
accumulation by promoting dramatically the expression of
FaNCED (Jia et al., 2011, 2013a,b). Also, silencing of sucrose
transporter FaSUT1 in strawberry led to a decrease in both
sucrose and ABA content indicating connection between the two
signaling routes (Jia et al., 2013b). In fact, a model for interaction
of these two signaling molecules as the core mechanism in
regulation of strawberry fruit ripening was recently suggested
(Cherian et al., 2014; Jia et al., 2016). Jia et al. (2013b)
proposed that sucrose functions as a signal upstream of ABA and
induces strawberry fruit ripening both through ABA-dependent
and ABA-independent pathways. The effect of ABA on sugar
metabolism has also been shown in grape fruits (Çakir et al., 2003;
Pan et al., 2005).

However, in the current study, sucrose or other sugar
treatments had no inducing effect on VmNCED1 expression
suggesting that sugars do not induce ABA biosynthesis in
bilberry during fruit ripening. We also studied the effect of
ABA on sucrose biosynthetic gene expression. These results do
not support the assumption that ABA might induce sucrose
biosynthesis in bilberry fruit. Sucrose phosphate synthase
(SPS), catalyzing sucrose synthesis, and sucrose synthase (SS),
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catalyzing reversible conversion of sucrose to monosaccharides,
are indicated as the key enzymes affecting sucrose accumulation
in different fruits (Choudhury et al., 2009; Dai et al., 2011; Feng
et al., 2012; Li et al., 2012; Tian et al., 2012; Jia et al., 2016).
High rate of sucrose accumulation during strawberry ripening
was demonstrated to be accompanied by the high expression
level of FaSPS genes and low expression of FaSS gene (Jia et al.,
2016). Furthermore, FaSS1 was suggested as important regulator
of strawberry fruit ripening which expression was significantly
inhibited by ABA and sucrose treatments (Zhao et al., 2017).
Based on our studies, ABA does not induce expression of the
VmSPS genes in bilberry fruit but increases expression of VmSS
that is contrast to the results reported in strawberry (Zhao et al.,
2017).

Overall, our results indicate that the role of sugars in
bilberry fruit differs from strawberry, the current model of non-
climacteric fruit ripening. In bilberry fruit, glucose, fructose,
or sucrose seem not to act as major signaling molecules to
clearly regulate and induce anthocyanin biosynthesis. Despite
that strawberry is not an ovary-derived fruit and, thus, considered
as a false fruit deviating from bilberry fruit, the regulatory
mechanisms of fruit development and ripening has been
considered to be conserved among angiosperms (Daminato et al.,
2013; Karlova et al., 2014). In order to further clarify the fruit
ripening regulation and signaling in bilberry, the signaling route
of ABA-mediated bilberry fruit ripening needs to be studied in
more detail in the future.

ABA Up-Regulates Expression of
Potential Bilberry Fruit Ripening
Regulators
Several types of TFs belonging to different families have earlier
been identified as regulators of fruit ripening and anthocyanin
biosynthesis, and some of them are regulated by ABA. Fruit
ripening regulation has been studied extensively in tomato
and in fruits of Rosaceae family. In the current study, we
aimed to identify potential TFs of ABA-regulated bilberry
fruit ripening processes by searching the closest homologs of
functionally characterized TFs of fruit ripening/anthocyanin
biosynthesis from publicly available Vaccinium transcriptome
libraries. Some of the TFs showed highly increased expression
in bilberry fruits after ABA treatment. Furthermore, we
found elevated TF transcript levels in ripening or ripe fruits
indicating a potential role in bilberry fruit ripening-related
processes.

One of them was VmSCL8, the closest bilberry homolog for
FaSCL8 that is similar to AtSCL8 in Arabidopsis, a member of
SCARECROW-LIKE gene family, which members are known
to have general roles in plant development. FaSCL8 expression
has been shown to be induced in strawberry receptacle at
fruit ripening increasing further in ripe red fruit indicating
a role as a regulator of fruit ripening (Pillet et al., 2015).
Furthermore, silencing FaSCL8 in strawberry resulted in lower
transcript accumulation of PAL, CHS, CHI, F3H, UFGT, and
MYB10 but increased F3′H and ANR transcripts suggesting
a role as a general modulator of flavonoid pathway possibly

affecting cyanidin-pelargonidin balance by enhancing expression
of flavonoid regulating MYB TFs (Pillet et al., 2015). Recently,
Medina-Puche et al. (2016) showed that the FaSCL8 expression in
strawberry is elevated by ABA. In the current study, VmSCL8 also
showed elevated expression after ABA treatment. The expression
of VmSCL8 was highest in ripe bilberry fruit similarly to FaSCL8
indicating a possible role in the ABA-regulated bilberry fruit
ripening at the late stages of ripening.

Similarly, elevated expression after ABA treatments in bilberry
fruits was observed for three MADS-box genes, VmMADS18,
VmMADS9, and VmSHP, the bilberry homologs for PyMADS18,
FaMADS9, and FaSHP, respectively. MADS-box genes represent
highly conserved TF family in plants and have been shown
to play important roles in floral and fruit development. While
the expression of VmMADS18 was high in this study both
in small green and ripe bilberry fruit, the expression of
VmMADS9 increased in large green stage and VmSHP in
ripening fruit, indicating their differential roles in bilberry fruit.
The PyMADS18 has been suggested to be involved in the
regulation of anthocyanin biosynthesis in pear (Wu et al., 2013).
During the fruit ripening, expression of PyMADS18 was shown to
increase at early stages of development, after that decreasing until
it was up-regulated again at the end of fruit maturation period
(Wu et al., 2013) resembling the expression pattern obtained in
this study for VmMADS18.

SEPALLATA (SEP)-like MADS-box TFs have been indicated
to play central roles in ripening of both climacteric and non-
climacteric fruits, best known example being LeMADS-RIN
(Seymour et al., 2011). FaMADS9, a fruit-related SEP1/2-like
gene was indicated as a positive regulator of both development
and ripening of strawberry fruit with its expression up-regulated
at white stage of strawberry fruit development (Seymour et al.,
2011). Silencing of the gene led to inhibition of normal
development of strawberry fruit (Seymour et al., 2011). The
gene was shown to be ABA-inducible later by Daminato et al.
(2013). Also FaSHP, a C-type MADS-box gene belonging to a
SHATTERPROOF group was indicated as a positive regulator
of strawberry fruit ripening with its expression induced by
ABA (Daminato et al., 2013; Medina-Puche et al., 2016). The
expression of the FaSHP increases in strawberry fruit after large
green stage due to ABA control being highest at pink stage
(Daminato et al., 2013) similarly to VmSHP shown in our study.
Overall, our results indicate that VmMADS18, VmMADS9, and
VmSHP have potential roles in the ABA-regulated bilberry fruit
development and ripening.

The fourth studied MADS-box gene in the present study
was VmTDR4 belonging to a SQUAMOSA group. VmTDR4
was earlier demonstrated to have a role in the anthocyanin
accumulation during bilberry fruit ripening with its expression
especially associated in flesh of ripening fruit (Jaakola et al., 2010).
Silencing of VmTDR4 in bilberry fruit resulted in chimeric berries
with decreased expression of CHS, DFR, and ANS but elevated
expression of ANR indicating modulation of flavonoid pathway
through flavonoid regulating MYB TFs (Jaakola et al., 2010). Also
tomato homolog for TDR4 induced anthocyanin biosynthesis
when expressed in Arabidopsis siliques (Jaakola et al., 2010). The
response of VmTDR4 to ABA has not been studied earlier but
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the present study demonstrates that VmTDR4 is highly induced
by ABA indicating its role in the ABA-regulated fruit ripening
associated anthocyanin accumulation.

Also NAC family TFs have been proposed as activators of fruit
ripening with some of their expression shown to be increased
by ABA (Zhu et al., 2014; Jiang et al., 2017; Moyano et al.,
2018). Recently, a PpBL gene (BLOOD) was indicated as a
key regulator of anthocyanin biosynthesis in maturing blood-
fleshed peach fruit (Zhou et al., 2015). It was shown to act as a
heterodimer with another NAC family member, PpNAC1 (Zhou
et al., 2015). In our study, the closest bilberry homolog for the
peach BL gene, VmBL, showed a significant induction in its
expression by ABA treatments as well as increased expression
at the onset of bilberry fruit ripening slightly before VmTDR4.
This suggests that VmBL could have a role in the regulation of
bilberry fruit ripening and/or anthocyanin biosynthesis through
ABA-mediated signaling.

CONCLUSION

This is the first report regarding the role of ABA and sugars
on the regulation of bilberry fruit ripening. By using both pre-
and post-harvest experiments and a molecular approach, we
showed that ABA is an important positive regulator of bilberry
fruit ripening processes, inducing anthocyanin biosynthesis and
fruit softening. However, based on our results, sugars (glucose,
fructose, and sucrose) have minor roles in the regulation of
bilberry fruit ripening as sugars failed to induce anthocyanin or
ABA biosynthesis in bilberry fruit but could elevate expression
of some genes associated with cell wall modification. Moreover,
sucrose did not enhance the effect of ABA in ripening responses.
Our results suggest that the ripening regulation may be different

in bilberry fruit compared to the current model of non-
climacteric fruit ripening, strawberry, in which the coordinated
regulation by the two signaling molecules, ABA and sucrose, have
been proposed to have a key role in fruit ripening.
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Light signaling and plant hormones, particularly ethylene and auxins, have been
identified as important regulators of carotenoid biosynthesis during tomato fruit ripening.
However, whether and how the light and hormonal signaling cascades crosstalk to
control this metabolic route remain poorly elucidated. Here, the potential involvement of
ethylene and auxins in the light-mediated regulation of tomato fruit carotenogenesis was
investigated by comparing the impacts of light treatments and the light-hyperresponsive
high pigment-2 (hp2) mutation on both carotenoid synthesis and hormonal signaling.
Under either light or dark conditions, the overaccumulation of carotenoids in hp2
ripening fruits was associated with disturbed ethylene production, increased expression
of genes encoding master regulators of ripening and higher ethylene sensitivity
and signaling output. The increased ethylene sensitivity observed in hp2 fruits was
associated with the differential expression of genes encoding ethylene receptors and
downstream signaling transduction elements, including the downregulation of the
transcription factor ETHYLENE RESPONSE FACTOR.E4, a repressor of carotenoid
synthesis. Accordingly, treatments with exogenous ethylene promoted carotenoid
biosynthetic genes more intensively in hp2 than in wild-type fruits. Moreover, the
loss of HP2 function drastically altered auxin signaling in tomato fruits, resulting in
higher activation of the auxin-responsive promoter DR5, severe down-regulation of
AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) genes and altered accumulation of AUXIN
RESPONSE FACTOR (ARF ) transcripts. Both tomato ARF2 paralogues (Sl-ARF2a and
SlARF2b) were up-regulated in hp2 fruits, which agrees with the promotive roles played
by these ARFs in tomato fruit ripening and carotenoid biosynthesis. Among the genes
differentially expressed in hp2 fruits, the additive effect of light treatment and loss of HP2
function was particularly evident for those encoding carotenoid biosynthetic enzymes,
ethylene-related transcription factors, Aux/IAAs and ARFs. Altogether, the data uncover
the involvement of ethylene and auxin as part of the light signaling cascades controlling
tomato fruit metabolism and provide a new link between light signaling, plant hormone
sensitivity and carotenoid metabolism in ripening fruits.

Keywords: fruit ripening, auxin, ethylene, photomorhogenesis, tomato, climacteric, high pigment mutant,
light–dark
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INTRODUCTION

Light plays a dual role during plant development, providing
energy for photosynthesis and information for adjusting plant
growth, development and reproduction. Processes as diverse
as seed germination, seedling de-etiolation, phototropism,
flowering, fruit pigmentation and entrainment of circadian
rhythms are intrinsically regulated by light stimuli (Azari et al.,
2010a; Llorente et al., 2016a). In tomato, a model crop for fleshy
fruits, multiple photomorphogenic mutants have been identified
over the years, greatly facilitating the deciphering of the relevance
of light signaling in fruit biology and quality traits (Levin et al.,
2006; Azari et al., 2010b). Among these genotypes, the tomato
high pigment (hp) mutants hp1 and hp2 have been instrumental in
illustrating the positive role of light signaling in fruit metabolism
and nutritional composition. These mutants are characterized
by their exaggerated light responsiveness, over-accumulation of
chlorophyll and chloroplasts in leaves and immature fruits as
well as intense red fruit pigmentation (Mustilli et al., 1999; Levin
et al., 2003, 2006). Compared to their WT counterparts, hp
ripe fruits display higher levels of health-promoting substances,
including carotenoids, flavonoids, tocopherol (vitamin E) and
ascorbic acid (vitamin C) (Yen et al., 1997; Liu et al., 2004;
Kolotilin et al., 2007). Fruit carotenogenesis is particularly up-
regulated in hp mutants, which agrees with the positive influence
of light on isoprenoid metabolism in both fruit and vegetative
tissues (Piringer and Heinze, 1954; Alba et al., 2000; Schofield and
Paliyath, 2005).

Genetic analysis of hp1 and hp2 alleles revealed mutations in
tomato homologs of the nuclear proteins UV-DAMAGED DNA
BINDING PROTEIN1 (DDB1) and DEETIOLATED1 (DET1),
respectively, two negative regulators of light signal transduction
(Mustilli et al., 1999; Schroeder et al., 2002; Levin et al., 2003;
Lieberman et al., 2004; Liu et al., 2004). Confirming these
findings, silencing of Sl-DDB1/HP1 or Sl-DET1/HP2 greatly
promotes plastid biogenesis and carotenoid accumulation in fruit
tissues (Davuluri et al., 2004, 2005; Wang et al., 2008). Besides
Sl-DDB1/HP1 and Sl-DET1/HP2, other components of the light
signaling cascade have also been implicated in controlling tomato
fruit metabolism, including the E3 ubiquitin-ligases CULLIN4
(CUL4) and CONSTITUTIVELY PHOTOMORPHOGENIC 1
(COP1), as well as the transcription factors ELONGATED
HYPOCOTYL 5 (HY5) and PHYTOCHROME-INTERACTING
FACTORs (PIFs) (Liu et al., 2004; Davuluri et al., 2005; Wang
et al., 2008; Llorente et al., 2016b). Constitutive silencing of
tomato CUL4, COP1 or PIF1a generates fruits with increased
carotenoid levels (Liu et al., 2004; Wang et al., 2008; Llorente
et al., 2016b), whereas the opposite phenotype is caused by
the suppression of the light-signaling effector HY5 (Liu et al.,
2014). Significant alterations in carotenoid biosynthesis have
also been observed in ripening fruits of transgenic plants with
fruit-specific silencing of phytochrome (PHY)-encoding genes
(Bianchetti et al., 2018), as well as in cryptochrome1a (CRY1a)-
deficient mutants and CRY1a-overexpressing lines (Liu et al.,
2018).

Virtually all fruit metabolic processes influenced by light
are also strictly controlled by an integrated, multi-hormonal

signaling network (Giovannoni, 2004; Karlova et al., 2014; Liu
M. et al., 2015). Compelling data implicate ethylene as a primary
regulator of multiple ripening-related physiological, biochemical,
and molecular processes (Barry and Giovannoni, 2007; Pech
et al., 2012). Accordingly, disturbed ethylene biosynthesis,
perception or signal transduction directly impact fruit ripening
initiation and progression (Liu M. et al., 2015). Without
undermining the role of ethylene, auxins have also been shown
to interfere with fruit ripening and carotenoid accumulation,
as revealed by the delayed ripening phenotype and the down-
regulation in carotenoid biosynthesis observed in IAA-treated
tomato fruits (Su et al., 2015).

Although light signaling and plant hormones, such as ethylene
and auxins, are essential regulators of tomato fruit ripening
and carotenogenesis, whether and how the light and hormonal
signaling cascades crosstalk to control these metabolic processes
remains poorly elucidated. Here, the potential involvement of
ethylene and auxins in the light-mediated regulation of tomato
fruit ripening and carotenogenesis was investigated by comparing
the impact of light and dark treatments, isolated or combined
with the loss of Sl-DET1/HP2 function, on both carotenoid
synthesis and hormonal signaling.

MATERIALS AND METHODS

Plant Material and Growth Conditions
Wild-type (WT) Solanum lycopersicum L. (cv. Micro-Tom), a
near-isogenic line (NIL) harboring the mutation high pigment-
2 (hp2), and transgenic plants carrying the synthetic auxin-
responsive (DR5) or ethylene-responsive (EBS) promoters fused
to the reporter gene uid (encoding a β-glucuronidase, GUS)
were obtained from the tomato mutant collection maintained
at ESALQ, University of São Paulo (USP), Brazil (Carvalho
et al., 2011). Crosses and successive screening were performed to
generate the double mutants hp2-DR5::GUS and hp2-EBS::GUS.
Plants were grown in 6-L rectangular pots containing a 1:1
mixture of commercial substrate (Plantmax HT, Eucatex, São
Paulo, Brazil) and expanded vermiculite, supplemented with
1 g L−1 of NPK 10:10:10, 4 g L−1 of dolomite limestone
(MgCO3 + CaCO3) and 2 g L−1 thermophosphate (Yoorin
Master R©, Yoorin Fertilizantes, Brazil) in greenhouse under
automatic irrigation at an average mean temperature of 25◦C,
11.5 h/13 h (winter/summer) photoperiod and approximately
250–350 µmol m−2 s−1 PAR irradiance.

Light Treatments
Fruits at mature green (MG) stage were harvested about 30 days
after anthesis (dpa) and transferred to continuous white light or
maintained under absolute darkness (D) until reaching distinct
ripening stages. White light was delivered at around 50 µmol
m−2 s−1 and supplied by an array of SMD5050 Samsung
LEDs mounted in a temperature-controlled growth chamber
maintained at 25 ± 1◦C and air relative humidity at 80 ± 5%.
Top and bottom illumination were applied to homogenize the
light environment surrounding the fruits. Fruits were placed into
a 0.5-L sealed transparent vessel and continuously flushed with
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ethylene-free, humidified air (1 L min−1) to avoid accumulation
of ET inside the containers. Samples from light- or dark-
incubated fruits were harvested under white light or dim green
light, respectively. Harvesting was performed at the same daytime
to avoid possible fluctuations in the parameters due to circadian
rhythm. Pericarp samples (without seeds, columella, placental
tissues and locule walls) were harvested as soon as the fruits
had reached the following ripening stages: MG (displaying jelly
placental tissues, 2 days after harvesting), Bk (breaker, showing
the first external yellow color signals) and Bk1, Bk3, Bk6, and
Bk12, corresponding 1, 3, 6, and 12 days after Bk, respectively.
Fruits at distinct treatments achieved each ripening stage at a
different number of days of treatment. Four biological samples
composed of at least five fruits each were harvested at each
sampling time. Ethylene emission analysis and quantitative
in vitro GUS activity assays were performed immediately after
harvesting. For all other analyses, samples were frozen in liquid
N2, powdered and stored at−80◦C until use.

Hormonal Treatments
Fruits harvested at the MG stage were submitted to ethylene or
auxin treatment at 25◦C in the presence of white light (50 µmol
m−2 s−1). For the ethylene treatment, fruits were kept inside
transparent sealed tubes in the presence of 50 ppm of ethylene,
whereas control fruits were maintained in ethylene-free air. For
the auxin treatment, fruits were injected with a buffer solution
containing 10 mM 2-(N-morpholino) ethanesulfonic acid (MES)
pH 5.6, 3% sorbitol (w/v) and 100 µM of indole-3-acetic acid
(IAA) whereas control fruits were treated with buffer without
IAA (Su et al., 2015). After 6 h treatment, fruit pericarp samples
were collected before snap freezing in nitrogen.

Chlorophyll Quantification and
Carotenoid Profile
Chlorophyll extraction and quantification were carried
out as described in Bianchetti et al. (2018). Carotenoids
(namely lycopene, β-carotene and lutein) were extracted and
analyzed by high-pressure liquid chromatography (HPLC)
with photodiode array detector (PDA). Carotenoid extraction
was performed precisely as described by Bianchetti et al.
(2018). Chromatography was carried out on an Agilent
Technologies series 1100 HPLC system on a normal-phase
column Phenomenex (Luna C18; 250 × 4.6 mm; 5 µm particle
diameter) with a flow rate of 1 mL min−1 at 25◦C. The mobile
phase was a gradient of ethyl acetate (A) and acetonitrile:water
9:1 (v/v) (B): 0–4 min: 20% A; 4–30 min: 20–65% A; 30–
35 min: 65% A; 35–40 min: 65–20% A. Eluted compounds
were detected between 340 and 700 nm and quantified at
450 nm. The endogenous metabolite concentration was obtained
by comparing the peak areas of the chromatograms with
commercial standards.

Fruit Surface Color Measurement
Fruit surface color was assessed with a using Konica Minolta CR-
400 colorimeter, using the D65 illuminant and the L∗, a∗, b∗
space, and the data were processed to obtain hue and chroma

values. Three measures were taken at the equator of each fruit
and average values were calculated. The hue angle (in degrees)
was calculated according to the following equations: hue = tan−1
(b∗/a∗) if a > 0 and 180 + tan−1 (b∗/a∗) if a < 0 (Ecarnot et al.,
2013).

Antioxidant Activity
Antioxidant activity was measured using the method of Trolox
equivalent antioxidant capacity (TEAC). Frozen pericarp samples
(approximately 200 mg FW) ground in liquid nitrogen were
homogenized with 1 mL of 100 mM sodium acetate buffer (pH 5)
and shaken for 30 min at 4◦C. After centrifugation (4◦C, 5000 g,
10 min), the supernatant was discarded, 0.5 mL of hexane was
added to the pellet, and the suspension was kept shaking for
30 min at 4◦C. After centrifugation (4◦C, 5000 g, 10 min), the
supernatant was collected, and the same process was repeated
twice. The lipophilic antioxidant extract was concentrated and
suspended in 150 µL of hexane. Absorbance was read at
734 nm after 2 h of incubation under darkness. The activity of
the extract was determined by the deactivation of 2,2′-azino-
bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS+) compared
to a standard curve of 6-hydroxy-2,5,7,8-tetramethylchroman-2-
carboxylic acid (Trolox).

Auxin Measurements
Endogenous levels of indole acetic acid (IAA) were determined
by gas chromatography-tandem mass spectrometry-selecting ion
monitoring (GC-MS-SIM) as described by Santana-Vieira et al.
(2016). Frozen pericarp samples (approximately 100 mg FW)
were ground in liquid nitrogen and homogenized with 1 mL of
isopropanol:acetic acid (95:5, v/v). Precisely 0.5 µg [13C6]-IAA
(Cambridge Isotopes, Inc.) was added to each sample as internal
standards. Samples were incubated at 4◦C for approximately 2 h.
After centrifugation (4◦C, 16.000 g, 20 min), the supernatant
was collected, and 100 µL of ultrapure water and 500 µl of
ethyl acetate were added. After centrifugation (4◦C, 16.000 g,
5 min) the supernatant was collected, and this step was repeated.
The extract was completely vacuum dried and suspended in
50 µL methanol followed by a 30-min derivatization step at room
temperature using 40 µL (trimethylsilyl)diazomethane.

The analysis was performed with a gas chromatograph
coupled to a mass spectrometer (model GCMS-QP2010 SE,
Shimadzu) in selective ion monitoring mode. One microliter
of each sample was automatically injected (model AOC-20i,
Shimadzu) on splitless mode, using helium as the carrier gas
at a flow rate of 4.5 mL min−1 through a fused-silica capillary
column (30 m, 0.25 mm ID, 0.50-µm-thick internal film) DB-5
MS stationary phase in the following program: 2 min at 100◦C,
followed by gradients of 10◦C min−1 to 140◦C, 25◦C min−1 to
160◦C, 35◦C min−1 to 250◦C, 20◦C min−1 to 270◦C and 30◦C
min−1 to 300◦C. The injector temperature was 250◦C, and the
following MS operating parameters were used: ionization voltage,
70 eV (electron impact ionization); ion source temperature,
230◦C; and interface temperature, 260◦C. Ions with a mass
ratio/charge (m/z) of 130 and 189 (corresponding to endogenous
IAA) and 136 and 195 (corresponding to [13C6]-IAA) were
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monitored. Endogenous concentrations were calculated based on
extracted chromatograms at m/z 130 and 136.

Ethylene Emission
Ethylene emission was analyzed by gas chromatography with
a flame-ionization detector (GC-FID) as described in Melo
et al. (2016). Intact tomato fruits (typically 4 individuals) were
enclosed in a sealed transparent tube for 1 h under specific
experimental conditions. After incubation, 9-mL gas samples
were collected from tubes and injected into a glass vial headspace
previously flushed with ethylene-free air (1 L min−1) for 1 min.
At least three 1-mL aliquots of each sample were injected in
a headspace coupled to a Trace GC Ultra gas chromatography
(Thermo Electron) fitted with a flame ionization detector (GC-
FID) using an RT-alumina Plot column (Restek Corporation).
Nitrogen was used as the carrier gas at a flow rate of 3 mL min−1,
and commercial standard mixtures of ethylene were used for the
calibration curves. Column, injector and detector temperatures
were 34, 250, and 250◦C, respectively.

1-Aminocyclopropane-1-Carboxylic Acid
(ACC) Measurement
ACC was extracted and subsequently quantified as described by
Bulens et al. (2011). Frozen pericarp samples (approximately 1 g
FW) were ground in liquid nitrogen and homogenized with 4 mL
of a 5% (w/v) sulfosalicylic acid aqueous solution. Extracts were
shaken for 30 min at 4◦C at 180 rpm in the dark. The supernatant
was collected after centrifugation at 4◦C, 5000 g, for 10 min.
The reactions were performed by adding 1.4 mL of extract to
a reaction mixture composed of 0.4 mL of 10 mM HgCl2 and
0.2 mL of a 2:1 (v/v) solution of NaOCl 5%:NaOH 6 M. The final
product of this reaction, ethylene, was measured by GC-FID as
described above.

ACC Oxidase (ACO) Activity
ACO extraction and activity assay were performed according
to Bulens et al. (2011). Frozen pericarp samples (approximately
100 mg FW) were ground in liquid nitrogen and homogenized
with extraction buffer composed of 300 mM Tris-HCl (pH 8.0),
15 mg mL−1 insoluble polyvinylpolypyrrolidone (PVPP), 10%
(v/v) glycerol and 30 mM ascorbic acid. After centrifugation
(4◦C, 20000 g, 20 min), 200 µL of the supernatant was added
to 1.8 mL of reaction medium composed of 100 mM Tris-HCl
(pH 8.0), 10% (v/v) glycerol, 30 mM ascorbic acid, 100 µM
FeSO4, 50 mM NaHCO3, 5 mM DTT and 2 mM ACC. ACO
activity was estimated by measuring the ability of the extract to
convert exogenous ACC to ethylene after incubation at 30◦C for
60 min. The ethylene formed during the reactions was measured
by GC-FID as described above.

Quantitative GUS Activity Assay
GUS activity was assayed according to Melo et al. (2016).
Frozen pericarp samples (approximately 500 mg FW) were
ground in liquid nitrogen and homogenized in 1 mL extraction
buffer composed of 50 mM Hepes-KOH (pH 7.0), 5 mM
DTT and 0.5% (w/v) PVP. After centrifugation (4◦C, 20.000 g,

20 min), 200 µL aliquots of the supernatant were mixed with
200 µL of an assay buffer composed of 50 mM HEPES-
KOH (pH 7.0), 5 mM DTT, 10 mM EDTA and 2 mM 4-
methylumbelliferyl-β-D-glucuronide (MUG) and incubated at
37◦C for 30 min. Subsequently, aliquots of 100 µL were taken
from each tube and the reactions were stopped with 2.9 mL
of 0.2 M Na2CO3 (pH 9.5). Fluorescence was measured using
365 nm excitation and 460 nm emission wavelength (5 nm
bandwidth) by using a spectrofluorometer (LS55, Perkin Elmer).
The same instrument settings were maintained throughout the
experiments.

Gene Promoter Analyses
Promoter sequences were retrieved from Sol Genomics Network1

and analyzed using PlantPAN 2.0 platform2 (Chow et al., 2016) to
identify the regulatory motifs. Fragments of 3 kb upstream from
the initial codon ATG were analyzed for the presence of PBE-box
(CACATG), G-box (CACGTG), CA-hybrid (GACGTA) and CG-
hybrid (GACGTG) motifs, which are recognized by HY5 and/or
PIFs (Martínez-García et al., 2000; Song et al., 2008).

RNA Isolation and Quantitative RT-PCR
Analyses
Total RNA extraction was performed using ReliaPrepTM RNA
Tissue Miniprep System (Promega) according to manufacturer’s
instructions for fibrous tissues. Total RNA and integrity of
samples were determined using spectrophotometer and 1% (w/v)
agarose gel. Only RNA samples with 260/280 and 260/230
ratio values within 1.8–2.2 were used for the subsequent steps.
Approximately 1 µg of total RNA was treated with DNase
(DNase I Amplification Grade, Thermo Fisher Scientific) for
30 min at room temperature and complementary DNA (cDNA)
was synthesized using SuperScript R© IV Reverse Transcriptase
kit (Thermo Fisher Scientific) according to manufacturer’s
instructions. Only cDNA samples free of DNA contamination
were used in the subsequent steps.

Quantitative reverse-transcriptase PCR (qPCR) reactions were
performed using the StepOnePlusTM Real-Time PCR System
(Applied Biosystems) using 10 µl mix reaction composed
of 5 µL Power SYBR green 2X (Thermo Fisher Scientific),
2 µL cDNA sample and 200 nM of forward and 200 nM
of reverse primer. The amplification program consisted of
10 min initial step at 95◦C, followed by 40 cycles with
15 s 95◦C, 30 s 55/60◦C and 30 s 72◦C. Melting curve
was analyzed to detect unspecific amplifications and primer
dimerization. The primer sequences used in this study are listed
in Supplementary Table 1. Fluorescence data were analyzed
using LingReg PCR software, and expression values were
normalized against mean values of two references genes: Sl-
EXPRESSED and Sl-CAC, which have been already successfully
used to normalize data from fruit development and ripening
experiments (Expósito-Rodríguez et al., 2008; Bianchetti et al.,
2018).

1https://solgenomics.net/
2http://plantpan2.itps.ncku.edu.tw/
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Statistical Analysis
Two-way analysis of variance (ANOVA) was performed to
determine effects of genotype, light treatment and their
interactions, using JMP statistical software package (14th
edition)3. One-way ANOVA with Tukey’s test or Student’s
t-test was used to discriminate means of samples within and
between genotypes, respectively. Comparisons with P < 0.05
were considered statistically significant. Carotenoid-related data
were also compared via principal component analysis (PCA)
using JMP statistical software package.

RESULTS

Light Treatment and Loss of
Sl-DET1/HP2 Function Promote Fruit
Carotenoid Biosynthesis
The impacts of Sl-DET1/HP2 knockout or knockdown on tomato
fruit carotenogenesis have been exclusively investigated in fruits
ripening on-the-vine under greenhouse conditions (Davuluri
et al., 2004; Kolotilin et al., 2007; Azari et al., 2010a; Enfissi et al.,
2010; Sestari et al., 2014). However, after reaching the MG stage,
tomato fruits are also able to ripen off-the-vine (i.e., isolated from
the plant), a frequent commercial practice in harvesting tomato
fruit for human consumption (Sorrequieta et al., 2013).

Here, we demonstrated that the loss of Sl-DET1/HP2 function
promotes carotenogenesis even when tomato ripening occurs
separated from the plant under either light or absolute dark
conditions (Figure 1 and Supplementary Figure 1). Two-way
ANOVA showed that both the hp2 mutation and the light
treatment had a significant (P < 0.05) effect on carotenoid
biosynthesis and accumulation (Supplementary Table 2). In both
light- and dark-treated fruits, lutein and β-carotene levels were
significantly higher in hp2 than in the WT at virtually all sampling
stages (Figure 1B). Moreover, lycopene levels of dark-treated hp2
fruits were higher than the WT at the final stages of ripening
(i.e., Bk6 and Bk12). In agreement, the genes encoding key
carotenoid biosynthesis-related enzymes such as geranylgeranyl
diphosphate synthase (GGPS), phytoene synthase 1 (PSY1) and
phytoene desaturase (PDS) were strongly up-regulated during the
climacteric phase (i.e., Bk to Bk6) in both light- and dark-treated
hp2 fruits compared with WT counterparts (Figure 1C and
Supplementary Figure 1). Overall, Sl-GGPS, Sl-PSY1 and Sl-PDS
transcripts were less abundant in fruits maintained under dark
than under light conditions, and this dark-induced reduction
in mRNA levels was less marked in the hp2 mutant compared
to the WT (Figure 1C). Genes encoding the chloroplast-
and chromoplast-specific β-lycopene cyclases (LYCβ and CYCβ,
respectively) were also up-regulated in hp2 fruits compared to the
WT, particularly when ripening occurred under light conditions.
Among the carotenoid biosynthesis-related genes differently
expressed in hp2 fruits, the additive effect of light treatment and
loss of Sl-DET1/HP2 function was particularly observed at the Bk,
Bk1 and Bk12 stages (Supplementary Figure 1). Interestingly,

3http://jmp.com

lycopene levels were slightly higher in hp2 fruits ripened in the
dark than in light-treated ones (Figure 1B), which is very likely
due to the accumulation of this carotenoid because the opposite
pattern was observed for the transcript levels of Sl-PSY1 and
Sl-PDS, i.e., higher mRNA levels in the light than in the dark
conditions (Figure 1C).

In line with the increment in carotenoid content observed
in hp2 fruits, lipophilic extracts obtained from either dark-
or light-incubated fruits of the mutant exhibited higher values
of antioxidant capacity than the WT counterparts, a response
intensified under light conditions (Figure 1D). The influence
of the hp2 mutation on lycopene, β-carotene and antioxidant
capacity was moderated by the light treatment, as indicated by
a significant genotype x light treatment interaction (P < 0.0001,
Supplementary Table 2). Moreover, when PCA was performed
with carotenoid data, the model explained 62.2% of the data
variance for these conditions, displaying hp2 samples separated
from WT independently of the developmental stage or light
condition, and a strong positive correlation between the changes
in mRNA levels of genes encoding carotenoid biosynthetic genes
with the fruit carotenoid composition and antioxidant capacity
was confirmed (Supplementary Figure 2).

At MG, hp2 fruits displayed a distinctive dark-green
coloration, increased chlorophyll levels and higher color
saturation (chroma, which is indicative of color intensity)
compared to the WT (Supplementary Figure 3). In line with the
higher content of pigments in hp2 than in WT fruits, an overall
trend of higher values of fruit color intensity was observed in the
mutant fruits during ripening (Bk to Bk12) regardless of the light
conditions (Supplementary Figure 3).

As dark-incubated hp2 fruits showed carotenoid levels and
lipophilic antioxidant capacity higher than dark- or even light-
treated WT fruits, this mutation seems to represent a valid
strategy to promote fruit nutritional quality even when the light
stimulus is not present during fruit ripening.

Light-Hypersensitivity Influences Tomato
Fruit Ripening
To investigate whether the loss of Sl-DET1/HP2 function
impacts tomato fruit ripening initiation and progression, we
first monitored the ripening-associated changes in fruit color in
both the hp2 and WT genotypes (Figure 2A). Hue angle values
revealed that light-incubated fruits acquired the distinctive red
coloration faster and more intensively than those kept under
complete darkness. Moreover, the ripening-associated fruit color
transition occurred slightly faster in hp2 than in WT fruits,
particularly under dark conditions (Figure 2A).

In line with these results, mRNA levels of genes encoding the
master regulators of ripening RIPENING INHIBITOR (RIN),
NON-RIPENING (NOR), FRUITFULL1 (FUL1), APETALA2a
(AP2a) and TOMATO AGAMOUS-LIKE1 (TAGL1) were
significantly higher in hp2 than in WT fruits ripening either
under light or dark conditions (Figure 2B). Overall, the
impact of the loss of Sl-DET1/HP2 function on the transcript
abundance of these ripening-associated genes was influenced
by the light treatment, as indicated by a significant genotype x
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FIGURE 1 | Loss of Sl-DET1/HP2 function promotes tomato fruit carotenoid biosynthesis and antioxidant capacity in both dark- and light-ripened fruits. Wild-type
(WT) and high pigment-2 (hp2) fruits harvested at mature green (MG) stage were left to ripen under constant light (L) or dark (D) conditions. Pericarp samples were
harvested at MG (2 days after the beginning of treatment), breaker (Bk), Bk1 (1 day after Bk), Bk3, Bk6, and Bk12 stages. (A) Schematic representation of
carotenoid biosynthetic pathway in tomato. Intermediate reactions are omitted. (B) Lutein, β-carotene and lycopene content in pericarp tissues. (C) Relative mRNA
levels of carotenoid biosynthesis genes. Mean relative expression was normalized against wild-type (WT) samples at mature green (MG) stage under dark conditions.
(D) Trolox equivalent antioxidant capacity (TEAC) content in lipophilic extracts. Data are means (±SE) of at least three biological replicates. Different letters indicate
statistically significant differences (Tukey’s test, p < 0.05) within each genotype. Asterisks indicate statistically significant differences (Student’s t-test, p < 0.05)
between genotypes. MEP, Methylerythritol 4-phosphate; GGDP, Geranylgeranyl diphosphate; GGPS, GGDP synthase; PSY, Phytoene synthase; PDS, Phytoene
desaturase; LCYβ, Chloroplast-specific β-lycopene cyclase; CYCβ, Chromoplast-specific β-lycopene cyclase.
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FIGURE 2 | Light signaling influences tomato fruit ripening. Treatment details
as described in Figure 1. (A) Ripening-related changes in fruit color (Hue
angle). (B) Transcript abundance of ripening regulator genes in dark- and light
ripened fruits. Mean relative expression was normalized against wild-type (WT)
samples at mature green (MG) stage under dark conditions. Data are means
(±SE) of at least three biological replicates. Different letters indicate statistically
significant differences (Tukey’s test, p < 0.05) within each genotype. Asterisks
indicate statistically significant differences (Student’s t-test, p < 0.05) between
genotypes. hp2, high pigment-2; Bk, Breaker; RIN, ripening inhibitor; NOR,
non-ripening; FUL1, fruitfull1; AP2a, apetala2a; TAGL1, tomato
agamous-like1.

light treatment interaction (P < 0.05, Supplementary Table 2).
Therefore, a positive correlation was observed between the up-
regulation of the master regulators of ripening and the carotenoid
overaccumulation observed in hp2 ripening fruits. The promotive
impact of the loss of Sl-DET1/HP2 function on the expression of
master regulators of ripening may also be linked to the slightly
faster fruit color transition observed in the mutant compared
to the WT under dark conditions (Figure 2A). Accordingly,
HY5- and/or PIF-binding motifs were identified in the promoter
regions of all five master regulators of ripening genes analyzed
(Supplementary Figure 4).

Loss of Sl-DET1/HP2 Function Alters
Ethylene Biosynthesis, Signaling and
Responsiveness During Tomato Ripening
To gain insight into the potential influence of light treatment and
the loss of Sl-DET1/HP2 function on fruit ethylene metabolism,
we next monitored ethylene emission, 1-aminocyclopropane-
1-carboxylic acid (ACC) content, ACC oxidase (ACO) activity
and transcript abundance of ethylene biosynthetic genes in WT
and hp2 ripening fruits. In both genotypes and light conditions,
the highest values of ethylene emission were detected from
Bk to Bk3 (Figure 3A). Also, ACC accumulated at the end
of the ripening (Bk12) in all conditions analyzed, which was
associated with a drastic reduction in ACO activity from BK stage
onward (Figure 3A). Compared to the WT, hp2 fruits exhibited
significantly lower ethylene emission rates, ACC content and
ACO activity regardless of the light treatment. In both genotypes,
climacteric ethylene emission was significantly lower under light
than under dark conditions (Figure 3A).

To investigate whether these light-induced alterations
in ethylene emission were associated with changes in the
transcriptional profile of ethylene biosynthetic genes, the mRNA
levels of all ACS- and ACO-encoding genes responsible for
the climacteric ethylene burst in ripening tomato fruits were
profiled. Overall, the influence of light exposure or the hp2
mutation on the transcript abundance of these genes was highly
variable, greatly varying depending on the gene analyzed or the
ripening stage (Figures 3B,C). Therefore, no clear correlation
was observed between the transcriptional regulation of tomato
ACS- and ACO-encoding genes (Figures 3B,C) and the reduced
ethylene biosynthesis (Figure 3A) observed in light compared
to the dark treatment or in hp2 compared to the WT genotype.
Together, these findings indicate that light exposure and the
hp2 mutation, either combined or isolated, can cause an overall
down-regulation in tomato ethylene biosynthesis, which is
associated with complex changes in the transcriptional profile of
ACS and ACO genes.

Based on these findings, we further investigated whether
light hypersensitivity alters ethylene signaling in ripening tomato
fruits. First, the ethylene signaling output was determined by
monitoring the activity of the reporter protein GUS expressed
under the control of the EBS ethylene-responsive promoter in
EBS::GUS and hp2-EBS::GUS genotypes. Whether under light
or dark conditions, the highest GUS activity values in both
genotypes coincided with the climacteric burst of ethylene

Frontiers in Plant Science | www.frontiersin.org September 2018 | Volume 9 | Article 137048

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-01370 September 12, 2018 Time: 17:16 # 8

Cruz et al. Light-Hormonal Regulation of Tomato Carotenogenesis

FIGURE 3 | Light-hypersensitivity represses ethylene metabolism in ripening tomato fruits. Treatment details as described in Figure 1. (A) Ethylene emission,
1-aminocyclopropane-1-carboxylic acid (ACC) content, in vitro ACC oxidase (ACO) activity. (B) Relative mRNA levels of tomato genes encoding ACO. (C) Relative
mRNA levels of tomato genes encoding ACC synthase (ACS). Mean relative expression was normalized against wild-type (WT) samples at mature green (MG) stage
under dark conditions. Data are means (±SE) of at least three biological replicates. Different letters indicate statistically significant differences (Tukey’s test, p < 0.05)
within each genotype. Asterisks indicate statistically significant differences (Student’s t-test, p < 0.05) between genotypes. hp2, high pigment-2; Bk, Breaker.

production (Figure 4A). However, the loss of Sl-DET1/HP2
function resulted in higher EBS promoter activation, and this
phenomenon was clearly intensified by the presence of light
(Figure 4A).

The altered ethylene signaling output observed in hp2
fruits was associated with marked differences in the transcript
abundance of genes involved in ethylene perception and

signaling (Figure 4B and Supplementary Figure 5). ETHYLENE
RESPONSE 3 (Sl-ETR3), one of the tomato ethylene receptor
genes most highly expressed during ripening initiation (Liu M.
et al., 2015), was strongly up-regulated in hp2 compared to
the WT regardless of the light conditions. To a certain extent,
a similar trend was also observed for some other ETR genes,
including Sl-ETR4, Sl-ETR5 and Sl-ETR6.
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FIGURE 4 | Loss of Sl-DET1/HP2 function promotes ethylene tissue sensitivity and signaling output. Treatment details as described in Figure 1. (A) In vitro GUS
activity assayed in wild-type (WT) and high pigment-2 (hp2) fruits carrying the ethylene-responsive promoter EBS fused to the GUS reporter protein (EBS::GUS and
hp2-EBS::GUS). (B) Heatmap representation of the differences in relative mRNA levels of ethylene perception and signaling-related genes between the WT and hp2
fruits ripened under light or dark conditions. (C) Heatmap representation of the differences in relative mRNA levels of ethylene perception and signaling-related genes
between light and dark samples of hp2 fruits at each sampling time. The relative transcript values are presented in Supplementary Figure 5. (D) Relative mRNA
levels of tomato genes encoding carotenoid biosynthetic enzymes in WT and hp2 fruits treated with 50 ppm ethylene for 6 h. Data are means (±SE) of at least three
biological replicates. Different letters indicate statistically significant differences (Tukey’s test, p < 0.05) within each genotype (in A) or among all data (in C). In A,
asterisks indicate statistically significant differences (Student’s t-test, p < 0.05) between genotypes. MG, mature green; Bk, Breaker; ETR, ethylene response; EIN,
ethylene insensitive; EIL, ethylene insensitive 3-like; ERF, ethylene response factor; GGPS, geranylgeranyl diphosphate synthase; PSY, phytoene synthase; PDS,
phytoene desaturase; LCYβ, chloroplast-specific β-lycopene cyclase; CYCβ, chromoplast-specific β-lycopene cyclase.

The mRNA levels of ETHYLENE INSENSITIVE 2 (Sl-
EIN2), which encodes a key component in the ethylene
signaling cascade, was differentially affected by the hp2

mutation depending on the light conditions, being more
greatly expressed in hp2 than in WT fruits in the dark
and displaying the opposite pattern under light conditions
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(Figure 4B and Supplementary Figure 5). Transcript levels of
both primary (ETHYLENE INSENSITIVE 3-LIKE, EIL) and
secondary (ETHYLENE RESPONSE FACTOR, ERF) ethylene-
related transcription factors were also altered in hp2 fruits
compared to the WT. Both Sl-EIL2 and Sl-EIL3 were more
abundantly expressed in hp2 than in the WT fruits whereas
the opposite was observed for the Sl-ERF.E4, which encodes
a repressor of tomato carotenogenesis (Lee et al., 2012). The
additive effect of light treatment and loss of Sl-DET1/HP2
function was particularly observed for Sl-ETR3, Sl-ETR5, and
Sl-EIN2 (Figure 4C).

All tomato ethylene receptor and signaling-related genes
analyzed, except Sl-ETR3 and Sl-EIN2, displayed HY5 and
PIF-binding motifs within their 3-kb promoter sequences
(Supplementary Figure 6). Interestingly, Sl-EIN2 was the only
ethylene-related gene that was differentially affected by the loss
of Sl-DET1/HP2 function depending on the light conditions
(Figure 4B).

To further investigate the relationship between ethylene
responsiveness and carotenoid biosynthesis, carotenoid
biosynthetic genes were profiled in both WT and hp2 fruits
at MG stage exposed to a short-term (6h) treatment with
exogenous ethylene (Figure 4D). All genes profiled, except
for Sl-GGPS, were significantly up-regulated in WT fruits,
thereby validating the efficacy of the ethylene treatment and
confirming the positive influence of this hormone on the
transcriptional regulation of the carotenoid pathway in tomato
fruits. Comparatively, the ethylene-induced up-regulation of
genes such as Sl-GGPS, Sl-PDS, and particularly Sl-LYCβ and
Sl-CYCβ, was significantly more pronounced in hp2 than in
the WT fruits, which corroborates the hypothesis that the
increased responsiveness of hp2 fruits to ethylene may be
associated with the overaccumulation of carotenoids in this
mutant.

Light-Hypersensitivity Promotes Auxin
Responsiveness in Tomato Fruits
In concert with ethylene, auxin is also part of the regulatory
network controlling tomato fruit ripening and carotenoid
synthesis (Su et al., 2015). To evaluate whether the carotenoid
overaccumulation and altered ethylene signaling observed in hp2
fruits are associated with changes in auxin levels and signaling,
we next compared the endogenous IAA content, DR5 promoter
activation and transcriptional profile of genes encoding auxin-
related signaling elements in WT and hp2 ripening fruits.

Endogenous IAA levels were remarkably similar in WT and
hp2 ripening fruits (Figure 5A). In contrast, the activity of the
reporter protein GUS expressed under the control of the auxin-
responsive DR5 promoter was considerably higher in either
light or dark-incubated fruits of hp2-DR5::GUS compared to
the DR5::GUS (Figure 5B). In both genotypes, a progressive
reduction in auxin signaling output, as indicated by the DR5
promoter activation, was observed during fruit ripening. Auxin
signaling output remained higher in hp2-DR5::GUS than in the
DR5::GUS fruits from MG to Bk6 and from MG to Bk stage in
dark- and light-incubated fruits, respectively.

As the higher auxin signaling output detected in hp2 fruits
were not associated with marked differences in endogenous
IAA content between the genotypes (Figures 5A,B), it seems
plausible to suggest that hp2 fruits display increased sensitivity
to this hormone compared to the WT. Corroborating these
findings, the hp2 mutation was found to trigger marked changes
in the transcriptional profile of genes encoding auxin-associated
signaling proteins such as Aux/IAA and ARFs (Figure 5C).

Among the five Aux/IAA tomato genes closely associated
with fruit ripening – i.e., Sl-IAA3, Sl-IAA4, Sl-IAA9, Sl-IAA15
and Sl-IAA27 (Audran-Delalande et al., 2012) – a dramatic
reduction in Sl-IAA3, Sl-IAA4, Sl-IAA9 and Sl-IAA27 mRNA
levels in hp2 compared to WT fruits was observed (Figure 5C
and Supplementary Figure 7). Sl-IAA15 mRNA levels were also
reduced in hp2 compared to the WT at certain ripening stages.
Therefore, regardless of the light conditions, an overall down-
regulation of Sl-IAA genes was observed in hp2 fruits compared
to the WT. The repressor role of light in the expression of these
Aux/IAA genes was supported by the additive effect of light
treatment and loss of Sl-DET1/HP2 function on the mRNA levels
of all Aux/IAA genes analyzed (Figure 5D).

The marked impact of loss of Sl-DET1/HP2 function on auxin
signaling output and Aux/IAA mRNA levels, prompted us to
investigate whether changes in light signaling cause significant
alterations in the transcript abundance of seven ARF genes highly
expressed in ripening tomato fruits, i.e., Sl-ARF2a, Sl-ARF2b,
Sl-ARF3, Sl-ARF4, Sl-ARF5, Sl-ARF8a and Sl-ARF8b. Data
showed that transcript levels of Sl-ARF2a and Sl-ARF2b, which
are considered key convergence points of auxin and ethylene
signaling and important promoters of tomato fruit ripening and
carotenoid biosynthesis (Hao et al., 2015; Breitel et al., 2016), were
higher in hp2 than in WT fruits (Figure 5C and Supplementary
Figure 8). Similarly, mRNA levels of Sl-ARF8b, a known activator
of auxin-dependent gene transcription (Kumar et al., 2014),
were considerably higher in hp2 than in WT fruits. Conversely,
transcript abundance of Sl-ARF3, a well-established repressor of
auxin-dependent gene transcription (Zouine et al., 2014), was
dramatically reduced in hp2 than in WT fruits regardless of the
light treatment (Figure 5C). An overall reduction in Sl-ARF8a
mRNA levels was also detected in hp2 fruits compared to the WT,
particularly under dark conditions. In contrast, the impacts of the
loss of Sl-DET1/HP2 function on Sl-ARF4 and Sl-ARF5 mRNA
levels were considerably more variable as these genes were either
up- or down-regulated in hp2 compared to the WT depending on
the ripening stage considered (Supplementary Table 2, i.e., non-
significant influence of the genotype and the genotype × light
treatment interaction). The combined effect of light exposure and
the hp2 mutation was clearly observed for all tomato ARF genes
analyzed (Figure 5D). In summary, among all light-triggered
alterations in the transcriptional profile of Sl-ARF genes, Sl-ARF3
mRNA levels were down-regulated in response to both light
exposure and the loss of Sl-DET1/HP2 function, with the opposite
being observed for Sl-ARF2a, Sl-ARF2b, and Sl-ARF8b.

Finally, the relationship between light and auxin
responsiveness in hp2 was also investigated by comparing
the impacts of auxin treatment on the transcript abundance
of the auxin-responsive genes Sl-GH3, Sl-IAA4, Sl-IAA9 and

Frontiers in Plant Science | www.frontiersin.org September 2018 | Volume 9 | Article 137051

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-01370 September 12, 2018 Time: 17:16 # 11

Cruz et al. Light-Hormonal Regulation of Tomato Carotenogenesis

FIGURE 5 | Light-hypersensitivity promotes auxin sensitivity and signaling without altering endogenous IAA levels. Treatment details as described in Figure 1.
(A) Endogenous indole-3-acetic acid (IAA) levels in wild-type (WT) and high pigment-2 (hp2) fruits. (B) In vitro GUS activity assayed in WT and hp2 fruits carrying the
auxin-responsive promoter DR5 fused to the GUS reporter protein (DR5::GUS and hp2-DR5::GUS). (C) Heatmap representation of the differences in mRNA levels of
auxin signaling genes between the WT and hp2 fruits ripened under light or dark conditions. (D) Heatmap representing differences in mRNA levels of auxin signaling
genes between light and dark samples of hp2 fruits at each sampling time. The relative transcript values are presented in Supplementary Figures 7, 8. (E) Relative
mRNA levels of auxin-responsive genes in WT and hp2 fruits treated with 100 µM IAA for 6 h. Data are means (±SE) of at least three biological replicates. Different
letters indicate statistically significant differences (Tukey’s test, p < 0.05) within each genotype (in A,B) or among all data (in E). In (A,B), asterisks indicate statistically
significant differences (Student’s t-test, p < 0.05) between genotypes. MG, mature green; Bk, Breaker; Aux/IAA, auxin/indole-3-acetic acid; ARF, auxin response
factor.

Sl-IAA27 (Figure 5E). Although Sl-GH3 was clearly up-regulated
in both WT and hp2 fruits, the auxin-triggered accumulation of
transcripts of this gene was significantly higher in the mutant,
which further indicates increased auxin sensitivity in hp2
compared to WT fruits. Auxin treatment promoted Sl-IAA4,
Sl-IAA9 and Sl-IAA27 transcript accumulation in WT fruits
but failed to alter the expression of these genes in hp2 fruits
(Figure 5E). These results are in line with the detection of
lower Sl-IAA mRNA levels in the hp2 compared to the WT,
although both genotypes displayed similar endogenous IAA
levels throughout the ripening phase (Figures 5A,C).

DISCUSSION

Assumptions that light-hormonal crosstalk may be involved in
controlling tomato fruit ripening and carotenoid metabolism
have been formulated for a long time in the literature

(Lieberman, 1979; Yang and Hoffman, 1984), while unequivocal
genetic or physiological evidence supporting this hypothesis
remained lacking. As a major regulator of numerous ripening-
associated processes, ethylene was one of the first hormones
investigated as part of the regulatory mechanisms behind the
light-dependent regulation of fruit carotenoid biosynthesis (Alba
et al., 2000).

In vegetative tissues, ethylene biosynthesis is highly regulated
by light quality, intensity and duration. Overall, light perception
via photoreceptors, such as PHYs and CRYs, inhibits ethylene
emission (Corbineau et al., 1995; Vandenbussche et al., 2003;
Pierik, 2004; Giliberto et al., 2005; Melo et al., 2016), ACC
accumulation (Jiao et al., 1987; Melo et al., 2016), ACO activity
(Melo et al., 2016) and ACS transcript levels (Khanna et al.,
2007). Our data revealed that the negative influence of light
on ethylene metabolism typically found in vegetative tissues
is also observed in ripening tomato fruits as indicated by the
light-triggered reduction in ACC content, ACO activity and
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FIGURE 6 | Proposed model for light-hormonal interaction controlling tomato
fruit carotenoid biosynthesis. Light signaling promotes master regulators of
ripening, which positively regulate carotenoid biosynthetic genes. Light also
down-regulates ethylene metabolism and emission and reduces the
expression of ETHYLENE RESPONSE FACTOR E4 (Sl-ERF.E4), a key
repressor of tomato fruit carotenogenesis. Moreover, light represses
AUXIN/INDOLE-3-ACETIC ACID (Sl-IAAs) genes and up-regulates both AUXIN
RESPONSE FACTOR 2 paralogues (SlARF2a/b), consequently promoting
most components of the tomato carotenoid biosynthetic route. Additionally,
light signaling up-regulates genes encoding ethylene receptor (ETRs) and
intermediate components in ethylene signaling cascade (EILs). The arrow- and
bar-headed lines indicate stimulatory and inhibitory effects, respectively. The
lines terminated by a circle describe more complex interactions. RIN, ripening
inhibitor; NOR, non-ripening; FUL, fruitfull; AP2a, apetala2a, TAGL1, tomato
agamous-like1; ETR, ethylene response; EIL, ethylene insensitive 3-like.

ethylene emission, a response that was further intensified in
fruits of the light-hyperresponsive hp2 mutant. The main ACS
and ACO family members expressed during ripening were either
up- or down-regulated in response to light exposure or the
loss of Sl-DET1/HP2 function, suggesting that light-dependent
down-regulation of the ethylene climacteric burst in tomato is

linked to complex alterations in the transcript abundance of its
biosynthetic genes. These findings contrast with the observation
that PHY-mediated light perception in plant vegetative tissues
is frequently associated with the modulation of ethylene
biosynthesis via conspicuous changes in the ACS transcription
(Rodrigues et al., 2014), as illustrated by the several 100-
fold enhancements in AtACS4 transcript abundance detected
in Arabidopsis seedlings overexpressing AtPIF5 (Khanna et al.,
2007).

Ethylene biosynthesis in tomato fruits is tightly regulated by
master regulators of ripening, stimulated by Sl-RIN, Sl-NOR, Sl-
FUL, and Sl-TAGL1 (Itkin et al., 2009; Liu M. et al., 2015) and
repressed by Sl-AP2a (Karlova et al., 2011). The up-regulation
of all these ripening master regulators in hp2 ripening fruits
entails a complex interaction between the light signaling cascade
and the regulatory cascade controlling ripening. Sl-AP2a acts
as a negative regulator of tomato climacteric ethylene synthesis
via a negative feedback loop (Karlova et al., 2011); therefore,
the reduced ethylene production detected in hp2 fruits may be
associated with the up-regulation of Sl-AP2a in this mutant
(Figure 6). In contrast, all ripening master regulators analyzed
are well-established promoters of fruit carotenoid biosynthesis
(Itkin et al., 2009; Martel et al., 2011; Liu L. et al., 2015); hence,
their up-regulation in hp2 ripening fruits is consistent with the
over-accumulation of carotenoids in the mutant.

Besides altering ethylene biosynthesis, the loss of Sl-
DET1/HP2 function also impacted tomato fruit responsiveness to
ethylene, a response associated with marked changes in ethylene
receptors (ETRs) and downstream signaling transduction
elements (EIN, EILs, ERFs). The receptor signaling model states
that ETRs, including those involved in tomato ripening (i.e., Sl-
ETR3 and Sl-ETR4), are negative regulators of ethylene responses
(Kevany et al., 2007; Kamiyoshihara et al., 2012); consequently,
reductions in the abundance of receptors promote tissue ethylene
sensitivity (Tieman et al., 2000). However, information about
the temporal fluctuations in ETR transcripts and protein levels
during tomato ripening is controversial. Opposite temporal
patterns between the mRNA and protein levels of Sl-ETR3 and
Sl-ETR4 have been observed during tomato ripening, as the
protein and transcript abundance of these receptors peak at the
immature and ripening stages, respectively (Kevany et al., 2007).
However, no significant alterations in ethylene receptor protein
abundance were observed during tomato fruit ripening in a
subsequent study (Kamiyoshihara et al., 2012). Therefore, on the
one hand, the apparent contradiction between the up-regulation
of ETR transcripts and the increased ethylene sensitivity detected
in hp2 fruits may be explained by the inverse pattern in ethylene
receptor mRNA and protein levels already observed in tomato
fruits (Kevany et al., 2007). On the other hand, if the hp2-
triggered up-regulation of Sl-ETR expression results in increased
receptor protein abundance, the increased ethylene sensitivity
observed in the fruits of these mutants may be associated with
a more complex alteration in ethylene perception and signaling
cascade.

Acting downstream to ETR receptors, EIN2 plays a significant
role in ethylene signaling by stabilizing EIN3/EIL transcription
factors, which in turn will activate the transcription of
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multiple ethylene-responsive genes, including secondary
transcription factors (i.e., ERFs) (Alonso, 1999). Many of these
downstream signaling transduction elements are involved in
photomorphogenic responses, sometimes acting as integrators of
light and ethylene signaling during vegetative plant development
(Zhong et al., 2009). In tomato, Sl-EIN2, Sl-EIL or Sl-ERF.E4
suppression disturbed fruit ripening and, consequently, altered
carotenoid metabolism (Tieman et al., 2001; Fu et al., 2005; Lee
et al., 2012). As these genes were differentially expressed in hp2
fruits compared to the WT, it seems that disturbances in light
signaling can affect multiple steps in the ethylene transduction
cascade, which may contribute to explain the altered ethylene
responsiveness detected in this mutant. In this context, it is also
worth mentioning that Sl-ERF.E4 mRNA levels were severely
reduced in hp2 fruits and this ERF has been proposed as a
major repressor of carotenoid synthesis in tomato, as revealed
by the over-accumulation of this class of isoprenoid in fruits
of Sl-ERF.E4-knockdown transgenic lines (Lee et al., 2012).
Therefore, it seems that the increased ethylene responsiveness of
hp2 fruits may compensate for its reduced ethylene biosynthesis,
which is supported by the comparatively higher expression of
carotenoid biosynthetic genes in the mutant when both WT and
hp2 fruits were supplemented with the same concentration of
ethylene.

