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Angiogenesis is an important adaptation mechanism of the blood vessels to the changing

requirements of the body during development, aging, and wound healing. Angiogenesis

allows existing blood vessels to form new connections or to reabsorb existing ones.

Blood vessels are composed of a layer of endothelial cells (ECs) covered by one

or more layers of mural cells (smooth muscle cells or pericytes). We constructed a

computational Boolean model of the molecular regulatory network involved in the control

of angiogenesis. Our model includes the ANG/TIE, HIF, AMPK/mTOR, VEGF, IGF, FGF,

PLCγ /Calcium, PI3K/AKT, NO, NOTCH, and WNT signaling pathways, as well as the

mechanosensory components of the cytoskeleton. The dynamical behavior of our model

recovers the patterns of molecular activation observed in Phalanx, Tip, and Stalk ECs.

Furthermore, our model is able to describe the modulation of EC behavior due to

extracellular micro-environments, as well as the effect due to loss- and gain-of-function

mutations. These properties make our model a suitable platform for the understanding

of the molecular mechanisms underlying some pathologies. For example, it is possible

to follow the changes in the activation patterns caused by mutations that promote Tip

EC behavior and inhibit Phalanx EC behavior, that lead to the conditions associated with

retinal vascular disorders and tumor vascularization. Moreover, the model describes how

mutations that promote Phalanx EC behavior are associated with the development of

arteriovenous and venous malformations. These results suggest that the network model

that we propose has the potential to be used in the study of how the modulation of

the EC extracellular micro-environment may improve the outcome of vascular disease

treatments.

Keywords: sprouting angiogenesis, networkmodel, mechanical stress, cell differentiation, cell polarization, lateral

inhibition
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1. INTRODUCTION

The circulatory system allows for the existence of large
multicellular organisms, ensuring adequate oxygen and nutrient
supply. Blood vessels are composed of three main layers. The
outermost layer—the tunica adventitia—contains elastic fibers,
collagen, and connective tissue. The middle layer—the tunica
media—is comprised of smooth muscle cells, collagen, and
elastin, and the innermost layer—the tunica intima—, which is
exposed to the vessel lumen, is a single-cell layer of endothelium.
The circulatory system is not a static structure, it adapts to the
changing requirements of the body by means of vasculogenesis,
arteriogenesis, and angiogenesis (Betz et al., 2016).

Vasculogenesis is a process that allows for the de novo
formation of blood vessels. The formation of the first blood
vessels in the embryo involves the differentiation of cells from
the mesodermal blood islands into angioblasts, also called
endothelial precursor cells (EPCs). During later development,
angioblasts may differentiate from hematopoietic stem cells,
multipotent bone marrow progenitor cells, myeloid cells
(specifically monocytes and macrophages), side population cells,
and pluripotent stem cells (Kässmeyer et al., 2009). After the
differentiation of EPCs, the cells must migrate and aggregate to
form a primitive vascular blood plexus. Then, for the vascular
network assembly, three mechanisms have been proposed:
(a) Extracellular matrix contact guidance, where the ECs are
guided by collagen fibers present in the extracellular matrix and
each cell may change the tension and orientation of the collagen
fiber network to guide other cells, (b) Autocrine chemotaxis,
where the ECs follow a morphogen (such as VEGFA) gradient
and then secrete the morphogen altering the gradient to guide
other cells, and (c) Cell-to-cell contact, where sprout expansion

Abbreviations:AMP, AdenosineMonophosphate; AMPK, AMP-activated Protein
Kinase; ANG, Angiopoietin; APLN, Apelin; ASF, Alternative Splicing Factor;
ATP, Adenosine Triphosphate; BMP, Bone Morphogenetic Protein; BTrCP, Beta-
Transducin Repeat Containing E3 Ubiquitin Protein Ligase; CXCR4, C-X-C
motif chemokine Receptor 4; DAAM, Dishevelled Associated Activator Of
Morphogenesis; DLL, Delta-Like canonical notch Ligand; DSH, Dishevelled; EC,
Endothelial Cell; ECM, Extracellular Matrix; eNOS, Endothelial Nitric Oxide
Synthase; EPC, Endothelial Progenitor Cells; EPH, Ephedrin; ERK, Extracellular
signal-Regulated Kinase; FAK, Focal Adhesion Kinase; FOXO1, Forkhead Box
O1; FGF, Fibroblast Growth Factor; FZD, Frizzled; GSK3β , Glycogen Synthase
Kinase 3 Beta; HSC, Hematopoietic Stem Cell; HEY, Hes related family BHLH
transcription factor with YRPW motif; HIF, Hypoxia-Inducible Factor; IA,
Intussusceptive Angiogenesis; IGF, Insulin-like Growth Factor; JAG, Jagged; KLF,
Kruppel Like Factor; LRP, LDL Receptor Related Protein; LEF, Lymphoid Enhancer
binding Factor; MAPK, Mitogen-Activated Protein Kinase; MEK, Mitogen-
Activated Protein Kinase Kinase (MAPKK); MMP, Matrix Metalloproteinase;
mTOR, mechanistic Target Of Rapamycin; NFAT, Nuclear Factor of Activated T-
cells; NICD, NOTCH Intracellular Domain; NO, Nitric Oxide; Nox2, NADPH
oxidase 2; NRARP, NOTCH Regulated Ankyrin Repeat Protein; NRP1, Neuropilin
1; PA, Plasminogen Activator; PDGF, Platelet-Derived Growth Factor; PECAM,
Platelet and Endothelial Cell Adhesion Molecule; PI3K, Phosphatidylinositol-
4,5-bisphosphate 3-Kinase; PIP3, Phosphatidylinositol (3,4,5)-trisphosphate; PKC,
Protein Kinase C; PTEN, Phosphatase and Tensin homolog; RHO, Rhodopsin;
SA, Splitting Angiogenesis; SC, Stalk Cell; SF2, pre-mRNA-Splicing Factor 2; SIRT,
Sirtuin, S1P, sphingosine-1-Phosphate; S1PR, sphingosine-1-Phosphate Receptor;
TC, Tip Cell; TGF, Transforming Growth Factor; TIE, Tyrosine kinase with
domains similar to Immunoglobulin and Epidermal growth factor; TSC, Tuberous
Sclerosis; uPAR, Urokinase Receptor; VEGF, Vascular Endothelial Growth Factor;
VEGFR, Vascular Endothelial Growth Factor-Receptor.

is guided by contact with multicellular elongated structures or
projections of other cells (Czirok, 2013).

Arteriogenesis increases the diameter of existing blood vessels
and remodels large blood vessels creating natural bypasses when
necessary. Whenever, blood flow is redirected into preexisting
arterioles, it creates mechanical forces. Elevated shear stress
and circumferential wall stress during a long time period
are strong inducers of arteriogenesis (Heil et al., 2006). The
endothelium of the arteriolar connections is activated by the
mechanical forces, causing monocytes to promote arteriogenesis
by secreting growth factors and cytokines that increase the
mitosis rate of endothelial and smooth muscle cells (Deindl
and Schaper, 2005). Perivascular mast cells mediate shear stress-
induced arteriogenesis by coordinating the action of T cells,
neutrophils, monocytes, macrophages, and other innate immune
cells by means of the secretion of cytokines and MMPs. The
activation of perivascular mast cells is achieved by the increase
of Nox2-derived reactive oxygen radicals, caused by neutrophil
extravasation (Chillo et al., 2016).

Angiogenesis extends, maintains, and remodels existing
networks of thin blood vessels, mostly capillaries. There exist
two main mechanisms for angiogenesis, namely, sprouting
angiogenesis (SA), and splitting angiogenesis, also known as
intussusceptive angiogenesis (IA) (Gianni-Barrera et al., 2011).
Alterations in blood flow and local changes in the concentration
of angiogenic factors such as VEGF may trigger angiogenesis.
Laminar shear stress inhibits tubule formation and migration
of endothelial cells and favors intussusceptive angiogenesis,
while turbulent shear stress causes an increase in cell migration
and proliferation, and favors sprouting angiogenesis (Makanya
et al., 2009). In skeletal muscle, VEGFA164 over-expression
induces vascular growth by intussusception rather than sprouting
(Gianni-Barrera et al., 2013).

IA occurs during physiological adaptation i.e., exercised
muscles, embryonic development, and pathological situations
such as tumor growth. During IA, endothelial cells extend
processes into the vascular lumen from opposing walls.
Once these processes contact each other, the endothelial cell
junctions at the contact site are reorganized. Then, the bilayer
is perforated by invading interstitial tissue, pericytes, and
myofibroblasts, forming a transluminal pillar. Subsequently,
pericytes, fibroblasts, and other supporting cells deposit
additional collagen and other stabilizing fibers into the
extracellular matrix of the pillar (Makanya et al., 2009), that
may increase in girth, until it splits the blood vessel into
two independent vascular segments (Patan et al., 1996, 1997).
Additionally, several transluminal pillars may fuse to split a vessel
or improve local hemodynamic behavior (Kurz et al., 2003). IA
has three main advantages over SA: first, IA is achieved with
minimal tissue degradation and reduced vascular permeability
caused by mural cell detachment, second, a relatively short
period of time is sufficient to achieve it, and third, only a
relatively low rate of endothelial proliferation is needed (Kurz
et al., 2003; Makanya et al., 2009; Gianni-Barrera et al., 2011). IA
is necessary for the formation of organ-specific angioarchitecture
(intussusceptive microvascular growth), the formation of
vascular trees (intussusceptive arborization), angioadaptation
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and vascular pruning (intussusceptive branching remodeling)
(Makanya et al., 2009).

SA is a developmental process that results in a new connection
between two existing thin blood vessels (Figure 1) and involves
eight related cellular processes: (1) Secretion of angiogenic factors.
Shear stress, or an insufficient local supply of oxygen or nutrients,
may cause the cells within a tissue to secrete angiogenic factors
(Forsythe et al., 1996; Song and Munn, 2011; Kumar et al., 2014).
Relevant angiogenic factors include growth factors, chemokines,
angiopoietins, endostatin, interferons, and NO among other
molecules (Logsdon et al., 2014). (2)Vessel destabilization. Before
a new sprout may form, pericytes, myofibroblasts, and other
supporting cells must be cleared from the area of the blood
vessel where the sprout will form. Also, the ECM surrounding
the area must be remodeled. Blood vessel destabilization is
mediated by VEGFA, ANG2, NO, and the absence of blood flow
(Scharpfenecker et al., 2005; Qin et al., 2013; Korn and Augustin,
2015). (3) Tip and stalk cell differentiation. When certain ECs are
exposed to a VEGF gradient some respond to VEGFA and shear
stress to become tip cells (TCs), growing filopodia toward the
VEGFA gradient. TCs induce neighbor cells to become stalk cells
(SCs) by Notch-mediated lateral signaling (Blanco and Gerhardt,
2013). TCs become less sensitive to Notch signaling and SCs
become less sensitive to VEGF signaling (Weinstein et al., 2015;
Glass et al., 2016). (4) Sprout elongation. The sprout is initially

formed by the TC and one or two adjacent SCs. The subsequent
proliferation of both the TC and SCs together with SC elongation
and rearrangement support stalk elongation toward the VEGFA
source resulting in stalk growth (Betz et al., 2016). (5) Lumen
formation and expansion. Lumen formation may occur through
cord hollowing, cell hollowing, trans-cellular lumen formation,
and lumen ensheathment. Hemodynamic forces shape the apical
membrane of SCs to form and expand new lumenized vascular
tubes (Betz et al., 2016). (6) Anastomosis. Vascular anastomosis
is the process that allows angiogenic sprouts and blood vessels
to connect. Anastomosis can occur between two sprouts, or
between a sprout and a functional blood vessel. The first step
in an anastomosis is the formation of a stable contact between
two ECs forming a new adherens junction with two layers of
apical membrane and a small luminal volume in between. The
mechanism that allows the formation of a new multicellular,
perfused tubes depends on the presence or absence of blood
pressure (Betz et al., 2016). (7) Vessel stabilization. Once a
lumenized new blood vessel has formed, ECs release platelet-
derived growth factor B (PDGFB). PDGFB attracts pericytes,
which incorporate into the vessel wall. S1P, S1PR1, ANG1, TIE2,
Ephrin-B2, EPH, and TGFβ regulate blood vessel stabilization
andmaturation and are regulated by shear stress (Scharpfenecker
et al., 2005; Qin et al., 2013; Korn and Augustin, 2015). And
(8) Pruning. Vessel pruning is basically the process of sprout

FIGURE 1 | (A) Hypoxia induced angiogenesis: When tissue cells are exposed to a microenvironment with an insufficient concentration of Oxygen, they secrete

VEGFA in a process mediated by the Hypoxia-inducible factor 1 (HIF-1). Forming a VEGFA gradient (green), (B) Certain epithelial cells (peach) respond to VEGFA and

shear stress to become tip cells (TCs): VEGFA, ANG2, shear stress, and NO lead to endothelial cell matrix degradation, loss of pericytes (brown triangular cells).

Certain EC become TCs (turquoise) and grow filopodia toward the VEGFA gradient. TCs inhibit neighboring cells from becoming TCs by Notch mediated lateral

signaling and Wnt, (C) Stalk growth and anastomosis: The cells neighboring the TCs are induced by Notch to become Stalk cells (SCs). SCs (orange) secrete

VEGFR1, reducing the concentration of VEGFA in their microenvironment, undergo Wnt mediated proliferation and elongate toward the VEGFA source resulting in

stalk growth. Once a TC reaches another TC or vessel wall, it undergoes VE-cadherin and Macrophage mediated binding, initiating anastomosis, (D) Lumen

formation: Lumen formation may occur through cord hollowing (Intracellular vacuoles fuse intracellularly to hollow out stalk cells and generate an interconnected

luminal space), cell hollowing, transcellular lumen formation, and lumen ensheatment. Hemodynamic forces shape the apical membrane of SCs to form and expand

new lumenized vascular tubes, (E) Vessel stabilization: Once a lumenized new blood vessel has formed, ECs release platelet-derived growth factor B (PDGFB).

PDGFB attracts pericytes which incorporate into the vessel wall. S1P, S1PR1, ANG1, TIE2, Ephirin-B2, EPH, and TGF regulate blood vessel stabilization and

maturation and are regulated by shear stress.
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formation in reverse. The absence of blood flow, or a higher anti-
angiogenic (ANG2) to angiogenic (VEGFA) factor ratio, induces
small blood vessel pruning by reabsorption of ECs into the
remaining vasculature. Regression of larger blood vessels involves
apoptosis (Korn and Augustin, 2015; Betz et al., 2016).

Due to the enormous biological and medical importance of
angiogenesis, many computational and mathematical models
have been proposed to explore the molecular mechanism
involved in angiogenesis control (Peirce, 2008; Qutub et al.,
2009; Scianna et al., 2013; Logsdon et al., 2014; Heck et al.,
2015; Qutub and Popel, 2015). Some of the relevant previous
models are the following: (a) A computational model exploring
the relationship between hemodynamics and angiogenesis in 2D
(Gödde and Kurz, 2001). (b) A computational model of oxygen
transport in skeletal muscle for sprouting and splitting modes
of angiogenesis (Ji et al., 2006). (c) A model that describes
and explores the progression of angiogenesis during the healing
process (Vermolen and Javierre, 2012). (d) A multicellular
model of the early stages of angiogenesis using finite element
integration that includes chemotaxis and the interaction between
tip cells and stalk cells (Bookholt et al., 2016). (e) Two Boolean
models that explore the relationship between the Wnt and
VEGF signaling pathways, mechanoreceptors, apoptosis, cell
proliferation, and lumen formation during angiogenesis (Bauer
et al., 2010; Bazmara et al., 2016). And (f) a multilevel model
based on the previously mentioned Boolean models (Bazmara
et al., 2015). Notably, the authors of Bauer et al. (2010) and
Bazmara et al. (2015) included apoptosis in their model. We did
not include apoptosis in our model because thin blood vessel
pruning usually occurs by the reabsorption of ECs into the
remaining vasculature and seldom involves apoptosis.

Previous models of angiogenesis focused on the role played
by a few of the canonical signaling pathways. However, recent
discoveries have emphasized the role of TGF signaling and its
interaction with the WNT, NOTCH, VEGF/NRP1, HIF, AKT,
ERK, mTOR, and TIE signaling pathways, as well as the role
of HIFs, Ca2+, NO/eNOS, and cytoskeletal mechanoreceptors
during angiogenesis. As a result, none of the previous models
explore the interaction among all the aforementioned canonical
pathways. It was not possible to know, then, if the biological
system was sufficiently well characterized from the point
of view of the molecular regulation. Hereby we present a
model that integrates the largest set of canonical signaling
pathways, thus allowing for a comprehensive characterization
of the effect of the extracellular micro-environment on EC
behavior during differentiation of ECs angiogenesis. The
model presents a qualitative agreement with a large set of
experimental published results, showing that the regulatory
network is a faithful reconstruction of the central molecular
mechanism controlling the cell behavior of endothelial cells
during angiogenesis. This characteristic permits the use of the
model not only to describe the wild-type development and
adaptation process but also to propose targets for intervention
in certain diseases. Specifically, our model suggests that favoring
a micro-environment that induces Phalanx EC behavior may
suffice to improve the treatment of vascular retinal disorders
and vascular malformations. Thus, our model can be considered

as a platform to study several molecular scenarios affecting
angiogenesis.

2. MATERIALS AND METHODS

2.1. Molecular Basis of the Regulatory
Network
To assemble our model of the molecular network involved
in angiogenesis control, we first explored how each one of
the main stages angiogenesis is regulated and then explored
how the molecules involved in the control of each stage
interact with those that regulate the other stages. We started
by exploring how the ANG/TIE signaling pathway acts as
a gatekeeper of EC quiescence. Next, we inquired into the
mechanisms that allow lack of sufficient oxygen or nutrients
to destabilize blood vessels and trigger the angiogenic process.
Then, we probed the mechanism that allows certain EC to
be more sensitive to angiogenic signals by regulating VEGFR
activity. Later, we analyzed how VEGF signaling activates the
signaling pathways ERK1/2, PI3K-AKT, SRC, and p38 MAPK,
and additionally phosphorylates STATs. After that, we inquired
into the mechanisms that allow mechanoreceptors to respond
to shear stress and radial stress to regulate VEGF signaling.
Our ensuing action was to scrutinize the mechanism that allows
the VEGF, NOTCH, WNT, and TGF signaling pathways to
interact and regulate tip and stalk EC behavior. Last, we explored
the mechanism that allows NOTCH and WNT to regulate EC
proliferation. All those molecular mechanisms, their interactions
and some of the most relevant references that describe the
experimental evidence are discussed in detail in the first section
of the Supplementary Material.

2.2. The Regulatory Network as a Discrete
Dynamical System
Boolean networks are discrete dynamical systems, whose
simplicity allows the attainment of biologically meaningful
results, after a systematic exploration of its dynamical behavior
(Dubrova and Teslenko, 2011; Azpeitia et al., 2017). In our
model, most variables represent genes or proteins, some
represent small molecules, and one represents a mechanical
force. Each variable has an activation state, that may be active,
represented by a 1, or inactive, represented by a 0. Furthermore,
we use a synchronous update approach where the states of all
the variables are updated simultaneously. We decided to use a
synchronous update scheme in our boolean model because the
computational analysis of the asynchronous update is extremely
time-consuming, and it is mostly required to explore race
conditions and cyclic patterns ofmolecular activation (Garg et al.,
2008; Saadatpour et al., 2010). However, neither race conditions
nor cyclic behaviors are explored with our current model.

We use definitions and notation for Boolean networks based
on Azpeitia et al. (2017). Let B = {0, 1} and N+

≤n = {1, 2, . . . , n},
a set of labels. A synchronous Boolean network with n components
is a function f :Bn → B

n, where the i-th component of f is
a function fi :B

n → B such that fi(x) = f (x)i. A state of the
network is an n-tuple x = (x1, x2, . . . , xn) such that x ∈ B

n. To
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relate a synchronous Boolean network with a molecular network,
we interpret that each component of a state x represents the
activation state of a variable denoting a molecule included in
the network. The dependency of the state on the discrete time
parameter t is denoted as x(t) and obeys the update rule given by
f . That is for all t ∈ Z

x(t + 1) = f (x(t)) = (f1(x(t)), f2(x(t)), . . . , fn(x(t))),

where

xi(t + 1) = fi(x(t)).

Our Boolean network model is deterministic, and any given
initial state of the network reaches an attractor. A fixed point
attractor is a state s ∈ B

n such that f (s) = s. We define f ol as
the l-th iterate of the function f such that f ol = f (f o(l−1)). An
attractor is a set of states A ⊆ B

n, such that f ol(x) = x for
any state x ∈ A, in other terms, there exist a positive natural
number l ∈ N

+ = {1, 2, . . .} such that f (x(t + l)) = f (x(t))
for all x(t) ∈ A. Furthermore, l is the size of the attractor and
for any j ∈ N

+
<l
, f (x(t + j)) ∈ A. Fixed point attractors represent

stationary patterns of molecular activation, while larger attractors
represent cyclic patterns ofmolecular activation. Additionally, we
assume that each attractor represents an EC behavior.

For simplicity, we refer to the variable xi by its position i in the
n-tuple x. For a state x ∈ B

n and one of its components, say the
one with label i, we denote by x ∼ i the n-tuple resulting from
replacing the value of the variable xi by its complement. Given
two variables i and j and the update function of variable i, namely
fi, j activates i if there exists a pair of network states x, y that differ
only in the state of activation of variable j, that is y = x ∼ j, xj = 0
and yj = 1, such that fi(y) − fi(x) > 0. Conversely, j inhibits i if
there exists a pair of network states x, y that differ only in the state
of activation of variable j, that is y = x ∼ j, xj = 0 and yj = 1,
such that fi(y)− fi(x) < 0. An interaction denoted as the pair (i, j),
i, j ∈ N≤n is functional if variable j activates or inhibits variable i.
Note that according to this definition, it is possible for variable j
to both activate and inhibit variable i depending on the functional
context. For instance, letC(t+1) = (A(t)∧¬B(t))∨(¬A(t)∧B(t)).
A activates C because if we focus on the cases where B is not
active; if A is active, then C is active. A also inhibits C because
if we focus on the cases where B is active; C is active only when A
is not active.

2.3. Model Assembly
Using the information described in the subsection Molecular
basis of the network, we assembled a model of the molecular
network involved in angiogenesis control. Then we encoded
the model using the standardized text file format required by
BoolNet (Müssel et al., 2010), an R package for the analysis of
Boolean networks. The models in BoolNet format, and the R
scripts we used to simulate and analyze the dynamic behavior of
the model are available at https://github.com/NathanWeinstein/
Angiogenesis-Model/. During the development of our model,
we ensured the existence of stable or cyclic patterns of
molecular activation that correspond to Phalanx (AKT+, JAGa−,
NRP1−), Stalk(JAGa+, NRP1−), and Tip (NRP+, DLL4a+,

AKT−) EC behavior and their reachability under certain micro-
environmental conditions (Figure 4A); specifically:

1. (VEGFC_Dp−, VEGFAxxxP−, ANG1+, Oxygen+,
ShearStress+, JAGp−, DLL4p−, WNT5a−, WNT7a−,
FGF−, IGF−, BMP9−, BMP10−, TGFB1−, VEGFC_D−, and
AMPATP−) induces Phalanx EC behavior.

2. (VEGFC_Dp+, VEGFAxxxP−, ANG1+, Oxygen+,
ShearStress+, JAGp−, DLL4p−, WNT5a−, WNT7a−,
FGF−, IGF−, BMP9−, BMP10−, TGFB1−, VEGFC_D−, and
AMPATP−) induces Tip EC behavior.

3. (VEGFC_Dp−, VEGFAxxxP+, ANG1+, Oxygen+,
ShearStress+, JAGp−, DLL4p−, WNT5a−, WNT7a−,
FGF−, IGF−, BMP9−, BMP10−, TGFB1−, VEGFC_D−, and
AMPATP−) induces Tip EC behavior.

4. (VEGFC_Dp−, VEGFAxxxP−, ANG1+, Oxygen+,
ShearStress+, JAGp−, DLL4p+, WNT5a+, WNT7a−,
FGF−, IGF−, BMP9−, BMP10−, TGFB1+, VEGFC_D−, and
AMPATP−) induces Stalk EC behavior.

Importantly, the expected patterns of molecular activation and
EC behavior transitions are based on the literature (del Toro et al.,
2010; Blancas et al., 2012; Glaser et al., 2016).

2.3.1. Simulation of an EC Behavior Transition
To simulate the transitions in EC behavior, we started with one of
the states of an attractor that represents the initial EC behavior.
Then, we modified the variables that represent the extracellular
micro-environment (VEGFC_Dp, VEGFAxxxP, ANG1, Oxygen,
ShearStress, JAGp, DLL4p, WNT5a, WNT7a, FGF, IGF, BMP9,
BMP10, TGFB1, VEGFC_D, andAMPATP) without changing the
other variables related to the internal state of the cell, to simulate
a change of micro-environment that should lead to another EC
behavior. We then calculated all state transitions until reaching
another attractor that represents a new EC behavior.

2.3.2. Boolean Network Simplification
The size of the state space of a boolean molecular network
represented as a directed graph with n nodes —one node for each
variable—, grows exponentially as 2n. Simulating and analyzing
the dynamic behavior of networks containing more than a
hundred nodes requires considerable computational resources.
Recently, certain algorithms that use boolean satisfiability (SAT)
methods capable of finding the attractors of networks with
hundreds of nodes have been developed and implemented
(Dubrova and Teslenko, 2011). Nonetheless, analyzing the effects
of mutations, summarizing trap spaces, and analyzing the
robustness of large networks is still a challenging task. However,
it has been proved that it is possible to remove inputs and nodes
with both an indegree and an outdegree equal to one without
affecting the attractors (Saadatpour et al., 2013). Accordingly, we
simplified the model by removing input nodes (nodes with an
indegree equal to zero) that are either active, or inactive in all ECs,
and are not part of the parameters that specify an extracellular
micro-environment. Additionally, we removed output nodes
(nodes with outdegree equal to zero). Further, we used edge
contraction to merge intermediary nodes (nodes that have either
an indegree or outdegree equal to one) that are not transcription
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factors. The edge contraction operation involves the removal of
an edge e (from u to v) and the merger of its two incident vertices,
u and v, into a new vertex w. We assigned to w the name of u if
v was only regulated by u, in this case we substituted v(t) for u(t)
if e was positive or ¬u(t) if e was negative in the components
of f that correspond to the variables originally regulated by v.
When u only regulated v, we assigned to w the name of v and
in fv we substituted u(t) with fu, that is, fv(. . . , u(t), . . .) becomes
f ′v(. . . , fu, . . .). These operations allowed us to simplify our model
without eliminating feedback circuits. This is relevant because to
a large extent, feedback circuits determine the dynamic behavior
of a boolean network (Azpeitia et al., 2017). The authors of Veliz-
Cuba (2011) and Naldi et al. (2011) studied when the attractors
are preserved after similar simplification processes. Additionally,
we verified that the EC behaviors and transitions based on the
literature were preserved after the simplification process. Further,
we also verified that in both the detailed and the simplifiedmodel,
all single gain and loss of function mutations have a similar
effect on the EC behaviors and transitions based on the literature
(Supplementary Figures 15, 16). Note that for this verification
we only simulated the effect of 4 micro-environments. We only
simulated the full effect of the mutations on our simplified model
as part of the model validation process.

2.4. Analysis of the Dynamic Behavior of
Our Model
First, we obtained all the attractors using the exhaustive SAT-
based search available as part of BoolNet that uses an adaption
of the algorithm proposed by Dubrova and Teslenko (2011). The
exhaustive SAT-based search formulates the attractor search as
a boolean satisfiability (SAT) problem that is solved using the
PicoSAT solver (Biere, 2008). Then, we classified the attractors
based on extracellular micro–environment. After that, for each
micro-environment, we inferred the EC behavior represented
by each attractor. If all EC behaviors associated to one micro-
environment where of the same kind, we added that micro-
environment to the set of micro-environments that induce that
EC behavior. If not all EC behaviors associated with one micro-
environment where of the same kind, we added the micro-
environment to the set of micro-environments that induce
atypical EC behavior. Finally, we summarized the four sets
of micro-environments by grouping them into disjoint subsets
using their shared characteristics. To validate our model, we
simulated all single gain and loss of function mutations. We
then compared the simulated effect of each mutation with
its experimentally observed effect as reported in the literature
(when available). Biological organisms need to be resilient to
mutations and fluctuations in the concentration or level of
molecular activation, we refer to this property as robustness.
For clarity, it is necessary to indicate which trait is robust, to
which perturbation and a method to quantify the resilience
to define a robust feature (Félix and Barkoulas, 2015). We
measured three robust features: (1) The robustness of Phalanx,
Stalk, and Tip EC behaviors to single gain and loss-of-function
mutations. This was measured as the percentage of mutations
that prevent the existence of any stable or cyclic patterns of

molecular activation that correspond to said EC behavior. (2)
The robustness of attractor determination tomolecular activation
noise. First, we generated a set of 1,000,000 aleatory initial
states. For each initial state, we created a perturbed copy with
a Hamming distance of one by reversing the activatory state
of one random variable. We quantified attractor determination
robustness to molecular activation noise, as the fraction of the
initial states that reached the same attractor as their perturbed
copies. (3) The robustness of the trajectories that lead to Phalanx,
Stalk, and Tip EC behaviors to molecular activation noise.
First, we generated a set of 1,000,000 aleatory initial states.
For each initial state, we created a perturbed copy with a
Hamming distance of one by reversing the activatory state of
one random variable. We quantified the robustness of the EC
behaviors to molecular activation noise, as the fraction of the
initial states that reached an attractor that represents the same
EC behavior as that of their perturbed copies. Additionally, we
calculated the sensitivity of each component of the update rule
to molecular activation noise. For each update rule component
fi ∈ f , we first generated a set of 500,000 aleatory initial
states. For each initial state, we created a perturbed copy with
a Hamming distance of one by reversing the activatory state
of one random variable. Then we applied the update rule once
to each initial state and to its perturbed copy. The fraction
of initial states, where after update the activatory state of the
variable xi(t + 1) is different for the initial state then it is for
its perturbed copy is our estimation of the sensitivity for update
rule fi.

3. RESULTS

3.1. The Network Model
The model includes 143 nodes and 256 edges (Figure 2) the
update rules of the network are included in Supplementary
Section 2. To enable a more thorough analysis of the dynamic
behavior of our model, we simplified our model and obtained a
network composed of 64 nodes and 163 interactions, a diagram
of our simplified model is shown in Figure 3. The update rules
that define the dynamic behavior of our model are included
as Equations 1–64. The EC behavior transitions integrated into
both our detailed and simplified models are summarized in
Figure 4A, and Supplementary Figures 1–14. Single gain- and
loss-of-function mutations have a similar effect on the behaviors
and transitions integrated into both models (Supplementary
Figures 15, 16).

AKT(t + 1) = PIP3(t) (1)

ALK1(t + 1) = BMP9(t) ∨ BMP10(t) ∨ TGFB1(t) (2)

ALK5(t + 1) = BMP9(t) (3)

AMPATP(t + 1) = AMPATP(t) (4)

AMPK(t + 1) = (AMPATP(t) ∨ (¬Oxygen(t)))

∧ (¬AKT(t)) (5)

ANG1(t + 1) = ANG1(t) (6)

ANG2(t + 1) = (¬KLF2(t)) ∧ (HIF1(t) ∨ ETS(t)

∨ AP1(t) ∨ FOXO1(t)) (7)
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FIGURE 2 | A diagram of our extended model: The ANG/TIE signaling pathway is shown in gray, Shear Stress in white, Oxygen and Energy in blue, NO in turquoise,

VEGF in yellow, AKT/SRC in light blue, TGF in pink, NOTCH in orange, WNT in purple, RAS/PLCγ in violet, CyclinD1 in light green, and FGF in green. Ligands are

represented as hexagons, other micro-environment variables as octagons, receptors as right arrows, transcription factors as ellipses, and signal transducers as

rounded rectangles. Intracellular signaling is represented in black arrows, extracellular signaling is represented with blue arrows. Activatory interactions are shown as

regular arrows and inhibitory interactions are shown as blunt arrows.

AP1(t + 1) =WNT5a(t) (8)

βcatenin(t + 1) =WNT5a(t) ∨WNT7a(t) (9)

BMP10(t + 1) = BMP10(t) (10)

BMP9(t + 1) = BMP9(t) (11)

Calcium(t + 1) = PLCg(t) ∨ ShearStress(t) ∨ (¬NO(t))
(12)

DLL4a(t + 1) = ETS(t) ∨ NICD(t) (13)

DLL4p(t + 1) = DLL4p(t) (14)

ETS(t + 1) =MEK(t) ∨ VEGFR33(t) (15)

FAK(t + 1) = SRC(t) ∨ Integrin(t) (16)

FGF(t + 1) = FGF(t) (17)

FOXO1(t + 1) = (¬AKT) ∧ SIRT1(t) (18)

HEY1(t + 1) = NICD(t) ∨ ((SMAD1(t) ∨ SMAD2(t))

∧ (¬SIRT1(t))) (19)

HIF1(t + 1) = (AMPK(t) ∨ ¬TSC(t)) ∧ ¬Oxygen(t)

∧ SIRT1(t) (20)

IGF(t + 1) = IGF(t) (21)

Integrin(t + 1) = ETS(t) ∧ (ShearStress(t) ∨ TIE2(t)) (22)

JAGa(t + 1) = SMAD1(t) ∨ βcatenin(t) (23)

JAGp(t + 1) = JAGp(t) (24)

KLF2(t + 1) = ShearStress(t) (25)

LEF1(t + 1) = βcatenin(t) ∧ (LEF1(t) ∨ NRARP(t))
(26)

MEK(t + 1) = (((PLCg(t) ∧ Calcium(t)) ∨ RAS(t))

∧ (¬AKT(t))) ∨ FGF(t) (27)

NFAT(t + 1) = Calcium(t) (28)

NICD(t + 1) = (¬NRARP(t)) ∧ NOTCH(t) (29)

NO(t + 1) = Calcium(t) ∨ AKT(t) ∨ SIRT1(t) (30)

NOTCH(t + 1) = (¬JAGp(t)) ∧ ETS(t) ∧ DLL4p(t) (31)

NRP1(t + 1) = (VEGFAxxx(t) ∨ VEGFC_Dp(t))

∧ (¬NICD(t) ∨ ETS(t)) (32)

NRARP(t + 1) = NICD(t) (33)

Oxygen(t + 1) = Oxygen(t) (34)

p38MAPK(t + 1) = SRC(t) ∨ PLCg(t) ∨ ALK1(t) (35)

PECAM1(t + 1) = VEGFR22(t) ∨ VEGFR23(t)

∨ ShearStress(t) ∨ VEcadherin(t) (36)
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FIGURE 3 | A diagram of our reduced network model: The ANG/TIE signaling pathway is shown in gray, Shear Stress in white, Oxygen and Energy in blue, VEGF in

yellow, AKT/SRC in light blue, TGF in pink, NOTCH in orange, WNT in purple, RAS/PLCγ in violet, and FGF in green. Ligands are represented as hexagons, other

micro-environment variables as octagons, receptors as right arrows, transcription factors as ellipses, and signal transducers as rounded rectangles. Intracellular

signaling is represented in black arrows, extracellular signaling is represented with blue arrows. Activatory interactions are shown as regular arrows and inhibitory

interactions are shown as blunt arrows. The self activatory feedback circuits required to keep the micro-environment constant during the simulation are shown in red.

PIP3(t + 1) = (¬NICD(t)) ∧ (¬WNT5a(t))

∧ (¬WNT7a(t)) ∧ (¬NRP1(t))

∧ (SRC(t) ∨ KLF2(t)

∨ VEcadherin(t) ∨ TIE2(t)) (37)

PLCg(t + 1) = VEGFR22(t) ∨ VEGFR33(t)

∨WNT5a(t) ∨WNT7a(t) (38)

RAS(t + 1) = PECAM1(t) ∨ KLF2(t) ∨ ALK1(t) (39)

ShearStress(t + 1) = ShearStress(t) (40)

SIRT1(t + 1) = AMPK(t) ∧ (HIF1(t) ∨ FOXO1(t)) (41)

SMAD1(t + 1) = (¬SMAD6(t)) ∧ (¬NRP1(t)) ∧ ALK1(t)
(42)

SMAD2(t + 1) = (¬SMAD6(t)) ∧ (¬NRP1(t)) ∧ ALK5(t)
(43)

SMAD6(t + 1) = NICD(t) (44)

SRC(t + 1) = FAK(t) ∨ ShearStress(t) ∨ VEGFR22(t)

∨ VEGFR23(t) (45)

STAT3(t + 1) = VEGFR22(t) (46)

TGFB1(t + 1) = TGFB1(t) (47)

TIE2(t + 1) = (¬ANG2(t)) ∧ ANG1(t) ∧ (ETS(t)

∨ KLF2(t)) (48)

TSC(t + 1) = AMPK(t) ∧ (¬AKT(t)) (49)

VEcadherin(t + 1) = ETS(t) ∧ (SRC(t) ∨ FAK(t)

∨ ShearStress(t) ∨HIF1(t)) (50)

VegfA(t + 1) = (¬Oxygen(t)) ∨HIF1(t) ∨ STAT3(t)

∨ FOXO1(t) ∨ NFAT(t) ∨ KLF2(t)
(51)

VEGFAxxx(t + 1) = VEGFAxxxP(t) ∨ VEGFAxxxA(t) (52)

VEGFAxxxA(t + 1) = VegfA(t) ∧ IGF(t) ∧ ((¬NICD(t)

∧ ¬HIF1(t) ∧ ¬ETS(t))

∨ NFAT(t)) ∧ (¬AMPK(t)) (53)

VEGFAxxxd(t + 1) = p38MAPK(t) ∧ VegfA(t) (54)

VEGFAxxxP(t + 1) = VEGFAxxxP(t) (55)
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FIGURE 4 | Endothelial cell behavior: Phalanx EC behavior shown in yellow, Stalk EC behavior shown in orange, Tip EC behavior shown in green, and other EC

behavior is shown in gray: (A) Expected EC behavior in an extracellular micro-environment with normal oxygen concentration, ATP to ADP ratio and shear stress,

(B) The extracellular micro-environments that cause Phalanx, Stalk, and Tip EC behavior according to the simulation of the dynamic behavior of our simplified model,

(C) The extracellular micro-environments that cause other EC behavior, (D) Summary of EC behavior according to our model, the numbers on the edges represent the

groups of micro-environments shown as columns in panel (B).
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VEGFC_D(t + 1) = VEGFC_D(t) (56)

VEGFC_Dp(t + 1) = VEGFC_Dp(t) (57)

Vegfr2(t + 1) = (ETS(t) ∧ (¬HEY1(t))) ∨ ¬Oxygen(t)
(58)

VEGFR22(t + 1)= Vegfr2(t) ∧(PECAM1(t)

∨ ((VEGFC_Dp(t) ∨ VEGFAxxx(t))

∧ ¬(VEGFAxxxd(t) ∨HIF1(t))) (59)

VEGFR23(t + 1) = Vegfr2(t) ∧ Vegfr3(t) ∧ (PECAM1(t)

∨ VEGFAxxx(t) ∨ VEGFC_Dp(t)) (60)

Vegfr3(t + 1) = NICD(t) (61)

VEGFR33(t + 1) = Vegfr3(t) ∧ (PECAM1(t)

∨ VEGFC_D(t) ∨ VEGFC_Dp(t)) (62)

WNT5a(t + 1) =WNT5a(t) (63)

WNT7a(t + 1) =WNT7a(t) (64)

3.2. The Effect of the Extracellular
Micro-environment on EC Behavior
One of the main goals of this work is to understand how
the concentration of several molecules in the extracellular
micro-environment combines with the mechanical forces sensed
by the mechano-receptors connected to the cytoskeleton of
ECs controls EC behavior. We propose that the presence (1)
or absence (0) of sufficient VEGFC_Dp, VEGFAxxxP, ANG1,
Oxygen, ShearStress, JAGp, DLL4p, WNT5a, WNT7a, FGF, IGF,
BMP9, BMP10, TGFB1, VEGFC_D, and AMPATP in the micro-
environment of an EC determines its behavior. Further, we
propose that Phalanx, Stalk, and Tip ECs retain the ability
respond to the micro-environment in a similar manner and
that explains the plasticity in EC behavior that has been
experimentally observed (Blancas et al., 2012; Glaser et al., 2016).
To investigate the effect of the extracellular micro-environment
on EC behavior, we first found all the attractors that can be
reached through the simulation of the dynamic behavior of our
model. Then, we classified them according to their extracellular
micro-environment. After that we interpreted the EC behavior
represented by the attractors in each micro-environment. If all
the attractors that correspond to a certain micro-environment
represent the same kind of EC behavior, then we can state that
the micro-environment causes that EC behavior. If most micro-
environments cause either Tip, Stalk, or Phalanx EC behavior,
then to a large extent the extracellular micro-environment
controls EC behavior.

Notably, there are 216 = 65536 possible micro-environments.
From these, according to our model, under wild-type conditions
50,572 (77.16675%) micro-environments cause Tip EC
behavior, 12,096 (18.45703%) cause Stalk EC behavior, and
96 (0.1464844%) cause Phalanx EC behavior. The characteristics
of the groups of micro-environments that lead to Phalanx,
Stalk, and Tip EC behavior are summarized in Figure 4B

and Table 1. The intracellular molecules that are active or
inactive in all the patterns of molecular activation in each
group are also summarized in Table 1. The other 2,772
micro-environments (4.229736%) cause atypical dynamical

patterns, including attractors that cycle between the Tip,
Stalk, and/or Phalanx EC behaviors. This means that 62,764
(95.770374%) of the micro-environments induce a certain
EC behavior regardless of the internal pattern of molecular
activation (Figure 4D). Therefore, according to our model, in
most cases, the extracellular micro-environment controls EC
behavior.

Tip ECs are localized at the leading edge of vessel sprouts
forming numerous long dynamic filipodia. Additionally, Tip
cells migrate toward angiogenic stimuli, do not contribute to
lumen formation, and seldom divide. Tip ECs are characterized
by expressing high levels of DLL4, CXCR4, ANG2, PDGFB,
receptors for axon guidance cues, such as the Netrin receptor
UNC5B, APLN, various proteases like uPAR and NRP1, (del
Toro et al., 2010; Blancas et al., 2012). We use NRP1 activity
as a Tip EC-specific marker, and also require DLL4 expression,
because DLL4 directly inhibits neighboring cells from becoming
Tip ECs. Additionally, AKT must be inactive in Tip ECs. It
is known that an increase above a certain threshold on the
concentration of VEGFA or proteolytically processed VEGFC or
D in the micro-environment surrounding an EC triggers Tip EC
behavior (sections 1.2 and 1.10 in the Supplementary Material).
According to the simulated dynamic behavior of our model, the
micro-environments that include VEGFAxxxP or VEGFC_Dp
and induce Tip EC behavior, also include either ShearStress,
WNT5a, WNT7a, FGF, BMP9, BMP10, or TGFB1. Alternatively,
the model also allows for the possibility that two groups of micro-
environments that lack paracrine VEGF activity may cause Tip
EC behavior, achieved by inducing autocrine VEGFA activity.

Stalk ECs trail Tip ECs, proliferate rapidly and contribute to
lumen formation. While TIE2 is constitutively expressed in all
ECs, its protein is detectable by antibody staining on Stalk ECs
but not on Tip ECs. Stalk cells also express the Apelin receptor
APJ and JAG1 (del Toro et al., 2010; Blancas et al., 2012). We use
autocrine JAG1 as a Stalk EC marker due to the specificity of its
expression and its function, which is to suppress Notch signaling
in neighboring Tip ECs, further, Stalk ECs, are characterized
by their lack of NRP1 activity. A sufficient concentration of
WNT, TGF and NOTCH ligands, as well as an absence of VEGF
in the extracellular micro-environment of an EC, is known to
cause Stalk EC behavior (section 1.10 in the Supplementary
Material). According to the simulated dynamic behavior of our
model, it is possible to obtain the Stalk EC behavior in a micro-
environment that complies with either of the following three lists
of requirements: (a) WNT activity, lack of VEGF activity, and
lowOxygen or IGF; (b)WNT activity, no VEGF activity, Oxygen,
IGF, and sufficient energy; and (c) lack of VEGF, NOTCH, WNT,
and IGF ligands that includes one of the TGF ligands.

Phalanx ECs form strong EC–EC bonds to compose the tunica
intima in stable blood vessels. The Pericytes and SMCs that
cover stable blood vessels secrete ANG1 to maintain the integrity
of the layer of Phalanx ECs. Phalanx ECs are characterized by
a high level of VEGFR1 (FLT1) and TIE1 expression (Blancas
et al., 2012), even though neither is a Phalanx EC specific
marker. We use active AKT (Kerr et al., 2016) as well as inactive
NRP1 and JAGa as specific Phalanx EC markers. Changes in
the extracellular concentration of VEGFs, a decrease in the
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TABLE 1 | Phalanx, Stalk, and Tip EC behavior: The groups correspond to those in Figure 4B, active molecules shown in blue, inactive molecules shown in red.

Behavior (groups,

micro–environments,

attractors)

Micro–environment characteristics Molecular activity inside the cell

Phalanx (1–2, 96, 96) ShearStress, and VEGFC_Dp, VEGFAxxxP,

WNT5a, WNT7a, IGF, BMP9, BMP10, TGFB1,

and (JAGp or DLL4p)

RAS, KLF2, VegfA, Calcium, NFAT, FAK, PECAM1, NO, SRC, VEGFAxxxd, AKT, PIP3,

p38MAPK, and ANG2, HIF1, AMPK, SIRT1, FOXO1, NRP1, VEGFAxxxA, VEGFAxxx,

TSC, VEGFR23, AP1, Vegfr3, VEGFR33, catenin, LEF1, NRARP, NICD, HEY1,

SMAD2, ALK5, JAGa, NOTCH, SMAD6, SMAD1, ALK1 do not divide or recruit mural

cells.

Stalk I (3–8, 9216, 58896) VEGFC_Dp and VEGFAxxxP and (WNT5a or

WNT7a), and (Oxygen or IGF)

VegfA, MEK, ETS, PLCg, Calcium, NFAT, NO, VEGFAxxd, p38MAPK, βcatenin,

JAGa, DLL4a, NRP1, VEGFAxxxA, VEGFAxxx, AKT, PIP3

Stalk II (9–10, 1536, 14688) Oxygen and IGF and AMPATP and VEGFC_Dp

and VEGFAxxxP and (WNT5a or WNT7a)

AMPK, Oxygen, VegfA, AMPATP, MEK, ETS, IGF, PLCg, Calcium, NFAT, NO, TSC,

VEGFAxxd, p38MAPK, βcatenin, JAGa, DLL4a NRP1, VEGFAxxxA, VEGFAxxx, AKT,

PIP3

Stalk III (11–16, 1344, 3276) VEGFC_Dp and VEGFAxxxP and WNT5a

WNT7a and IGF and (JAGp or DLL4p) and

(BMP9 or BMP10 or TGF1)

RAS, p38MAPK, JAGa, SMAD1, ALK1, HIF1, NRP1, IGF, VEGFAxxxA, VEGFAxxx,

VEGFR23, βcatenin, LEF1, NICD, NOTCH, SMAD6 do not divide

Tip I (17–30, 48768, 244680) (VEGFC Dp, or VEGFAxxxP) and (ShearStress

or WNT5a or WNT7a or FGF or BMP9 or

BMP10 or TGFB1)

VegfA, MEK, ETS, NRP1, VEGFAxxxd, p38MAPK, DLL4a, AKT, PIP3, SMAD1,

SMAD2

Tip II (31–33, 1792, 4096) VEGFAxxxP and VEGFC Dp and AMPATP and

IGF and Oxygen and (ShearStress or WNT5a

or WNT7a)

Oxygen, VegfA, MEK, ETS, NRP1, Calcium, NFAT, VEGFAxxxA, VEGFAxxx, NO,

VEGFAxxxd, p38MAPK, DLL4a, HIF1, AMPK, SIRT1, FOXO1, TSC, AKT, PIP3,

SMAD1, SMAD2 do not recruit mural cells

Tip III (34–35, 12, 12) VEGFAxxxP and VEGFC Dp and AMPATP and

IGF and Oxygen and ShearStress and WNT5a

and BMP9 and BMP10 and TGF1 and WNT7a

and (JAGp or DLL4p)

ANG2,Oxygen, RAS, VegfA, FGF, MEK, ETS, VEcadherin, STAT3, NRP1, PLCg,

Calcium, NFAT, FAK, PECAM1, VEGFR22, VEGFAxxxA, VEGFAxxx, NO, SRC, Vegfr2,

VEGFAxxxd, p38MAPK, DLL4a, TIE2, HIF1, AMPK, SIRT1, Integrin, KLF2, FOXO1,

TSC, VEGFR23, AP1, AKT, PIP3, Vegfr3, VEGFR33, βcatenin, LEF1, NRARP, NICD,

HEY1, SMAD2, ALK5, JAGa, NOTCH, SMAD6, SMAD1, ALK1 do not divide and do

not recruit mural cells

βcatenin and LEF1 activity is required to allow Cyclin D1–mediated activation of the cell cycle. FOXO1 or SMAD2 activity is required for PDGFβ–mediated mural cell recruitment.

availability of oxygen or energy within the cell, and shear stress
cause ANG2-mediated activation of the ECs that line blood
vessels (section 1.8 in the Supplementary Material). According to
our model, the lack of VEGF, NOTCH, WNT and TGF pathway
activity is necessary to observe a stable Phalanx EC behavior. The
simulated Phalanx ECs do not divide and do not recruit mural
cells.

3.2.1. Atypical EC Behavior
We performed with our model a systematic study of the
dynamical behavior of a regulatory network under all possible
combination of the micro-environments. Apart from the clearly
identifiable phenotypes mentioned in the previous paragraphs,
we observed some atypical responses. If the attractors that
correspond to a certain micro-environment represented different
EC behaviors, or any of the attractors represented an EC behavior
that was different from Tip, Stalk, or Phalanx EC behavior,
we considered that the micro-environment causes atypical EC
behavior. For completeness, we describe such atypical behaviors
in Table 2.

3.2.2. EC Proliferation
EC proliferation allows the number of ECs to increase during
sprout elongation. We describe the effect of the micro-
environment on EC proliferation according to the simulated
dynamic behavior of our model in Table 3. Note that in

accordance with what has been reported in the literature, only
Tip and Stalk ECs proliferate.

3.3. Model Validation
Certain diseases exhibit abnormal angiogenesis, because the
affected tissue or organ secretes abnormal amounts of angiogenic
signals. Simulating the effect of a pathological extracellular
micro-environment on EC behavior can be used to understand
how a disease is causing abnormal vascular remodeling, the
insights are only valid if the dynamic behavior of the model
can reproduce the relevant experimental observations. If an
experimental observation includes a sufficiently well-defined
extracellular micro-environment and an observed EC behavior.
Then the extracellular micro-environment fits only one column
in Figure 4B or Figure 4C. If the EC behavior according to
our model (shown at the bottom row of the column that
corresponds to the micro-environment) is the same as the
observed EC behavior, then our model fits that experimental
observation.

3.3.1. Tumor Angiogenesis
The micro-environment inside many tumors is hypoxic,
containing a high concentration of VEGFA and FGF. This state
causes the formation of many leaky blood vessels (Nussenbaum
and Herman, 2010). Our model can describe this state, as shown
in Figure 4B group 27. The results indicate that the mentioned
micro-environment induces Tip EC behavior, and inhibits
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TABLE 2 | Atypical EC behavior: The groups correspond to those in Figure 4C, active molecules shown in blue, inactive molecules shown in red.

Behavior (groups,

micro–environments,

attractors)

Micro–environment characteristics Molecular activity inside the cell

Atypical I (36–38, 384, 3920) (VEGFAxxxP or VEGFC Dp) and ShearStress, and WNT5a,

and WNT7a, and FGF, and BMP9, and BMP10, and TGFB1

KLF2, FGF, AP1, βcatenin, LEF1, SMAD2, JAGa, SMAD1,ALK1

Atypical II (39–47, 1568,

11172)

IGF and VEGFC_Dp and VEGFAxxxP and WNT5a and

WNT7a and (AMPATP or Oxygen or ShearStress) and (BMP9

or BMP10 or TGFB1)

RAS, p38MAPK, ALK1, HIF1, AP1, βcatenin, LEF1

Atypical III (48–56, 392, 1876) VEGFC_Dp and VEGFAxxxP and WNT5a and WNT7a and

JAGp and IGF and DLL4p and (AMPATP or Oxygen or

ShearStress) and (BMP9 or BMP10 or TGFB1)

RAS, p38MAPK, ALK1, HIF1, NRP1, VEGFAxxxA, VEGFAxxx, AP1,

βcatenin and LEF1

Atypical IV (57–59, 56, 112) VEGFC_Dp and VEGFAxxxP and WNT5a and WNT7a and

JAGp and IGF and AMPATP and Oxygen and ShearStress

and DLL4p and (BMP9 or BMP10 or TGFB1)

RAS, KLF2, VegfA, Calcium, NFAT, FAK, PECAM1, NO, SRC,

VEGFAxxxd, p38MAPK, ALK1, ANG2, HIF1, SIRT1, FOXO1, NRP1,

VEGFAxxxA, VEGFAxxx, TSC, AP1, βcatenin, LEF1

Atypical V (60, 128, 687) VEGFC_Dp and VEGFAxxxP and ShearStress and WNT5a

and WNT7a and IGF and BMP9 and BMP10 and TGFB1

KLF2, NRP1, VEGFAxxxA, VEGFAxxx, AP1, βcatenin, LEF1, SMAD2,

ALK5, JAGa, ALK1

Atypical VI (61, 32, 64) ShearStress and DLL4p and VEGFC_Dp and VEGFAxxxP

and WNT5a and WNT7a and JAGp and IGF and BMP9 and

BMP10 and TGFB1

RAS, KLF2, VegfA, Calcium, NFAT, FAK, PECAM1, NO, SRC,

VEGFAxxxd, p38MAPK, ANG2, HIF1, SIRT1, FOXO1, NRP1,

VEGFAxxxA, VEGFAxxx, AP1, βcatenin, LEF1, SMAD2, ALK5, JAGa,

SMAD1, ALK1 do not recruit mural cells

Atypical VII (62–63, 96, 456) ShearStress and IGF and VEGFC_Dp and VEGFAxxxP and

WNT5a and WNT7a and BMP9 and BMP10 and TGFB1 and

(AMPATP or Oxygen)

RAS, KLF2, VegfA, Calcium, NFAT, FAK, PECAM1, NO, SRC,

VEGFAxxxd, p38MAPK, ANG2, HIF1, SIRT1, FOXO1, AP1, βcatenin,

LEF1, SMAD2, ALK5, SMAD1, ALK1 do not recruit mural cells

Atypical VIII (64–66, 112,

1358)

IGF and VEGFC_Dp and VEGFAxxxP and ShearStress and

WNT5a and WNT7a and BMP9 and BMP10 and TGF and

(AMPATP or FGF or Oxygen)

KLF2, AP1, βcatenin, LEF1, SMAD2, ALK5, SMAD1 , ALK1

Atypical IX (67, 4, 8) VEGFC_Dp and VEGFAxxxP and ShearStress and JAGp and

WNT5a and WNT7a and BMP9 and BMP10 and TGF and

AMPATP and Oxygen and DLL4p and FGF and IGF

ANG2, MEK, ETS, NOTCH, DLL4a, TIE2, HIF1, AMPK, SIRT1, Integrin,

KLF2, FOXO1, TSC, AP1, βcatenin, LEF1, SMAD2, ALK5, JAGa,

SMAD1, ALK1, DLL4a do not recruit mural cells

All the atypical EC behaviors include a quiescent cell cycle because βcatenin and LEF1 activity is required to allow Cyclin D1–mediated activation of the cell cycle. FOXO1 or SMAD2

activity is required for PDGFβ–mediated mural cell recruitment.

TABLE 3 | EC proliferation: Cyclin D1–mediated activation of the cell cycle requires βcatenin and LEF1 activity. Active molecules shown in blue, inactive molecules shown

in red.

Behavior

(micro–environments,

attractors)

Micro–environment characteristics Molecular activity inside the cell

All divide (12288, 42432) JAGp and DLL4p and (WNT5a or WNT7a) VegfA, MEK, ETS, PLCg, Calcium, NFAT, NO, VEGFAxxd, p38MAPK, βcatenin, LEF1,

JAGa, NOTCH, DLL4a, AKT, PIP3

Some divide (36864, 244656) (JAGp or DLL4p) and (WNT5a or WNT7a) VegfA, MEK, ETS, PLCg, Calcium, NFAT, NO, VEGFAxxd, p38MAPK, βcatenin, JAGa,

DLL4a, VEGFR23, AKT, PIP3, Vegfr3, VEGFR33, NRARP, NICD, NOTCH, SMAD6

None divide (16384, 58309) WNT5a and WNT7a βcatenin, LEF1, AP1

Phalanx EC behavior, which is consistent with experimental
observations.

3.3.2. Pathological Ocular Angiogenesis
Diabetic retinopathy, age-related macular degeneration,
retinopathy of prematurity, and other irreversible causes of
blindness involve pathological angiogenesis. The capillaries
of the retina are unique, the inner layer of the blood-retinal
barrier is like that of other capillaries, and is composed of a
single layer of ECs. However, the outer layer of the blood-retinal
barrier is formed by retinal pigment epithelial cells instead
of pericytes and SMCs. Pathological ocular angiogenesis is

triggered by hypoxia from neuronal metabolism, inflammatory
signals, and oxidative stress. Those micro-environmental
conditions cause retinal pigmented epithelium, astrocytes,
Müller cells, ECs, ganglion cells to secrete VEGFA (Siemerink
et al., 2010). According to our model, the Tip ECs that secrete
VEGFA during pathological ocular angiogenesis are likely
exposed the extracellular micro-environments in groups
34–35 in Figure 4B, and are affected by oxidative stress,
lack of shear stress and have sufficient oxygen. The other
Tip ECs involved in pathological ocular angiogenesis and
induced by paracrine VEGFA correspond to groups 17–30 in
Figure 4B.
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Other angiogenic pathologies are caused by mutations that
affect how an EC responds to changes in the extracellular micro-
environment. We used our simplified model to simulate the
effect of all single gain- and loss-of-function mutations on EC
behavior. Specifically, we analyzed how each mutation affects
the groups of extracellular micro-environments that cause Tip,
Stalk, and Phalanx EC behaviors in our simplified model. The
effect of some of the mutations has been observed experimentally
and it should be possible to simulate the observed behavior
using our model. The expected effect of reducing, or enlarging
the number of extracellular micro-environments that cause each
EC behavior depends on the likelihood of appearance of each
micro-environment. Only when almost all or none of the micro-
environments lead to a certain EC behavior, and themutation has
been observed in–vitro or in–vivo it is possible to compare the
simulated effect of a certain mutation (Supplementary Table 13)
with its experimentally observed effect.

Simulated loss of autocrine function of DLL4, ETS, MEK, or
NRP1, leads to the loss of functional Tip EC behavior, strongly
favoring Stalk EC behavior. Importantly, all four mutations have
been observed to cause severe vascular defects in vivo and in vitro
(Supplementary Tables 6, 10, and 12). The loss of autocrine DLL4
leads to the formation of a higher number of Tip ECs that do
not inhibit their neighbor ECs from becoming Tip ECs (del Toro
et al., 2010).

Simulated gain-of-function mutations for proteolytically
active VEGFA, VEGFC, and VEGFD as well as NRP1, prevent
Stalk EC behavior and cause more than 99% of the extracellular
micro-environments to induce Tip EC behavior. In vivo and
in vitro, proteolytically active VEGFA, VEGFC, and VEGFD
increase blood vessel branching, angiogenesis, and permeability
(Supplementary Tables 11, 12).

Simulations indicate that the Phalanx EC behavior is
prevented by a loss of AKT, PIP3, or ShearStress function, or
alternatively by constitutive ALK1, βcatenin, BMP10, BMP9,
IGF, autocrine JAG, NICD, NOTCH, NRP1, SMAD1, TGFβ1,
proteolytically active VEGFA, VEGFC, or VEGFD, WNT5a, or
WNT7a activity. In vitro and in vivo, loss of AKT, PIP3, or
ShearStress leads to mural cell loss, blood vessel destabilization
and regression (Supplementary Tables 2, 3). Constitutive
βcatenin, IGF, NOTCH, NRP1, SMAD1, proteolytically active
VEGFA, VEGFC, or VEGFD, WNT5a, or WNT7a activity
induces EC migration, proliferation, survival, or angiogenesis
(Supplementary Tables 4, 8–12).

3.4. Robustness Analysis
Molecular regulatory networks must balance the need to ignore
noise perturbations with the need to respond adequately to
stimuli. A Boolean network can be classified as ordered, critical,
or chaotic. Ordered Boolean networks resist most perturbations
without any important changes in their dynamic behavior and
are not sufficiently sensitive to stimuli. Chaotic Boolean networks
tend to magnify perturbations and do not resist enough noise.
Critical Boolean networks are selectively sensitive to certain
perturbations and are sufficiently resilient to noise to be adequate
models of molecular regulatory networks (Lloyd-Price et al.,

2012). Additionally, the robustness of each trait has specific
implications.

3.4.1. The Robustness of Tip, Stalk, and Phalanx EC

Behavior to Single Gain and Loss-of-Function

Mutations
The resilience of a functional phenotype to changes in the
genotype allows the accumulation of genetic variation in a
population, and needs to be achieved without limiting excessively
the ability of a species to adapt by evolving different traits
(Kirschner and Gerhart, 1998; Jiménez et al., 2015). The
simulations showed that 23/128 = 17.96875% of all single gain-
and loss-of-function mutations did not affect EC behavior at
all. Furthermore, 82/128 = 64.0625% of mutations only cause
changes in the response of an EC to certain extracellular micro-
environments. The other 23/128 = 17.96875% of the mutations
led to the loss of an EC behavior. Then, 4/128 = 3.125% of all
mutations cause loss of Tip EC behavior. The same number of
mutations cause Stalk EC behavior loss and strongly favor Tip
EC behavior. Finally, 18/128 = 14.0625% of the mutations cause
loss of Phalanx EC behavior. This set of results imply that our
model of the network is robust to the complete loss of any of the
main EC behaviors, howevermanymutations change the number
of micro–environments that cause Tip, Stalk, and Phalanx EC
behaviors (Supplementary Tables 13, 14).

3.4.2. The Robustness of Attractor Determination and

EC Behavior to Molecular Activation Noise
Only 33.0538% of the trajectories followed by the perturbed
copies of 1,000,000 random initial states reached the same
attractor as the original state. In contrast, when we used 1,000,000
random initial states to test the robustness of EC behavior
to molecular activation noise in 98.90088% of the relevant
experiments the perturbation did not affect Tip EC, in 95.30536%
of the relevant experiments, the perturbation did not affect Stalk
EC behavior, and in 86.58824% of the relevant experiments, the
perturbation did not affect Phalanx EC behavior. In general,
97.91060% of the random initial states reached the same EC
behavior as the one reached by their perturbed copies.

3.4.3. The Sensitivity of Each Component of the

Update Rule to Molecular Activation Noise
To understand which variables are more sensitive to stimuli and
which ones tend to be more resilient to molecular activation
noise. We estimated the sensitivity of each component of the
update rule as described in the methods section. The results are
shown in Figure 5 and the sensitivity values in section 2.1 in the
Supplementary Material. The nodes with the six most sensitive
update rules in our network are NRP1, MEK, Integrin, HEY1,
SIRT1, AMPK. Even the update rule of NRP, the most sensitive in
our model, has a relatively low sensitivity of 0.023716.

4. DISCUSSION

We presented in this work a reconstruction of the regulatory
network involved in the control of angiogenesis, integrating
the largest set of canonical signaling pathways to date.

Frontiers in Physiology | www.frontiersin.org November 2017 | Volume 8 | Article 96017

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Weinstein et al. Angiogenesis Endothelial-Behavior Micro-environment Map

FIGURE 5 | Update rule component sensitivity: (A) A darker shade of blue indicates a higher sensitivity in the update rule. Values range from VegfA = 0.002926 to

NRP1 = 0.023716. (B) The sensitivities of the components of the update rule arranged from smallest to largest compared to the average sensitivity (0.01515947)

which is shown as a red line.

The dynamical behavior of the network, simulated as a
Boolean network model, recovered the qualitative patterns
of molecular activation observed in Phalanx, Tip, and Stalk
ECs. Furthermore, the simulated behavior of the model

corresponded to what has been reported in the literature
regarding the high degree of behavioral plasticity between
Phalanx, Stalk, and Tip EC behaviors in response to specific
molecular micro-environments. Moreover, the model was also
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able to describe the effect of gain- and loss-of-function
mutations.

4.1. Insights and Predictions Based on the
Simulated Dynamic Behavior of Our Model
The qualitative agreement between our model and published
data shows that the model is a useful framework to understand
the mechanisms that underly normal angiogenesis. Furthermore,
it allows generating hypotheses on the mechanisms by which
a disruption in the system might lead to deviation in
EC behavior, which might eventually lead to a pathogenic
phenotype. The qualitative agreement between our model
and published results cannot be attributed to some sort
of model fitting. This is evidenced by the high robustness
observed in the model against the complete loss of any
of the main EC behaviors (Supplementary Tables 13, 14),
despite the perturbations introduced in the update rules.
Nonetheless, when we analyzed the effect of single gain-
and loss-of-function mutations, the simulations recovered the
observed effects of such mutations under certain micro-
environments.

Our micro-environment EC behavior map allows us to put
forward the following hypotheses about the requirements for Tip
Stalk and Phalanx EC behaviors: (1) In a micro-environment
with an active, paracrine VEGF ligand, the presence of either
ShearStress, WNT5a, WNT7a, FGF, BMP9, BMP10, or TGFB1 is
necessary to induce Tip EC behavior. (2) A micro-environment
without VEGF can induce Tip EC behavior if it includes Oxygen,
nutrients and IGF (Tip II, and Tip III in Table 1). However,
the resulting Tip ECs secrete autocrine VEGFA. (3) DLL4 is not
required for a micro-environment to induce Stalk EC behavior.
(4) Shear stress and the absence of VEGF, TGF, IGF, WNT, and
NOTCH ligands in the micro-environment is needed to observe
a stable Phalanx EC behavior.

Based on the simulated effect of constitutive NRP1 activity,
we predict that it prevents Stalk EC behavior and induces Tip
EC behavior. We predict that constitutive ALK1, BMP9, BMP10,
autocrine JAG, NICD, NRP1, SMAD1, and TGFβ1 activity
inhibits Phalanx EC behavior based on the simulated effect of the
corresponding gain-of-function mutations. Therefore, the model
helps predict which mutations cause augmented mural cell loss,
EC migration, proliferation, and angiogenesis, concomitant with
inhibited Phalanx EC behavior.

Knowing the response of endothelial cells under a specific
micro-environment is extremely relevant because inhibiting
angiogenesis is an important medical goal during the treatment
of vascular retinal disorders and cancer. Most of the drugs
that are used to inhibit angiogenesis target the VEGF signaling
pathway, inhibiting Tip EC behavior (Yadav et al., 2015). Our
model suggests alternative ways to eliminate Tip EC behavior.
Specifically, by eliminating the function of DLL4, ETS, MEK, or
NRP1. Notably, both NRP1 and DLL4 are located on the cell
membrane of ECs and are therefore easily reachable by drugs.
Furthermore, in vascular retinal disorders, vascular permeability
increases and vascular integrity diminishes, that is associated

with intra-ocular hemorrhage and invasive potential of cancer.
In principle, an extracellular micro-environment conducive to
Phalanx EC behavior would help increase vascular integrity.
Finally, stimulating angiogenesis is also an important medical
goal during wound healing. It would be possible, thus, to use
our model to explore one of the micro-environments that lead
to Tip EC behavior and therefore, induce the wound healing
process.

Arteriovenous malformations are very frequent in patients
who suffer from Hereditary Hemorrhagic Telangiectasia (HHT),
a disease associated with reduced ALK1, ENG, or SMAD4
function. In addition, Pulmonary Arterial Hypertension (PAH)
is associated with reduced BMPRII or SMAD1 function.
Furthermore, venous malformations have been observed in mice
with constitutive TIE2 activity, as well as in mice with loss of
ERK function. According to our model, the simulated effect
of the mutations mentioned above includes an increase in the
number ofmicro-environments that lead to Phalanx EC behavior,
suggesting that the mentioned diseases are a consequence of
ectopic blood vessel stabilization.

4.2. Assumptions and Limitations of Our
Model
In this first version of the model of angiogenesis, we focus on
the effect of the extracellular micro-environment on the behavior
of a single endothelial cell. By using a Boolean model, we
assume that all variables can only be active or inactive. Further,
we use a synchronous update approach, therefore, we assume
that all variables are activated or inhibited simultaneously.
The limitations of our model affect the number of sprouting
angiogenesis processes that we can reproduce and the extent
to which we can simulate them. Some of the processes that
are beyond the scope of our model have been studied using
other previously published models (Peirce, 2008; Qutub et al.,
2009; Scianna et al., 2013; Logsdon et al., 2014; Heck et al.,
2015; Qutub and Popel, 2015) while other processes offer
opportunities for further research as specified in the following
paragraphs.

4.2.1. Secretion of Angiogenic Factors
According to our model, certain conditions cause ECs to
secrete vascular growth factors (Figure 4B columns 31–35),
the conditions that cause ECs to secrete active VEGFA
(VEGFAxxxA) include sufficient oxygen, IGF, and a low AMP to
ATP ratio. Normally, ECs are in contact with blood preventing
hypoxia and lack of nutrients. The cells that compose other
tissues respond to hypoxia or a high AMP to ATP ratio
by secreting angiogenic factors; however, those cells are not
included in our model. Additionally, Oxygen and then the
secreted VEGF form concentration gradients. A continuous
model that includes the geometry of the region or organ of
interest as a boundary condition is necessary to simulate the
gradient. Moreover, VEGFR1s secretion modulates the VEGFA
concentration gradient (Chappell et al., 2016).
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4.2.2. Vessel Destabilization
ANG2 activity is associated with mural cell detachment and
it is possible to reproduce EC behavior during blood vessel
destabilization using our model. However, it is not possible to
reproduce pericyte and smooth muscle cell detachment because
they are not included in our model. Some previous modeling
efforts have included blood vessel destabilization (Zheng et al.,
2013). However, in our opinion, mural cell behavior during
angiogenesis merits a more detailed exploration.

4.2.3. Tip and Stalk Cell Differentiation
We carefully analyzed tip and stalk EC differentiation using our
model emphasizing the interaction between the VEGF, WNT,
TGF, NOTCH, Calcium, and NO signaling pathways during
Tip and Stalk behavior specification. It is noteworthy that while
Tip cells induce Stalk behavior in their neighbors by expressing
DLL4 (Blanco and Gerhardt, 2013), according to our model
NOTCH signaling inhibits Tip EC behavior only in a small
group of micro-environments (Figure 4B, columns 34 and 35). A
possible explanation for this apparent discrepancy is that active
NOTCH signaling induces the secretion of VEGFR1s, which
binds VEGFA, effectively raising the extracellular concentration
of VEGFA needed to induce Tip EC behavior in the cells
with active NOTCH signaling. In our Boolean model, it is not
possible to include the changing VEGFAxxxP threshold, this
would require a continuous model. Further, at the multicellular
level, the chronological order in which ECs are affected by
VEGFA and DLL4-mediated lateral inhibition creates a race
condition (Bentley and Chakravartula, 2017). The temporal
modulation of Tip and stalk EC behavior, including the effect
of filipodia on tip cell sensitivity to VEGF, has been explored
by previous modeling efforts (Venkatraman et al., 2016). A
continuous, asynchronous, multicellular model that includes
Matrixmetalloproteinase, Apelin signaling (Palm et al., 2016) and
VEGFR1s secretion (Chappell et al., 2016) would offer additional
valuable insights.

4.2.4. Sprout Elongation
We simulated the micro-environmental conditions that may
cause ECs to divide. However, our model does not include cell
shape, which also changes during sprout elongation. Further
sprout elongation is a multicellular process and our model
includes only one EC. Several previous modeling efforts have
studied sprout elongation (Logsdon et al., 2014). The authors of
Norton and Popel (2016) analyzed the effect of EC proliferation,
elongation, and migration during sprout elongation. Mechanical
forces regulate both the location of sprout initiation and the rate
of sprout elongation (Ghaffari et al., 2015), included in the model
proposed by the authors of Vavourakis et al. (2017). Amulti-scale
model including cytoskeletal dynamics, molecular activation, and
mechanical forces would greatly enhance our understanding of
sprout elongation.

4.2.5. Lumen Formation and Expansion
PIP3, FAK, and SRC activity has been associated with vacuole
secretion that is one of the main processes involved in lumen
formation. According to the simulated dynamic behavior of

our model, all Phalanx cells secrete vacuoles, additionally, type
III Stalk ECs may also secrete vacuoles. Lumen formation
is a multicellular process, that involves vacuole secretion
and cytoskeletal remodeling. Simulating lumen formation, EC
repulsion and flow-mediated lumen formation is beyond the
scope of our current model. The authors of Boas and Merks
(2014) focused their modeling efforts on the study of lumen
formation.

4.2.6. Anastomosis
Is a multicellular process that involves cytoskeletal remodeling
including specific shape changes that are beyond the scope of
our model. Anastomosis has been included in several 2D and
3D models (Zheng et al., 2013; Norton and Popel, 2016). ECs
with a reduced concentration of membrane-localized VEGFR1
are more likely to form stable connections with incoming sprouts
(Nesmith et al., 2017). A multicellular model that integrates
VEGFR1 regulation, and how it affects anastomosis, may help
explain micro–vascular architecture.

4.2.7. Vessel Stabilization
Phalanx EC behavior is expected in stable blood vessels
and is recovered by our model. PDGFB-mediated mural cell
recruitment is also recovered by our model. Other multicellular
effects of vessel stabilization, such as decreased blood vessel
permeability, are beyond the scope of our model. Some previous
modeling efforts have included blood vessel stabilization (Zheng
et al., 2013). However, in our opinion, mural cell behavior during
angiogenesis merits a more detailed exploration.

4.2.8. Pruning
Some of the micro-environments that cause atypical EC behavior
without VEGF, FGF, IGF, and without Shear Stress (Figure 4C,
group 60) may correspond to EC behavior during pruning.
However, pruning involves changes in EC shape, EC fusion
events, and EC migration, which have not been included in our
model. Pruning is mainly regulated by blood flow. Apoptosis is
implicated in the regression of large diameter blood vessels. In the
small-diameter blood vessels that are remodeled by angiogenesis,
pruning involves EC migration, self-fusion, and contraction
before reabsorption into the remaining vasculature (Korn and
Augustin, 2015; Betz et al., 2016). The model proposed by the
authors of Chen et al. (2012) provided valuable insights into
the role of hemodynamics during Zebrafish midbrain vascular
pruning.

In conclusion, we developed a Boolean model of the network
involved in EC behavior control during angiogenesis. The
simulated dynamic behavior of our model corresponds with
what has been observed experimentally and published about
EC behavior and the effect of single gain- and loss-of-function
mutations. The dynamical behavior of themodel can qualitatively
describe a wide variety of physiopathological states during
angiogenesis. We believe that this characteristic makes the model
a good platform to study the effect of altering the micro-
environments and/or molecular backgrounds on endothelial
cells.
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A common approach to address biological questions in systems biology is to simulate

regulatory mechanisms using dynamic models. Among others, Boolean networks can

be used to model the dynamics of regulatory processes in biology. Boolean network

models allow simulating the qualitative behavior of the modeled processes. A central

objective in the simulation of Boolean networks is the computation of their long-term

behavior—so-called attractors. These attractors are of special interest as they can often

be linked to biologically relevant behaviors. Changing internal and external conditions

can influence the long-term behavior of the Boolean network model. Perturbation of

a Boolean network by stripping a component of the system or simulating a surplus

of another element can lead to different attractors. Apparently, the number of possible

perturbations and combinations of perturbations increases exponentially with the size of

the network. Manually screening a set of possible components for combinations that

have a desired effect on the long-term behavior can be very time consuming if not

impossible. We developed amethod to automatically screen for perturbations that lead to

a user-specified change in the network’s functioning. This method is implemented in the

visual simulation framework ViSiBool utilizing satisfiability (SAT) solvers for fast exhaustive

attractor search.

Keywords: systems biology, regulatory networks, Boolean networks, dynamic model, simulation, perturbation

studies, SAT solving

1. INTRODUCTION

Internal and external conditions cause a biological system to change its behavior over time.
Mathematical models have become invaluable tools to gain insights into the complex dynamics of
biological systems. Boolean networks are one kind of dynamic models based on two-valued logic.
Boolean networks can be modeled manually by extraction of Boolean functions from literature
resources or inferred automatically from time-series data (Lähdesmäki et al., 2003; Maucher et al.,
2011, 2012; Hopfensitz et al., 2012). Simulation of Boolean networks allows for studying various
dynamic network properties of the investigated systems. The long-term behavior of the modeled
system often corresponds to biologically relevant phenotypes (Naldi et al., 2015). Furthermore,
the dynamics of Boolean networks can aid in identifying components that are crucial for these
phenotypes. For instance, the effects of depriving or over-representing one element in the system
can bemeasured in the form of changes in the long-term behavior. However, the number of possible
perturbations increases rapidly with a larger model size. We developed a method to automatically
screen for perturbations that cause a desired effect on the long-term behavior of the system.
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There are various tools and frameworks to model, simulate
or visualize different types of Boolean networks. The R-package
BoolNet comprises a number of simulation algorithms, for
instance, attractor search, network perturbation or robustness
analysis for synchronous, asynchronous, and probabilistic
Boolean networks (Müssel et al., 2010). Additionally, it allows
for visualization of dependencies in the network and attractors.
However, BoolNet requires programming skills and a basic
understanding of the programming language R.

GUI-based software like GinSim (Gonzalez et al., 2006)
incorporates different simulation methods for logical models
without temporal predicates, including the simulation of
manually specified perturbations.

MaBoSS (Stoll et al., 2017) is a tool to simulate Boolean
networks stochastically. MaBoSS focuses on a vast number
of simulation methods including perturbation studies without
the ability to model. We chose to include our methods to
automatically screen for perturbations into the existing Java-
based framework ViSiBooL (Schwab et al., 2017a). ViSiBooL
extends the Boolean network paradigm by temporal predicates
and is a light-weight stand-alone modeling and simulation
framework. It specifically aims at a straight-forward and easy-
to-use modeling and simulation functionality also used by life
scientists without any programming skills.

The framework allows to model Boolean networks from
scratch and to load existing network models from different
sources. Boolean networks can be modeled via graph
representations and text-based. The supported SBML-qual
standard (Chaouiya et al., 2013) and a simple text network
specification format allow for tight interoperability with other
common software tools.

In the following we will first briefly define Boolean networks,
show how SAT solving (Schöning and Torán, 2013) can be used
for attractor search, and then outline our automated screening
procedure which can also use temporal predicates in Boolean
networks. Finally, we will give some simulation results on amodel
of the senescence-associated secretory phenotype (SASP).

2. METHODS

2.1. Boolean Networks
Boolean networks are a class of simple logical models that can
be used for the modeling of dynamic biological processes such
as gene regulation (Kauffman, 1969, 1994). Each component
of the modeled system is described by a Boolean variable. It
can either be active (true/1) or not (false/0). Dependencies
between the different components in the network are described
by Boolean functions. The state of a Boolean network with
n components at time t is described by a Boolean vector
x(t) = (x1(t), . . . , xn(t)). The value of each component xi at
a time t is determined by its corresponding transition function
fi :B

n → B. The successor state x(t + 1) is calculated as
follows : x(t + 1) = (f1(x(t), . . . , fn(x(t)). Here, an exemplary
Boolean network with three components x1, x2, x3 and their
transition functions is defined : f1(x(t)) = ¬x1(t), f2(x(t) =

x1(t) ∨ x2(t)), f3(x(t) = x1(t) ∧ ¬x2(t)). There are three major
types of Boolean networks -synchronous, asynchronous and

probabilistic. In synchronous Boolean networks all variables are
updated at the same time. In asynchronous Boolean networks
only one randomly chosen variable is updated at each time step
x(t + 1) = (x1, . . . , fi(x(t)), . . . , xn), where i ∈ [1, n] (Harvey and
Bossomaier, 1997).

Probabilistic Boolean networks allow for specifying more
than one transition function per variable in the network. Each
of these functions has a probability of being chosen, where
the probabilities of all functions for one variable sum up to 1
(Shmulevich et al., 2002).

The methods presented in the following focus on the
simulation of synchronous Boolean networks.

The dynamics of the Boolean networks are studied via
examining the transitions from one state to another. The number
of states in Boolean networks is finite (2n in a network with n
components). Consequently, the network eventually converges to
a recurring number of states after a number of state transitions.
These cycles of states are called attractors and represent the long-
term behavior of the Boolean network. As already previously
mentioned, attractors are of special interest as they often
represent biologically relevant behaviors (Naldi et al., 2015). This
could be shown in a number of publications successfully using
Boolean networks to model the qualitative behavior of a variety
of tissues in different organisms (Albert and Othmer, 2003;
Fauré et al., 2006; Herrmann et al., 2012; Dahlhaus et al., 2016;
Linke et al., 2017; Meyer et al., 2017). All states leading to the
same attractor are associated to its so-called basin of attraction
(Saadatpour and Albert, 2013). All basins of attraction together
comprise the complete number of states.

2.2. Attractor Search and SAT
There are different types of algorithms for attractor search
in Boolean networks. Basic algorithms for exhaustive attractor
search examine each state. However, these algorithms are
demanding in terms of runtime (O(2n)) and memory (O(2n))
(Hopfensitz et al., 2013). A number of other algorithms to search
for attractors have been proposed. Some of them search efficiently
for attractors of length one (Akutsu et al., 2011; Veliz-Cuba
et al., 2014). An algorithm that searches for attractors of different
length very efficiently is based on SAT-solving (Dubrova and
Teslenko, 2011; Naldi et al., 2015). Especially for networks with
modest connectivity, this algorithm is more efficient than the
exhaustive algorithms that examine every possible state.
Solving a satisfiability (SAT) problem, is basically finding an
assignment that satisfies a Boolean formula, i.e., the Boolean
formula returns true (Schöning and Torán, 2013). The SAT-
solving approach can now be adapted to perturbation studies and
the temporal extension in Boolean networks. In the following a
basic SAT-based attractor search algorithm is briefly described.

Formally, a state transition can be defined as follows:
T(x(t), x(t + 1)) =

∧n
i=1 xi(t + 1) ↔ fi(x1(t), . . . , xn(t)), where

n is the number of components in the network. In the algorithm
a path—a consecutive sequence of states—is represented by such
a Boolean formula. A path of length two in the previously given
example network is defined as follows : T(x(t), x(t+1)) = (x1(t+
1) ↔ ¬x1(t))∧(x2(t+1) ↔ (x1(t)∨x2(t)))∧(x3(t+1) ↔ x1(t)∧
¬x2(t)). A satisfying assignment for this formula corresponds to
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a valid, existing path. A SAT-solver can now be used to find all
satisfying assignments—each corresponds to one path through
the state graph of the Boolean network. Attractors are deduced
from these valid paths. Starting with an initial length all valid
paths in the Boolean network are determined. First, to compute
the the valid solutions for a path the transition formula has to
be unfolded. The resulting conjunction of clauses is then solved
using a SAT solver.

Next, to detect attractors it is checked whether a state occurs
more than once in the path. Obviously, all states between two
equal states belong to the attractor. If an attractor is in the path,
it is stored and its states are added to the formula as constraints.
All other paths including the same attractor are no valid solution
anymore. Consequently, the whole basin of attraction of the
found attractor is excluded from the search space. If the found
path is attractor free, the analyzed sequence of states has to be
prolonged to reach the attractor. This procedure is repeated until
there is no other valid solution found by the SAT-solver. This
means all valid paths to attractors were examined and all existing
attractors are found.

In our implementation we used the SAT-solverMINISAT (Eén
and Sörensson, 2004) which is based on the idea of conflict-
driven backtracking (Marques-Silva and Sakallah, 1999).

2.3. Temporal Predicates in Attractor
Search
In synchronous Boolean networks all components are updated
at the same time and their value is determined according to the
previous state of the network. These assumptions can restrict
the modeling or may require hypothetical delay nodes. Biological
processes happen on different time scales. In some processes the
accumulation of a product over several time steps is required
to activate the production of another component. Different
components might have different latency periods. The temporal
predicates allow the modeling of such latency periods (Schwab
et al., 2017a).

In this temporal extension the next state x(t + 1) may not
only depend on the previous time step x(t), but also any other
predecessor state x(t − 1),1 = {1, 2, . . . , t − 1}.
For this extension a history of previous values of the relevant
components are stored in addition to the current values of the
network at time t.

This temporal extension to the synchronous Boolean network
model includes two temporal operators. One that allows a direct
specification of operations like an accumulation of a gene product
over a number of time steps. This operator ALL only evaluates
true if a specified term is valid for a given number of time
steps. The second operator ANY evaluates true if a term is
valid at least once in a specified period of time. The previously
described SAT based attractor search is now expanded to include
these operators. To find a solution for the unfolded formula of
a path each network component at each time step is mapped
to another variable. Exemplarily, a path from t to t + 1 in
a network with three components x1, x2, x3 is mapped to six
variables v1, . . . , v6, where x1(t) = v1, x2(t) = v2, . . . , x1(t+1) =
v4, . . .. Consequently, the formula for the SAT-solver consists of

l · n variables, where n is the number of components and l the
length of the path. In these temporal Boolean networks the value
of a network component does not only depend on the values
of the previous state. To enable exhaustive attractor search the
mapping had to be changed to reference back to values before the
previous time step.
The temporal extension allows the network to stay in a state for
more than one time step before moving to another. This prevents
searching for multiple occurrences of a state in the path to detect
attractors. Not only the states in the path are compared but also
their history. True equality of states to detect attractors is only
given if their history is also equal.

2.4. Screening for Meaningful
Perturbations
Boolean networks can be used for the simulation of various
perturbations. Components can be stripped from the system
(called knock-down here) or the system can have a surplus of
some component (called over-expression here). These behaviors
of component xi can be formally described by

xi(t + 1) =











0 xi is knocked down,

1 xi is overexpressed,

fi(x(t)) else.

Such interventions of the system may have major effects on
its dynamic behavior. The new framework implements various
features to investigate the effects of such perturbations.

2.4.1. Single Path Perturbation
Local attractor search from a user-specified initial condition can
be modified by knock-down or over-expression of components
of interest. The resulting attractor is instantly computed and
visualized, which allows for fast comparison of original and
perturbation behavior.

2.4.2. Global Network Perturbation
Global effects of perturbations are determined via an extension
of the exhaustive search algorithm described in the previous
section. Our SAT-solving algorithm was extended to support
also fixed components. This implies that in certain cases the
Boolean formulae can be simplified. In our procedure this is
being performed on a symbolic level prior to conversion into a
conjunctive normal form (CNF) for SAT solving.

2.4.3. Automated Screening for Meaningful

Perturbations
The two previous methods both rely on user-specified
perturbations. However, there are cases in which a user
aims at investigating which perturbation shows a wanted effect.
For this reason another method was developed.

Here, the user can specify a set of perturbation candidates
(Figure 1C). Among these candidates, the method searches for
all perturbations and combinations of perturbations which show
a desired effect.

This effect is also user-defined. Attractors which are intended
to exist or not exist under perturbation conditions can be
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selected (Figure 1A,B). For k user-selected components of
interest (Figure 1C) all knock-down and/or over-expression
combinations of size one up to a user-specified maximum
size m are generated. This results in a set P of perturbation
combinations to test. Each perturbation pi ∈ P is another

combination of a number of components in one of the possible
perturbation types (knock-down/over-expression). For instance,
a set of components X′ = {x1, x2, x4} is selected and the
maximum combination size is two. This results in P = {(x1 =

0), (x1 = 1), . . . , (x1 = 0, x2 = 0), (x1 = 0, x2 =

FIGURE 1 | Search for meaningful perturbation effects. Colors green and red represent the Boolean values true and false, components the user declared irrelevant for

the analysis are gray. (A) attractors of the unperturbed network are searched exhaustively. (B) The user specifies the effects intended by perturbation of the network.

(C) Components to evaluate under perturbation conditions are selected. (D) Selection of components of interest for the attractors under investigation. After the setup

by the user (B–D) all possible combinations of perturbations are computed (E). Attractors for all perturbation sets are computed (F) and compared to the original

networks (G). All perturbation sets that match the intended effects are returned.
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1), . . .}, |P| = 18 (Figure 1E) . Next, these
∑m

i=1

(k
i

)

· 2i

combinations of perturbations are evaluated (Figure 1F). In this
evaluation the longterm behavior of the perturbed network is
compared to the longterm behavior of the unperturbed network
model (Figure 1G). Not all components of the network might
be of interest for every description of a biologically relevant
behavior. Thus, the user can specify a set of components and the
resulting attractors of perturbed network and original network
are compared on the basis of these components (Figure 1D).
Finally, all perturbation combinations pi that match the intended
longterm behavior are returned by the algorithm. To increase
the simulation speed in our implementation, the different
perturbation combinations are evaluated in parallel. The number
of parallel instances scales with the number of available cores.

2.5. Biological Example
To illustrate the feasibility of the methods we used the Boolean
network described in Meyer et al., 2017, which is a model
for the SASP after DNA damage induced senescence. Cellular
senescence is a tumor suppressor mechanism which arrests
cells before becoming malignant (Coppé et al., 2010; Muñoz-
Espín and Serrano, 2014). Senescent cells secrete different factors
to attract phagocytic immune cells. Early SASP is probably
beneficial to clear the damaged cells. However, once the immune
system cannot keep up with the emergence of damaged cells,
counteracting the SASP can prevent tissue damage (Meyer et al.,
2017). SASP can, for instance, turn senescent fibroblasts into pro-
inflammatory cells with the ability to promote tumor progression
(Coppé et al., 2010).

The published Boolean network model comprises of two
interacting subnetworks—one for DNA damage signaling
and one modeling the inflammatory response. The complete
model contains 51 components (Figure 2A). Attractor search
simulation of the network model shows an active immune
response after DNA damage (Figure 2B). Mayer et al. used
the Boolean network model to hypothesize about perturbations
that prevent an immune response after DNA damage. These
perturbations aim at counteracting the SASP to give the immune
system time to catch up. Manual perturbation simulations of
the network identified knocking-out NF-κB Essential Modulator
(NEMO) is a promising candidate to prevent an immune
response—a hypothesis which could be validated by in-vitro
approaches (Meyer et al., 2017).

3. SIMULATION RESULTS

Evaluation was performed with the previously described
Boolean network model of the SASP. In Meyer et al. (2017)
different perturbation candidates were manually tested for their
deactivation of the major SASP-mediators after DNA damage.
Also, attractors had to be analyzed manually to examine
feasible candidate perturbations. This approach can be very time
consuming for a growing number of candidates to test.

For the evaluation here, we screened the Boolean network
model for perturbation candidates that inhibit an immune
response after DNA damage. The results were then compared to
the results manually investigated by Meyer et al.

FIGURE 2 | Boolean network of the senescence-associated secretory phenotype (SASP). (A) Network wiring of the Boolean network. Blue nodes depict the

components of the network model. Black (Red) edges represent a activatory (inhibitory) dependency between the connected components. DNA damage as input

node of the network is marked in red. (B) Steady-state attractor of the SASP-network under DNA damage conditions (DNA damage input is 1/true). A green (red) row

indicates that the corresponding component is active (inactive) in the attractor.
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We selected IL-1, IL-6, and IL-8 as components in the Boolean
network which are overlapping with the up-regulated factors
in the SASP according to Coppé et al., 2010. This correlates
with the results of the exhaustive attractor search in the Boolean
network under DNA damage conditions (DNA damage input is
on, Hypoxia is off, Figure 2B shows IL1, IL6, and IL8 are active
in the attractors).

For the automatic screening, we selected to remove the
attractor (Figure 3A) according to their state of the interleukins
IL1, IL6, and IL8 (Figure 3C). With the perturbation, we aim
at blocking the inflammatory response after DNA damage
but not at a general inhibition of pro-inflammatory signaling.
Thus, we chose each single-component perturbation of all
components of the DNA damage signaling subnetwork of the
network model as perturbation candidates (19 components
which lead to 38 perturbations to test, see Figure 3B). During
the screening process, attractor search is performed for each
candidate perturbation. The attractors are then compared to
the original attractors of the network under DNA damage
conditions. Perturbations which result in attractors that are
differing from the original ones according to there values of a

selected set of components (here IL1, IL6, IL8) are returned as
valid perturbations.

The screening took 64 s on a MacBook Pro (Intel Core I5,
3.1 GHz and 16GB RAM). The analysis shows a deactivation of
the immune response for a knock-out of NEMO, NF-κB, ATM,
IKK, or an over-expression of IκB (Figure 3C). In addition to the
suggested NEMO knock-out of Meyer et al. (2017), the automatic
screening reveals four new candidate perturbations - knock-out
of ATM, NF-κB, and IKK as well as over-expression of IκB.
One possible explanation is their ability to act as SASP-triggering
factors, which are mainly relayed through NF-κB. NF-κB has a
direct regulatory link to IL1, IL6, and IL8. IKK and IκB both have
a direct effect on NF-κB and thus have a regulatory impact on
the different Interleukins. NEMO has a regulatory effect on these
components via IKK and NF-κB and ATM via NEMO/IKK/NF-
κB. The shortest paths from the perturbed components to the
Interleukins IL1, IL6, IL8 are between one (perturbation of NF-
κB) and four (perturbation of ATM) interactions long. This
shows the ability to not only identify direct but also indirect
regulators as meaningful perturbation candidates in this complex
network by our automatic procedure.

FIGURE 3 | Perturbation screening results in the SASP model (Meyer et al., 2017). (A) Attractor under DNA damage conditions which should be removed by

perturbation. Green (Red) rows indicate the corresponding component is active (inactive) in the attractor. (B) Selection of perturbation candidates to test. Selection of

the gray box indicates the component is not of interest for perturbation. Green (Red) means the component is over-expressed (knocked-out). Blue means that both

possible perturbations (over-expression/knock-out) are tested for the corresponding component. In this simulation all 19 non-input components that belong to the

DNA damage signaling subnetwork of the SASP network are perturbation candidates for knock-out or over-expression. The inputs DNA damage (DNAD) and Hypoxia

are fixed to over-expression and knock-out, respectively. The inflammatory signaling part of the network is not selected for perturbation. (C) Selection of the genes of

interest for attractor comparison. IL1, IL6, and IL8 are selected, which means these components have to be inactive after perturbation. (D) Results showing the

perturbation candidates that removed the attractor in (A) according to the components selected in (C).
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4. CONCLUSION

Perturbation studies of Boolean networks can provide more
detailed information about the network’s inner dynamics. Among
others, network perturbation can help to identify therapeutic
targets (Saadatpour et al., 2011), to measure a network’s
capability to compensate mutations (Kwon et al., 2016) or to
quantify the robustness of Boolean networks (Schwab et al.,
2017b). Furthermore, perturbation of components can be a
helpful, assistive tool to check for the expected behavior during
the modeling process. Simulation of network perturbation is
commonly used in multiple frameworks (Gonzalez et al., 2006;
Müssel et al., 2010; Stoll et al., 2017).

The automated screening for perturbations that fulfill
user-defined changes in the long-term behavior is—to our
best knowledge—a new feature for the analysis of Boolean
networks. This feature aims at identifying crucial components for
developing a specific long-term behavior. Finding perturbations
that eliminate a specified long-term behavior can also be used to
screen for therapeutic targets.

These methods were integrated into the Java framework
ViSiBooL (Schwab et al., 2017a). ViSiBooL aims at a straight-
forward and easy-to-use modeling and simulation of Boolean
networks. The temporal extension of synchronous Boolean
networks allows for a more realistic way of modeling biological
processes while maintaining the simple interpretation of

synchronous Boolean networks. Moreover, the temporal
operators ALL and ANY provide a straight-forwardmethodology
to simplify large terms to model processes over more than one
time step. All implemented network perturbation experiments
support the temporal network extensions.
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Dynamical models of biomolecular networks are successfully used to understand

the mechanisms underlying complex diseases and to design therapeutic strategies.

Network control and its special case of target control, is a promising avenue toward

developing disease therapies. In target control it is assumed that a small subset of

nodes is most relevant to the system’s state and the goal is to drive the target

nodes into their desired states. An example of target control would be driving a cell

to commit to apoptosis (programmed cell death). From the experimental perspective,

gene knockout, pharmacological inhibition of proteins, and providing sustained external

signals are among practical intervention techniques.We identify methodologies to use the

stabilizing effect of sustained interventions for target control in Boolean network models

of biomolecular networks. Specifically, we define the domain of influence (DOI) of a node

(in a certain state) to be the nodes (and their corresponding states) that will be ultimately

stabilized by the sustained state of this node regardless of the initial state of the system.

We also define the related concept of the logical domain of influence (LDOI) of a node,

and develop an algorithm for its identification using an auxiliary network that incorporates

the regulatory logic. This way a solution to the target control problem is a set of nodes

whose DOI can cover the desired target node states. We perform greedy randomized

adaptive search in node state space to find such solutions. We apply our strategy to in

silico biological network models of real systems to demonstrate its effectiveness.

Keywords: target control, Boolean network, biological network, domain of influence, logical modeling, network

dynamics

1. INTRODUCTION

In cellular systems various molecular species, such as DNA, RNA, proteins and small molecules,
interact in diverse ways. The totality of these interactions gives rise to cellular functions. The
relationship between molecular interacting systems and cellular functions is studied in the new
emerging field of systems biology (Alon, 2006; Palsson, 2006). A promising systems biology
methodology is to represent the molecular interacting system as a network, construct a dynamic
model of the information propagation on this network, and identify the cellular functions with
long-term behaviors of the dynamic model (Palsson, 2006; Newman, 2010; Wang et al., 2012;
Barabási and Pósfai, 2016). Various types of dynamical models of biological networks have been
built to integrate related experimental results and to reveal the underlying mechanisms of complex
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diseases such as cancers, and predict beneficial interventions.
Quantitative, mechanistic models, generally using systems of
ordinary or partial differential equations, can be highly accurate
and provide quantitative information (e.g., response time to
a signal, or fold-changes of protein concentrations) (Tyson
et al., 2003, 2011; Alon, 2006; Iyengar et al., 2012). These
models’ widespread use is limited by the scarcity of high-quality
quantitative data, such as kinetic and temporal information
about individual nodes in the network. Logical models using
discrete variables, such as Boolean network models, have the
advantage of being scalable and not requiring detailed knowledge
of kinetic parameters (Morris et al., 2010; Wynn et al., 2012;
Saadatpour and Albert, 2013; Laubenbacher et al., 2014; Abou-
Jaoudé et al., 2016; Bloomingdale et al., 2018; Zañudo et al., 2018).
An abundance of recent literature has shown that logical models
can capture the emergent behaviors of real biological systems,
they can generate predictions that are validated by follow-
up experiments and they can predict successful intervention
strategies (Li et al., 2004; Espinosa-Soto et al., 2004; Mendoza,
2006; Saez-Rodriguez et al., 2007; Naldi et al., 2010; Miskov-
Zivanov et al., 2013; Steinway et al., 2015; Albert et al., 2017;
Gómez Tejeda Zañudo et al., 2017). For example, logical models
of signaling networks that underlie hallmarks of cancer identified
the key mechanisms that yield cancer phenotypes and predicted
therapeutic interventions that disrupt these phenotypes; many
of these predictions were validated experimentally (Grieco et al.,
2013; Cohen et al., 2015; Méndez-López et al., 2017; Khan
et al., 2017; Kim et al., 2017). Discrete and quantitative models
are often consistent in capturing the response repertoire of
biological networks (e.g., their potential bistability or response to
perturbations) (Kraeutler et al., 2010; Steinway et al., 2016).

Analysis of a logical model entails the determination of
the attractors (long-term behaviors) of the system and of the
initial states that converge into each attractor (the basins of
attraction). Among other uses, this information is used to identify
therapeutic interventions as interventions that make a disease
attractor unreachable or unstable (Samaga et al., 2010; Abou-
Jaoudé et al., 2015; Kim et al., 2017). Attractor identification
can be accomplished by simulations of the system’s trajectories,
determination of all allowed state transitions, or by formal
methods such as model checking (Klarner and Siebert, 2015;
Abou-Jaoudé et al., 2016), process hitting (Paulevé et al., 2012),
or Groebner bases (Laubenbacher et al., 2014). The state space
of logical models is finite, but its size scales exponentially
with the number of nodes, and thus its full mapping is
impossible for systems with many elements. Methods that
determine the attractor repertoire of logical models without state
space exploration provide a desirable complement to dynamical
methods. For example, it was shown that the presence or absence
of positive and negative feedback loops in the interaction network
puts bounds on the type and number of attractors; e.g., a
necessary condition of multistability is the existence of a positive
feedback loop (Thomas and D’Ari, 1990; Paulevé and Richard,
2012).

Network control has recently become a popular research topic
as it reflects our interest to not only understand an interacting
system, but also intervene in it and modify its outcomes (Motter,

2015; Liu and Barabási, 2016). Network control is a broad subject;
different underlying models, different control goals and different
possible interventions can be considered (Liu and Barabási,
2016). Various control strategies have been designed for both
continuous dynamical systems (Liu et al., 2011; Cornelius et al.,
2013; Mochizuki et al., 2013; Wells et al., 2015; Wang et al.,
2016; Zañudo et al., 2017) and discrete ones (Murrugarra and
Dimitrova, 2015; Zañudo and Albert, 2015; Murrugarra et al.,
2016; Yang et al., 2016). Of particular interest are the methods
that do not require knowledge of the detailed dynamics and
parameters of the system, but instead are largely based on the
structure of the interaction network and generic assumptions
about the functional form of the dependences among variables.
In electric circuits modeled by a system of linear ordinary
differential equations, it is possible to use graph theoretical
methods to identify the set of nodes whose external control can
drive the system to any state from any initial condition (Lin,
1974; Liu et al., 2011). For systems with non-linear dynamics,
attractor control, that is, to drive the system to one of its natural
attractors from any initial condition, has been achieved in several
modeling frameworks. Among these, two methods are based
on the control of feedback loops: feedback vertex control for
ordinary differential equation models (Mochizuki et al., 2013)
and stable motif control for logic (Boolean) models (Zañudo and
Albert, 2015). However, in biological systems it is not necessary
and often not practical to control every component of the system.
A more realistic problem is target control, where we assume that
the state of the system is characterized by a subset of components
and the control goal is to drive these components into desired
states. The target control problem has been considered in systems
with linear dynamics by Gao et al. (2014), who identified sets
of nodes which, if put under suitable (potentially time-varying)
external control, drive the target nodes into the desired state.

Despite recent progress in molecular biology, quantitatively
manipulating the level of a chemical species is still a
challenging problem for experimentalists. Thus any control
strategy involving applying time-dependent, variable signals to
a target is hard to implement in real systems. However, gene
knockout, pharmacological inhibition of proteins and providing
sustained external signals have been robustly implemented and
demonstrated to be effective intervention strategies (Hopkins
and Groom, 2002; Nicholl, 2008; Shalem et al., 2014). Thus we
choose our intervention options to be maintaining a sustained
state (either absence or abundant activity) in order to make
the solution more practical. The effect of such interventions to
achieve target control in Boolean network models was previously
considered by Klamt et al. (2006) and Samaga et al. (2010). Klamt
et al. used the interaction network and regulatory logic to identify
the effect of interventions, and determined minimal intervention
sets by systematic consideration of all single interventions and
combinations of interventions. Samaga et al. made the search for
interventions more efficient by using filtering strategies based on
the interaction network (e.g., if a candidate intervention source
has only negative paths to a target node, then an activating
intervention of the source is not useful for activation of the target
node) and by grouping equivalent interventions (e.g., if activating
a node is sufficient for activating a direct neighbor, then these
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interventions are equivalent and only one of them needs to be
considered).

Here we propose an alternative and complementary
intervention prediction method that uses heuristics based on
the system-wide influence of the intervention due both to
the connectivity and regulatory logic of the modeled system.
Specifically, we base these heuristics on each node’s domain
of influence (DOI), which identifies which other nodes will
adopt a fixed state following an intervention that maintains a
sustained state of this node, regardless of the system’s initial
state. While in general determining the DOI of a node requires
exploration of the state space, here we introduce the related
concept of logical domain of influence (LDOI) of a node, which
can be determined based on the interaction network and the
regulatory logic. Specifically, the LDOI is defined on the so-called
expanded network introduced in (Albert and Othmer, 2003;
Wang and Albert, 2011), which is similar in spirit to a logical
interaction hypergraph (Klamt et al., 2006). We use the size and
internal consistency of the logic domain of influence (LDOI)
to inform a greedy randomized adaptive search to identify the
sets of nodes whose DOI can cover the desired target node state
(combination).

In the following, we give background information on the
Boolean modeling framework and relevant previously-developed
concepts such as the expanded network and stable motifs. Then
we define the DOI and LDOI of a node or multiple nodes and
analyze their properties, such as their internal consistency (or
lack thereof) and relationship to dynamic attractors. We then
define our target control problem and describe our DOI-based
target control strategy using greedy randomized adaptive search
in node state space. We finally illustrate the effectiveness of our
target control strategy in random ensembles and four in silico
biological network models.

2. MATERIALS AND METHODS

2.1. Background on Boolean Network
Models of Biological Systems
A dynamical model of a biological system starts with the
construction of a network (graph) consisting of nodes (also called
vertices) that represent the system’s elements and edges that
specify the pairwise relationships between nodes. In biological
networks at the molecular level, nodes are molecular species such
as small molecules, RNA, protein, and edges indicate interactions
and regulatory relationships. In discrete dynamic (also called
logical) models, each node i is characterized by a discrete state
variable σi, and the vector (σ1, · · · , σn) represents the state of
the system (Morris et al., 2010; Wynn et al., 2012; Saadatpour
and Albert, 2013; Laubenbacher et al., 2014; Abou-Jaoudé et al.,
2016; Bloomingdale et al., 2018; Zañudo et al., 2018). The state
of the system can be followed in continuous time or at discrete
time intervals. In discrete time models, the activity of each
node σi is described by a regulatory function σi(t + τi) =
fi(σi1 (t), · · · , σik (t)), where i1, · · · , ik are the regulating nodes
of i and τi is a discrete time delay. The regulatory functions f
cannot be constant functions (i.e., cannot yield the same output

regardless of the state of the regulators). In models describing
signal transduction networks the external signals are represented
with source nodes whose regulatory functions depend only on
their own state, usually sustaining this state: σi(t + τi) = σi(t).

Here we focus on discrete time Boolean network models,
where node states are binary, 1(ON) or 0(OFF), and the
regulatory function is specified by a truth table or using the
Boolean operators AND, OR, NOT (Kauffman, 1969; Glass
and Kauffman, 1973). This is motivated by the fact that
biological species are frequently observed to demonstrate switch-
like behaviors and have highly nonlinear regulations; thus the
node state 1 means the molecular species is above a threshold
concentration or activity and thus it is able to regulate its targets,
and the node state 0 means it is below a threshold concentration
or activity and is thus ineffective (Bornholdt, 2008; Wang et al.,
2012). Depending on the updating scheme, the time trajectory
of the system is simulated deterministically or stochastically. A
simple deterministic updating scheme is synchronous updating,
where τi = 1 for every node (Wang et al., 2012). In this scheme,
the systemwill deterministically evolve from a specific initial state
into an attractor, which can be a steady state (fixed point) or a
limit cycle, which consists of several states that repeat regularly.
Steady states can be interpreted as cell types; limit cycles may
correspond to a cell cycle or circadian rhythms. In general
asynchronous updating, a commonly used stochastic updating
scheme, a random node is selected to be updated at each time
step (Glass, 1975). This type of update is motivated by the fact
that different biological processes have various timescales, and
often the timescales of specific processes are not known (Papin
et al., 2005). While limit cycles depend on the specific chosen
updating regime, fixed points (steady states) do not depend on
the updating scheme (Klemm and Bornholdt, 2005). Stochastic
update may lead to attractors that involve irregular repetition of
a set of states, called complex attractors.

2.2. The Expanded Network and Its Use in
Identifying the Attractor Repertoire of a
Boolean Network
The possible combinatorial effect of multiple incoming regulators
of a node is important, however, it is not explicitly represented
by a regular interaction network. This motivated researchers to
develop a concept called the expanded network, which integrates
the original network with the regulatory rules of each node
(Albert and Othmer, 2003; Wang and Albert, 2011). We illustrate
the expanded network with the example in Figure 1 , which
consists of five nodes, node 0, 1, 2, 3, and 4 with the regulatory
functions f0 = NOT σ3, f1 = (NOT σ0) OR σ3, f2 =
NOT σ1, f3 = (NOT σ2) OR (NOT σ4), f4 =

σ0 OR σ1. First, we denote each original node i by ni in the
expanded network, and we introduce a complementary node
for each original node in the system to represent the negation
(deactivation) of the original node, denoted by ∼ni (Wang and
Albert, 2011). As the NOT function is a unary operator, all the
NOT functions are replaced by the negated state of the respective
node (i.e., its complementary node) in each Boolean regulatory
function. Edges are introduced in the expanded network to
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FIGURE 1 | Illustration of the expanded network, stable motifs and logic domain of influence on a simple example. The network is shown in panel (A). Each edge

with an arrow represents activation and each edge with a flat bar represents inhibition. The Boolean regulatory functions are specified as follows: f0 = NOT σ3,

f1 = (NOT σ0) OR σ3, f2 = NOT σ1, f3 = (NOT σ2) OR (NOT σ4), f4 = σ0 OR σ1. Panel (B) shows the expanded network of this example. Each node i in panel (A) has

a correspondent ni and its complementary node ∼ni in panel (B). (Note that ni is labeled as ni in panel (B) to be more visible). A composite node is drawn as a filled

black circle and & represents the AND logic operator. Panel (C) indicates the stable motifs; each blue node is a single-node core of the corresponding stable motif.

Panels (D,E) show the LDOI of {∼n4} and {n2, n4}, respectively, overlaid over the expanded network. Nodes with thick orange boundary are the sustained

interventions and the green nodes are their LDOI.

represent the thus-transformed regulatory functions so that
every edge represents a positive regulatory relationship in the
expanded network. For example, f0 = NOT σ3 implies the
rule for the original node n0 as fn0 = NOT n3 = ∼n3,
and thus a corresponding edge is drawn from ∼n3 to n0 in
the expanded network. The Boolean regulatory function for
the complementary (negated) node is the logical negation of the
regulatory function of the original node. In this example, f∼n0 =
NOT (NOT n3) = n3 and thus a corresponding edge is drawn
from n3 to∼n0 in the expanded network.

Second, to differentiate OR rules from AND rules when
multiple edges point toward the same target node, we introduce
a composite node for each set of edges that are linked by an
AND function (Wang and Albert, 2011). In order to uniquely
determine the edges of the expanded network, the regulatory
functions need to be specified in disjunctive normal form, that
is, a disjunction of conjunctive clauses (in other words, grouped
AND clauses separated by OR clauses). For example, (A AND
B) OR (A AND C) is in a disjunctive normal form, while
its equivalent form A AND (B OR C) is not. The desired
disjunctive normal form can be formed by a disjunction of
all conditions that give output 1 in the Boolean table and
then simplified to the disjunction of prime implicants (Blake
canonical form) by the Quine-McCluskey algorithm (McCluskey,
1956). Now we add a composite node for each AND clause

in the Boolean regulatory function, denoted by a filled black
circle in Figure 1B. We add edges from the non-composite
nodes of the expanded network that form this clause to this
composite node. For example, the composite node ∼n0&∼n1
in the left upper part of Figure 1B represents the expression
(NOT n0) AND (NOT n1). The expanded network has edges
from∼n0 to the composite node and from∼n1 to the composite
node. This composite node expresses the regulatory function of
the complementary node ∼n4, namely, f∼n4 = NOT fn4 =
NOT n0 AND NOT n1 = ∼n0 AND ∼n1. To reflect this,
the expanded network contains an edge from this composite
node to ∼n4. Now the benefit of introducing complementary
and composite nodes is evident: one can read all the regulatory
functions from the topology of the expanded network. The NOT
rule is indicated by a complementary node, the AND rule is
indicated by a composite node with multiple regulators, while all
the other edges represent independent activation (parts of an OR
function). Moreover, the expanded network also incorporates the
negations of the regulatory functions. Thus, for each node i, the
expanded network reflects the condition that needs to be satisfied
in order for σi = 1 (in the incoming edges of the node ni) and
the condition that needs to be satisfied in order for σi = 0 (in the
incoming edges of the node∼ni).

As the expanded network encapsulates the regulatory logic
that determines the network dynamics, it can serve as a basis
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for attractor analysis. One approach is through analyzing the
stable motifs of the expanded network (Zañudo and Albert,
2013). A stable motif is defined as the smallest strongly connected
component (SCC) satisfying the following two properties: (1)
The SCC cannot contain both a node and its complementary
node and (2) If the SCC contains a composite node, it must also
contain all of its input nodes (Zañudo and Albert, 2013). The
first requirement guarantees that the SCC does not contain any
conflict in node states and the second requirement guarantees
that all the conditional dependence is satisfied and the SCC is
self-sufficient in maintaining each node state inside the stable
motif. Thus the stable motif represents a group of nodes that
can sustain their states irrespective of outside nodes’ states. The
corresponding node states implied by the stable motif can be
directly read out: an original node represents the ON (1) state
and a complementary node represents the OFF (0) state (Zañudo
and Albert, 2013). For example, in the left part of Figure 1C,
node n1,∼n2, and n3 form a stable motif, representing that
node 1 and node 3 are ON and node 2 is OFF. There is a
strong correspondence between stable motifs and the attractors
of the system. Specifically, there is a one-to-one correspondence
between a sequence of stable motifs and a fixed point or a partial
fixed point (a part of a complex attractor). A partial fixed point
is defined as a true subset of all the nodes whose respective state
remains unchanged after being updated regardless of the states of
the nodes excluded from this subset (Zañudo and Albert, 2013).

2.3. The Domain of Influence of a
Sustained Node State
We define the DOI of an intervention that maintains a sustained
node state as all the node states that will be stabilized (i.e., attain
a stationary value) in the long term under the influence of this
intervention for all initial conditions in any updating regime.
Mathematically, D(σi = σ̃i) = {σj = σ̃j : σj(t) = σ̃j as t →
∞ for any (σ1(t = 0), ..., σk(t = 0)) when σi(t) = σ̃i for any t >

0}, where σi(t) = σ̃i is the intervention, σ̃i = 0 represents
knockout or suppression and σ̃i = 1 represents sustained
activation, σ̃j represents a node state fixed by the intervention,
and (σ1(t = 0), ..., σk(t = 0)) represents the initial condition of
all the nodes of the system. We do not include the intervention
node state σi = σ̃i in its own DOI, unless the node is sufficient
to maintain the corresponding node state in the long term even
in the absence of a sustained intervention. Notice that there is
one-to-one correspondence between a node state σi = σ̃i and
a non-composite node nex in the expanded network : σi = 1
corresponds to a normal node ni in the expanded network and
σi = 0 corresponds to a negation node ∼ni. Thus we use the
two notations interchangeably, that is, σj = 1 ∈ D(σi = 1) is
equivalent to nj ∈ D(ni) and σj = 0 ∈ D(σi = 0) is equivalent to
∼nj ∈ D(∼ni).

The DOI of a node is difficult to calculate because it
entails determining the common part of all attractors of a
dynamical system to identify the nodes whose states stabilize
due to the considered intervention. As an alternative to this
computationally hard problem, we define a related concept
called the LDOI of an intervention that maintains a sustained

node state. The LDOI consists of all the node states that, for
any initial condition, are stabilized by the first update of the
corresponding node in an updating regime that preserves the
level order (breadth first search order) of the expanded network.
An updating regime preserves the level order if all the nodes
in the nth level are updated at least once before updating any
node in the (n+ 1)th level (see details in Supplementary Material
2.1). We denote the LDOI of a node state σi as LD(σi =
σ̃i). We define the LDOI of an empty set to be an empty set,
LD(Ø) = Ø. This is consistent with the definition as an updating
order preserving the level order starting from a null set can
start from any node, and a node will not achieve a stationary
state upon its very first update for all initial conditions unless
its regulatory function is a constant. Source nodes remain in
their initial state, which nevertheless will be different for different
initial conditions.

2.4. Determining the Logical Domain of
Influence of a Sustained Node State
We propose to find the LDOI of a node state by doing a modified
breadth first search (BFS) on the expanded network (see the
pseudocode in Supplementary Material section 1.1). In order
to find the LDOI of σi = σ̃i, we start the search from the
corresponding node ni on the expanded network if σi = 1
or we start the search from the complementary node ∼ni if
σi = 0. If we meet another non-composite node, we add this
node to the LDOI; if we meet a composite node, we add this
composite node only if all of its parent nodes (i.e., regulators)
are already part of the LDOI. This is due to the fact that any
edge from a node to a non-composite node represents a sufficient
relationship and any edge from a node to a composite node
represents a necessary relationship. We keep searching on the
expanded network until no new nodes can be added to the LDOI.
For example, in Figure 1B, one can readily see that LD(σ1 =
1) ≡ LD(n1) = {n4,∼n2, n3, n1,∼n0} following the described
search procedure. The first difference from a normal BFS to find a
connected component starting from a node is that we put an extra
rule for including a composite node. Another subtle difference
is that we do not include the starting point unless we visit this
starting point again in our search process.

During the search process, there is a possibility that we meet
the negation of the starting point. This reflects the possibility that
a node state can indirectly lead to the opposite state through
a negative feedback loop. This outcome represents a conflict
with the original intervention. We do not add this node to the
LDOI because we assume that the intervention can sustain the
original node state, thus the opposite state is not reachable. This
truncation of the LDOI to avoid including the negation of the
starting node state ensures that the LDOI will not contain a node
which is the negation of an already visited node. Mathematically,
if a non-composite node nexi ∈ LD(nexj ), then nexj is sufficient
to activate nexi , i.e., the long-term logical rule for nexi can be
expressed in the form nexi = nexj OR · · · ; this implies
∼nexi =∼n

ex
j AND · · · , i.e., ∼nexj is necessary to activate ∼nexi .

Thus any conflict between nexi and ∼nexi will occur after the
conflict between nexj and ∼nexj during the search process. This
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truncation of the LDOI is the third difference compared with a
normal BFS.

For example, in the network of Figure 1D, the LDOI of
the complementary node ∼n4 includes nodes n3,∼n0, n1,∼n2
following the search procedure. From n1 one can also reach node
n4, which is the negation of the considered intervention. Thus we
stopped this branch of searching based on our truncation rule.
Since there are no more nodes that can be added, we conclude
that LD(∼n4) = {n3,∼n0, n1,∼n2}.

Our LDOI search procedure is equivalent to doing a
simulation on the expanded network. If we update the system
corresponding to the BFS order of the expanded network starting
from the intervention node (i.e., we update node i if we visited nexi
on the expanded network), all the updated nodes are guaranteed
to stabilize in the corresponding visited state on the expanded
network, i.e., as in the LDOI of that node. In the example of
Figure 1, as discussed above, LD(n1) = {n4,∼n2, n3, n1,∼n0}.
If we update the nodes in the order 4, 2, 3, 1, 0, each node will
stabilize in the state as in LD(n1). We note that this does not put
a restriction on the updating regime: if we update the system in
an arbitrary order, each node in the LDOI of the given sustained
intervention will attain a stationary state in the first update after
all of its regulators included in the LDOI have been updated once.
For example, if we fixed the node 1 to be ON and we perform
rounds of update of the nodes in the order 0, 1, 2, 3, 4, nodes 2, 3,
and 4 will be stabilized in the first round of updating, while nodes
0 and 1 will be stabilized in the second round.

The difference between the LDOI and DOI is that LDOI
requires the nodes to be stabilized when being updated for the
first time, while DOI just requires the nodes to be stabilized in
finite time. Thus one can see that the LDOI of a node will be
a subset of the DOI of a node. In many cases the two concepts
give the same result. Two exceptions are illustrated in Figure 2.
In both cases the DOI of an intervention contains more nodes
than the LDOI of this intervention. This is because certain nodes
may stabilize not because of the influence of the intervention
but because of the collective effect of two inconsistent feedback
loops or because of a stable motif stabilized by an oscillation.
In the network of Figure 2A, the three regulators of node B
are independent and the network includes both a positive and
a negative feedback loop. To analyze the LDOI of A = 1,
taking the feedback effect of C and D on B into consideration,
the regulatory function of B is simplified into σB(t + τB) =
σB(t − τC) OR NOT (σB(t − τD)), where τi is the discrete time
delay for node i, as introduced in section 2.1. This regulatory
function admits a constant solution σB = 1 regardless of the
values of the time delays (Saadatpour et al., 2010; Azuma et al.,
2014). It may additionally admit an oscillatory solution for strict
relationships among the time delays. In the cases where there
is no oscillatory solution, for example in the cases where only
one node can change state at a time, D(A) = {B,C,∼D}, as
the stabilization of B leads to the stabilization of C and D as
well. However, LD(A) = Ø as the activation of the composite
node requires nodes A,∼C,∼D on the expanded network shown
in Figure 2B and thus we cannot add the composite node to
the LDOI of node A. In the example shown in Figure 2C, the
two regulators are independent for node B, D(C) = {B} as the

FIGURE 2 | Two example networks (A,C) and their respective expanded

networks (B,D) that illustrate the difference between DOI and LDOI. In both

networks, an edge with an arrowhead represents activation while an edge with

flat bar represents inhibition. Implicit positive self-loops stemming from the

assumed sustained states of source nodes are not shown in panels (A,C). In

panel (A) the regulatory functions are fA = A, fB = (NOT A) OR C OR D,

fC = B, fD = NOT B . When A = 1 the system has a fixed point

σB = σC = 1, σD = 0. In panel (C) the regulatory functions are fA = NOT A,

fB = A OR B OR NOT C, fC = C. When σC = 1 the system has a complex

attractor in which A oscillates and σB = 1.

negative feedback loop of node A will make A oscillate, but B will
stabilize into the ON state after the first time that A visits the ON
state and activates B, while LD(C) = Ø for the same reason as in
the last example.

2.5. Properties of the Logical Domain of
Influence of a Sustained Node State
In order to further illustrate the concept of LDOI, we discuss
a few of its properties and its relationship with established
concepts in Boolean dynamics. The LDOI of a node state is
mathematically equivalent to the three-valued logical steady state
that results when this node state is fixed (Klamt et al., 2006;
Samaga et al., 2010). Here the three values are 0, 1, and unknown
(for nodes who do not attain a stationary state solely due to
the original node’s fixed state). The LDOI of a node state is also
equivalent to the set of nodes, and corresponding states, that are
identified using network reduction techniques [i.e., by iteratively
substituting the fixed node state(s) into the regulatory function(s)
of target nodes] (Bilke and Sjunnesson, 2001; Naldi et al., 2012;
Saadatpour et al., 2013). Previous analysis (Samaga et al., 2010;
Saadatpour et al., 2013) identified that if node i has a single
outgoing edge, and is a sufficient regulator of its sole target node,
j, the LDOI of the ON state of i contains the LDOI of the ON state
of j. Here we study in general the possible inclusion relationship
between the logic domains of influence of two node states σi = σ̃i
and σj = σ̃j in the case when σj = σ̃j ∈ LD(σi = σ̃i) or
nexj ∈ LD(nexi ) in the expanded network notation, where nexi and
nexj represent any non-composite node in the expanded network.
In a directed graph, if node nj is a reachable from node ni, all
descendants of nj will also be reachable from ni; indeed one can
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easily prove this by contradiction. However, due to the special
properties of the expanded network and the truncation of the
LDOI, this inclusion relationship LD(nexj ) ⊆ LD(nexi ) is not
generally true for the expanded network. It is possible that nexj ∈
LD(nexi ), however, ∼nexi ∈ LD(nexj ). In this case, by definition
of the LDOI, we won’t allow the negation of a node state to be
part of the LDOI of a node state. For example, n1 ∈ LD(∼n4),
however, n4 ∈ LD(n1). Thus LD(n1) 6⊂ LD(∼n4).

If we add an additional restriction on the two nodes, this
inclusion relationship will hold the same way as for descendants
in a directed graph. To be specific, the first key property of the
LDOI is, if the node state σi = σ̃i and σj = σ̃j, corresponding
to the two non-composite node nexi and nexj on the expanded
network, are both included in the same (partial) fixed point and
nexj ∈ LD(nexi ), the LDOI of nexj will be a subset of the LDOI of
nexi , i.e., LD(nexj ) ⊆ LD(nexi ). (Recall that a partial fixed point is
a subset of nodes whose respective state remains unchanged after
being updated regardless of the states of the nodes excluded from
this subset.) The reason why the inclusion relationship holds is
that node states in a (partial) fixed point stabilize in the long
term, thus they will not lead to a situation with opposing behavior
nexj ∈ LD(nexi ) and ∼nexi ∈ LD(nexj ). This restriction can be
weakened to only require that node state nexi is in a (partial)
fixed point. The reason is that if nexj ∈ LD(nexi ) and nexi is in a
(partial) fixed point, then nexj must also be in the same (partial)
fixed point, or be a node whose state stabilizes due to the nodes
in the partial fixed point. Also, as one or more stable motifs are
part of a (partial) fixed point, the conclusion will be true if one
replaces “(partial) fixed point” by “stable motif ” in the above
statement. In the example of Figure 1, as nodes n1, ∼n2 and n3
form a stable motif and its corresponding (partial) fixed point is
(σ1, σ2, σ3) = (1, 0, 1) as shown in Figure 1C, which also lead to
the stabilization of the remaining two nodes as σ0 = 0 and σ4 =

1, thus n3 ∈ LD(n1) implies that LD(n3) ⊆ LD(n1). In fact,
LD(n3) = LD(n1) = {n4,∼n2, n3, n1,∼n0}. Also n4 ∈ LD(n1)
implies that LD(n4) ⊆ LD(n1). Note that only n1 is part of the
stable motif or partial fixed point in the latter example, n4 is not.

As stable motifs represent generalized positive feedback loops
of the Boolean network (Zañudo and Albert, 2013), we explore
the relationship between stable motifs and the LDOI of a node
state. The second key property of LDOI is, if the LDOI of a
node state contains this node state itself, the LDOI contains a
stable motif. As the LDOI of a node state only contains the node
state itself if we meet this node during the search process on
the expanded network, this indicates the existence of a positive
feedback loop, which is the intuition why this proposition holds.
(A sketch of proof from the dynamical standpoint is included in
Supplementary Material section 2.2). For example, n1 ∈ LD(n1)
implies that there exists a stable motif contained in LD(n1),
indeed, SM1 = {n1,∼n2, n3} ⊆ LD(n1).

2.6. The Domain of Influence of a Node
State Set
Now we generalize the concept of DOI of a single node state to
DOI of a node state set (i.e., a set of nodes, each in a sustained
state). We define the DOI of a node state set as all the node

states that can be stabilized in the long term by the given set of
node states under all initial conditions in any updating regime.
Mathematically, D({σi = σ̃i}) = {{σj = σ̃j} : σj(t) = σ̃j as t →
∞ for any (σ1(t = 0), ..., σk(t = 0)) when σi(t) = σ̃i for any t >

0}, where {σi(t) = σ̃i} represents the intervention consisting of a
specific set of node states. Note that the following two notations
are equivalent: D({σi = σ̃i}) ≡ D({nexi }). Similarly, we define the
LDOI of a node state set, LD({σi = σ̃i}), as all the nodes that can
be stabilized by the first update in any BFS order-preserving (on
the expanded network) update order starting from this given set
of node states under all initial conditions. As in the single node
state case, the LDOI of a node state set will be a subset of the DOI
of the same node state set.

The LDOI of a node state set can be determined by a
modified BFS on the expanded network, now using multiple
starting points. This does not add complexity to the iterative
implementation of BFS: we just need to initialize the queue with
the set of given node states. Similar to the case of finding the
LDOI of a single node state, we need to deal with the conflicts
that may occur during the search process. To be precise, conflict
means that during the search we visit a node state that is the
negation of a node state included in the intervention. Two types
of conflict can arise. First, a node state in the given set may
be impacted by negative feedback and have a LDOI that was
truncated to avoid containing its own negation. Second, the
LDOI of two node states nexi and nexj may have the property
∼nexi ∈ LD(nexj ) or ∼nexj ∈ LD(nexi ), or both. In other
words, node i may regulate node j (or vice versa) in a way
that is incompatible with the intervention (e.g., a node whose
sustained activity is part of the intervention may negatively
regulate another node whose sustained activity is part of the
intervention). We call intervention sets that have either type of
conflict incompatible sets; we refer to the rest of the intervention
sets as compatible sets. Similarly to the truncation we did to
find the LDOI of a single node state, we do not include any
node state that is the negation of any node state given in the
intervention set and we stop searching that branch. We note
that this truncation strategy avoids any following conflict. For
example, if nC ∈ LD(nA) and ∼nC ∈ LD(nB), then one may
expect that the LDOI of the set {nA, nB} will have a conflict
between nC and ∼nC. However, nC ∈ LD(nA) implies that ∼nC
requires ∼nA, this means that meeting the conflict between nC
and∼nC, must be aftermeeting the conflict between nA and∼nA,
which is avoided by our truncation strategy.