Tomato fruit carotenogenesis is undeniably regulated
by ethylene-related signaling components, but other plant
hormones have also been increasingly implicated in controlling
this metabolic pathway (Kumar et al., 2014; Liu L. et al.,
2015). Auxins, for instance, have been demonstrated to
counteract the promotive influence of ethylene on tomato
fruit ripening and carotenogenesis (Pirrello et al., 2012;
Su et al., 2015). Here, we provide several lines of evidence
indicating that the loss of Sl-DET1/HP2 function promotes
auxin responsiveness in fruit tissues via changes in the transcript
abundance of auxin signaling-related genes. The increased
activation of DR5 promoter in hp2 fruits was not associated with
significant differences in the endogenous IAA levels between
the mutant and WT genotypes but instead was accompanied
by the down-regulation of the Sl-IAA genes most greatly
expressed in tomato fruits (i.e., Sl-IAA3, Sl-IAA4, Sl-IAA9, and
Sl-IAA27).

Accordingly, functional characterization studies have revealed
that the down-regulation of Sl-IAA3, Sl-IAA9 or Sl-IAA27
disturbs auxin responsiveness in tomato plants. Whereas Sl-IAA3
knockdown resulted in lower auxin sensitivity, Sl-IAA9- or Sl-
IAA27-silenced lines exhibited increased auxin responsiveness
(Wang et al., 2005; Chaabouni et al., 2009; Bassa et al., 2012).
Therefore, the progressive reduction in DR5 promoter activity
observed from the MG to Bk12 stages in both dark- and light-
incubated fruits may be linked to the gradual increment in
transcripts of the repressor of auxin responsiveness Sl-IAA3
(Chaabouni et al., 2009), and the progressive reduction in
transcripts of Sl-IAA9 and Sl-IAA27, two positive regulators of
tissue responsivity to auxins (Wang et al., 2005; Bassa et al.,
2012). Among these tomato Aux/IAA genes, Sl-IAA3 has been
suggested to represent a crossroad of auxin and ethylene signaling
in tomato, being highly regulated by both these hormones.

Recent findings also indicate that Sl-IAA3 mediates the interplay
between light and ethylene signaling, since dark- and light-
grown Sl-IAA3-knockdown tomato seedlings exhibited marked
differences in ethylene sensitivity (Chaabouni et al., 2009) and
this tomato Aux/IAA gene was particularly up-regulated in
ripening fruits of PHY-deficient tomato plants (Bianchetti et al.,
2017). Therefore, it seems tempting to speculate that the light-
dependent down-regulation of Sl-IAA3 may be associated with
the increased responsivity to ethylene observed in hp2 fruits.

Aux/IAA proteins are known to inhibit the activity of
ARF, and ARFs can either act as transcriptional repressors or
activators of auxin-responsive genes (Zouine et al., 2014). Hence,
changes in ARF abundance also significantly impact plant tissue
responsiveness to auxins (Sagar et al., 2013; Zouine et al., 2014;
Hao et al., 2015). Accordingly, the increased auxin responsiveness
observed in hp2 fruits was associated with a marked down-
and up-regulation of Sl-ARF3 and Sl-ARF8b, respectively, as
the former is a repressor of auxin-dependent gene transcription
whereas the latter is an activator of auxin responses. In both
cases, the impact of the hp2 mutation was intensified by light
exposure, which suggests that the light-dependent transcriptional
regulation of these two ARFs may be associated with the
increased auxin responsiveness observed in the hp2 fruits.

The up-regulation of Sl-ARF2a and Sl-ARF2b caused by the
loss of Sl-DET1/HP2 function is also consistent with the proposed
role suggested for these two ARFs on tomato fruit ripening
and carotenogenesis (Hao et al., 2015; Breitel et al., 2016). Both
Sl-ARF2 paralogs are known to cooperate in promoting the
expression of master controllers of ripening, such as Sl-RIN
and Sl-NOR, stimulating ethylene biosynthesis and signaling and
inducing carotenoid biosynthesis (Hao et al., 2015; Breitel et al.,
2016). Therefore, the up-regulation of both Sl-ARF2a and Sl-
ARF2b genes observed in light-incubated hp2 fruits agrees with
the higher expression of genes encoding master controllers of
ripening and carotenoid biosynthetic enzymes detected in this
light-hyperresponsive mutant.

Here, we put forward the hypothesis that light-triggered
changes in auxin and ethylene responsiveness and signaling
are associated with the overaccumulation of carotenoids in
hp2 fruits. In the proposed working model of light-hormonal
crosstalk controlling tomato carotenogenesis (Figure 6), the
positive and negative influence of light on ethylene biosynthesis
and signaling, respectively, are supported by both genetic
(i.e., hp2 mutation versus WT genotype) and physiological
evidence (i.e., light versus dark treatment). The assumption
that light modulates auxin signaling is corroborated by the
marked down-regulation of Aux/IAA tomato genes and altered
ARF expression profile in hp2 fruits compared to the WT.
The two ARF genes most closely associated with tomato fruit
ripening and carotenogenesis (i.e., Sl-ARF2a and Sl-ARF2b)
and the genes encoding the master regulators of ripening
(e.g., Sl-RIN, Sl-NOR, Sl-FUL1, Sl-AP2a) were up-regulated,
whereas Sl-ERF.E4, a repressor of tomato fruit carotenogenesis,
was repressed in hp2 fruits compared to WT counterparts.
All these changes in the central ripening-related regulatory
modules are consistent with the increased transcript abundance
of carotenoid biosynthetic genes (e.g., Sl-GGPS, Sl-PSY1,
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Sl-PDS, Sl-LYCβ and Sl-LYCβ) and the over-accumulation of
carotenoids typically observed in the hp2 mutant.

Although DET1 has long been identified as a major repressor
of light signaling in plants (Chory et al., 1989), the molecular
mechanisms responsible for its action on photomorphogenesis
remain not yet fully characterized. However, accumulating
evidence indicates that DET1 may interfere with multiple steps
of the light signaling cascades. In Arabidopsis, DET1 interacts
with DDB1 and COP10 to form the CDD complex, which
physically associates with CUL4, giving rise to an E3 ligase that
promotes the proteolytic degradation of photomorphogenesis-
promoting factors, including HY5 (Yanagawa et al., 2004). DET1
has also been shown to positively and negatively regulate the
accumulation of PIF and DELLA proteins, respectively (Dong
et al., 2014; Li et al., 2015), which partially explains how
DET1 represses Arabidopsis photomorphogenesis in darkness.
Data also implicates DET1 action in chromatin remodeling
(Benvenuto et al., 2002) and as a transcriptional co-repressor of
key regulators of the circadian clock genes (Lau et al., 2011).
Therefore, multiple mechanisms may be involved in the Sl-
DET1/HP2-mediated regulation of ethylene and auxin pathways
in ripening tomato fruits, including its influence on balancing
HY5 and PIF protein abundance, possible global alterations in
gene expression via chromatin remodeling, and its potential
action as a transcriptional co-regulator. Hence, future work is
needed to characterize the precise molecular mechanisms behind
the Sl-DET1/HP2-mediated regulation of tomato fruit hormonal
balance and physiology.

Although the exact mechanisms behind the light-triggered
alterations in fruit hormone responsiveness are not yet clear, the

data obtained in this study provide clear evidence that an intricate
crosstalk between light, ethylene and auxin signaling may be
involved in controlling tomato fruit carotenogenesis. Therefore,
these findings open up a window of opportunity for further
improvement in tomato fruit nutritional content through the
combined manipulation of auxin, ethylene and light signaling-
related genes.
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Throughout evolution, a number of animals including humans have lost the ability to
synthesize ascorbic acid (ascorbate, vitamin C), an essential molecule in the physiology
of animals and plants. In addition to its main role as an antioxidant and cofactor in redox
reactions, recent reports have shown an important role of ascorbate in the activation of
epigenetic mechanisms controlling cell differentiation, dysregulation of which can lead
to the development of certain types of cancer. Although fruits and vegetables constitute
the main source of ascorbate in the human diet, rising its content has not been a
major breeding goal, despite the large inter- and intraspecific variation in ascorbate
content in fruit crops. Nowadays, there is an increasing interest to boost ascorbate
content, not only to improve fruit quality but also to generate crops with elevated
stress tolerance. Several attempts to increase ascorbate in fruits have achieved fairly
good results but, in some cases, detrimental effects in fruit development also occur,
likely due to the interaction between the biosynthesis of ascorbate and components
of the cell wall. Plants synthesize ascorbate de novo mainly through the Smirnoff-
Wheeler pathway, the dominant pathway in photosynthetic tissues. Two intermediates
of the Smirnoff-Wheeler pathway, GDP-D-mannose and GDP-L-galactose, are also
precursors of the non-cellulosic components of the plant cell wall. Therefore, a better
understanding of ascorbate biosynthesis and regulation is essential for generation of
improved fruits without developmental side effects. This is likely to involve a yet unknown
tight regulation enabling plant growth and development, without impairing the cell redox
state modulated by ascorbate pool. In certain fruits and developmental conditions, an
alternative pathway from D-galacturonate might be also relevant. We here review the
regulation of ascorbate synthesis, its close connection with the cell wall, as well as
different strategies to increase its content in plants, with a special focus on fruits.

Keywords: ascorbic acid, vitamin C, cell wall, biosynthesis, fruit, regulation

MULTIPLE ROLES OF VITAMIN C IN HUMANS

L-Ascorbic Acid (L-threo-hex-2-enono-1,4-lactone, ascorbate), also called vitamin C, is an essential
antioxidant molecule in plant and animal metabolism and also functioning as a cofactor in many
enzymes. While many animals are able to synthesize ascorbate in the liver or in the kidney, others,
such as humans, non-human primates, guinea pigs, and certain groups of bats and birds have lost
this ability due to the accumulation of mutations in the coding sequence of the last committed
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enzyme of the pathway (L-gulono-1,4-lactone oxidase, GULO;
Chatterjee, 1973; Nishikimi et al., 1994; Drouin et al., 2011).
Dietary changes with the inclusion of abundant fruits and
vegetables in the diet resulted in the loss of selective pressure
to keep the pathway functional (Macknight et al., 2017). Thus,
this molecule must be incorporated in the diet (hence classified
as a vitamin), with vegetables and fruits as the major sources of
ascorbate.

The role of ascorbate in mammals has extensively been
studied throughout time, particularly since the 18th century
with the discovery of its role in preventing scurvy (Lind,
1753; Baron, 2009). However, this was not obvious at the
time because the lack of ascorbate in the diet takes about a
month before the symptoms to occur. Thus, this disease was
typically manifested during long sea travels with a diet scarce in
fresh vegetables and fruits. In the earlies 1930’s, Albert Szent-
Györgyi identified and isolated the molecule responsible for
this anti-scurvy activity. Thus, that molecule, previously called
hexuronic acid, was renamed as ascorbic acid. One of the main
symptoms in scurvy is skin impairment and injuries due to
the involvement of ascorbate in the biosynthesis and stability
of collagen. Ascorbate functions as a cofactor in the enzymatic
hydroxylation catalyzed by Fe2+/αKG-dependent dioxygenases
prolyl 4-hydroxylase, prolyl 3-hydroxylase and lysyl hydroxylase
(Myllylä et al., 1984; Peterkofsky, 1991; Pekkala et al., 2003;
Padayatty and Levine, 2016) through the reduction of Fe3+ to the
active Fe2+ (de Jong et al., 1982; Gorres and Raines, 2010). Prolyl
hydroxylation is an essential post-translational modification that
occurs in proline residues located at X and Y sites of procollagen
Gly-X-Y tandem repeats during collagen biosynthesis. Whereas
Prolyl 4-hydroxylases catalyze hydroxylation on Y locations,
Prolyl 3-hydroxylases hydroxylate residues located at X sites, thus
enabling the trimerization of collagen providing high thermal
stability (Koide and Nagata, 2005). The hydroxylation catalyzed
by these enzymes requires an Fe2+ ion located at the active center,
which is oxidized to Fe3+ in the catalytic cycle and ascorbate
is responsible of keeping the iron active by reducing it back to
Fe2+.

In addition to preventing scurvy, ascorbate is involved
in many other processes which also require the action of
other members of this family of mono- and dioxygenases. For
these enzymes, ascorbate functions as a cofactor, maintaining
activity of the metal ions located in the active centers.
For example, ascorbate is important for the synthesis of
carnitine, the lack of which is related to the common fatigue
found in scorbutic patients. Trimethyllysine hydroxylase and
γ-butyrobetaine hydroxylase require ascorbate to enhance
their activity in the biosynthesis of carnitine (Rebouche,
1991). In addition, ascorbate is also known to act as a
cofactor of dopamine β-monooxygenase (Rush and Geffen,
1980), and in peptide hormone metabolism, by acting as
a cofactor of peptidylglycine α-amidating monooxygenase,
involved in the C-terminal amidation of these regulatory
molecules (Prigge et al., 1999). More recently, the activity
of other key Fe2+/αKG-dependent dioxygenases have been
showed to be enhanced by ascorbate, as is the case of Ten-
Eleven Translocations (TETs) enzymes. TETs are involved in

DNA demethylation through an oxidation cascade from 5-
methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine,
5-carboxylcytosine and, then, to cytosine by the Base Excision
Repair (BER) mechanism (Blaschke et al., 2013; Minor et al.,
2013; Hu et al., 2015). Importantly, ascorbate functions as a
cofactor of histone demethylases harboring a Jumonji C (JmcC)
domain (JHDMs), the same catalytic domain present in TETs
(Young et al., 2015). Tri-, di- and monomethylated lysines in
histones can be oxidized to hydroxymethyl lysines by JHDM and
ascorbate in a similar way as occurring with DNA demethylation
and TETs, with an spontaneous removal of this hydroxymethyl
group (Young et al., 2015). All together, these findings show
that ascorbate participates in the response to environmental
stimuli, not only by buffering the cell redox state, but also by
its involvement in the epigenetic control on gene expression.
In addition, ascorbate enhances iron absorption (Hallberg et al.,
1987, 1989), which is not only important to keep the Fe2+/αKG-
dependent dioxygenases active, but also for many other roles
(Lieu et al., 2001; Muckenthaler et al., 2008).

MAJOR FRUIT SUPPLIES OF
ASCORBATE IN HUMANS

Fresh fruits and vegetables are the major sources of this vitamin,
therefore increasing its concentration will have an important
impact in human nutrition. Ascorbate deficiency in developed
countries has registered a decrease throughout time. At the end
of last century. ascorbate deficiency in United States was around
13% of the population (Hampl et al., 2004), but it dropped
to 7% in the last survey effectuated during 2003-2004 period
(Schleicher et al., 2009). According to early experiments, a daily
dose of less than 10 mg was found to prevent scurvy (Johnstone
et al., 1946; Peters et al., 1953; Baker et al., 1969, 1971; Hodges
et al., 1969, 1971). However, an Average Requirement (AR) of
90 mg/day for men and 80 mg/day for women, and a Population
Reference Intake (PRI) of 110 mg/day for men and 95 mg/day
for women, has been established by the European Food Safety
Authority (EFSA Panel on Dietetic Products and Nutrition
and Allergies [NDA], 2013). This is based on maintaining a
plasma concentration around 50 µmol/L of ascorbate, indicative
of an adequate status (Kallner et al., 1979). In United States
and Canada, the Recommended Dietary Allowance (RDA) is
90 mg/day for men and 75 mg/day for women (Food and
Nutrition Board Panel on Dietary Antioxidants and Related
Compounds, 2000).

It is accepted that a diet rich in ascorbate has various health
advantages (Wintergerst et al., 2006; Reczek and Chandel, 2015;
Carr and Maggini, 2017; van Gorkom et al., 2018). Furthermore,
in the last few years, ascorbate has been proposed as a treatment
against different types of cancer through various mechanisms,
such as increasing TET’s activity, inducing oxidative stress
in cancer cells or enhancing the activity of various chemical
treatments (Ko et al., 2015; Yun et al., 2015; Agathocleous et al.,
2017; Cimmino et al., 2017; Shenoy et al., 2017; Lu et al.,
2018; Miura et al., 2018). Daily intake of ascorbate provided by
fruits is dependent on several factors, but clearly the content
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of ascorbate as well as the amount that is consumed are the
most important factors. However, it is important to take into
account the way it is consumed as this might have important
consequences on ascorbate reduction and oxidation, and can also
alter the bioavailability of ascorbate due to interactions with other
phytochemicals such as Vitamin E or flavonoids (Packer et al.,
1979; Tanaka et al., 1997; Carr and Vissers, 2013).

Ascorbate overall intake is dependent on the intrinsic amount
of ascorbate of a specific fruit and its consumption (Figure 1B).
According to FAOSTAT1, tomato has been the most produced
fruit in the world in the last 20 years, a trend that has increased
during the last years (Figure 1A). The production has been 177
million tons in 2016, followed by banana (∼113 million tons),
apple (∼89 million tons), cucumber (∼80 million tons) and
grape (∼77 million tons). In the European Union in 2016, fruit
production was dominated by grape (∼24 million tons), followed
by tomato (∼18 million tons), apple (∼12.5 million tons) and
orange (∼6.3 million tons) (Eurostat, 2017). However, a large
proportion of tomato (61.5%), apple (26.8%) and grape (96.5%)
is processed (Eurostat, 2017), leading both to a reduction of
ascorbate content and a lower bioavailability of other nutrients
that are ascorbate dependent (Hallberg et al., 1982, 1987). This is
particularly evident in grape, with ∼90 % of the harvest destined
to wine production (Eurostat, 2017), leading to negligible
amounts of ascorbate (USDA Food Composition Databases2).
Therefore, considering production along with consumption data
(Figure 1C), ascorbate intake through orange surpasses that of
grape. Tomato and apple fruits, although could be considered
as moderate sources of ascorbate based on their relatively low
content (Davey et al., 2000) are widely consumed and therefore
provide important dietary sources of ascorbate. It is obvious
that even a moderate increase in the content of ascorbate in
these highly consumed fruits would rise their nutritional value.
Therefore, the large consumption of tomato, its relatively low
ascorbate and its high raw intake makes it an excellent target for
increasing its ascorbate content from a nutritional point of view
(Figure 1).

THE ROLE OF ASCORBATE IN PLANTS
AND FRUITS

Ascorbate plays a plethora of roles in plant cells. Important
properties of ascorbate are its antioxidant capacity and the
finalization of oxidative chain reactions resulting in non-
oxidative products such as dehydroascorbate (DHA) and 2,3-
diketogulonic acid (Davey et al., 2000). The importance of
ascorbate in scavenging ROS became evident when several
of the genes involved in the ascorbate biosynthetic pathway
were identified in genetic screenings searching for mutants
hypersensitive to ozone, a powerful oxidant (Conklin et al.,
1996). This screening resulted in the identification of five vitamin
C-deficient (vtc) mutants, with four of those mutations affecting
genes encoding enzymes of the Smirnoff-Wheeler pathway:

1http://www.fao.org/faostat/en/#data
2https://ndb.nal.usda.gov/ndb/search/list

VTC1 (Lukowitz et al., 2001), VTC2 and VTC5 (Dowdle et al.,
2007; Linster et al., 2007) and VTC4 (Conklin et al., 2006).

Hydrogen peroxide (H2O2) plays essential roles in plants
development and defense (Exposito-Rodriguez et al., 2017;
Mittler, 2017; Mullineaux et al., 2018; Waszczak et al., 2018)
and it can be found in different organelles within the plant
cells (Exposito-rodriguez et al., 2013). However, H2O2 is also
partly responsible for light-induced oxidative damage. Ascorbate
is involved in the scavenging of the excess of H2O2 produced
during the photosynthesis in high-irradiance conditions by the
function of ascorbate peroxidases (APX), enzymes not present
in animals (Wheeler et al., 2015). Together with APX, catalases
also perform H2O2 scavenging (Mhamdi et al., 2010, 2012).
However, plants lack catalases in chloroplasts, which experience
a high production of H2O2 in thylakoids due to photosynthesis,
as a consequence of the Mehler reaction. In these organelles, a
thylakoidal APX (tAPX) catalyzes the reduction of H2O2 (Asada,
1999). Surprisingly, single and double mutants in chloroplastic
APX (tAPX and stromal APX) are viable, suggesting alternative
mechanisms for H2O2 detoxification (Giacomelli et al., 2007).
2-Cys peroxiredoxins (2-Cys PRX), localized in the chloroplast,
reduce H2O2 and prevent oxidation of the thylakoidal membrane
by reducing lipid hydroperoxide from thylakoid phospholipids
(Baier and Dietz, 1997). Therefore, 2-Cys PRXs have been
proposed as alternative H2O2 scavengers to APX in an alternative
water-water cycle (Awad et al., 2015; Pérez-Ruiz et al., 2017)
using glutathione, thioredoxin, glutaredoxin, cyclophilin, and/or
tryparedoxin instead of ascorbate as cofactors (Stork et al., 2005).
Together with APX and 2-Cys PRX, vitamin E (α-tocopherol)
is a major lipophilic antioxidant also involved in preventing
photodamage in the membrane of thylakoid lipids (Semchuk
et al., 2009). Ascorbate also has a role in vitamin E function by
the non-enzymatical reduction of α-tocopheryl radicals, hydroxyl
radicals (·OH) and superoxide ions (O2

−) (Asada, 1999; Davey
et al., 2000; Mittler, 2017).

The use of ascorbate as a cofactor by other enzymes,
such as the Fe2+/α-KG-dependent dioxygenases and Cu+-
monooxygenases, is conserved among plants and animals.
However, one of these common enzymes, a Fe2+-dependent 4-
hydroxyphenylpyruvate dioxygenase, has different functions in
plants. Whereas in animals this enzyme is involved in tyrosine
metabolism (Lindblad et al., 1970), in plants it is required for
plastoquinone and tocopherols synthesis (Norris et al., 1998).
Other light-responsive pigments that are very abundant in fruits,
like anthocyanins, fail to accumulate in vtc1 and vtc2 mutant
plants when exposed to high light. This finding, combined with
the UV-B absorption by anthocyanin, suggests that ascorbate-
mediated redox reactions act upstream of anthocyanin synthesis
(Page et al., 2012).

Ascorbate was proposed to directly participate in
photosynthesis as an electron carrier, although later a role
as a photoprotectant was revealed (Smirnoff, 2000). The electron
transfer from ascorbate to the primary oxidizing agent of
photolysis was first coupled to the photophosphorylation
reaction (Marrè et al., 1959). Then, the reduction of
monodehydroascorbate (MDA) and DHA were suggested
to rely on reductants formed in photosystem I (PSI). It is now
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FIGURE 1 | Main fruit crops yield and consumption according to FAO. (A) Global fruit production, in million tons, and its evolution from 1961 to 2016. (B) Fruit
ascorbate intake, in grams of ascorbate capita−1 year−1, in the countries from the European Union in 2013. Data were generated considering ascorbate (VitC) levels
of raw fruit available in USDA database (https://ndb.nal.usda.gov/ndb/search/list) and consumption data of each fruit (Kg capita−1 year−1) from FAOSTAT. USDA IDs
consulted: 9200 (Oranges ∗ includes mandarins, raw, all commercial varieties), 11529 (Tomatoes, red, ripe, raw, year average), 9003 (Apples, raw with skin), 9132
[Grapes, red or green (European type, such as Thompson seedless), raw], 9266 (Pineapple, raw, all varieties), 9040 (Bananas, raw). Consumption data was obtained
from Eurostat (http://ec.europa.eu/eurostat). (C) Evolution in the global consumption of fruits, in Kg capita−1 year−1, from 1961 to 2013.

established that inside the thylakoid, luminal ascorbate acts as an
electron donor of photosystem II (PSII) (Tóth et al., 2013) where
the Oxygen-Evolving Complex is impaired (Katoh and San
Pietro, 1967; Mano et al., 1997; Tóth et al., 2009), thus allowing
the reduction of NADP+ to NADPH by the electron-transport
chain (Tóth et al., 2009, 2013). This is particularly important
during abiotic stresses such as heat and high light that alter
this complex by damaging the manganese cluster (Tyystjärvi,
2008). In addition, ascorbate can also dissipate energy from an

excess of light irradiance acting as a cofactor of violaxanthin
de-epoxidase, an enzyme involved in preventing photodamage
by non-photochemical quenching (NPQ) (Yamamoto et al.,
1972). When the irradiance is too high, the excess of energy
normally transferred to chlorophyll a is used to de-epoxidize
the carotenoid violaxanthin into zeaxanthin using the thylakoid
luminal ascorbate as a cofactor in the xanthophyll cycle
(Hieber et al., 2000). This has been supported experimentally
by mutations in the enzyme’s residues that bind ascorbate
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(Saga et al., 2010) and by the analysis of Arabidopsis mutants
with low ascorbate content (Müller-Moulé et al., 2002).

BIOSYNTHESIS AND METABOLISM OF
ASCORBATE IN PLANTS

The predominant pathway through which ascorbate is
synthesized in plants is the Smirnoff-Wheeler (SW) pathway
(Wheeler et al., 1998). Contrary to the animal pathway, in the
plant pathway there is no carbon inversion, as the carbon 1
in the D-glucose molecule remains as carbon 1 in ascorbate
after conversion. In this pathway, a molecule of D-glucose-6-
phosphate is transformed into D-fructose-6-phosphate by the
action of phosphoglucose isomerase (PGI; Figure 2). Then, it is
transformed into D-mannose-6-phosphate and D-mannose-1-
phosphate by the action of phosphomannose isomerase (PMI;
Maruta et al., 2008) and phosphomannomutase (PMM; Qian
et al., 2007). Then, GDP-D-mannose pyrophosphorylase (GMP,
encoded by VTC1 in Arabidopsis thaliana) transfers guanosine
monophosphate from GTP to form GDP-D-mannose (Conklin
et al., 1996, 1997, 1999; Lukowitz et al., 2001). GDP-D-mannose
is further transformed into GDP-L-galactose by the GDP-D-
mannose-3′,5′-epimerase (GME), an enzyme that belongs to
the extended short chain dehydratase/reductase (SDR) protein
family, harboring a modified NAD+ binding Rossman fold
domain. Interestingly, GDP-L-galactose is not the only result
of GME activity, since GDP-L-gulose can also be produced if
GME catalyzes a 5′ epimerization instead of a 3′,5′ epimerization
(Wolucka et al., 2001; Wolucka and Van Montagu, 2003; Major
et al., 2005). Since GDP-L-gulose is a very rare sugar in plants
with no structural function, it has been suggested that it is
directly channeled to synthesize ascorbate. After GME releases
GDP-L-galactose, this compound is then transformed into
L-galactose-1-phosphate, L-galactose and L-galactono-1,4-
lactone by GDP-L-galactose-phosphorylase (GGP, encoded by
VTC2 and VTC5 in A. thaliana; Dowdle et al., 2007; Laing et al.,
2007), L-galactose-1-phosphate phosphatase (GPP, encoded
by VTC4 in A. thaliana; Laing et al., 2004a; Conklin et al.,
2006; Torabinejad et al., 2009; Nourbakhsh et al., 2015) and
L-galactose dehydrogenase (L-GalDH; Gatzek et al., 2002; Laing
et al., 2004b), respectively. Interestingly, for the final production
of L-ascorbic acid, L-galactono-1,4-lactone must move from
the cytosol to the intermembrane space of the mitochondria,
where the active site of L-galactono-1,4-lactone dehydrogenase
(GLDH) is located (Mapson and Breslow, 1958; Imai et al.,
1998; Pineau et al., 2008; Schertl et al., 2012; Schimmeyer et al.,
2016). The fact that the oxidation of L-galactono-1,4-lactone
is carried out in plants by a dehydrogenase instead of an
oxidase (GULO) as occurs in animals, is not trivial. Contrary to
paradoxical GULO activity, GLDH does not release H2O2 and
therefore the production of ascorbate in plants does not have
side effects over the redox state of the cell (Wheeler et al., 2015).
Although some data support the existence of a side branch of the
pathway that converges with that of animals (Jain and Nessler,
2000; Radzio et al., 2003; Maruta et al., 2010), there is strong
evidence that most of the ascorbate in plants is produced through

GLDH (Pineau et al., 2008). A recent phylogenetic study on the
origin of GLDH identified an ancient paralog arisen from the
original GULO, followed by a loss of paralogs (Wheeler et al.,
2015). Thus, in species with the SW pathway, GULO has been
functionally replaced by GLDH following chloroplast acquisition
in photosynthetic organisms, since the presence of both proteins
seems mutually exclusive (Wheeler et al., 2015). Interestingly,
L-gulose, a previously mentioned rare sugar in plants and also
a product of GME activity, is proposed to be transformed into
L-gulono-1,4-lactone by as yet unidentified enzymes (Wolucka
and Van Montagu, 2003). Supporting the presence of GULO
activity in plants are (1) external supplementation of L-gulono-
1,4-lactone in the growth media increased ascorbate levels in WT
tobacco leaves (Jain and Nessler, 2000) and (2) the synthesis rate
of ascorbate can increase up to 15% when L-gulono-1,4-lactone
is externally supplied in Arabidopsis cell culture (Davey et al.,
1999). One possibility is that GLDH also uses L-gulono-1,4-
lactone as substrate. However, this seems unlikely since GLDH is
highly specific for L-galactono-1,4-lactone (Mapson and Breslow,
1958; Oba et al., 1995; Østergaard et al., 1997; Rodríguez-Ruiz
et al., 2017). Transgenic tobacco BY2 cells overexpressing several
Arabidopsis homologs of GULO from rat resulted in increased
ascorbate content in lines overexpressing GULO2, GULO3
and GULO5 but only after external application of L-gulono-
1,4-lactone (Maruta et al., 2010). However, GULO has lower
substrate specificity than GLDH and can catalyze the oxidation
of other aldono-lactones, including L-galactono-1,4-lactone
(Davey et al., 2000). Interestingly, the overexpression of rat liver
GULO increased ascorbate levels in tobacco leaves (Jain and
Nessler, 2000) as well as in Arabidopsis leaves, and rescued the
Arabidopsis vtc1 mutant ascorbate levels to WT (Radzio et al.,
2003).

Alternative ascorbate biosynthesis pathways have been
proposed in plants. One is through myo-inositol, following a
pathway similar to animals, since the oxidation of myo-inositol
oxidation produces D-glucuronate by a MYO-INOSITOL
OXYGENASE (MIOX). Arabidopsis plants overexpressing
MIOX4 showed a 2-3-fold ascorbate content (Lorence et al.,
2004). However, based on early radiotracer experiments (Loewus,
1963) and more recent reports (Endres and Tenhaken, 2009,
2011; Ivanov Kavkova et al., 2018), its contribution to the
ascorbate pool remains unclear. The second is through the
D-galacturonate pathway. In this pathway, a D-galacturonate
reductase (GalUR) uses D-galacturonate, to produce L-galactonic
acid that is converted to L-galactono-1,4-lactone, the last
intermediate within the SW pathway (Mapson and Isherwood,
1956; Shigeoka et al., 1979).

In addition to its biosynthesis, the ascorbate pool also depends
on its recycling by the Foyer-Halliwell-Asada cycle (Foyer and
Halliwell, 1976; Asada, 1999) and degradation (Loewus, 1999;
Green and Fry, 2005). Although the biochemistry of biosynthesis
and recycling of ascorbate is well established, its degradation is
not clear and might not follow a single pathway. In the apoplast, it
can be degraded through the conversion of ascorbate to 2-keto-L-
gulonic acid that leads to L-tartaric acid formation in cytoplasm, a
compound important for fruit quality particularly in the Vitaceae
family (DeBolt et al., 2006). Ascorbate can also be degraded
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FIGURE 2 | Biosynthesis pathways of ascorbate in the plant cell. Solid lines represent the committed reactions within a pathway. Dashed lines represent the
translocation of a molecule from a cellular compartment to another. Enzymes are displayed in bold: PGI, phosphoglucose isomerase; PMI, phosphomannose
isomerase; PMM, phosphomannomutase; GMP, GDP-D-mannose pyrophosphorylase (Arabidopsis VTC1); GME, GDP-D-mannose-3′,5′-isomerase; GGP,
GDP-L-galactose phosphorylase (Arabidopsis VTC2/VTC5); GPP, L-galactose-1-phosphate phosphatase (Arabidopsis VTC4); L-GalDH, L-galactose
dehydrogenase; GLDH, L-galactono-1,4-lactone dehydrogenase; cAPX, cytosolic Ascorbate Peroxidase; MDHAR, monodehydroascorbate reductase; DHAR,
dehydroascorbate reductase; PHT4.4, inorganic phosphate transporter; sAPX, stromal ascorbate peroxidase; tAPX, thylakoidal ascorbate peroxidase; GMD,
GDP-D-mannose-4,6-dehydratase (Arabidopsis MUR1/GMD1); GER, GDP-4-keto-6-deoxymannose-3,5-epimerase-4-reductase (Arabidopsis GER1/GER2); GalUR,
D-Galacturonate Reductase. Substrates and products are shown in regular shape: Glc, glucose; Fru, fructose; Man, mannose; Gal, galactose; Gul, gulose; GalU,
Galacturonate; Me-D-GalU, methyl galacturonate; GalA, Galactonate; GalL, L-galactono-1,4-lactone; Asc, ascorbate; CytCOX , oxidized cytochrome c; CytCRED,
reduced cytochrome c; MDHA, monodehydroascorbate; DHA, dehydroascorbate; GDP-α-keto-6-dMan, GDP-4-keto-6-deoxymannose; Fuc, fucose; mOM,
mitochondrial outer membrane; mIMS, mitochondrial inter membrane space; mIM, mitochondrial inner membrane; cOM, chloroplastic outer membrane; cIMS,
chloroplastic inter membrane space; cIM, chloroplastic inner membrane.

through the direct oxidation of DHA or through the oxidation
of 4-O-oxalyl-L-threonic acid, leading to the production of
both oxalic acid and L-threonic acid (Green and Fry, 2005).
Additionally, it can also be degraded through the hydrolysis of
DHA to 2,3-diketo-gulonic acid, and to oxalic acid and its esters,

or to L-threonic acid under strong oxidative conditions (Parsons
et al., 2011). In tomato, the main degradation products are oxalic
acid, threonic acid and oxalyl threonic acid, but no tartaric
acid has been detected (Truffault et al., 2017), suggesting that
ascorbate degradation occurs mainly through DHA oxidation
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rather than DHA hydrolysis, a pathway previously proposed in
Rosa sp. cell cultures (Green and Fry, 2005). A broad perspective
of ascorbate breakdown pathways in different species is provided
by DeBolt et al. (2007).

BIOSYNTHESIS AND METABOLISM OF
ASCORBATE IN FRUITS

Mutant analyses indicate that the SW pathway is the predominant
if not the only pathway involved in ascorbate biosynthesis in
green tissues (Dowdle et al., 2007; Lim B. et al., 2016). In
heterotrophic tissues like fruits, the SW pathway is functional,
as showed in several species including acerola, kiwi, strawberry,
peach, tomato and apple (Badejo et al., 2009, 2012; Bulley et al.,
2009; Imai et al., 2009; Ioannidi et al., 2009; Cruz-Rus et al.,
2010; Mellidou et al., 2012a,b). However, depending on the
fruit ripening stage, alternative pathways might become relevant,
especially the D-galacturonate pathway (Mapson and Isherwood,
1956; Shigeoka et al., 1979), for which the degradation of cell
wall pectin can provide abundant substrate (Agius et al., 2003;
Cruz-Rus et al., 2010; Di Matteo et al., 2010; Badejo et al., 2012).
Analyses of tomato introgression lines from a cross between
Solanum lycopersicum cv. M82 and S. pennellii was used to find
genetic elements associated with high ascorbate content in fruits.
This was done through the identification of genes induced in
the IL12-4 line, which contains 19.9 mg ascorbate/g FW, relative
to S. lycopersicum cv. M82, which contains 12.2 mg ascorbate/g
FW (Di Matteo et al., 2010). Interestingly, while genes of the SW
pathway were not differentially expressed, a pectinesterase gene
(TC177576) involved in breakdown of pectins was 4.4-fold more
expressed in the IL12-4 line than in the parental M82. This result
suggests that an additional supply of D-galacturonate due to cell
wall degradation might be the cause of the ascorbate increase in
this line. In addition, an ascorbate peroxidase (TC172881) was
down-regulated in fruits of IL12-4 compared to M82 parental
line, which may cause a higher ascorbate accumulation due
to a lower degradation (Di Matteo et al., 2010). While the
D-galacturonate pathway is more active as the fruit ripens, the
SW pathway and ascorbate translocation from the leaves provide
the bulk of ascorbate in fruits at immature green stage. The fact
that the photosynthesis inhibitor DCMU diminished the pool
of ascorbate only at green stage (Badejo et al., 2012) not only
supports this, but also reinforces the tight relationship between
the SW pathway and photosynthesis.

Considering the variety of functions that ascorbate exerts
in plant cells and its tight regulation in green tissues, it is
remarkable how variable the content of ascorbate can be among
the fruits of different species (Davey et al., 2000) or even between
varieties or cultivars from the same species (Cruz-Rus et al.,
2011; Mellidou et al., 2012b). An obvious question is: what is the
functional significance of this high variability in fruit ascorbate
content? Fruit crops have different environmental requirements
to optimize yield and, in addition, the pool of ascorbate is
affected by abiotic factors such as light or temperature (Gautier
et al., 2008; Zechmann et al., 2011; Suzuki et al., 2014), due to
its role in the antioxidant cellular system (Jimenez et al., 2002;

Massot et al., 2013). Therefore, small differences within species
can depend on their cultivation requirements, harvest time
or post-harvest conditions (Davey et al., 2007; Kevers et al.,
2011; Oms-Oliu et al., 2011; Akhatou and Fernández-Recamales,
2014). However, the observed large differences in ascorbate
content in closely related species likely have other causes. For
example, several fold differences in ascorbate can be found
between wild and cultivated tomato. Whereas domesticated
tomato cultivars contain roughly 15 mg/100 g FW, wild varieties
S. pimpinellifolium and S. pennellii contain around 40 mg/100 g
FW (Lima-Silva et al., 2012) and up to 70 mg/100 g FW
(Stevens et al., 2007), respectively. In fact, back-crosses with
S. peruvianum, another wild species (Atherton and Rudich,
1986), have been shown to contain the highest amount of
ascorbate in Solanum species, around 50 mg/100 g FW (Top
et al., 2014). These wild tomato species grow naturally in Peru
and Mexico, in coastal areas and river valleys less than 1000 m
above sea level with abundant rainfalls. These two countries
lie within the tropics of Capricorn and Cancer, respectively,
with high irradiance and warm temperatures that may have
favored the selection of individuals with high ascorbate content
over time. Current evidence suggests that domestication of wild
tomatoes by cross-breeding different species of Solanum started
in these two countries (Esquinas-Alcazar, 1981) likely driven
by the selection of higher fruit size and resistance to diseases
like Fusarium wilt (Atherton and Rudich, 1986). However, the
most important advances in tomato breeding have taken place
during the last 200 years in Europe, mainly in France, Italy and
England, with a strong participation of the United States since
the early 1920s (Atherton and Rudich, 1986). It is likely that
growing under more controlled and less harsh conditions has
decreased the selective pressure to keep alleles conferring high
ascorbate content, particularly because an apparent association
between high ascorbate levels and low productivity has been
reported in this species (Atherton and Rudich, 1986). However,
in addition to the metabolic regulatory mechanisms that might
explain these differences in ascorbate content, other factors such
as water content must be considered. A known example is that
of two tomato cultivars, Matador and Elin, subjected to salinity
treatment. This increased their ascorbate content on fresh weight
basis, but it was decreased on dry weight basis. In both cultivars,
water and ascorbate content were reduced, but the loss of water
was higher than that of ascorbate (Dumas et al., 2003). Fruit size
and weight were directly related with water content, and they
have been key traits selected during breeding programs, while this
is not the case for ascorbate.

In most fruits, such as tomato, acidity decreases while sugar
content increases during ripening (Gautier et al., 2008; Mellidou
et al., 2012b). Major organic acids in tomato, contributing to fruit
acidity, are malic and citric acids (Davies and Hobson, 1981).
However, the change in ascorbate levels during fruit ripening
is a trait dependent on the species. In tomato (Dumas et al.,
2003; Gautier et al., 2008; Ioannidi et al., 2009; Badejo et al.,
2012), grape (Cruz-Rus et al., 2010) and strawberry (Cruz-Rus
et al., 2011), ascorbate content increases as the fruit ripens. This
correlated with changes in the activity of enzymes affecting the
redox state of the fruit during the breaker stage (Gautier et al.,
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2008; Jimenez et al., 2002). Unlike tomato, grape and strawberry,
kiwifruit showed a maximal ascorbate level at the immature
green stage due to its high biosynthesis rate, it decreased as it
ripened and then remained fairly stable until complete ripening
(Li et al., 2010; Zhang J.Y. et al., 2018). In peach fruits, ascorbate
content gradually decreased during ripening (Imai et al., 2009).
In different studies, the pattern of ascorbate accumulation
does not match the expression of a specific gene involved in
ascorbate biosynthesis or recycling, and therefore there is no
clear connection between the expression of biosynthetic genes
and ascorbate content (Imai et al., 2009; Li et al., 2010; Lima-Silva
et al., 2012). However, evidences gathered in these studies show
that the overall size of the ascorbate pool correlated well with the
oxidative status (i.e., activity of enzymes involved in redox state,
H2O2 content) of the fruit, which is usually triggered at breaker
stage (Jimenez et al., 2002; Gautier et al., 2008; Imai et al., 2009;
Li et al., 2010).

RELATIONSHIP BETWEEN ASCORBATE
AND CELL WALL BIOSYNTHESIS

A significant aspect of the ascorbate biosynthetic pathway is
the intimate relationship shared with cell wall biosynthesis.
Some of the early precursors of the SW pathway such GDP-
D-mannose and GDP-L-galactose are among the non-cellulosic
cell wall glycosyl residues forming pectins and hemicelluloses
(Figure 3). For this reason, mutations or knock-downs in
genes related to the early steps of the SW pathway lead to
growth reduction or even arrest, due to impairment of cell wall
formation during plant growth, including different stages of fruit
development (Lukowitz et al., 2001; Hoeberichts et al., 2008;
Mounet-Gilbert et al., 2016). Thus, knock-down mutants of the
Arabidopsis PMM gene show between 20 and 50% of ascorbate
levels relative to WT, altered protein N-glycosylation (specially
a protein-disulfide isomerase post-translational modification, an
abundant protein in the ER) and glycosylphosphatidylinositol
(GPI) anchoring of proteins, leading to cell death after
heat stress (Hoeberichts et al., 2008). Supplementation with
L-galactono-1,4-lactone (Hoeberichts et al., 2008) or ascorbate
(Cho et al., 2016) in the media recovered ascorbate levels
but the mutants remained hypersensitive to heat. A null
mutation in the Arabidopsis GMP gene (cyt1 mutant) results
in embryo arrest due to defects in N-glycosylation of proteins
and altered composition of the cell wall (Figure 3; Lukowitz
et al., 2001). The product of GMP activity, GDP-D-mannose,
is used in the glycosylation of proteins, ascorbate biosynthesis
and as a precursor of cell wall carbohydrates (Conklin et al.,
1999). GDP-D-mannose is converted to GDP-L-galactose by the
action of GME, but can also be converted to GDP-L-fucose
by the sequential function of GDP-D-mannose-4,6-dehydratase
(MUR1/GMD1; Bonin et al., 1997, 2003) and GDP-4-keto-6-
deoxy-mannose-3,5-epimerase/4-reductase (GER1/GER2; Bonin
and Reiter, 2000; Nakayama et al., 2003; Figure 3). All
these three compounds, GDP-D-mannose, GDP-L-galactose and
GDP-L-fucose are precursors of hemicelluloses and pectins
(RG-II) when converted to D-mannosyl, L-galactosyl and

L-fucosyl residues (Conklin et al., 1999; Reiter and Vanzin,
2001).

All the above evidences support the conclusion that a
reduction in the production of GDP-D-mannose in the cyt1
mutant is expected to have a significant impact on the structure
of the cell wall. The importance of GDP-D-mannose in cell
wall structure was further supported by the identification
of the mur1 mutant (Bonin et al., 1997). Mutations in
MUR1 produce a dwarf phenotype, mainly caused by a
reduced content in fucose, since the supply of exogenous
L-fucose reverted the dwarf phenotype (O’Neill et al., 2001).
Interestingly, L-fucosyl residues in mur1 cell wall xyloglucans
are replaced by L-galactosyl residues (Reiter et al., 1993;
Zablackis et al., 1996; Bonin et al., 1997). One possibility is
that this substitution is the direct cause the dwarf phenotype
of mur1. However, this does not seem to be the case since
the Arabidopsis mur2 mutant, affected in a xyloglucan-specific
fucosyltransferase (AtFUT1), grows indistinguishably from WT
despite having around 1% of the L-fucose content of the
WT (Perrin et al., 1999; Vanzin et al., 2002). Moreover,
the xyloglucans of jojoba seeds naturally contain L-galactosyl
residues, and not fucosyl residues (Hantus et al., 1997; Pauly
and Keegstra, 2016), suggesting that xyloglucan substitution
of L-fucose by L-galactose residues is not the cause of
growth impairment in mur1. In addition to this replacement
of fucosyl by L-galactosyl residues in xyloglucan, the mur1
mutant also has the same substitution in their RG-II fraction
of pectins. In the RG-II structure, cross-linking mediated by
boron is essential for a proper dimerization (O’Neill et al.,
2001). Therefore, an alternative possibility was that changes
in monosaccharide composition in the pectic RG-II mur1
can impair this dimerization, which in turn would lead to
dwarfism. In fact, the impaired dimerization in RG-II seems
to be the cause of this dwarf phenotype because exogenous
application of boron restituted the wild type phenotype (O’Neill
et al., 2001). This is consistent with the finding that mur2
mutants are neither affected in RG-II cross-linking nor L-fucose
content (O’Neill et al., 2001). Furthermore, Arabidopsis cgl
mutants, lacking the N-acetyl glucosaminyl transferase I in
their Golgi apparatus (and hence, L-fucosylation), do not
present altered growth (von Schaewen et al., 1993). Altogether,
growth defects in mur1 point to a structural defect which is
due to impairment in RG-II dimerization, and not due to
defects in protein fucosylation. However, defective interactions
with different cell wall polymers cannot be completely ruled
out, since the α-1,3-xylosyltransferase activity carried out by
RGXT enzyme family, involved in RG-II synthesis, transfers
D-xylose residues from UDP-xylose onto fucose (Egelund et al.,
2006).

An additional link between ascorbate and cell wall
biosynthesis comes from studies of tomato lines silencing
GME (Gilbert et al., 2009; Mounet-Gilbert et al., 2016). Those
lines with both copies of GME silenced showed reduced
growth, higher fragility, lower fruit firmness and a 35–55%
reduced ascorbate content in leaves and 20–40% of WT
ascorbate levels in fruits (Gilbert et al., 2009). Consistent
with the expected accumulation of GDP-D-mannose, the
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FIGURE 3 | GDP-D-mannose and its biological relevance for ascorbate and cell wall biosynthesis in plants. (A) Reaction scheme for the novo synthesis of
GDP-D-mannose in Arabidopsis thaliana. Mutants described for each step are indicated in lower case italic red letters. (B) Biological impairment over cell wall (RG-II,
rhamnogalacturonate II) and ascorbate content in mutants of genes controlling the GDP-D-mannose pool. MUR1 and GMD1 encode two
GDP-D-mannose-4,6-dehydratases. GER1 and GER2 encode two GDP-4-keto-6-deoxymannose-3,5-epimerase-4-reductases. The epimerase reaction is reversible
whereas the reduction is not (Bonin et al., 1997). VTC1 encodes GMP, a GDP-D-mannose pyrophosphorylase, GME encodes a GDP-D-mannose-3′,5′-isomerase.
D-Man-1-P, D-mannose-1-phosphate; GDP-D-Man, GDP-D-mannose; GDP-L-Gul, GDP-D-gulose; GDP-D-Gal, GDP-D-galactose; GDP-D-Fuc, GDP-D-fucose;
Asc, Ascorbate.

silenced lines showed an increase in mannose-linked cell
wall and defects in dimerization of RG-II by boron-mediated
cross-linking, since phenotypic defects could be rescued by
the application of external boron, but not with ascorbate
(Gilbert et al., 2009; Voxeur et al., 2011; Mounet-Gilbert
et al., 2016; Qi et al., 2017). All these results strongly suggest
that this impairment has a cell wall structural basis rather
than reduced ascorbate levels, similar to what was previously
found in an Arabidopsis mur1-1 mutant (O’Neill et al.,
2001). Supporting this connection between ascorbate and cell
wall biosynthesis at the GDP-D-mannose level, inactivation
of GMP activity by knocking down Arabidopsis KONJAC
genes involved in the activation of GMP resulted in reduced
glucomannan content of cell walls and severe dwarfism (Sawake
et al., 2015). The overexpression of KONJAC1 caused a slight
increase in ascorbate, whereas it resulted in a significant
increase in the glucomannan content of plant cell walls,
suggesting the presence of a mechanism that limits ascorbate
accumulation.

This interaction between cell wall and ascorbate biosynthesis
does not rely only on sharing common intermediates. As an
enzyme cofactor, ascorbate is required for the activities of proline
and lysine hydroxylases that, as previously mentioned, are
involved in collagen biosynthesis in animals. In plants, proline

hydroxylation is required for the production of hydroxyproline-
rich glycoproteins (HRGP) such as arabinogalactans (AGPs)
and extensins (EXTs). These proteins are part of cell wall
structural glycoproteome acting as scaffolding components
(Kishor et al., 2015; Marzol et al., 2018). AGPs are highly
glycosylated HRGP proposed to function as cross-linkers
of different cell wall polymers, thus conferring plasticity to
the cell wall (Lamport et al., 2006). Recently, AGPs have
been shown to be structural components of the cell wall
by covalent attachment to pectins (rhamnogalacturonan
I/homogalacturonate) and hemicelluloses (arabinoxylan),
giving rise to the Arabinoxylan Pectin Arabinogalactan
Protein complex APAP1 (Tan et al., 2013). In plants, EXTs
have a role similar to that played by collagen in animals but
contrary to collagen, EXTs can undergo O-glycosylation. This
post-translational modification leads to oligo-arabinosylation
of hydroxyproline residues that allow the formation of a
three-dimensional network in muro, attaching to other cell
wall components such as pectins (Hijazi et al., 2014; Kishor
et al., 2015). Indeed, proline hydroxylation is the preceding
step to O-glycosylation of extensins and arabinogalactans
(Showalter and Basu, 2016). Overall, proline hydroxylase activity,
promoted by ascorbate, is essential for cell wall assembly
and stiffening. Conversely, ascorbate has been implicated
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in fruit softening through non-enzymatic mechanisms,
mainly by solubilizing pectins due to •OH radicals arising
as a result of the Fenton reaction in the apoplast (Dumville
and Fry, 2003). Because the architecture of pectins in
the seed coat is important in interactions with other cell
wall polymers (Turbant et al., 2016), this ascorbate-driven
decrease in pectins might lead to seed abortion. These
seemingly opposite effects of ascorbate in the cell wall can
be explained by a fine-tuned regulation of the ascorbate content
and its compartmentalization, aspects that are still poorly
understood.

REGULATION OF ASCORBATE
CONTENT

As an essential antioxidant, regulation of the ascorbate content is
closely related with abiotic stresses that normally cause oxidative
stress. High light in particular is translated into a ROS burst
caused by an increased photoreduction and photorespiration.
This, in turn, leads to increased ascorbate biosynthesis in order to
detoxify these ROS (Asada, 1999). Low light, in contrast, causes
a reduction of ascorbate. For example, Arabidopsis plants grown
in continuous dark for 2 days only contained 20% of ascorbate
relative to plants grown in light (Conklin et al., 2013).

Regulatory mechanisms that control ascorbate biosynthesis
have been found at the level of transcription, translation, protein
stability and activity for different components of the SW pathway.
Light modulation of ascorbate content involves GMP stability
(Wang et al., 2013), since GMP protein is degraded in the dark by
the CONSTITUTIVE PHOTOMORPHOGENIC9-Signalosome
subunit 5B (CSN5B; Wang et al., 2013). At the transcriptional
level, low light decreases the expression of GGP, whereas high
light causes its induction (Dowdle et al., 2007). Similarly, high
light also induces the expression of GLDH in melon (Pateraki
et al., 2004). NO treatment, which induces oxidative stress, causes
an increase of GLDH mRNA levels in pepper (Rodríguez-Ruiz
et al., 2017). At the activity level, Arabidopsis and barley plants
exposed to high light showed an increment of GGP and GLDH
activity (Smirnoff, 2000; Dowdle et al., 2007), A redox regulation
has also been reported for the activities of L-GalDH in kiwifruit
(Laing et al., 2004b), GME (Wolucka and Van Montagu, 2003)
and GLDH (Leferink et al., 2009) in Arabidopsis. For GLDH in
particular, Cys-340 has been identified as a redox-sensitive thiol
residue required for an optimal conversion of L-galactono-1,4-
lactone into ascorbate. This residue can be irreversibly oxidized
by H2O2 unless it is previously S-glutathionylated (Leferink et al.,
2009). This oxidation might be involved in the programmed cell
death induced by some stresses like heat, since GLDH activity
decreases during early stages of programmed cell death resulting
in the inhibition of ascorbate biosynthesis (de Pinto et al., 2015).
Therefore, the increased conversion of L-galactono-1,4-lactone
to ascorbate under oxidative stress or high light might be an
important control point of ascorbate biosynthesis (Smirnoff,
2000).

Probably, the best described regulatory control point of
ascorbate biosynthesis is exerted by GGP (Laing et al., 2015). This

study reports that the amount of GPP protein in Arabidopsis
is controlled by a cis-acting upstream Open Reading Frame
(uORF). Thus, at high ascorbate concentration there is a decrease
of the translation of GGP mRNA, functioning as a negative
feedback loop (Laing et al., 2015). More importantly, since
this uORF has been identified in GGP genes from mosses
to angiosperms, this ascorbate post-translational regulation
is likely conserved throughout many plant species. Another
possible control point exerted by ascorbate is L-GalDH, since
the activity of this enzyme purified from spinach leaves is
inhibited by ascorbate (Mieda et al., 2004). However, this is
now under debate based on activity studies of the purified
L-GalDH from kiwifruit (Laing et al., 2004b). The role of GLDH
in ascorbate biosynthesis has also been studied during fruit
development of tomato and pea. GLDH activity is inhibited by
high ascorbate levels (Pallanca and Smirnoff, 2000; Mellidou
et al., 2012b), a feedback control also found to affect GME
activity in Arabidopsis (Wolucka and Van Montagu, 2003).
Another link related with stress came with the finding that the
activity of PMM is enhanced by a Ca2+-dependent interaction
with Calmodulin-Like 10 (CML10; Cho et al., 2016), of
which the expression is boosted by H2O2 and biotic stress
(Zimmermann et al., 2004). Accordingly, Arabidopsis transgenic
lines expressing an artificial microRNA against CML10 fail
to increase ascorbate levels under heat stress (Cho et al.,
2016).

Other genes involved in the regulation of ascorbate levels
are AMR1 (Zhang et al., 2009) and ERF98 (Zhang et al., 2012).
AMR1 encodes an F-Box protein that represses the expression of
virtually all the SW genes, particularly the expression of GME
and GGP. Interestingly, this negative regulator of the pathway
is barely expressed under high light conditions, pointing out
the importance of the de novo biosynthesis of ascorbate in
the response to light (Zhang et al., 2009). In contrast, ERF98
is a positive regulator of the pathway since overexpression of
this gene increase the content of ascorbate by enhancing the
expression of genes of the SW pathway, in particular GMP,
GGP and L-GalDH. Further analysis indicated that ERF98 can
directly bind the promoter of the GMP gene (Zhang et al., 2012),
supporting its regulatory role of the SW pathway.

An important aspect concerning ascorbate regulation is
how it is distributed at the subcellular level. Cytohistochemical
analysis, based on immunogold labeling and high-resolution
immuno electron microscopy in tobacco and Arabidopsis
leaves have shown that ascorbate is unevenly distributed at
the subcellular levels (Zechmann et al., 2011). The estimated
concentrations of ascorbate in Arabidopsis are: mitochondria
(10.4 mM), chloroplasts (10.8 mM), peroxisomes (22.8 mM),
nuclei (16.3 mM), vacuole (2.3 mM) and cytosol (21.7 mM)
(Zechmann et al., 2011). In addition, low concentrations of
ascorbate (0.002 mM) and DHA (0.36 mM) have been reported
in the apoplast (Booker et al., 2012). These concentrations vary
when plants are exposed to high light, which translates into
an increase of ascorbate content in most cell compartments
(Zechmann, 2011; Zechmann et al., 2011) with the exception
of peroxisomes, whose content diminishes under high light.
Interestingly, vacuolar ascorbate increases fourfold when
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plants are exposed high light. This might be necessary to
reduce the phenoxyl radicals that are oxidized by the high
light associated-increase of H2O2 (Takahama, 2004). However,
it is unknown whether the increase in ascorbate content in
vacuole is due to the reduction of vacuolar MDHA through
trans-membrane ascorbate-mediated electron transporters
like cytochrome b561 (Griesen et al., 2004; Asard et al.,
2013) or by direct transport of cytosolic ascorbate into the
vacuole under high light using a transporter not identified
yet.

Interestingly, despite the low concentration of ascorbate,
the apoplast ratio of ascorbate/DHA ascorbate is important to
determine the redox state of this compartment, which it turn
controls redox-dependent signaling processes (Waszczak et al.,
2018), such as stomata closure (Chen and Gallie, 2004) and
chloroplast reprogramming leading to light acclimation
(Karpinska et al., 2018). All these processes would be
compromised if DHA and MDHA were not reduced back
into ascorbate. Considering the little amount in the apoplast of
glutathione and the enzymes in the Halliwell-Asada cycle other
mechanisms must keep the redox homeostasis or the apoplast.
First, apoplastic DHA produced by the spontaneous oxidation of
MDHA enters the cytosol in exchange with ascorbate through
facilitated diffusion using a yet-unknown protein (Horemans
et al., 1996, 1997, 1998). Once in the cytosol, DHA is reduced
to ascorbate by DHAR through the glutathione cycle. Second,
MDHA is reduced to ascorbate in the apoplast by a cytochrome
b-mediated trans-plasma membrane electron transport that uses
cytosolic ascorbate as an electron donor (Horemans et al., 1994,
2000), which resembles the ascorbate restoration by electron
transport across the tonoplast membrane (Asard et al., 2013),
thus suggesting the involvement of cytochrome b561 in the
reduction of apoplastic MDHA.

A similar question remains concerning MDHA and DHA
reduction back to ascorbate in the thylakoid lumen. Taking into
account the importance of luminal ascorbate in the maintenance
of the functionality of the photosynthetic apparatus and energy
dissipation (NPQ) commented above, MDHA and DHA must be
reduced back to ascorbate. Since, to the best of our knowledge,
there are no DHA reductases (DHAR) nor MDHA reductases
(MDHAR) in the thylakoid lumen, other mechanisms should be
involved. It has been shown that luminal DHA, produced by
MDHA disproportionation in the lumen, crosses the thylakoidal
membrane to the stroma (Mano et al., 1997), where it is reduced
by the Halliwell–Asada cycle (Asada, 1999). The mechanism
by which DHA crosses the thylakoidal membrane is not clear.
Since no DHA transporter has been yet described in thylakoids
(Foyer and Lelandais, 1996; Foyer and Noctor, 2011), the
difference in DHA concentration between stroma and thylakoid
lumen, and the lack of charge, would favor a high diffusion
rate toward the stroma. On the other hand, ascorbate (newly
synthetized and recycled from DHA) has to enter the lumen
of the thylakoid. The diffusion hypothesis might also apply if
the concentration of ascorbate in the stroma is much higher
than that in the lumen, consistent with a non-active transport
of ascorbate into the lumen previously reported (Foyer and
Lelandais, 1996). However, unlike DHA, ascorbate has a negative

charge making it a less suitable molecule to diffuse across
the thylakoid membrane (Horemans et al., 2000). It has been
recently reported that AtPHT4;4 transports ascorbate from the
chloroplastic intermembrane space into the stroma (Miyaji et al.,
2015). Interestingly, the homologous AtPHT4;1 is localized in
the thylakoid membrane (Pavón et al., 2008) and its expression
is modulated by light (Guo et al., 2008; Miyaji et al., 2015).
Therefore, AtPHT4;1 is a good candidate to transport ascorbate
across the thylakoid membrane.

APPROACHES TO INCREASE
ASCORBATE IN FRUITS

Increasing ascorbate content in highly consumed fruits would
clearly have an impact on human nutrition. A concomitant
increase of ascorbate in tissues or organs that are submitted
to oxidative stress, i.e., photosynthetic tissues, might have an
additional beneficial effect on plant tolerance. However, whether
or not ascorbate increases in fruit would have an effect on
stress tolerance is not so clear, although is proposed that during
fruit development and ripening oxidative stress might occur
(Brennan and Frenkel, 1977; Rogiers et al., 1998; Jimenez et al.,
2002; Huan et al., 2016). Most of the attempts used to increase
ascorbate levels are based on biotechnology and basically consist
in the overexpression of genes involved in different aspects of
ascorbate metabolism (biosynthesis, recycling, or regulation).
A second approach to increase the content of ascorbate would be
through the selection of specific genomic regions that determine
high ascorbate from a donor cultivar (or related species) and
introgression into the cultivar of interest using molecular-assisted
breeding (Singh and Singh, 2015). While in the first approach it
is possible to use genes from different species and promoters that
drive high or specific expression in desired tissues (Amaya et al.,
2015), as far as the target species is amenable of transformation,
the second approach relies in the identification of natural variants
that can be used to inter-cross with these lines of interest.
Although to date there are limited reports using this approach,
the clear advantage is that these lines can be directly put into
production because it does not involve transgenesis and therefore
are not subjected to GMO regulation (Huang et al., 2016).

Biotechnological Approaches
There are abundant reports in the literature showing an
increase of ascorbate in plants using biotechnological approaches
(Valpuesta and Botella, 2004; Macknight et al., 2017; Mellidou
and Kanellis, 2017). However, most of the studies have been
performed in plants that do not produce edible fruits such as
Arabidopsis, tobacco or rice and thus, most of the analyses
were focused on vegetative tissues. Within fruits, tomato has
been the preferred model due to its adoption as a model of
fleshy fruits, its commercial value and the availability of efficient
transformation protocols. The highest increase of ascorbate in
tomato fruits reported so far has been about sixfold and was
achieved by ectopically expressing GGP from kiwi (Bulley et al.,
2012). Interestingly, the transgenic tomato lines with the highest
increase of ascorbate showed fruits with developmental defects
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and did not produce seeds (Bulley et al., 2012). A possible
explanation is that an increase of metabolic flux to the synthesis of
ascorbate had the effect of draining metabolites that are required
for cell wall biosynthesis, particularly during seed development.
Alternatively, this sharp increase of ascorbate might cause an
increase in pectin solubilization (Dumville and Fry, 2003), which
might provoke defects in seed development. Interestingly, in
the same study, overexpression of GGP also caused an increase
in ascorbate content of approximately twofold in strawberry
without obvious defects during seed formation. There can be
several explanations for these differences in fruit development,
first the ascorbate increase in strawberry fruit is smaller, thus not
being enough to solubilize pectins, second strawberry is a false
fruit with the real fruits (the achenes) located outside the fleshy
part, and third the composition of the cell wall surrounding the
fruits might be different in terms of pectin composition.

Genes involved in ascorbate biosynthesis from alternative
pathways have also been used to increase ascorbate content
in tomato fruit. Three different studies in tomato have been
published expressing the D-Galacturonate Reductase (GalUR)
gene from strawberry (Agius et al., 2003). In two reports,
overexpression of GalUR caused an increase between 2 and 2.5-
fold, which resulted in enhanced tolerance to various abiotic
stresses (Cai et al., 2015; Lim M.Y. et al., 2016). In the third
study, GalUR is driven by the constitutive 35S promoter or the
tomato fruit-specific polygalacturonase (PG) promoters (Amaya
et al., 2015). In both cases, transgenic lines showed a modest (1.3-
fold) increase of ascorbate content. However, a comprehensive
metabolomic analysis indicated complex changes in metabolites
as well as concomitant increase of total antioxidant capacity in
transgenic tomato fruits, suggesting that the increase of ascorbate
is associated with a tight regulation of the cellular redox state of
fruits.

Other approaches have employed genes involved in ascorbate
recycling or transcription factors involved in the regulation of
genes of the SW pathway. Overexpression of the cytosolic DHAR1
gene from potato increased the ascorbate content by 1.9-fold
in transgenic tomato fruits (Li et al., 2012). Two additional
reports using regulatory factors also show a modest increase of
ascorbate in fruits. Identification and overexpression of SlHZ24,
a transcription factor that binds the promoter of the tomato
SlGMP3 gene (Hu et al., 2016), caused a 1.6-fold increase of total
ascorbate in tomato fruits at the breaker stage. Further analysis
indicated that SlHZ24 also can bind in vitro SlGME2 and SlGGP
promoters, suggesting that this transcription factor can target
multiple genes involved in ascorbate biosynthesis. The tomato
SlDof22 negatively regulates ascorbate accumulation in tomato,
and reduction of the endogenous expression of this gene by RNAi
increased the levels of ascorbate 1.3-1.6-fold in mature fruits.
Transcriptomic analysis indicated that the SlDof22 silenced lines
had increased expression of several genes involved in the SW
pathway and recycling of ascorbate (Cai et al., 2016). Further, the
authors showed that SlDof22 can bind the promoter of the tomato
SOS1, a Na+/H+ antiporter involved in Na+ homeostasis and
essential for salt tolerance (Zhu, 2002). However, how the SOS
pathway and the ascorbate biosynthetic pathway are connected
remains elusive.

From a breeding perspective, the increases of ascorbate
between 1.5 and 2-fold using biotechnological approaches in
tomato here reported might not seem outstanding (Amaya
et al., 2015; Cai et al., 2015; Lim M.Y. et al., 2016). However,
considering the large consumption of tomato, its relatively low
ascorbate and its high raw intake, we believe that the reported
increments would have a positive impact from a nutritional
point of view, more so considering the recent reports on the
health beneficial effects of a rich ascorbate diet. The sixfold
ascorbate increase reported by Bulley and coworkers (Bulley et al.,
2012) would have a tremendous impact on ascorbate intake.
Although the reported developmental defects make it unviable
for agricultural use, from a scientific perspective it might be a
useful model to investigate the role that high ascorbate has in
tomato physiology.

Molecular Breeding and Genome
Selection for Ascorbate Improvement
Improving fruit ascorbate content using marker-assisted
selection requires prior identification of the genetic basis for
natural variation of ascorbate. This can be achieved by genetic
mapping and quantitative trait loci (QTL) analysis or genome-
wide association studies (GWAS) in a developed mapping
population, or alternatively in a diverse set of genotypes within
the species, that are genotyped and phenotyped to determine
molecular markers associated to specific traits (Mackay et al.,
2009; Singh and Singh, 2015). Next, identified markers need to
be validated for their application to select new cultivars with
increased ascorbate content.

Several studies have shown that ascorbate content in fruits
exhibit a quantitative inheritance, with several loci involved
in ascorbate variation (Stevens et al., 2007; Zorrilla-Fontanesi
et al., 2011). These studies have rarely identified the genes
controlling the variation in ascorbate content, but they mark
the genomic regions, and associated markers, and provide
relevant information about the genetic architecture of the trait
(how many loci and their quantitative contribution), as well as
environmental effects. In some studies, candidate genes in those
regions have been identified, with examples described below in
apple, strawberry and tomato.

Apple
In this species (Malus domestica), a population derived from
the cultivars “Telamon” and “Braeburn” was used to identify
several QTLs for ascorbate content in fruit skin and flesh on
linkage groups (LG) 6, 10, and 11 in the apple genome (Davey,
2006). The QTL identified on LG10 collocates with a major
QTL controlling flesh browning (Sun et al., 2014). Four regions
on LG 10, 11, 16 and 17 controlling ascorbate were detected
over different years in another study using the same population
(Mellidou et al., 2012a). Collocations between GGP, DHAR
and a nucleobase-ascorbate transporter and some of the QTL
were identified. In the case of GGP, allelic variations in two
different GGP genes (MdGGP1 and MdGGP3) were associated
with ascorbate content (QTL on LG 11 and LG 10) both in
the population and across commercial apple cultivars (Mellidou
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et al., 2012a). In particular, differences in the expression of
MdGGP1 between fruits from high- and low-ascorbate cultivars
indicate a key role for MdGGP1 in the regulation of fruit
ascorbate content (Mellidou et al., 2012a). An allele-specific
SNP in this gene represents a promising tool for molecular
breeding for enhanced fruit ascorbate content in apple. In the
same study, the gene MdDHAR3-3 was associated with a stable
QTL for flesh browning on LG 17, suggesting that regulation
of redox status of the ascorbate pool via DHAR is important
for post-harvest fruit quality traits in apple. In agreement
with this, transcriptomic studies revealed that prolonged post-
harvest storage downregulated DHAR expression, resulting in
the oxidation of ascorbate and thus enabling browning to
occur (Mellidou et al., 2014). Therefore, besides the nutritional
relevance of increasing ascorbate content in fruits, it has been
shown that increased ascorbate is associated with improved post-
harvest quality in fruits such as pear and apple (Davey, 2006;
Mellidou et al., 2012a). For example, increased flesh browning
in apple fruits is associated with the presence of a less reduced
ascorbic acid pool (Davey, 2006).

Strawberry
Strawberry (Fragaria × ananassa) is the fruit with the highest
global production among berries, reaching a value of over nine
million tons (FAOSTAT see text footnote1), and it typically
contains high ascorbate. However, ascorbate content varies
widely between strawberry cultivars and Fragaria species, ranging
from 10 to 80 mg/100 g FW (Cruz-Rus et al., 2011; Mezzetti et al.,
2016). Using a biparental population of 95 F1 progenies derived
from two strawberry breeding lines, three QTL explaining a total
of 45% variation were identified on LG IV-2, LG V-1 y LG VII-
1 (Zorrilla-Fontanesi et al., 2011). Two of the detected QTLs
were stable in different years and candidate genes were identified
based in orthologous positions in the diploid F. vesca reference
genome. The gene FaGalUR collocated with the position of the
stable QTL on LG IV-2 and a gene encoding a myoinositol
oxygenase (FaMIOX) was located within the stable QTL on LG
V-1 (Zorrilla-Fontanesi et al., 2011), although the role of this
pathway remains controversial.

FaDHAR and FaGMP collocated with the QTL detected only
1 year on LG VII-1. Recently, a transcriptomic analysis by
RNA-seq in pools of progeny lines contrasting in ascorbate
content derived from the same population identified differential
expression of gene MANNOSE-6-PHOSPHATE ISOMERASE
1 (FaM6PI1) while FaMIOX was not differentially expressed
(Vallarino et al., 2019). The FaM6PI1 gene was also located within
the confidence interval of the major QTL detected on LG V-I, and
it is highly similar to the Arabidopsis PMI gene that encodes the
first enzyme in the SW pathway (Maruta et al., 2008). Therefore,
gene FaM6PI1 was proposed as a candidate gene contributing to
the natural variation in ascorbate content in strawberry.

Tomato
Several loci controlling ascorbate content have been detected
using different populations derived from crosses between
cultivated varieties (S. lycopersicum) and related wild Solanum
species. Common genomic regions controlling ascorbate content

have been identified on chromosomes 2, 8, 9, 10, and 12 (Stevens
et al., 2007). In general, wild alleles increased ascorbate content
and QTL were relatively stable across years or environments. The
tomato gene GME2 lies within the QTL interval on chromosome
9 (bin 9-J) and other candidate genes localized within QTL
intervals were MDHAR3 in bin 9-D, GMP2 in bin 9-E, and
GLDH in bin 10-E (Stevens et al., 2007). Further studies
confirmed that this MDHAR activity was linked to ascorbate
content in tomato fruits, which was found beneficial for an
extended shelf life after chilling (Stevens et al., 2007). The role
of MDHAR in governing ascorbate pool size was demonstrated
through assessing expression and activity profiles throughout
fruit ripening (Mellidou et al., 2012b). In an independent report,
163 tomato accessions were analyzed for several traits including
ascorbate content by a GWAS approach and, again, significant
SNPs associated to MDHAR were identified (Sauvage et al., 2014).
All together, these reports indicate a relevant role of MDHAR in
governing natural variation in ascorbate content in tomato.

Using transcriptomic analysis, a QTL detected in three trials
on introgression line IL12-4 (S. pennellii in a S. lycopersicum
background) was associated with up-regulation of genes involved
in pectin degradation (Di Matteo et al., 2010). Further analyses of
mutant variants and expression studies in introgression sublines
from IL12-4 supported that pectinesterases might have a crucial
role in determining ascorbate content in fruits of IL12-4 (Ruggieri
et al., 2015). These studies suggested that ascorbate accumulation
in IL12-4 fruits was achieved by increasing flux through the
D-galacturonate pathway, as indicated above.

Recombinant Inbred Lines (RIL) have also been used to
identify QTL/candidate genes linked to ascorbate content in
tomato fruits. Thus, transcriptomic analyses in fruits of two
groups of contrasting RILs suggested that ascorbate content co-
regulates with genes involved in hormone signaling, and that
they are dependent on the oxidative status of the fruit (Lima-
Silva et al., 2012). Another study in tomato using the same RIL
population, derived from the wild-relative S. pimpinellifolium
TO-937, detected four QTL with a joint contribution of 42.1%
to the variation of ascorbate content (Capel et al., 2015).

Melon
A limited number of genetic studies on ascorbate have been
conducted in melon, although this fruit serves a significant
source of this vitamin. There is considerable variation within
the species. Ascorbate content in different varieties of the most
widely consumed Cantaloupe and Honeydew melons range from
about 10 to 29 mg/100 g FW, with the former types having higher
content than the latter (Laur and Tian, 2011). This crop has a
high global production (∼31 million tons; FAOSTAT) and it is
also amongst the highest productions in the European Union
(∼3 million tons; Eurostat, 2017). A single QTL for ascorbate
has been mapped on LG 5 using different populations (Sinclair
et al., 2006; Park et al., 2009). However, low reproducible RAPD
markers were used in these studies, hampering their application
in breeding programs.

Overall, the number of studies identifying QTLs affecting
fruit ascorbate content is still rather limited to draw conclusions
on common loci across different species. In order to effectively
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introduce QTLs using marker-assisted selection in order to
develop new fruit varieties with increased ascorbate content, loci
must be validated in independent studies. Also, it is important to
use additional populations and to perform the QTL analysis in
different locations in order to determine QTL stability. To date,
only natural variation in GGP and MDHAR alleles have been
shown in independent studies to be useful in increasing ascorbate
in apple and tomato, respectively (Stevens et al., 2008; Mellidou
et al., 2012a). Pyramiding QTLs has the potential to increase
ascorbate content, particularly in those cases when an individual
QTL has a limited effect. There are already reports in which
S. lycopersicum lines containing two chromosomal fragments
from S. pennellii double the ascorbate content in ripe tomato fruit
(Sacco et al., 2013; Rigano et al., 2014). Furthermore, with the
recent establishment of high-throughput genotyping platforms,
the selection of lines that include only specific genomic regions of
interest will now be performed in a very efficient manner (Crossa
et al., 2017).

CONCLUSION AND FUTURE
PERSPECTIVES

The importance of ascorbate for humans has been recently
highlighted through the characterization of its role in the activity
of TETs and histone demethylases. Therefore, it is important
to understand the mechanisms that determine the levels of
ascorbate in fruits, a major source for ascorbate in human
diet. An essential role for ascorbate in plants and animals is
to maintain the oxidative status in the active center of several
enzymes. It is also essential for scavenging ROS produced
during photosynthesis. The identification of vtc mutants clearly
highlighted an essential role of ascorbate in oxidative stress
tolerance (Conklin et al., 1996). Ascorbate has additional roles
during plant growth since early reports indicated that external
application of ascorbate caused a significant increase in seedling
growth and effects on cell division (Hausen, 1935; Havas,
1935), although the molecular mechanisms are not completely
understood.

Most of the molecular studies have been performed in the
model plant Arabidopsis thaliana, allowing the identification of
all the catalytic steps of the SW pathway. However, with the
exception of the established role of GGP as a key biosynthetic
control step, very little is known about the factors that determine
the final content of ascorbate in different tissues.

In fruits from different species or even within the same
species large differences can be observed, with fruits that show
extremely high content of ascorbate such as camu (Castro
et al., 2015) and acerola (Badejo et al., 2009). How these fruits
can accumulate such large amounts, or what is the advantage
of having such a high content of ascorbate in these fruits is
not known. As previously indicated, an important aspect of
ascorbate is the close interconnection between its biosynthesis
and that of the non-cellulosic cell wall components, which
might hamper a proper understanding of the regulation of
ascorbate biosynthesis. Since degradation of the cell wall is a
common process during fruit ripening, alternative pathways such

as that using D-galacturonate may have an important role in
the final accumulation of ascorbate in this organ. Considering
all this, it is important to extend the research to ascorbate-rich
fruits to identifying regulators that determine high-ascorbate
accumulation. An advantage is that the high conservation of
proteins of the SW pathway among plant species makes it
relatively easy to identify the orthologous genes. With the current
genomic tools and high throughput sequencing technology,
GWAS could be a good approach to identify these components.
The use of segregating populations using contrasting parental
lines can also be a good choice, considering the expedition
of gene identification through combination of bulk segregant
analysis (BSA), high-throughput next-generation sequencing,
efficient SNP arrays, mapping by sequencing approaches (Takagi
et al., 2013), or global gene expression studies (Amaya et al.,
2016).

The CRISPR/Cas9 technology has greatly improved our
capacity to engineer targeted mutations in eukaryotic genomes
(Doudna and Charpentier, 2014). In tomato, CRISPR/Cas9 has
been recently used to modify quantitative trait variation in some
key agronomical traits such as fruit size, inflorescence number
and plant size in tomato (Rodríguez-Leal et al., 2017). In a recent
report, genome editing of the uORF of GGP in lettuce increased
the ascorbate content by 1.5-fold, leading to oxidative stress
tolerance (Zhang H. et al., 2018). A similar edition of tomato
GGP1 also led to an ascorbate increase of ∼1.5-fold in leaves (Li
et al., 2018). Thus, a future trend will be to use genome editing
to target gene determinants in either the cis-regulatory elements
to modify their gene expression, substrate affinity, catalytic
efficiency, generation of specific alleles or targeting interacting
partners to modulate the ascorbate content in fruits. All this
will be further facilitated by increasing sequence replacements
via homologous recombination as has been already reported in
Arabidopsis through CRISPR/Cas9 (Miki et al., 2018).
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The pivotal role of phytohormones during fruit development and ripening is considered
established knowledge in plant biology. Perhaps less well-known is the growing body of
evidence suggesting that organic acids play a key function in plant development and,
in particular, in fruit development, maturation and ripening. Here, we critically review
the connection between organic acids and the development of both climacteric and
non-climacteric fruits. By analyzing the metabolic content of different fruits during their
ontogenetic trajectory, we noticed that the content of organic acids in the early stages of
fruit development is directly related to the supply of substrates for respiratory processes.
Although different organic acid species can be found during fruit development in general,
it appears that citrate and malate play major roles in this process, as they accumulate on
a broad range of climacteric and non-climacteric fruits. We further highlight the functional
significance of changes in organic acid profile in fruits due to either the manipulation of
fruit-specific genes or the use of fruit-specific promoters. Despite the complexity behind
the fluctuation in organic acid content during fruit development and ripening, we extend
our understanding on the importance of organic acids on fruit metabolism and the need
to further boost future research. We suggest that engineering organic acid metabolism
could improve both qualitative and quantitative traits of crop fruits.

Keywords: carbon metabolism, development, fruit, metabolism, organic acids, primary metabolism, ripening

INTRODUCTION

True fruits are specialized plant organs found solely in angiosperms (i.e., flowering plants), and
these unique organs are believed to have evolved to improve seed dispersal and protection (Karlova
et al., 2014). The natural diversity of angiosperms, ranging from small herbs to massive trees,
coupled with their extraordinary ability to grow in a wide variety of habitats, has resulted in their
intimate association with humans. This is particularly true considering the human connection
with the fruits and seeds of flowering plants and their economic and nutritional value. Although
fruits are usually characterized as derived from a mature ovary containing seeds, many structures
frequently called ‘fruit’ are, in fact, composed of a variety of other flower tissues types (Seymour
et al., 1993, 2013).
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The countless types of fruits present in angiosperms can be
operationally organized within a few broad categories by using
combinations of traits such as: (i) dehiscence or indehiscence;
(ii) fleshy or dry exterior; and free (apocarpous) or fused
(syncarpous) carpels (Seymour et al., 2013). These variations are
further exemplified, for instance, by fleshy fruits, which have
evolved by an enlargement of seed-surrounding tissues to create
attractive flesh for seed-dispersing animals. Dry fruits, on the
other hand, have a dry mesocarp that normally needs to open
in order to release the seeds inside via mainly abiotic dispersal
mechanisms (Fuentes and Vivian-Smith, 2009). It is tempting
to suggest that this high diversity in fruit types is adaptive and
associated to specific dispersers. This fact apart, the existence of
significant correlations between fruit type and habitat conditions
in angiosperms indicates that the evolution of fruit fleshiness
is more likely associated with changes in vegetation habitats
than in dispersers itself (Bolmgren and Eriksson, 2005). Both
explanations are not mutually exclusive. In any case, fleshy fruit
evolution is an important and continually recurring theme in the
study of flowering plant evolution. However, caution should be
exercised when making assumptions with respect to the adaptive
value of particular fruit traits (Niklas, 2016).

Developmental stages of fruits can be divided in: (i) fruit
set; (ii) growth; (iii) maturation; and (iv) ripening. Fruit set
occurs during and after fertilization, which can be defined as
the transition of a quiescent ovary to a rapidly growing young
fruit and depends on the successful completion of pollination and
fertilization (Hamamura et al., 2012). Additionally, in the absence
of pollination and successful fertilization, levels of hormones
such as auxins and gibberellins drop and the flower begins a
terminal phase of senescence, ending in floral abscission – an
effect that was closely associated with cellular pH in the abscission
zone cells (Sundaresan et al., 2014). Parthenocarpy, another
physiological event occurring in the absence of pollination, is
characterized by intensive alterations of phytohormones such
as auxin, gibberellin (GA), cytokinin or combinations thereof
during fruit set (McAtee et al., 2013). In fact, exogenous
application of these phytohormones alone can trigger fruit
development including fruit set and fruit growth, to a certain
extent, and their combinations would induce a normal fruit
growth in the absence of fertilization (Srivastava and Handa,
2005; Mignolli et al., 2018). Accordingly, increased GA content
or perception are associated with parthenocarpic fruits in tomato
(Solanum lycopersicum L.) mutants such as pat (Mazzucato et al.,
1998), pat-2 (Fos et al., 2003), pat-3/4 (Fos et al., 2001), whereas
facultative parthenocarpic fruits are observed in the procera
mutant (Carrera et al., 2012). Not only gibberellin but also auxin
has been determinant in parthenocarpy in tomato fruits as shown
in the mutants pin4 (Mounet et al., 2012) arf7 (De Jong et al.,
2009), arf8 (Goetz et al., 2007), iaa9 (entire) (Wang et al., 2005).
On the other hand, when pollination and fertilization take place,
a cascade of events is triggered, leading to development of seeds
and fruit growth.

During fruit growth, a signal, most likely derived from seeds
(sources and sinks for cytokinin and auxin), induces neighboring
tissues to expand, by both cell division and expansion, with
a positive correlation between seed number and fruit size

(Bohner and Bangerth, 1988). This fact apart, polyploidy, which
is associated with cell expansion, is another important feature
involved in the determination of fruit weight and size in tomato
(Cheniclet et al., 2005). Additionally, there is a concomitant
accumulation of storage products and sugars (Carrari and Fernie,
2006). Fruit maturation begins when growth stops, reaching
the competence to ripen, but the ripening process itself is a
subsequent step. Ripening is a complex process whereby several
metabolic changes related to softening and flavor characteristics
as well as organoleptic traits take place (Lira et al., 2016). The
precise transition between all the stages of fruit development,
including maturation and ripening, requires a high amount
of energy. This energetic demand is provided by metabolic
adjustments on the abundance of different classes of carbon
compounds (e.g., organic acids, amino acids, and sugars) during
development (Osorio et al., 2013). These metabolic changes from
normal development toward fruit ripening are coupled with a
generally brief stage of accelerated ripening that is normally
associated with enhanced respiration (Osorio et al., 2013; Cosme
Silva et al., 2017).

Fleshy fruits are characterized by a broad range of sizes,
shapes, and colors. Moreover, different species presents unique
flavor characteristics that are of pivotal importance in several
processes. Such aspects are attractive to frugivorous animals,
enhancing seed dispersal, and furthermore have become an
indispensable part of the human diet (Barry and Giovannoni,
2007; Karlova et al., 2014). Fleshy fruits are quite diverse, ranging
from grapes (Vitis vinifera L.) and tomatoes, which are derived
from the ovary, (the so-called true fruits), through apples (Malus
domestica L. Borkh) and pineapples (Ananas comosus L. Merril),
to strawberries (Fragaria x ananassa Duch.), which are derived
from the receptacle tissues or from expansion of the sepals (called
pseudo- or accessory fruits) (Barry and Giovannoni, 2007).

Fleshy fruits have traditionally been classified as climacteric
or non-climacteric, based on physiological differences observed
within their respiratory pattern and reliance on ethylene
biosynthesis during ripening. Climacteric fruits, such as apple,
banana (Musa paradisiaca L.), papaya (Carica papaya L), and
tomato (further details in Table 1) show an increase in respiration
and ethylene production at the onset of the ripening process
(Cherian et al., 2014; Karlova et al., 2014). On the other
hand, non-climacteric fruits, such as citrus (Citrus spp.), grapes,
melon (Cucumis melo L.), and strawberries (Fragaria spp.)
do not show the respiratory burst and ethylene production
remains at a basal level during the whole fruit development
including maturation and ripening (Giovannoni, 2004; Cherian
et al., 2014). During maturation, fruits go through dramatic
transformations in color, aroma, nutrient composition, flavor,
and firmness. Additionally, during this process, the production
of reactive oxygen species plays an important role, for instance,
in the biosynthesis of carotenoids and in the transformations of
chloroplasts to chromoplasts (Li and Yuan, 2013). Barsan et al.
(2012) have shown an intriguing metabolic shift coupled with
disrupted thylakoid biogenesis machinery and elevated energy
production during tomato fruit ripening. These authors have also
shown a strong decrease in the abundance of proteins of light
reactions (photosynthesis, Calvin cycle, and photorespiration)
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TABLE 1 | Main sugars and organic acid found in both climacteric and non-climacteric ripe fruits.

Fruits Main sugar Main organic acid Reference

Climacteric

Apple Fructose Malate Wu et al., 2007; Zhang et al., 2010

Apricot Glucose/Fructose Malate/Citrate Gurrieri et al., 2001; Fan et al., 2017

Atemoya Fructose/Glucose Fumarate/Malate Alique and Oliveira, 1994; Anaya-Esparza et al., 2017

Banana Fructose Malate Morvai and Molnár-Perl, 1992

Blueberry Glucose/Fructose Citrate Ayaz et al., 2001; Perini et al., 2018

Guava Fructose Citrate Bashir and Abu-Goukh, 2003

Mango Fructose Citrate/Malate Medlicott and Thompson, 1985; Cosme Silva et al., 2017

Papaya Glucose Citrate Selvaraj et al., 1982; Souza et al., 2014

Peach Glucose/Fructose Malate/Citrate Morvai and Molnár-Perl, 1992; Cirilli et al., 2016

Pear Fructose/Sorbitol Malate/Citrate Zhen et al., 2016

Non-climacteric

Blackberry Fructose Isocitrate Fan-Chiang and Wrolstad, 2010

Grape Glucose Malate Martínez-Esteso et al., 2011

Lemon Fructose Citrate Asencio et al., 2018

Lima Fructose Citrate Albertini et al., 2006; Asencio et al., 2018

Lychee Sucrose/Glucose Tartaric/Malate Harvey et al., 1975

Longan Sucrose/Fructose Malate/Oxalate Yang et al., 2009

Orange Fructose Citrate Albertini et al., 2006

Pineapple Sucrose/Fructose Citrate Luengwilai et al., 2018

Ponkan Sucrose/Fructose Citrate/Quinate Albertini et al., 2006; Lin et al., 2015

Strawberry Fructose/Glucose Citrate Lee et al., 2018

and carbohydrate metabolism (starch synthesis/degradation),
mostly between breaker (∼35 days after anthesis) and red stages
(55 days after anthesis), as well as an increase in terpenoid
biosynthesis (including carotenoids) and stress-response proteins
(ascorbate-glutathione cycle, abiotic stress, redox, and heat
shock). All these transformations are the result of complex
and dynamic processes that involve a series of molecular and
biochemical changes under genetic regulation and/or in response
to environmental perturbations (Osorio et al., 2013).

Due to their economic importance, organoleptic traits are
recurrent object of investigations seeking to improve fruit quality
(Chen et al., 2012; Tieman et al., 2017). Among the several
characteristics that are clearly important for fruit quality, such as
nutritional and sensorial quality (e.g., visual aspect, firmness, and
taste), palatability is assumedly of major metabolic significance,
once this trait is mainly dependent on the balance between
organic acids (acidity) and sugar (sweetness) levels (Kader, 2008;
Brasil and Siddiqui, 2018). These two classes of metabolites are
directly connected to central carbon metabolism, where they are
also involved in the biosynthetic route of diverse compounds
such as amino acids, vitamins, and terpenic aroma volatiles,
which influence fruit aroma (Lin et al., 2015; Beauvoit et al.,
2018). The biochemical changes underlying fruit ripening and
its regulation have been extensively studied in different fruit
types (Giovannoni, 2001, 2004; Barry and Giovannoni, 2007;
Osorio et al., 2013; Giovannoni et al., 2017). However, the role
that organic acids play during this process is currently not fully
understood. Are the complex organic acid profile changes over
the course of fruit development simply a consequence of the
process or do they play an active role in the sequence of events

leading to fruit maturation? Here, we provide an overview of the
latest discoveries and suggest future directions regarding organic
acids metabolism during fruit development and ripening. We first
discuss the general roles of organic acids during fruit maturation,
we then focus on the metabolic behavior of those compounds and
their relationship with both sugars and hormones during fruit
development. Finally, we highlight the importance in studying
organic acid metabolism during both fruit development and fruit
ripening on different fruits and outline strategies to improve both
qualitative and quantitative traits of crop fruits.

THE FUNCTIONAL DIVERSITY OF
ORGANIC ACIDS: MORE THAN SIMPLE
INTERMEDIARIES?

During fruit development, organic acids levels are usually
inversely related to sugar levels. As such, during maturation and
ripening, sugars accumulate, mainly due to sugar import or from
starch degradation, whereas organic acids that accumulated in
young fruits strongly decrease (Carrari et al., 2006; Carrari and
Fernie, 2006; Fait et al., 2008; Mounet et al., 2009; Beauvoit
et al., 2018). Malate and citrate are considered the most abundant
organic acids present in both climacteric and non-climacteric
ripe fruits (Figure 1). Particularly, malate accumulation and
degradation occur differently in climacteric and non-climacteric
fruits (Figure 1). Whilst some climacteric fruits use malate as a
substrate during the respiratory burst, non-climacteric continue
accumulating malate throughout ripening (Cherian et al., 2014).
Interestingly, citrate levels are largely decreased during the
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FIGURE 1 | Comparative metabolite accumulation during fruit growth in two
significant examples of climacteric (tomato, Solanum lycopersicum) and
non-climacteric (pepper, Capsicum spp.) species. (A) Organic acids and
sugars changes that occur in climacteric fruits during different stages of
development and ripening using tomato fruit as a model of climacteric fruit.
The concentration of each metabolite is dependent on the metabolic intensity
and the time of development of the fruit with major changes during the
climacteric peak phase (approximately 35 days after anthesis). (B) Organic
acids and sugar changes that occur in non-climacteric fruit during different
stages of development and ripening using pepper as a model. Although
lacking a climacteric peak, fruits considered non-climacteric present
metabolite profile alterations during maturation, but with lower intensities than
in climacteric fruits.

ripening process followed by decreases in malate as a respiratory
substrate after the climacteric peak in papaya fruits (Manrique
and Lajolo, 2004; Cosme Silva et al., 2017) (Table 2). Equally,
during ripening of the non-climacteric orange and lemon fruits
there is a decline in titratable acidity, mostly due to the catabolism
of citrate (Iglesias et al., 2007; Agrumes et al., 2018) (Table 2).
In fact, the metabolism and accumulation of organic acids in
fruits are under both genetic and environmental control (Etienne
et al., 2013). Moreover, through principal component analysis,
the existence of a highly conserved change in the dynamics
of metabolic processes during fruit development and ripening
across species belonging to climacteric and non-climacteric
groups has been recently demonstrated (Klie et al., 2014).
Therefore, enhancing our current understanding of these factors
and their interactions is of pivotal importance for fruit quality
improvement.

The last decade has witnessed an intensive effort to enhance
our understanding of the alternative functions of tricarboxylic
acid (TCA) cycle components in addition to their recognized role

as energetic intermediaries in plants (Millar et al., 2011). Most
studies using transgenic approaches to investigate the role of TCA
cycle intermediates, however, have been performed on vegetative
organs, such as leaves and roots (Fernie and Martinoia, 2009;
Araujo et al., 2012; Zhang and Fernie, 2018). The accumulation
of TCA cycle intermediates is highly variable depending on
plant tissues, developmental stages and environmental factors,
most likely due to its direct link to organic acids export
and photosynthesis regulation. However, the complex pathways
through which organic acids are metabolized and precise details
of how they are regulated in vivo remains, to date, insufficiently
understood (Sweetlove et al., 2007; Fernie and Martinoia, 2009).

Organic acids can support numerous and diverse functions
in plants. For instance, the C3 species Arabidopsis (Arabidopsis
thaliana), soybean (Glycine max) and sunflower (Helianthus
annuus) can accumulate high levels of fumarate (Fernie et al.,
2004; Finkemeier et al., 2013). Higher levels of fumarate have
been associated with the supply of carbon skeletons to support
growth (Zell et al., 2010). Similarly, malate has not only an
important role during photosynthesis in CAM and C4 plants
(Fernie and Martinoia, 2009; Zell et al., 2010), but has also
been associated with stomata regulation (Medeiros et al., 2016,
2017). Remarkably, malate and fumarate levels show similar
diurnal changes to those of carbohydrates in some C3 plants,
wherein they increase during the day and decrease during the
night, suggesting that these organic acids can also function as
transient carbon storage molecules (Fahnenstich et al., 2007).
This fact apart, the contribution of organic acids to metabolic
processes affecting fruit development and fruit quality remains
to be elucidated. Dissecting these mechanisms is required
to fully understand the key components underlying organic
acid metabolism on energetic processes in fruit growth and
development.

The function of TCA cycle intermediates have been
extensively demonstrated in diverse aspects of plant growth
(Nunes-Nesi et al., 2008; Araújo et al., 2014b) and in response
to stress conditions (Sweetlove et al., 2010; Nunes-Nesi et al.,
2014). Additionally, signaling functions have also been recently
demonstrated for different TCA cycle intermediates from human
(Yang et al., 2012) to plant (Finkemeier et al., 2013). Thus,
citrate (Wellen et al., 2009), fumarate (Yang et al., 2012) and
succinate are all involved in signaling in animal cells whereas also
citrate (Gray et al., 2004) malate (Gray et al., 2004; Geigenberger
and Fernie, 2014) and 2-oxoglutarate (Huergo and Dixon,
2015) were all recognized to play signaling functions in plants.
Remarkably, the mode of action of these metabolites within
the signaling network in which they are involved is variable
(Wellen et al., 2009). For instance, it has been demonstrated
that citrate regulates the expression levels of genes related to
alternative respiratory pathways in both tobacco (Nicotiana
tabacum) and Arabidopsis (Gray et al., 2004; Clifton et al.,
2005). In addition, citrate, malate, and 2-oxoglutarate can affect
nitrogen assimilation by controlling the abundance of Nitrate
Reductase (NR) transcripts in tobacco (Müller et al., 2001). It is
reasonable to assume, therefore, that TCA cycle intermediates
are good candidates to play signaling roles in angiosperm fruit
development as well as during fruit maturation and ripening.
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TABLE 2 | Metabolic behavior of different sugars and organic acids present in the mesocarp of different fruit during growth and ripening under optimal growth conditions.

Sugars Organic Acids

Fruits Glucose Fructose Sucrose Citrate Malate Fumarate Reference

Apple Increase Increase Increase – Increase – Ackermann et al., 1992; Wu
et al., 2007; Zhang et al., 2010

Banana Increase Increase Decrease – Increase – Morvai and Molnár-Perl, 1992

Grape – – – – Increase – Sweetman et al., 2009

Guava Increase No change Traces Increase Traces – Bashir and Abu-Goukh, 2003;
Jain et al., 2003; Batista Silva
et al., 2018

Kiwifruit – – – – Increase – Walton and Jong, 1990;
Cui-Cui et al., 2018

Lemon Increase Increase Decrease Increase No change – Albertini et al., 2006

Lime No change Increase increase Increase Increase – Albertini et al., 2006

Melons Increase Increase Increase – – – Seymour and McGlasson,
1993; Karaman et al., 2018

Orange Increase Increase Increase Increase No change – Albertini et al., 2006; Guo et al.,
2016; Zhou et al., 2018

Papaya No change No change Traces Decrease – – González-Aguilar et al., 2003;
Souza et al., 2014

Peach Increase Increase Decrease Decrease Increase – Cirilli et al., 2016

Pineapple Increase Increase Few changes Increase Few changes – Saradhuldhat and Paull, 2007;
Luengwilai et al., 2018

Plum No change Increase Decrease Increase Increase Increase Famiani et al., 2012

Strawberry Increase Increase Increase Increase Increase – Rafeii, 2017; Shanmugam
et al., 2017

Tomato Increase Increase No change – Increase Decrease Carrari and Fernie, 2006;
Centeno et al., 2011; Osorio
et al., 2012, 2013

Watermelon Increase Increase Increase – – – Gao et al., 2018

Transgenic tomato plants with differential expression of all
genes encoding TCA cycle enzymes have been generated and
characterized (Nunes-Nesi et al., 2013). Collectively, this has
allowed the generation of a thorough set of plant lines in
which the activity of enzymes in the pathway are progressively
decreased. The characterization of these plants has provided
advances in our knowledge regarding the TCA cycle metabolic
connections with other metabolic pathways (Fernie et al.,
2004; Sweetlove et al., 2010). Indeed, these studies provided
compelling evidence of the distribution of control in the
plant TCA cycle. Moreover, they have also demonstrated that
organic acids play important functions in the control of
several important processes in connection with mitochondrial
metabolism, including photosynthesis (Nunes-Nesi et al., 2005),
carbon to nitrogen metabolism (Araujo et al., 2008), and redox
balance (Igamberdiev and Bykova, 2018).

The signaling importance of TCA cycle intermediates might
also rely on how exactly plant metabolism is reprogrammed
following changes in their levels. For instance, reductions on the
expression of aconitase (ACO) (Carrari et al., 2003) and malate
dehydrogenase (MDH) resulted in reduction in both fruit size
and yield. Years later, Nunes-Nesi et al. (2007) used transgenic
tomato plants deficient in the mitochondrial fumarase activity
(FUM) to show a strong effect on photosynthesis caused by
impairments in the stomatal function followed by a subsequently

reduced TCA cycle flux, affecting carbohydrate and organic acid
oxidation at the whole plant level. Tomato plants with reduced
expression of citrate synthase (CS) (Sienkiewicz-Porzucek et al.,
2008), NAD-dependent isocitrate dehydrogenase (NAD-ICDH)
(Sienkiewicz-Porzucek et al., 2010), cytosolic NADP-dependent
Isocitrate dehydrogenase (NADP-ICDH) (Sulpice et al., 2010)
and 2-oxoglutarate dehydrogenase (OGDH) (Araújo et al., 2012)
showed no differences in either carbon assimilation or fruit yield.
In contrast, a mild reduction in mitochondrial NAD-ICDH, as
well as NADP-ICDH activity in antisense transgenic lines resulted
in altered nitrate assimilation and pigmentation and amino acids
contents, coupled with reduced fruit diameter and fresh weight,
probably associated to source:sink alterations (Sienkiewicz-
Porzucek et al., 2010; Sulpice et al., 2010). Additionally, changes
in OGDH resulted in early senescence, coupled with significant
alterations in metabolites pattern during fruit development
(Araújo et al., 2012). Moreover, antisense inhibition of the
Iron-Sulfur Subunit of Succinate dehydrogenase (SDH) was
associated with enhanced fruit yield (Araújo et al., 2011) whereas
SDH and MDH mutant plants were characterized by bigger fruits
affecting fruit quality (Nunes-Nesi et al., 2005; Araújo et al., 2011;
Centeno et al., 2011).

Collectively, these data provide compelling evidence that the
metabolic connections associated with TCA cycle-related organic
acids are responsible, at least partially, for such changes and
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therefore an extensive metabolic reprogramming also occurs in
fruits when changes in TCA cycle take place. It seems therefore
tempting to speculate that the enzymes of the TCA cycle as
potential target to further improve fruit quality. However, further
demonstration of the importance of changes in organic acid levels
in fruits are required to obtain a full comprehension of this
process. This will most likely occur by the genetic manipulation
of fruit-specific genes using fruit-specific promoters (Fernandez
et al., 2009) to understand fruit maturation effects.

THE METABOLIC BEHAVIOR OF
ORGANIC ACIDS DURING FRUIT
DEVELOPMENT AND RIPENING

Fleshy fruit ripening is often characterized by a breakdown of
stored carbohydrates to sugars coupled with reductions in acidity
alongside with increases in flavor and aroma volatiles (Klee
and Giovannoni, 2011; Cherian et al., 2014). It is accepted that
organic acids are important in the control of fruit growth via cell
expansion through water uptake (Liu et al., 2007). Accordingly,
organic acids accumulation during the early stages of fruit
development is directly related to the supply of substrates for
the maintenance of respiration processes during the development
(Seymour et al., 2013). Remarkably, different species including
apples, berries, citrus, grape, kiwifruit (Actinidia deliciosa), peach,
pepper, and tomato, present a highly similar metabolic pattern
in which higher organic acids concentration are observed in the
first stages of fruit development followed by clear reductions
in their levels as maturation progresses (Nardozza et al., 2013;
Osorio et al., 2013; Lin et al., 2015). Additionally, quantitative
and qualitative variations of organic acids and sugars are usually
observed in relation not only to cultivars and genotypes but also
during maturation stages, affecting flavor without changes in fruit
development and ripening (Xi et al., 2017). Accordingly, as in
many other fleshy fruits, malate and citrate are the predominant
organic acids identified in ripe peach (Prunus persica (L.) Batsch).
The accumulation of organic acids is seemingly well regulated
during fruit development and is differentially controlled during
growth stages (Masia et al., 1992; Moing et al., 2000). By
using six peach cDNAs encoding key proteins involved in
organic acid metabolism and solute accumulation, Etienne et al.
(2002) demonstrated that genes involved in organic acid showed
a stronger expression during fruit ripening than during the
earlier phases of development. Remarkably, their expression
patterns were not necessarily correlated with the changes in
organic acid contents (Etienne et al., 2002). The content of
organic acids and soluble sugars was evaluated in apricot
(P. armeniaca L. cv. Harcot), plumcot (plum-apricot hybrid,
P. salicina × P. armeniaca L. cv. Harmony), plum (P. salicina
Lindl. cv. Formosa), and peach (P. persica L. Batsch cv. Jinmi)
(Haejin et al., 2014). Notably, organic acids increased mostly
during the early stages of fruit growth and decreased until fruits
were fully ripen, whereas sucrose, fructose, and glucose, but not
sorbitol, increased during fruit development (Haejin et al., 2014).

By investigating a number of grapefruit (Citrus paradisi)
cultivars produced in Turkey, Kelebek (2010) showed that,

in most cases, sucrose was the predominant sugar, followed by
fructose and glucose, while citrate was the most abundant organic
acid, followed by malate, and that their content increased with
ripening. The changes in sugars and organic acid concentrations
in six different citrus cultivars Ponkan’ (C. reticulate) and
‘Satsuma’ (C. unshiu), sweet orange ‘Newhall’ (C. sinensis) and
‘Early Gold’ (C. sinensis), pummelo ‘HB’ (C. grandis) and
grapefruit ‘Flame’ (C. paradise) was recently analyzed (Zhou
et al. (2018). This study has shown that the variations in sugar
concentrations of this six citrus cultivars were relatively similar
with sucrose as the major sugar component at every stage.
Similar results were also previously found (Lin et al., 2015).
Kafkas et al. (2007) additionally investigated different strawberry
genotypes and found that fructose, the main sugar, increased
during ripening. By contrast, the concentration of citrate is
variable between genotypes, while the concentration of malate
in all genotypes does not change during fruit ripening (Basson
et al., 2010). Additionally, a wide comparison of sugars and
organic acids content in different genotypes of strawberry, sweet
cherry, long mulberry and small mulberry demonstrated that
fructose and glucose were the major sugars found in the fruits,
while citrate and ascorbate were the predominant organic acids
in strawberry and mulberry, and tartaric acid in sweet cherry
(Mahmood et al., 2012). In papaya, a climacteric fruit, four
cultivars, namely Coorg Honey Dew, Pink Flesh Sweet, Sunrise,
and Washington, were characterized according to their chemical
composition and sucrose was the predominant sugar in all
cultivars (Selvaraj et al., 1982). However, in cv. Washington
an increased glucose content was observed 140 days after
anthesis in comparison with the others cultivars. Additionally,
no changes were observed in organic acids concentration in the
different papaya cultivars (Selvaraj et al., 1982). Conversely, seven
tomato cultivars were studied in relation to their compositional
changes during different ripening stages. It was demonstrated
that the sugar content was differentially modified according to
the cultivars under different ripening stages with increases in
all those seven cultivars most likely due to starch conversion to
sugars, whilst fruit acidity was slightly increased in all cultivars
(Kaur et al., 2006). Altogether, these studies suggest that sugars
and organic acid levels can in fact be highly variable without
impacting normal fruit development and ripening.

Over the past decade, much research effort has been devoted
to understanding the metabolic behavior of several fleshy fruits
ranging from physiology and biochemistry to broad molecular
and genetics approaches. Thus, over the following sections we
provide a detailed discussion about the organic acids behavior
during fruit development as well as its relationship with other
important metabolites, paying particular attention to sugars and
hormones.

Organic Acids Versus Sugar Metabolism
The ripening process of fleshy fruits is characterized by
coordinated changes in whereby fruit biochemistry and
physiology are both drastically altered (Brady, 1987; Giovannoni,
2004; Giovannoni et al., 2017). These changes during ripening
are typically variable according to the species and maturation
stages as well as in response to stress conditions, often due to
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changes in secondary metabolism, thereby potentially increasing
plant defenses and the concentrations of compounds involved
in plant protection (Miller et al., 1998; Giovannoni, 2004;
Giovannoni et al., 2017). Nevertheless, the main modifications
observed during ripening are associated with color and textural
alterations coupled with modifications of sugars, organic acids,
and volatile compounds (Giovannoni, 2004). Altogether, such
modifications contribute to fruit flavor, especially by adjusting
the balance between sugar and organic acids (Chaimanee and
Suntornwat, 1994). Accordingly, the major respiratory substrates
present in most fruits are carbohydrates and organic acids and
both their nature and concentration largely affect organoleptic
quality as taste, sight, and smell (Seymour et al., 2013).

Sugar accumulation has been intensely investigated during
fruit development in different species under diverse conditions.
Throughout ripening the vast majority of fleshy fruits are
characterized by increases in sugar contents whereas organic
acids decrease (Giovannoni et al., 2017). Citrus species are
the exception to this metabolic ‘rule,’ especially at the peak
of maturity or ripening. Global transcriptome analysis has
suggested that during middle and later stages of citrus fruit
development both carbohydrate synthesis and catabolism are
mostly down-regulated while sugar transport appears to be rather
operative. This can be deduced from the up-regulation of sucrose
phosphate synthase (SPS), which in turn is correlated with total
soluble solids (TSS) and the up-regulation of citrate synthase (CS)
(Cercós et al., 2006; Wang et al., 2017). In parallel with fruit
growth, sugars and organic acids are accumulated but in different
stages of development. Glucose, fructose and sucrose increase in
an exponential manner during cell division phase, reaching stable
levels during final growth and ripening process. The content of
citrate, the main organic acid found in citric fruits, increases upon
cell division stage reaching higher levels in the middle of stage
II and decreasing, mostly due to its catabolism, during ripening
(Iglesias et al., 2007; Hussain et al., 2017). Both metabolic patterns
and concentration are highly variable according to the species. In
this vein, accumulation of sucrose, glucose, and fructose during
ripening are especially observed in sweet fruits such as apples
(Jakopic et al., 2018; Williams and Benkeblia, 2018), litchi (Yang
Z. et al., 2013), melons (Burger et al., 2000; Huang et al., 2017),
peach (Cirilli et al., 2016), strawberries (Shanmugam et al., 2017),
mango (Cosme Silva et al., 2017), papaya (Paull et al., 1999)
and watermelons (Liu et al., 2013) (Table 2). In general, sugar
accumulation in fruit is directly controlled by increasing the
activities of sucrose synthase (Suzy) and SPS (Chen et al., 2004).

Sucrose, glucose, and fructose are the most abundant
carbohydrates and widely distributed food components present
in plants. Their ratios vary considerably between fruits and, to
a lower extent, in the same fruit according to maturation stage
(Arena et al., 2013). Notably, the oxidation of such carbohydrates
via glycolysis provides substrates for the TCA cycle during cell
respiratory processes, contributing not only to the generation
of intermediates such as organic acids, but also contributing to
cellular energy supply (Osorio et al., 2013). Remarkably, during
the climacteric stage, there is a large increase in the rate of
substrate oxidation, mediated mainly by mitochondrial oxidases
and, as result, there is an increased glycolytic flux. Interestingly,

this enhanced flux has been associated with a close relationship
between the activities of key glycolytic enzymes such as pyruvate
kinase and phosphofructokinase in different fruits including
apple, avocado, banana, and tomato (Rhodes and Wooltorton,
1967; Bennett et al., 1987; Beauvoit et al., 2018).

Similarly to sugars, organic acids are also able to support
several facets of plant metabolism. Thus, the accumulation of
organic acids in plant cells is highly correlated with other
metabolic pathways and appears to be under the control of many
factors (Lin et al., 2016). Both the organic acid type and its
levels are extremely dependent of species, development stages,
and the tissue analyzed. Although changes in content of organic
acids are strongly fruit-dependent the most abundant organic
acids in several fruits are citrate and malate (Romero Rodriguez
et al., 1992), both being variable over different stages of fruit
development (Table 2). Unlike soluble carbohydrates, which
are imported into the fruit as photosynthate, the majority of
the organic acids present in fleshy fruits are not imported but
rather synthesized in situ, mostly from imported sugars from
glycolysis mediating starch and cell wall degradation (Etienne
et al., 2013). This is in good agreement with findings showing
that starch accumulation plays an important role in determining
the soluble solids content (◦Brix index) of mature fruit, which is
directly influenced by the activity of invertases, such as tomato
LIN5 (Schaffer and Petreikov, 1997; Vallarino et al., 2017).
Therefore, organic acids appear as highly valuable metabolites
from a metabolic engineering perspective, once the organic
acid-to-sugar ratio defines a range of quality parameters at
harvest time in fruits.

By using integrative analyses of metabolomics and
transcriptome during fruit ripening in ponkan (Citrus reticulata)
fruits, it was showed that increases in sugars content are followed
by considerable reductions in the content of organic acids (Lin
et al., 2015). Perhaps more importantly, it was demonstrated that
such behavior might be driven by SPS, asparagine transferases
(AST), ATP-citrate lyase and glutamate decarboxylase (GAD)
mediating shifts in sucrose metabolism from synthesis to
degradation, which was regulated by the balance between
SPS and SuSy activity (Lin et al., 2015, 2016). In addition,
increased enzyme activity from both glycolysis and the TCA
cycle during later maturation were observed, indicating that the
flux is somehow changing from sucrose metabolism to organic
acid metabolism, with citrate degradation occurring mainly
through the gamma-aminobutyric acid (GABA) and acetyl-CoA
pathways (Lin et al., 2015, 2016). It was further demonstrated
that ponkan fruits under hot air treatment could activate citrate
degradation via the GABA shunt especially by modulating
aconitase, isocitrate dehydrogenase and glutamate decarboxylase
cascade, but not the glycolytic pathway (Chen et al., 2012).

Positive correlation between malate levels and the expression
of genes involved in starch synthesis has been observed in pepper
(Capsicum spp.) fruits, meaning that malate metabolism most
likely regulates transitory starch metabolism and that this process
is probably conserved between climacteric and non-climacteric
fruits (Osorio et al., 2012). Indeed, reduction of the activities
of either the mitochondrial malate dehydrogenase (mMDH)
or fumarase (FUM) in tomato fruits via targeted antisense
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approaches have demonstrated the physiological importance
of malate metabolism in the activation state of ADP-glucose
pyrophosphorylase (AGPase), which is correlated with the
accumulation of transitory starch and soluble solids at harvest
(Centeno et al., 2011). However, due to the limited amount of
information available on the connection between other organic
acids metabolism and fruit quality, we cannot rule out a similar
role for them during fruit development.

For certain fruits, citrate can be found in considerable
concentrations. It is present from 8 to 15% (dry weight basis) in
fruits such as strawberries and lemons (Citrus lemon). In both
lemon and lime (Citrus aurantifolia) citrate accumulation can
be as high as 8% of the fruit dry weight (Müller et al., 1996).
The process involved in the metabolism and accumulation of
citrate in mesocarp cells of fruits is under both genetic and
environmental control. Several studies using different approaches
as transcriptomics (Christelle et al., 2002), proteomics (Katz
et al., 2011; Molassiotis et al., 2013) and metabolomics (Guo
et al., 2016) have aided in the understanding of the different
mechanisms involved in the control of the acidity and the
quality of fruits. In addition, different agricultural practices
including irrigation, nutrition (Kumar and Kumar, 2007) as well
as controlled temperature (Burdon et al., 2007) can also impact
the levels of fruit metabolites and as such the ratio between
sweetness and acidity. However, there are no clear explanations
for the changes observed in both malate and citrate in the cell.

To better understand how citrate metabolism is affected
in Ponkan fruits, plants grown at low temperature and water
stress in an open field experiment were compared to plants
grown in optimal greenhouse conditions (Lin et al., 2016). It
was observed that the expression levels of phosphoenolpyruvate
carboxylase (PEPC), CS, ACO, and GAD were increased in
response to low temperature, but not in water stressed plants
compared to control conditions. These results, coupled with
the changes in citrate levels under such conditions, indicated
that low temperature may be a major factor influencing citrate
metabolism during maturation in ponkan fruits. Similarly, it was
observed that in sweet orange (Citrus sinensis), a non-climacteric
fruit, the activities of the enzymes involved in organic acid
metabolism including malic enzyme (ME), ICDH, ACO, and
alcohol dehydrogenase increased during the first 3 weeks
of post-harvest storage. Concomitantly, increased activity of
enzymes involved in sugar catabolism such as hexokinase
(HXK), Susy, UDPG pyrophosphorylase and PPi-dependent
phosphofructokinase was also observed (Echeverria and Valich,
1989). Notably, these enzymes are necessary for organic acid
usage and the subsequent oxidization of sugars in harvested
sweet oranges (Echeverria and Valich, 1989). Pineapple is
characterized by high contents of organic acids (Tables 1, 2),
primarily controlled by the activity of key enzymes such as
CS, ACO, PEPC, MDH, and ME. In particular, ACO seems
to play a major role in modifying the acidity in pineapple
(Saradhuldhat and Paull, 2007). Altogether, it seems reasonable
to assume that a very tight connection between sugar and organic
acid metabolism occurs during fruit development. However,
exactly how this metabolic regulation occurs still remains to be
elucidated.

Studies with papaya (Carica papaya), a typical climacteric
fruit, have revealed that the accumulation of sugar, especially
sucrose, occurs between 20 and 30 days before physiological
maturation. During this stage, there is a significant increase in
acid invertase (AI) activity with lower SPS and Susy activities
in papaya mesocarp (Zhou and Paull, 2001). It has been
also demonstrated that after harvesting there was still sucrose
synthesis, and more importantly that the SPS activity is highly
correlated with the sucrose content, indicating the importance of
this enzyme during the ripening in papaya (Gomez et al., 2002).
Although in papaya fruits the main organic acids are citrate,
malate, and ascorbate, their accumulation occurs to relatively
low concentrations (de Oliveira and Vitória, 2011). Particularly,
citrate and malate contents are reduced over the course of
ripening (for details see Table 2) (Brekke et al., 1971; Souza et al.,
2014; Silva et al., 2015).

Analysis of sugars and organic acids content during the
development of peach (Prunus persica) fruits showed that malate,
quinate and shikimate concentrations were high at the beginning
but declined at the end of fruit development (Wu et al.,
2005). Thus, citrate concentration was maximal in immature
fruits, whereas increased sugars concentration, mainly sucrose,
occurred in mature fruits. Interestingly, during peach ripening,
sucrose degradation was accompanied by an increase of glucose
and fructose levels coupled with distinct regulation of transcripts
encoding neutral invertases (NI), indicating differential or
non-redundant functions of each putative NI isoform in peach
(Borsani et al., 2009). Enzymes such as NI and PEPC were
identified as important components of the carbon metabolism
operating during peach post-harvest ripening (Borsani et al.,
2009).

Malate is the predominant organic acid in many fruits,
including both climacteric and non-climacteric fruits such as
plum (Prunus salicina), banana, tomato, grape and apple (Morvai
and Molnár-Perl, 1992; Sweetman et al., 2009; Centeno et al.,
2011). Citrate is the predominant organic acid in citric fruits
like oranges, lime and lemon (Albertini et al., 2006). Notably,
citrate is also found as the main organic acid in grape, guava,
papaya, pineapple and strawberry as show in Table 1 (Clements,
1964; Brekke et al., 1971; Jain et al., 2003; Batista Silva et al.,
2018). Nevertheless, the accumulation and degradation of organic
acids are not directly associated with respiratory and climacteric
characteristics of the fruit. Thus, it is known that some climacteric
fruits such as tomato appear to utilize malate during the
respiratory burst (Goodenough et al., 1985). By contrast, banana
and mango (Mangifera indica) continue to accumulate malate
throughout ripening, even at the climacteric stage (Selvaraj and
Kumar, 1989), whilst non-climacteric fruits also display widely
varying malate accumulation and degradation (Sweetman et al.,
2009). In addition, the accumulation of malate and citrate is
seemingly a result of close interaction between metabolism and
vacuolar storage and is also controlled by several environmental
factors that affect the acidity of fleshy fruit by acting on various
cellular mechanisms (Etienne et al. (2013). Taken together, the
close relationship between organic acids and sugars metabolism
during ripening seems to be a broadly connected factor that
contribute in every way to the improvement of quality and
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flavor during fruit ripening. For this reason, it seems clear that
a more in-depth understanding of the assessment of sugars and
organic acids content and the use of genetic and agricultural
tools capable of changing this relationship is of pivotal interest
to food experts and researchers. Collectively, these results
indicate that alterations in genes involved in the organic acids
metabolism can determine the quality and extension of shelf-life
of non-climacteric fruits, which have their physiological changes
reduced after being detached from the plant.

Organic Acids Versus Hormonal Control
of Fruit Development and Ripening
Although hormones have been extensively studied as signaling
molecules involved in different aspects of plant life cycle, it has
been only recently that research has focused on understanding
of their action during fruit development as well as in controlling
sugars and organic acids metabolism in fruits during the ripening
process (Figure 2) (McAtee et al., 2013; Karlova et al., 2014;
Kumar et al., 2014). Accordingly, it has been demonstrated
that hormones affect sugars and starch metabolism and that
they can extend post-harvest life (Sagar et al., 2013a; Bastías
et al., 2014; Karlova et al., 2014). However, there is a scarce
literature available on the hormonal control of starch hydrolysis
and the resulting sugar accumulation coupled with mitochondrial
respiration (McAtee et al., 2013; Kumar et al., 2014). This fact
apart, both the maturation and ripening have been associated
in a number of studies to metabolic alterations involved with
multiple genetic and biochemical pathways (Osorio et al., 2013).
Although these changes have been observed in the context of
responses to hormones (e.g., ethylene and ABA), the link between
hormonal control and metabolite accumulation remains rather
limited (Giovannoni, 2004; McAtee et al., 2013; Giovannoni et al.,
2017).

The advent of ‘omics’ approaches has enabled significant
progress in the characterization of hormone responses in
fruits in general (Osorio et al., 2011). In addition, one
important aspect of fruit development is the modulation of its
metabolism, mainly driven by changes in sugars, organic acids
and secondary metabolites immediately after fruit setting and
partially recovering during or after ripening (Carrari et al., 2006).
According to (Bapat et al., 2010), in climacteric fruit such as
tomatoes, papaya, peaches, banana, apples, melon and other,
ethylene synthesis plays a predominant role during ripening,
and this still remains as one of the most studied hormones
(Figure 2A). On the other hand, in non-climacteric fruits the
respiratory burst and rise in ethylene production are not evident.
It is widely accepted that although no single ‘master controller’ is
able to control the ripening in non-climacteric fruits. Increased
levels of different hormones like ethylene, abscisic acid (ABA),
and brassinosteroids (BRs) have been suggested to promote
ripening through complex interactions, whereas auxin delays
some ripening associated process in those fruits (Figure 2B)
(Fortes et al., 2015). Thus, we will now briefly discuss how
changes in the main hormones involved in the process of
formation and ripening of fruits impact organic acid metabolism,
controlling fruit composition via crosstalk with other hormones
or by themselves.

FIGURE 2 | Hormonal pattern changes of two significant examples of
climacteric (Solanum lycopersicum) or non-climacteric (Capsicum spp.) during
fruit development and ripening. (A) Differential hormones concentrations in
tomato fruit during development: increases in auxin, cytokinin, gibberellin, and
brassinosteroids at fruit set, followed by increases in auxin, cytokinin and
gibberellin at fruit growth until maturation, which have their levels drastically
reduced, with increases in ethylene and abscisic acid (ABA). (B) Differential
hormonal patterns in non-climacteric fruit during development show increases
in auxin, cytokinin and gibberellin during fruit set and growth, followed by
reductions along the maturation phase, with increases in ABA and
brassinosteroids, and few changes in ethylene.

Ethylene has been shown to control many ripening-associated
metabolic pathways. It is involved not only in the expression of
senescence associated genes and defense signaling, but also in
fruit ripening, where the autocatalytic ethylene production leads
to changes in cell wall metabolism, carotenoid accumulation,
chlorophyll degradation, synthesis of volatiles compounds, and
modulation of sugars and acids contents (Giovannoni, 2001;
Alexander and Grierson, 2002; Osorio et al., 2013; Farcuh et al.,
2018).