For a compatible set {nexi } ≡ ∪in
ex
i , it is guaranteed that

∪iLD(nexi ) ⊆ LD(∪inexi ). For example, as shown in Figure 1E,
the node set {n2, n4} is a compatible node set as LD(n2) = Ø,
LD(n4) = Ø and LD({n2, n4}) = {∼n3, n0, n4,∼n1, n2}. Note
LD(n2)∪LD(n4) ⊆ LD({n2, n4}). However, for an incompatible
set, we just know that the situation ∪iLD(nexi ) ( LD(∪inexi )
cannot happen and all the remaining situations are possible. In
the network of Figure 1, node set {n2,∼n4} is an incompatible
node set as LD(n2) = Ø, LD(∼n4) = {n3,∼n0, n1,∼n2},
and LD({n2,∼n4}) = {n3,∼n0, n1}. Note that neither n4 nor
∼n2 are included in LD({n2,∼n4}) due to the truncation rule
and LD({n2,∼n4}) ( LD(n2) ∪ LD(∼n4). Node set {∼n1, n3}
is another incompatible set as LD(∼n1) = {n2}, LD(n3) =
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{∼n0, n1,∼n2, n4, n3} and LD({∼n1, n3}) = {n2,∼n0,∼n4, n3}.
Note thatLD({∼n1, n3}) 6⊂ LD(∼n1)∪LD(n3), andLD(∼n1)∪
LD(n3) 6⊂ LD({∼n1, n3}).

The properties of the LDOI of a single node can also be
generalized to the LDOI of a given node set. For the first key
property, let Sj = {σj = σ̃j} and Si = {σi = σ̃i} be two sets
of node states, if Si is a subset of any (partial) fixed point and
Sj ⊆ LD(Si), then LD(Sj) ⊆ LD(Si). The intuition is similar,
the requirement restricting us to consider those nodes which can
be stabilized in the long term, that is, we rule out the possibility
of Si being an incompatible node set. For example in Figure 1

consider Si = {∼n3} and Sj = {n2, n4}. As ∼n3 is part of the
stable motif SM2 = {n0,∼n1, n2,∼n3, n4}, corresponding to the
fixed point (σ0, σ1, σ2, σ3, σ4) = (1, 0, 1, 0, 1), Sj ⊂ LD(Si) implies
LD(Sj) ⊆ LD(Si). In fact, LD(Sj) = LD(Si).

The second key property also generalizes: if the LDOI of a
given node state set contains the set itself, then the LDOI of the
set contains at least one stable motif. The intuition and proof
is similar to the case of a single node state. Taking the same
example, consider Si = {∼n3} and Sj = {n2, n4}, note that both
Si ⊂ LD(Si) and Sj ⊂ LD(Sj), this implies that both LD(Si) and
LD(Sj) contain a stable motif, which is SM2 in this case.

Following these examples, we define the core of a stable motif
to be a minimal subset of the stable motif whose LDOI contains
the stable motif. Here by minimal we mean that no true subset
of the core of the stable motif will contain the entire stable motif.
The core of a stable motif can be a single node or more than one
node. For example, as shown in Figure 1C ∼n3 is a single-node
core of the stable motif SM2 = {n0,∼n1, n2,∼n3, n4}. {n2, n4}
is another core of the same stable motif as SM2 6⊂ LD(n2),
SM2 6⊂ LD(n4), and SM2 ⊆ LD({n2, n4}).

We also define a driver node (set) of the stable motif to be a
node (set) whose DOI contains the entire stable motif. The driver
node (set) can be inside the stable motif, in which case it is the
core of the stable motif; it can also be an upstream node that
is sufficient to activate (the core of) the stable motif. We note
that stabilization of a stable motif does not require the sustained
state of a driver node, that is, oscillations can also lead to the
stabilization of a stable motif. An example of this behavior was
shown in Figure 2B: node B, which constitutes a self-sustaining
stable motif, can stabilize by a single instance of A= 1, regardless
of the fact that the negative self-regulation of A makes it oscillate.

2.7. Target Control Algorithm
Now that we have equipped ourselves with the tool of LDOI
to find the long term effect of a sustained intervention, we can
formulate the target control problem as the identification of a
node set S∗ whose LDOI contains the target node state set, i.e.,
LD(S∗) ⊇ Target. This problem can be framed as a planning
search problem (Russell and Norvig, 2003). We start with a null
set whose LDOI is also null. We repeatedly add a new node
to the set until the LDOI of this set contains the target node
state set. We use LDOI instead of DOI for this purpose because
identification of the DOI is a computationally more difficult
problem. Our current solution using LDOI sets a tight upper
bound for the optimal solution for the target control problem as
D(S∗) ⊇ LD(S∗) ⊇ Target.

Previous work in the target control of Boolean models has
focused on full enumeration of the solutions for the target control
problem (Klamt et al., 2006; Samaga et al., 2010), which can
be used to identify the solutions that involve combinations of
a small number of nodes but is not generally viable because of
combinatorial explosion. In our work, we use a complementary
approach to avoid a full state space search in this combinatorial
search problem. We apply a random heuristic algorithm called
the greedy randomized adaptive search procedure (GRASP)
(Pardalos et al., 1998; Festa et al., 2001). The pseudocode is
described in Algorithm (Tables 1, 2). The algorithm consists of
two main phases. The first phase is the construction of a greedy
randomized solution and the second phase is a local search to
remove any redundancy of the solution.

Algorithm 1 GRASP algorithm for Target Control Problem

1: procedure GRASP(G_expanded,Target,max_itr)
2: solutions← List()
3: for index← 1,max_itr do
4: solution ←ConstructGreedyRandomizedSolution

(G_expanded,Target)
5: solution←LocalSearch(G_expanded,Target, solution)
6: if solution then

7: Solutions.append(solution)
8: end if

9: end for

10: return solutions
11: end procedure

Algorithm 2 Algorithm for constructing a greedy randomized
solution
1: procedure CONSTRUCTGREEDYRANDOMIZEDSOLUTION

(G_expanded,Target)
2: solution← Set()
3: α← random(0, 1)
4: candidates←Construct_Initial_Candidates(G_expanded,

Target)
5: G(v) ←Construct_Greedy_Functions(G_expanded,

candidates)
6: while candidates do
7: RCL←MakeRCL(candidates,G(v),α)
8: s←Select_Candidate(RCL)
9: solution← solution ∪ {s}
10: if Target ⊂ LDOI(solution) then
11: return solution
12: end if

13: Update_Candidates(candidates)
14: end while

15: return Set()
16: end procedure

In the first phase, we first generate an initial candidate list (line
4 in Algorithm 2). In the simplest case, the initial candidate list
is all the non-composite nodes of the expanded network except
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the nodes in the target set and their negation, both of which are
ineligible for control. One can also be more selective to adapt to
the specific needs of controlling biological systems. For example,
we can forbid the use of certain nodes or node states when
constructing the initial candidate list, to incorporate the fact that
certain chemical species are harder or even unrealistic to control.
Thus these nodes/chemical species will never appear in the final
solution since they are not in the initial candidate list.

Then, we begin the procedure of iteratively adding nodes to
the trial solution set (which is initially empty) and evaluating
whether the LDOI of the trial solution set covers the target set.
We form a restricted candidate list (RCL, line 7 in Algorithm 2)
based on a greedymeasureG(v) defined for each candidate node v
in the candidate list (line 5 in Algorithm 2). A greedy function is a
heuristic score to estimate whether this node should be included
in the solution. We evaluated five choices of G(v), as described
at the end of this section and in section 3.1. We determine the
minimum score Gmin = minv∈V G(v) and maximum score
Gmax = maxv∈V G(v) among the heuristic scores of all the nodes.
Then we use a previously generated random number α from a
uniform distribution between 0 and 1 to set a passing score for the
RCL as Gpass = Gmin + α · (Gmax − Gmin). Then the RCL consist
of nodes whose greedy function is no less than the passing score,
i.e., RCL = {v ∈ V|G(v) ≥ Gpass}. This procedure of generating
RCL is summarized in Supplementary Material section 1.3.

Next we randomly pick a node from the RCL and add it
to the current trial solution (line 8 and 9 in Algorithm 2).
The trial solution is used as the source node set of the LDOI
algorithm (whose pseudocode is presented in Supplementary
Material section 1.1). If the target set is contained in the set of
nodes returned by the LDOI algorithm, we end the first phase
and start the second phase (local search procedure) with this
candidate solution (line 10 and 11 in Algorithm 2). Otherwise,
we update the candidate node set and start the next iteration
toward adding another node from the RCL to the trial solution
set.We update the candidate node set by removing the previously
added node, its negation and any node in the LDOI of the
current trial solution (line 13 in Algorithm 2). We do this latter
exclusion because these nodes will stabilize because of the current
trial solution, and it is useless to add any stabilized state to
the trial solution. We repeat the whole procedure including
selecting a node randomly from the candidate set as long as
there are still candidate nodes (line 6 in Algorithm 2). We
return an empty set if we do not find a solution (line 15 in
Algorithm 2).

In the second phase (see the pseudocode in Supplementary
Material section 1.2), we start with a candidate solution that
covers the target set. We randomize the order of nodes in the
candidate solution and then iteratively attempt to remove each
node. If after removing this node the LDOI of the modified
solution still covers the target set, then we replace the candidate
solution with the modified solution. Thus after one iteration of
traversing all the nodes, we obtain a final solution. At worst, no
node is removed from the set and the final solution is the same
as the candidate solution. The randomness in the removal order
provides a possibility for obtaining different minimal solutions
from the same candidate solution.

In this random heuristic algorithm, we introduce two aspects
of randomness in the construction phase, one is the randomness
of the passing score by a different α for each iteration of solution
generation process (line 3 in Algorithm 1) and another is the
random selection of a node each time from the RCL inside
each solution generation process (line 8 in Algorithm 2). These
techniques help strike a balance between the bias of a greedy
function and exploring the whole node state space (Pardalos
et al., 1998; Festa et al., 2001). An efficient greedy function/
heuristic score is important to guide the search procedure toward
the subspace with the optimal solution. However, a universally
efficient greedy function may not exist; rather, the efficiency
of a greedy function may depend on the specific network
structure and target set. We have implemented five choices of
greedy functions G(v) for a given node state (equivalently, non-
composite node of the expanded network): score 1 is the size of
the LDOI of that node state (denoted as |LDOI|); score 2 is the
size of the set of composite nodes which are nearest neighbors of
the LDOI of that node state (denoted as |Comp_LDOI|); score
3 is a linear combination of the previous two measures with
equal weight (denoted as Scores_1+2), and score 4 and 5 as the
size of the LDOI of that node state with penalty if the LDOI
contains a node that is the negation of a node in the target set
(denoted as |LDOI|_Pen1 and |LDOI|_Pen2). The penalty can
be implemented by multiplying this score by -1 (score 4) or by
decreasing this score by the size of the largest LDOI among all
node states (score 5); both of these implementations ensure that
this score becomes non-positive. A python implementation of
the target control algorithm is available at https://github.com/
yanggangthu/BooleanDOI.

2.8. Computational Complexity of the
Target Control Algorithm
The time complexity of calculating the LDOI of any set is
bounded by O(Nex + Eex), where Nex is the number of nodes
and Eex is the number of edges of the expanded network. For
each non-composite node in the network, we initially calculate its
LDOI and the value of its greedy function, with time complexity
O(N(Nex + Eex)), where N is the number of nodes in the
original network. We then cache these results to improve the
performance of the GRASP algorithm. In the first phase of the
GRASP algorithm, we run at most N iterations and we need to
calculate the LDOI of the trial solution in each iteration, thus
the time complexity is bounded by O(N(Nex + Eex)). In the
second phase, the time complexity is also bounded byO(N(Nex+

Eex)) as we need to go through each node, bounded by O(N)
as a crude estimate, delete the node from the solution and
check the modified solution’s LDOI, which is O(Nex + Eex). The
Boolean regulatory functions of biological network models are
often nested canalizing rules (Kauffman et al., 2003; Li et al.,
2013), thus for each node with k regulators there are at most k
newly generated composite nodes in the expanded network, as
well as two corresponding non-composite nodes; each of these
nodes have at most k regulators. Thus Nex is bounded by O(k̄N),

and Eex is bounded by O(k2N). Biological networks are sparse,
with an average node in-degree 1 < k̄ < 3 (Newman, 2010).
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Thus the complexity of the target control algorithm applied to

biological network models is O(k2N2) ∼ O(N2) for a well-
behaved degree distribution in the sparse limit and bounded by
O(N3) for an extremely skewed degree distribution in the sparse
limit. Different iterations of the solution generation process (line
3 in Algorithm 1) can be easily parallelized as each iteration
is independent. The space complexity of BFS search on the
expanded graph is bounded by O(Nex), and the space complexity
of the entire procedure is bounded by time complexity times the
storage space of LDOI of a node set, which is bounded byO(Nex).

2.9. Damage Mitigation as Target Control
We can generalize the target control algorithm to solve a damage
mitigation problem. Consider a Boolean network that has two
steady states, one corresponding to the normal state of the system
and the other corresponding to a disease state. The system is
currently in the normal steady state, but damage to a node, which
causes it to stabilize in the opposite state, will lead the system
to the disease steady state without any intervention. Under
such conditions, previous research has proposed modifying the
network topology (as soon as possible, or preventatively) to block
the propagation of damage (Yang et al., 2016). Here we are
interested in designing a damage mitigation strategy to bring
the system back to an attractor similar to the normal steady
state in the sense that a subset of nodes are in the same state as
their states in the normal steady state. This problem is almost
the same as the target control problem except that we need
to take the permanent damage into consideration. There are
two ways of incorporating this. First, we treat this permanent
damage as an initial condition and apply network reduction to
the system. However, this risks reducing a significant fraction
of the nodes in the network, including the target nodes we are
interested in. Second, we can apply our GRASP algorithm as
above while initializing the solution with the damaged node
state(s) and forbidding the damaged node state to be removed
in the local search phase in GRASP algorithm. This means that
we include the damage as part of the intervention. When the
LDOI of the node state set containing the damage effect covers
the target set, the target nodes will stabilize in their desired states
after a finite number of time steps under all initial conditions
of the subspace of the damaged network. We note that we only
need to do this when the damage is a permanent one; when
the damage is temporary (i.e., when the node is allowed to go
back to its original state), this can be treated as a different initial
condition for the target control problem and we can still apply
our GRASP algorithm to solve it as DOI/LDOI is robust to any
initial condition by definition.

3. RESULTS

3.1. Application to Ensembles of Random
Boolean Networks
We tested the two proposed properties of the LDOI and
the target control algorithm on different random Boolean
network ensembles. Specifically, we generated an ensemble of
1000 Erdős Rényi random graphs (Newman, 2010) (using the
gnm_random_graph() function of NetworkX; Hagberg et al.,

2008), with size ranging from 15 to 50 nodes and average in-
degree ranging from 1 to 2 . The Boolean regulatory functions
of the random ensemble are required to be effective (irreducible)
Boolean functions (Zertuche, 2009) to be consistent with the
generated topology, or nested canalizing functions to simulate
biological systems. (A nested canalizing Boolean function with
k inputs can be generated by determining two sequences,
the input sequence (I1, I2, · · · , Ik) and the output sequence
(O1,O2, · · · ,Ok), where Ii or Oi is either 0 or 1. The output
o as a function of input configuration (i1, · · · , ik) is thus
determined through the hierarchy o = O1 if i1 = I1; o = O2

if i1 6= I1 and i2 = I2; · · ·; o = Ok if i1 6= I1, · · ·, ik−1 6= Ik−1,
ik = Ik; o = NOT Ok if i1 6= I1, · · ·, ik−1 6= Ik−1, ik 6= Ik.) We
have successfully tested and validated the two properties for the
LDOI of each node in the generated networks. We also tested and
validated the properties of the LDOI of node sets of size up to 3∼7
depending on the specific network (as the complexity of testing
the property grows faster than Nk for k << N, where N is the
network size and k is the node set size).

With respect to testing the target control algorithm, we
generate 50 random target sets with size 2 or 3 for each random
network. We calculate the average number of generated solutions
for each pair formed by a target set and a network. As shown
in Table 1, the average number of solutions is significantly
high, between 10 and 40 for ensembles with nested canalizing
functions and between 25 and 70 for ensembles with effective
Boolean functions. The dominance of the canalizing variables in
determining certain outcomes tends to yield sparser expanded
networks than non-canalizing functions, and fewer effective
interventions. This is reflected in the smaller number of solutions
in the ensembles with nested canalizing functions compared to
the ensembles with effective Boolean functions. As shown in
Figure S1, the average time for finding solutions for a target set
(through 500 iterations) is 100 s or less for networks with 15–
35 nodes and 20–60 edges. As expected, the runtime increases
with the number of nodes and edges, reaching 600 s for 50
nodes and 100 edges. The relatively slow increase and practical
runtime suggest that our algorithm is effective for logical models
of biological systems.

It is not always possible to find a solution for a specific target
set for a network, especially when the Boolean network model

TABLE 1 | Mean number of solutions found for each target set and random

network pair for 50 target sets and 1,000 networks.

Custom score

index and

notation

1

LDOI

2

Comp_LDOI

3

Scores_1+2

4

LDOI_Pen1

5

LDOI_Pen2

Nested canalizing

rules

12.29 31.66 12.30 31.21 40.64

Effective boolean

rules

26.21 61.94 26.22 57.08 66.91

Half of 50 target sets have size two and the other half is of size three; none of them contain

source nodes. The 2nd to 6th columns correspond to different custom score (greedy

function) indexes and notations, which are described in the last paragraph in section 2.7.

The second and third row corresponds to the random network ensemble with nested

canalizing rules and effective Boolean rules, respectively.
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does not have a (partial) fixed point type of attractor (i.e., if all
nodes oscillate in the attractor) or when the desired target state
set consists of node states that are part of different attractors,
which conflict with each other. Another case where target control
is impossible is when the target set is not reachable from the
rest of the network. In the simulations of the two ensembles
mentioned above, we verified that we are able to find a solution
for more than 99.5% of the target sets when the target set satisfies
two criteria: (i) it is a subset of a (partial) fixed point and (ii)
the targets in this set are accessible from nodes outside of this
set in the original network (that is, the targets do not consist of
source nodes only and do not form amotif without any incoming
edges). Note that there can be counter-examples where satisfying
these criteria is not sufficient to find a solution. For example, in
Figures 2A,B, there are no solutions for the target set {∼B,∼C}
as the remaining nodes are not enough to activate the composite
node in Figure 2B. However, the probability of such situations
is small in both random ensembles with moderate size and real
biological network. Moreover, the fact that one cannot find a
solution through our GRASP algorithm for the target control
problem often indicates that the target set is not a reasonable
target. It is likely that one would not be able to find a solution
in such situation even with a whole state space search.

We also test the performance of different heuristic functions
for the target control problem. We calculate the average
number of generated solutions for each pair formed by a target
set and a network. As shown in Table 1, greedy functions
with a penalty for containing the negation of a node state
included in the target set (score index 4 and 5) consistently
perform better than the greedy functions directly using the
size of the LDOI (score index 1 and 3). The intuition behind
this is that it is more efficient to choose from those nodes
whose DOI does not contain a conflict with the target. The
second greedy function (|Comp_LDOI|) also performs quite
well.

3.2. Biological Examples
We applied our methodology on four Boolean models of
signal transduction networks. The four Boolean models are
freely available on GitHub (https://github.com/yanggangthu/
BooleanDOI) in SBML Qual format and in our custom format.
In the following we demonstrate our algorithm on two of these,
the epithelial-to-mesenchymal transition (EMT) network and the
PI3K mutant ER+ breast cancer network. The results on the
ABA induced stomatal closure network and the T-LGL leukemia
network are shown in Supplementary Materials sections 3.3, 3.4.
Table 2 summarizes representative interventions found with our
algorithm and compares them to the results of the most relevant
previous analysis of these four biological network models. In
Supplementary Data Sheet 1 we include the LDOI of each single
node in the four models analyzed.

3.2.1. EMT Network

EMT is a cell fate change involved in embryonic development,
which can be reactivated during cancer metastasis (Steinway
et al., 2014). During EMT, epithelial cells lose their original
adhesive property, and become mesenchymal cells which leave
their primary site, invade neighboring tissue, and migrate to
distant sites. A Boolean network model of EMT in the context
of hepatocellular carcinoma invasion has been established by
Steinway et al. (2014). Several predictions of this model were
validated experimentally (Steinway et al., 2014, 2015). The EMT
network has 70 nodes and 135 edges. The adhesion factor E-
cadherin is the sink node; its OFF state indicates the transition
to a mesenchymal state. The network has a normal (epithelial)
steady state and an abnormal (mesenchymal) steady state. (See
details in Supplementary Materials section 3.1). In Figure 3 we
show a simplified version of the EMT network; our analyses were
done on the full network.

Previous research on this network has indicated that sustained
activation of TGFβ signal can trigger EMT through the

TABLE 2 | Summary of representative target control solutions found by our algorithm for four biological network models.

Model Target state(s) Representative interventions found Previous results from dynamic analysis

EMT-blocking E cell inducing

EMT network ∼EMT β-catenin_memb = 1, SNAI1 = 0 SNAI = 0 β-catenin_memb = 1,

SMAD = RAS = 0, SNAI1 =

GLI = 0
β-catenin_memb = 1, SMAD = RAS = 0 SMAD = 0, RAS = 0

∼EMT, ∼MEK β-catenin_memb = 1, SNAI1 = RAS = 0 Not studied previously

β-catenin_memb = 1, miR200 = RKIP =

1, RAS = 0

Breast cancer network Apoptosis = 2, Proliferation = 0 PI3K = 0, ESR1 = 0 PI3K = 0, ESR1 = 0

Apoptosis <2, Proliferation >2

when PI3K = 0

PI3K = 0, ESR1 = 1 PI3K=0, ESR1 = 1

ABA induced closure network Closure = 1 when ABA = 0 Ca2+c = ROS = 1 ROS = 1

H2O efflux when ABA = 0 K+ efflux =1, SLAC1 = ROS = 1 Not studied previously

T-LGL leukemia network Apoptosis = 1 S1P = 0, RAS = 1 S1P = 0

The first column indicates the relevant network model, the second lists one or two target states we considered, the third column presents the intervention set obtained by our algorithm,

and the fourth column indicates the most relevant results of previous analysis of these network models. The previous analysis considered a unique initial state or a restricted family of

initial states (in the case of the ABA network). The interventions found by our algorithm will be successful regardless of the initial state.
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FIGURE 3 | An illustration of the EMT network. Attractor-preserving network reduction (Saadatpour et al., 2013) was applied to better focus attention on the most

relevant nodes. Specifically, source nodes that represent input signals that are absent in the studied context are removed and each node with one input or one output

is absorbed into its input or output, respectively. Nodes with light gray background are direct regulators of E-cadherin and nodes with dark gray background represent

external signaling molecules. Edges ending with an arrow represent positive regulation while edges end with a flat bar represent negative regulation. See more details

in Supplementary Material section 3.1.

activation of eight stable motifs (Steinway et al., 2015). In
addition, stabilization of any of these stable motifs can drive
EMT. Our analysis of the LDOI of each node state indicates
that any of 60 node states (out of 138 node states for
the 69 nodes) can lead to EMT, including the previously
established EMT drivers. Moreover, 43 node states (nodes of
the expanded network) have the same LDOI, which contains
48 node states, including EMT = 1 (see Supplementary
Data Sheet 1). Each of these 43 node states is either the
core of one or more of the eight stable motifs, or an
external driver of one or more of the eight stable motifs.
Thus the EMT outcome and the mesenchymal steady state
has a large basin of attraction. As we are more interested
in designing therapeutic strategies to block the epithelial to
mesenchymal transition, we set the negation of EMT as a

target. Previous analysis indicated that when considering an
initial epithelial state and turning on the TGFβ signal, the
knockout of any of the transcription factors that downregulate
E-cadherin (i.e., knockout of SNAI1, SNAI2, FOXC2, TWIST1,
ZEB1, ZEB2, HEY1) or multiple double node knockout
combinations (knockout of SMAD and one of RAS, CSL, DELTA,
NOTCH, NOTCH_ic, SOS/GRB2) are effective in blocking
EMT (i.e., leading to E-cadherin=ON). The effectiveness of
transcription factor knockout had been established in the
literature; unfortunately these transcription factors cannot
be targeted with existing drugs. Several double knockout
combinations were validated experimentally in (Steinway et al.,
2015) and are more amenable to drug targeting.

For EMT as target, our target control algorithm gives 7 two-
node solutions (activation of β-catenin_memb and knockout of
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any of SNAI1, SNAI2, FOXC2, TWIST1, ZEB1, ZEB2, HEY1) and
5 three-node solutions (activation of β-catenin_memb, knockout
of SMAD and knockout of any of RAS, CSL, DELTA, NOTCH,
and NOTCH_ic). The main difference between the target
control solution and the previously found EMT-blocking single
and double knockout interventions is that our target control
solution includes the additional control of β-catenin_memb.
To understand this difference, we note that EMT is in the
LDOI of TFGβ , however, EMT is not in the LDOI of the
set consisting of TGFβ together with any of the previously
found EMT-blocking knockout interventions. This indicates
that the knockout intervention is effective in the sense that it
can block the process of reaching EMT. However, ∼EMT is
also not in the LDOI of the set of TGFβ together with any
knockout intervention. The knockout intervention is effective
when the initial condition is the epithelial steady state, however
the knockout intervention does not block EMT for all initial
conditions. The target control algorithm, which can block
EMT for all initial conditions, requires one more node (β-
catenin_memb) in the target control solution. In fact, treating
this problem as a damage mitigation problem, where the damage
is sustained activation of TGFβ , we verify that EMT is in the
LDOI of TGFβ together with any of the target control solutions.

As established in previous results, the single node EMT-
blocking knockouts do not lead back to an epithelial state
but rather to hybrid epithelial or mesenchymal steady states
(Steinway et al., 2015). The hybrid epithelial steady state has
certain epithelial features, e.g., E-cadherin and β-catenin_memb
are activated, and also some mesenchymal features, e.g., MEK,
ERK, and SNAI1 are activated. The hybrid mesenchymal steady
state demonstrates the opposite features compared to the
epithelial steady state. A good target set to avoid reaching such
a hybrid state (which is likely pathological and may even be a
worse outcome as the mesenchymal state) would be {∼EMT,
∼MEK} (Steinway et al., 2015). The minimum solution found
involves controlling three nodes: activation of β-catenin_memb,
inhibition of SNAI1, inhibition of RAS or RAF. We also find a
four-node intervention that does not involve ERK and SNAI1:
activation of β-catenin_memb, miR200 and RKIP, and also
inhibition of RAS. If the target set is {∼EMT, ∼MEK, ∼SNAI1},
the minimum solution size is found to be six.

Stable motif control indicates that control of at least five nodes
is needed to drive any initial state (including the mesenchymal
state) to the epithelial state (see Supplementary Table 3 of
Steinway et al., 2015) Although the control goal is different, one
can still see the connection between our target control solution
for the target ∼EMT and the stable motif control solution (to
drive the system to the epithelial state). Specifically, they both
require activation of β-catenin_memb. Knockout of SNAI1 ,
knockout of TWIST1, or knockout of SMAD and RAS, as one
of the target control solutions, also appear as a part of stable
motif control solution that does not require control of TGFβ or
TGFβR.

These results demonstrate both the accuracy and effectiveness
of our target control algorithm. The solutions found through
1,000 iterations are comprehensive (comparable to the solution
found through a systematic search of knockout pairs). Our

algorithm indicates intervention sites that are close to the target
but also sites that are further away (e.g., SMAD). This diversity
enables the selection of the most practical interventions.

3.2.2. Breast Cancer Network

In 2017, Zañudo et al. established a discrete dynamical model of
the signal transduction processes involved in the PI3K mutant,
estrogen receptor positive (ER+) breast cancer, as shown in
Figure 4 (Gómez Tejeda Zañudo et al., 2017). The model
includes 58 nodes, which correspond to proteins, transcripts,
drugs, and two cellular outcomes, apoptosis (programmed cell
death) and proliferation (cell cycle progression). A fraction of
the nodes (16), including the outcome nodes, are characterized
by multiple levels, which is implemented by additional virtual
nodes, e.g., apoptosis2 corresponds to level 2 of apoptosis, which
has a more stringent regulatory function than apoptosis1 (level
1 of apoptosis). This network as implemented is essentially
a Boolean network because all the regulatory functions are
Boolean (Gómez Tejeda Zañudo et al., 2017). The network
model successfully captures the key role of the PI3K/AKT/mTOR
signaling pathway in determining the pathological proliferation
and survival of cancer cells. In untreated simulated cancers
cells, PI3K, MAPK, AKT, mTORC1, and ER signaling are active,
leading to high level of proliferation and lack of apoptosis. The
network model successfully captures the effectiveness of PI3K
inhibiting drugs in leading to low level of proliferation and
high level of apoptosis (Gómez Tejeda Zañudo et al., 2017).
Through extensive simulations, the network model confirms
known drug resistance mechanisms, i.e., additional mutations
or other dysregulations that lead to the loss of effectiveness of
PI3K-inhibiting drugs. It also predicts new possible resistance
mechanisms and the degree of survivability under different
resistance mechanisms (Gómez Tejeda Zañudo et al., 2017).

Similar insights can be drawn by LDOI analysis and applying
the target control algorithm to the discrete dynamical network
model without doing dynamical simulations, which demonstrate
the rich information contained in the network topology and
logic and the effectiveness of our control methodology. We
obtained a (relatively large) reduced network by considering
the system under the relevant initial condition of PI3K mutant,
ER+ cancerous state, while keeping the seven drugs as source
nodes (see details in Supplementary Material section 3.2). The
five node states with the highest LDOI are Fulvestrant, ∼ESR1
(which both mean the inhibition of the estrogen receptor) and
Alpelisib,∼PI3K,∼PIP3 (which all mean the inhibition of PI3K).
The LDOI of these four nodes is very similar and includes
18 node states, including a high level of apoptosis (Apoptosis
= 2), and a reduction in proliferation. Other drugs or node
inhibitions yield subsets of the largest LDOI (see Supplementary
Data Sheet 1). These results are consistent with, and yield further
insight into the current knowledge on the effect of drugs in this
network. If we now set the target to be high level of apoptosis
and no proliferation, i.e., Target = {Apoptosis2, ∼Proliferation},
the algorithm gives multiple two-node interventions as minimal
interventions, these consists of either of {∼PI3K, ∼PIP3} and
inhibition of any node in the MYC-CDK4/6 axis of cell-cycle
regulation, i.e., {∼ESR1, ∼ER_transcription, ∼MYC, ∼CDK46,
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FIGURE 4 | An illustration of the PI3K mutant, ER+ breast cancer network. Attractor-preserving network reduction was applied to focus on the nodes most relevant

to our analysis. Nodes are colored according to the signaling pathway that they participate in. Edges ending with an arrow represent positive regulation while edges

ending with a hollow diamond represent negative regulation. See more details in Supplementary Material section 3.2.

∼cyclinD,∼cycD_CDK46,∼Rb,∼E2F}. There are several drugs
that can target these nodes. For example, Alpelisib is a PI3K
inhibitor, Fulvestrant is a ESR1 inhibitor and Palbociclib is a
CDK4/6 inhibitor. This result is consistent with the results found
in the (Gómez Tejeda Zañudo et al., 2017): inhibition of PI3K
leads to an increase in ER transcriptional regulatory activity,
leading to a decrease in proliferation, and simultaneous PI3K
and ER inhibition has a synergistic effect in completely blocking
proliferation and maintaining a high level of apoptotic activity.
If PI3K inhibitor or PIP3 inhibitor is not allowed to be used,
the algorithm finds three node solutions involving an AKT
inhibitor (e.g., Ipatasertib), MAPK inhibitor (e.g., Trametinib)
and inhibition of any node from the MYC-CDK4/6 axis of cell-
cycle regulation. In other words, inhibition of AKT together
with MAPK provides a similar functionality with inhibition
of PI3K. One can also use the LDOI to identify possible
drug resistance mechanisms, i.e., perturbations that make PI3K
inhibition less effective. As {Apoptosis2,∼Proliferation4} ⊂
LD(∼PI3K), we simply go through all possible two-node
interventions containing PI3K inhibitor and screen out those
interventions whose LDOI either does not contain Apoptosis2
or contain Proliferation3 or higher level (Proliferation4). We
reproduce most of the potential drug resistance mechanism to
PI3K inhibitors indicated in Table 3 of Gómez Tejeda Zañudo
et al. (2017).

4. DISCUSSION

In summary, we have developed the new measures DOI and
LDOI to describe the long-term effect of a sustained intervention.
We have applied these measures to find solutions to the target
control problem in logical networkmodels. This work takes a step
forward toward practical control of real biological systems, as
illustrated by the applications presented here. The target control
solutions we find recover previous predicted interventions
obtained by other methods (dynamic simulations and stable
motif analysis). As several of these previous predictions are
validated experimentally, this agreement also serves as validation
of our target control solutions. Notably, by generating a
large number of valid target control solutions, we are going
significantly beyond previous results (seeTable 2). Themultitude
of predicted target control interventions allows their filtering
according to biological or technological considerations.

Here we assumed the existence of a discrete dynamical model.
As there are significant uncertainties in the existing models
due to the scarcity of experimental information, we estimate
the sensitivity of the LDOI measure to the incompleteness of
the dynamical model. As the primary way of obtaining causal
information that can be used in a logical model is to perform
knockout experiments, the predominant causal information
indicates a node as being necessary for the activation of another
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node. For example, if the knockout of either of two regulators A
or B leads to a decrease in the activity of target C, we would infer
that the logical rule for C is C = A AND B. Suppose that there
is a so far undetected regulator of C, which we denote by X. This
X will likely also be necessary, which would maintain agreement
with the previous observations, i.e., C = A AND B AND X
is the true rule. Consider the rule for the complementary node
∼C = ∼A OR ∼B in the case of the incomplete system versus
the true rule ∼C =∼A OR ∼B OR ∼X. We can see that the
LDOI of any of ∼A,∼B,A,B will be robust to the addition of X.
The LDOI of node X and ∼X need to be established in the true
system. The LDOI of node state set {A,B} will be affected by this
change. (However, LDOI of ∼A and ∼B will not change). Thus
the size of the solution of the target control problemmay increase
due to this incomplete information. Due to the binary essence of
the Boolean rule, missing a sufficient regulator (an extra OR rule)
will give similar results.

The LDOI is closely related to previously introduced concepts
and methods used to analyze Boolean models. In particular, the
LDOI of a node state (or a set of node states) is mathematically
equivalent to the three-valued logical steady state that results
when these node states of interest are fixed (Klamt et al., 2006;
Samaga et al., 2010) and is also equivalent to the set of node states
that become stationary if using network reduction techniques
after fixing the node(s) of interest in the appropriate state(s)
(Bilke and Sjunnesson, 2001; Naldi et al., 2012; Saadatpour et al.,
2013). The work presented here goes beyond previous work and
identifies general properties of the LDOI of node states and their
union (the first key property of the LDOI), and of the relation
of the LDOI and stable motifs (the second key property of the
LDOI).

The algorithm to identify the LDOI using the expanded
network bears similarities with the algorithm in Samaga et al.
(2010) and Klamt et al. (2006), which uses signed interaction
hypergraphs to calculate logical steady states resulting from
fixing node states. An important difference is that the expanded
network assigns a complementary node to each node to denote
the inactive state of a node, while the hypergraph representation
instead assign signs to nodes and to composite nodes to keep
track of their states. Although the LDOI obtained using either
method is the same, we argue that the expanded network
representation has several desirable properties that differentiate
it, in particular, (i) it makes the interpretation of the LDOI
more intuitive and the algorithm for calculating it purely graph-
theoretical, i.e., a modified breadth-first search on the expanded
network, (ii) it treats the active/inactive states equally (a reflection
of the fact that a change of variables can redefine what an
active/inactive state means), and (iii) it provides a natural way to
generalize the LDOI from Boolean to discrete models by defining
a virtual node for each allowed node state (e.g., if a node has 3
states we would have 3 virtual nodes: one denoting state 0, one
denoting state 1, and one denoting state 2).

The DOI and LDOI is also related the concept of elementary
signaling mode (ESM), originally defined as a minimal subgraph
that can propagate a signal from a source node to an output node
(Wang and Albert, 2011; Sun and Albert, 2016). An ESM on
the expanded network is the generalization of a path on a usual

directed network. Similarly, the LDOI of a node on the expanded
network is analogous to a connected component reachable from
a node on a usual directed network. In the same way a connected
component reachable from node i consists of nodes that have
a path starting from node i, the LDOI of a node consists of
all the nodes included in any ESM that starts from that node.
Recent work by Maheshwari and Albert (2017) developed a logic
framework to identify causal relationships that are sufficient or
necessary. This framework allows an alternative definition of the
LDOI. The LDOI of the ON state of a node (σ̃i = 1) includes all
the nodes for which the node is a sufficient activator (these nodes
will have σ̃j = 1) or sufficient inhibitor (these nodes will have
σ̃k = 0). Similarly, the LDOI of the OFF state of a node includes
all the nodes for which the node is a necessary activator (these
nodes will have σ̃j = 0) or necessary inhibitor (these nodes will
have σ̃k = 1).

An algorithm to construct ESMs through a backward search
from an output node was presented in Wang et al. (2013); this
algorithm can be adapted to find solutions of the target control
problem of a single output. If we treat the output node as the
root of a backward search, the set of nodes found in the ESM in
each search depth (distance from the output node) can serve as
a control solution. A truncation technique similar to ours needs
to be applied to deal with inconsistent feed-forward or feed-
back loops. This algorithm can be generalized to solve the target
control problem of a target set by simultaneous search from each
target node. We chose to transform the target control problem
into a planning search problem; and it has been established
that such a planning search problem can be solved in both a
forward propagation and a backward propagation approach, or
even a mixed approach (Russell and Norvig, 2003). It will be
an interesting future work if such techniques can improve the
efficiency of the algorithm.

This work points out interesting questions as future research
directions. First, though evaluating the DOI of a node (set) is
computationally hard, a better estimation of the DOI rather than
the LDOI is desirable and can be used to reduce the size of the
solution given by our current target control algorithm. Second,
the requirement that the solution works for all initial conditions
in the setup of the target control problem gives robust solutions,
however it may be overly conservative for biological systems
in certain applications, especially if one is certain about the
relevant initial condition subspace. A semi-structural approach
(without doing dynamical simulations) to solve the target control
problem starting from a subspace of initial conditions are also
desirable.
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Understanding the functional properties of cells of different origins is a long-standing

challenge of personalized medicine. Especially in cancer, the high heterogeneity

observed in patients slows down the development of effective cures. The molecular

differences between cell types or between healthy and diseased cellular states are

usually determined by the wiring of regulatory networks. Understanding these molecular

and cellular differences at the systems level would improve patient stratification and

facilitate the design of rational intervention strategies. Models of cellular regulatory

networks frequently make weak assumptions about the distribution of model parameters

across cell types or patients. These assumptions are usually expressed in the form of

regularization of the objective function of the optimization problem. We propose a new

method of regularization for network models of signaling pathways based on the local

density of the inferred parameter values within the parameter space. Our method reduces

the complexity of models by creating groups of cell line-specific parameters which can

then be optimized together. We demonstrate the use of our method by recovering the

correct topology and inferring accurate values of the parameters of a small synthetic

model. To show the value of our method in a realistic setting, we re-analyze a recently

published phosphoproteomic dataset from a panel of 14 colon cancer cell lines. We

conclude that our method efficiently reduces model complexity and helps recovering

context-specific regulatory information.

Keywords: regularization, sparsity, clustering, network model, logical model, optimization

1. INTRODUCTION

One goal of Systems Biology is to understand emerging functional properties of biological systems
from the interactions of their components (Wolkenhauer, 2014). Such understanding would allow
the design of new pharmacological strategies to treat diseases that arise when these systems do not
function adequately, like cancer. One frequent approach is to map experimental measurements to
the model variables of the system, and infer the most likely parametrization. To be useful, a well-
parametrizedmodel of a complex system should not only be able to predict non-obvious, non-linear
behaviors, but also provide a mechanistic explanation for these behaviors and to suggest hypotheses
about ways to control the system.

The most informative modeling approaches include prior information about the system
(Aldridge et al., 2006). Classically, dynamical systems like regulatory networks of mammalian
cells are modeled with systems of ordinary differential equations, describing in detail the status
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of chemical species like proteins or membrane receptors over
time. Alternatively, logical models (Morris et al., 2010; Hill et al.,
2012; Le Novère, 2015) were introduced several decades ago
for the modeling of regulatory networks (Kauffman, 1969). As
they are simpler in their formulation, they are easier to handle
computationally, scale better to large models and datasets, and
are easier to interpret. The prior knowledge used to construct
logical network models frequently comes from reviewing the
literature of a certain mechanism, disease or signaling pathway,
and may be summarized in a database like STRING, Reactome
or WikiPathways (Joshi-Tope et al., 2005; Kutmon et al., 2016;
Rigden et al., 2016; Szklarczyk et al., 2017).

Logical models can be used to model stochastic processes.
Probabilistic Boolean Networks (Shmulevich et al., 2002) have
been introduced to simulate logical models in the presence of
uncertainty, as they allow combining multiple Boolean networks
with the respective continuous selection probabilities in one
mathematical model. They have successfully been applied to the
modeling of biological regulatory networks (Trairatphisan et al.,
2013). This framework can be generalized to Dynamic Bayesian
Networks (DBNs), a general class of models that includes Hidden
Markov models and Kalman filters (Murphy, 2002), and can be
used to represent the same joint probabilities between variables.
In a graphical model of a DBN, the values of the different nodes
represent the probabilities for randomly chosen molecules to be
in an active state, while the edges represent the probabilities
of the parent nodes to activate their targets. Network update is
performed according to the laws of probabilities.

There is, however, a number of impediments to successful
biomolecular modeling. Firstly, the prior knowledge used to
build the model could be inaccurate, or more frequently,
incomplete, or both. In other words, compared to the true
network, databases likely contain additional edges, as well as
miss others. Secondly, the information contained in databases
is often generic, collected across cell types, genetic backgrounds,
and experimental conditions. Given an interaction graph and a
series of contexts (cell types, patients), the task of determining
which interactions are context-specific and which ones are
context-independent rapidly becomes intractable. This task is
however essential to reduce the model complexity, as overly
complex models are prone to overfitting (thus less generalizable),
computationally expensive, and might be less interpretable than
simpler ones. In addition, identification of the most variable
model parameters between contexts has the potential to be
directly informative about the mechanisms at play and help draw
parallels between contexts.

Inter-patient variability is an important factor for many
diseases, and in particular cancer. Intra-tumor heterogeneity has
been recognized for a long time (Fidler et al., 1982) and it has
been established that the heterogeneity of cell lines isolated from
different patients spans the genomic, epigenetic, transcriptomic,
and proteomic levels, resulting in large phenotypic differences,
even within the same tissue of origin (Hoadley et al., 2014).
Additionally, the patients’ own genetic backgrounds and the
tumor micro-environment also play a role in increasing the
heterogeneity of clinical responses (Zhou et al., 2008; Marusyk
and Polyak, 2011; Junttila and De Sauvage, 2013). However,

recent successes in matching a biomarker with the sensitivity
to certain targeted anti-cancer therapies, notably in the case of
HER2-overexpressing breast cancer (Vogel et al., 2002), EGFR-
mutated non-small-cell lung cancer (Lynch et al., 2004), BCR-
ABL fusions in chronic myelogeneous leukemia (Sherbenou and
Druker, 2007), and BRAFV600E-mutant melanoma (Bollag et al.,
2010) suggest that the general approach of targeting specific
mechanisms in subsets of patients harboring functionally similar
tumors is clinically promising.

A number of methods have been devised for the general
task of variable selection. Various methods rely on the intuitive
notion of comparing models comprising different subsets of the
independent variables (Hocking, 1976). This strategy is however
problematic for several reasons. Firstly, the number of possible
subsets grows very fast with the number of variables, leading
to the infeasibility of testing them all. Secondly, repeatedly
optimizing a model structure using the same dataset violates the
central assumptions of the F-tests or χ2-based statistics used
for comparisons, which are designed to test a single hypothesis.
Strategies like forward-selection, backwards elimination, or
combinations of both are consequently affected by numerous
problems, notably biased parameter estimation and artificially
low p-values (Harrell, 2001; Burnham and Anderson, 2002).

Fitting an overspecified model first and clustering the
parameters in a second step is not a sound method to achieve
sparsity, as the parameter estimates might not be stable, resulting
in inaccurate clustering. Furthermore, the two objectives are
not coupled, which is problematic: a small difference between
the values of two parameters might or might not be supported
by the data. It makes more sense to specify our assumptions
about the distribution of the parameter values as part of the
objective function. Regularization is a technique for adding prior
information to a regression problem. It consists in adding to the
loss function a function of the parameters alone. More formally,
when attempting to learn the parameter set θ from dataset X =

[x1, x2, ..., xn] with a modelM, the objective function O takes the
form:

O = f (M(X, θ),X)+ λg(θ) (1)

where f is the loss function, for example the sum of squared
errors. The hyperparameter λ is used to balance goodness-of-fit
with the regularization objective g(θ). Themost common form of
regularization is the Tikhonov regularization (Tikhonov, 1963),
also called ridge regression, which materializes the assumption
that small model parameters are more probable than larger ones.
Also called the L2 norm, the Tikhonov regularization term takes
the form:

g(θ) =
T

∑

j=1

(θj)
2 (2)

where T is the number of parameters of the model. The L2
norm is used to impose a penalty on large parameter values.
Its popularity is due to the fact that the function is convex,
continuous and differentiable everywhere, and is therefore well
adapted to gradient descent optimization. It is mostly used in
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predictive models to avoid overfitting and produces models that
are more generalizable. Because the gradient of this function
becomes very small around zero, Tikhonov regularization does
not achieve sparsity under most conditions and therefore does
not perform variable selection, however this can be solved by the
use of thresholds.

Intuitively, the most sensible sparsity constraint should be the
L0 norm, or the cardinality of the non-zero parameter set:

g(θ) =
T

∑

j=1

1(θj 6=0) (3)

where 1(C) is the indicator function, and is equal to the number
of cases where condition C is true. However, this is usually not
feasible in practice, as this function is discontinuous and cannot
be used in many optimization algorithms. A good approximation
is the L1 norm, which sums the absolute values of the parameters,
without squaring them:

g(θ) =
T

∑

j=1

|θj| (4)

The L1 norm, or LASSO (Tibshirani, 1996) can be used to
reduce the size of a model by efficiently removing variables
(i.e., set their coefficients to zero) which contribute the least to
the model. Importantly, by screening a range of regularization
parameter λ, it is possible to order the variables according to
their importance. It is natural to use it then, for contextualizing
models of biological systems with measurements from different
contexts to point to their differences. Different approaches have
used the L1 norm to contextualize network models of signal
transduction in mammalian cells. However the assumption is
either that there is no relationship between the different cell
lines (Eduati et al., 2017; Lucarelli et al., 2018), or that the
differences to the mean value should be minimized (Merkle
et al., 2016). While the latter works in the case of only two
cell lines, it does not when comparing more. The reason is
that heterogeneity between cell lines is expected, and we know
that different mechanisms are at play in a given experiment.
By penalizing any difference, such regularization does not allow
parameters to have two or more possible values. However,
cancer-related perturbations to molecular interactions occur in
discrete steps. Driver mutations often result in the complete
loss of the function of a certain protein, for example p53,
or constitutive enzymatic activity, for example the common
mutation of genes of the RAS family (Kandoth et al., 2013).
The desired regularization should therefore penalize differences
between contexts but allow for a structure in the parameter
space. While a number of methodologies exist (Dondelinger
et al., 2012; Hill et al., 2012) to regularize network models
of signaling pathways for time-stamped data, in that case the
structure of the prior on the parameter space is known, as time is
oriented. We propose that the correct assumption for analyzing
perturbation data from multiple cell lines, cell types, or across
patients, is that network parameter values would form clusters
corresponding to the most common signaling deregulations.

However, methods to efficiently identify the parameters of
a biological model and cluster them at the same time are
missing.

The general problem of regularizing a model toward a specific,
although unknown, structure has been investigated before. The
vast majority of the proposed methods combine L1 and L2
norms in various ways. Group LASSO (Yuan and Lin, 2006) was
introduced to allow the selection of entire groups of variables.
This was then extended to a hierarchical selection of nested
groups of variables (Zhao et al., 2009), partially overlapping
groups of variables (Jacob et al., 2009), and to the induction
of sparsity within groups by penalizing for pairwise differences
between coefficients of variables belonging to the same group,
with the OSCAR algorithm (Bondell and Reich, 2008) and the
clustered LASSO (She, 2010). Later Simon et al. proposed the
sparse group LASSO (Simon et al., 2012), a modification of
the elastic net criterion proposed by Zou et al. which combines
the L1 and L2 norms (Zou and Hastie, 2005). The fused
LASSO (Tibshirani et al., 2005) is applicable when there is a
natural ordering in the model variables, like time-stamped or
spatially organized data. Several groups have tried to decouple
the steps of clustering and model fitting, either by considering
all possible clusters (Jenatton et al., 2011) or by applying first
hierarchical clustering based on the measurements covariance
matrix (Bühlmann et al., 2013).

While these approaches have proven useful in some cases
(Zhang et al., 2014; Steiert et al., 2016), they do not apply
well to the case of regulation networks, because group zero-
sparsity (removal of entire groups of variables, as opposed
to within-group sparsity) is not necessarily desired, except in
the case of network pruning. We therefore implemented a
regularized version of the objective function of the FALCON
toolbox (De Landtsheer et al., 2017), to lower the degrees
of freedom of the model by encouraging the grouping of
model parameters across contexts, regardless of the number of
groups. This can be achieved by detecting anomalies in the
parameter values distribution, assigning a penalty to groups
of values more alike the reference null distribution. In our
case (Bayesian Networks), the uniform distribution [0 − 1] is
assumed to better represent the prior of uncorrelated parameter
values, as they are usually interpreted as probabilities. Under
different modeling formalisms, other distributions would be
more appropriate, for example for ODE-based or constraint-
based models. We show how the penality correlates with other
measures, with unsupervised clustering, and we demonstrate
the use of regularized fitting, first on a small synthetic network
model, then with biological data.

2. METHODS

2.1. Algorithm
We propose a measure of uniformity of the parameter values
distribution modified from previous work in the field of quasi-
random sequences (Sobol, 1976). Given a parameter space P and
N parameter vectors with T parameters θ1, θ2, ..., θN , with θn =

{θ1n , θ
2
n , ..., θ

T
n }, we compute for each t ∈ T the average absolute

Frontiers in Physiology | www.frontiersin.org May 2018 | Volume 9 | Article 55050

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


De Landtsheer et al. Regularization to Infer Context Specificity

deviation from the expected local density of points Dt with:

Dt =
∑

R∈P

|1(θ tn∈R) − Vol(R)| (5)

for all rectangles R = [a1, b1] × [a2, b2] × ... × [aT , bT] such
that 0 ≤ ai ≤ bi ≤ 1, and with Vol(R) being the volume of the
T-dimensional rectangle R.

Vol(R) =
∏

i

bi − ai (6)

The first term in Equation 5 represents the observed density
of points, while the second one represents the expected density.
These two quantities are equal in the case of perfect uniformity.
We then define the uniformity U of the parameter vector as the
inverse of the average deviation over the T parameters:

Ut =
T

Dt
(7)

and the uniformity of an entiremodel parameter set as the average
over all vectors:

U =
1

N

N
∑

i=1

Ui (8)

In one dimension, this metric has an intuitive interpretation,
as shown in Figure 1: when parameter values are as different as
they could be, the expected difference between any two values can
be calculated from their relative rank in the set. For example, the
distance between two successive observations is θ tn−θ tn−1 = 1/N.
When values cluster together, they create windows in which the
local density is either higher or lower than this expected value.
Note that in one dimension, the rectangles R are equivalent to
the distance between the points, and to the convex hull of these
points, while it is not true in higher dimensions.

2.2. Uniformity as a Penality in Regularized
Fitting
We analyze the sensitivity of our new metric to the amount of
structure in sets of model parameter values by computing it for
a large number of sets of uniformly, independently distributed
random values. We compare uniformity with the standard
deviation, with the results of the Kolmogonov-Smirnov (K-S)
(Massey, 1951) and Anderson-Darling (A-D) tests (Anderson
and Darling, 1954), and with the sum of pairwise distances.
The two non-parametric statistical tests aim at comparing the
empirical distribution of the values in the set with a reference
distribution, in this case the uniform distribution. The sum of
pairwise distances is used in Bondell and Reich (2008) and She
(2010), the standard deviation is examplative of measures of
spread around a single value, like in Merkle et al. (2016). In
addition, we compute for each set the optimal number of clusters
(explaining 90% of the variance) using the k-means algorithm
and the elbow method (Ketchen and Shook, 1996). Using the
inferred number of clusters, we compute the sum of intra-cluster
distances. We performed this comparison with 104 vectors. Also,

to assess the usability of this metric for large-scale computations,
we compare the running time of the different computations for
sets of size 10, 20, and 40, simulating models with increasing
number of contexts.

To illustrate that the use of uniformity as a penalization in
an objective function results in the convergence of parameter
values into clusters, we iterate a gradient descent process for
random sets of uniformly, independently distributed random
values. This is equivalent as optimizing a null model using
uniformity as a regularizing function, and shows the effect of this
penalization in the absence of data. We used gradient descent
(using empirical gradients and the interior-point method) with a
learning rate of 10−3, collect the shape of the set over 100 updates,
and we compare with the centroids of the k-means clustering.
All computations were done using Matlab 2017a on a standard
desktop computer which specifications are detailed in section
2.3.3.

2.3. Modeling Experiments
Modeling experiments in this paper used the toolbox FALCON
(De Landtsheer et al., 2017), a Matlab-based versatile tool to
contextualize logical models of regulatory networks. Briefly,
FALCON uses a Dynamic Bayesian framework (Lähdesmäki
et al., 2006) in which Boolean operations are explicitly defined
as arithmetic, continuous logical functions. FALCON emulates
a Probabilistic Boolean Network with user-defined topology and
uses experimental data from perturbation assays to optimize the
weights of the network, which represent the relative activating
and inhibiting influences of the network components with
respect to the logical functions. For the large-scale analysis of
biological data, we used a custom implementation of FALCON
running on a high-performance computing platform which
specifications are detailed in section 2.3.3.

O =
1

n

n
∑

i=1

(Yi − Ŷi)
2 + λU(θ) (9)

where Y is the vector of measurements for the observed nodes,
Ŷ is the vector of corresponding predictions and U(θ) is the
uniformity of the parameter set θ across contexts, as defined
by Equations 5–8 above, with λ being a scalar that controls the
relative contribution of the penality to the objective function.
The code and data files used for both the synthetic model and
the biological example are available at the address https://github.
com/sysbiolux/FALCON. Additional driver scripts are provided
in the Supplementary Materials.

2.3.1. Synthetic Toy Model
In order to assess the use of our regularization scheme for finding
context-specific parameters, we design a simple toy model with
7 nodes and 9 edges. Two of these nodes are inputs, while two
others are measured. We set the model parameters differently
for four conceptual cell lines, in such a way that while most
parameters are conserved, some would be different, and shared
across several (but not all) cell lines. Figure 2 shows a graphical
representation of the network, the values chosen for the model
parameters, and the final synthetic data used for model fitting.
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FIGURE 1 | Illustration of the computation of uniformity for two sets of 5 parameter values within the range [0, 6]. (A) In the first case, all pairwise distances are equal

to the expectation given the rank of the value in the set. (B) In the second case, the gray bars indicate the differences compared to the expected density in a given

interval.

FIGURE 2 | Overview of the toy model design. The topology is parametrized in order to display two-by-two similarity between cell lines. For each cell line, the

Bayesian Network is simulated with the corresponding parameter values for 8 different combinations of the input nodes values. Random Gaussian noise is added to

the values of the two output nodes C and D, simulating biological measurements. The heatmap shows the final node values for each condition, cell line, and node.
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To realistically simulate biological data, we use our toy
model to generate synthetic steady-state data for the measured
nodes by simulating the network with different combinations
of values for the input nodes, thereby mimicking a designed,
perturbation experiment. We simulate noise in the data by
adding a two-component gaussian perturbation around the
theoretical value, as explained in Supplementary Methods. The
magnitude of the perturbation was chosen to reflect the signal-
to-noise ratio of typical biological measurements, for example
phosphoproteomics or microarray data.

2.3.2. Biological Dataset
To show the usefulness of our approach in a biological setting,
we reanalyze the dataset from Eduati et al. (2017), in which
the authors measured 14 phosphoproteins under 43 different
perturbed conditions (combinations of 5 stimuli and 7 inhibitors)
in 14 colorectal cancer cell lines. Using CellNetOpt (Terfve et al.,
2012), they contextualized independent logical ODE models
(Wittmann et al., 2009) for each cell line, and proceed to train a
statistical model using the cell-specific parameters to predict the
responsiveness of the cell lines to a panel of drugs. This study
provides an example of the use of system-level analyses to gain
understanding of functional properties that cannot be inferred by
genomic features alone. We normalized the data (log2 difference
compared to control) linearly to the [0−1] range across cell lines.

Logical ODE models like the one used by Eduati et al. rely on
a transformation of the discrete state-space of Boolean models
into a continuous one, in such a way that Boolean behavior is
preserved on the vertices of the unit cube, i.e., when the inputs
are in {0, 1}. While there are many such possible transformations
(Wittmann et al., 2009), the authors chose to use normalized Hill
cubes, which are sigmoidal functions of the inputs. The strength
of such an approach is the ability to take into account the non-
linear ’switch-like’ nature of molecular interactions, however at
the expense of doubling the number of free parameters (Hill
functions are defined by a threshold and a slope). In contrast, our
approach uses maximum one parameter per interaction and is
restricted to linear relationships, which ensures coherence with
the laws of probabilities. To infer the DBN model corresponding
to the logical ODE model proposed by Eduati et al., we kept the
original topological information, but defined the update function
for each node by amultivariate linear function of its parent nodes.
In our framework, if two nodes A and B are both activators of a
third nodeX, we have for each time-step t:Xt = kAAt−1+kBBt−1

with probabilities 0 ≤ kA ≤ 1 and kB = 1 − kA. Similarly, if a
node X is activated by node A but inhibited by node B, we have
Xt = At−1kB(1− Bt−1) with probability 0 ≤ kB ≤ 1.

We used the phosphoprotein data to fit the probabilities
for each interaction simultaneously for all cell lines. The
complete model comprised 363 nodes and 1106 parameters.
The objective function included a penality computed from
the average uniformity of the parameters across cell lines,
according to Equations 5–8. We optimized 49 models, varying
the hyperparameter λ from 2−20 to 25, and we recovered
the optimal parametrization for each cell line in the form of
regularization paths. We used the value of 0.01 as threshold for
deciding if two parameters should be merged into a single one.

For each value of the regularization strength λ, we computed
the mean squared error (MSE) and the number of different
parameters P in the regularized model, and from these calculate
the Bayesian Information Criterion (BIC), which we calculate as
Nlog(MSE) + log(N)P, with N the number of individual points
in the dataset. Lower BIC values indicate models with favorable
balance between goodness-of-fit andmodel complexity (Schwarz,
1978; Burnham and Anderson, 2004).

We selected the model with the lowest BIC for further
analyses. We grouped cell line-specific parameters together using
the above-mentioned threshold, and re-optimized the model
using the obtained topology without the regularization term, in
order to obtain unbiased parameter estimates. We performed
hierarchical clustering with 1000 bootstrap resamplings on the
parameter values using WPGMA and euclidian distance.

Furthermore, we investigated whether the recovered
parameter values are associated with drug sensitivity. We
downloaded the IC50 values for the 14 cell lines and 83
drugs directly targeting either one of the network’s nodes or
a target used in clinical practice to treat colorectal cancer
from the Genomics of Drug Sensitivity in Cancer database
(www.cancerrxgene.org). We computed the linear regression
models between each drug and each of the 31 parameters
which showed high variability between cell lines (CV ≥ 10%).
The F-statistic was used to compute a p-value for each test,
and q-values were computed from these, using the Benjamini
Hochberg procedure to control the False Discovery Rate.

2.3.3. Materials
• Hardware

• Synthetic model: standard desktop computer equipped with
an Intel Xeon E3-1241 CPU clocked at 3.50GHz and 16GB
of RAM under Windows 7

• Biological example: high-performance computing platform
with 49 nodes running Matlab2017a, each node consisted
of one core of a Xeon-L5640 clocked at 2.26GHz with 3GB
RAM

• Software

• Matlab 2017a (Mathworks, Inc.)
• FALCON toolbox (https://github.com/sysbiolux/FALCON)
• Optimization Toolbox (http://nl.mathworks.com/

products/optimization/)
• Parallel Computing Toolbox (http://nl.mathworks.com/

help/distcomp/)
• Bioinformatics toolbox (http://nl.mathworks.com/help/

bioinfo/) (optional)

3. RESULTS

3.1. Uniformity as a Measure of Structure
We computed the uniformity U, the standard deviation,
the sum of pairwise distances, the K-S statistic, the A-D
statistic, and the optimal number of clusters using the k-means
algorithm and the elbow method, for 104 one-dimensional
sets of uniformly, independently distributed random values.
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The complete correlation plots are presented in Supplementary
Materials. We always show uniformity U on the logarithmic
scale. Figure 3A shows the relation between uniformity and
the standard deviation, while Figure 3B shows the correlation
between uniformity U and the p-value of the K-S test. Similar
results were obtained with the A-D test. The relationship between
uniformity, the standard deviation, and the K-S p-value are
further explored in Figure 3C, and the computation times are
compared in Figure 3D.

Firstly, log(U) is positively correlated with the p-value of the
K-S and A-D non-parametric tests evaluating the distance to
the reference uniform distribution, showing that low uniformity
is indicative of structure. Secondly, the comparison with the
standard deviation shows that low-uniformity sets can have
drastically different standard deviations, but that the inverse is
not true. This is explained by the fact that sets with tightly
clustered values will nevertheless be spread around the global
average if there is more than one cluster. Figure 3C shows a
3D plot of uniformity, standard deviation, and the K-S p-value
and illustrates the point that simple measures of spread are not
adapted to the regularization of a set of parameter values if the
ground truth is that there is more than one cluster. The figure
also displays a graphical representation of the 10 values in the set
for four chosen sets, to show that low-uniformity sets correspond
to clustered values (with low K-S p-values) while low standard
deviation is associated with single clusters.

One important argument for choosing a metric in a
regularized optimization problemmight be its low computational
cost. Comparison of the running time for uniformity with
other metrics shows that the new metric can be computed
very efficiently (Figure 3D), several orders of magnitude faster
than the non-parametric tests or the clustering algorithm. This
low computational cost makes is well adapted to the repetitive
computations characteristic of gradient-descent optimizations.

In addition, we performed experiments using gradient descent
either with the standard deviation, sum of pairwise distances,
or uniformity U as an objective function on sets of randomly,
uniformly distributed random values. Using the regularization
objective as the objective function, without data or model to
produce an error function, helps understanding the effect of
regularization when signal is low in the data. The traces in
Figure 4 reveal the strength and direction of the bias applied on
each value in the set in the absence of cost function. Penalizing
on the standard deviation results in a homogeneous pull toward
the average value (Figure 4A), which does not accomplish the
goal of forming clusters. Using the sum of pairwise distances, in
turn (Figure 4B), results in grouping of values together, however
the clusters themselves are still pulled together. In contrast, the
traces in Figure 4C show that using uniformity U, the values
form a number of groups, but that these groups are more stable.
This is due to the fact that the computation of uniformity U
measures local density both below and over the expected value,

FIGURE 3 | Evaluation of uniformity U as a measure of structure, for 104 one-dimensional sets of 10 values. (A) Comparison with standard deviation. (B) Comparison

with the p-value of the K-S test (similar results were obtained with the A-D test). (C) 3D-scatterplot of uniformity, standard deviation and K-S p-value. (D) Computation

times for the different metrics. log(U), log2(uniformity); Std, standard deviation; Dist, sum of pairwise distances; K-S, p-value of the Kolmogonov-Smirnov test; A-D,

p-value of the Anderson-Darling test; K-means, k-means clustering, number of clusters determined with the elbow method.
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FIGURE 4 | Gradient descent trajectories for a set of randomly uniformly distributed values displaying a certain level of structure, using different metrics as objective

function: (A) standard deviation, (B) sum of pairwise distances and (C) Uniformity U. The dotted lines show the values of the centroids of clusters as determined by

the k-means + elbow method for the original vector.

which means that not only clusters but also voids produce low-
uniformity sets. As a result, once values with all clusters have
merged, the average of the different clusters remain very similar
in number and value to the centroids of the k-means clustering.

3.2. Toy Model
To test the ability of a regularization function using uniformity
U to recover context-specific parameters of a network model, we
generated an example Bayesian Network which we parametrized
for four different imaginary contexts. In our example, the
contexts are cell lines, and their regulatory network are identically
parametrized two by two. We used the network to generate
measurements for two of the nodes while two other nodes were
controled. We added noise to this synthetic data to simulate
background noise and normaly distributed measurement errors.
We used the toolbox FALCON to contextualize the network for
the four cell lines, with and without regularization based on the
uniformity U of the set of parameter values. We screened 41
values of the hyperparameter λ. The computations took a total
of 220 seconds on a standard desktop computer. The results
are presented in Figure 5. The regularization paths in Figure 5A

show the optimal parameter values over a range of regularization
strengths λ. The unregularized model is parametrized differently
for each cell line, and the regularization induces a grouping of
the parameters values across cell lines. However, this clustering
occurs at different values of λ. As regularization strength
increases, so does the error of the model (Figure 5B), while the
number of unique parameters in the model decreases as they are
merged together. We used the Bayesian Information Criterion

to balance goodness-of-fit with model size and identified λ =

2−4.5 as the best model configuration. Figures 5D,F show
the fitting cost for each cell line for the unregularized model
and the regularized one, respectively. Figures 5D,G show the
correlation of the simulated values with the measurements, for
the unregularized model and the regularized one, respectively,
and Figures 5E,H show the correlation of the inferred parameter
values with the real values for the unregularized model and
the regularized one, respectively. Together, these results show
that while the new model displays a higher MSE, the inferred
parameters are much closer to the ground truth. Regularization
transfers a portion of the variance from the parameters back to
the data, and so decreases the part of the error on the parameter
estimates due to noise. More importantly, the grouping of the
samples is easily recovered (Supplementary Figure S2), which
also carries information: the cell lines are identical two-by-two.

3.3. Biological Dataset
In order to assess the applicability of our new method
of regularization to uncover context-specificity in a realistic
modeling setting, we reanalyzed the data from Eduati et al.
(2017) using a Dynamic Bayesian Network adapted from the
topology of the ODE model. The dataset comprised 8428
datapoints (14 phosphoproteins for 14 cell lines under 43
experimental conditions). We screened 49 values for the
hyperparameter λ. The computation time was 1,761 h, or 42
h when parallelized among 49 computing cores. The results
are presented in Figure 6. Minimum BIC was reached when
λ = 0.5, which corresponds to a model in which 26 of
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FIGURE 5 | Results of the synthetic toy model analysis. (A) Regularization paths for each parameter of the network model. When regularization strength increases,

values accross the four contexts are encouraged to merge. (B) Mean squared error (MSE), number of different parameters of the model, and Bayesian Information

Criterion (BIC) for different regularization strengths. (C,D,E) Unregularized model. (F,G,H) Sparse model. (C,F) MSE for the four contexts with both models. (D,G)

Comparison of the simulated node values with the measurements for both models. (E,H) Comparison of the inferred parameter values with the ground truth for both

models. r2
adj

: adjusted Pearson’s correlation coefficient.

the 79 network parameters can be parametrized identically
for all cell lines, and the remaining ones can be organized
in 2–9 groups. Overall, the most variable parameter across
cell lines is the ERK-EGFR negative feedback (Figures 6A,B).
Notably, interactions relating to the PI3K/Akt/mTOR axis, to
the JUN pathway, and to p38 regulations showed relatively
high heterogeneity compared to the crosstalks between them. A
number of interactions reveal differential parametrizations for
certain cell lines, for example CCK81 in the case of TGFRβ

activation by EGFR (Figure 6C), or COLO320HSR in the case
of RASK activation by IGF1 (Figure 6D). Figure 6E shows an
example of regularization path where no cell line specificity
is left in the model with the optimal topology. In addition,
many interactions (narrower arrows in Figure 6A) show very
low values for all cell lines, suggesting that they do not play
an important role in this experiment. The complete set of 79
regularization paths is presented in the Supplementary Materials.
The changes in BIC are shown in Figure 6F, displaying a
marked minimum around the value 0.5. The goodness-of-fit
was similar for all cell lines, with MSE values ranging from
0.018 to 0.035 (Figure 6G). While these results are in line with
the ones reported in the original study, it should be noted
that in our final model, the role of TAK1 is less prominent,

a fact that can be explained by the difference of modeling
paradigm. Indeed, while in Eduati et al. (2017) TAK1’s node
responsiveness parameter τ is extremely low for all cell lines
while edges from and to TAK1 are quite variable, our modeling
framework considers all nodes equally responsive, and as a
consequence low TAK1 activity is represented by low edge
parameter values.

Figure 6H shows a heatmap of all model parameters for
all cell lines. The dendrograms show the clustering of model
parameters and cell lines based on their parameter values.
We chose WPGMA to perform hierarchical clustering using
the euclidian distance between parameter vectors, with 1000
bootstrap replicates. The support for the nodes in the cell
line dendrogram are indicated as percentages. Interestingly,
cell lines HT29 and HT115 cluster strongly together, while
they are highly dissimilar in their genomic alterations. In
general, we noted a poor correlation between the genomic
and functional pattern over this set of cell lines, a fact
already noted in the original study. Cell lines COLO320HSR
and CCK81 are the cell lines functionally most unlike the
others. This is also visible in the raw data (see Supplementary
Materials), notably in the amplitude of the Akt/PI3k/MEK
activations.
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FIGURE 6 | Results of the analysis of the biological dataset. (A) Optimized network topology (adapted from Eduati et al., 2017). The width of the arrows represents

the median parameter value across the 14 cell lines, with wider arrows corresponding to the most active interactions. The number next to the arrows is the number of

clusters that the 14 cell lines form for the optimal regularization strength. (B–E) Regularization paths for four chosen interactions, showing decreasing amounts of cell

line-specificity. (F) BIC (Bayesian Information Criterion) path. (G) MSE (Mean Squared Error) for the 14 cell lines for the optimized model. (H) Heatmap of the values of

the 79 parameters for the 14 cell lines. Dendrograms were produced with WPGMA using euclidian distance. (I) Correlation between two PI3K-related parameters and

sensitivity to two MEK inhibitors. Left: IRS1-PI3K; refametinib: r2 = 0.737, p-value = 0.133; trametinib: r2 = 0.671, p-value = 0.176; Right: IGF1-PI3K; refametinib: r2 =

0.701, p-value = 0.146; trametinib: r2 = 0.652, p-value = 0.185.

Next, we explored the possible associations between the 31
most variable model parameters and sensitivity to 83 chosen
drugs. The 25 most statistically significant of these linear
associations are presented in the Supplementary Materials.
While no parameter-drug pair shows strong significance (most
likely due to the high number of hypotheses tested), we
noticed a pattern in which some parameters seem to correlate
with sensitivity to MEK inhibitors. Figure 6I shows that the
parameters relating to PI3K activation by IRS1 and IGF1R
are inversely correlated to the log(IC50) of refametinib and
trametinib, two known MEK inhibitors.

4. DISCUSSION

We propose a new measure of the degree to which sets of
values are clustered around an unknown number of centers.
We use this new metric, called uniformity U, as a penalization
in the objective function of models of signal transduction.
Previously, regularization applied to the parameters of such
models have assumed either that parameter values would be
mostly identical across the different studied contexts (using
measures of spread), and looked for departures from this
assumption for context-specific parametrizations, or that the
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parameter values would change in correlation with another,
known variable between samples (e.g., smoothly over time).
While these assumptions make intuitive sense, they are probably
not usable in the case of models of regulatory networks in
a large number of cell lines. Indeed, functional relationships
between molecules in cells, like enzymatic rates and binding
strengths, usually exist in a small number of versions for a specific
interaction. Because we do not expect these properties to change
along a continuum but in a discrete way, it is natural to assume
that model parameters of a regulatory network display the same
type of structure. Our method efficiently reduces the complexity
of network models. In our toy model example, we decrease the
number of parameters from 32 to 11, and correctly recover the
fact that two groups of cell lines exist and should be parametrized
differentially. In our biological example, we decrease the number
of parameters from 1,106 to 272, without increasing the error
disproportionately.

We show that this method is applicable to biological
studies by re-analyzing the dataset from Eduati et al. (2017).
Our analysis indicates that the most variable interactions
relate to the PI3k/Akt/ERK axis, in particular the ERK/EGFR
negative feedback. Interestingly, it has been shown that negative
regulation of the MAPK pathway by ERK is a highly complex
mechanism and comprises several components, many of which
are affected by cancer mutations (Lake et al., 2016).

By performing hierarchical clustering on model parameters
after fitting the data to the best model topology, we recover a
grouping of the cell lines that correlates poorly with the genomic
alterations. We hypothesize that this means we capture a degree
of functional heterogeneity that cannot easily be explained by the
cell lines’ genomic features. Further indication that our network
approach is able to recover phenotypical information that is not
obvious in the raw measurements is provided by the pattern of
relatively strong correlation between a number of parameters
and sensitivity to several MEK inhibitors. This observation
fits into the recent developments made in integrating network
modeling approaches with advanced statistical modeling, where
machine-learning methods have been used to successfully predict
sensitivity to single drugs and to drug combinations (El-Chaar
et al., 2014; Way et al., 2018). Further work is needed to quantify
the merits of our regularization scheme when applied in such
context.

Our key contribution is the demonstration that using a simple
measure of parameter coefficients density inside the parameter
space, it is possible to regularize a large network model and
to efficiently group together model parameters for which the
difference is not well supported by the data. By de facto removing
part of the noise in parameter estimates, we are able to decrease
model complexity. Furthermore, our regularization scheme is
easily adaptable to stronger or weaker priors. Equation 8 can be
modified as follows:

U =
1

N

N
∑

i=1

Uiwi (10)

with w being the set of relative weights for the different
parameters. When wi = 1∀i, all parameters are regularized

with the same strength. This weighted average allows the
specification of additional prior information, namely that the
structural assumptions might not be true everywhere, or that our
confidence in these assumptions might be stronger in some cases
than others.

It is likely that in the near future, single-cell proteomic
studies will provide ever-larger datasets, therefore challenging
modeling formalisms and requiring them to adapt to larger
number of features (Spitzer and Nolan, 2016). While statistical
analyses have largely benefited from regularized parametrizations
in the form of more predictive models, the current regularization
objectives are not well adapted to the study of signaling
networks.

A natural extension of this regularization scheme is to
consider subsets of M parameters, corresponding to coherent
parts of the model, like known signaling pathways. In that
case, regularization will act simultaneously on the different
constituent parameters of the pathway, and will allow
the determination on cell line-specific pathway activity,
a high-level information which is usually recovered by
ontology-based pathway analysis. However, in such two-
step analysis, the confidence for the different parameters is lost.
In addition, ontology-based analyses use pathway knowledge
from databases, thus suffer from their incompleteness and
inaccuracy.

Finally, although we have demonstrated the applicability of
this novel method to the study of regulatory networks with
logical models, it would be straightforward to extend its use to
other modeling environments. For example, systems of ODEs,
which are often used to model regulatory networks, might
benefit from the addition of a new kind of regularization,
using the same methodology presented in this paper. More
generally, regularization based on the uniformity of coefficients
would in principle be applicable to any type of regression
problem and therefore has the potential to be integrated in many
analytical frameworks, and be relevant to advanced statistical
analysis.
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We present a computational tool DSGRN for exploring the dynamics of a network

by computing summaries of the dynamics of switching models compatible with the

network across all parameters. The network can arise directly from a biological problem,

or indirectly as the interaction graph of a Boolean model. This tool computes a finite

decomposition of parameter space such that for each region, the state transition graph

that describes the coarse dynamical behavior of a network is the same. Each of these

parameter regions corresponds to a different logical description of the network dynamics.

The comparison of dynamics across parameters with experimental data allows the

rejection of parameter regimes or entire networks as viable models for representing the

underlying regulatory mechanisms. This in turn allows a search through the space of

perturbations of a given network for networks that robustly fit the data. These are the

first steps toward discovering a network that optimally matches the observed dynamics

by searching through the space of networks.

Keywords: Boolean networks, switching systems, network dynamics, parameter space, database of dynamics

1. INTRODUCTION

Experimentally determined pairwise interactions between genes, proteins and signaling molecules
are often assembled into pathways and networks. There is a strong desire to understand the
dynamics of networks, diversity of their potential stable behavior, as well their response under
mutations or targeted pharmacological intervention. Such an ability would allow us to target many
diseases, most importantly cancer, with great precision and accuracy, without disturbing other
functions of the cell, and without the devastating side effects on healthy cells that are the hallmark
of many current drugs.

The current state of modeling gene network dynamics is characterized by a trade-off between
the model’s ability to quantitatively match the experimental data, and the need for a large number
of kinetic parameters to parameterize the model (Karlebach and Shamir, 2008; Heatha and Kavria,
2009; Machado et al., 2011; Goncalves et al., 2013). Properly parameterized ordinary differential
equation models can provide a good quantitative match and are easily generalized (Chen et al.,
2004; Tyson and Novak, 2013). However, numerical simulation of these models require knowledge
of kinetic parameters that are usually not known. The indirect estimate of these parameters by
comparing the output of the model to the experimental data suffers from at least three fundamental
problems: (i) the correspondence between dynamics and the structure of the network is not one-
to-one; (ii) the need to match data corrupted by significant intrinsic and experimental noise to an
individual solution of the ODE model; and (iii) the lack of methods to search high dimensional
parameter spaces for dynamic signatures observed in the data.
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A popular modeling platform is that of Boolean nets, where
each protein, ligand or mRNA is assumed to have two states
(ON and OFF), and the discrete time evolution of the states is
based on logic-like update functions (Glass and Kauffman, 1972,
1973; Thomas, 1973; Thomas et al., 1995; von Dassow et al., 2000;
Bernard and Gouze, 2002; de Jong, 2002; de Jong et al., 2004;
Belta and Habets, 2006; Chaves et al., 2006; Faure et al., 2006;
Albert, 2007; Batt et al., 2007a,b; Bornholt, 2008; Tournier and
Chaves, 2009;Machado et al., 2011; Albert et al., 2013; Saadatpour
and Reka, 2013). Rather than providing rate parameters, the
biological input into model formulation is limited to postulating
logical functions, one for each node in the network, which
compute the next Boolean state of node i based on Boolean
states of the nodes that provide input to node i. These Boolean
functions at each node are assembled into a Boolean function
that provides the next state of all nodes in the network based
on the previous state of the network. Iterations of this function
are an approximation of the time evolution of the state of the
network.

This attractive class of synchronous Boolean models has
several disadvantages. The first class of objections comes
from biology: these models cannot represent ubiquitous
cellular noise, since states change simultaneously they
require unreasonable uniformity of duration of different
cellular processes, and the fit to experimental data is
typically problematic. A mathematical objection is that
discretization of the phase space and the discretization
of the set of Boolean functions compatible with a given
network does not allow consideration of changing dynamics
under graded perturbation. In other words, it is difficult
to construct a bifurcation theory in the class of Boolean
functions.

In this contribution we study multi-level discrete maps,
which are a direct generalization of Boolean maps, that are
compatible with an ODE system. We propose that only the
asynchronous updates of these discrete maps have biological
meaning. The concept of an asynchronous update of a Boolean
function has been introduced previously (Pauleve and Richard,
2012). We review and formalize these concepts in the next
section. We then study a particular class of ODEs that can
be viewed as a continuous parameterization of a family of
multi-level discrete maps. Continuous parameterization of a
finite number of inherently discrete objects implies that there
is a finite decomposition of the parameter space into disjoint
domains, each of which supports a multi-level discrete map.
Mutual position of these parameter domains is captured in a
parameter graph, whose nodes represent the domains and edges
their adjacency.

We describe a computational approach, called Dynamic
Signatures Generated by Regulatory Networks (DSGRN), that
computes the parameter graph for a given network and input
interaction at each node. In addition, to each node of the
parameter graph we associate a Morse graph whose nodes are
the strongly connected path components of the asynchronous
update of the corresponding multi-level discrete map, and edges
represent reachability by iterations of this map. We call the
resulting collection a DSGRN Database.

2. BASIC DEFINITIONS

Definition 2.1. A regulatory network RN = (V ,E) is a graph
with network nodes V = {1, 2, . . . ,N} and signed, directed edges
E ⊂ V × V × {→,⊣}. For i, j ∈ V , we will use the notation
(i, j) ∈ E to denote a directed edge from i to j of either sign, i → j
to denote an activation or positive interaction, and i ⊣ j to denote
a repression or negative interaction.

We define the targets of a node i as

T(i) := {j | (i, j) ∈ E}

and the sources of a node i as

S(i) := {j | (j, i) ∈ E}

For each node i in a regulatory networkRN, define a set of integer
states V(i) := {0, 1, . . . ,mi}. Let V :=

∏N
i=1 V(i). For state s ∈ V

let

Si+ := {u ∈ V | ui > si, uj = sj for all j 6= i}

be the set of states that differ from s only in the i-th coordinate
and are strictly greater in the i-th coordinate.

Definition 2.2. We say a (multi-valued) map f :V → V is
compatiblewith a regulatory networkRN (RN-compatible) if and
only if the following are satisfied

• (i, j) ∈ E is a positive edge i → j if and only if there exists a
state s ∈ V and at least one u ∈ Si+ such that fj(u) > fj(s).

• (i, j) ∈ E is a negative edge i ⊣ j if and only if there exists a
state s ∈ V and at least one u ∈ Si+ such that fj(u) < fj(s).

A regulatory network, as introduced in this paper, is also called
the interaction graph of Boolean function f , as defined in Pauleve
and Richard (2012). Our definition above goes in the opposite
direction and defines a set of multivalued maps consistent with a
fixed regulatory network; we also generalize from Boolean maps
to maps with more than two discrete values.

Definition 2.3. A synchronous Boolean model for a regulatory
network RN is an RN-compatible map

B :{0, 1}N → {0, 1}N .

Given a synchronous Boolean model B, the regulatory network
RN such that B is RN-compatible, is the interaction graph of B.

Definition 2.4. A synchronous multi-level discrete map for a
regulatory network RN is an RN-compatible map

D :V → V

where V =
∏N

i=1{0, 1, . . . ,mi}.

Definition 2.5. A nearest neighbor multi-valued map for a
regulatory network RN is an RN-compatible map

F :V ⇉ V
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such that either s ∈ F(s) or, if v ∈ F(s) and v 6= s then v satisfies
the adjacency condition:

|vi − si| =

{

1, for i = k
0, for i 6= k

for exactly one index k. We say that s and v are adjacent.

Definition 2.6. We say a nearest neighbor multi-valued map F

is an asynchronous update of amulti-level discrete mapD if, given

t1 = D(s1) where t1 = (t1,1, . . . , t1,N) and s1 = (s1,1, . . . , s1,N),

we have s2 ∈ F(s1) in either of the two following conditions:

(a) if t1 = s1 then s2 = s1; or
(b) if t1 6= s1, then s2 is adjacent to s1, and s2 lies between s1 and

t1, which means that either

(a) s1,i < s2,i ≤ t1,i or
(b) s1,i > s2,i ≥ t1,i.

For a regulatory network RN = (V ,E) consider a system of
ODEs in variables xi for each i ∈ V . We assume that there are
finite number of thresholds θ1,i, . . . , θmi ,i that divide the semi-
axis [0,∞) to mi + 1 intervals Ik. The collection of thresholds
{θj,i} decomposes [0,∞)N into a finite number of domains κ ,
characterized by the property that the projection on i-th variable
πi(κ) = Ik for a unique k ∈ {0, . . . ,mi} for every i. We call each
κ a domain. Let K be a collection of all domains κ ⊂ R

N+ in the
non-negative orthant of RN .

Let x = (x1, . . . , xN) ∈ R
N+ and let

Gi :[0,∞) → V(i)

be defined by Gi(xi) = k if and only if xi ∈ Ik. Let

G :[0,∞)N → V

be the vector-valued function with coordinate functions Gi. For
a given domain κ , the value G(x) does not depend on x ∈ κ .
Therefore we can assign the state s := G(x) ∈ V , x ∈ κ to the
domain κ and write s = g(κ). Viewed as a map on the set of
domains K, g is a bijection

g :K→V .

Definition 2.7. For a regulatory networkRN= (V ,E) consider a
system of ODEs in variables xi for each i ∈ V . We say that such an
ODE system is compatible with a nearest neighbor multi-valued
map F if solutions x(t) can traverse from domain κ1 to adjacent
domain κ2 only if g(κ2) ∈ F ◦ g(κ1).

This definition of compatible ODE system states that the
dynamics of an ODE system can be captured, in an coarse sense,
by a finite multi-valued map. We now apply these ideas to a
specific family of ODE systems.

3. SWITCHING SYSTEMS

Switching systems, also known as Glass systems, were introduced
by Glass (Glass and Kauffman, 1972, 1973) in the 1970’s
and developed subsequently by many authors (Thomas, 1973;
Thomas et al., 1995; Edwards, 2001; Bernard and Gouze, 2002;
de Jong, 2002; de Jong et al., 2004; Chaves et al., 2006; Tournier
and Chaves, 2009; Ironi et al., 2011; Edwards et al., 2015).

Definition 3.1. A switching system for a regulatory network
RN= (V ,E) is a system of ordinary differential equations

ẋi = −γixi +Mi ◦ σi(x), i ∈ V (1)

where γi > 0 is a decay rate, Mi is a multi-affine algebraic
expression (Belta and Habets, 2006; Batt et al., 2007b; Cummins
et al., 2016) , and σi = (σi,j) is a vector of step functions, one for
each edge (j, i) ∈ E. When (j, i) = j → i is an activation, then the
step function transitions from a low (li,j) to a high value (ui,j), and
when (j, i) = j ⊣ i is a repression, then σi,j transitions from ui,j to
li,j. The transition happens at the threshold xj = θj,i:

σi,j :=















li,j if j → i ∈ E and xj < θi,j
or j ⊣ i ∈ E and xj > θi,j

ui,j if j → i ∈ E and xj > θi,j
or j ⊣ i ∈ E and xj < θi,j

(2)

We assume 0 < θi,j and 0 < li,j < ui,j to ensure the
model captures the basic biological meaning of concentration,
activation, and repression. We further assume θi,j 6= θk,j for all
j ∈ V whenever i 6= k and so each node j affects its downstream
nodes at different thresholds.

It is important to note that to a given RN one can associate
many switching systems. Indeed, a selection of multi-linear
expressions Mi, i = 1, . . . ,N in addition to the structure of the
network RN, determines the parameterized set of ODEs (1). The
function Mi determines how the information from the source
nodes S(i) is combined into the right hand side of (1).

A parameter of the switching system is a set of real numbers

p = {γi | i ∈ V} ∪ {θi,j, li,j, ui,j | (j, i) ∈ E}

that satisfy these constraints. The set of all parameters p is
denoted P.

Definition 3.2. The collection 2i : = {θj,i | j ∈ T(i)} for
each node i ∈ V is totally ordered, and this order induces a
decomposition of phase spaceK, such that each domain κ ∈ K is
written

κ =
∏

i

[θjk,i, θjk+1,i]

where θjk,i, θjk+1,i are adjacent. We define the thresholds θ0,i : = 0
and θ∞,i : = ∞, so that the intervals below the lowest threshold
and above the highest threshold are captured.
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Let mi = |T(i)| be the number of targets of node i ∈ V , and
let V =

∏N
i=1{0, 1, . . . ,mi} as before. The decompositionK is the

same as that in the previous section, and using the total order
on 2i, we can construct an appropriate bijection g : K → V .
Using this bijection g, we show in Crawford-Kahrl et al. (2018)
that given a switching system at a fixed parameter p ∈ P, there is a
unique multi-level discrete mapDp, and an asynchronous update
rule of Dp, Fp, such that the switching system is compatible with
F

p. We note that the collection {Dp}p∈P does not exhaust the
entire collection ofRN-compatible multi-level mapsD. However,
the induced collection of maps {Dp}p∈P decomposes into finite
number of classes.

Definition 3.3. Let p be a parameter of a switching system with
totally ordered thresholds 2

p
i . Let D

p be the unique multi-level
function associated to the switching system parameterized by p.
Let O

p
i = {j1 < j2 < · · · < jmi} be such that jk < jl if and only

if θjk,i < θjl ,i in 2
p
i . Define O

p = {O
p
i } to be the order parameter

associated to p, and (Op,Dp) to be the combinatorial parameter
of the system. If q is another parameter of the switching system
with (Oq,Dq), then we define an equivalence relation q ∼ p when
(Oq,Dq) = (Op,Dp). We call the collection of combinatorial
parameters Z .

The partition induced by ∼ is clearly finite, since the order
of mi integers is finite, and the number of multi-level maps D
on a finite set is also finite. Let s := |Z| be the cardinality of the
set Z . We show in Cummins et al. (2016) that each u ∈ Z has
a computable geometrical representation as a connected subset
U ⊂ P. Therefore there is a computable decomposition of the
parameter space P in s regions Ui for i = 1, . . . , s, such that for
any p, q ∈ Ui we have Dp = Dq, and hence also F

p = F
q.

Therefore a finite collection {Fu}u∈Z captures dynamics of all
maps Fp across all the parameter space P.

We remark that the parameter graph captures the dynamics of
all subgraphs of RN as well as RN itself. Although not addressed
in this paper, we can limit the exploration of the dynamics only
to those combinatorial parameters that result in RN-compatible
multi-level discrete maps D.

4. DSGRN: DYNAMICAL SIGNATURES
GENERATED BY REGULATORY
NETWORKS

Given a network RN and the associated switching system, the
computational tool DSGRN (Cummins et al., 2016; Harker, 2018)
computes and records a graph of graphs in SQL database format.
This general database can be queried in many ways, and we will
give a short example after defining the graphs that are computed.
If a user starts with a synchronous Boolean model B, the first
step is to calculate an the interaction graph RN of B. DSGRN
then describes the long term dynamics of all multi-valued nearest
neighbor maps compatible with the switching systems associated
to RN. Each of these multi-valued nearest neighbor maps is an
asynchronous update of a multi-level discrete map. Therefore
DSGRN embeds the dynamics of B into a family of multi-level

discrete models that are all compatible with the dynamics of a
switching system associated to RN.

Definition 4.1. The parameter graph P = (C,A) has nodes
C that represent all combinatorial parameters via a bijection
h :C → Z . The non-directed edges (c, c′) ∈ A occur when the
difference between h(c) = (O,D) and h(c′) = (O′,D′) is exactly
one of the following:

1. there is a swap in the order of one pair of adjacent integers jk, jl
between O and O′, and all other elements remain the same;

2. for exactly one v ∈ V , ||D(v) − D(v′)|| = 1, and ||D(w) −
D′(w)|| = 0 for all w ∈ V \ {v}.

For each u ∈ Z , there is a representative nearest-neighbor
multi-valued discrete map F

u. This map can be viewed as a
graph.

Definition 4.2. The state transition graph (STG) of a switching
system with combinatorial parameter u is the directed graph
(V , E), where the nodes V were defined previously, and (v,w) ∈ E

if and only if w ∈ F
u(v).

A recurrent component (also referred to as a strongly connected
path component) of the STG (V , E) is a maximal collection M of
vertices such that for any u, v ∈ M there exists a non-empty path
from u to v within the subgraph induced byM. The collection of
all recurrent components of (V , E) is denoted by

MD(F) :=
{

M(i) ⊂ V | i ∈ P
}

and is called aMorse decomposition of the STG.HereP is an index
set. Recurrent components inherit a well-defined partial order by
the reachability relation in the directed graph (V , E). In particular,
there is a partial order on the indexing set P of MD(F) defined
by i ≤ j if there exists a path in (V , E) from an element ofM(j)
to an element ofM(i).

Definition 4.3. TheMorse graph of the STG, denoted MG(F), is
the Hasse diagram of the poset (P,≤). We refer to the elements
of P as theMorse nodes of the graph.

Any recurrent behavior of the ODE system will be be captured
by one of the Morse nodes of the Morse graph. That is, any
recurrent set of the ODE will be a subset of a set of domains that
correspond to states in STG that belong to a single Morse node.

Each component of theMorse graph can be annotated.We use
the following terminology:

1. FP denotes a Morse graph component consisting of a single
node of the state transition graph (STG).

2. FP(v) denotes an FP that is located in κ = g−1(v) for v ∈ V .
3. FP ON denotes an FP in which the associated v has no zeros.
4. FP OFF denotes an FP in which the associated v is all zeros.
5. FC denotes a Morse graph component M that contains at

least one path through the subgraph induced by M that
crosses at least one threshold in each variable xi. FC stands
for “full cycle.”

6. XC(xj1 , . . . , xjn ) denotes a partial oscillation in variables
xj1 , . . . , xjn , where only thresholds in these variables are
crossed by paths in the Morse graph component.
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If a component is a leaf of theMorse graph, i.e., it has no outgoing
edges, then we call it an attractor. For each node in the parameter
graph, DSGRN records the annotated Morse graph, and this
collection comprises the database.

5. EXAMPLE

A DSGRN Database can queried via any general expression in
SQL. Some queries have been implemented on a sample set
of databases at http://chomp.rutgers.edu/Projects/DSGRN/DB/
index.html. See Figure 1A for a screenshot of the above website
showing networks with precomputed databases. This screenshot
shows a selection of different regulatory networks, each of
which may be clicked on to show detailed information about
the computation of the network dynamics. Figure 1B shows a
screenshot the result of such a click, and Figure 1B shows the
result of applying a filter to the network dynamics. We will now
step through each of these screenshots in more detail to explain
the displayed summary of network dynamics.

In Figure 1A, in the third row on the right, we see a network
labeled 5D_2015_10_21_VA. Clicking on it, we see the middle
screenshot in Figure 1B. The picture of the network RN is in the
upper left, and next to it an Annotation Filter, which allows us to
filter the results based on the annotations of the displayed Morse
graphs. All of the annotated Morse graphs that are generated
by at least one combinatorial parameter are shown, ordered by
the number of combinatorial parameters that produced the given
Morse graph. By clicking on the “Yes” button beside FC, we select
the Morse graphs that contain a component annotated by FC.
In Figure 1C, we show a few top Morse graphs satisfying this
condition. By choosing different combinations of “Yes”, “No”,
and “Either” in the Annotation Filter, we can explore the different
dynamical behaviors of the system.

Although graphical display of the database is useful for
exploratory purposes, it is not as powerful as SQL searches
over the DSGRN database in which arbitrary combinations
of annotated Morse graphs can be selected. Moreover, to use
graphical display it is necessary to set up a server. The expected
use of DSGRN is to calculate the database and then to use flexible,
user-defined SQL queries to search for dynamics of interest.

We now show how to perform some queries that are
not available in our demo website. In order to compute the
database for DSGRN, the user needs to install DSGRN (Harker,
2018) from GitHub, following the instructions on http://dsgrn.
readthedocs.io/en/latest/index.html. While we intend to provide
SBML compatibility in the near future, currently the user needs
to create a network file that provides names for each node
in the regulatory network RN and describes the input logic
functionMi for each node i. The following is the network file for
5D_2015_10_21_VA as shown in the upper left of the middle
screenshot in Figure 1B:
p53 : (Chk2 + ATM)(∼Mdm2)

ATM : ∼Wip1

Chk2 : ATM (∼Wip1)

Wip1 : p53

Mdm2 : p53

The name of the node is on the left hand side of the colon, and
the input logic functionMi to the node is on the right hand side.
For example, p53 has three inputs, with “OR” (addition) logic
between Chk2 and ATM, and “ANDNOT” (multiplication) logic
on Mdm2. The symbol “∼” denotes repression. Suppose that
this file is saved under “RN.txt.” To compute the DSGRN SQL
Database named “RN.db” using 4 threads we run the following
command:

mpiexec -np 4 Signatures RN.txt RN.db

After the database is computed, we can query RN.db
for different dynamical behaviors. Several tables for the
database are automatically generated, including Signatures,
MorseGraphAnnotations, and MorseGraphEdges, which we
will use in queries below. For a comprehensive list of the
tables generated, more detail on the SQL database, and other
queries, see the links from the documentation site http://dsgrn.
readthedocs.io/en/latest/index.html.

We take the number of combinatorial parameters that
generates a specific dynamical behavior to be a proxy for the
robustness of the behavior across all of parameter space. The
number of combinatorial parameters for network RN specified
in RN.txt is the number of rows in the database RN.db. Therefore
we can find the number of parameters using the command:

sqlite3 RN.db ‘select count(*) from

Signatures’

which in this case tells us that there are 803,520 parameters
associated to the network 5D_2015_10_21_VA. We now
search the database for the number of combinatorial parameters
with at least one stable FC. Note that the Annotation Filter in
Figure 1B searches for any FC, including unstable ones. The
command for this search is

sqlite3 RN.db ‘select count(*) from

Signatures natural join

(select distinct(MorseGraphIndex) from

(select MorseGraphIndex,Vertex from

MorseGraphAnnotations where Label="FC"

except select MorseGraphIndex,Source from

MorseGraphEdges))’

and the result is 6904 combinatorial parameters, which is
0.86% of all the parameters. In contrast, the number with at
least one stable FP is 667,536, which is 83% of the parameters,
obtained by:

sqlite3 RN.db ‘select count(*) from

Signatures natural join

(select distinct(MorseGraphIndex) from

(select MorseGraphIndex,Vertex from

MorseGraphAnnotations where Label like

"FP%"

except select MorseGraphIndex,Source from

MorseGraphEdges))’

Based on the results of these queries, we conclude that a stable
FP is far more common that a stable FC, and therefore a more
robust behavior for this network.

Table 1 shows the computational scaling of DSGRN in a series
of small networks taken from http://chomp.rutgers.edu/Projects/
DSGRN/DB/index.html, some of which are shown Figure 1A.
We see that the computation time and database storage increase
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FIGURE 1 | Screenshots of http://chomp.rutgers.edu/Projects/DSGRN/DB/index.html. The description of the Figure and step-by-step guide through an example is in

the text.
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TABLE 1 | Example performance of DSGRN on 4 threads on a 2013 MacBook

Pro. In practice, DSGRN is limited more by storage space than by computation

time.

Name # Nodes # Edges # Parameters Time Storage

2D_Example_A 2 4 1,600 2.7 s 124 K

3D_Cycle 3 5 5,400 3.1 s 224 K

4D_Example 4 6 122,472 10.4 s 4 M

5D_2015_10_21_VA 5 8 803,520 2 m 26 s 46 M

7D_2016_04_05_

yeastLEM

7 10 3,499,200 12 m 41 s 128 M

rapidly as the network size increases. This increase is due
particularly to the presence of high degree nodes, rather than
to the absolute number of nodes and edges. High degree nodes
cause the most rapid increase in the number of combinatorial
parameters. Because of parallelization and usage of computing
clusters with a large core count, we find in practice that DSGRN
is more limited by space to store databases than by computation
time.

In order to address the storage space scaling limitations, we
have implemented two additions to DSGRN. The first is the
idea of “essential” parameters, which is the subset of parameters
consistent with Definition 2.2. DSGRNwas originally designed to
study not only RN-compatible asynchronous multi-level maps,
but all such maps that were S-compatible with any subgraph
S of RN. By limiting ourselves to RN-compatible maps, the
size of parameter space is greatly reduced. To specify essential
parameters, add “: E” to the end of every line in the network
specification file for RN. For example, the essential network
specification file for 2D_Example_A using multiplicative logic
is:
X : XY : E

Y : XY : E

The second addition is an extensive Python module DSGRN
that can be used to explore individual parameters rather than
calculating the entire database at once. This model is part
of the standard DSGRN installation. If a hypothesis about
the network dynamics can be constructed a priori, then
the selection for annotated Morse graphs can be computed
on the fly, allowing much larger networks to be analyzed
than is otherwise possible. See https://github.com/shaunharker/
DSGRN/blob/master/Tutorials/GettingStarted.ipynb for a brief
introduction to the Python library.

6. DISCUSSION

Given a regulatory network RN there is a very large number
of multi-level maps D that can be associated to this network.
We can enumerate them by selecting for each node an arbitrary
assignment of node value based on the node inputs. If the
structure of the network is the only information available, these
all represent valid models for the network dynamics in the class

of discrete multi-level maps, which generalize Boolean models.
This class of functions generate, via asynchronous update, a class
of multi-valued nearest neighbor maps F which better represent
biological reality. States of F only change one at a time.

To make the collection of RN-compatible functionsF smaller
and more biologically realistic, we employ a switching system,
which is an ODE system with discrete-valued interaction terms.
They were introduced in the 1970’s (Glass and Kauffman, 1972,
1973) as a continuous time counterpart to Boolean networks.
A switching system is parameterized by continuous parameters,
but this set decomposes into a finite number of computable
regions (Cummins et al., 2016), each of which is associated with a
singlemulti-level mapDu and its asynchronous updateFu, where
F

u is compatible with the switching system ODE (Crawford-
Kahrl et al., 2018). The mutual position of these regions in the
parameter space provide a natural way to define a notion of
“neighboring” functions Du,Dv (and thus Fu,Fv).

Our computational tool DSGRN (Cummins et al., 2016;
Cummins et al., 2017; Harker, 2018) constructs the collection of
all such parameter regions and encodes them in the form of a
parameter graph. For each node u of the parameter graph, the
DSGRN Database stores information about the global dynamics
in form of a Morse graph, which is a summary of the dynamics of
F

u. A DSGRN Database provides a summary of dynamics for all
maps Fu which are compatible with a switching system on RN.
In this sense DSGRN represents the dynamics compatible with
the network RN across all parameters.

DSGRN can be used to either list dynamical behaviors that
are compatible with a given network RN, or search in the
space of networks for those networks that provide most robustly
dynamics of interest, for instance FC or FP.
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Boolean networks with asynchronous updates are a class of logical models particularly

well adapted to describe the dynamics of biological networks with uncertain measures.

The state space of these models can be described by an asynchronous state transition

graph, which represents all the possible exits from every single state, and gives a global

image of all the possible trajectories of the system. In addition, the asynchronous state

transition graph can be associated with an absorbing Markov chain, further providing

a semi-quantitative framework where it becomes possible to compute probabilities for

the different trajectories. For large networks, however, such direct analyses become

computationally untractable, given the exponential dimension of the graph. Exploiting

the general modularity of biological systems, we have introduced the novel concept of

asymptotic graph, computed as an interconnection of several asynchronous transition

graphs and recovering all asymptotic behaviors of a large interconnected system from

the behavior of its smaller modules. From a modeling point of view, the interconnection

of networks is very useful to address for instance the interplay between known biological

modules and to test different hypotheses on the nature of their mutual regulatory links.

This paper develops two new features of this general methodology: a quantitative

dimension is added to the asymptotic graph, through the computation of relative

probabilities for each final attractor and a companion cross-graph is introduced to

complement the method on a theoretical point of view.

Keywords: asynchronous Boolean networks, module interconnection, state transition graph, attractor

computation, biological regulatory networks

1. INTRODUCTION

An intuitive representation of system interactions, an algorithmic description of state transitions,
and the capacity to capture the global dynamics of the system, list some of the advantages of Boolean
models, which remain a powerful tool in the modeling and analysis of biological networks (Wang
et al., 2012; Abou-Jaoudé et al., 2016). Successfully predictive examples of Boolean models cover
complex networks across many different organisms, from cell cycle (Li et al., 2004; Fauré et al.,
2006), to fly or plant morphogenesis (Albert and Othmer, 2003; García-Gómez et al., 2017), and
highly complex networks such as T-cell induction (Mendoza and Xenarios, 2006; Saez-Rodriguez
et al., 2007), leukemia (Zhang et al., 2008) or apoptosis (Calzone et al., 2010).
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In a modular view of a biological organism, each task is
executed by a specific set of interactions among an ensemble
of biological components; in other words, it can be said
that there is a specifc network, or module, for each specific
task (signaling, metabolic, physiological, etc.). These modules
often interact with each other, one task triggering the next
in a chain of events or cyclic phenomena. Examples include
chains of signaling networks such as MAPK cascades, genetic-
metabolic interactions (Baldazzi et al., 2010), or coupled
oscillations (Gérard and Goldbeter, 2012). However, in many
cases, while experimental evidence supports the existence of
links between two modules, their modes of interaction are still
unclear (as in the case of mammalian cell cycle and circadian
clock, see Feillet et al., 2015). In this context, mathematical
tools are necessary to facilitate the analysis of the complex
behavior obtained from the interconnection of two or more
known modules.

One of the challenges in the analysis of Boolean networks
is attractor computation, particularly for high-dimensional
networks. For a network of dimension n, the size of the state
transition graph is 2n. A direct analysis of such a graph may
become computationally costly, in terms of space and time,
when n ≥ 20. This is especially true with asynchronous
updating, which includes numerous dynamical trajectories. Two
very efficient methods have recently been developed: Zañudo and
Albert (2013) compute all attractors of a network (up to n ≈
100), by isolating special properties of the state transition graph’s
components; Veliz-Cuba et al. (2014) compute all singletons
(attractors containing a single state) for networks up to n = 1,000,
by using a computational algebra approach.

In this paper, we propose a methodology aimed specifically at
analyzing the interconnection between several known Boolean
modules. The interconnection between two biological networks
can be very hard to test in vivo: our methodology provides
a platform for hypothesis testing, confirming or disproving
assumptions regarding mutual regulatory effects, simulating
and comparing various forms of interconnection schemes and
corresponding emergent dynamical behavior. Our method relies
on the construction of a new object, the asymptotic graph,
introduced by Tournier and Chaves (2013), which is a directed
graph constructed only from the set of attractors of each
module and that captures all the asymptotic behaviors of the
interconnected network.

After a brief review of Boolean network interconnections,
two improvements to the asymptotic graph are introduced in
this paper, to mitigate two of its known limitations. First,
it was observed that the asymptotic graph may also recover
spurious attractors, in addition to the true attractors of the
full network (Tournier and Chaves, 2013); we introduce an
extension, called the cross graph that solves this issue from a
theoretical point of view. The cross graph is constructed from
the set of strongly connected components of each separate
module, while the asymptotic graph is constructed from terminal
strongly connected components only. Second, to enrich the
traditional ON/OFF representation inherent to Boolean models,
we propose a method to assign probabilities to the edges of the
asymptotic graph, thereby allowing a probabilistic representation

of the various possible trajectories of the composed network.
Our methodology is applied first to a class of general randomly
generated Boolean models and then to two state-of-the-art
biological models in two different organisms: (i) to explore the
interplay between mammalian cell cycle and circadian clock
oscillators and (ii) to test hypotheses on the regulatory links
between budding yeast cell cycle and cell size, where our analysis
suggests that the START signal should come from mitosis phase.

2. INTERCONNECTIONS OF
ASYNCHRONOUS BOOLEAN NETWORKS:
A SHORT REVIEW

Throughout this paper, we will consider Boolean networks under
asynchronous updates. An interconnected Boolean network is,
briefly, the combined network formed by linking together, in
an approriately prescribed way, two or more separate Boolean
modules. In previous works (Chaves and Tournier, 2011;
Tournier and Chaves, 2013) we have introduced a new object,
the asymptotic graph, that characterizes the attractors of the
combined Boolean network in terms only of the attractors of the
separate modules—hence with no need to compute the larger
state transition graph. In the following, the definition of the
main objects needed to introduce the asymptotic graph are briefly
reviewed.

2.1. IO Asynchronous Boolean Networks
and Their Interconnections
Let us start by a brief recall of the definition of an input-
output asynchronous Boolean network (IO ABN), reprising the
notation introduced by Tournier and Chaves (2013). An IO
ABN 6A is characterized by three integers nA, pA, qA (nA > 0
is the dimension of the system, pA, qA ≥ 0 are respectively
the numbers of inputs and outputs) and by two Boolean maps:
f A : {0, 1}pA × {0, 1}nA → {0, 1}nA (the transition function) and
hA : {0, 1}nA → {0, 1}qA (the output function). For any given
input profile u ∈ {0, 1}pA , the asynchronous dynamics of the
network are given by the asynchronous transition graph GA,u,
which is a digraph over the vertex set {0, 1}nA defined as follows:
for any state x = (x1, . . . , xn) ∈ {0, 1}

nA , the set of its successors
are the states (x1, . . . ,¬xi, . . . , xn), for all i ∈ {1, . . . , n} such
that f Ai (u, x) 6= xi. The number of vertices of such a graph is
2nA and its number of arcs, denoted by mA, verifies 0 ≤ mA ≤

nA2nA . It is therefore relatively sparse and can thus be efficiently
stored by a 2nA × 2nA adjacency matrix. In the following, we
will consider that GA,u designates this matrix. Given two integers
i, j ∈ {1, . . . , 2nA}, the (i, j) entry of the adjacency matrix equals
1 if state j is a successor of state i and 0 otherwise. In a classical
abuse of notation, we associate each integer i ∈ {1, . . . , 2nA} with
its binary representation x ∈ {0, 1}nA in lexicographic order, with
the left-most bit being the most significant one; in other words:
i − 1 =

∑nA
k=1 xk2

nA−k. Thus, we will indifferently call state
either an integer i ∈ {1, . . . , 2nA} or its Boolean representation
x ∈ {0, 1}nA .

EXAMPLE 1. Consider the bidimensional single-input, single-
output (SISO) network defined by: f A(u, x1, x2) = (u, x1) and
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hA(x1, x2) = x2. Graphically, this network can be represented as
a simple cascade u → x1 → x2. Its dynamics are characterized
by the two graphs GA,0 and GA,1, represented below in graphical
and matricial forms:

GA,0
:

10 → 11
↓ ↓

00 ← 01









0 0 0 0
1 0 0 0
1 0 0 1
0 1 0 0









,

GA,1
:

01 → 00
↓ ↓

11 ← 10









0 0 1 0
1 0 0 1
0 0 0 1
0 0 0 0









.

In adjacency matrices, by convention the (i, j) entry equals 1 iff
state j is a successor of state i. Here, the four states (rows and
columns of the matrix) are intended in the following order: 00,
01, 10, 11. In GA,0, state 00 does not have any successor, implying
the first row of its adjacency matrix is zero: 00 is a steady state of
the network. Similarly, 11 is a steady state of GA,1. �

Classically, an asynchronous transition graph GA,u is analyzed
by first computing its decomposition into strongly connected

components (SCCs), denoted by A1
u, . . . ,A

NA
u

u , where 1 ≤ NA
u ≤

2n. The set of all SCCs forms a partition of the state space {0, 1}nA

and their computation can be efficiently achieved inO(2nA+mA).
By contracting each SCC to a single vertex, a directed acyclic
graph (dag) is constructed, sometimes called condensation graph
or simply SCC graph. This dag provides a useful description of
key dynamical behaviors of the network; in particular terminal
SCCs (the leafs of the dag) correspond to the attractors of the
network. More details about these graph theoretical tools can be
found, for instance, in the textbook by Cormen et al. (2001).

Consider now two IO ABN 6A and 6B, of respective
dimensions (nA, pA, qA) and (nB, pB, qB) and state variables
x ∈ {0, 1}nA and y ∈ {0, 1}nB . Note that all the methods
presented in this paper generalize to more than two modules;
however, in order to maintain a clear exposition of the
results, the definitions are given for interconnections of two
modules. An interconnection scheme of 6A and 6B consists
in two interconnecting functions µA : {0, 1}qB → {0, 1}pA and
µB : {0, 1}

qA → {0, 1}pB mapping the outputs of each module to
the inputs of the other module. For convenience, throughout this
paper we will make the assumption that qB = pA and qA = pB
and that the interconnecting functions are simply identity maps.
Following Tournier and Chaves (2013), with this assumption
the resulting interconnected network is the ABN of dimension
nA + nB, with no input and no output, defined by the following
transition function:

f : {0, 1}nA × {0, 1}nB −→ {0, 1}nA × {0, 1}nB

(x, y) 7−→
(

f A(hB(y), x), f B(hA(x), y)
)

.
(1)

One can then consider the interconnection as a standalone
network: its transition graph G can be constructed from this
transition function f . Alternatively, one can also build the graph
G directly from the set of transition graphs GA,u, u ∈ {0, 1}pA and

GB,υ , υ ∈ {0, 1}pB as follows. Let (x, y) and (x′, y′) be two Boolean
vectors in {0, 1}nA × {0, 1}nB , then (x′, y′) is a (asynchronous)
successor of (x, y) if

• either x = x′ and y′ is a successor of y in GB,hA(x),

• or y = y′ and x′ is a successor of x in GA,hB(y).

It is possible to summarize this definition in a simple matricial
form. First, for each α ∈ {0, 1}qA , introduce the 2nA×2nA diagonal
Booleanmatrix1A,α such that

[

1A,α
]

ii
= 1 if the output of state i

is equal to α and 0 otherwise. Similarly, for module6B introduce
the 2nB × 2nB diagonal Boolean matrices1B,β , with β ∈ {0, 1}qB .
Then, G can be reconstructed by the formula:

G : =
∨

(α,β)∈{0,1}qA×{0,1}qB

(

GA,β ⊗1B,β ∨1A,α ⊗ GB,α) , (2)

where⊗ designates the classical Kronecker product. By replacing
matrices 1 with identity matrices, one may recognize in this
definition of G the notion of Cartesian product of graphs,
first introduced by Sabidussi (1959). To be more precise, (2)
generalizes the notion of Cartesian product to interconnections,
by including only transitions that are consistent with the input-
output scheme.

EXAMPLE 2. Consider module 6A defined in Example 1 and let
the one-dimensional SISOmodule6B defined by f B(υ , y1) = ¬υ
and hB(y1) = y1. Its dynamics are given by

GB,0 =

(

0 1
0 0

)

, and GB,1 =

(

0 0
1 0

)

.

The interconnected network can be reconstructed by using (1),
leading to the 3-dimensional transition function f (x1, x2, y1) =
(y1, x1,¬x2). Alternatively, the transition graph G can also be
computed directly as the interconnection of the dynamics of the
two separated modules by using (2):

G =
(

GA,0 ⊗1B,0) ∨
(

GA,1 ⊗1B,1) ∨
(

1A,0 ⊗ GB,0) ∨
(

1A,1 ⊗ GB,1) ,

=









0 0 0 0
1 0 0 0
1 0 0 1
0 1 0 0









⊗

(

0 0
0 1

)

∨









0 0 1 0
1 0 0 1
0 0 0 1
0 0 0 0









⊗

(

1 0
0 0

)

∨









1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0









⊗

(

0 1
0 0

)

∨









0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1









⊗

(

0 0
1 0

)

,

=

























0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 1
1 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0

























.

In graphical form, this transition graph G of the interconnected
network can be represented as:
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This graph has a unique attractor, composed of six states:
{001, 101, 111, 110, 010, 000}. �

In the present paper, note that we assume the modules and the
interconnection scheme are given. It is also possible to consider
interconnections as a general model reduction technique, where
a large network is first decomposed into a priori unknown sub-
networks. The identification of an efficient decomposition, with
the corresponding interconnecting scheme, would then become
critical. This problem is related to the general problem of graph
partitioning and is addressed elsewhere (Tournier and Chaves,
2013).

2.2. The Asymptotic Graph of an
Interconnection
We can now give the definition of the asymptotic graph (Tournier
and Chaves, 2013). First, list all the terminal SCCs of module
6A:

{

Ai
u, u ∈ {0, 1}

pA , 1 ≤ i ≤ LAu
}

and cut them with respect to
their outputs, ie. define, for each output profile α ∈ {0, 1}qA ,
the set Ai

uα : =
{

x ∈ Ai
u, h

A(x) = α
}

. For some α such a set
may be empty, in that case we will simply omit it. Similarly,

define
{

B
j
υβ , υ ∈ {0, 1}

pB ,α ∈ {0, 1}qB , 1 ≤ j ≤ LBv

}

for module

6B. The asymptotic graph of the interconnection is then defined
as the directed graph Gas = (Vas,Eas) such that the vertex set Vas

is composed of all the cross products Ai
uα × B

j
υβ and the arc set

Eas is constructed as follows:

• Ai
uα × B

j
vβ → Ai′

βα′
× B

j
vβ iff there exist x ∈ Ai

uα , x
′ ∈ Ai′

βα′

such that there exists a path from x to x′ in GA,β ,

• Ai
uα×B

j
vβ → Ai

uα×B
j′

αβ ′
iff there exist y ∈ B

j
vβ , y

′ ∈ B
j′

αβ ′
such

that there exists a path from y to y′ in GB,α .

Finally, introduce the function π as follows: if V = Ai
uα × B

j
υβ ∈

Vas, π(V) : = {(x, y), x ∈ Ai
uα , y ∈ B

j
vβ} and if R ⊆ Vas,

π(R) : =
⋃

V∈R π(V). The interest of the asymptotic graph lies in
the following theorem, a proof of which can be found in Tournier
and Chaves (2013).

THEOREM 1. If Q is an attractor of the interconnected network,
then there exists a terminal SCC R of Gas such that π(R) ⊆ Q.

EXAMPLE 3. Consider the interconnection of Example 2 above.
The asymptotic graph is given by

A1
00 × B101 → A1

11 × B101
↑ ↓

A1
00 × B110 → A1

11 × B110

with:















π(A1
00 × B101) = {001},

π(A1
11 × B101) = {111},

π(A1
11 × B110) = {000},

π(A1
00 × B110) = {110}.

Therefore, Gas is composed of a single terminal SCC R, and
π(R) = {001, 111, 000, 110} is actually included into the (unique)
attractor of the interconnected network. �

Thanks to Theorem 1, the asymptotic graph is a powerful analytic
tool as it recovers all the attractors of an interconnection (without
missing any), by constructing a graph significantly smaller than
the full interconnected graph G (section 4 below provides
numerical results for random interconnections). However, it may
happen that some terminal SCC of Gas does not correspond to
an actual attractor of the interconnection. Such terminal SCCs,
called spurious attractors, appear very rarely and there exist
some sufficient conditions to detect a priori spurious attractors
in certain cases. The most simple one, particularly useful for
biological applications is the fact that when R is a singleton then it
cannot be a spurious attractor. The proof, along with additional
conditions are provided elsewhere (Tournier and Chaves, 2013;
Chaves and Carta, 2015).

3. NEW ANALYSIS TOOLS

This section describes our new contributions. Our first goal
is to improve the asymptotic graph construction to avoid the
generation of spurious attractors (section 3.1) and our second
goal is to update the asymptotic graph by adding quantitative
information (probabilistic) on the state transitions (section 3.2).

3.1. A Theoretical Tool to Recover All the
Dynamics of an Interconnection
The asymptotic graph of an interconnection is constructed only
from the modules’ attractors, generally implying a relatively
manageable size allowing to analyze a wide range of practical
examples of interconnections (see sections 4 and 5). Nevertheless,
ignoring transient dynamical behaviors of the modules also
implies two drawbacks for Theorem 1. First, spurious attractors
may appear, although this phenomenon seems to be relatively
rare as illustrated in section 4. Second, when a terminal SCC
of Gas corresponds to an actual attractor, Theorem 1 only
ensures an inclusion, meaning the predicted attractor may
contain only a small proportion of states that are in the real
attractor. We now propose a new graph, called the cross-graph,
overcoming those two issues and ensuring, at the price of a higher
computational cost, a one-to-one recovery of all the attractors
of the interconnected network. Note that Tournier and Chaves
(2013) already introduced a notion of cross-graph, however the
cross-graph described in the following is significantly improved.
In particular, its size is bounded by the size of the full
interconnected graph, which was not the case for the older
version.

Let 6A and 6B be two IO ABN of respective dimensions
(nA, pA, qA) and (nB, pB, qB). As before, suppose for convenience
that pA = qB, pB = qA and the interconnecting maps are
simply identity maps. We also assume that each module has been
separately analyzed: the transition graphs GA,u, u ∈ {0, 1}pA

and GB,υ , υ ∈ {0, 1}pB have been constructed and decomposed
into strongly connected components

{

Ai
u, 1 ≤ i ≤ NA

u

}

for each

u ∈ {0, 1}pA and
{

B
j
υ , 1 ≤ j ≤ NB

u

}

for each υ ∈ {0, 1}pB . Let G
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denote the full transition graph of the interconnected network, of
size 2nA+nB . It can be computed thanks to (2), by interconnecting
the modules’ transition graphs. The idea behind the cross-graph
is to generalize formula (2) in order to interconnect directly the
SCCs of those graphs instead of the whole graphs themselves,
thus potentially saving a significant amount of space when
constructing the dynamics of the interconnection.

First, observe that the strongly connected components
{

Ai
u, 1 ≤ i ≤ NA

u

}

form a partition of the state space {0, 1}nA of
module6A (NA

u are integers verifying 1 ≤ NA
u ≤ 2nA ). Therefore,

for u varying in {0, 1}pA we obtain 2pA partitions of the same
finite set � = {0, 1}nA . Let P� denote the set of all partitions
of �. Given two partitions P1, P2 ∈ P�, P1 is said finer than
P2, denoted by P1 ≤ P2 if, for each element p in P1 there is an
element q in P2 such that p ⊆ q (in other words, partition P1 is a
fragmentation of partition P2). The set (P�,≤) has the structure
of a geometric lattice (see eg. Birkhoff, 1940). Consequently, for
any set S ⊆ P�, there exists a (unique) greatest lower bound of S
denoted by

∧

S ∈ P�. Coming back to the SCC decompositions,
introduce the following partition:

ZA
: =

∧

u∈{0,1}pA

{

Ai
u, 1 ≤ i ≤ NA

u

}

,

=

{

A1, . . . ,ANA
}

,

which is the coarsest partition of {0, 1}nA that is finer than every
SCC decomposition of all the transition graphs GA,u. Once this
partition is constructed, following the same idea as before it is
further refined by cutting each set Ai according to their outputs:
Ai
α : =

{

x ∈ Ai, hA(x) = α
}

, with the convention that such
sets are simply omitted when they are empty. Therefore, we
finally obtain a partition ZA

h
=

{

Ai
α , 1 ≤ i ≤ NA,α ∈ {0, 1}qA

}

of the state space {0, 1}nA that is compatible with every
SCC decompositions of the dynamics of modules 6A. By
construction, the number of elements in this partition, denoted
by MA, verifies 1 ≤ MA ≤ 2nA . Applying the exact same
procedure for module 6B, one obtains a similar partition

ZB
h
=

{

B
j
β , 1 ≤ j ≤ NB,β ∈ {0, 1}qB

}

of the state space {0, 1}nB ,

containingMB elements.
Once partitions ZA

h
and ZB

h
are defined, the construction of the

cross graph closely resembles the one of the asymptotic graph.
The cross graph is the digraph Gcr = (Vcr ,Ecr), where the vertex

set Vcr is composed of all cross-products Ai
α ×B

j
β and the arc set

is constructed as follows:

• Ai
α×B

j
β → Ai′

α′
×B

j
β iff there exist a ∈ Ai

α , a
′ ∈ Ai′

α′
such that

there is a transition from a to a′ in graph GA,β ,

• Ai
α×B

j
β → Ai

α×B
j′

β ′
iff there exist b ∈ B

j
β , b
′ ∈ B

j′

β ′
such that

there is a transition from b to b′ in graph GB,α .

There is also a matricial form for the definition of Gcr . First,
project each transition graph GA,u onto ZA

h
, leading to 2pA

graphs, represented by their MA ×MA adjacency matrices HA,u,
u ∈ {0, 1}pA . These projections can be rather straightforwardly
achieved since ZA

h
is a fragmentation of the SCC decomposition

of GA,u. Second, for each α ∈ {0, 1}qA , introduce the MA × MA

diagonal matrix 1A
α such that entry

[

1A
α

]

ii
= 1 if the output of

the i-th element of ZA
h
is equal to α and 0 otherwise. Once similar

objects HB,υ and 1B
β have been constructed for module 6B, the

cross-graph is simply defined by a generalization of formula (2):

Gcr
: =

∨

(α,β)∈{0,1}qA×{0,1}qB

(

HA,β ⊗1B,β ∨1A,α ⊗HB,α) . (3)

EXAMPLE 4. To illustrate this definition, let us consider two 2-
dimensional, single-input single-output modules 6A and 6B,
defined by their transition graphs given in Figure 1A and their
output functions hA(x) = x2, hB(y) = y1. The full transition
graph of the interconnection, built from (2), is depicted in
Figure 1B and the cross-graph is depicted in Figure 1C: it is
constructed from the two partitions ZA

h
= {{00, 10}, {01, 11}} =

{{∗0}, {∗1}} and ZB
h
= {{00}, {10}, {01}, {11}}. �

The interest of the cross-graph lies in the following theorem,
establishing the one-to-one correspondence between the
terminal SCCs of Gcr and the attractors of the interconnected
network.

FIGURE 1 | Comparison between the cross graph of an interconnection and

the full transition graph. (A) Transition graphs of two SISO modules (see

Example 4); (B) full transition graph G of the interconnection; (C) cross graph

Gcr of the interconnection. For each graph, dotted regions denote strongly

connected components. There is a bijection between the SCC decomposition

of the two graphs G (16 vertices) and Gcr (8 vertices), illustrating Theorem 2.
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THEOREM 2. Graphs G and Gcr have the same decomposition into
strongly connected components. Furthermore, terminal SCCs of
Gcr fully recover the attractors of the interconnected network.

A proof of Theorem 2 is given in appendix. The size of the
cross-graph is MA × MB, which by construction is always less
or equal than 2nA+nB , the size of the full interconnected graph G.
The difference in size between the two graphs may vary greatly,
and strongly depends on (i) the SCC decompositions of the
two modules and (ii) as for the asymptotic graph, the numbers
of inputs and outputs (and therefore the general modularity of
the initial network). Part 4 proposes a brief evaluation of the
performance of the method for a set of randomly generated
interconnections. Although the interest of the cross-graph is
mainly theoretical, in certain practical cases the full graph G can
be too big to be stored easily while Gcr could.

Two possible extensions of the cross-graph method are noted
here. First, Bérenguier et al. (2013) proposed a compression of the
SCC graph of a network, called the hierarchical transition graph
(HTG). As the cross-graph is constructed from a combination
of the modules’ SCC decompositions, it would be possible
to consider similarly a combination of the modules’ HTG
decompositions. Benefiting from the compactness of HTGs, such
a construction would be even more compact than the cross-
graph. Second, note that both the cross graph and the asymptotic
graph methods require prior analysis of the modules’ dynamics
and the computation of their attractors, implicitly implying the
dimensions of the modules are manageable. For a large network,
Zañudo and Albert (2013) proposed an efficient characterization
of attractors with the notion of “stable motifs,” based on the
network’s interaction graph (see also Klarner et al., 2015). When
considering interconnections of large modules, the investigation
of the stable motifs of an interconnection would therefore
constitute an interesting extension of Theorem 2.

3.2. A Probabilistic Asymptotic Graph
One of the limitations of Boolean models is the lack of
quantitative details: while the state transition graph describes all
possible dynamical behaviors, it gives no indication as to which
trajectory is more likely to be observed under a given set of
initial conditions. To circumvent this problem, Boolean models
can be combined with probabilistic frameworks that account
for biological perturbations and variability in the logical rules
(Shmulevich et al., 2002; Mori et al., 2015). Another approach
is to exploit the Markov chain description of the transition
graph associated to the asynchronous Boolean model (Calzone
et al., 2010; Stoll et al., 2017). Based on this description, Stoll
et al. (2017) developed the MaBoSS software, which then applies
Gillespie algorithm to produce continuous time trajectories.

We also use the Markov chain description to assign
probabilities to the edges of the asymptotic graph, an
approach which will lead to a more quantitative analysis of
the interconnected network’s dynamics. The output of our
probabilistic asymptotic graph is thus the set of attractors of
the full network, under a particular interconnection scheme,
together with a relative probability for each of them (e.g., “there

is a probability p1 that phenotype Q1 is the outcome of this
experiment”).

The originality of our approach consists in assigning incidence
probabilities to the attractors of each separate module, which
can be obtained through the biological observations and
measurements available for each module. The goal is to include
biological information as an input and provide predictions that
can be confronted to biological observations and therefore lead
to validate or disprove the given interconnecting scheme.

3.2.1. Initializing Incidence Probabilities
Each transition in the asymptotic graph depends on two factors:
which module is first “updated” (A or B) and, in response to an
input change, how frequently does a switch occur from Ai

uα to

Ak
ũα̃ (or from B

j
υβ to Bk

υ̃β̃
). These quantities may be represented

by probabilities, defined a priori, from known data, experimental
observations, or other modeling considerations.

Define

̺A = P(updating module A first).

Assume Boolean module 6A has a total of LA same-output
attractor-sets and 6B a total of LB same-output attractor-sets,

{A[i]
: Ai

uiαi
, i = 1, . . . , LA}, {B

[j]
: B

j
υjβj

, j = 1, . . . , LB},

and each of these has a given incidence probability (meaning that
it is observed with a certain frequency) defined as

P(A[i]) = wi
A, i = 1 . . . LA, P(B[j]) = w

j
B, j = 1 . . . LB.

The probabilities wi
A and w

j
B may be assigned in different ways,

for instance using experimental observations, or setting uniform
probabilities (wi

A = 1/LA for all i), or else from the size of their
respective basin of attraction

wi
A =

#basini
∑

i #basin
i
, (4)

but in any case they should satisfy
∑LA

i=1 w
i
A = 1. Using these

initial probabilities, a joint incidence probabilitymay similarly be
defined for each product of attractor-sets:

P(A[i] × B[j]) = wi
Aw

j
B, ⇒

LA
∑

i=1

LB
∑

j=1

P(A[i] × B[j]) = 1.

3.2.2. Transition Probabilities in the Asymptotic Graph
The probability of switching between two attractor-sets of the
same module, but different inputs, can be defined in terms of
conditional probabilities: define sikA to be the probability that
attractor A[k] is reached, conditional to the fact that the initial
state is some ai ∈ A[i]. In other words, wk

A must be weighted by
the probability of ai reaching any attractor in GA,uk :

sikA = P(A[k]|[ai ∈ A[i]]) =
P(A[k])

∑

j∈J P(A[j])
=

wk
A

∑

j∈J w
j
A

, (5)
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where J = {j : uj = uk and ai  A[j]} means that there exists a
path in GA,uk leading from ai to A[j], where A[j] is an attractor of
GA,uk . A similar definition holds for sikB .