The importance of ethylene in the production of aroma
volatiles has been also genetically demonstrated by the antisense
suppression of ethylene production, which resulted in strong
inhibition of aroma in melon (Cucumis melo L.) fruits (Ayub
et al., 1996). The ripening of the climacteric fruit peach is largely
controlled by ethylene and thus increase ethylene production
leads to enhanced respiration coupled with changes in both
chemical composition and physical characteristics of the fruit
(Paul et al., 2012). Furthermore, enhanced ethylene biosynthesis
are accompanied by increased levels of citrate, malate and glucose
and fructose but decreased sorbitol and sucrose levels following
harvesting (Borsani et al., 2009).
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It has been also shown that ethylene is involved in
an organ-specific manner in strawberry fruit ripening by
differentially controlling the levels of amino acids, glucose, and
fructose, as well as citrate and malate in the achene and the
receptacle (Merchante et al., 2013). Strawberry plants with altered
sensitivity to ethylene were used to unravel its role during fruit
ripening process, as well as to further enhance our understanding
of the modulation of metabolic pathways (Merchante et al.,
2013). Similarly, it has been demonstrated that in grape, a
non-climacteric fruit, ethylene seems to be also required for
berry development and ripening (Chervin et al., 2004). Indeed,
it has been suggested that ethylene could be triggering the onset
of ripening. In fact, Ethylene Responsive Factor (VviERF045)
from grape affects a range of different processes including,
photosynthetic capacity, secondary metabolism, expression of
key genes related to changes in epidermis and cuticle of the berry,
cell expansion, as well as activation of several defense related
genes (Leida et al., 2016).

Recent examples of cross-talk among different hormones have
revealed a highly complex interplay of signals during grape
development and ripening (Fortes et al., 2015). Accordingly,
in non-climacteric fruits the responses of ethylene seem to be
associated, via highly specific cross-talk, with other hormones
such as ABA, auxin (Davies et al., 1997; McAtee et al., 2013)
and BRs (Symons et al., 2006), all of which are known to play
a functional role in grape berry ripening. Non-climacteric fruits
may also display climacteric-like behavior following harvest (Katz
et al., 2004). Similarly, differential expression of component of
the ethylene-signaling pathway have been also observed in several
non-climacteric fruits including citrus and grape (Tesniere et al.,
2004; Trainotti et al., 2005).

The participation of ethylene in ripening has been extensively
investigated in tomato fruits using several mutant that drastically
affect the ripening processes of tomatoes fruits. For instance,
ripening inhibitor (rin), non-ripening (nor), green ripe (Gr),
green-flesh (gf ), colorless non-ripening (Cnr), never ripe (Nr), high
pigment 1 (hp1), high pigment 2 (hp2), and dark green (dg) have
been investigated in the context of ripening (Lanahan et al., 1994;
Mustilli et al., 1999; Vrebalov et al., 2002; Levin et al., 2003).

Although the use of such mutants has clearly provided
significant insights on the respective functional roles and also
hierarchical regulation based on each gene (Giovannoni, 2004),
the complete understanding of the ripening regulatory network
remains rather fragmented. Nevertheless, by analyzing three
dominant ripening mutants of tomato, nor, rin, and Nr, along
the developmental and ripening periods it was possible to
identify very strong correlations between ripening-associated
transcripts and specific metabolite groups, such as organic acids
from the TCA cycle, sugars, and cell wall-related metabolites,
such as lipoxygenase, pectate lyase and poligalacturonase (PG)
underlining the importance of these metabolic pathways during
fruit ripening (Carrari et al., 2006; Centeno et al., 2011; Osorio
et al., 2011). Organic acids, including the two TCA cycle
intermediates malate and citrate, were strongly affected across
ripening, suggesting that organic acids are regulated at the
transcriptional level in climacteric fruit. Importantly, malate
plays a crucial role in transitory starch metabolism in normal

tomato fruit development and ripening and it seems that its
regulation is also conserved in non-climacteric fruits (Centeno
et al., 2011; Osorio et al., 2011, 2012, 2013). Additionally, in
strawberry fruit organic acids including succinate, fumarate and
2-oxoglutarate displayed substantial changes during ripening,
associated with a heavy demand for carbon skeleton components
(Fait et al., 2008). In pepper fruit, citrate, dehydroascorbate, and
malate are highly correlated to genes associated with starch and
cell wall pathways as well as protein degradation, suggesting
the importance of these organic acids during pepper fruit
development and ripening (Osorio et al., 2012). Altogether, these
results underlie the pivotal significance of the metabolic pathways
associated with sugars and organic acids, revealing also multiple
ethylene-associated events that occurs during climacteric and
non-climacteric fruit ripening. It is important to mention that
ethylene does not act regulating ripening alone but it rather works
likely in conjunction with others phytohormones such as auxin,
ABA, and cytokinin (McAtee et al., 2013; Kumar et al., 2014).

Future studies should therefore explore the hormone signaling
network by combining model plant based knowledge on the
molecular mechanisms involved in hormone signaling and
the association with available genome information of other
plant species. In apple fruit, the main organic acid is malate
(Table 1). By using the 1-methylcyclopropene (1-MCP) (inhibitor
of ethylene perception) it has recently been shown that ethylene
is involved in the regulation of the levels of organic acid once this
compound delayed the reduction of malate and citrate content
during ripening (Lu et al., 2013).

In fruits with lower ethylene requirement to ripen, ABA
appears to have a crucial role given its increase following
ripening process (Setha, 2012). In strawberry, a non-climacteric
fruit model, the effect of ABA has been investigated (Jiang
and Joyce, 2003) demonstrating that endogenous ABA may
play a role in changes of fruit color during ripening via an
up-regulation of both ethylene production and phenylalanine
ammonia-lyase (PAL) activity. In good agreement, compelling
evidence suggest that exogenous ABA can significantly accelerate
strawberry fruit ripening, most likely by the down regulation
of 9-cis-epoxycarotenoid dioxygenase gene (FaNCED1) as
demonstrated by virus-induced gene silencing (VIGS) leading
to decreased content of ABA that can significantly retard the
ripening (Jia et al., 2011). The FaNCED1 is a predominant
contributor to ABA accumulation during fruit ripening and it
has been also evidenced that soluble sugars, especially sucrose,
may act as a promoter to trigger ABA accumulation (Jia et al.,
2011). The interaction between sugar and ABA has been recently
reviewed by (Li et al., 2011), suggesting a core mechanism
involved in the regulation of non-climacteric fruit ripening.
Remarkable, reduced expression of NCED in strawberry resulted
in delayed fruit maturation with changes in several metabolites
such as organic acids and sugars implicating ABA in the control
of fruit quality.

In climacteric fruits such as tomato and banana the
levels of ABA increased before an increase in ethylene
(McAtee et al., 2013). Remarkably, ABA signaling may also
impact different aspects of fruit maturation (Sun et al., 2012).
Exogenous ABA treatment consequently increase the ABA
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content in both flesh fruits and seeds, triggering ethylene
biosynthesis by the up regulation of ACS and ACO expression
and therefore inducing fruit ripening (Zhang et al., 2009). It
has been also suggested that LeNCED1, which initiates ABA
biosynthesis at the onset of fruit ripening, can be the original
inductor of ABA accumulation and might play a key role not
only in the ripening process but also during the senescence of
tomato fruits (Zhang et al., 2009). The suppression of the gene
encoding NCED1 resulted in a down regulation of several other
genes involved in ripening process including the cell wall related
PG and pectinmethylesterase (PME), which can also contribute to
changes in TCA cycle intermediates (Sun et al., 2012). Although
those studies collectively provided evidence that ABA is involved
in fruit maturation, it still remains unclear whether ABA acts
directly or via altering ethylene levels, given the already well
established cross-talk between those hormones.

Overexpression of ABA-responsive elements SlAREB1 in
tomato, resulted in increased content of organic acids (e.g., citrate
and malate), hexoses, hexose-phosphates, and amino acids in
immature green, mature green, and red ripe fruits (Bastías et al.,
2014). These modifications correlated with an up-regulation of
genes encoding enzymes involved in carbohydrate and amino
acid metabolism suggesting a possible role for this transcription
factor in the regulation of fruit organoleptic properties (Bastías
et al., 2014). Whether modification of the expression of other
enzymes of the TCA cycle involved in the synthesis of organic
acids and amino acids are affected by SlAREB1 remains to be
determined. In tomato fruits, organic acids are a crucial quality
determinant during ripening process and flavor, and correlate
with the expression of genes associated with ethylene and cell
wall metabolism-related pathways (Carrari et al., 2006; Carrari
and Fernie, 2006; Osorio et al., 2012). Further studies are clearly
required to elucidate the real mechanism connecting ABA and
fruit ripening as well as metabolites changes and fruit quality.

It is currently accepted that auxin participates in various
processes ranging from fruit formation to ripening, mainly
via a crosstalk between gibberellins and ethylene (McAtee
et al., 2013). In fact, auxin coordinates the ethylene synthesis
consequently the ripening process (Li et al., 2016). Accordingly,
genes related to carotenoid metabolism, cell degradation, and
energy metabolism were strongly down-regulated by exogenous
auxin further impacting tomato ripening (Su et al., 2015).
Recently, RNA-Seq analysis of tomato fruit following exogenous
auxin application has shown that several genes involved in
the TCA cycle and oxidative phosphorylation pathway were
significantly down-regulated indicating that auxin affects fruit
ripening by impacting mainly fruit respiration rate (Li et al.,
2016). Moreover, auxin-treated fruits were characterized by
increased levels of citrate, succinate and malate which indicate
that auxin application seems to enhance fruit acidity (Li et al.,
2017). Furthermore, exogenous auxin altered the expression
patterns of ethylene and auxin signaling-related genes during
ripening, suggesting a significant crosstalk between these two
hormones during tomato ripening (Li et al., 2016). Recently,
an important role for auxin during ripening as a modulator of
the levels of sugar and organic acids has been demonstrated in
tomato fruits (Sagar et al., 2013a; Hao et al., 2016; Li et al., 2017).

Recent studies have also demonstrated that loss or gain
of function of several auxin response genes, such as SlARF4,
SlARF2a, SlIAA17 and SlIAA27, leads to conspicuous changes in
fruit pigment accumulation, sugar content, starch accumulation,
phenylpropanoids component, organic acids contents and other
fruit quality attributes (Bassa et al., 2013; Sagar et al., 2013a,b;
Hao et al., 2015; Su et al., 2015). By using a transcriptome
analysis approach Li et al. (2016) have suggested that exogenous
auxin retards tomato ripening process and interferes on
the normal expression patterns of many genes involved in
metabolic pathways. More recently, Li et al. (2017) analyzed
the metabolic changes following exogenous auxin showing
that besides metabolites such as sugars and amino acids, a
total of nine organic acids were detected in tomato fruits
under different developmental stages. Briefly, higher contents of
succinate and ascorbate when compared with control samples
were observed 10 days after auxin treatment. Notably, auxin
seems to affect citrate levels keeping it higher than in control
fruits at the end of ripening, indicating that auxin application
might increase fruit acidity, affecting sour taste of fruit (Li et al.,
2017).

Over the last decades have witnessed the characterization
of numerous mutants for synthesis or signaling of several
hormones in different model species such as Arabidopsis
(Gazzarrini and McCourt, 2003), tomato (Carvalho et al., 2011),
and rice (Yang D.-L. et al., 2013). This resource, coupled
with the integration of transcriptomics and metabolomics
approaches, has greatly enhanced our understanding of the
molecular and biochemical events associated with ripening in
both climacteric and non-climacteric fruits. However, despite
our current understanding of how organic acid metabolism is
associated with hormones metabolism, the exact mechanisms
underlying their interaction during fruit ripening clearly require
further elucidation.

The role of GA is well established during fruit-set and fruit
development, controlling the cell expansion and it has been
revisited recently (McAtee et al., 2013; Obroucheva, 2014).
However, there is evidence that GA can delay tomato fruit
ripening by preventing some of the changes triggered by
ethylene. Unfortunately, relatively little work is current available
directly connecting gibberellins and metabolic changes in fruits.
Nevertheless, some advances were observed on this theme.
Accordingly, the impacts of GAs on primary metabolism have
been also previously demonstrated in tomato plants with reduced
levels of the TCA cycle enzyme 2-OGDH (Araújo et al., 2014a).
In the same vein, it has been observed that gibberellic acid (GA3)
causes ripening delay in citrus (Biale, 1978) and mango fruits,
reducing the ascorbate content (Kader, 2008). In strawberry, GA3
showed an inhibitory effect on fruit ripening, evidenced by a
decrease in the respiratory activity (Martínez et al., 1994). GAs
seems to affect the primary metabolism mediated by changes in
2-oxoglutarate, thus linking TCA cycle function with amino acid,
glucosinolate, flavonoid, alkaloid, and gibberellin biosynthesis
(Araújo et al., 2014a). Defining the precise nature of the
interaction between organic acids coupled with the GA-mediated
regulation of fruit clearly remains an exciting topic for future
research.
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Due to the multifunctionality of BRs, more attention has been
given to their association with fruit ripening recently. BRs plays
an important regulatory role in various physiological processes,
including growth, seed germination, flowering, changes in
enzymatic activities, and fruit set (Clouse and Sasse, 1998;
Khripach et al., 1998; Sánchez-Rodríguez et al., 2017) and has
been recently associated with fruit ripening. Exogenous BRs
analogs on endive (Cichorium endivia L.) play an important role
in increasing the contents of the organic acids such as citrate,
oxaloacetate and succinate (Mario et al., 2013). Mazorra Morales
et al. (2014) showed the interconnection between BRs and
ethylene in the regulation of the mitochondrial electron transport
chain in post-harvest of papaya fruits. The authors showed that
exogenous BRs application affect the AOX-dependent electron
transport, which is antagonized by ethylene, suggesting that, BRs
and ethylene act antagonistically regulating the AOX capacity
during papaya ripening. The role of BR application has been
also investigated in strawberry, suggesting it as an important
molecule to improve qualities traits, mainly by increasing
soluble solid contents, inducing sugar and organic acids content,
as well as the production of secondary metabolites such as
anthocyanin and phenolic compounds (Rafeii, 2017). The role of
BRs during fruit ripening has been also investigated in various
fruits such as tomato (Vidya Vardhini and Rao, 2002), grapes
(Symons et al., 2006), papaya (Mazorra et al., 2013), strawberry
(Mohammadrezakhani et al., 2016), and mango (Zaharah et al.,
2012). Notably, it is directly related with an extensive crosstalk
with ethylene levels, affecting numerous processes. However,
relatively few studies have clearly demonstrated the impacts of
this phytohormone on primary metabolism and specifically at the
organic acids, although it is possible to observe that their content
usually increase in presence of exogenous BRs, which can be an
interesting avenue for research.

Polyamines (PAs), another group of signaling molecules, has
been extensively studied in recent years. PAs are small aliphatic
amines with an important role in plant growth process including
fruit ripening and (Walden et al., 1997; Guo et al., 2018;
Wuddineh et al., 2018). In plants, PAs are initially converted
from glutamate, a key amino acid involved in N assimilation, to
putrescine (Put), then converted to spermidine (Spd) and, in the
end, to spermine (Spm) by the action of Spd synthase (SPDS)
and Spm synthase (SPMS) being further decarboxylated to
S-adenosyl-L-methionine (dcSAM) generating SAM as a reaction
product which is catalyzed by SAM decarboxylase (SAMDC)
(Wen-Wei et al., 2006; Michael, 2016; Guo et al., 2018). SAM
is a common precursor for both PA and ethylene biosynthesis
but their physiological functions are distinct at times and can be
antagonist mainly during senescence (Pandey et al., 2000).

Accordingly, Gupta et al. (2013) showed that silencing of
1-aminopropane-1-carboxylate synthase gene (SlACS) delays
ripening simultaneously improving fruit quality in tomato and
increasing the PAs levels associated with down-regulation of
cell wall hydrolyses. Notably, still in tomato fruit, PAs has
been identified as a great contributor of fruit ripening mainly
associated with the activity of both ornithine decarboxylase
(ODC) and arginine decarboxylase (ADC) (Rastogi and Davies,
1990, 1991). In this vein, Pandey et al. (2015) demonstrated

that the overexpression of ODC triggers the biosynthesis of Put,
Spd and SPM which, in its turn, inhibits ethylene production
delaying fruit ripening, but enhances tomato fruit quality traits.
Additionally, overexpression of SPDS in tomato promote fruit
ripening, increasing sugars content, as well as lycopene coupled
with ethylene production (Neily et al., 2011). In grape fruits, PAs
also have an important role in the aroma development (Fortes
et al., 2015), while in peach it plays a key role in fruit firmness
and soluble sugar content followed by an abrupt decreased
in Put during post-harvest (Liu et al., 2006). Application of
exogenous Spr in peach fruits reduced ripening by impacting
ethylene and auxin metabolism and signaling (Patrizia et al.,
2012). Remarkably, polyamines are reported to be important
molecules involved in strawberry ripening (Tilak and Raymond,
1996). Recently, demonstrated that PAs, especially spermine
(Spm), regulate strawberry fruit ripening in an ABA-dominated,
IAA-participating and ethylene-coordinated manner controlling
several physiological parameters, including firmness, and the
content of anthocyanin, sugar, polyamine, auxin (IAA), abscisic
acid (ABA), as well as ethylene emission. Notably, these changes
are coupled with alterations in FaSAMDC expression which can
promote and inhibit ripening (Guo et al., 2018). PAs play also
important functions in several others fruits in a manner which
may generate controversial conclusions, thus it is important to
mention that, more studies are required to further understand the
significance and roles of PAs in dry and fleshy fruit development.

Lastly, but not least important, very few studies have
demonstrated the association between salicylic acid (SA) and
the maintenance of fruit quality during post-harvest. Sweet
cherry treated with exogenous SA revealed an effective and
environmentally friendly tool to maintain fruit quality during
storage associated with the maintenance of the sugar and organic
acid content in the fruit as well as with enhancements of both
the concentration of bioactive compounds concentration and
the antioxidant activity (Giménez et al., 2016). Interestingly,
SA also culminated with delays on ripening process in banana
(Srivastava and Dwivedi, 2000), sweet cherry (Yao and Tian,
2005), and kiwifruit. In all the above mentioned results, SA
seems to act inhibiting fruit ripening, mainly by reducing not
only the respiratory rate but also sugar and total acid content.
It seems reasonable to assume that coupling the application of
such hormones or chemical compounds with both molecular and
metabolic analysis in order to provide information concerning
the role of hormones in the regulation of fruit taste should greatly
facilitate advances in our understanding of the metabolic control
mediated by hormones in fruits.

FUTURE AVENUES FOR UNVEILING THE
ROLE OF ORGANIC ACIDS
METABOLISM DURING FRUIT
DEVELOPMENT AND RIPENING

Although changes in the levels of organic acids are unequivocally
important during fruit ripening, it seems necessary to study
post-harvest physiology in more realistic environments, which
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means creating links with companies involved in fruit storage
and transport and breaking down the variables that affect organic
acid content and other important traits. The understanding of
the primary metabolism in fruit is directly connected with fruit
quality and seems to be an obvious target for future improvement,
however, the complicating factor in this approach is that the
metabolism is very dynamic over fruit development and changes
are considerable throughout the fruit growth until ripening
with many signaling process. Nevertheless, emerging tools can
nowadays provide the opportunity to turn this information into
a mechanistic understanding of fruit quality, and ultimately
to design better fruits in which studding primary metabolism
alongside with modeling tools can proved novel information
into a mechanistic understanding to mainly develop better fruits
(Beauvoit et al., 2018). Additionally, the attention has turned to
synthetic biology approaches, mainly by multigene engineering
toward multi-gene interventions as recently reviewed elsewhere
(Kopka and Fernie, 2018). In parallel, the adoption of synthetic
biology may directly provide more effective connections that
would circumvent problems associated with feedback regulation
of the plants native enzymes and the interactions between TCA
cycle and many other processes in the plant could be further
expanded as the previous demonstration of signaling function
(Gilliham and Tyerman, 2016).

Genetic engineering technologies such as CRISPR/Cas9 could
be used to specifically edit the sequence (Čermák et al., 2017;
Zsögön et al., 2017) or alter the transcriptional rates (Lowder
et al., 2018) of specific genes. Multiplex approaches, targeting
various genes simultaneously, are ideally suitable to better
understand genetic networks and their interactions (Lowder
et al., 2015; Jin et al., 2016). The suitability of this approach
has recently been demonstrated in fleshy fruit species such
as tomato (Hashimoto et al., 2018) and kiwifruit (Zupeng
et al., 2018). The fast pace of advance and improvement in
genome engineering techniques, such as the recent introduction
of improved endonucleases (Moreno-Mateos et al., 2017; Li
et al., 2018) or even single-nucleotide base editing without DNA
cleavage (Komor et al., 2016; Gaudelli et al., 2017) suggest
that highly efficient genome manipulation tools will soon be
available to dissect the complex genetic network involved in fruit
maturation control.

Finally, to increase our understanding of the quality and how
specific compounds can be changed to improve the ratio between
acidity and sugar in fleshy fruits, it seems that coupling integrative
approaches (omics) with systems biology is necessary. This would
allow the generation of plants, or better fruits, more adapted
to stress conditions. Importantly, it is a general opinion that a
fruit is a reflection of the conditions to which the plant has been
exposed during its development (Poiroux-Gonord et al., 2010).
In summary, to increase our knowledge on metabolism during
fruit development and the pivotal importance that organic acid
metabolism plays on it further research is clearly required.

Considering the importance of amino acids profile during
fruit ripening, such as glutamate, the major amino acid of
ripe fruits, the usage of such tools could facilitate investigation
and simultaneously increasing quality or even extending fruit
shelf life, mainly with higher reparatory rate and reduced

postharvest time. Teasing out the connections of organic acid
metabolism with a hormones may help us understand the
real contribution of each hormone on central metabolism.
Moreover, rational bioengineering of plants with modified levels
of organic acid would also benefit from an increased knowledge
of the biochemical regulations and connections inherent to the
metabolism of organic acids. The development of plants with
altered organic acid composition in fruits should also take into
consideration that this pathway is tightly connected with several
other aspects of plant metabolism. As such, changes in organic
acid metabolism within fruits may not always be beneficial,
especially for plants growing under sub-optimal environmental
conditions. Different lines of evidence have pointed out that
changes in organic acid content might greatly improve fruit
organoleptic characteristics. It is important to mention, however,
that the majority of those advances have been made in model
organisms as well as in some plants of agricultural relevance. To
successfully transfer these advances to major food crops, which
are generally more recalcitrant to genetic manipulation, still
remains a great challenge. To further increase our understanding
concerning how organic acids affect fruit metabolism we suggest
two complementary approaches: (a) it is possible that the usage
of introgression Lines (ILs), as the ones developed in tomato
(Eshed and Zamir, 1995) could allow us to identify phenotypes
with alterations in the levels of TCA cycle intermediates to
analyze the relationship between developmental process and
primary metabolism; and (b) to genetically engineer fruit-specific
inhibitions within TCA cycle enzymes and/or organic acid
metabolism/transport to further analyze the metabolic behavior
connecting it with fruit development and ripening. Although
both approaches have been successfully used already, it seems
clear that they also open the opportunity to greatly accelerate
the improvement of crops that have clearly lacked the attention
they deserve. The adaptation of high-throughput phenotyping
alongside more sensitive flux profiling methodologies, is likely
to enable us to pursue new avenues of research to increase
our understanding of the complex networks governing organic
acid function and hormone metabolism in general during fruit
ripening.

CONCLUSION AND FUTURE
PERSPECTIVES

Although the summary presented here provides a scaffold
for understanding the connections between organic acid and
hormone metabolism in fruit development, we posit that it
is of pivotal importance that these emerging studies should
be expanded. More fundamental knowledge is still required
to identify further strategies for manipulation that would
improve fruit quality and consequently fruit metabolism. It
seems reasonable to anticipate that approaches such as genomics,
transcriptome, proteomics and metabolomics coupled with
genome editing can present itself as an important data generator
that would allow the production of a mechanistic map of fruits
in general and their association with phytohormones and fruit
developmental changes.
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characteristics of strawberry genotypes at different maturation stages. Food
Chem. 100, 1229–1236. doi: 10.1016/j.foodchem.2005.12.005
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β-galactosidases are cell wall hydrolases that play an important role in fruit softening.
However, PpBGALs mechanism impacting on ethylene-dependent peach fruit softening
was still unclear. In this study, we found that PpBGAL4, -6, -8, -10, -16, and -17
may be required for ethylene-dependent peach softening and PpBGAL10, -16 may
make a main contribution to it among 17 PpBGALs. Utilization of virus-induced gene
silencing (VIGS) showed that fruits were firmer than those of the control at 4 and 6 days
after harvest (DAH) when PpBGAL10 and PpBGAL16 expression was down-regulated.
Suppression of PpBGAL10 and PpBGAL16 expression also reduced PpPG21 and
PpPME3 transcription, and polygalacturonase (PG) and pectinmethylesterases (PME)
activity. Overall, total cell wall material and protopectin slowly declined, water-soluble
pectin slowly increased, and cellulose and hemicellulose was altered significantly
at 4 DAH, relative to control fruit. In addition, PpACO1 expression and ethylene
production were also suppressed at 4 DAH because of inhibiting PpBGAL10 and
PpBGAL16 expression. These results suggested that down-regulation of PpBGAL10
and PpBGAL16 expression delays peach fruit softening by decreasing PG and PME
activity, which inhibits cell wall degradation and ethylene production.

Keywords: peach, β-galactosidases, virus-induced gene silencing (VIGS), softening, polygalacturonase, pectin
methylesterase

INTRODUCTION

Peach (Prunus persica [L.] Batsch) is a typical climacteric fruit that readily softens after harvest
(Yoshioka et al., 2010). The short shelf-life of peaches decreases their market value and represents a
major factor limiting the expansion of the fresh market peach industry. Fruit ripening and softening
is a complex and coordinated process which is usually accompanied by changes in firmness, color,
and flavor (Osorio et al., 2013). Many studies have reported that the process of fruit softening
is related to cell wall modifications involving depolymerization of pectins and matrix glycans,
solubilization of pectin polymers, and the loss of neutral sugars from pectin side chains (Ruiz May
and Rose, 2013; Tucker, 2014; Paniagua et al., 2016). Enzymes related to cell wall modifications
that potentially play a role in fruit softening include polygalacturonase (PG; EC3.2.1.15), pectin
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methylesterases (PME; EC3.1.1.11), β-galactosidase (β-gal;
EC3.2.1.23), cellulase (EC3.2.1.4), and xyloglucan endotrans-
glycosylase (EC2.4.1.207) (Hinton and Pressey, 1974; Lazan
et al., 2004; Belleau-Deytieux et al., 2009; Qian et al., 2016). β-Gal
increases cell wall porosity by depolymerizing galactose side
chains of xyloglucan, rhamnogalacturonan I, and hemicelluloses,
which allows binding of PG, PME, or other cell wall hydrolases
to pectin; consequently accelerating fruit softening (Brummell
and Harpster, 2001; Gerardi et al., 2012; Pose et al., 2013).

In plants, β-gals belong to the glycoside hydrolase 35 family.
β-gal genes have been identified in Arabidopsis thaliana (Ahn
et al., 2007), tomato (Smith and Gross, 2000), Japanese pear
(Tateishi et al., 2005), Brassica campestris (Liu et al., 2013),
and peach (Guo et al., 2018). More specifically, the transcript
abundance of 17 Arabidopsis β-gal genes was measured by q-PCR
in five tissues: leaves, roots, flowers, green seedlings, and etiolated
seedlings (Ahn et al., 2007). In tomato, seven TBGs were found
to be expressed in fruits, four in leaves and flowers, five in roots,
and six in stems (Smith and Gross, 2000). Similar observations
have been reported in Japanese pear (Tateishi et al., 2005) and
B. campestris (Liu et al., 2013). These studies have described
the tissue-specific expression of plant β-gals and their extensive
functional divergence. Previous studies have also indicated that β-
gals contribute to a variety of biological processes, including fruit
softening (Pressey, 1983; Carey et al., 1995; Smith et al., 2002),
flower senescence (Raghothama et al., 1991), fruit abscission
(Wu and Burns, 2004), cell wall loosening (Dopico et al., 1989),
galactolipid turnover (Bhalla and Dalling, 1984), and xyloglucan
mobilization (de Alcântara et al., 1999).

Several studies have specifically focused on the role
of β-gals during fruit softening. Faβgal1 in strawberry
(Fragaria × ananassa) displayed a softening-associated
expression pattern with peak transcript levels in red fruit
(Trainotti et al., 2001). In another study, inhibition of FaβGal4,
which is expressed mainly in receptacles during strawberry fruit
ripening, resulted in silencing of FaβGal1, which resulted in
an increase in the amount of covalently bound pectin and fruit
that was 30% firmer than control fruit (Paniagua et al., 2016).
Smith et al. (2002) found that four of six antisense lines with
down-regulated TBG4 produced significantly firmer tomato fruit
than control fruit. One line had lower TBG4 mRNA levels and
exo-β-gal activity and higher galactosyl content, suggesting that
TBG4 is involved in cell wall modifications associated with fruit
softening (Smith et al., 2002). Similar results have been reported
for pPGBII in papaya (Othman et al., 2011) and MA-Gal in
banana (Zhuang et al., 2006).

As a plant hormone, ethylene plays a significant role in fruit
softening (Hayama et al., 2006; Khan and Singh, 2009; Harb et al.,
2012; Bu et al., 2013; Tatsuki et al., 2013). Many studies about β-
gal genes mainly focus on the ethylene-dependent fruit softening.
PpGAL1 and PpGAL4 may play a crucial role in ‘LaFrance’ pear
softening, and their expression was up-regulated by exogenous
ethylene or down-regulated by 1-MCP (1-Methylcyclopropene)
(Mwaniki et al., 2005). In antisense-ACO melon, ethylene was
found to be suppressed to less than 0.5% of the level in control
fruit, with a concomitant decrease in β-gal gene expression
(Nishiyama et al., 2007). Ban et al. (2016) also found that DkGAL1

in persimmon participating in fruit softening could be regulated
by ethylene. In addition, investigations of β-Gal in apple, TBG4
in wild-type tomato, two ripening-impaired tomato mutants (rin
and Nr), and AV-GAL1 in avocado, have all strongly suggest
that a regulative mechanism exists between ethylene and β-gals
during ethylene-dependent fruit softening (Moctezuma et al.,
2003b; Tateishi et al., 2007; Wei et al., 2012). However, the
regulative mechanism between ethylene and β-gal genes during
ethylene-dependent fruit softening was still unclear.

Rapid fruit softening in peach is a significant problem
that affects fresh-market production. The molecular regulation
of softening in peach, however, is still unclear. Although
the importance of β-gals in fruit ripening and softening has
been documented in many previous studies, the study about
PpBGALs in peach is limited in the report which 17 PpBGALs
(PpBGAL1-17) were only be identified by bioinformatics methods
and displayed divergent expression during softening of four
different peach cultivars (Guo et al., 2018). However, little
is known about the roles of PpBGALs in ethylene-dependent
peach softening. This includes characterizing which ones exhibit
softening-associated expression patterns and how they may be
involved in the regulation of fruit softening in peach. In the
present study, we profiled the expression of 17 PpBGALs coming
from the study of Guo et al. (2018) in response to propylene
and 1-MCP treatments during peach fruit softening. PpBGALs
exhibiting consistent softening-associated expression patterns
were identified, and the function of PpBGAL10 and PpBGAL16
in peach fruit softening was explored using virus-induced gene
silencing (VIGS). The overall objective was to develop a better
understanding of the molecular mechanisms by which PpBGALs
regulate ethylene-dependent peach fruit softening.

MATERIALS AND METHODS

Plant Material and Treatments
‘Qian jian bai’ (QJB) peach trees, grown at the Experimental
Station of the College of Horticulture, Northwest Agriculture
and Forestry University, Yangling, Shaanxi, China were used
in this study. Fruits were harvested at commercial maturity
(exhibiting partially red, light-green skin and slightly firm flesh;
Qian et al., 2016) and transported to the laboratory. Undamaged
fruits were selected and divided randomly into three groups,
each containing 150 fruits. Each group was then sub-divided
into three additional groups. Fruits in the first and second
group were placed in hermetic containers and treated for 24 h
with 500 µL L−1 propylene or 5 µL L−1 1-MCP, respectively.
Propylene treatment can eliminate interference of exogenous
ethylene when endogenous ethylene production of peach fruit
is measured by gas chromatography (Trace GC Ultra, Thermo
Fisher, New York, NY, United States). The third group of fruit
was sealed in a hermetic container with air for 24 h as control.
Following treatment, fruits from each of the groups were stored at
25◦C and 75% relative humidity. Fruit samples were taken every
other day until they were fully softened and at each sampling the
fruit were frozen rapidly in liquid nitrogen and stored at −80◦C
until further analysis.
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Determination of Fruit Firmness,
Ethylene Production, and Enzyme
Activity
Fruit firmness of five randomly selected fruits from each
sub-group receiving each treatment was measured using a
GY-4 firmness meter (Top Instrument Co., Hangzhou, China)
equipped with a 7.9-mm probe. The skin of the peel was
removed from a section of the fruit surface and a probe was
inserted and the pressure it required to penetrate the flesh of
the fruit was recorded. Ethylene production was analyzed as
described by Liguori et al. (2004). Briefly, nine fruits from each
sub-group in each treatment were sealed in a jar for 60 min,
and a 1-mL air sample was analyzed by gas chromatography
(Trace GC Ultra, Thermo Fisher, New York, NY, United States).
The enzyme activity of β-gal, PG, and PME in 1 kg fresh
weight (FW) peach flesh was determined as reported by Gross
(1982), Lazan et al. (1989), and Hagerman and Austin (1986),
respectively. One unit (U) of β-gal and PG enzyme activity was
defined as the amount of hydrolyzed enzyme producing 1 mol
p-nitrophenol and galacturonic acid per minute, respectively.
One unit of PME enzyme activity was defined as the amount
of enzyme producing 1 µmol CH3O− by de-methylesterification
per minute. Separation and measurement of cell wall materials
(dry mass) was performed as described by Santiago-Domenech
et al. (2008). Each experiment was carried out in three replicates.

Cloning of PpBGAL10 and PpBGAL16
and Virus Induced Silencing (VIGS)
PpBGAL10 and PpBGAL16 came from previous report (Guo
et al., 2018), gene-specific primers used to clone their
coding sequences were designed using Primer Premier 6.0
(Supplementary Table S1). Restriction enzyme cutting sites and
protective bases were added to the forward and reverse primers.
Each 50-µL PCR amplification mixture contained 1 µL high-
fidelity DNA polymerase (Vazyme, Nanjing, China), 10 µL buffer,
1 µL dNTPs, 5 µL cDNA template, 3 µL each of the forward
and reverse primers, and 27 µL sterilized double-distilled H2O.
Amplifications were performed on a GeneAmp PCR System
9700 (ABI, Waltham, MA, United States) using the following
cycling conditions: 2 min at 95◦C, followed by 40 cycles of 10 s
at 95◦C, 30 s at the selected annealing temperature, and 15 s
at 72◦C, with a final extension of 10 min at 72◦C. The PCR
products were subjected to electrophoresis on 1% agarose gels
and then inserted in a pMD18-T vector (Takara, Dalian, China)
for sequencing. After verifying the coding sequence, the target
gene was cloned into a pTRV2 vector. The two recombinant
plasmids (pTRV2-PpBGAL10 and pTRV2-PpBGAL16), as well as
a control (a pTRV2 empty plasmid) were separately introduced
into Agrobacterium tumefaciens GV3101 using a freeze-thaw
method (Fire et al., 1998). Individual colonies were subsequently
incubated overnight at 28◦C in 1 mL LB medium containing
50 mg mL−1 kanamycin, 50 mg mL−1 gentamicin, 50 mg
mL−1 rifampicin, 20 mM acetosyringone, and 10 mM MES.
An aliquot of each culture was then inoculated into 100 mL
of the same antibiotic LB medium and incubated to an A600
of 1.0–2.0 at 28◦C. Agrobacterium infection was performed

according to the method of Jia et al. (2011). Cells were collected
by centrifugation at 5000 × g and 25◦C for 5 min and then
resuspended in an equal volume of infiltration buffer containing
10 mM MgCl2, 200 µM acetosyringone, and 10 mM MES
(pH 5.6) and incubated at 25◦C for 3 h. Finally, 1 mL of a
1:1 (v/v) mixture of induced Agrobacterium harboring pTRV2,
and Agrobacterium with either pTRV2-PpBGAL10 or pTRV2-
PpBGAL16, was infiltrated into fruit using a 1-mL syringe. Fruit
were infiltrated at nightfall when the bacterial culture was at the
end of the second exponential growth phase. Infiltrated peach
fruit of three constructs was picked at 1 week after infiltration
and stored at 25◦C and 75% relative humidity, respectively (Li
et al., 2017). Each construct contains 150 fruits and then divided
equally into three sub-groups. Fruit samples of each sub-groups
were taken every other day until control fruit fully softening, and
stored at −80◦C after freezing quickly in liquid nitrogen. The
ethylene production of infiltrated fruit and in other experiments
(including fruit firmness, gene expression, enzyme activity, and
cell wall components) at the infected position were performed
using the above-mentioned methods.

RNA Extraction and Reverse
Transcription
Total RNA was extracted as described by Lester et al. (1994).
RNA quality and integrity were determined using 1% agarose
gel electrophoresis and ultraviolet spectrophotometry (Thermo
NanoDrop 2000, Wilmington, DE, United States). Reverse
transcription was conducted using a Prime Script RT Reagent Kit
with gDNA Eraser (TaKaRa, Dalian, China).

Reverse Transcription-Quantitative PCR
(RT-qPCR)
Specific primers for 17 PpBGALs coming from previous report
(Guo et al., 2018), PpPG21, PpPME3, PpACS2, and PpACO1
were designed using Primer Premier 6.0 (Qian et al., 2016; Li
et al., 2017) (Supplementary Table S1). RT-qPCR analyses were
conducted using an iQ5 real-time PCR system (Bio-Rad, Plano,
TX, United States). A 10-µL reaction volume was used for each
sample comprising 1 µL cDNA, 1 µL of each primer, 2 µL
ddH2O, and 5 µL of 2× SYBR Premix Ex Taq II (TaKaRa, Dalian,
China). The PCR protocol specified in the SYBR Premix Ex Taq
kit manual was as follows: 1 min at 95◦C, followed by 40 cycles
of 15 s at 95◦C, 20 s at the selected annealing temperature, and
20 s at 72◦C, followed by 10 s at 95◦C, and finally 39 cycles to
construct a melting curve. The peach 18S ribosomal RNA (rRNA)
gene was used as a reference gene and for normalization of the
data. Relative expression levels for each of the analyzed genes
were calculated as described by Livak and Schmittgen (2001).
Each sample was composed of three biological replicates.

Statistical Analysis
Microsoft Excel 2010 and IBM SPSS Statistics 22 were used
for data processing and to determine significant statistical
differences between sample representing different time points
and treatments using post hoc Tukey’s test of One-way ANOVA
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(p < 0.05) for differences. Figures were generated and combined
using Sigma Plot 10.0.

RESULTS

Fruit Firmness, Ethylene Production, and
β-Gal Activity During Peach Fruit
Softening
Fruit firmness in QJB control fruit decreased slowly over the first
2 days after harvest (DAH), declined rapidly from 2 to 4 DAH,
and then decreased slowly (Figure 1A). Ethylene production
increased slowly during the first 2 DAH, increased significantly
from 2 to 4 DAH, and then rapidly decreased in subsequent
DAH (Figure 1B). Changes in β-gal activity exhibited a similar
trend after harvest to ethylene production, with maximum β-gal
activity observed at 4 DAH (Figure 1C).

Identification of PpBGALs With a
Ripening-Associated Pattern of
Expression
RT-qPCR was used to analyze the expression profiles of 17
PpBGALs during QJB fruit softening to provide information on
the potential role of PpBGALs. Among the PpBGALs examined,
PpBGAL2, -4, -6, -8, -9, -10, -16, and -17 were up-regulated and
exhibited their maximum expression level at 4 DAH, with the
exception of PpBGAL17 which exhibited peak transcript levels
at 6 DAH (Figure 2). However, PpBGAL15 exhibited a tendency
to be down-regulated, and PpBGAL12 firstly decreased in the
peach fruit and then increased (Figure 2). PpBGAL3 and -7 were
up-regulated during the first 2 DAH and then down-regulated;
PpBGAL1, -5, -11, and -13 were barely detected while PpBGAL14
expression was not detected during QJB softening (Figure 2).

Propylene and 1-MCP Treatments Alter
β-Gal Expressions
The QJB peach fruits were treated with propylene and 1-MCP to
determine the potential role of PpBGAL family members during

ethylene-dependent fruit softening. Fruit firmness decreased
markedly at 2 DAH in response to the propylene treatment
(Figure 1A). Correspondingly, ethylene production and PpBGAL
activity increased rapidly during the first 2 DAH (Figures 1B,C).
PpBGAL4, -6, -8, -10, and -16 expression was significantly up-
regulated and peaked at 2 DAH in propylene-treated fruit;
similarly, PpBGAL1, -17 and PpBGAL7 expression also increased
significantly but peaked at 4 or 6 DAH, respectively (Figure 2).
Transcript levels of PpBGAL2, -3, -5, -9, -11, -12, -13, and -15 were
not significantly affected by the propylene treatment (Figure 2).

Fruits treated with 1-MCP softened more slowly relative to
non-treated control fruit (Figure 1A). Ethylene production was
also lower relative to the control fruit at 4 DAH, with peak
ethylene levels exhibited at 6 DAH (Figure 1B); β-gal activity
was significantly inhibited at same time, with maximum activity
exhibited at 8 DAH (Figure 1C); Expression of PpBGAL 2, -3,
-4, -5, -6, -8, -10, -11, -16, and -17 was inhibited, while transcript
levels of PpBGAL1, -7, -9, -12, -13, and -15 were barely affected
(Figure 2).

VIGS of PpBGAL10 and PpBGAL16
Virus-induced gene silencing technology was used to suppress the
expression of PpBGAL10 and PpBGAL16 (RNAi-10 and RNAi-
16, respectively) in fruit tissues to confirm the roles of these
genes in peach fruit softening. The infiltrated surfaces of control
fruits developed a typical red flush, whereas little or no red color
was evident at the areas of fruit infiltrated with RNAi-10 and
RNAi-16 (Figure 3). Expression of PpBGAL10 and PpBGAL16
was significantly decreased at 4 DAH in RNAi fruit (Figure 4A).
The fruits infiltrated with the two RNAi constructs softened
more slowly, as measured by changes in fruit firmness, during
the period of 2–6 DAH than control fruit infiltrated with an
empty vector construct (Figure 4B). Total β-gal activity, however,
was not significantly different between the fruit infiltrated with
the RNAi constructs and the control fruit from 0 to 4 DAH
(Figure 4C).

The amounts of various cell wall components (cell wall
material, protopectin, water-soluble pectin, hemicellulose, and
cellulose) were different in the RNAi constructs fruit than in the

FIGURE 1 | Fruit firmness, ethylene production, and β-galactosidase activity in control, propylene-treated, and 1-MCP-treated ‘Qian Jian Bai’ peach fruit during
storage. (A) Fruit firmness; (B) ethylene production; (C) β-gal activity. Each experiment was repeated three times. Data represent the mean ± SE (n = 3). Significant
differences (p < 0.05) between means are indicated by different letters.
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FIGURE 2 | Transcript levels of 17 PpBGALs in control, ethylene-treated, and 1-MCP-treated ‘Qian Jian Bai’ peach fruit during storage. The peach 18S rRNA gene
was used as a reference. The experiment was repeated three times. Data represent the mean ± SE (n = 3). Significant differences (p < 0.05) between means are
indicated by different letters.

FIGURE 3 | Phenotypes of infiltrated fruits. (A) TRV2 (control); (B) TRV2-PpBGAL10 (RNAi-10); (C) TRV2-PpBGAL16 (RNAi-16). Black arrows indicate the injection
site.

control fruit (Figure 5). In RNAi constructs fruit, the amount
of cell wall material (dry mass), protopectin, and cellulose were
greater at 4 DAH (Figures 5A,B,D). Although water-soluble

pectin content increased from 2 to 6 DAH in both the control
and RNAi, the increase was greater in the control (Figure 5C).
Interestingly, hemicellulose content was higher in the control
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FIGURE 4 | Changes in the expression level of PpBGAL10 and PpBGAL16, fruit firmness, β-gal activity, and ethylene production during storage of control (TRV2),
RNAi-10 (TRV2-PpBGAL10), and RNAi-16 (TRV2-PpBGAL16) fruit. (A) Relative transcript abundance of PpBGAL10 and PpBGAL16, RNAi-10, RNAi-16 and
Control-10, Control-16 represents expression of PpBGAL10 and PpBGAL16 in RNAi and Control fruit, respectively, (B) fruit firmness, (C) β-gal activity, and
(D) ethylene production RT-qPCR expression levels were normalized using the cycle threshold value of the peach 18S rRNA gene. Data represent the mean ± SE
(n = 3). Significant differences (p < 0.05) between means are indicated by different letters.

fruit than in RNAi fruit from 2 to 4 DAH and then decreased
sharply in all three groups (Figure 5E).

Transcript levels of softening-related genes (PpPG21 and
PpPME3) and the enzyme activity of cell wall hydrolases (PG
and PME) were measured in control and RNAi fruits from 0 to
6 DAH (Figure 6). Expression of PpPG21 and PME3 reached
their maximum at 4 DAH in control fruit and was significantly
higher than in RNAi fruit, but no significant differences were
observed in the expression of these genes between RNAi-10 and
RNAi-16 fruit from 0 to 6 DAH (Figures 6A,B). PG maximum
activity was higher in the control fruit though peaked at 4 DAH
in both control and RNAi fruit (Figure 6D). PME activity, which
peaked at 2 DAH in RNAi fruit, increased slowly in control fruit
from 2 to 4 DAH and was higher at 4 and 6 DAH than in the
RNAi fruit (Figure 6E).

Down-Regulation of PpBGAL10 and
PpBGAL16 Affects Ethylene Production
and Ethylene-Related Gene Expression
The contribution of ethylene to the softening of respiratory
climacteric fruit is well known. In the present study, ethylene
production and transcript levels of ethylene-related genes (ACO1
and ACS2) were analyzed in RNAi and control fruits from 0
to 6 DAH. As illustrated in Figure 4D, ethylene production at

4 DAH was significantly lower in RNAi fruit than in control fruit,
however, PpACS2 transcript levels were higher in RNAi fruit from
0 to 6 DAH. In addition, PpACS2 expression was similar in both
types of RNAi fruit (Figure 6C). Interestingly, ACO1 expression
level was significantly higher at 4 DAH than in either of the two
different RNAi fruit that exhibited similar levels of expression to
each other (Figure 6F).

DISCUSSION

Possible Role of PpBGAL Family
Members in Fruit Softening
Several studies have focused on the possible role of β-gals in fruit
ripening and softening (Smith et al., 2002; Lazan et al., 2004;
Yoshioka et al., 2011; Paniagua et al., 2016). Guo et al. (2018)
reported three PpBGAL genes (PpBGAL2, -8 and -16) in ‘Hu
Jing Mi Lu’ and five PpBGAL genes (PpBGAL1, -2, -9, -12, and
-16) in ‘Xia Hui 8’ peach fruit were up-regulated during storage.
However, results of the present study indicate that PpBGAL2, -4,
-6, -8, -9, -10, -16, and -17 may participate in QJB fruit softening
due to exhibit softening-associated patterns of expression, with
transcript levels being up-regulated during the process of fruit
softening in QJB peach fruit (Figure 2). Therefore, it appears
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FIGURE 5 | Changes in the level of cell wall components in control (TRV2), RNAi-10 (TRV2-PpBGAL10), and RNAi-16 (TRV2-PpBGAL16) fruit. (A) Cell wall material
(dry mass), (B) protopectin, (C) water-soluble pectin, (D) cellulose, and (E) hemicelluloses in RNAi and control fruit during storage. Each experiment was repeated
three times. Bars represent the mean ± SE (n = 3). Significant differences (p < 0.05) between means are indicated by different letters.

that several PpBGALs could involve in peach fruit softening while
their expression can vary between different peach cultivars.

Our results also indicate that, PpBGAL4, -6, -8, -10, -16,
and -17 can be induced by endogenous ethylene (Figure 2),
which has been reported to be increased by propylene treatment
(Ban et al., 2016). Therefore, the six PpBGALs may play an
important role in ethylene-dependent QJB fruit softening. In
addition, PpBGAL16 exhibited the same expression pattern in
three different peach cultivars (‘Hu Jing Mi Lu,’ ‘Xia Hui 8,’
and QJB), and exhibits a low level of expression during the
storage of ‘Yumyeoung’ and ‘XiaCui.’ Notably, both of these latter
cultivars maintain fruit firmness for a longer period of time than
the former three cultivars and barely synthesize any ethylene
during storage (Guo et al., 2018). Therefore, it appears that
PpBGAL16 may play a pivotal role in ethylene-dependent peach
fruit softening. PpBGAL10 exhibited the pattern of expression
as well as PpBGAL16 in propylene-treated and control fruit
(Figure 2). Meanwhile, it may be an ortholog of PpGAL3 has
been reported to play a role in cell wall disassembly in ripening
Japanese pear (Tateishi et al., 2005). Therefore, PpBGAL10 may
also play an important role in line with PpBGAL16 during peach
softening.

PpBGAL2 and PpBGAL9 may participate in QJB fruit
softening in an ethylene-independent manner. The expression of
PpBGAL1, -5, -11, -13, and -14 were very low or undetectable
in naturally softened QJB peach fruit, while PpBGAL3, -7, -
12, and -15 exhibited hardly showed soften-related expression
patterns (Figure 2) and were only slightly induced by exogenous

propylene; suggesting that they have negligible roles in ethylene-
dependent peach fruit softening.

Down-Regulation of PpBGAL10 and
PpBGAL16 Delays Peach Fruit Softening
To further elucidate the functional role of PpBGALs in ethylene-
dependent peach fruit softening, VIGS technology was utilized to
suppress the expression of two principle PpBGALs (PpBGAL10
and PpBGAL16) in fruit infiltrated with RNAi constructs. Results
indicated that fruit softening was delayed in fruit infiltrated
with both RNAi constructs (Figure 4B), however, β-gal activity
was only slightly lower in the RNAi fruit (Figure 4C) when
the expression of PpBGAL10 and PpBGAL16 was significantly
down-regulated (Figure 4A). These results are consistent with
studies in strawberry which found that the down-regulation of
FaβGal4 resulted in delayed fruit softening but no significant
change in total β-Gal enzyme activity (Paniagua et al., 2016).
Similar results have also been reported by Carey et al. (2001)
and Smith et al. (2002) in tomato. We suggest that down-
regulation of PpBGAL10 and PpBGAL16 may lead to reduced
exo-β-galactanase activity, a change that would have a negligible
effect on total β-Gal enzyme activity (Moctezuma et al., 2003a;
Paniagua et al., 2016).

PG can depolymerize cell wall due to mediate
homogalacturonan depolymerization requiring to be de-
methylesterified by PME (Brummell and Harpster, 2001). Thus,
PG and PME had been abundantly reported to contribute to
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FIGURE 6 | Changes in softening-related gene expression and cell wall hydrolase activity in control, RNAi-10, and RNAi-16 fruit during storage. (A) Relative
expression of PpPG21; (B) relative expression of PpPME3; (C) relative expression of PpACS2; (D) polygalacturonase activity; (E) pectin methylesterase activity; and
(F) relative expression of PpACO1. Each experiment was repeated three times. Data represent the mean ± SE (n = 3). Significant differences (p < 0.05) between
means are indicated by different letters.

fruit softening because of involving a role in cell wall metabolism
(Micheli, 2001; Smith et al., 2002; Jayani et al., 2005; Payasi
et al., 2009; Pose et al., 2013). β-gal increases cell wall porosity
by depolymerizing the galactose side chains of xyloglucan,
rhamnogalacturonan I, and hemicelluloses, which then allows
the binding of PG, PME, or other cell wall hydrolases to pectin;
thus accelerating fruit softening (Brummell and Harpster, 2001;
Gerardi et al., 2012; Pose et al., 2013). Therefore, the activity of
PG and PME in RNAi fruit might be affected by down-regulating
expression of PpBGAL10 and PpBGAL16. Our results indicated
PpPG21 and PpPME3, two key genes encoding PG and PME,
respectively, have significant lower expression in RNAi fruit than
control fruit at 4 DAH, resulting in the reduction of PG and
PME enzyme activity (Figures 6A,B,D,E). It is consistent with
a viewpoint that β-galactosidase and ripening-related expansins
may regulate other cell wall modify-related enzyme activities
(Brummell and Harpster, 2001). These results suggest that the
down-regulation expression of PpBGAL10 and PpBGAL16 delays
peach fruit softening due to reduce PG and PME activity rather
than β-gal activity.

Down Regulation of PpBGAL10 and
PpBGAL16 Impacts Cell Wall
Components
Accompanied by rapid declining of fruit firmness, water-soluble
pectin contents could dramatically increase during melting peach
fruit softening (Murayama et al., 2009). A slower rate of increase
in water-soluble pectin was observed in RNAi-10 and RNAi-16

fruit where PG and PME activity was inhibited (Figure 5C). This
result is consistent with results reported in strawberry after the
down-regulation of FaPG1, PL, and FaβGal4 genes (Santiago-
Domenech et al., 2008; Pose et al., 2013; Paniagua et al., 2016).
In addition, A decrease of protopectin content was occurred
during ‘Okubo’ peach softening (Li et al., 2009). Our results
displayed its levels in RNAi-10 and RNAi-16 fruit were higher
(Figure 5B). These data suggested that softening of RNAi-10
and RNAi-16 fruit was delayed because of suppressing pectin
metabolism. Therefore, it was indicated that the amount of
ionically and covalently bound pectin was potentially higher in
RNAi-10 and RNAi-16 fruit than in control fruit. Yoshioka et al.
(2011) found that bound pectin (ionically and covalently) content
was the higher in non-softening peach fruit than in softening
at different storage time. Santiago-Domenech et al. (2008) and
Figueroa et al. (2010) have also confirmed the depolymerization
of bound pectin may be due in part to the solubilization of
pectin. Moreover, fruit softening in peach is associated with
pectin solubilization and depolymerization (Yoshioka et al.,
2011). Therefore, the present results suggest that the inhibition of
PpBGAL10 and PpBGAL16 transcription helps to reduce bound
pectin solubilization and depolymerization by suppressing PG
and PME activity, thereby delaying peach softening. In addition,
changes of cellulose and hemicellulose level indicate cellulase and
hemicellulase may be also influenced in RNAi-10 and RNAi-16
fruit, suggesting delaying fruit softening is likely a cooperative
process which many cell wall modified enzymes engage together,
but this mechanism is unclear and still required to further
study.
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Suppression of PpBGAL10 and
PpBGAL16 Reduces Ethylene Production
Ethylene is a hormone that plays an essential role in
fruit softening through its ability to regulate several cell
wall hydrolysis-related genes (Hayama et al., 2006; Tatsuki
et al., 2013). Therefore, a reduction in ethylene production
may greatly delay fruit softening. Ethylene production was
significantly reduced in the present study when the expression
of PpBGAL10 and PpBGAL16 was down-regulated. We propose
three hypotheses to explain the reduction in ethylene production.
First, the level of cell wall galactose in RNAi-10 and RNAi-16 fruit
was likely reduced due to the observed inhibition of PG and PME
activity, delaying pectin solubilization and depolymerization.
Galactose, as a signaling molecule, has been confirmed to
stimulate ethylene production in tomato fruits and tobacco leaf
disks (Kim et al., 1987; Philosoph-Hadas and Aharoni, 1987).
Therefore, a reduction in galactose content may reduce ethylene
production by suppressing the transcription of PpACO1. Second,
specific wall fragments, oligogalacturonides (OGAs) which are
short breakdown products of homogalacturonan consisting of
9–15 GalA residues, have been suggested to induce ethylene
release during pectin solubilization and depolymerization
(Simpson et al., 1998; Wolf et al., 2012), and PME-dependent
demethylation-esterification of OGAs is essential to this process
(Osorio et al., 2008). In the present study, the amount and
demethylation of OGAs are thus probably reduced in RNAi-10
and RNAi-16 fruit where PME and PG activity is reduced. This
scenario would also result in a reduction in ethylene production.
A third hypothesis, that cell wall damage acts as a signal has
been supported by experiments involving various cell wall-
related mutants (Seifert and Blaukopf, 2010). Interestingly, 1-
aminocyclopropane-1-carboxylic acid (ACC), a direct precursor
in ethylene synthesis, responds to cell wall damage (De Cnodder
et al., 2005; Tsang et al., 2011). Thus, we suggest that the signal
derived from cell wall damage is weak in RNAi-10 and RNAi-16
fruit where softening is delayed, however, due to the higher level
of cell wall integrity in the RNAi fruit. This would result in a lower
level of ACC content relative to control fruit. PpACO1 expression
in RNAi-10 and RNAi-16 fruit was also inhibited (Figure 6F).
Therefore, ethylene production was lower in these fruit, relative
to the control fruit. Although all three hypotheses can explain
the reduction in ethylene production observed in the RNAi-10
and RNAi-16 fruit, some unresolved issues remain, such as direct
proof of the involvement of changes in galactose, OGA, and ACC
contents in RNAi fruit and the identification of specific receptors
of galactose and OGAs in cytomembranes. Confirmation of these
hypotheses will thus require further complex experiments.

A reduction in ethylene production may delay peach fruit
softening when the expression of PpBGAL10 and PpBGAL16 is
down-regulated. The reduction in ethylene production, however,

hardly affected β-gal activity in RNAi-10 and RNAi-16 fruit.
These observations may suggest the existence of an indirect
method of regulation between ethylene and PpBGALs. Ethylene
can also regulate anthocyanin synthesis (El Kereamy et al., 2003;
Cheng et al., 2016). Consequently, the inhibition of ethylene
production may prevent anthocyanin synthesis and explain the
lack of color change in the RNAi fruit where PpBGAL10 and
PpBGAL16 are down-regulated (Figure 3).

CONCLUSION

Our study demonstrated that PpBGAL10 and -16 are the main
β-gal genes contributing to ethylene-dependent peach fruit
softening. VIGS-induced down-regulation of PpBGAL10 and
PpBGAL16 expression delays peach fruit softening by reducing
PG and PME activity, which inhibits cell wall degradation and
reduces ethylene production. The present study has provided
strong evidence that β-gals play an important role in peach fruit
softening.
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Combined metabolomic and transcriptomic analyses were carried out with fig cultivar

Green Peel and its color mutant “Purple Peel.” Five and twenty-two metabolites were

identified as having significantly different contents between fruit peels of the two cultivars

at young and mature stages, respectively. Cyanidin O-malonylhexoside demonstrated

a 3,992-fold increase in the mature purple peel, the first identification of a major

cyanidin in fig fruit; cyanidin 3-O-glucoside, cyanidin O-malonylhexoside O-hexoside

and cyanidin-3,5-O-diglucoside were upregulated 100-fold, revealing the anthocyanins

underlying the purple mutation. Beyond the visible differences, there was very significant

accumulation of the colorless flavonoids procyanidin B1, luteolin-3′,7-di-O-glucoside,

epicatechin and quercetin-3-O-rhamnoside in the mature “Purple Peel” compared

to “Green Peel.” At the young stage, only cyanidin O-malonylhexoside, cyanidin

O-malonylhexoside O-hexoside and esculetin were upregulated a few fold in the mutant.

Transcriptome analysis revealed a downregulated expression trend of genes encoding

phenylpropanoid and flavonoid biosynthetic pathway enzyme in the young “Purple

Peel” compared to the young “Green Peel,” whereas significant and simultaneous

upregulation was revealed in almost all of the flavonoid and anthocyanin pathway

components and relevant transcription factors in the mature-stage mutant. The role of

R2R3-MYB transcription factors in the color morph mutation and its possible relation

to the activity of retrotransposons are discussed. Moreover, large-scale upregulation of

small heat-shock protein genes was found in the mature mutant. This is the first work to

reveal comprehensive metabolome and transcriptome network changes underlying a fig

mutation in a single horticultural attribute, and its profound effects on fruit nutrition and

quality.

Keywords: fig (Ficus carica L.), anthocyanin, flavonoid, peel color mutation, transcriptome, metabolome
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INTRODUCTION

The fruit peel is in essence the fruit boundary; it maintains
fruit integrity and protects it from the external environment.
Secondary metabolites in the peel, such as pigments, tannins
and aroma compounds, affect fruit appearance, quality and
storage (Li et al., 2013). Anthocyanin pigments—pelargonidin,
cyanidin, delphinidin, peonidin, petudinin and malvidin,
often in their glycosylated form—are commonly identified
in pink, red, purple and other deep-colored fruit (Jaakola,
2013).

Anthocyanin metabolism is catalyzed by a number of
enzymes from the phenylpropanoid and flavonoid biosynthetic
pathways (Bilyk and Sapers, 1986; Pelletier et al., 1997; Falcone
Ferreyra et al., 2012). As an initial precursor of anthocyanins and
other flavonoids, phenylalanine produces colorless secondary
intermediate metabolites that are sequentially catalyzed
by phenylalanine ammonia-lyase (PAL), cinnamic acid 4-
hydroxylase, 4-coumarate:coenzyme A ligase (4CL), chalcone
synthase (CHS), chalcone isomerase (CHI), flavanone 3-
hydroxylase (F3H), flavanone 3′-hydroxylase (F3′H), flavonoid
3′5′-hydroxylase, and dihydroflavonol 4-reductase (DFR);
unstable colored anthocyanins are then synthesized from the
colorless anthocyanins by anthocyanidin synthase (ANS) (Boss
et al., 1996; Falcone Ferreyra et al., 2012) via the full metabolic
pathway. Finally, the unstable colored anthocyanins are
transformed into blue–violet, brick-red or magenta glycosides
by UDP-glucose: flavonoid 3-O-glucosyltransferase (UFGT)
(Pelletier et al., 1997; Dick et al., 2011; Saito et al., 2013),
resulting in different types and numbers of substituents in
the B ring of the anthocyanin, which determine the color hue
and chromaticity of the anthocyanidins in specific tissues and
cellular environments (Espley et al., 2007). Brightly colored fruit
commonly show high gene expression of the key downstream
enzymes of the anthocyanin biosynthetic pathway, such as
those encoding DFR, ANS, and UFGT (Han et al., 2012).
Sharply upregulated FcANS1 expression was revealed in the
peel of a dark-colored fig during fruit ripening (Cao et al.,
2016), whereas UFGT was identified as the critical gene for
anthocyanin biosynthesis in grape and strawberry (Kobayashi
et al., 2001; Griesser et al., 2008). In recent years, combined
high-throughput methods have been used to study color
development. Integrated metabolomic and transcriptomic
network analyses in fruit and flowers have elucidated a series
of secondary metabolites with changes in content, and the
corresponding differentially expressed genes (Lou et al., 2014;
Matus, 2016), broadening the global view of plant color
regulation.

Color mutations are frequently observed in flowers and
fruit. The color change is usually produced by single-gene

Abbreviations: 4CL, 4-Coumarate:coenzyme A ligase; ANS, Anthocyanidin
synthase; bHLH, Basic helix-loop-helix; CHI, Chalcone isomerase; CHS, Chalcone
synthase; COG, Clusters of orthologous groups of proteins database; DEG,
Differentially expressed gene; DFR, Dihydroflavonol 4-reductase; F3H, Flavanone
3-hydroxylase; F3′H, Flavanone 3′-hydroxylase; LAR, Leucoanthocyanidin
reductase; PAL, Phenylalanine ammonia-lyase; UFGT, UDP-glucose: flavonoid
3-O-glucosyltransferase.

mutations, as in grape (Kobayashi et al., 2004; Hichri et al.,
2011a), apple (Xie et al., 2012), pear (Li et al., 2013), and blood
orange (Rodrigo et al., 2003). Studies on color mutations
have revealed that in addition to the aforementioned
structural biosynthetic genes, transcription factors play
important roles in modulating anthocyanin biosynthetic
pathway activity and color changes (Lepiniec et al., 2006;
Saito et al., 2013). The MBW complex [MYB transcription
factor in a complex with basic helix-loop-helix (bHLH) and
WD40 proteins] has been shown to regulate the expression
of anthocyanin genes (Ramsay and Glover, 2005; Petroni
and Tonelli, 2011). In the model plant Arabidopsis, MYB
transcription factors TT2, PAP1/PAP2, MYB75, MYB90,
MYB113, and MYB114, bHLH transcription factors TT8,
GL3, and EGL3 and the WD40 repeat protein TTG1 regulate
the expression of DFR, ANS, UFGT and other downstream
genes, affecting anthocyanin biosynthesis (Gonzalez et al.,
2008; Saito et al., 2013). Recently, NAC (NAM, ATAF1,2,
CUC2) transcription factors have also been reported to affect
anthocyanin biosynthesis in blood-fleshed peaches (Zhou et al.,
2015).

As one of the world’s earliest cultivated fruit trees, more than
600 fig (Ficus carica L.) cultivars have been described (Flaishman
et al., 2008). The fruit are termed syconia and demonstrate a
typical double-sigmoid growth curve, including two rapid size-
increment phases (phase I and III) and a slow growth phase
between them (phase II) (Crane and Baker, 1953; Kislev and
Bar-Yosef, 2006). When the fruit matures (in phase III), its
colors are diverse; depending on the cultivar, the peel color can
be green, yellow–green, yellow, red, purple, or violet–black. Fig
peel color is primarily due to the accumulation of anthocyanins,
with anthocyanin type and content differing among the different
cultivars (Dueñas et al., 2008). Four anthocyanins have been
reported in purple fig cultivars, namely cyanidin-3-O-glucoside,
cyanidin-3-rutinoside, pelargonidin-3-glucoside and cyanidin-
3,5-diglucoside. Yellow fig cultivars accumulate carotenoids such
as lutein, zeaxanthin, β-cryptoxanthin and β-carotene (Yemiş
et al., 2012). Cyanidin-3-O-glucoside chloride has been reported
as the predominant anthocyanin in the peel of cvs. Black
Mission and Brown Turkey (Solomon et al., 2006; Ercisli et al.,
2012). As these trees rely mainly on vegetative propagation,
mutation is an important agent of change in fig cultivar
development.

“Green Peel” (“Qingpi”) is a major fig cultivar in China
with green-colored fruit; “Purple Peel” (“Zibao”) is a bud
mutation of “Green Peel,” with fruit that turn an appealing
dark purple in phase III. In this study, targeted metabolome
and transcriptome comparisons were carried out using
young and mature fruit of “Green Peel” and “Purple
Peel” fig. Beyond identifying specific anthocyanins in the
mutant, we reveal very significant accumulation of a set of
flavonoids and procyanidin B1, together with systematic
transcriptional changes for structural genes, transcription
factors and other regulators of the phenylpropanoid
and flavonoid biosynthetic pathways, providing valuable
information on fruit color and its complex effect on fruit quality
components.
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MATERIALS AND METHODS

Plant Materials and Treatments
The common fig cultivar Green Peel and its bud mutation cv.
Purple Peel were cultivated in Weihai City (37◦5′ N, 122◦1′ W),
Shandong Province in China. The soil type is sandy loam. The
sampled fig orchard is 1 km from the sea and managed in the
same way as the other orchards in this major fig-growing region
in China. There were no significant or remarkable differences
in 63 tested/observed morphological/horticultural items listed
by the UPOV (International Union for the Protection of New
Varieties of Plants, Geneva, Switzerland, http://upov.int) [UPOV
TG/265/1 (E)] between “Green Peel” and its purple mutant,
except for fruit color at ripening (Xu et al., 2016). The main
crop fruit used for the metabolome study and RNA-sequencing
(RNA-Seq) were collected on 18 Oct 2015, and fruit samples
used for RT-qPCR validation were collected on 25 Oct 2016.
The fig has a continuous fruiting characteristic, with different
development stages of the main crop fruit growing along the
shoots. Fruits in the late stage of phase II and in the middle
of phase III were sampled from the two cultivars and termed
“Green Peel” young fruit (GY), “Purple Peel” young fruit (PY),
“Green Peel” mature fruit (GM) and “Purple Peel” mature fruit
(PM), respectively. Three biological replicates were collected
per sample, each with 20 fruits randomly collected from 15 fig
trees in the same plot of the commercial orchard. We took
the figs back to the laboratory, and the peel (about 2mm
thick) was carefully excised with a razor blade, collected, frozen
in liquid nitrogen, roughly ground and kept at −80◦C for
further use.

Extraction and Separation of Polyphenol
Secondary Metabolites
Fig peel samples were further ground to a fine powder
in liquid nitrogen and thoroughly mixed, then a ca. 3-g
sample was freeze-dried and crushed using a mixer mill
(MM 400, Retsch) with zirconia beads for 1.5min at 30Hz.
Sample (100mg) was extracted with 1mL 70% methanol
containing 0.1 mg/L lidocaine as an internal control for
12 h on a rotating wheel at 4◦C in the dark. After 10,000 g
centrifugation for 10min at 4◦C, the extracts were absorbed
(CNWBOND Carbon-GCB SPE Cartridge, 250mg, 3mL;
ANPEL, Shanghai, China, www.anpel.com.cn) and filtered
(SCAA-104, 0.22-µm pore size; ANPEL) before LC–MS analysis.
A quality-control sample was prepared by equal blending of
all samples; during the assay, the quality control sample was
run every 10 injections to monitor the stability of the analytical
conditions.

Samples (5 µL) were injected into a HPLC system (Shim-
pack UFLC SHIMADZU CBM30A) equipped with a C18
column (Waters ACQUITY UPLC HSS T3, 1.8µm, 2.1mm
× 100mm). The binary solvent system was ultra-pure water
containing 0.04% acetic acid as mobile phase A and acetonitrile
containing 0.04% acetic acid as mobile phase B. The A:B (v/v)
gradient was 95:5 at 0min, 5:95 at 11.0min, 5:95 at 12.0min,
95:5 at 12.1min, 95:5 at 15.0min. The flow rate was kept at
0.40 mL/min, and the column temperature was maintained
at 40◦C.

Metabolite Identification and
Quantification
The HPLC effluent was connected to an electrospray ionization
(ESI)-triple quadrupole-linear ion trap–MS/MS system (Applied
Biosystems 4500 Q TRAP). Metabolite identification and
quantification were carried out following Chen et al. (2013). In
brief, the inspected mass spectra were 50–1,000 m/z. Nitrogen
was used as both the nebulizer/auxiliary and collision gas. The
ESI source was set to positive ionization mode, the source
temperature was held at 550◦C; the capillary voltage was 5.5 kV.
The monitoring mode was set to multiple-reaction monitoring
(MRM).

Metabolite identification was based on the primary and
secondary spectral data annotated against public databases,
namely MassBank (http://www.massbank.jp/), KNAPSAcK
(http://kanaya.naist.jp/KNApSAcK/), HMDB (http://www.
hmdb.ca/), MoToDB (http://www.ab.wur.nl/moto/), and
METLIN (http://metlin.scripps.edu/index.php), following
the standard metabolic operating procedures. Metabolite
quantification was carried out using MRM. Partial least squares
discriminant analysis (PLS–DA) was carried out with the
identified metabolites. Metabolites with significant differences
in content were set with thresholds of variable importance in
projection (VIP) ≥ 1 and fold change≥ 2 or ≤ 0.5.

RNA-Seq and Annotation
RNA isolation and purification, and cDNA library construction
and sequencing were as performed previously (Chai et al.,
2017). In brief, fig samples’ total RNA was extracted by the
CTAB method (Cao et al., 2016). RNA quantity and quality
were determined by NanoDrop ND1000 spectrophotometer
(NanoDrop Technologies, Wilmington, DE, USA) and the
Agilent Bioanalyzer 2100 system (Agilent Technologies, Palo
Alto, CA, USA), respectively. RNA integrity was determined by
1% agarose gel electrophoresis, and the RNA concentration was
adjusted for uniformity. mRNA was isolated from total RNA
using magnetic beads with oligo (dT); cDNA was synthesized
using a cDNA Synthesis Kit (TaKaRa) and linking the sequencing
adapter to both ends (Chai et al., 2014). The library preparations
were sequenced on an Illumina HiSeq 4000 platform and the
unigene sequences obtained from our laboratory transcriptome
database by RSEM software were integrated for annotation (Chai
et al., 2017). The whole set of annotated genes can be found in
the National Center for Biotechnology Information (NCBI) SRA
database (accession number SRP114533).

Analysis of Differentially Expressed Genes
(DEGs)
For gene-expression analysis, counts were mapped to the reading
of each gene by HTSeq v0.5.4p3 and then normalized to FPKM
(fragments per kilobase of transcript per million mapped reads)
following Mao et al. (2005). DEGs were recruited by log2 (fold
change) ≥ 1 and corrected P ≤ 0.005. All DEGs were analyzed
by gene ontology (GO) enrichment using GOseq (1.10.0) (Götz
et al., 2008) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment using KOBAS software (Mortazavi et al.,
2008).
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Real-Time Quantitative PCR (RT-qPCR)
Validation
RNA extraction and quality detection were carried out by RNA-
Seq. Reverse transcription was performed using HiFi-MMLV
cDNA First-Strand Synthesis Kit (Invitrogen). Twenty color-
related genes were selected for RT-qPCR with specific primers
designed by Primer Premier 5 software (Supplementary Table 1).
The RT-qPCR was performed with an ABI 7500 Fast Real-Time
Detection System (Applied Biosystems) using the Ultra SYBR
Mix kit (CWBIO, Beijing, China). The amplification system
consisted of 10.4 µL Ultra SYBR Premix System II, 0.8 µL of
10 µmol/L upstream primer, 0.8 µL of 10 µmol/L downstream
primer, 2 µL template, and sterile distilled water to a total
volume of 20 µL. The amplification program was 95◦C for
10min, followed by 40 cycles of 95◦C for 15 s and 55◦C for
1min. Relative quantitative analysis of data was performed by
the 2−11CT method with reference genes β-actin and 18S-RNA.
Three technical replicates were carried out for each sample
to ensure reproducibility and reliability. Statistical analysis of
variance (ANOVA) followed by Duncan’s newmultiple range test
were performed with SPSS Version 16.0 (Chicago, IL, USA). The
significance level was set to P < 0.05.

RESULTS

Phenotype of “Green Peel” and Its Mutant
“Purple Peel”
No morphological differences were detected between the fruit
of “Green Peel” and its purple mutant, except for fruit color

at ripening. The young fruit used in the present study were
harvested in the late stage of fig development phase II, when
both “Green Peel” and its purple mutant have a deep green
appearance, with a very slight copper hue on the surface of the
purple mutant. When the fruits were halved, the texture was
hard, and the internal female flowers were a pink–garnet color
(Figures 1A,B).

Fig development is very rapid in phase III. The fruit quickly
enlarge, reaching their final size and harvest quality in 5–7 days.
“Green Peel” fruit turned yellow–green in appearance, whereas
the mutant developed a dark purple peel. Mature fruit were soft
and succulent, and female flowers of both cultivars were deep
red inside the fruit (Figures 1C,D). As a measure of fruit quality,
“Green Peel” and its purple mutant had an average fruit weight
of 33.9 ± 2.66 g and 33.4 ± 2.4 g, 18.51 ± 1.03 and 18.34 ± 1.15
◦Brix in soluble solids, and peel thickness of 2.14± 0.32 and 2.16
± 0.24mm, respectively, with no significant differences in the
assayed horticultural attributes.

Targeted Secondary Metabolite Assay
The general secondary metabolite profiles of “Green Peel”
and “Purple Peel” fig fruit showed marked differences
(Supplementary Figures 1, 2). A total of 101 metabolites
were identified from GY, PY, GM, and PM samples, each with
three biological replicates: 18 phenylpropanoids, 40 flavones, 12
flavonols, 16 flavonoids, 8 anthocyanins, 5 proanthocyanidins,
and 2 catechin derivatives (Table 1). Setting VIP ≥ 1.0
together with fold change ≥ 2 or ≤ 0.5 as thresholds for
significant differences, the contents of 5 and 22 metabolites

FIGURE 1 | The phenotype of fig (Ficus carica L.) cv. Green Peel and its mutation cv. Purple Peel at young and mature stages. (A) “Green Peel” young fruit. (B)

“Purple Peel” young fruit. (C) “Green Peel” mature fruit. (D) “Purple Peel” mature fruit. GY, “Green Peel” young fruit; GM, “Green Peel” mature fruit; PY, “Purple Peel”

young fruit; PM, “Purple Peel” mature fruit.
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TABLE 1 | Differentially accumulated phenolic compounds in the peel of “Green Peel” and “Purple Peel” fruit.

Component name Metabolite name Content Fold change

(PY/GY; PM/GM)

VIP

Green fig Purple fig

ANTHOCYANIN

GY vs. PY Cyanidin O-malonylhexoside 3.81E + 03 2.68E + 04 7.03 3.00541

Cyanidin O-malonylhexoside O-hexoside 6.37E+03 1.85E+04 2.90 2.21738

GM vs. PM Cyanidin O-malonylhexoside 1.93E+03 7.69E+06 3992.21 3.42056

Cyanidin 3-O-glucoside 1.38E+05 6.37E+07 461.40 2.96158

Cyanidin O-malonylhexoside O-hexoside 5.85E+03 2.44E+06 416.60 2.91667

Cyanidin-3,5-O-diglucoside (cyanin) 4.62E+05 5.26E+07 113.87 2.58938

PROCYANIDIN

GM vs. PM Procyanidin B1 2.79E+04 8.98E+06 322.26 2.84928

Procyanidin B2 3.64E+04 1.67E+05 4.58 1.44844

Procyanidin B 1.30E+04 4.69E+04 4.02 1.29685

Procyanidin B3 3.03E+03 1.22E+04 3.60 1.32665

Procyanidin A 8.23E+03 1.77E+04 2.15 1.01483

FLAVONE

GY vs. PY Apigenin 5.67E+04 2.37E+04 0.42 1.90703

GM vs. PM Luteolin-3′,7-di-O-glucoside 1.98E+05 1.11E+07 56.06 2.38774

3′,6-Dimethylflavone 7.24E+03 1.77E+04 2.44 1.02284

Chrysin 1.22E+05 5.19E+04 0.43 1.09238

Tangeretin 4.13E+04 1.28E+04 0.31 1.28301

FLAVONOIDS

GY vs. PY 7-O-Methyleriodictyol 1.91E+04 6.37E+03 0.33 2.18819

GM vs. PM Epicatechin (EC) 6.22E+04 8.15E+05 13.09 1.87203

Catechin (C) 5.95E+04 3.32E+05 5.57 1.52977

Hesperetin 5-O-glucoside 2.32E+06 5.91E+06 2.55 1.13184

7-O-Methyleriodictyol 8.73E+03 1.84E+04 2.10 1.02489

FLAVONOL

GM vs. PM Quercetin-3-O-α-arabinofuranoside (Avicularin) 2.60E+04 9.77E+04 3.76 1.32249

Quercetin-3-O-glucoside (isoquercitrin) 6.44E+06 1.50E+07 2.33 1.08046

PHENYLPROPANOIDS

GY vs. PY Esculetin 6.67E+03 1.37E+04 2.05 1.75354

GM vs. PM Quinic acid 5.90E+03 2.55E+04 4.32 1.39172

Cinnamic acid 2.09E+05 6.99E+04 0.34 1.19368

Esculetin 1.16E+04 2.40E+03 0.21 1.4841

GY, “Green Peel” young fruit; PY, “Purple Peel” young fruit; GM, “Green Peel” mature fruit; PM, “Purple Peel” mature fruit. Metabolite fold changes, value >1.0 represents increase; value

<1.0 represents decrease. Differentially accumulated phenolic compounds were identified by threshold VIP (variable importance in projection) ≥1, and fold change ≥2 (upregulation) or

≤0.5 (downregulation).

were significantly different between “Green Peel” and its purple
mutant at the young and mature stage, respectively.

Anthocyanins
Four kinds of cyanidin glycosides, delphinidin O-hexoside,
malvidin-3-O-galactoside and rosinidin O-hexoside were
identified in all samples. In the PY peel, cyanidin O-
malonylhexoside and cyanidin O-malonylhexoside O-hexoside
were found with 7.03- and 2.9-fold increments compared to GY,
which could explain the slight hue on the PY peel. At the mature
stage, cyanidin glucoside pigments were responsible for the
mutant purple color: cyanidin O-malonylhexoside was increased
3,992.21-fold in the PM vs. GM samples, whereas cyanidin
3-O-glucoside, cyanidin O-malonylhexoside O-hexoside and

cyanidin-3,5-O-diglucoside increased 461.4-, 416.6-, and
113.87-fold, respectively (Table 1).

Flavonoids, Flavones, and Flavonols
Among the monomeric flavonoids, epicatechin, catechin,
hesperetin 5-O-glucoside, and 7-O-methyleriodictyol
demonstrated significantly higher contents in the PM;
epicatechin was 13.09-fold its content in GM. In young fig
fruit samples, apigenin and flavanone 7-O-methyleriodictyol
showed 1.2- and 1.6-fold decreases in GY vs. PY (Table 1), but
no other differences met the criteria.

The A- and B-type procyanidins are dimer flavonoids; their
contents only differed in the mature fruit group. The content of
procyanidin B1 [epicatechin-(4β → 8)-catechin] was 322.26-fold
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higher in the GM vs. PM fruit. Procyanidins B2 [(–)-Epicatechin-
(4β → 8)-(–)-epicatechin], B3 [catechin-(4α → 8)-catechin], A1
[epicatechin-(2β → 7,4β → 8)-catechin] and A2 [epicatechin-
(2β → 7,4β → 8)-epicatechin] were 2- to 4.5-fold higher in
the GM vs. PM (Table 1), which were much less than that of
procyanidin B1 in the fruit.

For the flavones, luteolin-3′,7-di-O-glucoside and 3′6-
dimethylfavone contents were 56.06- and 2.44-fold higher,
respectively, in the GM vs. PM. Chrysin and tangeretin revealed
significant decreases in the PM, whereas apigenin, the upstream
substrate of luteolin, was remarkably lower in the GY vs. PY. A
significant increase was found for two quercetin glycosides in the
GY vs. PY with a moderate fold change (Table 1).

Phenylpropanoids
The phenylpropanoid biosynthetic pathway is upstream of the
anthocyanin and flavonoid biosynthetic pathways. We identified
18 general metabolites of phenylpropanoids. Esculetin and quinic
acid contents were 2.05- and 4.33-fold higher in the PY and PM
peels, respectively, whereas cinnamic acid and esculetin contents
in the PM were less than half that in the GM (Table 1).

Transcriptome Analysis
RNA-Seq produced 31,591,009, 25,146,641, 32,429,280 and
27,147,120 clean reads from GY, PY, GM and PM libraries,
respectively. Clean data from the 12 libraries of 4 samples (3
replicates for each samples), were averaged to 96,158 transcripts
of 796.42 bp in length, and 79,355 unigenes were obtained using
Trinity software (Supplementary Table 2). The N50 value was
1236 bp, and the average length of the unigenes was 683.07 bp.

There were 2,385, 1,087, 3,911, and 5,413 DEGs in the
four comparison groups: GY vs. PY, GM vs. PM, GY vs. GM,
and PY vs. PM, respectively. Comparing the two cultivars,
1,009 and 616 genes were upregulated, and 1,376 and 471

genes were downregulated in GY vs. PY and GM vs. PM,
respectively (Figure 2A). Venn diagram analysis showed 51
DEGs that were common to all four comparison groups
(Figure 2B). GO analysis assigned 46,748, 34,527 and 22,307
unigenes to the biological process, cell component and molecular
functional class, respectively (Supplementary Figure 3). The
clusters of orthologous groups of proteins database (COG)
annotation allocated 15,726 unigenes into 25 COG categories
(Supplementary Figure 4); the general functional cluster
prediction (2,115 unigenes, 13.45%) was the largest group,
followed by signaling mechanism (1,897 unigenes, 12.06%),
posttranslational modification and protein turnover (1,572
unigenes, 10.00%).

KEGG analysis revealed plant hormone signal transduction,
starch and sucrose, phenylpropanoid biosynthesis and alpha-
linolenic acid metabolism as the significantly changed
pathways in GY vs. PY. Plant hormone signal transduction,
phenylpropanoid and flavonoid biosynthetic pathways were
significantly changed in GY vs. GM and GM vs. PM (Table 2).

Phenylpropanoid, Flavonoid, and
Anthocyanidin Biosynthetic Pathways
At maturity, most of the secondary metabolite pathways were
strengthened by gene-expression upregulation in the “Purple
Peel” mutant fruit, except for the DEGs PAL and 4CL. Two
PAL genes (c388_g1 and c388_g2) were downregulated (-1.14-
and−1.02-fold) and five 4CL unigenes were downregulated,
in line with the decreased cinnamic acid content in the
PM peel. Simultaneous large-scale upregulation of structural
genes of the phenylpropanoid, flavonoid and anthocyanin
biosynthetic pathways, including CHS, CHI, and flavonol
synthase (2 DEGs each), UFGT (4 DEGs), and other genes (1
DEG) dominated secondary metabolite synthesis modulation

FIGURE 2 | Functional annotation and classification of differentially expressed genes between young and mature stages of “Green Peel” and “Purple Peel.”

(A) Numbers of differentially expressed genes. (B) Venn diagram. GY, “Green Peel” young fruit; GM, “Green Peel” mature fruit; PY, “Purple Peel” young fruit; PM,

“Purple Peel” mature fruit.
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TABLE 2 | Significantly enriched KEGG pathways between “Purple Peel” and “Green Peel” figs.

No. Pathway DEGs with pathway

annotation

All genes with pathway

annotation

P-value Corrected P-value Pathway ID

GY vs. PY

1 Plant hormone signal transduction 34 227 1.96E-11 6.13E-09 ko04075

2 Starch and sucrose metabolism 22 281 5.22E-07 8.17E-05 ko00500

3 Phenylpropanoid biosynthesis 3 182 3.38E-05 0.003522746 ko00940

4 Alpha-linolenic acid metabolism 14 66 8.31E-05 0.006499291 ko00592

GM vs. PM

1 Flavonoid biosynthesis 17 52 4.02E-08 1.06E-05 ko00941

2 Protein processing in endoplasmic reticulum 32 318 1.34E-06 0.000176186 ko04141

3 Estrogen signaling pathway 16 92 3.99E-06 0.000349801 ko04915

GY vs. GM

1 Plant hormone signal transduction 58 227 9.51E-16 3.03E-13 ko04075

2 Phenylpropanoid biosynthesis 10 182 8.45E-09 1.35E-06 ko00940

3 Flavonoid biosynthesis 15 52 3.71E-07 3.95E-05 ko00941

PY vs. PM

1 Plant hormone signal transduction 62 227 1.36E-10 4.45E-08 ko04075

2 Flavonoid biosynthesis 23 52 4.44E-07 7.26E-05 ko00941

3 Phenylpropanoid biosynthesis 11 182 1.39E-05 0.001513077 ko00940

GY, “Green Peel” young fruit; PY, “Purple Peel” young fruit; GM, “Green Peel” mature fruit; PM, “Purple Peel” mature fruit. Significant pathways were identified by corrected P ≤ 0.01.

in GM vs. PM (Figure 3). High fold upregulation and high
RPKM (reads per kilobase of transcript per million mapped
reads) enhanced the flux in the flavonoid and anthocyanidin
biosynthetic pathways. Structural genes CHS (c46769_g2) and
CHI (c658_g1) showed 3.38- and 4.27-fold increments, F3H
(c72067_g1) 5.47-fold upregulation, F3′H (c42263_g3) 2.65-fold
upregulation, together with 2 flavonol synthase genes that not
only catalyze the conversion from kaempferol to quercetin
(Pelletier et al., 1997), but also from apigenin to luteolin
(Martens et al., 2003; Jaakola, 2013); this could largely explain
the high accumulation of luteolin-3′,7-di-O-glucoside in the PM
(Table 1). Catechin is produced from leucocyanidin catalyzed
by leucoanthocyanidin reductase (LAR) (c31753_g1, 3.95-fold
upregulation); the enzyme also catalyzes leucodelphinidin and
leucopelargonidin to gallocatechin and afzelechin, respectively,
neither of which demonstrated significant content differences
between the cultivars, corresponding to the lower change in
content of A-type procyanidin (Table 1, Figure 3).

LAR expression (c31753_g1) was upregulated 3.95-fold. ANS
(c59676_g1) was one of the most significantly DEGs in the GM
vs. PM group, increasing 10.67-fold, followed by two UFGT
genes (c78174_g2 and c45009_g5) which showed 9.98-fold and
5.84-fold upregulation in the PM fruit (Figure 3). Anthocyanidin
3-O-glucosyltransferase 2 (c45009_g5, 5.84-fold upregulation)
catalyzes cyanidin to cyanidin-3-O-glucoside. Cyanidin-3,5-O-
diglucoside can be glycosylated from cyanidin-3-O-glucoside
or cyanidin-5-O-glucoside; UDP-glycosyltransferase 75D1
(c43420_g2, 1.58-fold upregulation) catalyzes cyanidin-3-O-
glucoside to cyanidin-3,5-O-diglucoside, which also supports
the high measured accumulation of the two cyanidin mono- and
di-glucosides, flavonoids and procyanidins in the “Purple Peel”
fig (Table 1, Figure 3).

Transcription Factors
There were 74 and 45 differentially expressed transcription factor
genes identified in GY vs. PY and GM vs. PM, respectively,
whereas from young fruit to mature fruit, 140 and 141 DEGs
were identified as transcription factors in GY vs. GM and
PY vs. PM, respectively (Table 3, Supplementary Table 3). The
differentially expressed transcription factors were annotated as
encoding MYB, bHLH, AP2/ERF, WRKY, HD-ZIP, heat-shock
transcription factor (HSF), NF-Y, DIVARICATA, andMADS-box
(Table 3).

Almost all of the MYB DEGs could be further assigned to the
R2R3 MYB family, which is closely associated with anthocyanin
biosynthesis in fruit trees (Allan et al., 2008; Liu et al., 2016).
Nineteen and nine R2R3-MYBs were differentially expressed in
the young fruit (GY vs. PY) and mature fruit (GM vs. PM),
respectively. Among theMYB DEGs in young fruit, 6 genes were
found upregulated and 13 downregulated in PY (Figure 4A).
In mature fruit, there were 9 recognized MYB DEGs: 5 more
highly expressed MYBs in PM, and 4 more highly expressed
MYBs in GM, but all with low FPKM values (Figure 4B). Along
fig fruit development, 33 MYB DEGs (7 upregulated and 26
downregulated) were illustrated in GY vs. GM, 29 MYB DEGs
(18 upregulated and 11 downregulated) in PY vs. PM (Table 3).
NineMYBs had significantly increased transcripts in both PY vs.
PM and GM vs. PM, 4 of them also showing upregulation in GY
vs. GM.

We further recruited five R2R3-MYBs—unigenes c31006_g1,
c39054_g1, c37406_g4, c38737_g1, and c43569_g2—which
showed high fold change in expression between the two cultivars
and/or developmental stages (Figures 4A,B). The expression
of c43569_g1 and c31006_g1 was specifically increased in PM.
Protein sequence comparison revealed that c43569_g1 is highly
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FIGURE 3 | Transcript profiling of genes in the phenylpropanoid and flavonoid biosynthetic pathways in cv. “Green Peel” and “Purple Peel” at mature stages. GM,

“Green Peel” mature fruit; PM, “Purple Peel” mature fruit. Grids with color-scale from light to dark represent RPKM values 0–10, 10–20, 20–40, 40–80, 80–160,

160–320, 320–640, 640–1,280, 1,280–2,560, and over 2,560, respectively. PAL, phenylalanine ammonia-lyase; C4H, cinnamic acid 4-hydroxylase; 4CL,

4-coumarate CoA ligase; CHS, chalcone synthase; CHI, chalcone isomerase; F3H, flavanone 3-hydroxylase; F3′H, flavanoid 3′-hydroxylase; DFR, dihydroflavonol

4-reductase; FR, flavanone 4-reductase; ANS/LDOX, anthocyanidin synthase/leucocyanidin oxygenase; UFGT, UDP glucose-flavonoid 3-O-glcosyl-transferase; FLS,

flavonol synthesis; LAR, leucocyanidin reductase; ANR, anthocyanin reductase.

homologous (72%) to MdMYB110a of apple (Figure 4C), which
plays a key role in the red flesh apple phenotype (Chagné et al.,
2013). The unigene c31006_g1 clustered with AtMYB123 of
Arabidopsis and PpMYB9 of Prunus persica, which regulates
anthocyanin accumulation in different plant tissues (Zhou et al.,
2016). The highly expressed MYB c39054_g1 in PY was closely
related to the flavonoid MYB repressor PpMYB20 (Figure 4C;
Zhou et al., 2016), whereas c37406_g4 and c38737_g1 clustered
with the anthocyanin activator groups, with high similarity
to AtMYB44, VvMYBPA1 and VvMYBPA2, which regulate
anthocyanin biosynthesis in Arabidopsis and grape (Terrier et al.,
2009; Jung et al., 2010; Zhou et al., 2016). Figure 4D illustrates
the fig R2R3-MYBs’ highly homologous R2 and R3 DNA-binding
domains at the N-terminus (Espley et al., 2007), and highly
variable truncated C-terminal region, which might relate to fig
color morph regulation.

Thirteen bHLH DEGs were found in young fruit (GY vs.
PY); 2 were highly expressed in PY, and 11 were downregulated.

Eight bHLH revealed differences in mature-stage fruit (GM vs.
PM): 2 bHLH were highly expressed in PM (Table 3). During
fruit development, 29 bHLH DEGs were screened in the Green
Peel cultivar, including 4 upregulated and 25 downregulated
from young to mature fruit, whereas among 26 bHLH of the
Purple Peel cultivar, 7 contigs or transcripts were upregulated
and 19 were downregulated from young tomature fruit (Table 3).
We found 2 bHLH DEGs (FPKM ≥ 300)—c21697_g1 and
c43844_g1—expressed at very high levels in the PY, that decreased
rapidly at the mature stage of “Purple Peel,” and their expression
levels were very low in GY and GM (Supplementary Figure 5).

Heat-Shock Proteins (HSPs)
HSPs are involved in protein synthesis, folding, cell localization
and protein degradation; they also play a role in maintaining
intercellular environmental stability (Wang et al., 2004; Waters,
2013). In the mature fig fruit, 15 small HSP family DEGs
were identified, including 9 HSP20, 3 HSP90, 2 HSP70, and 1
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TABLE 3 | Differentially expressed transcription factors in the peel of young and mature fruit of “Green Peel” and “Purple Peel” fig.

Comparison

group

Gene name Number of

DEGs

Upreg-ulated

DEGs

Downreg-ulated

DEGs

Description Biological functions

GY vs. PY MYB 19 6 13 MYB TFs Cell development and anthocyanin pathway

AP2/ERF 21 6 15 Ethylene-responsive TF Plant development and stress response

bHLH 13 2 11 Basic helix-loop-helix protein Plant development and substance metabolism

Other TFs 21 13 8

In total 74 27 47

GM vs. PM MYB 9 5 4 MYB TFs Cell development and anthocyanin pathway

AP2/ERF 10 10 0 Ethylene-responsive TF Plant development and stress response

bHLH 8 2 6 Basic helix-loop-helix protein Plant development and substance metabolism

Other TFs 18 6 7

In total 45 23 17

GY vs. GM bHLH 29 4 25 Basic helix-loop-helix protein Plant development and substance metabolism

MYB 33 7 26 MYB TFs Cell development and anthocyanin pathway

AP2/ERF 22 11 11 Ethylene-responsive TF Plant development and stress response

WRKY 18 9 9 WRKY DNA-binding protein Defense responses and plant development

HD-ZIP 8 3 5 Homeobox-leucine zipper protein Photomorphogenesis and fruit ripening

MADS-box 5 0 5 MADS-box TFs Fruit development and ripening

Other TFs 25 1 24

In total 140 35 105

PY vs. PM MYB 29 18 11 MYB TFs Cell development and anthocyanin pathway

bHLH 26 7 19 Basic helix-loop-helix protein Plant development and substance metabolism

AP2/ERF 19 12 7 Ethylene-responsive TF Plant development and stress response

WRKY 15 11 4 WRKY DNA-binding protein Defense responses and plant development

HD-ZIP 10 0 10 Homeobox-leucine zipper protein Photomorphogenesis and fruit ripening

HSF 8 7 1 Ethylene-responsive TF Plant growth, development and stress response

HAP 4 0 4 Nuclear TF Y subunit A Embryonic development and chloroplast biogenesis

Other TFs 30 11 19

In total 141 66 75

GY, “Green Peel” young fruit; PY, “Purple Peel” young fruit; GM, “Green Peel” mature fruit; PM, “Purple Peel” mature fruit. Differentially expressed genes were identified by FDR ≤ 0.001

and absolute value of log2 ratio ≥ 2.

HSP40, all of which showed significantly higher expression in
the GM vs. PM (Table 4); moreover, 3 genes encoding heat-
shock transcription factors (HSFs) (c45384_g1, c26517_g2, and
c43194_g3) showed a significant expression increment in the
PM (Table 4). HSFs bind to the heat shock element of the
HSP gene promoter to form transcription complexes, which
promote HSP gene expression (Scharf et al., 2012). HSPs are
molecular chaperones, also known as stress-induced proteins,
which function in protein folding and assembly, protect enzymes
from denaturation and cellular degeneration with pigment and
flavonoid accumulation, responding to stress and maturation in
fig (Sun et al., 2002; Neta-Sharir et al., 2005).

RT-qPCR Validation of the Transcriptomic
Data
To validate the key RNA-Seq results, we selected 20 DEGs
(4 transcription factor genes, 4 phenylpropanoid biosynthetic
pathway genes, and 12 flavonoid biosynthetic pathway genes)
(Supplementary Figure 6) and analyzed their expression levels
in PY, GY, PM, and GM using RT-qPCR. The expression
patterns of these genes were very similar to the RNA-Seq results,
with correlation coefficients (R2) > 0.83 (Figure 5). The results

validated the relevance of the RNA-Seq data and RT-qPCR
showed good consistency for both up- and downregulated gene
expression.

DISCUSSION

Natural mutations have been, and still are, observed, deliberately
selected for and used in fruit crop production. However, the
resultant differences in gene structure and expression regulation
in the mutants has only recently begun to be revealed. A
combined metabolome and transcriptome study can provide
us with new, large-scale information on the shifted secondary
metabolic product profiles and the underlying modifications in
gene-expression networks.

Large-Scale Secondary Metabolite and
Pathway Regulation
Color mutants are widely used in horticultural and other crops,
especially those that are commonly propagated vegetatively,
such as most fruit trees. The color mutants are usually promoted
and regarded as presenting a single-attribute difference. Herein,
we identified 4 cyanidin glycosides in “Purple Peel” fig fruit,
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FIGURE 4 | Differentially expressed MYB genes between “Green Peel” and “Purple Peel” fruit at young and mature stages. (A) Differentially expressed MYB genes

between the two cultivars’ young fruit. (B) Differentially expressed MYB genes between the two cultivars’ mature fruit. (C) Phylogenetic analysis of five fig MYBs

recruited by high fold expression change. (D) R2R3-MYB protein sequence alignment of five fig MYBs recruited by high fold expression change; R2R3 motif is

indicated at the top.
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TABLE 4 | Differentially expressed heat-shock protein (HSP) and heat-shock

transcription factor (HSF) genes in the mature stage of “Purple Peel” and “Green

Peel” fig.

Gene

name

Seq_ID Log2 FC

(PM/GM)

P-value GM_ FPKM PM_ FPKM Regulated

HSP20 c44815_g2 5 1.03E-06 1.92 64.35 Up

c46276_g2 4.39 1.01E-15 33.21 698.96 Up

c32064_g1 4.22 5.79E-38 16.06 301.27 Up

c46276_g3 4.08 1.99E-33 34.29 582.76 Up

c46276_g1 3.08 2.27E-32 52.55 445.82 Up

c44815_g1 3.07 1.52E-25 26.18 220.94 Up

c22071_g1 2.71 6.01E-07 3.02 20.29 Up

c46998_g1 2.69 2.08E-15 5.43 35.67 Up

c25561_g1 2.65 3.11E-12 4.63 29.67 Up

HSP70 c43747_g1 7.19 5.85E-06 0 14.5 Up

c46871_g7 6.83 1.25E-32 0 11.25 Up

c45569_g1 3.57 9.76E-30 2.11 26.18 Up

HSP90A c39629_g1 4.69 3.12E-10 0 2.47 Up

c31839_g1 3.99 8.83E-08 6.36 102.47 Up

HSP40 c39984_g1 3.83 8.29E-43 14.91 213.78 Up

HSF c43194_g3 3.75 3.96E-41 6.35 86.71 Up

c26517_g2 3.05 2.30E-04 1.69 14.73 Up

c45384_g1 2.2 4.22E-12 7.3 33.91 Up

Differentially expressed genes were identified by FDR ≤ 0.001 and absolute value of log2

ratio ≥ 2 (2-fold). FC, fold change.

determined the substance responsible for the mutated purple
color, and more importantly, revealed highly significant
accumulation of colorless procyanidin B1, luteolin-3′,7-di-
O-glucoside, epicatechin and other important secondary
metabolites in the phenylpropanoid and flavonoid biosynthetic
pathways. These findings illustrate, for the first time, a panorama
of the large-scale secondary metabolite changes for a color
mutation in the ancient fruit crop Ficus carica. The cyanidin
glucosides in PM differed from those in other dark-colored fig
cultivars, such as cyanidin-3-O-rhamnoglucoside (cyanidin-3-
O-rutinoside), reported as the main anthocyanin in the peel of
“Black Mission,” “Bursa,” and “Brown Turkey” figs (Solomon
et al., 2006; Ercisli et al., 2012). Acyl-modified anthocyanins are
common in Arabidopsis (D’Auria et al., 2007), and increased
cyanidin 3-O-(malonyl)-glucoside has been reported in the
cool-cultivated red lettuce to be the only pigment responding
to temperature (Becker et al., 2014). A comparison of different
cranberry cultivars indicated that highly pigmented berries also
have higher contents of colorless flavonol (Bilyk and Sapers,
1986). Anthocyanins and flavonoids affect fruit color and taste;
their antioxidant and nutraceutical capacities confer healthful
properties, reducing the risk of cardiovascular morbidity and
mortality (Holt et al., 2002; Wu et al., 2012).

The large-scale transcription expression increments in
phenylpropanoid and flavonoid biosynthetic pathway genes in
“Purple Peel” fig, revealed by RNA-Seq, strongly supported our
metabolome results. Similarly, most of the structural genes in the
anthocyanin biosynthetic pathway are upregulated during fruit
development of red vs. green color mutations of pear (Yang et al.,

2013). Coordinated expression changes of F3H, F3′H, DFR1,
ANS, and UFGT have also been demonstrated in differently
colored Chinese bayberries (Niu et al., 2010), grapes (Boss et al.,
1996), Arabidopsis (Pelletier et al., 1997; Saito et al., 2013) and
other plants (Quattrocchio et al., 1993).

The mutated color attribute is observed late in fruit
development. However, significant changes in phenylpropanoid
biosynthesis were found between the young fruit of the
two cultivars, indicating that the mutation-induced change in
expression could occur far earlier than the emergence of the
phenotype. Anthocyanins are end products of the flavonoid
biosynthetic pathway; our finding of upregulation of almost
all of this pathway’s genes, from the upstream CHS to the
end gene UFGT, during “Purple Peel” fruit ripening suggests
that fundamental transcriptional regulation of the flavonoid and
pigment biosynthetic pathways could be a major factor in the
mutation, coordinating gene expression, fruit coloration, and
the accumulation of flavonoid intermediates and procyanidins.
In crabapple cultivars with dark red, pink and white petal
colors, CHS has been found responsible for the red coloration
(Tai et al., 2014). Upstream pathway expression regulation has
also been reported in arctic mustard flowers, which have a
broad range of purple to white petal color polymorphisms; in
the white-flowered individuals, CHS was significantly repressed,
whereas the expression of other structural genes in the
anthocyanin biosynthetic pathway was similar to that in the
colored individuals (Dick et al., 2011). The enzymes DFR and
LAR are shared by the anthocyanin and flavanone biosynthetic
pathways. DFR from different plants has specific substrate biases
for dihydroquercetin, dihydrokaempferol and dihydromyricetin
(Hua et al., 2013; Saito et al., 2013). LAR belongs to the
reductase–epimerase–dehydrogenase family and the short-chain
dehydrogenase/reductase superfamily, and each of the LARs has
a specific C-terminal domain which may have different substrate
specificity (Tanner et al., 2003). From our metabolome and
transcriptome data, it seems that fig DFRs and LARs favor
dihydroquercetin to produce leucocyanidin and catechin, rather
than afzelechin and gallocatechin synthesis (Figure 3); thus, only
cyanidin glycosides were the dominant anthocyanins, as with the
B-type procyanidin in fig fruit (Table 1).

Transcription Factors in Fruit Color
Formation and Ripening
Our finding of upregulation of most or all of the biosynthesis
genes in the mutant fruit suggests mutation of a transcription
factor. MYBs play a critical role as key transcription factors
for all of the anthocyanin biosynthetic pathway genes or for
the regulation of single key genes in fruit and flower color
formation (Kobayashi et al., 2004; Espley et al., 2007; Tai
et al., 2014). In apple, CHS is positively regulated by MYB4
and MYB5 expression (Clark and Verwoerd, 2011), whereas
strawberry FcMYB1 switches anthocyanins and flavonoid-
derived compound accumulation on and off (Salvatierra et al.,
2013). Loss of the MYB cis-element in the CHS promotor leads
to white crabapple morphs (Dick et al., 2011). In our study,
differentially expressed MYBs were recruited in the “Purple
Peel” fig (Table 3, Figure 4), indicating that MYBs in the MBW
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FIGURE 5 | Expression of representative genes in young and mature stages of “Purple Peel” and “Green Peel” fig fruit validated by qRT-PCR. GY, “Green Peel” young

fruit; GM, “Green Peel” mature fruit; PY, “Purple Peel” young fruit; PM, “Purple Peel” mature fruit.

complex are key regulators of the pathway of anthocyanin and
flavonoid biosynthesis in fig.

Hypothesized Nature of the Fig Purple
Mutation
Red and black dominate the color spectrum of bird-dispersed
fruit worldwide (Willson and Whelan, 1990). Anthocyanin
synthesis and pigmentation can be regarded as the wild type
for the fruit color trait. In grapes, white cultivars are thought
to be mutations of red cultivars (Boss et al., 1996; Kobayashi

et al., 2004; Hichri et al., 2011b), and all of the green grape
cultivars have a common origin (Walker et al., 2007). The small
seeds contained inside the fig syconia are dispersed by birds.
We therefore assume that figs with a dark peel are the wild
type, those with a green peel represent a color mutation, and the
“Purple Peel” mutant of “Green Peel” can be regarded as a reverse
mutation, regaining the wild-type trait.

Understanding the nature of the green-color fruit as a mutant
of the wild type could facilitate analysis of the mechanism
underlying the reverse mutation. Any functional loss of key

Frontiers in Plant Science | www.frontiersin.org November 2017 | Volume 8 | Article 1990121

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Wang et al. Fig Color Metabolome and Transcriptome

enzymes in the anthocyanin biosynthetic pathway could lead
to a green or white mutation, such as via insertion in the
structural genes, and turned off or repressed structural gene
expression by MYB transcription factors associated with the
components of theMBW complex (Feller et al., 2011; Petroni and
Tonelli, 2011; Tai et al., 2014). A large number of publications
have demonstrated MYB family transcription factors as key
regulators in phenylpropanoid, flavonoid, anthocyanin and
proanthocyanidin biosynthesis (Falcone Ferreyra et al., 2012;
Verdier et al., 2012; Liu et al., 2015; Xu et al., 2015). Moreover,
studies with different fruit have revealed conserved components
of the regulatory complex controlling anthocyanin biosynthesis
in all higher plants, including conserved cis-regulation elements
in promotors of key genes of the pathways (Quattrocchio et al.,
1993; Koch et al., 2001; Stracke et al., 2007; Dick et al., 2011).
The function and expression level of MYBs could be significantly
affected by different types of mutations. A single amino-acid
substitution in the R2 domain of VvMYB5b was found to affect
the protein’s ability to activate the transcription of flavonoid
genes (Hichri et al., 2011b). A retrotransposon insertion in
grape mybA1 blocks the gene’s expression, leading to loss of
pigmentation in white grape cultivars (Kobayashi et al., 2004).
In our study, differential expression of both transposons and
retrotransposons was recorded, and a significant upregulation
trend in a large number of reverse transcriptase, integrase and
gag sequences was revealed in the “Green Peel” as compared to its
purple mutant (Supplementary Table 4), suggesting that “Green
Peel” is a retrotransposon insertion mutation.

In grapes, VvMYBA1 and VvMYBA2 have different on/off
switch mechanisms: Gret1 retrotransposon insertion in the
promoter of VvMybA1 switches off VvMybA1 expression,
whereas a non-synonymous single-nucleotide polymorphism
present in the coding region switches off the function of
VvMybA2 and leads to white grape berries (Kobayashi et al.,
2004; Walker et al., 2007). In our case, MYBs, together with the
changes in transposon and retrotransposon activation, could be

candidates for the “Purple Peel” fig mutation from its “Green
Peel” progenitor (Ramsay et al., 2003).

In summary, this combined metabolome and transcriptome
study gives us a picture of modulated anthocyanin and flavanoid
expression in the “Purple Peel” fig mutant, revealing the
large-scale changes in nutritionally important compounds and
gene expression in a horticultural mutation with a single
phenotypic attribute. Our results provide new information on
the anthocyanidin, flavonol and procyanidin metabolites of fig
and the global transcriptional changes in fig color regulation,
secondary metabolism pathways and regulators in fruit ripening
and quality formation.
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The plant microbiome is a key determinant of plant health and productivity, and
changes in the plant microbiome can alter the tolerance to biotic and abiotic stresses
and the quality of end produce. Little is known about the microbial diversity and
its effect on carbohydrate metabolism in ripe fruits. In this study, we aimed to
understand the diversity and function of microorganisms in relation to carbohydrate
metabolism of ripe watermelon fruits. We used 16S metagenomics and RNAseq
metatranscriptomics for analysis of red (PI459074, Congo, and SDRose) and yellow
fruit-flesh cultivars (PI227202, PI435990, and JBush) of geographically and metabolically
diverse watermelon cultivars. Metagenomics data showed that Proteobacteria were
abundant in SDRose and PI227202, whereas Cyanobacteria were most abundant
in Congo and PI4559074. In the case of metatranscriptome data, Proteobacteria
was the most abundant in all cultivars. High expression of genes linked to infectious
diseases and the expression of peptidoglycan hydrolases associated to pathogenicity
of eukaryotic hosts was observed in SDRose, which could have resulted in low microbial
diversity in this cultivar. The presence of GH28, associated with polygalacturonase
activity in JBush and SDRose could be related to cell wall modifications including
de-esterification and depolymerization, and consequent loss of galacturonic acid and
neutral sugars. Moreover, based on the KEGG annotation of the expressed genes,
nine α-galactosidase genes involved in key processes of galactosyl oligosaccharide
metabolism, such as raffinose family were identified and galactose metabolism pathway
was reconstructed. Results of this study underline the links between the host and
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fruit-associated microbiome in carbohydrate metabolism of the ripe fruits. The cultivar
difference in watermelon reflects the quantum and diversity of the microbiome, which
would benefit watermelon and other plant breeders aiming at the holobiont concept to
incorporate associated microbiomes in breeding programs.

Keywords: watermelon, microbiome, ripe fruits, metagenomics, metatranscriptomics

INTRODUCTION

Watermelon (Citrullus lanatus) is a major cucurbit crop grown
in tropical and subtropical regions of the world (Chomicki and
Renner, 2015). Because of its nutritional properties, watermelon
represents ∼7% of the world area of vegetable cultivation1.
The watermelon fruit is rich in water (90%), sugar, fiber,
vitamins, amino acids, minerals and carotenoids, especially
lycopene, flavonoids, and triterpenoids. Nutritional composition
of plants is mediated by the different stages of development.
A complex and highly coordinated developmental phase of fruit
ontogeny is ripe stage, where several physiological changes occur
(Gapper et al., 2013). Recently, plants have been considered a
holobiont, a unit encompassing both the host and its associated
microbiome (Vandenkoornhuyse et al., 2015). The microbiome
is associated in the form of colonization outside the plant
as well as inside, such as vascular bundles, roots, and leaves
(Berendsen et al., 2012). Most microorganisms, particularly
those colonizing roots and stems, seem to originate from the
rhizosphere and colonize plant organs as part of their life cycle.
Some microorganisms are able to move systemically within the
plant (Hallmann and Berg, 2006; Rosenblueth and Martínez-
Romero, 2006), whereas others are restricted to below-ground
parts of plants (Hallman et al., 2001; Compant et al., 2011). This
plant-associated microbiome is highly diverse and comprises
a range of different taxa (James et al., 1994; Rosenblueth and
Martínez-Romero, 2006). Distinct microbial communities in low
density have been reported in flowers, seeds, and fruits (Compant
et al., 2010).

Interactions between plant tissues and microbiota can be
beneficial, including mutualistic interactions that promote plant
health and productivity and can have adverse or no effects on
the plant phenotype (Müller et al., 2016). The beneficial effect of
direct plant growth promotion by microbes is based on improved
nutrient acquisition and hormonal stimulation. The presence of
neutral and mutualistic microorganisms prevent the colonization
of pathogenic microorganisms, thus protecting plants against
infectious diseases (Andreote et al., 2014; Vandenkoornhuyse
et al., 2015). The reduction in Fusarium wilt infection in
watermelon has long been observed in soil containing non-
pathogenic Fusarium oxysporum, Pseudomonas fluorescens and
several archaea (Alabouvette and Couteaudier, 1992). One of
the mechanisms for disease suppression in plants could be
competition for nutrients and colonizing sites (Shimotsuma
et al., 1972; Alabouvette and Couteaudier, 1992). However, the
taxonomy and metabolism of the plant-associated microbiome
can be directly related to the nutrient components present in a

1http://www.fao.org/faostat

specific part of the plant. In addition, microbial community shifts
can occur due to environmental factors and plant developmental
activity, thereby producing a dynamic process in which the
microbial community and the relations between microbe–
microbe and microbe–plant (fruit) may strongly vary (Müller
et al., 2016).

Traditional studies on plant microbiota have focused on
culturable bacterial groups, but they do not give a clear idea
of the plant–microbe interactions because of limitations
because of unculturable microorganisms. Next-generation
sequencing (NGS) technologies have allowed for studying this
hidden microbial diversity in terms of different environmental
parameters. Several studies have been used NGS to elucidate
microbiomes associated with barley (Bulgarelli et al., 2015),
corn (Peiffer et al., 2013), lettuce (Rastogi et al., 2012), potato
(İnceoğlu et al., 2011), and rice (Edwards et al., 2015) for
different developmental aspects. Ripening changes in tomato
were found regulated at multiple levels (DNA, RNA, and protein)
and dependent on the coordinated activity of multiple plant
hormones (Zhong et al., 2013). The modifications during ripe
stage include the accumulation of pigments and sugars and the
production of aromatic compounds and flesh softening (Gapper
et al., 2013). While glucose and fructose are main sugars during
the initial phase of watermelon fruit development, sucrose is
more than 70% during the ripe stage (Yativ et al., 2010). Textural
changes in ripe fruits are highly associated with carbohydrate
metabolism. These changes are mainly due to the dissolution of
the middle lamella, the reduction of cell-to-cell adhesion and
the weakening of parenchyma cell walls as a result of the action
of cell wall-modifying enzymes. Pectins, major components of
fruit cell walls that contain α-1, 4-linked D-galacturonic acid, are
extensively modified in ripe fruits by their involvement in cell
wall extension and fruit softening (Jacob et al., 2008). In apple
and strawberry, softening was reduced due to downregulation
of polygalacturonase genes (Paniagua et al., 2014). In addition,
cell wall and middle lamella modifications are accomplished by
many ripe stage related genes encoding polygalacturonase, pectin
methylesterase, pectate lyase, β-galactosidase, and cellulase
(Brummell and Harpster, 2001; Mercado et al., 2011). The
endophytes Bacillus and Kocuria isolated from papaya fruits
could produce extracellular enzymes such as amylase, cellulase,
pectinase, and xylanase to act on carbohydrate metabolism
toward fruit nutrient composition (Krishnan et al., 2012).

Apart from the above-mentioned factors, hormones also
regulate ripe stage and pigmentation process. Transcriptional
regulation of ripe stage of fruits coincides with the exposition
to the growth hormone ethylene (Wechter et al., 2008). It has
been reported that watermelon is sensitive to ethylene and
under it, this fruit exhibits acute symptoms of softening by
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the alteration of polygalacturonase, pectinmethylesterase, and
α- and β-galactosidase enzymes (Karakurt and Huber, 2002).
Ethylene has also been correlated with carotenoid biosynthesis
of watermelon at ripe stage (Grassi et al., 2013), and microbial
production of ethylene and carotenoids have been reported
previously (Tian and Hua, 2010; Jasim et al., 2015).

While, Berendsen et al. (2012) reported that microbiota might
play a fundamental role in the regulation of plant development
and affect fruit quality and yield. Little information is available
on the role of the microbiome in the ripe fruits of watermelon. In
this study, we aimed to analyze the microbiome of ripe fruits of
watermelon cultivars of yellow and red flesh by employing both
16S metagenomics and metatranscriptomics to understand and
predict their role in ripe fruits.

MATERIALS AND METHODS

Plant Material and Growth Conditions
Watermelon fruits from cultivars with red flesh [PI459074,
Congo, and Sweet Dakota Rose (SDRose)] and yellow flesh
[PI227202, PI435990, and Jubillee Bush (JBush)] were selected
based on fruit flesh color. Selfed seeds of selected cultivars
were obtained from the germplasm resources information
network (GRIN2) and were grown in an experimental field at
West Virginia State University for two seasons (summer 2015
and 2016). The soil bed was covered with polyethylene mulch
and the plants were irrigated daily at regular intervals with a
drip system. All agronomic practices including fertilization
and insecticide application followed regular agronomic
practices.

Preparation of Fruit-Flesh for DNA and
RNA Extraction
Three replications of mature fruits from each cultivar grown in
summer 2016 were collected at ripe stage from the field. Ripe
fruits were selected based on the following observations: (a)
appearance of yellow color of the fruit in the spot touching the
ground; (b) the presence of a dried-up stalk attached to the fruit;
(c) slightly rough, ridged, and a dull-opaque appearance of rind;
and (d) giving a hollow sound when you thump it with your
knuckles. Fruit flesh was collected aseptically from all genotypes.
The external surface of the watermelon was rinsed with running
water, dried and surface-sterilized with 70% ethanol to avoid
the interference of epiphytic bacteria contamination. The cutting
utensils (knife, spatula) and board were also surface-sterilized
with 70% ethanol. Fruits were cut vertically and the middle flesh
was scraped out with a sterile spatula. Samples were flash-frozen
in liquid nitrogen and stored at−80◦C.

Genomic DNA Isolation
Genomic DNA was isolated from frozen flesh by using a
power food-microbial DNA isolation kit (MO BIO Laboratories,
United States). An amount of 500 mg fruit flesh was homogenized
in phosphate buffer saline solution. The microbial cells were

2https://www.ars-grin.gov/

lysed by microbeads with the lysis buffer provided in the
kit. DNA quality and quantity were analyzed by use of the
Nanodrop spectrophotometer 1100 (Nanodrop, Wilmington,
DE, United States). Isolated DNA was stored at −20◦C and
diluted to 1 ng/µL with sterile water for 16S metagenomic
analysis.

16S rRNA Library Construction and
Sequencing
The 16S rRNA V4 region was amplified with the bacterial
primers 515F (5′-GTGCCAGCMGCCGCGGTAA-3′) and 806R
(5′-GGACTACHVGGGTWTCTAAT-3′) and archaeal primers
U519F (5′-CAGYMGCCRCGGKAAHACC-3′) and 806R
(5′-GGACTACHVGGGTWTCTAAT-3′) with a unique barcode.
All PCR reactions involved the Phusion High-Fidelity PCR
Master Mix (New England Biolabs, United States). Quantification
and purification of PCR products involved a standard procedure
(Novogene Bioinformatics Technology, Beijing). Sequencing
libraries were generated by using the TruSeq DNA PCR-free
sample preparation kit (Illumina, United States) as instructed.
The library quality was assessed with the Qubit 2.0 Fluorometer
(Thermo Scientific) and the library was sequenced on an Illumina
HiSeq2500 platform to generate 250 bp paired-end reads.

Data Analysis of 16S Amplicons
After truncating the barcode and primer sequences, paired-end
reads were merged by using FLASH (Magoč and Salzberg, 2011)
to obtain raw reads (Supplementary Table S2). Quality filtering on
the raw reads involved specific filtering conditions to obtain high-
quality clean reads (Bokulich et al., 2013) according to the QIIME
quality control process (Caporaso et al., 2010b). The tags were
further compared with the reference database (Gold database)
by using the UCHIME algorithm (Edgar et al., 2011) to remove
chimera sequences and to obtain effective tags. Sequence analysis
involved use of Uparse (Edgar, 2013), and sequences with ≥97%
similarity were assigned to the same operational taxonomic units
(OTUs). A representative sequence for each OTU was screened
for species annotation with the GreenGene Database (DeSantis
et al., 2006) based on RDP Classifier (Wang et al., 2007). The
phylogenetic relationship of different OTUs, differences among
dominant species in samples (groups), and multiple sequence
alignment were analyzed by using PyNAST v1.2 (Caporaso et al.,
2010a) against the “Core Set” dataset in the GreenGene database.

RNA Extraction for Metatranscriptome
Analyses
RNA was extracted from frozen flesh by the TRIzol method (Life
Technologies, Carlsbad, CA, United States). Cell lysis involved
grinding flesh in liquid nitrogen and further homogenization
with TRIzol reagent as suggested by the manufacturer. The
extracted total RNA was purified by using the Zymo research
purification kit (Zymo Research, Irvine, CA, United States) as
described. RNA quality and quantity were analyzed by using
agarose gel electrophoresis and the Agilent 2100 Bio-analyzer
(Agilent Technologies, Santa Clara, CA, United States); the
extracted RNA was stored at−80◦C.
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FIGURE 1 | Bacterial diversity at phylum level in ripe fruits of six watermelon cultivars based on 16S rRNA analysis.