Next, we can define the probability associated to an edge of
Vas as:

P(A[i] × B[j]→ A[k] × B[j]) = ¯̺As
ik
A ,

P(A[i] × B[j] → A[i] × B[k]) = (1− ¯̺A)s
jk
B , (6)

with an “effective” probability ¯̺A, computed based on the set of
all ougoing edges from node A[i] × B[j]:

¯̺A =







0, A[i] ≡ A[k]

1, B[j] ≡ B[k]

̺A, otherwise.
(7)

In other words, ¯̺A = 0 if all outgoing edges have a fixed A-
attractor, A[i] × B[j] → A[i] × B[k]; ¯̺A = 1, if all outgoing edges
have a fixed B-attractor A[i] × B[j] → A[k] × B[j]; ¯̺A = ̺A if
outgoing edges may be of both types.

Note that these definitions ensure that the probabilistic
asymptotic graph matrix has the property that all rows add up
to 1:

∑

k

P(A[i] × B[j]→ A[k] × B[j])

+
∑

k

P(A[i] × B[j]→ A[i] × B[k])

=
∑

k

¯̺As
ik
A +

∑

k

(1− ¯̺A)s
jk
B = ¯̺A + (1− ¯̺A) = 1

since both
∑

k s
ik
A = 1 and

∑

k s
jk
B = 1.

3.2.3. Relative Probabilities of the Attractors of an

Interconnection
If the asymptotic graph Gas has two or more attractors,
in addition to the transition probabilities, another useful
information is the frequency of observing a given attractor, or
in other words the relative probability of each attractor of the
interconnection. This probability can be computed from the SCC
graph GSd = (VSd,ESd) corresponding to Gas, which is an
acyclic graph and can be represented by an absorbing Markov
chain. By definition, VSd is composed of the strongly connected
components of Gas. Let C ∈ VSd contain LC elements of Vas.
Define the incidence probability of observing C as:

P(C) =
LC
∑

ℓ=1

P(A[i(ℓ)] × B[j(ℓ)]) =
LC
∑

ℓ=1

w
i(ℓ)
A w

j(ℓ)
B .

Moreover, a probability of transition can also be associated
to each edge of ESd, P(Ci → Cj), computed by adding all
the probabilities of the edges in Eas that link elements of Ci

to elements of Cj. Suppose there are m strongly connected
components, |VSd| = m, and let them×mmatrixM withMij =

P(Ci → Cj), be the absorbing Markov chain associated with the

graph GSd. SupposeM has r absorbing states, {Ck
a : k = 1, . . . , r},

these are also the attractors of GSd. Matrix M can be written in
the following canonical form (Feller, 1970):

M =

[

Q R
0 Ir

]

,

where Ir is the r×r identitymatrix,Q is the (m−r)×(m−r)matrix
of transitions between transient states and R is the (m − r) × r
matrix of transitions from transient states to absorbing states.
SinceM is irreducible, it follows that (I−Q) has an inverse (where
I is the (m − r) × (m − r) identity matrix). Then the probability
that there exists a path from a given state to one of the r absorbing
states is given by the probability of being absorbed by r:

Mabsorp = (I − Q)−1R,

where Mabsorp(i, k) is the probability that transient state i
converges to absorbing state k.

If, in addition, we wish to weigh these absorption probabilities
by the incidence probabilities of observing Ck

a, we can define the
relative probability of an attractor of the asymptotic graph:

Prel(C
k
a) = P(Ck

a)+
m−r
∑

i=1

Mabsorp(i, k)P(C
i), k = 1, . . . , r (8)

where Ck
a denotes each attractor and P(Ck

a) is the incidence
probability of Ck

a.

4. PERFORMANCE ON RANDOM
NETWORKS’ INTERCONNECTIONS

In this part we propose a series of computational experiments to
assess the efficiency of the asymptotic graph and the cross graph
to recover the attractors of random interconnected Boolean
networks. Following the general idea of inputs/outputs at the core
of this paper, we start with a brief description of the algorithm
used to generate random IOmodules.We then present numerical
results computed on random interconnections with varying
connectivity, showing the respective advantages and limitations
of the two methods in practice.

4.1. Generation of Random IO Networks
With Varying Connectivity
The NK-model, introduced by Kauffman (1969), is a general
statistical model to represent random Boolean networks by
controlling their dimension N and their inner connectivity K.
It is used for instance by Zañudo and Albert (2013) and Veliz-
Cuba et al. (2014). Here it is slightly adapted to include inputs
and outputs. Let 6 be an IO Boolean network of dimension
(n, p, q), of transition function f : {0, 1}p × {0, 1}n → {0, 1}n and
output function h : {0, 1}n → {0, 1}q. A usual way to depict such
a network is by its wiring diagram, showing the dependencies
between the different variables of the network. Equivalently, the
wiring diagram can be represented by a (n+q)× (p+n) Boolean
matrix

M =

[

A B

0 D

]

,
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where submatrices A (n× p), B (n× n) and D (q× n) are defined
as follows:

aij =

{

1 if function fi depends explicitly of input variable uj,
0 otherwise,

bij =

{

1 if function fi depends explicitly of variable xj,
0 otherwise,

dij =

{

1 if output function hi depends explicitly of variable xj,
0 otherwise.

Let C designate the matrix [A|B]. The sum of the i-th row of C is
the number of essential variables of logical function fi, also called
the connectivity of fi. Given integers n > 0, p, q ≥ 0 and a real
number Kmean ∈ [1, n], we construct a random IO network of
dimension (n, p, q) and of average connectivityKmean by applying
the following procedure, which generates a dependency matrix
M:

1. Let D : = 0. For each 1 ≤ i ≤ q, pick at random j ∈ {1, . . . , n}
and set dij : = 1.

2. Generate n integers ki in {0, . . . , n+p} according to a binomial
distribution of parameters n + p (number of trials) and Kmean

n+p

(probability of success).
3. Let C = [A|B] : = 0. For each 1 ≤ i ≤ n, pick a

random combination (j1, . . . , jki ) ∈ {1, . . . , n + p}ki (without
replacement) and set ci,jl : = 1 for all 1 ≤ l ≤ ki.

4. Check that each column of A is non-zero; while it is not the
case, repeat step 3.

5. SetM : =

[

C

0 D

]

.

Step 4 ensures the generated module actually depends of every
inputs. Once the dependency matrix M is obtained, the last step
consists in generating the n + q Boolean functions according to
M. A Boolean function of k variables is picked randomly among

the 22
k
possibilities; in case it is degenerate (i.e., at least one of the

k variables is not essential), another one is chosen so as to ensure
exact compatibility withM.

4.2. Complementarity of the Cross and
Asymptotic Graph Methods
With this algorithm, it is possible to generate a IO module
by controlling its inner connectivity, that is the number of
actual dependencies in the wiring diagram. Thus, it becomes
possible to generate random interconnections with varying
degrees of modularity, according to the average connectivity
of each module. We used this algorithm to generate 2,000
interconnections of two modules 6A and 6B of dimensions
(nA, pA, qA) = (nB, pB, qB) = (10, 2, 2):

6A ⇉

⇇
6B , (9)

where the mean connectivity of 6A and 6B varies in {1, . . . , 10}.
For each interconnection, both 10-dimensional modules were
analyzed separately (including the computation of the transition
graphs, their SCC decompositions and the computation of their
attractors), then the cross graph and the asymptotic graph were

computed and compared. The main results are presented in
Figure 2 and summarized below. All computations were made
with Matlab R2016b, The MathWorks, Inc.

First, we compare the respective sizes Ncr and Nas of the
cross and the asymptotic graphs (ie. their number of vertices).
Figures 2A,B show respectively the evolution of log2(N

cr) and
log2(N

as) with respect to the connectivity of the two modules.
Obviously, both Ncr and Nas are below N = 220, which is the size
of the full transition graph of the interconnected network. The
cross graph, which captures both the transient and the asymptotic
dynamics of the interconnection is relatively large, however
its size seems to vary greatly with the modules’ connectivity.
When the connectivity increases, implying a highly modular
interconnection, the ratio Ncr/N can reach very small values,
emphasizing the interest of the cross graph to efficiently store
the dynamics of large, modular interconnected networks. On
the other hand, the asymptotic graph is always much smaller,
several orders of magnitude under the size of the full transition
graph. Contrary to the cross graph, it is particularly small when
the modules have lower connectivity, making it particularly well
adapted for biological networks. Interestingly, its size seems to
reach a plateau when the mean connectivity is above n

2 = 5.
Another way to compare the two approaches is by studying

their average execution times. The times shown in Figure 2C

include the analysis of the two 10-d modules and of the cross and
asymptotic graph methods. The latter comprise the construction
of Gcr (respectively, of Gas), the SCC decomposition of Gcr

(respectively, of Gas) and the reconstruction of the attractors
(respectively, of π(R) for all terminal SCCs R of Gas). For the
cross graph, the majority of the time is taken by the SCC
decomposition of Gcr while for the asymptotic graph, the most
time-consuming step is the construction of Gas itself (data
not shown). For comparison, we also computed the complete
dynamics of the 20-d interconnected network by using formula
(2); on average, such direct method amounted to around 83
seconds (dotted line). Therefore, both methods are faster than
the direct analysis of the full interconnected network. As before,
the asymptotic graph is particularly efficient for low connectivity
modules, while the cross graph is more efficient when the
modules have high connectivity. Interestingly, for connectivity
Kmean = 5 and higher, when both graphs have roughly the same
size, the cross graph method becomes even more rapid than the
asymptotic graph.

Finally, since both graphs were computed it was possible
to evaluate the quality of the asymptotic graph predictions.
Recall that according to Theorem 1, the asymptotic graph has
two drawbacks. First, it may predict spurious attractors and
second, when it identifies a true attractor it only predicts a
subset π(R) of the states lying in the attractor Q. The ratio
|π(R)|
|Q| is called the accuracy of the prediction. Among the 2,000

interconnections, 11 presented spurious attractors that is only
0.55% of the total. In all but one case, only one spurious
attractor was detected. This result confirms the rarity of the
appearance of spurious attractors. In total, we identified 3,693
true attractors. Among them more than 73% were completely
recovered (see Figure 2D); overall, the mean accuracy is about
0.86, exhibiting the excellent predictive power of the asymptotic
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FIGURE 2 | Computational results for 2,000 interconnections of two 10-dimensional modules [according to (9)], split into ten groups of 200 sorted along Kmean, the

mean connectivity of the modules. (A,B) Evolution of the sizes of the cross graph and of the asymptotic graph, log2(N
cr ) and log2(N

as) with respect to the modules’

connectivity (obtained with the routine boxplot of Matlab’s Statistics toolbox). (C) Mean execution time in seconds of the cross and asymptotic graph methods

(logarithmic scale). The dotted line represents the average time of the direct method (analysis of the full interconnected network). (D) Histogram of the accuracies of all

the attractors predicted by the asymptotic graph (3,693 attractors in total).

graph when it comes to uncover the asymptotic behaviors of an
interconnection.

4.3. A Powerful Tool to Analyze Large
Interconnections of Biological Networks
According to the previous results, the asymptotic graph seems
particularly well adapted when the mean connectivity of the
modules is low (≤ 5), which is arguably where biological
networks generally operate (Zañudo and Albert, 2013; Veliz-
Cuba et al., 2014). Therefore we decided to test it further with
higher dimensional interconnections, including four modules
6A,6B,6C,6D of dimension n = 15, with Kmean ∈ {1, . . . , 5},
pA = qA = pD = qD = 1 and pB = qB = pC = qC = 2:

6A →

←
6B →

←
6C →

←
6D (10)

When Ncr < 107, the cross graph was also constructed and
analyzed, in order to check the existence of spurious attractors.
Since the global state space is 260 > 1018, we skipped the last
treatment (identification of the attractors in {0, 1}60) to avoid
possible explosions. Therefore, we only computed the terminal
SCCs of Gas and, when available, the terminal SCCs of Gcr . The
results are presented in Table 1. When Gcr could be analyzed,

we were able to detect spurious attractors in Gas: none were
found. If the cross graph method is not practical for small Kmean,
the asymptotic graph was always manageable, confirming its
practical interest to analyze large biological networks, as long
as they can be expressed as interconnections of modules with a
reasonable number of inputs and outputs.

5. TWO BIOLOGICAL APPLICATIONS

The asymptotic graph construction and its probabilistic
interpretation are now applied to two biological examples,
centered on the mammalian and yeast cell cycles. Both
cases illustrate the asymptotic graph concept, its informative
description of a composite system, and its usefulness for testing
biological hypotheses.

5.1. Mammalian Cell Cycle, Circadian
Clock and Their Interconnection
There are two basic cellular oscillators in mammalian cells:
cell cycle describes the different phases of cellular growth
and division, while circadian clock decribes the mechanism
responsible for anticipating environmental changes and adapting
the organism to deal with these changes (most notably, day-night
differences). The interactions between these two oscillators are
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TABLE 1 | Computational results for 200 interconnections of four 15-dimensional modules [according to (10)], split into five groups of 40, sorted along the mean

connectivity of the modules.

Kmean log2(N
cr ) Time (s) log2(N

as) Time (s)

mean std mean std #treated/(#exp.) mean std mean std #spurious/(#treated)

1 57.3 2.3 − − 0/40 8.5 1.4 9 2 −

2 52.2 4.1 − − 0/40 9.8 1.1 9 7 −

3 42.4 5.7 − − 0/40 11.0 1.4 63 185 −

4 29.6 5.9 493 361 6/40 11.3 1.1 40 51 0/6

5 20.9 4.7 176 223 28/40 11.0 1.0 27 38 0/28

The cross graph is treated (constructed and analyzed) only when Ncr < 107 (log2 (10
7) ≈ 23.25). The column #treated/(#exp.) indicates the number of times it was treated over the

total number of experiments. When it is treated, we further verify the presence of spurious attractors in the asymptotic graph. The column #spurious/(#treated) indicates the number of

times the asymptotic graph predicts a spurious attractor over the number of times the cross graph could be treated. Symbol — indicates that the corresponding value could not be

computed.

still not fully understood, but recent works by Feillet et al. (2014)
and Bieler et al. (2014) have uncovered unexpected bi-directional
links between the two modules. Successful mathematical models
for the cell cycle and clock have been developed, as well as some
studies on their interactions (Gérard and Goldbeter, 2012), but
many questions remain (Feillet et al., 2015).

5.1.1. Mammalian Boolean Modules
At the discrete level, a reference model of the cell cycle was
developed and discussed by Fauré et al. (2006) (see Figure 3). It
comprises 10 variables:

(CycD,Rb,E2F,CycE,CycA, p27,Cdc20,Cdh1,Ubc,CycB),

where CycX (X ∈ {A,B,D,E}) represent four cyclins, each
roughly corresponding to one of the four phases of the cell cycle.
This constitutes our module 6A, and its rules can be found in
the Supplementary Material. The clock model (module 6B) has
7 variables and is based on the work of Comet et al. (2012). To
account for transcription shutdown during mitosis, the input v
negatively affects all mRNAs:

BMAL+ = ¬PCnuc

mPER+ = ¬υ ∧ BMAL

mCRY+ = ¬υ ∧ BMAL

pPER+ = mPER (11)

pCRY+ = mCRY

PC+ = pPER ∧ pCRY

PCnuc+ = PC.

In the clock model,mX and pX denote mRNA and protein coded
by gene X, while PC denotes the complex formed by the proteins
PER and CRY, and PCnuc denotes this complex in the nucleus.

A well established link between these two oscillators is
that protein BMAL acts on the cell cycle, possibly at different
stages (Feillet et al., 2015). In our analysis, we will consider BMAL
acting during G1 phase. Although no conclusive evidence exists
on how the cell cycle may affect the clock, we have considered
that during cell division (or mitosis phase) gene expression is
stopped (in the model, mitosis can be modeled as Cdc20 ∧ CycB,

FIGURE 3 | The interconnected mammalian cell cycle (Left, adapted

from Fauré et al., 2006) and clock (Right, adapted from Comet et al., 2012).

Square symbols represent messenger RNAs. Solid blue arrows denote

input/output connections.

see Figure 3). The interconnection betweenmodules is thus given
by:

u = hB(b) = BMAL, υ = hA(a) = Cdc20 ∧ CycB,

so that u = 0 (resp., u = 1) represents absence (resp., presence)
of BMAL and υ = 1 represents mitosis. In the cell cycle
model, BMAL affects negatively the G1 phase, leading to a logical
equation for cyclin E of the form cycE+ = ¬u∧ (E2F∧¬Rb) (see
Figure 3 and Supplementary Material).

Module 6A has a total of six, and module 6B has a total of
three, same-output attractor sets. For algorithmic convenience,

these are labeled using the lexicographic convention, that is A
j

ûα̂
for û, α̂ ∈ {1, 2}, where “decimal 1 = logical 0” and “decimal 2 =
logical 1.” The attractors for both modules are as follows:

GA,u=0
: A1

11 = {0100010100}, A
2
11(80 states), A

3
12(32 states),

GA,u=1
: A4

21 = {0100010100}, A
5
21(40 states), A

6
22(16 states),

GB,v=0
: B111(57 states), B

2
12(63 states),

GB,v=1
: B322 = {1000000}.
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In the case u = 0, module 6A becomes exactly the original
model constructed by Fauré et al. (2006). Therefore, as expected,
the attractors found for GA,u=0 correspond exactly to those listed
by Fauré et al. (2006). Attractors A1

11 and A4
21 correspond to

a steady state where the only expressed proteins are Rb, p27,
and Cdh1, hence representing the quiescent cell state. The (full)
attractor A2

11 ∪ A3
12 is a cyclic attractor containing 112 distinct

states and corresponds to the known G1/S/G2/M cell cycle
progression (Fauré et al., 2006). Similarly, A5

21 ∪ A6
22 is a cyclic

attractor of the graph GA,u=1, with 56 states. It tends to describe
the cell cycle progression, with the difference that u = 1 implies
CycE ≡ 0. In either of the cyclic attractors, the attractor-sets A3

12
and A6

22 contain states representing mitosis, that is, the output of
any state a ∈ A6

22 ∪ A
3
12 satisfies h

A(a) = Cdc20 ∧ CycB = 1.
The clock mechanism admits a cyclic attractor with 120 states,

B111 ∪ B212, which corresponds to regular circadian oscillations in
the case υ = 0. At mitosis, represented by υ = 1, the clock
network admits a single steady state attractor (B322 = {1000000}),
where all gene expression is arrested.

5.1.2. Asymptotic and Cross Graphs
The asymptotic graph for the interconnection of the two
mammalian oscillators has 18 nodes and two attractors, with
separate basins of attraction (Figure 4):

R1 = {A
1
11 × (B111 ∪ B

2
12),A

4
21 × (B111 ∪ B

2
12)}

R2 = {(A
2
11 ∪ A

3
12)× B111,A

2
11 × B212,A

5
21 × (B111 ∪ B

2
12),

(A5
21 ∪ A

6
22)× B322,A

6
22 × B212,A

3
12 × B322}.

The cross graph contains 54,272 nodes (compare to the full size
of the interconnection, 217 = 131072) and confirms the existence
of exactly two cyclic attractors for the interconnected system and
returns all their elements: attractor R1 is composed of 120 states
and R2 is composed of 13,552 states.

Our methodology predicts two distinct operating modes for
the coupled oscillators: R1 corresponds to a quiescent cell with
oscillatory clock, since it is the product of state 0100010100
representing a quiescent cell in module6A and of cyclic attractor
B111 ∪ B212 representing regular clock oscillations. The attractor
R1 is thus in agreement with observations by Plikus et al. (2013)
(hair cells in quiescent phase seem to have a running clock). In
contrast, R2 represents joint oscillations of the cell progression
cycle (A2

11 ∪ A3
12) and clock (B111 ∪ B212) (see Figure 4 for the

dynamics withinR2). The cell cycle and clockmay jointly oscillate
and alternate states with a regular cycle of cyclin E (which is
present mostly through S phase and mitosis) or eventually switch
to a joint cycle with absence of cyclin E (A5

21×B
1
1· → A2

1·×B
1
11 →

A2
11 × B212 → A5

21 × B11·). However, at mitosis (A3
12), the clock

may switch to its arrested steady state (A3
12 × B111 → A3

12 × B322),
which leads directly to a full degradation of cyclin E in the cell
cycle (A5

2· × B322).
To assign transition probabilities to the asymptotic graph,

there are essentially two elements to define: ̺A which is the
probability of updating first the component from module 6A;
and the incidence probability of each attractor from eachmodule,

wi
A and w

j
B. To compute the incidence probabilities wi

A and w
j
B,

we have used the size of the original basins of attraction of Ai
uα

in 6A and B
j
υβ in 6B, as in (4). However, for both modules, each

attractor can be reached from any state, implying that the joint

incidence probabilities, P(A[i]×B[j]) = wi
A×w

j
B, are equal for all

nodes of the asymptotic graph with: wi
A = 1/6 (i = 1, . . . 6) and

w
j
B = 1/3 (j = 1, . . . 3).
Figure 4 shows the transition probabilities obtained for two

different values of the updating probability ̺A. These two graphs
are very similar, differing only on the most frequent transitions
(bold arrows, above 0.5). As should be expected, whenever the
probability of first updating components from6A is larger (̺A =
0.6), the cell cycle oscillations dominate the global dynamics:
most of the bold transitions in Figure 4 (bottom) concern
switches between attractor-sets of6A. In contrast, circadian clock
oscillations are dominant for ̺A = 0.2 (Figure 4, top). The
evolution frommitosis phase toward cell cycle progression (A3

12×

B322 → A5
21 × B322 or A

3
12 × B322 → A6

22 × B322) is equally probable
for either ̺A.

Computation of the relative probabilities (8) of reaching one
of the attractors of the interconnected network yields

Prel(R1) = 0.333, Prel(R2) = 0.667,

independently of the updating probability ̺A. An interpretation
of these relative probabilities is that, in a typical population of
cells, about one third are arrested in quiescent G0 state while
the other two thirds follow the normal cell cycle progression
G1/S/G2/M.

5.2. Budding Yeast Cell Growth and Cell
Cycle START
Cell cycle and division is intimately linked with cell growth: a
cell cannot divide into two daugther cells if its size is too small.
There are many other factors that play a role in cell division
(concentration of certain proteins, volume), but it remains
unclear how a cell is able to perceive its own size and evaluate
whether all conditions are in place for cell division (Turner et al.,
2012).

In budding yeast, cell cycle is triggered by a START signal
which is dependent on cell size. Li et al. (2004) propose a Boolean
model that accurately describes cell cycle progression, taking
START as an external input and stopping at a G1 phase steady
state. One of the most important proteins involved in START
is cyclin Cln3, which in involved in the G1-S phase transition
and initiates cell cycle in the model of Li et al. (2004). Cyclin
Cln3 forms a complex with another protein Whi3 but, in order
to initiate cell cycle, Cln3 must be folded and released from this
complex, which is achieved with the help of a chaperon protein
Ydj1. Recent work by Aldea et al. (2017) suggests that cell size is
growth rate dependent and thatYdj1 is one of themost important
factors relating growth rate to cell size at START.

5.2.1. Budding Yeast Boolean Modules
A reference discrete model for the cell cycle was developed by Li
et al. (2004). It comprises 11 variables:

(START,MBF, SBF,Cln1,Cdh1, Swi5,Cdc20,Clb5, Sic1,Clb1,Mcm)′
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FIGURE 4 | The probabilistic asymptotic graph for the interconnected mammalian oscillators. Orange colored nodes belong to an attractor: R1 at right and R2 at left.

Bold arrows represent transitions with probability ≥ 0.5. (Top) ̺A = 0.2. (Bottom) ̺A = 0.6.

with START given by Cln3 (see Figure 5; the Boolean rules can
be found in the Supplementary Material).

To describe cell size dependence on growth rate Aldea et al.
(2017) proposes a model where Cln3 competes with a second
hypothetical protein Prot for binding with Ydj1 for folding:

Prot + Ydj1⇌ YP→ ProtF + Ydj1

Cln3+ Ydj1⇌ YC→ Cln3F + Ydj1,

and Prot would be a growth rate dependent protein. Here,
we propose a basic Boolean network of this model, where the
dependence on growth rate is modeled by an input υ :

Ydj1+ = YP ∨ YC ∨ ¬(Prot ∧ Cln3)

YP+ = Ydj1 ∧ Prot

YC+ = Ydj1 ∧ Cln3

Prot+ = υ (12)

ProtF+ = YP

Cln3+ = ¬Whi3

Cln3F+ = YC

Whi3+ = υ .

The competition of Prot and Cln3 for Ydj1 is represented by
the term ¬(Prot ∧ Cln3) in the rule for Ydj1 meaning that, in
the absence of both Prot and Cln3, “free” protein Ydj1 will be
available. Both Prot andWhi3 depend on growth rate, here given
by input υ . Later on, υ will be computed as an output from the
cell cycle model.

Computation of the graphs GA,u and GB,v yields the following
attractors:

GA,u=0
: A1

11 = {00000000000}, A
2
11 = {00000000100},

A3
11 = {00001000000},

A4
1∗ = {00001000100}, A

5
11 = {00110000000},

A6
11 = {01000000100},

A7
1∗ = {01001000100},

GA,u=1
: A8

2∗ = {10110110011}, A
9
2∗ = {11000111011},

A10
2∗ = {11110110011},

A11
2∗ = {11110111011},
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FIGURE 5 | The interconnected yeast cell cycle (Left, adapted from Li et al., 2004) and cell size network (Right, adapted from Aldea et al., 2017). Square symbols

represent messenger RNAs. Solid blue arrows denote input/output connections.

GB,υ=0
: B112 = {10100110},

GB,υ=1
: B221 = {11011001}.

The symbol ∗ inAi
1∗ orA

i
2∗means that the output of this attractor

depends on the function hA(a): three different forms for hA(a)
will be tested (see 13–15 below). For instance, we have hA(A4

1∗) =
2 whenever hA(a) is given by (15), so we should write A4

12; but
hA(A4

1∗) = 1 in the other two cases, hence A4
11.

In the case u = 0, the yeast cell cycle model is exactly
the one studied by Li et al. (2004) hence, as expected, the
seven attractors Ai

1∗ of G
A,u=0 are those listed in Table 1 of this

reference. According to Li et al. (2004), attractor A4
1∗ represents

the G1 steady state and has the largest attraction basin. Attractor
A2
11 is also close to G1 phase and has the second largest attraction

basin. Using the size of the attractions basins, the incidence
probabilities wi

A have been computed according to Equation (4)
and they are listed in Table 2.

5.2.2. Network Interconnection, Asymptotic and

Cross Graphs
To establish a scheme of interconnection, observe that the cell
size model acts on the cell cycle by triggering the start signal, that
is START is given by (folded/free) protein Cln3F. Conversely, the
input of the cell cycle to the cell size module is still unknown,
the combination of variables and/or quantities used by the cell
to detect its own size is a question for further analysis. As an
hypothesis, we will assume that growth rate is detected through
cell phase, since the cell cycle model provides this information.

TABLE 2 | Interconnection of yeast models.

Attractor Boolean representation wi
A

A111 00000000000 0.0802

A211 00000000100 0.0882

A311 00001000000 0.0792

A41∗ 00001000100 0.0893

A511 00110000000 0.0669

A611 01000000100 0.0472

A71∗ 01001000100 0.0490

A82∗ 10110110011 0.0921

A92∗ 11000111011 0.1290

A102∗ 11110110011 0.0749

A112∗ 11110111011 0.2039

Attractor Boolean representation wi
B

B112 10100110 0.5

B221 11011001 0.5

Attractors and incidence probabilities, proportional to the size of each basin of attraction.

For module 6B, there exists a unique attractor for each v, hence w
1
B = w2

B. The symbol ∗

means that the output of this attractor depends on the function hA (a): we have A4
12 with

a G1 indicator but A4
11 in the other two cases.

To explore the plausibility of this hypothesis, we will thus
consider three different indicators of the cell cycle phase (M, S,
and G1 phases) and compare the asymptotic graphs of the three
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corresponding interconnection schemes:

M-phase : u = hB(b) = Cln3F, υ = hA(a) = Swi5 ∧ Cdc20,(13)

S-phase : u = hB(b) = Cln3F, υ = hA(a) = Clb5, (14)

G1-phase : u = hB(b) = Cln3F, υ = hA(a) = Cdh1 ∧ Sic. (15)

In the case of growth measured by M phase (hA(a) = Swi5 ∧
Cdc20), the asymptotic graph has a unique, cyclic, attractor
(Figure 6, top):

RM1 =
{

A11
22 × B112,A

11
22 × B221,A

2
11 × B121,A

2
11 × B112,A

4
11×

B221,A
4
11 × B112

}

This information is confirmed and complemented by
computation of the cross graph, which has 524,288 nodes
(= 219). Attractor RM1 is composed of 116,520 states.

Interestingly, although neither 6A nor 6B have periodic
orbits, in this case the interconnected network does exhibit an
oscillatory orbit: at stationary G1 (A4

11) the START signal (B112) is
received and the module 6A performs one cell cycle:

A4
11 × B221 → A4

11 × B112 → A11
22 × B112 → A11

22 × B221,

setting Cln3 back to its OFF state (B221) and ending “near” M
phase (A11

22). At this point, the system returns to stationary G1
and repeats the cycle, waiting for cell to grow and again send

FIGURE 6 | The probabilistic asymptotic graphs for the interconnected yeast network, with growth rate measured by different indicators of the cell cycle. Orange

colored nodes belong to an attractor. (Top) M phase indicator, there is exactly one (cyclic) attractor. (Middle) S/G2 phase indicator, there are two single state

attractors and one cyclic attractor. (Bottom) G1 phase indicator, there are six single state attractors.
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the start signal. Two alternative paths are proposed for the cell
cycle, with G1-phase described either by A4

11 or similar state A2
11.

Since Gas contains a unique attractor, its relative probability Prel
is necessarily 1.

In the case of growth rate measured by S phase (hA(a) =
Clb5), the asymptotic graph (Figure 6, middle) has three
attractors, two single steady state and one cyclic attractor:

RS1 =
{

A11
22 × B112,A

11
22 × B221,A

2
11 × B121,

A2
11 × B112,A

4
11 × B221,A

4
11 × B112

}

RS2 =
{

A8
21 × B112

}

RS3 =
{

A10
21 × B112

}

In this case, however, computation of the cross graph shows that
RS1 is a spurious attractor, implying that the asymptotic graph has
lost some information on transient pathways. In practice, the full
graph contains pathways eventually leading from RS1 to either RS2
or RS3. This example shows the importance of verifying whether
any of the asymptotic graph’s attractors is spurious, and hence the
usefulness of a complementary method as the cross graph. In this
situation, the probabilistic interpretation of the asymptotic graph
is unclear. The relative probabilities computed according to (8)
yield equal probabilities for reaching attractors RS2 and RS3 (see
Table 3). In contrast, RS1 must now be interpreted as a transient
set of states.

In the case G1 is used as measure of growth rate, we have
hA(a) = Cdh1∧ Sic and the asymptotic graph (Figure 6, bottom)
has six single state attractors but no cyclic attractor:

RG11 = A4
12 × B221, RG12 = A7

12 × B221,

RG13 = A8
21 × B112, RG14 = A9

21 × B112,

RG15 = A10
21 × B112, RG16 = A11

21 × B112.

All these attractors are confirmed by the cross graph.
Computation of relative probabilities shows that the single steady

TABLE 3 | Attractors of the yeast interconnected system and their relative

probabilities, Prel (Ri ), for different updating probabilities ̺A.

Case S-phase output

Attractor ̺A = 0.2 ̺A = 0.5 ̺A = 0.7

A821 × B112 0.1125 0.0938 0.0813

A1021 × B112 0.1125 0.0938 0.0813

RS1 0.7750 0.8125 0.8375

Case G1-phase output

Attractor ̺A = 0.2 ̺A = 0.5 ̺A = 0.7

A412 × B221 0.1042 0.1266 0.1415

A712 × B221 0.0454 0.0401 0.0365

A821 × B112 0.0829 0.0691 0.0599

A921 × B112 0.1779 0.1585 0.1456

A1021 × B112 0.0674 0.0562 0.0487

A1121 × B112 0.5221 0.5495 0.5678

state A11
21 × B112 is more frequently observed (with a percentage

of around 54%, see Table 3). In this state all proteins of the cell
cycle are expressed except for Cdh1 and Sic1, which characterize
stationary G1 phase. The cell growth module is in a state where
Cln3F is available, thus setting START to 1. The interconnected
system is thus locked in a steady state where the interaction
links are fixed: A11

21 × B112 = 11110111011× 10100110, since the
output of each attractor is equal to the input of the other.

5.2.3. Hypotheses Discrimination
These results appear to support a model for START signal of the
form (12), as suggested by Aldea et al. (2017). Indeed, if cell size
triggers START, then it can be assumed that there is a “critical
size” which will be attained most probably at the end of G2 phase.
And, in fact, the interconnected system exhibits an oscillatory
cycle only in the case of M phase used as cell size indicator. This
cycle is in agreement with cell cycle progression, meaning that the
cell size module is able to trigger the START signal.

In contrast, when G1 or S phases are used as cell size indicator,
the interconnected system has no oscillatory behavior. For the
G1 case, the most frequent steady state (A11

21 × B112) represents
a configuration where the cell size module permanently sets
Cln3F = 1, and does not admit cell size to reset to zero. Note
that G1 is the beginning of the cell cycle and a misleading
indicator of “critical” size; in this case, the “critical” size is so
small that the cell size module sets START permanently to 1
thus preventing the cell cycle to reset to zero and initiate a new
cycle. Cells are locked in a steady state near mitosis and before
early G1.

In conclusion, our analysis shows that neither G1 nor S
phases are reliable cell growth indicators, but components
from M phase are plausible candidates for detecting cell
growth. We point out that the cell size Boolean network
and the feedback interconnection points may admit several
improvements, which are outside the scope of our paper.
Nevertheless, we believe this first approach provides useful hints
on how to further investigate and model the START signal
in yeast.

6. DISCUSSION AND CONCLUSIONS

Our work illustrates a new concept for the analysis of an
interconnection of Boolean networks: the goal is to study the
coupled behavior of two or more modules, using only the
dynamics of each separate module. A new methodology has been
discussed, based on construction of the asymptotic and cross
graphs both representative of the full network transition graph
and guaranteed to compute all attractors of the interconnected
network. The two graphs have different properties but also
complement each other. The cross graph provides exact results,
in the sense that it contains all transient and asymptotic behaviors
of the interconnected network. The asymptotic graph is a lighter
construction containing a minimal number of nodes while
recovering all attractors. In contrast to the cross graph, no
bijection with the full network transition graph is guaranteed,
implying that spurious attractors may appear; however, this
happens at an extremely low rate (less than 1%).
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Construction of the two graphs for random input/output
networks with varying connectivity reveals their
complementarity in terms of modules’ connectivity: for low
connectivity (Kmean ≤ 5), the asymptotic graph is much
smaller (on average 0.01% of the full graph, against 28%
for the cross graph; Figure 2B) and faster to compute; in
contrast, for high connectivity (Kmean > 5), the size of the
cross graph drastically reduces to 0.04% of the full graph
(Figure 2A) becoming even faster to analyze than the asymptotic
graph (Figure 2C). In addition, even though the asymptotic
graph involves a drastic simplification of the state space,
it has an unexpectedly high rate of accuracy, as shown in
Figure 2D.

The practical advantages of ourmethodology are illustrated by
the study of two well known biological networks. Among other
useful characteristics, the asymptotic graph can greatly reduce
the size of the state space, especially in the case of single-input
single-output modules. For instance the mammalian and yeast
interconnected networks, with an average connectivity of K =
2.76 and K = 2.68 respectively, have asymptotic graphs of only
18 and 22 nodes (compared to 217 or 219).

The analysis of the coupling between cell cycle and circadian
clock shows that, according to experimental observations (for
instance by Plikus et al., 2013), the asymptotic graph predicts
that mammalian cells in the quiescent state may have a working
clock. Furthermore, under general hypotheses, the probabilistic
approach predicts that one third of cells are arrested in the
quiescent state but still have circadian oscillations, while the other
two thirds follow a normal cell cycle progression intertwined
with circadian oscillations. In the budding yeast example, we
have explored a recent hypothesis by Aldea et al. (2017) for a
mechanism to trigger the START signal and initiate cell cycle. The
mechanism is based on cell size detection through cell growth

rate. Our analysis supports such a mechanism as a possible
START trigger, and suggests that cell size indicator should come
from an element during M phase.

The advantages of our analysis tools are multiple and
particularly suited to the modeling of biological regulatory
networks: by manipulating existing models as building blocks,
the presented tools allow to rapidly simulate, compare, and
test different coupling schemes or hypotheses on mutual
regulatory effects, and therefore advance in the understanding
of highly modular regulatory networks. The probabilistic
interpretation and the analysis of transient behaviors emerge as
two noteworthy directions for future developments in logical
models.
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APPENDIX

Proof of Theorem 2
Let G = (V, E) be a digraph and let ν, ν′ ∈ V be any two vertices
of G. Introduce the following notation:

• ν →G ν′ means that there is an edge from ν to ν′ in G, i.e.,
(ν, ν′) ∈ E (ν′ is a successor of ν).
• ν ⊲G ν′ means that there exists a path from ν to ν′ in G, i.e.,

there exist k ≥ 0 vertices ν1, . . . , νk such that ν = ν1 →G

ν2 →G . . .→G νk = ν
′ (ν′ is a descendant of ν).

• ν ∼G ν
′ means that there exists a path from ν to ν′ and a path

from ν′ to ν in G (ν and ν′ are mutually reachable from each
other). The relation∼G is an equivalence over V× V.

Remark that according to the definition of partition ZA
h
, any Ai

α

is included in a SCC of each graph GA,u, in other words:

∀a, a′ ∈ Ai
α , ∀u ∈ {0, 1}

pA , a ∼GA,u a′.

For convenience, we introduce the two following maps π and
ψ , establishing relationships between the two vertex sets Vcr and
� = {0, 1}nA+nB .

• For V = Ai
α × B

j
β ∈ Vcr , let π(V) : = {(a, b)| a ∈ Ai

α , b ∈

B
j
β} ⊆ �; and for Q = {V1, . . . ,Vk} ⊆ Vcr , define π(Q) : =

⋃k
l=1 π(Vl) ⊆ �.

• For x = (a, b) ∈ �, by definition of ZA
h
,ZB

h
there is a unique

Ai
α and a unique B

j
β such that Ai

α ∋ a, B
j
β ∋ b. Let ψ(x) : =

Ai
α × B

j
β ; by extension, for S ⊆ �, define ψ(S) : = {ψ(x)| x ∈

S} ⊆ Vcr .

Theorem 2 is a consequence of the two following lemmas.

LEMMA 1. Let x, y ∈ � such that x ⊲G y, then either ψ(x) =
ψ(y), or ψ(x) ⊲Gcr ψ(y).

PROOF: Suppose first that x →G y, that is to say either (i):
x = (a, b) →G (a′, b) = y where a →

GA,h
B(b) a′ or (ii):

x = (a, b) →G (a, b′) = y where b →
GB,h

A(a) b′. These two
cases being perfectly symmetrical, consider for instance case (i).

Let Ai
α , A

i′

α′
and B

j
β be respectively the (unique) sets such that

a ∈ Ai
α , a
′ ∈ Ai′

α′
and b ∈ B

j
β . Two cases are to be considered.

Case 1: suppose Ai
α = Ai′

α′
, then ψ(x) = Ai

α × B
j
β = ψ(y).

Case 2: suppose Ai
α 6= Ai′

α′
. Then according to the definition of

Gcr , from a →GA,β a′ we deduce that ψ(x) = Ai
α × B

j
β →Gcr

Ai′

α′
× B

j
β = ψ(y).

Suppose now that x ⊲G y, ie., x = x1 →G x2 →G . . .→G xk = y.
By applying successively the previous result along that path, we
deduce that either ψ(x) = ψ(y) or ψ(x) ⊲Gcr ψ(y), which
concludes the proof.

LEMMA 2. Let V ,V ′ ∈ Vcr be two vertices of the cross graph.

(i) ∀x, y ∈ π(V), x ∼G y.
(ii) If V ⊲Gcr V

′, then for all x ∈ π(V) and y ∈ π(V ′), x ⊲G y.

PROOF: Let start with assertion (i). Let V = Ai
α × B

j
β , x =

(a, b) ∈ π(V) and y = (a′, b′) ∈ π(V). Since a and a′ both belong
to the same Ai

α , a ∼GA,β a′. In the same way, b ∼GB,α b′. From
there it is easy to verify that (a, b) ∼G (a′, b) ∼G (a′, b′), so x ∼G y.
Let us prove the second assertion. Suppose first that V →Gcr V

′.

For instance, let V = Ai
α × B

j
β and V ′ = Ai′

α′
× B

j
β with

Ai
α ∋ a1 →GA,β a2 ∈ Ai′

α′
(the symmetrical case can be

treated completely analogously). Let x = (a, b) ∈ π(V) and
y = (a′, b′) ∈ π(V ′). Since a and a1 both belong to the same
Ai
α , we have a ∼GA,β a1. Similarly a′, a2 ∈ Ai′

α′
, implying a′ ∼GA,β

a2. Therefore we have a ∼GA,β a1 →GA,β a2 ∼GA,β a′, hence
(a, b) ⊲G (a′, b). Now, since b and b′ both belong to the same

B
j
β b ∼

GB,α
′ b′, which proves that (a′, b) ⊲G (a′, b′), therefore

x ⊲G y.
Suppose now that V ⊲Gcr V ′, ie., V = V1 →Gcr V2 →Gcr

. . . →Gcr Vk = V ′. By applying successively the previous result
along that path, we deduce that x ⊲G y for any x ∈ π(V) and
y ∈ π(V ′).

Lemmas 1 and 2 establish an exact correspondence between
the paths in G and the paths in Gcr . The proof of the
theorem becomes rather straightforward. Indeed, suppose Q =
{V1, . . . ,Vk} is a SCC of Gcr . Then Lemma 2 implies that π(Q) is
included in a SCC S of G. Suppose now that π(Q) ( S, ie. there
exists y ∈ S\π(Q) such that ψ(y) /∈ Q. For any x ∈ π(V) ⊂ S,
we have x ∼G y (with Lemma 1), implying ψ(y) ∈ Q which is a
contradiction. Therefore,π(Q) = S. Reciprocally, suppose S ⊆ �
is a SCC of G. Then lemma 1 implies that ψ(S) is included in
a SCC Q of Gcr . Lemma 2 further yields ψ(S) = Q. By using
a similar kind of reasoning, it is easy to show that there is an
exact one-to-one correspondence between the terminal SCCs of
Gcr and the attractors of G.
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Motivation: Mathematical models take an important place in science and engineering.

A model can help scientists to explain dynamic behavior of a system and to understand

the functionality of system components. Since length of a time series and number of

replicates is limited by the cost of experiments, Boolean networks as a structurally simple

and parameter-free logical model for gene regulatory networks have attracted interests

of many scientists. In order to fit into the biological contexts and to lower the data

requirements, biological prior knowledge is taken into consideration during the inference

procedure. In the literature, the existing identification approaches can only deal with a

subset of possible types of prior knowledge.

Results: Wepropose a new approach to identify Boolean networks from time series data

incorporating prior knowledge, such as partial network structure, canalizing property,

positive and negative unateness. Using vector form of Boolean variables and applying

a generalized matrix multiplication called the semi-tensor product (STP), each Boolean

function can be equivalently converted into a matrix expression. Based on this, the

identification problem is reformulated as an integer linear programming problem to

reveal the system matrix of Boolean model in a computationally efficient way, whose

dynamics are consistent with the important dynamics captured in the data. By using

prior knowledge the number of candidate functions can be reduced during the inference.

Hence, identification incorporating prior knowledge is especially suitable for the case of

small size time series data and data without sufficient stimuli. The proposed approach is

illustrated with the help of a biological model of the network of oxidative stress response.

Conclusions: The combination of efficient reformulation of the identification problem

with the possibility to incorporate various types of prior knowledge enables the

application of computational model inference to systems with limited amount of time

series data. The general applicability of this methodological approachmakes it suitable for

a variety of biological systems and of general interest for biological and medical research.

Keywords: Boolean networks, identification, prior knowledge, time series data, network inference
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1. INTRODUCTION

Boolean networks (BNs) are discrete-time systems, whose
variables can take only two possible values (i.e., 0 and 1). Since
Stuart Kaufman firstly introduced BNs in Kauffman (1969) for
qualitative description of gene regulatory interactions, BNs have
attracted great attention from many scientists and several results
have been proposed, for instance, analysis (Albert and Barabási,
2000) and control (Fauré et al., 2006). An overview can be found
in Wang et al. (2012) and a database for established models and
compatible tools has been introduced (Naldi et al., 2015).

Mathematical models are important to explain dynamic
behavior of a system and to understand the functionality of
system components (Grieb et al., 2015) and can help scientists
to design model-based targeted therapy and diagnosis (Fumia
and Martins, 2013). Hence, the inference of models capturing
the relevant behavior of the system is an important topic. The
inference can be based on the connection of known biochemical
reactions, like BN model for the yeast cell cycle in Davidich
and Bornholdt (2008), or on experimental data, if the latter
is the case it is also called the identification problem. One of
the first approaches to identify a BN was REVEAL which is
based on mutual information (Liang et al., 1998). In Akutsu
et al. (1999) a similar but less complex approach is presented.
Both cannot handle errors in the dataset which was solved in
Lähdesmäki et al. (2003). Themodeled quantities are not Boolean
in the experimental data and need to be binarized first. For the
binarization several approaches can be found in the literature
ranging from mixture model based clustering (Zhou et al., 2003)
to more complex methods where the significance of a jump in the
time series is estimated in Hopfensitz et al. (2012). A comparison
of some identification and binarization approaches and their
combinations can be found in Berestovsky and Nakhleh (2013).
Most identification approaches are based on previously binarized
data, but there also exist approaches directly based on continuous
data (e.g., Karlebach and Shamir, 2012). In Higa et al. (2011)
the data is considered as given constraint and the set of systems
fulfilling the constraints is searched. This approach was then
further improved by reducing the sensitivity to noise in Ouyang
et al. (2014). An example of recent research is the identification of
Boolean models for transient dynamics after perturbations from
time course data with answer set programming (Ostrowski et al.,
2016). A BN can simply be extended to a Boolean control network
(BCN) by considering manipulated external stimuli as control
signal of the network. Recently, a powerful tool called semi-
tensor product (STP) of matrices has been proposed in Cheng
(2001), which can convert the dynamics of BCNs into a model
where all information of the dynamics and the structure of the
BCN is contained in two matrices (Cheng et al., 2011a). Using
the STP based matrix description of BCN several approaches for
identifying BCN have been proposed (Cheng and Zhao, 2011;
Fornasini and Valcher, 2014; Zhang et al., 2017a).

However, in general, in order to identify the dynamical
model of a BCN from its input and output data, a huge number
of data is required (Cheng and Zhao, 2011; Cheng et al.,
2011b). Though, in practice, data size is limited by the cost of
experiments (Geier et al., 2007). In order to reduce the search
space and improve the accuracy of the model, the benefit of

biological prior knowledge should be taken into consideration.
Cheng and Zhao (2011) pointed out that, if the network graph
is known, then the data required can be reduced considerably.
In the literature there are several approaches to include different
types of prior knowledge. For example the known network
structure and known steady state activity is considered in Videla
et al. (2015). Moreover, two common properties of the Boolean
function, canalizing and unateness, can be further utilized
according to Breindl et al. (2013) and Faisal et al. (2010). A
Boolean function is canalizing, if a variable takes on a certain
“canalizing” value, then the output of the boolean function is
always the same (Waddington, 1942). Different from canalizing
function, an unate function has monotonic properties, which
in biology indicates that a gene acts exclusively as an inducer
or as an inhibitor for the expression of another gene (Porreca
et al., 2010). The prior knowledge is used in different ways
either by introducing additional constraints in the optimization
(Breindl et al., 2013), or reducing the number of parameters
in the optimization (Cheng and Zhao, 2011). In Dorier et al.
(2016) and Terfve et al. (2012) genetic algorithms are used to
handle the complexity problem of large networks while satisfying
prior knowledge network graphs as constraints. However, these
approaches to handle prior knowledge are not compatible and
the advantages of different types of prior knowledge can not be
combined. In the approach proposed in this paper, all different
types of prior knowledge can be utilized simultaneously and it
can additionally handle hypotheses for interactions, which could
be used for researcher bias free distinction between alternative
hypotheses. Furthermore existing approaches can not handle
the case that at some time instances some measurement values
are missing, which cannot be avoided in practice due to the
limitation of measuring techniques like mass spectrometry-based
proteomics.

In this paper, we consider the identification problem of BCNs
utilizing biological prior knowledge. A part of the results was
presented at the 56th IEEE Conference on Decision and Control
in Melbourne (Zhang et al., 2017b). However, the BCN model
considered in Zhang et al. (2017b) contains a general output
equation. By applying prediction error method (PEM), a high-
dimensional BCN (i.e., 2n × 2n+m) cannot be avoided. Different
from that, although the handling of unmeasurable processes
is considered in this paper, the proposed approach leads to a
low-dimensional matrix for PEM. Besides, more prior biological
knowledge is considered in the paper, like potential interactions,
known attractors and limit cycles. Moreover, it is discussed how
to deal with alternative hypotheses for interactions and missing
measurement points. The main contributions of this paper are as
follows:

• A suitable way to handle the prior knowledge such as known
network graph, hypotheses for interactions, canalizing and
unateness properties or attractor is introduced. For this
purpose the BCN is described by two matrices with unknown
parameters as entries. If possible, some parameters are inferred
directly. Otherwise, relationships between the parameters are
set up.

• An approach to deal with the identification of BCNs, in
particular, from noisy measurements and missing data points
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is proposed. The identification problem of BCNs is formulated
as a nonlinear pseudo-Boolean optimization, which can be
equivalently transformed into a linear binary optimization
problem and then solved efficiently.

The remainder of the paper is organized as follows. Section
2 introduces some fundamental definitions and notations.
In Section 3, the identification problem of BCNs addressed
in this paper will be formulated. Section 4 introduces a way
to utilize prior knowledge in identification procedure. The
formulation of identification problem of BCNs as an integer
linear programming problem is derived and an example is given
in Section 5 to illustrate the approach. Finally, a short discussion
on the advantages and limitations of the proposed approach is
given in Section 6.

2. PRELIMINARIES

In this part, we list some necessary notations, which will be used
in the subsequent sections.

1. ¬, ∧ and ∨ denote the logical negation (not), conjunction
(and) and disjunction (or), respectively.

2. D : = {1, 0} and D
n = D ×D × · · · ×D

︸ ︷︷ ︸

n

.

3. 1n : = {δkn|1 ≤ k ≤ n}, where δkn denotes the k-th column of
the identity matrix In.

4. For a vector v ∈ Rm, its j-th entry is denoted by [v]j, j =

1, 2, · · · ,m.
5. An n × t matrix L is called a logical matrix, if L =

[δi1n δ
i2
n · · · δ

it
n ], where i1, i2, · · · , it ∈ {1, 2, · · · , n}, and we

express L briefly as L = δn[i1 i2 · · · it]. Denote the set of n× t
logical matrices by Ln×t . Coli(M) denotes the i-th column of
the matrixM.

6. 0n: =[0 0 · · · 0
︸ ︷︷ ︸

n

]T, where the superscript T denotes the

transpose.

The concept of the semi-tensor product of matrices (STP) has
been introduced by Cheng et al. (2011a). The STP of twomatrices
A ∈ Rm×n and B ∈ Rp×q is defined as

A⋉ B = (A⊗ Il/n) · (B⊗ Il/p) (1)

where ⊗ is the Kronecker product and l = lcm{n, p} is the least
common multiple of n and p. The following property of the STP
will be used in the subsequent sections.

Lemma 1. Let X ∈ Rm×1 and Y ∈ Rn×1. Then Y ⋉ X =

W[m,n] ⋉ X ⋉ Y, where W[m,n] is the swap matrix (Cheng et al.,
2011a).

So the order of two vectors which are multiplied can be altered
by multiplying a suitable matrix from the left, this is also called
the pseudo-commutativity of the STP. In the following parts the
symbol⋉ will be omitted.

3. PROBLEM FORMULATION

System identification is the determination of a model describing
the dynamic behavior of a system based on measured data and

known perturbations. In the context of Boolean modeling it
is assumed that the transient behavior of the system can be
qualitatively described by a finite number of Boolean states and
that the interaction of these states can be described by Boolean
functions. The perturbations are inputs to the system and cause
transient behavior of the interacting states in the system. A
measured time series of inputs and states form together the data
basis for the identification. Depending on the system which is to
be modeled, the states might represent the activity of genes or
the abundance of proteins and the perturbations could be a stress
like heat or oxygen or a chemical substance. In the following
the identification process will be formulated as mathematical
optimization problem. Therefore the mathematical model of a
BCN needs to be defined first. A Boolean control network (BCN)
can be described by the following equations (Cheng and Qi,
2010):















X1(t + 1) = f1(X1(t), · · · ,Xn(t),U1(t), · · · ,Um(t))
...

Xn(t + 1) = fn(X1(t), · · · ,Xn(t),U1(t), · · · ,Um(t))

(2)

where X(t) = [X1(t) X2(t) · · · Xn(t)]T ∈ D
n, U(t) =

[U1(t) U2(t) · · · Um(t)]T ∈ D
m are, respectively, the state vector,

input vector at time t, fi are logic functions. At the discrete
time instances t the state variables are updated synchronously
according to the logic functions fi. As shown in Cheng and Qi
(2010), a vector form of Boolean variable Xi, i = 1, 2, · · · , n can
be simply expressed as

xi =

[

Xi

¬Xi

]

. (3)

Let x = ⋉n
i=1xi ∈ 12n , u = ⋉m

i=1ui ∈ 12m . According to Cheng
and Qi (2010), (2) can be equivalently represented in a vector
form:















x1(t + 1) = S1u(t)x(t)
...

xn(t + 1) = Snu(t)x(t)

, (4)

where Si ∈ L2×2n+m , i = 1, 2, · · · , n are logical matrices.
Multiplying all Equations in (4) together, there is

x(t + 1) = Lu(t)x(t) (5)

where L ∈ L2n×2n+m is a logical matrix and Coli(L) =

⋉n
j=1Coli(Sj), i = 1, 2, · · · , 2n+m.

A polynomial Pml :R
k→R with k variables {θ1, θ2, · · ·, θk} is

called multi-linear polynomial, if its degree in each variable is at
most 1 (Alon et al., 1991). So, a multi-linear polynomial can be
generally expressed as

Pml(θ1, θ2, · · · , θk) = c+

k
∑

i=1

ciθi +

q
∑

α=1

cIα

∏

j∈Iα

θj (6)

where c, ci, cIα
∈ R for Iα ⊂ V = {1, 2, · · · , k} and the set Iα has

a cardinality of at least 2, i.e., |Iα| ≥ 2,α = 1, 2, · · · , q.
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Generally, the identification problem of BCNs can be
described as reconstruction of Boolean functions fi, i =

1, 2, · · · , n that explain the experimental data as well as
possible. Because of equivalent representation of a Boolean
function by a logical matrix, the identification problem
is reformulated as searching for logical matrices Si ∈

L2×2n+m , i = 1, 2, · · · , n based on the input and measurement
state data.

Note that any logical matrix in L2a×2b can be expressed
by multi-linear polynomials in a binary parameter vector θ of
dimension a · 2b. For example, any logical matrix in L4×8 can
be expressed by a binary parameter vector θ = [θ1 θ2 · · · θ16]T

as





















θ1·θ2 θ1·(1− θ2) (1− θ1)·θ2 (1− θ1)·(1− θ2)
θ3·θ4 θ3·(1− θ4) (1− θ3)·θ4 (1− θ3)·(1− θ4)
θ5·θ6 θ5·(1− θ6) (1− θ5)·θ6 (1− θ5)·(1− θ6)
θ7·θ8 θ7·(1− θ8) (1− θ7)·θ8 (1− θ7)·(1− θ8)
θ9·θ10 θ9·(1− θ10) (1− θ9)·θ10 (1− θ9)·(1− θ10)
θ11·θ12 θ11·(1− θ12) (1− θ11)·θ12 (1− θ11)·(1− θ12)
θ13·θ14 θ13·(1− θ14) (1− θ13)·θ14 (1− θ13)·(1− θ14)
θ15·θ16 θ15·(1− θ16) (1− θ15)·θ16 (1− θ15)·(1− θ16)





















T

where the superscript T denotes the transpose. In this way, each

realization of the binary parameter vector θ ∈ D
a2b corresponds

to a unique logical matrix. It is straightforward to equivalently
convert this logical matrix into readable logical equations. Based
on this, the objective of the paper is to find a binary parameter
vector θ , such that dynamic behavior of the BCN (5) is consistent
with the important dynamics captured in the observed input-
state data.

4. INCORPORATION OF PRIOR
KNOWLEDGE

In this section, we shall show how to utilize known network
graph, potential interactions, canalizing and unateness properties
and attractors in the identification procedure.

4.1. Known or Potential Interactions
Often some or all interaction partners are known in a biological
system which is subject of identification. This knowledge can
come from databases or can be constructed based knowledge
about the underlying biochemical reactions. In some cases a
known signaling network is to be complemented and different
hypothesis for potential interactions shall be evaluated. If all
interaction partners and the direction of the interactions are
known, the underlying directed network graph of the BN is
known.

In graph theory, a directed graph can be denoted by G =

{V , E}, where V is a finite set of nodes and E ⊂ V × V is a
finite set of edges (Bollobas, 2012). If (vi, vj) ∈ E , then there
is an edge from vi → vj. According to Cheng et al. (2011a), a
BCN can be represented by a directed graph, where each gene is
considered as a node. If there is an edge from Xi → Xj, then Xj is
affected by Xi.

Assume that a directed graph for a BCN G = {V , E} is known.
Then we have the following result.

FIGURE 1 | Network graph.

Lemma 2. If the node Xi is affected by w nodes, then 2w binary
parameters are enough to describe the corresponding logical
matrix Si.

Proof: As the node xi is affected by w nodes, then the Boolean
function can be represented in a vector form as

xi(t + 1) = Sixi1 (t)xi2 (t) · · · xiw (t)

where the matrix Si is a logical matrix of dimension 2 × 2w.
Recall that the logical matrix Si is a matrix containing only
columns belonging to 12 (Cheng et al., 2011a). Hence, 2w binary
parameters are enough for the description of the logical matrix
Si.

An example is given below to express logical matrices of
a BCN with a known network graph with the help of binary
parameters.

Example 1. Consider a BCN as follows.

{

X1(t + 1) = f1(X2(t),U1(t))

X2(t + 1) = f2(X1(t),U2(t))
(7)

where the network graph of the BCN is shown in Figure 1

(Cheng and Zhao, 2011). According to Cheng and Qi (2010), the
algebraic form of the BCN is obtained,

{

x1(t + 1) = S1u1(t)x2(t)

x2(t + 1) = S2u2(t)x1(t)
(8)

where the logical matrices S1, S2 ∈ L2×4 can be expressed by the
binary parameter vector θ = [θ1 θ2 · · · θ8]T in the following
form:

S1 =

[

θ1 θ2 θ3 θ4
1− θ1 1− θ2 1− θ3 1− θ4

]

,

S2 =

[

θ5 θ6 θ7 θ8
1− θ5 1− θ6 1− θ7 1− θ8

]

.
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Potential interactions can be treated in the same way as
known interactions as long as all of them could potentially be
simultaneously true. If there are two alternative hypotheses and
the question is which fits better to the data, then this can be done
by introducing a constraint on the parameters θ .

Example 2. Assume that X1 is influenced either by X2 or by U1,
this could be ensured by imposing the constraint

λ(θ1 − θ2) · (θ3 − θ4)+ (1− λ)(θ1 − θ3) · (θ2 − θ4) = 0, λ ∈ {0, 1},
(9)

4.2. Canalizing Boolean Functions
The concept of “canalizing” values in Boolean functions was
introduced in developmental biology in 1940s (Waddington,
1942). The idea is, that one input is dominant and if it takes
a certain value it determines the output. After that, in order to
explain the phenomenon that absence of repressor or high levels
of allolactose assures the operator cannot bind repressor in lac
operon of the bacterium Escherichia coli, Kauffman applied this
concept to BNmodeling of gene regulatory networks (Kauffman,
1974).

Canalizing functions are defined as follows.

Definition 1. A Boolean function f :Dn f
−→ D is canalizing if

there exist a variable Xi, i ∈ {1, 2, · · · , n} and a Boolean function
g(X1, · · · ,Xi−1,Xi+1, · · · ,Xn) and a, b ∈ D, such that

f (X1, · · · ,Xn) =

{

b, if Xi = a,

g 6= b, if Xi 6= a
(10)

where a is called the canalizing value for the variable Xi and b is
the canalizing output value (Kauffman, 1974).

Based on Definition 1, this prior knowledge can be translated
into imposing a specified value in the corresponding logical
matrix. Assume that the logical matrix for the canalizing function
(10) is denoted as S and the canalizing value a and canalizing
output b can, respectively, be expressed in a vector form as δ2−a

2

and δ2−b
2 . Then, we can get the following result.

Theorem 1. Given a canalizing function (10). The corresponding
logical matrix S ∈ L2×2n satisfies

SW[2,2i−1]δ
2−a
2 = δ2[2− b 2− b · · · 2− b

︸ ︷︷ ︸

2n−1

]. (11)

where W[2,2i−1] is the swap matrix.

Proof: According to Lemma 1, it is easy to obtain Sx1x2 · · · xn =

SW[2,2i−1]xix1x2 · · · xi−1xi+1 · · · xn. Applying (11), we have

SW[2,2i−1]δ
2−a
2 x1x2 · · · xi−1xi+1 · · · xn

= δ2[2− b 2− b · · · 2− b
︸ ︷︷ ︸

2n−1

]x1x2· · ·xi−1xi+1· · ·xn = δ2−b
2

which corresponds to f (X1, · · · ,Xi−1, a,Xi+1, · · · ,Xn) = b for
any X1, · · · ,Xi−1,Xi+1, · · · ,Xn ∈ {0, 1}.

Let’s take an example to illustrate the result of Theorem 1.

Example 3. Consider the BCN (7). Assume that the Boolean
function f1 is a canalizing function in x2 for a canalizing value
δ22 and the corresponding canalizing output is δ12 . Due to the
canalizing property, the logical matrix S1 can be reduced to

S1W[2,2]δ
2
2 =

[

1 1
0 0

]

⇒ S1 =

[

θ1 1 θ3 1
1− θ1 0 1− θ3 0

]

.

It can be checked that S1u1δ22 = δ12 , no matter whether u1 = δ12
or u1 = δ22 . Note that the logical matrix S1 contains only two
binary parameters (i.e., θ1 and θ3). It shows that using canalizing
property can reduce the number of binary parameters.

As an important subclass of canalizing function, k-canalizing
function is defined as follows.

Definition 2. Let σ be a permutation on the set {1, 2, · · · , n}.

A Boolean function f :Dn f
−→ D is k-canalizing in the

variable orderXσ (1),Xσ (2), · · · ,Xσ (k) with canalizing input values
a1, a2, · · · , ak and canalizing output values b1, b2, · · · , bk, if it can
be represented in the form (Kauffman et al., 2003).

f (X1, · · · ,Xn)=























































b1, if Xσ (1) = a1,

b2, if Xσ (1) 6= a1,Xσ (2) = a2,
...

bk, if Xσ (1) 6= a1,Xσ (2) 6= a2 · · ·

Xσ (k) = ak,

g 6= bk, if Xσ (1) 6= a1,Xσ (2) 6= a2 · · ·

Xσ (k) 6= ak.

(12)

Note that if all variables have certain canalizing values, then the
function is called nested canalizing function (Kauffman et al.,
2003).

As a Boolean variable can only take two values, i.e., {0, 1}, (12)
can be equivalently expressed as f (X1, · · · ,Xn) = bi, if Xσ (1) =

1 − a1,Xσ (2) = 1 − a2, · · · ,Xσ (i) = ak, i = 1, 2, · · · , k. Using
the Boolean variables [Xσ (1) Xσ (2) · · ·Xσ (i)]

T to represent a multi-
valued logic variable, it is straightforward to recognize that a k-
canalizing function can be equivalently formulated as a canalizing
function in a multi-valued logic variable. Therefore, Theorem 1
can be applied to specify the logical matrix for k-canalizing or
nested canalizing function (12).

It is necessary to point out that different from the approaches
proposed in Breindl et al. (2013) and Faisal et al. (2010), some
binary parameters can be directly inferred, no matter which
canalizing value the canalizing variable takes.

Example 4. Consider the BCN (7). Assume that the Boolean
function f2 is nested canalizing function, which can be
represented as

f2(U2,X1) =

{

1, if U2 = 1,

0, if U2 6= 1,X1 = 1.
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Because f2(1,X1) = 1 for X1 ∈ {0, 1}, we have

S2δ
1
2 =

[

1 1
0 0

]

⇒ S2 =

[

1 1 θ7 θ8
0 0 1− θ7 1− θ8

]

.

Moreover, due to f2(0, 1) = 0, there is

S2δ
2
2δ

1
2 =

[

0
1

]

⇒ S2 =

[

1 1 0 θ8
0 0 1 1− θ8

]

.

Remark 1. Theorem 1 implies that considering canalizing
property of a Boolean function, the corresponding logical matrix
can be expressed with fewer binary parameters. For instance, if
a Boolean function f (X1,X2, · · · ,Xn) is a k-canalizing function,
then 2n−k different binary parameters are enough to represent the
corresponding logical matrix.

4.3. Unate Boolean Functions
The behavior of some substances or genes are well studied and it
is known that they act as suppressing or activating in all reactions
they are involved. If they always act inhibiting they have the so
called negative unateness property. For the case that a quantity
exclusively induces the expression of another gene or substance
it has the positive unateness property (Porreca et al., 2010).

For the mathematical modeling of the unatess properties let
us consider another important type of Boolean functions, which
is called the unate function (Breindl et al., 2013).

Definition 3. (Breindl et al., 2013) A Boolean function f :Dn f
−→

D is unate in xi, if for any [X1 X2 · · · Xi−1 Xi+1 · · · Xn]T ∈ D
n−1

it holds for positive unateness that

f (· · ·,Xi−1, 0,Xi+1, · · ·)≤f (· · ·,Xi−1, 1,Xi+1, · · ·) (13)

or it always holds for negative unateness that

f (· · ·,Xi−1, 0,Xi+1, · · ·)≥f (· · ·,Xi−1, 1,Xi+1, · · ·) (14)

In the same way as Breindl et al. (2013), unateness can
be equivalently represented as linear formulation. Afterwards,
this linear formulation can be seen as additional inequality
constraints in the optimization problem. As Boolean function can
be rewritten as a vector form (4) and according to Lemma 1, there
is

Sx1x2 · · · xi−1xixi+1 · · · xn = SW[2,2i−1]xix1x2 · · · xi−1xi+1 · · · xn
(15)

where S is the logical matrix corresponding to the
Boolean function f . Hence, f (· · ·,Xi−1, 0,Xi+1, · · ·) and
f (· · ·,Xi−1, 1,Xi+1, · · ·) can, respectively, be represented in
a vector form as

SW[2,2i−1]δ
2
2x1x2 · · · xi−1xi+1 · · · xn (16)

and

SW[2,2i−1]δ
1
2x1x2 · · · xi−1xi+1 · · · xn (17)

Furthermore, based on the vector form of Boolean
variable (3) and according to (13) or (14), for each
x1, x2, · · ·, xi−1, xi+1, · · ·, xn ∈ 12 an inequality can be set
up. Putting all inequality constraints together, we can find a
matrix A for the following expression.

A · θ ≤ 0n (18)

Example 5. Consider the Boolean function x1 = f1(x2), this
function f1 is defined by two unknown parameters θ1 and θ2 .
Assume that the Boolean function f1 is a unate function with
respect to x2, which satisfies (13). As the first step, the matrix S1δ12
and S1δ

2
2 are calculated, which yields

S1δ
1
2 =

[

θ1
1− θ1

]

, S1δ
2
2 =

[

θ2
1− θ2

]

.

Then, the inequality constraint is

θ2 ≤ θ1 ⇐⇒
[

−1 1
]

·

[

θ1
θ2

]

≤ 0.

4.4. Known Attractors or Limit Cycles
When the BCN is not perturbed for a sufficiently long time it
reaches the steady state. The steady state of a BCN can be exactly
one state (i.e., attractor) or a fix cycle of some states (i.e., limit
cycle). Attractors or limit cycles are assumed to determine the
phenotype in the cell differentiation (Huang and Ingber, 2000).
The experimental setup to measure the steady state of a system
is simpler and measurements are easier to reproduce compared
with transient dynamics. As a result, the steady state of the
BN is often already known when the perturbation experiments
for identification of the transient behavior are carried out. This
knowledge can be utilized as follows.

An attractor corresponds to a self loop in the reachability
graph. For a given input combination this fixes one specific
coulumn in the matrix L. For the constant input u(t) = δi2m and

the constant state x(t) = δ
j
2n the k-th column is known to be

Colk(L) = δ
j
2n with k = (i−1)2n+ j. A limit cycle can be analyzed

in a similar manner. For the given state sequence of the limit cycle
of length T and the constant input u(t) = δi2m one can calculate
T columns of L. For each time instant t of the cycle the actual

state x(t) = δ
j
2n and the next state x(t + 1) = δw2n is known. The

information of this known transition is used by setting the k-th
column to Colk(L) = δw2n with k = (i− 1)2n + j.

5. IDENTIFICATION APPROACH

In this part, the identification problem of BCNs will be studied.
At first, it will be shown that the identification problem can
be reformulated as a nonlinear pseudo-Boolean optimization
problem by applying the idea of the prediction error method.
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The pseudo-Boolean optimization can be transformed into an
equivalent linear binary integer programming problem that
can be solved more efficiently. Then, we give a way to deal
with missing measurement values. Finally, we discuss how
dependencies between measured substances can be handled.

5.1. Optimization Problem
The prediction error method (PEM) is one of the most widely
used identification methods (Isermann and Münchhof, 2011).
The basic idea behind this method is to choose parameters to
make the difference between a prediction based on the model and
the measured values as small as possible. As the PEM minimizes
the prediction error in the identified system, errors in the data set
due to noise need no special treatment. Obviously the more noise
is expected in the data set the more data should be acquired for
identification of a reliable model.

Before applying PEM, it is necessary to specify a measure of
prediction error. In information theory, the Hamming distance
d(X,Y) between two vectors X,Y ∈ D

n is defined as the number
of positions, in which the entries differ (Hamming, 1950).

d(X,Y) = |{j ∈ {1, 2, · · · , n}| [X]j 6= [Y]j}| (19)

As each entry in the vectors X and Y belongs to the Boolean
domain {0, 1}, (19) can be equivalently written as

d(X,Y) =
n

∑

i=1

∣

∣[X]i − [Y]i
∣

∣ (20)

Furthermore, let xi, yi be, respectively, the vector form of [X]i and
[Y]i. Then, it is straightforward to get

∣

∣[X]i − [Y]i
∣

∣ = 1− xTi · yi (21)

Based on this, the Hamming distance d(X,Y) can be rewritten as

d(X,Y) =
n

∑

i=1

(

1− xTi · yi

)

(22)

Assume that the observed input and state data is
{(U(t),X(t)), t = 0, 1, · · · ,T}. The vector form of the input data
{U1(t),U2(t), · · · ,Um(t)} and state data {X1(t),X2(t), · · · ,Xn(t)}
are denoted, respectively, as u1(t), u2(t), · · · , um(t) and
x1(t), x2(t), · · · , xn(t). Since the logical matrix Si for the
state variable Xi can be represented by the parameter vector θ ,
we simply denote them as Si(θ). Suppose that the state variable
Xi can be influenced by the variables Xj1 ,Xj2 , · · · ,Xjk . According
to (5), it is easy to get expression of the prediction x̂i(θ , t):

x̂i(θ , t) = Si(θ)u(t − 1)⋉k
i=1 xji (t − 1) (23)

Recalling (21) and (22), the PEMmethod will estimate the binary
parameters by minimizing the prediction error, i.e.,

min
θ∈Dk

T
∑

t=0

d(X(t), X̂(θ , t))=min
θ∈Dk

T
∑

t=0

n
∑

i=1

(

1−xTi (t)·x̂i(θ , t)
)

(24)

Furthermore, the optimization problem (24) can be equivalently
rewritten as

min
θ∈Dk

(

T · n−

T
∑

t=0

n
∑

i=1

xTi (t) · x̂i(θ , t)

)

which is actually equivalent to

max
θ∈Dk

T
∑

t=0

n
∑

i=1

xTi (t) · x̂i(θ , t) (25)

Next, it will be shown that the optimization problem (25) can be
formulated as a pseudo-Boolean optimization (i.e., optimization
of pseudo-Boolean functions). A pseudo-Boolean function is a
mapping from a finite number of Boolean variables to a real
number and can be uniquely represented by a multi-linear
polynomial (Boros and Hammer, 2002).

As mentioned before, any logical matrix can be expressed
by a multi-linear polynomial. After calculation, the term
∑T

t=0

∑n
i=1 x

T
i (t)x̂i(θ , t) can be represented by a multivariate

polynomial.

Pmv(θ) = c+
∑

Qβ⊂V

cQβ

∏

j∈Qβ

θ
rQβ ,j

j (26)

where c, cQβ
∈ R for Qβ ⊂ V = {1, 2, · · · , k} and

the factor rQβ ,j,∀β , j is a natural number. In addition, using
the property of Boolean variables θ ri = θi,∀r ∈ Z+, the
multivariate polynomial (26) is easily transformed into a multi-

linear polynomial. Consequently, the term
∑T

t=0

∑n
i=1 x

T
i (t) ·

x̂i(θ , t) can be described by a multi-linear polynomial (6) and the
optimization problem (25) is transformed into a pseudo-Boolean
optimization problem

max
θ∈Dk

Pml(θ) = max
θ∈Dk

c+

k
∑

i=1

ciθi +

q
∑

α=1

cIα

∏

j∈Iα

θj (27)

So far, several different ways to handle the nonlinear pseudo-
Boolean optimization problems (27) exist, such as reduction to
an equivalent linear or quadratic binary programming problem,
branch-and-bound method, linear approximations (Boros and
Hammer, 2002; Crama and Rodrí-guez-Heck, 2017). As the
linear programming relaxation of an integer linear program can
be solved efficiently and based on the solution integer solutions
can be found, in this paper we consider “linearization”, so that
nonlinear binary optimization can be reduced to integer linear
program (Crama and Rodrí-guez-Heck, 2017). The key is to
introduce auxiliary Boolean variables z = [z1 z2 · · · ]T to
replace the nonlinear monomial

∏

j∈Iα
θj in (6) by means of the

AND-expression zα =
∏

j∈Iα
θj. Simultaneously to satisfy the

AND-expression, linear inequalities as constraints are considered
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to get feasible value of the nonlinear monomial
∏

j∈Iα
θj. Finally,

an optimization problem equivalent to (27) is obtained as

max
θ ,z

LP(θ , z) = max
θ ,z

c+

k
∑

i=1

ciθi +
∑

α

cIα
zα

s.t. zα ≤ θj,∀j ∈ Iα ,

zα ≥
∑

j∈Iα

θj − (|Iα| − 1),

zα ∈ D, θ ∈ D
k.

(28)

The constraints in the optimization problem in (27) can be
complemented by additional constraints representing the prior
knowledge of alternative hypotheses or unateness as shown in
Section 4.1 and Section 4.3, respectively.

Remark 2. It is important to note that minimizing or maximizing
a pseudo-Boolean function is known to be NP-hard (Crama and
Rodrí-guez-Heck, 2017). However, Breindl et al. (2013) shows
that the optimization problem (28) can be solved using a relaxed
problem, i.e., linear programming solver based on the simplex
method, which requires less computational effort than mixed
integer linear program. The relaxed problem delivers an integer
as optimal solution, which is also an optimal solution of the
optimization problem (28).

5.2. Handling of Large Scale Networks
With modern measurement techniques it is possible to quantify a
huge amount of substances simultaneously. A Boolean network
which describes the observed interactions is then also of large
scale. But the number of substances which are direct relevant
for the regulation of certain substance is usually limited, in
other words the connectivity inside the network is bounded.
For instance, as pointed out by Arnone and Davidson (1997),
the connectivity is bounded by 8. Without prior knowledge the
complexity of the algorithm is O = 2n+m as all state and
input combinations have to be considered as potential regulators
for all states, even though only some of them are relevant in
the end. This would limit the applicability of the approach to
rather small networks. If one has hypotheses about potential
interaction partners and the number of potential regulators per
state is limited by a set of k variables, then the complexity of the
algorithm is O = 2k, as the regulative functions for each state
can be inferred separately. The hypotheses for the interaction
partners are not necessarily based on prior-knowledge, but
could also be computed based on the data set. In Margolin
et al. (2006) an approach is presented, which is based on the
information theoretic concept of mutual information ranking
and the restriction to pairwise interactions that leads to a very
good scaling with big data sets.

5.3. Handling of Missing Measurement
Values
Dependent on the measurement technique it is sometimes not
possible to measure all states at all time instances and the
missing values must be handled in the data analysis. There

are approaches in the literature to compute an imputation
e.g., for microarrays in Gan et al. (2006) and gel-based
proteomics in Albrecht et al. (2010). These approaches are
based on interpolation or heuristics. An alternative is to use
a data analysis approach which can deal with incomplete data
matrices.

A missing measurement value can be estimated during the
identification by adding additional binary parameters in the
identification process. Because of vector expression of states,
all possible states belong to the set 12n . In this way, n binary
parameters are enough for vector expression of a completely
unknown state at time k. For example, if n = 2, then we can
generally express the unknown state as

x(k) =









γ1 · γ2
γ1 · (1− γ2)
(1− γ1) · γ2

(1− γ1) · (1− γ2)









. (29)

Furthermore, as the states of the system are known partially, then
the number of binary parameters can be reduced accordingly. So
for eachmissing value one parameter is added to the optimization
and the imputation for this value is calculated which fits best to
the other dynamic behavior of the system.

5.4. Handling of Unmeasurable Processes
In some systems post transcriptional protein-protein interactions
induce dependencies between the measured abundances similar
to the transcriptional regulation. This leads to the situation that
the transcriptional regulation can not be observed directly and
the identification procedure needs to be adapted accordingly
(Geier et al., 2007). The dependencies between the states and the
measured outputs can be included in boolean models easily by
adding Boolean functions mapping from the actual stats X(t) to
the measured outputs Y(t):

Yj(t) = hj(X(t)), j = 1, 2, . . . , p (30)

where [Y(t) = Y1(t) Y2(t) . . . Yp(t)]T ∈ D
p is the output vector

at time t , hi are logic functions. All structural information on the
logic functions can be expressed with a logical matrix H

y(t) = Hx(t) (31)

which can be derived analogous to Equations (2–5). All
approaches presented in this paper can be extended for the
BN model with output mapping. As additional logic functions
are to be identified, additional unknown parameters are added
and these parameters cannot be separately identified from
the parameters of the regulative functions, which impacts the
computational burden drastically (Zhang et al., 2017b) .

5.5. Influence of Noise
In real world experiments measurement noise is unavoidable.
With a sophisticated binarization method the influence of
additive noise can often be suppressed (Hopfensitz et al., 2012).
But noise can still lead to wrong binarized values in some cases
and consequently errors in the input to the identification method
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FIGURE 2 | Perturbation and state measurement. (A) First experiment. (B) Second experiment.

FIGURE 3 | Hypothesis, partially identified and fully identified network graph. (A) Hypotheses for regulative interactions. (B) Identified Boolean network without

canalizing information. (C) Identified Boolean network with prior knowlege.

cannot be totally avoided. As the presented approach is based on
an optimization, the network which optimally fits to the observed
data is found. Inconsistent transitions caused by noise in the
data set can be handled directly and lead to an identification
result with a non-zero prediction error. If, due to noise, the
observed transitions would lead to an identification result which
is contradictory to prior knowledge, the identification approach
ignores these transitions directly.

Example 6. Consider the BCN for oxidative stress response
pathways with the PI3-Kinase-Akt pathway given in

Sridharan et al. (2012).







































X1(t + 1) = U(t) ∧ ¬X6(t)

X2(t + 1) = ¬X1(t)

X3(t + 1) = ¬X1(t) ∧ (X5(t) ∨ X3(t)

X4(t + 1) = X1(t) ∧ ¬X6(t)

X5(t + 1) = X4(t) ∨ ¬X3(t)

X6(t + 1) = X5(t) ∧ (¬X6(t) ∨ ¬X2(t))

(32)

In the model, X1 represents stress reactive intermediaries, X2

transcription factor A, X3 key protein, X4 protein kinase, X5
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transcription factor B, X6 anti-stress response element, U stress
signal. Using STP, (32) can be converted into the algebraic form
(5) with x(t) = ⋉6

i=1xi(t) ∈ 164, u(t) ∈ 12.
Assume that two experiments have been executed starting in

steady state with two different stimuli, the corresponding input-
state data is obtained as shown in Figures 2A,B. Assume further
that as prior knowledge the candidates of regulative interactions
(see the dashed lines in Figure 3A) and the attractor are given.
The attractor of the BCN without stress is X1 = 0, X2 = 1, X3 =

1,X4 = 0, X5 = 0, X6 = 0.
Based on the candidates of regulative interactions, the number

of unknown binary parameters θ representing the logical
matrices of the Boolean functions can be reduced from 6 · 27 =

768 to 40 as described in Section 4.1. For instance, since the
variable X2 is connected with the variables X1, X3 and X5, it
means that the Boolean function of the variable X2 can be
described by f2(X1,X5,X5). Accordingly, 8 binary parameters are
enough to represent the logical matrix S2 of the Boolean function
f2, i.e.,

S2 =

[

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8
1−θ1 1−θ2 1−θ3 1−θ4 1−θ5 1−θ6 1−θ7 1−θ8

]

.

(33)
The information about the steady state is used as described in
Section 4.4 to determine one parameter in each matrix, which
reduces the number of unknown variables to 34. In the next,
we apply the proposed approach to identify the model of the
BCN from the given input-state data. Solving the optimization
problem (28), in total, 31 unknown binary parameters can be
determined. The identification result is depicted in Figure 3B and
the identified matrices are as follows,

S1 =

[

0 1 0 0
1 0 1 1

]

, S2 =

[

0 0 0 0 1 1 1 1
1 1 1 1 0 0 0 0

]

,

S3 =

[

0 0 0 0 1 1 1 0
1 1 1 1 0 0 0 1

]

,

S4 =

[

0 1 0 1 0 0 0 0
1 0 1 0 1 1 1 1

]

, S5 =

[

θ29 0 1 1
1−θ29 1 0 0

]

,

S6 =

[

0 1 θ35 0 1 1 θ39 0
1 0 1−θ35 1 0 0 1−θ39 1

]

.

(34)

It can be seen that the logical matrices of the Boolean functions
for X5 and X6 can not be uniquely determined. Combined
with an additional information about activating or suppressing
properties of the states, for instance, X4 and X5 are, respectively,
activator to X5 and X6, the complete model can be uniquely

reconstructed. The canalizing property of X4 and X5 can be
utilized as described in Section 4.2. If this information is
not available, one could conduct additional experiments with
different stimuli and combine the data to have full reconstruction
of the model as depicted in Figure 3C.

6. DISCUSSION

The proposed method facilitates the incorporation of various
types of prior knowledge. The optimization problem can be
solved by efficient linear programming solvers. By using the
simplex method one can guarantee to find the network which
optimally fits to the observed data. In comparison, the genetic
algorithms based approaches may not guarantee the optimal
solution. The proposed method is developed for synchronous
Boolean networks. It can be applied to large scale networks,
if the connectivity of the network to be identified is limited
with aid of prior knowledge or application of information
theory.

In future we plan to investigate data-based approaches to infer
the connections in large networks and automated partitioning
into smaller subsystems (e.g., with an adapted approach from
discrete event systems like Saives et al., 2018). We also work on
a new method for the binarization based on the idea that the
qualitative system behavior before and after the binarization shall
be the same.
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The logical formalism is well adapted to model large cellular networks, in particular when

detailed kinetic data are scarce. This tutorial focuses on this well-established qualitative

framework. Relying on GINsim (release 3.0), a software implementing this formalism, we

guide the reader step by step toward the definition, the analysis and the simulation of a

four-node model of the mammalian p53-Mdm2 network.

Keywords: regulatory network, logical model, discrete dynamics, regulatory circuit, p53-Mdm2 network

1. INTRODUCTION

The logical formalism is becoming increasingly popular to model cellular networks (Naldi et al.,
2015; Abou-Jaoudé et al., 2016). Here, we focus on the framework developed by René Thomas and
colleagues, which includes the use of multi-valued variables when functionally justified, along with
sophisticated logical rules or parameters (Thomas, 1991; Thomas et al., 1995).

This approach has been applied to the study of a wide range of networks controlling, for example,
the lysis-lysogeny decision of the bacteriophage λ (Thieffry and Thomas, 1995), the specification
of flower organs in arabidopsis (Mendoza et al., 1999; Azpeitia et al., 2014), the segmentation of
drosophila embryo (Sánchez and Thieffry, 2001; Sánchez and Thieffry, 2003; Sánchez et al., 2008;
Mbodj et al., 2016), the specification of compartments in drosophila imaginal disks (González et al.,
2006, 2008), drosophila egg shell patterning (Fauré et al., 2014), the control of cell cycle in yeast and
mammals (Fauré et al., 2006, 2009; Traynard et al., 2016), the specification of immune cells from
common progenitors (Mendoza and Méndez, 2015; Collombet et al., 2017), the differentiation of
T-helper lymphocytes (Naldi et al., 2010; Abou-Jaoudé et al., 2015; Martinez-Sanchez et al., 2015),
neuronal differentiation (Coolen et al., 2012), as well as cancer cell fate decisions (Sahin et al., 2009;
Calzone et al., 2010; Grieco et al., 2013; Flobak et al., 2015; Remy et al., 2015), etc.

In order to ease access to logical modeling by biologists, this protocol proposes a stepwise
introduction to the framework, relying on its implementation into the software GINsim (release
3.0). The following section introduces the biological system used as an illustration. Next, in section
3, we proceed with the stepwise construction and analysis of a logical model. Section 4 covers
potential troubleshooting. The article then ends with some conclusions and prospects.

2. THE P53-MDM2 NETWORK

The transcription factor p53 plays an essential role in the control of cell proliferation in mammals
by regulating a large number of genes involved notably in growth arrest, DNA repair, or apoptosis
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(Vogelstein et al., 2000). Its level is tightly regulated by the
ubiquitin ligase Mdm2. More precisely, nuclear Mdm2 down-
regulates the level of active p53, both by accelerating p53
degradation through ubiquitination (Brooks and Gu, 2006) and
by blocking the transcriptional activity of p53 (Oliner et al., 1993;
Coutts et al., 2007). In turn, p53 activates Mdm2 transcription
(Barak et al., 1993) and down-regulates the level of nuclearMdm2
by inhibiting Mdm2 nuclear translocation through inactivation
of the kinase Akt (Mayo and Donner, 2002). Finally, high levels
of p53 promote damage repair by inducing the synthesis of DNA
repair proteins (Gatz and Wiesmüller, 2006).

Given its key role in DNA repair and cell fate control, various
groups have modeled this network using different formalisms,
including ordinary differential equations (Ciliberto et al., 2005;
Zhang et al., 2011), stochastic models (Puszynski et al., 2008;
Ouattara et al., 2010; Sun and Cui, 2014), hybrid deterministic
and stochastic models (Iwamoto et al., 2014), as well as logical
models (Abou-Jaoudé et al., 2009; Choi et al., 2012).

In this protocol, we rely on a refined version of a logical model
presented by Abou-Jaoudé et al. (2009), involving the protein
p53, the ubiquitin ligase Mdm2 in the cytoplasm, the ubiquitin
ligase Mdm2 in the nucleus, and DNA damage (see Figure 1).

3. CONSTRUCTION AND ANALYSIS OF
THE MODEL

In this section, referring to the p53-Mdm2 network defined
above, we introduce the different steps required for the definition

FIGURE 1 | The p53-Mdm2 network. This figure describes the interactions between p53, Mdm2, and DNA damage. An external stress induces a damage to the

DNA, which promotes Mdm2 degradation. The level of p53 can then increase and activate DNA repair mechanisms. In parallel, p53 inhibits Mdm2 translocation from

the cytoplasm to the nucleus through the inactivation of AKT. However, in the nucleus, high level of p53 activates Mdm2 transcription, while Mdm2 induces the

degradation of p53, thereby forming a negative feedback circuit. This figure has been drawn according to the Systems Biology Graphical Notation (SBGN)

specifications (Le Novère et al., 2009).

of a logical model and for the analysis of its dynamical properties
with the software GINsim, release 3.0.

3.1. GINsim
The GINsim software supports the definition, the simulation and
the analysis of regulatory graphs, based on the (multi-valued)
logical formalism. GINsim is freely available from its dedicated
website (http://ginsim.org), along with documentation and a
model repository. For this tutorial, we use the recent release 3.0,
which is available for all platforms with version 8 of the Java
Virtual Machine.

To get started with GINsim, download the corresponding
Java ARchive (JAR file), with dependencies included, from
the download section of GINsim website (http://ginsim.org/
downloads). On your computer, double-click on the file icon
to start the application or launch it with the command:
java -jar GINsim-♯version.jar in a terminal. Further
instructions, troubleshooting and options are documented on the
website.

3.2. Definition of a Logical Regulatory
Graph
Upon launch, GINsim displays a window enabling the creation
of a new model, the import of a model in a supported format, or
the opening of a previously defined model (if any). By clicking on
the New model button, a window enabling the edition of a new
logical regulatory graph opens.

To edit a graph, use the toolbox located just on the top of
the window (below the menu bar, see Figure 2). Passing slowly
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FIGURE 2 | GINsim main window displaying the nodes of the p53-Mdm2 logical regulatory graph. The upper part of the window displays five scrolling menus. These

menus provide access to classical file management options, as well as exports into various formats. The central area displays the regulatory graph (here the nodes of

the p53-Mdm2 model), while the other area contains two tabs: the Modeling Attributes tab (selected here) and the Style tab, corresponding to the selected node, here

p53. The graphical appearance of the nodes have been modified using the Style tab. The Edit button on the top is selected and emphasized in blue, enabling the

edition of the attributes of the selected node, including its id and name, its maximal level (Max, here set to 2), and also the insertion of annotations in the form of free

text (bottom right) or of links to relevant database entries (bottom middle).

with the mouse on each of the editing tools displays a message
explaining the function of each tool. Clicking on the E icon
enables further edition of an existing node or arc upon selection,
while the garbage can icon serves to delete selected arcs and
nodes. Clicking once on one of the remaining icons enables the
drawing of a single node or arc. Clicking twice on one of these
tools locks the corresponding editingmode, enabling the drawing
of several nodes or arcs without clicking repeatedly on the same
tool.

3.2.1. Definition of the Regulatory Nodes
First, we need to define four nodes for the four key regulatory
factors of the model: p53, Mdm2cyt, Mdm2nuc, and DNA
damage (DNAdam). Each node has a unique identifier and
a maximal level, specifying a range of possible functional
qualitative levels, as listed in Table 1. To define all the nodes in
a row, first double-click on the node addition tool (symbol is a

TABLE 1 | Regulatory nodes and maximal levels for the p53-Mdm2 model.

Regulatory nodes Maximal levels

p53 2

Mdm2cyt 2

Mdm2nuc 1

DNAdam 1

square with a plus sign) to lock this mode, then click four times
on the panel to create the four nodes, with default identifiers and
a maximal level of 1. Next, click on the E icon to stop adding
nodes, and select each node to change its ID and maximal level
(when required) in the bottom edition panel. Figure 2 illustrates
this step.
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3.2.2. Definition of Regulatory Interactions
Next, we need to define the arcs representing the regulatory
interactions between the factors considered in the model. An arc
is defined by its source and target nodes, a sign, and a threshold,
as described in Table 2 and illustrated in Figure 3. In the non-
Boolean case, a node may have distinct actions on a target

TABLE 2 | Interactions and thresholds for the p53-Mdm2 model.

Source nodes Target nodes Thresholds Interaction signs

p53 Mdm2nuc 1 −

Mdm2cyt 2 +

DNAdam 2 −

Mdm2cyt Mdm2nuc 1 +

2 +

Mdm2nuc p53 1 −

DNAdam DNAdam 1 +

Mdm2nuc 1 −

node, depending on its activity level (e.g., from Mdm2cyt onto
Mdm2nuc). In this case, one arc is drawn, which encompasses
multiple interactions, each with its own threshold. An interaction
is then active when the level of its source is equal or above its
threshold, but below the threshold of the next interaction. Add
each arc between each relevant pair of nodes by selecting the
relevant tool (addition of positive, negative, dual, or unknown
interaction) and dragging a line from the source to the target
node. Next, use the edition panel to specify multiple interactions
with their thresholds, and possibly change their signs.

3.2.3. Definition of the Regulatory Rules
We can now define the rules governing the evolution of the
regulatory node levels. For each node, specify the logical rules
listed in Table 3. For this, select a node and the Formulae view
in the drop-down list at the bottom left of the GINsim window.
Click on the little arrow in the main bottom panel, expand the
tree view and then click on the E button, to enter a formula.

FIGURE 3 | Regulatory arc management in GINsim. To add an arc, the corresponding arc button must be pushed (push twice to add several arcs in one go), allowing

the drawing of an arc between a source node and its target. Once an arc has been defined, it can be further edited by selecting it after locking the E button. The sign

and threshold of the interaction(s) associated with an arc are defined within the Modeling Attributes tab, as shown here for the arc from Mdm2cyt onto Mdm2nuc. The

additional interaction with threshold level 2 was created by clicking on the + button displayed when additional thresholds are available.
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Figure 4 illustrates this step. Note that the definition of adequate
logical rules (or parameters, see Note 1) is necessary to ensure the

TABLE 3 | Logical rules for the nodes of the p53-Mdm2 model.

Regulatory nodes Target levels Boolean rules

p53 2 !Mdm2nuc

Mdm2cyt 2 p53

1 !p53

Mdm2nuc 1 Mdm2cyt:2 | (Mdm2cyt:1 & !p53 & !DNAdam)

DNAdam 1 DNAdam & !p53

This table lists the conditions enabling the activation of each node (up to level one in the

case of a Boolean node, potentially up to higher levels for multi-valued nodes, as for p53

and Mdm2cyt here). These conditions are defined in term of Boolean expressions using

the NOT, AND and (inclusive) OR Boolean operators (denoted by !, & and | in GINsim,

respectively).

desired effects of each interaction on the target nodes. Per default,
GINsim assigns a null target value to each node devoid of explicit
rule.

3.2.4. Adding Annotations
To keep track of supporting data and modeling assumptions,
the user can add textual annotations and hyperlinks to relevant
database entries, at the level of the model itself, as well as for each
individual node or arc (see Figure 2 for an illustration).While the
annotation panel is always visible when editing an arc, it requires
to select the Annotations view (in the bottom left drop-down list)
when editing a node.

3.2.5. Changing Layout and Styles
The layout and graphical appearance of nodes and arcs of the
graph can be changed according to the user taste. For this, select
a node or an arc, along with the Style tab. The user can further

FIGURE 4 | Defining logical rules for the regulatory nodes. This screenshot shows the Modeling Attributes associated with the selected node DNAdam. The maximal

level is set to 1. After selecting Formulae with the bottom-left scrolling menu, the user can enter logical formulae by clicking on the little arrows in the main bottom. The

target level (set to 1 per default) can be changed in the case of a multi-valued node. By clicking on the E button, one can directly write a formula, using literals (these

should exactly match the IDs of nodes regulating the selected node, i.e., p53 or DNAdam in the present case) and the Boolean operators !, & and |, denoting NOT,

AND and (inclusive) OR, respectively (following the usual priority ordering; parentheses can be used to define complex formulae). Note that several rows can be used

in association with a single target value; these rows are then combined with OR operators. Here, the formula DNAdam & !p53 associated with the target value 1

implies that DNAdam will be maintained at a level 1 if already present, but only in the absence of p53.
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FIGURE 5 | Launching of the construction of a state transition graph. This panel is obtained when selecting Run Simulation from the Tools scrolling menu in GINsim

main window. The default simulation settings are shown, i.e., the construction of a state transition graph using the asynchronous updating, with no specified initial

state (meaning that all states are considered in the simulation). Hitting the Run button will generate the corresponding state transition graph, which can be displayed in

a new window (see Figure 6). In the table under Initial States, one can define one or several initial states from which the dynamics will be constructed (just type the

desired values in a row along with an optional name). Each row of the table defines a single pattern of states, and the check-boxes allow to select the states to be

used for a simulation. The levels are specified for each node in the corresponding table cell. Nodes for which values are left free are denoted by stars (*). Initial states

can be reordered, deleted and duplicated using the buttons just above the table. Here, a unique initial state has been defined, but not selected for simulation: the state

0111 (i.e., with p53 set to 0, and the three other nodes set to 1). Note that M1 emphasizes the fact that the value 1 is the maximal level for Mdm2nuc and for

DNAdam. Several parameter configurations can be created and stored using the + button on the left side.

change the default style or define new styles. To change the graph
layout, drag a node to change its position or drag an arc to create
a new intermediate point. An existing intermediate point can be
moved or deleted using right-click.

3.2.6. Node Ordering
Selecting the Modeling Attributes tab, with no object selected
in the main window, verify that the order of the nodes is: p53,
Mdm2cyt,Mdm2nuc, DNAdam. If this is not the case, modify the
node order accordingly, using the arrows close to the node list at
the left of the Modelling attribute tab. Using this node order will
ease the comparison of your results with the Figures hereafter.

3.2.7. Save Your Model!
The model along with simulations settings (see hereafter) can be
saved into a compressed archive (with a zginml extension) by
using the Save option in the File menu. Save the model regularly
during its encoding, as there is no undo functionality.

3.3. Dynamical Analysis
The qualitative state of a logical model is defined by the
activity levels of its nodes. At a given state, the rules associated
with each node define its target level. When the current level
of a node is different from its target level, it is called to
update toward this target level, resulting in a transition to

another state. Several nodes can be called for update at a given
state.

Two main strategies are then commonly used. Under the
synchronous updating, all concerned nodes change their levels
simultaneously in a unique transition toward a single successor
state. In contrast, the asynchronous updating generates a
successor state for each single node update. If the current state
involves k updating calls, it will thus have k successors, each
differing from the current state by the level of a single node (see
Note 2 for additional explanations). The introduction of priority
classes allows to define subtler updating schedules (see Note 3 and
Fauré et al., 2006).

The resulting state transitions define another type of graph
called state transition graph (STG), which represents the
dynamical behavior of the logical model (i.e., the regulatory
graph + logical rules). In this graph, the nodes correspond
to logical states, while the arcs represent state transitions
induced by the rules along with the updating scheme. Using
the default level layout of GINsim for state transition graphs,
it is easy to spot the stable states, defined as nodes with
no outgoing arcs, displayed at the bottom. More complex
attractors, defined as terminal strongly connected components
(SCCs, maximal sets of nodes that are mutually reachable)
denote oscillatory behaviors, which are harder to grasp
visually.
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Beyond the identification of attractors, we are particularly
interested in knowing which of them can be reached
from specific initial conditions. Such questions can be
addressed by verifying the existence of trajectories (i.e.,
sequences of transitions), e.g., from initial states to attractor
states.

3.3.1. Configuring a Simulation
Selecting the Run Simulation option in the Tools menu opens a
panel enabling the construction of the dynamics (see Figure 5).

The boxes on the top of the panel labeled by Select
a perturbation and Select a reduction permit to define
(by clicking on the Configure buttons) and select (using
the scrolling menus) model perturbations and reductions
(see below).

The bottom left panel enables the definition and the recording
of different parameter settings, which greatly facilitates the
reproduction of simulation results. One can create, delete and
reorder parameter settings by using the buttons on the right of
the panel listing the parameter settings.

FIGURE 6 | Asynchronous state transition graph for the p53-Mdm2 model. This STG has been generated with the simulation parameters shown in Figure 5. The

unique stable state 0110 lays at the bottom. The selected state 0200 is shown in the STG tab, with its successors.
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Regarding the construction strategy, a scrolling menu enables
the choice between the generation of a state transition graph
(STG), its compression into a strongly connected components
graph (SCC), or its further compression into a hierarchical
transition graph (HTG) (for more details about these STG
compressions, see Bérenguier et al., 2013). Using another
scrolling menu, the user can select the synchronous or
asynchronous updating, or define or select predefined priority
classes (see Note 3 for more details on priority classes).

Finally, the Initial State box enables the definition and/or the
selection of initial state(s), from which the construction of the
dynamics will be performed. Initial states can be combined with
defined sets of Fixed inputs (defined in the panel just below). If no
initial state is selected or specified, all the states will be considered
in the simulation, leading to the construction of a full STG. As the
number of possible states doubles with each additional (Boolean)
node, the computation of the full STG is discouraged for models
involving more than 15 nodes.

3.3.2. Asynchronous Simulations
Let us first consider the construction of the asynchronous
dynamics. Before launching the simulation, check that the default
settings are specified as in Figure 5: state transition graph,
asynchronous updating, no perturbation selected, no initial state
selected. To ease comparisons with the figures enclosed in this
protocol, verify that the order of the nodes is: p53, Mdm2cyt,
Mdm2nuc, DNAdam in any panel listing the four components. If
the order is different, it can bemodified by using the green arrows
displayed on the right of the list of nodes in Modeling Attributes
panel, when no component or arc is selected.

Clicking on the Run button launches the simulation, i.e.,
the computation of the state transition graph (STG). A dialog
indicates that the result is available, allowing to display the

STG or to perform other actions on it. In the default level
layout, the nodes with no incoming arc are placed at the top,
whereas the nodes with no outgoing arc (i.e., stable states)
are placed at the bottom. Stable states are further emphasized
with a specific graphical attribute. In this new window, nodes
can be rearranged, either manually or by selecting a predefined
layout in the View menu. Outgoing transitions are displayed
when selecting a state, as shown in Figure 6. Graphical settings
can be modified after selecting the Style tab. Note that the
scrolling menus propose various options, including path search
functions, etc.

In Figure 6, the state 0200 (i.e., with high level of Mdm2cyt,
and the other three nodes OFF) is selected, from which three
unitary transitions are enabled by the logical rules (Table 3):
increase of Mdm2nuc from 0 to 1, decrease of Mdm2cyt from
2 to 1, and increase of p53 from 0 to 1. The selected state and
its three successor states are shown in the bottom panel. It is
possible to follow a transition path by clicking on a rightwards
arrow button in the bottom panel, which switches the selection to
the corresponding state. When the selected state also connects to
predecessors states, these are also shown, preceded by leftwards
arrows.

Note that a unique stable state was obtained, 0110 (following
the order defined above, this vector states that p53= 0, Mdm2cyt
= 1,Mdm2nuc= 1 andDNAdam= 0), which corresponds to the
cell rest state (no p53, medium levels of cytoplasmic and nuclear
Mdm2, no DNA damage).

3.3.3. Direct Computation of Stable States
Select the Compute stable states option in the Tools menu of the
main window to verify that the unique stable state of this model
is indeed 0110 (see Figure 7).

FIGURE 7 | Determination of stable states. This window appears upon selection of Compute stable states with the Tools scrolling menu. After hitting the Run button,

GINsim returns all stable states using an efficient algorithm. In the wild type case, we obtain a unique stable state 0110 as shown (yellow and gray cells denote levels

0 and 1, respectively).
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FIGURE 8 | Synchronous state transition graph for the p53-Mdm2 model. This STG has been generated with the simulation parameters shown in Figure 5 (without

specifying any initial state, but using the synchronous updating scheme). Note that the layout has been manually rearranged for sake of clarity. The STG is composed

of three non connected subgraphs. On the left, we find back the resting stable state 0110, which can be reached from 26 other states. On the right, we see that the

synchronous updating further generates two two-states cyclic attractors, which can be reached from three or two other states, respectively. Solid and dotted arrows

denote single and multiple transitions, respectively.

This calculation uses an algorithm bypassing the construction
of the STG, which is particularly useful for largemodels (for more
details, see Naldi et al., 2007).

If another (or no) stable state is obtained, check carefully the
maximum level of each node, the threshold associated with each
interaction, as well as each logical rule, as there must be a mistake
somewhere...

3.3.4. Synchronous Simulations
For comparison, let us now build the state transition graph of
the model using the synchronous updating strategy. Select Run
simulation in the Tools menu of the main window, then select
the Synchronous option with the scrolling menu under Updating
Mode in Figure 5, and launch the simulation by clicking on the
Run button.
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FIGURE 9 | Hierarchical transition graph. The hierarchical transition graph for the complete asynchronous dynamics of the p53-Mdm2 model is shown. It has been

obtained by selecting the construction of Hierarchical Transition Graph in the corresponding scrolling menu when launching the simulation. Note that the layout has

been manually improved. The blue nodes correspond to the two non trivial strongly connected components of the STG, and the unique stable state is shown in red at

the bottom. The blue node labeled by ct#9 has been selected; this transient cyclic component encompasses nine states from the STG (as indicated by the #9 in its

name), which are listed in the bottom. The * denotes all possible values for the corresponding node. Hence the first row in the table listing the states encompassed by

the hypernode ct#9 corresponds to two states: 0101 and 0111.

The resulting STG (after a manual improvement of the layout)
is shown in shown in Figure 8. Naturally, the stable state 0110 is
preserved (bottom left), but two cyclic attractors (bottom middle
and right) are now obtained. Transitions representing single and
multiple node updates are denoted by solid and dotted arcs,
respectively.

Note that the selected state 0010 leads to the state 0100
through simultaneous changes of Mdm2cyt and Mdm2nuc, as
shown in the bottom panel (blue cells).

3.3.5. Compression of the STG
When the size of the model increases, the state transition graph
(STG) quickly becomes hard to visualize. To ease its analysis,
a compression (or compaction) can be performed by grouping
sets of states into hyper-nodes. The arcs connecting the resulting
nodes then still correspond to state transitions. In particular,

by lumping states that belong to the same strongly connected
component (SCC, in the graph-theoretical sense), an acyclic graph
is obtained. Interestingly, the resulting SCC graph preserves
the reachability properties of the original graph. However, in
many situations, the SCC graph results only in a moderate STG
compression.

To increase STG compression and ease the interpretation
of the dynamics, we have recently introduced another acyclic
graph, called hierarchical transition graph, which further merges
linear chains of states (in addition to cycles) into single nodes
(Bérenguier et al., 2013). The resulting graph preserves the
attractors and other important dynamical properties, but does
not fully conserve reachability properties.

Selecting the corresponding option with the Construction
Strategy scrollingmenu allows to compress the dynamics by using
the hierarchical transition graph (HTG) representation. Figure 9
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shows the resulting HTG, with all other simulation parameters
maintained as shown in Figure 5.

Although relatively modest in this case (six nodes in the
HTG, to be compared with 36 nodes for the original STG), this
compression can be much more impressive in cases with long
alternative trajectories (see e.g., Bérenguier et al., 2013; Grieco
et al., 2013). However, the computation of the HTG relies on
that of the STG, with the compression done progressively. Hence,
HTG computation may become intractable for large networks.

At the bottom of the HTG shown in Figure 9, note again
the stable state 0110 (red box). In addition, two blue nodes
representing strongly connected components can now be clearly
seen, each labeled by ct, for cyclic transient, as both nodes are the
sources of outgoing transitions.

The first of these cyclic components (ct#9) is selected and the
corresponding states are listed in the bottom panel (where a star
stands for all possible values for the corresponding node, which
compresses the list of states). This cyclic component contains
nine states, all with the DNAdam node set to 1, p53 oscillating
between the values 0 and 2, Mdm2cyt oscillating between 1 and
2, and Mdm2nuc oscillating between 0 and 1. Hence, this cyclic
component captures large oscillations of p53 in the presence of
DNA damage.

The second cyclic component (ct#6) contains six states, with
DNAdam now set to 0, with p53 and Mdm2cyt both oscillating
between the values 1 and 2, and Mdm2nuc oscillating between
the values 0 and 1. Hence, this cyclic component captures smaller
transient p53 oscillations observed just after DNA repair.

In brief, starting from initial conditions with DNAdam = 1,
the system first goes through an unspecified number of large p53
activity oscillations, followed by DNA repair (DNAdam taking

the value 0) along with transient smaller p53 oscillations, and
finally the return to the rest state 0110.

3.4. Additional Analyses
Several complementary analyses can be perfomed with GINsim.
Hereafter, we illustrate three main functionalities: the encoding
of perturbations, an algorithm enabling the analysis of the roles
of regulatory circuits, along with a model reduction tool. Further
information regarding GINsim functionalities can be found in
the user manual and documentation available online.

3.4.1. Definition of Perturbations
Common perturbations are easily specified within the logical
framework:

• A gene knock-down is specified by driving and constraining
the level of the corresponding regulatory node to the value 0.

• Ectopic expression is specified by driving and constraining
the level of the corresponding node to its highest value (or
possibly to a range of values greater than zero, in the case of
a multi-valued node).

• Multiple perturbations can be defined by combining several
such constraints.

• More subtle perturbations can be defined by more
sophisticated rewriting of node rules (i.e., to change the
effect of a given regulatory arc).

Various perturbations can thus be defined to account for
experimental observations or to generate predictions regarding
the dynamical role of specific regulatory factors or interactions.

Define a mutant corresponding to an ectopic expression of
DNAdam (see Figure 10). Such a perturbation can be encoded

FIGURE 10 | Perturbation specification. This window can be activated from the simulation launching window (Figure 5) and various other windows, including the

Compute stable states window. It enables the specification of various kinds of model perturbations, including loss-of-function and gain-of-function mutants. The figure

illustrates the specification of a simple blockade of the level of DNAdam to level 1.
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FIGURE 11 | Circuit analysis for the p53-Mdm2 logical model. This window appears after first selecting the Analyse Circuits option of the Tools scrolling menu in the

main window, then clicking on the Search Circuits button, and finally launching the Functionality Analysis option. Among the four circuits found in the regulatory graph,

three are functional: one is negative, while the other two are positive. The selected circuit (involving p53 and Mdm2nuc) is positive and functional when the level of

Mdm2cyt is medium (equal to 1) in the absence of DNA damage (DNAdam = 0).

before the computation of stable states or of a state transition
graph. Verify that the resting stable state 0110 is not stable
anymore for this perturbation. Note the striking change of
attractor for this perturbation, which now corresponds to ample
oscillations of p53, along with oscillations of both nuclear and
cytoplasmic Mdm2 forms in the presence of DNA damage.

3.4.2. Regulatory Circuit Analysis
Regulatory circuits are responsible for the emergence of
dynamical properties, such as multistationarity or sustained
oscillations (see Note 4). In this respect, GINsim implements
specific algorithms to:

• Identify all the circuits of a regulatory graph (possibly
considering constraints such as maximum length,
consideration or exclusion of some nodes, etc.).

• Determine the functionality contexts of these
circuits, using a computational method presented in
Naldi et al. (2007).

To further identify and analyse the circuits of the model
regulatory graph (see subsection 3.2), select the Analyse Circuits
option of the Tools scrolling menu in the main window,

then click on the Search Circuits button. Verify that the
regulatory graph contains four circuits, among which three are
functional (i.e., have a non-empty functionality context). For
each functional circuit, one can verify its sign and functionality
context (depending on the rules), by clicking on the Functionality
Analysis button. As shown in Figure 11, the positive circuit
defined by the cross inhibitions between p53 and Mdm2nuc is
functional when Mdm2cyt = 1 and DNAdam = 0. Indeed, the
inhibition of Mdm2nuc by p53 is not functional in the presence
of DNAdam or of a high level of Mdm2cyt, or in the absence of
Mdm2cyt.

3.4.3. Reduction of Logical Models
Whenmodels increase in size, it quickly becomes difficult to cope
with the size of the corresponding STG. One solution consists
in simplifying or reducing the model before simulation. In this
respect, GINsim implements a method to reduce a model on the
fly, i.e., just before the simulation. The modeler can specify the
nodes to be reduced, and the logical rules associated with their
targets are then recomputed taking into account the (indirect)
effects of their regulators. This construction of reduced models
preserves crucial dynamical properties of the original model,
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FIGURE 12 | Model reduction. This window appears following the selection of Reduce model from the Tools scrolling menu in the main GINsim window. Here, only

Mdm2cyt has been selected for reduction. By hitting the Run Button, a reduced model is generated, provided that no self-regulated node is affected. Alternatively, one

can close the window after the definition of one or several reduction(s) (the + button on the left enable to create new reductions) and then select a predefined

reduction directly when performing simulations or other kinds of analyses.

including stable states and more complex attractors (Naldi et al.,
2011).

Although our application is of limited size, we can still
illustrate the use of GINsim model reduction functionality.
Selecting the Reduce Model option in the Tools scrolling menu
launches the reduction interface. Click on the + icon to define
a reduction, then select the node Mdm2cyt for reduction, as
shown in Figure 12. Clicking on the Run button generates a
logical model encompassing only the three remaining nodes,
where Mdm2nuc is the target of a dual interaction from p53. The
logical rule associated with Mdm2nuc is consistently modified
to take into account the former indirect effect of p53 through
Mdm2cyt.

Now that a reduction has been defined, it can be selected
when launching a simulation or computing stable states, without
generating the reduced graph. Perform a complete asynchronous
simulation to get the full state transition graph and verify that
the number of states is now lower by a factor of three (12 states
instead of 36) compared to Figure 6. Compute the HTG keeping
the same parameter settings (asynchronous updating and full
state space as initial condition). Although verymuch compressed,
the resulting STG still captures the two kinds of p53 transient
oscillatory behavior, ample in presence of DNA damage, smaller
after DNA repair.

4. TROUBLESHOOTING

The online documentation includes a troubleshooting page (see
http://doc.ginsim.org) providing some solutions to common
problems. The graphical interface can have some refresh issues
after long or complex modeling sessions. Such issues are usually

resolved after saving the model and restarting the GINsim
software. For other issues, we encourage users to send a message
describing their problem to the GINsim forum or directly to
the GINsim team (see http://ginsim.org/contact). Because some
issues are difficult to reproduce, the user should provide log traces
(using the GINsim/support/export log files menu option), after
launching GINsim from the command line to catch additional
error messages.

A few hints to solve issues that may arise in the course of this
tutorial are provided below.

Some nodes can be defined as input nodes using a check-box
in the node property panel. These input nodes can have neither
incoming interactions nor regulatory rules. Indeed, input nodes
have an implicit rule specifying that they maintain their current
activity levels (i.e., they are maintained constant). Therefore, all
regulatory interactions and rules must be removed before setting
a node as an input. Likewise, the input status must be removed
before adding any new regulator or rule. The model p53-Mdm2
has no input: the input check-box should be unselected for all the
nodes.

In case of unexpected dynamical results (e.g., stable states,
trajectories, etc.), verify successively the structure of the
regulatory graph, the maximal levels of the nodes, the
thresholds of the regulatory interactions with multi-valued
sources and finally the regulatory rules. GINsim further
provides a tool to Compute interaction functionality, which
facilitates the identification of inconsistencies between the
structure of the regulatory graph and the regulatory rules
(see Note 5). To delete an invalid logical formula, select
it (without editing it) and use the delete key or the
contextual menu.
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5. CONCLUSIONS

The logical formalism is particularly useful to model regulatory
networks for which precise quantitative information is barely
available, or yet to have a first glance of the dynamical properties
of a complex model.

For this protocol, we have considered a network comprising
four regulatory factors, and we have followed the different steps
enabling the delineation of a consistent logical model. Despite
its limited size, this model yields relatively complex dynamics,
including several transient oscillatory patterns and a stable state.
It further served as a reference to illustrate advanced functions,
such as model reduction or regulatory circuit analysis.

Large signaling networks have been handled with GINsim
(e.g., Calzone et al., 2010; Naldi et al., 2010; Abou-Jaoudé et al.,
2015), in which input nodes denote external signals, which are
not regulated and often maintained constant. Such Input nodes
can be specified as such in GINsim to enforce the maintenance
of the levels specified at initial states. As the reduction of
input and output nodes or cascades have a marginal impact on
the dynamics (Abou-Jaoudé et al., 2016), such reductions are
facilitated in GINsim.

Furthermore, a novel functionality Assess Attractor
Reachability in the Tool menu enables to evaluate the reachability
of attractors based on stochastic simulation algorithms (for more
details, see Mendes et al., 2014).

Taking advantage of the multiple export formats supported by
GINsim, it is also possible to use complementary tools, including
stochastic simulation software (e.g., MaBoSS, see Stoll et al.,
2017), model checking tools (e.g., NuSMV, see Abou-Jaoudé et al.,
2015; Abou-Jaoudé et al., 2016; Traynard et al., 2016), or yet
various graph visualization and analysis packages (see Note 6 for
a list of export options).

As mentioned in the introduction, various logical models for
different cellular processes have been proposed during the last
decades, many of them available in the repository included along
with GINsim on the dedicated website (http://ginsim.org). The
interested reader can thus download the model of his choice
and play with it, reproduce some of the results reported in the
corresponding publication, or modify and extend it according to
his own research aims.

6. NOTES

1. Logical parameters constitute an alternative way of defining
regulatory rules. For each node, each combination of
incoming interactions then defines a logical parameter. This
includes the situation in the absence of any specific activation
or inhibition, or basal level. As a large fraction of the
parameters are usually set to zero, this is the default value
in GINsim (i.e., any parameter lacking an explicitly assigned
value is set to 0). Consult the online documentation for
details on parameters definition (http://doc.ginsim.org/lrg-
parameters.html).

2. Transitions between states of the state transition graphs
amount to the update of one (in the asynchronous case) or

several (in the synchronous case) regulatory nodes. GINsim
further support a complete updating mode, considering all
possible (single or multiple) transitions enabled by the rules,
as well as a sequential updating mode, which updates nodes
sequentially following the predefined order node. In any case,
the update (increase or decrease) of a node is unitary (current
value +1 or −1). Obviously, this remark applies only for
multi-valued nodes (for which the maximal level is greater
than 1).

3. Priority classes allow to refine the updating schemes applied
to construct the state transition graphs (Fauré et al., 2006).
GINsim users can group nodes into different classes and
assign a priority rank to each of them. In case of concurrent
updating transitions (i.e., calls for level changes for several
regulatory nodes in the same state), GINsim updates the
node(s) belonging to the class with the highest ranking. For
each priority class, the user can further specify the desired
updating assumption, which then determines the treatment
of concurrent transition calls inside that class. When several
classes have the same rank, concurrent transitions are treated
under an asynchronous assumption (no priority).

4. A regulatory circuit is defined as a sequence of interactions
forming a simple closed directed path. The sign of a circuit
is given by the product of the signs of its interactions.
Consequently, a circuit is positive if it has an even number of
inhibitions, it is negative otherwise. R. Thomas proposed that
positive circuits are necessary to generate multistationarity,
whereas negative circuits are necessary to generate stable
oscillations (see Thieffry, 2007 and references therein).
External regulators might prevent the functioning of a circuit
imbedded in a more complex network. Naldi et al. (2007)
proposed a method to determine the functionality context of
a circuit in terms of constraints on the levels of its external
regulator. A circuit functionality context can be interpreted
as the part of the state space where the circuit is functional,
i.e., generates the expected dynamical property (Comet et al.,
2013).

5. The Compute interaction functionality option of the Tools
scrolling menu allows to check if the signs of the interactions
(graphically defined) comply with the regulatory rules.
Inconsistencies arise when, for instance, a positive interaction
has been drawn, while the regulatory rule of the target node
defines an inhibitory effect or no effect at all. This is a
convenient tool to check model inconsistencies. Note however
that such inconsistencies do not prevent (inconsistent) model
simulation or analysis.

6. GINsim allows the user to export logical regulatory graphs (or
state transition graphs) toward various formats, facilitating the
use of other software:

• SBML-qual, the qualitative extension of the popular model
exchange format (Chaouiya et al., 2013).

• MaBoSS, a C++ software for simulating
continuous/discrete time Markov processes, applied
on a Boolean networks (https://maboss.curie.fr/).

• BoolSim (http://www.vital-it.ch/software/genYsis/).
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• GNA, a software for the piecewise linear modeling
of regulatory networks (http://ibis.inrialpes.fr/article122.
html).

• NuSMV, a symbolic model-checking tool (http://nusmv.
fbk.eu/).

• Integrated Net Analyzer (INA) supporting the analysis of
Place/Transition Nets (Petri Nets) and Colored Petri nets
(http://www2.informatik.hu-berlin.de/~starke/ina.html).

• Snoopy, a tool to design and animate hierarchical graphs,
among others Petri nets (http://www-dssz.informatik.tu-
cottbus.de/DSSZ/Software/Snoopy).

• Graphviz, an open source graph visualization software
offering main graph layout programs (http://www.
graphviz.org/).

• Cytoscape, a popular open source software platform for
visualizing molecular interaction networks (http://www.
cytoscape.org/).

• Scalable Vector Graphics (SVG) format, an XML standard
for describing two-dimensional graphics (http://www.w3.
org/Graphics/SVG/).
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Analysing models of biological networks typically relies on workflows in which different

software tools with sensitive parameters are chained together, many times with additional

manual steps. The accessibility and reproducibility of such workflows is challenging,

as publications often overlook analysis details, and because some of these tools may

be difficult to install, and/or have a steep learning curve. The CoLoMoTo Interactive

Notebook provides a unified environment to edit, execute, share, and reproduce analyses

of qualitative models of biological networks. This framework combines the power of

different technologies to ensure repeatability and to reduce users’ learning curve of these

technologies. The framework is distributed as a Docker image with the tools ready to be

run without any installation step besides Docker, and is available on Linux, macOS, and

Microsoft Windows. The embedded computational workflows are edited with a Jupyter

web interface, enabling the inclusion of textual annotations, along with the explicit code

to execute, as well as the visualization of the results. The resulting notebook files can then

be shared and re-executed in the same environment. To date, the CoLoMoTo Interactive

Notebook provides access to the software tools GINsim, BioLQM, Pint, MaBoSS, and

Cell Collective, for themodeling and analysis of Boolean andmulti-valued networks. More

tools will be included in the future. We developed a Python interface for each of these

tools to offer a seamless integration in the Jupyter web interface and ease the chaining

of complementary analyses.

Keywords: computational systems biology, reproducibility, model analysis, Boolean networks, Python

programming language
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1. INTRODUCTION

Recently, the scientific community has been increasingly
concerned about difficulties in reproducing already published
results. In the context of preclinical studies, observed difficulties
to reproduce important findings have raised controversy (see
e.g., Richter et al., 2010; Begley and Ellis, 2012; Smith and
Houghton, 2013; Errington et al., 2014; and Begley and Ioannidis,
2015 for a review on this topic). Although not invalidating
the findings, these observations have shaken the community.
In 2016, a Nature survey pointed to the multi-factorial origin
of this “reproducibility crisis” (Baker, 2016). Factors related
to computational analyses were highlighted, in particular the
unavailability of code and methods, along with the technical
expertise required to reproduce the computations. The scientific
community is progressively addressing this problem. Prestigious
conferences (such as two major conferences from the database
community, namely, VLDB1 and SIGMOD2) and journals (such
as PNAS, Biostatistics (Peng, 2009), Nature (Santori, 2016), and
Science (Yaffe, 2015), to name only a few) now encourage or
even require published results to be accompanied by all the
information necessary to reproduce them.

While the reproducibility challenges have first been observed
in domains where deluge of data were quickly becoming
available (e.g., Next Generation Sequencing data analyses), the
problem is now present in many (if not all) communities
where computational analyses and simulations are performed.
In particular, the Systems Biology community is facing
a proliferation of approaches to perform a large variety
of tasks, including the development of dynamical models,
complex simulations, and multiple comparisons between varying
conditions of model variants. Consequently, reproducing results
from systems biology studies becomes increasingly difficult.
Furthermore, although the combination of different tools would
provide various new scientific opportunities, this is currently
hindered by technical issues.

Several initiatives have been launched by the community
to address reproducibility issues for computational modeling
of biochemical networks. These include guidelines for model
annotations (MIRIAM, Le Novère et al., 2005) and simulation
descriptions (MIASE, Waltemath et al., 2011a), as well as
standards for model exchange (SBML, Hucka et al., 2003) and
simulation parametrizations (SED-ML, Waltemath et al., 2011b).
This collective effort is coordinated by the COmputational
Modeling in BIology NEtwork (COMBINE3).

The Consortium for Logical Models and Tools (CoLoMoTo4)
has been organized to bring together computational modeling
researchers and address the aforementioned reproducibility and
reusability issues within the sub-domain of logical models and
software tools (Naldi et al., 2015). As a first outcome to foster
model exchange and software interoperability, the SBML L3
package qual was developed (Chaouiya et al., 2013, 2015). In

1International conference on Very Large Data Bases.
2ACM’s Special Interest Group on Management Of Data.
3http://co.mbine.org
4http://colomoto.org

this manuscript, we report the next phase of the CoLoMoTo
efforts in the area of reproducibility in computational systems
biology: The CoLoMoTo Interactive Notebook, which provides
an easy-to-use environment to edit, execute, share, and
reproduce analyses of qualitative models of biological networks
by seamlessly integrating various logical modeling software
tools.

The teams involved in CoLoMoTo, gathering around 50
researchers within 20 groups and laboratories, have produced
various software tools for the qualitative modeling and analysis of
biological networks. They are also involved in the development
of novel computational methods and models. This method
article presents a collective effort to provide the community
with a reproducibility-oriented framework combining software
tools related to logical modeling. This framework combines the
power of different approaches to ensure repeatability and to
reduce the requirement of technical knowledge from users. The
provided Docker image facilitates the stability of a contained
environment needed for repeatable computational modeling and
analyses. The framework includes a set of pre-installed tools
from the CoLoMoTo community. On the other hand, specific
binding and interfaces integrated in a Jupyter environment
reduce the learning curve and improve accessibility. The use of
this framework is demonstrated by a case study in a companion
protocol article, which consists in a thoroughly annotated Jupiter
notebook (Levy et al., 2018)5.

The method article is structured as follows. Section 2
provides a brief introduction to qualitative models of biological
networks and to their analyses. Section 3 describes the main
components (Docker image, Python programming interface,
Jupyter interactive web interface) of our framework to facilitate
the access to CoLoMoTo software tools, a prime prerequisite
for the reproducibility of the computational analyses. Section 4
illustrates how our framework can address several challenges
related to the reproducibility of computational analyses, ranging
from the repeat of a sequence of analyses in the exact same
software environment, to the use of alternate methods to
reproduce a result. Finally, section 5 provides an introductory
guide on how to use the new framework, and section 6 discusses
possible extensions.

2. BACKGROUND ON QUALITATIVE
DYNAMICAL MODELS AND THEIR
COMPUTATIONAL ANALYSIS

Since the pioneering work of Kauffman (1969), Thomas (1973),
and others, logical (e.g., Boolean) models have emerged as a
framework of choice to model complex biological networks,
focusing for example on the roles of transcriptional regulatory
circuits in cell differentiation and development, of signaling
pathways in cell fate decisions, etc. (for a review, see e.g., Abou-
Jaoudé et al., 2016).

5The notebook can be previewed and downloaded at https://nbviewer.jupyter.
org/github/colomoto/colomoto-docker/blob/2018-03-31/usecases/Usecase%20-
%20Mutations%20enabling%20tumour%20invasion.ipynb
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2.1. Qualitative Modeling
The definition of a qualitative logical model, such as a Boolean
model usually relies first on the delineation of a regulatory
graph, where each node denotes a regulatory component (e.g.,
a protein or a gene), while (positive or negative) arcs represent
interactions (activation or inhibition) between their source and
target nodes. Each node is modeled as a discrete variable, having
a finite number of possible values, typically Boolean, i.e., only
two values, 0 or 1, denoting e.g., protein absence/inactivity or
presence/activity. A Boolean function or rule is then defined for
each node to specify how its value may change depending on the
values of its regulators.

The state of a network is modeled as a vector encompassing
the (Boolean or multi-valued) values of all the nodes of the
regulatory graph, with a prescribed ordering. The state of the
network can be updated according to the logical functions
defined for each node, triggering a transition toward a successor
state.When at a given state, several nodes are called for an update,
different updating modes can be considered. The synchronous
updating mode updates all nodes simultaneously, thus leading
to a unique successor state. Hence, the dynamical behavior
is fully deterministic. In contrast, the asynchronous updating
mode updates only one node, choosen non-deterministically,
thus leading to different possible successor states. Several variants
and extensions of these updating modes have been defined,
for instance assigning pre-determined priorities or assigning
probabilities to node updates, or considering simultaneous
updates of sub-groups of nodes.

2.2. Dynamical Analysis
The dynamical behavior of themodel can be represented as a state
transition graph, where vertices correspond to different states of
the network, and directed edges represent transitions between
states, following a selected updating mode. Dynamical analyses
consist then in characterizing different properties of this state
transition graph.

Attractors are one of the most prominent features studied
in Boolean and multi-valued networks. Attractors model the
asymptotic behaviors of the system, and correspond to the
terminal strongly connected components of the state transition
graph. Attractors can be of different nature, either reduced
to a single stable state (or fixed point), from which no
transition is possible, or cyclic sequences of states, modeling
sustained oscillations. From a biological point of view, computing
attractors is generally particularly relevant. The presence of
multiple attractors can represent alternative cell fates (such as cell
differentiation states), while cyclic attractors further represent
periodic behaviors (such as cell cycle or circadian rhythms).
The computation of attractors is addressed by different software
tools, such as BIOLQM (Naldi, in review6), GINSIM (Naldi
et al., 2018), PINT (Paulevé, 2017), BOOLSIM (Garg et al., 2008),
BOOLEANNET (Albert et al., 2008), PYBOOLNET (Klarner et al.,
2017), and BOOLNET (Müssel et al., 2010).

Simulations allow capturing the states reachable from a given
(set of) initial state(s). They can consist of random walks in
the complete state transition graph, take into account updating

6Preprint on bioRxiv https://doi.org/10.1101/287011

priority schemes to distinguish fast versus slow processes and
thereby obtain a simpler state transition graph (Fauré et al.,
2006), as implemented in the software tool BIOLQM, or rely on
user-defined transition probabilities and timing, as implemented
into the software tools MABOSS (Stoll et al., 2012, 2017) and
CELLCOLLECTIVE (Helikar et al., 2012; Todd and Helikar, 2012).

Model checking techniques developed for software verification
in computer science allow verifying formally dynamical
properties on state transition graphs and are regularly employed
for analysing biological systems (Batt et al., 2005; Abou-
Jaoudé et al., 2015; Bartocci and Lió, 2016; Traynard et al.,
2016). The properties are specified using so-called temporal
logics, which enable the formulation of queries regarding
asymptotic or transient dynamical properties, taking into
account all the state transitions of the model. The accordance of
a Boolean/multi-valued model with such properties is verified
using a general purpose model checker such as NUSMV (Cimatti
et al., 2002) to which GINSIM and PINT provide
access.

It is worth noticing that the number of states of a Boolean
or multi-valued network grows exponentially with the number
of nodes. The above mentioned methods typically suffer from
this complexity, and hence face limitations regarding network
size (currently, this limit is of the order of fifty to a hundred
of nodes, depending on the analysis and the complexity of
the dynamics). Nevertheless, different approaches enable the
analysis of large scale qualitative networks by means of structural
analyses, model reductions or abstractions. The CoLoMoTo
Interactive Notebook provides access to methods for model
reductions, such as by Naldi et al. (2011), implemented in
BIOLQM, which preserves stable states, while cyclic attractors
and reachability can be affected in predictable ways, or by
using formal approximations of the dynamical behavior, as
implemented in PINT, which allow tackling networks with several
thousands of nodes (Paulevé, 2017, in press). Other approaches
include, for instance, Petri net model reduction for trajectories
in signaling pathways (Talcott and Dill, 2006), subnetwork
analysis (Siebert, 2009), computational algebra (Veliz-Cuba
et al., 2014), and motif-based abstractions for attractors
(Gan and Albert, 2018).

Figure 1 gives an overview of a range of software tools for
the analysis of qualitative models, specifying their main features
along with the main underlying technologies.

3. ACCESSIBILITY OF COLOMOTO
SOFTWARE TOOLS

The CoLoMoTo Interactive Notebook aims at offering a unified
environment for accessing a range of complementary software
tools for the analysis of qualitative models of biological
networks. To achieve such a goal, our framework relies on three
complementary technologies.

First, we use the Docker system to provide images of pre-
installed selected CoLoMoTo software tools, thus reducing
significantly the burden of installing individually each software
tool. The software installed within Docker images can be
executed on GNU/Linux, macOS, and Microsoft Windows,
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FIGURE 1 | Feature matrix and characteristics of a range of software tools devoted to the qualitative modeling and analysis of biological networks: CELLCOLLECTIVE

(Helikar et al., 2012); GINSIM (Naldi et al., 2018); BIOLQM (Naldi, in review6); MABOSS (Stoll et al., 2017); PINT (Paulevé, 2017); NUSMV (Cimatti et al., 2002); BOOLSIM (Garg

et al., 2008); BOOLEANNET (Albert et al., 2008); PYBOOLNET (Klarner et al., 2017); BOOLNET (Müssel et al., 2010); CELLNOPT (Terfve et al., 2012); CASPOTS (Ostrowski

et al., 2016). The current CoLoMoTo Docker (2018-03-31) ships the software indicated with a bold font and a light blue background. “Model repository” refers to

searchable databases of models; “Model edition” refers to the features related to creating and modifying a qualitative model, where “ab initio” refers to the interactive

model building from scratch, and “transformations” refers to operations such as mutations, Booleanization, model reduction, etc. “Topological analysis” refers to the

extraction of features from the regulatory graph, such as the different feedback cycles, graph theory measures, etc. “Dynamical analysis” refers to properties related to

the state transition graph of Boolean/multi-valued networks, where “Attractor analysis” refers to the identification of stable states, cyclic attractors, and related

features; “Simulation” refers to the sampling of trajectories within the state transition graph, possibly parameterized with stochastic rates and mutations; “Formal

verification and control” refers to exhaustive analyses for assessing strictly temporal properties, such as reachability, and deducing mutations for controlling the

system. Finally, “Model inference” refers to the derivation of Boolean/multi-valued network which are compatible with given properties and observation data.

and can be accessed by standard workflow systems, such as
SNAKEMAKE (Köster and Rahmann, 2012).

Then, we developed a collection of Pythonmodules to provide
a unified interface to the features of the selected software tools.
The Python modules allow to parameterize and execute the
different analyses, and fetch their results, which can then be
further processed, including by a different tool through its
respective Python module. This uniform Python interface is
particularly relevant in the Jupyter web interface (Ragan-Kelley
et al., 2014), where it allows editing executable notebooks on
qualitative biological networks by seamlessly combining different
software tools.

3.1. The CoLoMoTo Docker Image
Overall, we witness a growing ecosystem of software tools
based on different technologies and offering a wide range
of complementary features. Noteworthy, these tools typically

rely on tailored formalisms and settings, which enable specific
methods but at the same time affect the results. One obvious
example is the consideration of a specific updating mode, as
synchronous and asynchronous dynamics may differ extensively.
Furthermore, to address increasingly large networks, many
tools rely on advanced data-structures and resolution methods,
which are implemented in dedicated software libraries. The
distribution of these tools then become challenging, as they
rely on numerous dependencies, often difficult to install or
available only for a specific operating systems (most of the time
GNU/Linux).

The Docker container technology allows to circumvent
such distribution issues by providing a mean to supply
pre-installed and fully configured software environments in
so-called Docker images. On GNU/Linux, the execution of
a Docker image consists mainly in executing the software
in an isolated environment, requiring no operating system
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virtualization. Therefore, the overhead of using Docker on
GNU/Linux is close to zero. A Docker image can also be executed
on macOS or Microsoft Windows without any modification.
On these operating systems, Docker relies on virtualization
technologies, which are relatatively lightweight and result in
limited performance loss on recent hardware.

The current CoLoMoTo Docker image
colomoto/colomoto-docker:2018-03-31 contains
the following pre-installed software for the logical modeling
and analsyis of biological networks: GINSIM (Naldi et al.,
2018), BIOLQM (Naldi, in review)6, CELLCOLLECTIVE (Helikar
et al., 2012), MABOSS (Stoll et al., 2017), PINT (Paulevé, 2017),
and NUSMV (Cimatti et al., 2002). The CoLoMoTo Docker
image then provides access to these tools without requiring
any installation step beside installing Docker7. For instance,
the Docker image can be used in association with a workflow
manager to chain and run a series of software functionalities.
Supplementary File “SnakeMake” provides an example of
SNAKEMAKE workflow relying on GINSIM and NUSMV.

An important challenge is the maintenance and extendibility
of such Docker images to reduce the complexity of upgrading
or adding software tools with their respective dependencies. To
that aim, we require that each software tool is independently
packaged for GNU/Linux using theConda packagemanager8.We
then rely on the dependency management system of Conda to
ensure that the correct pre-requisites are installed in the Docker
image9. A beneficial side effect of this technical choice is that the
aforementioned software tools can be installed on GNU/Linux
platforms using Conda, without using Docker.

3.2. A Unified Interface for Calling and
Chaining Tools With Python
The software tools considered for the CoLoMoTo Docker
image present different interfaces: CELLCOLLECTIVE is a web
application, GINSIM has a graphical user interface along with
a scripting interface, BIOLQM has a command line and a
scripting interface, PINT has a command line and a Python
interface, MABOSS has a command line interface. GINSIM,
CELLCOLLECTIVE and BIOLQM support the SBML-qual format,
while BIOLQM provides the conversion of a standard SBML-qual
model into PINT or MABOSS model formats, thereby enabling
the exchange of models between all these tools.

The recourse to different interfaces complicates the design
of a model analysis combining multiple tools. To address this
issue, we have developed a Python interface for each of the tools
embedded in the CoLoMoTo Docker image, which greatly ease
the execution of different tool functionalities, fetch the results,
and use these as input for other executions.

Each tool comes with a dedicated Python module, providing
a set of functions to invoke the underlying software tool
appropriately. Therefore, from a single Python shell, one can
invoke and chain analyses performed by different tools. This can

7See https://docker.com for installation instructions.
8https://conda.io
9CoLoMoTo-related conda packages are available in the colomoto conda channel.
See https://anaconda.org/colomoto

TABLE 1 | Model input formats for the software tools included in the CoLoMoTo

Docker image.

Software tool Supported input formats

bioLQM SBML-qual (.sbml), raw logical functions, truth table

GINsim GINML (.ginml, .zginml)

Pint Automata network (.an)

MaBoSS Dedicated network/configuration files (.bnd/.cfg)

NuSMV SMV file (.smv)

be seen as an improved command line interface, greatly enhanced
by the use of intermediate Python objects. Such an approach
also promotes the use of standard Python data-structures to
store objects such as model states or graphs, which can then
be processed by common Python libraries, e.g., PANDAS10 or
NETWORKX11.

Hereafter, we give an overview of the resulting Python
programming interface, focusing on the general model input
mechanism and the main features implemented for each of the
software tools.

3.2.1. Model Input and Tool Conversions
Despite their very different features, all the tools considered here
take as input a logical model, in an adequate format. All the
related Python modules provide a load function, which takes
as input the location of the model, being a local file, for instance:

m = biolqm.load("path/to/localfile.sbml")

a web link to a file, as obtained on GINSIM repository12 for
instance:

m = biolqm.load("http://ginsim.org/sites/default/

files/Traynard_Boolean_MamCC_Apr2016.sbml")

or a web link to the model on CELLCOLLECTIVE, for instance:

m = biolqm.load("https://cellcollective.org/

#5128/lac-operon")

In each case, the returned object (identified by m in the above
examples) is a Python object representing the loaded model and
defined specifically for the corresponding tool (Python module).
Table 1 lists the supported input format for each software tool.

When possible, Python modules provide functions to
convert a model for a compatible tool. These functions
are of the form moduleA.to_moduleB(modelA).
Figure 2 lists the currently supported model conversions.
The following Python code shows an example of usage:

lrg = ginsim.load(“http://ginsim.org/sites/default/

files/Traynard_Boolean_MamCC_Apr2016.sbml”)

lqm = ginsim.to_biolqm(lrg)

an = biolqm.to_pint(lqm)

Here, lrg is a Python object representing a GINSIM model, lqm
is a Python object representing a BIOLQM model, and an is a
Python object representing a PINT model.

10https://pandas.pydata.org
11http://networkx.github.io
12http://ginsim.org/models_repository
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FIGURE 2 | Supported model conversions between Python modules.

3.2.2. CELLCOLLECTIVE – Modeling Platform,

Repository, and Knowledge Base
The cellcollective Python module allows connecting to
the CELLCOLLECTIVE (Helikar et al., 2012) web application
(https://www.cellcollective.org), in order to download themodels
in SBML-qual format and extract network node meta-data (e.g.,
UnitProt identifiers) when available. The Supplementary File
“Notebooks/demo-cellcollective”13 provides a brief demonstration
of the Python module usage.

3.2.3. GINSIM – Regulatory Network Modeling
The ginsim Python module provides direct access to the
Java programming interface of GINSIM (Naldi et al., 2018).
GINSIM is available and documented at http://www.ginsim.org.
In particular, besides the export of a GINsim model into various
file formats, the Python module allows to visualize the network
regulatory graph, with the activation and inhibition relationships
between the nodes. The visualization function (ginsim.show)
optionally takes as argument a Python dictionary associating a
level with each node; then, the nodes of the network are colored
according to these levels. This is illustrated in the Supplementary
File “Notebooks/demo-ginsim”14.

3.2.4. BIOLQM – Qualitative Model Toolbox
The biolqm Python module provides direct access to the Java
programming interface of BIOLQM (Naldi, in review6). BIOLQM
is available and documented at http://colomoto.org/biolqm.
BIOLQM supports the conversion of SBML-qual files, GINML
files, as well as simple textual files specifying the raw logical
functions into the formats associated with the different software
tools. Besides the file format features, BIOLQM implements
model modifications, such as mutations forcing the value of given
nodes, iterative model reduction (see above), model reversal, the

13The notebook can be previewed and downloaded at https://nbviewer.
jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/
CellCollective/CellCollective%20-%20Knowledge%20Base.ipynb
14The notebook can be previewed and downloaded at https://nbviewer.jupyter.
org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/GINsim/
GINsim%20-%20visualization.ipynb

conversion of multi-valued model into Boolean ones, as well as
the computation of stable states, trap spaces, and simulations.
Part of these features are illustrated in the Supplementary File
“Notebooks/demo-biolqm”15.

3.2.5. PINT – Formal Predictions for Controlling

Trajectories
The pypint Python module provides complete access to
features documented at https://loicpauleve.name/pint. The
software PINT is devoted to the analysis of trajectories in very
large-scale asynchronous Boolean and multi-valued networks
(Paulevé, 2017). Its main features include the verification of the
existence of a trajectory reaching a state of interest (reachability),
the identification of common points between all the trajectories
leading to a state of interest (cut sets), and the formal prediction
of mutations preventing the existence of any trajectory to the
given state. These features are illustrated in the Supplementary
File “Notebooks/demo-pint”16.

3.2.6. NuSMV – Model Verification
The nusmv Python module provides a simple interface to the
NUSMV model checker for verifying LTL (trace) and CTL
(computation tree) temporal logic properties (Cimatti et al.,
2002) . The specification of LTL and CTL properties can be
facilitated using the colomoto.temporal_logics Python
module, which takes advantage of Python objects for the different
logical operators and ease their combination.

Let us consider the following example using the CTL operators
from the aforementioned Python module:

p1 = AG (S(a=1))

p2 = EF (p1)

15The notebook can be previewed and downloaded at https://nbviewer.jupyter.
org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/bioLQM/
bioLQM_tutorial.ipynb
16The notebook can be previewed and downloaded at https://nbviewer.jupyter.
org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/Pint/quick-
tutorial.ipynb
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Here, the variable p1 is a CTL formula specifying that the node
a is active (S(a=1)) in all the reachable states (AG operator).
The variable p2 is a CTL formula specifying that there exists
a trajectory leading to a state (EF operator) from which the
property p1 is verified.

In the above example, S specifies a property on a state, by
giving the values of some nodes of the network. The conversion
of a network model into NUSMV format depends on the tool
used, sometimes introducing different variable names for the
nodes of the original biological network. But this technical point
is transparent for the user: the nusmv Python module will
automatically translate the node names into the correct NUSMV
variable names.

The Supplementary File “Notebooks/demo-nusmv”17 gives a
simple example of usage of the nusmv Python module to verify
properties of a GINSIM model.

3.2.7. MaBoSS – Stochastic Simulations
The maboss Python module provides an interface to MABOSS,
available at https://maboss.curie.fr, as well as basic plotting
functionalities (Stoll et al., 2017). The purpose of MABOSS
is to perform stochastic simulations of a Boolean network,
where the propensity of transitions (probabilistic rates) are
explicitly specified. The Python module allows to fully define
and parameterize a model, as well as to parse an existing
MaBoSS model and modify it programmatically. The object
returned after the simulations can then be used to plot the
probability of node activation over time, and the proportion of
states in which the simulations ended, in order to estimate the
probability of reaching different attractors. The Supplementary
File “Notebooks/demo-maboss”18 provides a brief tutorial to the
main features of the maboss Python module.

3.2.8. Advanced Combinations of Tools
These Python modules provide a unified interface to chain
different tools and process their results. The small tutorials
referenced above show simple chaining of tools, most of the time
using a tool to import a model (e.g., from CELLCOLLECTIVE or
GINSIM) and convert it (using BIOLQM) for specific analysis by
another tool. As the Python functions of the different modules
rely on standard Python data-structures, such as lists and
dictionaries, it is possible to easily re-use the result from a tool
function as input to the function of a different tool. A simple
example is provided in Supplementary File “Notebooks/demo-
ginsim”19, where we use BIOLQM to compute the stable states of
a GINSIM model, and then give one of the resulting state as input
to GINSIM show function to display it over the regulatory graph.

Moreover, one can use the programmatic features of Python to
implement advanced algorithms for executing multiple analyses

17The notebook can be previewed and downloaded at https://nbviewer.jupyter.
org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/NuSMV/
NuSMV%20with%20GINsim.ipynb
18The notebook can be previewed and downloaded at https://nbviewer.jupyter.
org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/MaBoSS/
MaBoSS%20-%20Quick%20tutorial.ipynb
19The notebook can be previewed and downloaded at https://nbviewer.jupyter.
org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/GINsim/
GINsim%20-%20visualization.ipynb

and process their results. For instance, one can program loops
to iterate over a list of results of a preceding analysis from
one tool to perform a subsequent analysis on each result
with another tool. This is illustrated in the Supplementary
File “Notebooks/demo-pint+maboss”20, where we use PINT to
formally predict combinations of mutations controlling the
existence of trajectories toward a specified state; then, we
quantify with MABOSS the efficiency of applying only partially
the predicted combinations, by evaluating each related double-
mutants. The example involves Python for loops and a function
to enumerate all possible subsets provided by the standard
Python library. The notebook also relies on CELLCOLLECTIVE to
fetch the model, and on BIOLQM to perform the adequate model
conversions.

3.3. CoLoMoTo Jupyter Interactive
Notebook
Jupyter21 is a software providing an interactive web interface for
creating documents, called notebooks, mixing code, equations,
and formatted texts. A notebook typically describes a full analysis
workflow, combining textual explanations, the code itself, along
with parameters to reproduce the results. A notebook is a single
file, which can be easily modified, shared, re-executed, and
visualized online. The short tutorials of the previous section
provided in the Supplementary File “Notebooks” are actually
Jupyter notebooks (files with the extension .ipynb) and can be
re-executed using Jupyter.

A Jupyter notebook is made of a sequence of so-called cells,
which can contain formatted text, including sections, links,
images, tables, etc., or which can contain code in a specified
programming language, typically Python. A code cell can be
executed (by pressing Shift-Enter) and the value returned by the
code is displayed below the cell. The display format is selected
according to the type of the returned value (image, graph, list,
table, . . . ) to offer an adequate visualization.

Having a unified Python interface to invoke the CoLoMoTo
software tools, one can directly create Jupyter notebooks for the
analysis of qualitative biological networks using these tools, as
shown in Supplementary File “Notebooks” and in the companion
publication providing a complete model analysis workflow (Levy
et al., 2018).

We added several features in the CoLoMoTo Python modules
to increase interactivity and improve the user experience for
editing Jupyter notebooks. First, menus provide pre-defined
Python code for accessing to the main features of the tools.
Figure 3 shows a screenshot during the edition of a Jupyter
notebook with its graphical interface. Next, we added the
possibility to interactively upload a model file. This feature is
particularly useful when used in combination with Docker, or
on a remote server with no direct access to the user file system.
Finally, some Python modules, in particular the maboss Python

20The notebook can be previewed and downloaded at https://nbviewer.jupyter.
org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/MaBoSS/
Predict%20mutations%20with%20Pint,%20refine%20with%20MaBoSS.ipynb
21http://jupyter.org
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FIGURE 3 | Screenshot during a Jupyter notebook edition showing the menu of the BIOLQM tool.

module, provide JavaScript widgets to generate Python code
interactively.

The Jupyter notebook server is included in the CoLoMoTo
Docker image (see the Discussion section for a quick usage
guide), while a public demonstration web instance is available at
http://tmpnb.colomoto.org.

4. REPRODUCIBILITY OF
COMPUTATIONAL ANALYSES

4.1. From Repeatability to Reproducibility
The literature provides a range of definitions for the
reproducibility of in silico experiments by analogy to wet
lab experiments (Drummond, 2009; Freire et al., 2012; Stodden
et al., 2013; Freire et al., 2016; Goodman et al., 2016; Lewis et al.,
2016; Cohen-Boulakia et al., 2017). Four levels of reproducibility
are commonly distinguished.

An in silico experiment is said to be repeated when it is
performed using the same computational set-up as the original
experiment. The major goal of the repeat task is to check
whether the initial experimental result was correct and can
be obtained again. The difficulty lies in recording as much
information as possible to repeat the experiment so that the
same conclusion can be drawn. Interestingly, Freire et al. (2012)
discusses the granularity at which information (experiments, data
sets, parameters, environment) should or could be recorded, and
underlines the fact that the key point is to determine the right
balance between the effort required to record information and
the capability of obtaining identical results.

An in silico experiment is said to be replicated when it is
performed in a new setting and computational environment,
although similar to the original ones. When it can be successfully
replicated, a result has a high level of robustness: it remained valid
when using a similar (although different) protocol. A continuum
of situations can be considered between repeated and replicated
experiments.

A result is then defined as reproduced, in the broadest
possible sense of the term, by denoting the situation where an
experiment is performed within a different environment, with
the aim to validate the same scientific hypothesis. In other
words, what matters here is the conclusion obtained and not
the methodology considered reaching it. Completely different
approaches can be designed, different data sets can be used, as
long as the experiments support the same scientific conclusion.
A reproducible result is thus a high-quality result, confirmed in
various ways.

A last important concept related to reproducibility is that
of reuse, which denotes the case where a different experiment
is performed, with similarities with an original experiment. A
specific kind of reuse occurs when a single experiment is reused
in a new context (and thus adapted to new needs), the experiment
is then said to be repurposed.

It is worth noticing that repeating and replicating may appear
to be technical challenges compared to reproducing and reusing,
which are the most important scientific objectives. However,
before investigating alternative ways of obtaining a result (to
reach reproducibility), or before reusing a given methodology
in a new context (to reach reuse), the original experiment
has to be carefully tested, especially by reviewers or any peer,
demonstrating its ability to be at least repeated and hopefully
replicated (Freire et al., 2012; Stodden et al., 2014).

4.2. Repeat Analysis in the Same Software
Environment
Ensuring that a sequence of computational analyses can be
repeated by other scientists several months or years after its
publication is difficult. Indeed, besides software availability,
the version of the tools can be crucial: a new version of
a tool can change the default parameters, and even some
features, so that the published instructions become obsolete.
Whereas a Docker image addresses efficiently the issue of making
software available, providing a safe way for repeating a notebook
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content years after its creation requires additional technical
procedures.

First, CoLoMoTo Docker images are constructed by
specifying explicitly the version of each software. Furthermore,
an automatic validation procedure is performed by checking that
a set of notebooks still execute without error. Once validated,
the Docker image is then tagged with a time-stamp, typically
the date of the image validation (of the form YYYY-MM-DD,
e.g., 2018-03-31). These tagged images are then stored in the
public Docker image registry, and can be retrieved any time later.
The list of existing tags of colomoto/colomoto-docker
Docker images can be viewed at https://hub.docker.com/r/
colomoto/colomoto-docker/tags/.

When sharing a notebook, and notably when attaching it to
a publication, it is highly recommended to specify the time-
stamp of the Docker image in which the notebook has been
executed. Then, by downloading the image with this specific tag,
other users are ensured to repeat the execution in the exact same
software environment. To help following this recommendation,
we took two technical decisions. First, we do not use the
default non-persistent tag for Docker images (latest). It means
that the user has always to specify explicitly the time-stamp
of the CoLoMoTo Docker image. To remove the burden of
actively checking the list of existing time-stamps, we provide a
script which, by default, fetches the most recent Docker image
(see section 5). Second, when loading a CoLoMoTo-related
Python module within a Docker container, a textual message
indicating the time-stamp of the Docker image is displayed.
Therefore, when created within a CoLoMoTo Docker image,
notebooks always contain the required information to repeat
their execution.

Because a Jupyter notebook is a single file containing
everything to execute it, one can easily check if it can be
replicated in a different software environment, e.g., using a
more recent CoLoMoTo Docker image. Moreover, a notebook
can be easily repurposed by modifying some arguments of the
Python function calls, for instance changing the input model or
analysis parameters. One can even define interactive notebooks
describing a common model analysis, so that the user only needs
to provide the input model and execute the Jupyter code cells, as
shown in the Supplementary File “Notebooks/demo-interactive-
fixpoints”22 for the computation and visualization of the stable
states of a bioLQMmodel.

4.3. Reproduce Analysis With a Different
Method
Reproducing the same analysis with two different methods is a
good mean to increase confidence in the results, as it reduces the
chance of software misuse or that the results are affected by a
software bug.

The subset of software tools selected for this first CoLoMoTo
Docker image presentation already provides redundant
implementations of equivalent model analyses, in particular

22The notebook can be previewed and downloaded at https://nbviewer.jupyter.
org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/bioLQM/
Fixpoints%20(interactive).ipynb

for the identification of stable states and for the verification of
temporal properties with NUSMV. To help switch between two
tools for performing the same task, we harmonized the usage of
Python module functions to ensure that the same functions with
the same arguments generate equivalent results with different
tools.

4.3.1. Stable States
There exists several methods to compute the full set of stable
states (or fixed points) of a logical model, relying on different
data-structures and different algorithms. The software BIOLQM
implements the computation of stable states for Boolean and
multi-valued logical models using a Java implementation of
decision diagrams. In contrast, the software PINT implements
the computation of stable states of Automata networks (a
generalization of logical networks) using Boolean satisfaction
constraints. As BIOLQMprovides a conversion of Boolean/multi-
valued network into equivalent Automata networks, it is possible
to compute the stable states of a model with both software
tools.

Both biolqm and pypint Python modules provide a
fixpoint function taking as input the model instance of the
corresponding tool and returning a list of Python dictionaries
describing the stable states. Provided lqm is a BIOLQM model,
the following Python code compute its stable states with both
tools:

fps_biolqm = biolqm.fixpoints(lqm)

fps_pint = pypint.fixpoints(biolqm.to_pint(lqm))

The Supplementary File “Notebooks/demo-reproducibility-
fixpoints”23 shows a complete example of reproduction of stable
state computation using BIOLQM and PINT.

4.3.2. Temporal Property Verification

(Model-Checking)
Both GINSIM and PINT allow to export their respective model
into NUSMV format, where temporal properties can be specified
using LTL or CTL (see section 2.2). However, the generated
NUSMV models have different features as the input formalisms
of these tools rely on different paradigms: the specification
is centered on logical rules in the case of Boolean/multi-
valued networks in GINSIM, and on transitions (à la Petri
nets) in the case of Automata networks in PINT. Nevertheless,
in the appropriate settings, the verification of an equivalent
CTL or LTL property should give the same result. Hence, the
functions ginsim.to_nusmv and pypint.to_nusmv are
implemented in such ways that, when using their default options,
the resulting NUSMV models, albeit different, should produce
identical results for identical temporal logic properties. Note,
however, that each tool provides specific options for the NUSMV
export, which can lead to incomparable results.

The following Python code uses operators defined in the
Python module colomoto.temporal_logics to specify a

23The notebook can be previewed and downloaded at https://nbviewer.
jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/
Reproducibility%20-%20fixpoints.ipynb
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property p, meaning that from any state, there always exists a
trajectory leading to a cyclic attractor where the level of node a
can always oscillate. Then, assuming lrg is a GINSIM model, the
code uses GINSIM and PINT conversions to NUSMV to perform
model verification.

p = EF (AG (EF (S(a=0)) & EF (S(a=1))))

nusmv_ginsim = ginsim.to_nusmv(lrg)

nusmv_ginsim.add_ctl(p)

nusmv_ginsim.verify()

nusmv_pint = pypint.to_nusmv(ginsim.to_pint(lrg))

nusmv_pint.add_ctl(p)

nusmv_pint.verify()

Note that the Python object p represents the CTL property to be
tested, whatever the origin of the model (GINSIM or PINT).

The Supplementary File “Notebooks/demo-reproducibility-
modelchecking”24 provides a more detailed example of the
reproduction of model-checking results using GINSIM and PINT.

5. QUICK-USAGE GUIDE

On GNU/Linux, macOS, or Microsoft Windows, provided that
Docker and Python are installed, a helper script to run the
CoLoMoTo Docker image and the embedded Jupyter notebook
can be installed and upgraded from a terminal using the following
command25:

pip install -U colomoto-docker

The Docker image and the Jupyter notebook interface can be
started by executing the following command in a terminal26:

colomoto-docker

Without any argument, the command will use the most
recent CoLoMoTo Docker image. To use the image with a
specific tag, append the -V option (e.g., colomoto-docker
-V 2018-03-31).

The execution of this command will open a web page with
the Jupyter notebook interface, enabling loading and execution
of notebooks. A new notebook can be created by using the
“New/Python3”menu. In this environment, the user has access to
all CoLoMoTo Pythonmodules. A code cell is executed by typing
“Shift+Enter.” The menu and tool bar allow quick access to the
main Jupyter functionalities.

Warning: by default, the files within the Docker container are
isolated from the running host computer, and are deleted when
stopping the container. To have access to the files of the current
directory of the host computer, the option --bind can be used:

colomoto-docker --bind .

24The notebook can be previewed and downloaded at https://nbviewer.
jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/
Reproducibility%20-%20model%20checking.ipynb
25You may have to use pip3 instead of pip depending on your configuration.
26If using Docker Toolbox, the command should be executed within the Docker
Terminal.

The container can later be stopped by pressing Ctrl+C keys
in the terminal. See colomoto-docker --help for other
options. Additional documentation for running the CoLoMoto
Docker image can be found at http://colomoto.org/notebook.

6. DISCUSSION

6.1. Academic Use Cases
The prime aim of the CoLoMoTo Interactive Notebook
is to foster the production of accessible and reproducible
computational analysis of biological models, with a focus
on qualitative models, including Boolean and multi-valued
networks. As demonstrated in the Supplementary File
“SnakeMake”, the CoLoMoTo Docker image can also be
used in standard workflow systems, such as SnakeMake, to
lighten the burden of installing the different software tools and
make them accessible on different operating systems.

A notebook issued from the CoLoMoTo Docker image
gives some guarantees of repeatability, as it contains references
to the persistent Docker image to re-execute code in the
same software environment. Therefore, the notebook file (with
.ipynb extension) can be distributed as a Supplementary
File of the related scientific article, along with instruction
to run the Docker image. The Jupyter interface further
allows to export the notebook in a static HTML file, which
could also be joined as a Supplementary File to provide
a quick visualization. A notebook can also be distributed
independently, for instance by publishing it on Gist27 or
myExperiment28 (Goble et al., 2010), to follow download and
potential updates. For instance, the tutorial notebook presented
by Levy et al. (2018) is hosted at https://gist.github.com/pauleve/
a86717b0ae8750440dd589f778db428f. Services like Zenodo29

further provide persistent DOI links to notebook files.
The CoLoMoTo Interactive Notebook is also relevant for

teaching purposes. With Jupyter, students can straightforwardly
execute, modify, and extend a template notebook to learn
methods for analysing models of biological networks. Docker
is a standard technology often supported by local cloud
infrastructures, which can therefore provide dedicated resources
to execute remotely and privately the CoLoMoTo Jupyter web
interface.

6.2. Extending the CoLoMoTo Interactive
Notebook
The CoLoMoTo Docker image can be easily extended to include
additional tools. The Docker architecture allows inheriting
from an existing container, adding a new layer with additional
executables. Contributions are welcome through GitHub30. Each
software tool must be usable from the Jupyter interface and
should be able to connect with at least one other tool already
included. Furthermore, a demonstration notebook should be

27https://gist.github.com
28https://www.myexperiment.org
29https://zenodo.org
30Guidelines available at https://github.com/colomoto/colomoto-docker/blob/
master/CONTRIBUTING.md
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TABLE 2 | List of notebook files in supplemental data "Notebooks"

(Data Sheet 2) demonstrating some features of the CoLoMoTo Interactive

Notebook.

Notebook file name Software tools involved

demo-cellcollective CellCollective, bioLQM

demo-ginsim GINsim, bioLQM

demo-biolqm bioLQM

demo-interactive-fixpoints bioLQM

demo-pint Pint

demo-nusmv GINsim, NuSMV

demo-maboss MaBoSS

demo-pint+maboss CellCollective, bioLQM, Pint, MaBoSS

demo-reproducibility-fixpoints GINsim, bioLQM, Pint

demo-reproducibility-modelchecking GINsim, Pint

provided to illustrate the tool usage and how it can be combined
with other tools.

Currently, all the embedded tools require an already
defined model. Nevertheless, once loaded, a model can be
subsequently modified from the Python interface (see tool
feature matrix in Figure 1). We are currently considering
the development of a programmatic interface for model
definition ab initio. One of the main challenge is to provide a
decent visualization of the programmatically-created model. A
potential direction is to include a visual edition module in the
Jupyter interface, which represents a substantial development
effort.

The support for standard exchange formats is key to
enable reproducibility of analyses with different tools. In that
sense, BIOLQM plays an important role for the CoLoMoTo
Interactive Notebook as it provides bridges between SBML-
qual standard specifications and numerous software tools
(Figure 2). The Tellurium Notebook system by Sauro et al.
(in review)31 offers support for SED-ML to help reproduce
quantitative simulation of biological networks. Future work
should consider bringing this feature for qualitative models as
well, in order to better meet FAIR (Findability, Accessibility,
Interoperability, and Reusability) recommendations (Wittig
et al., 2017).
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Boolean and multi-valued logical formalisms are increasingly used to model complex

cellular networks. To ease the development and analysis of logical models, a series of

software tools have been proposed, often with specific assets. However, combining

these tools typically implies a series of cumbersome software installation and model

conversion steps. In this respect, the CoLoMoTo Interactive Notebook provides a joint

distribution of several logical modeling software tools, along with an interactive web

Python interface easing the chaining of complementary analyses. Our computational

workflow combines (1) the importation of a GINsim model and its display, (2) its format

conversion using the Java library BioLQM, (3) the formal prediction of mutations using

the OCaml software Pint, (4) the model checking using the C++ software NuSMV,

(5) quantitative stochastic simulations using the C++ software MaBoSS, and (6) the

visualization of results using the Python library matplotlib. To illustrate our approach,

we use a recent Boolean model of the signaling network controlling tumor cell invasion

and migration. Our model analysis culminates with the prediction of sets of mutations

presumably involved in a metastatic phenotype.

Keywords: Boolean networks, stochastic simulations, model verification, software tools, reproducibility

1. INTRODUCTION

Boolean and multi-valued logical formalisms are increasingly used to model complex cellular
networks (see e.g., Helikar et al., 2012; Zaudo and Albert, 2015; Collombet et al., 2017). A logical
model is usually defined in three steps:

1) The delineation of a regulatory graph, where the vertices (nodes) represent signaling or
regulatory components (proteins, genes, microRNAs, etc.), while the arcs (arrows) represent
regulatory interactions between pairs of components. These arcs are labeled by a sign: positive
in the case of activation, negative in the case of an inhibition (multiple arcs between two nodes
may be considered but are not used here).
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2) A discrete variable is associated with each node. In the
simplest cases, as hereafter, these variables are Boolean,
i.e., they can take only two values (0 or 1), denoting
the absence/inactivity or the presence/activity of the
corresponding components.

3) Finally, a logical rule is associated with each component to
specify the combinations enabling its activation. More
precisely, this rule combines the different variables
corresponding to the regulatory components using the
logical negation (denoted by !), conjunction (denoted by
&) and disjunction (denoted by |). For example, the rule
associated with the component GF in the model considered
below is !CDH1 & (GF | CDH2), which reads as “the
component GF will be activated in the absence of CDH1 and
in the presence of CDH2 or GF itself.” In other words, CDH2
is required transiently for GF activation, in the absence of
CDH1.

To support the development and analysis of logical models, a
series of software tools have been proposed, often with specific
assets (Naldi et al., 2009; Klarner et al., 2017; Paulevé, 2017; Stoll
et al., 2017).

The CoLoMoTo Interactive Notebook1 (Naldi et al., 2018b)
relies on Docker2 and Jupyter3 technologies to assist on editing
and sharing reproducible analysis workflows for logical models.
In addition to the distribution of a set of software tools to define
and analyse Boolean andmulti-valued networks, a unified Python
interface for each of the integrated tools is provided, greatly
easing the execution and chaining of complementary analyses.

This protocol describes in details the usage of the CoLoMoTo
Interactive Notebook to provide a reproducible analysis of a
recently published model of the signaling network controlling
tumor cell invasion andmigration.More specifically, we combine
different tools (Table 1) to compute the model stable states,
perform stochastic simulations, compute (sets of) mutations
controlling the reachability of specific stable states, and evaluate
their efficiency.

2. MATERIALS AND EQUIPMENT

2.1. Executable and Reproducible Model
Analysis
This protocol has been actually edited entirely as a
Jupyter notebook before being converted to a LaTeX
document for journal-specific editing purposes. The
original notebook file is provided as Supplemental
Material. It can also be visualized and downloaded for
execution in the CoLoMoTo Interactive Notebook at
https://nbviewer.jupyter.org/gist/pauleve/a86717b0ae8750440dd
589f778db428f/Usecase%20-%20Mutations%20enabling%20
tumour%20invasion.ipynb.

The blocks beginning with In [..] correspond to Jupyter
code cells, which contain the Python instructions to execute.

1Available at http://colomoto.org/notebook
2https://docker.com
3https://jupyter.org

When relevant, the blocks beginning withOut [..] display the
result of the last instruction of the corresponding code cell.

Provided Docker and Python are installed, the CoLoMoTo
Interactive notebook can be installed by typing and executing
the following command4 on GNU/Linux, macOS, and Microsoft
Windows:

pip install -U colomoto-docker

Once installed, the notebook can be executed by typing

colomoto-docker -V 2018-05-29

The execution of this command will open a web page with the
Jupyter notebook interface, enabling the loading and execution
of the code. Note that “SHIFT+ENTER” must be used to execute
each code cell. More information on colomoto-docker usage
can be obtained by typing colomoto-docker --help and
by visiting https://github.com/colomoto/colomoto-docker.

2.2. Notebook Preparation
This notebook makes use of the following Python modules:

In [1]: import ginsim

import biolqm

import maboss

import pypint

from colomoto_jupyter import tabulate

# for fixpoint table display

from itertools import combinations

# for iterating over sets

import matplotlib.pyplot as plt

# for modifying plots

3. STEPWISE PROCEDURES

3.1. Model
We analyse a Boolean model of the signaling network controlling
cell tumor invasion, which was recently reported in Cohen et al.
(2015). This model can be loaded directly from the GINsim
model repository at http://ginsim.org/models_repository.

We first show how to use GINsim (Naldi et al., 2018a) to fetch
and parse the GINML file (GINsim graph-based XML format,

TABLE 1 | List of software tools used in this notebook.

Tool Website Role in this notebook

GINsim ginsim.org Model input and display, conversion to bioLQM

and NuSMV

bioLQM colomoto.org/biolqm Fixpoint computation, conversion to MaBoSS

and Pint

MaBoSS maboss.curie.fr Stochastic simulations, assess impact of

mutations on propensity of reaching phenotypes

Pint loicpauleve.name/pint Formal prediction of mutants

NuSMV nusmv.fbk.eu Formal verification of phenotypes reachability

and stability

4You may have to use pip3 instead of pip depending on your configuration.
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encapsulated in a zginml archive) and display the regulatory
graph of the network. To load the model, we copied the URL
of the .zginml file from the model repository page at http://
ginsim.org/node/191. The file is also available as Supplemental
Data (Data Sheet 1).

In [2]: lrg = ginsim.load("http://ginsim.org/sites/

default/files/SuppMat_Model_Master_Model.zginml")

The regulatory graph (using the graphical setting specified in the
model file) can be displayed with the following command:

In [3]: ginsim.show(lrg)

The resulting graphics is reproduced in Figure 1.
In this regulatory graph, the gray boxes denote input and

output vertices (nodes). Green arrows and red T arrows
respectively denote activatory and inhibitory interactions. A set
of rules combining the vertices with the Boolean operators NOT,
AND, and OR, which must be consistent with the regulatory
graph, then allows the computation of enabled transitions for
each network state. These rules have been defined in Cohen et al.
(2015) and are specified within the GINsim model.

3.2. Identification of Stable States
First, we compute the complete list of logical stable states (or
fixpoints) of the model using the Java library bioLQM (Naldi,
2018). We thus need to convert the GINsim model into bioLQM:

In [4]: lqm = ginsim.to_biolqm(lrg)

At that stage, lrg is a Python object representing the model
suitable for GINsim, and lqm is a Python object representing the
equivalent model suitable for bioLQM.

The list of stable states of a bioLQM model is computed as
follows:

In [5]: fixpoints = biolqm.fixpoints(lqm)

Here, fixpoints is a Python list of states. A
state is encoded as a Python association table
(dictionary), which maps each node of the network to a
value.

For a nice display of the list of stable states, one can use the
tabulate function provided in the colomoto_jupyter

Python library, imported at the beginning of the
notebook:

In [6]: tabulate(fixpoints)

Figure 2 shows the table as displayed in the notebook. The
complete table is given in Supplemental Data.

It results that the model has nine stable states, each
corresponding to a row in the table, four of which enable
apoptosis (rows with value 1 in fourth column “Apoptosis”). Note
that the input node DNAdamage is also active in each of these
four states.

FIGURE 1 | Graphical output resulting from the input code: In [3]: ginsim.show(lrg).
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FIGURE 2 | Graphical output resulting from the input code: In [6]: tabulate(fixpoints).

A state can be visualized on the regulatory graph using
GINsim. For example, the third stable state can be displayed using
the following command:

In [7]: ginsim.show(lrg, fixpoints[2])

The resulting graphics is reproduced in Figure 3.
In this graph, the vertices shown in white or orange denote

components that are OFF (value 0) or ON (value 1) respectively.

3.3. Assessing the Probabilities to Reach
Alternative Attractors Using MaBoSS
MaBoSS (Stoll et al., 2017) is a C++ software enabling the
stochastic simulation of Boolean networks by translating them
into continuous time Markov processes. Each node activation
and inactivation is associated with an up and a down rate,
which specify the propensity of the corresponding transitions.
From a given state, the simulation integrates all the possible
node updates and derives a probability and a duration for each
transition. By default, all transitions are assigned the same rate.
For a given set of initial conditions, MaBoSS produces time
trajectories and estimates probabilities of model states over the
whole simulation time. Steady state distributions can thus be
approximated, provided that a sufficient number of sufficiently
long simulations have been performed.

The aim of this section is to reproduce part of the results
obtained by Cohen et al. (2015), which show that a Notch (NICD)
gain-of-function together with a p53 loss-of-function prevent
reaching a stable apoptotic phenotype.

First, we convert the bioLQMmodel to MaBoSS:

In [8]: wt_sim = biolqm.to_maboss(lqm)

The variable wt_sim is a Python object that gathers both
the Boolean network rules and the settings for the simulations,
including the transition rates.

3.3.1. Simulation Setup
The stochastic simulation of Boolean networks with MaBoSS
requires the specification of several parameters.

3.3.1.1. Initial states
First, a distribution of initial states must be specified: each
simulation then starts from a state sampled from this
distribution. The distribution is determined by assigning a
probability to start in state 0 or in state 1 to each node. By default,
a node has a probability 1 to start in state 0.

The maboss Python library provides widgets to ease the
assignment of this initial distribution. The following code enables
the definition of a distribution of initial states with all nodes at 0,
except DNAdamage and ECMicroenvwith equiprobable 0 and
1 values. After pressing “OK,” the notebook cell will be replaced
by the actual Python call resulting in equal probabilities for these
two nodes to start in active or inactive states.

In [9]: maboss.wg_set_istate(wt_sim)

The notebook will then display the widgets reproduced in
Figure 4. The selection of nodes and of initial conditions shown
in this figure are then translated in the following code:

In [9]: #maboss.wg_set_istate(wt_sim)

maboss.set_nodes_istate(wt_sim,["DNAdamage",

"ECMicroenv"],[0.5, 0.5])

3.3.1.2. Output nodes
Using MaBoSS, we can focus on the output nodes and ignore
the other nodes, which enable us to identify the corresponding
phenotypes. This can be done using the following code:

In [10]: #maboss.wg_set_output(wt_sim)

wt_sim.network.set_output(('Metastasis',

'Migration', 'Invasion','EMT', 'Apoptosis',

'CellCycleArrest'))

3.3.1.3. Simulation parameters
The update_parameters method can be used to specify
several parameters for the stochastic simulation algorithm. We
show below the complete list of parameters with the values
obtained by default when translating a model from GINsim. The
method can be called with any subset of these parameters.

Among the parameter list, sample_count corresponds to
the number of simulations performed to compute statistics, while
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FIGURE 3 | Graphical output resulting from the input code: In [7]: ginsim.show(lrg, fixpoints[2]).

FIGURE 4 | Graphical output resulting from the input code: In [9]:

maboss.wg_set_istate(wt_sim).

max_time is the maximum (simulated) duration of a trajectory.
Note that for a proper estimation of probabilities of the stable
states, max_time needs to be long enough for the simulation to
reach an asymptotic solution.

In [11]: wt_sim.update_parameters(discrete_time=0,

use_physrandgen=0, seed_pseudorandom=100,

sample_count=50000, max_time=75,

time_tick=0.1, thread_count=4,

statdist_traj_count=100,

statdist_cluster_threshold=0.9)

3.3.2. Simulation of the Wild-Type Model
The object wt_sim represents the input of MaBoSS,
encompassing both the network and simulation parameters. The
simulations are triggered with the .run()method and return a
Python object for accessing the results.

In [12]: %time wt_results = wt_sim.run()

CPU times: user 4.61 ms, sys: 406 s,

total: 5.02 ms Wall time: 2.89 s

The resulting object gives access to the output data generated by
MaBoSS. It includes notably the mean probability over time for
the activity of the output states integrated over all the performed
simulations.

The function plot_piechart displays proportionally the
mean probability of each output state at the last time point.
Provided the simulation time has been set high enough, this
gives an approximation of the probabilities of the stable states
reachable from the specified initial conditions.

In [13]: wt_results.plot_piechart()

The resulting graphics is reproduced in Figure 5.
In this chart, a state is described by the set of its active
output nodes and is associated to a phenotype. For
instance, the “<nil>” phenotype has all output nodes set
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to 0, which was referred to as the “homeostatic state” in
the original article; in the case of the “Apoptosis --

CellCycleArrest” phenotype, the two output nodes
Apoptosis and CellCycleArrest are simultaneously
active, while the other output nodes are inactive; the “EMT
-- CellCycleArrest” phenotype denotes cells that
have gone through the epithelial to mesenchymal transition
(EMT), but did not invade the tissue, hence the output nodes
Invasion, Migration and Metastasis are inactive;
finally the “Migration -- Metastasis -- Invasion

-- EMT -- CellCycleArrest” phenotype corresponds
to a metastatic state, i.e., to cells that went through EMT, invaded
the tissue and migrated to a distant site.

From this plot, we can deduce that, from the specified set of
initial conditions, the apoptotic state (orange section), the EMT
(purple section) and the metastatic states (green section) can be
reached (the proportion of simulations that reached none of these
phenotypes correspond to the red section).

The mean value of each output node during the simulations
can be plotted with the following command:

In [14]: wt_results.plot_node_trajectory(until=40)

The resulting graphics is reproduced in Figure 6.

3.3.3. Simulation of Double Mutant Notch++/p53--
In the original article (Cohen et al., 2015), the authors analyzed
the double Notch++/p53-- mutant, i.e., the combination of a
Notch gain-of-function combined with a p53 loss-of-function,
showing that all trajectories lead to a metastatic state.

A mutant can be configured by copying the wild-type model,
and use the mutate method to model the desired gains and
losses of function:

In [15]: mut_sim = wt_sim.copy()

mut_sim.mutate("p53", "OFF")

mut_sim.mutate("NICD", "ON")

The modified model can then be simulated exactly as for the
wild-type case:

In [16]: %time mut_results = mut_sim.run()

CPU times: user 5.13 ms, sys: 137 s,

total: 5.27 ms Wall time: 2.99 s

In [17]: mut_results.plot_piechart()

The resulting graphics is reproduced in Figure 7.
Using the same parameters as for the wild-type model, all

the trajectories obtained for the double mutant model reach
the metastatic invasive state exclusively. This suggests that such
a double mutation can be responsible for a loss of apoptotic
capability of cancer cells.

3.4. Formal Analysis With Pint and NuSMV
In the above section, the conclusion regarding the loss of
apoptotic stable state relies on stochastic simulations, which,
in general, may not offer a complete coverage of the possible
trajectories. Therefore, one may want to formally verify whether
the loss of reachable stable apoptosis state is total or not.
First, we show how to use Pint (Paulevé, 2017) to predict
combinations of mutations which are guaranteed to prevent
the activation of apoptosis. Next, we use the software NuSMV
(Cimatti et al., 2002) to evaluate formally the Notch++/p53--

FIGURE 6 | Graphical output resulting from the input code: In [14]:

wt_results.plot_node_trajectory(until=40).

FIGURE 5 | Graphical output resulting from the input code: In [13]: wt_results.plot_piechart().
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FIGURE 7 | Graphical output resulting from the input code: In [17]: mut_results.plot_piechart().

double mutant. Finally, we use MaBoSS to assess the efficiency
of new combinations of mutations predicted by Pint.

3.4.1. Formal Predictions of Mutations From the

Wild-Type Model
Pint implements formal methods that allow deducing
combinations of mutations guaranteed to block the reachability
of a given state.

First, we convert the bioLQMmodel to Pint:

In [18]: an = biolqm.to_pint(lqm)

Then, we transfer the initial conditions defined in MaBoSS to the
Pintmodelan. LikeMaBoSS, Pint supportsmultiple initial values
for a single node. However, in contrast to MaBoSS, Pint does not
consider probability distributions.

In [19]: an.initial_state.update(wt_sim.get_initial_

state())

an.initial_state.changes()

# display non-default (0) initial value

Out[19]: {'DNAdamage': (0, 1), 'ECMicroenv': (0, 1)}

Given a (partial) state specification, Pint provides the method
oneshot_mutations_for_cut, which returns different
sets of mutations guaranteed to prevent any trajectory from any
possible initial state to reach, even transiently, the specified state.

In [20]: %time \

an.oneshot_mutations_for_cut(Apoptosis=1, \

exclude={"ECMicroenv", "DNAdamage"})

CPU times: user 6.11 ms, sys: 158 s,

total: 6.27 ms Wall time: 191 ms

Out[20]: [{'ZEB2': 1},

{'AKT1': 1},

{'AKT2': 1},

{'ERK': 1},

{'NICD': 1, 'SNAI2': 1, 'ZEB1': 1},

{'SNAI2': 1, 'ZEB1': 1, 'p63': 0},

{'SNAI2': 1, 'ZEB1': 1, 'miR203': 1},

{'NICD': 1, 'SNAI2': 1, 'p73': 0},

{'SNAI2': 1, 'p63': 0, 'p73': 0},

{'SNAI2': 1, 'miR203': 1, 'p73': 0},

{'NICD': 1, 'ZEB1': 1, 'p53': 0},

{'ZEB1': 1, 'p53': 0, 'p63': 0},

{'ZEB1': 1, 'miR203': 1, 'p53': 0},

{'NICD': 1, 'p53': 0, 'p73': 0},

{'p53': 0, 'p63': 0, 'p73': 0},

{'miR203': 1, 'p53': 0, 'p73': 0}]

Among the returned mutation sets, one can spot the mutation
{'NICD': 1, 'p53': 0, 'p73': 0}, which combines
a gain-of-function of Notch ('NICD': 1) with a loss-of-
function of p53 ('p53': 0), along with a loss-of-function of
p73 ('p73': 0).

Noteworthy, forbidding transient reachability entails a
stronger constraint than just preventing any stable state with
the specified property. Indeed, some mutations may remove the
stability of the specified states, while some trajectories may still
traverse these states, but only transiently.

Therefore, the sets of mutations returned by Pint, albeit
correct, might be non-minimal for controlling only the long-term
dynamics of the system. Finally, note that the analysis of Pint can
give incomplete results. This is due to the technology on which
the computation relies (static analysis), which allows addressing
very large scale networks.

3.4.2. Revisiting the Notch++/p53-- Double Mutant
We will first formally analyse the Notch++/p53-- double mutant
to show that asymptotic apoptosis is forbidden, although
transient activation of apoptosis node might still be possible.

One can apply a mutation on a Pint model using the lock
method. A new model is returned with a constant value for the
corresponding nodes.

In [21]: mut_an = an.lock(NICD=1, p53=0)

Then, we use the temporal logic CTL (Clarke and
Emerson, 1982) to specify formally the dynamical
properties to verify. CTL expression can be built using the
colomoto.temporal_logics Python module.

In [22]: from colomoto.temporal_logics import *

First, the existence of a trajectory leading to a transient state
where Apoptosis is active can be specified as follows:
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In [23]: transient_apoptosis = EF(S(Apoptosis=1))

EF is a temporal logic operator that is true if there exists at least
one trajectory leading to a state verifying the properties given as
argument. Here the property S(Apoptosis=1) specifies that
the state has the node Apoptosis active.

Next, the existence of a trajectory leading to a stable
Apoptosis activation can be specified as follows:

In [24]: stable_apoptosis = EF(AG(S(Apoptosis=1)))

Here, AG enforces that all the states reachable via any trajectory
have the node Apoptosis active.

Finally, we gather these two properties in a Python dictionary
for later use:

In [25]: ctl_specs = {

"reach-apoptosis": transient_apoptosis,

"stable-apoptosis": stable_apoptosis

}

The adequation of a model with a CTL property can be assessed
using amodel-checker such as NuSMV (Abou-Jaoudé et al., 2015).

Pint provides a conversion to NuSMV models. By default,
the NuSMV model considers any initial state. With the
skip_init=False option, we enforce that the properties are
verified only from the initial states defined earlier.

In [26]: smv = mut_an.to_nusmv(skip_init=False)

We then add the properties defined above, and ask NuSMV to
verify them.

In [27]: smv.add_ctls(ctl_specs)

%time smv.verify()

CPU times: user 0 ns, sys: 4.68 ms,

total: 4.68 ms Wall time: 12.4 s

Out[27]: {'reach-apoptosis': True,

'stable-apoptosis': False}

Interestingly, the Notch++/p53-- double mutant can still
reach an apoptotic state, but only transiently: the property
stable-apoptosis being false, it is guaranteed that all
trajectories eventually lead to stable apoptosis inactivation.

To complete our analysis, we now consider the triple mutant
obtained by adding a loss-of-function of p73. As predicted by
Pint, transient reachability of apoptosis is impossible in this triple
mutant. We can use NuSMV to further verify that it is the case,
using the following code:

In [28]: smv_mut3 = an.lock(NICD=1, p53=0, \

p73=0) .to_nusmv(skip_init=False)

smv_mut3.add_ctls(ctl_specs)

smv_mut3.verify()

Out[28]: {'reach-apoptosis': False,

'stable-apoptosis': False}

3.4.3. Analysis of Formally Predicted

SNAI2++/ZEB1++/miR203++ Triple Mutant
The mutant combinations predicted with Pint should be refined
when the aim is to control specifically stable behaviors. In general,
given a set of mutations guaranteed to block any transient
activation of a node, onemay verify whether only a subset of them
are sufficient to achieve proper control of the sole stable states.

We show here how we can take advantage of the Python
environment to provide a small program, which, for each
subset of mutations of a multiple mutant (here a triple gain-of-
function for SNAI2, ZEB1 and miR203), performs stochastic
simulations with MaBoSS to assess the probabilities to reach the
different stable behaviors from the specified set of states.

The computation can take a couple of minutes. The results are
shown in a graphical form (colored pie charts) for each single and
double loss-of-function combination. In the pie charts, “Others”
regroup states with an individual probability less than 1%, which
often correspond to simulated trajectories having not reached an
attractor in the given amount of time.

In [29]:

formal_mutant = {'SNAI2': 1, 'ZEB1': 1, 'miR203': 1}

for i in [1, 2]:

# for any subset of mutations of size 1 then 2

for mutants in combinations(formal_mutant, i):

# copy the wild-type MaBoSS model

masim = wt_sim.copy()

# apply the mutations

for m in mutants:

masim.mutate(m, "ON" if formal _mutant[m] \

else "OFF")

# run the simulations

mares = masim.run()

# plot the piechart of stable states

mares.plot_piechart()

# print the mutation in the title

def mutname(m):

return m + ("++" if formal_mutant[m] \

else "--")

name = "/".join(map(mutname,mutants))

plt.title("%s mutant" % name)

The resulting graphics are reproduced in Figures 8–13.
Note that only one of the pie charts shows an absence

of apoptotic state: the SNAI2++/miR203++ double mutant
(Figure 13).

This can be formally verified with NuSMV, as we did for the
Notch++/p53-- mutant:

In [30]: smv_mut_test = an.lock(SNAI2=1, \

miR203=1).to_nusmv(skip_init=False)

smv_mut_test.add_ctls(ctl_specs)

smv_mut_test.verify()

Out[30]: {'reach-apoptosis': True,

'stable-apoptosis': False}

4. ANTICIPATED RESULTS

With this protocol, we showed how the Python interface and
Jupyter integration of GINsim, bioLQM, MaBoSS, and Pint ease
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FIGURE 8 | Graphical output resulting from the input code: In [29].

FIGURE 9 | Graphical output resulting from the input code: In [29].

FIGURE 10 | Graphical output resulting from the input code: In [29].

Frontiers in Physiology | www.frontiersin.org July 2018 | Volume 9 | Article 787136

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Levy et al. Prediction of Mutations With the CoLoMoto Interactive Notebook

FIGURE 11 | Graphical output resulting from the input code: In [29].

FIGURE 12 | Graphical output resulting from the input code: In [29].

FIGURE 13 | Graphical output resulting from the input code: In [29].
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the delineation of sophisticated re-executable computational
analyses of qualitative models of biological networks,
combining and chaining different software with a unified
interface.

Leaning on the CoLoMoTo Docker image and on the
companion Jupyter notebook, we have demonstrated the
benefits of this framework by revisiting the analysis of a
recent Boolean model of the signaling network controlling
cancer cell metastasis. We could reproduce results previously
obtained with GINsim and MaBoSS, which demonstrate that
the Notch++/p53-- double mutant can suppress the apoptotic
outcome. Furthermore, a formal analysis of trajectories with Pint
enabled us to deduce novel “anti-apoptotic” combinations of
mutations, including a triple mutant that forbids even transient
activation of apoptosis, which were subsequently quantified using
MaBoSS.

The predicted of mutations point to potential synergistic
genetic interactions underlying uncontrolled tumor
proliferation. These combinations would deserve further
analysis, in particular regarding potential correlations with
specific clinical outcomes. For example, one could check whether
the loss of apoptosis triggering correlates with higher tumor
grades.

Similar computational analyses could be performed to predict
combinations of perturbations enforcing the existence of a given
stable phenotype, e.g., apoptosis, which could then serve as a basis
to design novel therapeutic strategies.
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Boolean networks (BNs) have been widely used as a useful model for molecular

regulatory networks in systems biology. In the state space of BNs, attractors represent

particular cell phenotypes. For targeted therapy of cancer, there is a pressing need to

control the heterogeneity of cellular responses to the targeted drug by reducing the

number of attractors associated with the ill phenotypes of cancer cells. Here, we present

a novel control scheme for global stabilization of BNs to a unique fixed point. Using

a sufficient condition of global stabilization with respect to the adjacency matrix, we

can determine a set of constant controls so that the controlled BN is steered toward

an unspecified fixed point which can then be further transformed to a desired attractor

by subsequent control. Our method is efficient in that it has polynomial complexity with

respect to the number of state variables, while having exponential complexity with respect

to in-degree of BNs. To demonstrate the applicability of the proposed control scheme, we

conduct simulation studies using a regulation influence network describing themetastatic

process of cells and the Mitogen-activated protein kinase (MAPK) signaling network that

is crucial in cancer cell fate determination.

Keywords: Boolean networks (BNs), global stabilization, sequential control, heterogeneity, systems biology

1. INTRODUCTION

As a biology-based interdisciplinary field, systems biology is receiving a great interest in recent
years as it can investigate complex interactions within biological systems using holistic approaches
to biological research (Park et al., 2006; Kim et al., 2007; Murray et al., 2010). Since first proposed
by Kauffman (1969), Boolean networks (BNs) have been successfully applied to modeling gene
regulatory networks in systems biology. Themain reason for utilizing BNs is that they can formulate
simplified dynamics of biological networks while capturing the essential characteristics of the
networks. Since each gene in the network can be considered to have approximately two levels of
activity—active (logical one) or inactive (logical zero), one can define the corresponding Boolean
state variables and Boolean logics that serve as state transition functions.

Attractors are the most important factor of BNs as they represent key cellular phenotypes. It
is known that finding singleton attractors, or fixed points as they are often called, is an NP-hard
problem (Akutsu et al., 1998). Nevertheless, many studies exist in the literature on detecting and
analyzing attractors in the framework of BNs; see, e.g., Helikar and Rogers (2009); Cheng et al.
(2011a); Gonzalez et al. (2006); Zheng et al. (2013); Cheng et al. (2017); Zheng et al. (2016) and
references therein.
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On the other hand, controlling a cellular behavior is becoming
an important issue in systems biology (Liu et al., 2011;
Cornelius et al., 2013; Wang et al., 2016). In particular, inducing
homogeneous cellular responses is critical to deal with tumor
heterogeneity in most of the anti-cancer therapies (Burrell et al.,
2013; Mroz et al., 2015; McGranahan and Swanton, 2017).
Recent studies confirm that non-genetic heterogeneity is the
key driving force for the evolution of cancerous cells (Brock
et al., 2009; Shaffer et al., 2017; Dagogo-Jack and Shaw, 2018).
In terms of attractors, this is a problem of controlling BNs
so that the controlled BN can always converge to one or a
smaller number of attractors among all possible ones. It is most
desirable if we can reduce the number of undesired attractors
selectively. If not, as the second best policy, we can consider the
two-step strategy where we first drive the BN toward a global
attractor and then transform it into a desired one in the second
step. In this way, the desired attractor landscape can have one
fixed point.

In this paper, we address the aforementioned problem, termed
global stabilization of BNs. The main objective is to determine a
set of constant controls that drive the BN toward a unique fixed
point. There are many recent results on global stabilization of
BNs. Notable among them is Cheng et al. (2011b) that presents
necessary and sufficient conditions for global stability of BNs
based on a matrix operation called semi-tensor product (STP).
In Kim et al. (2013), on the other hand, a minimal set of state
variables that make the BN reach a desired attractor is defined as
the control kernel, and a general algorithm for the identification
of the control kernel is presented. In Zañudo and Albert (2015),
attractors are represented by stable motifs and a method is
proposed to identify control targets that ensure the convergence
of the BN to a desired attractor. The approach in Zañudo and
Albert (2015) is remarkable since it combines the structural and
functional information of the BN in finding control targets. In
Zañudo et al. (2017), a scheme of feedback vertex set control
is proposed that drives biological systems described by general
non-linear dynamics (including BNs) toward a desired attractor.
Recently, Biane and Delaplace (2017) proposed an elegant
theoretical scheme that can stabilize a BN in which abduction-
based inference is employed to determine constant control inputs
using integer linear programming (ILP). While their method
guarantees global stabilization, it needs exponential complexity
in deriving control targets. Further, if the dynamics of the BN
alters by mutations, ILP must be re-formulated. On the other
hand, as will be shown later, our method can be applied to BNs
having mutations that cause constitutive activity or inactivity of
proteins without any modification from the problem setting of a
normal case.

In the present study, we adopt the result of Robert (1986) and
Cheng et al. (2011b) to determine constant controls that ensure
global stability of BNs. In particular, we utilize the sufficient
condition that if the influence graph of a BN is acyclic, there
is only one fixed point and from each state there should be
a trajectory to it. Our method takes a general BN and will
search for a set of control inputs so that the resultant influence
graph becomes acyclic. Also, the selection of control inputs relies
on the canalization effect of a state variable. A canalized state

transition function is fixed to a constant when one state variable
belonging to the function as an argument is fixed (Kauffman et al.,
2004). As the number of state transition functions canalized by a
chosen control input increases, the tendency of the controlled BN
directing toward global stabilization is becoming higher. In this
regard, we will use the canalization effect as another criterion for
selecting control inputs.

Note that “global stabilization” in this paper does not mean
that the controlled BN converges to a unique fixed point for
all the possible combinations of external inputs and mutation
profiles. Since activation and inhibition of some genes is
determined only by external inputs representing extra-cellular
micro-environments or mutations occurring to the genes, the
global attractor cannot be always the same. Rather, the essence of
the proposed methodology is the ability to provide a consistent
set of control inputs that can achieve global stabilization
for any given combination of external inputs and mutation
profiles. Though the global attractor may vary depending on
external inputs and mutations, our solution guarantees global
stabilization despite the difference.

The rest of this paper is organized as follows. Basic notations
and terminologies of BNs and relevant notions are introduced
in section 2. In section 3, we propose an algorithm for
determining a set of constant control inputs that make the BN
converge to a unique fixed point. Permutation of the adjacency
matrix and canalization by state variables are incorporated
into an efficient procedure of determining control inputs. To
demonstrate the applicability of the proposed control scheme,
numerical experiments are conducted in section 4 where we
apply the proposed method to a regulation influence network
describing the metastatic process of cells (Cohen et al., 2015)
and an MAPK signaling network regulating cancer cell fate
determination (Grieco et al., 2013). A comparative study with
feedback vertex set control, the control kernel method, and the
stable motif control is also provided to highlight the efficiency of
the proposed scheme.

2. PRELIMINARIES

N is the set of natural numbers and [n]={1, . . . , n} for n ∈ N. For
a finite set A, |A| ∈ N denotes the cardinality of A.

A BN with n binary state variables x1, . . . , xn ∈ {0, 1} is
represented by a Boolean mapping F = (f1, . . . , fn)T :{0, 1}n →

{0, 1}n where fi :{0, 1}n → {0, 1} is the state transition equation
of xi. Index i and xi will be used interchangeably for the ith state
variable. Letting x = (x1, . . . , xn)T , we express the state evolution
with x : = F(x). Although our study focuses on BNs with
synchronous updating, it can be also applied to asynchronously
updating BNs.

The connectivity of F is described by a Boolean matrix with
respect to the influence graph of F (Paulevé and Richard, 2012),
a topological representation of F in which state variables serve as
nodes and there is an edge xi → xj when fj depends on xi.

Definition 1. Given F, the adjacency matrix A(F) is an
n × n Boolean matrix whose (i, j) entry Ai,j(F) is 1 if

there exists a state (x1, . . . , xj−1, 0, xj+1, . . . , xn)T such that
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fi(x1, . . . , xj−1, 0, xj+1, . . . , xn) 6= fi(x1, . . . , xj−1, 1, xj+1, . . . , xn);
otherwise, Ai,j(F) = 0.

Ai,j(F) is equal to 1 when xi is directly affected by xj. Letting
A(F) = (ai,j), denote by ari ∈ {0, 1}1×n and acj ∈ {0, 1}n×1 the
ith row vector and jth column vector of (ai,j), respectively. The
norm of each vector is defined as:

|ari | =

n
∑

j = 1

ai,j

|acj | =

n
∑

i = 1

ai,j

|ari | and |acj | are equal to the number of all the incoming and
outgoing edges of xi and xj, respectively. For the row vector ari
and the column vector acj , we define additional parameters:

d(ari ) =
i

∑

j = 1

ai,j

d(acj ) =

j
∑

i = 1

ai,j

to denote the sum of all one entries from the first to ith position
of ari and from the first to jth position of acj , respectively.

Example 1. Consider the following synthetic BN F = (f1, . . . , f8)T

with

f1(x) = ¬x3 ∧ x7 ∧ ¬x8

f2(x) = (x5 ∨ x6) ∧ ¬x8

f3(x) = x8

f4(x) = x2 ∧ ¬x7 (1)

f5(x) = x2 ∨ x4

f6(x) = x3 ∧ ¬x8

f7(x) = x2 ∧ ¬x8

f8(x) = ¬(x1 ∨ x2) ∧ (x4 ∨ x7)

where ¬, ∧, and ∨ are negation, conjunction, and disjunction
operation, respectively. In view of Definition 1, the adjacency
matrix A(F) = (ai,j) ∈ {0, 1}8×8 is derived as

(ai,j) =

























0 0 1 0 0 0 1 1
0 0 0 0 1 1 0 1
0 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0
0 1 0 1 0 0 0 0
0 0 1 0 0 0 0 1
0 1 0 0 0 0 0 1
1 1 0 1 0 0 1 0

























F has three attractors σ1–σ3 where σ1 and σ2 are fixed points and
σ3 is a cycle with length 2:

σ1 = (1, 1, 0, 0, 1, 0, 1, 0)

σ2 = (0, 0, 0, 0, 0, 0, 0, 0)

σ3 = (0, 1, 0, 0, 1, 1, 0, 1) ⇆ (0, 0, 1, 1, 1, 0, 0, 0)

Figure 1 shows the influence graph of A(F), where the arrows
with pointed heads represent activation and those with bar heads
represent inhibition.

In Cheng et al. (2011b), the necessary and sufficient condition for
global stability of F to a fixed point is presented in terms of the
adjacency matrix.

Theorem 1. A BN F globally converges to a unique fixed point if
and only if there exists k ∈ N such that A(Fk) = 0n×n where Fk

denotes the kth iterate of F.

A(Fk) = 0n×n implies that all the edges between state variables
are disconnected after the kth iteration. Hence F will reach
a unique fixed point for any initial state. However, since the
computation of Fk has exponential complexity with respect to
n, this criterion is difficult to apply when n is large. Cheng et al.
(2011b) also presents a sufficient condition for the existence of a
global attractor with polynomial complexity.

Theorem 2. For a BN F, assume that there exists k ∈ N such
that (A(F))k = 0, where (A(F))k denotes Boolean power in which
the sum and product operations in the matrix multiplication are
logical OR and AND, respectively. Then, F globally converges to a
unique fixed point.

The existence of k ∈ N leading to (A(F))k = 0 can be determined
by checking whether A(F) falls under a specific category as stated
below (Robert, 1986).

Theorem 3. For a BN F, there exists k ∈ N such that (A(F))k = 0

if and only if a permutation matrix H ∈ {0, 1}n×n exists such that
HT×BA(F)×BH is a strictly lower triangular (equivalently, upper
triangular) matrix, where ‘×B’ denotes the Boolean product.

FIGURE 1 | Influence graph of A(F ).

Frontiers in Physiology | www.frontiersin.org July 2018 | Volume 9 | Article 774142

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Yang et al. Global Stabilization of Boolean Networks

HT ×B A(F)×B H signifies that state variables of F are reordered
according to H. If HT ×B A(F) ×B H is strictly lower triangular,
the influence graph of F encoded by the adjacency matrix A(F)
turns out to be acyclic as addressed in Robert (1986). Theorem 2
and Theorem 3 stipulate that with this condition, F will converge
to a unique fixed point after some iterations k ∈ N. Further,
(A(F))k = 0 is a sufficient condition for global stabilization since
A(Fk) ≤ (A(F))k for all k.

Example 2. Consider a BN F = (f1, f2, f3, f4)T with

f1(x) = x2 ∨ x3

f2(x) = ¬x4

f3(x) = x2 ∧ x3

f4(x) = ¬x3

Assume that x3 is fixed to 1 as a control input. With x3 = 1, The
second and third iterate F2 and F3 are derived as

F2 =



















x1 : = ¬x4 ∨ 1

x2 : = x3

x3 : = 1

x4 : = 0

F3 =



















x1 : = 1

x2 : = 1

x3 : = 1

x4 : = 0

Since A(F3) = 04×4, by Theorem 1 the BN globally stabilizes
to (1,1,1,0)T in three steps from any initial state. The adjacency
matrix of F with x3 = 1 is

A(F) =









0 1 1 0
0 0 0 1
0 0 0 0
0 0 1 0









It is easy to compute that (A(F))(4) = 04×4. Hence global stability
of the BN is confirmed again by Theorem 2. The latter can be
proved by employing the following permutation matrix

H =









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









that switches the order of x3 and x4. Since

HT ×B A(F)×B H =









0 1 0 1
0 0 1 0
0 0 0 1
0 0 0 0









is strictly upper triangular, by Theorem 3 k ∈ N exists such that
(A(F))(k) = 04×4 (k turns out to be 4 in this case).

For x and P = {(i1, u1), . . . , (i|P|, u|P|)} ⊂ [n] × {0, 1}, let
x̂P be the state vector in which each xik is fixed to a constant
uk, k = 1, . . . , |P|. If P = Ø, x̂Ø = x. For later usage, let
P[n] = {i1, . . . , i|P|} ⊂ [n]. x̂P stands for the state vector wherein
some state variables are selected as constant control inputs or are

canalized by other control inputs. This notation will be utilized
in developing the algorithm for global stabilization.

Assume that in a BN F, xik has been fixed to uk, k = 1, . . . , |P|,
as characterized by P. Then for xj and fi where i, j ∈ [n]−P[n] and
i 6= j, xj is called a canalizing variable of the transition function fi
if there exist u, v ∈ {0, 1} such that setting xj = u in x̂P canalizes
fi(x̂P) to v. Note that all successive canalizations by xj = u are
considered in checking the canalization of fi, namely, more than
one transition function may be canalized in a sequential way as
the result of setting xj = u. fi is said to be a (u, v)-canalized
transition function of xj with respect to x̂P [a similar definition
is presented in Cheng et al. (2011a)].

To quantify the canalization effect of a state variable, denote
by Cj(P; u) ⊂ [n] − P[n] the index set of all (u, ∗)-canalized
transition functions of xj with respect to x̂P that are derived by
setting xj = u. For instance, if xj = u canalizes fj as well as
another transition function fj′ , we have Cj(P; u) = {j, j′}. It is
convenient to elucidate which setting among xj = 0 and xj = 1
yields greater canalization effect. To this end, define

Tj(P) = max(|Cj(P; 0)|, |Cj(P; 1)|)

as the canalization number of xj with respect to x̂P. Tj(P) equals
the maximum number of canalized transition functions of xj that
are found for all state variables in [n] − P[n]. But to describe
our algorithm of global stabilization, we often need to restrict the
state variables of interest to a subset of [n] − P[n]. Formally, for
Q ⊆ [n]− P[n] define Tj(P,Q), where j ∈ Q, as

Tj(P,Q) = max(|Cj(P; 0) ∩ Q|, |Cj(P; 1) ∩ Q|)

Tj(P,Q) represents the maximum number of canalized transition
functions of xj that are searched only among state variables of Q.

Example 3. Global stabilization by the control input x3 = 1 in
Example 2 can be interpreted as canalization. In view of Example
2, we can set P = Ø and Q = {1, 2, 3, 4}. Once x3 is fixed to 1,
x4 is also fixed to 0 in the second iterate F2. Further, x3 and x4
canalize x1 and x2 to 1 in the third iterate F3. Hence C3(P; 1) = 3.
Similarly, C3(P; 0) = 3 and thus T3(P,Q) = max(3, 3) = 3.

3. METHODS

3.1. Global Stabilization
Although the criterion of Theorem 3 is sufficient but not
necessary, it can serve as a practical tool to determine control
inputs to complex biological networks since A(F) has a
polynomial complexity with respect to n. Specifically, to derive
A(F) from the influence graph of F with n nodes, one must
check whether any pair of nodes are adjacent with each other.
Hence A(F) is computed in O(n2). Based on Theorem 3, we
now propose a scheme of deriving a set of control inputs that
guarantee global stabilization of a BN F. Theorem 3 implies
that if the adjacency matrix or one of its permuted matrices is
strictly lower triangular, F converges to a unique fixed point. To
utilize this result, we first reorder state variables of F so that the
permuted adjacency matrix can be as similar to a strictly lower
triangular matrix as possible. If the permuted adjacency matrix
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turns out to be strictly lower triangular, no assignment of control
inputs is necessary. Otherwise, we select in a sequential way a set
of state variables that will be used as control inputs. In terms of
the graph representation, the latter scheme is equal to making the
influence graph of F acyclic by fixing some nodes, thus removing
their input edges and potentially breaking cycles.

Once a state variable xi is selected as a control input, all the
incoming edges of xi are disconnected, leading to ari = 01×n. In
terms of global stabilization, we can also regard that the outgoing
edges of xi are ‘disconnected’ since the influence of xi on other
state variables becomes constant as does the value of xi. Hence
we will set aci = 0n×1 in our algorithm for determining control
inputs. In this regard, it would be best if we first select the state
variable that has the greatest outgoing edges in its upper right
entries of the (permuted) adjacency matrix. Moreover, we must
consider the canalization effect of the selected state variable.
If the transition function of another state variable is canalized
by the selected state variable, all the corresponding entries of
the adjacency matrix also degenerate into zeros. How many
state variables are canalized, as is quantified by the canalization
number, will be also utilized as a criterion to select the control
input. The following algorithm is the main result of this paper.

Algorithm 1. Derivation of control inputs that make the
adjacency matrix strictly lower triangular:

Given a BN F with the adjacency matrix A(F) = (ai,j), we
determine a set of control inputs that ensures global stability of F.
Set P = Ø and Q = [n].

1. Permute (ai,j) and update Q as follows.

a. Sort the row vectors into an ascending order of the row
vector norm. Letting i(1), . . . , i(n) be the sorted indices, we
have

|ari(1)| ≤ |ari(2)| ≤ · · · ≤ |ari(n)|

b. Permute (ai,j) according to i(1), . . . , i(n), i.e., reorder the
state variables so that xi(k) is placed on the kth position for
all k ∈ [n]. Let (ãi,j) be the permuted matrix of (ai,j).

c. Set Q = Q− {j ∈ Q|d(ãcj ) = 0}.

2. Search for j∗ ∈ Q as follows.

a. Let K ⊂ Q be the set of indices such that

k = argmax
j∈Q

d(ãcj ) ∀k ∈ K

b. Among the entries of K, find j∗ such that

j∗ = argmax
k∈K

Tk(P,Q)

3. Modify (ãi,j) and update P and Q as follows.

a. Let u∗ ∈ {0, 1} be the value of xj∗ such that Tj∗ (P,Q) =

|Cj∗ (P; u∗) ∩ Q|.
b. Set

ãrj∗ = ãrh = 01×n

ãcj∗ = ãch = 0n×1 ∀h ∈ Cj∗ (P; u
∗) ∩ Q

c. Update P and Q by

P = P ∪ {(j∗, u∗)}

Q = Q− {j∗} ∪ Cj∗ (P; u
∗)

4. If (ãi,j) is strictly lower triangular, terminate the algorithm. The
solution to global stabilization of F is

xj1 = u1, . . . , xj|P| = u|P|

where P = {(j1, u1), . . . , (j|P|, u|P|)}. Otherwise, return to Step 2.

In the above algorithm, P denotes the set of selected control
inputs so far and Q represents eligible candidates that can be
selected as control inputs in the next step (P[n] ∩ Q = Ø). Step
1 describes the permutation of (ai,j) by reordering state variables.
Since the permuted adjacency matrix must be akin to a strictly
lower triangular one, we reorder xi’s in an ascending order of the
norm of the corresponding row vectors, that is, those with more
incoming edges are placed on later positions. If d(ãcj ) = 0, xj
needs not be selected as a control input since the present form
of its column vector ãcj is already a component of a strictly lower
triangular matrix. Thus xj is removed from the candidate set Q
(Step 1.c).

In Step 2, we derive the index j∗ of the state variable that, if
selected as a control input, can modify (ãi,j) so that the changed
matrix approaches a strictly lower triangular matrix the most.
The best candidate would be the one having the most outgoing
edges in its upper right entries, which is represented by max d(ãcj )
(Step 2.a). If more than one state variable have the maximum
d(ãcj ), we choose the variable that has the greatest canalization
number (Step 2.b), since the corresponding row and column
vectors of all canalized state variables degenerate into zeros (Step
3.b), hence contributing to the modification of (ãi,j) to a strictly
lower triangular matrix.

Once selected as a control input or canalized by any selected
control input, the state variable must be excluded from the
candidate set Q (Step 3.c). If the modified adjacency matrix is
strictly lower triangular, the assignment of constant controls in
P is the solution to global stabilization (Step 4). Otherwise, the
foregoing steps are iterated until the solution is derived.

Example 4. Using Algorithm 1, let us derive the solution to global
stabilization of F in Example 1. According to Step 1.a–b of
Algorithm 1, we first permute (ai,j) by reordering state variables in
an ascending order of the norm of their row vectors. The permuted
adjacency matrix (ãi,j) is shown in Table 1. Here, |ar8| = 4, |ar2| =
3, and so on. Since d(ãcj ) = 0 for all j ∈ {3, 7, 6, 4, 5, 1}, we set
Q = {2, 8} by Step 1.c. This means that only the outgoing edges of
x2 and x8 are in the upper right positions of the permuted (ãi,j).
Figure 2A illustrates this topology where the outgoing edges of x2
and x8 are drawn in orange and green, respectively. Since d(ãc8) =
5 > d(ãc2) = 3, j∗ = 8 is selected as the first control input by Step
2. As the value of x8 is made constant, the incoming/outgoing edges
of x8 are removed from the influence graph as shown in Figure 2B.
Referring to (1), further, f2 is (1, 0)-canalized by x8. Hence x8 = 1 is
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TABLE 1 | Permuted adjacency matrix (ãi,j ).

|ar
i
| x3 x7 x6 x4 x5 x1 x2 x8

1 0 0 0 0 0 0 0 1

2 0 0 0 0 0 0 1 1

2 1 0 0 0 0 0 0 1

2 0 1 0 0 0 0 1 0

2 0 0 0 1 0 0 1 0

3 1 1 0 0 0 0 0 1

3 0 0 1 0 1 0 0 1

4 0 1 0 1 0 1 1 0

the value that maximally canalizes the remaining variables of Q—
single element x2 in this case. Applying Step 3.b, we modify (ãi,j)
to

(ãi,j) =

























0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

























Since the above matrix is strictly lower triangular, we terminate
the algorithm by determining the solution x8 = 1. The resultant
influence graph becomes acyclic as shown in Figure 2C. The
global fixed point obtained by the control input x8 = 1 is
x∗ = (0, 0, 1, 0, 0, 0, 0, 1)T , which differs from σ1–σ3 derived in
Example 1.

To discuss computational complexity of Algorithm 1, let s ∈ N

be the maximum number of incoming edges of a node in F. In
Step 1.a, sorting the row vectors needs n2 operations in the worst
case. Since Step 1.b and Step 1.c can be done in one operation,
respectively, Step 1 has the maximum n2 + 2 operations. Step 2.a
needs n operations in the worst case. In Step 2.b, on the other
hand, we need to derive the canalization number of each state
variable. For a state variable with l incoming edges, wemust check
whether the corresponding state transition function is fixed to a
constant for all 2l−1 combinations of arguments (one argument
is the canalizing variable). Hence Step 2.b needs n2s−1 operations
in the worst case. Step 3 has four operations (Step 3.a needs
two operations to determine u∗), and finally Step 4 has just one
operation. Combining these factors, we conclude that Algorithm
1 can be computed in O(n2 + n2s−1). In other words, Algorithm
1 has polynomial complexity with respect to the number of
state variables, while having exponential complexity with respect
to the number of incoming edges. When the considered BN
has a state variable with a huge number of incoming edges,
applying Algorithm 1 may be computationally demanding. Still,
Algorithm 1 is useful since it is known that BNs representing
biological systems are very sparse in general—the average degree
of a node is about two (Leclerc, 2008).

As duality of making a strictly lower triangular matrix, we can
adjust Algorithm 1 so as to search for a set of control inputs that

FIGURE 2 | Change of the influence graph of F: (A) before control, (B)

removal of incoming/outgoing edges of x8 by setting x8 = 1, and (C) removal

of incoming/outgoing edges of x2 by canalization (the resultant influence graph

becomes acyclic).

make the resulting adjacency matrix strictly upper triangular. To
this end, we reorder state variables according to an ascending
order of the column vector norm |acj |, find the candidate control
input that has the greatest |d(ari )|, and so on. The following
algorithm is analyzed in a similar way to Algorithm 1.

Algorithm 2. Derivation of control inputs that make the
adjacency matrix strictly upper triangular:

Given a BN F with the adjacency matrix A(F) = (ai,j), we
determine a set of control inputs that ensures global stability of F.
Set P = Ø and Q = [n].
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1. Permute (ai,j) and update Q as follows.

a. Sort the column vectors into an ascending order of the
column vector norm. Letting j(1), . . . , j(n) be the sorted
indices, we have

|acj(1)| ≤ |acj(2)| ≤ · · · ≤ |acj(n)|

b. Permute (ai,j) according to j(1), . . . , j(n), i.e., reorder the
state variables so that xj(k) is placed on the kth position for
all k ∈ [n]. Let (ãi,j) be the permuted matrix of (ai,j).

c. Set Q = Q− {i ∈ Q|d(ãri ) = 0}.

2. Search for i∗ ∈ Q as follows.

a. Let K ⊂ Q be the set of indices such that

k = argmax
i∈Q

d(ãri ) ∀k ∈ K

b. Among the entries of K, find i∗ such that

i∗ = argmax
k∈K

Tk(P,Q)

3. Modify (ãi,j) and update P and Q as follows.

a. Let u∗ ∈ {0, 1} be the value of xi∗ such that Ti∗ (P,Q) =

|Ci∗ (P; u∗) ∩ Q|.
b. Set

ãri∗ = ãrh = 01×n

ãci∗ = ãch = 0n×1 ∀h ∈ Ci∗ (P; u
∗) ∩ Q

c. Update P and Q by

P = P ∪ {(i∗, u∗)}

Q = Q− {i∗} ∪ Ci∗ (P; u
∗)

4. If (ãi,j) is strictly upper triangular, terminate the algorithm.
The solution to global stabilization of F is

xi1 = u1, . . . , xi|P| = u|P|

where P = {(i1, u1), . . . , (i|P|, u|P|)}. Otherwise, return to Step 2.

Algorithm 2 is identical to Algorithm 1 except that (i) the column
vector norm |acj | is employed instead of the row vector norm
|ari | in permuting the adjacency matrix (Step 1), and (ii) d(ãri ),
the number of 1’s in off-diagonal entries of a row, replaces
its column counterpart d(ãcj ) in determining the control input
(Step 2). Algorithm 1 is suitable for applying to BNs in which
state variables with a large number of outgoing edges produce
large canalization numbers. On the other hand, Algorithm 2
is pertinent to apply to BNs where state variables with a large
number of incoming edges have a tendency to have large
canalization numbers.

Example 5. Let us apply Algorithm 2 to global stabilization of F in
Example 1. We first permute (ai,j) according to an ascending order
of the column vector norm. The permuted adjacency matrix (ãi,j) is

shown in Table 2. After applying Step 2–4, we obtain P = {(8, 1)},
i.e., x8 = 1 as the control input that achieves global stabilization.
Thus the control inputs and the global fixed point are the same as
those derived using Algorithm 1 in Example 4.

The proposed algorithm can be applied without modification
to the case that some state variables serve as external inputs or
outputs. We first remove input and output variables from the
entries of the adjacency matrix. Then we derive the adjacency
matrix by setting the values of external inputs and continue to
apply Algorithm 1. The proposed algorithm is also applicable to
the case that some state variables are disabled by mutation. For
instance, if xi is knocked out by mutation, its value is fixed to
xi = 0. In a similar way to Step 3.b of Algorithm 1, to deal
with mutated variables we refine the adjacency matrix a priori
by setting ari = ar

h
= 01×n and aci = ac

h
= 0n×1 for all h ∈ [n]

such that xh is canalized by xi = 0. Moreover, our algorithm can
deal with the existence of uncontrollable state variables, namely
those state variables that cannot be used as control inputs. Let
Qf ⊂ [n] be the index set of uncontrollable state variables. The
latter constraint can be easily implemented in the algorithm by
setting Q : = [n]− Qf instead of Q = [n] in the initial phase.

As mentioned in Introduction, a significant advantage of the
proposed algorithm is that it always guarantees a solution to
global stabilization for any values of the external inputs and
fixed values of mutated variables. Unless the external inputs and
mutations influence the variables that are otherwise to be selected
as control inputs, the algorithm gives the same solution without
regard to the external inputs and mutations.

3.2. Sequential Control
Once the heterogeneity of cellular responses is eliminated by the
proposed scheme of global stabilization, it would be a reasonable
follow-up measure to investigate whether there is a subsequent
scheme that can drive the BN further from the unique fixed
point to another stable state with a desirable feature. We may
realize this objective by applying various control strategies for
BNs (Cheng et al., 2011a; Kim et al., 2013; Mochizuki et al.,
2013). In doing so, the contribution of our study to reduce the
heterogeneity of the BN strewn with many mutations and input
variations will play a role as an important precedence.

In this paper, we present one of straightforward subsequent
schemes—to perturb the values of external inputs after the BN
reaches the unique fixed point. We first assume that among n
state variables of the considered BN, m ones (1 ≤ m < n)

TABLE 2 | Permuted adjacency matrix (ãi,j ).

x1 0 0 0 0 1 1 0 1

x6 0 0 0 0 1 0 0 1

x5 0 0 0 1 0 0 1 0

x4 0 0 0 0 0 1 1 0

x3 0 0 0 0 0 0 0 1

x7 0 0 0 0 0 0 1 1

x2 0 1 1 0 0 0 0 1

x8 1 0 0 1 0 1 1 0

|ac
j
| 1 1 1 2 2 3 4 5
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serve as external inputs, that is, they have no incoming edges in
the corresponding influence graph. We also assume that some
bio-markers of the cell are available to determine that the BN
reaches an attractor and that a desirable phenotype turns on a
specific combination of bio-markers. The proposed sequential
control scheme combining global stabilization and perturbation
of external inputs is addressed as follows.

Step 1: Given a BN F, apply Algorithm 1 (or Algorithm 2)
to derive the set of constant control inputs P =

{(j1, u1), . . . , (j|P|, u|P|)} that ensures global stabilization
of F. Find the unique fixed point x∗ ∈ {0, 1}n that will be
reached in response to P.

Step 2: Allocating x∗ as the initial state, apply all 2m input
combinations to F separately during which |P| state
variables xj1 , . . . , xj|P| that were used as control inputs are
set to be free variables again.

Step 3: Check whether there exists an input combination that
drives F from x∗ to another fixed point with the desirable
phenotype.

Step 4: If no such input combination is found, the sequential
control scheme fails to achieve global stabilization to
a desired fixed point. Else if there are a number of
input combinations that succeed in favorable global
stabilization, select the minimally perturbed input
combination, namely, the input combination in which
the number of activated external inputs is minimum.

As elucidated in Step 4, this control strategy does not always
give a solution, as the reachability of the BN starting from the
unique fixed point x∗ may not be expanded enough by perturbing
external inputs. Nevertheless, this method is worth attempting
since it is very easy to apply and computationally tractable
(usually the number of external inputs m is small). Once we
derive the input combination that will be applied in the second
step, we can conduct the overall procedure of the sequential
control scheme as follows.

1. Provide P to the considered BN.
2. Determine the convergence of the BN to x∗ by observing

the corresponding bio-markers. When the convergence is
ensured, stop the transmission of P.

3. Engage in the second control step by providing the input
combination that is derived in the preceding algorithm.

4. Confirm the convergence of the BN to the desired fixed
point by observing that the bio-markers change to the
corresponding values.

The practicality of the sequential control scheme will be validated
in our numerical experiments.

4. APPLICATION TO BIOLOGICAL
SYSTEMS

4.1. Metastasis Influence Network
To validate the practicality of the proposed algorithm, we apply it
to two real biological systems. First, let us consider an influence
network describing the metastatic process of cells (Cohen et al.,
2015). The network graph of the metastasis influence network is

shown in Figure 3. There are two external inputs, ECMicroenv
and DNADamage, and one output, Metastasis. ECMicroenv =

1 and 0 means that the effect of the extracellular micro-
environment turns on and off, respectively. DNADamage =

1 implies that a DNA damage occurs to the considered cell.
Excluding the inputs and output, the BN of Figure 3 has 29 free
variables (n = 29). According to Cohen et al. (2015), it has nine
possible fixed points in total.

Referring to Algorithm 1, we first compute the adjacency
matrix (ai,j) and permute it to (ãi,j) according to the norm of
the row vector. Display of (ai,j) and (ãi,j) is omitted here for
space limit and the names of proteins shown in Figure 3 will
take place of the corresponding indices. By Step 2, we derive
K = {k ∈ Q|k = argmax d(ãcj )} where Q = [n] = {1, . . . , 29}.
It turns out that K is a monotone set K = {p53}. Hence we have
j∗ = p53.

By Step 3.a, we replace p53 with 0 and 1 respectively to the
Boolean logic rules (Supplementary Table S1) to compute the
canalization number. It is found that by setting p53=1, eight state
variables AKT1, AKT2, CTNNB1, NICD, p63, p73, SNAI1, and
SNAI2 are maximally canalized to logic 0. For instance, the state
transition equation of AKT1 is (see Supplementary Table S1 and
Cohen et al., 2015)

AKT1 = CTNNB1 ∧ (NICD ∨ TGFbeta ∨ GF ∨ CDH2)

∧ ¬p53 ∧ ¬miR34 ∧ ¬CDH1

Since p53 is included in the equation in the form “∧¬p53,” p53=
1 clearly leads to AKT1= 0.

Further, we investigate whether other variables are
subsequently canalized by these first-canalized variables
and so forth. Interestingly, all the other variables are canalized
to fixed values. Therefore, we find that p53 = 1 is a solution to
global stabilization of the metastasis influence network (refer
to Supplementary Dataset S4 for a Python script of Algorithm
1 for the Metastasis influence network). To confirm our result,
we use a Python package called BooleanNet (Albert et al.,
2008; BooleanNet, 2018) to search for attractors of the BN
with the control input p53 = 1 (see also the Supplementary
Material BooleanNet). Table 3 is the outcome of the search
given every possible combination of two inputs DNADamage
and ECMicroenv. We ensure the validity of the proposed scheme
since Table 3 equals the result of our scheme.

An examination of Table 3 shows that four attractors attr1–
attr4 are almost identical with each other (only the value of
TGFbeta differs). Hence it can be said that the proposed scheme
guarantees homogenous stable states of the considered BN
against heterogeneity in terms of external inputs. Further, all the
obtained attractors are desirable since they ensure programmed
cell death and no metastasis is manifested (Apoptosis = 1 and
Metastasis = 0 in all attractors). This result complies with the
analysis in Cohen et al. (2015) that unless the mutation activating
NICD and inhibiting p53 occurs, the network will converge to
apoptotic stable states.

Though any subsequent control is unnecessary in this case,
we note that the proposed algorithm of global stabilization is
not able to specify the features of the obtained fixed points in
general since it does not use any parameter associated with the
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FIGURE 3 | Boolean network implementing a metastasis influence network (Cohen et al., 2015). Some nodes represent biochemical species (proteins, miRNAs,

processes, etc.) and others represent phenotypes, and edges represent activating (blue) or inhibitory (red) influences of one node onto other node. The BN has two

input nodes ECMicroenv and DNADamage and one output node Metastasis, drawn in rectangles.

desirable phenotypes. Hence, if the obtained fixed points do not
have desirable features, we must apply the second control step.
The latter problem will be discussed in the next case study. We
also note that Algorithm 2 produces the same result p53 = 1 for
this case study.

In Cohen et al. (2015), main consideration was devoted
to constructing a logical model describing metastasis and to
understanding the role of involved gene alterations. While some
predictions were made on pathways and molecules triggering
metastasis, no methodology was presented to determine control
targets that can globally stabilize the metastasis influence
network. Hence, our study can expedite further analysis of the
metastasis influence network for control purposes.

4.2. MAPK Signaling Network
Next, we apply the proposed algorithm to global stabilization of
the Mitogen-activated protein kinase (MAPK) signaling network
that describes the mechanism underlying the influence of the
MAPK signaling network on cancer cell fate decision (Grieco
et al., 2013). Represented as a BN shown in Figure 4, the
MAPK signaling network has 53 components in total, among
which there are four inputs (DNA_damage, EGFR_stimulus,

FGFR3_stimulus, and TGFBR_stimulus) and three outputs
(Proliferation, Apoptosis, and Growth_Arrest).

We have applied the proposed algorithm to the MAPK
signaling network with various combinations of input sets and
mutation settings, which are specified in Supplementary Dataset
S3 of Grieco et al. (2013). For all the possible input combinations
and mutation settings, our algorithm produces the same solution
set, p38= 1 and GRB2= 1, that globally stabilizes the considered
network (both Algorithms 1 and 2 derive the same result; refer
to Supplementary Dataset S5 for a Python script of Algorithm
1). Table 4 is a list of selected results that shows attractors
with respect to five combinations of external inputs and three
mutation settings, denoted by r4, r9, and r10 following Grieco
et al. (2013); refer to Supplementary Table S3 for attractors
obtained with respect to all input combinations.

This results imply a remarkable virtue of the proposed
algorithm, i.e., despite differences in activations of the external
inputs and mutation profiles, our scheme guarantees the
global stabilization of the considered network. According to
Supplementary Dataset S3 of Grieco et al. (2013), the number
of attractors for each mutation setting is 3 for r4, 1 for r9, and 2
for r10. By contrast, applying the derived control inputs p38 = 1
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TABLE 3 | Unique fixed points with p53 = 1.

Gene attr1 attr2 attr3 attr4

DNADamage 0 0 1 1

ECMicroenv 0 1 0 1

AKT1 0 0 0 0

AKT2 0 0 0 0

CDH1 1 1 1 1

CDH2 0 0 0 0

CTNNB1 0 0 0 0

DKK1 0 0 0 0

ERK 0 0 0 0

GF 0 0 0 0

miR200 1 1 1 1

miR203 1 1 1 1

miR34 0 0 0 0

NICD 0 0 0 0

p21 1 1 1 1

p53 1 1 1 1

p63 0 0 0 0

p73 0 0 0 0

SMAD 0 0 0 0

SNAI1 0 0 0 0

SNAI2 0 0 0 0

TGFbeta 0 1 0 1

TWIST1 0 0 0 0

VIM 0 0 0 0

ZEB1 0 0 0 0

ZEB2 0 0 0 0

CellCycleArrest 1 1 1 1

Apoptosis 1 1 1 1

EMT 0 0 0 0

Invasion 0 0 0 0

Migration 0 0 0 0

Metastasis 0 0 0 0

The rows of two external inputs and one output, and the key gene, Apoptosis, are written

in bold.

and GRB2 = 1, we ensure that the network converges to a fixed
point for any mutation profile. Moreover, as observed in Table 4,
the global attractor for each case of the input combination and
mutation setting is very similar to one another. For instance, in
the attractors for all 24 = 16 input combinations (among which
only five are displayed in columns 2–6 of Table 4), only five state
variables, ATM, SMAD, TAK1, TAOK, and TGFBR, have different
values. The attractors obtained under mutation settings also have
strong similarity with each other.

The reason for this similarity is obvious. Note that the
proposed algorithm always searches for the target variables and
corresponding values according to the number of outgoing edges
and the canalization number (Algorithms 1 and 2). Since the
latter values are little influenced by perturbation of external
inputs, the result will be the same in most cases. Only state
variables having incoming edges from external inputs or from
those variables that are directly connected with external inputs
will differ. In the above case, for example, ATM will vary

according to the inputDNA_damage sinceATM=DNA_damage
(see Supplementary Table S2).

Once heterogeneity of cellular responses is minimized by
global stabilization, we can apply further control schemes to
take the derived global attractor toward another attractor with
desirable features. In this numerical experiment, we try to achieve
this goal by perturbing four external inputs as presented in
section 3.2. An apoptotic stable state of the MAPK signaling
network is characterized by Apoptosis = Growth_Arrest = 1 and
Proliferation = 0 (Grieco et al., 2013). Referring to Table 4, six
left most attractors are apoptotic stable states while those of
mutations r9 and r10 are not. We apply every combination of
input perturbations to the two non-apoptotic attractors in order
to conduct the second control. Note that in the second step, the
foregoing control inputs p38 = GRB2 = 1 are not employed any
more and p38 and GRB2 are released as free variables.

Table 5 shows the results of perturbation of external
inputs after global stabilization for mutations r9 and r10 (see
Supplementary Table S4 for complete description of attractors).
Note that there are a number of input combinations among
16 candidates achieving the goal, namely, invoking the BN to
reach apoptotic stable states in both mutations. We select the
case of DNA_damage = TGFBR_stimulus = 1 as our solution
since it needs the minimum number of input perturbations. The
sequential control procedure for the MAPK signaling network
for mutations r4, r9, and r10 is summarized as follows (see also
section 3.2).

1. Apply control inputs p38 = GRB2 = 1 to drive the network
toward the global fixed point of each mutation setting (Table 4
and Supplementary Table S3).

2. Determine the convergence of the network by observing the
change of bio-markers (see Grieco et al., 2013).

3. Conduct the second control step by applying DNA_damage
= TGFBR_stimulus = 1 so as to drive the network toward
apoptotic attractors (Table 5 and Supplementary Table S4).

Like the foregoing case study, the present result can contribute
to determining control targets for the MAPK signaling network
since the original study (Grieco et al., 2013) did not consider the
latter topic. The major concern of Grieco et al. (2013) was to
present a logical model of the MAPK signaling network and to
elucidate how MAPK signaling affects cell proliferation, growth
arrest, apoptotic cell death, etc. Grieco et al. (2013) applied
known biological input/output data to the MAPK signaling
network, based on which the underlying mechanisms were
analyzed in detail. Note that such analysis was focused on
understanding the mechanism with respect to feedbacks and
cross-talks inherent in the model, not on determining control
targets for global stabilization as done in this study.

As mentioned, the proposed algorithm cannot specify the
feature of the unique fixed point in a desirable way, which may
impose a burden on the second control step. But our sequential
control scheme can still be useful, especially in controlling cancer
cells, for the following reasons:

(i) First, for cancer cells, removing non-genetic heterogeneity
via global stabilization is a very significant phase itself
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FIGURE 4 | Boolean network implementing the MAPK signaling network (Grieco et al., 2013). Each node denotes a model component. Model inputs and outputs are

drawn in rectangles, and blue arrows and red T-arrows denote positive and negative regulations, respectively.

that should be achieved even though the resulting attractor
is unsatisfactory. Sequential control of cancer cells, i.e.,
initially blocking primary mutation effects and cross-talks,
and subsequently applying combinatorial targeted drugs for
additional control, has been an active area of research in
recent years [see, e.g., Lee et al. (2012); Vijayaraghavalu et al.
(2012)].

(ii) Next, while many existing targeted drugs aim at inhibiting
or activating intracellular molecules (mainly signaling
proteins) of cancer cells, studies on tackling cancer cells by
manipulating tumor micro-environments are also receiving
a great attention. Since tumor micro-environments are
characterized by external inputs in BNs, our sequential
control schemewith external input control in the second step
can be combined with the related methods [e.g., Bissell and
Hines (2011); Quail and Joyce (2013)].

4.3. Comparative Study
To conduct a comparative study, we have applied three
representative global stabilization schemes—feedback vertex set

(FVS) control (Fiedler et al., 2013), the control kernel (CK)
method (Kim et al., 2013), and the stable motif (SM) method
(Zañudo and Albert, 2015) to the control problem of the MAPK
signaling network discussed in the previous subsection.

(i) Feedback vertex set control: In graph theory, an FVS is
a subset of nodes in the absence of which the digraph becomes
acyclic, i.e., it contains no directed cycles (Fiedler et al., 2013;
Liu and Barabàsi, 2016). Hence if constant control inputs are
assigned to the state variables of an FVS, the resultant BN
will eventually converge to a unique fixed point. To apply FVS
control, we first identify a desired fixed point that is possessed by
the considered BN, namely, a fixed point showing the desirable
phenotype (Apoptosis = Growth_Arrest = 1 and Proliferation =
0). To this end, we randomly generated 100,000 initial states and
made the MAPK signaling network evolve from each initial state.
In this near brute-force searching, we found eight fixed points
for r9 mutation and four ones for r10 mutation that have the
desirable phenotype. We select a desired fixed point from each
attractor set for r9 and r10 mutations, respectively, and derive
the minimal FVS. Then we set the values of FVS according to the
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TABLE 4 | Unique single attractors with p38 = 1 and GRB2 = 1 for various input combinations and mutation settings.

Gene Input set to 1 Mutation settings

None DNA_ EGFR_ FGFR3_ TGFBR_ FGFR3 = 1 EGFR = 1 FGFR3 = 1

damage stimulus stimulus stimulus (r4) p14 = 0 p14 = 0

(r9) (r10)

AKT 0 0 0 0 0 0 1 1

AP1 1 1 1 1 1 1 0 0

ATF2 1 1 1 1 1 1 1 1

ATM 0 1 0 0 0 0 0 0

Apoptosis 1 1 1 1 1 1 0 0

BCL2 0 0 0 0 0 0 1 1

CREB 1 1 1 1 1 1 1 1

DUSP1 1 1 1 1 1 1 1 1

EGFR 0 0 0 0 0 0 1 0

ELK1 1 1 1 1 1 1 1 1

ERK 0 0 0 0 0 0 0 0

FGFR3 0 0 0 0 0 1 0 1

FOS 0 0 0 0 0 0 0 0

FOXO3 1 1 1 1 1 1 0 0

FRS2 0 0 0 0 0 0 0 0

GAB1 1 1 1 1 1 1 1 1

GADD45 1 1 1 1 1 1 0 0

GRB2 1 1 1 1 1 1 1 1

Growth_Arrest 1 1 1 1 1 1 0 0

JNK 1 1 1 1 1 1 0 0

JUN 1 1 1 1 1 1 0 0

MAP3K1_3 1 1 1 1 1 1 1 1

MAX 1 1 1 1 1 1 1 1

MDM2 0 0 0 0 0 0 1 1

MEK1_2 0 0 0 0 0 0 0 0

MSK 1 1 1 1 1 1 1 1

MTK1 1 1 1 1 1 1 0 0

MYC 1 1 1 1 1 1 1 1

PDK1 1 1 1 1 1 1 1 1

PI3K 1 1 1 1 1 1 1 1

PKC 0 0 0 0 0 1 1 1

PLCG 0 0 0 0 0 1 1 1

PPP2CA 1 1 1 1 1 1 1 1

PTEN 1 1 1 1 1 1 0 0

Proliferation 0 0 0 0 0 0 0 0

RAF 1 1 1 1 1 1 0 0

RAS 1 1 1 1 1 1 1 1

RSK 0 0 0 0 0 0 0 0

SMAD 0 0 0 0 1 0 0 0

SOS 1 1 1 1 1 1 1 1

SPRY 0 0 0 0 0 0 0 0

TAK1 0 0 0 0 1 0 0 0

TAOK 0 1 0 0 0 0 0 0

TGFBR 0 0 0 0 1 0 0 0

p14 1 1 1 1 1 1 0 0

p21 1 1 1 1 1 1 0 0

p38 1 1 1 1 1 1 1 1

p53 1 1 1 1 1 1 0 0

p70 0 0 0 0 0 0 0 0

The rows of three genes composing the desirable phenotype are written in bold.
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TABLE 5 | Results of perturbation of external inputs after global stabilization by p38 = 1 and GRB2 = 1.

Mutation setting External inputs Key genes in attractors

DNA_ EGFR_ FGFR3_ TGFBR_ Apoptosis Growth_Arrest Proliferation

damage stimulus stimulus stimulus

r9 0 0 0 0 Cycle Cycle Cycle

0 0 0 1 0 0 0

0 0 1 0 Cycle Cycle Cycle

0 0 1 1 0 0 0

0 1 0 0 Cycle Cycle Cycle

0 1 0 1 0 0 0

0 1 1 0 Cycle Cycle Cycle

0 1 1 1 0 0 0

1 0 0 0 1 1 0

1 0 0 1 1 1 0

1 0 1 0 1 1 0

1 0 1 1 1 1 0

1 1 0 0 1 1 0

1 1 0 1 1 1 0

1 1 1 0 1 1 0

1 1 1 1 1 1 0

r10 0 0 0 0 Cycle Cycle Cycle

0 0 0 1 0 0 0

0 0 1 0 Cycle Cycle Cycle

0 0 1 1 0 0 0

0 1 0 0 Cycle Cycle Cycle

0 1 0 1 0 0 0

0 1 1 0 Cycle Cycle Cycle

0 1 1 1 0 0 0

1 0 0 0 Cycle Cycle Cycle

1 0 0 1 1 1 0

1 0 1 0 Cycle Cycle Cycle

1 0 1 1 1 1 0

1 1 0 0 Cycle Cycle Cycle

1 1 0 1 1 1 0

1 1 1 0 Cycle Cycle Cycle

1 1 1 1 1 1 0

The rows of the selected solution input combination are written in bold.

corresponding values in the selected fixed point. Although some
cyclic attractors also have the desirable phenotype, we did not use
them for the purpose of focusing on fixed points.

Referring to Supplementary Dataset S1, we found that
Attractor 2 of r9 mutation and Attractor 21 of r10 mutation
are the same. Hence by selecting this fixed point, we can
achieve global stabilization of the BN with desirable phenotype
irrespective of the existence of both r9 and r10mutations.Table 6
shows the minimal FVSs that take the MAPK signaling network
toward the desired fixed point. The result of Table 6 is similar
to that of Table 5 in that both solve the global stabilization
problem by activating two external inputs (DNA_damage and
TGFBR_stimulus) and by setting some state variables to be
constant controls.

In term of accessibility of the modeling information, FVS
control is superior since it does not need the exact Boolean logic

of the BN. On the other hand, the solution of the proposed
scheme is more efficient in this numerical experiment since the
number of control inputs is less than that of FVS control. In fact,
our solution set p38= 1 andGRB2= 1 is included in the minimal
FVS as seen in Table 6.

(ii) Control kernel method: In Kim et al. (2013), the control
kernel is defined as the minimal set of nodes that need to be
regulated to drive the network to converge to a desired attractor
for all initial states. A genetic algorithm (GA) is employed to
find the minimal set among randomly selected candidate node
sets. Following the method addressed in Kim et al. (2013),
we found the control kernel that drives the MAPK signaling
network to a fixed point with the desirable phenotype (Apoptosis
= Growth_Arrest = 1 and Proliferation = 0). Since global
stabilization must be valid for either r9 or r10 mutation, we
searched for the control kernel for each mutation case separately
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and extracted common control kernels, if any. The control
kernel method usually chooses a desired fixed point, based on
which an appropriate control kernel is explored. But we did
not specify any desired fixed point in this case study. Instead,
we adapted the control kernel algorithm and discovered feasible
control kernels and their corresponding fixed points yielding the
desirable phenotype simultaneously in the search space of the
control kernel method.

It is found that no control kernel having size one exists
that achieves global stabilization of the BN. With the size
of the control kernel set to be two, we found nine control
kernels that solve the control problem, as shown in Table 7 and
Supplementary Dataset S2. Interestingly, our solution set p38=
1 and GRB2=1 is not included in the derived control kernels.
This is due to the property of our adapted searching algorithm
that it explores the control kernel and a desired attractor in
one single step. The result of Table 7 indicates that the control
kernel has superior performance than the proposed scheme since
it does not need any external input to be activated. In term
of computational load, however, our algorithm is much better
since while the control kernel method takes more than 72 h to
obtain the result, our algorithm yields the control inputs and the
associated external inputs in a few minutes.

(iii) Stable motif method: A stable motif is referred to as a set
of nodes and their corresponding states such that the nodes form
a minimal strongly connected component and their states form
a partial fixed point of the BN (Zañudo and Albert, 2015). Stable
motifs can be regarded as control targets since once they reach
certain Boolean values, they are preserved against other updating
schemes due to their dynamical property of being partial fixed
points. In Zañudo and Albert (2015), the set of stable motifs

is first computed, followed by reducing the number of control
targets in the stable motif using the stable motif control algorithm.
The stable motif method is remarkable since it is the first network
control approach that combines the structural and functional
information of Boolean networks to determine control inputs for
stabilization.

We have applied the stable motif method to controlling
the MAPK signaling network that is influenced by r9 and r10
mutations. The stable motif control algorithm was implemented
based on the method of Zañudo et al. (2017), and StableMotifs
java library devised in Zañudo and Albert (2015) was used to
realize the simulation code. It is found that the set of stable motifs
for each mutation profile contains more than 10 state variables.
However, through the stable motif control algorithm, we derived
a number of stable motif control sets consisting of only four
external inputs (Supplementary Dataset S3). Among them, four
combinations shown inTable 8 globally stabilize the BN to a fixed
point having the desirable phenotype (Apoptosis =Growth_Arrest
= 1 and Proliferation= 0) for both r9 and r10 mutations.

TABLE 8 | Stable motif control sets for control of the MAPK signaling network

with r9 and r10 mutations (refer to Supplementary Dataset S3 for associated

desired fixed points).

External inputs

DNA_damage EGFR_stimulus FGFR3_stimulus TGFBR_stimulus

1 1 0 0 1

2 1 0 1 1

3 1 1 0 1

4 1 1 1 1

TABLE 6 | Minimal FVS for control of the MAPK signaling network with r9 and r10 mutations (refer to Supplementary Dataset S1 for associated desired fixed points).

External inputs Internal variables

DNA_ EGFR_ FGFR3_ TGFBR_ ERK p53 p38 PKC GRB2 GAB1

damage stimulus stimulus stimulus

1 0 0 1 0 1 1 1 1 1

TABLE 7 | Control kernels with size two for control of the MAPK signaling network with r9 and r10 mutations (refer to Supplementary Dataset S2 for associated desired

fixed points).

External inputs Internal variables

DNA_ EGFR_ FGFR3_ TGFBR_ ATM FRS2 GRB2 TGFBR p53 MDM2

damage stimulus stimulus stimulus

1 - - - - 1 1 - - - -

2 - - - - 1 - 1 - - -

3 - - - - 1 - - 1 - -

4 - - - - - 1 - - - 1

5 - - - - - 1 - - 1 -

6 - - - - - - 1 - - 1

7 - - - - - - 1 - 1 -

8 - - - - - - - 1 - 1

9 - - - - - - - 1 1 -

“-” indicates that the corresponding variable or external input is not needed.
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TABLE 9 | Comparison between the proposed scheme and feedback vertex set, control kernel, and stable motif methods that are applied to controlling the MAPK

signaling network.

Proposed scheme Feedback vertex set Control kernel Stable motif

Find control targets for

global stabilization

Yes Yes Yes Yes

Applicable to large-scale

BNs (n ≥ 100)

Yes Yes Yes† No

Need to know Boolean logic

of the network

Yes No Yes Yes

Procedure 1. Global stabilization by the

adjacency matrix

2. Determine external inputs

to steer the BN toward a

desired attractor

1. Find FVSs using network

topology

2. Fix values of FVS states

corresponding to the

desired attractor

Check whether the BN can

be steered toward the

desired attractor by

brute-force method (sample

initial states for large

networks)

1. Compute stable motifs

2. Derive optimal stable

motif nodes that take the

BN to the desired attractor

†Note that the control kernel method is computationally intractable, if not impossible, for large-scale BNs since it takes huge time to find control kernels for BNs with large n.

The result of the stable motif method is efficient in that
the solution set includes no internal variables. Hence it would
be more advantageous when manipulating control targets in
biological experiments. On the other hand, it is necessary to
identify all attractors of the MAPK signaling network before
determining the stable motif control set that will be utilized
as actual controls since some quasi-attractors induced in the
network reduction procedure are not real attractors of the BN
(see Supplementary Dataset S3).

The primary difference between the proposed scheme and
the existing methods is that the proposed scheme is a purely
analytical approach for solving the global stabilization problem
based on structural and algebraic information of the BN.
The proposed scheme is particularly useful for large-scale
biological networks as it does not involve any numerical search
algorithm with demanding complexity. Table 9 summarizes our
comparative study with a brief review of the procedure of each
control scheme.

5. CONCLUSION

The problem of global stabilization of BNs has been addressed
in this paper to control the heterogeneous cellular behavior
for homogeneous responses. We have proposed an algorithm
determining a set of constant control inputs that can drive
the controlled BN to an unspecified global fixed point. A
subsequent control to transform the fixed point to a desired
attractor is further presented using perturbation of external
inputs. The proposed sequential control method is practical
in that the procedure of selecting control inputs is simple
and has polynomial computational complexity with respect
to the dimension of state variables, while having exponential
complexity with respect to in-degree of BNs. In addition, the
proposed method can be used for any combination of external
inputs and mutations. The results of numerical experiments on
the metastasis regulation influence network andMAPK signaling
network demonstrate the applicability of the proposed control
scheme. Furthermore, our experimental studies show that the

proposed sequential control can drive the BN to reach a desired
final attractor and the proposed global stabilization can be
utilized as a preparatory step.
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The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fphys.
2018.00774/full#supplementary-material

Supplementary information on the two biological Boolean
network models, the details of the proposed control targets,
and the implementation information and results of comparative
studies are provided:

Supplementary Table S1 | Boolean logical rules describing the activity of nodes

in the Metastasis influence network.

Supplementary Table S2 | Boolean logical rules describing the activity of nodes

in the MAPK signaling network.

Supplementary Table S3 | Unique single attractors with p38 = 1 and GRB2 = 1

for all the possible input combinations in the MAPK signaling network.

Supplementary Table S4 | Complete description of the attractors in Table 4 that

are obtained by perturbation of external inputs after global stabilization by p38 = 1

and GRB2 = 1.
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Supplementary Dataset S1 | Results of FVS control for the MAPK signaling

network.

• “r9_RealAttractors” sheet: All the attractors of the BN with r9 mutation that are

obtained by randomly generating 100,000 initial states.

• “r10_RealAttractors” sheet: All the attractors of the BN with r10 mutation that

are obtained by randomly generating 100,000 initial states.

• “Minimal FVSs” sheet: Derived minimal FVSs with respect to Attractor 2 in

r9_RealAttractors and Attractor 21 in r10_RealAttractors sheets.

• “Results” sheet: Selected minimal FVSs and the desired fixed points for r9 and

r10 mutations.

Supplementary Dataset S2 | Results of the control kernel method for the MAPK

signaling network.

• “r9_CKs” sheet: All the control kernels with size two that stabilize the BN with

r9 mutation to a set of desired fixed points.

• “r10_CKs” sheet: All the control kernels with size two that stabilize the BN with

r10 mutation to a set of desired fixed points.

• “Results” sheet: Intersection of the control kernels with size two for r9 and r10

mutations.

Supplementary Dataset S3 | Results of the stable motif method for the MAPK

signaling network.

• “r9_RealAttractors” sheet: All the attractors of the BN with r9 mutation that are

obtained by randomly generating 100,000 initial states.

• “r10_RealAttractors” sheet: All the attractors of the BN with r10 mutation that

are obtained by randomly generating 100,000 initial states.

• “r9_StableMotifControlSets” sheet: Stable motif control sets of the BN with r9

mutation that are obtained by the stable motif control algorithm.

• “r10_StableMotifControlSets” sheet: Stable motif control sets of the BN with

r10 mutation that are obtained by the stable motif control algorithm.

• “r9_and_r10_QuasiAttractors” sheet: Quasi-attractors of the BN with r9 and

r10 mutations that are obtained by the stable motif control algorithm.

• “r9_StableMotifControl_results” sheet: Desired fixed points of the BN with r9

mutation that are obtained by applying common stable motif control sets.

• “r10_StableMotifControl_results” sheet: Desired fixed points of the BN with r10

mutation that are obtained by applying common stable motif control

sets.

Supplementary Dataset S4 | A Python script that conducts global stabilization

by Algorithm 1 for the Metastasis influence network (section 4.1). It can be also

downloaded from https://github.com/choonlog/Global-stabilization/tree/master/

GS_Adjacency_Matrix.

Supplementary Dataset S5 | A Python script that conducts global stabilization

by Algorithm 1 for the MAPK signaling network (section 4.2). It can be also

downloaded from https://github.com/choonlog/Global-stabilization/tree/master/

GS_Adjacency_Matrix.

BooleanNet | A Python package called BooleanNet executed on Python 3.5 is

used in searching for attractors in all the numerical experiments. By setting

simulation parameters of the initial state of each node, logical functions of the BN,

limit of trajectory steps, and the update scheme, we can find associated

attractors. Notice that we have modified the source code of BooleanNet for

enhancing computing efficiency. Download distribution is provided in https://

github.com/choonlog/Global-stabilization.
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CD4+ T cells provide cell-mediated immunity in response to various antigens. During
an immune response, naïve CD4+ T cells differentiate into specialized effector T helper
(Th1, Th2, and Th17) cells and induced regulatory (iTreg) cells based on a cytokine
milieu. In recent studies, complex phenotypes resembling more than one classical T cell
lineage have been experimentally observed. Herein, we sought to characterize the
capacity of T cell differentiation in response to the complex extracellular environment.
We constructed a comprehensive mechanistic (logical) computational model of the
signal transduction that regulates T cell differentiation. The model’s dynamics were
characterized and analyzed under 511 different environmental conditions. Under these
conditions, the model predicted the classical as well as the novel complex (mixed)
T cell phenotypes that can co-express transcription factors (TFs) related to multiple
differentiated T cell lineages. Analyses of the model suggest that the lineage decision is
regulated by both compositions and dosage of signals that constitute the extracellular
environment. In this regard, we first characterized the specific patterns of extracellular
environments that result in novel T cell phenotypes. Next, we predicted the inputs that
can regulate the transition between the canonical and complex T cell phenotypes in
a dose-dependent manner. Finally, we predicted the optimal levels of inputs that can
simultaneously maximize the activity of multiple lineage-specifying TFs and that can drive
a phenotype toward one of the co-expressed TFs. In conclusion, our study provides new
insights into the plasticity of CD4+ T cell differentiation, and also acts as a tool to design
testable hypotheses for the generation of complex T cell phenotypes by various input
combinations and dosages.

Keywords: CD4+ T cell differentiation, T cell plasticity, complex T cell phenotypes, regulation of T cell plasticity,
cytokine compositions, cytokine dosage
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INTRODUCTION

The diversity and number of immunity-related diseases require a
high level of heterogeneity in the immune system to maintain the
overall well-being of a human. Early studies of immune responses
led to a discovery that the CD4+ T cells (referred to as T cells),
which are critical players in immunity, can be classified into
two subtypes - T helper 1 (Th1) and T helper 2 (Th2) cells
(Mosmann et al., 1986). Each type of effector T cell produces a
specific set of cytokines that define the function of the cell and
the way it further governs the immune response. Specifically,
the Th1 cells are responsible for several autoimmune diseases,
whereas the Th2 cells are the mediators in cases of allergy and
asthma (Reiner, 2007; Zhu and Paul, 2008). More recently, a
number of additional T cell subtypes, including the inducible
regulatory T cells (iTregs) (Groux et al., 1997; Chen et al., 2003;
Schmitt and Williams, 2013), T helper 17 (Th17) (Romagnani,
2000; Harrington et al., 2005; Mangan et al., 2006), T helper 9
(Th9) (Dardalhon et al., 2008; Veldhoen et al., 2008; Soroosh
and Doherty, 2009), and follicular T helper cells (Tfh) (Breitfeld
et al., 2000; Schaerli et al., 2000) have been discovered, and their
functions have been extensively studied. For example, the Th17
cells have been found to be responsible for assisting the immune
response against extracellular bacteria and fungi, whereas the
main role of the iTregs is to maintain the balance and regulate
immune responses by the T helper cell subtypes (Zhu and Paul,
2008). The Th9 cells have been found to be involved in pathogen
immunity and inflammatory diseases (Kaplan, 2013). Finally, the
Tfh cells assist in T cell-dependent B cell response (Breitfeld et al.,
2000; Schaerli et al., 2000; Ma et al., 2012).

In addition, recent studies suggest that some T helper cells
are capable of switching and exhibiting phenotypes of one of
the alternative effector T cells, depending on the combination of
input signals that the cell receives. For example, the iTregs and
Th17 can switch from one phenotype to the other in response to
the pleiotropic cytokine interleukin-6 (IL-6) (Xu et al., 2007; Lee
et al., 2009a; Rowell and Wilson, 2009; Kimura and Kishimoto,
2010). The fully differentiated Th17 cells have been observed to
produce Th1-cell-specific cytokines (Shi et al., 2008; Lee et al.,
2009b; Nindl et al., 2012; Harbour et al., 2015). The Th2 cells have
been reported to further develop into Th9 cells (Veldhoen et al.,
2008). More complexity in T cell differentiation was observed
in the form of co-expression of mutually exclusive lineage-
specifying transcription factors (TFs) (Peine et al., 2013; Bock
et al., 2017). This co-expression can lead to the development
of stable or intermediate subtypes that share characteristics of
more than one type of T cell (Tartar et al., 2010). Examples of
such mixed (complex) phenotypes include Th1–Th2 (Peine et al.,
2013; Bock et al., 2017) and Th1–Th17 (Kullberg et al., 2006;
Morrison et al., 2013).

The differentiation process is governed by the regulation of
multiple, mutually cross-linked signaling pathways, which form
complex networks (Zhu et al., 2010). The stimulation of the
naive CD4+ T cells by various cytokines triggers a cascade
of signaling events, such as the activation of the JAK/STAT
pathways that lead to the activation of T cell lineage-specifying
TFs (Murphy and Reiner, 2002; Kaiko et al., 2008). For example,

the commitment to Th1 lineage is initiated through signaling by
interferon gamma (IFN-γ) and IL-12, leading to the activation
of STAT1/STAT4, which in turn activate the T box expressed
in T cells (Tbet). Differentiation into Th2 is stimulated by the
activation of the GATA binding protein 3 (GATA3) TF through
STAT6 signaling. The differentiation of naive T cells into Th17
is governed by the retinoic acid receptor-related orphan receptor
gamma t (RORγt) TF, and by the cytokines i.e., IL-6, IL-21, IL-
23 and the transforming growth factor beta (TGF-β) (Aggarwal
et al., 2003; Harrington et al., 2005; Park et al., 2005; Tesmer et al.,
2008). In addition, the TGF-β inhibits T cell differentiation to
both the Th1 and Th2 lineages and is also conducive to the cell’s
commitment to the iTregs lineage (Schmitt and Williams, 2013).

The complexity of biochemical networks underlying the
regulation of T cell differentiation leads to additional questions
regarding the mechanisms of the immune response. For instance,
based on a large number of possible combinations of extracellular
cues, we may ask the following questions: (i) How does the cell
decide into which subsequent lineage to differentiate? (ii) What
specific combinations of signals are driving a possible switch to a
different lineage? (iii) What specific mechanisms are responsible
for the T cell differentiation capacity and plasticity?

While regulation of T cell differentiation in the context
of the diverse cytokine microenvironment has been studied
extensively, effects of the interplay among multiple cytokines
on T cell differentiation remain an open question. A systems-
level computational model can be used to explore whether,
and to what extent, the extracellular cytokine milieu affects the
T cell differentiation program. Recently, computational models
using various types of mathematical approaches investigated the
regulation of phenotypic plasticity, and dynamics in response to
diseases (Naldi et al., 2010; Carbo et al., 2013, 2014; Abou-Jaoudé
et al., 2014; Martinez-Sanchez et al., 2015). Predictions from
these models include novel T cell differentiation pathways (Naldi
et al., 2010), transition among T cell types under various micro-
environments and perturbations (Martinez-Sanchez et al., 2015),
peroxisome proliferator-activated receptor gamma-dependent
regulation of Th17 to iTreg switch (Carbo et al., 2013), and
IL-21-dependent modulation of IL-10 (Carbo et al., 2014).

Here, we explored the effect of the interplay among
extracellular cytokines on differentiation of T cells and their
plasticity. We have developed a logic-based computational
model (Helikar and Rogers, 2009; Helikar et al., 2012a,b, 2013;
Naldi et al., 2015; Abou-Jaoudé et al., 2016; Barberis et al.,
2017; Linke et al., 2017) of a signal transduction network that
regulates the differentiation process of naive T cells to Th1,
Th2, Th17, and iTreg cells and analyzed its dynamics. Local
protein–protein regulatory information was manually curated
to construct the mechanistic model that contains lineage-
specifying TFs (Tbet, GATA3, RORγt, and Foxp3), various
signal transducers and activators of transcription (STATs), and
other signaling molecules. The model consists of 96 regulatory
interactions among 38 components. To explore the entire
cytokine microenvironment, we analyzed the model’s dynamics
under (i) all possible combinations of extracellular signals, and
(ii) various input dosages. The analysis of the model resulted
in dynamic signatures that represent previously described, as
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well as novel cellular phenotypes. These include four canonical
phenotypes of differentiated T cells (Th0, Th1, Th2, and iTreg)
as well as six complex phenotypes, whereby multiple lineage-
specifying TFs are co-expressed. Our results also suggest that the
input dosage regulates the balance of specific T cells within the
complex T cell phenotypes, providing new insights into specific
patterns of environmental input composition and dosage effects
on T cell differentiation.

RESULTS

Mechanistic Logical Model of T Cell
Differentiation
A comprehensive mechanistic, logic-based model of T cell
differentiation was constructed using regulatory information
from published literature. The model includes 38 components
and 96 biochemical interactions that regulate the differentiation
process of major T cell subtypes, such as Th1, Th2, Th17, and
iTreg cells. The individual components of the model represent
lineage-specifying TFs (Tbet, GATA3, RORγt, and Foxp3),
STAT proteins, cytokines, their receptors, and other signaling
molecules. The extracellular environment is represented in the
model by eight cytokines and a (generic) TCR ligand, known to
play a role in T cell differentiation. The network representation of
the model is visualized in Figure 1. The regulatory interactions in
the model are defined as Boolean functions, which are composed
of the “AND,” “OR,” and “NOT” operators (Supplementary
Datasheets 1 and 2). The fully annotated model is available
for download in a number of formats [including SBML-qual
(Chaouiya et al., 2013)], as well as for viewing, and performing
simulations, analyses, and additional modifications within the
Cell Collective modeling platform1 (Helikar et al., 2012b, 2013).
The model can be accessed directly at: https://www.cellcollective.
org/#6678/cd4-t-cell-differentiation.

The model was validated to ensure that it can reproduce
differentiation into four canonical phenotypes (Th1, Th2, Th17,
and iTreg), as a result of cytokine stimulation and TCR
activation (Supplementary Table 1). Furthermore, the model
was able to reproduce more complex behaviors (Figure 2). For
example, Becskei and Grusby (2007) studied the synergistic
effect of positive feedback loops on the expression of the IL-
12 receptor (IL-12R). They showed that the number of IFN-
γ positive cells and the expression of IL-12R increased when
induced by the combination of IL-12 and IL-27. As shown
in Figures 2A,B, simulations of the presented model under
similar experimental conditions resulted in the same qualitative
behavior. Furthermore, it has been experimentally shown that
the IL-6 regulates the balance between iTreg and Th17 cells
in a dose-dependent manner (Yang et al., 2008; Kimura and
Kishimoto, 2010). Similarly, simulations of the model show a
clear distinction between iTreg and Th17 in an IL-6-dependent
manner (Figure 2C). Finally, simulations of the model, under
environmental conditions similar to those that have been shown
to induce the mixed Th1–Th2 behavior (Peine et al., 2013), also

1https://www.cellcollective.org

resulted in a complex phenotype with activation of both Tbet and
GATA3 TFs (Figure 2D).