Library Preparation and Sequencing for
Metatranscriptome
Ribosomal RNA was removed from total RNA and the
mRNA obtained was fragmented randomly in fragmentation
buffer before cDNA synthesis. The final cDNA library was
ready after purification, terminal repair, A-tailing, ligation of
sequencing adapters, size selection and PCR enrichment. The
library concentration was quantified by using the Qubit 2.0
fluorometer (Life Technologies, Carlsbad, CA, United States),
adjusted to 2 ng/µl before checking the insert size on an
Agilent 2100 Bio-analyzer, and quantified to a greater accuracy
by quantitative PCR. Finally, the libraries were sequenced
with an Illumina HiSeq2500 platform. The Illumina reads
for 16S and metatranscriptome were deposited with the
Sequence Reads Archive (NBCI) under the following accession
numbers (SAMN08118885, SAMN08118886, SAMN08118887,
SAMN08118888, SAMN08118889, SAMN08118890, SAMN
08118891).

Removal of Ribosomal RNA Sequences
Raw RNA-Seq reads were first processed to eliminate adapter and
low-quality sequences by using the FastQC program3. Removal
of the rRNA sequences from the dataset involved use of the
SortMeRNA software with the default rRNA database included
in the software package, which includes 16S, 23S, 18S, and
28S rRNAs (Kopylova et al., 2012; Leimena et al., 2013). The
watermelon genome database is a relatively complete one with
annotations, ESTs, transcriptome, etc. from cultivars 97103 and
Charleston Gray4. The sequences obtained in our transcriptomics
study were matched against the watermelon database to eliminate
all genes that matched the watermelon genome. Blastn was
performed on the remaining reads with a minimum alignment
bit score of 54 by using a filtering database consisting of complete
ribosomal RNA loci and tRNA sequences of bacteria, archaea, and

3http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
4http://cucurbitgenomics.org/

eukaryote taken from the NCBI and SILVA databases (Pruesse
et al., 2007). Thus, filtered sequence reads that passed the
rRNA/tRNA filter were reconstructed by using Trinity (version
r20140413pl); all samples were then integrated before removing
redundant ones with CD-HIT-EST (identity threshold set to 0.95)
to obtain unigenes.

Taxonomic Annotation
For taxonomic identity and functional assignment of unigenes,
filtered reads were aligned to the NCBI NR database (e-
value ≤ 1e-5) by using Blastn. From earlier work, minimum bit
score thresholds of 148, 110, and 74 can be used for phylogenetic
and functional assignments at genus level (with >80% confidence
level), phylogenetic and functional assignment at the family level
(with >80% confidence level) and for a reliable function (COG)
assignment (with >95% confidence level), respectively (Leimena
et al., 2013). The phylogenetic profiling based on mRNA reads
at the phylum level involved reads containing minimum bit
alignment score of 148 and the highest rank was selected for
the species annotation by using the LCA algorithm (applied in
MEGAN software system) to ensure its biological significance
(Huson et al., 2011). The top 35 phyla in each sample were
selected from the results of species annotation and abundance
information, and then clustered by their taxonomy information
and the inter-sample differences among samples, to obtain a
Species Abundance Heat-map.

Functional Annotation of KEGG,
eggNOG, and CAZy
The unigenes were functionally annotated by mapping to
different functional protein databases with BLAST software.
Because of more than one result for each mapping unigene, the
comparison was done to ensure biological significance, and the
BLAST Coverage Ratio (BCR) of reference and Query genes
were calculated to ensure a BCR (Ref) and BCR (Que) > 40%,
then the corresponding functional annotation information was
finally summarized for each watermelon cultivar. Predicted
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unigenes were assigned to COGs (Tatusov et al., 2000) by blast
searches against the COG database (NCBI5) with e-value < 10−6

for COG assignments. The Kyoto Encyclopedia of Genes and
Genomes (KEGG) functional annotation (Kanehisa et al., 2008)
of identified proteins involved use of the KEGG Automatic
Annotation Server (KAAS6) (Moriya et al., 2007) based on a
bidirectional best hit assignment method.

Gene Expression and Comparative
Analysis
The unigenes were used as a reference to align with RNA-Seq
by Expectation-Maximization (RSEM) (Li and Dewey, 2011).
Following the alignments, the number of reads mapped to each
watermelon cultivar unigene was derived, then normalized to
reads per kilobase of exon model per million mapped reads
(RPKM). Relative gene expression was determined by counting
the number of unigenes assigned to a particular protein-encoding
gene. Normalization was obtained by dividing each gene count by
the total mRNA read count of each dataset and multiplying by the
average of the total mRNA read count across all datasets (Dillies
et al., 2013). Metabolic mapping of the metatranscriptome
profiles was performed quantitatively by mapping the KEGG
annotation of the identified protein sequences into metabolic
pathway maps by using the iPath v2 module7. Gene expression
of the metabolic pathways was indicated by the line width,
determined from the log2 values of the read count of KEGG-
annotated proteins. Reads with alignment bit-scores ≥ 74 were
used to create the global metabolic activity pathways.

RESULTS AND DISCUSSION

Distribution of Bacterial Communities in
Watermelon Fruits Based on 16S rRNA
Analysis
We analyzed 16S rRNA to study the bacterial communities
associated with red- and yellow-flesh cultivars of watermelon
at ripe stage. The cultivar details including total soluble solids
and citrulline contents are given in Supplementary Table S1.
The red- and yellow-flesh cultivars are from Africa, Asia, and
North America. 16S metagenomics sequence data revealed nearly
200,000 raw and clean reads for each cultivar, with average read
length of 250 nt (Supplementary Table S2). Proteobacteria was
the most abundant phylum in the ripe fruits of watermelon
cultivars SDRose, PI227202, and PI435990 (Figure 1 and
Supplementary Table S3). Firmicutes and Bacteroidetes were in
less abundance in almost all cultivars tested, and Fusobacteria
was recorded highly in PI459074. Proteobacteria represent
various taxonomic groups and different ecological statuses, such
as endophytes/symbionts (asymptomatic, endophytic bacteria
possibly in symbiotic interaction) and saprophytes (bacteria from
various environments including soil). Their dominant presence

5ftp://ftp.ncbi.nih.gov/pub/COG/COG
6http://www.genome.jp/tools/kaas/
7https://pathways.embl.de/

FIGURE 2 | Bacterial community composition by class in ripe fruits of
watermelon cultivars based on 16S rRNA analysis.

in fruits of watermelon could be attributed to the fruit’s ability to
use a wide variety of carbon sources such as carbohydrates, amino
acids, and lipids, which could help resist different environmental
changes that occur during fruit development (Peighamy-Ashnaei
et al., 2006; Kazakov et al., 2009; Xia et al., 2015).

Earlier, Glassner et al. (2015) reported that Firmicutes,
Actinobacteria, β-proteobacteria, and γ-proteobacteria are of
major abundance in the flesh of melon fruit, Cucumis melo
L., another member of the Cucurbitaceae family. Similarly,
Proteobacteria, Acidobacteria, Bacteroidetes, and Firmicutes
were found the most abundant phyla in grapes (Zarraonaindia
et al., 2015). A great percentage of Cyanobacteria was observed
in PI459074, Congo, and JBush. They presented a “chloroplast
bacterial genome” as a major abundant bacterial class (Figure 2).
Earlier, plastids were found to have a cyanobacterial ancestor
(Douglas and Turner, 1991), and a key role for plastids,
specifically chromoplasts, in ripe fruits has been mentioned
(Kang et al., 2010). Another important bacterial class in
PI459074, Congo and JBush was α-proteobacteria, but in the
remaining cultivars, γ-Proteobacteria was the most abundant.
The class Bacilli was present in PI459074, Congo, and SDRose;
members of this class, such as the Bacillus genus, was found
predominant in papaya, along with Kocuria, Acinetobacter,
and Enterobacter species (Shi et al., 2010; Krishnan et al.,
2012). Antagonistic activity of Bacillus subtilis toward fungal
and bacterial pathogens of cucurbits is also well-documented
(Zeriouh et al., 2014).

The relative abundance of bacterial families differed among
all tested cultivars, nevertheless very low bacterial diversity was
observed in all cultivars. Genes involved in defense response
and resistance may undergo differential expression during
development and ripe stage of watermelon fruits to control
pathogens and consequently could also restrict the establishment
of non-pathogenic bacteria, which could explain the reduced
bacterial diversity in watermelon fruits (Figure 3). Except for
SDRose, PI227202 and PI435990, other cultivars showed major
abundance among “other” bacterial types. Families belonging
to the γ-Proteobacteria class presented the highest abundance.
In SDRose, Enterobacteriaceae was the most abundant family
(Figure 3). Members of Enterobacteriaceae include important
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FIGURE 3 | Relative abundance in terms of families of bacteria in ripe fruits of
watermelon cultivars based on 16S rRNA analysis.

FIGURE 4 | Relative abundance of the transcriptionally active microbiome at
phylum level in ripe fruits of watermelon cultivars.

pathogens for humans, such as Salmonella and Escherichia
coli O157, even though bacteria belonging to this family were
previously isolated from plant tissues, exhibiting antibiotic
resistance (Markova et al., 2005). For PI227202 and PI435990,
Pseudomonadaceae was the most abundant family. Members
of this family have been found as endophytic microorganisms
in watermelon. Compant et al. (2011) also observed that
Pseudomonas was among the predominant bacterial isolates from
the interior of flowers, fruits, and seeds of grapevine.

Active Microbiome Associated with
Watermelon Cultivars
We used metatranscriptomic analysis for in-depth study of the
active microbiome and gene expression and associated metabolic
pathways in ripe fruits of six cultivars of watermelon fruits.
HiSeq2500 generated ∼64, 41, 53, 68, 61, and 33 million paired-
end reads for PI459074, Congo, SDRose, PI227202, PI435990,
and JBush, respectively. Data on sequenced reads and mapped
reads for all six cultivars is in Supplementary Table S4. Bacteria,
archaea, fungi, eukaryote, and viruses were found in the ripe
fruits of all six watermelon cultivars. Five bacterial phyla
(Proteobacteria, Cyanobacteria, Actinobacteria, Firmicutes, and
Chlamydiae), three fungal phyla (Ascomycota, Basidiomycota,

FIGURE 5 | Heatmap of watermelon cultivars based on a comparison of the
transcriptionally active microbiome in ripe fruits. Plotted cultivar name on the
X-axis and selected phyla on the Y-axis. The absolute value of “Z” represents
the distance between the raw score and the population mean in units of the
standard deviation. “Z” is negative when the raw score is below the mean,
positive when above.

and Glomeromycota), unclassified eukaryote and unclassified
viruses were the top 10 phyla in all samples (Figure 4).

Proteobacteria was the most transcriptionally active phyla
in all samples. Ascomycota, a fungal group composed of plant
and human pathogens and organisms of biotechnological
importance was observed along with other fungal phyla, the
large fruit-body producer Basidiomycota and the arbuscular
mycorrhizal Glomeryomycota (Berbee, 2001). The other
bacterial phyla were Firmicutes and Actinobacteria, a well-
known secondary metabolites producer, although they were
not predominant in all watermelon fruits tested. The obligate
intracellular pathogen bacterium Chlamydiae, unclassified
eukaryotes, unclassified viruses, and Cyanobacteria showed
minor abundance (Figure 4). Members of Cyanobacteria have
been reported to produce carotenoids, which could contribute
to the carotenoid accumulation driven by the plant in the ripe
fruits (Lv et al., 2015). Carotenoid production in fruits produce
changes in fruit color and also contributes to the biosynthesis
of aroma components because carotenoids serve as substrates
for the production of norisoprene and monoterpene aroma
volatiles of the fruits (Lewinsohn et al., 2005). This capability
has been reported in cyanobacterial members such as Microcystis
aeruginosa (Jüttner, 1976). Apart from their role in carotenoid
production, cyanobacteria could also contribute to the aroma and
flavor of watermelon fruit. Fungi phyla such as Basidiomycota
and Ascomycota present in our findings have been reported to
degrade carotenes, resulting in the production of volatile aroma
compounds (Zorn et al., 2003).
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FIGURE 6 | Venn diagram showing the number of shared and unique genes among red types and yellow types and between red and yellow types of watermelon.
Gene number among samples of red flesh group (A), yellow flesh group (B), and between red and yellow flesh groups (C). 1428 common genes among red types,
9559 genes were common among yellow types, and 1073 genes were common between yellow and red flesh types.

FIGURE 7 | eggNOG functional annotation of orthologous groups among ripe fruits of all watermelon cultivars of this study based on metatranscriptomic data.

In the cultivars PI435990 and PI227202, the most
abundant active microbiome was Proteobacteria, Ascomycota,
and unclassified viruses. Nevertheless, PI435990 showed
Cyanobacteria, unclassified eukaryotes, Basidiomycota, and
Chlamydiae in minor abundance. In PI459074 and Congo,
Proteobacteria was a dominant phylum, followed by unclassified
viruses. Other phyla present in these two varieties were
Ascomycota, Actinobacteria, Cyanobacteria, Basidiomycota,
and Glomeromycota. SDRose presented less active microbiome
diversity, which could be due to the relative predominance of
Proteobacteria. Although Proteobacteria were also predominant
in JBush, a high abundance of unclassified viruses was also
observed, followed by Cyanobacteria, Actinobacteria, and
Ascomycota (Figure 4). A heatmap is presented to compare the
inter-sample differences among the six cultivars of the dominant
35 phyla. Ascomycota and Armatimonadetes phyla showed the

highest abundance in the PI435990 cultivar as compared with the
other cultivars (Figure 5). Armatimonadetes is a recently defined
bacterial phylum and is phylogenetically related to Chloroflexi,
Actinobacteria, Firmicutes, Deinococcus–Thermus, and
Cyanobacteria. Deinococcus–Thermus and Thaumarchaeota,
observed in considerably in Congo cultivar, are extremophiles
that tolerate oxidation, desiccation, radiation conditions, and
biosynthesize carotenoids as a defense mechanism (Tian and
Hua, 2010). The presence of Deinococcus–Thermus was reported
in apple flower microbiota (Shade et al., 2013) and on the surface
of tomato (Telias et al., 2011).

A high abundance of Actinobacteria was observed in the JBush
cultivar. Actinobacteria are known for synthesis of secondary
metabolites, many of which are found in plants and used as
bioactive compounds because of their antimicrobial activity
(Fiedler et al., 2008). Furthermore, their diverse metabolism
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allows them to participate in the metabolism of carbohydrates,
including polysaccharides (Pasti and Belli, 1985; Schäfer et al.,
1996; Watanabe et al., 2003), which is important in ripe
stage of watermelon fruit. The presence of the phylum
Glomeromycota in Congo and JBush is significant because the
phylum comprises arbuscular mycorrhizal (AM) fungi, which
play an important role in plant development and diversity by
their phosphate mobilization and nutrient uptake (Bucher, 2007),
control of pests and fungal pathogens. The predominance of
the Microsporidia phylum in JBush is interesting because it
is a known parasite of higher eukaryotes (Keeling and Fast,
2002).

It has been reported in previous studies that the relation
between plant-associated microbiome and plant hormones that
promote the ripening of fruits (Zouari et al., 2014; Gamalero and
Glick, 2015). It is well-known that endogenous and exogenous

ethylene triggers in ripe fruits of watermelon through cell wall-
degrading enzymes and pectin solubility (Huber et al., 2001;
Karakurt and Huber, 2002, 2004). Ethylene forming enzyme
2-oxoglutarate oxygenase/decarboxylase (EFE) of microbial
origin produces gaseous ethylene, which subsequently permeates
across the bacterial membrane in inducing ripe stage of fruit
(Digiacomo et al., 2014). They engineered E. coli to synthetize
ethylene by the insertion of EFE from Pseudomonas syringae to
induce the ripe stage in tomato, kiwifruit and apples. In another
study, 11 endophytic Proteobacteria belonging to Pantoea sp.,
Polaromonas sp., Pseudomonas sp., and Ralstonia sp. showing
1-aminocyclopropane-1-carboxylate (ACC) deaminase activity
were isolated from the fruit tissue of Elettaria cardamomum
(Jasim et al., 2015). Expression of the ACC deaminase gene
has been previously related to ripe tomato (Sheehy et al.,
1993). Higher abundance of Proteobacteria described in this

TABLE 1 | Carbohydrate-active enzymes (CAZyme) distribution in watermelon varieties.

CAZyme family Activity Associated metabolism Variety

AA3 Integral component of membrane Membrane transport JBush

GH3 β-1,4-Glucosidase, β-1,4-xylosidase, β-1,3-glucosidase,
β-L-arabinofuranosidase, others

Carbohydrate and energy metabolism SDRose

GH13 α-Amylase, catalytic domain, and related enzymes Carbohydrate and energy metabolism SDRose

GH16 β-1,3(4)-Endoglucanase, others Energy metabolism PI435990

GH17 Glucan endo-1,3-β-D-glucosidase glucan 1,3-β-glucosidase, others Carbohydrate metabolism Congo

GH18 Chitinase, endo-β-N-acetylglucosaminidase, non-catalytic Proteins Aminoacid metabolism SDRose

GH23 G-Type lysozyme, peptidoglycan lytic transglycosylase Membrane transport SDRose

GH27 α-Galactosidase, α-N-acetylgalactosaminidase, Isomalto-dextranase Carbohydrate and energy metabolism Congo

GH28 Polygalacturonase, rhamnogalacturonase Others Carbohydrate metabolism JBush SDRose

GH32 Invertase, others Carbohydrate metabolism PI435990

GH36 α-Galactosidase, α-N-acetylgalactosaminidase Carbohydrate metabolism Congo JBush

GH103 Peptidoglycan lytic transglycosylase Membrane transport SDRose

GT1 UDP-Glucuronosyltransferase 1-β-Galactosyltransferase Carbohydrate metabolism JBush

GT2 Cellulose synthase Chitin synthase Carbohydrate metabolism PI459074

GT8 Lipopolysaccharide α-1,3-galactosyltransferase Lipid metabolism SDRose

GT19 Lipid-A-disaccharide synthase Membrane transport SDRose

GT28 1,2-Diacylglycerol 3-β-Galactosyltransferase Carbohydrate metabolism PI227202

GT48 1,3-β-Glucan synthase Carbohydrate metabolism Congo

GT51 Murein polymerase Membrane support JBush

CE4 Acetyl xylan esterase Chitin deacetylase Carbohydrate metabolism PI227202

CE8 Pectin methylesterase Carbohydrate metabolism Congo

CE11 UDP-3-0-Acyl-N-acetylglucosamine deacetylase Carbohydrate metabolism PI227202

CE14 N-Acetyl-1-D-myo-inosityl-2-amino-2-deoxy-α-D-glucopyranoside
deacetylase

Carbohydrate metabolism PI227202

CBM2 Cellulose-binding domain Carbohydrate metabolism Congo

CBM3 Cellulose-binding domain Carbohydrate metabolism PI435990

CBM10 Cellulose-binding domain (aerobic bacteria) and dockerin (anaerobic fungi) Carbohydrate and energy metabolism Congo

CBM13 Mannose- and xylan-binding domain Carbohydrate metabolism SDRose

CBM14 Chitin-binding domain Structure and Carbohydrate metabolism PI227202

CBM18 Chitin-binding domain (eukaryotic only) Structure and Carbohydrate metabolism Congo

CBM19 Chitin-binding domain (eukaryotic only) Structure and Carbohydrate metabolism JBush

CBM20 Starch-binding domain Carbohydrate metabolism Congo JBush

CBM48 Glycogen-binding domain Carbohydrate metabolism PI227202

CBM50 Peptidoglycan metabolic process Membrane metabolism SDRose

CBM57 Quinoprotein amine dehydrogenase, β-chain-like Signal transduction Congo
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FIGURE 8 | eggNOG function comparison of ripe fruits of watermelon cultivars. Relative abundance of different functional annotation groups was constructed by
using metatranscriptome data from the six watermelon cultivars.

FIGURE 9 | KEGG function comparison of ripe fruits of watermelon cultivars
by heatmap analysis. Plotted cultivar name on X-axis and KEGG pathways on
Y-axis. The absolute value of “Z” represents the distance between the raw
score and the population mean in units of the standard deviation. “Z” is
negative when the raw score is below the mean, positive when above.

present study could play a major role in ripe watermelon
fruits.

Functional Profile of Active Microbiomes
of Watermelon Cultivars
The primary cell wall of the fruit contains approximately 35%
pectin, 25% cellulose, 20% hemicellulose, and 10% proteins
(Brownleader et al., 1999). At ripe stage, the cell wall

FIGURE 10 | Heatmap of the carbohydrate-active enzymes in watermelon
cultivars. Different families of structurally related catalytic and
carbohydrate-binding modules of enzymes that degrade, modify, or create
glycosidic bonds were found. Within this class of Enzyme Classes were
Glycoside hydrolases (GHs), Glycosyltransferases (GTs), Carbohydrate
esterases (CEs), Auxiliary activities (AAs), and Carbohydrate-binding modules
(CBMs). Plotted cultivar name on X-axis and predicted enzymes on Y-axis.
The absolute value of “Z” represents the distance between the raw score and
the population mean in units of the standard deviation. “Z” is negative when
the raw score is below the mean, positive when above.

undergoes different modifications including de-esterification and
depolymerization, and consequently loss of galacturonic acid and
neutral sugars followed by solubilization of oligosaccharides and
remaining sugar residues (Zandleven et al., 2005). An active
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FIGURE 11 | Reconstructed pathway of galactose metabolism based on metatranscriptomic data by KEGG annotation. Predicted enzymes from
metatranscriptomic data were associated with galactose metabolism, displayed in this figure.

microbiome could play a major role in this process with its
hydrolytic enzymes, in addition to the corresponding enzymes of
the host.

To obtain general insights into microbial metabolism,
transcripts were compared in the following databases:
evolutionary genealogy of genes: Non-supervised Orthologous
Groups (eggNOG), Kyoto Encyclopedia of Genes and Genomes
(KEGG), and Carbohydrate-Active Enzymes Database (CAZy).
Based on the analyses of unique and shared genes (Figure 6), it
was observed that 22,936, 16,055, and 16,982 unique genes were
expressed in red flesh cultivars PI459074, Congo, and SDRose,
respectively. Similarly, 29,573, 54,757, and 9,918 unique genes
were expressed in yellow flesh cultivars PI227202, PI435990, and
JBush, respectively. A great sharing of genes was surprisingly
observed in yellow and red cultivars, so despite being different
cultivars, environmental conditions facilitate the development
of relatively similar microbial composition in both types. Genes
involved in signal transduction, post-translational modification,
transcription, carbohydrate metabolism, intracellular trafficking
and amino acid and energy metabolism were the most abundant
in all analyzed cultivars (Figure 7). The high abundance of
these genes could be related to the maintenance of basic cellular
machinery, which allowed for growth and cell maintenance
of microbial communities during the changes occurring in
ripe watermelon. We observed different families of structurally
related catalytic and carbohydrate-binding modules (or
functional domains) of enzymes that degrade, modify, or create
glycosidic bonds. Within this class of enzymes were glycoside
hydrolases (GHs), glycosyl transferases (GTs), carbohydrate

esterases (CEs), auxiliary activities (AAs), and carbohydrate-
binding modules (CBMs) (Table 1). Although the microbial
diversity of JBush cultivar is low, genes related to energy and
carbohydrate metabolism were highly expressed in this cultivar
(Figures 8, 9). The availability of sugars in ripe watermelon
promotes the expression of genes related to carbohydrate
metabolism, such as glucosidases, galactosidases, cellulose
binding module, and starch binding module (Figure 10).

However, in the case of SDRose, despite low expression of
genes related to energy metabolism (<10%), high expression
of post-translational modification genes (∼25%) was observed
(Figure 8). In addition, the expression of genes related to
infectious diseases was observed (Figure 9), which could explain
the low microbiome diversity expressed in this cultivar. Many
bacterial genera of the most abundant Proteobacteria phylum in
this cultivar, such as Xanthomonas, Erwinia and Pseudomonas,
are known pathogens (Kersters et al., 2006). Moreover, fruits
at ripe stage are more vulnerable to pathogen attack and
environmental stress (Levi et al., 2006). Among the different
enzymes expressed in this cultivar, peptidoglycan hydrolases were
present. Bacteria use this enzyme for cell wall assembly and
disassembly during growth and division; nonetheless, pathogenic
bacterial species also use them to cause pathogenicity in
eukaryotic hosts (Humann and Lenz, 2009).

On eggNOG annotation, PI227202 and PI435990 cultivars
showed a similar pattern of gene expression (Figure 8).
Regardless, these cultivars presented differences in the
expression of genes encoding the CAZ. GH32, associated with
hydrolysis of fructans; GH16, associated with the hydrolysis of
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galactose-containing polysaccharides and galactose monomers;
and CBM3, linked with cellulose and chitin binding were
observed in major abundance in PI435990 as compared with
the other cultivars (Figure 10). CEs (CE11, CE4, CE14),
associated with polysaccharide deacetylation, glycosyltransferase
protein-associated GT28, amylase activity-associated GH13 and
glycogen-binding protein-associated CBM48 were predominant
in Pl227202. These results suggest the role of microbiome-
associated gene expression of carbohydrate metabolism in ripe
watermelon fruits.

As mentioned above, cell wall modifications include de-
esterification and depolymerization, and consequent loss of
galacturonic acid and neutral sugars followed by solubilization
of oligosaccharides and remaining sugar residues. The presence
of GH28, associated with polygalacturonase activity in JBush and
SDRose could be related to cell wall modifications (Zandleven
et al., 2005). Further, alkaline pectinases also have been correlated
in softening of ripe fruits. Bacillus, belonging to Firmicutes
(Kapoor et al., 2001) Pseudomonas sp. of Proteobacteria (Hayashi
et al., 1997) and actinomycetes (Beg et al., 2000a,b) have been
reported for their alkaline pectinase activity.

Predicted Pathways of Carbohydrate
Metabolism
KEGG annotation of the expressed genes revealed nine
α-galactosidase genes involved in key processes of galactosyl
oligosaccharide metabolism, such as genes belonged to raffinose
family oligosaccharides. Based on these genes, the pathway
of galactose metabolism was reconstructed (Figure 11). In
watermelon fruits, the main free sugars in tissues are sucrose
and hexoses (Yativ et al., 2010). In the pathway of sucrose
formation, stachyose is converted into sucrose via a sequential
action of various enzymes (Dai et al., 2006; Yativ et al., 2010)
such as α-galactosidase, which converts stachyose to raffinose
and galactose, followed by galactokinase conversion of galactose
to galactose-1-phosphate, which is converted to UDP-galactose
by UDP-galactose pyrophosphorylase. Later, UDP-galactose-4-
epimerase acts on UDP-galactose to form UDP glucose, which is
converted to sucrose by sucrose synthase activity combined with
fructose. Reconstruction of the galactose metabolism pathway

based on our results clearly demonstrated the role of the active
microbiome and the gene expression of carbohydrate-active
enzymes of ripe watermelon fruits.

Results of this study showed the presence of different phyla
of microbiome in ripe watermelon suggested the important
role of different classes of bacteria in ripe stage through
their metabolic activity and gene expression in carbohydrate
metabolism. Moreover, it can be assumed that new phenotypes,
without altering the plant genomic information can be developed
because of the dynamic interactions between plants and their
associated microbiome. The role of plant-associated microbiome
in hormonal control during different developmental stages of
fruits is a meaningful aspect to understand and requires further
studies.
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The production of olive oil is an important economic engine in the Mediterranean area.
Nowadays, olive oil is obtained mainly by mechanical processes, by using the whole
fruit as the primary raw material. Although the mesocarp is the main source of lipids
contributing to olive oil formation, the seed also contributes to the olive oil composition
and attributes. The olive seed is also becoming an interesting emerging material itself
when obtained after alternative processing of the olive fruit. Such seed is used for the
production of differential oil and a unique flour among other bioactive products, with
increasing uses and applications in cosmetics, nutrition, and health. However, olive seed
histology has been poorly studied to date. A complete description of its anatomy is
described for the first time in the present study by using the ‘Picual’ cultivar as a model
to study the development of the different tissues of the olive seed from 60 to 210 days
after anthesis. A deep analysis of the seed coats, endosperm storage tissue and the
embryo during their development has been performed. Moreover, a panel of other olive
cultivars has been used to compare the weight contribution of the different tissues to
the seed, seed weight variability and the number of seeds per fruit. In addition to the
histological features, accumulation of seed storage proteins of the 7S-type (β-conglutins)
in the seed tissues has been assessed by both biochemical and immunocytochemical
methods. These hallmarks will help to settle the basis for future studies related to the
location of different metabolites along the olive seed and mesocarp development, and
therefore helping to assess the appropriate ripening stage for different commercial and
industrial purposes.

Keywords: β-conglutins, cotyledon, development, endosperm, olive, radicle, seed, seed storage proteins

INTRODUCTION

Alimentary industries based in the preparation of table olives and olive oil are of paramount
importance for the economy of Mediterranean countries and some areas of America and Australia.
The very well valued Extra Virgin Olive Oil (EVOO) is produced exclusively by mechanical
processes where the whole fruit is used. Other olive oil qualities [Virgin Olive Oil (VOO) and
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Ordinary Virgin Oil (OVO)] are also produced mainly from
whole fruits as the primary raw material. Thus, the obtained
juices also contain components from the seed, which contribute
to olive oil aroma and other potential properties like peroxidase
activity (Luaces et al., 2003, 2007). The olive seed itself is also
becoming an interesting material with multiple uses beginning to
emerge (Rodríguez et al., 2008; Matos et al., 2010; Pattara et al.,
2010; Naghmouchi et al., 2015). Morphological characteristics
of the olive pit have been used as descriptors of pomological
interest for varietal characterization in the olive tree (Barranco
and Rallo, 1984). However, differences between the seed have not
been reported in detail to our knowledge.

The histology of the different tissues of the seeds have
been described in a variety of species other than olive (Olea
europaea L.). In these studies, the structure of the seed
coat was one of the most widely topics described in the
literature. Early in the thirties, a deep study on the almond
seed surface was performed aimed to easily distinguishing
the different varieties of almonds, hence helping identifying
misrepresentation or adulteration (Pease, 1930). Examination of
Arabidopsis seed coat development showed major morphological
changes associated with the transition of the integuments into
the mature seed coat (Beeckman et al., 2000). Analysis of the
seed coat histological distribution has also been performed
in Cucurbita pepo L. to examine mutations concerning the
lignification of the testa (Zraidi et al., 2003). Similarly, the seed
coat of Chenopodium quinoa was histologically studied aimed to
assess and improve quality of the seeds for human and animal
consumption (Raamsdonk et al., 2010). The seed coat form
of other species such as Passiflora ligularis Juss or Strychnos
potatorum L. has also been analyzed (Cárdenas-Hernández et al.,
2011; Mishra and Vijayakumar, 2015). Regarding endosperm
anatomy, a new approach in the disclosure of the history
of flowering plants has been provided after comparison of
the patterns of endosperm development as well as analysis
of phylogenetic and ontogenic evolution of this tissue using
several basal flowering plants (Floyd and Friedman, 2000).
The histology of the seeds from plants like Vitis vinifera L.,
Paronychia, Theobroma cacao L., Annona squamosa L., and
Medicago truncatula has been described (Cadot et al., 2006;
Kaplan et al., 2009; Rangel-Fajardo et al., 2012; Martínez et al.,
2013; Verdier et al., 2013). The structure and storage content
of Arabidopsis and Cuphea glutinosa endosperms has also been
scrutinized (Li et al., 2006; Di Santo et al., 2012). Finally,
the anatomy of the cotyledons has been particularly studied
in Theobroma cacao L. and Eurycoma longifolia seeds (Elwers
et al., 2010; Danial et al., 2011), where descriptions of the
pattern of distribution of the polyphenolic compounds and the
development of the vascular system have been provided. By
means of non-destructive techniques, the structure of whole seeds
has been also examined. As result, valuable information about the
transport system for gas exchange in embryos of the Arabidopsis
seed has been provided (Cloetens et al., 2006). Similarly, a
3D reconstruction of the compartments present in the maize
seed have been performed (embryo, endosperm, nucellus, and
pericarp) from 7 to 21 days after pollination (Rousseau et al.,
2015).

The number of studies focused on the olive seed histology
is still reduced. Initial studies dealt with the description
of morphological, histological, and ultrastructural changes in
the olive pistil during flowering (Suárez et al., 2012), and
the localization of seed storage proteins (SSPs) in the olive
seed. SSPs are synthesized in abundance in the developing
seeds and are accumulated primarily in the protein storage
vacuoles (PSVs) of terminally differentiated cells of embryo
and endosperm (Herman and Larkins, 1999). Previous reports
indicate that mature olive seeds contains very similar subcellular
structure in both the embryo and endosperm tissues, essentially
with electro-dense protein bodies (PBs) surrounded by lipid
bodies with diameters ranging from 0.5–2.0/µm (Ross et al.,
1993; Zienkiewicz et al., 2014). The endosperm and the
cotyledon are considered storage tissues, where members
of the 11S protein family are the most abundant from
the total of seed proteins (Alché et al., 2006). However,
asynchrony exists in the formation of PBs between both
tissues (Jiménez-López et al., 2015). The analysis of the protein
synthesis along the seed formation has determined three
periods: (I) a period of early synthesis (before 105 days after
anthesis, DAA), (II) a rapid and massive period of synthesis
(105–130 DAA), and (III) a period characterized by slow
synthesis (from 130 DAA until full ripening) (Wang et al.,
2001).

Authors have also fixed their attention to describe the
intracellular events occurring during the first hours of the
in vitro germination process (Zienkiewicz et al., 2011; Jiménez-
López and Hernández-Soriano, 2013), drawing their attention
particularly to PBs. Zienkiewicz et al. (2011) also revealed that
the cellular organization of the olive leaf is achieved after 26 days
of germination.

β-Conglutins, vicilins of 7S globulins are also major SSPs in
different plants, particularly legumes. Among them, they have
been particularly studied in Lupinus species (Jimenez-Lopez
et al., 2015, 2016, 2018; Lima-Cabello et al., 2017a,b, 2018). They
belong to the Cupin superfamily, and mainly associate (as storage
protein function) with plant physiological processes through the
supply of amino acids during seedling germination (Monteiro
et al., 2010). Primary evidence of the presence of β-conglutins
in the olive arise from transcriptomic analyses, as the presence
of 7S globulins transcript sequences have been detected in the
olive seed (unpublished results). However, direct evidence of the
presence and distribution of β-conglutins in the olive seed has not
been provided to date.

In spite of these pioneer studies, an overall histological
description of the olive seed is yet missing to date. Here we
perform a report of the different tissues of the olive seed
throughout its development and we use a new molecular tool: the
7S SSPs (β-conglutins) recently described in the olive seed, and
a specific antibody developed to evidence the presence of these
proteins and their changes as markers along tissue development.
The results shown here may serve as a hallmark for analyzing
seed (and fruit) maturity and to monitor the presence of these
proteins in future biotechnological and alimentary uses due to
their increasing interest. Finally, cell localization of these proteins
is also reported.
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MATERIALS AND METHODS

Plant Material
Seeds used for microscopy analysis were collected from olive
trees (Olea europaea L. cv. ‘Picual’) cultivated at the Estación
Experimental del Zaidín (Granada). Four stages were considered:
(0) small developing fruit, (I) green fruit, (II) fruit at veraison,
and (III) mature fruit. The collection took place 60, 105, 130,
and 210 DAA, respectively. Seeds from different cultivars were
kindly provided by the Protected Certificate of Origin “Poniente
de Granada.” The cultivars studied were ‘Ombliguillo,’ ‘Llorón,’
’3,’ ‘Lechín,’ ‘Hojiblanca,’ ‘Picual,’ ‘Lucio,’ ‘Alameño,’ ‘Nevadillo,’
‘Loaime,’ ‘Azul,’ and ‘Gordal de Alhama.’ Twenty fruits per
cultivar were dissected by using a knife, a de-stoning commercial
device, and a scalpel to dissect the pulp (mesocarp + epicarp),
stones and the seed tissues respectively. Weight measurements
were performed individually using 20 samples of the complete
mature fruit (210 DAA) and each one of the dissected tissues
[mesocarp + epicarp, whole endocarp (stone), testa, endosperm,
and embryo]. The number of seeds obtained from each fruit was
also counted.

Preparation of Samples for Microscopy
Seeds from olive fruits at four developmental stages were
collected. The mesocarps + epicarps (pulp) and the endocarps
(stones) were removed with a knife and a de-stoning device,
respectively. At the stage 0, the complete seed was used. In the rest
of the stages the obtained seeds were carefully dissected into two
parts: on the one hand the coat and the endosperm were treated
together, on the other hand the embryo was carefully excised.
Once the embryo was obtained, the apical part (radicle) and
the middle part (cotyledons) were treated separately (Figure 1).
The plant materials were fixed with 4% (w/v) paraformaldehyde
and 0.2% (v/v) glutaraldehyde in 0.1 M cacodylate buffer (pH
7.2) for 2 h at 4◦C with points of vacuum treatment to improve
penetration of the fixative. Samples were dehydrated in ethanol
series and embedded in Unicryl resin at −20◦C using ultraviolet
light. Semithin sections were obtained with a Reichert-Jung
Ultracut E microtome using a glass knife. Sections were placed
on Biobond-coated slides and used for cytochemical staining.

Histological Study
For histological observations, sections were stained with a
mixture of basic dyes [0.05% (w/v) methylene blue and 0.05%
(w/v) toluidine blue] aimed to stain the carboxyl groups of
proteins, which reveal the presence of such components. Most
non-stained structures correspond to lipids. Stained samples
were observed in a LM Zeiss Axioplan (Carl Zeiss, Oberkochen,
Germany). Photomicrographs were obtained with a ProgRes
MF Cool Digital Camera, by using the ProgRes CapturePro 2.6
software (Jenoptik, LaserOptic System).

Development of an Anti-β-conglutin
Antibody
Olive transcriptomic information together with sequence
information of β-conglutins from different species was used

FIGURE 1 | (A) Representation of the tissues of the olive seed in longitudinal-
versus cross-sections. Dotted lines/boxes show the orientation of the samples
for microscopy analysis. (B) Cross section of the complete seed at the radicle
site (pointed out with “1” in A) at 60 DAA. (C) Cross section of the complete
seed at the cotyledon site (pointed out with “2” in A) at 60 DAA. Dotted lines
indicate the shortening of the space between endosperm-embryo. (D) Detail
of the cotyledon observed in panel (C). (E) Longitudinal section of the
complete seed at 60 DAA. Pr, procambium; PM, premesophyll; E, embryo; S,
space between endosperm-embryo; C, cuticle; Ep, epidermis; T+E, testa and
endosperm; TF, transversal fibers; LE, lower epidermis; UE, upper epidermis;
UPM, upper premesophyll cells; LPM, lower premesophyll cells. Scale bars:
100 µm.

to define potential cross-reactive epitopes of these proteins
present in these species (Jimenez-Lopez et al., 2015). The
peptide RLENLQNYRIVEFQS was selected as a cross-reactive
component on this basis and was synthesized and used to
immunize rabbits by Agrisera (Sweden) (Prod. No. AS15 2892).
The resulting sera were affinity-purified with the synthetic
peptide, and their specificity assessed by Western blotting and
ELISA (not shown).

Protein Extraction and Western Blotting
Analysis
Plant material (as described) was used to prepare protein extracts
by grinding with liquid nitrogen. Proteins were extracted with
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40 mM Tris–HCl pH: 7.0, 2% Triton X-100, 60 mM DTT and
10 µl/sample of protease inhibitor cocktail (Sigma). Samples
were denatured with Laemmli sample buffer at 95◦C for 5 min
and separated on 4–20% TGX precast SDS-PAGE mini-gels
(Bio-Rad). Protein profiles were determined by means of Stain-
free technology using a Gel DocTM EZ System (Bio-Rad), and
normalized for total protein (30 µg/lane). Gels were blotted to
supported nitrocellulose using a Trans-Blot Turbo (Bio-Rad)
semi-dry device and blocked with 5% skimmed milk in TBS
plus 0.05% Tween-20 for 1 h at room temperature (RT) with
agitation. Blot was incubated in the anti-β-conglutin primary
antibody at a dilution of 1:1000 for 8 h at 4◦C with agitation
in TBS-T plus 5% skimmed milk. The antibody solution was
decanted and the blot was rinsed briefly twice, then washed
once for 15 min and 3 times for 5 min in TBS-T at RT with
agitation. Blot was incubated in secondary antibody [anti-rabbit
IgG horseradish peroxidase conjugated, from Sigma (A-0545)]
diluted to 1:2000 in for 1h at RT with agitation. The blot
was washed as above and developed for 3 min with Clarity
Western ECL substrate (Bio-Rad). Exposure time was 6–12 min
in a C-Digit scanner (LI-COR Biotechnology, United States).
The intensity of the reacting bands and their approximate Mw
was determined with the Image StudioTM software (LI-COR
Biotechnology, United States) as the average ± SD of three
experiments.

TEM Immunolocalization of Olive 7S
SSPs (β-Conglutins)
Ultrathin sections (70 nm) were obtained using a Reichert-
Jung ultramicrotome and picked up using 200 mesh nickel
grids coated with formvar. The grids were then sequentially
treated with a blocking solution [5% (w/v) bovine serum
albumin, 0.1% (v/v) Tween 20 in phosphate-buffered saline],
a diluted (1:100) solution of the anti-7S antiserum in blocking
solution, a 1:1000 solution of the secondary antibody (goat
anti-rabbit IgG: 30 nm gold, BB International), and finally
contrasted using a 5% (w/v) uranyl acetate alternative
solution (Ted Pella Inc., CA, United States) and observed
in a JEM-1011 (Jeol) transmission electron microscope
(TEM). Negative control sections were treated as above
but using preimmune serum instead of the anti-conglutin
antiserum. Morphometric measurements were performed
using the UTHSCSA ImageTool (version 3.00 for Windows)
software.

Statistical Analysis
The Kolmogorov–Smirnov test was used to test the normality
of all weight parameters. The Pearson test was performed
aimed to determine whether whole fruit and mesocarp weight
were correlated. For Western blotting and immunocytochemical
analysis, values expressed as mean ± SEM of individual
experiments were assessed for statistical significance of the
data by analysis of variance followed by Dunnett’s analysis.
P-values ≤0.001 were considered statistically significant. All
analyses were performed using IBM SPSS statistics v.24
software.

RESULTS

Olive Seed Anatomy at Early Stages of
Fruit Development
The complete seed was processed 60 DAA to visualize general
structure at a very early stage of development. At this moment,
dissection of the seed into its tissues was not achievable without
tissue damage due to the small size of the seed and the high
compaction of the tissues. In Figure 1A, a schematic draw of
the different tissues of the olive seed is displayed, as well as the
positions selected for longitudinal- and cross-sections performed
in this study.

A cross section of the complete seed at the radicle level showed
that the testa and the endosperm tissues were immature, without
appreciable differentiation among these two tissues (Figure 1B).
The cells appeared unstained, indicating no clear accumulation
of storage material neither in the endosperm nor in the embryo,
as previously described (Jiménez-López et al., 2015).

No presence of the aleurone layer was detected. However, the
presence of the cuticle and the pro-epidermal layer cells from
the testa was visible. The cuticle was evidenced by an intense
staining with methylene blue at the outermost site. The pro-
epidermal layer of cells was placed under the cuticle, composed
of long-shaped cells. Regarding the embryo, isodiametric cells
were observed with slight differences among them. In the center
of the embryo, the cells appeared intensely stained, this central
structure corresponding to the precambium. The premesophyll
cells were located surrounding those of the precambium. The
pre-dermal cells appeared in the outer part, characterized by the
presence of notorious nuclei. The embryo and the endosperm
were separated by an ample space that remained unstained
(Figure 1B). Similarly, a cross section of the embryo at the
cotyledon level showed that the testa and the endosperm
appeared undifferentiated. However, in this area, the presence of
transversal fibers was patent. The thickness of the precursor of
the testa and endosperm at the cotyledon level was approximately
twofold that at the radicle level. The width increment was due to
both, the presence of transversal fibers, and the rise in the number
of cells (Figure 1C). The embryo cross-section at the level of
the cotyledon showed cells with a quite marked differentiation
(Figure 1E). Four types of cells were observed: those forming
the procambium, the upper epidermis, the lower epidermis,
and the premesophyll (Figures 1C,E). It was observed that the
upper and lower epidermis contained one and two layers of
cells, respectively, in both cases with a cubic shape. On the
other hand, the premesophyll contained non-stained cells with
variable shape and size. The presence of the procambium cells
was evidenced as a group of small and densely packed cells among
the premesophyll. A longitudinal section of the complete seed
showed the position of the embryo within the seed as well as the
disposition of the transversal fibers (Figure 1D).

The Formation of the Seed Coat
Throughout Olive Fruit Development
After fertilization, the integuments of the ovule normally develop
into the seed coat or testa. The histological analysis of this tissue
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FIGURE 2 | Anatomical structure of the coats and the endosperm of the olive
seed 105 DAA, corresponding to green fruit. (A) Cross section of the testa
and the endosperm. (B) Testa and adjacent cells corresponding to the
endosperm. (C) Cell of the endosperm corresponding to the part in contact
with the embryo. (D) Testa and endosperm cross section showing the
differential content in lipids and proteins along it. Orange dotted lines
demarcate the different layers of the endosperm. OBs, oil bodies; PBs, protein
bodies; C, cuticle; Ep, epidermis; OI, outer integument; II, inner integument;
TF, transversal fibers; AL, aleurone layer; E1, endosperm layer 1; E2,
endosperm layer 2; E3, endosperm layer 3; E4, endosperm layer 4.

along three stages of the seed development has revealed that three
layers can be distinguished: (i) mucilage or cuticle, (ii) epidermis,
(iii) integument (Figures 2–4).

At the green fruit stage (105 DAA), the cuticle appeared
strongly stained, forming a layer that covered evenly the non-
stained and long shaped cells from the epidermis. Underneath
appeared the integument composed by 8–10 well packed cells
in a longitudinal orientation. The integument was divided
into two parts: the outer and the inner integument; each one
formed by 4–5 layers of cells. In the inner integument the
cells displayed a more-flatted form, with minor intracellular
spaces in comparison to the outer integument (Figure 2B).
A cross section of the coat showed the presence of transversal
fibers. These fibers crossed the integuments at the line of
separation between both integuments causing a prominence of
the coat (Figures 2A,D). This prominence causes the typical
ornamentation of the olive seed that can be macroscopically
distinguished.

At the veraison stage (130 DAA), a conspicuous loss of
thickness of the cuticle in certain areas was detected. The cells
from the epidermis appeared slightly distorted when compared
to those at the green fruit stage. Besides, the start of a laxation
in the cells from the outer integuments was noticed, whilst in the
inner integument the cells appeared more densely packed. The
transversal cells crossing the integument were observed to suffer

FIGURE 3 | Anatomical structure of the coats and the endosperm of the olive
seed 130 DAA, which corresponds to the fruit at the veraison stage. (A,B)
Cross section of the testa and cells adjacent to the endosperm. (C) Cells in
the middle part of the endosperm. (D) Cells corresponding to the part in
contact to the embryo. (E) Testa and endosperm showing differential
protein/lipid content. Orange dotted lines demarcate the different layers of the
endosperm. OBs, oil bodies; PBs, protein bodies; C, cuticle; Ep, epidermis;
OI, outer integument; II, inner integument; TF, transversal fibers; AL, aleurone
layer; E1, endosperm layer 1; E2, endosperm layer 2; E3, endosperm layer 3;
E4, endosperm layer 4.

also a light loosening, which also contributed to a progressive loss
of compaction of the seed coat (Figures 3A,B).

At fruit maturity (210 DAA), the seed coat was characterized
by the structure disorganization of the different layers. The
cuticle was irregularly disposed over the epidermal cells, with
a significant loss of width in some areas. The epidermis
cells appeared with a patent loss of the structured disposition
described for the previous stages. The same phenomena occurred
in the outer, the inner integument, and the transversal fibers
(Figures 4A,B,D).

The Formation of the Endosperm
Throughout Olive Fruit Development
The outermost layer of the endosperm (termed aleurone) was
observed to be composed by longitudinal shaped cells that
laid over the cells of the endosperm with a high content in
lipids. At the green fruit stage (105 DAA), this layer was well
developed (Figures 2A,D). At the veraison stage (130 DAA),
no significant changes were observed in the aleurone layer, with
the exception of minor modifications in the shape. The cells
set off slight penetrations in the vicinity of the endosperm cells
(Figures 3A,E). At the mature fruit stage (210 DAA), the aleurone
layer seemed with a less-structured disposition compared to the
previous stages. The lipid-rich cells forming the upper part of the
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FIGURE 4 | Anatomical structure of the coats and the endosperm of the olive
seed 210 DAA, obtained from mature fruits. (A) Cross section of the testa and
endosperm. (B,C) Cell of the endosperm close to the testa, (C) cells in the
middle part of the endosperm. (D) Testa and endosperm cross section.
Orange dotted lines demarcate the different layers of the endosperm. OBs, oil
bodies; PBs, protein bodies; C, cuticle; Ep, epidermis; OI, outer integument;
II, inner integument; TF, transversal fibers; AL, aleurone layer; E1, endosperm
layer 1; E2, endosperm layer 2; E3, endosperm layer 3; E4, endosperm
layer 4.

endosperm appeared interweaved with those from the aleurone
(Figures 4A,D).

In the olive endosperm two main types of reserve material
were detected along the seed/fruit development: lipids and
proteins. These substances have been already described during
the olive seed formation and in the olive seedling, where they have
been related in unspecified areas of the endosperm and embryo.
The proteins have been reported to accumulate forming PBs,
surrounded by lipids that form oil bodies (OBs) (Jiménez-López
and Hernández-Soriano, 2013; Jiménez-López et al., 2015).

In the present study we have observed that the endosperm
was composed by isodiametric cells with uneven distribution
of PBs/OBs (Figures 1E, 2D, 3D). The gradient of PBs/OBs
accumulation followed a similar pattern during the three stages
considered (from 105 to 210 DAA). The cells enriched in
OBs were present predominantly near the testa, with a gradual
decrease of lipids in the area near the embryo. The opposite
tendency was observed in the PBs. It was detected the presence
of differentially stained PBs within the endosperm cells. Thus,
even when considering one single cell, differential types of PB
staining was noticed. Cytokinesis phenomena occurred along the
tree stages of development as phragmoplasts were detected.

Attending to the disposition and the PBs/OBs content within
the endosperm cells, a classification of this tissue into four
layers was performed. The first layer (adjacent to the aleurone)
was named endosperm 1 (E1). It was detected as a monolayer
of isodiametric cells with an arranged disposition. These cells

contained small PBs surrounded by small OBs (Figures 1C,E).
Following the E1, the cells were bigger and with an untidy
disposition. This area was named as endosperm 2 (E2) and was
the most lipid-enriched layer (Figures 1C,E). The area named as
endosperm 4 (E4) was highly enriched in PBs, with an increment
in their size. The area named as endosperm 3 (E3) was considered
as a transition between E2 and E4 as regard to the size and
quantity of PBs/OBs.

Noticeable modifications in the pattern of accumulation of
reserve substances were observed in the endosperm 130 DAA,
corresponding to the veraison stage. The E1 layer was not so
clearly differentiated from the E2 as it was in the green fruit
stage. The E1 cells lost their arrangement and contained larger
PBs (Figures 3A,E). The differences between E1, E2, and E3 were
not so apparent (Figure 2D). However, the transition between the
E3 and E4 layers was still perceptible (Figures 3C,D).

At the mature stage, the main characteristic of the endosperm
was an increment in the homogeny of the cellular size and
PB/OBs composition. The aleurone and the E1 layers were
interweaved. A conspicuous differentiation could be observed,
with the E1+E2 representing a single layer and E3+E4 another
one (Figures 4A,C,D). The distribution of the storage material
was similar to that described by other authors at the same stage
of development (Jiménez-López and Hernández-Soriano, 2013).

The Formation of the Cotyledon
Throughout Olive Fruit Development
As described for the endosperm, the olive embryo also stocks
two main kinds of storage material: lipids and proteins (Jiménez-
López and Hernández-Soriano, 2013; Jiménez-López et al., 2015)
that build up OBs and PBs, respectively. A deep scrutiny on the
embryo histology showed an uneven distribution of this storage
material mainly in the cotyledon and the radicle.

Observation of cross sections of the embryo at the cotyledon
level (lines named “2” at Figure 1) 105 DAA showed the presence
of a storing premesophyll tissue that appeared to consist of two
zones with cells differing in shape, OBs/PBs distribution and
intracellular spaces. Taking into account the orientation of the
cotyledon sections, the two areas were identified as the future
abaxial/adaxial sites of the leaf. In both zones, the premesophyll
was covered by one/two layer of cells corresponding to the upper
and lower pro-epidermis, respectively (Figure 5).

The pro-epidermal cells of the adaxial side, called upper
pro-epidermis were cubic in shape and possessed small and
strongly stained PBs surrounded by OBs. On the other hand,
the under pro-epidermis was a monolayer of long shaped cells
with transversal disposition. Underneath, it was noticed the
presence of three layers of isodiametric cells forming the upper
premesophyll (UPM). The UPM had densely packed cells with
larger PBs compared to the upper pro-epidermal cells. The PBs
were also surrounded by OBs. The lower premesophyll (LPM)
cells occupied approximately two third parts of the cotyledon
section, and their PBs were larger than those from the UPM cells.
In the abaxial side it was noticed the presence of intracellular
spaces. Interestingly, the PBs showed different stain intensity in
both parts of the premesophyll. The lower pro-epidermis was
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FIGURE 5 | Anatomical structure of the cotyledon of the olive seed 105 DAA.
(A) Low magnification picture of the cotyledon. (B) Large magnification of the
cotyledon revealing the precursors of the vascular system (pointed out with a
red line). OBs, oil bodies; PBs, protein bodies; UE, upper epidermis; LE, lower
epidermis; LPM, lower premesophyll cells; UPM, upper premesophyll cells; Pr,
procambium; IS, intracellular spaces; n, nucleus.

composed by two layers of cells with different characteristics. The
outermost layer possessed cubic cells with small and intensely
stained PBs. Next, a layer of cells with half-way characteristics of
the outermost epidermal cells and the LPM cells was observed.
This layer was considered a transition as regard the cell size,
PBs size, PBs stain intensity, and cell shape. The presence of
nucleus was detected in all the cells along the cotyledon section
(Figure 5B).

In between the UPM and the LPM cells, the presence of
clusters of cells with irregular shape and size were distinguished,
corresponding to the precambium. These cells appeared as
densely packed, with nucleus, and without storage material
within them (Figure 5).

The analysis of the histology of the olive seed cotyledon at the
veraison stage of the fruit revealed changes in the premesophyll,
precambium, and epidermal cells, which were characterized by
changes in the disorganization of the storage material. The
nucleus was observed in the cells of all the tissues. At this stage,
the presence of structures considered precursors of stoma was
detected (Figure 6).

The upper pro-epidermis was formed at 130 DAA by a single
layer of cubic cells with parallel disposition and with small and
intensely stained PBs surrounded by OBs. The layer of cells under
the upper pro-epidermis had suffered transversal divisions giving
rise to isodiametric cells similar to those of the rest of the UPM
below. The cells from the adaxial side appeared densely packed
with a tendency toward homogeneity in the cell size, PBs size, and
PBs staining intensity. Concerning the LPM cells, the presence of
subtle changes in the size and PBs/OBs disposition was detected,

FIGURE 6 | Anatomical structure of the cotyledon of the olive seed 130 DAA.
(A) Low magnification of the cotyledon. (B,C) Large magnification of the
cotyledon at the procambium (pointed out with a red line) and lower
pro-epidermal cells, respectively. (D) Stoma. (E) Cotyledon section showing
the abaxial and adaxial sites and the cells encompassing them. OBs, oil
bodies; PBs, protein bodies; HPBs, highly stained protein bodies; LPBs, low
stained protein bodies; UE, upper epidermis; LE, lower epidermis; LPM, lower
premesophyll cells; UPM, upper premesophyll cells; Pr, procambium; IS,
intracellular space; n, nucleus; Gc, guard cells; Sc, subsidiary cells; Ssc,
substomatal cavity.

leading to a homogenization of the internal organization from the
UPM and LPM. The two zones were not so clearly differentiated
as in the previous stage with the exception of the presence of
the precambium. Moreover, in the UPM cells there was noticed
a combination of low- and highly stained PBs within the same
cell, being predominant the latest ones. This phenomenon also
was evident in the LPM cells, where the low-stained PBs were the
most abundant ones in this case. It was observed that the LPM
possessed several distinctive attributes: the intracellular spaces,
cells slightly bigger than those from the UPM, and PBs occupying
most of the volume of the cell.

The cells forming the precambium were detected in the center
of the cotyledon section. Noticeable changes in the total area
of the UPM and LPM were detected in comparison with the
previous stage, with an increment in the UPM and a drop in the
LPM area, respectively.

Modifications in the lower pro-epidermis at the veraison stage
were detected. Two layers were distinguished, both of them
composed by cubic, parallelly arranged cells, and with small PBs
intensely stained within them. However, the sizes of the PBs were
smaller in the outermost layer than in the internal one. In both
cases, PBs size, stain intensity and OBs quantity were clearly
different from the cells from LPM (Figure 6).

Precursors of stomata were observed at the abaxial side.
The lower epidermis was interrupted by the guard and the
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subsidiary cells. Below the stoma, a mass of non-stained cells with
intracellular spaces was identified. The structure was similar to
that described in Zea mays (Mauseth, 1988; Figure 6D).

The study of the anatomy of the olive cotyledon in the mature
seed corresponding to 210 DAA showed a defined structure,
with clear precursors of the spongy and palisade mesophyll. The
imbalanced distribution of the storage material within the cells of
the mesophyll was observed to be the main characteristic of this
stage (Figure 7).

The upper pro-epidermis contained a monolayer of flattened
cells disposed parallel in the plane to the surface. These cells were
observed to be highly enriched in OBs and small PBs (Figure 7C).

The UPM cells occupied half of the cross section of the
cotyledon and they were filled by numerous OBs surrounding
the PBs. There was a mixture of highly stained and low stained
PBs within the cells, mainly dominated by the highly stained
ones. The cells from the LPM had a lower OBs content that
surrounds the large PBs. Poles apart, the low stained PBs were
dominant over the high stained ones within the cells of the LPM
(Figures 6B,D).

The precambium appeared among the UPM as a group of long
shaped cells without storage material within them (Figure 7B).
At the mature stage the procambium did not show mature
xylem or phloem elements. The lower epidermis was detected
to be composed by two layers of cells with a non-arranged
disposition, with highly stained PBs and elevated quantities of

FIGURE 7 | Anatomical structure of the cotyledon of the olive seed 120 DAA.
(A) Low magnification of the cotyledon. (B) Large magnification of the
cotyledon. (C) Detail of the upper pro-epidermis and UPM cells. (D) Detail of
the lower pro-epidermis and the LPM cells. OBs, oil bodies; PBs, protein
bodies; HPBs, highly stained protein bodies; LPBs, low stained protein
bodies; UE, upper epidermis; LE, lower epidermis; LPM, lower premesophyll
cells; UPM, upper premesophyll cells; Pr, precambium; IS, intracellular space;
n, nucleus.

OBs (Figure 6D). The nucleus was observed in all the layers of
cells across the cotyledon section.

The Formation of the Radicle
Throughout Olive Fruit Development
Sections of the radicle taken form seeds at the green
fruit stage showed the presence of three different kind of
cells corresponding to the protoderm, ground meristem, and
procambium, respectively (Figure 8A). The cells from the apex,
which form to the ground meristem had a high degree of
compaction and possessed large nuclei. The PBs were also large
being surrounded by small OBs. The apical ground meristem
cells suffered anticlinal divisions (Figure 8D). Regarding the
protoderm, two layers of long shaped cells were observed, being
the PBs small and intensely stained (Figure 8B). Underneath,
a gradual change in the cell shape and the characteristics of
the stored material within the cells was detected, giving rise to
isodiametric cells with low-stained and large PBs. These cells were
bigger than those forming the protoderm and the presence of
intracellular spaces among them was detected. The procambium
cells were long-shaped, devoid of storage material, and lacking
intracellular spaces among them, which allowed differentiating
them from the meristem cells. In between the procambium and
the meristem, cells appeared as a transition concerning to the
shape and the PBs/OBs content (Figure 8C).

At the veraison stage, few changes in the histology of
the radicle were observed (Figures 8E–G). These changes
corresponded mainly to the meristem, which appeared less
packed. The cells at the apex of the meristem were an exception,
with a high degree of compaction among the cubic-shaped cells.

At the mature fruit stage (210 DAA), we observed the presence
of notorious changes in the organization and differentiation
of the cells of the radicle (Figures 8H–K). The procambium
appeared as a central bundle in the midpoint of the radicle. At the
distal end of the procambium, the quiescent center was visible,
mainly characterized by the disposition of the cells around a
central point. In the above part, the cells of the columella and
root apex displayed an arranged organization (Figure 8I). On
the left and right sides of the quiescent center it was noticed
that the cells suffered a progressive change in the shape and
content of storage material to finally give rise to the meristematic
cells. Below the quiescent center, the procambium comprises
two areas. The area located in the middle was composed by
isodiametric cells containing low-stained PBs. The external area
was comprised of long-shaped cells without OBs, nor PBs. In
both cases, the presence of the nucleus within the cells was
perceptible, as well as the absence of storage material (Figure 8J).
The protoderm was identified as two layers of long-shaped cells
longitudinally arranged. These cells were differentiated from the
adjacent meristematic cells since the latter possessed intracellular
spaces, large cellular size, large PBs, and non-well-structured cells
(Figure 8K).