Novel T Cell Phenotypes Are Predicted
by Logical Modeling
With the validated model in hand, we sought to understand its
capacity to represent various T cell phenotypes. By using ergodic
set analysis [see the section “Materials and Methods” and Todd
and Helikar (2012)], we explored the state space of the model
under 512 possible combinations of the extracellular stimuli
(input compositions) (Figure 3A).

A total of 101 ergodic sets (outputs) were obtained as a result of
511 input compositions (Supplementary Table 2). Out of the 511
compositions, 45 input compositions resulted into fixed points (a
single remaining input composition was not analyzable even on a
supercomputer due to the large size of state space which could not
be computed on a feasible temporal scale). The number of input
compositions for each output ranged from 1 to 51 (Figure 3B).
We obtained one output (output 3) that can be stimulated by
the maximum of 51 input compositions. Two outputs (outputs
6 and 13) were each stimulated by the maximum of 48 input
compositions (Figure 3B). Furthermore, four outputs (outputs
10, 22, 29, and 32) were each achieved by 16 different input
compositions. All outputs that are individually stimulated by 16
or more input compositions have input compositions with an
inactive TCR ligand.

The number of input compositions for the remaining outputs
varied from 1 to 4. These input compositions contained an active
TCR ligand. In this group, a total of 37 outputs were obtained,
whereby each of them was stimulated by four input compositions.
A total of 56 outputs were each stimulated with two input
compositions. Only one output was stimulated by a single input
composition.

Thus, 7 (out of 101) outputs were achieved when stimulated
by 211 input compositions with the absence of a TCR ligand.
On the other hand, 94 outputs (out of 101) were obtained when
stimulated by 255 input compositions with an active TCR ligand.
Therefore, fewer outputs (101) have been observed than the total
number of input compositions (511), suggesting that a specific
cell fate (output) can result from multiple signal compositions,
processed by a cell based on biochemical rules in a signaling
network (Helikar et al., 2008; Balázsi et al., 2011; Palau-Ortin
et al., 2015).

Next, we explored the biological relevance of the produced
outputs. As the model centers on the regulation of T cell
phenotypes and the TFs related to each differentiated T cell
subtype, we classified all the outputs based on the presence of
the four TFs (GATA3, Tbet, RORγt, and Foxp3). We found that
the model outputs (as a result of the 511 input compositions)
cluster into 10 biologically relevant phenotypes. These include
the canonical (single cell type) phenotypes as well as the complex
phenotypes having more than one lineage-specifying TF.

Specifically, we found four canonical T cell phenotypes that
carried Tbet, GATA3, or Foxp3, representing Th1, Th2, and
iTreg, respectively (Figure 3C). Furthermore, we found that
219 input compositions resulted in nine outputs with no TFs
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FIGURE 1 | Network diagram of the logical model of signal transduction in CD4+ T cells. The modeled pathways reflect the canonical pathways known to regulate
T cell differentiation into the major effector subtypes (Th1, Th2, Th17) and the regulatory subtype (iTreg). The model includes 38 components, including four
lineage-specifying TFs (Tbet, GATA3, RORγt, and Foxp3) and nine extracellular components: TCR-ligand, IFN-γ, TGF-β, IL-4, IL-6, IL-12, IL-18, IL-23, and IL-27.
Green arrows represent activation, red arrows represent inhibition, and gray arrows represent the conditions associated with activatory or inhibitory interactions.
IFNg_e, interferon-γ (external); IL12, interleukin 12; IL18, interleukin 18; IL23, interleukin 23; IL27, interleukin 27; IL4_e, interleukin 4 (external); IL6_e, interleukin 6
(external); TCR, T cell receptor; TGFb, transforming growth factor-β; Foxp3, Forkhead box P3; GATA3, GATA-binding protein 3; IFNg, interferon-γ; IFNgR,
interferon-γ receptor (generic); IL12R, interleukin 12 receptor (generic); IL17, interleukin 17; IL18R, interleukin 18 receptor 1; IL2, interleukin 2; IL21, interleukin 21;
IL21R, interleukin 21 receptor; IL23R, interleukin 23 receptor; IL2R, interleukin 2 receptor; IL4, interleukin 4; IL4R, interleukin 4 receptor; IL6, interleukin 6; IL6R,
interleukin 6 receptor; IRAK, interleukin-1 receptor associated kinase 1; Jak1, Janus kinase 1; NFAT, nuclear factor of activated T cells 5, tonicity-responsive; NF-κB,
nuclear factor of kappa light polypeptide gene enhancer in B cells (generic); RORgt, RAR-related orphan receptor C; SOCS1, suppressor of cytokine signaling 1;
STAT1, signal transducer and activator 1; STAT3, signal transducer and activator 3; STAT4, signal transducer and activator 4; STAT5, signal transducer and activator
5; STAT6, signal transducer and activator 6; Tbet, T-box expressed in T cells; TGFbR, transforming growth factor-β receptor (generic).

present (Th0 phenotype). Most of the outputs that represent
the Th0 phenotype (>95%) were stimulated by the input
compositions with an inactive TCR ligand. The remaining Th0-
leading input compositions contained an active TCR ligand
along with IL-23, or IL-18, or IL-6. This corresponds to
the experimentally established scenarios, whereby the T cells
cannot differentiate in the absence of TCR activation or in
the absence of key lineage-specific cytokines (Podojil and
Miller, 2009; Zhu et al., 2010; Chen and Flies, 2013). Fifty-
two input compositions led to 16 outputs with active Tbet,
representing the Th1 phenotype. A total of 24 input compositions
produce 10 outputs with active GATA3, representing the Th2
phenotype, while four input compositions led to one output
with active Foxp3, representing the iTreg phenotype. We
did not observe distinct outputs with only RORγt active;
instead, RORγt was part of the complex phenotypes (discussed
below).

In addition to the four canonical phenotypes, the model
predicted six complex phenotypes. The number of input
compositions, and the number of outputs that represent each
complex phenotype, is summarized in Figure 3C. Of the six
complex phenotypes, three of them including Th1–Th2 (Hegazy
et al., 2010; Evans and Jenner, 2013; Peine et al., 2013),
Th1–iTreg (Koch et al., 2009), and Th17–iTreg (Eisenstein
and Williams, 2009) were experimentally observed earlier, thus
further validating the model. The model also predicted three
novel complex phenotypes, Th1–Th2–iTreg, Th1–Th17–iTreg,

and Th1–Th2–Th17–iTreg, for which experimental validation is
foreseeable.

Cytokine Composition Establishes T Cell
Phenotypes
Once the classification of all the model outputs into biologically
relevant phenotypes was carried out, we analyzed the input
compositions (environmental conditions) leading to each of the
10 biological phenotypes. This analysis resulted in 27 patterns of
input compositions (Figure 4). We also identified the minimal
input compositions that are needed to stimulate each phenotype
(Figure 5). Additionally, the signal transduction sub-networks
activated for each phenotype, simulated under a representative
input composition, are shown in Figure 6.

As indicated in the model validation section, we found
that the canonical phenotypes (Th0, Th1, Th2, and iTreg) are
regulated by one or more cytokines. We also found that all
the complex phenotypes can be stimulated by more than one
input composition. Strikingly, our modeling effort predicts that
in order to induce specific phenotypes, certain cytokines cannot
be co-present in a given input composition (Figures 4, 5). For
example, based on our model, TGF-β should not be present
in the input compositions leading to the Th1–Th2 phenotypes,
and IL-6 should be absent from the input compositions that
lead to iTreg, Th1–iTreg, and Th1 phenotypes. On the other
hand, IL-4 can be present in the input composition leading to
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FIGURE 2 | Validation of the model using complex behaviors. (A–B) Simulations of the model under experimental conditions using the same concentration ratio of
IL-27 and IL-12 (i.e., 1000, 100, 10, 1 for IFN-γ and 100, 10, 1 for IL-12R) as in Becskei and Grusby (2007) show that combination of IL-27 with IL-12 leads to a
synergistic effect on level of IFN-γ production and the activity of the IL-12 receptor (IL-12R). (C) Simulated IL-6 dose-response effect on the activation of Foxp3 and
RORγt. (D) Model simulations reproduce a mixed Th1/Th2 phenotype with varying levels of Tbet and GATA3. The significant activity levels of both Tbet and GATA3
are observed in the area inside the red box.

Th1, but only when co-present with IL-6. IL-4 also needs to
be absent in input compositions leading to iTreg, Th17–iTreg,
Th1–iTreg, and Th1–Th17–iTreg phenotypes. Finally, IL-12 and
IL-18 cannot be co-present in the extracellular environment
that stimulates differentiation into Th1, Th2, Th1–iTreg, Th1–
Th17–iTreg, and Th0 (in the absence of the TCR ligand)
phenotypes.

The previously mentioned heterogeneous and conditional
effect of combining IL-12 and IL-18 is also supported and
partially explained through experimentally described regulatory
mechanisms (Yoshimoto et al., 1998; Nakanishi et al., 2001).
Specifically, we observed that combining IL-18 with IL-12 favors
co-expression of Tbet, GATA3, and Foxp3. It was previously
shown that combining IL-12 and IL-18 can synergistically
increase the Tbet-stimulated IFN-γ production in Th1 cells
(Tominaga et al., 2000). In another study, it was shown that IL-
18, but not IL-12, increases the production of IFN-γ by CD8+
and CD4+ T cells in the K14E7 transgenic skin (Gosmann et al.,
2014). Further, the combination of IL-12 and IL-18 has been
shown to induce the production of IFN-γ in the absence of
antigen (Munk et al., 2011). Finally, it has been shown that IL-18

in the absence of IL-12 can stimulate Th2 response (Nakanishi
et al., 2001).

To further investigate the effect of IL-12 and IL-18 on the
Th1–Th2–iTreg phenotype, the model was simulated under
the input composition of IL-12, IL-18, and TCR (with all
other cytokines inactive). Simulation results suggested the
synergistic effect of IL-12 and IL-18 on the activity level
of GATA3 and Foxp3. Interestingly, the increased activity of
GATA3 and Foxp3 was observed in the absence of external
IL-4 and TGF-β (Figure 7A), suggesting that the combination
of IL-12 and IL-18 (while controlling for the TCR signal)
are able to stimulate the Th1–Th2–iTreg phenotype in an
IL-4- and TGF-β-independent manner. We also found that
the combination of IL-12 and IL-18 is a weaker activator
of GATA3 and Foxp3 (Figure 7A). This is because the IL-
12 can also stimulate Tbet, which in turn suppresses the
GATA3 and Foxp3. Results obtained from the simulated IL-
12R knock-out suggested an eightfold increase in the activity of
GATA3, whereas the overexpression of IL-12R slightly decreased
the activity levels of GATA3 and Tbet. Knock-out of IL-18R
resulted in a complete inactivation of GATA3 and Foxp3,

Frontiers in Physiology | www.frontiersin.org August 2018 | Volume 9 | Article 878161

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-00878 July 30, 2018 Time: 16:55 # 6

Puniya et al. Cytokine Mediated Regulation of T cell Differentiation

FIGURE 3 | Simulation of T cell model under all possible environmental conditions. (A) A schematic diagram showing simulation strategy using all possible input
compositions (IC). (B) A total of 101 outputs (ergodic sets) were obtained. The number of input compositions stimulating each ergodic set is ranging from lowest 1 to
highest 51. Only one ergodic set resulted from a single input composition. (C) Ten phenotypes based on presence and absence of lineage-specifying TFs were
obtained. The number of input compositions and ergodic sets for each phenotype are provided in the first and second column. Based on the presence and absence
of TFs, each phenotype was determined. Blue cells correspond to TFs present in the phenotype, whereas the orange cells represent inactive TFs.

whereas the overexpression of IL-18R resulted in a greater than
twofold increase in the activity levels of GATA3 and Foxp3.
These results indicate that the knock-out of IL-12R favors
Th2 phenotype, whereas the knock-out of IL-18R favors Th1
phenotype under Th1–Th2–iTreg stimulating environmental
conditions.

The differentiation to Th2 was previously observed in airway
epithelia in the presence of IL-18, but not IL-4 (Murai et al.,
2012). The IL-4-independent Th2 stimulation possibly occurs
through the STAT5-mediated GATA3 activation (Yamane et al.,
2005; Paul, 2010). The IL-18R1 signaling was also found to
promote Foxp3+ iTreg cell function within colonic lamina
propria (Harrison et al., 2015). To better understand the
mechanism of how the IL-18 and IL-12 can stimulate GATA3
and Foxp3, we further analyzed the network structure of the
model. We found that IL-12 and IL-18 can possibly induce

the production of IL-2, which stimulates GATA3 and Foxp3
in STAT5-dependent pathways (Figure 7B). The knock-out
simulation of NF-κB or STAT5 resulted in complete inactivation
of GATA3 and Foxp3. On the other hand, the overexpression
of STAT5 increased the mean activity level of Foxp3 by 62-
fold, while no change in activity levels of GATA3 was observed.
The simulated over-expression of NF-κB had shown 5.4-fold
and twofold increase in the activity levels of Foxp3 and GATA3,
respectively. These results predict the role of IL-12 and IL-18
in stimulation of the Th1–Th2–iTreg phenotype in an NF-
κB- and STAT5-dependent manner (Figure 7C). Furthermore,
our simulation results suggest that a combination of IL-18 and
IL-12 can stimulate Tbet, GATA3, and Foxp3; however, the
activity levels of GATA3 and Foxp3 were lower than that of
Tbet (Figure 7A). Additionally, we have found that IL-12 and
IL-18 combination in the presence of IL-6 can stimulate the
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FIGURE 4 | Input compositions for all T cell phenotypes. The color map shows the patterns of input compositions that give rise to each observed phenotype. For
example, co-expression of RORγt–Foxp3 needs TCR + IL-6 + TGF-β (+IL-18 and IL-23 can also be active) to be active and IL-12, IFN-γ, IL-27, and IL-4 to be
inactive.

Th1–Th2 phenotype (Supplementary Figure 1 in Supplementary
Datasheet 3).

Altogether, we have identified input composition patterns
that include the minimum combinations of cytokines required
to stimulate a particular T cell phenotype, as well as complete
pattern of cytokines that can be co-present to stimulate a given
phenotype (Supplementary Table 3). Our results also predict the
relevance of IL-12 and IL-18 in regulating the Th1–Th2–iTreg
phenotype. Finally, we predicted an alternative pathway that can
stimulate GATA3 and Foxp3 in an IL-4 and TGF-β-independent
manner.

Cytokine Dosage Determines the
Balance Between Complex T Cell
Phenotypes
In the previous section, various input compositions that lead to
different canonical and complex phenotypes were characterized.
The logical question that we raise now is: How is the

balance of each T cell subtype within a complex phenotype
controlled?

As indicated in the “Introduction” section, several reports
suggest that the balance between Th17 and iTreg is regulated
by the dosage of IL-6 (Kimura and Kishimoto, 2010; Omenetti
and Pizarro, 2015). To explore how the input dosages within
each composition affect the complex phenotypes, we analyzed
the model under various activity levels of cytokines and the TCR
ligand under the complete set of input compositions.

We used the representative input compositions for each
identified phenotype as described in Figures 4, 5. Specifically, we
used two types of representative input compositions from each
row in Figure 4. The two types include, one with the maximum
number of inputs that can be simultaneously present to stimulate
a specific T cell phenotype, and a second type that is represented
by input compositions consisting of the minimal number of
inputs required to stimulate the identified phenotypes.

Sensitivity analysis of the model was performed to describe
the effect of each input in its composition on the TF(s) for
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FIGURE 5 | Minimal input compositions required to stimulate T cell phenotypes. All inputs in blue boxes are required to stimulate the corresponding phenotype. For
example, the Th1–Th2 phenotype can be stimulated by input composition: TCR ligand + (IFN-γ OR IL-12 OR IL-27) + (IL-4 OR IL-12 + IL-18 + IL-6). Minimum three
inputs are required to stimulate the Th1–Th2 phenotype (e.g., TCR ligand + IFN-γ/IL-12/IL-27 + IL-4).

the corresponding complex phenotype (Figure 4). The analysis
predicted individual inputs that are important for regulating
the balance among lineage-specifying TFs. For example, for
the Th1–Th2 phenotype, when stimulated with a maximum
of eight inputs, the sensitivity analysis suggested that IL-
27, IFN-γ, and IL-12 are negatively correlated with GATA3
(Figures 8A–C). The TCR signal is negatively correlated with
GATA3 [partial correlation coefficient (PCC) range = −0.18
to −0.19] under three input compositions (Figures 8A–C).
Interestingly, a positive correlation between the TCR ligand
and GATA3 was observed when the Th1–Th2 phenotype was
stimulated in the absence of IL-4 (and in the presence of IL-
12, IL-18, and IL-6) (Figure 8D). On the other hand, the

IL-18 had a moderate negative correlation with Tbet (PCC
range = −0.28 to −0.29) under all tested input compositions
(Figures 8A–D). The IL-4 had a very low correlation with Tbet
(PCC range = 0.005–0.01) under all tested input compositions
(Figures 8A–D).

Next, in the case of the Th1–Th2 phenotype stimulated under
minimal input compositions, higher correlations between the
inputs and TFs were observed compared to the correlations
observed with maximal input compositions (Figures 8E–H).
In the case of the input composition “TCR + IL-12 + IL-4,”
IL-12 had a strong negative correlation (PCC = −0.68) with
GATA3, and a strong positive correlation with Tbet (PCC = 0.7).
In this case, the TCR ligand had a moderate negative and
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FIGURE 6 | Active signal transduction sub-networks for T cell phenotypes. The active sub-networks under an input composition are mapped on the entire network
of T cell differentiation and are marked by bold arrows. Green arrows represent activation and red arrows represents inhibition, and gray arrows represent the
condition associated with activation and inhibition. (A) Th1 phenotype under input composition: TCR-ligand + IL-12 + IL-27 + IFN-γ, (B) Th2 phenotype under input
composition: TCR-ligand + IL-4, (C) iTreg phenotype under input composition: TCR + TGF-β, (D) Th17-iTreg phenotype under input composition:
TCR-ligand + IL-6 + TGF-β, (E) Th1–Th2 phenotype under input composition: TCR-ligand + IL-4 + IL-12 + IL-27 + IFN-γ, (F) Th1–iTreg phenotype stimulated under
input composition: TCR-ligand + IL-12 + IL-27 + IFN-γ + TGF-β, (G) Th1–Th17–iTreg phenotype stimulated under input composition:
TCR-ligand + IL-12 + IL-27 + IFN-γ + IL-6 + TGF-β, (H) Th1–Th2–iTreg phenotype stimulated under input composition:
TCR-ligand + IL-4 + IL-12 + IL-27 + IFN-γ + TGF-β, (I) Th1–Th2–Th17–iTreg phenotype stimulated under input composition:
TCR-ligand + IL-4 + IFN-γ + IL-6 + TGF-β.

positive correlation with GATA3 (PCC = −0.25) and Tbet
(PCC = 0.22), respectively. In the case when Th1–Th2 phenotype
was stimulated under input composition “TCR + IL-12 + IL-
18 + IL-6,” the TCR ligand was positively correlated with both
GATA3 (PCC = 0.30) and Tbet (PCC = 0.30). A strong positive
correlation was observed between IL-4 and GATA3 (PCC = 0.65)

under the input composition “TCR + IFN-γ + IL-4.” In the
Th1–Th2 complex phenotype, we observed that the TCR ligand is
negatively correlated with GATA3. The negative effect of a strong
TCR ligand signal on GATA3 is in agreement with the earlier
studies suggesting that a strong TCR signal can promote a strong
Th1 response, whereas a weaker signal favors the Th2 response
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FIGURE 7 | Combination of IL-12 and IL-18 favors the Th1–Th2–iTreg
phenotype. (A) The model was simulated using input composition (TCR
ligand + IL-12 + IL-18) under five conditions, including wild-type, and
knock-out and overexpression of both IL-12R and IL-18R. Overexpression of
IL-12R favors Th1 phenotype, whereas IL-12R knock-out significantly
increased the activity level of GATA3. IL-18R knock-out completely inactivated
both GATA3 and Foxp3. (B) A subnetwork that might induce GATA3 and
Foxp3 in the presence of IL-12 and IL-18, but in the absence of IL-4 and
TGF-β. (C) Knock-out of STAT5 and NF-κB resulted in complete inactivation
of GATA3 and Foxp3, whereas overexpression of STAT5 induced a strong
Foxp3 response. Overexpression of NF-κB increased the activity of both
GATA3 and Foxp3 by more than twofold.

(van Panhuys et al., 2014). The sensitivity analysis results for
all other mixed phenotypes are provided in Supplementary
Table 4.

In summary, the sensitivity analysis of our model predicts
“driver” inputs. Furthermore, it characterizes the strength and
direction (positive or negative) of the effect inputs can have on
the regulation of the balance of each T cell subtype within the
complex phenotypes. The strength of association between the
inputs and TFs varied based on the number of inputs in the input
compositions.

Determining the Optimal Input Dosage
Regulating the Balance Between
Complex Phenotypes
In the previous sections, the predicted complex T cell
phenotypes, input compositions, as well as the potential dosage
effect each input can have on the phenotype, were discussed.
Next, we examined the specific activity levels of the input
compositions required to control each specific T cell phenotype.
The model was simulated under 10,000 randomly generated
environmental conditions within the context of each relevant
input composition. Results from these simulations provided us
with specific input activity levels that have a low coefficient of
variance (CV) in activity levels of co-expressed lineage-specifying
TFs. Specifically, we investigated and characterized the activity
levels for each input composition that will drive a complex T cell
phenotype to each of the T cell subtypes or a balanced mixed
phenotype by maximizing the activity levels of the respective
TFs. For example, to achieve a balanced Th1–Th2 phenotype
that has similar activity levels to that of GATA3 and Tbet, we
characterized the optimal activity levels for each input in the
Th1–Th2-leading input compositions. This predicted optimal
input composition includes the low activity of the TCR ligand,
IFN-γ, IL-12, and IL-27, medium activity of IL-18 and IL-6, and
high activity of IL-4. The activity of IL-23 can vary from low to
high, whereas TGF-β should be inactive (Figure 9A).

To illustrate the effect of using optimal activity levels, we
stimulated the Th1–Th2 phenotype by using a median value
of optimal activity level for each input. As expected, the
simulation results show similar activity levels of Tbet and GATA3
(Figure 9B). To further investigate the effect of dominant
inputs (identified from the sensitivity analysis) on the Tbet–
GATA3 combination, we performed dose-response analysis by
varying the dominant cytokines while fixing the other inputs
to median activity levels (Figure 9A). As expected, our results
(Figures 9C–J) suggest that the increased signal strength of TCR
ligand or increased activity of IL-12 and IL-27 can drive the Th1–
Th2 phenotype toward Th1 by increasing the activity of Tbet
and decreasing the activity of GATA3. In contrast, the increased
activity of IL-18 can drive Th1–Th2 phenotypes toward Th2.

DISCUSSION

In this study, we sought to investigate the cellular phenotypes as a
result of CD4+ T cell differentiation under diverse environmental
conditions and understand how the balance between complex
phenotypes is regulated. To achieve this, by manually curating
literature data, we constructed a mechanistic computational
(logical) model of signal transduction that regulates the
differentiation of naive T cells into Th1, Th2, Th17, and iTreg
cells. The components (i.e., proteins and genes) in a logical
model can have binary (0 or 1) states at any time t. The state of
the network evolves stepwise based on the logical rules defined
for each model component (Helikar and Rogers, 2009; Helikar
et al., 2012a,b, 2013; Naldi et al., 2015; Abou-Jaoudé et al., 2016;
Barberis and Verbruggen, 2017; Linke et al., 2017).
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FIGURE 8 | Sensitivity analysis showing the input effect on lineage-specifying TFs for the Th1–Th2 phenotype. Panels (A–D) are based on simulations using maximal
input compositions. Panels (E–H) are based on minimal input compositions. PCC as a measure of association between inputs (cytokines and TCR) and
lineage-specifying TFs is shown on Y-axes and input composition (cytokines and TCR) is shown on X-axes.
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FIGURE 9 | Dose-dependent regulation of complex phenotypes co-expressing lineage-specifying TFs. (A) Optimal settings using maximal input composition that
stimulate co-expression of lineage-specifying TFs. Shown are median activity levels of inputs that result in a balanced activity level of both TFs. Activity levels ranging
from 0 to 40 (blue) were considered as low, 40 to 80 were medium (light blue), and 80 to 100 were high (purple). (B) Activity levels of GATA3 and Tbet when
simulated under optimal input settings that stimulate the Th1–Th2 phenotype. Median activity levels from panel A were used for the simulation. (C–J) Dose-response
curves illustrating the effect of TCR, IL-12, IL-18, and IL-27 on GATA3 and Tbet.
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We systematically characterized the model’s dynamics
in the context of activity of lineage-specifying TFs under
511 input compositions consisting of eight cytokines and a
TCR signal. In addition to the dynamics representing the
classical Th0, Th1, and Th2 phenotypes, we found several
complex (mixed) phenotypes (dynamics with more than
one lineage-specific TFs), including Th1–Th2, Th1–iTreg,
Th17–iTreg, Th1–Th2–iTreg, Th1–Th17–iTreg, and Th1–
Th2–Th17–iTreg. Our results are in agreement with recent
studies that reported hybrid T cell phenotypes in vitro and
in vivo (Zhou et al., 2008; Peine et al., 2013). Stable complex
Th1–Th2 phenotypes parallel to the classical Th2 phenotypes
were observed in vivo upon infection mediated by parasites
Schistosoma mansoni and Heligmosomoides polygyrus (Peine
et al., 2013), as well as by the threadworm Strongyloides
stercoralis (Bock et al., 2017). Moreover, Th1–iTreg intermediate
phenotypes were observed during Th1 polarizing infections
(Koch et al., 2009; Oldenhove et al., 2009; Evans and Jenner,
2013). In a recent system level study, a continuum of T cell
differentiation states with stable co-expressed lineage-specific
TFs has been observed when stimulated under different
combinations of six cytokines (Eizenberg-Magar et al.,
2017).

Interestingly, we did not observe a canonical Th17 (RORγt-
only) phenotype. Instead, our model predicts the existence of
a mixed Th17–iTreg phenotype. This result can be partially
explained by the fact that both Th17 and iTreg share a
common mechanism by cytokine TGF-β, and the differentiation
of naive T cells into iTreg or Th17 depends on the cytokine-
driven (TGF-β and IL-6) balance of lineage-specifying TFs
Foxp3 and RORγt (Omenetti and Pizarro, 2015). In addition,
it is known that the Th17/Treg balance is critical to maintain
immune tolerance. The imbalance of Th17/Treg has been
observed in the peripheral blood of cervical cancer patients
(Chen et al., 2013), non-small cell lung cancer patients (Duan
et al., 2015), and in patients with chronic low back pain
(Luchting et al., 2014). Thus, the complex Th17–iTreg phenotype
might play an important role in maintaining Th17/Treg
homeostasis. Such complex RORγt–Foxp3 co-expressing T cells
were observed in an autoimmune diabetes model (Ichiyama
et al., 2008; Tartar et al., 2010), in the lamina propria
(Zhou et al., 2008), in the peripheral blood and tonsils
(Voo et al., 2009), and in the large intestine (Ohnmacht
et al., 2015; Fang and Zhu, 2017). It is also possible that
the lack of Th17-only phenotype is due to the incomplete
nature of the model. However, it suggests that additional
experimental validation may be required to better understand
the relationship and mechanism of switching between iTreg and
Th17 phenotypes.

We also predicted novel phenotypes that have the potential
to have three active TFs (Tbet–GATA3–Foxp3, Tbet–RORγt–
Foxp3), as well as one with all four TFs (Tbet–GATA3–RORγt–
Foxp3). In partial support of our prediction, basal levels of
Tbet and GATA3 have been observed in iTreg cells (Yu et al.,
2015). While not yet shown experimentally, the Th1–Th17–iTreg
phenotype was also predicted by a similar modeling approach
(Naldi et al., 2010).

By analyzing all possible inputs combinations, we obtained
the minimal and maximal input compositions for each identified
phenotype. The minimal composition includes a minimum
number of inputs that can stimulate a phenotype. On the other
hand, the maximal composition includes a maximum number
of inputs that can be simultaneously active to result in the
same phenotype. In this analysis, we found that in order to
stimulate Th1, Th2, Th1–iTreg, Th1–iTreg, Th1–Th17–iTreg,
and Th0 phenotypes, IL-12 and IL-18 cannot be combined in
the environment. We observed that the combination of IL-12
and IL-18 leads to the stimulation of GATA3 and Foxp3 even in
the absence of IL-4 and TGF-β via a NF-κB-dependent pathway.
We predicted that a combination of IL-18 and IL-12 could
result in a Th1–Th2–iTreg complex phenotype. Analysis of the
model’s network structure suggests a potential mechanism that is
dependent on NF-κB and STAT5 (Figure 7B). Previous studies
suggest that IL-18 has a context-specific functional heterogeneity
and can induce both Th1 and Th2 T cell phenotypes. The
combination of IL-12 and IL-18 has been shown to have a
synergistic effect on IFN-γ production that stimulates the Th1
phenotype (Tominaga et al., 2000; Munk et al., 2011). It has
also been found that IL-18 alone (without IL-12) can stimulate
the Th2 phenotype (Nakanishi et al., 2001). In a study on
airway epithelial cells in response to Alternaria, it was found
that secreted IL-18 has the capacity to stimulate the Th2
phenotype (Murai et al., 2012). Since IL-12 can up-regulate IL-
18R expression, it might be possible that the combination of IL-12
and IL-18 may regulate the Th1, Th2, Th1–Th2, and Th1–Th2–
iTreg phenotypes in a dose-dependent manner.

Next, the sensitivity analysis of the model suggested that the
dosage of the individual inputs regulates the balance within the
different complex T cell phenotypes. We investigated the dosage
effect by using both minimum and maximum number of inputs
under varying activity levels. For example, our results suggest that
the dynamics of the complex Th1–Th2 phenotype depend on the
combination and dosage of IFN-γ, IL-12, IL-27, IL-18, IL-4, and
the TCR ligand. The increased activity levels of the cytokines IFN-
γ, IL-12, IL-27, and TCR ligand drive the phenotype toward Th1,
whereas the IL-18 or IL-4 drive the Th2 phenotype. The IL-23
and IL-6 have no correlation with either Tbet or GATA3. Under
both maximal and minimal input compositions, the IL-4 had low
to no correlation with Tbet. On the other hand, the IL-18 was
positively correlated with GATA3 and negatively correlated with
Tbet. Thus, we predicted that IL-18 may have a dominant role
over IL-4 to favor Th2 phenotype under the Th1–Th2 stimulating
environmental conditions.

Next, we identified the activity levels of the inputs required
to regulate the complex T cell phenotypes. Our results suggest a
range of activity levels required to obtain a specific phenotype
under minimal and maximal input compositions. For example,
a high amount of IL-4 or IL-18 and a low amount of IFN-
γ, IL-12, IL-27, and TCR ligand are required to stimulate the
Th1–Th2 phenotype under maximal input composition. Low
activity of GATA3 under higher TCR ligand activity is indeed
in agreement with the literature where it has been shown that a
strong TCR signal represses GATA3 (Aguado et al., 2002; Yamane
et al., 2005; Paul, 2010; Altin et al., 2011; Yamane and Paul,
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2012). Interestingly, our results showed an increase as well as
a decrease in the activity levels of GATA3 depending on the
activity levels of IL-12. This can be achieved as a result of IL-
12 up-regulating IL-18R, which induces NF-κB-mediated GATA3
activation. On the other hand, a higher activity of IL-12 results
in a strong Tbet activation, which in turn suppresses GATA3.
Although the predicted activity levels are dimensionless and
semi-quantitative, they provide a starting point for calibrations
against ligand concentrations in specific experimental research
protocols.

In summary, results provided in this study can provide a
platform to generate and design testable hypotheses in the context
of T cell differentiation in response to various combinations and
dosage of environmental signals. Furthermore, the presented
results and the mechanistic model can be used as tools to further
investigate the specific pathway mechanisms that govern each
complex phenotype. Input availability and relative dosage at
which inputs generate a productive signaling cascade necessarily
result in a variable timing of an immune response. Specifically, we
and others propose that dosage- and timing-dependent impact
of inputs, such as ILs, may impact the T cell differentiation
(Barberis et al., 2018; Martinez-Sanchez et al., 2018). This may
be investigated by employing experimental methodologies that
we have recently envisioned (Barberis and Verbruggen, 2017).
Furthermore, crosstalk between ILs and signaling cascades,
such as the one governing the cell cycle, may impinge on
a timely T cell-mediated protective response (Barberis et al.,
2018). These aspects are the focus of our current research
efforts. Together with new model-based predictions, improving
the understanding of the detailed mechanisms underlying
T cell differentiation, can be helpful to design strategies for
immunotherapy against pathogens and various diseases of the
immune system.

MATERIALS AND METHODS

Model Construction
The computational model is a mechanistic, logic-based model
of signal transduction processes known to regulate CD4+ T cell
differentiation into Th1, Th2, Th17, and iTreg cells. Each
component of the model can assume an active (1) or inactive
(0) state at any time t. The activity state of the model’s internal
components is determined by the regulatory mechanisms of other
directly interacting components. These regulatory mechanisms
are described with Boolean functions (Samaga and Klamt, 2013;
Albert and Thakar, 2014; Le Novère, 2015; Naldi et al., 2015;
Abou-Jaoudé et al., 2016; Linke et al., 2017).

The new signal transduction model was constructed manually
by curating published regulatory mechanisms of each signal
transduction component. Each of the 38 components in the
model corresponds to a signaling molecule (mainly proteins).
The model also contains nine external components that represent
the extracellular environment, consisting of eight cytokines (IFN-
γ, TGF-β, IL-4, IL-6, IL-12, IL-18, IL-23, and IL-27) and a
generic TCR ligand. The final model consists of 38 components
(29 internal and 9 external) connected with 96 interactions.

The model is fully annotated with published evidence for
each component and interaction to ensure transparency and
reproducibility. The model is available via the web-based
modeling and analysis platform Cell Collective (Helikar et al.,
2012b, 2013), accessible at https://www.cellcollective.org (under
Published Models) where it can be simulated as well as
downloaded (and other logical models published by the
community) in several file formats (such as SBML-qual, text file
of logical functions, and truth tables).

State Space Analysis
The logical model herein is a Probabilistic Boolean Control
Network (PBCN) (Todd and Helikar, 2012), whereby each
external input (components that are not regulated by other
model components) is activated by a user-defined probability
of activation (ranging from 0 to 100%). The activity levels of
the external inputs and the logical rules associated with each
internal node allow the system to update stochastically in time.
As such, a PBCN is a reducible Markov chain (Tijms, 2003).
We used ergodic sets (recurrent communicating classes of the
corresponding Markov chain) as a model of stable cell states that
represent the phenotype of a differentiated T cell. Ergodic sets
are a collection of states in state space such that once the system
evolves to one of these states it will remain in this set of states.
In this way, the ergodic sets are the stochastic equivalents to
attractors in purely Boolean networks (Ribeiro and Kauffman,
2007).

From each initial condition, the system will arrive in one of
a (possibly) different collection of ergodic sets. In order to find
all the ergodic sets, one would need to let the system evolve
from every possible initial condition. Given the large number of
possible initial conditions (229), this is computationally infeasible.
Thus, we found those ergodic sets that can be reached from
the initial state where all internal components are inactive.
This represents our goal, i.e., to identify cell phenotypes that
are the result of differentiation from naive T cells (i.e., all
model components are inactive). Once an ergodic set was
identified it was treated as an irreducible Markov chain and
thus has an associated limiting distribution. Activities of the
internal components are interpreted by approximating the
limiting distribution of the Markov chain via simulations in Cell
Collective. This means that each internal component has a unit
less activity level corresponding to the probability that it is active
in the limiting distribution of the Markov chain.

Identification of Ergodic Sets
The extracellular environment (external input components) in
the presented model consists of nine stimuli — eight cytokines
and a generic TCR ligand. A given extracellular environment is
described according to those stimuli that are off (no activity) and
those that are on (some level of activity). Thus, there are 29 = 512
possible off /on configurations for the extracellular environment
(input compositions). The ergodic sets that are reachable from
the naive state (where all components are inactive) depend only
on this off /on description and not on the activity level of the
non-off cytokines. We were able to identify the corresponding
reachable ergodic sets for 508 of these input compositions. The
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only extracellular environments that are yet unknown are the
three where all stimuli are on except for TGF-β, or IL-23, or
IL-4. The ergodic sets were identified in two steps. In the first
step, Tarjan’s algorithm (Tarjan, 1972) was used to identify
communicating classes of states. In the second step, these classes
were directly tested to determine if they were closed. The ergodic
sets (other than the fixed points) ranged in size from the smallest,
with two states, to the largest with 594,962 states. These ergodic
sets correspond to the “outputs” in Figures 3A,B. Each state
in an ergodic set specifies the state of the internal network. In
order to classify an ergodic set, for each internal component we
computed the percentage of states in which the component was
active. For example, the ergodic set that was identified when the
TCR ligand and IL-4 are off while all other external stimuli are
on, was found to have 64 states. Each of IL-18R, IL-4R, IRAK,
NF-κB, and STAT6 are on in 50% of states, though not the same
50% of states. All other internal components were off in all of the
64 states. In this case, as no lineage-specific TFs are expressed at
any level, it is classified as a Th0 phenotype.

The computations to find the ergodic sets were implemented
in PERL and were run on an 82-node Linux cluster. Most
computations of the ergodic sets required around 10–20 gigabytes
of RAM and took from hours to days for the Tarjan’s algorithm
to find an ergodic set. (Some required much more). In general,
given an initial condition and off /on input composition, several
ergodic sets could be reached. We found that out of the 512
possible input compositions, 502 compositions lead to a unique
ergodic set and 6 of them lead to exactly two ergodic sets. There
were three input compositions that led to one ergodic set, but
for which the algorithm had not finished the complete search
even after 7 days of calculations. Thus, for these three input
compositions, there could be reachable ergodic sets that we did
not identify. One input composition, in which all external inputs
are active, ran for 7 days without finding any ergodic sets (this
is the only input composition for which we have no ergodic
set). As we got inconclusive results from the aforementioned
incomplete analyses, the corresponding four input compositions
were excluded from any reported results.

Model Simulations in Cell Collective
Model simulations were performed in the web-based modeling
platform, Cell Collective2. Although the model is built by using
discrete mathematics, the output activity levels of individual
components can be represented as semi-continuous values
ranging from 0 to 100% as previously described in Helikar et al.
(2008) and Helikar and Rogers (2009). Each simulation was
conducted using synchronous updates, and consisted of 5,000
steps, where the activity level of the measured output component
was calculated as the fraction of ones (active states) over the last
500 iterations that describe the model’s steady behavior (Helikar
et al., 2008; Helikar and Rogers, 2009). The activity levels (dosage)
of external components is unit-less and defined as a per-cent
chance (probability ∗ 100) of the component being active in a
given time t. Depending on the desired experiment, the activity
levels of external components can be set by the user to specific

2https://www.cellcollective.org

values, or they can be set to ranges from which values during each
simulation are selected randomly (e.g., to simulate dose-response
experiments).

Once the ergodic sets were identified, expressions of the
internal components and their dependencies on the dosages of
the external cytokines and the TCR ligand were investigated via
the Cell Collective (Helikar et al., 2012b).

For each ergodic set, we chose one of its states as an initial
condition and then simulated the model with the corresponding
extracellular conditions via the Cell Collective. For each of the
active input cytokines, the activity levels varied between 1 and
99%. Further details of the use of the Cell Collective are specific
to the types of analysis as described below.

Sensitivity Analysis
The model was simulated in Cell Collective, whereby the activity
levels of the inputs for each composition varied. By using
the model-generated simulation data under 10,000 randomly
generated environmental conditions, the association between
inputs (cytokines and TCR ligand) and outputs (lineage-
specifying TFs) was determined by probabilistic global sensitivity
analysis based on PCC using the “sensitivity” package in R (R
Development Core Team, 2011; Pujol et al., 2017). The PCC
measures the strength of association between the output and
input parameters after removing the linear effect of other input
parameters (Marino et al., 2008; Pujol et al., 2017). The PCC
between input and output is the correlation coefficients between
residuals (xj − x̂j) and (y− ŷ), where xj and y are input and
output, respectively, and x̂j ŷ are linear regression models [shown
in Equation (1)] (Marino et al., 2008).

x̂j = c0 +

k∑
p = 1
p =/ j

cpxp and ŷ = b0 +

k∑
p = 1
p =/ j

bpxp. (1)

Optimal Settings Analysis
Once again, the model was simulated using 10,000 randomly
generated environmental conditions for each input composition
that can stimulate a complex phenotype. We sought to
identify the environmental conditions wherein multiple lineage-
specifying TFs can have balanced activity levels. First, we used
the CV [Equation (2)] between TFs to measure variability.
Further, we selected simulation results under which the lowest
variability between TFs was observed. We selected corresponding
environmental conditions that had lowest CV among TFs. Next,
we selected the top 10 environmental conditions based on
the outputs that have the highest activity levels of TFs. Thus,
we considered both the balance of activity levels as wells as
the quantity of co-expressed TFs. Finally, we defined ranges
of activity levels of inputs from the selected environmental
conditions. Further, for Th1–Th2, we simulated the effect of
dominant inputs by individually varying IL-12, IL-18, IL-27, and
the TCR ligand and using median activity levels from identified
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optimal activity levels for other inputs. We used R-scripts
to determine the optimal activity levels from simulation
data obtained via Cell Collective (Helikar et al., 2012b).
The effect of dominant inputs on TFs in a complex
phenotype was shown using the Generalized Additive
Model (GAM) fitted scatter plots generated using “ggplot2”
package in R.

%CV =
Standard deviation

mean
× 100. (2)
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Purpose: We put forward a theoretical and dynamical approach for the semi-
quantitative analysis of CD4+ T cell differentiation, the process by which cells with
different functions are derived from activated CD4+ T naïve lymphocytes in the presence
of particular cytokine microenvironments. We explore the system-level mechanisms that
underlie CD4+ T plasticity−the conversion of polarized cells to phenotypes different
from those originally induced.

Methods: In this paper, we extend a previous study based on a Boolean network to a
continuous framework. The network includes transcription factors, signaling pathways,
as well as autocrine and exogenous cytokines, with interaction rules derived using fuzzy
logic.

Results: This approach allows us to assess the effect of relative differences in the
concentrations and combinations of exogenous and endogenous cytokines, as well
as of the expression levels of diverse transcription factors. We found either abrupt or
gradual differentiation patterns between observed phenotypes depending on critical
concentrations of single or multiple environmental cytokines. Plastic changes induced by
environmental cytokines were observed in conditions of partial phenotype polarization
in the T helper 1 to T helper 2 transition. On the other hand, the T helper 17 to induced
regulatory T-cells transition was highly dependent on cytokine concentrations, with TGFβ

playing a prime role.
Conclusion: The present approach is useful to further understand the system-level
mechanisms underlying observed patterns of CD4+ T differentiation and response to
changing immunological challenges.
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INTRODUCTION

The phenotype of a cell emerges from the feedback
between internal regulatory networks and signals from the
microenvironment (Murphy and Stockinger, 2010; DuPage and
Bluestone, 2016). CD4+ T cells constitute a useful model to
evaluate the role of micro-environmental signals on intracellular
regulatory networks underlying cell differentiation and plasticity,
as the combination and concentration of exogenous cytokines
are crucial for CD4+ T cell differentiation and plasticity
(Murphy and Stockinger, 2010; DuPage and Bluestone, 2016;
Eizenberg-Magar et al., 2017).

CD4+ T cells are part of the adaptive immune response. Naïve
CD4+ T cells are activated in response to antigens presented
by antigen presenting cells (APC) (Zhu et al., 2010). Depending
on the cytokines in the microenvironment, these cells may
differentiate into particular subsets. APCs are the main source
of cytokines (extrinsic cytokines) initiating an immune response,
but they can also be produced by other cells of the organism
(Duque and Descoteaux, 2014; Sozzani et al., 2017). Exogenous
cytokines bind to the membrane receptors of the cell and activate
intracellular signaling pathways. These signals activate or inhibit
particular transcription factors integrated in the networks under
analysis and promote the production of autocrine cytokines,
creating a positive feedback that reinforces the polarization
dynamics (Zhu et al., 2010). In addition, autocrine cytokines that
can also activate or inhibit other cells of the immune system. It
is interesting to note that different cytokines combinations have
been shown to have synergistic or antagonistic effects on CD4+ T
cell differentiation, and such differential responses may be crucial
during immune responses to pathogen attack, modulation of the
immune response, or immunopathological conditions (Zhu et al.,
2010).

Functional CD4+ T lymphocytes can be grouped into subsets
known as Th1, Th2, Th3, Th9, Th17, Treg, Tr1, and Tfh (Table 1).
It has been documented that Th1 cells require extrinsic IL-12
and IFNγ, they express T-bet and IFNγ (Hsieh et al., 1993; Perez
et al., 1995; Szabo et al., 2000, 2003). Th2 cells require extrinsic
IL-4 and are stabilized by IL-2, they express GATA3, IL-4, IL-5,
and -IL13 (Le Gros et al., 1990; Swain et al., 1990; Cote-Sierra
et al., 2004; Ansel et al., 2006; Zheng and Flavell, 1997). Th3 cells
require extrinsic TGFβ and express TGFβ (Gol-Ara et al., 2012).

TABLE 1 | CD4+ T cell types, their associated transcription factors, characteristic
cytokines, and exogenous cytokines that induce the cell type.

Cell type Transcription
factor

Characteristic
cytokines

Induced by

Th1 T-bet IFNγ IFNγ, IL-12

Th2 GATA3 IL-4 IL-4, IL-2

Th17 RORγt IL-17, IL-21 TGFβ, IL-6, IL-21

Tfh Bcl6 IL-21 IL-21

Th9 − IL-9 TGFβ, IL-4

iTreg Foxp3 TGFβ TGFβ, IL-2

Tr1 − IL-10 IL-10, IL-27

Th3 − TGFβ TGFβ

Th9 cells require IL-4 and TGFβ, they express IL-9 (Lu et al., 2012;
Kaplan, 2013; Schmitt et al., 2014). Th17 cells require extrinsic
TGFβ and IL-6, IL-21 or IL-23, they produce RORγt, IL-21,
IL-17A, and IL-17F (Ivanov et al., 2006; Veldhoen et al., 2006;
Zhou et al., 2007; Korn et al., 2009). Treg cells require extrinsic
TGFβ and IL-2, they express Foxp3, TGFβ and in some cases
IL-10 (Chen et al., 2003; Hori et al., 2003; Davidson et al., 2007;
Zheng et al., 2007). Tr1 cells require extrinsic IL10, expressing
IL10 (Roncarolo et al., 2006; Awasthi et al., 2007; Gagliani et al.,
2015).Tfh cells require IL-21, they express Bcl6 (Johnston et al.,
2009; Nurieva et al., 2009; Yu et al., 2009; Crotty, 2014).

Furthermore, CD4+ T cells are highly heterogeneous
suggesting that cell populations go through a continuum of
polarization levels after initial priming (Murphy and Stockinger,
2010; Magombedze et al., 2013; DuPage and Bluestone, 2016;
Eizenberg-Magar et al., 2017). Thus, mixed cellular phenotypes
may be encountered under particular cytokine concentrations
and combinations, and in some cases, hybrid cell types such
as Th1-like and Th2-like regulatory cells or Th1/Th2 hybrids
have been documented (Koch et al., 2009; Hegazy et al., 2010;
Wohlfert et al., 2011). Studies performed on polarized CD4+
T cell populations indicate that, even under controlled in vitro
conditions, stimulation generates heterogeneous cell populations
with variable cytokine expression profiles or intermediate cell
types (Assenmacher et al., 1994; Bucy et al., 1994; Openshaw
et al., 1995; Kelso et al., 1999; Chang et al., 2007; Eizenberg-
Magar et al., 2017). Asymmetric cell division with segregation of
signaling proteins may explain this behavior (Verbist et al., 2016).

The same cytokines responsible for the induction of naïve cells
to a particular polarized state may also dictate the conversion
from a different subset to this state. For example, multiple studies
report the transit of Treg cells toward Th17 cells in response to
the addition of exogenous IL-6 in the presence of TGFβ (Yang
et al., 2008; Lee et al., 2009a; Murphy and Stockinger, 2010).
Other plastic transitions depend on the degree of polarization,
as in the case of the Th17/Treg (Michalek et al., 2011; Berod
et al., 2014; Gagliani et al., 2015) and the Th1/Th2 transition
(Perez et al., 1995; Murphy et al., 1996; Hegazy et al., 2010).
Recently polarized Th1 and Th2 cells can transdifferentiate
into other subsets in response to environmental IL-4 or IL-12,
but fully polarized Th1 and Th2 cells are robust and do not
change their state in response to different microenvironments
(Murphy et al., 1996). Despite abundant experimental data on
such rich differentiation and plastic responses of CD4+ T cells
in contrasting microenvironments, we still do not understand the
underlying system-level mechanisms that explain such responses.
To contribute in this direction our group and others have been
integrating complex multistable regulatory network models that
have been partially validated with experimental data (Mendoza,
2006; Naldi et al., 2010; Carbo et al., 2013; Abou-Jaoudé et al.,
2014; Martinez-Sanchez et al., 2015; Eizenberg-Magar et al.,
2017).

Complex regulatory networks are useful to model
multistability, as they reach different stable multidimensional
configurations, called attractors that correspond to expression
profiles of different cell types (Kauffman, 1969; Mendoza
et al., 1999; Bornholdt, 2008; Villarreal et al., 2012;
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Martínez-Sosa and Mendoza, 2013; Albert and Thakar, 2014;
Naldi et al., 2015; Alvarez-Buylla et al., 2016). Hence, this type of
models have been used in other systems to successfully explore
the system-level mechanisms underlying cell differentiation
(Kauffman, 1969; Mendoza et al., 1999; Bornholdt, 2008; Cortes
et al., 2008; Azpeitia et al., 2011, 2014; Villarreal et al., 2012;
Martínez-Sosa and Mendoza, 2013; Albert and Thakar, 2014;
Naldi et al., 2015; Alvarez-Buylla et al., 2016; Davila-Velderraín
et al., 2017). We previously proposed a Boolean network model
that incorporates critical components to study CD4+ T cell
subsets differentiation and plasticity (Martinez-Sanchez et al.,
2015). In the present paper we have extended the Boolean model
to a system with network interactions defined by fuzzy logic
propositions. In this kind of approach, a fuzzy variable may
acquire truth values within the continuous range [0,1]. The
dynamic evolution of the network relations are described by a
set of ordinary of differential equations (ODE) that enables us
to analyze the role of alterations on cytokines concentrations
and combinations, as well as other system’s components
modifications on CD4+ T cell differentiation and plasticity.
Each cell state or type corresponds to an attractor, and our
system let us to study the conditions required to drive the system
from one attractor to another one (Haken, 1977). We explore
pathways that lead to equilibrium points, but also alterations
of the expression levels of the networks components and the
microenvironment, that may induce that cells transit between
attractors (Mendoza, 2006; Naldi et al., 2010; Carbo et al.,
2013; Abou-Jaoudé et al., 2014; Martinez-Sanchez et al., 2015;
Eizenberg-Magar et al., 2017; Barberis et al., 2018; Puniya et al.,
2018).

The continuous network model proposed here allows
semi-quantitative evaluations of alterations of the inputs
(exogenous cytokines) and the intrinsic components
(transcription factors, signaling pathways, and autocrine
cytokines) on cell-type transitions (Villarreal et al., 2012; Davila-
Velderrain et al., 2015). The study involves an adaptation of a
method specifically designed to study the so-called epigenetic
landscape repatterning under altered microenvironmental
conditions (Davila-Velderrain et al., 2015; Perez-Ruiz et al.,
2015). Our model involves a set of regulatory interactions
results that reproduce the main polarized phenotypes of CD4+
T cells and several of the plasticity patterns reported in the
experimental literature. We determine the effect of systematic
changes in the concentrations of exogenous cytokines and the
internal state of the network in the differentiation and plasticity
of CD4+ T cells. We focus on the Th1/Th2, and Th17/iTreg
transitions, given that these have been thoroughly characterized,
due to their pathogenic and therapeutic relevance (DuPage and
Bluestone, 2016). This approach uncovers the signaling circuitry
underlying the robust fully polarized Th1 and Th2 responses,
and predicts that the phenotypic shift from a cell-mediated
cytotoxic to a humoral immune response is possible only in early
stages of CD4+ T cell differentiation. It also shows that a shift
from inflammatory to induced regulatory immune response is
much less restrictive. This finding and the overall framework
put forward here may be useful to further understand the
systemic mechanisms underlying immunological diseases where

cellular plasticity plays a prime role (DuPage and Bluestone,
2016).

MATERIALS AND METHODS

Network Construction
We constructed the CD4+ T cell regulatory network using
available experimental data (Figure 1A). The network
includes nodes that correspond to transcription factors, signal
transduction pathway components, and cytokine receptors,
as well as autocrine and exogenous cytokines. The edges of
the network correspond to the verified regulatory interactions
between the nodes (Supplementary Data Sheets S1, S2)
(Martinez-Sanchez et al., 2015). The value of the node depends
on the state of its regulators defined by a logical rule (Figure 1B).
In the Boolean approach, each node of the network has a value
that corresponds to its expression level, where 0 corresponds to
the basal level of expression (inactive) and 1 to the maximum
normalized expression level (active), while in the continuous
model the value of each node is a real number in the range [0,1].
The model was validated by verifying that the predicted CD4+ T
cell subsets and plasticity transitions coincide with experimental
observations (Figure 2 and Supplementary Data Sheet S2)
(Martinez-Sanchez et al., 2015).

The final network consists of 21 nodes (Figure 2). Five nodes
correspond to transcription factors (TBET, GATA3, FOXP3,
RORGT, and BCL6); seven nodes correspond to signaling
pathways integrating signal transducers such as STAT proteins,
interleukin receptors, and autocrine cytokines (IFNG, IL2, IL4,
IL10, TGFB, IL9, and IL21); nine nodes correspond to exogenous
cytokines, that are produced by other cells of the immune system
and thus act as inputs to the network (IFNGe, IL12e, IL2e,
IL4e, IL10e, IL27e, TGFBe, IL6e, and IL21e). These are marked
with an “e” (exogenous) after the cytokine name. To study the
effect of the microenvironment we focused on nine biologically
relevant environments (Zhu et al., 2010): pro-Th0, pro-Th1,
pro-Th2, pro-Th17, pro-Th9, pro-Tfh, pro-iTreg, pro-Tr1, and
pro-Th3 (Table 1). The regulatory cytokine IL-10 deserves
special consideration, since it uses STAT3, similarly as IL-2 and
the inflammatory cytokines IL-6. Thus, we assume that IL-10
signaling is mediated by an independent pathway, different from
that of IL-6/IL-21, even though they share STAT3 as a messenger
molecule (Moore et al., 2001). While IL-27 has been linked to
multiple functions, we consider that its main role in the model
is regulatory (Awasthi et al., 2007; Murugaiyan et al., 2009; Pot
et al., 2009). The model ignores weak interactions, chemokines,
and epigenetic regulation that are also relevant and should be
included in future modeling efforts.

Fuzzy Logic Approach
The Boolean scheme allows to establish the main topological
features of the network interactions; however, it only includes
variables with dichotomous values. A more realistic approach
should consider that variables and parameters with a continuous
range of expression values. With that purpose we propose a
model based on fuzzy logic where, not only the variables, but
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FIGURE 1 | Methodology. Using available experimental data we constructed (A) the regulatory network, (B) Boolean functions (Martinez-Sanchez et al., 2015), and
(C) ordinary differential equations (current article). (D) We then determined the resulting steady state for different concentrations and exogenous cytokines.

FIGURE 2 | CD4+ T cell transcriptional-signaling regulatory network. The regulatory network was constructed using available experimental data. (A) The network
includes transcription factors (rectangles), autocrine cytokines and their signaling pathways (ellipses) and exogenous cytokines (diamonds). Interactions leading to
activation are represented by black arrows, while those leading to inhibition with red dots. (B) Sample attractors of the system.
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also the logical propositions describing the network relations are
continuous. Fuzzy logic is aimed to provide formal foundation
to approximate reasoning, including common language (Zadeh,
1965; Dubois et al., 1997; Novak et al., 1999). It is characterized by
a graded approach, so that the degree to which an object exhibits a
property is specified by a characteristic function (specified below)
with truth values ranging between completely false (0, inhibited,
or unexpressed), to completely true (1, activated, or expressed).
The theory satisfies the axiomatics as Boolean logic, with the
exception of the principles of no-contradiction, and the excluded
middle. The first one states that a proposition and its negation
may not be simultaneously true; the second that, for any
proposition, either that proposition is true or its negation is
true. Fuzzy logic has been applied in a number of engineering
applications, such as control systems or pattern recognition.

The Boolean network interactions may be extended to the
fuzzy realm by means of the following rules:

p and q p·q

p or q p+ q-p·q

not p 1-p

Since a proposition w and its negation 1-w may be
simultaneously true, it follows that w = 1-w is a valid statement
with solution wthr = 1/2 (Kosko, 1990). Thus, wthr is a threshold
value between falsity and truth or, equivalently, between inhibited
and active, a result which we employ below.

The regulatory network consists of n interacting nodes with
expression levels at a time t given by qi(t) (i = 1,. . .,v).
The state of this node is regulated by its interaction with
the rest of the network nodes, represented by a composite
fuzzy proposition wi(qi,. . .,qN) that summarizes experimental
observations. Following similar lines as those employed in logistic
inference, it may be shown that the expression level of wi may
be parameterized by a characteristic function with a logistic
structure:

2[wi] =
1

1+ exp[−b(wi−wthr)]

Here, the parameter b indicates the progression rate of wi from
false to true, gradual for small b, sharp for large b. Since we are
interested in representing input functions with a differentiable
step-like behavior we employ b = 25. The model predictions do
not depend upon specific choices of b, as long as this parameter is
large enough (b ≥ 10) (Supplementary Figure S1).

Continuous Dynamical Model
The dynamic evolution of the expression level qi(t) is driven by
the regulatory network interactions described by the membership
function θ[wi]. The rate of change of qi(t) is thus determined by
a set of ODEs (Figure 1C and Supplementary Data Sheet S4) of
the form:

dqi
dt
= 2[wi] − αiqi

Here, αi is the decay rate of the expression of node i, so that
in absence of a regulatory interaction the node expression level
suffers an exponential time decay at a rate αi. In this paper we

suppose that αi = 1 for all nodes, so that the stationary expression
level of node i is merely given by the degree of truth of the
fuzzy proposition wi. The value of the parameter αi does affect
the transitions of the system. However, a sensitivity analysis of
this parameter is beyond the scope of this paper and it merits a
separate paper, as can be seen in Davila-Velderrain et al., 2015.

The resulting attractors of the dynamical system are presented
in Supplementary Data Sheet S4. They may be obtained as
asymptotic states of the network dynamics i.e., by considering
the limit t→∞ of the solutions. They satisfy the steady-state
condition dqi/dt = 0, which leads to the expression

qSTi =
1
αi
2[wi(qST1 , ..., q

ST
n )].

Although it is not the purpose of the present work, the continuous
fuzzy description may be easily extended to a stochastic regime
by adding a noise variable ξ i(t) (with appropriate statistical
properties) at the right hand side of the ODE system (see Di Cara
et al., 2007; Wittmann et al., 2009; Villarreal et al., 2012).

Polarization Analysis
The fuzzy logic model enabled evaluations of continuous
alterations of the inputs (exogenous cytokines) and the intrinsic
components (transcription factors, signaling pathways, and
autocrine cytokines) of the network. To model polarization
processes we studied the final steady states induced by
stimulation associated to a specific cytokine environment on
an initial Th0 state that corresponds to a CD4+ T cell under
non-polarizing cytokine conditions. Dynamical simulations were
performed for different sets of initial conditions and relative
concentrations of microenvironmental cytokines to obtain the
final steady states (Figure 1D). We considered that a node is
actively expressed if its steady state value qi ≥ 0.75, unexpressed if
qi ≤ 0.25, while intermediate values, 0.25< qi< 0.75, correspond
to a transition zone, with no definite expression. By using this
criteria, it was stated that a steady state of the system corresponds
to a CD4+ T cell subset if its corresponding transcription factors
and cytokines are actively expressed, while states with null or low
expression levels of all transcription factors were considered as
Th0 (Supplementary Data Sheet S5).

Given the continuous nature of the regulatory network model
presented here, it is impossible to determine all the possible
steady states, since they are determined by an infinite set of
initial conditions with expression values lying in the range [0,1].
We solved this problem by first verifying that the cell subtypes
(or phenotypes) predicted by the discrete model are recovered
in the continuous approach when the initial conditions are
limited to the values 0 or 1; in that case, steady states stemming
from the whole continuous range of initial conditions may be
classified according to their similarity to cell types prognosticated
by the Boolean model: Th0, Th1, Th2, Th17, Treg, Tfh, Th9,
Tr1, and Th3 (Supplementary Data Sheet S6). It is understood
that a continuous steady state is similar to Boolean state if
its active nodes are coincident (with qi ≥ 0.75). Steady states
with intermediate expression values were considered to be in a
transition zone (t.z.) of phenotypic coexistence.
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Plastic Transitions and Repatterning
Analysis
In order to model plastic transitions, we considered a cell in an
already partial or fully polarized state determined by different
expression levels of the characteristic transcription factors and
cytokines (Figure 1D and Supplementary Data Sheet S3), as
defined before. In both kinds of simulations, we represented the
effect of the microenvironment using a selected set of exogenous
cytokines (Table 1) active at relative concentrations in the range
0 ≥ qi ≥ 1. Repatterning analyses were conducted numerically
using an algorithm presented in Davila-Velderrain et al., 2015.
A specific attractor was taken as an initial condition in an ODEs
initial-value problem. For each active node in the attractor an
ordered set of concentration values of exogenous cytokines was
chosen, leaving constant the rest of system parameters. The
ODEs were then solved numerically until reaching a steady state
qiST , each time using a slightly different exogenous cytokine
concentration, and for all concentrations in the set. In order to
identify bifurcating solutions of the ODE, a plot was generated for
the total sum Q for the absolute value of the difference between
the final and initial expression values of single-nodes

Q =
n∑

i=1

qSTi

as function of the varying expression value, as depicted in
Figures 2, 3. Phenotypic transitions are distinguished by the
occurrence of notorious jumps of the parameter Q, denoted
as distance in the bifurcation graphs. The former method
was employed to investigate reported CD4+ T cell phenotypic
transitions induced by environmental cytokines with high
immunological and pathogenic relevance like Th1/Th2 and
Treg/Th17. The code for all the simulation experiments per-
formed in this work is available in Supplementary Data Sheet S7.

RESULTS

Effect of Exogenous Microenvironment
on CD4+ T Cell Differentiation
To evaluate how altered concentrations of exogenous cytokines
in the microenvironment shape CD4+ T cell differentiation,
we studied the activation process of a Th0 cell as a function
of increasing concentrations of the exogenous cytokines and
determined the final steady states (Figure 3). We found that the
exogenous cytokines IL12e, IFNGe, IL4e, IL6e, IL21e, TGFBe,
and IL10e induce the differentiation from a Th0 initial steady
state toward Th1, Th2, Tfh, Th3, and Tr1 subsets, respectively.
Experimentally, these cytokines have been described as sufficient
to induce differentiation into their associated cell types and are
part of the feedback loops with the characteristic transcription
factors of such types (Zhu et al., 2010). On the other hand,
our model predicts that Th17, Th9, and iTreg subsets are not
induced by alterations in a single exogenous cytokine in the
micro-environment. Th17 cells requires exogenous TGFβ in
addition to IL6e/IL21e, Treg cells require constant IL-2 in the

microenviroment in addition to TGFβ and Th9 cells are highly
dependent on the presence of both IL-4 and TGFβ (Zhu et al.,
2010; Schmitt et al., 2014).

The critical concentration required to induce a transition
varied depending on the particular exogenous cytokine being
modified. IL12e, IL6e, and IL21e required relatively small
concentrations (0.2) to induce the differentiation from Th0
to Th1 and Tfh, respectively, while IL4e required a higher
concentration (0.36) to induce the differentiation from Th0 to
Th2. On the other hand, IL2e and IL27e alone were not able to
induce transitions. We observed that IL2e induced the expression
of high levels of IL2; however, we labeled the resulting cells as
Th0, as IL-2 production by itself is not associated with a particular
polarization subset.

It is also interesting to note that transitions among subsets
have different patterns of sensitivity to exogenous cytokine
concentrations. Most of the transitions from Th0 to other
subsets were discontinuous; once a threshold concentration was
achieved, the cell changed its expression pattern to a different
one in an abrupt manner. An exception was observed when
IL10 was used as an inducer. This cytokine caused a gradual
transition from Th0 to Tr1; in this case, a continuous range
of steady states was recovered in the transition zone between
both subsets. These results predict that, for most of single
cytokines, CD4+ T cells should initiate differentiation once the
threshold concentration has been reached, whereas these cells
may display a range of sensitivities to altered concentrations
of other cytokines in order to switch to a different state or
phenotype.

CD4+ T subsets such as Th9, Th17, and iTreg require
particular combinations of cytokines to differentiate from naïve
cells. In our model, we simulated the activation of a Th0 cell
in the presence of different combinations and concentrations of
the exogenous cytokines associated with the microenvironment
(Table 2 and Figure 4). In the case of requiring more than one
exogenous cytokine, all the implicated nodes were set to the
same value. Using this methodology, we were able to induce the
differentiation from a Th0 steady state toward Th1, Th2, Th17,
Th9, Tfh, iTreg, Th3, and Tr1 subsets by cytokine combinations
that are in agreement with experimental data (Zhu et al., 2010;
Crotty, 2014; DuPage and Bluestone, 2016).

The concentration required to induce polarization when
using multiple cytokines varied depending on the CD4+ T
initial cell type. Under their combined action the individual
concentrations are lower (Figure 4) than those required in the
case of a single exogenous cytokine (Figure 3). This result
suggests that the regulatory network mediates a synergistic
effect of cytokines on CD4+ T cell differentiation. For example,
while a concentration of IL4e = 0.36 was necessary to induce
the polarization toward Th2, a concentration of IL 2e and
IL4e = 0.26 was sufficient to induce the same effect. Similarly,
while a concentration of IL10e = 0.6 was necessary to induce
the polarization toward Tr1, a concentration of IL10e and
IL27e = 0.43 produced the same transition. Furthermore,
autocrine IL10 achieved its maximum value with a lower
concentration of exogenous cytokines when IL10e and IL27e act
synergistically.
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FIGURE 3 | CD4+ T cell fate as a function of the concentration of single exogenous cytokines: IL12, IFNG, IL2, IL4, IL6, Il21, TGFB, IL10, and IL27. From an initial
state TH0, a CD4+ T cell may acquire diverse phenotypes on an abrupt or gradual transition, depending on critical concentrations of environmental cytokines. The
plot shows the difference between the values of the initial Th0 state and the final steady state at different concentrations of exogenous cytokines. We observe that
the presence of either IL12 or IFNg is sufficient for Th1 polarization, as well as IL4, is sufficient for TH2 polarization. On the other hand, IL2 alone does not lead to an
effector phenotype. Similarly, the presence of either IL6 or IL21 alone is sufficient for Tfh induction, as is the case of TGFB and IL10, leading to Th3 and Tr1,
respectively. IL27 alone does not lead to any fate transition in this model.

Figure 4 shows that differentiation processes in pro-Th1,
pro-Th2, and pro-Tfh microenvironments were abrupt, while the
transition in a pro-Tr1 environment was gradual. In a pro-Th17,
pro-Th9, and pro-iTreg alterations in the micro-environments,
including TGFβe, caused a small abrupt change followed by a
gradual change in the expression levels of the components in
the steady state configuration. In the pro-Th17 and pro-Th9 the
model predicted an intermediate step before the final polarized
state was achieved. In the pro-Th17 case, increasing cytokine
levels induced an initial abrupt change toward a plateau zone
corresponding to Tfh, followed by a transition to the Th17
steady state. A similar behavior was observed in the pro-Th9
microenvironment with a precursor TGFβ + (Th3) subset,
followed by a final Th9 steady state. It is worth noting that
TGFβ has a key role in the induction of the three types
of CD4+ T cell types discussed here and it has complex
interactions with other exogenous cytokines in their effects
on cell plasticity (Eizenberg-Magar et al., 2017). These results
illustrate that the continuous versión of our minimal CD4+ T
cell differentiation model comprises a useful working hypothesis

concerning the dynamic and complex mechanisms underlying
how the microenvironment alters cell plasticity in response to
TGFβ in the immune system.

In summary, the continuous model presented in this
paper recovers CD4+ T cell plasticity responses to cytokine
concentrations that have been documented experimentally and
explains how such patterns of cell-type shifts depend on the
initial CD4+ T cell type, being sometimes abrupt and others
gradual. It also shows that cytokine combinations and, notably,
the induction of different subsets under the action of different
concentrations of the same cytokine combinations underlie
different patterns of CD4+ T cell transitions.

Effects of the Exogenous and
Endogenous Microenvironment on CD4+

T Cell Plasticity
We first focus on the transition between Th1 and Th2, that
has been experimentally observed, particularly when these
cells have recently differentiated, but not when they are fully
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TABLE 2 | Exogenous cytokines in different environments included in the CD4+ T
cell regulatory network.

Micro-environment Active input nodes

pro-Th0 None

pro-Th1 IFNGe, IL12e

pro-Th2 IL2e, IL4e

pro-Th17 IL21e, TGFBe

proTh9 IL4e, TGFBe

proTfh, IL21e

pro-iTreg IL2e, TGFBe

pro-Tr1 IL10e, IL27e

pro-Th3 TGFBe

Active nodes refer to the same exogenous cytokines, whose concentrations were
modified during the simulation, adopting values between 0 and 1.

polarized (Perez et al., 1995; Panzer et al., 2012). To study this
process we considered the response of already differentiated
Th1 and Th2 states, in response to variable concentrations of
a defined cytokine for a particular subset, in combination with

the opposing cytokine (IFNGe for Th2, and IL4e, for Th1),
and then we used the model to predict the final steady state.
Figure 5 shows that when the initial configuration of the system
corresponded to a highly polarized Th1 (TBET and IFNG = 1)
or Th2 (GATA3 and IL4 = 1) states, for every combination
of (exogenous) IL4e and IFNGe concentrations, the system
remained in its original state even under high concentrations
of all these cytokines. This, indicates that highly polarized Th1
or Th2 cells are not plastic. However, by considering initial
lower concentrations of Th1 and Th2 transcription factors
and cytokines, consistent with partial phenotype polarization,
plastic transitions are predicted by the model. CD4+ T cells
require the production of high levels of autocrine IFNG and
expression of TBET to maintain a Th1 phenotype. If the
expression levels decrease, especially in the case of autocrine
IFNG, Th1 cells are predicted to transit into Th2 cells. At the
same time, the Th2 cells require the production of high levels
of autocrine IL4 and expression of GATA3 to maintain a Th2
phenotype. If the initial expression levels decrease these cells
are expected to transit to Th1 cells. At high initial levels of

FIGURE 4 | T-CD4 cell fate as a function of exogenous cytokine concentrations define diverse phenotype-associated environments. From the Th0 initial state, a
CD4+ T cell evolves to different phenotypes, depending on critical concentrations of environmental cytokines as shown in Table 1: Th1 (IFNG and IL12), Th2 (IL4,
Il2), Th17 (Il21, TGFB), Treg (IL2, TGFB), Tfh (IL21), Th9 (IL4, TGFB), Tr1 (IL10, IL27), and Th3 (TGFB). The plot shows the difference between the values of the initial
Th0 state and the final steady state at different concentrations of exogenous cytokines. The transition may be abrupt or gradual and, interestingly, may involve an
intermediate state, as in the cases Th0 - > Tfh - > Th17 (C), and Th0 - > Th3 - > Th9 (F).
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FIGURE 5 | Phenotype space diagrams for Th1 and Th2 polarization and
plasticity as a function of the relative concentration of environmental IFNg and
IL4, and expression of transcription factors. (A) Diagram for cell differentiation
assuming an initial Th0 state. As the external concentration of IFNGe
increases, the system develops an abrupt transition from Th0 to Th1. Similarly,
an increase in external IL4e drives an abrupt transition from TH0 to Th2. For
moderate concentrations of IFNGe and IL4e (< 0.8), we observe two wide
zones of Th1 or Th2 prevalence with a sharp boundary, meaning that small
variation of cytokines at these zones may change cell polarization. A transition
zone with no defined polarization appears at higher concentrations of these
cytokines (white and gray areas). (B,C) Plasticity diagrams assuming full Th1
(B) or Th2 (C) polarized states (i.e., induced by INFg = 1 and IL-4 = 1 in
diagram A, respectively). No phenotypic transitions are observed under
variable concentrations of environmental IL4e and autocrine IFNGe.
(D) Plasticity diagram of Th1 cells assuming an environmental concentration
of IL4e = 1. Cells require the production of initial high levels of autocrine IFNG
and expression of TBET to maintain a Th1 phenotype. If the initial expression
levels decrease, especially in the case of autocrine IFNG, it will transit into a
Th2 cell. (E) Plasticity diagram of Th2 cells assuming an environmental
concentration of IFNGe = 1. The cell requires the production of high levels of
autocrine IL4 and expression of GATA3 to maintain a Th2 phenotype. If the
initial expression levels decrease it will transit into a Th1 cell. At high
expression levels of initial GATA3 and low initial IL4, there exists a transition
zone where the cell cannot be classified.

GATA3 and low IL4, a transition zone at which cells display
mixed characteristics is predicted. These results show that
plasticity between the Th1 and Th2 subsets depends not only

on the microenvironment cytokines, but also on the intracellular
state.

The transition between Th17 and iTreg, has been extensively
investigated experimentally (Xu et al., 2007; Wei et al., 2008;
Lee et al., 2009a,b; Littman and Rudensky, 2010; Kleinewietfeld
and Hafler, 2013; Noack and Miossec, 2014) and is particularly
important for some pathological conditions, such as chronic
inflammation. To study this process we considered fully
differentiated Th17 (RORGT and IL21 = 1) and iTreg cells
(FOXP3 and TGFB = 1) under the presence of different
concentrations of the exogenous cytokines, IL2e, IL21e, and
TGFBe. In the case of Th17 cells, they remained in a Th17
phenotype at a high concentration of TGFBe, while they switched
toward Tfh for lower concentrations of TGFBe (< 0.6). Some
experiments have reported that induction of Th17 require
exogenous TGFB (Veldhoen et al., 2006), but it is uncertain if the
transition toward Tfh associated to low TGFB levels will occur
in all cases. On the other hand, iTreg cells remain stable under
high concentrations of IL2e, while they transit toward Th17,
Tfh, or Th3 at low concentrations of IL2e (< 0.65) (Figure 6).
These results show that plastic transitions between subsets are not
symmetrical, and depend on the previous polarization state of the
cell.

DISCUSSION

Our simulations show contrasting differentiation patterns of
CD4+ T cells under different concentrations and combinations
of exogenous cytokines, highlighting the importance of
synergy and competing interactions among microenvironment
components and CD4+ T cell network components to induce
different patterns of CD4+ T cell plasticity. We also showed that
plasticity between the Th1/Th2 and iTreg/Th17 subsets depends
on varying the concentration of microenvironment cytokines
and the expression level of intracellular transcription factors and
autocrine cytokines depending on the initial cell type.

The model predicts both abrupt and gradual transitions
between cell types. In abrupt transitions, there is a sudden change
from an initial to a final steady state or cell type, once the
concentration of exogenous cytokines exceeds a threshold value.
This behavior suggests that the transition between stable cell
phenotypes is energetically favorable once the threshold value has
been achieved. In this process, exogenous cytokines provide the
initial stimulus to promote the expression of both transcription
factors and autocrine cytokines characteristic of a cell type that is
different to the original one, while positive feedback loops greatly
increase their polarization efficiency.

In contrast, in gradual transitions, steady states that express
intermediate levels of transcription factors and autocrine
cytokines appear. In these steady states, a clear-cut threshold
between the two expression patterns is not observed, so they
cannot be easily classified into one subset or another, signaling
the manifestation of partially polarized states. The heterogeneity
of CD4+ T cells has been well-documented (Murphy and
Stockinger, 2010; DuPage and Bluestone, 2016; Eizenberg-Magar
et al., 2017), and could be the result of regulatory circuits capable
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FIGURE 6 | Three-dimensional phenotype space diagrams for Th17 and iTreg polarization and plasticity as a function of the relative concentrations of IL2, IL21, and
TGFB in the microenvironment. In the differentiation diagram (A) we observe alternative phenotypic regions defined by relative concentrations of environmental
cytokines. The regions may be either separated by a sharp boundary or by a more gradual transition zone (labeled in white). The plasticity diagram (B) indicates a
polarized behavior for Th17 versus Tfh phenotype determined by a high or low concentration of external TGFB. A richer behavior ensues when the initial state is
Treg, as shown in the plasticity diagram (C). We observe a similar structure as that depicted in A, except that the Th0 zone is absent.

of generating a range of cells that express intermediate levels
of specific molecules that can stably coexist or change from
one another under certain conditions. It is important to notice
that every gradual transition involves regulatory circuits with
central nodes which display feedback interactions. Such feedback
loops render stability to the initial polarization state so that its
intrinsic cytokine production and transcription factor expression
should gradually decrease under changing microenvironmental
conditions. We observed this behavior especially in response
to changes in the concentration of IL-10 and TGFβ. IL-10 is
a regulatory cytokine produced by multiple CD4+ T subsets
(Howes et al., 2014; Gagliani et al., 2015). TGFβ may display
both regulatory and inflammatory effects and it is implied in
the differentiation of multiple subsets like Th17, iTreg, and Th9
(Chen et al., 2003; Veldhoen et al., 2006; Davidson et al., 2007;
Kaplan, 2013). It is conceivable that gradual transitions and
generation of intermediate polarization states reflect the intricate
regulatory signaling effects of TGFβ and of IL-21, and are
probably responsible for tuning the effects of different conditions
in the immune response (Grossman and Paul, 2015).

The model also captures some cases where there is an
abrupt transition followed by a gradual transition in polarization

processes. Such is the case of the Th0-Tfh-Th17, the Th0-
Th3(TGFB+)-Th9 and the Th0-iTreg transitions. Interestingly,
in all these cases TGFβ is present in the micro-environment.
This indicates that the concentration of TGFβ may modulate
the immune response in complex ways. These interesting results
suggest a system-level explanation of previous experimental
results. For example, it is known that TGFβ regulates Th17
cells in a differential way depending on the concentration and
combinations of cytokines in the microenvironment (Yang et al.,
2008). Furthermore, consistent with our simulations, it is known
that the TGFβ signaling pathway is highly modulated (Attisano
and Wrana, 2002; Travis and Sheppard, 2014). Our model also
predicts that TGFβ may induce distinct subsets at different
concentrations, in particular, Tfh, Th9, iTreg, and Th3. A careful
analysis of this kind of regulatory circuits will shed light on the
specific mechanisms defining transcriptional programs that lead
to cell heterogeneity. Understanding the interactions underlying
the dynamical behavior of T helper cells may help elucidate
the regulatory role of this important molecule in the immune
response.

The model presented in this paper also highlights the
cooperation among different exogenous cytokines during
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differentiation. Th17, iTreg, and Th9 subsets require TGFβ in
combination with IL-6/IL-21, IL-2, and IL-4 to differentiate,
respectively, in agreement with experimental data (Chen et al.,
2003; Veldhoen et al., 2006; Davidson et al., 2007; Kaplan, 2013).
In other cases, the effect of a single cytokine is sufficient to induce
polarization, but the synergy with other cytokines lowers the
threshold concentration necessary to induce polarization. In this
way, the model allows us to study and predict synergic relations
among cytokines in CD4+ T cell differentiation.

As mentioned above, we also use the model to study the
effect of opposing cytokines in differentiation and plasticity of
Th1/Th2 and Th17/iTreg subsets. The Th1 and Th2 cells are
highly stable, and the transition between them is hard to achieve
experimentally (Perez et al., 1995; Murphy et al., 1996; Hegazy
et al., 2010). Coincidently our model shows that, once these
types have achieved a stable state, Th1 and Th2 are robust
to changes in their microenvironment. This behavior seems
consistent with a particularly robust interaction circuit, defined
by coupled regulatory switching modules between mutually
inhibitory nodes with negative feedbacks, each node defining an
alternative regulatory route. However, partially polarized cells
can transit to the other cell types when they are subject to an
opposing cytokine (IL-4 in the case of Th1 or IFNγ in the
case of Th2). In conclusion, our model provides a system-level
mechanistic explanation to these complex behaviors of Th1 and
Th2 cells.

The model also recovers the spontaneous transition of iTreg
into Th17 in the presence of IL-21 or the closely similar IL-6 (here
considered as equivalents) (Xu et al., 2007) at low concentrations
of IL-2. The plasticity of this transition is not symmetrical, as
changes in the microenvironment are not enough for Th17 to
transit toward iTreg. For such transition, it is also necessary to
alter the internal state of the cell, changing the expression levels
of key transcription factors, as it has been shown in experimental
studies (Michalek et al., 2011; Berod et al., 2014; Gagliani et al.,
2015). These results seem to imply that the basin of attraction
of iTreg is shallower than that of Th17. This could be the result
of the different regulatory circuits implied in the differentiation
of each cell type, since while both depend on TGFβ, iTreg both
require and inhibit the production of IL-2 (Fontenot et al., 2003;
Pandiyan et al., 2007), restricting the stability of these cells.

The model and simulations presented here are able to describe
cell type transitions and the recovered patterns do not rely upon
specific parameter estimates, but rather on the network structure
and overall dynamic behavior. However, the exact transition
points may change depending on the precise concentrations
and parameters of the biological system (Eizenberg-Magar
et al., 2017). Given the relative nature of the semi-quantitative
variations introduced in the model, we should be cautious
in providing precise quantitative predictions concerning the
sensitivity of the different subsets under real experimental
conditions. Theoretical models like the one presented here
provide an ideal tool to integrate recent advances in experimental
knowledge and provide a system-level mechanistic explanation
for observed behaviors in experiments, and also to provide
informed predictions for future experiments. Hence, the feedback
between experimental and theoretical research is necessary

to understand the rich behavior of CD4+ T cells and the
immunological system.

CONCLUSION

The continuous model with fuzzy logic interaction rules,
presented in this paper, recovers CD4+ T cell plasticity
responses to cytokine concentrations that have been documented
experimentally and explains how such patterns of cell-type
shifts results from feedback between initial T cell type and the
microenvironment, being sometimes abrupt and others gradual.
The simulations show how different cytokine combinations and,
notably, the induction of different subsets under the action
of different concentrations of the same cytokine combinations
underlie different patterns of T cell transitions. The semi-
quantitative nature of the model allows predictions that do not
depend on specific parameters for which we are still lacking
experimental support. This model may contribute to the study
of immunological diseases where cellular plasticity is a key,
such as cancer, and autoimmune diseases like type 1 diabetes,
multiple sclerosis, or juvenile arthritis (DuPage and Bluestone,
2016).
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FIGURE S1 | Sensitivity analysis of the parameter b. Effect of various values of b
(5, 10, 25, and 50) in abrupt (IL2e), gradual (IL10e), and mixed (IL6e + IL21e +
TGFBe) transitions. The model predictions do not depend upon the specific
choice of b if this parameter is large enough (b ≥ 10).

DATA SHEET S1 | References of the CD4+ T cell regulatory network.

DATA SHEET S2 | Boolean rules of the CD4+ T cell regulatory network.

DATA SHEET S3 | Boolean attractors of the CD4+ T cell regulatory network.

DATA SHEET S4 | Ordinary differential model equations of the CD4+ T cell
regulatory network.

DATA SHEET S5 | Boolean rules for labelling the attractors of the CD4+ T cell
regulatory network.

DATA SHEET S6 | Continuous attractors of the CD4+ T cell regulatory network.

DATA SHEET S7 | Code and simulations of the CD4+ T cell regulatory network.
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Logical models offer a simple but powerful means to understand the complex

dynamics of biochemical regulation, without the need to estimate kinetic parameters.

However, even simple automata components can lead to collective dynamics that

are computationally intractable when aggregated into networks. In previous work

we demonstrated that automata network models of biochemical regulation are

highly canalizing, whereby many variable states and their groupings are redundant

(Marques-Pita and Rocha, 2013). The precise charting and measurement of such

canalization simplifies these models, making even very large networks amenable to

analysis. Moreover, canalization plays an important role in the control, robustness,

modularity and criticality of Boolean network dynamics, especially those used to model

biochemical regulation (Gates and Rocha, 2016; Gates et al., 2016; Manicka, 2017). Here

we describe a new publicly-available Python package that provides the necessary tools

to extract, measure, and visualize canalizing redundancy present in Boolean network

models. It extracts the pathways most effective in controlling dynamics in these models,

including their effective graph and dynamics canalizing map, as well as other tools to

uncover minimum sets of control variables.

Keywords: Boolean networks, automata, canalization, python package, biochemical regulation, logical modeling,

network dynamics, complex systems

1. A TOOL TO STUDY REDUNDANCY AND CONTROL IN
BOOLEAN NETWORKS

Mathematical and computational modeling of biological networks promises to uncover the
fundamental principles of living systems in an integrative manner (Iyengar, 2009; Ideker and
Nussinov, 2017). In particular, Boolean Networks (BN), a class of logical dynamical systems,
provide an effective framework to capture the dynamics of interconnected biological systems
without the need for detailed kinetic parameters (Bornholdt, 2005; Assmann and Albert, 2009). BN
have been used to model and predict biochemical regulation in genetic networks (Li et al., 2004),
cell signaling (Helikar et al., 2008), chemical reactions in metabolic networks (Chechik et al., 2008),
anticancer drug response (Choi et al., 2017), action potentials in neural networks (Kurten, 1988),
and many other dynamical systems involved in biomedical complexity (Albert and Othmer, 2003).

Two reasons contribute to the success of BN models: (i) the reduction of complex
multivariate dynamics to a graph revealing the organization and constraints of the topology
of interactions in biological systems, and (ii) a coarse-grained treatment of dynamics
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that facilitates predictions of limiting behavior and robustness
(Bornholdt, 2008). However, more than understanding the
organization of complex biological systems, we need to derive
control strategies that allow us, for example, to intervene on
a diseased cell (Zhang et al., 2008), or revert a mature cell
to a pluripotent state (Wang and Albert, 2011). Recently,
several mathematical tools were developed to enhance our
understanding of BN control by removing redundant pathways,
identifying key dynamic modules (Marques-Pita and Rocha,
2013), and characterizing critical driver variables (Gates and
Rocha, 2016).

Here we present CANA1, a python package to study
redundancy and control in BN models of biochemical dynamics
(Correia et al., 2018). It provides a simple interface to access
computational tools for three important aspects of BN analysis
and prediction:

1. Dynamics. Python classes are included to enumerate all
attractors and calculate the full state transition graph (STG) of
BN, as described in section 2.

2. Canalization. The redundancy properties of automata
functions have been characterized as a form of canalization
(Kauffman, 1984), particularly when used to model dynamical
interactions in models of genetic regulation and biochemical
signaling (Kauffman et al., 2004; Reichhardt and Bassler, 2007;
Marques-Pita and Rocha, 2013). At the level of individual
Boolean transition functions (network nodes), canalization is
observed when not all inputs are necessary to determine a
state transition (see section 3 for formal definition). CANA
can be used to calculate all measures of canalization that
derive from removing dynamical redundancy via two-symbol
schemata re-description (Marques-Pita and Rocha, 2013):
effective connectivity, input redundancy, and input symmetry.
At the network level, CANA also calculates the effective graph,
a weighted and directed graph whose edge weights denote
their effective contribution to node transitions, as well as
the dynamics canalizing map, a parsimonious representation
of the necessary and sufficient state transitions that define
the entire dynamics of BN. All canalization measures and
network representations are applicable to synchronous and
asynchronous BN models, as described in section 3.

3. Control. From a subset of driver variables—nodes that
act as the loci of control interventions—CANA computes
the controlled state transition graph (CSTG), as well as the
controlled attractor graph (CAG) capturing all controlled
transitions between attractors possible via driver variable
interventions (Gates and Rocha, 2016). CANA also computes
measures of controllability that depend on the CSTG and
CAG:mean fraction of reachable configurations,mean fraction
of controlled configurations, and mean fraction of reachable
attractors, as described in section 4. Currently, control analysis
in CANA is applicable only to synchronous BN models.

Here we demonstrate the full functionality of the CANA package
using the BN model of floral organ development in the flowering

1CANAlization: Redundancy & Control in Boolean Networks. For documentation
and tutorials (see available online at: github.com/rionbr/CANA)

plant Arabidopsis thaliana (Chaos et al., 2006). Additionally,
we provide an interface between CANA and the Cell Collective
(Helikar et al., 2012), allowing for an extensive analysis of control
and canalization in complex biological systems.

The CANA package fills a key void in the available library
of computational software to analyze Boolean Network models.
Existing software falls into two categories: either they are
designed to reverse engineer BN models from biological
experimental data, or they focus on simulating BN dynamics.
Examples of the first category include the CellNetOptimizer
which creates BN from high-throughput biochemical data
(Terfve et al., 2012), and the Dynamic Deterministic Effects
Propagation Networks (DDEPN) package which reconstructs
signaling networks based from time-course experimental data
(Bender et al., 2010). The second category of BN simulation
packages is best exemplified by BooleanNet, a python package
that simulates both synchronous and asynchronous dynamics
(Albert et al., 2008), and PANET, a Cytoscape plugin that
quantifies the robustness of BN models (Trinh et al., 2014).
The Cell Collective, a collaborative platform and intuitive visual
interface to share and build BN models, can also be used to
simulate BN dynamics (Helikar et al., 2012). The CANA package
expands the set of available tools of the second category, by
providing Python classes to calculate measures and visualizations
of canalization (dynamical redundancy) and control of BN
models, as detailed below. CANA is designed as a toolbox for
both computational and experimental system biologists. It
enables the simplification of BN models and testing of network
control algorithms, thus prioritizing biochemical variables
more likely to be relevant for specific biological questions (e.g.,
genes controlling cell fate), and ideal candidates for knockout
experiments.

2. BOOLEAN NETWORK
REPRESENTATION AND DYNAMICS

A Boolean automaton is a binary variable, x ∈ {0, 1}, whose state
is updated in discrete time-steps, t, according to a deterministic
Boolean state-transition function of k inputs: xt+1 = f (xt1, ..., x

t
k
).

The state-transition function, f : {0, 1}k → {0, 1}, is defined by
a look-up (truth) table (LUT), F ≡ {fα : α = 1, ..., 2k}, with
one entry for each of the 2k combinations of input states and a
mapping to the automaton’s next state (transition or output), xt+1

(Figure 1A). In CANA, a Boolean automaton—a python class
denoted BooleanNode—is instantiated from the list of transitions
that define its LUT.

A Boolean Network is a graph B ≡ (X,C), where X is a set
of N Boolean automata nodes xi ∈ X, i = 1, ...,N and C is
a set of directed edges cji ∈ C : xi, xj ∈ X that represent the
interaction network, denoting that automaton xj is an input to
automaton xi, as computed by Fi. The set of inputs for automaton
xi is denoted by Xi = {xj ∈ X : cji ∈ C}, and its cardinality,
ki = |Xi|, is the in-degree of node xi. At any given time t, B is in
a specific configuration of automata states, xt = 〈xt1, x

t
2, ..., x

t
N〉,

where we use the terms state for individual automata (xti ) and
configuration (xt) for the collection of states of all automata of
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FIGURE 1 | CANA analysis of the Boolean automaton defining the dynamics of the TFL1 gene in the BN model of the floral organ arrangement in the flowering plant

Arabidopsis Thaliana. (A) Look-up-table (LUT). (B) Wildcard schema redescription, F ′(TFL1). Wildcards are denoted by gray states. As an example, schema f ′4
redescribes the subset of LUT entries ϒ4 ≡ {f5, f6}, where the input variable AP2 can be either on or off. (C) Two-symbol schema redescription, F ′′ (TFL1).

Permutation of the inputs marked with the position-free symbol (◦) in any schema of F ′′(TFL1) result in a wildcard schema in F ′(TFL1). For example, f ′′2 redescribes

2′
2 ≡ {f ′2, f

′
3}. (D) In-degree (k), input redundancy (kr ), input symmetry (ks), and effective connectivity (ke) of TFL1 automaton. Values in parenthesis are the respective

(relative) measures normalized by k, used for comparisons between automata with different number of inputs. (E) Canalizing Map (CM) of automaton TFL1, with its

two possible states, TFL1 ∈ {0, 1}, shown as circles with red contour; white (black) fill color denotes state 0 (1). Input variables and their respective state are also

shown as circles (s-units) with the same color criterion, and link to t-units shown as blue diamonds with corresponding threshold value inside; thus, TFL1 requires 3

input conditions (LFY = 0 ∧ EMF1 = 1 ∧ AP1 = 0) to turn on (TLF1 = 1), but only one (EMF1 = 0 ∨ AP1 = 1 ∨ LFY = 1) to turn off (TLF1 = 0); ∧ and ∨ denote the

logical conjunction (and) and disjunction (or), respectively. Network rendering generated with Graphviz (Ellson et al., 2002).

the BN at time t, i.e. the collective network state. The set of
all possible network configurations is denoted by X ≡ {0, 1}N ,
where |X | = 2N . The dynamics of B unfolds from an initial
configuration, x0, by a synchronous, update policy in which all
automata transition to the next state at the same time step, or
an asynchronous update policy, in which automata update their
next step in distinct time steps according to some update schedule
(e.g. stochastically). The complete dynamical behavior of the
system for all initial conditions is captured by the state-transition
graph (STG), G ≡ STG(B) = (X , T ), where each node is a
configuration xα ∈ X , and an edge Tα,β ∈ T denotes that a BN in
configuration xα at time t will be in configuration xβ at time t+1.
Under deterministic dynamics, only a single transition edge Tα,β

is allowed out of every configuration node xα . Configurations
that repeat, such that xt+µ

α = x
t
β , are known as attractors and

differentiated as fixed-point attractors when µ = 1, and limit
cycles when µ > 1, respectively. Because G is finite, it contains
at least one attractor, as some configuration or limit cycle must
repeat in time (Wuensche, 1998).

In CANA, a python class named BooleanNetwork represents
a BN, and is instantiated from a dictionary containing the
transition functions (LUT) of all its constituent automata nodes,

or loaded from a file. We also provide several predefined example
BN models that can be directly loaded: the Arabidopsis Thaliana
gene regulatory network (GRN) of flowering patterns (Chaos
et al., 2006), a simplified version of the segment polarity GRN of
Drosophila melanogaster (Albert and Othmer, 2003), the Budding
Yeast cell-cycle regulatory network (Li et al., 2004), and the
BN motifs analyzed in Gates and Rocha (2016). Beyond the
aforementioned networks, our current release also incorporates
all publicly available networks in the Cell Collective repository
(Helikar et al., 2012). These were loaded from the Cell Collective
API and converted into truth tables that can be read by CANA2.
Our package has two built-in methods available to compute
network dynamics: for relatively small BN (N < 30) the full
state-space can be computed, whereas for larger BN, CANA
uses a Boolean satisfiability (SAT-based) algorithm, capable of
enumerating all attractors in a BN with thousands of variables
(Dubrova and Teslenko, 2011).

2Future releases will provide a direct link to the Cell Collective API for conversion
of Cell Collective models. Currently, models are converted to .CNET (truth table)
format, and subsequently imported to CANA.
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3. CANALIZATION

Important insights about BN dynamics are gained by observing
that not all inputs to an automaton are equally important
for determining its state transitions, a concept known as
canalization (Reichhardt and Bassler, 2007). Originally, the term
was proposed byWaddington (1942) and subsequently refined to
characterize the buffering of genetic and epigenetic perturbations
leading to the stability of phenotypic traits (Siegal and Bergman,
2002; Masel and Maughan, 2007; ten Tusscher and Hogeweg,
2009). Understanding how canalization occurs in a given BN
model allows us to uncover and remove redundancy present in
the pathways that control its dynamics. In CANA, we follow
Marques-Pita and Rocha (2013) by quantifying canalization
through the logical redundancy present in automata. Specifically,
we use the Quine-McCluskey Boolean minimization algorithm
(Quine, 1955) to identify those inputs of an automaton which are
redundant given the state of its other inputs, thus reducing its
LUT to a set of prime implicants. The prime implicants are in turn
combined to create wildcard schemata, F′ ≡ {f ′υ}, in which the
wildcard or “Don’t care” symbol, # (also represented graphically
in gray) denotes an input whose state is redundant given the state
of other necessary input states. In this process, the original LUT F
(Figure 1A) is redescribed by a more compressed set of schemata
F′ (Figure 1B). Every wildcard schema f ′υ ∈ F′ redescribes a
subset of entries in the original LUT, denoted by ϒυ ≡ {fα : fα 

f ′υ} ⊆ F;  means ‘is redescribed by’. Finally, CANA also
calculates the two-symbol schemata redescription, F′′ ≡ {f ′′θ },
whereby in addition to the wildcard symbol, a position-free
symbol, ◦, further captures permutation redundancy (i.e., group-
symmetry): subsets of inputs whose states can permute without
affecting the automaton’s state (Figure 1C). Every two-symbol
schema f ′′θ ∈ F′′ redescribes a set 2θ ≡ {fα : fα  f ′′θ } ⊆ F of
LUT entries of automaton x.

Several measures of canalization present in the LUT of an
automaton are also defined in CANA, and can be accessed by
function calls to both the BooleanNode and BooleanNetwork
classes. Input redundancy, kr(x), measures the number of inputs
that on average are not needed to compute the state of automaton
x. This is measured by tallying the mean number of wildcard
symbols present in the set of schemata F′(x) or F′′(x) that
redescribe the LUT F(x) (Equation 1). Effective connectivity, ke, is
a complementary measure of kr(x) yielding the number of inputs
that are on average necessary to compute the automaton’s state
(Equation 1). Whereas k(x) is the number of inputs to automaton
x present in the BN, ke(x) is the minimum number of such inputs
that are on average necessary to determine the state of x—its
effective connectivity or degree. Similarly, input symmetry, ks(x),
is the mean number of inputs that can permute without effect
on the state of x. It is measured by tallying the mean number of
position-free symbols present in F′′(x) (Equation 1):

kr(x) =

∑

fα∈F

max
υ : fα∈ϒυ

(

n#υ
)

|F|
, ke(x) = k(x)− kr(x) ,

ks(x) =

∑

fα∈F

max
θ : fα∈2θ

(

n◦θ
)

|F|
(1)

where n#υ and n◦θ are the number of inputs with a # or ◦

in schema f ′υ or f ′′θ , respectively
3. Figure 1D shows the values

of these measures for the LUT of the TFL1 gene in the
thaliana GRN model. Additional algorithmic details of the two
forms of canalization, as well as their importance to study
control, robustness, andmodularity of BNmodels of biochemical
regulation, are presented in Marques-Pita and Rocha (2013).
Next we introduce new per-inputmeasures of canalization as well
as the effective graph, which CANA also computes.

Most automata contain redundancy of one or both of the
two forms of canalization; only the two parity functions for any
k have kr = 0 (e.g., the XOR function and its negation for
k = 2), and even those can have ks > 0. Therefore, the original
interaction graph of a BN tends to have much redundancy and
does not capture how automata truly influence one another in
a BN. To formalize this idea, the CANA package computes an
effective graph, E ≡ (X,E), where X is as in section 2 and E is
a set of weighted directed edges eji ∈ [0, 1]∀xi, xj ∈ X denoting
the effectiveness of automaton xj in determining the truth value
of automaton xi, and computed via Equation 2. Specifically,
we define per-input measures of canalization for redundancy,
effectiveness, and symmetry, respectively:

rji =

∑

fα∈Fi

avg
υ : fα∈ϒ i

υ

(

j  #
)

υ

|Fi|
, eji = 1− rji ,

sji =

∑

fα∈Fi

avg
θ : fα∈2i

θ

(

j  ◦
)

θ

|Fi|
(2)

where (j  #)υ is a logical condition that assumes the truth
value 1(0) if input j is (not) a wildcard in schema f ′υ , and similarly
for (j  ◦)θ for a position-free symbol in schema f ′′θ ; avg is the
average operator. Naturally, kr(xi) =

∑

j rji, ke(xi) =
∑

j eji, and

ks(xi) =
∑

j sji.
The effective graph was shown to be important in predicting

the controllability of BN (Gates and Rocha, 2016). Furthermore,
the mean ke of BN (the mean in-degree of the effective graph) is
a better predictor of criticality than the in-degree of the original
interaction graph (Manicka, 2017), improving the existing theory
for predicting criticality in BN (Aldana, 2003). Those results
suggest that Natural Selection can select for canalization, thereby
enhancing the stability and controllability of networks with
high connectivity, that would otherwise exist in the chaotic
regime (Gates et al., 2016; Manicka, 2017). As an example,
the interaction and effective graphs of the Thaliana GRN BN
model, as computed by CANA, are shown in Figures 2A,B,
demonstrating that much redundancy exists in the original
model. The most extreme case of redundancy occurs when an
input from xj to automaton xi exists in the original interaction
graph C, cji = 1, but not in the effective graph E , eji = 0, because

3kr and ke can be computed on either set of schemata F′ (as in Equation 1) or F′′ (as
in Marques-Pita and Rocha 2013), yielding the same result; ks must be computed
on F′′.
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FIGURE 2 | BN model of the floral organ arrangement in the flowering plant Arabidopsis Thaliana. (A) Interaction graph C. (B) Effective graph E, where edge weights

denote eji (Equation 2). Some edges, originally in C, are completely removed in E (e.g., AG→AG, AP1→AG, and AP2→TFL1). Others, have very small effectiveness

(e.g., AP1→PI and CLF→AG). (C) Dynamics Canalization Map (DCM) representing the entire logic of interactions after removal of redundancy. Original BN automata

nodes appear twice in the DCM, once for each Boolean truth value and denoted as s-unit, white (0) or black (1) circles. When s-units are determined by another single

s-unit, for simplicity and without loss of generality, they are connected with a beige directed edge—a simplification to avoid the rendering of a t-unit with a threshold of

one. All other variable state determinations occur via t-units with larger threshold values. Red edges represent outputs from t-units to s-units: a state determination of

the receiving s-unit, after the logical condition of the t-unit is met.All other (blue or green) edges denote inputs from s-units to t-units, that is, the sufficient conditions

for a state determination. Blue edges denote group disjunction constraints, whereby conditions captured by s-units can merge because any one of the merging

conditions is sufficient [e.g., (TFL = 0 ∨ EMF1 = 0) → LFY = 1]. Green edges denote independent and necessary conditions. Directed edges into s-units are

denoted by arrows, while directed edges into t-units are denoted by small circles. Network rendering by Graphviz (Ellson et al., 2002).

it is fully redundant and does not affect the automaton’s transition
(see several such cases in Figures 2A,B).

The canalizing logic of an automaton provided by the
schemata set F′′, can also be represented as a McCulloch and
Pitts (1943) threshold network, named a Canalizing Map (CM)
in Marques-Pita and Rocha (2013). Figure 1E depicts the CM

for the TFL1 gene. It consists of two types of nodes: state
units (s-unit, denoted by circles), which represent automata in
one of the Boolean truth values (xi = 0, white, or xi = 1,
black), and threshold units (t-unit, denoted by diamonds), which
implement a numerical threshold condition on its inputs. When
the CM of all automata of a BN are linked, we obtain the
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Dynamics Canalization Map (DCM), as shown in Figure 2C

for the Thaliana GRN. Directed fibers connect nodes and
propagate an activation pulse; fibers can merge and split, but
each end-point always contributes one pulse to an s-unit. The
DCM is a highly parsimonious representation of the dynamics
of a BN. It contains only necessary information about how
(canalizing) control signals determine network dynamics. It
enables inferences about control, modularity and robustness to
be made about the collective (macro-level) dynamics of BN
(Marques-Pita and Rocha, 2013). Because it is assembled using
solely the micro-level canalizing logic of individual automata,
its computation scales linearly with the number of nodes of the
network, and thus it can be computed for very large networks.
The computational bottleneck can only be the number of inputs
(k) to a particular automaton, since the Quine–McCluskey
algorithm grows exponentially with the number of variables.
Functions with a large number of variables have to be minimized
with heuristic methods such as Espresso (Brayton et al., 1984).
Because all measures of canalization, as well as the effective graph
and the DCM, derive from removing dynamical redundancy
at the level of individual automata, they are independent from
the updating regime chosen for the network. In other words,
the canalization analysis is applicable to synchronous and
asynchronous BN models.

4. CONTROL

The discovery of control strategies in BN models is a
central problem in systems biology; theoretical insights

about controllability can enhance experimental turnover by
focusing experimental interventions on genes and proteins
more likely to result in the desired phenotype output. It
is well-known that when the set of automata nodes X of
a BN is large, enumeration of all configurations x ∈ X

of its STG becomes difficult, making the controllability of
deterministic BN an NP-hard problem (Akutsu et al., 2007).
Thus control methodologies which leverage the interaction
graph or remove the redundancy in canalizing automata
are highly desirable, since they can greatly simplify BN
complexity.

CANA contains Python functions designed to provide a
testbed for the development of BN control strategies, and to
investigate the interplay between canalization, control, and other
dynamics properties. Specifically, we study the control exerted
on the dynamics of a BN, B = (X,C), by a subset of driver
variables D ⊆ X—a subset of automata nodes of B. Control
interventions are realized by instantaneous bit-flip perturbations
to the state of the variables inD (Willadsen andWiles, 2007). This
results in a controlled state transition graph, CSTG(B) ≡ GD ≡

(X , T ∪ TD), which is an extension of the STG that captures all
possible trajectories due to controlled interventions on D (Gates
and Rocha, 2016). The additional edges TD denote transitions
from every configuration to a set of 2|D| − 1 configurations in the
STG, which are reachable given the bit-flip perturbations of the
driver variables. A BN is controllable when every configuration is
reachable from every other configuration in GD (Sontag, 1998), a
condition equivalent to requiring that the CSTG GD be strongly
connected.

FIGURE 3 | (A) Control of the BN model of gene regulation involved in the floral organ development in the Arabidopsis thaliana plant for all driver variable subsets of

size |D| = 1, |D| = 2, |D| = 3, and |D| = 4. (inset) The mean fraction of reachable attractors AD for each singleton drive variable set. The driver variable subsets

predicted by structural controllability to fully control the network are highlighted in red and labeled T 1 and T 2. The three variable subset with all three root variables is

highlighted in yellow and labeled T 0. Reproduced from Gates and Rocha (2016) under Creative Commons Attribution 4.0 International (CC BY 4.0) license. (B) The

CAG with driver variables D = {UFO, LUG,CLF, SEP, TFL1}. Each large blue node A1, . . . , A10 represents an attractor of the network dynamics. The BN

configurations for steady-state attractors A3 and A5 are shown as interaction graphs with node variables colored white or black for states xi = 0 and xi = 1,

respectively; driver variables are shown with a yellow contour.
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CANA computes the CSTG of B given a driver set D,
which in turn is used to calculate the mean fraction of
reachable configurations, RD, and the mean fraction of controlled
configurations, CD, (Gates and Rocha, 2016):

RD =
1

2N

∑

xα∈X

r(GD, xα) , CD = RD − R∅ . (3)

where, for each configuration xα , r(GD, xα) is the fraction
of reachable configurations, defined as the number of other
configurationsXβ lying on all directed paths from xα , normalized
by the total number of other configurations 2N−1. Similarly,
the fraction of controlled configurations counts the number of
new configurations that are reachable due to interventions to
D, but were not originally reachable in the STG: c(GD, xα) =

r(GD, xα) − r(G, xα). When a BN is fully controlled by D, RD =

1.0, but for partially controlled BNs RD ∈ [0.0, 1.0); note that
CD ≤ RD.

In Systems Biology applications, typically only the attractors
of BN are meaningful configurations, used to represent different
cell types (Kauffman, 1969, 1993; Müller and Schuppert, 2011),
diseased or normal conditions (Zhang et al., 2008), and wild-
type or mutant phenotypes (Albert and Othmer, 2003). In this
context, a more relevant control measure is the extent to which
driver variables can steer dynamics from attractor to attractor. To
quantify such control, CANA computes the controlled attractor
graph (CAG) of a BN B : CD = (A,ZD). The nodes of this graph,
Aκ ∈ A, represent an attractor of B, and each edge zκγ ∈ ZD,
denotes the existence of at least one path from attractor Aκ to
attractor Aγ in the CSTG GD (Figure 3B). The mean fraction of
reachable attractors is then given by

AD =
1

|A|

∑

Aκ∈A

r(CD,Aκ ) (4)

where κ = 1 . . . |A| (Gates and Rocha, 2016). Since this notion
of control depends only on the enumeration of attractors, CANA
can leverage a SAT-based bounded model algorithm to quantify
the mean fraction of reachable attractors in a BN with thousands
of variables (Dubrova and Teslenko, 2011). Figure 3A shows the
values of RD and AD for various sizes of driver sets D in the
Thaliana GRN.

Finally, CANA also provides the functionality to approximate
the minimal driver variable subset using two prominent network
control methodologies: Structural Controlability (SC) (Lin, 1974;
Liu et al., 2011) and Minimum Dominating Set (MDS) (Nacher,
2012; Nacher and Akutsu, 2013).

5. SUMMARY AND CONCLUSION

We presented a novel, open-source and publicly-available
software platform that integrates the analytic methodology
used to study canalization in automata network dynamics.
This methodology can now be used by others to simplify
large automata networks, especially those in models of
biochemical regulation dynamics. In addition to the extraction
and visualization of specific effective pathways that regulate
key phenotypic outcomes in a sea of redundant interaction,
CANA includes functionality to measure canalization, uncover
control variables, and study dynamical modularity, robustness,
and criticality. We hope that the consolidation of redundancy
and control algorithms into one package encourages other
researchers to build upon our work on canalization, thus adding
additional algorithms to CANA.
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A variety of biological networks can bemodeled as logical or Boolean networks. However,

a simplification of the reality to binary states of the nodes does not ease the difficulty

of analyzing the dynamics of large, complex networks, such as signal transduction

networks, due to the exponential dependence of the state space on the number of nodes.

This paper considers a recently introduced method for finding a fairly small subnetwork,

representing a collection of nodes that determine the states of most other nodes with

a reasonable level of entropy. The subnetwork contains the most determinative nodes

that yield the highest information gain. One of the goals of this paper is to propose

an algorithm for finding a suitable subnetwork size. The information gain is quantified

by the so-called determinative power of the nodes, which is obtained via the mutual

information, a concept originating in information theory. We find the most determinative

nodes for 36 network models available in the online database Cell Collective (http://

cellcollective.org). We provide statistical information that indicates a weak correlation

between the subnetwork size and other variables, such as network size, or maximum

and average determinative power of nodes. We observe that the proportion represented

by the subnetwork in comparison to the whole network shows a weak tendency to

decrease for larger networks. The determinative power of nodes is weakly correlated to

the number of outputs of a node, and it appears to be independent of other topological

measures such as closeness or betweenness centrality. Once the subnetwork of the

most determinative nodes is identified, we generate a biological function analysis of its

nodes for some of the 36 networks. The analysis shows that a large fraction of the

most determinative nodes are essential and involved in crucial biological functions. The

biological pathway analysis of the most determinative nodes shows that they are involved

in important disease pathways.

Keywords: Boolean networks, signal transduction network, determinative power, mutual information, simulations,

cell collective, gene essentiality, statistical analysis

1. INTRODUCTION

Boolean networks have gained popularity as models for a variety of real networks where the node
activity can be described by two states, 1 and 0, “ON and OFF”, “active and non-active,” and where
each node is updated based on logical relationships with other nodes (e.g., Albert and Thakar,
2014; Abou-Jaoudé et al., 2016). Applications of such models include signal transduction in cells
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(e.g., Helikar et al., 2008; Conroy et al., 2014; Abou-Jaoudé et al.,
2015; Mendéz and Mendoza, 2016), genetic regulatory networks
as well as other biological processes (e.g., Kauffman, 1993;
Klemm and Bornholdt, 2000; Shmulevich et al., 2002; Albert
and Othmer, 2003; Shmulevich and Kauffman, 2004; Saadatpour
et al., 2013).

However, even such a simplification of reality can pose
challenges in assessing the dynamics of the network due to the
exponential dependence of the state space on the number of
nodes. One way to ease the computational burden is to reduce
the network to a fairly small subset of nodes that can capture
the dynamics of the whole network to a large extent. Some
approaches deal with the elimination of nodes that become
part of an attractor in the long run, and may also consider
removing nodes that are not inputs to any other nodes (Bilke
and Sjunnesson, 2001; Richardson, 2004). One can also consider
merging or collapsing mediator nodes with one input and one
output (Saadatpour et al., 2013). Yet, other approaches consider
eliminating irrelevant nodes that are frozen at the same value on
every attractor, together with nodes whose outputs go only to
irrelevant nodes (Socolar and Kauffman, 2003; Kaufman et al.,
2005; Kaufman and Drossel, 2006). In Veliz-Cuba (2011) the
author uses a “steady-state approximation” by replacing variables
in the Boolean functions governing the nodes’ dynamics with
their own Boolean expressions, thus reducing the network to a
much smaller size that can be used to infer properties about the
original network and to gain a better understanding of the role
of network topology on the dynamics. In Naldi et al. (2009b)
the authors introduce a general method for eliminating nodes
sequentially by directly connecting the inputs of a removed node
to its output nodes in a manner similar to Veliz-Cuba (2011). Of
course, one needs to pay attention and possibly keep nodes that
are or may become self-inputs upon elimination of other nodes.
The order in which nodes are removed is also important. It is
shown that stable states are preserved. In general, attractors may
not be preserved. However, the method presented in Saadatpour
et al. (2013) is shown to preserve attractors as well.

We consider a recently proposed method for identifying
the most powerful nodes in a Boolean network (Heckel et al.,
2013; Matache and Matache, 2016). This is done by finding
the nodes with the highest determinative power. For a given
node, the determinative power is obtained via a summation
of all mutual information quantities over all nodes having the
given node as a common input. The more powerful the node,
the more the information gain provided by the knowledge
of its state. The mutual information, as a basic concept in
information theory, allows one to represent the reduction of
the uncertainty or entropy of the state of a node due to the
knowledge of any of its inputs. The entropy has been used
in the literature to find the average mutual information of
a random Boolean model of regulatory network as a way to
quantify the efficiency of information propagation through the
entire network (Ribeiro et al., 2008). On the other hand, the
entropy of the relevant components of the network, which are
comprised of nodes that eventually influence each other’s state,
has been used as a measure of uncertainty of the future behavior
of a random state of the network (Krawitz and Shmulevich,
2007a,b).

In Heckel et al. (2013) it is shown that the knowledge of
the states of the most determinative nodes in the feedforward
regulatory network of E. coli reduces the uncertainty of the
overall network significantly. Similar results are observed in
Matache and Matache (2016) for a model of general cell signal
transduction. It is our goal to explore other models of biological
processes obtained from the Cell Collective (http://cellcollective.
org), to identify any similarities or differences with respect to
previous observations, and to possibly identify any correlations
with other network variables or trends in the observed network
data. At the same time, we show that the majority of nodes
with the most determinative power are essential. Cell Collective
provides a variety of gene networks. Essential genes are those
genes of an organism that are thought to be critical for its survival
and are involved in crucial biological functions.

In section 2, we provide the basic mathematical framework
and definitions. We present the algorithm for finding a suitable
subnetwork size in section 3. In section 4 we describe the
networks under consideration and we provide the results of our
simulations paired with a statistical analysis of the data. Then
we focus on the analysis of the biological relevance of the most
determinative nodes. We provide a discussion of the results in
section 5. Conclusions and further directions of research are in
section 6.

2. DETERMINATIVE POWER

In this section, we provide the main concepts leading to the
determinative power of nodes in a Boolean network.

DEFINITION 1. Let �n = {0, 1}n. A Boolean network (BN) is
modelled as a set [n] : = {1, 2, . . . , n} of n nodes, each node being
ON (in state 1) or OFF (in state 0). Then any ω ∈ �n is a possible
state of the network. Each node i ∈ [n] has an associated Boolean
function fi : �

n → � that governs the dynamics of the node.

We are usually interested in how the network evolves by
iterating the map F = (f1, f2, . . . , fn) a large number of times.

In this paper, a subnetwork refers to a subset of nodes
of the network. One recent approach for finding subnetworks
whose nodes determine the states of most other nodes with
a reasonable level of entropy focused on the nodes with the
most determinative power (DP) (Heckel et al., 2013; Matache
and Matache, 2016). The DP is obtained via concepts from
information theory. We recall the main definitions and concepts
from Cover and Thomas (2006) and Heckel et al. (2013). These
include the notion of entropy of random variables, which is a
measure of uncertainty, and the mutual information, which is
a measure of dependence between two random variables and is
defined in terms of the entropy.

DEFINITION 2. Let X and Y be discrete random variables. The
(Shannon) entropy of X is defined as

H(X) = −
∑

x

px log2 px = −E[log2 P(X)]

where x are the values of the random variable X, px = P(X = x),
and E[log2 P(X)] is the expected value of the random variable
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log2 P(X). In binary this reduces to the function

h(p) = −p log2(p)− (1− p) log2(1− p),
p = P(X = 1), h(0) = h(1) = 0.

The conditional entropy of Y conditional on the knowledge of X is

H(Y|X) = −E[log2 P(Y|X)].

The mutual information (MI) is the reduction of uncertainty of the
random variable Y due to the knowledge of X. That is

MI(Y;X) = H(Y)−H(Y|X).

In principle, the mutual information is a measure of the
“gain of information,” or the determinative power (DP) of X
over Y . The authors of Heckel et al. (2013) use the MI to
construct the DP of a node j over the states of a Boolean network,
namely

DP(j) =
n

∑

i=1

MI(fi(X);Xj) (1)

which represents a summation of all “information gains”
obtained from node j over its outputs (i.e., nodes i that have j as
an input). Here, the states of the nodes are labeled X1,X2, . . . ,Xn,
and X = (X1,X2, . . . ,Xn) represents the state of the network.
The notation fi(X) represents the random variable that describes
the dynamical rule of node i. Not all variables X1,X2, . . . ,Xn

are relevant for the computation of fi(X) since the actual
number of inputs may differ from one node to another. The
authors identify the nodes with the largest determinative power
in a feedforward E. coli network, with the goal of finding a
subnetwork whose knowledge can provide sufficient information
about the entire network; in other words the entropy of the
network conditional on the knowledge of that subnetwork is
small enough. They show that in the E. coli network, one could
consider a subnetwork consisting of less than half of the nodes,
and that for larger subnetworks, the entropy does not improve
significantly once an approximate (threshold) subnetwork size
is reached. Similar results have been found in Matache and
Matache (2016) for a signal transduction model in fibroblast
cells, paired with a mathematical generalization of some of the
results in Heckel et al. (2013) under more relaxed assumptions.
Our goal is to use a similar approach for other networks to
identify if this type of behavior is typical or not. In the next
section, we describe the networks under consideration and then
we present the algorithm for finding a suitable subnetwork
size. However, before we do that, let us provide an example
illustrating the computation of DP according to formula (1).
The mutual information terms in (1) are obtained using a
formula derived in Matache and Matache (2016). We combine
Theorem 1 and Proposition 4 of Matache and Matache (2016) in
a suitable way to provide a brief explanation of how the formula is
obtained.

The mutual information formulaMI(fi(X);Xj) can be written
as

MI(fi(X);Xj)

= h





∑

x∈supp fi

px



 − P(Xj = 1)h





∑

x∈supp fi

P(X = x|Xj = 1)





−P(Xj = 0)h





∑

x∈supp fi

P(X = x|Xj = 0)



 (2)

where supp fi = {x : fi(x) = 1} is the support of the function fi,
and P(X = x|Xj = xj) is the conditional probability of X = x
given Xj = xj.

The formula follows directly from the definition of the mutual
information

MI(fi(X);Xj) = H(fi(X))−H(fi(X)|Xj). (3)

Observe that

H(fi(X)) = h(P(fi(X) = 1))

= h(E[fi(X)])

= h





∑

x∈{0,1}n
fi(x)px



 = h





∑

x∈supp fi

px



 (4)

where we use the known fact that for a (Bernoulli) random
variable B with values 0 and 1, we have that P(B = 1) = E[B].
Similarly,

H(fi(X)|Xj) =
∑

xj∈{0,1}

P(Xj = xj)H(fi(X)|Xj = xj)

=
∑

xj∈{0,1}

P(Xj = xj)h
(

P(fi(X) = 1|Xj = xj)
)

.

On the other hand,

P(fi(X) = 1|Xj = xj) = E[fi(X)|Xj = xj]

=
∑

x∈{0,1}n

fi(x)P(X = x|Xj = xj)

=
∑

x∈supp fi

P(X = x|Xj = xj).

This implies

H(fi(X)|Xj) =
∑

xj∈{0,1}

P(Xj = xj)h





∑

x∈supp fi

P(X = x|Xj = xj)





= P(Xj = 1)h





∑

x∈supp fi

P(X = x|Xj = 1)





+ P(Xj = 0)h





∑

x∈supp fi

P(X = x|Xj = 0)



 . (5)
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Replacing formulas (4) and (5) in (3) we obtain formula (2)
which we use in the next example.

EXAMPLE 1. Consider the 4-node network with states X =

(X1,X2,X3,X4). For simplicity we assume that X is a uniform
random variable that assigns equal probabilities to all x. Therefore,
P(Xi = 1) = P(Xi = 0) = 1/2 for i = 1, 2, 3, 4. Define the
Boolean rules as follows:

f1(x2, x3, x4) = x2 ∧ x3 ∧ (1− x4);
f2(x1, x2, x3) = x1 ∧ (x2 ∨ x3); f3(x1, x2) = x1 ∨ x2.

Observe that the actual inputs differ from one node to the other,
and that X4 can be regarded as an external input with one single
output X1, and does not have a Boolean update rule f4. We can see
that

supp f1 = {(1, 1, 0)}; supp f2 = {(1, 0, 1), (1, 1, 0), (1, 1, 1)};
supp f3 = {(0, 1), (1, 0), (1, 1)}.

We obtain the following.

Formula (1) DP(i)

DP(1) = MI(f2(X);X1)+MI(f3(X);X1) DP(1) = 0.8601
DP(2) = MI(f1(X);X2)+MI(f2(X);X2)+MI(f3(X);X2) DP(2) = 0.6714

DP(3) = MI(f1(X);X3)+MI(f2(X);X3) DP(3) = 0.3601
DP(4) = MI(f1(X);X4) DP(4) = 0.1379

For example, to find MI(f2(X);X1), we note that
∑

x∈supp f2 px =

3/8. Since all elements of supp f2 have X1 = 1, it follows that

∑

x∈supp f2

P(X = x|X1 = 0) = 0

and

∑

x∈supp f2

P(X = x|X1 = 1) =
∑

x∈supp f2

P(X = x,X1 = 1)

P(X1 = 1)

=
P(1, 0, 1)

1/2
+

P(1, 1, 0)

1/2
+

P(1, 1, 1)

1/2

=
1/8

1/2
+

1/8

1/2
+

1/8

1/2
=

3/8

1/2
= 3/4

due to the assumption of a uniform distribution of the inputs.
Then MI(f2(X);X1) = h(3/8) − 1

2h(3/4) = 0.5488. Similarly,

MI(f3(X);X1) = h(3/4) − 1
2 (h(1) + h(1/2)) = 0.3113. Thus,

DP(1) = 0.8601 and the other DP values are obtained the same
way and are included in the last column of the table above. Thus,
node 1 is the most determinative in this network, followed by nodes
2, 3, and 4 in that order. This example points out that nodes
with most outputs need not be the most determinative due to the
Boolean function governing the node dynamics. At the same time,
nodes that have the same number of outputs can lead to very
different DP values.

In the numerical results to be presented in this paper, we use
the assumption of ergodicity, meaning that all input states are

equally likely. Although this may not be a perfect reflection of
reality, it is a most common approach in studying the dynamics
of Boolean models for biological networks. For example, this
assumption is used in Heckel et al. (2013), the paper that
introduces the DP concept for identifying the most powerful
nodes in a Boolean network. In Heckel et al. (2013) it is shown
that the knowledge of the states of the most determinative
nodes in the feedforward regulatory network of E. coli reduces
the uncertainty of the overall network significantly. However,
further study of non-ergodic scenarios may provide new
insights.

3. SUBNETWORK SIZE

Let us briefly describe the types of networks that will be used
in simulations and for which statistical data are collected and
analyzed.

The networks are obtained from Cell Collective (CC,
www.cellcollective.org, Helikar et al., 2012, 2013), an interactive
platform for building and simulating logical models. The
database contains over 60 peer-reviewed published models of
biological networks and processes. The networks are of many
sizes and represent a variety of different biological processing
across a number of different organisms [e.g., yeast (Irons, 2009;
Todd and Helikar, 2012), flies (Marques-Pita and Rocha, 2013),
humans (Conroy et al., 2014; Mendéz and Mendoza, 2016)].
Models can be simulated and analyzed directly in Cell Collective,
or downloaded (as SBML or truth table files) for additional
analyses in other tools. In our simulations, truth tables for a
collection of networks from Cell Collective are formatted and
used in a Matlab program to find the DP and subnetwork size
using the above equations.

Next, we provide the actual algorithm used in conjunction
with the DP of nodes to find a suitable size for the subnetwork
consisting of the most determinative nodes.

Once each DP(j) is computed for j = 1, 2, . . . , n, we can
sort them to identify the nodes with highest DP values. We
provide an example in Figure 1 (top) where we show the DP
values in ascending order for a T-cell Receptor Signaling network
(Saez-Rodriguez et al., 2007, https://cellcollective.org/#2171/t-
cell-receptor-signaling) with 94 nodes (blue curve). We also
plot the maximum possible DP values (with dotted red line)
given by the total number of outputs of each node, to have
an understanding of how the DP compares to this maximum.
Observe that if all mutual information terms would take on their
maximum possible value of 1, then the DP would be the number
of outputs of the node under consideration. By plotting both
the DP values and the maximum possible, we can assess the
“efficiency” of the node in generating the information gain in the
network.

Once the DP values are sorted, we can compute the overall
network entropy generated by subnetworks chosen based on top
DP values of nodes. For large networks this can become a difficult
task. Therefore, following the work of Heckel et al. (2013), we
simplify the computations by considering an upper bound for
the entropy. If we consider the collection Sl of the top l most

Frontiers in Physiology | www.frontiersin.org August 2018 | Volume 9 | Article 1185200

https://cellcollective.org/#2171/t-cell-receptor-signaling
https://cellcollective.org/#2171/t-cell-receptor-signaling
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Pentzien et al. Identification of Biologically Essential Nodes . . .

FIGURE 1 | (Top) Sorted DP values (blue curve) for the nodes of a T-cell Receptor Signaling of size n = 94. The maximum possible values for DP, that is, the number

of outputs of each node, are plotted with a red dotted curve for comparison. Notice that most nodes do not reach their maximum possible DP, and that the average

DP of 0.57481 is small in comparison to the maximum DP value of 5. Thus, most nodes have a rather small DP. (Bottom Left) A(l) vs. l. Observe that the curve has an

initial drop for the nodes with the largest DP values, after which the rate of convergence to a positive value is reduced as l increases. This indicates that once a

threshold value of l is reached, the entropy does not decrease significantly anymore. Also, the value of A(l) for l = 1 is more than 4 times larger than the final value for

l = 94. (Bottom Right) B(l) and MAd (l) vs. l. We also plot a horizontal line indicating the chosen threshold T for the size of the subnetwork. The bold vertical line

segment indicates the subnetwork size. For this particular network, the subnetwork size is less than half of the network size.

determinative nodes, then we can compute

H(X|XSl ) ≤
n

∑

i=1

H(Xi|XSl ), for l = 1, 2, 3, . . . , n (6)

where XSl is the random variable whose values are the states of
the nodes in Sl. In Figure 1 (bottom left), we plot the values of the
larger quantity in (6), namely A(l) =

∑n
i=1H(Xi|XSl ) which is an

upper bound for the entropy of the network given the top l nodes.
Observe that for this case, subnetworks of sizes 40–50 or more
(with approximation) do not yield a significant improvement
of the entropy. Thus it suffices to consider less than half of
the original network to be able to predict the overall network
behavior with fairly low uncertainty/entropy levels. Observe also
that the entropy converges to a positive value as the subnetwork
size approaches the network size. This is due to the inherent
uncertainty in the network based on its topology and dynamical
rules.

In order to identify a precise cutoff for the subnetwork size,
we follow the algorithm described next. This algorithm identifies
the cutoff observed in Figure 1 (bottom right; thick vertical line
segment).

(I) Start with the sequence {A(l), l = 1, 2, . . . , n}.
(II) Construct the associated sequence of distances between

consecutive terms of this sequence. That is, construct the
sequence {B(l) = |A(l+ 1)− A(l)|, l = 1, 2, . . . , n− 1}.

(III) Smooth out the sequence by applying a moving average
procedure of order d, which, in our simulations it is set to
0.1(n − 1) (rounded up). That is, we consider the averages
over d consecutive terms of the sequence. Namely, for u =

1, 2, . . . , (n−1)−(d−1), in other words for u = 1, 2, . . . , n−
d, the moving average is given by

1

d

u+d−1
∑

j=l

B(j). (7)

The first and last elements of the sequence are repeated as
necessary so that the final sequence of moving averages has
the same length at the original sequence to be averaged. For
a given d we label the sequence of moving averages MAd =

{MAd(l), l = 1, 2, . . . , n − 1} including all terms of formula
(7) with the necessary repetitions of the first and last elements
to obtain a total of n− 1 terms. An even d value generates an
odd number of repeated elements, which leads to one extra
repetition of the last element as opposed to the repetitions of
the first element (see MA4 in the example below).

For instance, if the input sequence of B(l) values is
{10, 9, 8, 7, 6, 5, 4, 3, 2, 1} then some sample {MAd} sequences
are

MA3 = {9, 9, 8, 7, 6, 5, 4, 3, 2, 2}

MA4 = {8.5, 8.5, 7.5, 6.5, 5.5, 4.5, 3.5, 2.5, 2.5, 2.5}

MA5 = {8, 8, 8, 7, 6, 5, 4, 3, 3, 3}.
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FIGURE 2 | Surface plot for L vs. a grid of values of d and T. The black dot represents the point L,d = 0.1(n− 1),T = 1
4 max(MAd ) for the T-cell Receptor Signaling

model with L = 40, and for the Cholesterol Regulatory Pathway model with L = 22.

For example, to clarify even further, in the case of MA3 and
u = 1, formula (3) generates 1/3(B(1) + B(2) + B(3)) =

9. However, since n − d = 10 − 2 = 8 we repeat the
first and last terms of the sequence given by (3), so that
MA3(1) = MA3(2) = 9. Similarly, MA3(9) = MA3(10) =
1/3(B(8)+ B(9)+ B(10)) = 2.

(IV) Set T, the threshold for finding the size of the subnetwork.
In simulations we use T = 1

4 max(MAd). More precisely,
starting with l = 1, we increase l by one unit until we reach
a value L for which the following conditions are satisfied

MAd(L) ≤ T and
1

d

min(L+d−1,n−1)
∑

j=L

MAd(j) ≤ T. (8)

That is, the values of the MAd sequence drop below the
threshold T and the average variance of the next d values of
MAd is also less than the threshold T.

(V) The subnetwork consists of the nodes with the L highest DP
values.

The results are dependent on how one sets the parameters d
and T. The larger the d value, the smoother the MAd sequence,
and thus the conditions (8) tend to be satisfied for smaller values
of l. The same happens if T is sufficiently large. On the other
hand, larger moving average order d means losing some of the
intrinsic variation of data. Therefore, we need to be aware of the
tradeoff between accuracy and details of the data, as is customary
in network modeling and simulation.

In Figure 1 (bottom right), this algorithm with d = 0.1(n− 1)
and T = 1

4 max(MAd) generates a minimal subnetwork size
of 40 nodes with the largest DP. This is less than half of the

network size. We notice that the threshold T is approximately
1
4 max(MAd) =

1
4 · 2.8 = 0.7.

To see how the two parameters d and T affect the size L of
the subnetwork, we compute L for a grid of values of d and T for
two networks that will be used as examples in the next section
too. Two sample surfaces are shown in Figure 2. The black dot
indicates the actual L value obtained with this procedure for d =

0.1(n − 1) and T = 1
4 max(MAd) considered in the simulations.

As expected, the values of L increase with an increase of the
two parameters, and the surfaces are similar in shape with mild
variations.The choice of d = 0.1(n − 1) used in simulations
generates subnetworks that do not surpass 60% of the network
size with approximation. We will see that this is sufficient to
identify a good fraction of biologically important nodes in several
networks from the Cell Collective (Helikar et al., 2012, 2013).

We explore other networks in the next section, however, we
will provide graphs related to the networks considered so far and
add one more network of small size.

4. NUMERICAL RESULTS AND ANALYSIS

4.1. Simulations and Statistical Analysis
We apply the procedure explained in the previous section to a
number of networks available in Cell Collective (Helikar et al.,
2012, 2013). We summarize the results below and supplement
with suitably chosen graphs. For each network shown in graphs,
we plot the sorted DP values for all nodes, the upper bound
for the entropy, A(l) vs. l, and the elements of the algorithm
for finding the subnetwork size, namely B(l) and MAd(l) vs. l
with a horizontal line at the threshold value T that indicates the
subnetwork size.

The graphs of A(l) consist of a curve that decreases to zero
or a value that stabilizes for large values of l in most cases. A
typical example is the one considered in the previous section for
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FIGURE 3 | Analog of Figure 1 for the Oxidative Stress Pathway network with n = 18. The average DP is larger than for the T-cell Receptor Signaling network, which

can be expected in a smaller network where nodes may incorporate more information to be used in the network. The maximum DP is smaller though. Observe that

here, A(l) decreases to a value close to zero along a non-linear curve. The subnetwork size is a third of the network size, so it is smaller as a fraction of the network in

comparison to the T-cell Receptor Signaling network where the subnetwork is about 42% of the network size.

the T-cell Receptor Signaling network in Figure 1. This behavior
is very similar to the results obtained in Heckel et al. (2013),
the paper that inspired this work, for a feedforward regulatory
network in E. coli. Notice that A(l) stabilizes at a positive value
for large l and does not converge to zero. In general, since A(l) is
an upper bound for the entropy as seen in inequality (6), it may
not approach zero. On the other hand, the entropy itself is the
expected value of a random variable as indicated in Definition 2,
and therefore it may be non-zero.

A couple of variations are shown as well. In Figure 3 we
consider a small Oxidative Stress Pathway network with 18
nodes (Sridharan et al., 2012, https://cellcollective.org/#3512/
oxidative-stress-pathway). The subnetwork size is a third of
the network size. In Figure 4 we show similar graphs for a
medium sized Cholesterol Regulatory Pathway network with 34
nodes (Kervizic and Corcos, 2008, https://cellcollective.org/#
2172/cholesterol-regulatory-pathway). In this case, the upper
bound A(l) approaches zero rather slowly at an almost linear
rate, therefore the subnetwork size is larger when compared
to the whole network, namely about 65% of the entire
network.

Next, we summarize the data obtained from a total
of 36 networks and generate some statistical information.
Four networks are significantly larger than the others: signal
transduction in fibroblast cells with 130 nodes, interleukin-1
signaling with 103 nodes, signal transduction in a macrophage
with 302 nodes, and T-cell receptor signaling with 94 nodes.
We consider them “outliers” and explore some statistics on the
remaining 32 networks to avoid skewed results. We hope to be
able to expand the list of large networks in the future and include
them in the analysis.

We provide boxplots for seven numerical characteristics
obtained from the network data: network size n, subnetwork size
L, maximum DP values, average DP values, ratio L/n, number
of links or edges in the network, E, given by the total number
of inputs or outputs for all nodes, and E/n2 as the ratio between
the edges and total number of possible edges, taking into account
that self-inputs are allowed. The results are shown in Figure 5.
We choose to separate them due to the different ranges of values.
Observe that most subnetwork sizes are fairly small even for
larger networks or more edges, so the subnetwork sizes may
not increase with the network size or the number of edges. The
number of nodes and the number of edges have similar boxplots.
The maximum DP can be fairly large; however it is not clear yet
if this fact is related to the network size, or the number of edges.
Wewill explore the idea in what follows. Finally, the averageDP is
rather small for all networks, regardless of their sizes. Also, most
of the ratios L/n of the subnetwork size vs. the network size are
less than 60%.

We also explore the dependencies between the numerical
characteristics considered in Figure 5, by generating a number
of scatter plots with corresponding fitted regression lines. In
particular, we want to see if there are correlations between L, L/n
or the maximum DP and average DP vs. the network parameters
n,E,E/n2. We find that there is no evidence of strong correlations
between the variables, except for L vs. n,E and maximum
DP vs. n,E. The scatter plots are shown in Figure 6 and the
corresponding fitted lines and coefficients of determination R2

are listed in Table 1. Note that there is no strong linear (or non-
linear) relationship; however we note the increasing trend in both
subnetwork size L and maximum DP with increased n and E. On
the other hand we see that the average DP does not depend on the
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FIGURE 4 | The Cholesterol Regulatory Pathway network consists of n = 34 nodes. The maximum and average DP are comparable to the Oxidative Stress Pathway

network. The upper bound A(l) for the Cholesterol Regulatory Pathway network has an almost linear decrease to zero. Therefore, the subnetwork size of 22 is larger

than in previous cases in comparison to the network size, representing about 65% of the network.

FIGURE 5 | Boxplots for the network size n, subnetwork size L, maximum DP, average DP, ratio L/n, number of edges E, and the ratio E/n2. They are grouped based

on similar magnitudes. The boxplots for n and E are very similar. It appears that most subnetwork sizes are fairly small even for larger n or E values, so the subnetwork

sizes may not increase with the network size or the number of edges. The maximum DP seems to be fairly large. The average DP is rather small for all networks

regardless of their sizes. The boxplot for L/n indicates that most subnetworks represent less than 60% of the original network. The number of edges E is small in

comparison to the total number of possible edges in the network due to small values of the quantity E/n2 ∈ [0, 0.13]. This suggests that these networks do not have

too many links.

parameters and that the ratio L/n decreases with increased n,E,
which supports the observations from the boxplots.

Thus, the given data do not suggest a specific strong
relationship between the numerical characteristics; however they
allow us to observe trends and support some of the previous
observations in the boxplots. Our samples are quite small, so

it would be useful to continue adding new networks to the
collection considered in this paper, to overcome the possible
inaccuracies due to small sample size. The change of parameters
in the network size algorithm leads to a fairly similar change in
the subnetwork size for different networks as seen in Figure 2,
suggesting a correlation between the choice of parameters and

Frontiers in Physiology | www.frontiersin.org August 2018 | Volume 9 | Article 1185204

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Pentzien et al. Identification of Biologically Essential Nodes . . .

FIGURE 6 | Scatter plots and fitted lines for the identification of possible correlations between L, L/n, Max(DP), Avg(DP), and the parameters n,E,E/n2. The

equations for the fitted lines are listed in Table 1. There are no observable strong correlations and this is confirmed by the coefficients of determination in Table 1.

Weak correlations are noticed for the increasing subnetwork size L as a function of n or E, and the increasing Max(DP) as a function of the same two parameters n

and E. We also notice the decreasing trend of the ratio L/n with increased network size n or number of edges E, which suppports our observations from the boxplots.

TABLE 1 | Fitted lines and coefficients of determination R2 corresponding to the scatter plots of Figure 6.

x

y
L L/n Max(DP) Avg(DP)

n y = 4.167+ 0.3187x y = 0.6057− 0.0037x y = 0.176+ 0.1088x y = 0.5906+ 0.0009x

R2 = 51.1% R2 = 11.9% R2 = 66.2% R2 = 0.5%

E y = 4.638+ 0.2985x y = 0.5622− 0.002x y = 0.6277+ 0.0912x y = 0.5493+ 0.0024x

R2 = 56.9% R2 = 4.7% R2 = 59.1% R2 = 4.8%

E/n2 y = 18.24− 115x y = 0.3961+ 2.315x y = 4.697− 33.29x y = 0.5616+ 1.118x

R2 = 23% R2 = 16.1% R2 = 21.4% R2 = 2.8%

The coefficients are generally small, the maximum values being observed for L vs. n,E and for Max(DP) vs. n,E. However, the maximum coefficient is only 66.2%, which suggests weak

correlations at best.

the subnetwork size L. We expect that other possible variables or
attributes that are intrinsic to the actual topology or dynamics
of networks may have a stronger correlation with the DP values.
Some of these attributes are connectivity (in-degree), number
of outputs (out-degree), path length and other topological
measures, canalizing depth, ratio of canalizing functions, or
average bias of outputs (Albert and Barabasi, 2002; Kochi et al.,
2014; Wohlgemuth and Matache, 2014). We plan on exploring
them in great detail in future research to shed more light on
possible relationships with the variables in Figures 5, 6.

The observed general low DP values is what we expect in an
equilibrium situation. It has been shown that the correlations

between nodes become high only when facing a transition
(Gorban et al., 2010; Censi and Calcagnini, 2011; Mojtahedi et
al., 2016). It is possible that the simple node level hierarchy
coming from mutual information might benefit from a study
of at least some complex graph analysis descriptors such as
in-degree, out-degree, betweenness and closeness centrality of
the nodes that keep track of the role played by the nodes
in the system they are embedded into (Csermely et al., 2005;
Kovacs et al., 2010). In the next section we complement
our analysis with a brief graph-theoretical perspective that
is relevant in signaling networks (Di Paola and Giuliani,
2015).
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4.2. Determinative Power and Topological
Attributes
We will focus on some topological attributes or measures
associated with the nodes of a BN that may provide more
information on the magnitude of the DP values. Given a BN,
[n] : = {1, 2, . . . , n}, and an arbitrary node j ∈ [n], we consider
the connectivity or the number kj of inputs of the node j (the in-
degree), the number oj of outputs of the node j (the out-degree),
together with several measures of centrality of node j as defined
below.

DEFINITION 3. A sequence of distinct nodes P(i1, im) =

{i1, i2, . . . im} of a BN with the property that ik is an input to ik+1

for any k = 1, 2, . . . ,m − 1, is called a path of length m − 1 from
the source node i1 to the destination node im. Thus, the distance
between the two nodes along this path is d(i1, im) = m− 1.

There could be multiple paths between two nodes, possibly
with the same length. We are interested in the shortest path
length between nodes. Observe that the shortest path length may
differ if we switch the source and the destination nodes, so we
may have d(i1, im) 6= d(im, i1). On the other hand, if there is no
path from node i to node j then d(i, j) = 0.

For a given node i ∈ [n], let us consider the following
quantities. We use the notation |A| to denote the cardinality of
the set A, in other words the number of elements in that set. Let

Ain(i) = |{j ∈ [n] : j 6= i and there exists a path P(j, i)}|,

Fin(i) =
∑

j 6=i

d(j, i),

Aout(i) = |{j ∈ [n] : j 6= i and there exists a path P(i, j)}|,

Fout(i) =
∑

j 6=i

d(i, j).

If Ain(i) = 0 then Fin(i) = 0, and similarly, if Aout(i) = 0
then Fout(i) = 0. The quantities Fin(i), Fout(i) could be regarded
as measures of the farness of node i from the other nodes in
the network. The reciprocal of farness is a measure of closeness.
If we multiply the closeness by the fraction of the sources or
destinations of node i we obtain the following definitions of
closeness centrality.

DEFINITION 4. The in-closeness centrality of node i ∈ [n] is the
quantity

Cin(i) =

(

Ain(i)

N − 1

)2 1

Fin(i)
, if Ain(i) 6= 0,

and Cin(i) = 0 otherwise.
Similarly, the out-closeness centrality of node i ∈ [n] is the

quantity

Cout(i) =

(

Aout(i)

N − 1

)2 1

Fout(i)
, if Aout(i) 6= 0,

and Cout(i) = 0 otherwise.

A second measure of centrality is the betweenness centrality,
which measures how often each node appears on a shortest path
between two nodes in the network. Given three distinct nodes
i, j, k, letNjk be the total number of shortest paths from j to k, and
Njk(i) the number of those paths that pass through node i.

DEFINITION 5. The betweenness centrality of node i ∈ [n] is the
quantity

BC(i) =
∑

j,k6=i

Njk(i)

Njk
.

The summation is over all nodes j, k for which Njk 6= 0, meaning
there exists at least a path between them.

We compute the topological attributes of nodes for the
individual networks considered in previous figures, namely theT-
cell Receptor Signaling, the Oxidative Stress Pathway, and the
Cholesterol Regulatory Pathway. However, we are also adding
one of the outlier networks, namely the signal transduction in
fibroblast cells network with 130 nodes. The Fibroblast Signaling
network has been investigated before in various publications
(Kochi and Matache, 2012; Kochi et al., 2014; Matache and
Matache, 2016; Puniya et al., 2016).

In Figure 7 we provide network visualizations for each
of the node attributes described in this section for the
Fibroblast Signaling network. They are presented in the following
order: DP, betweenness centrality, in-closeness centrality, out-
closeness centrality, in-degree, and out-degree. The node color
is proportional to the magnitude of these measures: dark colors
for low values and light colors for large values. This type
of visualization offers an overall view of the network’s most
central nodes, as well the nodes with most connections, or
the nodes with highest DP values, thus identifying, to some
extent, the role played by the nodes in the network they are
embedded into. Similar graphs are shown in Figure 8 for the
T-cell Receptor Signaling network, in Figure 9 for the Oxidative
Stress Pathway network, and in Figure 10 for the Cholesterol
Regulatory Pathway.

We note that, aside from some similarities between theDP and
the out-degree graphs which are expected given the definition
of the DP as a summation of mutual information terms over all
outputs of a given node, there is no other significant correlation.
This is confirmed by a statistical analysis of the topological data.
We include scatter plots with corresponding fitted regression
lines for the DP as a function of the out-degree in Figure 11,
together with the corresponding coefficients of determination
R2. The plots indicate that there might be nodes with high DP
and fewer outputs, and also nodes with low DP and a larger
number of outputs. In section 4.3 we relate this fact to the
biological relevance of the nodes with large DP values. We
provide simple scatter plots for DP as a function of the other
topological measures indicating only the ranges of values of R2

in Figures 12–15. The coefficient of variation is quite small in
most cases. The largest values correspond to the DP vs. out-
closeness and betweenness centrality of the smallest network, the
Oxidative Stress Pathway network. However, even these values
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FIGURE 7 | Fibroblast Signaling network: visualization of node attributes.

FIGURE 8 | T-cell Receptor Signaling network: visualization of node attributes.

are around 50%. We also conclude that for the four networks
under consideration theDP is not correlated with any of the other
topological measures.

Thus, further analyses need to be pursued, including other
topological aspects in conjunction with various dynamical
measures. For example, it has been shown that the location of
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FIGURE 9 | Oxidative Stress Pathway network: visualization of node attributes.

FIGURE 10 | Cholesterol Regulatory Pathway network: visualization of node attributes.

nodes in the network may be crucial for identifying enzymes
whose elimination may have lethal effects in certain metabolic
networks (Palumbo et al., 2005, 2007). In that case themetabolites

are considered the nodes of the network, whereas the enzymes are
the links between nodes. Therefore, it may be of further interest
to explore other node location measures.
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FIGURE 11 | The scatter plots suggest some correlation between the DP values and the number of outputs. However, we can observe that there might be situations

where a large DP does not correspond to a large number of outputs. There can also be situations where the DP is small even though the node has more outputs.

FIGURE 12 | Simple scatter plots for DP vs. in-degree. R2 ∈ [0%, 7.3%].

4.3. Biological Relevance of the Most
Determinative Nodes
Aside from providing a method for finding a subnetwork
with a fairly low impact on the overall entropy of the

system, the DP method identifies biologically significant
nodes among the top DP values. To support this
statement we analyze biological relevance of the top DP
nodes.
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FIGURE 13 | Simple scatter plots for DP vs. in-closeness centrality. R2 ∈ [0%, 1.3%].

FIGURE 14 | Simple scatter plots for DP vs. out-closeness centrality. R2 ∈ [5.7%, 48%], where 48% corresponds to the Oxidative Stress Pathway network.

We focus on the particular networks shown in the figures
so far, namely Fibroblast Signaling, T-cell Receptor Signaling,
Oxidative Stress Pathway, Cholesterol Regulatory Pathway. These
are all intercellular networks found in many different organisms.

We are interested in the biological relationship between high
DP and the nodes’ biological importance in the cell. In our
analysis, we provide most information on the larger networks
from among these four, namely Fibroblast Signaling and T-cell
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FIGURE 15 | Simple scatter plots for the DP vs. betweenness centrality. R2 ∈ [6.5%, 52%], where 52% corresponds to the Oxidative Stress Pathway network.

Receptor Signaling, and a shorter summary for the other two
networks.

We start with a few notes on Fibroblast Signaling. To
investigate in more detail whether nodes with high DP values are
influential, we compare these nodes with the 32 most influential
nodes identified under different environmental conditions in a
previously published study by Puniya et al. (2016). We compare
these most influential nodes with the top 10, 20, 30, 40, 50, and
60 nodes having high DP values in our analysis. We obtain an
overlap of 70%, 65%, 50%, 47%, 38%, and 33%, respectively.
Among the top 20 nodes having high DP values, 13 were
previously identified as the most influential. Among the top 10,
we find only one node which was previously identified as less
influential. Similarly, in the top 20, 30, 40, 50, and 60 nodes,
the distribution of the previously identified less influential nodes
are 2, 3, 4, 8, and 13 respectively. This comparison suggests that
the majority of nodes having high DP values (> 65% in the
top 20) are also identified as most influential when perturbed
under different environmental conditions by Puniya et al. (2016).
Therefore, these nodes may be involved in crucial biological
functions.

Furthermore, we perform functional analyses of these nodes
having high DP values. We provide information on all four
networks under consideration.

1. Methods

Gene essentiality data are obtained from the Online GEne
Essentiality (OGEE) database version 1 that was downloaded
on July 20, 2015 (Chen et al., 2012, 2017). Essential genes
are deemed to be critical for cellular function and survival.
As such, if an essential gene is removed (or knocked-out),

it results in inviability. The OGEE database lists 7,168 genes
as essential and 6,985 genes as conditionally (under specific
environmental conditions) essential for humans, and was
compiled using 18 different datasets of different cell lines
using gene modification tools such as RNAi and CRISPER-
cas9 (Chen et al., 2017). We overlap essential genes in
that database with the nodes having high DP values in the
Fibroblast Signaling network. Some nodes may be proteins
that consist ofmultiple subunits or havemultiple isoforms that
are encoded by multiple genes. For example, Phospholipase
D has two major isoforms, namely PLD 1 and PLD 2. Of
these, PLD 1 is found to be essential in one tested cell line
grown in GS-9 media (Chen et al., 2017). In such cases, we
consider a node as essential if at least one gene (out of all
protein coding genes) is listed as essential in the database.
The proportion of the essential nodes in top selected nodes
having high DP values is compared with the proportion of
the essential nodes in the whole network. Using the DAVID
tool for pathway enrichment analysis (Huang et al., 2009a,b),
the genes associated with high DP nodes are mapped on the
KEGG and Biocarta pathways and compared with the total
genes in the network as a background. The DAVID tool uses
Fisher’s exact test to calculate p-values. The FDR is computed
and a cutoff of 5% is used to correct the multiple comparisons.
Furthermore, for annotation clustering the similar terms are
clustered together using high classification stringency.

2. Gene essentiality analysis
Fibroblast Signaling: To investigate the essentiality of the
nodes with high DP values in the Fibroblast network, we
map these nodes with gene essentiality data. Out of 130
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FIGURE 16 | (A) Distribution of essential nodes among top nodes having high

DP values in the Fibroblast Signaling network with n = 130 nodes. Y-axis:

Number of essential nodes among the selected nodes divided by number of

selected nodes (top DP nodes). The red horizontal line indicates the proportion

of essential nodes found in the whole network. (B) Distribution of essential

nodes among top nodes having high DP values in the T-cell Receptor

Signaling network with n = 94 nodes.

nodes in the network, 68 nodes (52%) are essential. To
investigate the relationship between essentiality and DP
values, we check the distribution of the essential nodes in
the top 10, 20, 30, 40, 50, and 60 nodes having high DP
values. The essential nodes in these top selected nodes
are 70%, 75%, 66%, 60%, 52%, and 53% respectively, as
shown in Figure 16A. High proportions of essential nodes
are found in the top 10, 20, and 30 nodes. For the top
50 and 60 the proportions are close to the background
proportion of essential nodes in the whole network. Among
the top 20, a total of 15 nodes (75% of selected nodes)
are identified as essential and are listed in Table 2. This
proportion is significantly higher than the background
proportion of essential nodes in the whole network
(p-value 0.0306 < 0.05).

T-cell Receptor Signaling: We investigate the distribution
of essential genes in T-cell signaling model. A total of 42
nodes out of 95 (42.2%) are essential. Among the top 10, 20,
30, 40, and 50 nodes having high DP values, 7, 14, 18, 21,
and 25 are essential as shown in Figure 16B. We find 70% of
nodes as essential in each of the top 10 and top 20 nodes. The
proportion of the essential nodes decreases with decreasing
DP value. The proportion of the essential nodes in the top 20
nodes having high DP values is significantly higher than that
of the background proportion of 42.2% in the whole network
(p-value 0.0115 < 0.05).

TABLE 2 | Essential genes among the Top 20 nodes having high DP values in the

Fibroblast Signaling network.

Fibroblast Nodes (Top 20) Essential Genes (Uniprot ID’s)

ASK1 Q99683

CaM Q96HY3

Cas P56945

Cdc42 P60953

EGFR Q504U8

Erk P28482, Q8TD08, P27361, Q16659, P31152,

Q13164, P53778

Fak Q05397

IL1_TNFR P01584, P19438

Mek Q02750, P36507, P52564, P46734

PKA P17612, P22694, P22612

PKC P17252, P05771, P24723, Q05513, Q04759,

Q02156, Q05655, P41743

PP2A P67775

Rho P08100

Src P12931

Trafs Q9BUZ4, Q9Y4K3

Oxidative Stress Pathway: Oxidative stress signalingmodel
consists of 18 nodes. Of these, 13 nodes (72.22%) are essential.
In the top 5 and top 10 nodes having high DP values, 4 and
7 are essential, respectively. For example, the top hub nodes
ROS and AKT are essential.

Cholesterol Regulatory Pathway: Out of 34 nodes, 7 are
essential. The top hub node msREBP is essential in metabolic
reprogramming of the effector T-cells (Kidani et al., 2013).

Thus, nodes having high DP values are enriched with
essential genes suggesting that the DP values might be used
to predict the gene or protein essentiality.

We include here a note on how the gene essentiality
results relate to the cutoff L for the subnetwork size. For
example for the T-cell Receptor Signaling network shown
in Figure 16B, we find 53% essential nodes among the top
L = 40 nodes having high DP values, in comparison to the
44% essential nodes in the whole network. Similarly, for the
Cholesterol Regulatory Pathway network a total of 7 essential
genes (20%) are found. Of these, 5 nodes are in the top
L = 22 nodes having high DP. Furthermore, in the case
of the Oxidative Stress Pathway network, we find 5 essential
nodes out of L = 6 nodes compared to 13 out of the 18
in whole network. Thus, our chosen cutoff L seems to be
sufficient for identifying a large fraction of essential nodes.
Moreover, the results suggest that even smaller values of the
cutoff L would allow a significant identification of essential
nodes.

3. Biological pathway analysis
Fibroblast Signaling: Further, to investigate the biological
processes associated with top DP nodes, we perform
pathway analysis of nodes having high DP values (Top
20). We obtain 15 KEGG pathways including signaling
pathways such as TNF-alpha signaling, MAPK signaling, and
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FIGURE 17 | Enriched KEGG pathways among the top 20 selected nodes having high DP values in the (A) Fibroblast Signaling network with 130 nodes and (B) T-cell

Receptor Signaling network with 94 nodes. The values on the x-axis correspond to fold enrichment and the total number of genes found in the KEGG pathway. The

enriched pathways are given on the y-axis.

TLR signaling, and pathways associated with diseases
such as influenza A infection, viral carcinogenesis,
prion diseases, and Epstein-Barr virus infection. The
results are shown in Figure 17A. The Erk node is
common among 14 out of 15 enriched pathways. Next
to this, the Mek node is common among 13 out of 15
enriched KEGG pathways. The EGFR node that has
the highest DP value is involved in 5 KEGG pathways.
These results suggest that the nodes having high DP
values are involved in crucial biological functions,
and are also associated with a variety of infections and
diseases.

T-cell Receptor Signaling: Among the top 20 nodes
having high DP values, we obtain 13 enriched KEGG
pathways as seen in Figure 17B. These enriched pathways
include insulin signaling, and pathways involved in
diseases such as cancers, long term depression, and
alcoholism. The node Raf is common among 12 out
of 13 enriched KEGG pathways. The pkb node has
the highest DP value in the T-cell Receptor Signaling
network and is involved in 8 out of 13 enriched KEGG
pathways. These results suggest that the nodes having high
DP values are involved in crucial biological functions,

and also associated with a variety of diseases including
cancers.

Oxidative Stress Pathway: Among the top 5 nodes,
the KEGG pathways including renal cell carcinoma,
acute myeloid leukemia, prolactin, estrogen, B-cell
receptor, and the T-cell receptor are found to be
enriched.

Cholesterol Regulatory Pathway: Among the
top 20 nodes no KEGG pathway is found to be
enriched.

5. DISCUSSION

The biological function analysis of the nodes having high
DP values (hubs) in the Fibroblast Signaling, T-cell Receptor
Signaling, Oxidative Stress Pathway, and Cholesterol Regulatory
Pathway networks suggest that the majority of nodes are
essential and also involved in crucial biological functions.
The proportion of the essential nodes among nodes having
high DP values (e.g., top 20) in large scale models, i.e.,
Fibroblast Signaling (130 nodes) and T-cell Receptor Signaling
(94 nodes) is significantly higher than that of the total
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essential nodes in the whole network. On the other hand,
the comparatively small models Oxidative Stress Pathway and
Cholesterol Regulatory Pathway models also exhibit their hub
nodes as essential. The biological pathway analysis of top
hub nodes shows that these are involved in important disease
pathways.

To have a better understanding of the meaning of the
subnetworks of hubs in the more general context of the whole
networks, we provide further insight into the biological roles of
some of the top hubs in each of the four networks.

The Fibroblast Signaling network is a generic network that
consists of several major signaling pathways including the
Epidermal Growth Factor Receptor (EGFR), the G-protein
coupled receptor, and the integrin signaling pathway (Puniya
et al., 2016). In the Fibroblast Signaling network the nodes with
the highest DP values e.g., EGFR, Apoptosis signal-regulationg
kinase 1 (ASK1), Erk, Focal adhesion kinase (Fak), Cellular
apoptosis susceptibility (Cas) protein, Calmodulin (CaM), or
Mek have critical functions in the protein kinase activity, the
regulation of protein kinase activity, and the cell proliferation
and apoptosis. For example, the hub node EGFR is found to
be essential for several biological functions, such as in Toll-like
Receptor 3 signaling in human and mouse cell types, including
fibroblast, dendritic cells, and macrophages (Yamashita et al.,
2012).

The T-cell Receptor Signaling network comprises the T-cell
receptor, its co-receptors and the transcription factors involved
in T-cell activation and function (Saez-Rodriguez et al., 2007).
In this network, the nodes with the highest DP values include
Protein Kinase B (pkb), Linker of Activated T-cells (Lat), Fyn,
Zap70, and the tyrosine kinase (lckp1), that have important
roles in the T-cell receptor signaling. The hub node Zap70 is a
tyrosine kinase that is essential for the adaptive immune response
(Wang et al., 2010). Furthermore, the protein associated with
the Lat node is phosphorylated by Zap70 following the T-cell
receptor activation (Paz et al., 2001). The other nodes, i.e., pkb,
Fyn, and lckp1, are tyrosine kinases involved in cell growth and
proliferation (Safran et al., 2010).

TheOxidative Stress Pathway network comprises the oxidative
stress and PI3K/Akt signaling. In this network, the nodes
reactive oxygen species (ROS), Akt and the Anti-oxidant
response element (ARE) have the highest DP values. ROS plays
an important role in the maintenance of the redox balance.
Increased levels of ROS causes macromolecules and cell organelle
damage, and triggers the cell apoptosis (Redza-Dutordoir and
Averill-Bates, 2016). On the other hand Akt is a positive regulator
of cell proliferation.

The Cholesterol Regulatory Pathway network consists of
reactions involved in cholesterol biosynthesis and its regulation
by Sterol regulatory element-binding proteins (SERBPs). The
nodes with the highest DP values include mSREBP, Statins,
and Acetyl-CoA, and have important roles in regulation.
The node mSREBP is a transcription activator involved
in the lipid biosynthesis pathway (Shimano, 2001). The
Statins are inhibitors of cholesterol biosynthesis. The Acetyl-
CoA is a central metabolite and a substrate for cholesterol
biosynthesis.

We also point out that many essential nodes may tend
to have a large number of outputs, and since the DP is a
summation of MI values over all possible outputs, there is
a natural correlation between higher DP values and larger
number of outputs, as noted in Matache and Matache (2016)
and as seen in Figure 11. However, the DP method can
identify essential nodes with both large and small number of
outputs.

For example, in the Fibroblast Signaling network, the top
DP node is EGFR having 13 outputs. It is identified as an
essential node. In Matache and Matache (2016) it is specified
that mutations of the EGFR are known to be related to lung
cancer, interfering with the signaling pathways within the cell
triggered to promote cell growth and division (proliferation)
and cell survival. The second node in the order of DP is
ASK1, also an essential node. This node has only 4 outputs and
plays important roles in many stress-related diseases, including
cancer, diabetes, cardiovascular, and neurodegenerative diseases.
The third is the proto-oncogene tyrosine-protein kinase (Src),
identified as essential. This node is involved in the control
of many functions, including cell adhesion, growth, movement
and differentiation, and has 30 outputs. Although the fourth
node Phosphatidylinositol (3,4,5)-trisphosphate (PIP3_345) has
17 outputs, it is not considered essential in the OGEE database
(Chen et al., 2012). In fact, among the top 20% of nodes with
large DP values, we identify as essential 80% of those with
large (≥ 6) number of outputs and 50% of those with small
(≤ 5) number of outputs. The average number of outputs
is 4.3 and the maximum is 30 in the Fibroblast Signaling
network.

A fairly similar situation occurs for the T-cell Receptor
Signaling network. This suggests that future studies will need to
look at further correlations between essentiality and DP values.

We note here that the codes used for the work in this paper
are available upon request.

6. CONCLUSIONS

Our results suggest that DP can serve as a useful tool to identify
a subset of relevant nodes in the network that offer the most
information gain and whose knowledge reduces the entropy of
the whole network significantly. Moreover, many of the nodes
with top DP values are identified as biologically essential.

Several directions for further research include extending the
data to other networks to increase our samples for the statistical
analysis, as well as identifying some network properties or
attributes that are potentially correlated with the DP values,
such as average bias of the outputs of nodes, canalizing depth,
clustering coefficients, or feedback loop information. Moreover,
most biological networks have a very large maximal strongly
connected component called the “core” (Steinway et al., 2015;
Gan and Albert, 2016). On the other hand, it has been shown
that disrupting nodes that do not belong to the core may have a
significant impact on the network (Palumbo et al., 2005, 2007).
More precisely, essential mutations corresponding to enzymes
whose elimination has lethal effects on a metabolic network, tend
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to have a peripheral position and are seldom located in highly
connected components of the network. It would be of interest to
know how the DP values in the core differ from those not in the
core to possibly unravel further correlations.

Another topic for further research is to perform actual
network reduction to its topDP nodes and compare the dynamics
of the subnetwork to the dynamics of the entire network to
explore further the ability of the subnetwork to capture important
dynamical aspects of the whole network, such as preservation
of attractors. For instance, it would be of interest to explore the
Java software GINsim (Naldi et al., 2009a) to actually perform the
network reduction and use it to analyze dynamics of the various
models found in Cell Collective. This endeavor will require
a suitable algorithm for eliminating the edges or connections
linking the nodes of the chosen subnetwork to the eliminated
nodes.

Some more theoretical approaches would be to study the
impact of network reduction for homogeneous networks (that
is, networks in which all nodes obey a certain type of Boolean
function) to set some baseline dynamical behavior to be used for
comparison with more realistic network models.
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Logical models are well-suited to capture salient dynamical properties of regulatory

networks. For networks controlling cell fate decisions, cell fates are associated

with model attractors (stable states or cyclic attractors) whose identification and

reachability properties are particularly relevant. While synchronous updates assume

unlikely instantaneous or identical rates associated with component changes, the

consideration of asynchronous updates is more realistic but, for large models, may hinder

the analysis of the resulting non-deterministic concurrent dynamics. This complexity

hampers the study of asymptotical behaviors, and most existing approaches suffer

from efficiency bottlenecks, being generally unable to handle cyclical attractors and

quantify attractor reachability. Here, we propose two algorithms providing probability

estimates of attractor reachability in asynchronous dynamics. The first algorithm, named

Firefront, exhaustively explores the state space from an initial state, and provides quasi-

exact evaluations of the reachability probabilities of model attractors. The algorithm

progresses in breadth, propagating the probabilities of each encountered state to its

successors. Second, Avatar is an adapted Monte Carlo approach, better suited for

models with large and intertwined transient and terminal cycles. Avatar iteratively explores

the state space by randomly selecting trajectories and by using these random walks to

estimate the likelihood of reaching an attractor. Unlike Monte Carlo simulations, Avatar

is equipped to avoid getting trapped in transient cycles and to identify cyclic attractors.

Firefront and Avatar are validated and compared to related methods, using as test cases

logical models of synthetic and biological networks. Both algorithms are implemented as

new functionalities of GINsim 3.0, a well-established software tool for logical modeling,

providing executable GUI, Java API, and scripting facilities.

Keywords: regulatory network, logical modeling, discrete asynchronous dynamics, attractors, reachability

1. INTRODUCTION

Logical modeling has been widely used to study gene regulatory and signalling networks (see e.g.,
Glass and Siegelmann, 2010; Saadatpour and Albert, 2012; Abou-Jaoudé et al., 2016). Briefly, in
a logical model, the evolution of the discretised level of each component depends on the current
values of its regulators whose influences are dictated by logical functions. Here, we rely on the
generalized framework initially introduced by Thomas and d’Ari (1990) and implemented in our
software tool GINSIM (Chaouiya et al., 2012; Naldi et al., 2018). Because precise knowledge of the
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durations of underlying mechanisms is often lacking, one
assumes that, when multiple components are called to change
their levels, all update orders have to be considered. This
corresponds to the asynchronous updating scheme (Thomas and
d’Ari, 1990; Thomas, 1991). The dynamics of these models are
classically represented by State Transition Graphs (STGs) where
nodes embody the model states and edges represent the state
transitions; each path in this graph accounts for a potential
trajectory of the system. In contrast, synchronous updates, which
amount to consider equal or negligible delays associated to
component changes, define deterministic dynamics, easier to
analyse but less realistic.

Model attractors (stable states or cyclic attractors) represent
long term, stable equilibria. Cyclic attractors denote stable
oscillations as observed in cell cycle or circadian rythms (see
e.g., Fauré et al., 2006; Fauré and Thieffry, 2009; Chaves and
Preto, 2013), whereas stable states are associated with cell lineages
or other cellular responses to external cues or perturbations
(see e.g., Sánchez et al., 2008; Calzone et al., 2010; Naldi et al.,
2010; Collombet et al., 2017). Modeling molecular networks
involved in cancer has been focusing on attractors and their
reachability properties (see e.g., Huang et al., 2009; Flobak et al.,
2015; Remy et al., 2015; Cho et al., 2016). Indeed, attractor
likelihood may provide relevant predictions as attractors reflect
cellular responses (e.g., healthy or not). For instance, to uncover
patterns of genetic alterations in bladder tumors, Remy et al.
(2015) considered an asynchronous logical model and checked
how model perturbations modify the probabilities of reaching
attractors related to proliferative phenotypes.

Not surprisingly, the number of states of logical models
grows exponentially with the number of regulatory components.
Moreover, due to the asynchronous updating scheme, the
dynamics are non-deterministic; they possibly encompass
alternative trajectories toward a given state as well as transient
cycles. All this turns the identification and reachability analysis
of model attractors into a difficult challenge. In this context,
methods have been developed to find stable states—also referred
as point attractors—and complex, oscillatory attractors (or, at
least to circumscribe their location) (Naldi et al., 2007; Garg et al.,
2008; Zañudo and Albert, 2013; Klarner et al., 2015). Here, we
primarily aim at efficiently determining attractors reachable from
specific initial condition(s) as well as estimating the reachability
probability of each of those attractors in asynchronous dynamics.

An STG can be readily interpreted as the transition matrix
of a finite Markov Chain. Generally, STGs encompass distinct
attractors (or recurrent classes) and thus define absorbing chains
(Grinstead et al., 1997). However, most existing results relate to
recurrent (or irreducible) chains (Prum, 2012). Moreover, we
aim at avoiding the construction of the whole dynamics (or the
associated transition matrix); we thus rely on the logical rules as
implicit descriptions of state transitions. Finally, we have here a
specific interest on reachability properties.

Following a background section, we present two approaches
to assess reachable attractors. First, the FIREFRONT algorithm
is a quasi-exact method that starts from an initial state
and simultaneously follows all (concurrent) trajectories while
propagating state probabilities. This algorithm follows a principle

similar to those employed for infinite Markov chains (Munsky
and Khammash, 2006; Henzinger et al., 2009). To enable state
space sampling and tackle models with large transient cyclic
behaviors, we developed AVATAR, which is a Monte Carlo
approach adapted to cope with strongly connected components.
Both methods have been implemented as new functionalities of
the software tool GINSIM (Naldi et al., 2018). They are applied to
a range of models, illustrating their respective performances and
specificities.

2. METHODS

In this section, we first briefly introduce the basics on Logical
Regulatory Graphs (LRGs), their state transition graphs (STGs),
attractors as well as absorbing Markov chains. We then present
the algorithm FIREFRONT. The rest of the section focuses on
AVATAR, an adaptation of the classical Monte Carlo simulation
to cope with cyclical behaviors. It is worth noting that for small
enough models it is possible to explicitly construct the STGs
and identify reachable attractors, but it is not straightforward to
evaluate their reachability probabilities.

2.1. Background
2.1.1. Basics on Logical Models and Their Dynamics
Definition 1. A Logical Regulatory Graph (LRG) is a pair (G,K),
where:

• G =
{

gi
}

i=0,...n is the set of regulatory components. Each

gi ∈ G is associated to a variable vi denoting its level, which
takes values in Di = {0, . . .Mi} ( N; v = (vi)i=0,...n is a state
of the system, and S =

∏

i=0,...n Di denotes the state space.
• (Ki)i=0,...n denotes the logical regulatory functions (or logical

rules); Ki : S → Di is the function that specifies the evolution
of gi; ∀v ∈ S, Ki(v) is the target value of gi that depends on the
state v.

The asynchronous dynamics of an LRG is represented by a graph
as follows.

Definition 2. Given a logical regulatory graph (G,K), its
asynchronous State Transition Graph (STG) is denoted (S,T),
where:

• S is the state space,
• T =

{

(v, v′) ∈ S2 | v′ ∈ Succ(v)
}

, where for each state v,
Succ(v) : S → 2S is the set of successor states w, satisfying the
asynchronous property (one component is updated at a time):

∃gi ∈ Gwith

{

Ki(v) 6= vi and wi = vi + Ki(v)−vi

|Ki(v)−vi|
,

∀gj ∈ G \ {gi}, wj = vj.

Note that, from the STG defined above, one can consider the
sub-graph reachable from a specific initial state v0 or from a set
of states {vi}i∈{0,...m} ⊆ S.

We further introduce some notation and classical notions.
Given an STG (S,T), we write v −→ v′ if and only if there

exists a path between the states v and v′. In other words, there
is a sequence of states of S such as: v0 = v, v1, . . . vk−1, vk = v′,
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and for all j ∈ {1, . . . k}, (vj−1, vj) ∈ T. Furthermore, we denote

v
k
−→ v′ such a path of length k.
A Strongly Connected Component (SCC) is a maximal set of

states A ⊆ S such that ∀v, v′ ∈ A with v 6= v′ , v −→ v′. This is to
say, there is a path between any two states in A, and this property
cannot be preserved adding any other state to A.

Attractors of an LRG are defined as the terminal SCCs of its
STG (i.e., there is no transitions leaving the SCC). If a terminal
SCC is a single state we call it a stable state, otherwise it is a
complex attractor.

2.1.2. Markov Chains and Absorption
The incidence matrix of an STG (S,T) naturally translates into an
|S| × |S|-transition matrix 5, which is a stochastic matrix (for all
v ∈ S,

∑

u∈S 5(v, u) = 1):

∀v, v′ ∈ S 5(v, v′) > 0⇔ (v, v′) ∈ T,

∀v ∈ S 5(v, v) = 1⇔ Succ(v) = ∅,

5(v, v) = 0 otherwise.

We assume that probabilities of concurrent transitions
are uniformly distributed: ∀v ∈ S,∀v′ ∈ Succ(v), 5(v, v′) =
1/|Succ(v)|. Extension to other distributions would be rather
straightforward.

A Markov chain (µ0,5) is defined by the finite set S, the
transition matrix 5, and the initial law µ0 (that depends on the
selection – or not – of an initial condition). We want to define the
chain stopped when it reaches an attractor. For that, we consider
the quotient graph of (S,T) with respect to the equivalence
relation: u ∼ v ⇔ u −→ v and v −→ u . In this quotient
graph, each node gathers a set of states and corresponds to a class
of the Markov chain. The absorbing nodes of the quotient graph
( i.e., nodes with no output arcs) form the absorbing classes of
the chain (µ0,5), all the other classes being transient. Note that
the number of absorbing classes is the number of attractors of
the corresponding STG. Let θ be this number and a1, . . . aθ the
absorbing classes.

Now, let us stop the chain (µ0,5) when it reaches an
absorbing class: we thus define the Markov chain X on the set
S̃ = T ∪ A, where T ⊂ S is the set of all the transient states,
and A = {{ai}, i = 1, . . . θ} (each element ai being an absorbing
class). The transition matrix π of X is:

π(u, ai) =
∑

v∈ai

5(u, v) ∀u ∈ T ,∀ai ∈ A ,

π(ai, u) = 0 ∀u ∈ T ,∀ai ∈ A ,

π(ai, ai) = 1 ∀ai ∈ A ,

π(ai, aj) = 0 ∀ai ∈ A ,∀aj ∈ A , i 6= j,

π(u, v) = 5(u, v) ∀u, v ∈ T .

Reordering the states by considering first the transient ones, (i.e.,
those belonging to T ) and then the absorbing classes (i.e., the
elements of A), the transition matrix π is under its canonical
form:

π =

(

Q L
0 I

)

,

whereQ(u, v) = π(u, v) for u, v ∈ T , L(u, a) = π(u, a) for u ∈ T

and a ∈ A, 0 is the null matrix (no transition from an absorbing
class to a transient state), and I the identity matrix. One can easily
verify that:

πk =

(

Qk (
∑k−1

j=0 Qj) L
0 I

)

,

πk(u, v) denotes the probability that, started in
state u, the chain is in state v after k steps:

πk(u, v) = Pu(Xk = v)
1
= P(Xk = v |X0 = u) . Proofs of the

next, well-known results can be found in [e.g., (Grinstead et al.,
1997), chap. 11].

• Qk tends to 0 when k tends to infinity, and

lim
n→+∞

n
∑

k=0

Qk = (I − Q)−1 . (1)

• The hitting time ofA is almost-surely finite.
• From any u ∈ T , the probability of X being absorbed in a ∈ A

is Pu(X∞ = a) = (Id − Q)−1 L(u, a) .

By an abuse of terminology, we will refer to Pu(X∞ = a) as the
probability to reach the attractor a from the initial state u.

2.2. Firefront
FIREFRONT is our first method to identify attractors and assess
their reachability probabilities. Although simple, it is effective for
restricted types of dynamics as demonstrated in section 4. Briefly,
the algorithm progresses in breadth from an initial state v0, which
is first assigned probability 1. It distributes and propagates the
probability of each visited state to its successors, according to the
transition matrix 5.

At any step k, the set of states being expanded and carrying
a fraction of the original probability is called firefront as it
corresponds to the front line of the breadth-first exploration of

the STG: Fk = {v ∈ S, ∃v0
k
→ v}. Basically this procedure, called

expansion, calculates at each iteration k and for each state v the
probability of the Markov chain X to be in v after k steps from
state v0: Pv0 (Xk = v) = πk(v0, v). Clearly, by the definition of the
set Fk,Pv0 (Xk ∈ Fk) = 1; the firefront will ultimately contain only
states that are stable states or members of complex attractors. In
what follows, we will simply denote the firefront set F, omitting
the index k. Actually, attractors are not kept in F, they are instead
stored in another set A (see below), hence F becomes ultimately
empty.

In practice, to tackle efficiency bottlenecks avoiding the
exploration of unlikely trajectories, we introduce a set of neglected
states N. Furthermore, to ensure that the algorithm terminates
whenever the reachable attractors are all stable states, we consider
the set of attractors A. In the course of the exploration the
firefront F is reduced as explained below:

• if the probability associated with a state v ∈ F drops below a
certain value α, then v is moved from F to N (set of neglected
states). As a consequence, the immediate successors of v will
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not be explored at this time. If a state v ∈ N is visited again
as being the successor of a state in F, its probability is properly
updated (we will say that it accumulates more probability), and
if this probability exceeds α, then v is moved from N back to F
(see Figure 1, step 7);
• if a state in F has no successors, it is moved to A (set of stable

states); if it is already in A, its probability increases according
to this new trajectory.

At each step, the sum of the probabilities of the states in F,N, and
A is 1.

Algorithm 1 FIREFRONT

Input: α,β , v0 // min prob. to stay in F, total prob. in F
under which the procedure halts, initial state

Output: A // set of reachable attractors with their
probabilities

1: F← {v0} N ← ∅ A← ∅
2: while total probability in F > β do

3: F′ ← ∅
4: while F 6= ∅ do
5: v← select and remove element of F
6: if Succ(v) = ∅ then
7: v is added to A as a stable state
8: else

9: for all v′ ∈ Succ(v) do
10: p← divide p(v) by

∣

∣Succ(v)
∣

∣

11: if v′ is in F′, N or A then

12: Add p to the probability of v′

13: else

14: Set the probability of v′ to p
15: end if

16: if probability of v′ ≥ α then

17: Add v′ to F′ if it is not in A
18: Remove v′ from N if it is there
19: else

20: Add v′ to N
21: end if

22: end for

23: end if

24: end while

25: F← F′

26: if isOscillating(F) then
27: Extract complex attractors: move their states from F and

N into A
28: end if

29: end while

Unlike forest fires, which do not revisit burnt areas, the
algorithm will, in general, revisit the same state in the presence of
a cycle. This invalidates our colorful metaphor unless imagining
uncannily rapid forest regeneration. The presence of cycles
thus poses some difficulties because the algorithm would never
terminate. To address this issue, FIREFRONT detects periodicities
of the ensemble of states entering and exiting F ( i.e., states with
a sustained oscillating probability); three sequential occurrences

of exactly the same set F are assumed to be sufficient evidence
that the simulation is locked within a complex attractor. In this
situation, all the states found in F between the second and third
occurrences are used to compose the complex attractor. To do
so efficiently, FIREFRONT uses a reversible hash-function. This
heuristic thus enables the identification of complex attractors
from oscillating behaviors throughout expansions. Nevertheless,
since FIREFRONT progression can still become locked in large
and complex cycles for a lengthy number of expansions, the
user may specify a maximum depth (number of expansions) to
guarantee its termination in useful time.

When available, the algorithm can be provided with a
description of the complex attractors, equipping FIREFRONT

with a function called oracle that indicates whether a state belongs
to a listed complex attractor. In this case, FIREFRONT halts the
exploration whenever it reaches a state recognized by the oracle,
and treats all members of the corresponding attractor as a single
element of A collectively accumulating incoming probabilities.

FIREFRONT terminates when: 1) the total probability in F
drops to zero or below some predefined threshold β , or 2) the
predefined maximum depth is reached. Given the initial state
v0, the probability associated to each attractor a ∈ A is a lower
bound of Pv0 (X∞ = a). An upper bound is obtained by adding
to this value β and the sum of probabilities accumulated inN. An
outline of FIREFRONT is presented in Algorithm 1, and Figure 1

provides an illustration on a toy example.

2.3. Avatar
AVATAR is proposed as an alternate algorithm to identify model
attractors and quantify their reachability, considering specific
initial state(s) or the whole state space. AVATAR is an adaptation
of the classical Monte Carlo simulations that aims at efficiently
coping with (transient and terminal) SCCs.

2.3.1. The Algorithm
When exhaustive enumeration is not feasible, Monte Carlo
simulation is classically used to estimate the likelihood of an
outcome. Concerning attractor reachability in logical models, this
means following randompaths along the asynchronous dynamics
(the STG). Each simulation halts when either a stable state (with
no successor) or the maximal depth are reached. Performing
a large number of simulations allows estimating reachability
probabilities of stable states. The simulation does not record past
states, and thus memory requirements are minimal. However,
a major drawback is that cycles are not detected. Consequently,
without restricting the number of steps, the simulation does not
terminate when a trajectory enters a terminal SCC. Moreover, in
the presence of a transient cycle, it may re-visit the same states
an unbounded number of times before exiting. That is why we
propose an appropriate modification of this approach.

AVATAR is outlined in Algorithm 2 (further description
of AVATAR and its ancillary procedures is provided in the
Supplementary Material S1). It avoids repeatedly visiting states
by detecting that a previously visited state is reached, indicating
the presence of a cycle in the dynamics. Having detected a
cycle, the algorithm modifies the STG in order to dismantle
the cycle, linking its states to its exiting states (i.e., targets
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FIGURE 1 | Illustration of FIREFRONT operation, with α = 1
16 : (1) The exploration starts from initial state v1 in F associated with probability 1, sets A and N are empty;

(2) successors replace v1 in F, associated with their probabilities; (3–4) states in F are replaced by their successors, but the stable state v7 goes in A; (4) v3, v4, v6
stay in F with updated probabilities; (5) probability of v8 in A increases as it is visited again; (6) v5 goes to N as its probability is lower than α; (7) v5 is removed from N

and put back in F as its probability increased when visited again from v1. Transitions explored in the current iteration are in blue, their sources being labeled with their

probabilities. Red nodes are in A, and gray nodes are in N. The exploration will halt when F is empty or the maximum number of iterations is reached.

of transitions leaving the cycle). It is important, however, to
associate these new transitions with appropriate probabilities; the
probability of a transition from any cycle state to a given exit must

match the corresponding asymptotic probability, considering the
infinitely many possible trajectories. The STG is thus rewired
so as to replace all the transitions between the cycle states by
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transitions from each cycle state toward each cycle exit (see
Figure 2). Each rewiring creates a new so-called incarnation
of the dynamics. Such an incarnation—Sanskrit name of our
algorithm—is a graph with the same states as the original STG,
but with different transition probabilities. This rewiring relies on
theoretical foundations that are presented in section 2.3.2. Upon
rewiring, the simulation proceeds from the current state.

Because it is generally more efficient to rewire a large transient
than to iteratively rewire portions of it, upon encountering
a cycle, AVATAR performs an extension step controlled by
a parameter τ that is a modified Tarjan’s algorithm for
SCC identification (Tarjan, 1972)—trajectories exploration is
performed up to a depth of τ away from states of the original
cycle. The subsequent rewiring is then performed over the
(potentially) extended cycle. In the course of a single simulation,
the value of τ is doubled within each attempt to enlarge a cycle in
order to speed up the identification of large transients.

When a newly visited state v has no successor, it is a stable
state. But if v was part of a cycle in a previous incarnation,
v belongs to a complex attractor, which is computed as the
equivalence class containing all the cycles that included v in past
incarnations.

As for FIREFRONT, the algorithm can be complemented with
the previous knowledge of the attractors (oracles). This obviously
improves AVATAR’s performance. Moreover, AVATAR not only
evaluates the probability of the attractors being reached from
an initial condition, it can also be used to assess the probability
distribution of the attractors for the whole state space ( i.e.,
considering all possible initial states). AVATAR is also able to use
the knowledge regarding the identified transient SCCs within one
iteration to alleviate the cost of identifying and possibly rewiring
large cycles in upcoming iterations, thus boosting the overall
efficiency of the simulation. The knowledge regarding the sizes
of the transient SCCs and average depths of the found attractors
can provide valuable insights into the model dynamics.

2.3.2. Theoretical Foundations of Avatar Rewiring
The rewiring performed by AVATAR to force the simulation
exiting a cycle modifies the probabilities associated to transitions.
This is properly done so as to ensure a correct evaluation of
the reachability probabilities performing a (large) number of
randomwalks over ourMarkov chainX. This procedure amounts
to modify the chain. It is formalized below and illustrated in
Figure 2.

Suppose that Xt = c1, and Xt+k = c1 for t and k two
positive integers. The walk has thus traveled along the cycle C =
(c1, c2, . . . ck) (with ci ∈ S and (ci, ci+1) ∈ T, ∀i = 1, . . . k). Note
that this cycle may contain “direct shortcuts”: (ci, cj) ∈ T, j 6= i+1
(mod k). We denote by B the set of states directly reachable from
C: B = {v ∈ S \ C , (ci, v) ∈ T, ci ∈ C} . Let q be the k × k
sub-matrix of π , for states c1, . . . ck, and r the k× |B| sub-matrix
of π , defining transitions from C to B. To force the walk leaving
the cycle (rather than being trapped there for a long time), the
transition matrix is modified as follows:

• remove the transitions between the states of C; the sub-matrix
q is replaced by q1 = 0, the null matrix;

Algorithm 2 AVATAR (single simulation)

Input: v0
Output: A // attractor set
1: t← 0 // incarnation counter
2: v← v0 // initial state
3: while v has successors do
4: v′ ← successor of v chosen with probability π(v, v′) =

1/|Succ(v)|
5: if v′ was already visited in incarnation t then
6: Ct ← set of all states visited since the discovery of v′

7: Extend cycle Ct

8: B ← set of exits //successors of states in Ct that
are not in Ct

9: if B = ∅ // Ct has no exits then

10: A ← C∗ where ∀w ∈ C∗, if ∃k s.t. w ∈ Ck then
Ck ⊆ C∗

11: else

12: // Rewire the graph
13: q←

[

π(v,w)
]

v,w∈C

14: r←
[

π(v,w)
]

v∈C,w∈X

15: r1 ←
(

Id|C|×|C| − q
)−1

r
16: for all v ∈ C do

17: for all w ∈ C do

18: π(v,w)← 0
19: end for

20: for all w ∈ B do

21: π(v,w)← r1v,w
22: end for

23: end for

24: end if

25: t← t + 1
26: end if

27: v← v′

28: if v has no successors then
29: A← v //stable state
30: end if

31: end while

• add an arc from each state of C to each state of B; the sub-

matrix r is replaced by r1
1
=
∑∞

j=0 q
j r. By Equation (1), section

2.1.2, ∀ci ∈ C, ∀v ∈ B, r1(ci, v) =
[

(Id − q)−1r
]

(ci, v).

Y denotes this new chain. Property 1 asserts that, starting from
any transient state u, X, and Y have the same asymptotical
behaviors.

Property 1. ∀u ∈ T , ∀a ∈ A, Pu(Y∞ = a) = Pu(X∞ = a) .

Proof: Transition matrices of X and Y are the same except
around the states of the cycle C; they behave differently only
when traveling along C: from ci, entry state of C, X runs along
C for l steps (l ≥ 0), leaving C through a state v ∈ B with
probability qlr(ci, v), whereas Y would go directly from ci to v,
with probability r1(ci, v). Hence, for all u ∈ T , a ∈ A and j ≥ 0,

Frontiers in Physiology | www.frontiersin.org September 2018 | Volume 9 | Article 1161222

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Mendes et al. Attractor Reachability in Asynchronous Logical Models

FIGURE 2 | Illustration of AVATAR operation: The transition matrix π is partitioned into the sub-matrices q for transitions between states v1, . . . v4 of the cycle to be

discovered (Top Left), and r for transitions leaving the cycle (Top Right). Exploration starts at v1 (denoted in blue as well as its leaving transitions with their

probabilities), v2 is selected for the second iteration, and v1 is indicated as being already visited in red. Exploration proceeds until revisiting v1 at the 5th step. Having

identified a cycle, the rewiring procedure is launched, removing transitions of the cycle (dotted red) and adding transitions toward exits (green). Probabilities are

computed, resulting in a new matrix π1, with q1
ij
= 0 and r1

ij
= ((Id−q)−1r)ij , i = 1, . . .4. From v1, an exit of the cycle is chosen according to these probabilities (step 6).

we have Pu(Yj = a) ≥ Pu(Xj = a) and thus,

k
∑

j=1

Pu(Yj = a) ≥
k
∑

j=1

Pu(Xj = a),

Pu(Y∞ = a) ≥ Pu(X∞ = a),

1 =
∑

a∈A

Pu(Y∞ = a) ≥
∑

a∈A

Pu(X∞ = a) = 1.

All the terms being positive, the Property is proved. Therefore,
the rewiring does not asymptotically affect the output of the
simulation.

Despite the inherent simplicity and time efficiency of the
rewiring step, its dependency on matrix inversions can lead
to a memory bottleneck for very large cycles. As such, the
current implementation of AVATAR uses a ceiling size for a cycle
to be rewired. When AVATAR finds a cycle, it still attempts
to extend it as far as possible. If the extended cycle has
some exits, it needs to be rewired. However, if the extended
cycle has more states than the specified ceiling, only a sub-
cycle (with as much states as allowed) of the detected cycle is
rewired. Furthermore, the user can also choose an approximate

strategy for rewiring that still guarantees the selection of exit
states when entering a cycle without the need to perform an
exact estimation of their likelihood. This is done by assigning
uniform probabilities from the states of a cycle to its exits.
Although this strategy is not prone to memory bottlenecks,
its approximate nature can lead to biases on the computed
reachability probabilities.

3. IMPLEMENTATION

Both FIREFRONT and AVATAR are implemented in the context
of GINSIM, which supports the definition and analysis of
logical models (Chaouiya et al., 2012; Naldi et al., 2018).
Figure 3 provides a snapshot of the desktop GUI, showing the
selection of the algorithm, specification of model modifications
(perturbation or reduction), initial conditions, and algorithm
parameters. MONTECARLO simulations are also available, as well
as a modified version of AVATAR with the approximate strategy
described above. User documentation of Firefront and Avatar is
provided in the Supplementary Material S2.

The implementations of FIREFRONT and AVATAR rely on
adequate data structures—states are easily indexable through
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FIGURE 3 | GUI for the assessment of attractor reachability within GINSIM.

meaningful and compact hash keys, and sets of states are
implemented as a map of states for highly efficient indexations,
additions and removals. Our implementation of FIREFRONT

halts the STG exploration after a predefined number of
expansions (103 by default). AVATAR implementation includes a
heuristic optimization controlled by optional parameters whose
default values were found to be appropriate for the tested models.
This optimization considers tradeoffs between costly rewirings
and simulations freely proceeding along cycles, as well as between
memory cost of keeping state transitions after rewiring and not
profiting from rewirings in previous simulations. AVATAR further
supports sampling over (portions of) the state space. In this case,
iterations within a simulation start from states randomly selected
over the unconstrained model components.

Both algorithms provide textual and visual displays of the
results: attractors and their reachability probabilities, maximal
size of encountered transient SCCs, and plots of the evolution of
the set contents for FIREFRONT and of the probability estimates
for AVATAR (see section 4).

4. RESULTS

To validate the proposed algorithms, we considered a number
of case studies including randomly generated, synthetic and
published biological models. All are briefly described below. We
analyzed how FIREFRONT and AVATAR perform on these case
studies and compared, when possible, to outcomes produced by
BOOLNET (Müssel et al., 2010) and MONTECARLO simulations.
BOOLNET is an R package not only able to generate random
Boolean models, but also to identify attractors and to perform

Markov chain simulations. We further compared AVATAR with
MABOSS, a C++ software implementing a Monte Carlo kinetic
algorithm to produce time trajectories of Boolean models (Stoll
et al., 2012), and with the probabilistic model checker PRISM
(Kwiatkowska et al., 2011, 2017). The experiments were run using
an Intel(R) i7-7500U CPU @ 2.7GHz and 8GB of RAM.

4.1. Case Studies Description
Two sets of synthetic models were generated. First, we used
BOOLNET (Müssel et al., 2010) to define random models
with 10 to 15 components, each with 2 regulators and logical
rules randomly selected (uniform distribution)1. From the
resulting set of random models, three models were selected for
exhibiting multi-stability (Table 1). Additionally, we constructed
a “synthetic” model exhibiting a large complex attractor and a
few transient cycles. To further challenge our algorithms, we
modified this last model, adding one component in such a way
that the complex attractor turned into a transient cycle with very
few transitions leaving toward a stable state (see synthetic models
1 and 2 in Table 1).

Our case studies also include published biological models.
First, a Booleanmodel of themammalian cell cycle control (Fauré
et al., 2006), which has 10 components and exhibits one stable
state (quiescent state) and one complex attractor (cell cycle
progression). These attractors arise in (two) disconnected regions
of the state space, controlled by the value of the sole input

1This process is automated in BOOLNETR2GINSIM, a small program available
at https://github.com/ptgm/BoolNetR2GINsim that accepts user-defined
parameters, calls BOOLNET and writes the resulting model to a GINML file
(the GINSIM format).
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TABLE 1 | Characteristics of the models used as case studies to challenge Firefront and Avatar: type of variables (Boolean vs. multi-valued), number of input components

(these remain constant) and internal components, number and type of attractors with number of states in the case of complex attractors, size of the state space with the

total number of model states.

Model name Boolean # Components # Attractors # States

(Y/N) Input Internal Stable states Complex attractors (size)

Random 1 Y 0 10 1 1 (4) 1 024

Random 2 Y 0 10 1 1 (4) 1 024

Random 3 Y 0 15 1 1 (4) 32 768

Synthetic 1 Y 0 15 1 1 (8192) 32 768

Synthetic 2 Y 0 16 2 0 65 536

Mammalian Cell Cycle Y 1 9 1 1 (112) 1 024

Segment Polarity (sp1, 1-cell) N 2 12 3 0 186 624

Segment Polarity (sp2, 2-cells) N 0 24 3 0 ≈ 9.7× 108

Segment Polarity (sp4, 4-cells) N 0 48 15 0 ≈ 9.4× 1017

Bladder model N 4 26 20 5 (16,16,32,512,184320) ≈ 8.5× 109

component (CycD, which stands for the presence of growth
factors).

Second, Sanchez et al.’s multi-valued model of the segment
polarity module—involved in early segmentation of the
Drosophila embryo—defines an intra-cellular regulatory
network. Instances of this network are connected through inter-
cellular signaling (Sánchez et al., 2008). Here, we consider three
cases: 1) the intra-cellular network (one cell), 2) the composition
of two instances ( i.e., two adjacent cells), and 3) the composition
of four instances. Initial conditions are specified by the action
of the pair-rule module (Wg-expressing cell for the single cell
model) that operates earlier in development (see Sánchez et al.,
2008 for details).

Third, we consider the interaction network of genes frequently
altered in bladder cancer as proposed in Remy et al. (2015).
This model includes 4 input components leading to different
responses (EGFR, FGFR3 stimuli, Growth inhibitor, DNA
damage), 23 internal components and 3 output components
representing cellular responses or phenotypes (Proliferation,
Apoptosis, Growth Arrest). Depending on the input values,
the model displays multistability or not, with a combination
of stable states and complex attractors. This case study further
demonstrates the capacity of AVATAR in assessing large complex
attractors, quantifying attractor reachability, and revealing
transient dynamics.

Finally, using a model of T helper cells differentiation (Naldi
et al., 2010) and a model of cell fate decision in response to death
receptor engagement (Calzone et al., 2010), we provide additional
illustrations in the Supplementary Materials S4, S5.

Supplementary Material S6 provides an archive containing
all the models in the GINsim format (zginml).

4.2. Firefront and Avatar in Action
Results are summarized in Table 2. Generally, FIREFRONT and
AVATAR show efficiency gains against alternatives and are further
able to surpass the drawbacks of BOOLNET (applicable to Boolean
models only) and MONTECARLO (unable to identify transient
and terminal cycles).

Considering random models 1 to 3, FIREFRONT and
AVATAR are able to efficiently find the stable states and

complex attractors of these models and to estimate their
reachability probabilities. BOOLNET is slower for these
random models. MONTECARLO is not only less efficient
but is also unable to detect the complex attractors. For
instance, in random model 2, less than 8% of the simulations
succeeded.

For synthetic model 1, FIREFRONT takes over a minute
to distribute the probability out of the large transient cycles.
For synthetic model 2, FIREFRONT could not distribute
more than 5% of the probability out of the transient SCC
(purposely constructed with 8 196 states and a dozen exits). The
presence of multiple large transient SCCs causes FIREFRONT

to accumulate a large number of states in F, leading to some
time overhead and difficulty to distribute the probabilities. States
of transient SCCs are revisited until the probabilities of their
incoming transitions drop below α, which can take long. As
such, the computational performance of FIREFRONT is greatly
influenced by the structure of the STG (e.g., state outdegrees
or sizes of transient SCCs). The Supplementary Material S3

provides illustrations of the structures of the dynamics. In
contrast, AVATAR is able to adequately identify and exit
transient SCCs. For this reason, AVATAR was able to escape
the transient SCC planted in synthetic model 2 thanks to
its rewiring procedure, and could identify and quantify the
attractors for both synthetic models. BOOLNET completed
synthetic models 1 and 2, after 7 and 5 days, respectively,
which highlights the need for the proposed methods to face
efficiency bottlenecks for models with large and complex
SCCs.

Starting in the region of the state space where themammalian

cell cycle model has a (unique) complex attractor ( i.e., with the
presence of CycD), AVATAR, FIREFRONT, and BOOLNET could
assess its reachability from the quiescent state; when sampling
the state space, both AVATAR and BOOLNET could correctly
quantify the reachability of the two attractors (FIREFRONT was
not applicable as it requires a starting initial state). Expectedly,
MONTECARLO could not retrieve the complex attractor, being
unable to exit it in all runs.

With regards to the segment polarity model, FIREFRONT

was efficient for all cases (single, two and four cells), although
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its ability to distribute all the probability decreases with the
increase of model size. Since it did not reach the allowed
maximum number of iterations, its stopping condition was
that the total probability in F dropped below β , with all the
residual probability in the neglected set, which in the end
contained approximately 140, 52 000, and 210 000 states for
the models of single, two and four cells, respectively. This
would suggest that α was not small enough with respect to
the number of concurrent trajectories toward the attractors (see
Supplementary Material S4 for illustration). Although AVATAR’s
performance is constrained by the need to assess the complex
structure of the two and four cells’ models (for instance the largest
encountered transient SCC for sp2 has over a million states), it
is adequately able to find the attractors, even those with a low
reachability probability. Given the fact that the attractors of these
models are stable states,MONTECARLO was able to retrieve them,
in particular those attractors reachable without the need to visit
large transient SCCs.

Figure 4 complements these results by showing, for two of
our case studies: with FIREFRONT, the evolution of the cardinals
of the sets F, N, and A (and their corresponding probabilities),
and with AVATAR, the convergence of the estimated reachability
probabilities of the attractors.

The application of AVATAR over the bladder tumourigenesis

model—with results illustrated in Table 3—enabled the
quantification of attractor reachability over the whole state space,
for 8 combinations of input values. Stable states were gathered
in 3 classes, corresponding to the cell phenotypes Proliferation,
Apoptosis and Growth Arrest, which are indicated by the values
of the 3 output components of the model. The model displays
several complex attractors. The reachability quantification of
the attractors is relevant in the cases of multi-stability, i.e.,
when several attractors arise for the same input condition
(compare with Table S2 in Remy et al., 2015). AVATAR discloses
structural properties of the model dynamics such as the sizes of
encountered transient SCCs and mean depths of the attractors
(not shown).

We also performed the analysis of model perturbations
to illustrate the biological relevance of assessing attractor
probabilities. To this end, we considered the case of activating
mutations of fibroblast growth factor receptor 3 (FGFR3) and of
the oncogene PI3K, one of the co-occurrent genetic perturbations
observed in bladder tumors (see Remy et al., 2015). Figure 5
illustrates how probabilities of the attractors are modified under
those perturbations. It supports the conclusions drawn in Remy
et al. (2015): mutating FGFR3 in PIK3-mutated tumors seems to
be advantageous (to increase the probability of Proliferation); a
third mutation is required for uncontrolled proliferation (i.e., the
loss of all the phenotypes but Proliferation).

For completeness, we also compared AVATAR with MABOSS
and PRISM. For this, we used GINSIM export facilities of logical
models to MABOSS and PRISM formats.

MABOSS is a related command-line tool that generalizes
Boolean models by defining stochastic rates associated with
component updates (Stoll et al., 2012). MABOSS primary goal is
to compute temporal evolutions of state probability distributions
and to estimate stationary distributions. To this end, it relies
on the Gillespie algorithm. MABOSS is thus well suited to

get a quantitative view of temporal evolutions in the form of
stochastic trajectories (see e.g., Abou-Jaoudé et al., 2016). When
running MABOSS on our case studies, it appeared that the tool
was able to provide the reachability probabilities of the stable
states of the random models 1 to 3. However, the presence
of large transient SCCs or of complex attractors hinders the
evaluation of such a measure for the synthetic models and for
the cell cycle model. Table 3 includes the results obtained with
MABOSS for the analysis of the bladder tumourigenesis model.
Reachability probabilities obtained for the stable states are close
to those provided by AVATAR. While MABOSS is clearly faster
than AVATAR, it is unable to assess complex attractors being thus
applicable only when attractors are known to be stable states.

PRISM is a model checker that supports probabilistic
reachability queries (Kwiatkowska et al., 2011, 2017). To
compare AVATAR and PRISM, we repeated the analysis of the
segment polarity model with 2 cells. Results are provided
in Table 4. Notably, PRISM is extremely efficient to evaluate
the number of reachable states, a feature not provided by
AVATAR. PRISM performs an exhaustive exploration to evaluate
exact reachability probabilities. However, as demonstrated with
AVATAR, a restricted sample of the dynamics may provide good
enough probability estimates in a much shorter time. This feature
is particularly useful for larger models. Indeed, for the sp4model,
PRISM ran out of memory and was thus unable to evaluate
the number of reachable states and conclude the analysis (even
when increasing the amount of available memory to CUDD to
8Gb).

5. DISCUSSION

For models of regulatory networks controlling cell fates, it is
of a real interest to identify the model attractors, as well as
quantify their reachability over the whole state space or from
specific initial conditions. In particular, the impact of model
perturbations (e.g., corresponding to observed mutations) on
attractors and their basins of attraction has been used to better
understand the fates of tumor cells (Huang et al., 2009; Kim
et al., 2017; Shah et al., 2018). Most studies rely on Boolean
models under a synchronous updating scheme. However, while
stable states are identical whatever the updating scheme, it is
not the case for the complex attractors, neither for the basins of
all attractors. Because the synchronous scheme stems from the
assumption that delays associated with component updates are
equal, asynchronous updates have been considered more realistic
(Thomas, 1991; Abou-Jaoudé et al., 2016). In the context of non-
deterministic asynchronous dynamics, it is then relevant to assess
the likelihood to reach an attractor and howmodel perturbations
modifies this reachability likelihood. For example, this approach
has been used to assess patterns of genetic alterations in bladder
tumourigenesis (Remy et al., 2015), or yet to highlight the
synergetic roles of Notch gain-of-function and p53 loss-of-
function in promoting metastasis (Cohen et al., 2015).

Attractor identification could be achieved by analysing the
State Transition Graph (STG) kept in memory but, due to
combinatorial explosion, this is impractical for large models.
In any case, we are still left with the problem of quantifying
attractor reachability in asynchronous dynamics. As an attempt
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FIGURE 4 | Plots computed by FIREFRONT and AVATAR throughout simulations for the random3 (Top) and the sp1 (Bottom) models (see Tables 1, 2). Left plots show

the numbers of states to be expanded (in F ), of neglected states (in N), and of attractors (in A). Middle plots show the cumulative probabilities of the 3 sets. Right plots

show the convergence of the reachability probability of each attractor.

TABLE 3 | Attractor analysis of the bladder tumourigenesis model performed with AVATAR and MABOSS.

DNA

damage

EGFR

stimulus

FGFR3

stimulus

Growth

inhibitor

AVATAR MABOSS

Time Attractors Prob. Largest SCC Time Attractors Prob.

0 0 0 0 162s GA1 1.00 163 528 15.76s GA1 1.00

0 0 0 1 284s GA2

GA3

0.882

0.118

239 994 15.81s GA2

GA3

0.885

0.115

0 0 1 0 373s Pr1 1.00 253 440 13s Pr1 1.00

0 0 1 1 258s GA4

GA5

Pr2

0.770

0.095

0.135

135 483 14.95s GA4

GA5

Pr2

0.722

0.121

0.157

0 1 0 0 382s Un1 (#184320) 1.00 184 320 699s — —

0 1 0 1 421s GA6 (#512) 1.00 242 486 457.57s — —

0 1 1 0 212s Pr1 1.00 151 435 11.14s Pr1 1.00

0 1 1 1 176s GA4

GA5

Pr2

0.775

0.070

0.155

289 593 11.2s GA4

GA5

Pr2

0.737

0.1

0.162

The eight input configurations with DNA damage at 0 are considered. Attractors are named depending on the corresponding phenotype: Pr for Proliferation, GA for Growth Arrest,

Ap for Apoptosis, Un for Undecided (output components are oscillating). Attractor sizes are indicated for complex attractors. Attractor probabilities are estimated over the whole state

space. Avatar parameters: 103 runs, up to 106 states for expansion, up to 103 states for rewiring, and 108 maximum depth.MaBoSS parameters: time tick=1.0; max time=104; sample

count=104; discrete time=1.
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FIGURE 5 | Probabilities of the phenotypes for the bladder tumourigenesis model in the wild type and mutant contexts: probabilities for the double mutant FGRF3

overexpression (FGFR3 E1) and PI3K overexpression (PI3K E1) suggest a slight advantage in mutating FGFR3 in a PI3K-mutated context (by increasing the probability

of Proliferation); a third mutation of the tumor suppressor CDKN2A (coding for p16INKa) leads to the sole phenotype Proliferation (see Remy et al., 2015).

TABLE 4 | Assessing attractor probabilities for the sp2 model with AVATAR and

PRISM.

AVATAR PRISM

1E6 runs 1E4 runs

Stable states Time Prob. Time Prob. Time Prob.

SS1 0.8915 0.8921 0.8909

SS2 4h59 0.1084 153s 0.1078 4h25 0.1088

SS3 1.2E-4 1E-4 1.04E-4

Probabilities returned by Avatar are quite similar when considering a lower number of runs,

indicating that it is possible to quickly obtain good estimates of reachability probabilities

in a much shorter time.

to surpass efficiency bottlenecks and quantification biases of
existing methods, we have delineated two novel strategies.
FIREFRONT performs a memoryless breath-first exploration of
the STG, avoiding any further exploration of states which fall
bellow a given threshold α. AVATAR performs a modified version
of the Monte Carlo algorithm, avoiding the exploration of
states previously visited by rewiring and appropriately associating
new probabilities with state transitions. To adequately choose
the algorithm and optimal values of associated parameters,
information about the structure of the dynamics would be
needed, which is generally unachievable. Broadly, the breadth
of the explored STG and the structure of transient Strongly
Connected Components (SCCs) clearly impact FIREFRONT’s
performances. AVATAR’s performances are influenced by the
degree of connectivity of the SCCs. Ideally, AVATAR should
avoid to rewire SCCs from which it can easily exit (low

connectivity or high exit ratio). On the other hand, it should
rewire SCCs from which it is hard to escape. It is also much
more efficient to rewire a whole SCC than to iteratively rewire
portions of it. While sizes and structures of SCCs are not known
a priori, AVATAR incorporates heuristics that evolve running
parameters to the information collected in the course of the
simulation.

Results from synthetic and real biological models reveal
the ability of FIREFRONT and AVATAR to efficiently assess
attractor reachability. This type of analysis will permit further
biological insights into the dynamics of regulatory and signalling
networks. For example, as mentioned above, how model
perturbations modify the probability to reach an attractor can
reveal the role of single or combined mutations in disease
progression. Usage of both algorithms is facilitated through
their implementation in GINsim, which provides a convenient
graphical user interface.

As future work, the consideration of non-uniform transition
probabilities could be easily handled. In particular, when priority
classes can be defined by classifying component updates into e.g.,
slow and fast processes (Fauré et al., 2006), some trajectories are
discarded thus modifying the structure of the STG, and therefore
the reachability properties. Furthermore, confronting asymptotic
model dynamics against experimental time series could provide
the ground for model validation.
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The use of latency reversing agents (LRAs) is currently a promising approach to eliminate

latent reservoirs of HIV-1. However, this strategy has not been successful in vivo. It

has been proposed that cellular post-transcriptional mechanisms are implicated in the

underperformance of LRAs, but it is not clear whether proviral regulatory elements

like viral non-coding RNAs (vncRNAs) are also implicated. In order to visualize the

complexity of the HIV-1 gene expression, we used experimental data to construct a

gene regulatory network (GRN) of latent proviruses in resting CD4+ T cells. We then

analyzed the dynamics of this GRN using Boolean and continuous mathematical models.

Our simulations predict that vncRNAs are able to counteract the activity of LRAs, which

may explain the failure of these compounds to reactivate latent reservoirs of HIV-1.

Moreover, our results also predict that using inhibitors of histone methyltransferases,

such as chaetocin, together with releasers of the positive transcription elongation factor

(P-TEFb), like JQ1, may increase proviral reactivation despite self-repressive effects of

vncRNAs.

Keywords: HIV-1, viral non-coding RNAs, reservoirs, antiretroviral therapy, LRAs, dynamics, Boolean networks

INTRODUCTION

Combined antiretroviral therapy (cART) is currently the most effective approach to control the
chronic infection of HIV-1. However, cART does not eliminate the virus even with treatment
intensification (Dinoso et al., 2009). This occurs because HIV-1 is able to form long-lived reservoirs
by remaining latent within resting memory CD4+ T-cells (Siliciano et al., 2003; Siliciano and
Greene, 2011; Cohn et al., 2015). Recently it has been proposed the use of LRAs in combination
with cART to eliminate latently infected cells. Ideally this “shock-and-kill” strategy could purge
viral reservoirs because when LRAs reactivate latently infected cells, those cells may be eliminated
by self HIV-1 replication or by action of the immune system while cART prevents the formation of
new viral reservoirs (Deeks, 2012). Despite many in vitro observations suggest that this strategy can
be a promising approach (Deeks, 2012), clinical trials with LRAs have shown that it is ineffective
in vivo (Bullen et al., 2014). Stochastic modeling of latently infected cells indicated that the clinical
underperformance of LRAs is due to their inability to minimize the size of the viral reservoirs (Hill
et al., 2014). Furthermore, this study suggested that LRAs must reduce the size of viral reservoirs
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10,000-fold to prevent HIV rebounds after cART (Hill et al.,
2014), an objective that cannot be reached with current
treatments (Cillo et al., 2014).

The “shock-and-kill” strategy is based on the assumption
that proviral reactivation depends only on the immunological
activation of the infected cells. However, recent findings
suggest that this assumption is not entirely true, since it
has been observed that the provirus is able to autonomously
regulate its latency using the positive feedback loop of trans-
activator of transcription (Tat) independently of cell activation
(Razooky et al., 2015). During early stages of infection, Tat
is synthesized at low levels that fluctuate because of cell’s
downregulation of the provirus (Weinberger and Shenk, 2007).
When these transcriptional fluctuations are sustained, the activity
of Tat initiates a positive feedback loop which boosts proviral
transcription by recruiting P-TEFb in order to increase the
synthesis of full-length viral RNAs (Weinberger and Shenk, 2007;
Romani et al., 2010). In a biological context the two classical
functions of positive feedback loops are to amplify and to sustain
gene expression (Zhang Q. et al., 2014), however the architecture
of the Tat circuit only amplifies transcriptional fluctuations
making the gene expression of provirus transitory (Weinberger
et al., 2005; Weinberger and Shenk, 2007). This architecture
constitutes a mechanism of negative self-regulation of HIV-1,
which may hinder viral reactivation (Razooky et al., 2015), and
therefore may obstruct the activity of LRAs. Nevertheless, Tat is
not the only structural component of HIV-1 that has a regulatory
circuit. It has been observed that several vncRNAs have their
own positive and negative feedback loops that may increase or
suppress gene expression of the provirus (Groen and Morris,
2013; Saayman et al., 2014; Zhang Y. et al., 2014; Suzuki et al.,
2015). It has been suggested that those vncRNAs have a secondary
role on latency maintaining (Suzuki et al., 2015) and it is not clear
whether such viral components participate in the low efficiency of
the LRAs.

Current mathematical models of HIV-1 biology have been
focused on transmission dynamics, posttreatment control,
Vorinostat, and Romidepsin treatments, as well as the relation
between reservoir size and reactivation (Hernandez-Vargas,
2017). However, none of these models addressed whether exist
other paths to manipulate molecular components of the HIV to
enhance latency reversion. Here we used Boolean and ordinary
differential equations (ODEs) models to analyze the dynamics
of the GRN of provirus to investigate how to reactivate more
efficiently viral reservoirs with LRAs. In this network we included
the interactions mediated by early viral proteins, vncRNAs, and

Abbreviations: Antagomirs, Antagonic Micro-RNAs; ASK1, Apoptosis signal-
regulating kinase 1; asRNA, Antisense RNA; cART, Combined Antiretroviral
Therapy; GRN, Gene Regulatory Network; HATs, Histone Acetyltransferases;
HDACis, Histone Deacetylases Inhibitors; HDACs, Histone Deacetylases; HMTis,
Histone Methyltransferases Inhibitors; HMTs, Histone Methyltransferases; LRAs,
Latency Reversing Agents; Nef, Negative Effector; NF-κB, Nuclear Factor
κB; P-TEFb, Positive Transcription Elongation Factor; Tat, Trans-activator of
Transcription; TNF, TumorNecrosis Factor; Vif, Viral Infectivity Factor; vncRNAs,
Viral Non-coding RNAs; Vpr, Viral Protein R; vsaRNA, Viral Small Activator RNA;
vsiRNA, Viral Small Interfering RNA.

epigenetic factors that regulate latency in resting CD4+ T-
cells (Figure 1). It is important to remark that we used two
different mathematical models in order to obtain results that
represent the real dynamics of the GRN, independently of the
model type chosen. The discrete model was used to calculate
global properties of the network (attractors and its basins).
The continuous model was used to measure changes in RNAs
and protein expression levels of the GRN components. Both
models consistently showed that the architecture of the GRN
of wild type proviruses favors latency over activation state
because of redundant interactions of vncRNAs. Furthermore,
the models showed that reactivating effects of LRAs also
stimulate the increase of vncRNAs, which reduces proviral
protein expression. Finally, the models showed that the use of
inhibitors of histone methyltransferases (HMTs) with releasers
of P-TEFb, like chaetocin and JQ1 respectively, may increase
proviral reactivation even in presence of vncRNAs.

MATERIALS AND METHODS

This work was performed in four stages: (1) Defining the GRN
and its models, (2) Mathematical analysis of the GRN models,
(3) Perturbation analysis of the models, and (4) Validation.
The complete flux diagram of the methodology of this work is
shown in Figure 2. During the first stage we constructed the
GRN as well as the Boolean and the continuous models, then
both models were analyzed separately. For the Boolean model,
it was calculated its attractors with their respective attraction
basins, then it was calculated the activation trajectory of the
GRN and finally, it was evaluated the sensitivity of the model
with the Derrida Test. On the other hand, it was calculated the
equilibria of the ODEs model and it was evaluated the behavior
of trajectories around such points with the analysis of stability, it
was then evaluated the effect of particular changes in parameters
values with the bifurcation analysis and finally it was evaluated
the sensitivity of the model with a global sensitivity analysis.
In the third stage it was performed a screening assay to find
perturbations that reactivate latent proviruses and it was analyzed
the dynamical features of such perturbations with discrete and
continuous models. Finally, we validated both models with
experimental data available from literature. In the following
paragraphs of this section we present details of the protocols used
in this work.

Construction of the Network
The GRN was built by compiling information from the literature
on the molecular mechanisms that regulate HIV-1 latency inside
resting CD4+ T-cells (Figure 1). This GRN included the main
interactions of antisense long-non coding RNAs (asRNA), viral
small interfering RNAs (vsiRNA), viral small activator RNA
(vsaRNA), Tat, Rev, Nef, Vpr, and cellular factors that control
gene expression of latent proviruses such as histone deacetylases
(HDACs), histone acetyltransferases (HATs), and HMTs.

We incorporated to the GRN the most important molecules
and viral components involved in the regulation of provirus gene
expression, namely: the concentration of NF-κB, HATs,
and HMTs; the activity of viral promoters 5′LTR and
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FIGURE 1 | Gene regulatory network of HIV-1 provirus. Inside latently infected resting CD4+-T cells, the provirus can be activated by transcription factors and

chromatin remodeling machinery of the host during immunological stimulation. When this occurs, the provirus expresses a wide variety of RNAs such as spliced viral

mRNAs, as well as non-coding viral RNAs such as vsiRNAs (viral small interfering RNAs) and asRNA (long anti-sense RNA). The non-coding RNAs together with early

proteins Tat, Rev, Nef, and Vpr have regulatory functions of the provirus either inducing or repressing viral transcription. Once the intracellular conditions are favorable

to viral proliferation, late proteins like gp41, p24Gag, and other structural viral proteins are produced. In this figure the repressive interaction of this network are

represented by pink T-bars, and activating interactions are represented by black arrows. Early and late proteins are shown in light and dark blue, respectively.

Components of the host’s transcription machinery are shown in purple, yellow, and black.

3′LTR; nuclear genomic mRNA of 9 kb, [mRNA9kb(N)];
vsiRNA; vsaRNA; nuclear mRNAs of 4 kb [mRNA4kb(N)]
and 2 kb [mRNA2kb(N)]; cytoplasmic genomic mRNA
of 9 kb [mRNA9kb(C)], and cytoplasmic mRNAs of 4 kb
[mRNA4kb(C)]; and 2 kb [mRNA2kb(C)]; as well as Tat, Rev,
Nef, Vpr, asRNA, and the p24 gag protein (p24Gag). Based on
the above, we proposed discrete and ODE-based mathematical
models to understand the dynamical properties of the GRN. In
what follows we present first the discrete model and then the
continuous model.

DISCRETE MODEL

For the discrete dynamics, the state of the nodes of the network
in Figure 1 are represented by a set of binary variables, 6 =

{σ1, · · · , σN}, each one taking the value 1 for activation and 0 for
inactivation. The value of each variable σn is determined by its kn
regulators, denoted by {σn1 , · · · , σnkn }, through the equation

σn (t + 1t) = fn
(

σn1
(

t′
)

, σn2
(

t′
)

, . . . , σnk
(

t′
))

, (1)

where fn is a Boolean function that depends on kn arguments
(Table 1). This function is constructed according to the
inhibitory or activating nature of the interactions between σn and
its regulators (Kauffman, 1969). The discrete time t advances in
integer steps; the time t′ at which the state of the regulators is
evaluated is such that t ≤ t′ < t + 1t, where 1t is the time it
takes to σn to respond to a change in its regulators. Traditionally,

Equation (1) is implemented simultaneously (synchronously) on
all the nodes of the network. In this synchronous case t′ = t
and 1t = 1. In addition to the synchronous update, we also
implemented two other updating schemes: asynchronous and
semi-synchronous.

In the asynchronous scheme a permutation with repetition
of the network nodes {σ1, · · · , σN} is chosen. Let us denote as
P = {σp1 , σp2 · · · σpL} this permutation, where L ≥ N. Then at
each time step t the nodes of the network are updated one by one
following the order of this permutation: first σp1at time t′ = t+ 1

L ,

then σp2at time t′ = t + 2
L , and so on until σpL is updated at time

t′ = t+1.When σpi is being updated, Equation (1) is applied with

1t = i
L and t′ = t + i−1

L . After all the nodes in the permutation
have been updated, the time t advances one unit and the process
is repeated until an attractor is reached.

For the semi-synchronous scheme the set of all network nodes
6 = {σ1, · · · , σN} is partitioned into S subsets {M1, · · · ,M s}

such that
⋃S

j=1Mj = 6. All the nodes contained in Mj

are updated synchronously, but the subsets {M1, · · · ,M s} are
updated asynchronously: the nodes in M1 are updated at time
t′ = t + 1

S , the nodes in M2 are updated at time t′ = t + 2
S ,

and son on until the nodes in MS are updated at time t′ =

t + 1. When the nodes in Mi are being updated, Equation (1)
is applied with 1t = i

S and t′ = t + i−1
S . A full time step to

go from 1t to t + 1 consists in the updating of all the subsets
{M1, · · · ,M s}, one by one in successive order. The construction
of the permutation P for the asynchronous scheme and the
subsets {M1, · · · ,M s} for the semi-synchronous one was based
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FIGURE 2 | Flux diagram of methodology. This work was executed in four stages which are: (1) Defining the GRN and its models, (2) Mathematical analysis of the

models, (3) Perturbation analysis of the models, and (4) Validation. In the figure line blue denoted the first stage, line purple corresponds to stage 2, line red is for stage

3, and finally gray line is assigned to the fourth stage. Pink color is used to represent the methodological steps made with the discrete model and blue color for

continuous model.

on biological phenomenology that reflects the way in which
the activation cascade across the network may occur, and it is
presented in the Supplementary Material.

It is well-known that the size of the basin of attraction is
modified by updating scheme (Gershenson, 2002). The belonging
of a network state to a particular basin of attraction strongly
depends to updating scheme chosen. This has a biological
equivalence, because the cellular environment is noisy and the
order of gene expression may occur in different ways. However,
there are some network states that always belong to same basin of
attraction independently of updating scheme used.We call to this
property as robustness under updating scheme. We hypothesize
that the set of network states with this property are relevant
for the biological behavior of the provirus. We call this set
of states as intersection of the network states. We calculated
the intersection of the synchronous, semi-synchronous, and
asynchronous to determine the trajectory of activation of the
provirus.

Stability of the Boolean Model: Derrida
Map Test
The discrete model can exhibit two dynamical regimes, ordered
and chaotic, and a phase transition between them, the so-
called critical point (Aldana, 2003). The characterization of these
regimes is given by the behavior of the avalanche of perturbations
(produced by stochastic fluctuations, gene knockout, or gene over

expression). In the chaotic regime, small perturbations spread
throughout the network over time, producing big changes in the
network state. Therefore, a network operating in a chaotic regime
and submerged in a noisy cellular environment would have
very unstable phenotypes. In the order regime, the perturbations
die out over time, preventing the network to respond to new
changing environmental conditions. In the critical point, the
perturbations neither spread to the entire network nor disappear.
They typically remain confined within a small fraction of genes.
In order to characterize the dynamical regime, we define the
normalized Hamming distance h(t) at time t between two
network states as:

h (t) =
1

N

N
∑

n=1

|σn (t) − σ̃n (t)| . (2)

In this equation σn(t) is the state of the nth gene at time t in a
trajectory starting out from a given initial condition, and σ̃n(t)
is the state of the same gene in a different trajectory generated
from a different initial condition. The Hamming distance h(t)
can be considered as the normalized size of the avalanche of
perturbations generated by differences the two initial conditions.
The Derrida map h(t + 1) = M(h(t)) (Derrida and Pomeau,
1986) relates the size of the avalanche at two consecutive time
steps. It can be shown that M(h) is a monotonic increasing
function with the property that M(0) = 0 (if there is no
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TABLE 1 | Logic rules that models the GRN.

Node Logic rule

TNFα = input

IHMTS = input

NFκB = (TNFα) OR (Tat) OR (Vpr) OR (Nef )

HMTs =
(

IHMTS
)

OR (asRNA)

p′5LTR = (NFkB) AND NOT (HMTs)

p′3LTR = (NFkB) AND NOT (HMTs)

RNAs9kbN = p′5LTR

vsiRNA =
(

p′5LTR
)

AND NOT (Tat)

vsaRNA = (p′5LTR)

RNAs4kbN = RNAs9kbN

RNAs2kbN = RNAs4kbN

RNAs2kbC = (RNAs2kbN) AND NOT (vsiRNA)

RNAs4kbC = (RNAs4kbN) AND (Rev) AND NOT (vsiRNA)

RNAs9kbC = (RNAs9kbN) AND (Rev) AND NOT (vsiRNA)

asRNA = (p’3LTR) AND NOT (vsaRNA)

Tat = (RNAs2kbC) OR (RNAs4kbC)

Rev = RNAs2kbC

Nef = RNAs2kbC

Vpr = (RNAs2kbC) OR (RNAs4kbC)

p24Gag = RNAs9kbC

perturbation at time t, there is no perturbation either at time
(t + 1). The slope S at the origin of M(h) is the parameter that
characterizes the asymptotic value of the Hamming distance, and
hence the network dynamics. S is called the average network
sensitivity. When S < 1 the network is operating in the
ordered regime. If S > 1, the network exhibits chaotic behavior.
If S = 1, the network is at the critical point. An intuitive
definition (Krawitz and Shmulevich, 2007) is that S is the average
fraction of genes that change their state at time t + 1 when
a single gene is perturbed at time t (Supplementary Material).
Therefore, to determine the stability of the network dynamics
under perturbations in the initial conditions, one has to compute
the network sensitivity S from the Derrida mapM(h).

Additionally, one can compute the network stability under
permanent perturbations. We implemented two types of
permanent perturbations: inhibition and overstimulation.
For this, we set the state of one node, say σj, equal to 0 or 1
all the time (regardless of the state of its regulators). Setting
σj = 0 for all time is equivalent to permanently inhibit this
node, while setting σj = 1 all the time is equivalent to having
this node being constantly expressed. Let us denote as Sj the
network sensitivity when σj is permanently perturbed (either
inhibited or overstimulated), and as S0 the sensitivity of the
wildtype network. In order to compare the dynamical properties
of perturbed proviruses vs. the WT provirus, we define the
difference of sensitivity 1S as:

1S = Sj − S0. (3)

This quantity measures how the network dynamics changes when
one of the nodes is permanently perturbed. We performed the

same type of analysis for the case in which two nodes σi and σj are
simultaneously perturbed in a permanent way, either inhibiting
or overstimulating them. This allows us to determine whether
between-node epistasis exists that can modify the dynamics of
the GRN.

Probability of Viral Activation
It is important to note that in the three updating schemes
presented here, i.e., synchronous, asynchronous, and semi-
synchronous, the network dynamics are deterministic (both
the permutation P and the subsets {M1, · · · ,M s} are fixed).
Therefore, in any of these updating schemes, after a transient
time the network will fall into an attractor (a periodic pattern of
activity). Several attractorsmay exist, and all the initial conditions
that eventually fall into the same attractor are known as the
basin of attraction of that attractor. As we show in the Results
section, the HIV-1 network has several attractors. In some of
them the network dynamics correspond to an active virus (the
viral proteins are expressed, particularly p24Gag), whereas in the
other attractors the dynamics correspond to an inactive virus
(i.e., in the latency state with no expression of p24Gag). We refer
to the former as the active attractors and to the latter as the
inactive attractors. In order to determine the probability that a
given initial condition leads to the active viral state, we compute
the relative size of the activation state (Won) by adding the size of
the basins of attraction for all active attractors and dividing this
sum by the total number of network states:

Won =
1

�

∑

k

|B (ak)| , (4)

where � = 2N is the total amount of network states, and |B(ak)|
is the size of the basin of attraction of the k–th active attractor.
Similarly, the relative size of latency state (Woff ) was calculated
as follows:

Woff = 1−Won. (5)

These metrics determine the frequency of each state of the GRN
that leads to an active or inactive attractor.

CONTINUOUS MODEL

In the continuous model, we represent the state of the nodes of
the network in Figure 1 by the continuous variables {x1, · · · , xN},
which satisfy the general equation of mass balance (Table 2)

dxn

dt
=

∑

k

Jink −
∑

j

Jonj , (6)

where the sums
∑

k J
i
nk

and
∑

j J
o
nj

represent all the fluxes

that contribute to increase and decrease xn, respectively. The
fluxes are presented in detail in Table 2, and the kinetic
parameters (which were obtained from the literature), in the
Supplementary Material. The Runge-Kutta 4-5 method was
used to solve the system of ODEs.
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TABLE 2 | Ordinary Differential Equations that models the GRN.

Node Equation Fluxes

5′LTR J̇5LTR = J1 − J2 J1 = kb
(

1+ kac [HATs] + ktar [Tat]
) (

[RNAP]T − [3LTR] − [5LTR]
)

[NFkB]

J2 = kd
(

1+ kme [HMTs]
)

[5LTR]

3′LTR J̇3LTR = J3 − J4 J3 = kb
(

1+ kac [HATs]
) (

[RNAP]T − [3LTR] − [5LTR]
)

[NFkB]

J4 = kd
(

1+ kme [HMTs]
)

[3LTR]

RNA9kbN J̇9kbC = J5 − J6 − J7 − J8 J5 = a1 [5LTR]

J6 =
(

s1 + τ + kRRE [Rev]
)

[RNAs9kbN]

J7 = δ1 [RNAs9kbN]

J8 = s1 [RNAs9kbN]

vsiRNA J̇vsiRNA = J9 − J10 J9 = a2 [RNA9kb]

J10 =
(

δ2 + r1 [Tat]
)

[vsiRNA]

vsaRNA J̇vsaRNA = J11 − J12 J11 = a3 [RNA9kb]

J12 = δ3 [vsaRNA]

asRNA J̇asRNA = J13 − J14 J13 = a4 [3LTR]

J14 =
(

δ4 + r2 [vsaRNA]
)

[asRNA]

RNA4kbN J̇4kbC = J8 − J15 − J16 − J17 J15 =
(

τ + kRRE [Rev]
)

[RNAs4kbN]

J16 = δ1 [RNAs4kbN]

J17 = s2 [RNAs4kbN]

RNA2kbN J̇2kbN = J17 − J18 − J19 J18 = kexp [RNAs2kbN]

J19 = δ6 [RNAs2kbN]

RNA2kbC J̇2kbC = J18 − J20 − J21 J20 = δ7 [RNAs2kbC]

J21 = r3 [vsiRNA] [RNAs2kbC]

RNA4kbC J̇4kbC = J15 − J22 − J23 J22 = δ8 [RNAs4kbC]

J23 = r3 [vsiRNA] [RNAs4kbC]

RNA9kbC J̇9kbC = J6 − J24 − J25 J24 = δ9 [RNAs9kbC]

J25 = r3 [vsiRNA] [RNAs9kbC]

Tat J̇Tat = J26 + J27 − J28 J26 = a5 [RNAs2kbC]

J27 = a6 [RNAs4kbC]

J28 = δ10 [Tat]

Rev J̇Rev = J29 − J30 J29 = a7 [RNAs2kbC]

J30 = δ11 [Rev]

Nef J̇Nef = J31 − J32 J31 = a8 [RNAs2kbC]

J32 = δ12 [Nef]

Vpr J̇Vpr = J33 + J34 − J35 J33 = a9 [RNAs2kbC]

J34 = a10 [RNAs4kbC]

J35 = δ14 [Vpr]

p24Gag J̇p24Gag = J36 − J37 J36 = a11 [RNAs9kbC]

J37 = δ15 [p24Gag]

NF-kB J̇NFkB = J38 − J39 J38 = k1
(

[NFkB]T − [NFkB]
) (

k0 [TNF] + k2 [Tat] + k3 [Nef] + k4 [Vpr]
)

J39 = k−1 [NFkB]

HATs J̇HATs = J40 − J41 J40 = k5
(

[HATs]T − [HATs]
) (

IHATs + k6 [Tat] + k7 [Vpr]
)

J41 = k−5 [HATs]

HMTs J̇HMTs = J42 − J43 J42 = k8
(

[HMTs]T − [HNTs]
) (

IHMTs + k9 [asRNA]
)

J43 = k−8 [HMTs]

Input Signals for the GRN
The transcriptional state of provirus can be modified by
the NF-κB pathway activated by the Tumor Necrosis Factor
(TNF) and by chromatin modifications such as acetylation and
methylation (Supplementary Material). Those modifications are
produced by HMTs and HATs in response to intracellular
stimulator signals, represented by IHMTs and IHATs, respectively.
We take TNF, IHMTs, and IHATs as the inputs of the GRN. In
the Boolean model these inputs have only two states {0, 1},
which are inactivation and activation respectively. In the ODEs
model we use square pulse functions to model the inputs as
follows:

For extracellular pulses of TNF:

TNF (t) =

{

1, t ∈ T1

0, t /∈ T1
(7)

For signals that stimulate HATs activity:

IHATs (t) =

{

1, t ∈ T2

0, t /∈ T2
(8)

For signals that stimulate HMTs activity:

IHMTs (t) =

{

1, t ∈ T3

0, t /∈ T3
(9)
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FIGURE 3 | Validation of mathematical models of the HIV-1 GRN. (A) Compatibility of the models. In this panel were qualitatively compared the attractors of the

Boolean model and the equilibrium points of the ODEs model to provirus behavior observed in vitro. The discrete and continuous models present activation and

latency states for WT proviruses and deletions of nef and vpr but only present attractors and equilibrium points for latency state when tat, p5′LTR and splicing sites.

This behavior is the same as reported for defective p′5LTR mutants (Ho et al., 2013) and the splicing sites (Purcell and Martin, 1993), deleted tat (Verhoef and

Berkhout, 1999), vpr (Rücker et al., 2004), rev and nef (Churchill et al., 2007). (B) Validation of the Boolean model. In this panel is shown the size of activation state

(Won) calculated with the synchronous, semi-synchronous, and asynchronous update scheme. In pink is shown increases of Won with respect to WT provirus. In the

column of in vitro observations, “+” represents that there was an increase of viral reactivation because of the treatment and “0” indicates that there were no changes.

The data for HDACis was obtained from (Cillo et al., 2014), for P-TEFb releasers from (Li et al., 2013), the use of Antagomirs from (Zhang Y. et al., 2014), combinations

of Bryostatin with P-TEFb releasers from (Laird et al., 2015) and combinations of Bryostatin with HMTis from (Bouchat et al., 2012). (C) Validation of the ODEs model.

In this panel is presented the normalized data of unspliced viral mRNAs levels obtained with the ODEs model and the corresponding values obtained from patients

treated with bryostatin (Bullen et al., 2014), panobinostat (Laird et al., 2015), and JQ1 (Laird et al., 2015) vs. their corresponding simulation. Pearson correlation

between both data sets showed a positive linear relationship, p = 0.0291, r(3) = 0.9708, which supports the validity of the model. The standard error of linear

regression was 0.1613.

In these equations T1, T2, and T3 are the activation intervals of
the input signals (Supplementary Material).

Stability Analysis
The stability analysis of the continuous system was
performed using the indirect method of Lyapunov
(Supplementary Material). This method starts solving
the ODEs in order to find the equilibrium points of the
system. Then the ODEs are linearized using the Jacobian
matrix to calculate the eigenvalues for all equilibrium points
(Supplementary Material). Positive eigenvalues correspond
to unstable directions in the phase space, whereas negative
eigenvalues correspond to stable directions. If all the eigenvalues
corresponding to one equilibrium point are negative, then that
point is stable.

Bifurcation Analysis
The bifurcation analysis of the ODEs model was performed by
changing one by one the parameters of the model. We focused
our attention on the dissociation constants of NF-κB, association
and dissociation constants of viral proteins, and degradation
constants of RNA’s and viral proteins (Supplementary Material).

Then, each parameter was varied three orders of magnitude, up
and down of their reference value and after that; MATLAB was
used to calculate the equilibrium points of the system with their
corresponding stability.

Global Sensitivity Analysis
The sensitivity of the model against random perturbations
was evaluated by assigning a uniform distribution to each
parameter in which their reference value was taken as
the mean and the standard deviation was assumed to be
10% (Supplementary Material). Then, each distribution was
randomly sampled to obtain a set of parameters that were used as
the inputs to solve the equations of the model during 1,500 units
of time. After 10,000 iterations of this process, the concentration
of p24Gag was used as the system’s output to analyze the behavior
of the model in response to random parameter variation. In
all the simulations we set TNF(t) = 0, IHATs(t) = 0 and
IHMTs(t) = 0.

Simulating Mutants and Treatments
The behavior of mutant proviruses during the condensation
of viral nucleosomes and T-cells activation was modeled by

Frontiers in Physiology | www.frontiersin.org September 2018 | Volume 9 | Article 1364238

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Bensussen et al. HIV Dynamics and Latency Reversion

TABLE 3 | Attractors of the HIV Boolean model.

Nodes a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

TNF 0 1 0 1 0 1 0 1 0 1 0 1

IHATs 0 0 1 1 0 0 1 1 0 0 1 1

IHMTs 0 0 0 0 1 1 1 1 0 0 0 0

NF-κB 0 1 0 1 0 1 0 1 1 1 1 1

HATs 0 0 1 1 0 0 1 1 1 1 1 1

HMTs 0 0 0 0 1 1 1 1 0 0 0 0

p5’LTR 0 1 0 1 0 0 0 0 1 1 1 1

p3’LTR 0 1 0 1 0 0 0 0 1 1 1 1

mRNA9kb(N) 0 1 0 1 0 0 0 0 1 1 1 1

vsiRNA 0 1 0 1 0 0 0 0 0 0 0 0

vsaRNA 0 1 0 1 0 0 0 0 1 1 1 1

mRNA4kb(N) 0 1 0 1 0 0 0 0 1 1 1 1

mRNA2kb(N) 0 1 0 1 0 0 0 0 1 1 1 1

mRNA2kb(C) 0 0 0 0 0 0 0 0 1 1 1 1

mRNA4kb(C) 0 0 0 0 0 0 0 0 1 1 1 1

mRNA9kb(C) 0 0 0 0 0 0 0 0 1 1 1 1

asRNA 0 0 0 0 0 0 0 0 0 0 0 0

Tat 0 0 0 0 0 0 0 0 1 1 1 1

Rev 0 0 0 0 0 0 0 0 1 1 1 1

Nef 0 0 0 0 0 0 0 0 1 1 1 1

Vpr 0 0 0 0 0 0 0 0 1 1 1 1

p24Gag 0 0 0 0 0 0 0 0 1 1 1 1

Classification Latency attractors* Activation attractors

*All attractors in which p24Gag was inactive are classified as latency attractors.

reducing 10-fold the splicing rate of nuclear mRNA of 4 kb (s1).
The nucleosomal condensation wasmodeled by providing square
pulses of IHMTs, and T-cell activation was modeled by increasing
the value of the NF-κB activity rate (k1).

The temporal effects of treatments with histone deacetylase
inhibitors (HDACis), PKC agonists, P-TEFb releasers, histone
methyltransferase inhibitors (HMTis), and antagonist micro-
RNAs (antagomirs) on the GRN dynamics were simulated as
follows: to simulate the rise on acetylation due to HDACis,
we increased two-fold the reference value of the parameters of
HATs activity (k5). The increase the NF-κB levels due to PKC
agonists (Mehla et al., 2010), was modeled by increasing the
value of NF-κB levels (k1) of the ODEs system. Considering
that P-TEFb releasers, such as the compound JQ1, enhance the
function of Tat to sequester P-TEFb and activate provirus (Li
et al., 2013), we modeled this type of LRA by increasing the
parameter associated to Tat activity (α5). The effects of HMTis
and antagomirs were modeled by reducing two-fold the reference
value of the parameters of HMTs activity (k8), synthesis of
vsiRNA (α2), and asRNA (α4).

Mutant proviruses treated with HDACis were simulated by a
two-fold increase in the value of the parameter of HATs activity
(k5) as a pharmacological overstimulation and setting to zero the
values of the parameters for synthesis of Tat (α5 and α6), Nef
(α8), and Vpr (α9 and α10) as gene knockouts. The inhibition
of vncRNAs was simulated by reducing 0-, 2-, 20-, and 200-fold
the value of the parameters for the synthesis of vsiRNA (α2) and

asRNA (α4). All parameters cited in this paragraph are listed in
Supplementary Material.

Analogously to Equation (3), we define E0 and Ej as the
normalized concentration of p24Gag mRNA for the wildtype
network and when σj is perturbed, respectively. The difference

1E = Ej − E0, (10)

is a measure of the effect on the viral activation of perturbing the
node σj in response to pharmacological treatments.

Validation of the Models
The discrete and continuous models compatibility to reproduce
the behavior of HIV-1 GRN was qualitatively evaluated by
comparing the dynamical states of each model to the in vitro
dynamics of provirus genic expression. To perform this, it
was calculated the attractors of the discrete model and the
equilibrium points of the continuous model for the wild type
GRN and mutated networks p5′LTR (t) = 0, Tat (t) = 0,
Vpr (t) = 0, Rev (t) = 0, Nef (t) = 0, and mRNA4kbN (t) = 0.
Then, the attractors and the equilibrium points were classified
in activation state or latency state according to their p24Gag
expression level (i.e., latency state was assigned to attractors and
equilibrium points that do not express p24Gag and activation
state was assigned when p24Gag is expressed). These results
were compared to in vitro observations reported for the wild
type provirus, defective p′5LTR mutants (Ho et al., 2013),
deleted tat (Verhoef and Berkhout, 1999), vpr (Rücker et al.,
2004), rev and nef proviruses (Churchill et al., 2007), as well
as deletions on the splicing sites (Purcell and Martin, 1993;
Figure 3A). Once compatibility of the models was proved,
the discrete model was qualitatively validated by comparing
the size of activation state (W on) of the nodes perturbations
HATs (t) = 1, Tat (t) = 1, vsaRNA (t) = 1 and the combinations
(NFκB (t) = 1, HATs (t) = 1), (NFκB (t) = 1, HMTs (t) = 0),
against their in vitro equivalences, which are treatments with
HDACis (Cillo et al., 2014), P-TEFb releasers (Li et al., 2013),
the use of Antagomirs (Zhang Y. et al., 2014), combinations
of Bryostatin with P-TEFb releasers (Laird et al., 2015) and
combinations of Bryostatin with HMTis (Bouchat et al.,
2012). In Figure 3B is shown the outcome of this comparison,
which pointed out that the discrete model is able to predict at
qualitative level changes occurred on latency reversion reported
in vitro. The continuous model was validated by comparing
the levels of genomic RNAs obtained in silico against ex vivo
data (Laird et al., 2015). To perform this, it was normalized the
levels of p24Gag obtained with the ODEs model for making
a linear regression analysis and Pearson correlation with 5%
of significance (α = 0.05; Figure 3C). These analysis showed
that there is a significant positive relationship between ex
vivo and in silico data sets, R2 = 0.9426 with p < 0.05, which
suggest that the ODEs model is able to predict variations
over concentration levels of molecular components of the
HIV-1 GRN.
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FIGURE 4 | Proviral activation is repressed by vncRNAs and rescued by Tat. (A) Relative weight of the activation state (in percentage). In this panel is shown the result

of calculating the probability of activation using the synchronous, semi-synchronous, and asynchronous update schemes. In all cases it is shown that latency is

favored over activation once provirus is integrated in the host genome. (B) Trajectory of activation obtained from intersection of the three update schemes. This panel

shows that the presence of NF-kB, p5′LTR, Tat as well as the absence of vncRNAs (i.e., vsiRNA and asRNA) and HMTs are obligatory conditions to activate latent

proviruses. (C) Sensitivity of the network calculated with Derrida’s mapping test. The data obtained from the Boolean model suggested that Tat and vncRNAs are the

main proviral regulators of latency and activation.

RESULTS

T-Cell Activation May Not Induce
Expression of the Provirus
Razooky and coworkers found evidence suggesting that proviral
latency is mainly regulated by the transactivation of 5′LTR
mediated by Tat instead of T-cell activation, which implies that
latency regulationmay be an autonomous process (Razooky et al.,
2015). It is in the light of this finding that, the role of epigenetic
factors on the performance of Tat’s autonomous behavior was
investigated. To accomplish this, we analyzed the attractors of the
Boolean and its basins of attraction in presence of cellular signals
that stimulate epigenetic regulators such as HMTs and HATs, and
activators of the NF-κB pathway like TNF. In the three update
schemes it was found 12 punctual attractors (the same in the
three schemes) which were classified in two groups according to
expression of viral proteins as follows: (1) attractors that produce
late proteins like p24Gag (activation attractors); and (2) attractors
that lack protein expression (latency attractors; see Table 3).

The Boolean model shows that the activation attractors can
be reached with or without cellular stimulation of HATs and
TNF (Table 3), which agrees with previous observations that
demonstrate the persistence of provirus expression in resting
CD4+ T-cells (Razooky et al., 2015). However, this dynamics
always requires the absence of the silencing produced by the
HMTs activity (Table 3). The probability with which the provirus

reaches latency and activation was investigated by calculating
the relative size of the activation state (Won) as well as the
relative size of the latency state (Woff ). It was found that Won is
always smaller than Woff (Figure 4A) even when transcription
stimulatory signals like HATs and the NF-κB pathway are turned
on. These results suggest that even in the context of T-cell
activation, provirus may remain latent because of its autonomous
dynamics, which is limited by epigenetic silencing.

Viral Non-coding RNAs Are Essential to
Regulate Latency
Previous reports showed the importance of Tat as the
unique virus-encoded regulator of HIV-1 autonomous behavior
(Weinberger et al., 2005; Razooky et al., 2015). However, a
virus-encoded siRNA that also promotes provirus activation has
been found recently (Zhang Y. et al., 2014). Additionally, other
virus-encoded regulators, such as vncRNAs that directly repress
provirus gene expression have been found (Groen and Morris,
2013; Saayman et al., 2014; Suzuki et al., 2015). Therefore, the role
of vncRNAs on the regulation of proviral latency was investigated
by searching for common states in all basins of attraction of
activator attractors obtained with the three updating schemes
(Figure 4B). Using this procedure we found a set of GRN states
that abrogate latency (Figure 4B). This set of states indicates
a general pattern that results in provirus activation, which
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agrees with previous reports and requires: high levels of NF-
κB (Westendorp et al., 1995), no epigenetic silencing by HMTs
(Jordan et al., 2003; du Chéné et al., 2007), genomic integrity
of provirus (Ho et al., 2013), high levels of Tat (Weinberger
et al., 2005; Razooky et al., 2015), and the absence of repressive
vncRNAs (denoted by asRNA and vsiRNA; Figure 4B). This
result suggests that Tat and repressive vncRNAs are essential
virus-encoded regulators of latency establishment and activation.

HIV-1 Is Resistant to Drugs and
Intracellular Perturbations
Genetic networks of organisms are able to maintain and adapt
their operation in response to environmental changes. Previous
studies have shown that the coexistence of robustness and
adaptability observed in genetic networks is characteristic of
systems operating at the critical point, i.e., at the border
of chaos and order (Balleza et al., 2008). This dynamical
feature has been reported for genetic networks of A. thaliana,
D. melanogaster, S. cerevisiae, E. coli, B. subtilis (Balleza et al.,
2008) as well as of mice macrophages (Nykter et al., 2008).
It has been suggested that criticality is essential to ensure
the evolution of any organism (Balleza et al., 2008). We
investigated the presence of critical dynamics in the HIV-1
GRN. To do this, the effect of massive perturbations on the
GRN was evaluated using the Derrida mapping test. When the
network sensitivity S for the provirus GRN was computed, it
was obtained S = 1.0031 which means that the network
operates in a critical regime (Figure 4C). Therefore, this network
shows equilibrium between robustness and adaptability in
resting CD4+ T-cells (Figure 4B). This result suggests that the
regulation of the expression of the HIV genome is robust against
intracellular perturbations and it can be adapted in response
to chronic perturbations, such as those produced during cART
or treatments with LRAs. It should be noted that the HIV-
1 network has constructed taking into account the activating
and inhibitory interactions reported in the literature without
considering criticality as a relevant criterion. The result showing
that the dynamics of the HIV-1 GRN is so close to criticality is
unexpected.

The Architecture of the HIV-1 GRN Allows
Viral Rebounds and Persistence
Previous observations on the dynamics of Tat’s positive
feedback loop demonstrated that this circuit is able to amplify
transcriptional fluctuations of provirus by itself, and its activity
tends to decay toward a latency stable state (Weinberger et al.,
2005). It has been proposed that delays on Tat’s activity facilitate
latency establishment (Weinberger et al., 2005), which could
maintain proviral reservoirs during cART (Rouzine et al., 2015).
However, it is unknown whether other viral components like
Vpr, Nef, and vncRNAs modify the dynamics of Tat’s circuit.
In this direction, we extended previous findings by analyzing
the provirus gene expression dynamics in the presence of Tat
and other viral interactions that regulate proviral transcription,
such as those mediated by vncRNAs and positive feedback
loops of Nef and Vpr (Varin et al., 2003; Liu et al., 2014).

TABLE 4 | Equilibrium points of the HIV ODEs model.

Nodes Latency equilibrium

(arbitrary units)

Activation equilibrium

(arbitrary units)

NF-κB 0 0.6243

HATs 0 0.2747

HMTs 0 0.1963

p5′LTR 0 0.3379

p3′LTR 0 0.0831

RNA9kb(N) 0 1.0559

vsiRNA 0 0.1056

vsaRNA 0 0.0211

mRNA4kb(N) 0 0.0807

mRNA2kb(N) 0 0.0279

mRNA2kb(C) 0 0.2792

mRNA4kb(C) 0 0.0154

mRNA9kb(C) 0 0.0563

asRNA 0 0.4070

Tat 0 0.1893

Rev 0 0.4035

Nef 0 1.6142

Vpr 0 0.1893

p24Gag 0 5.5836

To this end, it was used the continuous model to analyze
temporal variations of the dynamics of the levels of provirus
proteins and RNAs. It was performed the stability analysis
of the ODEs model with a set of reference parameters
(Supplementary Material), and found two equilibrium points
that correspond to activation and latency states, i.e., the levels
of p24Gag were zero for latency state and distinct to zero for
activation state (Table 4). In this regard, the stability analysis
showed that the activation state was stable and the latency
state was unstable (Figure 5A). Then, the sensitivity of the
system against fluctuations was evaluated by performing a global
sensitivity analysis finding that the dynamics of the system was
robust against perturbations (Supplementary Figure 1), and the
mean value of p24Gag during activation state was 11.2 with
a variance of 7.2. This suggests that once activation state is
reached, the provirus expression is resistant to variations of the
intracellular environment.

We searched for parameters that change stability of the
equilibrium points of the GRN performing bifurcation analysis.
Indeed, it was found a transcritical bifurcation (Figure 5B)
on the value of NF-κB activation constant (k1), parameters
related to splicing of viral mRNAs (s1), and the activity of the
5′LTR promoter (kb). Bifurcation analysis showed that latency
is stabilized when the values of these parameters are decreased
(Figure 5C). This observation is congruent with in vitro reports
of conditions that stabilize latency, such as low levels of NF-κB
(Westendorp et al., 1995), deficient splicing sites (Purcell and
Martin, 1993), and deletions on 5′LTR promoter (Dar et al.,
2014) (Table 1). Then, we investigated the possible function of
this bifurcation in the context of intracellular infection of HIV-
1. To implement this, it was compared the performance of WT
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FIGURE 5 | Redundant positive feedback loops of Tat, Nef, and Vpr promote viral persistence. (A) Destabilization of latency in the presence of high levels of NF-κB.

Phase portrait of the system around the equilibrium point corresponding to latency (black cross), and the temporal performance of the system are shown. In the phase

portrait, trajectories of the system are repelled to activation state, on the temporal plot of the system; p24Gag reaches an expression stable state. This simulation was

made with our reference value for NF-κB availability (k1). (B) Transcritical bifurcation on the GRN. We found that variations on parameters related to availability of

NF-κB, the activity of 5′LTR promoter and the splicing of viral mRNAs change the dynamical behavior of the system. The critical parameters to obtain this bifurcation

are included in Supplementary Table 5. (C) Stabilization of latency. When we decreased 10-fold NF-κB availability, all trajectories in the phase portrait of the system

converge to latency state (black cross), in the temporal plot this can be observed as a transient activation of protein expression that eventually decays. (D) Biological

role of transcritical bifurcation. In the absence of this bifurcation, defective proviruses decrease their ability to relapse after a period of repression. This simulation was

made by decreasing 10-fold the splicing rate of nuclear mRNA of 4 kb (s1); gray bars indicate nucleosome compaction due to HMTs activity. (E) Molecular origin of

transcritical bifurcation. Individually, positive feedback loops of Tat, Nef, and Vpr have a transient activity (as observed in panel C), however, transcritical bifurcation

emerges when loops are combined. 1nef, 1vpr, and 1tat were simulated by setting to zero the synthesis parameters of Tat, Nef, and Vpr (Supplementary Material).

Collectively, these data suggest that redundant activation of NF-kB mediated by Tat, Nef, and Vpr ensures proviral reactivation after a period of repression.

provirus vs. mutated provirus that have attenuated splicing rates
(10-fold lower of the reference value for s1) in presence or absence
of epigenetic silencing (i.e., when HMTs are active). It was found

that transcritical bifurcation allows viral rebounds of the WT
provirus after cellular inhibition (Figure 5D), which suggests
that persistence may be “hardwired” on the HIV-1 genome.
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FIGURE 6 | Screening assay for reactivating perturbations. (A) Simultaneous inhibition of two nodes of the network. (B) Simultaneous overstimulation of two nodes of

the network. (C) Inhibition and overstimulation of two nodes of the network. (D) Summary of screening results. This assay shows that 51% of the perturbations

permanently silence provirus’ expression; where “reactivation” refers to perturbations that suppress latency attractors, “no changes” refers to perturbations that allow

the coexistence of latency and activation attractors, and “permanent silencing” refers to perturbations that abrogate activation attractors.

On the other hand, proviruses that lack transcritical bifurcation
can be easily controlled by the host’s HMTs (Figure 5D). These
results suggest that the transcritical bifurcation of the provirus
GRN may provide two dynamical behaviors: (1) for repressive
transcriptional environments, such as during cART, the provirus
latency will be stabilized allowing reservoirs maintenance, and
(2) for non-repressive transcriptional environments, the provirus
favors a strong activation in order to ensure the production
of viral progeny and to counteract the intracellular silencing
mechanisms. These properties may explain the viral rebounds
after cART and why HIV-1 cannot be silenced by host.

The Activating Core of the GRN Consists of
the Positive Feedback Loops of Tat, Nef,
and Vpr
The molecular basis of the transcritical bifurcation was
investigated comparing the activity of intact provirus vs. the
activity of mutant proviruses. Mutant proviruses were simulated
in the continuous model by setting to zero all parameters

related to the synthesis of viral proteins Tat, Nef, and Vpr.
It was observed that the Tat’s positive feedback circuit always
produces a stable branch on latency state, which in biological
terms is a transient activation followed by latency stabilization
dynamics as reported by Weinberger et al. (2005) (Figure 5E).
However, combining Tat positive feedback with Vpr and
Nef produces the transcritical bifurcation, in which latency
can be destabilized (Figure 5B). We also observed that in
the absence of Tat the remaining positive feedback loops
were able to temporarily perturb latency during stimulation,
producing transitory gene activation, but their effect was
negligible compared to that observed in the presence of Tat
(Figure 5E). Thus, the transcritical bifurcation is sustained by
all the positive feedback loops of the viral proteins Tat, Vpr,
and Nef (Figure 5E). Considering that all the positive feedback
loops of HIV-1 promote NF-κB activation (Figure 1), it is
reasonable to think that the redundancy on NF-κB stimulation
is the cause of the transcritical bifurcation and its amplifying
properties.
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Permanent Stabilization of Latency Occurs
More Frequently Than Reactivation
Recently, it has been proposed that compounds that increase
fluctuations of transcriptional basal levels may enhance the
performance of LRAs (Dar et al., 2014). Such compounds
indirectly target the 5′LTR promoter, increasing its activity. We
extended this result by searching for sensitive interactions that
could increase proviral reactivation in the presence of LRAs. To
this end, it was used the Boolean model to explore all possible
perturbations of the provirus GRN by combining inhibition and
stimulation of the GRN nodes using a screening assay (Figure 6).
It was found that 51% of the perturbations eliminated activation
attractors, which suggests that those perturbations are able to
induce permanent silencing of the provirus (Figure 6D). On the
other hand, it was found that only 28 of the 648 theoretical
perturbations can be performed in vivo using current LRAs and
antagomirs (Table 5). Remarkably, some of these perturbations
have not been tested yet. These results suggest that it would be
easier to induce the permanent silencing of HIV-1 proviruses
rather than reactivating them (Figure 6D).

Inhibition of HMTs and Stimulation of
P-TEFb Increases Proviral Reactivation
We then characterized the dynamical properties of 28 promising
perturbations produced with LRAs and antagomirs (Table 5).
To do this, the dynamical performance of each perturbation
was compared to the dynamics of the WT provirus. It was
used the Boolean model to calculate the relative size of the
activation state (W on) and the difference of sensitivity (1S).
Similarly, it was used the ODEs model to determine the
difference of p24Gag expression (1E) for each perturbation.
It was found that all reactivation perturbations increased Won,
except HATs(+) (Figure 7A) which is equivalent to using
HDACis (Table 5). Moreover, all reactivating perturbations
decreased network sensitivity (Figure 7B) and the ODEs model
showed that all perturbations, except HATs(+), increased the
expression of p24Gag (Figure 7C). Remarkably, the discrete
model showed that inhibition of HMTs and overstimulation of
Tat, i.e., HMTs(–), Tat(+) precludes latency attractors, which
means that provirus is always active (Figure 7A). Analogously,
the ODEs model showed that HMTs(–), Tat(+) increases 1E
to the maximum (Figure 7C). It is important to note that
the pharmacological equivalence of HMTs(–), Tat(+) can be
implemented with HMTis and P-TEFb releasers (Li et al., 2013;
Table 5). In Table 5 are shown the pharmacological treatment
equivalent for the other latency reversing perturbations.

The Performance of LRAs Is Hindered by
vncRNAs
Recent reports showed that HDACis are not effective to
reactivate latent proviruses (Bullen et al., 2014; Cillo et al.,
2014). In agreement with these reports, the models showed
that HDACis do not produce changes in the activation state
(Figure 7A) and do not increase p24Gag expression levels
(Figure 7C). However, it has been reported that HDACis increase
transcription of provirus (Mohammadi et al., 2014). To explain

TABLE 5 | Proposed treatments to reverse latency and their current status.