SDS-PAGE protein profiles of whole seeds, isolated
endosperm (+testa) and embryo at different DAA were resolved
by SDS-PAGE under reducing conditions, as displayed in
Figure 9A. Conspicuous bands of proteins appear corresponding
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FIGURE 8 | (A–G) Longitudinal section of the embryo at the radicle part in a
seed 105 and 130 DAA. (A) Low magnification radicle showing the different
kind of cells 105 DAA. In light red appears the grown meristem at the apex; in
green the protoderm; in gray the procambium. (B) Large magnification of the
radicle showing a detail of the protoderm and the meristem 105 DAA. (C)
Large magnification of the cell of the procambium and the meristem 105 DAA.
(D) Large magnification of the ground meristem at the very apex 105 DAA. (E)
Low magnification radicle showing the different kind of cells 130 DAA. In light
red appear the grown meristem at the apex; in green the protoderm; in gray
the procambium. (F) Cell of the procambium and the meristem 130 DAA. (G)
Cell of the procambium and the meristem 130 DAA. (H–K) Longitudinal
section of the embryo at the radicle in a seed 210 DAA. (H) Low magnification
radicle section showing the different types of cells. In red appears the
meristem; in green the protoderm; in blue the root apex, in gray the
procambium. Orange dotted line demarcates two different types of cells within
the procambium; blue dotted line demarcates the columella. (I) Detail of the
radicle at the root apex and quiescent center. (J) Large magnification picture
of the meristem and the procambium. (K) Cells of the protoderm and the
meristem. P, protoderm; M, meristem; Pr, procambium; QC, Quiescent
Centre; C, columella.

to the peptides p1 to p5 as described by Alché et al. (2006), which
represent different peptides integrating the highly abundant
11S SSPs. The Western blotting profile after probing with
the anti-β-conglutin primary antibody showed two reactive
bands of c.a. 45 and 49 kDa, respectively present in all extracts,
although with different relative intensities (Figure 9B). Relative
quantification of each one of the reactive bands in all samples
showed bands of 49 kDa evenly distributed in the endosperm
and embryo tissues, with little changes in their intensity through
the time developmental course. Contrary, the bands of 45 kDa
presented noticeable changes in their intensity, particularly
along the developmental stages for a given tissue (endosperm
and embryo). The added intensities of both bands for each
stage exhibited an increasing trend in the overall amount
of β-conglutin along endosperm, embryo, and whole seed
development (Figure 9C). Relative amount of β-conglutins was
higher in the embryo compared to the endosperm.

Immunolocalization studies using the anti-β-conglutin
primary antibody yielded an intense labeling by gold particles
specifically located in the PBs present in the endosperm
and the embryo all-through the seed developmental stages
(Figures 10A–C,A’–C’). Labeling in the lipid bodies, any other
cell structures (cell wall, nucleus, and testa) and in the negative
controls processed by either omitting the primary antibody
or using the pre-immune serum (not shown) was negligible.
A statistically significant and progressive increase of labeling
density in the PBs present in both the endosperm and the embryo
was observed (Figure 10D). The overall density of labeling was
significantly higher in the embryo than in the endosperm
(Figure 10D).

Seed Weight Variability Among Olive
Cultivars
The weight of the whole fruit was a variable parameter in the
cultivars submitted to the present study (Supplementary Figures
S1A,B). They ranged from an average of 1.28 g in ‘Lechin’ to
4.91 g in ‘Ombliguillo.’ Similarly, the average weights of the
mesocarps were comprised between 0.89 g in ‘Lechín’ to 4.00 g in
‘Ombliguillo.’ Besides, the data obtained from the average weight
of the endocarp oscillated from 0.39 g in ‘Lechín’ to 0.99 g in
‘Gordal de Alhama.’ The weights of the whole fruit and that of the
pulp (mesocarp + epicarp) showed to have a positive correlation
(Supplementary Figure S1C). As regard to the number of seeds
found within each endocarp, six of the cultivars showed just one
seed, whereas in the other six cultivars we managed to observe the
presence of two seeds per endocarp in some of the fruits.

Focusing on the seed tissues we identified that the average
weights of the complete seeds measured in the 12 cultivars ranged
from 0.040 in ‘Lechín’ to 0.101 g in ‘Azul.’ The testa ranged from
to 0.005 g in the cultivar ‘3’ to 0.030 g in the cultivar ‘Hojiblanca.’
The endosperm ranged from 0.024 g in ‘Picual’ to 0.059 g in
‘Loaime.’ The embryo weights were comprised among 0.011 g in
‘Picual’ to 0.032 g in ‘Nevadillo’ (Supplementary Figure S1D).

As regard to the olive yield, measured as the ratio
complete fruit/pulp weight, the obtained data showed the lowest
ratio for ‘Llorón’ (1.20) while the highest one corresponded
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FIGURE 9 | SDS-PAGE profiles of and Western blotting analysis of
β-conglutins in samples of whole seeds, isolated endosperm plus testa and
embryo from olive fruits at different developmental stages. (A) SDS-PAGE
profiles showing conspicuous bands corresponding to 11S peptides under
denaturing, reducing running conditions. (B) Western blotting after using the
anti β-conglutin antibody. (C) Densitometry of the reactive bands to the
antibody. Green bars: green fruit (105 DAA). Light purple bars: veraison fruit
(130 DAA). Dark purple bars: mature fruits (120 DAA). ∗p < 0.001 versus the
corresponding endosperm sample at 105 DAA; ∗∗p < 0.001 versus the
corresponding embryo sample at 105 DAA; ∗∗∗p < 0.001 versus the
corresponding whole seed sample at 105 DAA; #p < 0.001 among all
samples of the same band category (49, 45, or 49+45 kDa).

to ‘Picual’ with a ratio of 1.47. On the other hand, the
fruit/endocarp ratio oscillated between 3.15 in ‘Picual’ to 5.77
in ‘Llorón’ (Supplementary Figure S1E). The endocarp/seed
ratio showed values among 4.83 in ‘Azul’ to 14.72 in
‘Picual.’ The seed/embryo ratios oscillated between 2.15 in
‘Nevadillo’ to 4.58 in ‘Ombliguillo.’ In the case of the seeds
containing two seeds per endocarp, each seed was weighted

as independent sample. Spearman correlation between the
weights of endosperm/embryo, seed/testa, seed/endosperm, and
seed/cotyledon for different olive cultivars, as well as the
registered presence of some fruits of the cultivar containing more
than 1 seed is displayed in Supplementary Figure S1F.

DISCUSSION

Endocarp morphology is a widely accepted pomological signature
for olive tree identification and classification of cultivars based on
the presence of morphological differences (Barranco and Rallo,
1984; Rallo et al., 2005), which has been later evidenced to be
in accordance with results obtained by molecular methods like
simple sequence repeat (SSR) screening (Fendri et al., 2010).
Within the endocarp, the olive seed represents a potential source
of nutrients and biological elements of high interest, in addition
of representing an additional varietal mark as demonstrated in
the present work. Such designed potential will allow increasing
the added value of this material, which is frequently disposed
of concomitantly with olive processing residues. The olive seed
can also be used as a source of genetic variability of interest
for the development of breeding programs, in combination with
the vegetative propagation of the resulting individual of interest
(Morales-Sillero et al., 2012).

Histological structure of the olive seed doesn’t substantially
differ from those of dicots as described here; however, the
distribution of the different tissues and their development has to
be assessed in order to gain knowledge and establish parameters
of maturity, which make easier the analysis of the expression
and the presence of the compounds of interest, as is the case
of 11S proteins (Alché et al., 2006; Jiménez-López et al., 2015)
and the present case of 7S proteins described here. Such studies
may help to define further technological developments, i.e., for
sub-fractioning olive seed in order to enrich certain components,
which could be majority present in a particular fraction. Also,
these analyses may help to identify histological parameters
relevant for seed and fruit physiology. Thus, the seed coats from
different species have been analyzed for a variety of purposes
such as the generation of a dichotomous key (Kaplan et al.,
2009), or to analyze implications in key physiological roles like
viability, dormancy and early control of germination (De Giorgi
et al., 2015). The seed coat from the olive tree contains a well-
defined cuticle covering the epidermis, which could be involved
in key physiological roles. The intense staining might indicate
a major presence of proteins, analogously as described in the
grape seed coat, which is also rich in polysaccharides (Cadot
et al., 2006). Proteome analysis in Arabidopsis has revealed the
presence of proteins unique to mucilage responsible of alterations
of its structure and mechanical alteration of the primary
cell wall (Arsovski et al., 2010; Haughn and Western, 2012;
Tsai et al., 2016). The key role of the seed cutin has also been
associated to soil erosion (Engelbrecht et al., 2014). However,
the protein complexity of the seed coat in the olive seed is still
unrevealed.

We observed a general laxation and disarrangement of the
coats that could be involved in the need to have access to oxygen
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FIGURE 10 | Transmission electron microscope (TEM) immunolocalization of β-conglutins in samples of endosperm plus testa (A–C) and embryo (A′–C′) from olive
fruits at different developmental stages. Gold particles (arrows) are specifically decorating protein bodies of different sizes. Lipid bodies, cell wall, and the nucleus are
devoid of gold particles. (D) Quantification of labeling density in the protein bodies of both tissues at the different stages analyzed. Green bars: green fruit (105 DAA).
Light purple bars: veraison fruit (130 DAA). Dark purple bars: mature fruits (210 DAA). CW, cell wall; OBs, oil bodies; N, nucleus; PBs, protein bodies. Magnification
bars: 50 µm. ∗p < 0.001 versus the corresponding endosperm sample at 105 DAA; ∗∗p < 0.001 versus the corresponding embryo sample at 105 DAA; #p < 0.001
among all samples.
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needed in the germination process. The three-dimensional
study of the Arabidopsis seed revealed a putative network of
intercellular air space that allows gas exchange for germination
(Cloetens et al., 2006). The X-ray in-line phase tomography
performed in maize is as practical tool for the detection of
other characteristic non-detectable by conventional microcopy
methods, like the metabolic state and the water content
(Rousseau et al., 2015). The olive seed presents intracellular
spaces and discontinuous in their structures putative involved in
the need for the gas exchange, water intake or metabolic activity
mainly in the mature stage and prior to the germination process.
The presence of a well-defined aleurone layer in the olive seed has
been described in the present study. This structure changes form
a well-structured disposition in the green stage to disorganization
in the mature stage that could be involved in some way in the easy
removal of the seed coat at the mature stage.

As regards to the endosperm, Floyd and Friedman (2000)
provided the first insight into how different endosperm
developmental patterns are evolutionarily and developmentally
related. The study of the endosperm possesses an increasing
interest further than the long-established role of the endosperm
as nourishment and mechanical barrier. The endosperm is
capable of sensing environmental signals and interacts with the
embryo establishing a bidirectional communication (Yan et al.,
2014). The endosperm in the olive tree showed a clear change
as regard to the organization and quantity of the OBs/PBs.
These data were similar to those of the embryo. Moreover, it
was found the presence of differentially stained PBs in both
tissues. Thus, the composition of both, the proteins and the lipids
could be differentially accumulated. The analysis of the fatty acid
composition of the endosperm and embryo was detected to be
different in Arabidopsis probably due to an hormonal regulation
(Penfield et al., 2004) and later confirmed in both, Arabidopsis
and B. napus (Li et al., 2006). These authors also observed
that the fatty acid profile was different among embryo tissues.
Finally, the apical meristems consist in three types of tissues that
correspond to protoderm, ground meristem and procambium.
The procambium is differentiated early in the development (60
DAA), however, the proper phloem and xylem did not appear
differentiated in the mature seed. These events correlates to those
previously described by Zienkiewicz et al. (2011) that pointed out
the complete cellular organization of the leaf olive mesophyll is
achieved 16 days after germination.

The study of the olive embryo and endosperm reveals the 11S
protein as the most abundant one in these tissues (Alché et al.,
2006). However, no studies about the presence of other specific
proteins are available till the moment, whereas the present
study confirms that 7S-type SSPs (β-conglutins) are also relevant
constituents of both the endosperm and the embryo. Both
proteomic and transcriptomic analysis aimed to agronomical
improvements have shown for example the seed coat to function
as a specialized secondary cell wall (Haughn and Western,
2012), to be involved in endosperm permeability, seed viability,
and seed dormancy which correlates with higher levels of seed
lipid oxidative stress (De Giorgi et al., 2015), with implication
in specific functions that affects the seed composition, seed
permeability, and hormonal regulation (Verdier et al., 2013). The

study of both the proteome and the transcriptome of the olive
seed (currently being approached) could represent interesting
tools for multiple purposes, including the study of specific
proteins involved in organoleptic properties of the olive oil.
Thus, the presence of seed enzymes involved in the lipoxygenase
pathway, enzymatic activities metabolizing 13-hydroperoxides
other than hydroperoxide lyase, alcohol dehydrogenase, and
alcohol acyltransferase activities among others would provide
multiple esters in the olive oil (Luaces et al., 2003, 2007).

Within the increasing demand for plant-derived proteins as
components of functional foods in the nutraceutical industry and
as an alternative to expensive and less-environmental-friendly
production of animal protein, β-conglutins are considered an
economical dietary source of good quality protein. Also, they
have positive effects on many human health dysfunctions, as
many of the seeds containing β-conglutins are protein- and
fiber-rich, low in fat and starch, and have a very low glycemic
index (Arnoldi, 2008; Duranti et al., 2008). Positive effects have
been described for these proteins on blood pressure, risk of
cardiovascular disease and the prevention and treatment of type
2 diabetes, by modulating the insulin signaling pathway and
diminishing inflammation (Lima-Cabello et al., 2017a). For the
olive seed, preliminary work (unpublished) indicates the presence
of anti-inflammatory components in the flours derived from this
material. However, the direct involvement of β-conglutins in
these effects is yet to be analyzed.

Expression of β-conglutins in the olive seed tissues is
remarkable as shown here, with at least two forms of the protein
reactive to the antibody, which might indicate the presence of
a protein maturation process, as it is the case of the olive 11S
SSPs (Alché et al., 2006), and has been proposed for β-conglutins
(Duranti et al., 2008). The 49 kDa form of the protein shows
a constitutive presence in the endosperm, embryo, and whole
seed, whereas the 45 kDa form displays developmental changes
as well as slight tissue differences. The accumulated presence of
both β-conglutin forms indicates that this protein is progressively
accumulated in the seed, through the developmental process,
and that the relative amount of β-conglutins was higher in the
embryo compared to the endosperm. Olive seed development was
already characterized as a tissue-dependent process characterized
by differential rates of legumin accumulation and PB formation
in the main tissues integrating the seed (Jimenez-Lopez et al.,
2016) on the basis of the accumulation of 11S legumin proteins.
Such developmental pattern is then shared by β-conglutins as
well. The relationships between the 45 and 49 kDa forms of
the protein must be stablished through future work. Proteomic
and transcriptomic work in course will serve the basis for
this information, and will help to determine whether these
correspond to maturation forms of the protein or the result of the
expression of differential genes. These studies will also determine
the presence of embryo- and endosperm-specific proteins, as
have been recently identified in Phoenix dactylifera (Sekhar and
DeMason, 2017).

Lupin β-conglutins are located in the endosperm and
cotyledonary PBs, as shown by immunocytochemical
experiments carried out here, and as it is also the occurrence
with olive 11S legumins. As showed by Duranti et al. (2008),
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the covalent integrity is not apparently a pre-requisite for
β-conglutin to be correctly deposited in these cellular structures,
since the mature β-conglutin from lupin dry seeds appeared
already proteolytically cleaved in a number of sites, giving
rise to complex SDS-PAGE patterns. Immunolocalization of
β-conglutins in the olive PBs likely reflects the localization
of both the 45 and 49 kDa forms of the protein, as they are
both recognized by the antibody. Quantification of the labeling
in the PBs is consistent with the quantification of the signal
of the 49+45 kDa bands in Western blotting experiments,
showing an incremental presence of these proteins through the
maturation process, analogous to that of 11S proteins, which
is concomitant with the increased presence of PBs in all the
tissues analyzed here. Also, the higher presence of ß-conglutins
in the embryo compared to the endosperm was verified in the
immunocytochemical experiments.

Both the histological features and analytical characteristics
and the localization of the olive seed β-conglutins were also
determined at longer times after anthesis (240 DAA). Such
parameters did not differ substantially from those displayed here
for 210 DAA in the cultivar ‘Picual’ and therefore were not
shown in the present work. This may suggest that maturation
of the seed ends before the maturation of the pulp in the olive
fruit.

The distinctive character of the olive endocarp morphology
and size amongst olive cultivars, previously reported by Barranco
and Rallo (1984), was also verified in the present work. However,
in this case the differences were also assessed as regard to the main
parameters of the different constituents of the seed. Although
differences among cultivars exist, some general directions can
be detected. As an example, the weights of the whole fruit
and that of the mesocarp were detected to have a positive
correlation for all cultivars, whereas the weight of the whole
seed was positively correlated with the weights of the individual
components (endosperm and cotyledon) for most cultivars, and
on the contrary, no correlation was detected between the weight
of the whole seed and the weight of the testa for most cultivars.
Such relationships may have particular meaning for future and
potential uses of particular cultivars for the extraction of seed
derived components, as it is the case of polyphenols (work in
progress). In addition, the endocarp is considered to represent an
evolutionary strategy for seed protection and dispersal (Dardick
et al., 2010). Therefore, their size, and that of the different
components of the seed should be further analyzed in relation
to their dispersion efficiency, viability, ability of germination and
vigor for the different olive cultivars, and particularly for wild
olives, which are mainly propagated by seeds. This is one of
the objectives of several research projects funding the present
work. Also, moderate and severe reductions in water availability
proportionately decrease endocarp expansion and prolong the
sclerification, delaying the date of physically perceived hardening
but not affecting the final degree of endocarp sclerification
(Hammami et al., 2013). Therefore, the analysis of the hardening
dynamics of the endocarp and the final size of the endocarps
might be used as a marker for biological studies and crop
management, as well as a marker for cultivar tolerance to water
availability.

CONCLUSION

The described anatomy and histological distribution of the olive
seed of the ‘Picual’ cultivar, allows identifying the main features
typical of dicots within a developmental time frame. Cell storage
structures (PBs and OBs) present a well-defined pattern of
accumulation, with complementary distribution in the olive seed
tissues.

Seed storage proteins of the 7S-type (β-conglutins) are
relevant components of all olive seed tissues, displaying an
accumulative pattern concurrent with the development of the
seed and fruit. These proteins are present in at least two peptide
forms, and are subcellularly associated to PBs in the different
tissues analyzed.

Moreover, a panel of other olive cultivars has been used to
compare the weight contribution of the different tissues to the
seed, seed weight variability, and the number of seeds per fruit.

These hallmarks will help to settle the basis for future studies
related to the location of different metabolites along the olive
seed and mesocarp development, and therefore helping to assess
the appropriate ripening stage for different commercial and
industrial purposes.
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FIGURE S1 | (A) De-stoned seeds from 18 fruits cv. ‘Picual’ as an example. The
endocarp and seeds are shown. (B) Dissection of the tissues from a ‘Picual’ seed.
Up to down: endocarp, testa, endosperm, and embryo. (C–E) Representation of
the different parameters in a total of 12 olive cultivars, including ‘Picual’ (arrow).

Scale bars: 20 mm. (F) Spearman correlation of several weights of the seed
tissues form different olive cultivars. (+/−) indicate positive/negative correlation
(p < 0.01). Y/N (Yes/No) indicates whether some fruits of the cultivar contained
more than 1 seed.
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Fruits are originated from the transition of a quiescent ovary to a fast-growing young fruit.
The evolution of reproductive structures such as ovary and fruit has made seed dispersal
easier, which is a key process for reproductive success in flowering plants. The complete
fruit development and ripening are characterized by a remarkable phenotypic plasticity
which is orchestrated by a myriad of genetic factors. In this context, transcriptional
regulation by non-coding small (i.e., microRNAs) and long (lncRNAs) RNAs underlies
important mechanisms controlling reproductive organ development. These mechanisms
may act together and interact with other pathways (i.e., phytohormones) to regulate
cell fate and coordinate reproductive organ development. Functional genomics has
shown that non-coding RNAs regulate a diversity of developmental reproductive stages,
from carpel formation and ovary development to the softening of the ripe/ripened fruit.
This layer of transcriptional control has been associated with ovule, seed, and fruit
development as well as fruit ripening, which are crucial developmental processes in
breeding programs because of their relevance for crop production. The final ripe fruit
is the result of a process under multiple levels of regulation, including mechanisms
orchestrated by microRNAs and lncRNAs. Most of the studies we discuss involve work
on tomato and Arabidopsis. In this review, we summarize non-coding RNA-controlled
mechanisms described in the current literature that act coordinating the main steps of
gynoecium development/patterning and fruit ripening.

Keywords: tomato, fruit development, microRNAs, lncRNAs, ripening

INTRODUCTION

Fruits are plant organs found solely in angiosperms and are commonly defined as mature ovaries
containing seeds. They are also ecologically defined as seed dispersal units, and their diversification
and specialization are key events of the adaptive success of angiosperms in a wide range of
environments (Seymour et al., 2013). The final characteristics of a mature fruit are determined
by events that take place in developmental stages ranging from floral meristem initiation to later
stages of fruit ripening. Complex mechanisms of transcriptional regulation of each of these stages
ensure proper fruit development. After floral meristem initiation, key events of fruit development
include carpel formation, differentiation, patterning and organ boundary formation. Ovule and
seed development are also fundamental processes for the completion of fruit maturation. Fruit set

Frontiers in Plant Science | www.frontiersin.org November 2018 | Volume 9 | Article 1760153

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2018.01760
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpls.2018.01760
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2018.01760&domain=pdf&date_stamp=2018-11-30
https://www.frontiersin.org/articles/10.3389/fpls.2018.01760/full
http://loop.frontiersin.org/people/581866/overview
http://loop.frontiersin.org/people/582114/overview
http://loop.frontiersin.org/people/504970/overview
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-01760 November 29, 2018 Time: 7:36 # 2

Correa et al. Non-coding RNAs in Fruit Development and Ripening

occurs when the signaling triggered by the pollination and
fertilization turns a fully developed ovary into a fast-growing fruit
that will soon initiate the ripening process.

Although physiological and molecular aspects of fruit
development and ripening are well discussed in the available
literature (Ferrándiz et al., 2010; Liu et al., 2015), few reviews
focused on the role of non-coding RNA-based molecular
regulation controlling early and late stages of fruit development.
Here, we reviewed the literature focused on the aspects of
the regulation by non-coding RNA in different stages of fruit
development, including ovule and seed development. Moreover,
we discussed aspects of fruit growth and ripening in the light
of miRNA and lncRNA-associated mechanisms. One important
question that need to be better addressed in future studies is
how transcriptional control of fruit development is conserved
between dry fruit-bearing and fleshy fruit-bearing species (e.g.,
Arabidopsis thaliana and tomato or Solanum lycopersicum,
respectively). A better understanding of the non-coding RNA-
related transcription hallmarks orchestrating early steps of fruit
development and ripening in different species may have the
potential to provide novel strategies for crop improvement.

MicroRNA MODULES INVOLVED IN
EARLY STEPS OF FRUIT PATTERNING
AND GROWTH

The carpel is the female reproductive organ that encloses the
ovules in flowering plants. The gynoecium is the innermost floral
whorl, formed by the fusion of carpels in the center of the flower.
The hypothesis of the origin of the carpels as modified leaves is
corroborated by the observation that leaf development-associated
factors also have roles in carpel development (Dinneny et al.,
2005; Scutt et al., 2006; Alonso-Cantabrana et al., 2007; Ferrándiz
et al., 2010; González-Reig et al., 2012; Seymour et al., 2013; Deb
et al., 2018). Carpel and fruit development can be broadly divided
into two main temporal set of events: an earlier set of events
that occur prior to fertilization (differentiation and patterning),
and later events, which occur after fertilization (growth, ripening
and senescence) (Ripoll et al., 2015; Deb et al., 2018). A fine-
tuned molecular regulation of each of these developmental steps
is crucial to ensure proper morphological and physiological
characteristics of the mature fruit.

MicroRNAs (miRNAs) and their targets (mostly transcription
factors; Chen, 2009) are fundamental components of molecular
modules (hereafter referred to microRNA modules) belonging
to complex circuits that control various aspects of plant
development. miRNAs inhibit the activity of their targets
by two major mechanisms: ARGONAUTE1 (AGO1)-mediated
transcriptional cleavage, and translational repression of gene
targets (Borges and Martienssen, 2015). At cell and tissue
levels, many miRNAs accumulate in a spatiotemporal manner
to modulate and/or fine-tune the expression of their targets
(Chen, 2009; Rubio-Somoza and Weigel, 2011). For instance,
some miRNAs participate in tissue patterning by restricting the
expression domain of target genes (Berger et al., 2009; Chen,
2009; Ripoll et al., 2015). On the other hand, miRNAs and targets

may be co-expressed in similar domains, where miRNAs ensure
proper transcript accumulation by dampening target transcript
levels. In this case, miRNAs generally mediate the temporal
control of transcript accumulation, in which cells and/or tissues
exhibit a gradual decrease or increase in the levels of target
transcripts as the organ develops (Aukerman and Sakai, 2003; Wu
et al., 2010; Rubio-Somoza et al., 2014; Wang, 2014; Guo et al.,
2017; He et al., 2018).

Some miRNA modules had their roles in gynoecium
and fruit development described in different model plants,
such as A. thaliana, which produces dry fruits (silique),
and tomato (S. lycopersicum), which produces fleshy fruit
(berry). Interestingly, alterations in similar miRNA modules
produce distinct phenotypic changes in gynoecium and fruits
of Arabidopsis and tomato (Xing et al., 2013; Silva et al., 2014).
Understanding what pathways are directly and/or indirectly
regulated by similar miRNA modules in different species, and
how they influence distinct fruit morphologies, will shed light
on important evolutionary aspects of fruit development. In the
next sections, we discussed examples in the literature concerning
the roles of miRNA modules in early events of fruit development
mostly in tomato and Arabidopsis.

The miR164 Module Controls Carpel
Development and Leaf Margin Serration
Through Similar Mechanisms
MiRNA-associated pathways control many aspects of plant
development. Some miRNA-targeted transcriptional regulators
that had their roles previously associated with vegetative
development, such as leaf development, had similar functions
later elucidated in carpel development. For instance, Arabidopsis
miR164-targeted CUP-SHAPED COTYLEDON1 and 2 (CUC1
and CUC2) – which belong to the NAC transcription factor
family – regulate organ boundary during the separation between
organ primordia and meristem, and control leaf margin serration
(Laufs et al., 2004; Nikovics et al., 2006; Peaucelle et al., 2007;
Hasson et al., 2011; Vialette-Guiraud et al., 2016). Earlier studies
showed that CUC1 and CUC2 operate during the initial phase
of organ initiation inhibiting cell growth in meristem-organ
and organ–organ boundaries, facilitating the separation between
adjacent vegetative and reproductive organs (Aida et al., 1999;
Laufs et al., 2004; Mallory et al., 2004). In this process, miR164
defines boundary domains by restricting the expression of CUC1
and CUC2 (the miR164 module), and proper miR164 dosage
and/or expression localization is required for organ separation.
The miR164 module also operates further in organ development,
when organ shape is being determined (Nikovics et al., 2006).
In the margins of leaf primordia, CUC2 and MIR164A are
spatially and temporally co-expressed, and the balance between
their expression controls the degree of Arabidopsis leaf margin
serration (Nikovics et al., 2006). This module operates similarly
in the regulation of leaf complexity in tomato, in which the
CUC2 ortholog miR164-targeted GOBLET (GOB) plays similar
roles during boundary establishment leading to leaflet separation.
Interestingly, the regulation of compound leaf development by
the miR164 module is conserved in Aquilegia caerulea, Solanum
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tuberosum, Cardamine hirsuta, and Pisum sativum (Blein et al.,
2008).

Like its function in leaf development, the miR164 module
is also expressed in the margins of carpel primordium
during Arabidopsis gynoecium development, and it determines
important morphological characteristics of the mature fruit
(Ishida et al., 2000; Sieber et al., 2007; Nahar et al., 2012;
Kamiuchi et al., 2014; Vialette-Guiraud et al., 2016). Arabidopsis
gynoecium is formed by two carpels that are already initiated
as two fused structures, except by the apical margins, which are
fused later to form style and stigma (Sessions and Zambryski,
1995; Nahar et al., 2012). During early gynoecia development,
the meristematic tissue called Carpel Margin Meristem (CMM)
is originated in the margins of each carpel primordia and is
responsible for producing the ovules, the ovary septum, the
transmitting tract, and promoting fusion between the apical
carpel margins (Alvarez and Smyth, 1999; Nahar et al., 2012;
Vialette-Guiraud et al., 2016). Earlier studies showed that
CUC1 and CUC2 expression is required for the activation
of the KNOX type-I gene SHOOT MERISTEMLESS (STM)
in different developmental contexts, such as the formation
of shoot apical meristem during embryo development and
leaf serration in Arabidopsis (Takada et al., 2001). In such
processes, STM expression is required to establish and maintain
meristematic tissues. The same mechanism seems to operate
in the establishment and maintenance of CMMs during carpel
development in Arabidopsis (Kamiuchi et al., 2014). Most
cuc1cuc2 double mutants failed to form CMM, producing mature
gynoecia with drastically reduced or complete loss of ovules
and septum. Arabidopsis plants expressing miR164-resistant
versions of CUC1 and CUC2 showed expanded domain of
STM expression, resulting in carpel primordia with altered
size and number of CMM, of which most initiated in altered
positions. These plants produce mature fruits with internal
filamentous structures (Kamiuchi et al., 2014). When not
regulated by miR164, CUC1/2 expression is less precise and
can expand out of the boundary strips, resulting in incorrect
CMM positioning, which leads to carpel and fruit developmental
aberrations.

SPATULA (SPT) encodes a basic helix-loop-helix (bHLH)
transcription factor, and Arabidopsis loss-of-function spt mutants
produce ovaries with split or incomplete fused carpels and
defective CMM-derived tissues (Heisler et al., 2001; Nahar et al.,
2012). cuc1;cuc2 mutations partially suppress the split carpel
phenotype of spt mutant, indicating that congenital carpel fusion
depends on SPT-based down-regulation of CUC1 and CUC2.
Thus, the coordinated interaction among SPT, CUC1, and CUC2
regulates Arabidopsis ovule and septum development during the
progression of fruit growth (Nahar et al., 2012). It was recently
shown that SPT enables cytokinin signaling, which provides
meristematic properties to CMM. SPT seems to play a role
in the interaction between auxin and cytokinin pathways, as
SPT induces ARABIDOPSIS RESPONSE REGULATOR 1 (ARR1)
directly. SPT and ARR1 induce the expression of the auxin
transporter PIN-FORMED 3 (PIN3) and the auxin biosynthesis
gene TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS
1 (TAA1, Reyes-Olalde et al., 2017).

The role of the tomato CUC2 homolog GOB was studied
in detail during leaf development and complexity, although
little is known about the function of GOB in reproductive
development. Loss-of-function GOB mutant (gob-3) produces
fruits with fewer locules, whereas gain-of-function GOB mutant
(which contains a miR164-resistant version of GOB, the Gob-
4d) displays fruits with extra carpels and increased number of
locules (Berger et al., 2009). Since leaf complexity was the main
objective of this work, no mechanism was proposed of how the
miR164 node (miR164-targeted GOB) controls locule number
in tomato fruits. On the other hand, tomato miR164-targeted
NO APICAL MERISTEM 2 (SlNAM2), another member of the
NAC transcription factor family, was shown to have an important
role in organ boundary maintenance during floral development
(Hendelman et al., 2013). Unlike GOB, SlNAM2 is not expressed
in boundaries between floral meristem and organ primordia,
as SlNAM2 expression was not detected before carpel fusion in
flower buds. Data thus far suggest that GOB functions during the
formation of the boundaries, being expressed at earlier stages of
organ primordia development, whereas SlNAM2 is expressed at
later stages of floral whorl development, being responsible for the
maintenance of the boundaries established by GOB (Hendelman
et al., 2013). Plants overexpressing mSlNAM2 (a miR164-resistant
version of SlNAM2) produced gynoecia with shorter stamen
and styles and wide pistil, the latter likely due to the extra
carpel formation. Although weaker, mSlNAM2 phenotypes were
similar to Gob-4d phenotypes, which is consistent with the
proposed SlNAM2 role in boundary maintenance, but not
boundary formation (Berger et al., 2009; Hendelman et al.,
2013). In summary, the functions of the miR164 module in
Arabidopsis and tomato gynoecium patterning illustrates the
crucial importance of boundary formation and maintenance
during fruit development. Proper function of the miR164
module is essential for the establishment and maintenance of
gynoecium development, not only in syncarpous species such as
Arabidopsis and tomato, but also in monocarpous species like
Medicago truncatula (Berger et al., 2009; Vialette-Guiraud et al.,
2016).

The Role of miR156/miR157 in Carpel
and Fruit Development
MiR156 targets members of the SQUAMOSA PROMOTER
BINDING PROTEIN-LIKE (SBP/SPL) transcription factor family.
In Arabidopsis and tomato, 11 out of 17 SBP/SPLs harbor
the miR156 recognition site (Salinas et al., 2012; Preston
and Hileman, 2013). The miR156 module (miR156-targeted
SBP/SPLs) defines the evolutionary conserved age-dependent
floral pathway in several plants, including tomato (Silva et al.,
2018). Interestingly, the miR156 module has been proposed as a
main target for crop improvement, aiming to enhance agronomic
traits such as the timing of vegetative and reproductive phase
change, leaf development, tillering/branching, panicle/tassel
architecture, fruit development and fertility (Wang and Wang,
2015).

In terms of gynoecium and fruit development, it was
demonstrated that Arabidopsis SPL8 (which is not targeted by
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miR156) acts redundantly with miR156-targeted SPLs in the
control of carpel development (Xing et al., 2013). Transgenic
plants overexpressing miR156 (p35S::MIR156b) produce flowers
with reduced ovary size but unaffected structure, while ovaries
of spl8-1 mutant show a slight reduction in size and resembles
wild-type (WT). Conversely, the double mutant p35S::MIR156b
spl8-1 show extremely modified gynoecia. The gynoecium shape
of p35S::MIR156b spl8-1 is completely altered, displaying an
enlarged upper region and a narrower basal region, abnormal
septum development, and absence of transmitting tissue to
support pollen tube growth into the ovary (Xing et al., 2013).
Considering that SPL8 and the miR156-targeted SPLs 2, 6, 10, 11,
and 13 are expressed in overlapping domains during gynoecium
development, this data supports the idea that they have partly
redundant roles in the patterning of the gynoecium and fruit
development. Furthermore, seed production decreased about
60% in p35S::MIR156b plants in comparison with WT and spl8-1
(which show unaltered seed production), whereas p35S::MIR156b
spl8-1 produces approximately 96% less seeds than WT (Xing
et al., 2013). Together, these data indicate that the function
of at least one of these SPLs is crucial for proper gynoecia
development. Another study showed that Arabidopsis squint
(sqn) mutants contain loss-of-function alleles for Cyclophilin40
(CyP40), which increases the activity of miR156 by promoting
AGO1 activity. sqn plants showed elevated expression of miR156-
targeted SPLs and produce siliques with increased carpel number
(Smith et al., 2009).

Interestingly, the miR156 module may function by
different mechanisms or have different roles in dry fruit
and fleshy fruit-bearing species. As mentioned above, ovaries of
Arabidopsis p35S:MIR156b plants do not present extra carpels
or undetermined growth (Xing et al., 2013). On the other hand,
the overexpression of miR156 (p35S:MIR156b) in tomato plants
led to the production of extremely modified ovaries formed by
multiple fused extra carpels and undifferentiated tissue inside
the post-anthesis ovaries (Silva et al., 2014). After fruit set,
the undifferentiated tissue inside the ovaries of p35S:MIR156b
plants continues to grow, forming fruit-like structures growing
from the stylar end of the fruits. Furthermore, mature fruits
show increased number of locules due to the presence of
extra carpels in the ovary (Figure 1; Silva et al., 2014). Floral
identity genes like FUL1/TDR4, FALSIFLORA (FA, Arabidopsis
LEAFY ortholog; Lozano et al., 2009) and MACROCALLYX
(MC, Arabidopsis APETALA1 ortholog; Lozano et al., 2009)
were strongly down-regulated in tomato p35S:MIR156b ovaries
(Silva et al., 2014). Arabidopsis FUL, AP1 and LFY are direct
targets of SPL3 (Yamaguchi et al., 2009), although it is still
unknown whether their tomato orthologs are direct targets of
SlSBP3. Interestingly, the CUC2 and STM orthologs GOB and
TKN2, respectively, are up-regulated in tomato p35S:MIR156b
ovaries. MiR164-targeted GOB and TKN2 are associated with
leaf complexity in tomato but both can also regulate the number
of locules per fruit (Parnis et al., 1997; Berger et al., 2009). This
finding indicates a link between miR156 and miR164 modules
and suggests that tomato miR156 module controls boundary
formation and establishment as well as locule number through
GOB and perhaps other NAC domain-containing genes (such

FIGURE 1 | MIR156 overexpression alters tomato fruit determinacy and locule
number. (Upper) Wild-type (WT) fruits and undetermined p35S::MIR156b
fruits. (Lower) Three-locular WT fruits and four-locular p35S::MIR156b fruits.
Bars: 1 cm.

as SlNAM2). As expected, tomato plants overexpressing miR164
lead to GOB down-regulation and the production of fruits
with normal shape but reduced locule number (Silva et al.,
2014).

Most plant genomes also contain miR157, a miR156
closely related miRNA which differs from miR156 by three
nucleotides (Reinhart et al., 2002). MiR157 overexpression in
Arabidopsis generates plants phenotypically similar to miR156
overexpressors, but miR157 specific functions are still unknown
(He et al., 2018). MiR157 seems to be more abundant
but less effective on SBP/SPL repression, perhaps because
it is less efficiently loaded onto AGO1 (He et al., 2018).
Transgenic cotton plants overexpressing miR157 produced
smaller gynoecium, with less ovules per ovary and decreased
seed production in comparison with WT (Liu et al., 2017).
These plants showed reduced expression of two MADS-
box transcription factors (orthologs of AtAGL6 and SlTDR8).
In addition, auxin response was attenuated in ovaries of
miR157-overexpressing cotton plants. It is possible that miR156
and miR157 modules regulate gynoecium development by
overlapping but also specific mechanisms, although additional
studies are needed to unravel miR157 specific functions in
reproductive development.

miR396 Module Regulates CMM
Meristematic Competence and
Pluripotency During Gynoecium
Development
The GROWTH-REGULATING FACTORs (GRFs) belong to a
plant-specific transcription factor family that has nine members
in Arabidopsis, seven of which (GRF1, GRF2, GRF3, GRF4, GRF7,
GRF8, and GRF9) are targeted by miR396, representing the
miR396 module (Liang et al., 2014; Lee et al., 2014, 2017). MiR396
module regulates several developmental processes, such as leaf
development, floral development, and root cell reprograming
during nematode infection (Lee et al., 2009; Hewezi et al., 2012).
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Arabidopsis plants overexpressing miR396 (p35S:MIR396a)
show gynoecium developmental defects such as gynoecia formed
by only one carpel and siliques (dry fruits) producing a reduced
number of seeds (Liang et al., 2014; Lee et al., 2017). Arabidopsis
GRFs interact physically in the nucleus with the transcriptional
co-activators GRF-INTERACTING FACTOR1, 2 and 3 (GIF1,
GIF2, and GIF3) (Liang et al., 2014). Because GIF-GRF complexes
are crucial for meristematic competency and pluripotency of
CMM cells (Lee et al., 2017), high miR396 levels may lead to
low GRFs available to form these heterodimers, hence CMM
loses its meristematic competence and pluripotency over time
(Liang et al., 2014; Lee et al., 2017). Single GRF loss-of-function
mutants produce WT-like siliques, whereas gif1 single mutant
produces normal pistil and siliques but with reduced size. Siliques
of the double transgenics p35S:MIR396a;p35S:mGRF7 and
p35S:MIR396a;p35S:mGRF9 (both expressing miR396-resistant
versions of GRF7 and 9 transcripts, respectively) can recover
WT silique phenotypes, indicating that at least miR396-targeted
GRF7 and 9 have roles in fruit development (Liang et al.,
2014). The phenotypes of gynoecium and siliques of the triple
mutant gif1 gif2 gif3 phenocopy those of the double mutant
p35S:MIR396a grf5 (GRF5 is not targeted by miR396), producing
extremely short and almost sterile siliques, generally lacking
valves, whereas some GRF triple mutants (e.g., grf1/grf2/grf3
and grf7/grf8/grf9) present WT-like siliques (Liang et al., 2014).
The triple mutant grf1 grf3 grf 5 show single-valve gynoecia
and slight defects on floral organ separation and number, but
these defects were strongly enhanced by the addition of grf2
mutation to this background (generating the quadruple mutant
grf1grf2 grf3 grf5). Together, these findings indicate that GRFs act
redundantly to modulate Arabidopsis gynoecium patterning and
fruit development.

The mechanisms by which GRF-GIF dimers promote CMM
meristematic capacity in Arabidopsis gynoecium were not well
elucidated, but available data suggest that they may be associated
with polar auxin transport (PAT) (Lee et al., 2017). Arabidopsis
PAT mutants (pin-formed1 and pid) and some auxin biosynthesis
mutants (yuc1, yuc4 and wei8 tar2) produce gynoecia phenotypes
identical to gif p35S:MIR396a plants and grf multiple mutants.
The addition of gif mutations to a pid-3 mutant (a PINOID
mutant with weak developmental defects) or treatment of gif
mutants with N-1-Naphthylphthalamic Acid (NPA, an auxin
polar transport inhibitor) synergistically enhance gynoecium
developmental defects of pid-3 or NPA-treated WT plants (Lee
et al., 2017). These findings indicate an interplay between
miR396, GRF-INTERACTING FACTORs and auxin during
gynoecium patterning.

Unlike Arabidopsis, the possible role of the miR396 module
in tomato fruit development has not been described in detail.
The only study in tomato thus far showed that miR396 down-
regulation (or GRF de-regulation) seems not to affect CMM
formation but rather it leads to a significant increase in fruit
size (Cao et al., 2016). This is consistent with the main role
of GRFs in modulating cell proliferation and cell expansion in
several developmental contexts (Lee et al., 2009). Since neither
fruit shape nor ripening was altered in the transgenic tomato
plants down-regulating miR396 (Cao et al., 2016), the authors

proposed that these plants might provide a new way to enhance
tomato fruit yield.

MicroRNA160 Module Controls Carpel
Development by Modulating Auxin
Responses
Some microRNAs, such as miR160, are crucial for auxin
signaling during several developmental processes. MiR160,
which targets the AUXIN RESPONSE FACTORS ARF10, 16,
and 17 (Hendelman et al., 2013; Damodharan et al., 2016),
is another example of a miRNA module that apparently
has different roles in the regulation of dry and fleshy fruit
development.

The Arabidopsis floral organs in carpels (foc) mutant contains
a Ds transposon insertion in the 3′ regulatory region of the
MIR160a gene, which disrupts its native expression pattern,
leading to the accumulation of ARF10, 16, and 17 and low
auxin responses in various organs (Liu et al., 2010). These
regulatory disruptions lead to abnormal embryo, seed, and flower
development. foc plants show some degree of indeterminacy
during gynoecium patterning, which is observed by the
production of floral organs inside the siliques and sometimes
whole inflorescences emerging from siliques. Furthermore, foc
mutant produces abnormal seeds and viviparous seedlings. It
was also shown that 3′ regulatory region bears three putative
auxin-responsive elements (AuxRE) and MIR160a expression
is positively regulated by auxin. Thus, the disruption of
this regulatory region impairs the induction of MIR160a
expression by auxin, impacting fruit development (Liu et al.,
2010).

The miR160 module (miR160 and their targets) seems
also to have an important, but different, role in tomato
fruit development. Transgenic tomato plants (STTM160-
expressing plants) with knocked-down miR160 expression
generated by the Short Tandem Target Mimic (STTM) approach
(Teotia and Tang, 2017) produce ovaries with elongated
morphology and thinning of the placenta, which developed
into fruits with abnormal pear-shaped fruit morphology.
These changes were associated with miR160 depletion and
concomitant de-regulation of SlARF10B and SlARF17, and
mostly SlARF10A in STTM160-expressing plants (Damodharan
et al., 2016). Nevertheless, unlike Arabidopsis foc mutant,
no indeterminacy was observed in gynoecia of STTM160-
expressing tomato plants. Such discrepancy between phenotypes
of tomato and Arabidopsis miR160 loss-of-function plants
may be due to the fact that SlARF16 is not de-regulated
in STTM160-expressing tomato plants, despite the miR160
legitimate site observed in SlARF16 (Damodharan et al.,
2016).

MiR160-guided cleavage of some ARFs is also needed for
proper leaf development in tomato and Arabidopsis. Interestingly,
STTM160 tomato plants and 5mARF17 (plants expressing a
miR160-resistant version of ARF17) Arabidopsis plants showed
similar leaf phenotype, which is reduced leaf blade and strongly
lobbed leaflet/leaf margins (Mallory et al., 2005; Damodharan
et al., 2016).
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miR172 Limits the Growth-Repressing
Activity of APETALA2-Like Genes During
Fruit Expansion
All microRNA modules discussed so far are mostly associated
with very early stages of carpel development, such as patterning
and differentiation, and the proper control of these stages
have great impact on mature fruit morphology and fertility.
On the other hand, the miR172 module seems to control not
only fruit patterning, but also fruit growth, which comprises
a developmental stage after pollination, when the ovary is
fully developed. In Arabidopsis, the miR172 module comprises
the microRNA172 and its targets [APETALA2-LIKE (AP2-like)
transcription factors]: APETALA2 (AP2), TARGET OF EAT1,
2 and 3 (TOE1, TOE2, and TOE3), SCHLAFMUTZE (SMZ),
and SCHNARCHZAPFEN (SNZ) (Wu et al., 2010). Interestingly,
pioneer studies showed that miR172 can guide not only AP2-like
transcript degradation but also its translational repression (Chen,
2004).

Arabidopsis fruit undergoes dramatic increase in fruit size
after fertilization, and different tissues grow at different rates
(for review please see Ferrándiz et al., 2010). MiR172 module
seems to be crucial to specify which regions of the carpel will
go through dramatic expansion and which region will arrest fruit
growth. AP2 encodes an AP2/EREBP transcriptional repressor,
which was shown to repress valve margin and replum growth
post-fertilization by repressing the expression of genes that confer
identity to valve margin (INDHEISCENT and SHATTERPROOF)
and replum (BREVIPEDICELLUS and REPLUMLESS) (Ripoll
et al., 2011). In this context, AP2 prevents replum overgrowth
and overproliferation of the layer of lignified cells (LL) (which
are associated with fruit dehiscence; Rajani and Sundaresan,
2001; Liljegren et al., 2004) in the valve margin. Consistent with
this, ap2 mutants produce siliques with oversized replum and
slightly delayed dehiscence due to increased number and size
of LL (Ripoll et al., 2011). Nevertheless, after pollination the
valves undergo a conspicuous cell expansion stage, increasing
dramatically fruit size. This pollination-dependent valve growth
was shown to be blocked in plants with decreased miR172
activity – via target mimicry (MIM172) approach (Franco-
Zorrilla et al., 2007) – and in plants expressing a miR172-
resistant AP2 version, resulting in smaller fruits (Ripoll et al.,
2015). For proper valve expansion, AP2 and TOE3 activities
must be inhibited by miR172 only in the valves. The MAD-
box transcription factor FRUITFULL (FUL) displays similar
expression pattern as miR172, being expressed in the valves, and
ful mutants resemble MIM172 plants, presenting arrested growth
phenotype in the valves. Furthermore, analysis of different
degrees of homo and heterozygosity of ARF6 and ARF8 mutant
alleles arf6 and arf8 in double mutants show that fruit valve
expansion decreases with the increasing ARF mutant allelic
dosage. Valve growth is even more limited when arf6/8 are
introduced in ful, and arf6 arf8 ful triple mutants produce siliques
with extremely impaired growth. FUL, ARF6, and ARF8 are
expressed only in the valves (except valve margins), where they
form protein complexes that bind to the MIR172C promoter
and activate its expression. AP2 and TOE3 are expressed in the

whole carpel, but miR172 induction in the valves restricts AP2
activity to the valve margins and replum, allowing it to repress
cell elongation in these locations but not in the valves. Through
this mechanism, miR172 fine-tunes fruit patterning and growth
by restricting the activity of AP2-like genes to certain locations
within the fruit (Ripoll et al., 2015). Considering that miR167
negatively regulates ARF6 and ARF8 (Wu et al., 2006), it will be
interesting to determine whether this miRNA participates in this
mechanism by specifying ARF6/8 expression pattern.

Although high levels of miR172 have a positive effect on
Arabidopsis fruit growth (Ripoll et al., 2015), this is not always the
case for other species. For instance, over-expression of a MIR172
gene has a negative influence on fruit growth in apple (Malus
domestica), resulting in a dramatic reduction in fruit size (Yao
et al., 2016). Unlike Arabidopsis and tomato fruits, which are both
derived from ovaries, apple fruits are mostly derived from the
hypanthium that is hypothesized to consist of the fused bases of
the sepals, petals, and stamens (Pratt, 1988). Interestingly, over-
expression of the same MIR172 gene in tomato results in carpel-
only flowers which developed into parthenocarpic fruits (Yao
et al., 2016). These examples nicely illustrate that the influence
of a particular miRNA module on fruit growth depends on the
fruit type and plant species.

MicroRNA-CONTROLLED PATHWAYS
MODULATING OVULE AND SEED
DEVELOPMENT DURING FRUIT
GROWTH

The ovule is the female sexual organ in higher plants and
a strict control of ovule development is crucial for plant
reproductive success. Ovule is required to enclose the female
gametophytes and, more importantly, it is from the fertilized
ovules that seeds arise. Ovule structures are conserved in
most plants, and comprise the embryo sac, the nucellus, the
integument (which originates the seed coat) and the funiculus,
which makes the connection between the ovule and placenta.
Ovule and seed development are under control of genetic
(e.g., transcription factors, non-coding RNAs), physiological
(hormones) and epigenetic factors (i.e., chromatin remodeling
and DNA methylation) (Skinner et al., 2004; Kelley and Gasser,
2009; Yamaguchi et al., 2013; Cucinotta et al., 2014). In this part of
the review, we will discuss the findings of how some small RNAs
modules act to modulate ovule and seed development, which
are crucial developmental processes that take place during fruit
development and ripening.

It was recently shown by our research group that the miR159
module is crucial for ovule and seed development in tomato
(da Silva et al., 2017). The miR159 module comprises the
microRNA159 and its targets, SlGAMYB1 and SlGAMYB2, which
belong to the R2R3 MYB domain transcription factor family.
GAMYB-like genes are regulated by gibberellin and by the
microRNA159 family in different tissues and developmental
contexts (Gubler et al., 1995; Tsuji et al., 2006; Alonso-Peral
et al., 2010). MiR159 and its targets are expressed early during
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tomato placenta and ovule development, which suggest that
the miR159 module may be involved in the initial steps of
ovule development. Likewise, the overexpression of SlMIR159
(p35S::SlMIR159) disrupts ovule development and induces
obligatory parthenocarpy. Such phenotype is more severe than
what is shown in AtMIR159a-overexpressing Arabidopsis plants,
which generates fertile siliques when pollinated with WT pollen
(Achard et al., 2004). Tomato, transgenic plants harboring the
p35S::SlMIR159 construct displays defects in the establishment
of the embryo sac, which may be due to the observed lower
expression of AINTEGUMENTA-like genes (da Silva et al.,
2017). AINTEGUMENTA (ANT) gene is an APETALA2-like
transcription factor required for ovule and integument initiation
(Elliott et al., 1996). Although tomato lacks known ANT
mutants, it was shown in rice that ANT was also strongly
repressed in gamyb mutants displaying ovule developmental
defects (Tsuji et al., 2006). MiR159 module interacts with tomato
AINTEGUMENTA-like genes to drive developmental progression
of ovules and, thus, modulates tomato fruit set. Moreover, our
work showed that miR159 module interacts with the miR167
module. Down-regulation of miR167 and concomitant SlARF8
de-regulation in p35S::MIR159 plants may be also responsible for
the arrested ovule development (da Silva et al., 2017), illustrating
the link between the miR159 module and auxin during fruit set.

Parthenocarpy, the developmental process in which fruits
develop in the absence of fertilization (Varoquaux et al., 2000),
can be easily induced in grapevine (Vitis vinifera) by exogenous
gibberellin (GA) application (Wang C. et al., 2018). These
authors show that VvmiR159c and its target VvGAMYB are
dynamically and opposing expressed during flowering and
fruit set. GA treatment is capable of inducing VvmiR159c
and, consequently, down-regulating VvGAMYB in reproductive
organs. These observations led the authors to suggest that the
miR159 module is associated with GA-induced parthenocarpy
in grapevine (Wang C. et al., 2018), similarly to what we have
discovered in tomato (da Silva et al., 2017).

The use of high-throughput sequencing approaches also
provided evidences of the activity of miRNA modules during
ovule development. In cotton (Gossypium hirsutum), small RNAs
profiles of developing ovaries showed distribution of several small
RNA signatures, including microRNAs (Abdurakhmonov et al.,
2008). Several conserved microRNA families were identified in
cotton ovules, including miR156/157, miR159, miR164, miR168,
and miR395. These results are important to provide initial
information for future functional experiments. In addition,
several predicted miRNA targets were validated via degradome
sequencing (a modified version of 5′-Rapid Amplification of
cDNA Ends that is combined with high-throughput, deep
sequencing to detect transcript ends; Ma et al., 2015), reinforcing
the idea that conserved miRNA modules may be important in
ovule development of cotton (Xie et al., 2015).

MicroRNAs are also required for embryogenesis, which is a
key developmental step for plants to establish the seed set. To
complete its development, the embryo undergoes specific stages,
which in Arabidopsis are defined by its morphology as globular,
heart, torpedo, and walking stick stages (Jürgens, 2001). Such
developmental stages are known to be regulated by transcription

factors, small regulatory RNAs, signal transduction orchestrated
by kinases, auxin gradients, and epigenetic mechanisms (i.e.,
DNA methylation, histone acetylation, among others). Thus,
these regulatory pathways are key determinants of the fate
of primordia cell lineages, and also drive inheritance that
is programmed via mitosis at early stages of the embryo
development (Willemsen and Scheres, 2004).

DICER-LIKE1 (DCL1) is a key enzyme for the
pri-/pre-miRNA processing (Reinhart et al., 2002; Kurihara and
Watanabe, 2004; Park et al., 2005). Genome-wide transcriptional
profiling of the Arabidopsis mutant dicer1 (dcl1) shed some
light regarding the importance of microRNA modules during
early embryo development. At the early globular stage, dcl1
embryo display about 50 miRNA targets de-repressed due to
the lack of miRNA regulation. Some of these targets (usually
transcription factors) are required for differentiation at later
stages of embryogenesis (Nodine and Bartel, 2010). In addition,
in dcl1 embryos, miR156-targeted SPL10 and SPL11 are highly
up-regulated, which suggest that the de-regulation of these
transcription factors is at least in part responsible for the dcl1
embryo abnormalities (morphological defects and arresting
growth at the globular stage). Thus, one of the first roles of plant
microRNAs is to repress its targets at early developmental stages
to prevent precocious differentiation during embryogenesis
(Nodine and Bartel, 2010). This idea is further supported by
the finding that Arabidopsis double mutant ago1/ago10 displays
embryo lethality, probably due the highly activity of small
RNAs targets (Lynn et al., 1999; Mallory et al., 2009). Argonaute
(AGO) proteins are part of the RNA-induced silencing complex
(RISC), and are required for the repression of microRNA targets
(Rhoades et al., 2002; Zilberman et al., 2003).

MiRNA module may also affect seed development. MiR397
negatively regulates members of the Laccase family. MiR397-
targeted Laccase4 is a member of the blue copper oxidase/p-
diphenol:dioxygen oxidoreductase family and participates in
lignin biosynthesis (Gavnholt and Larsen, 2002; Mayer and
Staples, 2002). The miR397/Laccase4 module has been implicated
in the control of the number of seeds and seed size.
Overexpression of MIR397b in Arabidopsis leads to reduce
lignin deposition. Interestingly, in terms of fruit development,
transgenic plants with less lignin produce bigger siliques with
more and enlarged seeds. Similar results are observed in
transgenic rice plants overexpressing MIR397a and MIR397b,
which are able to produce enlarged grains (Zhang et al., 2013;
Wang C.J. et al., 2014). Such studies highlight that miR397-
mediated development via regulating laccase genes might be a
potential tool not only for engineering plant biomass production
with less lignin, but also for manipulating plant seed yield.

NON-CODING RNAs IN THE
REGULATION OF FRUIT RIPENING

In the first section of this review, we discussed the main
microRNA modules involved in diverse aspects of early fruit
development, which is summarized in Figure 2A. In this
last section, we will discuss a few examples available in the
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FIGURE 2 | Non-coding RNA networks associated with carpel patterning and fruit ripening. (A) Summary of miRNA modules that control early (e.g., CMM
establishment and maintenance) and late aspects of Arabidopsis fruit development. MiR396 and miR164 modules have important regulatory roles in CMM
maintenance. MIR172C is induced by AUXIN RESPONSE FATORS ARF6/8 and FRUITFULL (FUL) specifically in the valves, and this specificity is necessary for
proper fruit growth after pollination. MiR172-guided APETALA2 (AP2) mRNA cleavage in the valves (but not valve margins) promotes valve growth due to the
repression of AP2 growth-blocking activity. Growth is blocked by AP2 in valve margins and replum, where miR172 is not expressed. 1 – stigma, 2 – style, 3 – valve,
4 – Valve margin, 5 – replum, 6 – septum, 7 – ovule, 8 – carpel margin meristem (CMM). GRF, GROWTH-REGULATING FACTOR; GIF, GRF-INTERACTING FACTOR;
STM, SHOOT MERISTEMLESS; CUC1/2, CUP-SHAPED COTYLEDON1 and 2. (B) Graphic shows the accumulation of miRNA-cleaved transcripts of COLORLESS
NON-RIPENING (CNR) and APETALA2 (AP2) through four stages of fruit development/ripening: 5 days after pollination (5 DAP), Mature green (MG), Breaker (Br), and
Red ripe (RR) (adapted from Karlova et al., 2013). MRNA cleaved product accumulation occurs in the breaker stage, coinciding with an ethylene peak production.
Lnc1840 and lnc1459: long non-coding RNAs. Black lines in the transcriptional networks denote direct regulation, whereas gray lines denote indirect regulation.
Question mark denotes that is uncertain if CNR forms a complex with RIN. SlCTR4, tomato CONSTITUTIVE TRIPLE RESPONSE 4.

literature that reinforce the fundamental roles of non-coding
RNA-mediated regulation also in fruit ripening.

Conserved and Solanaceae-Specific
miRNA Modules Control Tomato Fruit
Ripening
Tomato plants bearing the dominant mutation Cnr (COLORLESS
NON-RIPENING) produce fruits with characteristics associated
with impaired ripening, such as inhibited softening, yellow
skin, and pericarp lacking pigments because of the arrested
biosynthesis of ripening-related pigments (Thompson et al.,
1999). Furthermore, mutant plants produce lower amounts of
ethylene and exogenous ethylene application does not recover
this phenotype. Positional cloning showed later that a SPL/SBP
gene (called SlSBP3/CNR) containing a potential miR156/157
binding site resides in the Cnr locus. Cnr is an epimutation caused
by spontaneous heritable hypermethylation of cytosine residues
of the SlSBP3/CNR promoter, leading to SlSBP3/CNR repression
(Manning et al., 2006). Although the mechanism by which
SlSBP3/CNR controls fruit ripening remains unclear, recent data
suggest that the MADS-box transcription factor RIPENING
INHIBITOR (RIN) and CNR may be part of the same protein
complex that induces the expression of ripening-related genes
(Martel et al., 2011). RIN controls both ethylene-dependent and
independent ripening regulatory pathways, interacting directly
with the promoter of many known genes associated with key

ripening processes, such as ethylene biosynthesis, perception
and signal transduction, cell wall metabolism, and carotenoid
biosynthesis. Nevertheless, CNR is required for RIN promoter
binding activity, as RIN does not interact with the promoters
of ripening-related genes in the Cnr mutant (Martel et al., 2011;
Qin et al., 2012; Fujisawa et al., 2013). Although CNR and RIN
proteins do not interact, it is possible that these transcription
factors are part of the same protein complex that modulates the
expression of key ripening genes. Substantiating this hypothesis,
rin and Cnr mutants have similar fruit phenotypes such as
blocked ripening and impaired response to exogenous ethylene
(Vrebalov et al., 2002; Martel et al., 2011).

Virus-induced gene silencing (VIGS)-based delivery of mature
miR157 in tomato fruits reduced CNR transcript accumulation
and delayed ripening in the injected fruit areas (Chen et al.,
2015). Degradome analyses indicate that miR156 cleaves CNR
in different stages of fruit ripening (Karlova et al., 2013).
Surprisingly, VIGS-based delivery of miR156 does not produce
any alteration in fruit ripening until the breaker stage, and these
fruits show early softening (Chen et al., 2015). These observations
suggest that the miR156/miR157 module may be necessary for
proper control of fruit ripening and that the closely related
miR156 and miR157 play different roles in the temporal control
of the ripening-associated processes.

Tomato miR172-targeted AP2a appears to have complex
functions in the control of diverse ripening-related processes,
regulating mostly genes associated with ethylene biosynthesis and
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signaling (Karlova et al., 2011). AP2a silencing through RNAi
leads to the production of fruits that ripe, but never turn from
orange to red, showing altered levels of various carotenoids and
increased chlorophyll levels, although they produce high levels
of ethylene. AP2a seems to act downstream to RIN and CNR,
as its expression is negatively regulated in rin and Cnr mutants
and CNR binds to AP2a promoter. Thus, CNR induces AP2a
expression directly, although AP2a represses CNR expression in a
negative feedback loop (Karlova et al., 2011). Taken together, the
evidences in tomato thus far indicate that both miR156/miR157
and miR172 modules and the interaction between their targets
(CNR and AP2a) are important to proper fruit ripening. In fact,
degradome analysis showed that levels of the CNR and AP2a
miRNA-guided cleavage products vary among different ripening
stages, showing peak accumulation of cleavage transcripts during
breaker stage, which is also the peak of ethylene production
(Karlova et al., 2013). It will be interesting to determine whether
these miRNAs have specific roles in fine-tuning spatially and/or
temporally the expression of their targets during fruit ripening.

Recently, a novel miRNA identified as Solanaceae-specific
was implicated in regulating ethylene signaling and hence fruit
ripening in tomato (Wang Y. et al., 2018). The microRNA
miR1917 targets three splicing variants of the CONSTITUTIVE
TRIPLE RESPONSE 4 (SlCTR4, homolog of Arabidopsis CTR1),
an ethylene signaling repressor that interacts with ethylene
receptors (Wang Y. et al., 2018). Tomato plants overexpressing
the miR1917 (p35S::MIR1917) display higher levels of ethylene
signaling, leading to enhanced ethylene production. These
plants also have increased ethylene responses in the absence
of ethylene, including accelerated pedicel abscission and fruit
ripening (Wang Y. et al., 2018). The complementary expression
pattern of miR1917 and the splicing variants SlCTR4sv3 observed
in the pedicel abscission zone by in situ hybridization suggests
that miR1917 restricts the expression of its targets to the
vascular bundle and surrounding cells during pedicel abscission.
Thus, miR1917 and its targets represent a novel miRNA
module belonging to the intricate ethylene-associated signaling
network.

New Evidences of the Role of Long
Non-coding RNAs (lncRNAs) in Fruit
Ripening
Long non-coding RNAs are broadly present in plant, animal
and fungi transcriptomes and emerging evidences show that
they play key roles in diverse developmental processes. They
are RNAs longer than 200 nt originated from transcription of
intergenic regions, introns or antisense coding sequences and do
not have any detecting coding potential (Chekanova et al., 2007;
Kapranov et al., 2007; Fatica and Bozzoni, 2014; Chekanova,
2015). LncRNAs may modulate gene expression by multiple
mechanisms that were extensively reviewed in Chekanova (2015).
Although the knowledge of the regulatory roles of lncRNAs in
plants is still limited, lncRNAs have been associated with the
control of flowering time, male sterility, seedling morphogenesis
and, more recently, fruit ripening (Ding et al., 2012; Wang Y.
et al., 2014; Berry and Dean, 2015; Li R. et al., 2018).

RNA-seq analyses comparing transcriptomes of tomato cv
Ailsa Craig and rin fruits identified over 3000 tomato lncRNAs,
several of which were differentially expressed in rin (Zhu
et al., 2015). In the same study, two lncRNAs (lncRNA1459
and lncRNA1840) strongly down-regulated in rin were chosen
for VIGS-based silencing assays in fruits. Silencing of both
lncRNAs produced non-ripening sections in the injected areas
of the fruit, similarly to the effect observed in VIGS-based
silencing of RIN. To better understand the functional role
of lncRNA1459, which is a sense intergenic lncRNA, Li R.
et al. (2018) generated loss-of-function mutants for lncRNA1459
using clustered regularly interspaced short palindromic repeats
(CRISPR)/-associated protein 9 (Cas9)-induced genome editing
technology (Feng et al., 2013; Doudna and Charpentier, 2014).
Mutant fruits display delayed ripening phenotype associated with
repressed ethylene and carotenoid biosynthesis, as well as down-
regulation of ripening-associated genes.

In addition to tomato, lncRNAs involved in fruit ripening have
been identified and studied in few other species. Sea buckthorn
(Hippophae rhamnoides) is a plant for land reclamation, and
its berry-type fruits have high nutritional value due to the
significant amounts of natural anti-oxidants including ascorbic
acid, tocopherols, carotenoids, and flavonoids (Zakynthinos et al.,
2016). By using high throughput RNA sequencing, Zhang et al.
(2018) identified over 9000 lncRNAs expressed in distinct sea
buckthorn fruit developmental stages, from mature green to red-
ripe. Interesting, the authors identified two lncRNAs (LNC1 and
LNC2) that may function as target mimics of miR156 and miR828
during fruit ripening, therefore indirectly affecting the expression
of these miRNA targets, SPL9 and MYB114, respectively. By
modulating SPL9 and MYB114 expression, LNC1 and LNC2
seem to control the biosynthesis of anthocyanin during fruit
ripening (Zhang et al., 2018).

Despite the examples given above, the functions of the
majority of ripening-associated lncRNAs are still unclear. More
functional studies are needed to confirm the function of lncRNAs
and their possible target genes. On possibility to be further
explored is that lncRNAs can interact with microRNAs to
modulate gene expression level (Gorospe et al., 2014), thus
combining the “power” of two ncRNAs to modulate fruit ripening
(Figure 2B).

CONCLUSION

During plant development, multiple microRNA modules are
required to control meristem identity, leaf margin serration,
polarity, complexity, root development, and flowering time.
As summarized here, miRNA modules have key roles in
fruit development, ranging from carpel establishment and
patterning to fruit ripening. Disruption of miRNA transcription
or processing frequently generate pleotropic consequences for
the plant. Indeed, their activity are essential for plants to
complete their life cycle, since they are active from seed to flower
production. Interestingly, evolution of miRNA modules brought
about adaptative advantages to plants by using similar pathways
to orchestrate different developmental processes. A good example
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presented here is the miR164 module, which is required for
proper leaf and carpel/fruit development, corroborating the
hypothesis of the evolutionary origin of carpel as modified
leaves. It is interesting to consider that evolution has also
hijacked similar microRNAs modules to control unrelated
developmental programs such as the role of the miR156 module
in flowering time and fruit development and ripening. In
addition, due to their multiple roles in plant development,
microRNA modules may also provide promising molecular tools
to be explored in an agricultural context. Therefore, the better
understanding of the mechanisms that control miRNA and
target expression and their spatiotemporal regulatory roles could
be an outstanding step toward the application of microRNA-
targeted regulation of important fruit traits, including size,
shape, seed production, and ripening. For instance, the use
of novel CRISPR/Cas9-based technologies (Li C. et al., 2018)
might allow subtle changes in miRNA target gene expression
which have a potential to quantitative modify fruit traits.
Additionally, it would be interesting to investigate whether
there are more specific microRNAs modules (e.g., Solanaceae-
specific microRNA mentioned in this review) in others crops
that might be associated with fruit quality traits. Although there
are open questions of how microRNA modules function during
fruit development, lncRNA-associated pathways are probably one
of the less understood so far, involving multiple and complex
origins and modes of action. As mentioned in this review,
microRNAs and lncRNAs act during fruit ripening, and they can
interact during this process. In addition, since they may have

overlapping functions during ripening, it would be interesting
to investigate whether these two classes of non-coding RNAs
interact in early steps of carpel development and fruit patterning
as well. The identification of additional lncRNAs and miRNAs
and the understanding of how they interact with each other to
control fruit development and ripening would be an important
step toward the improvement of fruit production. The use of next
generation sequencing technologies combined with functional
genomics may help to achieve this goal.
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Enhancing RIPENING INHIBITOR
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As a conserved kinase complex, sucrose non-fermenting-1-related protein kinase
1 (SnRK1) is a major regulator of plant growth and development. In our previous
study, overexpression of MhSnRK1 in tomato (Solanum lycopersicum L.) modified fruit
maturation: the transgenic fruit ripened earlier than the wild type (WT). However, the
mechanism by which fruit maturation is regulated by SnRK1 is not clear; therefore,
the test materials used were the transgenic tomato lines (OE-1, OE-3, and OE-4)
overexpressing the coding gene of peach [Prunus persica (L.) Batsch] SNF1-related
kinase α subunit (PpSnRK1α). The activity of SnRK1 kinase in transgenic tomato
lines OE-1, OE-3, and OE-4 was higher than that in the WT at different periods of
fruit development; in the pink coloring period the SnRK1 kinase activity increased
the most, with 23.5, 28.8, and 21.4% increases, respectively. The content of starch
and soluble sugars in red ripe transgenic fruit significantly increased, while the soluble
protein and titratable acid content decreased significantly. We also found that the
tomatoes overexpressing PpSnRK1α matured approximately 10 days earlier than the
WT. Moreover, the yeast-two-hybrid assay showed that PpSnRK1α interacted with the
MADS-box transcription factor (TF) SIRIN, which acts as an essential regulator of tomato
fruit ripening. The BiFC technology further validated the location of the PpSnRK1α

interaction sites within the nucleus. The quantitative real-time PCR analysis showed that
RIN expression was up-regulated by PpSnRK1α overexpression; the expression of RIN-
targeted TF genes NOR and FUL1 increased during different stages of fruit development.
The expression of key genes, ACS2, ACS4, and E8, in ethylene synthesis also changed
accordingly, and the ethylene emitted by the red ripe fruit increased by 36.1–43.9%
compared with the WT. These results suggest that PpSnRK1α interacts with SIRIN,
increasing the expression of RIN, thereby regulating the expression of downstream
ripening-related genes, finally promoting fruit ripening.

Keywords: SnRK1 protein kinase, RIN, fruit ripening, peach, tomato

Abbreviations: ACS2, 1-aminocyclopropane-1-carboxylic acid synthase 2; ACS4, 1-aminocyclopropane-1-carboxylic acid
synthase 4; ADPase, ADP-glucose pyrophosphorylase; AP2a, APETALA2a; CNR, colorless non-ripening; ChIP, chromatin
immunoprecipitation; DTT, dithiothreitol; E8, ripening-associated ACO homolog; FUL1/TDR4, fruitfull 1; HEPES, 4-
(2-Hydroxyethyl)-1-piperazine-ethanesulfonic acid; NOR, non-ripening; RIN, ripening inhibitor; SNF1, sucrose non-
fermenting 1; SnRK1, sucrose non-fermenting-1-related protein kinase; SS, sucrose synthase; TF, transcription factor; WT,
wild type.
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INTRODUCTION

Sucrose non-fermenting 1 kinase (SNF1)-related kinase (SnRK1)
in plants belongs to a conserved family that includes SNF1
in yeast and AMP-activated protein kinase in animals (Crozet
et al., 2014). SnRK1 is a heterotrimeric protein complex that is
an important kinase in the signal transduction of carbon and
nitrogen and is one of the regulatory hubs in plant physiological
activities (Le Guen et al., 1992; Halford and Hardie, 1998; Polge
and Thomas, 2007). Previous studies have shown that SnRK1
may play a key role in the overall regulation of the intracellular
sugar signaling pathway and metabolism, and regulates plant
carbohydrate metabolism (Ramon et al., 2013; Emanuelle et al.,
2016). Recently, many studies have shown that plant SnRK1 is
involved in many metabolic pathways including carbohydrate
metabolism, stress, organogenesis, and senescence pathways
(Purcell et al., 1998; Laurie et al., 2003; Jossier et al., 2009; Broeckx
et al., 2016).

Most research on the function of SnRK1 has been conducted
in Arabidopsis thaliana and crop plants, while research on the
function of SnRK1 in fruit trees has rarely been reported. Our
previous study showed that overexpression of Pingyitiancha
(Malus hupehensis Rehd. var. pingyiensis Jiang) MhSnRK1 in
tomato can improve the photosynthetic rate, fruit soluble sugar
content, starch content and utilization, and also influence the
process of growth and development of fruit—for example,
transgenic tomato fruit matured 10 days earlier than WT fruit
(Li et al., 2010; Wang et al., 2012). This study was also the
first to show that SnRK1 affects fruit ripening (Wang et al.,
2012).

Tomato is a climacteric fruit, and early studies of the
molecular genetic mechanism during the maturation process
focused on signal transduction of ethylene biosynthesis
and ethylene receptor mediated regulation. With a deep
understanding of the ethylene pathway, researchers have
gradually realized that if a fruit only has ethylene, it is not mature.
Only up to a certain stage of development is a fruit sensitive
to ethylene stimulation (Wilkinson et al., 1995). Therefore, the
problem of upstream regulation of the ethylene pathway has
become a new research focus. As typical of many mutants, the rin
mutation exists in the upper reaches of the ethylene regulatory
pathway, and this is not regulated by ethylene. The MADS-box
TF RIN was cloned in the tomato rin gene locus using map-based
cloning described by Vrebalov et al. (2002), and a homologous
gene was also found in strawberry (a model plant for studying the
non-respiratory climacteric pathway). Thus, it was inferred that
RIN may be a conserved regulatory factor for two types of fruit
(Vrebalov et al., 2002). Previous research has shown that RIN is
a member of the MADS-box gene family and is a very important
factor in the regulation of tomato fruit ripening, affecting almost
all relevant metabolic pathways (Vrebalov et al., 2002; Martel
et al., 2011). The RIN protein can not only directly regulate fruit
ripening-related genes, such as lipid and cell wall metabolism
genes, but also can influence ethylene synthesis pathways and
other ripening-related TFs (e.g., CNR, NOR, FUL1, and AP2a),
indicating that RIN has a very important function in tomato fruit
ripening (Fujisawa et al., 2011, 2013).

Our previous study found that the overexpression of
MhSnRK1 in tomato can promote fruit ripening (Wang et al.,
2012); however, the exact molecular mechanism by which SnRK1
regulates fruit maturation is not clear. Does SnRK1 interact
with the TF RIN, regulating fruit ripening? Using PpSnRK1α
overexpressing tomato lines (OE-1, OE-3, and OE-4) and WT
tomato as test material, we examined the relationship between
SnRK1 and RIN and we speculate that SnRK1 regulates fruit
maturation by affecting the RIN regulation pathway.

MATERIALS AND METHODS

Plant Material and Treatments
We previously obtained the transgenic lines OE-1, OE-3, and
OE-4 overexpressing PpSnRK1α. Seeds of transgenic and WT
tomatoes (Solanum lycopersicum ‘Sy12f’) were germinated and
grown in a plant growth chamber at 30◦C for 3 weeks.
These transgenic tomatoes (T2) were confirmed using the
Plant PCR Kit (Takara, Japan). The primers PpSnRK1α-F
(5′-GCTCTAGAATGGATGGATCGGTTG-3′) and PpSnRK1α-
R (5′-GCGTCGACTTAAAGGACCCG-3′) were used to detect
PpSnRK1α overexpressing tomato plants. The PCR-positive
tomato plants were transplanted into pots with soil, and both WT
and transgenic tomato plants were grown under natural light.
Fifteen tomato plants per genotype were used (one plot per five
plants, three plots per line treatment). All tomato fruits of the
WT and transgenic plants used for analysis were tagged at the
date of anthesis, and the fruit ripening time was observed. For
fruit diameter and ripening time analysis, fifteen fruit samples per
plot were used and three independent replicates were performed.
The WT and transgenic fruits were harvested at different ripening
stages, viz., green mature (GM), breaker (BK), pink coloring
(PK), and red ripe (RR) stage, to analyze the SnRK1 activity,
the gene expression level and ethylene emission as well as the
soluble sugar, starch, soluble protein, and titratable acid content.
In each case, three biological replicates were performed and each
replicate contained at least 10 fruits.

Quantitative Real-Time PCR
Total RNA was extracted from the tomato fruits at different
stages of development using the RNA plant Plus Reagent kit
(TIANGEN, China). The RNA was then reverse-transcribed to
cDNA using a PrimescriptTM RT reagent kit (Takara, Japan).
qRT-PCR was performed using SYBR Premix Ex TaqTM (Takara,
Japan). The r18S gene was used as loading controls. The
calculation method for qRT-PCR is 2−11CT. Three independent
biological replicates were analyzed per sample. The specific
primers used for the PCR analysis are listed in Table 1.

SnRK1 Activity Assays
Fruit tissue (1 g) was ground in 1 mL of cold extraction
buffer consisting of 100 mmol·l−1 HEPES, pH 8, 25 mmol·l−1

NaF, 2 mmol·l−1 sodium pyrophosphate, 0.5 mmol·l−1ethylene
diamine tetra acetic acid, 0.5 mmol·l−1 ethylene glycol tetra acetic
acid, 1 mmol·l−1 anisole, 5 mmol·l−1 dithiothreitol, 25 mmol·l−1

β-mercaptoethanol, and 1 mol·l−1 pepstatin A. The suspension
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TABLE 1 | Primers used in this study.

Gene Acc. no Primer sequences (5′–3′)

SIRIN AF448522 F: CATGGCATTGTGGTGAGCAAAGTGT
R: AGCATCATGTGTTGATGGTGCTGC

SINOR AY573802.1 F: AGAGAACGATGCATGGAGGTTTGT
R: ACTGGCTCAGGAAATTGGCAATGG

SIFULI X60757.1 F: ACTGGACTCTCCTCACCTTGGGG
R: AGCTGCACCTTGCTGCTGTGA

SIACS2 X59139 F: AAGCGCGATGAGGTTAGGTA
R: AAAGTGGACGCAAATCCATC

SIACS4 M88487 F: AAATCTCCACCTTCACTAACGAAC
R: CCTAAGTCCTTGGAAAGACTAGACAC

SIE8

SISNF1

SIr18S

DQ317599

AF143743

X51576

F: TGGCTCCGAATCCTCCCAGTCT
R: GTCCGCCTCTGCCACTGAGC
F: CGCAGATTTTGGTTTGAGCAA
R: GTTTGGGCTTCCGCAACTT
F: GCCCGGGTAATCTTTGAAAT
R: AGTAAGCGCGAGTCATCAGC

PpSnRK1α

PpSnRK1α (JM)

SIRIN (JM)

ppa004347m

ppa004347m

AF448522

F: CTCTTG GTATTGGTTCTT
R: TCTCTTCTCACTTTCTCT
F: GAATTCATGGATGGATCGGTTGGC
R: GTCGACTTAAAGGACCCGAAGTTGT
F: TCCCCCGGGGTACAATATGGGTAGAGGGAAAG
R: AAACTGCAGTCAAAGCATCCATCCAGGT

was transferred to two cold microfuge tubes and clarified by
centrifugation for 5 min at 12,000 × g at 4◦C. The supernatant
(750 µL) was desalted on a 2.5 mL centrifuge column (Sephadex
G-25 medium columns; GE Healthcare, United Kingdom)
treated with equilibration solution. Using AMARA polypeptide
as the substrate (Zhang et al., 2009), the SnRKl activity was
measured using a Universal Kinase Activity Kit (R&D Systems,
Minneapolis, MN, United States).

Yeast Two-Hybrid Assay
For the yeast two-hybrid experiments, the plasmids pGAD424
and pGBT9 were used, which contain the GAL4 activation
domain and GAL4 DNA-binding domain, respectively. SIRIN
was amplified and then cloned into the pGBT9 vector. PpSnRK1α
was amplified and then inserted into pGAD424. The BT-RIN and
AD-SnRK1α plasmids were co-transformed into the yeast strain
Y2HGold (Clontech, Palo Alto, CA, United States) using the
PEG/LiAC method as described in the Clontech Yeast Protocol
Handbook. The transformed colonies were selected on synthetic
drop-out medium lacking leucine and tryptophan (SD-Leu-Trp).
The colonies from the double selection plates were then screened
for growth on quadruple selection SD medium lacking adenine,
histidine, leucine, and tryptophan (SD-Ade-His-Leu-Trp). To
further confirm the positive interactions, X-alpha-Gal was used to
assay for beta-galactosidase activity. Primers are listed in Table 1.

Bimolecular Fluorescence
Complementation (BiFC) Assay
Full-length PpSnRK1α and SIRIN were transferred from
their respective entry clones into the vectors pSPYNE and
pSPYCE. Plasmids were co-transfected into Agrobacterium.
Following the methods described by Boruc et al.

(2010), the instantaneous expression of Agrobacterium-
mediated tobacco leaves was used to detect protein
interactions, and the fluorescence results were observed
with a confocal laser scanning microscope (Zeiss 510
Meta).

Analyses of Soluble Sugar and Starch in
Fruit
Soluble sugar was extracted from 1 g of each sample, which
was placed in 10 mL of water at 100◦C, and then extracted
twice at 100◦C with the same volume of water (Wang et al.,
2012). The total amount of soluble sugar was determined using
the anthrone method (van Herwaarden et al., 1998). Starch
was determined in the remaining sample after the soluble
sugars were extracted. The tissue residue was digested with
0.92 mol·L−1 perchloric acid in 20 mL water at 100◦C for 30 min
to convert starch to glucose. This digestion was repeated twice.
The amount of glucose was then determined using the anthrone
method.

Measurements of Titratable Acid and
Soluble Proteins
Following the methods presented by Wang et al. (2012), titratable
acid content of isolated juice sacs was determined by titration.
Fresh tissue (50 g) was ground completely using a mortar and
pestle and placed in 5 mL of 80% ethanol at 80◦C for 1 h. Aliquots
of the ethanol extracts were titrated to a neutral endpoint with
0.1 mol·L−1 sodium hydroxide, indicated by phenolphthalein.
Proteins were extracted from 0.5 g of tissue sample with 5 mL
of enzyme assay buffer (5 mmol·L−1 cysteine, 5 mmol·L−1

EDTA-Na2, and 25 mmol·L−1 potassium phosphate buffer at
pH 7.5), ground with a mortar and pestle, and centrifuged
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(4,000 r/min) for 15 min. The protein content of the supernatant
was measured at 500 nm following the method described by
Lowry et al. (1951) using bovine serum albumin as the standard
protein.

Determination of Ethylene Emittance
The determination of ethylene emitted by tomato fruit
referenced the method described by Jin et al. (2006).
The Shimadzu GC-9A gas chromatograph was used

with N2 as the carrier, and the separation column and
detector temperatures were 40◦C and 120◦C, respectively.
Samples were taken from three glass containers and the
ethylene emitted was calculated according to the peak area
method.

Statistical Analysis
Three independent biological replicates were performed for
each experiment. The statistical analysis was performed with

FIGURE 1 | Effect of PpSnRK1α overexpression on transgenic tomato fruit development. (A) Changes in the appearance of fruit color on which the four
developmental stages were divided. Tomato fruit developmental stages: green mature (GM); breaker (BK); pink coloring (PK); red ripe (RR). (B) Days required for the
different fruit developmental stages; (C) Changes in fruit diameter in transgenic and wild type (WT) tomato plants. Error bars represent the SD based on three
independent biological replicates. An asterisk (∗) on top of the error bar designates a significant difference between transgenic lines and WT at P < 0.05.
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Microsoft Office Excel 2007 software. Comparison of the means
was calculated according to the Duncan multiple range test using
the SPSS 20.0 statistical program. Significance was defined as
P< 0.05.

RESULTS

PpSnRK1α Transgenic Fruit Ripens
10 days Earlier Than WT Fruit
The development of PpSnRK1α transgenic tomato plants
(OE-1, OE-3, and OE-4) and WT fruit was observed in
real time. The changes of fruit diameter and color and the
number of days required for fruit development to reach
different stages were recorded (Figures 1A–C). According
to the changes in the appearance of fruit color, four
different developmental stages were divided (Figure 1A).
The development of PpSnRK1α overexpressing tomatoes
was significantly faster than that of WT tomatoes, and the
fruit matured approximately 10 days earlier than WT fruit
(Figure 1B). In the early stage of fruit development, the
diameter of the transgenic tomato fruit was significantly larger
than that of the WT, but there was no significant difference
in fruit size between the two since the green mature stage
(Figure 1C).

Higher Starch and Soluble Sugar
Content in PpSnRK1α Transgenic
Tomato Than WT
The soluble sugar content in red ripe fruit from the OE-1, OE-3,
and OE-4 tomato lines was significantly higher than that of the
WT, increasing by 33.9, 38.4, and 32.5%, respectively (Table 2).
The starch content in the fruit also significantly increased, and the
starch content in the OE-3 fruit was nearly twice that of the WT.
The soluble protein and titratable acid content in fruit was lower
than that of the WT. The overexpression of PpSnRK1α affects
the accumulation and distribution of carbohydrates in tomato
fruit.

Expression Analysis of SnRK1 Gene and
Activities of SnRK1 in Transgenic and WT
Tomato
The expression of the tomato SnRK1 encoding gene (SISNF1)
in transgenic tomatoes OE-1, OE-3, and OE-4 was consistent
with the WT fruit; however, the expression of PpSnRK1α
was higher in transgenic tomato lines, and no expression was
detected in the WT (Figure 2A), indicating that PpSnRK1α
was successfully expressed in transgenic tomato lines and did
not affect the expression of SISNF1 in tomato. The SnRK1
activity was significantly higher in OE-1, OE-3, and OE-
4 fruit than that of WT tomatoes at different periods, and
the SnRK1 activity showed the greatest increase at the pink
coloring stage, increasing by 23.5, 28.8, and 21.4%, respectively
(Figure 2B).

TABLE 2 | The starch, soluble sugar, soluble protein, and titratable acid content in
WT and transgenic tomato fruit.

Starch
(mg·g−1 FW)

Soluble sugar
(mg·g−1 FW)

Soluble
protein

(mg·g−1 FW)

Titratable
acid (% FW)

WT 4.23 ± 0.28 c 26.62 ± 1.38 b 0.51 ± 0.04 a 0.40 ± 0.03 a

OE-1 7.32 ± 0.36 b 35.64 ± 0.40 a 0.34 ± 0.05 b 0.32 ± 0.01 b

OE-3 8.26 ± 0.45 a 36.83 ± 0.70 a 0.36 ± 0.03 b 0.33 ± 0.04 b

OE-4 7.13 ± 0.77 b 35.27 ± 0.43 a 0.34 ± 0.03 b 0.34 ± 0.02 b

Data in the table are the average of three samples; lowercase letters indicate a
significant difference at P < 0.05.

FIGURE 2 | The expression of SnRK1α and the activity of SnRK1 in fruit from
PpSnRK1α overexpressing tomato lines (OE-1, OE-3, and OE-4) and the WT
during different developmental stages. (A) The expression of the PpSnRK1α

gene and SISNF1 gene in tomato fruit. The error bars represent the SD of
three biological replicates. An asterisk (∗) on top of the error bar designates a
significant difference between transgenic lines and the WT at P < 0.05.
(B) The SnRK1 kinase activity in tomato fruit at different developmental
stages. The error bars represent the SD of three biological replicates. Different
lowercase letters in the same developmental stage indicate a significant
difference at P < 0.05.

SnRK1–RIN Interaction Identified by the
Yeast Two-Hybrid System
We performed yeast two-hybrid (Y2H) assays to determine
whether PpSnRK1α interacts with SIRIN. For Y2H assays,
the full-length SIRIN was inserted into a pGBT9 vector as
bait. The results indicated that RIN protein did not show
auto-activation (Figure 3). The bait construct carrying
the BD-RIN fusion protein was co-transformed with
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the prey construct harboring the AD-SnRK1α fusion
protein, indicating that PpSnRK1α interacted with SIRIN
(Figure 3).

SnRK1–RIN Interaction Identified by
BiFC
On the basis of the Y2H experiment, this study used a
bimolecular fluorescence complementary (BiFC) test to
further prove the interaction between PpSnRK1 and the TF
SIRIN in vivo. As shown in Figure 4, tobacco leaves were
co-infected with Agrobacterium containing PpSnRK1α-pSPYNE
and SIRIN-pSPYCE recombinant plasmids, and yellow
fluorescence (YFP) signal was observed in the epidermal
nucleus of tobacco leaves. The positions of YFP signal and
blue fluorescence signal were exactly the same. The results
showed that PpSnRK1α protein could interact with SIRIN
protein in plants, and their interaction sites were in the
nucleus.

FIGURE 3 | Yeast two-hybrid experiments showing the interaction between
PpSnRK1α and SIRIN protein. Results show a representative experiment out
of three independent biological replicates.

FIGURE 4 | Analysis of interaction between PpSnRK1α and SIRIN by BiFC
assay. Visualization of the protein complex using BiFC in tobacco leaf
epidermal cells. Results show a representative experiment out of three
independent biological replicates.

Expression of RIN at Different
Developmental Stages of Tomato Fruit
Overexpressing PpSnRK1α
The expression level of RIN differed significantly among the
fruit developmental stages (Figure 5). The RIN gene was
expressed at a low level in the green mature stage; its
expression gradually increased with the maturity of the fruit
and was the greatest in the red ripe stage. The expression
of the RIN gene in transgenic fruit was significantly higher
than that in WT tomato from the breaker stage. The up-
regulation of RIN expression was most significant at the pink
coloring stage in OE-1, OE-3, and OE-4, which was up to
1.86, 2.06, and 1.98 times the RIN expression in the WT,
respectively.

In PpSnRK1α Overexpressing Fruit, RIN
Regulates Gene Expression in the
Maturity Pathway
To explore the effects of changes in RIN expression on fruit
ripening, the expression levels of RIN-targeted genes associated
with maturation were examined. We select RIN-targeted TF
genes NOR and FUL1 and key genes for ethylene synthesis, ACS2,
ACS4, and E8, which are considered to be directly regulated by
RIN (Eriksson et al., 2004; Ito et al., 2008; Fujisawa et al., 2011,
2013). As shown in Figure 6A, the expression levels of the TF
NOR and FUL1 genes were different during fruit development;
the expression of NOR was the highest in the breaker period,
while the expression of FUL1 was the highest at the pink coloring
stage. At different stages of fruit development, the expression
levels of NOR and FUL1 in PpSnRK1α overexpression tomato
lines (OE-1, OE-3, and OE-4) were significantly higher than
that of the WT. The expression was the most significantly
up-regulated at the breaker stage in OE-1, OE-3, and OE-4
compared with that of the WT, and NOR was up-regulated
by 1.15 times, 1.03 times, and 0.98 times, respectively, while

FIGURE 5 | RIN expression in WT and the PpSnRK1α overexpressing tomato
fruit. Averages of three biological replicates ± SD are shown. Different
lowercase letters in the same developmental stage indicate a significant
difference at P < 0.05.
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FIGURE 6 | Expression of RIN-targeted genes in WT and PpSnRK1α overexpressing tomato fruit during different fruit developmental stages. (A) ripening-related
transcription factors; (B) ethylene synthesis enzymes. Error bars represent the SD based on three independent biological replicates. Different lowercase letters in the
same developmental stage indicate a significant difference at P < 0.05 level.
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FUL1 increased by 1.24 times, 1.62 times, and 1.58 times,
respectively.

The expression levels of the ACC synthase encoding genes
ACS2 and ACS4 are different during fruit development.
ACS2 had the highest expression in the pink coloring stage,
while ACS4 had the highest expression in the breaker stage;
the expression of the ACC oxidase encoding gene E8 was
similar to that of ACS2 (Figure 6B). The expression levels
of ACS2, ACS4, and E8 in transgenic tomatoes OE-1, OE-
3, and OE-4 were significantly higher than those in the
WT at different stages of fruit development. In OE-1, OE-
3, and OE-4, the expression of ACS2 was the most up-
regulated in the pink coloring stage, which, compared with
the WT, increased by 2.01 times, 1.89 times, and 1.82 times,
respectively. The expression of ACS4 was up-regulated the
most during the breaker stage in OE-1, OE-3, and OE-4,
with values 2.12 times, 2.25 times and 2.13 times that of
the WT, respectively. Similarly, E8 was up-regulated the most
during the breaker stage, with values in OE-1, OE-3, and OE-
4 up to 2.02 times, 2.35 times, and 2.31 times that of the
WT, respectively (Figure 6B). However, the genes not under
the control of RIN were not up regulated (Supplementary
Figure S1).

Ethylene Emitted From Red Ripe Fruit of
Transgenic and WT Tomato
The ethylene emitted from OE-1, OE-3, and OE-4 fruit was
significantly higher than that of the WT, increasing by 37.9, 43.9,
and 36.1%, respectively (Figure 7).

DISCUSSION

As a conserved energy sensor, SnRK1 plays an important role
in plant metabolism, stress signal response, and plant growth
and development (Hedbacker and Carlson, 2008; Carling et al.,
2012). SnRK1 controls the early growth of pea cotyledons by
coordinating metabolic, hormonal, and developmental signals

FIGURE 7 | Ethylene release in red ripe fruit of PpSnRK1α overexpression
tomato lines (OE-1, OE-3, and OE-4) and WT tomatoes. Error bars represent
the SD based on three independent biological replicates. Different letters
indicate statistically significant differences between the samples (P < 0.05).

that influence seed maturation (Radchuk et al., 2010). In our
previous study, overexpression of MhSnRK1 in tomato improved
the photosynthetic rate, fruit soluble sugar content, starch
content and utilization, and the transgenic tomato fruit matured
10 days earlier than the WT fruit (Li et al., 2010; Wang et al.,
2012). In order to further explore the effect of SnRK1 on
fruit maturation, transgenic tomatoes over expressing PpSnRK1α
were studied. The results of the present study showed that
overexpression of PpSnRK1α significantly increased the content
of soluble sugar and starch in the fruit, and the fruit ripening
period was 10 days earlier than WT fruit, which confirmed our
previous results.

Hou (2009) performed a yeast two-hybrid system sieve library
on the tomato TF RIN, finding that one of the proteins interacting
with RIN is tomato LeSNF1/AMPK, which has phosphorylation
activity. However, whether the combination of the two is just
a coincidence of structural matching has not been further
verified by the authors. In this study, the interaction between
PpSnRK1α protein and tomato SIRIN protein was tested by
a yeast two-hybrid experiment and BiFC assay. The results
showed a positive interaction between SnRK1α and RIN. We
also analyzed the expression of RIN at the transcriptional
level and found that its expression level was significantly
increased in PpSnRK1α overexpressing tomato, suggesting that
SnRK1 regulated RIN at both the protein and transcriptional
level.

RIN belongs to the family of typical MADS-box TFs, which
are responsible for a series of physiological and biochemical
processes such as respiration, photosynthesis, and nutrient
metabolism. RIN are inhibited in rin mutants, and some genes
related to fruit maturation are aberrantly expressed, indicating
that RIN has a very important role in fruit ripening (Ng and
Yanofsky, 2001; Vrebalov et al., 2002). Recently, researchers used
ChIP, proteomics, gene chips, and other experimental techniques
to show that the RIN protein directly targets genes involved in
ethylene synthesis and signal transduction pathways, cell wall
metabolism, and fruit softening; while in the tomato ripening
process, many TF genes, such as NOR, CNR, FUL1, and HB-
1, are also directly regulated by RIN (Fujisawa et al., 2013).
The transcriptional levels of target genes related to maturation
of RIN were also investigated in this study. The expression of
NOR and FUL1 TF genes in the tomato fruit breaker and pink
coloring stages had corresponding increases; the expression levels
of ACS2, ACS4, and E8 in the ethylene pathway also increased
with elevated RIN expression. FUL1 is a MADS-box TF with an
expression pattern that suggests a possible role during tomato
fruit ripening (Busi et al., 2003). NOR is a NAC-domain TF,
and when mutated, shows a non-ripening phenotype similar to
rin (Giovannoni, 2007). ACS2, ACS4, and E8 were also directly
regulated by RIN. The increase in fruit ethylene production is
largely driven by the biosynthetic genes ACS2, ACS4, ACO1, and
E8 (Lincoln et al., 1987; Barry, 2007). This series of expression
changes in key maturity genes will ultimately affect the process of
fruit ripening.

Overall, our results suggest that PpSnRK1α interacts with
SIRIN, increasing the expression of RIN, regulating the
expression of downstream ripening-related genes and promoting
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the fruit ripening. However, the process of fruit ripening is a
very complicated regulation network, in which SnRK1 and RIN
may play a key role. Phosphorylation of RIN by SnRK1 may
achieve a series of downstream regulations of maturation, but
it is not known if it is also possible to directly regulate RIN-
targeted TFs or activities of the key enzymes in the ethylene
pathway. In addition, SnRK1 plays an active role in promoting
plant photosynthesis and accumulation of plant sugars and other
metabolites, and whether these are also reasons for early fruit
maturation still require further verification.
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Over the last few years, a series of tools for genome editing have been developed,
allowing the introduction of precise changes into plant genomes. These have included
Zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs),
and CRISPR/Cas9, which is so far the most successful and commonly used approach
for targeted and stable editing of DNA, due to its ease of use and low cost.
CRISPR/Cas9 is now being widely used as a new plant breeding technique to improve
commercially relevant crop species. Fruit ripening is a complex and genetically controlled
developmental process that is essential for acquiring quality attributes of the fruit.
Although the number of studies published to date using genome editing tools to
molecularly understand or improve fruit ripening is scarce, in this review we discuss
these achievements and how genome editing opens tremendous possibilities not
only for functional studies of genes involved in fruit ripening, but also to generate
non-transgenic plants with an improved fruit quality.

Keywords: fruit ripening, fruit quality, crops, tomato, genome editing, TALENs, CRISPR/Cas9

INTRODUCTION

Fruit ripening is a complex and irreversible developmental process that involves numerous
metabolic, biochemical, physiological and organoleptic alterations. Among these changes, ripening
leads to fruit softening, accumulation of sugars, volatile compounds and pigments, reduction
of organic acids, etc., making the fruit more attractive for animal consumption, and therefore,
facilitating seed dispersal (Gapper et al., 2013).

Fleshy fruits are classified as climacteric or non-climacteric, depending on whether or not
they produce autocatalytic ethylene, respectively. Thus, climacteric fruits such as tomato, apple,
avocado, and banana are characterized by an increase in the respiration rate and a burst of ethylene
at the onset of ripening (Giovannoni, 2004). In contrast, in non-climacteric fruits, which include
strawberry, grape, citrus, and pepper among others, ethylene production remains at low levels and
there is no dramatic change in respiration (Symons et al., 2012).

The role of phytohormones and the transcriptional regulation of climacteric and non-
climacteric fruit ripening have been extensively reviewed in the last few years (Gapper et al., 2013;
Cherian et al., 2014; Karlova et al., 2014; Kumar et al., 2014). In particular, ethylene perception and
signaling have been very well characterized, especially in tomato (Solanum lycopersicum), which is
the most studied model system for fruit ripening (Giovannoni, 2001; Barry and Giovannoni, 2007).
In contrast, the regulatory network involved in non-climacteric fruit ripening has been much less
studied. Nevertheless, it is known that abscisic acid rather than ethylene is essential in the control of
ripening in strawberry (Chai et al., 2011; Jia et al., 2011), the established model for non-climacteric
fruits.
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Fruit ripening is of major economic importance for
agriculture. One of the main challenges for producers is to
offer a product at the ripening stage with a good flavor and
nutritional value, while also having sufficient shelf life to
maintain its quality until it is consumed. This is especially
relevant for climacteric fruits highly sensitive to ethylene, and
for non-climacteric fruits such as strawberry, which become
quickly inedible. Thus, improved ripening and shelf life has been
a focus of interest for many scientists in recent decades, using
conventional breeding and genetic modification. However, the
latter relies on the generation of transgenic plants, which have
a very limited commercial use due to the current skepticism
of consumers and restrictive government policies. Moreover,
transgenic strategies have been based on the modulation of gene
expression, which may lead to temporary and/or incomplete
knockdown effects, unpredictable off-target effects, and too
much background noise (Martin and Caplen, 2007). However,
the availability of genome editing tools offers new opportunities
to overcome these drawbacks.

THE EMERGENCE OF
GENOME-EDITING TECHNOLOGY

In the past decade, new and powerful approaches have
emerged enabling the precise editing of a gene of interest.
These approaches are based on the use of nucleases that are
targeted to a specific sequence to generate a double-strand
break (DSB). DSBs trigger two different repair mechanisms:
(i) error-prone non-homologous-end-joining (NHEJ) and (ii)
homology-directed repair (HDR). While NHEJ repair results
in InDel mutations of variable lengths, HDR can be used to
introduce specific point mutations or a sequence of interest,
through recombination supplying an exogenous donor template.
To obtain DSBs for genome editing, four major classes of
customizable DNA-binding proteins have been engineered so
far: meganucleases (Smith et al., 2006), zinc-finger nucleases
(ZFNs) (Urnov et al., 2005), transcription activator-like effector
nucleases (TALENs) (Christian et al., 2010), and RNA-guided
DNA endonuclease Cas9 (Jinek et al., 2012). Meganucleases,
ZFN, and TALEN rely on the binding and recognition of
the nucleases to specific sequences of DNA. Therefore, these
approaches require complex engineering processes to produce
custom nucleases that target the sequence of interest. However,
methods based on the bacterial CRISPR (clustered regularly
interspaced short palindromic repeats)/Cas system have opened
up tremendous possibilities, since the specificity does not lie
in the endonuclease, but on a simple and cheap design of a
single guide RNA (sgRNA) that is complementary to the target
sequence.

Despite the enormous number of reported studies using
genome editing technology for gene functional studies in
plants and crop improvement (Malzahn et al., 2017), only a
small handful of studies, summarized in this review (Table 1),
have focused on improving or identifying key regulators of
fruit ripening as an essential developmental process and an
economically relevant trait.

FIRST GENOME EDITING APPROACHES
IN TOMATO

In the case of dicot crops, tomato became the ideal candidate
for gene editing because of its several advantages, i.e., (i) diploid
and high-quality sequenced genome, (ii) ease of transformation,
(Van Eck et al., 2006), and (iii) economic importance, being the
fourth most important commercial crop in the world. The first
reports on genome editing in tomato appeared in 2014 when
CRISPR/Cas9 was applied to effectively perform gene functional
analysis by stable root transformation, using Agrobacterium
rhizogenes (Ron et al., 2014). This study was followed by
two others, where CRISPR/Cas9 and TALENs were applied
to generate mutations in complete plants for the first time,
in particular for the ARGONAUTE7 (SlAGO7) and PROCERA
(PRO) genes, respectively (Brooks et al., 2014; Lor et al., 2014). As
in most of the pioneer studies of genome editing in any species,
both genes had been functionally characterized already, allowing
the functional validation of these new approaches. Particularly,
PRO encodes for a DELLA protein that acts as a negative
regulator of gibberellin (GA) signaling (Bassel et al., 2008; Jasinski
et al., 2008). Lor et al. (2014) characterized the vegetative stage
of the TALEN-induced pro mutants, which showed a phenotype
consistent with an increased GA response, such as tall and slender
plants. Besides their role in plant growth and development,
the role of GAs in fruit set (Kumar et al., 2014) and fruit
ripening (Dostal and Leopold, 1967) have been widely studied.
In fact, a previous report where the spontaneous pro mutant
was phenotypically characterized, showed that fruit ripening was
significantly delayed and that the Brix index value was higher
in the mutant (Carrera et al., 2012), consistent with a higher
GA response in these plants. Therefore, it would be expected
that fruit ripening was also altered in the TALEN-induced pro
mutants, though Lor et al. (2014) did not characterize the fruit
phenotype.

Two years later, the ZFNs gene editing tool was applied for the
first time in tomato to mutagenize the LEAFY COTYLENDON1-
LIKE4 (LIL4) gene, which encodes for a subunit of a
heterotrimeric transcription factor (Hilioti et al., 2014). Mutation
in LIL4 resulted in a pleiotropic phenotype, including fruits with
different sizes and shapes, a reduced number of locules, and
absence of placenta. Furthermore, fruits with a paler color and
slower ripening were obtained (Hilioti et al., 2016), although how
LIL4 regulates this processes is still unknown.

RIN – HOW CRISPR/CAS9 CONVERTED
A LOSS-OF-FUNCTION INTO A
GAIN-OF-FUNCTION MUTATION

A large number of studies have been focussed in the role of
different transcription factors (TFs) involved in the ripening
process. One of the most investigated TFs for ripening is
RIPENING-INHIBITOR gene (RIN), a member of the SEPALATA
(SEP) class of the MADS-box gene family, first discovered half
a century ago when a mutation in this locus (rin) was found to
cause a failure to ripen in tomato (Robinson and Tomes, 1968;
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TABLE 1 | List of applications of genome editing technologies to study tomato fruit ripening, and CRISPR/Cas9 in various fruit crop species.

Technology Gene edited in
tomato

Character Reference

TALEN PROCERA (PRO) GA metabolism Lor et al., 2014

TALEN LEAFY
COTYLEDON1-LIKE4
(LIL4)

Pleiotropic effects Hilioti et al., 2016

CRISPR/Cas9 RIPENING-INHIBITOR
(RIN)

Fruit ripening Ito et al., 2015, 2017

CRISPR/Cas9 PECTATE LYASE (PL) Fruit firmness Uluisik et al., 2016

CRISPR/Cas9 SELF-PRUNING 5G
(SP5G) and
SELF-PRUNING (SP)

Photoperiodic response Soyk et al., 2016

CRISPR/Cas9 LONG-NON CODING
RNA (lncRNA1459)

Fruit ripening Li R. et al., 2018

CRISPR/Cas9 ORGANELLE
RECOGNITION MOTIF
(SlORRM4)

Mitochondrial function Yang et al., 2017

Species Gene edited by
CRISPR/Cas9

Character References

Grapevine (Vitis vinifera) MLO-7 Pathogen resistant Malnoy et al., 2016

IdnDH Tartaric acid biosynthesis Ren et al., 2016

VvPDS Carotenoid biosynthesis Nakajima et al., 2017

Watermelon (Citrullus lanatus) ClPDS Carotenoid biosynthesis Tian et al., 2016

Cucumber (Cucumis sativus) eIF4E Virus resistance Chandrasekaran et al., 2016

Banana (Musa × paradisiaca) PDS Carotenoid biosynthesis Kaur et al., 2018

Kiwifruit (Actinidia Lindl) AcPDS Carotenoid biosynthesis Wang et al., 2018

Sweet orange (Citrus sinensis) CsPDS Carotenoid biosynthesis Jia and Wang, 2014

CsLOB1 Pathogen resistant Peng et al., 2017

Duncan grapefruit (Citrus × paradisi) CsLOB1 Pathogen resistant Jia et al., 2016

CsLOB1 Pathogen resistant Jia et al., 2017

Apple (genus Malus) PDS Carotenoid biosynthesis Nishitani et al., 2016

DIPM1, 2 and 4 Pathogen resistant Malnoy et al., 2016

Woodland strawberry (Fragaria vesca) TAA1 and ARF8 Auxin biosynthesis and signaling Zhou et al., 2018

Cultivated strawberry (Fragaria × ananassa) FaTM6 Flower development Martín-Pizarro et al., 2018

Vrebalov et al., 2002). RIN is induced early during ripening,
and regulates ethylene-dependent and ethylene-independent
pathways that promote ripening (Karlova et al., 2014). The
effect on ripening of the rin mutation has been commercially
exploited as hybrid cultivars (RIN/rin) with an extended shelf
life (Kitagawa et al., 2005). Due to the importance and clear
phenotype of the rin mutation, the RIN locus has been recently
targeted using CRISPR/Cas9 to validate the functionality and
inheritance of mutations mediated by this approach in tomato.
Ito et al. (2015) designed three CRISPR/Cas9 constructs to
mutagenize three different regions within the RIN locus. As
expected, CRISPR/Cas9-mediated novel mutations at the RIN
locus resulted in an inhibition of fruit ripening at the T0
generation (Ito et al., 2015). However, and contrary to the rin
mutant, these CRISPR mutants partially initiated the ripening
process, and this was interpreted as the result of the presence
of wild-type RIN in the T0 generation. Previously, Vrebalov
et al. (2002) generated knockdown RIN plants using RNA
interference, resulting in a fruit ripening that was only partially
suppressed, in contrast to the green rin mutant phenotype, and

interpreted as due to residual expression of RIN. Thus, RIN has
been considered so far to function as an essential regulator of
ripening, and the models have always been based on the idea
that rin was a loss-of-function mutation. However, a recent paper
has overturned this model (Ito et al., 2017). Firstly, unlike the
rin mutant, homozygous CRISPR/Cas9-mediated knockout rin
mutants (RIN-KO) did not fail to ripen, reaching a pale red
color. Moreover, a molecular and physiological characterization
of these lines showed that most ripening-related parameters were
less affected than in the rin mutant. These results suggested
that, contrary to what has been considered so far, ripening
can be initiated independently of RIN. Furthermore, they also
suggested that the rin mutant protein may have gained a new
function, as a partial dominant negative mutation that blocks
the initiation of ripening. This hypothesis was supported by the
fact that rin mutant allele encodes for a in-frame fusion of RIN
and Macrocalyx coding sequences (Vrebalov et al., 2002), the
latter containing a putative repression motif that might convert
rin into a transcriptional repressor. This repressor activity was
actually confirmed in vitro (Ito et al., 2017). Consistent with this
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hypothesis, use of CRISPR/Cas9 to generate additional mutations
in the rin mutant allele (rin1N) resulted in fruits that recovered
the initiation of ripening, showing a similar phenotype to that
of RIN-KO lines. Furthermore, a molecular and physiological
characterization of rin1N lines showed a partial recovery of
most of the ripening markers. Thus, this study proposes that
the rin mutant protein would impair the DNA-binding and
activation of ripening-related genes by other master regulators
such as NONRIPENING (NOR), COLORLESS NONRIPENING
(CNR) (Giovannoni, 2004; Manning et al., 2006), or other SEP
homologs.

In conclusion, the use of a gene editing approach such
as CRISPR/Cas9 has allowed generating alternative knockout
alleles, which have changed our current model of fruit ripening,
with RIN being necessary to initiate this process, and rin being
a loss-of-function mutation. This implies that many results
obtained in the past should be reconsidered, and that further
experiments should be carried out now that we are closer to
defining the actual mechanism.

TARGETING FRUIT TEXTURE

While RIN/rin hybrid plants are widely used by tomato breeders,
the incomplete ripening of these hybrid fruits leads frequently
to a poor flavor and a reduced nutritional value. Hence,
to modify texture characteristics for an improved shelf life,
without reducing tomato organoleptic and nutritional quality,
has been a challenge for researchers and breeders for many
years. Fruit softening depends on cell-wall modifying proteins
such as polygalacturonase, pectin methylesterase, endo-β-(1,4)-
glucanase, β-galactosidase, and expansin. A number of studies
have characterized the effect of silencing the expression of
genes encoding these proteins in strawberry (Posé and García-
Gago, 2011), and tomato (Sheehy et al., 1988; Smith et al.,
1990, 1988; Tieman et al., 1992; Hall et al., 1993; Tieman and
Handa, 1994; Brummell et al., 1999; Smith, 2002). Silencing of
the polygalacturonase gene had no apparent effect on tomato
fruit softening (Sheehy et al., 1988; Smith et al., 1990, 1988),
but it did affect the firmness of strawberry fruits, which even
showed a slightly higher ◦Brix (Quesada et al., 2009). For the
rest of the genes, silencing of their expression has had only
very small or no detectable effects on both tomato or strawberry
fruit ripening (Tieman et al., 1992; Hall et al., 1993; Tieman
and Handa, 1994; Brummell et al., 1999; Smith, 2002). However,
silencing another cell-wall related protein, the pectate lyase
(PL), has been successfully applied for the modulation of fruit
firmness in both species. PL silencing increased fruit firmness
without changes in color, size, total soluble solids, or metabolites
influencing taste and aroma in both strawberry (Jiménez-
Bermúdez et al., 2002), and tomato (Uluisik et al., 2016).
Particularly in tomato, preliminary analysis of CRISPR/Cas9-
induced pl mutants has shown an effect on fruit firmness
without altering color and soluble solids content (Uluisik et al.,
2016). A further characterization would be necessary to confirm
that these CRISPR/Cas9 mutant lines maintain other important
agronomical characteristics such as aroma, flavor, yield, color,

and resistance to pathogens, all required traits for a successful
introduction to the market.

TARGETING PHOTOPERIODIC
RESPONSE

An appropriate timing of flowering is not only essential for plant
reproductive success but also to optimize yield in agriculture.
In a search for the genetic component controlling the different
day-length sensitivities regulating flowering in tomato, Soyk
and colleagues identified SELF PRUNING 5G (SP5G) as the
responsible gene (Soyk et al., 2016). SP5G is a FLOWERING
LOCUS T-like gene that works as a floral repressor controlling
flowering under long-day conditions (Cao et al., 2015). In this
study, the authors generated CRISPR/Cas9-mediated mutations
for this gene, obtaining plants that flowered earlier under
long-day conditions. Another gene, SELF-PRUNING (SP), is an
ortholog of Arabidopsis TERMINAL FLOWER 1 (TFL1) and
encodes for another flowering repressor in tomato (Pnueli et al.,
1998). The sp mutation revolutionized tomato cultivation since
it leads to determinate plants with a synchronized burst of
flowering and fruit ripening. In order to obtain faster-flowering
and determinate growth plants, Soyk and collaborators used
CRISPR/Cas9 to generate double sp5g sp mutants, which showed
an earlier flowering burst and an earlier fruit ripening than that
of the sp single mutant and the wild-type (Soyk et al., 2016).
However, the earlier tomato ripening in the double sp5g sp
mutant might be caused simply by the earlier flowering time
phenotype of these plants. Therefore, further studies on fruit
ripening dynamics need to be performed to clarify whether SP5G
actually modulates actively this process.

TARGETING POST-TRANSCRIPTIONAL
REGULATION

There are several previous studies demonstrating the importance
of post-transcriptional regulation by non-coding RNAs in the
control of fruit ripening (Moxon et al., 2008; Zhu et al., 2015;
Wang et al., 2016). To investigate further, CRISPR/Cas9 has
been employed in two studies to identify and characterize post-
transcriptional regulators of tomato fruit ripening.

In plants, long non-coding RNAs (lncRNAs) are important
regulators of gene expression, as they interact with DNA, RNA
and proteins (Zhu and Wang, 2012). Interestingly, two lncRNAs,
lncRNA1459 and lncRNA1840, have been recently associated
with tomato fruit ripening (Zhu et al., 2015). To investigate
further the role of lncRNA1459 in fruit ripening, this gene was
stably knocked-out by Li X. et al. (2018) using CRISPR/Cas9,
obtaining CR-lncRNA1459 mutant lines with a delayed fruit
ripening. A molecular characterization of this mutant showed
that key ripening-related genes involved in lycopene and
ethylene biosynthesis, and in signal transduction were down-
regulated. Consistently, CR-lncRNA1459 mutant fruits showed a
reduction in lycopene accumulation and an inhibition of ethylene
production (Li R. et al., 2018). However, the mechanism and
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target genes of lncRNA1459 in its regulation of fruit ripening still
need clarification.

Another post-transcriptional regulation involved in ripening
that has been recently explored is RNA editing. In flowering
plants, RNA editing by cytidine-to-uridine (C-to-U) conversion
is a widespread process that occurs only in plastids and
mitochondrial transcripts and plays an important role in
developmental processes such as organelle biogenesis, adaptation
to environmental changes and signal transduction (Ichinose and
Sugita, 2017). In a recent report, Yang et al. (2017) aimed to
identify RNA editing factors that might play an essential role
in the regulation of tomato fruit ripening. A virus-induced
gene silencing (VIGS) assay was performed, targeting 11 RNA
editing factor genes putatively related to ripening, positively
identifying SlORRM4, which is located in mitochondria (Yang
et al., 2017). Consistently, CRISPR/Cas9-mediated stable slorrm4
mutants resulted in a delay of ripening, and in a diminution
of the respiratory rates and ethylene production compared with
the wild-type. Further molecular characterization showed that
slorrm4 mutation results in a down-regulation of genes associated
with the Krebs cycle and mitochondrial function, and a decrease
in the level of proteins essential for the mitochondrial respiratory
chain, supporting the essential role of mitochondria in the
regulation of ripening. However, the specific mechanisms linking
RNA-editing in mitochondria with ripening requires further
investigation.

FUTURE PERSPECTIVES

Besides ripening, other interesting agronomic traits have been
modulated recently in tomato using CRISPR/Cas9, such as
parthenocarpy (Klap et al., 2017; Ueta et al., 2017), lycopene
content (Li X. et al., 2018), and fruit size, inflorescence
branching and plant architecture (Rodríguez-Leal et al., 2017).
Especially relevant is the work of Rodríguez-Leal et al. (2017), in
which, instead of editing CDS loci, they targeted cis-regulatory
elements (CREs) in promoters, obtaining quantitatively different
phenotypes (Rodríguez-Leal et al., 2017). CRE mutations are
widespread in nature and have notably contributed to crop
domestication through the alteration of gene expression levels
(Meyer and Purugganan, 2013). Thus, targeting CREs with
genome-editing technologies offers the possibility to fine-tune
gene expression without the common pleiotropic effects observed
in complete loss-of-function mutants, opening the door to
enhance variability for important agronomic and quality traits.
However, a lack of precise knowledge about functional motifs in
CREs hampers the current application of this approach.

In addition to tomato, the CRISPR/Cas9 gene-editing strategy
has been successfully applied in several fruit crop species to
date, including examples of climacteric ripening species, such
as apple (Malnoy et al., 2016; Nishitani et al., 2016), banana
(Kaur et al., 2018) and kiwifruit (Wang et al., 2018), and non-
climacteric ripening species, such as sweet orange (Jia and
Wang, 2014; Peng et al., 2017), Duncan grapefruit (Jia et al.,
2016, 2017), grapevine (Malnoy et al., 2016; Ren et al., 2016;
Nakajima et al., 2017), watermelon (Tian et al., 2016), cucumber

(Chandrasekaran et al., 2016), and the woodland (Zhou et al.,
2018) and cultivated strawberries (Martín-Pizarro et al., 2018;
Table 1). Most of these studies have targeted either the
Phytoene Desaturase gene (PDS), or genes to improve pathogen
resistance. However, they have opened up the possibility of using
CRISPR/Cas9 technology to study or improve fruit ripening in
these crops. Among them, strawberry is a species of particular
interest because the fast softening of the berries is the main cause
of its short shelf life and the source of commercial losses (Perkins-
Veazie, 1995). Hence, the successful application of gene editing
using the CRISPR/Cas9 approach may provide effective solutions
for these postharvest issues.

It is important to highlight that all these studies are based
on the generation of new random mutations mediated by the
NHEJ mechanism. However, homologous recombination-based
gene targeting (GT) allows a more precise genome editing. GT
has already been successfully achieved in several crops, including
tomato (Čermák et al., 2015; Filler Hayut et al., 2017). In a
recent study, GT has been used to extend tomato shelf life by
the incorporation of alcobaca (alc) (Yu et al., 2017), an allelic
mutation of NOR with a lower impact on fruit quality than nor
and rin mutations (Casals et al., 2011), into a wild-type genotype.
Despite these successful studies, GT is still a very challenging
approach due to its low efficiency. Thus, the optimization of GT
in higher plants in general, and in crop species in particular,
would provide of a much wider spectrum of possibilities for
breeding, allowing the introgression of genes of interest into elite
breeding germplasm.

In conclusion, genome editing strategies, especially
CRISPR/Cas9 are becoming rapidly more efficient and precise.
Their application to the coding sequences of TFs, hormones or

FIGURE 1 | Scheme of the possible targets (cis-regulatory elements and gene
coding sequences) that might be modified by genome-editing approaches to
modulate different aspects of fruit ripening.

Frontiers in Plant Science | www.frontiersin.org September 2018 | Volume 9 | Article 1415180

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-01415 September 22, 2018 Time: 13:41 # 6

Martín-Pizarro and Posé Genome Editing to Manipulate Ripening

metabolites biosynthetic enzymes, and hormone receptors, or,
alternatively to CREs of these genes may allow a more precise
fruit ripening modulation (Figure 1). Importantly, genome
editing tools have the possibility of removing transgenes
through self- or backcrossing, an important advantage compared
to traditional approaches for genetic modification. Moreover,
preassembled Cas9 protein-gRNA ribonucleoproteins (RNPs)
remove the likelihood of inserting recombinant DNA into the
host genome. This particular approach has been demonstrated
in the protoplasts of several plant species (Woo et al., 2015;
Malnoy et al., 2016; Svitashev et al., 2016; Liang et al., 2017)
as a strategy that could be potentially operated outside existing
GMO regulatory criteria and gain acceptance from consumers.
However, the recent decision of the Court of Justice of the
European Union is a major setback to innovation in EU
agriculture, considering the “process” instead of the “product”
and putting crops created using gene-editing techniques under
GMO regulations (Directive 2001/18/EC). Hopefully, these

regulatory decisions will be reconsidered in the future, as
there are unquestionable advantages of gene editing to address
the challenge of ensuring sufficient food supply for an
increasing global population in the current changing climatic
conditions.
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