Perturbation Equivalent treatments References

HMTs (–) HMTis Bouchat et al., 2012

HMTs (–), vsiRNA (-) HMTis + Antagomirs *

HMTs (–), asRNA (-) HMTis + Antagomirs *

vsiRNA (–) Antagomirs *

vsiRNA (–), asRNA (–) Antagomirs *

asRNA (–) Antagomirs Saayman et al.,

2014

NF-κB (+) PKC agonists Mehla et al., 2010

NF-κB (+), HATs (+) PKC agonists + HDACis Laird et al., 2015

NF-κB (+), vsaRNA (+) PKC agonists + Antagomirs *

NF-κB (+), Tat (+) PKC agonists + P-TEFb releasers Laird et al., 2015

HATs (+) HDACis Bullen et al., 2014

HATs (+), vsaRNA (+) HDACis + Antagomirs *

HATs (+), Tat (+) HDACis+ P-TEFb releasers Darcis et al., 2015

vsaRNA (+) vsaRNA Zhang Y. et al., 2014

vsaRNA (+), Tat (+) Antagomirs + P-TEFb releasers *

Tat (+) P-TEFb releasers Darcis et al., 2015

NF-κB (+), HMTs (–) PKC agonists + HMTis Bouchat et al., 2012

NF-κB (+), vsiRNA (–) PKC agonists + Antagomirs *

NF-κB (+), asRNA (–) PKC agonists + Antagomirs *

HATs (+), HMTs (–) HDACis + HMTis Bouchat et al., 2012

HATs (+), vsiRNA (–) HDACis + Antagomirs *

HATs (+), asRNA (–) HDACis + Antagomirs *

vsaRNA (+), HMTs (–) Antagomirs + HMTis *

vsaRNA (+), vsiRNA (–) Antagomirs *

vsaRNA (+), asRNA (–) Antagomirs *

Tat (+), HMTs (–) P-TEFb releasers + HMTis *

Tat (+), vsiRNA (–) P-TEFb releasers + Antagomirs *

Tat (+), asRNA (–) P-TEFb releasers + Antagomirs *

*Not evaluated yet. The most promising pharmacological perturbations that can be

performed to reactivate latent proviruses are included in the table. The corresponding

treatment for each perturbation can be implemented as follows: Increasing NF-κB levels

[denoted by NF-κB (+)] can be obtained using PKC agonists such as bryostatin (Mehla

et al., 2010). Increasing acetylation levels of provirus [denoted by HATs (+)] can be

obtained by protecting HATs dependent acetylation with inhibitors of histone deacetylases

(HDACis) such as romidepsin or Suberoylanilide Hydroxamic Acid acid (SAHA, Vorinostat)

(Reuse et al., 2009; Bullen et al., 2014). Increasing transcriptional effects of Tat [denoted

by Tat (+)] can be induced with P-TEFb releasers like JQ1 (Li et al., 2013). Suppression

of HMTs activity [denoted by HMTs(–)] can be performed with inhibitors of those enzymes

(HMTis) such as chaetocin (Bouchat et al., 2012). Inhibition of vncRNAs, like asRNA and

vsiRNA [denoted by asRNA (–) and vsiRNA (–)] can be performed using antagomirs (Yeung

et al., 2009; Saayman et al., 2014).

the HDCAis underperformance, the existence of unknown post-
transcriptional mechanisms that counteract protein synthesis
have been proposed (Mohammadi et al., 2014). Furthermore, it
has been reported that HDACis like SAHA (Vorinostat) may
increase the levels of cellular non-coding RNAs (Lee et al.,
2009). Taken together these observations suggest that HDACis
increase provirus transcription as well as the levels of viral
and cellular non-coding RNAs, which contributes to silencing
protein expression of provirus. We explored this hypothesis by
comparingWon,1S, and1E for each HDACis perturbation with
and without vncRNAs (see section Methods). It was found that
the suppression of vncRNAs enhances HDACis performance,
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FIGURE 7 | Dynamical features of activating perturbations with LRAs. (A) Relative weight of activation state for each activating perturbation. (B) Sensitivity difference

for each activating perturbation. (C) Difference of p24Gag expression for each activating perturbation. In general, all LRAs perturbations increase the weight of the

activation state and protein expression.

increasing the values of Won (Figure 8A), 1S (Figure 8B), and
the expression levels of p24Gag (Figure 8C). These data suggest
that HDACis may promote the synthesis of vncRNAs, which may
explain why these LRAs increase provirus transcription but not
protein expression (Figure 8D).

Inhibition of vncRNAs Is Not Sufficient to
Stimulate Proviral Reactivation
The results just presented indicate that inhibiting vncRNAs could
enhance the effect of LRAs (Figure 8D). However, it is not clear
whether vncRNAs inhibition can also stimulate the reactivation
of mutant proviruses. Therefore, we used the ODEs model to
address this question and compared the expression levels of
p24Gag in defective provirus treated with HDACis at different

intensities of vncRNAs inhibition. It was found that mutant
proviruses that lack the Tat protein can be reactivated to a
lesser extent than intact proviruses (Supplementary Figure 2).
However, defective proviruses that lack two or more positive
feedback loops cannot be reactivated, even with the inhibition of
vncRNAs (Supplementary Figure 2). These results suggest that
inhibition of vncRNAs cannot ensure the total reactivation of
proviral reservoirs.

DISCUSSION AND CONCLUDING
REMARKS

The long-lived latent reservoirs of HIV-1 are the main barrier
to eradicate it. Several efforts to purge viral reservoirs have
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FIGURE 8 | HDACis indirectly increase vncRNAs. (A) Relative weight of activation state, (B) Sensitivity difference, (C) Difference of p24Gag expression with and

without vncRNAs, denoted by vncRNAs (–). (D) These data suggest that LRAs like HDACis indirectly increase the synthesis of vncRNAs, which hinders their

reactivating effects. The suppression of the vncRNAs may enhance the effectiveness of HDACis.

been performed using LRAs, unfortunately none of them were
effective in vivo (Bullen et al., 2014). Until now it is not known
the causes of the underperformance of LRAs. In this work, we
analyzed in silico the functioning of the provirus’ gene expression
in order to investigate the ineffectiveness of LRAs. To this end, we
constructed the GRN of provirus andmodeled its dynamics using
ODEs and logic rules. Both models predicted that vncRNAs are
the main negative regulators of the gene expression of provirus
and they are also implicated in the underperformance of LRAs.
Finally, both models predicted that treatments with HMTis and
P-TEFb releasers are the best way to maximize latency reversion.

Traditionally it has been thought that Tat is the only virus-
encoded regulator of the HIV latency. However, recent evidence
shows that vncRNAs are also essential to control proviral
latency. Saayman and colleagues characterized an HIV-encoded
long anti-sense RNA which its inhibition triggers reactivation
in latently infected cells (Saayman et al., 2014). Zapata and
coworkers showed that this long anti-sense RNA is able to silence

the gene expression of provirus by stimulating HMTs (Zapata
et al., 2017). Thus, we investigated the role of vncRNAs on
the dynamics of provirus’ gene expression. The first dynamical
particularity of the GRN was that the weight of the latency
state (Woff ) was higher than the weight of the activation state
(Won), regardless the cell’s activation state (Figure 4A). After
analyzing the set of intracellular environments that activate the
GRN (Figure 4B), we noted that activation requires the presence
of Tat and the absence of vncRNAs. Additionally, the inhibition
of vncRNAs increased theWon (Figure 8A). Taken together these
results indicate that vncRNAs are the main negative regulators of
the provirus’ genic expression.

The next question to address was how vncRNAs and
Tat operate together to regulate latency. Previous reports
demonstrate that Tat’s positive feedback loop has a strong
transient activation that eventually decays to a stable latency
state (Weinberger et al., 2005; Weinberger and Shenk, 2007).
The same behavior was observed on the Tat’s circuit of the
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FIGURE 9 | Molecular mechanisms of self-regulation of proviral latency. According to our results, activation state is mainly produced when Tat concentration reaches

high levels. On the other hand, the provirus induces its latency when Tat’s concentration is not optimal and the levels of vncRNAs are high.

GRN (Figure 5E), as well as in other positive feedback loops
mediated by Nef and Vpr (Figure 5E). Interestingly, we found
that a transcritical bifurcation appears when these circuits
were combined (Figure 5B), and such a bifurcation allows
gene expression rebounds after long periods of repression
(Figure 5D). It seems likely that the Tat’s circuit is enhanced
by Nef and Vpr in order to overcome the downregulation of
vncRNAs and the host. However, an uncontrolled enhancement
of the gene expression of provirus could have negative effects
on the viral reservoirs. Rouzine and colleagues found that a
high rate of proviral activation avoids the establishment of latent
reservoirs, which decreases the prevalence of HIV-1 (Rouzine
et al., 2015). They also observed that fluctuations on the transient
activity of Tat, decreases the frequency of provirus’ activation
which stabilizes viral reservoirs (Rouzine et al., 2015). Expanding
these observations, our results showed that in addition to Tat’s
fluctuations, vncRNAs also reduce the activation of provirus.
Thus, vncRNAs together with Tat’s transient activity may be
responsible for the chronic stabilization of latency, condition
required to maintain the viral reservoirs (Figure 9).

Furthermore, we investigated the role of vncRNAs on the
underperformance of LRAs. The screening assay (Figure 6)
showed that 28 perturbations of the GRN can be implemented
with LRAs and antagomirs (Table 5), being the combination
of HMTis with P-TEFb releasers the most prominent of all.
However, perturbations made with HDACis did not increase
protein expression of provirus (Figure 7), as reported by Cillo
et al. (2014). Mohammadi et al found that HDACis only increase
provirus’ transcription but did not affect protein expression
(Mohammadi et al., 2014). They proposed that this occurs
because of post-transcriptional mechanisms that hinder protein
expression (Mohammadi et al., 2014). In this direction, our
results predicted that the levels of vncRNAs increased in response

to HDACis (Figure 8). Hence, it seems likely that treatments with
HDACis stimulate proviral transcription as well as vncRNAs,
which eventually avoids protein expression. This hypothesis may
explain the underperformance of treatments with LRAs reported
in vivo.

The final question to address was how to enhance the
performance of LRAs. The screening assay showed 28 feasible
treatments to disrupt latency by using micro-RNAs and current
LRAs (Table 5). In this direction the treatment that maximizes
the probability to reactivate proviruses (given by the value
of Won) uses HMTis and P-TEFb releasers (Figure 7A). The
action mechanism of this treatment consists in increasing Tat’s
levels with P-TEFb releasers while the activity of HMTs is
blocked, which is the main downstream target of vncRNAs
(Zapata et al., 2017). Therefore, blocking molecular effectors of
vncRNAs and enhancing Tat activity is the best way to increase
viral reactivation. It is of our interest to test the effectiveness
of the treatments proposed in Table 5 with ex vivo cultures
obtained from HIV patients, in order to determine whether such
treatments could be promising for therapeutic implementation.

Nevertheless, our results also showed an interesting scenario
that has a distinct approach to control HIV-1. The screening
assay showed that 51% of perturbations permanently silence
the provirus genic expression (Figure 6D). It is noteworthy to
say that the most of perturbations that permanently silence
the provirus, inhibit nodes related to proviral transcription
such as p5′LTR and unspliced, spliced and partially spliced
viral mRNAs (Figure 6A). This implicates that HIV-1 can be
permanently controlled by the induction of hypermutation of its
genome. A possible mechanism to implement this strategy can
be achieved with APOBEC3G, which is the enzyme that naturally
hypermutates HIV-1 as a part of intracellular antiviral response.
In this context, APOBEC3G is inhibited by Vif in order to allow
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the progression of HIV-1 infection. However, recent findings
suggest that drugs that stimulates ASK1 (apoptosis signal-
regulating kinase 1) also restore the APOBEC3G function even in
presence of Vif (Miyakawa et al., 2015). Thus, an alternative path
to control HIV-1 infection may employ APOBEC3G inducers in
conjunction with cART.

Current treatments to reactivate latent proviruses may
fail because HIV uses its vncRNAs as negative regulators to
maintain latency. Some LRAs like HDACis could increase the
levels of vncRNAs, consequently reducing their effectiveness
to revert latently infected cells. Our results suggest that the
best treatment to avoid the repressive effects of vncRNAs
is to use an HMTis like chaetocin, together with P-TEFb
enhancers. Treatment that could have potential for efficient
reactivation of the HIV-1 provirus should be clinically
tested.
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Systems biology studies the structure and dynamics of biological systems using

mathematical approaches. Bottom-up approaches create models from prior knowledge

but usually cannot cope with uncertainty, whereas top-down approaches infer models

directly from data using statistical methods but mostly neglect valuable known

information from former studies. Here, we want to present a workflow that includes

prior knowledge while allowing for uncertainty in the modeling process. We build not

one but all possible models that arise from the uncertainty using logical modeling and

subsequently filter for those models in agreement with data in a top-down manner. This

approach enables us to investigate new andmore complex biological research questions,

however, the encoding in such a framework is often not obvious and thus not easily

accessible for researcher from life sciences. To mitigate this problem, we formulate a

pipeline with specific templates to address some research questions common in signaling

network analysis. To illustrate the potential of this approach, we applied the pipeline to

growth factor signaling processes in two renal cancer cell lines. These two cell lines

originate from similar tissue, but surprisingly showed a very different behavior toward

the cancer drug Sorafenib. Thus our aim was to explore differences between these cell

lines regarding three sources of uncertainty in one analysis: possible targets of Sorafenib,

crosstalk between involved pathways, and the effect of a mutation in mammalian target

of Rapamycin (mTOR) in one of the cell lines. We were able to show that the model

pools from the cell lines are disjoint, thus the discrepancies in behavior originate from

differences in the cellular wiring. Also the mutation in mTOR is not affecting its activity in

the pathway. The results on Sorafenib, while not fully clarifying the mechanisms involved,

illustrate the potential of this analysis for generating new hypotheses.

Keywords: systems biology, logical modeling, model checking, constraint based modeling, signaling pathways

1. INTRODUCTION

Logical modeling has been shown to be a powerful tool for representing and analyzing biological
systems (Saez-Rodriguez et al., 2007; Wang et al., 2012; Grieco et al., 2013). The main advantage
in comparison to the standard modeling formalism in systems biology, Ordinary Differential
Equations (ODE) modeling, is the low number of parameters, therefore logical models are mainly
used to build large models that would be too complex for ODEs (Abou-Jaoudé et al., 2016). These
models are usually built in a bottom-up manner, which means all available information about the
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system is gathered and validated on new data (Figure 1B). A
main issue when building these models is that uncertainty cannot
be included into the model, e.g., if an influence between two
components is controversial in the literature. Since only one
model is created, the modeler needs to make an assumption
neglecting the uncertain information. A second popular strategy
for modeling is to use a top-down approach where the model is
inferred directly from data, but here prior knowledge about the
system is neglected (De Smet and Marchal, 2010).

As a consequence, alternative approaches have become more
popular, where uncertainty is included into the modeling process
by either building more than onemodel or by adapting the model
through training. For exploring a wide range of models that is
able to show a certain dynamical behavior, called family or pool
of models, there are different methods available. The group of
Saez-Rodriguez et al. developed a software CellNOptR to train a
candidate model to data, accounting for topological uncertainties
(Terfve et al., 2012). The output is a family of models selected for
an optimality criterion, but cannot guarantee completeness due
to stochastic search. The software caspo by the group of Siegel
et al. uses Answer Set Programming to infer a family of logical
models from experimental data based on optimization, where a
tolerance accounts for experimental noise. The resulting family
of models then represents all optimal models that reproduce the
data and the software provides several analysis tools to explore
properties of the models, such as classification for input/output
behavior or experimental design (Videla et al., 2017). A similar
method using time series data for inferring a model pool showed
to be more precise than caspo (Ostrowski et al., 2016). A different
approach was developed by our group, where uncertainty in
parameters of the model, such as an uncertain sign of an edge,
is encoded into the model definition (Klarner et al., 2012)
and all possible models that arise from this uncertainty are
enumerated. Subsequently the models are tested for satisfiability
for data without an optimality criterion (Figure 1A), which was
implemented using efficient formal verification techniques in
Tremppi (Streck et al., 2015) and in TomClass (Klarner, 2014).
Even though we employ the software from our group for the
analysis in this paper, one could apply different software along
the pipeline for building the model pool or analyzing it.

While computing model pools and testing them for data
sets is computationally challenging, the analysis of potentially
hundreds or thousands of models is not straight-forward in terms

FIGURE 1 | Workflow for our modeling approach in comparison to traditional modeling process. (A) First a generic model pool is created from all available information

including uncertainty. Then, the pool is filtered for data to find specific subpools, which can be analyzed for new information. (B) The traditional workflow creates one

model based on assumption, estimates parameter values by fitting the model to data and validates the model on additional data.

of the biological interpretation. Thus we propose a hypothesis-
driven approach for specific biological questions, where the use
of model pools allows us to test multiple hypotheses at the same
time and analyze their interdependencies. Mathematical models
are artificial constructs used to help understanding biological
processes. In order to receive meaningful results from amodeling
study, the biology needs to be transferred into mathematics and
the results need to be interpreted from a biological perspective.
In this paper, we address this task of incorporating biological
information into the formalism by expanding the workflow in
Figure 1 to a four-step pipeline. At first, the process of bottom-up
model building formalizes the biological phenomena into a prior
knowledge network, which we call system initialization. Here,
the regulatory graph and the logical equations are derived from
literature information. Then, the objective formalization includes
the aim of the study into the model setup, e.g., by adding extra
components or edges. After generating the model pool, the top-
down filtering process uses biological data that is not restricted to
be of a specific type such as steady-state or input-output behavior.
However, it requires a data formalization step. Finally, the pool
analysis examines the specific pool for new biological insight.

In previous work, we presented parts of this pipeline, i.e.
the objective of investigating crosstalk between two signaling
pathways in Thobe et al. (2014), as well as challenges for data
discretization and analysis in Streck et al. (2015) in context
of a specific software. Here, we generalize and expand this
pipeline by two additional objectives and analysis methods.
Especially in the context of signaling processes in cancer cells,
the identification of driver mutations is of great interest (Bozic
et al., 2010), thus one aim of our framework is to identify
driver mutations by a change in the logical function. The
second aim presented is testing the effect of drugs by
introducing them as new inputs to the system. Analyzing
pools containing possibly hundreds or thousands of models is
challenging. Here, we show a classification analysis to structure
the resulting models toward interesting features, as well as
extracting minimal mechanisms for a more detailed view on the
models.

We apply this pipeline to model two central signaling
processes involved in cancer, the mitogen-activated protein
kinase (MAPK) cascade and the mTOR pathway (Shaw and
Cantley, 2006; Saini et al., 2013), in two renal cancer cell (RCC)
lines. Both cell lines were treated with the Raf-inhibitor Sorafenib
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yet displayed a differential response in terms of apoptosis
induction (Kuznia, 2015). We hypothesized that the difference
between these cell lines might be caused by distinct wiring of
MAPK and mTOR signaling, which were shown to be connected
via crosstalk (Mendoza et al., 2011; Aksamitiene et al., 2012). A
rich dataset of time series measurement of key components in
both pathways was generated using a high-throughput method,
which was the foundation for the complex analysis presented in
this study.

This paper is organized as follows. The Methods section first
gives a brief introduction on the logical modeling framework and
a detailed description on the pipeline we developed. In the Results
section, the application on a signaling network is demonstrated,
where first the model building process with the corresponding
biological background is given, the data processing procedure
is described and the results of the analysis are presented.
Additionally, the biological interpretation is discussed and
future experiments are suggested to wrap up the application
section. Finally, the Discussion section exploits advantages
and shortcomings of the method showing potential future
extensions.

2. METHODS

2.1. Theoretical Background
The formalization of logical modeling for biological systems was
introduced by Kauffman (1969) and further refined by Thomas
(1991), which is the base for our work. However, we expanded
this formalism to incorporate uncertain information leading to
model pools (Klarner, 2014; Thobe et al., 2014, 2017; Streck, 2015;
Streck et al., 2015).

2.1.1. Logical Modeling
The topology of a biological system is defined as a directed
graph R = (V ,E, l), called interaction graph (IG), where the
nodes V = {1, ..., n} represent the components of the system that
are connected by edges e ∈ E ⊆ V × V called interactions,
which represent a regulation of one component by another. The
components adapt discrete values, called activity levels, and we
consider Boolean networks (BN) with two levels assigned to each
component B = {0, 1}, where 0 means inactive and 1 stands
for active. By assigning activity levels to every component of
the network, the state of the system s is defined by s :V →

{0, 1},∀v ∈ V : s(v) ∈ B. Here, the notation of a state is
specified as a sequence in the order ofV . In our approach, we add
information about the nature of a regulation to each interaction
using edge labels l :E → {+,−,¬+,¬−} (adapted from Klarner,
2014). In application, the labels {+,−} are assigned to edges that
represent well-known information, e.g., textbook knowledge, and
are therefore required to be present in every model, which we
call essential. In contrast, the labels {¬+,¬−} are assigned to
interactions that carry uncertainty, i.e., we not sure whether this
interaction is present or not, which we call optional. However, we
assume that the sign of an edge is known and exclude edges with
unknown or ambivalent sign due to complexity.

Having defined the wiring of the network, the regulation of
a component by its predecessors is defined by a logical function.

The conditions describing when a component becomes active can
be expressed using the logical operators ∨ (OR), ∧ (AND), and
¬ (NOT) in a formula fi for every component v ∈ V consistent
with the edge labels. This means that variables j are literals in f
for component i, if j → i is a possible edge. Then a positive edge
label has to cause an increasing value in the target component at
some point, whereas a negative edge label has to cause a decrease.
For optional edges, the increase or decrease can occur or that
value is constant. However, in case the regulation of a component
is uncertain of a component has optional incoming edges more
than one model can be build from the available information.
Then the set or all logical equations that are consistent with the
edge labels are created and form the so-called model pool. An
example is given in Figure 2.

2.1.2. Dynamical Behavior and Model Checking
In order to compare biological measurements with the dynamic
behavior of the models, we need to define the transition from
one state to another to generate the systems behavior over
discrete time steps. For this aim, different update strategies have
been developed, where some make assumptions on the timing
of events, e.g., in synchronous update all components change
in one transition, and others restrict the ordering of events,
e.g., stochastic updates randomly update a component. Here,
we employ asynchronous update, which is the least restrictive
strategy at the cost of being computationally expensive (Thomas,
1991). In this strategy only one component can change its value
per transition step, which means for fv(s) = ¬sv for a state
s = (s1, . . . , sv, . . . , sn) denote with sv = (s1, . . . ,¬sv, . . . , sn)
the state which differs from s in the value of the component v.
If no component changes f (s) = s a steady-state of the system is
reached. This update schedule produces every possible trajectory
emerging from a state, thus the dynamics are non-deterministic
which can be visualized in the so-called state transition graph
(STG). Here, the states are the nodes of the graph and the
transitions are edges.

After building the model pool from the available information,
we want to filter those model that are in agreement with observed
experimental data. Depending on the utilized software, either the
data can be implemented as continuous values (e.g., Terfve et al.,
2012) or needs to be discretized. Here, we want to describe two
different kinds of biological data: time-series measurements and
steady state observations. For this aim, we use temporal logics
that are able to describe an ordering or a sequence of events in
time, where computation tree logic (CTL) can cope with non-
deterministic sequences (Clarke et al., 1986) and are therefore
suited to explore the STG. For time-series measurements we
encode a series of states that should exist at some point in the
future and for steady states we encode the state of a component(s)
that should hold for every state in the future. These formulas
are then tested on the STG of the models using model checking.
This process can be computationally expensive, since the state
space exponentially increases with the number of components,
also the number of models can quickly add up to thousands of
models. For this reason, an efficient model checking software
should be employed, e.g., Tremppi (Streck et al., 2015) and
TomClass (Klarner, 2014).
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FIGURE 2 | Model definition to model checking visualized on a toy example. (A) IG with four components, edge labels and the corresponding functions resulting in

model pool of size three in (B). (C) shows time-series measurements for some activity a of B, C, and D, which is discretized by a threshold shown in green. The table

in (D) gives the discretized data for the four time points, which are encoded as CTL formulas in (E), where EF(X) is a CTL operator exists finally. This states that on

some path from an initial state the X holds true at some point. STGs in (F) of the three models in the pool show the process of model checking for the CTL formula

indicated by green states and edges, where the second model is not in agreement with the data.

2.1.2.1. Toy example
In Figure 2, model definition to model checking is visualized
for a toy example. Here, an IG with four components is given,
where the regulation of components A, B, and D is known,
indicated by the edge labels and the corresponding functions.
Component C has an uncertain regulation by component D,
therefore the edge is labeled as not inhibiting and the function
for C is undefined (Figure 2A). The resulting model pool then
contains three different models that arise from the edge label.

The process of temporal encoding of data is shown for time-series
measurements, which is discretized by a threshold and encoded
as CTL formulas, where the CTL operator exists finally is used.
This operator states that the measurements must lie on one path
in the ordering of the measurements in the STG, where there is
no restriction made on how many states are visited in between
the measurements. The CTL language offers more operators that
could be employed depending on the type of data (Klarner et al.,
2012), e.g., reflecting that the measurement frequency was so
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FIGURE 3 | Pipeline for evaluating uncertainty in biological systems. For building the prior knowledge network and defining the uncertainties of the system, the system

initialization and objective formalization is necessary. The filtering process from the generic model pool to the specific model pool requires data formalization and the

interpretation of the final pool is done by pool analysis.

high that one can assume that all qualitative activity changes of
each component have been captured. However, in this paper we
used the most conservative form. Finally, the process of model
checking is visualized in Figure 2F showing that one model is not
in agreement with the data.

2.2. Pipeline for Modeling Uncertain
Systems
Based on the very general workflow in Figure 1, we want to
formalize in more depth how specific biological questions can
be addressed using model pools (Figure 3). In comparison to
the traditional workflow for building and analyzing one model,
there are similarities and differences. The main difference is
that the standard bottom-up approach creates one model to
test a single hypothesis, which is validated using (formalized)
data and subsequently analyzed. Using model pools, the system
initialization and data formalization remains the same, but we
can test multiple hypothesis at the same time. This leads to a
higher complexity in both the formulation of the aim of the study
and the analysis of the model pool for biological information.
To this end, the workflow has been adopted and specified to
address common analysis themes for signaling networks. The
resulting pipeline, shown in Figure 3, contains four steps: system
initialization, objective formalization, data formalization, and
pool analysis.

In the following, we provide a detailed formal description for
the objective formalization and pool analysis. We assume that
for the system initialization, available information is gathered
and classified according to the theory presented in Section 2.1
for components, edges, and edge labels. Moreover, insight on
regulations of components can be included by defining logical
functions. This first step results in the prior knowledge network
(PKN), which forms the starting point for our analysis (Saez-
Rodriguez et al., 2011).

2.2.1. Objective Formalization
In the second step of our pipeline, we want to include the
objective of the analysis into the PKN. In a simple setup, this
could mean adding optional edges as hypotheses, but there are

also more complex aims that require changes in the PKN. The
first objective we identified, was to examine crosstalk between
two pathways while preserving the dynamical properties of each
pathway, presented in Thobe et al. (2014). Here, we want to
present two different objectives: Finding driver mutations and
drug testing.

2.2.1.1. Finding driver mutations
Cancer cells often accumulate mutations that are distinguished
as either driver or passenger mutations. A lot of effort has been
made to identify the driver mutations, since they are assumed
to be a major cause for cancerous behavior (Greenman et al.,
2007; Bozic et al., 2010). This abnormal behavior is due to the
fact that the mutations affect the protein they are encoding
in quality, changed sequence of the protein, or quantity, such
as overexpression or knock-out of a gene. These effects cause
changes in the regulatory network leading to an insensitivity
of the component from its regulators, e.g., constantly active
receptors. We aim to identify these changes in the regulation of
a component in our approach, which we were able to confirm in
previous work (Streck et al., 2016).

We account for mutations in components of a model
with uncertain effect by setting the respective incoming and
outgoing edges to optional even if these connections are textbook
knowledge. In case more detailed information on the effect of the
mutation is available, only a subset of edges can be set to optional.
Formally, the network R = (V ,E, l) is defined as in Section 2.1,
where the set of mutated components is given by Vm ⊆ V with
edges Em = {(u, v) ∈ E | v ∈ Vm ∨ u ∈ Vm}. The labeling lm of
edges in Em is set to:

lm(u, v) =

{

¬+ if (u, v) ∈ Em and l(u, v) = −

¬− if (u, v) ∈ Em and l(u, v) = +
.

Thus, the affected edges are allowed to either stay the same
or lose their function in the resulting model pool. If in the
specific pool an incoming edge is not observable in any model,
the mutated component becomes independent from its inputs
and the function of the component can either be set to 0 or 1
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indicating a loss-of-function or constitutively active mutation,
respectively. A lost outgoing edge of the mutated component can
indicate that the mutation affected the protein structure which
can result in a dysfunctional protein. However, we do not account
for gain-of-function mutations in this set-up, since this would
require to add new edges to the model or change the sign of an
edge. This would strongly increase the complexity of the study
and should be addressed only based on suggestive data in a case
by case way, which is no fit for this general set-up.

2.2.1.2. Drug testing
This objective aims to test qualitative effects of drugs on
pools of models, without knowledge of the “true” network.
Especially in cancer research, combinatorial therapies have
become increasingly popular to enhance efficiency and overcome
resistances (Ho et al., 2012; Manchado et al., 2016). Since we
cannot represent concentrations or generally quantitative effects,
the questions we want to address can be formulated as: where do
we have to interrupt the signaling process to achieve a certain
outcome. A similar study was done by Klinger et al. where
they predicted the model structure and treatment quantitatively,
however, the predictions resulting from the study were qualitative
nature (Klinger et al., 2013).

For this approach, we introduce drugs as new components
to the PKN and connect them with an inhibitory edge to their
target, since they are supposed to suppress the activity of their
target. For the network R

′ = (V ′,E′, l′) with f ′ as given logical
equations, an extended set of components V is given by V ′ ∪ VD

where vD ∈ VD is a set of drug components. The interactions
of the network are given by E = E′ ∪ ED where new edges
ED are added, which contain an edge for self-activation for each
new component to create the drug as input and an inhibitory
edge from vD to its target u, since the drug suppresses the
activity of its target. Similarly, the set of labels is composed of
the labels of the original network and the additional labels for the
drug components, where known interactions are labeled with an
essential label and uncertain effects with an optional label.

We can also include available information about the drug’s
mode of action into the logical function of its target. Usually
drugs are selected to have a dominant influence on their target,
for example through binding or modification it fails to interact
with its former regulators. In case the logical equation of a drug
target is known, we can directly translate this dominant effect on
the target u in a new logical equation:

fu = f ′u ∧ ¬vD.

However, if detailed information about the biochemical
properties of the drug on the target and other regulators is
missing, the logical equation of the target is not defined and all
possible regulations are generated in the pool.

2.2.2. Pool Analysis
After building the generic model pool from the PKN, this pool
of models gets reduced for those models that are valid for data.
Depending on the software, the data needs to be processed to
apply it to logical models usually by discretization (Dimitrova

et al., 2010; Gallo et al., 2015). As a result, we receive one or
more specific model pools that need to be analyzed. For this
aim, different kinds of analysis tools can be employed depending
on the aim and the size of the resulting model pool such as
statistical analysis (Thobe et al., 2014; Streck et al., 2016) or
optimization (Terfve et al., 2012; Videla et al., 2017). Here, we
want to present an analysis approach that allows a closer look at
classes of models as well as single models.

2.2.2.1. Classification
Depending on the study, this pipeline can lead to specific model
pools that contain too many models to analyze them by hand.
This analysis step aims to get an intuition for commonalities
or differences of models within the model pool, with respect to
properties of interest. For this goal, properties such as validity for
data or presence of an optional edge can be annotated to each
model by e.g., using a database. Then, we can group sets ofmodels
into classes and compare them according to these properties to
find difference between sets of models, for example we could
observe that two optional edges are present in the model pool
but occur mutually exclusive.

Here, the model pool is stored in a database and SQL queries
are used to classify the models. For the queries, properties or a
list of properties can be used as a classifier and are defined in the
parameter Classes. Also we can restrict the pool to a subpool
using the parameter Restriction, where we can select models
for their property, e.g., only including all models that carry
an optional edge. Mathematically, the analysis finds subsets of
models that have a non-empty intersection and computes the
cardinalities of these sets (Klarner, 2014). For this aim, an SQL
query is generated using statements of the form:

SELECT DISTINCT Classes FROM models WHERE Restriction,

where SELECT DISTINCT computes all combinations of
labels, i.e., subsets, of the selected Classes in the database
models, possibly restricted using WHERE. Additionally, COUNT
is used to determine the cardinality of each subset, i.e., the
number of models in a class later denoted as size of a class. It
is possible that classes are empty if there exists no model in the
pool with a particular label combination.

2.2.2.2. Minimal models
While the classification gives a broad overview on themodel pool,
we also want to look at single models in the pool. The selection
of models can be motivated by the objective and the biological
background, by the classification analysis or by general criteria
such as minimality. The criterion minimal can be interpreted in
different ways: structural minimality in terms of number of edges,
functional minimality in terms of shortest logical equations,
or models that require least number of transitions to fulfill
data. Each minimality can be interesting to regard separately or
in combination. Structural minimality is a common biological
assumption, where the system is assumed to have evolved in an
energetically optimal way and is therefore sparse. Along with the
number of interaction partners, the complexity of the regulation
formulated as logical function can be assumed to be rather
simple. Previous studies often used fixed rules for creating these
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functions, such as activation- inhibition function (Martin et al.,
2007), or optimized for short logical function (Videla et al., 2017).

Technically, this analysis counteracts the problem of
overfitting. In general, the more degrees of freedom are available
to a system, the easier is can produce various dynamics, thus our
method has a bias toward building dense models. It is therefore
beneficial to identify minimal structures or functions.

2.2.2.3. Interpretation of analysis results
Finally, the results from the analysis need to be transferred
and interpreted to gain biological insight, which is not straight
forward. Since the models are qualitative, the level of abstraction
is high and the fact that we are looking at pools of models
increases the complexity. However, by specifying clear objectives
and predefined analysis options, the pipeline guides the modeling
process and can deliver valuable information for experimental
design or further modeling steps (Streck et al., 2015; Thobe et al.,
2017).

3. RESULTS

3.1. Application on Growth Factor
Signaling in Renal Cancer Cells
After presenting a pipeline to build model pools for different
objectives and analysis options, we wanted to apply this pipeline
to model growth factor signaling in two renal cancer cell lines,
MZ1851RC and MZ1257RC. Motivation for this study was an
observation that cell line MZ1851RC showed apoptosis after
being treated with the drug Sorafenib while MZ1257RC seemed
to be resistant (Kuznia, 2015). Sorafenib was developed to inhibit
pathways controlling proliferation and cell survival and was
shown to have anti tumor activity in colon, breast, and non-
small lung cancer (Wilhelm et al., 2004; Gadaleta-Caldarola
et al., 2015). The multikinase inhibitor Sorafenib was designed to
suppress activity of Raf kinases in the MAPK pathway (Liu et al.,
2006), however, it also affects a wide variety of receptor tyrosine
kinases (RTKs) (Wilhelm et al., 2004). Very recently, Sorafenib
was shown to inhibit the IGFR in vitro (Yaktapour et al., 2013),
which indicates that Raf comprises an uncertain drug target in
the renal cancer cell lines tested with our approach.

A second uncertainty was introduced by a mutation in the
component mTOR in cell line MZ1851RC, but the effect of
this mutation is unknown (Kuznia, 2015). A third uncertainty
was caused by crosstalk between the MAPK pathway and PI3K
signaling (Figure 4A), which was shown to compensate drugging
of one of the pathways (Mendoza et al., 2011; Aksamitiene et al.,
2012). Thus, the overall aim of this study was to clarify if the
deviating behaviors are caused by differences the cellular wiring,
which effect the mutation has and which targets Sorafenib is
affecting.

3.2. Objective Formalization
The objective of this study splits into three different aims:
investigating crosstalk between MAPK and PI3K pathways,
finding the target for Sorafenib, and clarifying the effect of the
mutation in mTOR. The PKN was extracted from literature,
where the MAPK model was based on work by Kholodenko

(2000) and the PI3K model was adapted from Courtney et al.
(2010), also it is an adaption from a previous study (Thobe
et al., 2014). For investigating the wiring between MAPK
and PI3K pathway, candidate crosstalks were added. In detail,
strongly activated MAPK signaling was found to cross-activate
PI3K signaling, i.e., Erk was observed to phosphorylate Tsc2
suppressing it and Erk was also shown to phosphorylate Raptor,
where both crosstalks activate mTORC1 signaling similarly to
Akt (Roux et al., 2004; Winter et al., 2011). For simplicity,
we summarized this effect to one crosstalk. Moreover, a cross-
activation of EGFR on PI3K through Ras was shown, which is
downstream of EGFR and upstream of Raf (Wong et al., 2010).
A study of Will et al. found that PI3K inhibition, but not Akt
inhibition, causes rapid decrease in wild type Ras activity and in
Raf/Mek/Erk signaling concluding that PI3K cross-activates the
MAPK cascade (Will et al., 2014). For the PKN, the crosstalk
edges were labeled as optional edges and the edges within a
pathway were assumed to be essential, shown in Figure 4B.

In order to test the effect of Sorafenib, it was added as
additional input to the system as well as optional edges to possible
targets: Raf, EGFR, and IGFR. Note that EGFR as Sorafenib target
is a hypothesis and not based on experimental data. Moreover,
one cell line, MZ1851RC carries a mutation in mTOR with
unknown effect for mTORC1, thus the outgoing edge to IGFR
was set to optional. A full list of optional edges in given in
Figure 4D, also for some components the logical function can
be set, since they only have one regulator (Figure 4C). All other
components have undefined logical functions, which gives rise to
the generic model pool.

Moreover, components that were neither measured nor
perturbed were excluded from the model to reduce the
complexity. For example, Mek and Tsc were not considered in
the model, since both were lined up in a cascade as components
with single input and output, thus deleting them does not pose
problems for the model dynamics.

3.3. Data Formalization
3.3.1. Experiments Show Differential Behavior of Cell

Lines
For our investigation, we used two different data sets: Western
blot measurements of mTORC1 activity over time and a high
throughput assay both published in Kuznia (2015). In the western
blot measurements, the activity of mTORC1 was measured by its
targets p70S6K (S6K) and S6RP in MZ1257RC and MZ1851RC
cells. Here, the cells were either treated with DMSO or Sorafenib
and the phosphorylation of the mTORC1 targets was measured
over time. Regarding the measurements until 12 h, MZ1257RC
cells showed a significant decrease in phosphorylation levels
for S6K and S6RP. However, MZ1851RC cells only showed a
reduction in S6RP phosphorylation for later time points, but the
phosphorylation of S6K remained high. The 24 h time point
is not considered, since we are only interested in signaling
effects and this measurement is likely to be influenced by
transcriptional effects. S6K was used as the read-out for the
mTORC1 activity in the formal encoding of theWestern blot data
as CTL formulas WB.DMSO, WB1257Sora and WB1851Sora
in the Table 1. Here, both cell lines show active mTORC1 for
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FIGURE 4 | Model building of growth factor signaling processes (A) Scheme of MAPK cascade and PI3K signaling. (B) Interaction graph of the MAPK (left hand side)

and PI3K (right hand side) model marked with solid lines and optional influence of Sorafenib and crosstalk marked with dashed lines. (C) Predefined logical rules for

regulations of components without optional incoming edges. (D) List of optional edges added to the network with references.

DMSO treatment throughout the measurements, thus a steady
state was assumed and encoded in the CTL formula accordingly.
For Sorafenib treatment, cell line MZ1257RC shows a steady
state with decreased S6K phosphorylation, therefore mTORC1
was set to 0. In contrast, cell line MZ1851RC has stable S6K
phosphorylation, thus mTORC1 was set to 1.

After observing differences in the activity of mTORC1 in
the Western blots toward Sorafenib treatment, we wanted to
investigate where the differences in the upstream regulation
of mTORC1 originate from. For this aim, a high throughput
approach using the Bio-Plex R© system was applied (Kuznia,
2015). Here, the cells were unstimulated and not starved but
treated with Sorafenib or DMSO and measured at different time
points over a total period of 36 h in two experiments. In detail, the

activity of the PI3K/mTORC1 signaling pathway was measured
by the phosphorylation of Akt, and p70S6K as well as the MAPK
activity was determined through the phosphorylation of Erk.
Moreover, the receptors EGFR, and IGFR were included into the
experiment, since we were interested whether the receptors are
targeted by Sorafenib and to account for the feedback processes.
For the complete dataset see Kuznia (2015), processed data is
listed in the Supplementary Table 1.

3.3.2. Discretization of Time Series Data
In order to fit the models in to pool to the time series
measurements, the data needs to be discretized. The choice of
discretization method is influenced by the kind of data acquired
and the experimental method used, for example with large data
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TABLE 1 | Filtering model pool using model checking.

CTL formula

WB.DMSO: EF(AG(mTORC1=1)) IS:Sora=0

WB1257Sora: EF(AG(mTORC1=0)) IS:Sora=1

WB1851Sora: EF(AG(mTORC1=1)) IS:Sora=1

Bp1851Sora: EF(mTor=1&Akt=0&EGFR=0&Erk=0&IGFR=1&EF(mTor=1&Akt=1&

EGFR=1&Erk=1&IGFR=1&EF(mTor=0&Akt=0&EGFR=0&Erk=0&

IGFR=1))) IS:Sora=1

Bp1851DMSO: EF(mTor=1&Akt=1&EGFR=1&Erk=1&IGFR=1&EF(mTor=1&Akt=1&

EGFR=1&Erk=1&IGFR=0&EF(mTor=1&Akt=0&EGFR=1&Erk=1&

IGFR=0&EF(mTor=0&Akt=0&EGFR=0&Erk=0&IGFR=0)))) IS:Sora=0

Bp1851Sora2: EF(mTor=1&Akt=1&EGFR=1&Erk=1&IGFR=1&EF(mTor=0&Akt=1&

EGFR=1&Erk=1&IGFR=1&EF(mTor=1&Akt=1&EGFR=1&Erk=1&

IGFR=0&EF(mTor=1&Akt=0&EGFR=0&Erk=0&IGFR=0&EF(mTor=0&

Akt=0&EGFR=1&Erk=1&IGFR=0&EF(mTor=1&Akt=0&EGFR=1&Erk=1&

IGFR=1)))))) IS:Sora=1

Bp1851DMSO2: EF(mTor=1&Akt=1&EGFR=1&Erk=1&IGFR=0&EF(mTor=0&Akt=1&

EGFR=0&Erk=1&IGFR=0&EF(mTor=0&Akt=0&EGFR=0&Erk=1&

IGFR=0&EF(mTor=1&Akt=1&EGFR=1&Erk=1&IGFR=0&EF(mTor=0&

Akt=0&EGFR=0&Erk=0&IGFR=0&EF(mTor=0&Akt=0&EGFR=1&Erk=1&

IGFR=0&EF(mTor=1&Akt=1&EGFR=1&Erk=1&IGFR=0)))))))

IS:Sora=0

Bp1257Sora: EF(mTor=1&Akt=1&EGFR=1&Erk=1&EF(mTor=0&Akt=0&EGFR=0&

Erk=0&EF(mTor=0&Akt=0&EGFR=1&Erk=0&EF(mTor=1&Akt=1&

EGFR=1&Erk=1&EF(mTor=0&Akt=0&EGFR=1&Erk=0&EF(mTor=1&

Akt=0&EGFR=1&Erk=1)))))) IS:Sora=1

Bp1257DMSO: EF(Delta=0&mTor=1&Akt=1&EGFR=1&Erk=1) IS:Sora=0

Bp1257Sora2: EF(mTor=0&Akt=0&EGFR=0&Erk=0&EF(mTor=0&Akt=1&EGFR=0&

Erk=0&EF(mTor=1&Akt=1&EGFR=1&Erk=1&EF(mTor=1&Akt=1&

EGFR=1&Erk=0&EF(mTor=1&Akt=0&EGFR=1&Erk=1&EF(mTor=1&

Akt=1&EGFR=1&Erk=1)))))) IS:Sora=1

Bp1257DMSO2: EF(mTor=1&Akt=0&EGFR=1&Erk=1&EF(mTor=1&Akt=0&EGFR=1&

Erk=0&EF(mTor=1&Akt=1&EGFR=1&Erk=1&EF(mTor=0&Akt=0&

EGFR=0&Erk=0&EF(mTor=1&Akt=1&EGFR=1&Erk=1))))) IS:Sora=0

CTL formulas derived from Western blot and Bio-Plex® experiments. For denoting the CTL formulas, the following semantics are used: EF(X): is a CTL operator exists finally. This

states that on some path from an initial state the X holds true at some point. AG(X): is a CTL operator all globally. This states that X has to hold for all future states, i.e., X is in a steady

state. v=b: where v ∈ V,b ∈ B states that value of a component v is set to b. IS: declares the initial state and is a list of boolean constraints on the values of the components. A state

is considered initial, if all the constraints are satisfied.

sets statistical methods provide good results, but with small data
sets the choice is more difficult (Dimitrova et al., 2010). Here, we
opted to show a simple approach by using the arithmetic mean as
threshold. More specifically, the data was discretized by defining
for each experiment e and component v, a threshold

θev =

∑

t

∑

x mevtx

|t||x|

where, mevtx is the measured activity of component v in the
experiment e with treatment x. The total number of time points
is |t| and the total number of treatments is |x|.

Since the cells were cultivated and treated in parallel, the
phosphorylated levels for both treatments were expected to
be comparable. Thus, the threshold for e.g., Erk is the same
mean value under both Sorafenib and DMSO treatment within
each cell line for each experiment. Moreover, the standard
deviation for each component was calculated in order to avoid
the problem of discretizing a component that does not change
over time. By looking at small standard deviations relative to the

mean, IGFR measurements for MZ1257RC in both experiments
were identified as problematic (see Supplementary Table 1).
Comparing the IGFR levels between the cell lines, we decided to
exclude this data.

Since we are interested in the signaling processes, only
measurements until 8 h were included. The resulting CTL
formulas are listed in Table 1, where all Bioplex measurements
were encoded as transient states, due to the fact that they
changed throughout the 8 h of measurement. An exception is the
data set Bp1257DMSO, which was encoded as steady state (see
Supplementary Table 1MZ1257RC-DMSO Exp1). Note that the
discretization of data is not always straight-forward, thus we
excluded data which was problematic mathematically (such as
IGFR) or had poor quality in the measurements.

3.3.2.1. Robustness of results
As a basic test of robustness with respect to the discretization
method being used, we additionally performed a discretization by
median instead of mean value. This change in the discretization
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TABLE 2 | Number of models consistent with CTL formulas.

CTL formula Pool size

(A)

WB.DMSO 15,026

WB1851Sora 5,902

Bp1851Sora 10,080

Bp1851DMSO 12,474

Bp1851Sora2 5,632

Bp1851DMSO2 7,216

Rp.1851 293

(B)

WB.DMSO 15,026

WB1257Sora 15,026

Bp1257Sora 9,984

Bp1257DMSO 12,096

Bp1257Sora2 12,393

Bp1257DMSO2 10,032

Rp.1257 1017

Filtering for CTL formulas gives pool sizes as the number of models in agreement. Rp.1851

and Rp.1257 are the cell line specific pools as the intersection of the data sets shown in

(A,B), respectively.

threshold had a negligible effect on both cell lines: 5.7% of the
boolean values changed forMZ1257RC and 7.1% forMZ1851RC.
Furthermore, we repeated the subsequent analysis using the
median discretization, and observed only minor changes in the
size of the model pool for cell line MZ1257RC and no change in
the resulting biological interpretation of that pool.

3.4. Pool Analysis
After deriving the PKN from the literature and including the
objectives of the study, the generic model pool was created. As a
result from combining of all optional edges and logical equations
the pool contains 19,404 models. In order to find biologically
relevant models, the third step of the pipeline generated the
specific pool(s) by filtering the generic pool for those models that
are able to simulate experimentally observed behavior for the two
RCC cell lines.

3.4.1. Cell Line Specific Model Pools
Each CTL formula has a non-zero pool size and is therefore
feasible for our analysis (see Table 2). To determine the cell line
specific models, we calculated the intersection of the different
subpools for cell line MZ1257RC as Rp.1257 and for cell line
MZ1851RC as Rp.1851:

• Rp.1851 = WB.DMSO ∩ WB1851Sora ∩ Bp1851Sora ∩

Bp1851Sora2 ∩ Bp1851DMSO ∩ Bp1851DMSO2

• Rp.1257 = WB.DMSO ∩ WB1257Sora ∩ Bp1257Sora ∩

Bp1257Sora2 ∩ Bp1257DMSO ∩ Bp1257DMSO2

Note that both pools are required to fulfill WB.DMSO, since
this dataset was identical for both cell lines. Although the single

CTL formulas resulted in relatively large pools, containing 5,000–
15,000 models, the intersection for the cell line specific pools
shows a strong reduction with 1017 models for Rp.1257 and
293 models for Rp.1851 (see Table 2). Thus, there exists a cell
line specific pool for each cell line. One interesting question is
whether these cell line specific pools share any models, which we
addressed by calculating the intersection between Rp.1257 and
Rp.1851. The result is an empty set, whichmeans the model pools
Rp.1257 and Rp.1851 are disjoint. In the next step, we wanted to
further characterize and explore these cell line specific pools for
information on crosstalk and Sorafenib targets.

3.4.2. Classification Shows Differences Between Cell

Lines
Besides the sizes of the pools and the information about the
intersection of subpools, we did not receive any information
about the models within a pool yet. Since we were interested in
the structure of the models, especially the wiring of Sorafenib and
crosstalk edges, we selected the classification analysis from the
pipeline. Here, we classified for the number of optional edges and
the presence of an optional edges. As a result, all models within
one class have the same interaction graph, thus only differ in
their logical functions (see tables in online repository). Looking at
these classes, we can state that for both specific pools there are no
rejected edges, since each edge appears in at least one model. This
also means that we cannot exclude any of the Sorafenib targets
for both cell lines. We can visualize these results by showing the
frequency of edges across a pool in Figure 5, where we define
the frequency of an edge as the number of models containing
this edge divided by the number of models in the pool. Here,
the graphs (A) and (B) for the full pools of each cell line show
differences in the frequency of the optional edges, especially in
the Sorafenib targets and the feedback. While in MZ1257RC
the frequency of Sora influences is high, in MZ1851RC they
are low especially for IGFR and EGFR. Moreover, one of the
objectives was to identify the effect of the mutation in mTOR on
the feedback in cell line MZ1851RC, where in Figure 5B 100% of
themodels in the pool Rp.1857 contain this feedback, while in the
other cell line this value only reaches 71%. Also we can observe
that every optional edge is present, since no edge is missing.

We can also restrict the classification to a subset of models,
e.g., shown in the Figures 5C,D. For cell line MZ1257RC, we
selected all models that contain an activating edge from Sorafenib
to Raf, where we can observe an enrichment in the crosstalk from
PI3K to Raf compared to the full pool (Figure 5C). In contrast,
if we filter for all models with an edge from Sora to EGFR in cell
line MZ1851RC (Figure 5D), the connection between Sora and
IGFR is lost, which means that there is no model containing both
edges. Moreover, the frequency of the connection between EGFR
and PI3K is reduced. However, since these effects are statistics
across a pool of models, it is hard to draw any conclusions about
single models.

3.4.3. Minimal Mechanisms for Sorafenib Targets
Although the classification analysis provides a good overview and
intuition about the cell line specific pools, the result shows that
a more detailed view can provide more information. Looking at
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FIGURE 5 | Classification of specific pools for both cell lines, where the color of an optional edge gives the frequency in the respective subpool. In (A) all 1017 models

for cell line MZ1257RC are visualized and in (C) the subpool of 193 models that contain the edge from Sora to Raf is shown. In (B) all 293 model of cell line

MZ1851RC are presented and in (D) a subpool of 72 models with an edge from Sora to EGFR are shown.

theminimal structures or mechanisms of each pool, we wanted to
extract more information on how the crosstalk might be linked to
the Sorafenib mechanism. For this aim, we analyzed the cell line
specific pools for two features: the number of Sorafenib targets
and possible crosstalk mechanisms. Due to the large number of
models in the pools, we separated the pool for three scenarios: no
influence of Sorafenib, meaning that all three optional outgoing
edges of Sora are not present, Sorafenib has one target only,
Sorafenib has exactly two targets and Sorafenib has exactly
three targets. In Table 3, the minimal models according to these
scenarios for the pool Rp.1257 and in Table 4 for the pool
Rp.1851 are listed.

The specific pool for MZ1257RC shows that every
combination of Sorafenib target from none to all is present
in the pool, thus we cannot exclude any hypotheses in this

cell line (see Table 3). However, we can see that every model
contains at least one crosstalk edge and every edge appears in
a minimal model. For one Sora target, there is always a basic
crosstalk from the MAPK pathway to PI3K signaling either by
EGFR on PI3K or by Erk on mTORC1. For Raf, additionally
the crosstalk from PI3K on Raf becomes necessary, which we
already identified in Figure 5C. For dual targets in Table 3C,
IGFR/EGFR requires the cross-activation from EGFR on PI3K
or the feedback, IGFR/Raf require (PI3K,Raf) in combination
with any of the other crosstalk or the feedback and EGFR/Raf
needs (PI3K,Raf) and one crosstalk. In case all three targets are
affected by Sora, the (PI3K,Raf) edge and any of the crosstalks or
the feedback are required.

The minimal structures in the second cell line MZ1851RC
exclude two scenarios: IGFR/EGFR as dual targets (as shown in
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TABLE 3 | Minimal mechanisms for Sorafenib targets and crosstalk in Rp.1257.

Sorafenib

targets

(EGFR,

PI3K)

(Erk,

mTORC1)

(mTORC1,

IGFR)

(PI3K,

Raf)

(A) None 0 1 0 0

(B) IGFR 1 0 0 0

0 1 0 0

EGFR 1 0 0 0

0 1 0 0

Raf 1 0 0 1

0 1 0 1

(C) IGFR/EGFR 1 0 0 0

0 0 1 0

IGFR/Raf 1 0 0 1

0 0 1 1

0 1 0 1

EGFR/Raf 1 0 0 1

0 1 0 1

(D) All 1 0 0 1

0 0 1 1

0 1 0 1

Minimal models after classification of Rp.1257 for (A) no Sorafenib targets, (B) exactly one

target, (C) exactly two targets, and (D) all three possible targets are affected.

TABLE 4 | Minimal mechanisms for Sorafenib targets and crosstalk in Rp.1851.

Sorafenib

targets

(EGFR,

PI3K)

(Erk,

mTORC1)

(mTORC1,

IGFR)

(PI3K,

Raf)

(A) None 0 1 1 0

1 0 1 0

(B) IGFR 1 0 1 0

0 1 1 0

EGFR 1 0 1 0

0 1 1 0

Raf 1 0 1 1

0 1 1 1

(C) IGFR/EGFR

IGFR/Raf 0 1 1 1

1 0 1 1

EGFR/Raf 0 1 1 1

1 0 1 1

(D) All

Minimal models after classification of Rp.1851 for (A) no Sorafenib targets, (B) exactly one

target, (C) exactly two targets, and (D) all three possible targets are affected.

Figure 5D) and all three targets simultaneously. Table 4 shows
models in the pool that are not affected by Sorafenib. Compared
to cell line MZ1257RC, there are similarities and difference in
the model structures. Raf as a Sorafenib target again requires the
edge from PI3K on Raf to be present and also the models always
require a crosstalk from the MAPK pathway on PI3K signaling,
but additionally the feedback is essential for every model.

3.4.4. Interpretation of Analysis Results
The minimal models give an overview about how the system
could compensate the influence of the inhibitor to fit the data
for different levels of influence. For this aspect the cell lines
show similarities and differences in their model structures, where
two trends can be extracted from the minimal mechanisms.
First, all models require at least one crosstalk edge to be able to
produce trajectories that match the data we applied. Interestingly,
adding more Sorafenib targets most often does not enforce
more or different crosstalk edges, with the exception of Raf.
Within Rp.1851 the mechanisms for every Sorafenib target and
all combinations show the identical minimalmechanism, plus the
edge for Raf. A possible explanation for this observation could
be the symmetrical structure of the model, in particular when
the feedback is active as it is in every model of Rp.1851. Both
pathways consist of a cascade of activating edges with a negative
feedback on the Sorafenib target. It would be interesting to apply
data which breaks with this symmetry, e.g., with a PI3K inhibitor
to block the crosstalk.

The second clear trend we can identify from the results is
that Raf as Sora target requires the cross-activation from PI3K
on Raf. Since Raf is the designated Sorafenib target, this result
is interesting. Looking at the PKN structure and the data, we
can see that Erk becomes active under Sorafenib treatment and
the only activator for Erk is Raf. In the MAPK pathway, Raf
is activated by EGFR, which itself is inhibited by Erk. Thus, if
Erk should become and stay active over longer time periods as
shown in the data, Raf needs another activator to compensate the
inhibition through Sorafenib. However, Sorafenib was described
to have a paradoxical effect on the MAPK pathway. While, in
cell lines carrying a BRAF mutation the signaling was efficiently
blocked, cell lines with WT-BRAF showed an activation of
Erk (Hatzivassiliou et al., 2010; Heidorn et al., 2010; Poulikakos
et al., 2010). Thus, further investigations are necessary to exploit
whether this observation is an artifact of the model or has
biological relevance. In detail, paradoxical activation by Sorafenib
and the role the crosstalk from PI3K to Raf would need to be
examined, which would require a refined model where the edge
from Sorafenib on Raf could also be activating and more data,
e.g., an experiment with a PI3K inhibitor would be interesting in
this context.

3.4.4.1. Overlap of Sorafenib targets
Another general question is, whether we assume Sorafenib to
have the same targets in both cell lines. One could argue that
the cell lines could differ in their internal wiring meaning
the crosstalk, but the biochemical targets of Sorafenib should
be independent of cell lines. Assuming that all three targets,
IGFR, EGFR, and Raf, are expressed in both cell lines, the
intersection of the results in Tables 3, 4 would further narrow
down possible targets. In that case, we could exclude the case
of Sorafenib affecting all targets simultaneously, since in cell
line MZ1851RC there are no models that have IGFR, EGFR,
and Raf as targets. Moreover, the combination IGFR/EGFR is
not present in Rp.1851, thus either Sorafenib targets either one
of the receptors by themselves or additionally Raf in these cell
lines. Even though these results are not clear, they can support
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and guide further studies, especially experiments where receptors
are stimulated additionally to the drug treatment would be
beneficial.

3.4.4.2. Models without Sorafenib targets
A surprising result of the analysis is the presence of models
without a Sorafenib target. In cell line MZ1257RC, <1% of the
models have no Sorafenib target, while the pool for MZ1851RC
16% of the models fall into this category. Since the data
clearly shows an effect of the drug on components in this
pathway, we expected all models to have at least one target
of Sorafenib to be influenced. Thus, the data set from cell
line MZ1851RC seems to be not restrictive enough for every
model to require an interaction from Sorafenib. Since only a
subset of components is measured, some models can match
the data by specific initial states. Here, additional data would
be beneficial to refine the results, especially measuring more
components would reduce the degree of freedom for fitting the
data.

4. DISCUSSION

In this paper, we present an alternative approach to standard
modeling procedures. Instead of building and validating one
model, we incorporate uncertain information or hypotheses to
build a pool of models that is then filtered for data and analyzed
using specific strategies. An advantage of this method is that we
can test multiple hypotheses at the same time, but it comes at the
cost of high complexity and challenging analysis. For this reason,
we created a pipeline with specifically defined objectives and
analysis templates that the modeler can select and combine. In
addition to templates for objectives, data formalization and pool
analysis presented in previous work (Thobe et al., 2014, 2017;
Streck et al., 2015), we introduce two new objectives, namely
finding driver mutations and drug testing, as well as two analysis
options, namely classification and minimal models.

In the second part of the paper, the pipeline is applied to
study the uncertain wiring and effect of a drug in cancer cells
based on a rich data set. Two RCC cell lines, MZ1257RC and
MZ1851RC, were observed to behave differently upon Sorafenib
treatment, thus we tested possible drug targets in the MAPK and
PI3K signaling and also investigated possible crosstalk between
these pathways in a cell line specific manner, incorporating
a mutation with uncertain effect as objectives. As a result, a
substantial reduction from 19,404 for the initial pool to 1,017
for MZ1257RC and 293 for MZ1851RC was observable, and the
empty intersection of both pools shows that the cell line specific
models indeed have a different wiring. In order to cope with
the complexity of having hundreds of models as outcome of the
study, we developed different analysis tools. Here, we showed that
classification of the pool can provide an overview on the models
in the pool and give information on essential or neglected edges.
In the case study, the classification showed that the feedback from
mTORC1 on IGFR was active in both cell lines. We had set this
edge to optional since the cell line MZ1851RC carries a mutation
in mTOR and we hypothesized that this affects the feedback. As
a result, all models in Rp.1851 show the feedback in their models

and thus the mutation does not affect the function of mTORC1
toward IGFR. However, for cell line MZ1257RC, which does not
carry a mutation in mTOR, only 71% of the models in the pool
contain this edge. An explanation for this could be that we had
to exclude the data for IGFR in the Bioplex experiment, since
the variance of the data was too low to allow for a meaningful
discretization, which could also be the reason for the larger model
pool in comparison to MZ1851RC.

For the crosstalk and the Sorafenib mode of action the
classification analysis showed no clear trend, since the results
are complex and hard to interpret. For this reason, we listed the
minimal models according to the number of Sorafenib targets
and the required crosstalk to gain more detailed information
on the simplest solution (Tables 3, 4). Even though we cannot
exclude any Sorafenib target and crosstalk in the analysis, we
are able to identify patterns, where specific Sorafenib targets
require different crosstalk edges to be present, e.g., Raf requires
a crosstalk from PI3K on Raf. Another important observation
from the classification was that there are models in the pools of
both cell lines without any interaction between Sorafenib and
its target. The conclusion from this result is that the data was
not restrictive enough to exclude these models and further data
is necessary resolve this issue. However, in case we would only
fit one model to the data, we would have missed this lack of
expressiveness.

The strength of underlying approach is based on its paradigm
of considering possibly huge sets of models for testing and
comparison. Consequently, it does not scale as well as single
model approaches. The software utilized here is limited by its
model checking tool NuSMV, where more than 50 components
are not solvable within reasonable time. For the analysis
presented in this paper, the program was run on a Ubuntu
17.10 workstation with a processor i7-7700, 3.6 GHz, and 32GB
RAM. The script with 10 components took 143 minutes in
TomClass, which included building the pool, model-checking,
and classification of 19,404 models. Tools like caspo list running
times of approximately 56 mins for models of size 45 generating
a model pool with 384 models and thus can still handle medium
sized models (Videla et al., 2017). The software Tremppi was
shown to be able to handle a model pool of size 259,200 and
perform model-checking of 40 data sets within 151–177 min
depending on parameter settings on a similar workstation (Streck
et al., 2016). In general, the kind of models that are feasible for
this approach are a trade-off between number of components and
number of uncertain edges, the latter of which affects the size of
the model pool. This approach aims at exploring uncertainties in
small to medium sized models, which is well-suited to represent
interesting processes such as signaling pathways and regulatory
modules.

While the generation and especially model-checking process
is computationally expensive, the analysis and interpretation
of these pools, which in our case are just large tables, is
challenging from a biological perspective. Thus we propose
to define clear objectives for designing the study as well as
offer different analysis strategies to extract new information
from the complex results. There are many possibilities for
extensions especially one could think of further biologically
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interesting objectives, but also including different kind of data
and more analysis options such as algorithms to find special
patterns. Moreover, we are not limited to the Boolean set-
up, but are able to handle multivalued models (Streck et al.,
2015). Finally, although the pipeline was developed for signaling
networks, the approach can be applied to any related modeling
problem.

DATA AND SOFTWARE AVAILABILITY

Python scripts, data sets and the classification of the model pools
from the case study analysis are available on GitHub: https://
github.com/kthobe/RCC_ModelPoolAnalysis.
The software TomClass is also available on GitHub: https://
github.com/hklarner/TomClass.
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Here we introduce bioLQM, a new Java software toolkit for the conversion, modification,

and analysis of Logical Qualitative Models of biological regulatory networks. BioLQM

provides core modeling operations as building blocks for the development of integrated

modeling software, or for the assembly of heterogeneous analysis workflows involving

several complementary tools. Based on the definition of multi-valued logical models,

bioLQM implements import and export facilities, notably for the recent SBML qual

exchange format, as well as for formats used by several popular tools, facilitating the

design of workflows combining these tools. Model modifications enable the definition

of various perturbations, as well as model reduction, easing the analysis of large

models. Another modification enables the study of multi-valued models with tools limited

to the Boolean case. Finally, bioLQM provides a framework for the development of

novel analysis tools. The current version implements various updating modes for model

simulation (notably synchronous, asynchronous, and random asynchronous), as well as

some static analysis features for the identification of attractors. The bioLQM software can

be integrated into analysis workflows through command line and scripting interfaces. As

a Java library, it further provides core data structures to the GINsim and EpiLog interactive

tools, which supply graphical interfaces and additional analysis methods for cellular and

multi-cellular qualitative models.

Keywords: qualitative modeling, computational systems biology, biological networks, boolean networks, static

analysis, model conversion

1. INTRODUCTION

Logical models are highly abstract dynamical models, which have been proposed to study biological
regulatory systems in the late 60s (Kauffman, 1969; Thomas, 1973). This modeling framework
has since gained popularity (Bornholdt, 2005; Saadatpour and Albert, 2013; Samaga and Klamt,
2013) and has been successfully applied to a wide range of regulatory and signaling systems
(Saez-Rodriguez et al., 2007; Naldi et al., 2010; Helikar et al., 2013; Abou-Jaoudé et al., 2016).

In logical models, components are represented by discrete variables with a small range of
possible values, representing qualitative differences in activity. Boolean components can only be
active (1) or inactive (0), while multi-valued components define multiple activity levels. Regulatory
effects are often represented as signed arcs between components in the regulatory graph. These
effects are further formalized as logical rules (also called logical parameters or logical functions),
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Naldi BioLQM Toolkit

specifying the target activity level of each component according
to the current levels of its regulators (a subset of all model
components). Interactive software for model definition such as
GINsim (Naldi et al., 2018a) or The Cell Collective (Helikar et al.,
2012) enable the definition of regulatory graphs and logical rules.
However, these logical rules are self-contained and can be used to
recover signed regulatory interactions. The relative simplicity of
this formalism enables the definition of large models with dozens
of components, without requiring precise knowledge of kinetic
parameters. A formal definition of logical qualitative models is
provided in Appendix 1 in Supplementary Material.

The CoLoMoTo consortium was recently founded to facilitate
model sharing and foster cooperation in the qualitative modeling
community, building on the introduction of the SBML qual
exchange format (Chaouiya et al., 2013; Naldi et al., 2015).
The bioLQM toolkit presented here reinforces this effort
by implementing a collection of model modification, format
conversion, and dynamical analysis operations in an extensible
architecture illustrated in Figure 1. On one hand, format
conversions enable the integration of several software tools in
complex analysis workflows. On the other hand, the core data
structure and model modifications provide building blocks for
the development of integrated modeling tools, which can add
their own model edition and visualization capabilities. BioLQM
is notably embed in the popular GINsim software (Naldi et al.,
2018a), which provides a graphical interface to most of its
features. It is also used as backend for model definition and
computation of successor states in Epilog (Varela et al., 2013),
as well as in the CoLoMoTo notebook for model conversion
and some dynamical analysis features (Naldi et al., 2018b).
Preliminary versions of this toolkit were mentioned as the
“LogicalModel” library Chaouiya et al. (2013) and Naldi et al.
(2015).

Section 2 introduces model loading, saving and converting
operations. Section 3 introduces the simulation and dynamical
analysis features. Section 4 introduces model modifications.
Section 5 illustrates the use of these features through the
command-line and scripting interfaces for the analysis of a small
model of the p53-Mdm2 network controlling DNA repair.

2. LOADING AND CONVERTING LOGICAL
QUALITATIVE MODELS

The increasing use of qualitative models to study biological
systems led to the development of various software tools for
the logical formalism (Albert et al., 2008; Garg et al., 2008;
Müssel et al., 2010; Terfve et al., 2012; Naldi et al., 2018a)
and related qualitative approaches (Batt et al., 2012; Paulevé,
2017; Stoll et al., 2017). Most software tools use their own file
format for the definition of models, hindering the delineation
of analysis workflows combining different tools. The SBML
qual exchange format (Chaouiya et al., 2013) has recently been
proposed to improve interoperability between modeling tools.
However SBML support is often missing from existing software
and may not be a priority for newer ones.

To ease model exchange between software tools that do not
all support the SBML qual format, the bioLQM toolkit provides
an extensible list of format handlers connected to the internal
model representation. Each format is described as a Java class
providing annotations (name of the format, default file extension
and multi-valued support) along with optional implementations
of model import (loading a file into the internal representation)
or export (saving the internal representation to a file) operations.
These descriptor classes are available through service discovery
to facilitate the addition of new formats.

The supported formats are listed in Table 1 and in bioLQM
documentation 1. BioLQM uses JSBML (Rodriguez et al., 2015)
to load and save SBML qual models. The other import parsers
are based on the antlr parser generator (Parr and Quong, 1995).
While some formats natively support multi-valued models,
many are limited to the Boolean case. Multi-valued models
can be exported to these Boolean formats through an implicit
booleanization step, described in section 4.

3. MODEL DYNAMICS AND SIMULATION

A state of a model is a vector giving the activity levels of all its
components. As the activity level of each component is restricted
to a finite range, the state space (containing all possible states)
itself is also finite. However, the total number of possible states
grows exponentially with the number of components.We say that
a component is called to update in a given state if the evaluation
of the associated logical rule is different from its current activity
level: for example an inactive component can become active.
Stable states (also called fixed points, or steady states) are states
in which no component is called to update. Such stable states
denote a qualitative equilibrium in which all components can
maintain their current activity level.

The dynamics of the model (i.e., its evolution over time) is
given by transitions between states of the model, controlled by
the updating calls (i.e., by the logical rules of the model) and
by updating modes which define the synchronization between
concurrent updating calls. Various types of updating modes have
been introduced, with most software tools focusing on a specific
subset. BioLQM aims to provide an extensive choice of updating
modes in a single toolkit. In the following subsections, we further
distinguish deterministic and non-deterministic simulations and
provide an overview of all updating modes implemented in
bioLQM. While stable states, which have no transition toward
other states, do not depend on the updating mode, reachability
properties and cyclical attractors can be strongly affected by the
choice of updating mode as illustrated in Figure 2. More formal
definitions of the updating calls and updating modes are given in
Appendix 2 in Supplementary Material.

3.1. Deterministic Simulations
In a deterministic simulation, each state has a unique successor,
except stable states which have no successor at all as we consider
here that a successor must denote a change of state. Starting with
an initial state, a deterministic simulation yields an ordered list

1See http://colomoto.org/biolqm/
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FIGURE 1 | Global structure of the bioLQM toolkit. The bioLQM toolkit is centered around a data structure for the representation of logical qualitative models. Based

on this data structure, (i) the I/O module contains a collection of formats enabling model loading and saving ; (ii) the modifiers module contains a collection of

model modifiers to transform an input model into a modified model ; (iii) the tools module contains a collection of analysis tools. All these feature are accessible

through a central service manager, which handles service discovery and serves as main entry point for the Java API. A simple command line launcher

provides quick execution of simple workflows, while a scripting engine can be used for more complex use cases.

TABLE 1 | Available formats.

File extension Multi-valued Import Export Description and associated tools

sbml x x x SBML qual Exchange format (Chaouiya et al., 2013)

bnet x x (Py)BoolNet (Müssel et al., 2010; Klarner et al., 2017)

booleannet x x booleannet (Albert et al., 2008)

boolfunction x x Boolean functions

boolsim x x boolsim (genYsis) (Garg et al., 2008)

cnet x x BNS (Dubrova and Teslenko, 2011)

ginml x x GINsim (Naldi et al., 2018a)

mnet x x x Custom text format for multi-valued models

tt x x x Truth table

an x x Pint automata network (Paulevé, 2017)

apnn, pnml, ina x x Conversion to Petri Net formats (Chaouiya et al., 2011)

gna x x GNA (Piecewise-linear formalism) (Batt et al., 2012)

bnd x MaBoSS (Stochastic Boolean model) (Stoll et al., 2017)

The Import/Export capabilities are listed in the corresponding columns (all formats can be exported). The formats natively supporting multi-valued models are also identified, other

formats rely on implicit model booleanization.

of successive states, called a trace. Given a sufficient number of
steps, all traces end in an attractor, which can be either a stable
state or a cyclical attractor of length k in which the k-th successor

of each state is itself. The trace tool, illustrated in section 5,
uses an initial state and a deterministic updater to compute a
simulation trace. The following deterministic updatingmodes are
supported:

• The synchronous (or parallel) updating applies all logical rules
at the same time (Kauffman, 1969).

• The sequential updating applies all rules in a pre-
determined order. Instead of evaluating all rules on the
original state before updating all components at once as
in the synchronous case, they are evaluated on the state
obtained after applying the previous rule. The selected
order can then change dramatically the successor state: a
different sequential updater can be defined for each possible
ordering.

• The block-sequential updating generalizes the sequential one
by considering groups of components updated synchronously
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FIGURE 2 | Comparison of updating modes. State transition graphs obtained with the multi-valued model shown in the top part using various deterministic (left-side)

and non-deterministic (right-side) updatings. Dashed arcs denote multiple transitions and node coloring emphasizes attractors. Note that the stable state is common

to all updating modes. The sequential and priority updaters follow the implicit ordering of the components. The STG obtained with the complete updating contains all

synchronous and asynchronous transitions, as well as additional transitions to leave the states encompassing more than two updating calls. These transitions are

colored in red in the corresponding panel. Finally, the bottom-right panel contains the asynchronous STG obtained for the booleanized version of the model. In this

STG, gray nodes and arcs on the left side correspond to non-admissible states and transitions between them. These states are unreachable from the admissible

ones, and the transitions enabling to leave this set of states are highlighted.
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(Robert, 1986). The definition of a block-sequential updater
relies on an ordered partition of the model components.

• The synchronous priority updating is also based on a
partition of components into blocks, but only the first block
containing updated components will be considered. The set
of possible updaters is a subset of the priority-based updaters
introduced by Fauré et al. (2006).

3.2. Non-deterministic Simulations
In a non-deterministic simulation, each state can have several
successors. Starting with an initial state, a non-deterministic
simulation can lead to a large number of alternative trajectories.
This type of dynamics if often represented as a State Transition
Graph (STG), where the nodes are states of the model, and
arcs denote possible transitions between these states. Like in
the deterministic case, all trajectories end in an attractor, but
starting from an initial state, a non-deterministic simulation can
lead to several alternative attractors. These attractors can be
stable states, cyclical attractors, as well as sets of intertwined
cycles called complex attractors. More formally, all attractors
are terminal strongly connected components of the STG. State
transition graphs can represent deterministic traces as well as
more complex dynamical behaviors. Such a graph can cover
several alternative initial states or even all possible states. The
current version of bioLQM supports the definition of non-
deterministic updaters, enabling the computation of the lists of
successor states. However, it does not provide a complete engine
for non-deterministic simulations, or a data structure for state
transition graphs. GINsim (Naldi et al., 2018a) implements these
features on top of bioLQM. The following non-deterministic
updating modes are supported:

• The asynchronous updating applies all logical rules
independently. All successors of a state change exactly
one component (Thomas, 1973).

• The complete updating considers all possible combination of
components to be updated at once. The set of successors
includes all asynchronous successors, as well as the
synchronous one (and more).

• The priority updating generalizes the synchronous priority
introduced above by allowing some of the blocks (priority
classes) to be updated asynchronously (Fauré et al., 2006).

3.3. Stochastic Simulations
Stochastic updaters enable the computation of a single successor,
which is selected randomly among multiple possibilities and can
thus change between calls. A stochastic updater can be derived
from any non-deterministic updater by assigning identical
probabilities to all transitions defined by the original updater.
Alternatively, a custom updater can be constructed by defining
individual probabilities.

BioLQM provides the random tool to compute single
random trajectories using the above stochastic updaters. This tool
is limited to the construction of individual trajectories and does
not provide a complete stochastic analysis. As listed in Table 1,
bioLQM enables the conversion of Boolean models to the format
of the MaBoSS software, which uses the Gillespie algorithm to

estimate the probabilities of Boolean states of a continuous time
Markov process, and provides a collection of scripts to further
analyze the simulation results (Stoll et al., 2017).

3.4. Identification of Attractors
The dynamical analysis of large regulatory networks through
model simulation suffers from combinatorial explosion,
especially in the non-deterministic case. BioLQM implements
two published methods based on constraint-solving for the
identification of attractors without explicit state enumeration.

1. The first method enables the identification of stable states

(fixed points) by extracting and combining stability conditions
from the logical rules (Naldi et al., 2007). BioLQM
includes this implementation, using decision diagrams to
manipulate stability conditions, and introduces an alternative
implementation based on the clingo ASP solver (Gebser et al.,
2011), which tends to be slower for small models, but can scale
better in some cases. Similar methods are also available in the
GNA and Pint tools (Batt et al., 2012; Paulevé, 2017).

2. The efficient identification of cyclical attractors and complex
attractors remain a challenging problem, especially as these
attractors can depend on the updating mode. Stable patterns
have recently been proposed as an approximation of complex
attractors, which can be identified efficiently and does not
depend on the updating mode (Zañudo and Albert, 2013;
Klarner et al., 2014). Here, a pattern is a partially-defined
state where some components have a fixed activity level, while
others are undefined. Such a pattern represents all states
with matching activity levels for the defined components (i.e.,
2k possible states for k undefined Boolean components). A
pattern is stable if the images of all included states belong
to the pattern (the image of a state is its successor in a
synchronous updating). BioLQMproposes an adapted version
of the method implemented in PyBoolNet (Klarner et al.,
2014, 2017) using the clingo ASP solver (Gebser et al., 2011),
and introduces a new alternative implementation based on
decision diagrams.

While complex attractors are well estimated through stable
patterns, their exact identification requires further analysis using
external software tools, adapted to the selected updating mode.
In the synchronous case, the BNS tool (Dubrova and Teslenko,
2011) identifies cyclical attractors of length k using constraint
solving. This approach could be extended to other deterministic
updatings, but can not handle non-deterministic cases. In
contrast, BoolSim uses symbolic exploration for the identification
of complex attractors in the synchronous and asynchronous case
(Garg et al., 2008). While this approach scales better than simple
simulation, it is more sensitive to combinatorial explosion than
approaches based on constraint-solving. To perform the analysis
provided by the BoolSim and BNS tools, bioLQM can convert
models to their respective formats.

4. MODEL MODIFICATIONS

Several software tools propose to emulate biological mutations

by constructing model variants in which one or several logical
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rules have been modified. In bioLQM, the various model

modification tools enable the flexible definition of model
variants. The resulting modified models can have a different set
of components than the original model. Each modification can
be described by a keyword (identifier of the type of modification)
and some parameters. The model modifier API in bioLQM
allows to chain several modifications before model conversion
or analysis. The following describes the various types of model
modifications implemented in bioLQM.

Perturbations
A perturbation (often called mutation) enables to change some
of the logical rules of a model. BioLQM provides three types
of “atomic perturbations” (fixed value, range restriction, and
removal of a regulator) which modify a single logical rule.
They are briefly described below, more formal definitions can
be found in Appendix 3 in Supplementary Material. “Multiple
perturbations” can then be used to combine several atomic
perturbations. The definition of these perturbations is supported
by a simple syntax, as illustrated in section 5.3 and described in
the online documentation.

Perturbations are commonly used to model gene knockouts
by fixing the activity level of the corresponding component to 0,
or ectopic expressions by fixing it to 1. Multi-valued components
can also be fixed to a higher activity level (inside their normal
activity range).

Restricting the activity range of multi-valued components
enables to account for a partially impaired activity ([loss of the
higher activity level(s)] or to set a minimal activity level.

Lastly, it is possible to define the perturbation of a single

interaction, i.e., to remove one of the regulators of a component.
This type of perturbation enables for example the definition of
the loss of a single binding site preventing the action of the
source component on a subset of its targets. The removal of
an interaction amounts to rewrite the logical rule of its target
component. Note that the atomic perturbation describes the
effect on a single target: a single “biological mutation” may
correspond to a “multiple perturbation” in the model if several
targets are affected by the loss of the same binding site. This type
of perturbation is also convenient to evaluate the importance of
an interaction representing an hypothetical effect.

4.1. Model Reduction
Model reduction aims to ease the analysis of models with a
large number of components by constructing a smaller model
involving fewer components, but exhibiting similar dynamical
properties. BioLQM provides a model reduction method which
updates the logical rules of the remaining components to emulate
the effect of the removed components (Naldi et al., 2011; Veliz-
Cuba, 2011). This reduction preserves key dynamical properties
of the model, in particular the stable states and stable patterns.
However, it can affect some dynamical properties, depending on
the choice of reduced components.

This modifier usually relies on the specification of the set
of components to reduce. Some types of reduction can be fully
automated. In particular, bioLQM supports the reduction of
output components, which was shown to preserve attractors

and reachability properties (Naldi et al., 2012), as well as the
propagation of fixed components, which has also been shown to
preserve attractors (Saadatpour et al., 2013).

After reduction, the reduced components are not fully
eliminated from bioLQM: they are no longer allowed to regulate
other components, but they keep a logical rule to allow the
computation of their expected value in the reduced model.

4.2. Boolean Mapping of Multi-Valued
Models
As discussed above, some software tools and formats are limited
to Booleanmodels, for example as they rely on specific theoretical
results or data structures. To apply such software tools to the
analysis of a multi-valued model, we can construct a Boolean
model such that its dynamical properties can be transferred to
the original multi-valued model.

This model Booleanization step is based on the Boolean
mapping discussed by Didier et al. (2011). In this mapping,
a multi-valued component with a maximal activity level m is
replaced by m Boolean components, each denoting increasing
activity. All possible states of the original model can then be
associated to states of the Boolean model. The logical rules of the
new model ensure that we obtain the same transitions between
these states. However, some states of the Boolean model are not
mapped to states of the original model. These additional states
are called “non-admissible states.”

The dynamical properties observed on the admissible states
of the Boolean model can be transferred to the original model.
The implementation proposed here further ensures that all
synchronous and asynchronous simulations starting with a non-
admissible state can lead to an admissible state after a sufficient
number of steps. This property ensures that no attractor contains
any non-admissible state (see Figure 2).

Model Booleanization is used automatically when converting
multi-valued models to formats supporting only Boolean
models. It can also be performed explicitly, like other model
modifications.

5. USE CASE: ANALYSIS OF THE
P53-MDM2 NETWORK

The cellular response to DNA damage relies on the p53
transcription factor, which induces the synthesis of DNA repair
proteins. The ubiquitin ligase Mdm2 blocks the transcriptional
activity on p53 in the nucleus, while p53 activates the
transcription of Mdm2 and inhibits its nuclear translocation.
In this section, we use a logical model involving DNA damage,
p53, Mdm2 in the cytoplasm and Mdm2 in the nucleus. See
the recently published GINsim tutorial Naldi et al. (2018a) and
the enclosed references for a more complete description of this
system and its encoding into a logical model.

In the following, we define the model in a text file named
p53.mnet, using a simple text format for the definition of
multi-valued logical models (p53 and cytoplasmic Mdm2 are
represented by ternary components). Each line of the file
reproduced below assigns a logical function to one of the
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components of the model. The line starts with the the identifier of
the component, separated from the function itself by a leftwards
arrow (<-). The &, |, and ! symbols stand for the AND, OR,
and NOT operations respectively. The colon character (:) is used
to specify multi-valued thresholds, both for assigning the target
component and inside the functions.

DNAdam <- DNAdam & !p53:2

p53:2 <- !Mdm2nuc

Mdm2cyt:1 <- !p53:2

Mdm2cyt:2 <- p53:2

Mdm2nuc <- Mdm2cyt:2 | (Mdm2cyt & !p53 & !DNAdam)

5.1. Install and Launch bioLQM
Documentation, source code and releases (under the LGPL v3
license) are available on http://colomoto.org/biolqm. BioLQM
is distributed as a JAR file2, which can be launched with the
command java -jar bioLQM.jar. In this section, we will
use the bioLQM command as shorthand.

5.2. Resting State and DNA Repair
We start by looking for the stable states (fixed points) of this
model. For this, we launch bioLQM on the command-line, load
the model from the p53.mnet file defined above, and run the
fixpoints tool. The corresponding command line and its
output are reproduced hereafter.

$ bioLQM p53.mnet -r fixpoints

DNAdam p53 Mdm2cyt Mdm2nuc

0011

In the output, bioLQM displays a first line with the list of
components, followed by a line for each identified stable state,
giving the activity level of each component in the same order.
The p53-Mdm2 model has a single stable state corresponding to
a resting state in absence of DNA damage. In this state, the basal
activity of Mdm2 prevents p53 activation. This analysis shows
all the stable states of the model, but does not identify more
complex attractors.We can then use the trapspace tool to identify
stable patterns, which provide a good approximation of complex
attractors in practice.

$ bioLQM p53.mnet -r trapspace

DNAdam p53_b1 p53_b2 Mdm2cyt_b1 Mdm2cyt_b2 Mdm2nuc

0 0 0 1 0 1

In this output, the two multi-valued components of the model
have been extended to four Boolean components. While this
requires a careful interpretation, it provides fine-grained results
for complex attractors in which multi-valued components can
be restricted to a range of their possible activity levels. Here we
obtain a single pattern corresponding to the previously identified
stable state. Note that this result does not strictly rule out the
existence of a complex attractor, but attractors which do not
correspond to such stable patterns are rare in practice and often
depend on subtle delay effects. In this model, the resting state is
indeed the only attractor.

We can then evaluate the behavior of this network upon
addition of DNA damage to this resting state. For this, we use

2It requires a Java Runtime Environment, see https://www.java.com

the trace tool to perform a synchronous simulation, starting
with an initial state (defined after the -i flag) obtained by adding
DNA damage to the resting state.

$ bioLQM p53.mnet -r trace -i 1011

1011

1010

1110

1210

0220

0221

0121

0011

In this simulation trace, we see that the introduction of DNA
damage in the resting state leads to the inactivation of Mdm2 in
the nucleus, enabling the activation of p53. This triggers DNA
repair and allows Mdm2 to accumulate in the cytoplasm. Finally,
Mdm2 can enter the nucleus and inhibit p53, coming back to
the resting state. In this simulation, we assume that all possible
transitions happen synchronously in each state, which could lead
to artefactual trajectories. Asynchronous simulations are widely
considered as more reliable, but they lead to a large number of
alternative branches and are not well suited for simple command-
line simulations. We can however perform a random walk in the
set of possible asynchronous trajectories using the random tool.
In this case, all asynchronous trajectories eventually lead to the
same stable state (not illustrated here).

5.3. Definition of Model Perturbation
We then apply a perturbation to study the impact of a p53
knockout on the list of stable states. The -m perturbation

parameters trigger the construction of a modified model. The
following parameters (up to the next flag starting with a minus
sign) define the modified functions. Here p53%0 describes a loss
of p53 activity.

$ bioLQM p53.mnet -m perturbation p53%0 -r fixpoints

DNAdam p53 Mdm2cyt Mdm2nuc

0011

1010

We see that the resting state is still valid in the p53 knockout,
however a new stable state appears in which DNA damage could
not be repaired.

Instead of a full knockout of p53, we then evaluate a more
subtle perturbation in which only its ability to trigger the DNA
repair machinery is impaired. This corresponds to the removal of
the interaction between p53 and DNAdam in our model.

$ bioLQM p53.mnet -m perturbation p53:DNAdam%0 -r fixpoints

DNAdam p53 Mdm2cyt Mdm2nuc

0011

$ bioLQM p53.mnet -m perturbation p53:DNAdam%0 -r trapspace

DNAdam p53_b1 p53_b2 Mdm2cyt_b1 Mdm2cyt_b2 Mdm2nuc

0 0 0 1 0 1

1 - - 1 - -

Here we see that this perturbation does not affect the stability
of the resting state, and does not create an additional stable state
as in the full p53 knockout case. However, the trapspace tool
reveals the creation of a complex attractor involving oscillations
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of p53 andMdm2. Note that these oscillations exist transiently in
the original model but lead back to the resting state after DNA
repair.

5.4. Model Conversion Enables
Interoperability
As discussed in section 2, the analysis of complex models can
combine several software tools. After running the following
command, the new p53.sbml file will contain the functions
defined above in the SBML qual format. This format is suitable
for use in several other tools, or for submission in the BioModels
database (Chelliah et al., 2013).

$ bioLQM p53.mnet p53.sbml

5.5. Definition of Complex Analysis as
Scripts
More complex analysis tasks can use the integrated scripting

interface. Based on the java scripting engine, it supports scripts
written in javascript (as part of the java platform) or in another
supported language by providing additional libraries (including
python and lua). The following sample script generates all
possible individual knockout perturbations, and saves each
modified model.
filename = lqm.args[0]

model = lqm.load(filename)

nodes = model.getComponents()

for (i in nodes) {

node = nodes[i]

perturbed = lqm.modify(model, ’perturbation’, node+’%0’)

lqm.save(perturbed, filename+"_"+node+"_KO.mnet")

}

This script can be launched using the -s flag, followed by the
script file name. Additional arguments can be used to adapt the
behavior of the script. In this example, we specify the name of the
original model file.

$ bioLQM -s generate_perturbations.js p53.mnet

The recently introduced CoLoMoTo Docker image (Naldi
et al., 2018b) provides a python API integrating several
complementary software tools. This environment includes a
dedicated python API for bioLQM, which plays a central role in
model conversion.

6. SUMMARY AND DISCUSSION

The increasing use of logical models of biological regulatory
networks led to the development of multiple complementary
software tools for their analysis. The recent introduction of the
SBML qual format (Chaouiya et al., 2013) and the formation of
the CoLoMoTo consortium (Naldi et al., 2015) aims to facilitate
the exchange of models between tools. The bioLQM toolkit
enables the use of additional software tools through conversion
to their native formats. It provides model conversion operations
in the CoLoMoTo notebook (Naldi et al., 2018b), enabling the
delineation of analysis workflow involving a series of different
tools.

BioLQM can also be used to apply various perturbations
to the converted models, enabling the study of model variants
emulating a knockout, an ectopic activity, or the loss of an
interaction. Model modifications include the booleanization
of multi-valued models for analysis with tools restricted to a
Boolean formalism, as well as model reduction, decreasing the
number of components to ease the analysis of complex models.

Finally, bioLQM provides several internal tools for the
dynamical analysis of logical models. Two of the included tools
allow the construction of deterministic and stochastic simulation
traces, based on a comprehensive collection of updating modes.
BioLQM also implements non-deterministic updating modes,
which can be used as core components of complete simulation
engines, as done by the GINsim (Naldi et al., 2018a) and Epilog
(Varela et al., 2013) software suites. Two other tools enable the
efficient identification of stable states and the approximation of
most complex attractors.

The features described above are organized in a flexible
architecture to facilitate the addition of new modules (file
formats, model modifications, analysis tools) and to provide a
consistent API. In the next version, the configuration API of
analysis tools will be further improved to improve their use
through python scripts in the new CoLoMoTo notebook.

Hardware requirements strongly depend on the size and
structure of models and the operations performed. The
complexity of individual logical rules can be a limiting factor:
components with tens of regulators could have intricate rules
with high computational cost. Fortunately, such rules are seldom
used in biological models. Any desktop computer should be
able to load and convert most models, including large ones.
However, detailed dynamical analysis of models beyond 30
components can rapidly fill the available memory. In bioLQM,
the fixpoints and trapspace analysis tools rely on efficient
constraint-solving methods, which can scale to hundreds of
components. The trace and random simulation tools are
designed to work on large models as well by avoiding to
store all visited states and interrupting the simulation when a
stable state is reached or after a limit on the number of steps.
In future versions, these tools will further use the identified
trapspaces to interrupt the simulation when reaching a complex
attractor.

BioLQM uses decision diagrams to store the logical rules
internally, which enforces a normalized representation of the
function, depending on the ordering of components. It has
the advantage of providing guarantees on the number of tests
to perform to evaluate a function, but it replaces the original
representation of the function, making it harder to manipulate
by the user afterwards. Future version will include several
alternative representations to preserve hand-crafted logical
functions through conversion (when the output format allows it).

Logical models are non-deterministic when using the
asynchronous updating, however individual logical rules are
deterministic: they associate a single “target value” to each state
of the system. The ability to lift this limitation is considered
in the design of the new internal data structure, but is not an
immediate goal: the next releases of bioLQM will remain focused
on deterministic functions.

Frontiers in Physiology | www.frontiersin.org November 2018 | Volume 9 | Article 1605272

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Naldi BioLQM Toolkit

In logical models (and by extension in bioLQM), each
component is associated to its own logical rule, however the Petri
net and automata network formalisms separate components from
transitions. This separation allows in particular the definition
of transitions affecting several components simultaneously. Such
behaviors could be emulated in logical models through the
addition of synchronizing components. Proper support for this
use case would require extensions of the SBML qual specification,
as well as changes in the internal data structure.

Like most modeling tools, bioLQM is currently centered on
logical rules, however a complete model may contain important
additional information, such as annotations and graphical
layout information. Model annotations are supported in SBML
core (without additional extensions), however annotations can
be defined in any format, hindering interoperability. Further
discussions are needed within the community to delineate best
practices and ensure that annotations can be shared efficiently.
Graphical layout information can be stored along with SBML
qual models using a dedicated extension. This information is
currently supported by JSBML and GINsim, it will be integrated
in future versions of bioLQM. JSON “sidecar” files could then be
used to facilitate the integration of such additional information
with file formats which do not support it directly.

The reproducibility of model analysis relies on sharing both
the model itself and the definition of simulation parameters, in
particular initial states and updating modes. A single initial state
can be defined in the SBML qual file. Additional initial states
and simulation parameters fall in the scope of the Simulation
Experiment Description Markup Language (SED-ML) format

(Bergmann et al., 2015), which does not yet support qualitative
models. Ongoing discussions should lead to extensions of the
SED-ML format and the Kinetic Simulation Algorithm Ontology

(Courtot et al., 2014) to describe model modifications and
simulation parameters. These extensions will then be integrated
into bioLQM and other qualitative modeling software.
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Macrophages derived from monocyte precursors undergo specific polarization
processes which are influenced by the local tissue environment: classically activated
(M1) macrophages, with a pro-inflammatory activity and a role of effector cells
in Th1 cellular immune responses, and alternatively activated (M2) macrophages,
with anti-inflammatory functions and involved in immunosuppression and tissue
repair. At least three different subsets of M2 macrophages, namely, M2a, M2b,
and M2c, are characterized in the literature based on their eliciting signals. The
activation and polarization of macrophages is achieved through many, often intertwined,
signaling pathways. To describe the logical relationships among the genes involved in
macrophage polarization, we used a computational modeling methodology, namely,
logical (Boolean) modeling of gene regulation. We integrated experimental data and
knowledge available in the literature to construct a logical network model for the gene
regulation driving macrophage polarization to the M1, M2a, M2b, and M2c phenotypes.
Using the software GINsim and BoolNet, we analyzed the network dynamics under
different conditions and perturbations to understand how they affect cell polarization.
Dynamic simulations of the network model, enacting the most relevant biological
conditions, showed coherence with the observed behavior of in vivo macrophages.
The model could correctly reproduce the polarization toward the four main phenotypes
as well as to several hybrid phenotypes, which are known to be experimentally
associated to physiological and pathological conditions. We surmise that shifts among
different phenotypes in the model mimic the hypothetical continuum of macrophage
polarization, with M1 and M2 being the extremes of an uninterrupted sequence of
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states. Furthermore, model simulations suggest that anti-inflammatory macrophages
are resilient to shift back to the pro-inflammatory phenotype.

Keywords: macrophage, differentiation, phenotype, model, gene regulating network, polarization, immune
system

AUTHOR SUMMARY

Macrophages are key players in the elicitation of an efficient
immune response. Latest classification of macrophage functional
types comprises the classically activated (M1) macrophages with
a pro-inflammatory activity and the alternatively activated (M2)
macrophages, with anti-inflammatory functions. The latter is
further subdivided into at least three different subsets, namely,
M2a, M2b, and M2c, which are characterized on the basis of
distinct eliciting signals.

Accounting for the gene-related mechanisms of macrophage
differentiation is a challenging task. We have used the
methodology known as gene regulation network modeling on
a newly constructed network of gene regulation originated
from published experimental data. We have used computer
simulations to explore the dynamical behavior of this network
and derived conclusions about the hypothetical continuum of
macrophage polarization with M1 and M2 being the extremes
of an uninterrupted sequences of states. Our simulations also
suggest that anti-inflammatory macrophages are resilient to shift
to the pro-inflammatory phenotype.

INTRODUCTION

Macrophages and neutrophils of the innate immune system
represent the first line of defense against most common
microorganisms. Indeed, macrophages can recognize and
respond to a wide range of stimuli, expressing a great variety
of surface and intracellular receptors that activate several signal
transduction pathways and complex gene expression patterns.
Macrophages respond to extracellular stimuli upon contact
with different cell types via endocytic, phagocytic, and secretory
functions (Figure 1). Their activity is modulated by contact
synapsis established with proximal cellular and molecular
entities, including microorganisms, chemical mediators, and
other macrophages (Gordon et al., 2014).

The monocyte–macrophage differentiation pathway is known
to exhibit plasticity and diversity (Mantovani et al., 2002; Bowdish
et al., 2007; Gordon, 2008; Mantovani, 2008). Similar to the
polarization process of helper T type 1 and 2 cells (Th1–Th2), two
distinct polarized forms of macrophages have been recognized
in the past: the classically activated (M1) macrophage phenotype
and the alternatively activated (M2) macrophage phenotype
(Biswas and Mantovani, 2010). Moreover, macrophages have also
been observed in “M2-like” states, which share some features
of both M1 and M2. Indeed, recent studies support the view
that fully polarized macrophages (M1 and M2) are the extremes
of a continuum of macrophage polarization (Mantovani, 2008).
For example, various stimuli, such as immune complexes (IC)
together with LPS or interleukin-1 beta (IL-1β), glucocorticoids,

transforming growth factor-β (TGF-β), and interleukin-10 (IL-
10), give rise to M2-like functional phenotypes that share
properties with IL-4- or IL-13-activated macrophages [such as
high expression of mannose receptor (MR) and IL-10, as well
as TNFα, IL-1β, and IL-6] (Mantovani et al., 2004). Variations
of the gene expression patterns corresponding to M1 or M2 are
also found in vivo (e.g., in the placenta and embryo, and during
helminthic infection, Listeria infection, obesity, and cancer) (Raes
et al., 2005; Biswas et al., 2006; Kraakman et al., 2014).

The M1 and M2 phenotypes Kraakman et al., 2014 correspond
to cell activation states driven by cytokines, which are typically
secreted by Th1, Th2, and T-regulatory cells, but also basophils,
mast cells, B lymphocytes, and eosinophils. The M1 phenotype
is polarized by single or a combination of Th1 cytokines and
pro-inflammatory mediators, including granulocyte-macrophage
colony-stimulating factor (GM-CSF), tumor necrosis factor
(TNF)-α, IL-6, IL-1β, IL-12, and various pathogen-associated
molecules, such as lipopolysaccharide (LPS). By contrast, the M2
polarization is induced by macrophage colony-stimulating factor
(M-CSF), IL-4 and IL-13, IC, IL-10, as well as glucocorticoid,
TGFβ, and serotonin (Sang et al., 2015) (see Table 1).

Although there is a wealth of information about the
different macrophage subsets in vitro, features such as plasticity,
heterogeneity, and adaptability make them very difficult to study
using conventional experimental tools. Furthermore, as many
of the studies are done in different settings or for different
goals, some literature reports are not conclusive and sometimes
contradictory. It is not clear how robust the different macrophage
subsets are to environmental changes. In particular, how does a
modification of the cytokine environment affect the phenotype
of macrophages? Which polarization state is most stable? Which
possible gene knockouts can lead to a phenotypic change?

Macrophages polarization is essential in orchestrating the
immune system response both in infectious and sterile immune
settings. To shed light on this complex molecular process
and address the questions above, we employed computational
modeling of gene regulatory networks (GRNs) (Karlebach and
Shamir, 2008).

Computational and mathematical modeling provide a means
to assemble the known relevant molecules and their interactions
into a network of pathways, with cross-talk between them.
This allows, for examples, the test of whether the assimilated
knowledge is sufficient to reproduce experimental results,
and, furthermore, introduce cell-specific perturbations into the
network to generate and test hypotheses in silico. For recent
reviews, see Eftimie et al. (2016), Chakraborty (2017).

Computational models of GRNs have been shown to be
a good approach to study how cells integrate several signals
driving the cell phenotypic changes, especially for their ability to
quantitatively and qualitatively describe a great variety of poorly
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FIGURE 1 | Macrophage signaling cascade. Macrophage receptors and their relationships with key transcription factors downstream of the signaling cascade. The
transcriptions of different sets of genes lead to distinctive macrophage phenotypes; M1, M2a, M2b, and M2c.

TABLE 1 | Summary of key molecules in macrophage polarization as taken from the literature.

M1 M2A M2B M2C

Cytokines IL-10, IL-1, IL-23, IL-1β, TNFα, IL-6, IL-18 IL-10, IL-12, IL-23, IL-1Ra IL-10, IL-12, IL-23, IL-1β, TNFα, IL-6 IL-10, IL-12, IL-23, TGFβ

CC-chemokines CCL-2, 3, 4, 5, 11, 17, 22 CCL-17, 18, 22, 24 CCL-1 CCL-16, 18

CXC-chemokines CXCL-1, 2, 3, 5, 8, 9, 10, 11, 16 – – CXCL-13

Scavenger receptors – SR, MR – MR, CD163

Metabolism iNOS FIZZ-1, Ym-1, Arg iNOS Arg

Cytokines, chemokines, receptors, and genes involved in metabolism are represented for each specific macrophage phenotype (adapted from Foey, 2014). Dashes
indicate missing/contrasting data in the literature.

characterized biological situations (Méndez and Mendoza, 2016).
Computational models are used to describe immunological
phenomena, to provide a better understanding of aspects of
the immune response, and to produce outcomes coherent with
available data, thus unraveling basic mechanisms of immunology
and possibly leading to new hypotheses that can be tested
experimentally in vivo or in vitro (Castiglione and Celada, 2015).

Discrete logical (Boolean or multi-state) models are usually
the method of choice especially when the biological questions are
of qualitative nature or when the available data (and knowledge)
are mainly qualitative. Boolean networks and logical models
have been used extensively to model many biological systems
including immunological systems such as T-cell signaling and T
helper cell differentiation (Naldi et al., 2010; Abou-Jaoudé et al.,
2016; Méndez and Mendoza, 2016).

There are several computational models of some pathways
that are involved in the pro and anti-inflammatory immune
response, such as the NF-κB, TNF-α, IL-1, and IL-10 signaling

pathways. Furthermore, there are computational models of T
helper cell differentiation including continuous (Carbo et al.,
2014), Boolean (Martinez-Sanchez et al., 2015), multistate logical
(Naldi et al., 2010), and multi-scale (Santoni et al., 2008; Tieri
et al., 2014). However, we are not aware of any GRN models
of the molecular network describing macrophage differentiation.
We have recently developed a multiscale model (Castiglione
et al., 2016) of the immune response incorporating a minimalistic
Boolean model of macrophages differentiation accounting for M1
and M2 polarization, but not for the subsets of M2. Maiti et al.
(2014) presented an ODE model to describe the pro- and anti-
inflammatory signaling in macrophages toward understanding
immune homeostasis.

In this paper, we present a novel logical model of the
gene regulation underlying macrophage differentiation and
polarization, where the regulatory interactions and logical rules
are inferred from the literature. We then used the model to study
the dynamical behavior of the network. The model not only was
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able to reproduce known experimental data but also provides
the first computational evidence of the continuum hypothesis of
phenotypes which was suggested by Sica and Mantovani (2012).

MATERIALS AND METHODS

Logical Models of Regulatory Networks
Gene regulatory network modeling aims at describing the way
cells integrate extracellular stimuli to run cellular programs
consisting of activations and inhibitions of genes (Kestler et al.,
2008).

Logical network modeling was introduced by the geneticist
R. Thomas (Thomas and D’Ari, 1990; Thomas and Kaufman,
2001) for the study of GRNs. Since then, they have been
developed further, and have been used extensively to model
many biological systems including cell-fate determination in
A. thaliana (Espinosa-Soto et al., 2004; Benítez and Hejátko,
2013), E. coli metabolism (Samal and Jain, 2008), and the
differentiation and plasticity of T helper cells (Naldi et al., 2010;
Abou-Jaoudé et al., 2014), to name a few.

Gene regulatory networks are typically drawn from a
mixture of literature, data mining and experimental data.
Signal transducers, transcription factors and target genes in the
activation of specific cellular programs (e.g., cell maturation or
differentiation) are identified, as well as their relationships coded
in terms of inhibition/activation. This data mining step produces
a network (N, E) in which the nodes N are the molecules and
the edges E = E− ∪ E+ are the activations (edges in the set E+)
and inhibitions (edges in E−) relationships. Gene activation levels
(states) or molecular concentrations are represented either by
a discrete and usually very small set of values (two levels, i.e.,
active/inactive, represents the most used one, called Boolean) or
by a continuous range of activity levels. In this paper, we have
used the discrete Boolean formulation.

Each node nk of the network N has a function Fk specifying
how the state of that node may change in response to changes in
the states of its neighbors (the nodes nj for which there exists an
edge ejk ∈ E) in the network. The synchronous or asynchronous
calculation of the functions F1,. . .,Fn, at each discrete step makes
the network evolve from one macro-state to another. In the
synchronous mode, all node states are updated at the same time,
while in an asynchronous case, nodes are randomly updated at
different time steps.

The Boolean model of a GRN is therefore defined as a discrete
dynamical system which can then be studied for its dynamical
properties. Since the space of all possible macro-states is finite,
starting from any configuration, the repeated application of the
functions F1,. . .,Fn, will lead the system to be in states that it
has reached before. These states correspond to stable patterns of
gene expression that can be reasonably regarded as real biological
states characterizing a specific cellular function. Starting from any
configuration and after a certain transient period, the network
dynamics will either reach a state and stay there (such a state is
called a steady state), or can keep cycling forever among the same
set of states (such a set of states is called a limit cycle) (Guevara,
2003; Ortiz-Gutiérrez et al., 2015). The transient period before

the network dynamics reaches a certain steady state or limit cycle
is called the basin of attraction of that state or cycle.

The dynamics of the system is encoded by a graph, whose
vertices are all configurations (states) of the network and directed
edges where each such edge indicates the transition of the system
from one state to the next.

We used the software GINsim (Naldi et al., 2009) for the
development of the model and the analysis of the network,
including the identification of all steady states (Karlebach and
Shamir, 2008; Méndez and Mendoza, 2016), and the BooleanNet
Python library (Albert et al., 2008) and BoolNet R library (Müssel
et al., 2010) for the study of the dynamics of the system.

RESULTS

Molecular Basis of the Macrophage
Polarization
During the inflammation process, several immune cells are
involved in initiating and maintaining the inflammatory state.
Macrophages, together with leukocytes, are the first cells
recruited to the inflammation site. They start releasing pro-
inflammatory cytokines (mostly IFN-γ and IL-1β), creating an
inflammatory environment. The binding of those molecules to
their specific receptors triggers a signal transduction cascade
resulting in the release of other inflammatory molecules. This
positive feedback mechanism allows the maintenance of the
inflammatory state and reinforce the M1 polarized state.

The resolution of inflammation occurs by different
mechanisms, such as the downregulation of pro-inflammatory
molecules, the short half-life of the inflammatory mediators, and
the production of anti-inflammatory molecules. In this context,
macrophages are expected to switch to M2, and, consequently,
produce anti-inflammatory mediators, such as IL-10, inhibiting
M1-related transcriptional regulators, while a positive feedback
loop provides the means to maintain their anti-inflammatory
phenotype.

Interferon (IFN) receptors have multi-chain structures and
interact with members of the Janus-activated kinase (JAK)
family (Darnell et al., 1994). When IFN-γ binds to its cognate
receptor, the activation of the receptor-associated JAKs occurs
in response to rearrangement and dimerization of the receptor
subunits, followed by auto-phosphorylation and activation of
the associated JAKs. This process determines the activation
of classical JAK–STAT (signal transducer and activator of
transcription) signaling pathways, resulting in the transcription
of target genes (Platanias, 2005; Mosser and Edwards, 2008;
McLaren and Ramji, 2009). Among the STATs, a pivotal role
is played by STAT1, which undergoes dimerization after its
JAK-mediated tyrosine phosphorylation. Hence, STAT1–STAT1
homodimer binds to cis elements known as “gamma-activated
sequences” (GAS) in the promoters of the genes encoding NOS2,
the MHC class II transactivator (CIITA) and IL-12, among others
(Darnell et al., 1994; Sadler and Williams, 2008; Lawrence and
Natoli, 2011). The IFN-associated JAK/STAT pathway exerts its
function in the regulation of several immune cells, including
macrophages, with a great increase of IFN production, the

Frontiers in Physiology | www.frontiersin.org November 2018 | Volume 9 | Article 1659278

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-01659 November 23, 2018 Time: 15:54 # 5

Palma et al. Modeling the Dynamics of Macrophage Polarization

synthesis of several cytokines, such as interleukins IL-1β, IL-6,
IL-12, IL-18, IL-23, and TNF-α, and nitric oxide (NO), as well
as reactive oxide intermediates (ROI) and enzymes required for
tissue remodeling.

Toll-like receptors (TLRs) mediate the immune response to
a great variety of infectious agents and facilitate transcription
of many pro-inflammatory genes (Sheikh et al., 2014). LPS
is a component of the Gram-negative bacteria cell wall and
induces expression of a wide variety of genes that constitute
the innate immune response to bacterial infections. LPS signals
through TLR4 on the cell surface of many cell types, including
macrophages (Kawai and Akira, 2010, 2011). Signaling through
TLR4 induces rapid activation of two distinct intracellular
signaling pathways: one is the MyD88-dependent pathway, which
leads the cascade through interferon regulatory factor (IRF)-
3, and the other is the MyD88-independent signaling pathway,
which acts through TIR-domain-containing adapter-inducing
interferon β (TRIF). These pathways converge to activate the
transcription of NOS2; the inducible NO synthase (Kawai et al.,
2001; Doyle et al., 2002).

The M1 phenotype can also result from differentiation in the
presence of GM-CSF, with increased expression of IL-12 and pro-
inflammatory cytokines, the ability to activate Th1 cell immune
responses and decreased expression of IL-10 (Krausgruber et al.,
2011).

M2 macrophages exhibit a functionally distinct phenotype
to that of M1s, originally via the ability of IL-4 to induce
MR expression, followed by IL-13, which is another Th2
cytokine. IL-4/IL-13 and TGFβ/IL-10 have been described to be
associated with priming M2 macrophage subsets (M2a and M2c,
respectively). The role of IL-4- and IL-13-mediated signaling
in M2 macrophage polarization has been well established
both in vitro and in vivo (Gordon, 2003; Martinez et al.,
2009; Gordon and Martinez, 2010). Mice with a myeloid
cell-specific knockout of IL-4 receptor-α (IL4Rα) were found
to lack M2 macrophage development in mouse models of
helminth infection and in Th2 cell-mediated inflammation,
where IL-4 has a major role (Lawrence and Natoli, 2011).
It is well established that IL-4 and IL-13 are associated
with Th2-type responses, which have well-defined effects on
macrophages, other cells and immune functions. IL-4 and IL-
13 are produced particularly in allergic, cellular, and humoral
responses to parasitic and extracellular pathogens. IL-4 and
IL-13 upregulate expression of the MR and MHC class II
molecules by macrophages, which stimulates endocytosis and
antigen presentation, and they induce the expression of selective
chemokines (Gordon, 2003; Gordon and Martinez, 2010). IL-
4 and IL-13 act through a common receptor chain – IL-
4Rα – through signal transducer and activator of transcription
6 (STAT6).

Interleukin-1 beta and IC, together with TLR4-signaling
inducers (i.e., LPS), drive the macrophage to an M2b phenotype.
IL-1β not only plays a pivotal role in the initiation and
maintenance of the inflammatory response but also modulates
immunosuppressive mechanisms through the process of
macrophages endotoxin tolerance. IL-1β is also produced in
response to LPS, emphasizing a collaborative interplay between

M1 and M2b macrophages in eliciting and maintaining the
inflammatory response (Sato et al., 2012).

Interleukin-10 acts on a distinct plasma membrane receptor
to those for IL-4 and IL-13 (Riley et al., 1999; Moore et al., 2001;
Deng et al., 2012), and its effects on macrophage gene expression
are different, involving a more profound inhibition of a range
of antigen-presenting and effector functions, together with the
activation of selected genes or functions. T cells themselves
are more heterogeneous than was thought originally, including
not only Th0-, Th1-, and Th2-type cells but also regulatory
and possibly Th3-type cells, some of which secrete TGF-β and
IL-10 (Gordon, 2003). TGFβ and IL-10 have been described
to be associated with priming M2-like macrophages subset
polarization. TGFβ and IL-10 modulate macrophage polarization
and functional plasticity to that of an M2c subset which exhibits
a characteristic cytokine phenotype of IL-10hi, IL-12lo, IL-
23lo, and TGFβ+ which is associated with anti-inflammatory
responses, scavenging, immune regulation, tissue repair, and
tumor promotion. Both TGFβ and IL-10 directly suppress
immune activation via the down-regulation of the expression
of MHC II and pro-inflammatory cytokine production, with an
indirect effect through cross-regulation of M1-derived cytokines
and functionality (Gordon and Martinez, 2010; Lawrence and
Natoli, 2011; Sica and Mantovani, 2012). IL-10 is a potent STAT3-
dependent inhibitor of pro-inflammatory cytokine production
and NO release, after challenge with LPS. IL-10-deficient mice
develop widespread inflammatory cell infiltrates, including in the
bowel, and transgenic animals that constitutively overexpress IL-
metricconverterProductID10 in10 in macrophages suffer from
septic shock and over-activity of pro-inflammatory cytokines
(Lang et al., 2002b). The upregulation of expression of IL-4Rα

by IL-10 correlates with increased IL-4-dependent expression
of arginase-1. IL-10 also synergizes with LPS to increase the
expression of arginase-2. Therefore, IL-10 increases the total level
of arginases in macrophages in many ways (Lang et al., 2002a,b).

Phenotypes depending on complex regulatory logic can be
effectively studied by using mathematical and computational
approaches, such as GRN models.

A Logical Network Model of Macrophage
Differentiation
We have constructed a logical regulatory network model
(Figure 2 and Supplementary File S1) that describes macrophage
polarization using experimental data and knowledge derived
from literature (see Table 2) and a curated database of causal
relationships between biological entities (Perfetto et al., 2016).
The network comprises 30 nodes and 49 interactions among
them. Interactions can be either positive (activations) or negative
(inhibitions) (Figure 2). Table 2 shows a list of the molecules,
interactions, and references from the literature supporting each
interaction, while Table 3 shows logical rules for each molecule.

Nodes are of four kinds, depending on cellular location and
function (Figure 2): seven input nodes, which represent the
extracellular stimuli (IFNγ, GM-CSF, IL-1β, LPS, IC, IL-4, and
IL-10), seven receptors (IFNγR, CSF2Ra, IL-1R, TLR4, FcγR, IL-
4R, and IL-10R), 14 internal regulators (STAT1, STAT5, NF-κB,
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TABLE 2 | Interactions in the macrophage polarization network.

Source Interaction type Target Reference Source Interaction type Target Reference

IFNg_e Positive IFNgR Kotenko et al., 1995; Mosser and
Edwards, 2008; McLaren and Ramji,
2009

NF-κB Positive IL12_out Tran-Thi et al., 1995; Lehtonen et al.,
2002; Park et al., 2009; Lawrence and
Natoli, 2011; Bally et al., 2015

IL1b_e Positive IL1R Weber et al., 2010 NF-κB Positive IL1b Tran-Thi et al., 1995; Lehtonen et al.,
2002; Park et al., 2009; Lawrence and
Natoli, 2011; Bally et al., 2015

GM-CSF_e Positive CSF2Ra Lehtonen et al., 2002; Hamilton, 2008;
Krausgruber et al., 2011; Lawrence and
Natoli, 2011

PPARg Positive IL10_out Ricote et al., 1998; Bouhlel et al., 2007;
Lawrence and Natoli, 2011

LPS_e Positive TLR4 Park et al., 2009; Lawrence and Natoli,
2011

LPS_e Positive FcgR Nimmerjahn and Ravetch, 2008; Foey,
2014

PPARg Negative NF-κB Ricote et al., 1998; Bouhlel et al., 2007;
Lawrence and Natoli, 2011

IC_e Positive FcgR Sánchez-Mejorada and Rosales, 1998;
Nimmerjahn and Ravetch, 2008; Foey,
2014

PPARg Negative STAT3 Ricote et al., 1998; Bouhlel et al., 2007;
Lawrence and Natoli, 2011

IL1b_e Positive FcgR Nimmerjahn and Ravetch, 2008; Foey,
2014

STAT6 Positive KLF4 Sica and Mantovani, 2012

IL4_e Positive IL4Ra Gordon, 2003; Gordon and Martinez,
2010; Lawrence and Natoli, 2011

IL10_e Positive IL10R Moore et al., 2001; Foey, 2014; Hutchins
et al., 2013; Nakamura et al., 2015

STAT6 Positive SOCS1 Baker et al., 2009; Dickensheets et al.,
2007; Whyte et al., 2011

IFNgR Positive STAT1 Mosser and Edwards, 2008; McLaren
and Ramji, 2009

STAT6 Positive IL10_out Lang et al., 2002a; Gordon, 2003;
Gordon and Martinez, 2010; Lawrence
and Natoli, 2011

CSF2Ra Positive STAT5 Barahmand-Pour et al., 1998; Lehtonen
et al., 2002; Hamilton, 2008; Krausgruber
et al., 2011; Lawrence and Natoli, 2011

JMJD3 Positive IRF4 Gordon, 2003; Ishii et al., 2009; Gordon
and Martinez, 2010; Satoh et al., 2010;
Lawrence and Natoli, 2011

IL1R Positive NF-κB Weber et al., 2010 STAT3 Positive IL10_out Riley et al., 1999; Ritter et al., 1999;
Hutchins et al., 2013; Foey, 2014;
Nakamura et al., 2015

TLR4 Positive IRF3 Sheikh et al., 2014

TLR4 Positive NF-κB Tran-Thi et al., 1995; Lehtonen et al.,
2002; Park et al., 2009; Lawrence and
Natoli, 2011; Bally et al., 2015

STAT3 Negative NF-κB Riley et al., 1999; Hutchins et al., 2013

FcgR Positive ERK Sánchez-Mejorada and Rosales, 1998;
Sutterwala et al., 1998; Lucas et al.,
2005; Nimmerjahn and Ravetch, 2008;
Zhang et al., 2009; Luo et al., 2010;
Clatworthy et al., 2014; Foey, 2014;
Vogelpoel et al., 2014, 2015

STAT3 Negative STAT1 Ito et al., 1999

FcgR Negative NF-κB Sánchez-Mejorada and Rosales, 1998;
Sutterwala et al., 1998; Ji et al., 2003;
Lucas et al., 2005; Hirano et al., 2007;
Nimmerjahn and Ravetch, 2008; Zhang
et al., 2009; Luo et al., 2010; Clatworthy
et al., 2014; Guilliams et al., 2014;
Vogelpoel et al., 2014

STAT3 Negative STAT5 Yamaoka et al., 1998

FcgR Negative STAT3 Sánchez-Mejorada and Rosales, 1998;
Sutterwala et al., 1998; Ji et al., 2003;
Lucas et al., 2005; Nimmerjahn and
Ravetch, 2008; Zhang et al., 2009; Luo
et al., 2010; Clatworthy et al., 2014;
Guilliams et al., 2014; Vogelpoel et al.,
2014, 2015

IRF3 Positive IFNb Doyle et al., 2002; Honda et al., 2005;
Rauch et al., 2013; Mao et al., 2015

FcgR Negative TLR4 Sánchez-Mejorada and Rosales, 1998;
Sutterwala et al., 1998; Abrahams et al.,
2000; Nimmerjahn and Ravetch, 2008;
Zhang et al., 2009; Luo et al., 2010;
Guilliams et al., 2014; Vogelpoel et al.,
2014, 2015

ERK Positive IL10_out Sánchez-Mejorada and Rosales, 1998;
Lucas et al., 2005; Nimmerjahn and
Ravetch, 2008; Liu et al., 2009; Foey,
2014

(Continued)
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TABLE 2 | Continued

Source Interaction type Target Reference Source Interaction type Target Reference

IL4Ra Positive PPARg Gordon, 2003; Bouhlel et al., 2007;
Chawla, 2010; Gordon and Martinez,
2010; Gong et al., 2012

KLF4 Negative NF-κB Sica and Mantovani, 2012

IL4Ra Positive STAT6 Gordon, 2003; Ishii et al., 2009; Gordon
and Martinez, 2010; Satoh et al., 2010;
Lawrence and Natoli, 2011

SOCS1 Negative STAT1 Dickensheets et al., 2007; Baker et al.,
2009; Whyte et al., 2011

IL4Ra Positive JMJD3 Gordon, 2003; Ishii et al., 2009; Gordon
and Martinez, 2010; Satoh et al., 2010;
Lawrence and Natoli, 2011

IRF4 Negative STAT5 Sica and Mantovani, 2012

IL10R Positive STAT3 Riley et al., 1999; Ritter et al., 1999;
Hutchins et al., 2013; Foey, 2014;
Nakamura et al., 2015

STAT1 Positive IL12_out Mosser and Edwards, 2008; Sadler and
Williams, 2008; McLaren and Ramji,
2009; Lawrence and Natoli, 2011

IFNb Positive IFNgR Kotenko et al., 1995; Lehtonen et al.,
2002; Gordon, 2003; Platanias, 2005;
Lawrence and Natoli, 2011; Rauch et al.,
2013

STAT5 Positive IL12_out Yamaoka et al., 1998; Lehtonen et al.,
2002; Hamilton, 2008; Krausgruber et al.,
2011; Lawrence and Natoli, 2011

Source and target nodes are reported as well as the sign of the interaction between them (positive: source molecule activates target molecule; negative: source molecule
inhibits target molecule) and the references. Each input node is annotated with an “_e” suffix, which stands for external stimulus, as well as an “_out” suffix which stands
for output.

PPARγ, STAT6, JMJD3, STAT3, IRF3, ERK, KLF4, SOCS1, IRF4,
IL1β, and IFN-β), and two main products of each distinct type
of macrophage (IL-12 and IL-10). The input nodes represent
the main intercellular molecular stimuli that drive macrophage
polarization, as reported in the literature. Each external molecule
(input) is connected to its specific receptor, and this binding
elicits a signaling cascade, involving intracellular transducers
and transcription factors (mostly STAT factors). Each specific
transcription factor binds the promoter of a target gene, resulting
in the production of IL12 or IL10 depending on the macrophage
polarized form.

Interactions among nodes are derived from experimental data
available in the literature as shown in Table 2. All interactions
have been deposited in SIGNOR (Perfetto et al., 2016), a public
database of causal interactions between biological entities. Each
node is associated to a logical function which determines the
activation level of the node based on the activation levels reached
by its source nodes in the previous time step. The logical
function of each node is inferred from the available literature (see
Table 3).

The network encompasses several pathways. Different cell
fates, i.e., macrophage phenotypes, are defined by steady or
stable states (also called fixed point attractors) of gene expression,
and described in this dynamic model as multiple, specific, and
stable configurations of activated/deactivated nodes. In other
words, stable states are configurations toward which the system
tends to evolve, for a wide range of starting conditions. Thus,
according to the network, its starting configuration, and the
initial external stimuli, the pathways lead to a configuration
that resembles a specific cell state in terms of the given
gene expression pattern. In this regard, we assumed that the
sum of the sizes of the basins of attraction of the steady
states characterizes the likelihood of finding the cell in a

specific differentiation state. In other words, the probability
that the cell, stimulated by cytokines, will switch to the certain
differentiation state is proportional to the size of the subspace
of all network configurations eventually reached by the network
dynamics.

Inhibitory pathways among M1 and M2 phenotype-related
transcription factors are particularly interesting, because they
allow a mutual exclusivity of transcription factors and, therefore,
of the macrophage phenotypes, as reported in literature
(Lawrence and Natoli, 2011). Notably, among the interactions
describing the network and reported in tables above, the
inhibition of TLR4 and NF-κB signaling by FcγR activation
were added. These relationships allow the inhibition of M1
polarization in the presence of IC, that together with LPS and
IL-1β, drives the otherwise absent M2b polarization.

To analyze the dynamics of the network under different
conditions we used GINsim [Gene Interaction Network
simulation1; (Chaouiya et al., 2012)], a software tool for modeling
and simulation of genetic regulatory networks (Chaouiya et al.,
2012). In some cases, for further confirmation or additional
details, we used the BooleanNet Python (Albert et al., 2008) as
well as the BoolNet R library (Müssel et al., 2010).

The fate of a macrophage strongly depends on the local
biochemical microenvironment. To reproduce these different
microenvironments that influence the cells, we defined a set of
inputs to run the simulations. Hence, we could discriminate
among steady states with a real biological meaning.

The starting expression state of the network corresponds to the
naïve macrophage M0 (unstimulated/not-activated) phenotype,
in which the state of each node in the network is set to “0” (i.e.,
low expression).

1www.ginsim.org
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FIGURE 2 | Network for macrophage polarization. External stimuli are reported in the extracellular space, receptors inside membrane space, and internal
transducers/transcription factors in the intracellular space. Secreted cytokines (IL-10 and IL12) are also reported. Black arrows represent positive interactions
(activations), red dashed arrows are negative interactions (inhibitions), and blue arrows are transcriptional auto-regulatory loops. Nodes represent both genes and
proteins; edges represent both protein–protein interactions and transcriptional regulations.

In our simulations, we found that our model has five sets
of steady states fitting the following five specific macrophage
phenotypes markers according to literature (Figure 3):

1. M0: no nodes active;
2. M1: IL-12 and at least one among STAT1, STAT5 or NF-κB

are active;

3. M2a: all of PPARγ, STAT6, JMJD3 and IL-10 are active;
4. M2b: ERK and IL-10 are active; and
5. M2c: STAT3 and IL-10 are active.

We computed the steady states of macrophage polarization
network using a synchronous update. The system reached 1056
states, 1040 of which are steady states and 16 are cycles made

Frontiers in Physiology | www.frontiersin.org November 2018 | Volume 9 | Article 1659282

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-01659 November 23, 2018 Time: 15:54 # 9

Palma et al. Modeling the Dynamics of Macrophage Polarization

TABLE 3 | Boolean functions in the macrophage polarization network.

Node Boolean function Reference

IFNgR IFNg_e ∨ IFNb Interferons bind to their cognate receptors (Kotenko et al., 1995; Lehtonen et al., 2002; Gordon, 2003;
Platanias, 2005; Mosser and Edwards, 2008; McLaren and Ramji, 2009; Rauch et al., 2013)

CSF2Ra GM-CSF_e GM-CSF ligand binds to its receptor (Lehtonen et al., 2002; Hamilton, 2008; Krausgruber et al., 2011;
Lawrence and Natoli, 2011)

IL1R IL1b_e ∨ IL1b IL-1 beta binds to its receptor (Weber et al., 2010)

TLR4 LPS_e ∧ q FcgR TLR4 is activated by LPS; TLR4 signaling is inhibited by Fc gamma receptor (Sánchez-Mejorada and
Rosales, 1998; Sutterwala et al., 1998; Nimmerjahn and Ravetch, 2008; Park et al., 2009; Zhang et al.,
2009; Luo et al., 2010; Lawrence and Natoli, 2011; Vogelpoel et al., 2014)

FcgR (IC_e ∧ LPS_e) ∨ (IC_e ∧
IL1b_e)

Immune complexes, together with LPS or IL-1 beta activate Fc gamma receptor (Sánchez-Mejorada and
Rosales, 1998; Sutterwala et al., 1998; Abrahams et al., 2000; Lucas et al., 2005; Nimmerjahn and
Ravetch, 2008; Zhang et al., 2009; Luo et al., 2010; Clatworthy et al., 2014; Guilliams et al., 2014;
Vogelpoel et al., 2014, 2015)

IL4Ra IL4_e IL-4 binds to its receptor (Gordon, 2003; Gordon and Martinez, 2010; Lawrence and Natoli, 2011)

IL10R IL10_e ∨ IL10_out IL-10 binds to its receptor (Moore et al., 2001; Hutchins et al., 2013; Foey, 2014; Nakamura et al., 2015)

STAT1 IFNgR ∧ q(SOCS1 ∨ STAT3) Interferon-gamma receptor activates JAK/STAT1 pathway and is inhibited by SOCS1 or STAT3 signaling
(Ito et al., 1999; Dickensheets et al., 2007; Mosser and Edwards, 2008; Baker et al., 2009; McLaren and
Ramji, 2009; Whyte et al., 2011)

STAT5 CSF2Ra ∧ q(STAT3 ∨ IRF4) STAT5 transcription factor is activated via CSF2Ra signaling and inhibited by STAT3 or IRF4
(Barahmand-Pour et al., 1998; Ito et al., 1999; Lehtonen et al., 2002; Dickensheets et al., 2007; Hamilton,
2008; Baker et al., 2009; Krausgruber et al., 2011; Lawrence and Natoli, 2011; Whyte et al., 2011)

NF-κB (IL1R ∨ TLR4) ∧ q(STAT3 ∨
FcgR ∨ PPARg ∨ KLF4)

NF-κB transcription factor is activated by LPS or IL1-beta signaling cascades and inhibited by M2a- or
M2b-related pathways (Tran-Thi et al., 1995; Ricote et al., 1998; Sánchez-Mejorada and Rosales, 1998;
Sutterwala et al., 1998; Riley et al., 1999; Lehtonen et al., 2002; Bouhlel et al., 2007; Nimmerjahn and
Ravetch, 2008; Park et al., 2009; Zhang et al., 2009; Luo et al., 2010; Weber et al., 2010; Lawrence and
Natoli, 2011; Sica and Mantovani, 2012; Hutchins et al., 2013; Guilliams et al., 2014; Vogelpoel et al.,
2014; Bally et al., 2015)

PPARg IL4Ra PPARg is activated by IL4 signaling (Gordon, 2003; Bouhlel et al., 2007; Chawla, 2010; Gordon and
Martinez, 2010; Gong et al., 2012)

STAT6 IL4Ra JAK/STAT6 pathway is activated by IL4 receptor after IL-4 binding (Gordon, 2003; Ishii et al., 2009;
Gordon and Martinez, 2010; Satoh et al., 2010; Lawrence and Natoli, 2011)

JMJD3 IL4Ra JMJD3 is activated in response to IL4 signaling cascade (Gordon, 2003; Ishii et al., 2009; Gordon and
Martinez, 2010; Satoh et al., 2010; Lawrence and Natoli, 2011)

STAT3 IL10R∧ q(FcgR ∨ PPARg) JAK/STAT3 pathway is activated in response to IL-10 and inhibited by PPAR gamma or Fc gamma
receptor pathways (Ricote et al., 1998; Sánchez-Mejorada and Rosales, 1998; Sutterwala et al., 1998;
Riley et al., 1999; Ji et al., 2003; Bouhlel et al., 2007; Nimmerjahn and Ravetch, 2008; Lawrence and
Natoli, 2011; Hutchins et al., 2013; Foey, 2014; Nakamura et al., 2015)

IRF3 TLR4 IRF3 is activated in response to TLR4 signaling pathway (Doyle et al., 2002; Sheikh et al., 2014; Mao et al.,
2015)

ERK FcgR ERK pathway is initiated in response to M2b-related signals (Sánchez-Mejorada and Rosales, 1998; Lucas
et al., 2005; Nimmerjahn and Ravetch, 2008; Liu et al., 2009; Foey, 2014)

KLF4 STAT6 KLF4 is activated downstream JAK/STAT6 pathway (Sica and Mantovani, 2012)

SOCS1 STAT6 SOCS1 is activated by STAT6 transcription factor (Baker et al., 2009; Whyte et al., 2011; Arnold et al.,
2014)

IRF4 JMJD3 IRF4 is activated by JMJD3 expression (Gordon, 2003; Ishii et al., 2009; Gordon and Martinez, 2010;
Satoh et al., 2010; Lawrence and Natoli, 2011)

IL1b NF-κB NF-κB transcription factor promotes IL-1 beta production (Tran-Thi et al., 1995; Lehtonen et al., 2002;
Park et al., 2009; Lawrence and Natoli, 2011; Bally et al., 2015)

IFNb IRF3 IRF3 promotes type I interferon production (Doyle et al., 2002; Honda et al., 2005; Rauch et al., 2013; Mao
et al., 2015)

IL12_out STAT1 ∨ STAT5 ∨ NF-κB IL-12 is produced by transcription factors STAT1, STAT5 or NF-κB (Mosser and Edwards, 2008; Sadler
and Williams, 2008; McLaren and Ramji, 2009; Lawrence and Natoli, 2011)

IL10_out PPARg ∨ STAT6 ∨ JMJD3 ∨
STAT3 ∨ ERK

PPAR gamma, STAT6, JMJD3, STAT3 and ERK downstream genes lead to the production of high
quantities of IL10 (Ricote et al., 1998; Sutterwala et al., 1998; Riley et al., 1999; Ritter et al., 1999; Lang
et al., 2002a; Gordon, 2003; Lucas et al., 2005; Bouhlel et al., 2007; Ishii et al., 2009; Liu et al., 2009;
Gordon and Martinez, 2010; Luo et al., 2010; Satoh et al., 2010; Lawrence and Natoli, 2011; Foey, 2014;
Sanin et al., 2015)

Based on the available literature (third column), a Boolean function (second column) is associated to each target node of the network (symbols ∧, ∨, and q indicate logical
operators AND, OR, NOT, respectively).
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of three different states. Among the 1040 unique steady states
(Supplementary Table S1), 228 can be mapped to the five
canonical macrophage phenotypes reported via experimental
studies in the literature. The frequencies of these 228 steady
states are reported in Figure 4. The remaining steady states do
not characterize the macrophage in any of the known canonical
phenotypes. These states, for which there is a lack of experimental
knowledge, could correspond to input conditions not existing
among in vivo inflammation settings or even be artefacts of
the modeling approach. Alternatively, they could correspond
to hybrid phenotypes (O’Carroll et al., 2013) resembling gene
expression patterns of two or more canonical phenotypes
(discussed below). It is worth to note that a higher number of
steady states does not imply a corresponding higher probability of
polarization, since the final outcome depends on the combination
of external stimuli. In other words, the number of steady states
indicates the propensity of the network logic to lead the cell to
the specific phenotypes yet driven by environmental cues.

The most frequent polarized state is the M2a followed by
M2c and then M1. This is consistent with the pivotal role of
macrophages in inflammation (M1), and in the resolution of
inflammation (M2a and M2c). On the other hand, according
to our analysis, M2b is the least frequent state, which might
be consistent with the lack of knowledge of M2b-related
pathways which is reflected in the network. This behavior of
the model is consistent with observed data (Sica and Mantovani,
2012).

A closer look at the dynamics of the model (Figure 5)
is obtained by performing several rounds of asynchronous
simulations by using the BooleanNet Python library. We
observed that any combination of stimuli among IFN-γ,
IL-1β, LPS, and GM-CSF keep the polarization of the M1
macrophage. Once macrophages have polarized into an
M1 form, the steady states are taken as initial conditions
to polarize macrophages into the three different forms of
M2 macrophage. IL-4 input is activated (i.e., IL-4 binding
by IL-4RA) to polarize M2a macrophage, IL-10 is activated
to polarize the M2c macrophages, and IC in combination
with either IL-1β or LPS is activated to polarize M2b
macrophages, according to the available literature on
macrophage polarization stimuli (Gordon and Martinez,
2010).

The M1 polarization is simulated starting from an M0 (i.e.,
all non-input signal nodes set to zero) cellular environment
and switching on all input nodes, as reported in literature.
Following the typical cellular response to inflammation, starting
from an M1-like configuration, and M2-related external stimuli
(i.e., IL-4 for M2a, IL-10 for M2c and IC in combination
with LPS or IL-1β for M2b macrophages), the dynamics
of transcription factors and secreted molecules (i.e., IL-12
and IL-10) show the macrophage moves from pro- to anti-
inflammatory states, as reported in literature. The M2-related
polarizations from an M0 initial state have been also performed
to check the ability of the system to simulate the situation
in which new monocyte-derived macrophage populations are
recruited to the inflammation site during the resolution
of inflammation, in addition to M2 macrophages polarized

FIGURE 3 | Gene expression markers of macrophage polarization according
to literature. Each row, associated to one of M0, M1, M2a, M2b, and M2c,
indicates the expression of the 10 marker genes determining the polarization
fate. White dots represent inactive genes; yellow dots indicate expressed
genes.

from the pro-inflammatory M1 state (see Supplementary
File S2).

We also tested in silico the “plasticity” of the polarized
phenotypes, i.e., the capability to revert the state from
inflammatory to anti-inflammatory and vice versa. In order
to proceed, we run a set of numerical experiments in
which macrophages, starting from the four polarized states
M1, M2a, M2b, and M2c, were challenged with the four
characteristic stimuli (i.e., pro-M1, -M2a, -M2b, and -M2c)
resulting in 16 possible couples “initial condition/stimuli.” Each
of those simulation settings was repeated 104 times using the
asynchronous updating scheme and averages were computed.
After that, we used the steady states obtained as initial states
for other simulations, giving each input from the input set (see
Figure 5).

We focused on M1-related initial states, since a normal
immune response begins with an inflammation state, followed by
anti-inflammatory environment settings.

With an M0 steady state as initial condition, several
stimuli were applied for each simulation. To represent
the M1 polarization we gave a combination of random
M1-related stimuli (LPS, GM-CSF, IFN-γ, and IL-1β).
The initial state for each node of the network are
those related to the M0 steady state (no active nodes at
all).

We then performed M2a, M2b, and M2c polarizations with
IL-4, a combination of IC and IL-1β or LPS, and IL-10 as inputs,
respectively. In other words, we started with M1 macrophages,
changed their environment and stimulated them with different
types of stimuli. Thus, we performed all the combinations for
the simulations and analyzed the dynamics and the differences
(see Figure 5 for details). We also investigated the possibility of
transforming an M2-like phenotype to an M1 macrophage by
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FIGURE 4 | Barplot of macrophages’ phenotypes occurrences. Each bar represents the number of steady states (total number = 228) related to a specific polarized
form.

changing the environment using a variety of external stimuli.
However, all considered combinations resulted in states that do
not characterize the macrophage M1 canonical phenotype.

Robustness Evaluation of the
Macrophage Network
Biological networks are considered to be robust when compared
to random networks, if a single perturbation does not influence
the behavior of the entire system. We analyzed the robustness of
macrophage polarization network as follows. First, we evaluated
the transition robustness by perturbing states of the network
with random bit flips (Müssel et al., 2010). When the successor
states of the original and the perturbed states are computed, the
distance between then is calculated as the Hamming distance
(HD, that is, the difference between strings of equal length is
the number of positions at which the corresponding symbols are
different). The HD, normalized by the number of genes in the
network, shows how robust the network is to small mutations:
the lower the normalized HD, the more robust is the network.

A hundred of these tests were repeated for 100 randomly
generated networks and the results plotted in Figure 6. Results
show that the macrophage model is statistically more robust
(p = 0.01) in comparison to the randomly generated networks.

The resulting mean normalized HD equal to 0.03 can be
interpreted as if, on average in the mutated networks, 3% of the
gene states are different.

Effects of Knockouts in the Simulations
To analyze the dynamics and investigate the role of each
component in the polarization process, we performed knockout
(components’ value set to “0”) and ectopic expression
(components’ value set to “1”) in silico experiments. These
constraints allowed us to see how perturbations of the system
affect the network functionality with respect to the macrophage
behavior. At a biological level, this analysis may have potential
impact in in-silico pharmaceutical target prioritization.

In our network, gene knockout is interpreted as a deactivation
of one or more components, just like the deactivation of a protein
that is a target of a drug.

We performed systematic knockouts on every internal node
of the network (internal transducers/transcription factors), to see
how they affect the dynamics of the network by calculating the
fold change of the number of steady states reached by the system
(see Figure 7 and Supplementary Files S3, S4 for details). The
idea is that a knockout modifies the network characteristics so
that also its dynamics is modified and the number of steady states,

Frontiers in Physiology | www.frontiersin.org November 2018 | Volume 9 | Article 1659285

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-01659 November 23, 2018 Time: 15:54 # 12

Palma et al. Modeling the Dynamics of Macrophage Polarization

FIGURE 5 | Dynamics of the gene activation levels obtained for all combinations of initial polarization state and polarizing stimuli. The average activation values are
computed over 104 asynchronous simulations of the activation level of the genes. For each subplot, the horizontal axis represents eight time steps and the vertical
axis the average activity of a molecule from 0 to 1.

for example, a higher number of pro-inflammatory steady states
is interpreted as a greater probability to induce, via that specific
knockout, a pro-inflammatory polarization of the macrophages.

DISCUSSION

Pro-inflammatory macrophages are those polarized by cytokines
like IFN-γ or LPS (among other molecules). They are
produced during cell-mediated immune responses, interacting
with chemical mediators produced by other cells, such as the
IFN-γ secreted by natural killer (NK) cells (Mosser and Edwards,
2008). Resting macrophages are primed by IFN-γ to produce
pro-inflammatory cytokines, according to our simulations of an
unstimulated macrophage which undergoes an M1 polarization
when stimulated by IFN-γ (see Figure 5). TLR ligands, such
as the well-known LPS can also polarize macrophage into an
M1 form, via NF-κB signaling, producing pro-inflammatory
mediators, other stimuli such as GM-CSF and IL-1β gave similar
results (Mosser and Edwards, 2008; Lawrence and Natoli, 2011;

Sica and Mantovani, 2012). Macrophages respond to micro-
environmental cues, showing a distinct transcriptional profile
depending on the stimulus. Starting from M0, that is assumed to
be a cell with no typical constitutive gene expression profile, an
M1 stimulus (i.e., IFN-γ, LPS, IL-1β, and GM-CSF) leads to a M1
phenotype, IL4 to a M2a phenotype, IC together with LPS and/or
IL-1β to an M2b phenotype, and IL-10 to a M2c phenotype, the
network can represent the polarization process (see Figure 8 for
a visual representation of macrophage switch pathways).

Transcription factor NF-κB is among the most important
regulators of M1 polarization of macrophages (Wang et al.,
2014). Its expression is stable and maintained during macrophage
polarization after stimulation with M1-related inputs. If no
inputs are given to an M1-polarized system, NF-κB seems to
maintain the M1 polarization (see Figure 5), while STAT1 and
STAT5 decrease their expression (if not stimulated by IFN-γ
and GM-CSF), until an M2-related stimulus (IL-4, IL-10 or IC)
is present, which result in the resolution of the inflammation
phase, and in the increase of the expression of M2 master
regulators.

Frontiers in Physiology | www.frontiersin.org November 2018 | Volume 9 | Article 1659286

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-01659 November 23, 2018 Time: 15:54 # 13

Palma et al. Modeling the Dynamics of Macrophage Polarization

FIGURE 6 | Test of the robustness of the macrophage network. Histogram of
the normalized Hamming distance (HD) of randomly generated networks
(RGN) in comparison to the HD of the perturbed macrophage network (PMN).
The red line shows the mean of the PMN-HD histogram (not shown) which is
smaller than the 5% quantile of the RGN-HD distribution (blue line). The test
shows that the noise influences the randomly generated networks significantly
more than the macrophage network (Müssel et al., 2010).

In the presence of IL-4 (i.e., activation of input node IL4), we
noticed rapid expression of M2a master regulators (i.e., STAT6,
PPARγ, and JMJD3) and the production of IL-10, with a slow
decrease in the production of IL-12, indicating that M2a-related
stimuli can immediately suppress the pro-inflammatory function
of macrophage, as already evidenced in literature (Sica and
Mantovani, 2012). In M2b polarization, despite the slow decrease
of the expression of pro-inflammatory transcription factors and
secreted molecules, IL-10 is finally produced by this type of
macrophage, and its master regulator, ERK. M2c polarization is
reached when IL-10 is given as input, with IL-10 production and
STAT3 expression.

In the absence of external stimuli, a polarized M2 macrophage
maintained its state with no alteration on the molecules
expression, highlighting the stability of this phenotype.

M1 stimuli do not affect M2-like macrophage, apart from
M2b in which we can assist to a slower decrease of IL12,
reaching its stable state at the seventh time step, at variance
with M2a and M2c simulations in which the anti-inflammatory
stimuli lead to the absence of IL12 at the fourth time step.
For any input given to an M2b-polarized macrophage, a
phenotype change related to the given stimulus seems to be
a common feature, except for M1 stimuli, which appear to
polarize macrophage to a form corresponding to the production
of both output cytokines (IL12 and IL10) and the repression
of ERK. This behavior has not been reported in literature,
but could explain the existence of this not-well characterized
type of macrophage that share common features between

pro- and anti-inflammatory macrophages (Sica and Mantovani,
2012).

A similar behavior can be observed when M2c macrophage
are polarized with M1-related cytokines, even though M2a and
M2b stimulations can subvert M2c polarization, indicating that
M2c macrophages are more likely to be polarized from an M0
phenotype or switch from an already M1-polarized macrophage.
Indeed, in some physiological and pathological conditions, such
as muscle regeneration, the co-existence of different populations
of M2 macrophages can be found at later stages, comprising
M2a and M2c macrophage (Novak et al., 2014; Rigamonti et al.,
2014). Hence, they can be thought of as distinct populations
of macrophage polarized independently, since this regulatory
network is characterized by well-known interactions between
molecules involved in the polarization pathway (Novak et al.,
2014; Rigamonti et al., 2014).

CONCLUSION

Transforming acute diseases into chronic ones is a realistic
strategy for those pathologies for which no definitive cure
is known, such as in the case of HIV (Scandlyn, 2000).
A better understanding of the pathways involved in the transition
from acute to chronic states and a more comprehensive
knowledge of the cellular and molecular mechanisms are in
need. Understanding how the immune response is regulated,
and how immune cells integrate information from the multitude
of molecular signals could certainly lead to improvements of
existing therapies and make suggestions on the way forward.

In this work, we presented a dynamic logical model of
the GRN of macrophage polarization, which is coherent to
the expected behavior, under different experimental conditions.
The model identified mechanisms driving a pro- into an anti-
inflammatory setting, and hence maybe useful in transforming,
fully or in part, an acute inflammation into a chronic one.

One example of network dynamics that could be affected
by providing different types of stimuli is reported in Figure 8.
We examined the different dynamics of this process to study
how macrophages switch their phenotype during ineffective and
sterile immune responses, focusing on M2-like polarization from
a pro-inflammatory micro-environment.

A first result regards the importance of two inhibitions,
namely, of TLR4 and NF-κB signaling by FcγR, that turned out
essential to obtain the M2b phenotype. In fact, a preliminary
version of the network, not accounting for these two inhibitions,
was not able to reach the M2b polarized state.

The repolarization from M2 to M1 has been experimentally
observed, yet occasionally in specific environments (Davis et al.,
2013; Zheng et al., 2013; Zhang et al., 2017; Gao et al., 2018).
Simulation results suggest that such polarization reversion seems
to show a higher inertia. In fact, as shown in Figure 5 panels a,
b, and c, the average values of pro-inflammatory genes starting
from an anti-inflammatory phenotype only reach the value of
30% of the activation level. Furthermore, our in silico knockout
experiments evidenced how some regulator plays a role by
downregulating genes that are known for their inhibition activity.
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FIGURE 7 | Circular bar plot of macrophage gene knockouts. Each group represents the knockout of a specific transcription factor of the network. Bar heights
represent the number of steady states for each macrophage canonical phenotype with respect to the wild type (WT in red).

FIGURE 8 | Cell fate map for macrophages. Each dotted arrow represents the switch of macrophage from a phenotype to another, annotated with the gene
expression patterns, based on simulation dynamics and results.
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FIGURE 9 | Conceptual representation of the continuum of differentiation states. Circles show intermediate stable states (smaller circles) between the five canonical
M0, M1, and M2a/b/c (larger monochromatic circles). Stable states whose correspondent phenotype is not uniquely determined are indicated as larger circles with
more than one color. Gray arrows indicate state changes the cell undergoes upon reception of extracellular stimuli. Black dashed arrows show jumps from one
differentiation pathway to another. For instance, just by changing the extracellular stimuli (e.g., IL10) a macrophage which started the differentiation from M1 to M2b
can divert toward the M2c phenotype.

For instance, in M2-related knockouts in silico experiments,
such regulators, as for example PPARG, are responsible for the
resolution of inflammation and the maintenance of an anti-
inflammatory environment by enabling the production of IL-
10 and other important anti-inflammatory mediators. Similar
studies could focus on networks that are specific to some
pathogen or some physiological mechanism, to get a better
comprehension in terms of the logic of the regulatory machinery.

This modeling study yielded another important observation,
which is related to the environmental-dependent expression of
mixed markers identifying one of the four canonical macrophage
polarizations. Indeed, recent studies support the view that fully
polarized macrophages (M1 and M2) as being the extremes of a
continuum of macrophages polarization (Mantovani, 2008). This
could for example be obtained by mixing various stimuli, such
as IC together with LPS or IL-1β and IL-10, which give rise to
M2-like functional phenotypes, yet sharing properties with IL-4-
activated macrophages (Mantovani et al., 2004). This continuum
of macrophages phenotypes parallels a continuum in CD4+ T
cell states, recently observed, as opposed to a limited number of

discrete phenotypes (Eizenberg-Magar et al., 2017). Indeed, while
T helper cell induction requires the participation of macrophages,
several signal feedback mechanisms are implemented for the
activation and differentiation of macrophages. Even if this
intertwinement may vary in both quantitative and qualitative
aspects, the continuum of states detected in T helper and
macrophage cells may be more linked than observed up to now.

We surmise that shifts among different phenotypes in
our model mimic the hypothetical continuum of macrophage
polarization, being M1 and the three subtypes of M2 the
extremes of such uninterrupted sequences of states. Figure 9
conceptualizes this continuum in the progression of gene
activations leading from one form of polarization to another
driven by various stimuli. For instance, an M1+M2 successive
stimuli can lead to an M2a stable configuration while passing
through an M1 state (see Figure 9).

The presented approach, although promising and general,
is not free of pitfalls. Even if little mathematical knowledge
is needed to build a Boolean network, the information gained
from its analysis is strongly affected by the accuracy of
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the relationships among genes encoded in the Boolean rules
characterizing the overall dynamics. Manually curated networks
optimally convey the biological information but cannot ensure
completeness. The usefulness of Boolean networks therefore is
found while dealing with poorly characterized systems, especially
when quantitative experimental data is missing. In some cases,
alternative approaches should be considered such as introducing
uncertainty with probabilistic networks or using continuous
models that describe the kinetic with greater accuracy than
Boolean networks.

To conclude, although there is a wealth of information
about the different macrophage subsets in vitro, features such
as plasticity, heterogeneity, and adaptability make them very
difficult to study using conventional experimental tools. In this
paper, we have shown that relatively simple logical description
of the gene regulation machinery can support the analysis of
the emerging complexity of the phenomena of mammalian cell
differentiation and can be used to provide testable predictions
as, for instance, which combination of stimuli leads to hybrid
phenotypes.

The network provided here is manually curated and has
been built based on the available information derived from
literature to date. This should be considered as-is, that is,
limited to the current knowledge which, regarding the less
characterized pathways and molecular interactions leading to
M2b macrophages, is admittedly lacking.

AUTHOR CONTRIBUTIONS

All authors conceived the study. AP and FC performed the
experiments. All authors carried out the analysis and contributed
to writing the paper.

ACKNOWLEDGMENTS

GC acknowledges partial support from the European
Research Council (grant DEPTH, grant agreement no.
322749) and from the Italian Association for Cancer
Research AIRC (grant IG 2017, StateplaceId. 20322). FC
and PT acknowledge partial support from the European
Commission under the Seventh Framework Programme
(MISSION-T2D project, contract no. 600803), and from
COST Action CA15120 Open Multiscale Systems Medicine
(OpenMultiMed).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fphys.
2018.01659/full#supplementary-material

REFERENCES
Abou-Jaoudé, W., Monteiro, P. T., Naldi, A., Grandclaudon, M., Soumelis, V.,

Chaouiya, C., et al. (2014). Model checking to assess T-helper cell plasticity.
Front. Bioeng. Biotechnol. 2:86. doi: 10.3389/fbioe.2014.00086

Abou-Jaoudé, W., Traynard, P., Monteiro, P. T., Saez-Rodriguez, J., Helikar, T.,
Thieffry, D., et al. (2016). Logical modeling and dynamical analysis of cellular
networks. Front. Genet. 7:94. doi: 10.3389/fgene.2016.00094

Abrahams, V. M., Cambridge, G., Lydyard, P. M., and Edwards, J. C. (2000).
Induction of tumor necrosis factor alpha production by adhered human
monocytes: a key role for Fcgamma receptor type IIIa in rheumatoid arthritis.
Arthritis Rheum. 43, 608–616. doi: 10.1002/1529-0131(200003)43:3<608::AID-
ANR18>3.0.CO;2-G

Albert, I., Thakar, J., Li, S., Zhang, R., and Albert, R. (2008). Boolean network
simulations for life scientists. Source Code Biol. Med. 3:16. doi: 10.1186/1751-
0473-3-16

Arnold, C. E., Whyte, C. S., Gordon, P., Barker, R. N., Rees, A. J., and Wilson,
H. M. (2014). A critical role for suppressor of cytokine signalling 3 in promoting
M1 macrophage activation and function in vitro and in vivo. Immunology 141,
96–110. doi: 10.1111/imm.12173

Baker, B. J., Akhtar, L. N., and Benveniste, E. N. (2009). SOCS1 and SOCS3 in the
control of CNS immunity. Trends Immunol. 30, 392–400. doi: 10.1016/j.it.2009.
07.001

Bally, A. P. R., Lu, P., Tang, Y., Austin, J. W., Scharer, C. D., Ahmed, R., et al. (2015).
NF-κB regulates PD-1 expression in macrophages. J. Immunol. 194, 4545–4554.
doi: 10.4049/jimmunol.1402550

Barahmand-Pour, F., Meinke, A., Groner, B., and Decker, T. (1998). Jak2-Stat5
interactions analyzed in yeast. J. Biol. Chem. 273, 12567–12575. doi: 10.1074/
jbc.273.20.12567

Benítez, M., and Hejátko, J. (2013). Dynamics of cell-fate determination and
patterning in the vascular bundles of Arabidopsis thaliana, Candela H, editor.
PLoS One 8:e63108. doi: 10.1371/journal.pone.0063108

Biswas, S. K., Gangi, L., Paul, S., Schioppa, T., Saccani, A., Sironi, M., et al. (2006).
A distinct and unique transcriptional program expressed by A distinct and
unique transcriptional program expressed by tumor-associated macrophages

(defective NF- B and enhanced IRF-3/STAT1 activation ). Blood 107, 2112–
2122. doi: 10.1182/blood-2005-01-0428

Biswas, S. K., and Mantovani, A. (2010). Macrophage plasticity and interaction
with lymphocyte subsets: cancer as a paradigm. Nat. Immunol. 11, 889–896.
doi: 10.1038/ni.1937

Bouhlel, M. A., Derudas, B., Rigamonti, E., Dièvart, R., Brozek, J., Haulon, S.,
et al. (2007). PPARγ activation primes human monocytes into alternative M2
macrophages with anti-inflammatory properties. Cell Metab. 6, 137–143. doi:
10.1016/j.cmet.2007.06.010

Bowdish, D. M. E., Loffredo, M. S., Mukhopadhyay, S., Mantovani, A., and
Gordon, S. (2007). Macrophage receptors implicated in the “adaptive” form of
innate immunity. Microbes Infect. 9, 1680–1687. doi: 10.1016/j.micinf.09.002

Carbo, A., Hontecillas, R., Andrew, T., Eden, K., Mei, Y., Hoops, S., et al. (2014).
Computational modeling of heterogeneity and function of CD4+ T cells. Front.
Cell Dev. Biol. 2:31. doi: 10.3389/fcell.2014.00031

Castiglione, F., and Celada, F. (2015). Immune System Modelling and Simulation.
Boca Raton, FL: CRC Press. doi: 10.1201/b18274

Castiglione, F., Tieri, P., Palma, A., and Jarrah, A. S. (2016). Statistical ensemble
of gene regulatory networks of macrophage differentiation. BMC Bioinform.
17:506. doi: 10.1186/s12859-016-1363-4

Chakraborty, A. K. (2017). A perspective on the role of computational models
in immunology. Annu. Rev. Immunol. 35, 403–439. doi: 10.1146/annurev-
immunol-041015-055325

Chaouiya, C., Naldi, A., and Thieffry, D. (2012). Logical modelling of gene
regulatory networks with GINsim. Methods Mol. Biol. 804, 463–479. doi: 10.
1007/978-1-61779-361-5_23

Chawla, A. (2010). Control of macrophage activation and function by PPARs. Circ.
Res. 106, 1559–1569. doi: 10.1161/CIRCRESAHA.110.216523

Clatworthy, M. R., Harford, S. K., Mathews, R. J., and Smith, K. G. C.
(2014). FcγRIIb inhibits immune complex-induced VEGF-A production and
intranodal lymphangiogenesis. Proc. Natl. Acad. Sci. U.S.A. 111, 17971–17976.
doi: 10.1073/pnas.1413915111

Darnell, J. E., Kerr, I. M., and Stark, G. R. (1994). Jak-STAT pathways and
transcriptional activation in response to IFNs and other extracellular signaling
proteins. Science 264, 1415–1421. doi: 10.1126/science.8197455

Frontiers in Physiology | www.frontiersin.org November 2018 | Volume 9 | Article 1659290

https://www.frontiersin.org/articles/10.3389/fphys.2018.01659/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphys.2018.01659/full#supplementary-material
https://doi.org/10.3389/fbioe.2014.00086
https://doi.org/10.3389/fgene.2016.00094
https://doi.org/10.1002/1529-0131(200003)43:3<608::AID-ANR18>3.0.CO;2-G
https://doi.org/10.1002/1529-0131(200003)43:3<608::AID-ANR18>3.0.CO;2-G
https://doi.org/10.1186/1751-0473-3-16
https://doi.org/10.1186/1751-0473-3-16
https://doi.org/10.1111/imm.12173
https://doi.org/10.1016/j.it.2009.07.001
https://doi.org/10.1016/j.it.2009.07.001
https://doi.org/10.4049/jimmunol.1402550
https://doi.org/10.1074/jbc.273.20.12567
https://doi.org/10.1074/jbc.273.20.12567
https://doi.org/10.1371/journal.pone.0063108
https://doi.org/10.1182/blood-2005-01-0428
https://doi.org/10.1038/ni.1937
https://doi.org/10.1016/j.cmet.2007.06.010
https://doi.org/10.1016/j.cmet.2007.06.010
https://doi.org/10.1016/j.micinf.09.002
https://doi.org/10.3389/fcell.2014.00031
https://doi.org/10.1201/b18274
https://doi.org/10.1186/s12859-016-1363-4
https://doi.org/10.1146/annurev-immunol-041015-055325
https://doi.org/10.1146/annurev-immunol-041015-055325
https://doi.org/10.1007/978-1-61779-361-5_23
https://doi.org/10.1007/978-1-61779-361-5_23
https://doi.org/10.1161/CIRCRESAHA.110.216523
https://doi.org/10.1073/pnas.1413915111
https://doi.org/10.1126/science.8197455
https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-01659 November 23, 2018 Time: 15:54 # 17

Palma et al. Modeling the Dynamics of Macrophage Polarization

Davis, M. J., Tsang, T. M., Qiu, Y., Dayrit, J. K., Freij, J. B., Huffnagle, G. B.,
et al. (2013). Macrophage M1/M2 polarization dynamically adapts to changes
in cytokine microenvironments in Cryptococcus neoformans Infection. MBio.
4:e264-13. doi: 10.1128/mBio.00264-13

Deng, B., Wehling-Henricks, M., Villalta, A. A., Wang, Y., and Tidball, J. G. (2012).
Interleukin-10 triggers changes in macrophage phenotype that promote muscle
growth and regeneration. J. Immunol. 189, 53669–53680. doi: 10.1038/nmeth.
2250.Digestion

Dickensheets, H., Vazquez, N., Sheikh, F., Gingras, S., Murray, P. J., Ryan, J. J.,
et al. (2007). Suppressor of cytokine signaling-1 is an IL-4-inducible gene in
macrophages and feedback inhibits IL-4 signaling. Genes Immun. 8, 21–27.
doi: 10.1038/sj.gene.6364352

Doyle, S., Vaidya, S., O’Connell, R., Dadgostar, H., Dempsey, P., Wu, T., et al.
(2002). IRF3 mediates a TLR3/TLR4-specific antiviral gene program. Immunity
17, 251–63. doi: 10.1016/S1074-7613(02)00390-4

Eftimie, R., Gillard, J. J., and Cantrell, D. A. (2016). Mathematical models for
immunology: current state of the art and future research directions. Bull. Math.
Biol. 78, 2091–2134. doi: 10.1007/s11538-016-0214-9

Eizenberg-Magar, I., Rimer, J., Zaretsky, I., Lara-Astiaso, D., Reich-Zeliger, S., and
Friedman, N. (2017). Diverse continuum of CD4 + T-cell states is determined
by hierarchical additive integration of cytokine signals. Proc. Natl. Acad. Sci.
U.S.A. 114, E6447–E6456. doi: 10.1073/pnas.1615590114

Espinosa-Soto, C., Padilla-Longoria, P., and Alvarez-Buylla, E. R. (2004). A Gene
regulatory network model for cell-fate determination during Arabidopsis
thaliana flower development that is robust and recovers experimental gene
expression profiles. Plant Cell. 16, 2923–2939. doi: 10.1105/tpc.104.021725

Foey, A. D. (2014). Macrophages—Masters of Immune Activation, Suppression
and Deviation, Immune Response Activation, Guy Huynh Thien Duc, Chap. 5.
London: IntechOpen, 121–149. doi: 10.5772/57541

Gao, C.-H., Dong, H.-L., Tai, L., and Gao, X.-M. (2018). Lactoferrin-containing
immunocomplexes drive the conversion of human macrophages from M2- into
M1-like phenotype. Front. Immunol. 9:37. doi: 10.3389/fimmu.2018.00037

Gong, D., Shi, W., Yi, S., Chen, H., Groffen, J., and Heisterkamp, N. (2012). TGFβ

signaling plays a critical role in promoting alternative macrophage activation.
BMC Immunol. 13:31. doi: 10.1186/1471-2172-13-31

Gordon, S. (2003). Alternative activation of macrophages. Nat. Rev. Immunol. 3,
23–35. doi: 10.1038/nri978

Gordon, S. (2008). Elie metchnikoff: father of natural immunity. Eur. J. Immunol.
38, 3257–3264. doi: 10.1002/eji.200838855

Gordon, S., and Martinez, F. O. (2010). Alternative activation of macrophages:
mechanism and functions. Immunity 32, 593–604. doi: 10.1016/j.immuni.2010.
05.007

Gordon, S., Plüddemann, A., and Martinez Estrada, F. (2014). Macrophage
heterogeneity in tissues: phenotypic diversity and functions. Immunol. Rev. 262,
36–55. doi: 10.1111/imr.12223

Guevara, M. R. (2003). Bifurcations Involving Fixed Points and Limit Cycles in
Biological Systems. New York, NY: Springer, 41–85. doi: 10.1007/978-0-387-
21640-9_3

Guilliams, M., Bruhns, P., Saeys, Y., Hammad, H., and Lambrecht, B. N. (2014).
The function of Fcγ receptors in dendritic cells and macrophages. Nat. Rev.
Immunol. Nat. 14, 94–108. doi: 10.1038/nri3582

Hamilton, J. A. (2008). Colony-stimulating factors in inflammation and
autoimmunity. Nat. Rev. Immunol. 8, 533–545. doi: 10.1016/S1471-4906(02)
02260-3

Hirano, M., Davis, R. S., Fine, W. D., Nakamura, S., Shimizu, K., Yagi, H., et al.
(2007). IgEb immune complexes activate macrophages through FcgammaRIV
binding. Nat. Immunol. 8, 762–771. doi: 10.1038/ni1477

Honda, K., Yanai, H., Takaoka, A., and Taniguchi, T. (2005). Regulation of the type
I IFN induction: a current view. Int. Immunol. 17, 1367–1378. doi: 10.1093/
intimm/dxh318

Hutchins, A. P., Diez, D., and Miranda-Saavedra, D. (2013). The IL-10/STAT3-
mediated anti-inflammatory response: recent developments and future
challenges. Brief Funct. Genomics 12, 489–498. doi: 10.1093/bfgp/elt028

Ishii, M., Wen, H., Corsa, C. A. S., Liu, T., Coelho, A. L., Allen, R. M., et al. (2009).
Epigenetic regulation of the alternatively activated macrophage phenotype.
Blood 114, 3244–3254. doi: 10.1182/blood-2009-04-217620

Ito, S., Ansari, P., Sakatsume, M., Dickensheets, H., Vazquez, N., Donnelly, R. P.,
et al. (1999). Interleukin-10 inhibits expression of both interferon alpha- and

interferon gamma- induced genes by suppressing tyrosine phosphorylation of
STAT1. Blood 93, 1456–1463.

Ji, J.-D., Tassiulas, I., Park-Min, K.-H., Aydin, A., Mecklenbrauker, I.,
Tarakhovsky, A., et al. (2003). Inhibition of interleukin 10 signaling after
Fc receptor ligation and during rheumatoid arthritis. J. Exp. Med. 197,
1573–1583. doi: 10.1084/jem.20021820

Karlebach, G., and Shamir, R. (2008). Modelling and analysis of gene regulatory
networks. Nat. Rev. Mol. Cell. Biol. 9, 770–780. doi: 10.1038/nrm2503

Kawai, T., and Akira, S. (2010). The role of pattern-recognition receptors in
innate immunity: update on Toll-like receptors. Nat. Immunol. 11, 373–384.
doi: 10.1038/ni.1863

Kawai, T., and Akira, S. (2011). Toll-like receptors and their crosstalk with other
innate receptors in infection and immunity. Immunity 34, 637–650. doi: 10.
1016/j.immuni.2011.05.006

Kawai, T., Takeuchi, O., Fujita, T., Inoue, J., Mühlradt, P. F., Sato, S., et al. (2001).
Lipopolysaccharide stimulates the MyD88-independent pathway and results
in activation of IFN-regulatory factor 3 and the expression of a subset of
lipopolysaccharide-inducible genes. J. Immunol. 167, 5887–5894. doi: 10.4049/
jimmunol.167.10.5887

Kestler, H. A., Wawra, C., Kracher, B., and Kühl, M. (2008). Network modeling
of signal transduction: establishing the global view. BioEssays 30, 1110–1125.
doi: 10.1002/bies.20834

Kotenko, S.V., Izotova, L. S., Pollack, B. P., Mariano, T. M., Donnelly, R. J.,
Muthukumaran, G., et al. (1995). Interaction between the components of the
interferon gamma receptor complex. J. Biol. Chem. 270, 20915–20921. doi:
10.1074/jbc.270.36.20915

Kraakman, M. J., Murphy, A. J., Jandeleit-Dahm, K., and Kammoun, H. L. (2014).
Macrophage polarization in obesity and type 2 diabetes: weighing down our
understanding of macrophage function? Front. Immunol. 5:470. doi: 10.3389/
fimmu.2014.00470

Krausgruber, T., Blazek, K., Smallie, T., Alzabin, S., Lockstone, H., Sahgal, N., et al.
(2011). IRF5 promotes inflammatory macrophage polarization and TH1-TH17
responses. Nat. Immunol. 12, 231–238. doi: 10.1038/ni.1990

Lang, R., Patel, D., Morris, J. J., Rutschman, R. L., and Murray, P. J. (2002a).
Shaping gene expression in activated and resting primary macrophages by
IL-10. J. Immunol. 169, 2253–2263. doi: 10.4049/jimmunol.169.5.2253

Lang, R., Rutschman, R. L., Greaves, D. R., and Murray, P. J. (2002b). Autocrine
deactivation of macrophages in transgenic mice constitutively overexpressing
IL-10 under control of the human CD68 promoter. J. Immunol. Am. Assoc.
Immunol. 168, 3402–3411. doi: 10.4049/JIMMUNOL.168.7.3402

Lawrence, T., and Natoli, G. (2011). Transcriptional regulation of macrophage
polarization: enabling diversity with identity. Nat. Rev. Immunol. 11, 750–761.
doi: 10.1038/nri3088

Lehtonen, A., Matikainen, S., Miettinen, M., and Julkunen, I. (2002).
Granulocyte-macrophage colony-stimulating factor (GM-CSF)-induced STAT5
activation and target-gene expression during human monocyte/macrophage
differentiation. J. Leukoc Biol. 71, 511–519.

Liu, W., Ouyang, X., Yang, J., Liu, J., Li, Q., Gu, Y., et al. (2009). AP-1 activated
by toll-like receptors regulates expression of IL-23 p19. J. Biol. Chem. 284,
24006–24016. doi: 10.1074/jbc.M109.025528

Lucas, M., Zhang, X., Prasanna, V., and Mosser, D. M. (2005). ERK activation
following macrophage FcgammaR ligation leads to chromatin modifications at
the IL-10 locus. J. Immunol. 175, 469–477. doi: 10.4049/jimmunol.175.1.469

Luo, Y., Pollard, J. W., and Casadevall, A. (2010). FC Receptor cross-linking
stimulates cell proliferation of macrophages via the ERK pathway. J. Biol. Chem.
285, 4232–4242. doi: 10.1074/jbc.M109.037168

Maiti, S., Dai, W., Alaniz, R., Hahn, J., and Jayaraman, A. (2014). Mathematical
modeling of pro- and anti-inflammatory signaling in macrophages. Process.
Multidiscipl. Digital Publish. Inst. 3, 1–18. doi: 10.3390/pr3010001

Mantovani, A. (2008). From phagocyte diversity and activation to probiotics: back
to Metchnikoff. Eur. J. Immunol. 38, 3269–3273. doi: 10.1002/eji.200838918

Mantovani, A., Sica, A., Sozzani, S., Allavena, P., Vecchi, A., and Locati, M.
(2004). The chemokine system in diverse forms of macrophage activation and
polarization. Trends Immunol. 25, 677–686. doi: 10.1016/j.it.2004.09.015

Mantovani, A., Sozzani, S., Locati, M., Allavena, P., and Sica, A. M. (2002).
Macrophage polarization: tumor-associated macrophages as a paradigm
for polarized M2 mononuclear phagocytes. Trends Immunol. 23, 549–555.
doi: 10.1016/S1471-4906(02)02302-5

Frontiers in Physiology | www.frontiersin.org November 2018 | Volume 9 | Article 1659291

https://doi.org/10.1128/mBio.00264-13
https://doi.org/10.1038/nmeth.2250.Digestion
https://doi.org/10.1038/nmeth.2250.Digestion
https://doi.org/10.1038/sj.gene.6364352
https://doi.org/10.1016/S1074-7613(02)00390-4
https://doi.org/10.1007/s11538-016-0214-9
https://doi.org/10.1073/pnas.1615590114
https://doi.org/10.1105/tpc.104.021725
https://doi.org/10.5772/57541
https://doi.org/10.3389/fimmu.2018.00037
https://doi.org/10.1186/1471-2172-13-31
https://doi.org/10.1038/nri978
https://doi.org/10.1002/eji.200838855
https://doi.org/10.1016/j.immuni.2010.05.007
https://doi.org/10.1016/j.immuni.2010.05.007
https://doi.org/10.1111/imr.12223
https://doi.org/10.1007/978-0-387-21640-9_3
https://doi.org/10.1007/978-0-387-21640-9_3
https://doi.org/10.1038/nri3582
https://doi.org/10.1016/S1471-4906(02)02260-3
https://doi.org/10.1016/S1471-4906(02)02260-3
https://doi.org/10.1038/ni1477
https://doi.org/10.1093/intimm/dxh318
https://doi.org/10.1093/intimm/dxh318
https://doi.org/10.1093/bfgp/elt028
https://doi.org/10.1182/blood-2009-04-217620
https://doi.org/10.1084/jem.20021820
https://doi.org/10.1038/nrm2503
https://doi.org/10.1038/ni.1863
https://doi.org/10.1016/j.immuni.2011.05.006
https://doi.org/10.1016/j.immuni.2011.05.006
https://doi.org/10.4049/jimmunol.167.10.5887
https://doi.org/10.4049/jimmunol.167.10.5887
https://doi.org/10.1002/bies.20834
https://doi.org/10.1074/jbc.270.36.20915
https://doi.org/10.1074/jbc.270.36.20915
https://doi.org/10.3389/fimmu.2014.00470
https://doi.org/10.3389/fimmu.2014.00470
https://doi.org/10.1038/ni.1990
https://doi.org/10.4049/jimmunol.169.5.2253
https://doi.org/10.4049/JIMMUNOL.168.7.3402
https://doi.org/10.1038/nri3088
https://doi.org/10.1074/jbc.M109.025528
https://doi.org/10.4049/jimmunol.175.1.469
https://doi.org/10.1074/jbc.M109.037168
https://doi.org/10.3390/pr3010001
https://doi.org/10.1002/eji.200838918
https://doi.org/10.1016/j.it.2004.09.015
https://doi.org/10.1016/S1471-4906(02)02302-5
https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-01659 November 23, 2018 Time: 15:54 # 18

Palma et al. Modeling the Dynamics of Macrophage Polarization

Mao, A.-P., Shen, J., and Zuo, Z. (2015). Expression and regulation of long
noncoding RNAs in TLR4 signaling in mouse macrophages. BMC Genomics
16:45. doi: 10.1186/s12864-015-1270-5

Martinez, F. O., Helming, L., and Gordon, S. (2009). Alternative activation of
macrophages: an immunologic functional perspective. Annu. Rev. Immunol. 27,
451–483. doi: 10.1146/annurev.immunol.021908.132532

Martinez-Sanchez, M. E., Mendoza, L., Villarreal, C., and Alvarez-Buylla, E. R.
(2015). A minimal regulatory network of extrinsic and intrinsic factors recovers
observed patterns of CD4+ T cell differentiation and plasticity. PLoS Comput.
Biol. Public Libr. Sci. 11:e1004324. doi: 10.1371/journal.pcbi.1004324

McLaren, J. E., and Ramji, D. P. (2009). Interferon gamma: a master regulator of
atherosclerosis. Cytokine Growth Fact. Rev. 20, 125–135. doi: 10.1016/j.cytogfr.
2008.11.003

Méndez, A., and Mendoza, L. (2016). A network model to describe the terminal
differentiation of B cells. PLoS Comput. Biol. 12:e1004696. doi: 10.1371/journal.
pcbi.1004696

Moore, K. W., de Waal Malefyt, R., Coffman, R. L., and O’Garra, A. (2001).
Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol. 19, 683–
765. doi: 10.1146/annurev.immunol.19.1.683

Mosser, D. M., and Edwards, J. P. (2008). Exploring the full spectrum of
macrophage activation. Nat. Rev. Immunol. 8, 958–969. doi: 10.1038/nri2448

Müssel, C., Hopfensitz, M., and Kestler, H. A. (2010). BoolNet—an R package for
generation, reconstruction and analysis of Boolean networks. Bioinformatics 26,
1378–1380. doi: 10.1093/bioinformatics/btq124

Nakamura, R., Sene, A., Santeford, A., Gdoura, A., Kubota, S., Zapata, N.,
et al. (2015). IL10-driven STAT3 signalling in senescent macrophages
promotes pathological eye angiogenesis. Nat. Commun. 6:7847. doi: 10.1038/
ncomms8847

Naldi, A., Berenguier, D., Fauré, A., Lopez, F., Thieffry, D., and Chaouiya, C.
(2009). Logical modelling of regulatory networks with GINsim 2.3. BioSystems
97, 134–139. doi: 10.1016/j.biosystems.2009.04.008

Naldi, A., Carneiro, J., Chaouiya, C., and Thieffry, D. (2010). Diversity and
plasticity of Th cell types predicted from regulatory network modelling,
Bonneau R, editor. PLoS Comput. Biol. 6:e1000912. doi: 10.1371/journal.pcbi.
1000912

Nimmerjahn, F., and Ravetch, J. V. (2008). Fcgamma receptors as regulators of
immune responses. Nat. Rev. Immunol. 8, 34–47. doi: 10.1038/nri2206

Novak, M., Weinheimer-Haus, E., and Koh, T. (2014). Macrophage activation
and skeletal muscle healing following traumatic injury. J. Pathol. 232, 344–355.
doi: 10.1038/nmeth.2250.Digestion

O’Carroll, C., Fagan, A., Shanahan, F., and Carmody, R. J. (2013). Identification
of a unique hybrid macrophage-polarization state following recovery from
lipopolysaccharide tolerance. J. Immunol. 192, 427–436. doi: 10.4049/
jimmunol.1301722

Ortiz-Gutiérrez, E., García-Cruz, K., Azpeitia, E., Castillo, A., Sánchez Mde la, P.,
and Álvarez-Buylla, E. R. (2015). A dynamic gene regulatory network model
that recovers the cyclic behavior of Arabidopsis thaliana cell cycle, Albert R,
editor. PLoS Comput. Biol. 11:e1004486. doi: 10.1371/journal.pcbi.1004486

Park, B. S., Song, D. H., Kim, H. M., Choi, B.-S., Lee, H., and Lee, J.-O. (2009). The
structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex.
Nature 458, 1191–1195. doi: 10.1038/nature07830

Perfetto, L., Briganti, L., Calderone, A., Perpetuini, A. C., Iannuccelli, M.,
Langone, F., et al. (2016). SIGNOR: a database of causal relationships between
biological entities. Nucleic Acids Res. 44, D548–D554. doi: 10.1093/nar/gkv1048

Platanias, L. C. (2005). Mechanisms of type-I- and type-II-interferon-mediated
signalling. Nat. Rev. Immunol. 5, 375–386. doi: 10.1038/nri1604

Raes, G., Brys, L., Dahal, B. K., Brandt, J., Grooten, J., Brombacher, F., et al. (2005).
Macrophage galactose-type C-type lectins as novel markers for alternatively
activated macrophages elicited by parasitic infections and allergic airway
inflammation. J. Leukoc Biol. 77, 321–327. doi: 10.1189/jlb.0304212

Rauch, I., Müller, M., and Decker, T. (2013). The regulation of inflammation by
interferons and their STATs. JAKSTAT 2:e23820. doi: 10.4161/jkst.23820

Ricote, M., Li, A. C., Willson, T. M., Kelly, C. J., and Glass, C. K. (1998). The
peroxisome proliferator-activated receptor-gamma is a negative regulator of
macrophage activation. Nature 391, 79–82. doi: 10.1038/34178

Rigamonti, E., Zordan, P., Sciorati, C., Rovere-querini, P., and Brunelli, S. (2014).
Macrophage plasticity in skeletal muscle repair. Biomed. Res. Int. 2014:560629.
doi: 10.1155/2014/560629

Riley, J. K., Takeda, K., Akira, S., and Schreiber, R. D. (1999). Interleukin-10
receptor signaling through the JAK-STAT pathway. J. Biol. Chem. 274, 16513–
16521. doi: 10.1074/jbc.274.23.16513

Ritter, M., Buechler, C., Langmann, T., Orso, E., Klucken, J., and Schmitz, G. (1999).
The scavenger receptor CD 163: regulation, promoter structure and genomic
organization. Pathobiology 67, 257–261. doi: 10.1159/000028105

Sadler, A. J., and Williams, B. R. G. (2008). Interferon-inducible antiviral effectors.
Nat. Rev. Immunol. 8, 559–568. doi: 10.1038/nri2314

Samal, A., and Jain, S. (2008). The regulatory network of E. coli metabolism as a
Boolean dynamical system exhibits both homeostasis and flexibility of response.
BMC Syst. Biol. 2:21. doi: 10.1186/1752-0509-2-21

Sánchez-Mejorada, G., and Rosales, C. (1998). Signal transduction by
immunoglobulin Fc receptors. J. Leukoc Biol. 63, 521–533. doi:
10.1002/jlb.63.5.521

Sang, Y., Miller, L. C., and Blecha, F. (2015). Macrophage polarization in virus-host
interactions. J. Clin. Cell Immunol. 6:311. doi: 10.4172/2155-9899.1000311

Sanin, D. E., Prendergast, C. T., and Mountford, A. P. (2015). IL-10 production in
macrophages is regulated by a TLR-Driven CREB-mediated mechanism that
is linked to genes involved in cell metabolism. J. Immunol. 195, 1218–1232.
doi: 10.4049/jimmunol.1500146

Santoni, D., Pedicini, M., and Castiglione, F. (2008). Implementation of a
regulatory gene network to simulate the TH1/2 differentiation in an agent-
based model of hypersensitivity reactions. Bioinformatics 24, 1374–1380. doi:
10.1093/bioinformatics/btn135

Sato, A., Ohtaki, H., Tsumuraya, T., Song, D., Ohara, K., Asano, M., et al.
(2012). Interleukin-1 participates in the classical and alternative activation of
microglia/macrophages after spinal cord injury. J. Neuroinflamm. 9:553. doi:
10.1186/1742-2094-9-65

Satoh, T., Takeuchi, O., Vandenbon, A., Yasuda, K., Tanaka, Y., Kumagai, Y., et al.
(2010). The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host
responses against helminth infection. Nat. Immunol. 11, 936–944. doi: 10.1038/
ni.1920

Scandlyn, J. (2000). When AIDS became a chronic disease. West J Med. 172,
130–133. doi: 10.1136/ewjm.172.2.130

Sheikh, F., Dickensheets, H., Gamero, A. M., Vogel, S. N., and Donnelly, R. P.
(2014). An essential role for IFN-β in the induction of IFN-stimulated gene
expression by LPS in macrophages. J. Leukoc Biol. 96, 591–600. doi: 10.1189/
jlb.2A0414-191R

Sica, A., and Mantovani, A. (2012). Macrophage plasticity and polarization: in vivo
veritas. J. Clin. Invest. 122, 787–795. doi: 10.1172/JCI59643

Sutterwala, F. S., Noel, G. J., Salgame, P., and Mosser, D. M. (1998). Reversal of
proinflammatory responses by ligating the macrophage Fcgamma receptor type
I. J. Exp. Med. 188, 217–222. doi: 10.1084/jem.188.1.217

Thomas, R., and Kaufman, M. (2001). Multistationarity, the basis of cell
differentiation and memory. I. Structural conditions of multistationarity
and other nontrivial behavior. Chaos 11:170. doi: 10.1063/1.135
0439

Thomas, R., and D’Ari, R. (1990). Biological Feedback. Boca Raton, FL:CRC Press.
Tieri, P., Prana, V., Colombo, T., Santoni, D., and Castiglione, F. (2014).

Multi-scale simulation of T helper lymphocyte differentiation. Adv.
Bioinform. Comput. Biol. 8826, 123–134. doi: 10.1007/978-3-319-1241
8-6_16

Tran-Thi, T. A., Decker, K., and Baeuerle, P. A. (1995). Differential activation of
transcription factors NF-kappa B and AP-1 in rat liver macrophages. Hepatology
22, 613–619. doi: 10.1002/hep.1840220235

Vogelpoel, L. T. C., Baeten, D. L. P., de Jong, E. C., and den Dunnen, J. (2015).
Control of cytokine production by human Fc gamma receptors: implications
for pathogen defense and autoimmunity. Front. Immunol. 6:79. doi: 10.3389/
fimmu.2015.00079

Vogelpoel, L. T. C., Hansen, I. S., Rispens, T., Muller, F. J. M., van Capel, T. M. M.,
Turina, M. C., et al. (2014). Fc gamma receptor-TLR cross-talk elicits pro-
inflammatory cytokine production by human M2 macrophages. Nat. Commun.
5:5444. doi: 10.1038/ncomms6444

Wang, N., Liang, H., and Zen, K. (2014). Molecular mechanisms that influence the
macrophage M1-M2 polarization balance. Front. Immunol. 5:614. doi: 10.3389/
fimmu.2014.00614

Weber, A., Wasiliew, P., and Kracht, M. (2010). Interleukin-1 (IL-1) pathway. Sci.
Signal. 3:cm1. doi: 10.1126/scisignal.3105cm1

Frontiers in Physiology | www.frontiersin.org November 2018 | Volume 9 | Article 1659292

https://doi.org/10.1186/s12864-015-1270-5
https://doi.org/10.1146/annurev.immunol.021908.132532
https://doi.org/10.1371/journal.pcbi.1004324
https://doi.org/10.1016/j.cytogfr.2008.11.003
https://doi.org/10.1016/j.cytogfr.2008.11.003
https://doi.org/10.1371/journal.pcbi.1004696
https://doi.org/10.1371/journal.pcbi.1004696
https://doi.org/10.1146/annurev.immunol.19.1.683
https://doi.org/10.1038/nri2448
https://doi.org/10.1093/bioinformatics/btq124
https://doi.org/10.1038/ncomms8847
https://doi.org/10.1038/ncomms8847
https://doi.org/10.1016/j.biosystems.2009.04.008
https://doi.org/10.1371/journal.pcbi.1000912
https://doi.org/10.1371/journal.pcbi.1000912
https://doi.org/10.1038/nri2206
https://doi.org/10.1038/nmeth.2250.Digestion
https://doi.org/10.4049/jimmunol.1301722
https://doi.org/10.4049/jimmunol.1301722
https://doi.org/10.1371/journal.pcbi.1004486
https://doi.org/10.1038/nature07830
https://doi.org/10.1093/nar/gkv1048
https://doi.org/10.1038/nri1604
https://doi.org/10.1189/jlb.0304212
https://doi.org/10.4161/jkst.23820
https://doi.org/10.1038/34178
https://doi.org/10.1155/2014/560629
https://doi.org/10.1074/jbc.274.23.16513
https://doi.org/10.1159/000028105
https://doi.org/10.1038/nri2314
https://doi.org/10.1186/1752-0509-2-21
https://doi.org/10.1002/jlb.63.5.521
https://doi.org/10.1002/jlb.63.5.521
https://doi.org/10.4172/2155-9899.1000311
https://doi.org/10.4049/jimmunol.1500146
https://doi.org/10.1093/bioinformatics/btn135
https://doi.org/10.1093/bioinformatics/btn135
https://doi.org/10.1186/1742-2094-9-65
https://doi.org/10.1186/1742-2094-9-65
https://doi.org/10.1038/ni.1920
https://doi.org/10.1038/ni.1920
https://doi.org/10.1136/ewjm.172.2.130
https://doi.org/10.1189/jlb.2A0414-191R
https://doi.org/10.1189/jlb.2A0414-191R
https://doi.org/10.1172/JCI59643
https://doi.org/10.1084/jem.188.1.217
https://doi.org/10.1063/1.1350439
https://doi.org/10.1063/1.1350439
https://doi.org/10.1007/978-3-319-12418-6_16
https://doi.org/10.1007/978-3-319-12418-6_16
https://doi.org/10.1002/hep.1840220235
https://doi.org/10.3389/fimmu.2015.00079
https://doi.org/10.3389/fimmu.2015.00079
https://doi.org/10.1038/ncomms6444
https://doi.org/10.3389/fimmu.2014.00614
https://doi.org/10.3389/fimmu.2014.00614
https://doi.org/10.1126/scisignal.3105cm1
https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-01659 November 23, 2018 Time: 15:54 # 19

Palma et al. Modeling the Dynamics of Macrophage Polarization

Whyte, C. S., Bishop, E. T., Ruckerl, D., Gaspar-Pereira, S., Barker, R. N., Allen, J. E.,
et al. (2011). Suppressor of cytokine signaling (SOCS)1 is a key determinant of
differential macrophage activation and function. J. Leukoc Biol. 90, 845–854.
doi: 10.1189/jlb.1110644

Yamaoka, K., Otsuka, T., Niiro, H., Arinobu, Y., Niho, Y.,
Hamasaki, N., et al. (1998). Activation of STAT5 by
lipopolysaccharide through granulocyte-macrophage colony-
stimulating factor production in human monocytes. J. Immunol. 160,
838–845.

Zhang, Y.-H., He, M., Wang, Y., and Liao, A.-H. (2017). Modulators of the Balance
between M1 and M2 macrophages during pregnancy. Front. Immunol. 8:120.
doi: 10.3389/fimmu.2017.00120

Zhang, Y., Liu, S., Liu, J., Zhang, T., Shen, Q., Yu, Y., et al. (2009).
Immune complex/Ig negatively regulate TLR4-triggered inflammatory
response in macrophages through Fc gamma RIIb-dependent PGE2
production. J. Immunol. 182, 554–562. doi: 10.4049/jimmunol.182.
1.554

Zheng, X.-F., Hong, Y.-X., Feng, G.-J., Zhang, G.-F., Rogers, H., Lewis,
M. A. O., et al. (2013). Lipopolysaccharide-Induced M2 to M1 macrophage
transformation for IL-12p70 production is blocked by candida albicans
mediated up-regulation of EBI3 expression, Tran DQ, editor. PLoS One
8:e63967. doi: 10.1371/journal.pone.0063967

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2018 Palma, Jarrah, Tieri, Cesareni and Castiglione. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Physiology | www.frontiersin.org November 2018 | Volume 9 | Article 1659293

https://doi.org/10.1189/jlb.1110644
https://doi.org/10.3389/fimmu.2017.00120
https://doi.org/10.4049/jimmunol.182.1.554
https://doi.org/10.4049/jimmunol.182.1.554
https://doi.org/10.1371/journal.pone.0063967
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


ORIGINAL RESEARCH
published: 20 December 2018

doi: 10.3389/fphys.2018.01836

Frontiers in Physiology | www.frontiersin.org December 2018 | Volume 9 | Article 1836

Edited by:

Matteo Barberis,

University of Amsterdam, Netherlands

Reviewed by:

Reka Albert,

Pennsylvania State University,

United States

Brian Paul Ingalls,

University of Waterloo, Canada

*Correspondence:

Maximino Aldana

max@icf.unam.mx

Specialty section:

This article was submitted to

Systems Biology,

a section of the journal

Frontiers in Physiology

Received: 08 August 2018

Accepted: 06 December 2018

Published: 20 December 2018

Citation:

Huitzil S, Sandoval-Motta S, Frank A

and Aldana M (2018) Modeling the

Role of the Microbiome in Evolution.

Front. Physiol. 9:1836.

doi: 10.3389/fphys.2018.01836

Modeling the Role of the Microbiome
in Evolution
Saúl Huitzil 1, Santiago Sandoval-Motta 2,3,4, Alejandro Frank 2,5,6 and Maximino Aldana 1,2*

1 Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico, 2Centro de Ciencias de la

Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico, 3 Instituto Nacional de Medicina Genómica,

Mexico City, Mexico, 4Consejo Nacional de Ciencia y Tecnología, Cátedras CONACyT, Mexico City, Mexico, 5 Instituto de

Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico, 6Member of El Colegio Nacional,

Mexico City, Mexico

There is undeniable evidence showing that bacteria have strongly influenced the evolution

and biological functions of multicellular organisms. It has been hypothesized that many

host-microbial interactions have emerged so as to increase the adaptive fitness of the

holobiont (the host plus its microbiota). Although this association has been corroborated

for many specific cases, general mechanisms explaining the role of the microbiota in

the evolution of the host are yet to be understood. Here we present an evolutionary

model in which a network representing the host adapts in order to perform a predefined

function. During its adaptation, the host network (HN) can interact with other networks

representing its microbiota. We show that this interaction greatly accelerates and

improves the adaptability of the HN without decreasing the adaptation of the microbial

networks. Furthermore, the adaptation of the HN to perform several functions is possible

only when it interacts with many different bacterial networks in a specialized way (each

bacterial network participating in the adaptation of one function). Disrupting these

interactions often leads to non-adaptive states, reminiscent of dysbiosis, where none

of the networks the holobiont consists of can perform their respective functions. By

considering the holobiont as a unit of selection and focusing on the adaptation of the host

to predefined but arbitrary functions, our model predicts the need for specialized diversity

in the microbiota. This structural and dynamical complexity in the holobiont facilitates its

adaptation, whereas a homogeneous (non-specialized) microbiota is inconsequential or

even detrimental to the holobiont’s evolution. To our knowledge, this is the first model

in which symbiotic interactions, diversity, specialization and dysbiosis in an ecosystem

emerge as a result of coevolution. It also helps us understand the emergence of complex

organisms, as they adapt more easily to perform multiple tasks than non-complex ones.

Keywords: holobiont, coevolution, microbiome, symbiosis, complex networks, adaptability, microbiota diversity

INTRODUCTION

It has been firmly established during the last decade that the microbiota of a multicellular host
strongly influences its evolution and adaptation (Ley et al., 2008; Zilber-Rosenberg and Rosenberg,
2008; Rosenberg et al., 2010; Brucker and Bordenstein, 2013; Andrew et al., 2016; Rosenberg and
Zilber-Rosenberg, 2016; Sharpton, 2018). In turn, the host’s ability to interact with other organisms
and modify its environment to its advantage can guide the composition of its microbiota (Mai,
2004; Spor et al., 2011; Yatsunenko et al., 2012; Moeller et al., 2014). For instance, the human
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microbiota plays an important role in many fundamental
physiological functions, such as the development of the
immune system (Hooper et al., 2012), degradation of fiber
and metabolization of fats and carbohydrates (Krajmalnik-
Brown et al., 2012), regulation of bone density (McCabe
et al., 2015), metabolization of drugs (Wilson and Nicholson,
2017) and control of infections by pernicious bacteria like
Clostridium difficile (Rupnik et al., 2009; Van Nood et al., 2013;
Seekatz and Young, 2014). A state of imbalance in the human
microbiota, known as dysbiosis, has been correlated with diseases
(Cho and Blaser, 2012) such as obesity (Ley et al., 2006b;
Ley, 2010), inflammatory bowel disease (Morgan et al., 2012;
Halfvarson et al., 2017), cancer (Farrell et al., 2011; Zackular
et al., 2013; Francescone et al., 2014; Sears and Garrett, 2014;
Contreras et al., 2016; Yang et al., 2017) and even neurological
disorders as schizophrenia and autism (Gonzalez et al., 2011;
Rogers et al., 2016). The system consisting of the host and
its microbiota, known as holobiont, exhibits the unequivocal
existence of symbiotic relationships between microbes and
multicellular organisms (Theis et al., 2016). Given these complex
interdependencies, the holobiont has been proposed to function
as a single evolutionary unit (Gilbert et al., 2012; Gordon
et al., 2013; Guerrero et al., 2013; Bordenstein and Theis, 2015;
Theis et al., 2016; Roughgarden et al., 2018). This is because
environmental changes may impose selective pressures on the
host which in turn will affect its microbiota (for a recent review
see Roughgarden et al., 2018). In the light of these findings, it
has been suggested that evolutionary theories have to be either
reformulated or expanded in order to account for the adaptability
of the holobiont as an evolutionary unit (Laland et al., 2014;
Ereshefsky and Pedroso, 2015; VanOpstal and Bordenstein, 2015;
Sandoval-Motta et al., 2017). Whether the holobiont is or is
not an evolutionary unit is still a matter of debate (Moran and
Sloan, 2015; Douglas and Werren, 2016; Doolittle and Booth,
2017; Doolittle and Inkpen, 2018). However, here we show that
selective pressures applied to the host and its associated microbes
taken as whole, can help us explain how symbiotic relationships
in holobionts arose and are currently maintained.

Examples of the influence that microorganisms have had on
the adaptation of their hosts range from cases in which microbes
help the host to perform specific non-essential functions, to
cases in which microbes have completely substituted essential
functions of the host (Sagan, 1967; Zilber-Rosenberg and
Rosenberg, 2008; Queller and Strassmann, 2016; Roughgarden
et al., 2018). Nevertheless, the specific mechanisms by which
this influence is carried on are not yet known. Particularly,
what are the general benefits that the microbiota provides
to the host during its evolution is still an open question. A
possible answer to it is that the adaptation time of the host
to face new environmental challenges is considerably reduced
due to the great diversity and plasticity of its microbiota
(Zilber-Rosenberg and Rosenberg, 2008; Rosenberg and Zilber-
Rosenberg, 2016). This hypothesis assumes that the emergence
of strong symbiotic relationships between the host and its
microbiota occurs at the genetic and metabolic levels, for only
in this way changes occurring in the microbiota can rapidly
propagate to the host’s metabolism and affect its adaptability.

Indeed, recent evidence shows that the microbiota can regulate
metabolic pathways and gene expression patterns of its host,
and due to this interaction the host can properly perform cell
differentiation, tissue formation, nutrition and other important
functions (Hooper et al., 2001; Rawls et al., 2004; Bates et al., 2006;
Shin et al., 2011; Nicholson et al., 2012; Camp et al., 2014).

It has been proposed that natural selection operating
at the Host-level promotes stable and redundant microbial
societies, whereas selection operating at the microbial level
promotes functional specialization of their component species
(Ley et al., 2006a). Despite all the knowledge we have now
on human associated microbial communities, we still do not
fully understand the evolutionary forces behind the diversity
observed in our microbiota. On the one hand, the most abundant
ecological relationship between microbial species is competition
(Foster and Bell, 2012; Coyte et al., 2015; Moran and Sloan,
2015; Douglas and Werren, 2016), which often leads to uniform
microbial communities where just a few species dominate the
whole environment. On the other hand, it has been shown that
purely mutualistic interactions lead to unstable communities as
their diversity increases. These observations are at odds with the
great diversity and stability observed in the microbiota of most
plants and animals. Maintaining this diversity is fundamental
for the survivability of the host, as it is known that a loss in
the microbiota’s diversity may produce severe dysbiosis that can
result in host diseases or even death (Blaser and Falkow, 2009;
Turnbaugh and Stintzi, 2011; Cho and Blaser, 2012; Fernández
et al., 2013; Lloyd-Price et al., 2016; Blaser, 2017). An observation
that circumvents this caveat is that multicellular organisms have
developed different mechanisms to maintain the equilibrium
between its diverse microbial communities. These mechanisms
tend to compartmentalize the microbes in separate niches while
reducing the interactions between microbes in the same niche
(Grice and Segre, 2011; Donaldson et al., 2015; Deines et al., 2017;
Tropini et al., 2017; Roughgarden et al., 2018). Understanding
why microbial diversity is necessary for the evolution and
adaptation of the host, and why disease arises when such diversity
is lost, is a fundamental question with still no definitive answer.

To address these questions, we adopt the hypothesis that
the holobiont constitutes a unit of selection in evolution and
explore its consequences. We present an evolutionary population
model in which the biological functions of organisms are
encoded in the Boolean dynamics of regulatory networks. In
our model, a host is represented as a Boolean network that
needs to evolve in order to adequately perform a predefined
task (or function). This is equivalent to the host acquiring a
new phenotype in order to cope with a new environmental
challenge. A population of such host networks is evolved in a
way that each host network can establish regulatory interactions
with a set of microbial species, each one represented also by a
network. The main difference between the microbial and host
networks is that due to the faster duplication rates of microbes,
the generation of mutants is at least one order of magnitude
larger in the microbial networks than in the host. Mutants,
as explained in detail in the Materials and Methods section
(M&M), are simulated by rewiring the connections of their
network, or by altering their functionality. As we are dealing with
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evolutionary dynamics, it is important to mention that we will
only consider host-microbe interactions that can be transmitted
across generations. This is based on the fact that in many species,
parents directly transmit their microbiota to their offspring or
they construct environments with a stable microbial composition
that bias the microbial composition of their progeny (Rosenberg
et al., 2010; Fitzpatrick, 2014). Another important assumption
in our model is the persistence across generations of the host-
microbe interactions developed throughout the evolution of the
holobiont, which is a necessary condition for natural selection to
operate (Doolittle and Booth, 2017). Additionally, we implement
the “It’s the Song not the Singer” approach proposed by Doolittle
(Taxis et al., 2015; Doolittle and Booth, 2017; Doolittle and
Inkpen, 2018) by preserving throughout the evolution of the
holobiont, those regulatory connections that contribute to the
host’s adaptation to perform a predefined but otherwise arbitrary
dynamical function. The conservation of the dynamical function
across generations occurs regardless of the specific host-microbe
network interactions that are contributing to the adaptation
process.

Our evolutionary model is based on the Boolean network
model introduced by S. Kauffman (presented in the M&M
section) to describe gene regulation and cell differentiation
processes (Kauffman, 1969a,b). During the last 20 years, it
has been shown that this model adequately captures the main
aspects of gene regulation dynamics. For instance, Boolean
networks are able to reproduce gene expression patterns and
metabolic pathways experimentally observed in organisms such
as Arabidopsis thaliana (Espinosa-Soto et al., 2004), Drosophila
melanogaster (Albert and Othmer, 2003), yeast (Li et al., 2004;
Davidich and Bornholdt, 2008), human epithelial cells (Huang
et al., 2005) and murine blood progenitor cells (Hameya et al.,
2017) among others. Additionally, Huang et al. experimentally
showed that the dynamical attractors of a Boolean network
correspond to different cell types or cell fates (Huang et al.,
2005). Because of this evidence, we use Boolean networks to
represent the gene regulation networks of both the hosts and
their microbes. Since we are interested in general principles
about the emergence of symbiotic interactions, we use random
networks instead of carefully constructed ones corresponding
to specific organisms. Although the gene regulatory network of
an organism greatly determines its phenotype (Davidson and
Levine, 2008; Oliveri et al., 2008), it is known that several
functions depend more on the general structure of the network
than on the specific genes involved (Wagner, 2007). Therefore,
using random Boolean networks in our population model has the
advantage of determining the capability of the network to acquire
new functions throughout its evolution regardless of its detailed
composition (Davidson, 2010). This function-centered approach
is consistent with the fact that a core microbiome is more likely to
be identified based on functionalities rather than on the particular
phylogenetic details of its species (Consortium, 2012; Taxis et al.,
2015; Doolittle and Booth, 2017; Doolittle and Inkpen, 2018). We
describe in detail the Boolean network model in M&M section.

Simulations of this evolutionary model show that the
adaptation of the host network is greatly enhanced when it
interacts with the microbial networks, which are the ones

that absorb most of the mutations without changing their
own adaptation. Additionally, the host network can improve
its adaptation to perform multiple functions only if the set
of microbial networks is partitioned into specialized subsets
(niches), each one participating in the host’s adaptation to a small
number of functions. This specialization provides the holobiont
with a structural and dynamical complexity that facilitates
its evolution, whereas non-specialized microbiota is shown to
be either inconsequential or detrimental to the holobiont’s
adaptation. Once the holobiont is adapted, the disconnection
of one or more of these specialized niches leads a global
incompetence to perform the required set of imposed tasks.
This is reminiscent of the dysbiosis observed in real organisms
when their microbiota’s diversity is reduced. To our knowledge,
this is the first model in which symbiotic interactions, diversity,
specialization and dysbiosis in an ecosystem emerge as a result
of coevolution. It also helps us understand the emergence of
complex organisms, as they adapt more easily than unstructured
ones.

MODEL AND RESULTS

Task Assignment
Following the work by Stern (1999), in order to define a task for
the Boolean network we start by arbitrarily selecting a subset of
Ns nodes that we call signal nodes, {σs1 , σs2 , . . . , σsNs }, from which
we extract the output signal R(t) defined as (see Figure 1A)

R (t) =

Ns
∑

i=1

σsi (t) . (1)

Assigning a task to the Boolean network consists in requiring
that the output signal R (t) approximates as much as possible a
predefined target function (or task) F (t) (see Figure 1B). In our
model F (t) is an arbitrary function such that 0 < F (t) < Ns

for 1 ≤ t ≤ tm, where tm = 15 is the number of time
steps of the assigned task. We set tm = 15 because this is the
average number of time steps it takes for the network to stabilize
its dynamics (see Figure S1). In biological terms, the task F(t)
would represent an expression pattern some genes must acquire
in order for the organism to efficiently respond to a particular
environmental challenge (like yeast responding to a heat shock).
Since the networks are randomly constructed, it is expected that
initially none of them have this response (their output signal
R(t) and the task F(t) are usually different at the start of the
simulation, see Figure 1B). Therefore, it is necessary to evolve
the networks so that R(t) approaches F(t) as much as possible,
as in Figure 1C. It is only through a series of mutations and
adaptations that the phenotype R(t) will approach F(t) in some
individuals, and then be transmitted to their offspring.

Throughout this work we use networks with N = 50
nodes, average connectivity K = 2 and Ns = 12 signal
nodes (except in some figures where smaller networks are
presented for illustrative purposes). The reason for this choice
of parameters is the following. It has been observed that genetic
networks of several real organisms are structured in functional
modules, each one consisting of a few dozen genes or nodes
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FIGURE 1 | Boolean Network Task. (A) Network with N = 12 nodes and

Ns = 4 signal nodes (represented as green squares), which generate the

output signal R(t) that has to converge to the task F (t). (B) Initially, the

untrained network produces an output signal R(t) (green curve with squares)

very different from the target function F (t) (blue curve with circles). (C) After the

evolutionary process, the network is well adapted to perform the task. In this

example, only one point of the output signal R(t) acquires a wrong value in the

time interval 1 ≤ t ≤ 15 in which the task F (t) is evaluated. (D) Average

population error ξ̄H as a function of the number of generations g, for a

population with P = 100 networks, each having N = 50 nodes and Ns = 12

signal nodes. Note that ξ̄H decreases and crosses the adaptation threshold

δA = 1 approximately at generation g = 350, after which most of the networks

in the population become well adapted to the task F (t).

(Resendis-Antonio et al., 2012). For instance, adaptive resistance
to antibiotics in Escherichia coli is mediated by the MarA-AcrAB-
TolC system which, when activated, produces efflux pumps that
pump toxic molecules in the intracellular fluid out of the cell,
keeping the internal antibiotic concentration below lethal levels.
Activation of this system is controlled by a regulatory network
consisting of about 15 nodes (Motta et al., 2015). Analogously,
the cAMP-dependent protein kinase regulatory network (PKA-
RN), which regulates (among other things) the stress response
in Saccharomyces cerevisiae, consists of 15 nodes (Pérez-Landero
et al., 2015). There are manymore examples showing that specific
cellular functions (such a the response to a given environmental
challenge) are controlled by network modules composed of a few
dozen nodes (Guo et al., 2016; Ma et al., 2017). Since in this work
we are not considering any specific organism, we will assume in
a generic way that the task F(t) that the network has to acquire
is encoded in Ns = 12 nodes, which in turn are embedded in a
module of N = 50 nodes.

Finally, we perform all our simulations using Kauffman
networks with connectivity K = 2 for two main reasons. First,

these networks are trained faster than networks with connectivity
smaller or larger than K = 2 (see Figure S2). A second,
more fundamental reason is that networks with K = 2 exhibit
critical dynamics, which means that their dynamical behavior
is at the brink of a phase transition between order and chaos
(Derrida and Pomeau, 1986; Aldana, 2003). Dynamical criticality
confers the system interesting properties such as evolvability
(i.e., the coexistence of robustness and adaptability) (Aldana
et al., 2007; Torres-Sosa et al., 2012), faster information storage,
processing and transfer (Langton, 1990; Nykter et al., 2008),
and collective response to external stimuli without saturation
(Kinouchi and Copelli, 2006), (or shorter training times, as in our
case, see Figure S2). There is solid evidence indicating that gene
regulatory networks of real organisms are dynamically critical
or close to criticality (Shmulevich et al., 2005; Serra et al., 2007;
Balleza et al., 2008; Daniels et al., 2018). Therefore, by choosing
K = 2 we are working with a representative ensemble of
networks that have an important dynamical property observed
in real organisms.

Host Network Evolution
We consider a population of P = 100 networks, represented
as {H1,H2, . . . ,HP}, which have to perform the same task F(t).
We will refer to these networks as the host networks (HNs).
At the start of the simulation all the HNs are identical replicas
of one randomly constructed network. To make the output
signal of the HNs approach the task F(t) we implement a
traditional evolutionary algorithm in which the networks are
mutated, selected and replicated. Variability in the population is
implemented by mutating the HNs with a mutation rate µH =

0.001 per node per network per generation. Once a node σn of
a given network Hi has been chosen for mutation, we perform
any of the following changes with equal probability: (i) Randomly
rewire one of the input or output connections of σn. (ii) Add a
new input (or output) connection to σn from (or to) a randomly
chosen node in the network. (iii) Remove one input or output
connection of σn. (iv) Change one of the entries of the logical
function fn associated to σn.

The mutations described above can make each network Hi

get closer to the task F(t) or get away from it. To measure the
adaptation of the HNs to the task we denote as Ri(t) the output
signal of the network Hi and define its adaptation error ξHi as

ξHi = (tm)−1
tm
∑

t=1

(

Ri(t)− F(t)
)2
. (2)

Clearly, if ξHi = 0 then the network Hi is perfectly trained
(adapted) to perform the task F(t), whereas large values of ξHi
indicate a poor adaptation. Therefore, when a mutation occurs
such that ξHi decreases, the adaptation of Hi increases and
viceversa. We will say that the network Hi is well adapted to its
task when ξHi ≤ δA, where δA is the adaptation threshold. We
set δA = 1, which means that at most one node out of the Ns

signal nodes is allowed to deviate one unit from the correct value
at every time step during the interval 1 ≤ t ≤ tm over which
the task F(t) is evaluated (see Figure 1C). The average population
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error, defined as ξ̄H = 1
P

∑P
i=1 ξHi , measures the adaptation of

the entire population to the task F(t).
In each generation we mutate the HNs in the population with

the mutation rate µH . Then, we choose the 10 best networks
(those whose errors ξHi have the lowest values) to get through
the next generation while the other 90 networks are removed
from the simulation. These 10 networks are replicated by making
9 copies of each one in order to restore the population to its
original size P = 100. This evolutionary process is repeated until
the population crosses the adaptation threshold. A “generation”
consists in a full round of mutation, selection and replication
processes. Figure 1D shows that the average population error
ξ̄H decreases throughout generations. This is expected since at
each generation we select the networks that minimize the error.
From Figure 1D we see that it takes about 350 generations for
the average population error of hosts networks to cross δA and
become well adapted to the task (see also Movie S1). We have
performed simulations with smaller values of the adaptation
threshold: δA = 0.5 and δA = 0.2, and the results are qualitatively
the same. The only difference is that the smaller the value of δA,
the longer the computing time for the average population error
ξ̄H to cross this threshold (see Figure S3). The results presented
in Figure 1D correspond to a population of HNs evolving by
themselves, i.e., without interacting among them or with other
networks. We refer to this case as the control case.

Interaction With the Microbiota: Holobiont
Evolution
To model the interaction between the host organism and its
microbiota we allow the training of each host network H to be
assisted by a set of PM other networks, B =

{

M1,M2, . . . ,MPM

}

,
each one representing a microbial network (MN). We will refer
to the set B as the microbiota, and to the set L = {H,B} =
{

H,M1, . . . ,MPM

}

, as the holobiont.
Each microbial network Mj ∈ B also has to perform a

predefined task FMj (t), which is an arbitrary function constructed
in the same way as the host-network task F(t). The microbial
tasks FM1 (t), . . . , FMPM (t) are different from each other and from
F(t). Before the training of H begins, each Mj ∈ B is previously
trained to be well adapted to its own task FMj (t). This means that

all the microbial errors ξMj satisfy, from the very beginning, the

well-adapted condition ξMj < δA (as in Figure 1D; the microbial

error ξMj is defined similarly as in Equation (2); see the M&M
section for the precise definition). Thus, at generation g = 0
the holobiont consists of the untrained host network H and a
set of well adapted MNs. The evolution of the holobiont then
proceeds with the adaptation of H to its task and allowing it to
interact (as described below) with MNs that already have their
own interests. The rationale behind this initial setup is twofold.
First, allowing the training of H to be assisted by well-adapted
MNs captures the fact that at any moment during its evolution,
the host organism can recruit from the environment microbial
populations already adapted to their environments and able to
carry out some functions by their own. Second, we want to
determine whether evolutionary conflict emerges between the
host and microbial networks when the holobiont evolves as a

unit of adaptation, as has been pointed out in Moran and Sloan
(2015) and Douglas andWerren (2016). Such a conflict would be
apparent in our simulations if a reduction of the host-network
error ξH occurs with a simultaneous increase in the average
microbial error ξ̄M , or viceversa.

The interaction between H and its microbiota B is
implemented as follows (see Figures 2A,B). Consider the case
where a given node σn of H has been chosen for mutation such
that a new input (output) connection is to be added. Then this
new connection can be selected with equal probability either
within H itself or from any of the microbial networks Mj ∈

B. Likewise, when a given node of a microbial network Mj is
mutated so as to receive a new connection (either input or
output), the new connection can be established within Mj itself,
with H or with any other microbial network Mk ∈ B. This
allows the emergence of regulatory interactions between all the
networks that constitute the holobiont.

For the adaptation of H to its task we consider the evolution
of a population of P = 100 holobionts. Throughout the
evolutionary process all the networks in each holobiont undergo
the same kind of randommutations described in the section Host
Network Evolution (with the possibility of interactions across
networks, as mentioned in the previous paragraph). However, in
our simulations the mutation rate µM for the MNs is ten times
larger than the mutation rate µH for the host network, namely
µM = 10µH . This captures the fact that bacterial colonies, due
to their high reproduction rates, develop mutants at least ten
times faster than populations of eukaryotic cells in multicellular
organisms (Lynch, 2010; Lynch et al., 2016). It is important to
emphasize that in our model each network in the holobiont has
to be considered not as representing a single cell, but an entire cell
population. In each generation, holobionts are ranked according
to their error ξL, and the ten with the smallest errors are selected
for reproduction (see M&M). In all further simulations the unit
of selection is the holobiont, as in each generation we select the
ten best holobionts (based on the error ξL that takes into account
the host and microbial errors) and replicate them.

Figure 2C shows the average population error ξ̄H of the
host network H across generations for holobionts as well as for
the control case (host networks evolving by themselves without
interacting with microbial networks). In the simulations reported
in Figure 2C each holobiont consists of one host network H and
one microbial network M (PM = 1). It is clear that interacting
with only one microbial network M already makes H to adapt
much faster to its task than evolving on its own. In the holobiont
case, the error ξ̄H crosses the adaptability threshold δA in about
one fourth of the generations required for the control case to do
it (see Movie S2 and compare with Movie S1). Furthermore, the
final error after 500 generations is considerably smaller for the
holobiont case (ξ̄H ≈ 0.2) than for the control case (ξ̄H ≈ 0.95).
Note that an error ξ̄H ≈ 0.2 means that, on average, at most 3
points of the output signal R(t) deviate one unit from the task F(t)
in the whole interval 1 ≤ t ≤ 15, which represents a percent error
100 × 3/(Ns × 15) ≈ 1.6%. This is almost a perfect adaptation
hard to achieve in the control case. For the control case, it takes
about 3000 generations to reach a similar error of ξ̄H = 0.2
(See Figure S3). The average microbial error ξ̄M also decreases,
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FIGURE 2 | Network Coevolution. (A). Schematic representation of the holobiont, which in this case consists of one host network H (green) and one microbial

network M (red), each with N = 20 nodes and Ns = 4 signal nodes (represented by squares). At generation g = 0 the host network H is not adapted to its task

(ξH > δA), whereas the microbial network M is well adapted (ξM < δA). The mutation rates µH and µM of the host and microbial networks, respectively, satisfy

µM = 10µH. (B) At generation g = 150 regulatory interactions between H and M have been established (dashed lines). The highlighted nodes in each network have

regulators in the other network. H has become well adapted to its task (ξH < δA) while the microbial error ξM has decreased almost to zero. (C) Population average

host error ξ̄H as a function of generations for the holobiont case (H and M evolving together, blue dashed curve, PM = 1) and for the control case (H evolving by itself,

green solid curve, PM = 0). In the holobiont case the adaptability threshold δA is reached faster (g ≈ 100) than in the control case (g ≈ 350). Also, at the end of the

simulation (g = 500) the error for the holobiont case is about five times smaller than for the control case. (D) Evolution of the average microbial error ξ̄M. At generation

g = 0, ξ̄M already satisfies the well-adapted condition, ξ̄M < δA, but it further decreases as the evolution of the holobiont goes on. (E) Probability of adaptation PA(g)

across generations for the holobiont (blue dashed curve) and control (green solid curve) cases. Note that PA(g) increases and saturates faster in the holobiont case.

(F) Average number �̄H (g) of accumulated mutations in the host network H during its adaptation process for the holobiont case (blue dashed curve) and the control

case (green solid curve). Interacting with the microbial network halves the number of mutations H has to undergo in order to adapt to its task. The numerical

simulations to generate the graphs (C) to (F) were carried out using networks with N = 50, Ns = 12 and populations of P = 100 networks.

as shown in Figure 2D. At generation g = 0, ξ̄M is already below
the adaptability threshold δA, but it decreases even further as the
evolution of holobionts proceeds. Therefore, the adaptation of
the holobiont takes place with no conflict of interest between H
and its microbial networks.

In Figure 2E we report the probability of adaptation PA(g),
defined as the fraction of holobionts in which the host-network
error ξH crosses the adaptation threshold δA at generation g. It is
apparent from Figure 2E that this probability for the holobiont
case increases and saturates much faster than for the control
case. About 80% of the holobionts are well adapted after only
120 generations, whereas host networks evolving by themselves
never reach 75% of adaptation during the whole simulation time.
In addition to speeding up and increasing the adaptation of H,
the interaction between H and M also considerably reduces the
number of mutations H has to accumulate in order to adapt
to its task, as Figure 2F reveals. This is not a trivial result, for
only the mutations in both H andM that increase the adaptation
of the holobiont are selected and fixed in the population. Thus,
even though M mutates ten times faster than H, not all of those
mutations are beneficial to the adaptation of the holobiont and

consequently, not all of them become fixed in the population.
Actually, from Figure 2Ewe observe that the average number �̄H

of accumulated mutations inH to reach the adaptation threshold
δA is not ten, but only two times larger for the control case than
for the holobiont case. However, it is true that because µM is
larger than µH the adaptation of H is improved (our simulations
show that there is no significant difference between the holobiont
and control cases when µM = µH , see Figure S4).

Symbiosis and Dysbiosis
To show that symbiotic relationships emerge between the host
and microbial networks, once the holobiont is well adapted (after
500 generations as in Figure 2C,D), we remove the connections
between H and M (the dashed lines in Figure 2B) and compute
the errors of each network at performing their respective tasks
while disconnected. This can be thought of as an antibiotic
administration where several bacterial species are removed from
the microbial population, or as trying to cultivate these symbiotic
microbes without their respective host. Thus, a set of microbial
species, represented by M, are removed from the holobiont and
then the fitness of the host is evaluated without them. At the same
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time, we determine the survivability of these microbial species
M in the absence of their host. Since M starts the evolutionary
process already well adapted to its task, one can expect that
its error does not significantly increase after the connections
between H and M are removed. However, Figure 3 shows a
typical example in which removing the connections between H
andM increases both errors ξH and ξM to values that correspond
to untrained networks. Thus, in the example shown in Figure 3,
after the holobiont has been adapted as a whole, none of the
networks it consists of can perform their respective tasks when
separated (see Figure S5 for population statistical averages).

Multitasking and Microbial Diversity
So far we have presented results in which the host network H has
to perform only one task. Interaction with one MN significantly
improves the adaptation ofH (and of the holobiont) and reduces
the number of mutations it has to undergo in order to become
well adapted. It could be expected that adding more MNs to the
microbiota would further enhance the adaptation ofH. However,
this is not the case. Adding more MNs either has no effect or
can even worsen the adaptation of the host (see Movie S3 and
Figure S6). This result is in contradiction with the great diversity
observed in the microbiota of real organisms and the ability of
the holobiont to adequately perform multiple tasks.

For this reason, we now consider the case in which
the host network H is trained to perform T multiple
tasks F1(t), F2(t), . . . , FT(t), each being an arbitrary function
constructed as described in the Task Assignment section. Since
Boolean Network dynamics are deterministic, depending on the
initial condition the dynamics of H will be set to follow a specific
task Fτ (t). We can measure the adaptation errors ξHτ and ξMj,τ of

FIGURE 3 | Emergence of symbiosis and dysbiosis. A holobiont consisting of

one host network H and one microbial network M1 evolves for 500

generations. Then H and M1 are disconnected and the errors at performing

their respective tasks evaluated (H and M1 are represented by hexagons at the

bottom of the bar chart). At generation g = 0, when the training of H begins,

the host-network error ξH (green bar) is large whereas the microbial-network

error ξM (red bar) is already below the adaptation threshold δA. After H and M1

have coevolved for 500 generations both ξH and ξM are quite below δA,

which indicates the adaptation of the entire holobiont. Then, H and M1 are

disconnected and their respective errors evaluated. Note that after

disconnection both errors ξH and ξM in this example increase to levels

corresponding to completely untrained networks. The simulations were

performed with networks having N = 50 nodes and Ns = 12 signal nodes.

H and the microbial network Mj ∈ B, respectively, when H is
being trained to perform the particular task Fτ (t) (see the M&M
section for a precise definition of ξHτ and ξMj,τ ). This allows us
to compute the adaptation of the holobiont separately for each
task. Averaging ξHτ and ξMj,τ over all the tasks gives us the total

adaptation errors ξH and ξMj for the host andmicrobial networks,
respectively (see the M&M section).

We implement two ways in which the MNs can assist the
adaptation ofH to performmany different tasks. First, there is the
non-specialized interaction case in which all the MNs can interact
among each other and with H. Also, all the MNs can participate
in the adaptation of H to all of its tasks (see Figure 4A). In each
generation the networks are mutated, allowing new interactions
to appear between any two networks within the holobiont.
This means that new incoming or outgoing connections can be
established either between H and any of its MNs, or between any
twoMNs.We consider again a population of P = 100 holobionts.
After the networks in each holobiont have beenmutated (with the
mutation rates µH and µM for the host and microbial networks,
respectively), the ten best holobionts are selected and replicated
(see theM&M section for a definition of the holobiont error ξL in
the multitasking case). Figure 4B shows the population average
ξ̄H of the host-network error for the case in which H has to
perform 10 different tasks. It is clear from this figure that adding
more than one microbial network to the microbiota has no effect
on the adaptation of H to its 10 different tasks. Therefore, in the
non-specialized case increasing the diversity of the microbiota
does not help the adaptation rate of the host.

As a second alternative we implement a specialized interaction
in the microbial networks. In this case the microbiota B =
{

M1, . . . ,MPM

}

is divided into PG disjoint non-empty subsets, or
“niches”, {G1,G2, . . . ,GPG}. The set of tasks F = {F1, . . . , FT} is
also partitioned, as evenly as possible, into PG non-overlapping
subsets, {T1, T2, . . . , TPG}. The maximum number of niches is
PG = T, for in this case each subset Tτ contains only one
task. To each niche Gτ we associate a subset Tτ of tasks (see
Figure 4C). The host network H is still trained to perform the
T different tasks F1, . . . , FT . However, the training of H to the
tasks in the particular set Tτ is assisted only by the networks in
the corresponding niche Gτ . For each niche Gτ we compute an
error ξGτ that measures the adaptation of the holobiont when H
is being trained to perform the tasks in the specific subset Tτ (see
the M&M section for a precise definition of the niche error ξGτ ).
During the adaptation ofH to the tasks in Tτ , only the mutations
in H or in the microbial networks belonging to Gτ that reduce
the corresponding error ξGτ are selected. The important point to
note here is that the adaptation of H to its tasks can be measured
separately for each niche. The holobiont error ξL is computed as
the average of the errors ξGτ over all the niches (see the M&M
section).

During the training of H, the MNs in one niche can
develop interactions between them, but they cannot interact
with the MNs in a different niche, as Figure 4C indicates. This
is consistent with the observation that multicellular organisms
maintain the stability of its microbiota by reducing microbial
interactions (Deines et al., 2017). If microbes interacted with no
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FIGURE 4 | Multitasking and microbial specialization. The host network H

(green circle) has to perform T different tasks F1, F2, . . . , FT (represented as

ellipses) assisted by PM microbial networks M1,M2, . . . ,MPM
(small circles).

(A) Schematic representation of a holobiont with non-specialized interaction in

the microbial networks. Each microbial network can interact with all the other

ones and participate in the adaptation of H to all of its tasks. The dashed lines

represent possible interactions. (B) Evolution of the host-network error ξ̄H in

the non-specialized case for T = 10. Each curve corresponds to a different

value of PM, starting from PM = 0 (H evolving by itself) up to PM = 10. In none

of these cases ξ̄H crosses the adaptation threshold δA even after 500

generations. Furthermore, adding more than one microbial network to the

holobiont has a negligible effect on the adaptation of H. (C) Schematic

representation of the holobiont with specialized interaction in the microbial

networks. The set of PM microbial networks is divided into T different niches,

G1, . . . ,GT , each one participating in the adaptation of H to only one task. The

microbial networks can interact among them only if they belong to the same

niche. (D) Host-network error ξ̄H across generations for the specialized

interaction and T = 10. Again, each curve corresponds to a different number

PM of microbial networks. Note that in this case the more microbial networks

in the holobiont the better the adaptation of H. Note also that for PM = 10 the

host-network error ξ̄H crosses the adaptation threshold δA in less than 300

generations. (E) Adaptation probability PA at generation g = 500 as a function

of the number PM of microbial networks participating in the host’s adaptation.

The blue and green bars correspond to the non-specialized and specialized

cases, respectively. Note that in the non-specialized case the adaptation

probability remains low regardless of the number of microbial networks,

whereas in the specialized case, the more microbial networks the better the

adaptation of the host. The simulations were carried out for populations of

P = 100 holobionts and networks with N = 50 nodes.

organization, the loss of one microbial species would affect the
fitness of all the others, increasing the risk of extinction cascades
(Coyte et al., 2015). Therefore, in the specialized interaction
case we compartmentalize the MNs allowing interactions among
them only if they belong to the same niche (all the MNs in all the
niches can, of course, interact with the host network H).

Figure 4D shows the evolution of the average host-error ξ̄H

for simple case where each niche has oneMN (PG ≤ T). It is clear
from Figure 4D that, contrary to the non-specialized case, adding
more MNs to the microbiota in a specialized way considerably
improves the adaptation of H to its multiple tasks. Furthermore,
in Figure 4E we report the probability of adaptation PA(500)
at generation g = 500 as a function of PM for both the non-
specialized and specialized cases. In the former case PA remains
low and never improves as PM increases, whereas in the later case
PA monotonously grows with PM . This clearly shows that both
diversity and specialization of the MNs are necessary for H to
adapt to multiple tasks.

The results presented for the specialized interaction case
also hold when every niche is populated with more than one
MN (PM ≥ 2T). In Figure 5A (see also Movie S4) we report
the evolution of a holobiont with T = 10 different tasks
and the same number of niches, and PM = 25 microbial
networks (each niche contains either two or three MNs). At
generation g = 0, H is poorly adapted to all of its tasks
(represented in red), whereas all theMNs are already well adapted
(represented in blue). As the evolution proceeds H becomes
more adapted to all of its tasks. Furthermore, the microbial
networks also become more adapted to their own tasks. Note
that the adaptation of H to its different tasks occurs at different
rates, as can be seen from the color-code of the tasks through
the holobiont evolution. This is consistent with the observation
that different symbiotic relationships between the host and its
microbial communities emerge at different rates (Doolittle and
Booth, 2017). In the example shown in Figure 5A the adaptation
of the whole holobiont crosses the adaptation threshold δA in
<300 generations. Interestingly, the same results are obtained
in the specialized case when many more microbial networks are
introduced into the holobiont (see Figure S7).

The specialized interaction scheme allows us to compute the
robustness of the holobiont under loss of microbial diversity.
For this, once the holobiont is well adapted, we disconnect 1n
microbial networks from it and compute the resulting host-
network error ξH averaged over all the host’s tasks. Figure 5B
shows that ξH gradually increases asmoremicrobial networks are
disconnected from the holobiont. Therefore, a loss in microbial
diversity clearly reduces the adaptation of the host.

DISCUSSION

Multicellular organisms and microbes have coevolved in many
different ways, not only as holobionts being units of adaptation
(Theis et al., 2016). However, the persistence across generations
of regulatory interactions between the host and its microbes
is a necessary condition for natural selection to operate at the
holobiont level (Doolittle and Booth, 2017). These regulatory
interactions have to preserve the holobiont’s functionality
regardless of the specific microbial species that generate them.
This is the “It’s the song not the singer” (ITSNTS) approach
to evolution proposed by Doolittle (Doolittle and Booth, 2017;
Doolittle and Inkpen, 2018) and exemplified by Taxis et al. in
ruminal ecosystems (Taxis et al., 2015). In this work we have
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FIGURE 5 | Holobiont’s complexity and loss of microbial diversity.

(A) Snapshots of the evolution of a holobiont in the specialized case. The

holobiont consists of T = 10 tasks (ellipses) and PM = 25 microbial networks

(small circles). All errors larger than 3 are colored in red. At generation g = 0

the host network H has a large error in all of its tasks, while the bacterial

networks are well adapted. As the evolution proceeds, the error of the entire

holobiont decreases, but the adaptation of H to its different tasks takes place

at different rates. The number at the center is the value of the host error ξ̄H

averaged over all of its tasks. (B) After the holobiont is well adapted at

generation g = 500, 1n microbial networks are disconnected and the resulting

host-network error ξ̄H is computed. This simulates the effect on the

holobiont’s adaptation of a reduced microbial diversity. Note that ξ̄H gradually

increases as more microbial networks are disconnected, indicating that the

host becomes less adapted as the microbial diversity decreases.

incorporated into a single evolutionary model both the concept
that the holobiont is a unit of selection and Doolittle’s ITSNTS
approach. We have done so by requiring in our simulations
that only the best adapted holobionts at each generation are
the ones able to go throughout the selective filter, pass to the
next generation and replicate all of its constituent networks.
However, in our model selection acts on a dynamical property
of the holobiont, which is the host’s output signal, in order
to bring it close to the functions the host needs to perform.
In this scheme, it does not matter what nodes or microbial
networks participate in the regulation of the dynamical functions.
What is important is the preservation across generations
of the dynamical functions themselves, and this must hold
for both the host and the microbial networks (which also
have to perform and preserve their own functions). Thus,
although the holobiont might not be the only unit of selection
(Theis et al., 2016), we have concentrated on those important
host-microbe co-interactions that transmit functionality across

multiple generations (Roughgarden et al., 2018). Our model does
not assume that the microbial networks reside inside the host,
but only that they interact with it and that the host-microbe
interactions are transmitted across generations. This propagation
can happen in various ways other than vertical transmission from
parents to offspring as, for instance, when the host constructs
its environment with a stable microbial composition (Fitzpatrick,
2014).

We have shown that the host network can actually be
trained to perform one task without the help of any microbial
networks, as Figure 1D and Figure S3 illustrate. However,
allowing interactions between the host and microbial networks
greatly speeds up and improves the adaptation of the entire
holobiont. This is because the host network does not only adapt
to its tasks faster, better and with less mutations when it is allowed
to interact with microbial networks, but the microbial networks
themselves considerably improve their own adaptation to their
respective tasks. Furthermore, adaptation of the host network to
perform multiple tasks is improved only when it is allowed to
interact with a diverse and specialized microbiota, as Figure 4D
shows.

In light of these results, we observe that the microbiota does
not only help the host to adapt to its tasks. There is mutual benefit
in which both the host and its microbial communities contribute
to each other’s adaptation. It is in this sense that the holobiont
can be considered as an evolutionary unit.

It is important to mention that in our model the holobiont
cannot just be considered as one “big network” evolving to
perform a set of tasks. There are two essential aspects that have
to be emphasized. First, the rate at which mutants are generated
µM in the microbial networks is considerably larger than that
µH of the host networks. Second, the set of microbial networks
must be partitioned into disjoint (i.e., non-interacting) niches
for the host network to efficiently adapt to multiple tasks, where
each niche specializes in the adaptation of the host to one
specific subset of tasks. These two aspects provide the holobiont
with a complex internal dynamical structure that prevents us
from viewing it as just one big network (see Figure 5A and
Figure S7). A holobiont for which µM = µH and the microbial
networks are not partitioned into specialized niches, could be
considered as a single large homogeneous network. But in such a
homogeneous case the holobiont evolution benefits neither from
the host-microbe interactions nor from the microbiota’s diversity
(see Figures S4, S8). Rather, the structural and dynamical
internal complexity of the holobiont, embodied in the functional
modularity and specialization of the microbial niches as well as
in the difference between the host and microbial mutation rates,
is required to facilitate and improve the holobiont’s adaptation to
perform multiple tasks. Hence, our results show that complexity,
modularity and functional specialization are necessary properties
that naturally facilitate the evolution and adaptation of the
holobiont as well as the diversification of the microbiota (Sachs
et al., 2014), whereas structural and functional homogeneity is
either inconsequential or even detrimental to the holobiont’s
evolution.

One may wonder whether the relationship µM = 10µH

between the microbial and host network’s mutant-generating
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rates accurately reflects reality. We have explored a wide range
of values of the ratio γ = µM/µH , ranging from γ = 1 to
γ = ∞. The latter case corresponds to µH = 0, which means
that the adaptation of the host to its task does not occur across
generations, but within the host’s lifespan. In this extreme case,
the adaptation of the host to its task occurs due to mutations
in the microbiota but not in the host itself. Our simulations
show that the adaptation of the host network is almost equally
accelerated and improved for γ = 10 than for γ = ∞ (see
Figure S9).

In our model the host network interacts with microbial
networks which, from the very beginning, are already well
adapted to perform their own functions. The reason for this
is to determine whether or not the well-adapted condition
imposed on the microbial networks represents a restriction
that could generate evolutionary conflict within the holobiont.
It has been pointed out that the emergence of symbiotic
relationships between organisms requires the symbionts to
be highly cooperative and show very little conflict (Morris
et al., 2012; Sachs and Hollowell, 2012; Sachs et al., 2014;
Queller and Strassmann, 2016). Our simulations show that the
evolution of the holobiont can very well take place with no
evolutionary conflict between its constituent networks, as long
as the microbiota is partitioned into specialized niches. This
modularization and division of labor are essential to prevent
microbial competition andwithin-group conflict in the holobiont
(West et al., 2015) (see Figure S6). Additionally, modularization
of the microbiota allows the holobiont to acquire new functions
without affecting the ones already present.

Interestingly, similar results regarding the adaptation of
the host network to its tasks are obtained when the well-
adapted condition is not imposed on the microbial networks.
Our simulations show that the adaptation of the host network
is equally accelerated and improved when it interacts with
microbial networks that do not have to perform any task (see
Movie S5). However, even when the microbial networks are
free of any selective pressure, their dynamics are stabilized
when they coevolve with the host network (see Movie S5). This
is important because it can be interpreted as the holobiont
acquiring, at any moment, microbes from the environment and
coevolving with them, generating intergenomic epistasis that
reduces within-group conflict and promotes the adaptation of the
entire holobiont (Bordenstein and Theis, 2015).

Finally, we would like to mention that, although there exist
many qualitative taxonomical studies showing the existence
of a great variety of host-microbe symbiotic interactions,
there are very few mathematical and computational models
aiming to explain the general mechanisms responsible for the
emergence of such interactions and the need for diversification
and specialization of the microbiota (Manor et al., 2014). We
have not explicitly considered competition or parasitism in our
model. However, by integrating the ITSNTS approach with the
hologenome hypothesis (the holobiont as a unit of selection
Rosenberg and Zilber-Rosenberg, 2016; Roughgarden et al.,
2018), we were able to reproduce many of the observed behaviors
in the evolution of holobionts, such as reduction of evolutionary
conflict, division of labor, emergence of symbiotic interactions
and dysbiosis when the microbiota diversity is reduced. Our

model may thus lay the foundations for a comprehensive
understanding of the long-lasting coevolution of multicellular
organisms and microbes.

MATERIALS AND METHODS

Boolean Network Model
The Boolean network consists of a set of N nodes
{σ1, σ2, · · · , σN}, each acquiring the values 0 or 1 that represent
two possible states of activity: “active” or “inactive.” The value
of each node σn is determined through a logical function fn
that depends on a set of kn other nodes in the network denoted

as In =

{

σ n
1 , σ

n
2 , · · · , σ

n
kn

}

. The nodes in the set In are known

as the inputs or regulators of σn. In the context of genetic
networks these regulators together with the logical function fn
mimic the effect of kn transcription factors (synthesized by the
regulators) acting on the expression of σn. For networks of real
organisms both the logical function fn and the set of regulators In
associated to each gene are carefully constructed according to the
activating and inhibitory nature of the regulatory interactions
between the genes. Here, the kn regulators of each node σn are
randomly chosen from anywhere in the network. The logical
functions fn are also randomly chosen from the ensemble of
all possible logical functions with kn variables. In this work we
start the simulations with networks for which kn = K = 2,
which means that every node in the initial networks has exactly
K = 2 regulators (chosen randomly). Note that this is a directed
network because if node σm is a regulator of σn, it does not
necessarily happen that σn is also a regulator of σm (although
it may happen). Note also that throughout the evolution of the
networks some input and output connections are added to, or
removed from, different nodes. Therefore, the final networks do
not have a constant connectivity K = 2 for every node. The final
networks will have a connectivity distribution similar to the one
observed in the Erdös-Rényi topology with an average around
K = 2 (see Movies S1, S2). Once each node in the network has
been provided with a set of inputs and a logical function, the
network dynamics is given by

σn (t + 1) = fn

(

σ n
1 (t) , σ n

2 (t) , · · · , σ n
kn

(t)
)

. (3)

Starting the dynamics from an initial condition 6 =
{

σ1(0), σ2(0), · · · , σN(0)
}

, the network transits throughout a
series of states until a periodic pattern is reached, which is
known as a dynamical attractor. There is a great body of work
showing that the dynamical attractors of the network correspond
to different cell types or cell fates (or more generally, to different
functional states of the cell). Here we are not interested in the
dynamical attractors, but in training the network to perform a
specific task.

Microbial and Holobiont Errors: One Task
Let us consider a holobiont L =

{

H,M1, . . . ,MPM

}

. When the
host network H has to perform only one task F(t), its error
ξH is given in Equation (2). We similarly define the microbial
error ξMj corresponding to the jth microbial network Mj as

ξMj = 1
tm

∑tm
t=1

(

RMj (t)− FMj (t)
)2
, where RMj (t) and FMj (t) are
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the output signal and target function ofMj, respectively. Different
tasks are assigned to the different microbial networks. The error
ξL of the entire holobiont is then computed as

ξL =
1

1+ PM



ξH +

PM
∑

j=1

ξMj



 . (4)

In our simulations the population contains P = 100 holobionts,
L1,L2, . . . ,LP. For each holobiont Li we compute its error ξLi as
in Equation (4), which is then used at each generation to select
the best holobionts in the population.

We also preformed numerical simulations using the following
definition for the holobiont error:

ξL =
1

2



ξH +
1

PM

PM
∑

j=1

ξMj



. (5)

The difference between Equations (4 and 5) is the contribution
of the microbiota to the holobiont’s error. In Equation (4)
the contribution of the total microbial error could be very
large as compared to the contribution of the host-network
error, especially if there are many microbial networks in the
holobiont. Contrary to this, in Equation (5) the microbiota and
the host have the same contribution regardless of the number
of microbial networks in the microbiota. Our simulations show
that both definitions produce qualitatively the same results
(see Figure S6B). This is because at each generation in the
evolutionary process we are selecting the best holobionts in the
population, and selecting the best holobionts eventually leads to
the same type of individuals regardless of the way in which the
contribution of each particular network is weighted. In this work
we present results using the definition given in Equation (5).

Host and Microbial Errors: Multitasking
Non-specialized Case
Let us consider a holobiont L =

{

H,M1, . . . ,MPM

}

where
now the host network H has to perform T different tasks
F1(t), F2(t), . . . , FT(t). For each task Fτ (t) the network starts
its dynamics from a predefined initial condition 6τ =
{

σ τ
1 (0), σ

τ
2 (0), . . . , σ

τ
N(0)

}

. Let us denote as Rτ (t) the output
signal of H when it starts its dynamics from the initial condition
6τ . The error ξHτ corresponding to the task Fτ (t) is computed as

ξHτ =
1

tm

tm
∑

t=1

(

Rτ (t)− Fτ (t)
)2
. (6)

This allows us to measure the adaptation of the host network to
each of its tasks separately. The total adaptation error ξH of H is
computed by averaging the corresponding errors over all the T

tasks that H has to perform: ξH = T−1 ∑T
τ=1 ξHτ .

To define the error ξMj,τ of the microbial networkMj when the
host network is being trained to perform the task Fτ (t) we have to
consider the fact that H may be regulating some of the nodes of
Mj (throughout the evolution of the holobiont such regulations
may appear). Therefore, the output signal of Mj depends on the
initial condition6τ used to start the dynamics ofH. Let us denote

as RMj,τ the output signal ofMj when H started its dynamics from

the initial condition 6τ . The corresponding microbial error ξMj,τ
is then defined as

ξMj,τ =
1

tm

tm
∑

t=1

(

RMj,τ (t)− FMj (t)
)2

, (7)

where FMj is the task assigned to the microbial network Mj (this
network was already well adapted to its tasks and has to remain
so during the evolutionary process). The total microbial error
ξMj corresponding toMj is then computed by averaging ξMj,τ over

all the tasks: ξMj = T−1 ∑T
τ=1 ξMj,τ . The holobiont error ξL is

computed using Equation (4), where now ξH and ξMj are the
host and microbial errors averaged over all the tasks as described
above.

Niche Error: Multitasking Specialized Case
Let us consider the nicheGτ =

{

Mτ1 ,Mτ2 , . . . ,Mτpτ

}

, containing
pτ microbial networks. This niche is helping H to adapt to the
tasks in the set Tτ = {Fτ1 , Fτ2 , . . . , Fτqτ

}, which contains qτ tasks.

The error ξGτ corresponding to this niche is defined as

ξGτ =
1

1+ pτ



ξHτ +

pτ
∑

i=1

1

qτ

qτ
∑

j=1

ξMτi ,τj



 , (8)

where ξHτ and ξMτi ,τj are defined in Equations (6, 7), respectively

(in the latter case the subscripts j and τ change to τi and τj
respectively, since we have to account for the different microbial
networks and functions associated to the niche Gτ ).

The holobiont error for the specialized interaction case is
computed by averaging ξGτ over all the niches: ξL = 1

PG

∑PG
τ=1 ξGτ .
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Systems biology approaches provide means to study the interplay between biological

processes leading to the mechanistic understanding of the properties of complex

biological systems. Here, we developed a vector format rule-based Boolean logic model

of the yeast S. cerevisiae cAMP-PKA, Snf1, and the Snf3-Rgt2 pathway to better

understand the role of crosstalk on network robustness and function. We identified

that phosphatases are the common unknown components of the network and that

crosstalk from the cAMP-PKA pathway to other pathways plays a critical role in nutrient

sensing events. The model was simulated with known crosstalk combinations and

subsequent analysis led to the identification of characteristics and impact of pathway

interconnections. Our results revealed that the interconnections between the Snf1 and

Snf3-Rgt2 pathway led to increased robustness in these signaling pathways. Overall, our

approach contributes to the understanding of the function and importance of crosstalk

in nutrient signaling.

Keywords: nutrient signaling, cAMP-PKA pathway, Snf1 pathway, Snf3/Rgt2 pathway, logic modeling, Boolean

logic model, crosstalk

1. INTRODUCTION

A biological system can be described as a set of components that interact in such a way that they
form a functional unit (Alberghina and Westerhoff, 2005). Systems biology aims to understand
the function of the components and how they interact at a systems level. This knowledge about the
components provides predictability in the outcome of the system. However, the complexity of many
biological processes obstructs the prediction of system outcomes. Mathematical modeling helps to
compute the outcome of more complex systems and to identify the properties that emerge from the
interaction between the components within the system. This can lead to an improved insight in the
mechanistic properties of any biological system.

In signal transduction pathways components can undergo several different changes, such as
phosphorylation on multiple sites that are further combined to achieve a subsequent reaction.
These are very well-studied through both high-throughput and small scale studies making many
components of signaling pathways known (Papin et al., 2005) and providing suitable data for
utilizing systems biology approaches by developing a semi-quantitative logic (Boolean) models
(Bornholdt, 2008; Wang et al., 2012).
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To signal a broad spectrum of nutrients present in the cell
environment the yeast Saccharomyces cerevisiae has an extensive
nutrient sensing network in place. The function of this network
is to initiate a comprehensive reprogramming of gene expression
to be able to utilize specific nutrients. The yeast carbon and
nitrogen sensing systems have been thoroughly studied and their
key components have been identified (Gancedo, 2008; Broach,
2012; Conrad et al., 2014; Shashkova et al., 2015; Sanz et al.,
2016). However, it is not sufficient just to know the components
of a biological system. In order to gain a complete insight into
the nutrient sensing system it is necessary to understand the
functions of the components and how they interact with each
other. In yeast, the carbon source sensing is mainly done by the
cAMP-PKA pathway, Snf1 pathway, and the Snf3/Rgt2 pathway.
Nitrogen source sensing is performed by the TOR pathway.
The knowledge on the functioning of the components and the
linearity of these pathways is ambiguous. The ambiguity is due
to the substantial amount of crosstalk that has been identified
between the components of the different pathways (Broach, 2012;
Shashkova et al., 2015; Sanz et al., 2016).

Crosstalk, in biology, is a phenomenon by which an
integrated intracellular signal from multiple inputs produces
an output that is different from the response triggered by the
individual pathways (Vert and Chory, 2011). Two pathways
can be interconnected directly by shared component(s), or
indirectly when one pathway affects another signaling pathway
(Vert and Chory, 2011). The effect of crosstalk on signaling
and regulatory pathways has already been studied through
mathematical modeling, focusing on the crosstalk from kinases
and phosphatases (Rowland et al., 2012, 2015; Rowland and
Deeds, 2014). However, the action of kinases and phosphatases
embedded in a full network (Endres, 2012) has not been
deciphered. In this work we study the direct and indirect
crosstalk between nutrient signaling pathways cAMP-PKA, Snf1,
and Snf3/Rgt2. Experimental perturbation of these pathways
produces noise causing a major challenge in identifying
interconnections and therefore theoretical approaches, such as
Boolean modeling, are often applied.

Boolean modeling has already been used to reconstruct
various signaling pathways (Schlatter et al., 2009; Singh et al.,
2012; Anderson et al., 2016). For nutrient sensing pathways a
large network reconstruction of the Snf1 pathway has been made
based on an exhaustive and manually curated literature review
(Lubitz et al., 2015). Further, a logic model describing crosstalk
between the Snf1 and Rgt2/Snf3 pathway has been published
(Christensen et al., 2009). These however put the emphasis on the
technical aspect of modeling of signaling pathways rather than on
the predictive possibilities of the Boolean Model.

In this work we aimed to better understand if crosstalk within
the yeast nutrient signaling network contributes to the vitality
of the nutrient sensing function when the system is perturbed.
Specifically, we look at how crosstalk between the Snf1, cAMP-
PKA, and Rgt2/Snf3 pathways contribute to the appropriate
response to nutritional availability. The model was transformed
into a vector format rule-based Boolean model. The created
model was completed and validated by a gap filling process
based on known input/output relations. We further validated

the model by experimental study of protein localization and
phosphorylation status. This showed that the model can be used
as a tool to predict states of components within the model. Next
we included literature curated crosstalk between these pathways.
The influence of the crosstalk on the network was evaluated
through network perturbation and subsequent analysis of the
component states. We found that some crosstalk reactions were
vital for the functioning of the network. It was suggested that
even in the non-perturbed state they played an important role.
Other crosstalk reactions did not have any significant influence
on the network output. We further show the modularity of our
modeling approach by adding the nitrogen sensing TOR pathway
to the model. Overall, we present a Boolean model of a large
nutrient signaling network that allows to assess the influence of
crosstalk on the network.

2. MATERIALS AND METHODS

2.1. Logic Model
The model of the nutrient sensing network was based on peer-
published literature and each module in the code is denoted with
the respective PubMedID of the article (Celenza and Carlson,
1989; Broach, 1991, 2012; Mitts et al., 1991; Kuroda et al., 1993;
Haney and Broach, 1994; Hu et al., 1995; Ozcan and Johnston,
1995; Treitel and Carlson, 1995; Martinez-Pastor et al., 1996;
Ozcan et al., 1996; Schmitt and McEntee, 1996; Colombo et al.,
1998, 2004; Gorner et al., 1998; Lutfiyya et al., 1998; Frolova
et al., 1999; Pedruzzi et al., 2000; Schmidt and McCartney, 2000;
Jacinto et al., 2001; Düvel et al., 2003; Flick et al., 2003; Kim
et al., 2003; Mosley et al., 2003; Cameroni et al., 2004; Moriya
and Johnston, 2004; De Wever et al., 2005; Hong et al., 2005;
Palomino et al., 2005; Roosen et al., 2005; Swinnen et al., 2006;
Peeters et al., 2007; Lee et al., 2008, 2011, 2013; Rubenstein
et al., 2008; Georis et al., 2009; Tate et al., 2010; Loewith and
Hall, 2011; Orzechowski Westholm et al., 2012; Bontron et al.,
2013; Hughes Hallett et al., 2014; Ma et al., 2014; Kayikci and
Nielsen, 2015; Shashkova et al., 2017). The model (Figure 1B)
was translated to a Boolean logic model and implemented in
MATLAB© (The MathWorks, Inc.). In our model there are
three types of components: metabolites, proteins and complex
components. Each protein is assigned a state vector with six
entries defining its name, presence, localization, phosphorylation
status, GDP/GTP exchange status, and DNA binding status. A
component can: (A) be present or absent, (B) be localized to the
membrane, the cytosol or the nucleus, (C) have phosphorylation
or guanosine groups, and (D) be bound to DNA. The second
type of component, metabolites, are treated in the same manner,
however, they only need three properties and therefore their state
vector has only length three. Here, phosphorylation, GDP/GTP
exchange, and DNA binding are redundant. In some reactions
protein complexes are formed. Those are denoted by complex
formation components with vector length one and indicate if the
complex is active or not.

In the implementation all parameters in the state vector are
translated to a bound set of integer values (Tables S3, S4), which
are not necessarily purely Boolean but can include more possible
outcomes. Each vector uniquely represents one state in the set
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FIGURE 1 | (A) An example of a reaction in our model for hypothetical PathwayX, which contains hypothetical components Prt1 and Prt2. Each component is

designated a vector, which is a collection of the name and the different states a component can assume. Components Prt1 and Prt2 belong to the table for Pathway

X. A reaction in the model only occurs when the conditions described in the if-statement are fulfilled. (B) Signal transmission route of “glucose” and “no glucose”

conditions through the Rgt2/Snf3, Snf1, and cAMP-PKA pathway and its components. The graph displays the possible states of each component for the system

without perturbations (WT-system). Blue lines display the connections between the components when glucose is available. Green lines display the connections

between the components when glucose is not available. Round nodes are proteins, square nodes display metabolites, upper-case letters are promoters of genes

(e.g., SUC2). An arrow at the end of the lines displays activation of a gene and a vertical stripe gene repression. The connected nodes are the possible states one

component can assume.

of all possible states. The components are ordered according to
the pathway they belong to (Tables S2, S6). In total, the model
comprises 4 metabolites, 63 proteins (including 6 unknown) in 4
pathways, and 19 target genes.

The initial model inputs are the metabolites glucose and
nitrogen that can be set to present (1) or absent (0). Starting
from that assumption, the information propagates through the

pathways by numerous logical operations constructed based
on the literature review. Biologically, most modifications are
equivalent to activation or inhibition through phosphorylation/
dephosphorylation or GDP/GTP exchange. Figure 1A shows an
example for an operation involving two proteins in an arbitrary
pathway XXXpw: if protein 2 is present (XXXpw{2,2} == 1) AND
protein 1 is present (XXXpw{1,2} == 1) AND phosphorylated
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(XXXpw{1,4} == 1), protein 2 gets phosphorylated (XXXpw{2,4}
= 1). The phosphorylation status of protein 2 therefore increases
from 0 to 1.

In the model a typical operation is therefore a change in the
state vector of a component that only happens under certain
conditions (rules for an reaction to happen). Conditions are
usually composed of one or more state requirements that are
connected with logical operators AND or OR. States can only
alter within the defined state space presented in Tables S3,
S4. All reactions in the pathways that were implemented are
executed asynchronously. Therefore, an induced state change has
immediate effects on the next steps in the model. The algorithm
stops if no operation causes a state change in any component
anymore, thus the logical steady state is reached. From this
information it can be concluded which genes are active or not. In
summary, the presence or absence of nutrients leads to a cascade
of events and finally expression or repression of target genes.

The model can optionally simulate knockouts or deletions
of components. It is equivalent to setting the component’s
“presence” state in the model to 0. Consequently, such a
perturbed component cannot participate in any operation in the
model. The eliminated components are listed by their names
and given as input to the model. All pathways are connected by
crosstalk that can be manipulated in the model. The crosstalk
reactions, listed in Table 2 and Table S8, can be switched on (1)
and off (0) as a complementary input. By activating crosstalk,
additional operations between proteins belonging to different
pathways are appended.

The output is organized in tables sorted by pathways. In
addition, separate tables are generated for the metabolites and for
miscellaneous proteins that are shared over multiple pathways.
Each component is part of exactly one table in which its steady
state vector is given. Besides ordinary text files, a schematic
picture of the cell for each pathway is created (Figures 3A–D,
4A). Moreover, an extra file with all involved genes and their final
status as the output of the model is saved.

Furthermore, the model is designed in such a way that it
can sequentially switch between input metabolites, i.e., from no
glucose to glucose or vice versa. Under each nutrient condition
the steady state is found and used as an initial condition for
the next iteration. Outputs are generated after each step. The
MATLAB code of the model and the simulations is provided at
https://github.com/cvijoviclab/LogicModel.

2.2. Yeast Strains and Culture
The S. cerevisiae yeast strains were grown overnight to mid-log
phase at 30◦C in Yeast Nitrogen Base (YNB) synthetic complete
medium containing 1.7 g/l yeast nitrogen base, 5 g/l ammonium
sulfate, 670 mg/l complete supplement mix supplied with the
appropriate amount of carbon source. All used strains in this
work are summarized in Table S1.

2.3. Fluorescence Microscopy
The overnight culture grown on YNB supplemented with 4%
glucose was diluted to an OD of 0.5 in either YNB media
supplemented with 4% glucose or 3% ethanol depending on
which environmental conditions was imaged. Fluorescent images

were obtained by capturing 5 µl media between a microscopic
slide and a cover glass. This was inserted in an inverted Leica
DMI4000 microscope with a Leica CTR 4000 fluorescent light
source and Leica DMI4000 Bright field light source operating on
the LAS AF operating system (AF6000 E). Images were acquired
using a HCX PL APO CS 100.0X1.40 oil objective with the LECA
DFC360 FX camera. Exposure times used were 20 ms for the
bright field state, 320 ms for the red fluorescent (mCherry) state,
and 350 ms for the green fluorescent state (GFP).

2.4. Western Blot
The S. cerevisiae yeast strain was grown overnight to mid-log
phase at 30◦C in YNB supplemented with 6% glucose. The
cultures were diluted 1:2 with fresh YNB media supplemented
by either 4% glucose or 0.05% and incubated for 2 h at 30◦C.
Five milliliters was used for sampling. NaOH was added to a
final concentration of 0.1 M and left for incubation at room
temperature for 5 min. The samples were spun down and
the pellet resuspended in 400 µl of 2M NaOH with 7% beta
mercaptoethanol and incubated for 2 min. at room temperature.
Four hundred microliters of 50% TCA buffer was added and the
samples were spun down. The pellet was washed with 500µl Tris-
HCl, resuspended in 50µl sample buffer [62.5 mMTris-HCL(pH
= 6.8), 3% SDS, 10% glycerol, 5% beta mercaptoethanol] and
boiled for 5 min at 100◦C. Protein concentration was determined
using DCTM Protein Assay, BioRad. Thirty microliters of 6
mg/ml protein was loaded on a 4–20% Mini-PROTEAN R© TGX
Stain-FreeTM Protein Gel, BioRad. The gel was imaged for full
protein using Gel Doc EZ System, BioRad, and blotting was done
using the Trans-Blot© TurboTM Transfer System, BioRad. The
membrane was washed 3 x 5 min with 20 ml TBS buffer before
blocking and after incubation with the antibodies. Blocking was
done for 1 h usingWestern BlockerTM Solution for HRP detection
systems, Sigma-Aldrich. The membrane was incubated for 1 h
15 min with Phospho-AMPKa (Thr172) (40H9) Rabbit mAb,
Cell Signaling, diluted 1:1,000 and 1 h with TidyBlot, BioRad
diluted 1:500. The membrane was imaged using ChemiDocTM

Imaging Systems, BioRad and SuperSignalTM West Pico PLUS
Chemiluminescent Substrate, Thermo ScientificTM.

3. RESULTS

3.1. Vector Based Logic Modeling Allows
for Modeling Protein States
Constructing the topologies of signaling networks is a
challenging task, mainly because one protein can be in
many different states, for example phosphorylation status and
localization (Rother et al., 2013). In typical Boolean networks,
nodes can only take the discrete values “0” and “1”, meaning
a node is either inactive or active, and if active the signal is
passed on to the next node. This approach does not allow
for discrimination between multiple states of a node without
introducing new nodes that would represent each single state.
The complexity of the system would in this way be vastly
increased. Therefore, an approach is required that allows the
nodes of the model to be in several states. A multi-valued logical
model is able to take into account several states (Abou-Jaoudé
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et al., 2016). However, this approach become impractical when
there is a large amount of multiple states in which several states
results in the same outcome. To overcome this obstacle we
apply a vector format to a rules based model (Hlavacek et al.,
2006; Boutillier et al., 2018). In a rule based model a reaction,
defined as a state change of a node, only occurs given that certain
exceeding rules or conditions are fulfilled. These conditions
are defined as the required states of nodes for a reaction to
be generated. Granted that no other reaction in the system
will change this state, the node is in the logical steady state
(LSS). We further assign every node, from here referred to
as component, a component specific vector. In our modeling
approach we distinguish between three different components:
a protein component, metabolite component, and a complex
formation component. The last component type is used for
complex formation, and can only be “1” (active) or “0” (inactive).

FIGURE 2 | (A) Expected gene expression pattern (black, left) compared to

the predicted gene expression state from the model without (white, middle)

and with addition of crosstalk reactions 7 and 9 (Table 2), and after the gap

filling process (Blue, right) for “no glucose” conditions (upper part) and

“glucose” conditions (lower part) given for all the grouped genes. (B) Predicted

gene expression state for WT-model (crosstalk reactions 7 and 9, and gap

filling process) (blue,left) and the perturbations snf11 (green, middle left−side),

snf31rgt21 (red, middle−right side), and tpk11tpk21tpk31bcy11 (purple,

right) given for all the grouped genes. (C) Predicted gene expression state for

WT-model (blue, left) compared to predicted gene expression states of

snf31rgt21 without (red, middle) and with crosstalk reaction 1 and 3 (orange,

right) for the gene group HXT and HXK. SUC is the name for the gene SUC2.

HXT is the group name for genes HXT1, HXT2, HXT3, and HXT4. HXK is the

name for the gene HXK2. STRE is the group name for LSC1, PDC6, and

PDC5. PDS is the group name for RHR2, HSP12, DDR2, and CCT1.

For metabolite and protein components a different vector format
is used (Tables S2, S3). The vector for a protein component
has 6 positions which describe the name, presence, localization,
phosphorylation status, GDP/GTP exchange status, and DNA
binding status of the protein. In the metabolite vector there are
3 positions which describe name, presence, and localization of
the metabolite. For example, hypothetical signaling pathway
X consisting of protein components Prt1 and Prt2 with the
system only having one condition (Figure 1A). When simulating
the system component Prt2 is initially not phosphorylated,
therefore, position four in the component vector is “0.” When
the conditions are fulfilled, namely both Prt1 and Prt2 are present
in the system and Prt1 is phosphorylated, only then does position
four in the vector for Prt2 change to “1”, meaning that the protein
becomes phosphorylated. We used this framework to reconstruct
a model describing glucose signaling networks derived from
literature. The reconstruction included the Snf3/Rgt2, the Snf1
pathway and the cAMP-PKA pathway (Figure 1B). We manually
mined the literature to find the components needed to connect
the input conditions (“glucose” or “no glucose”) to the output
gene expression. For yeast, glucose is a preferred carbon source
since it can enter directly into the glycolysis after import into
the cell. Therefore, yeast will prefer to metabolize glucose over
other carbon sources. This model encompasses 48 components
of which 45 are protein components and 3 are metabolite
components (Table S2). All of these are unique proteins and
metabolites except for the hexose transporters. Transporters
Hxt1 to Hxt17 are a group of hexose transporters of which each
has different glucose uptake characteristics (Kruckeberg, 1996;
Horak, 2013). To reduce the complexity, we have grouped them
together as one protein component named HXTs. The Rgt1
transcription factor becomes hyper-phosphorylated when the
cell is exposed to glucose and is phosphorylated in a minor extent
when glucose is not available (Flick et al., 2003). Therefore,
we have chosen to assign the status of hyper-phosphorylated
Rgt1 as “1” and “0” for the minor phosphorylated status in the
component vector on the position for phosphorylation status.
All the components in the model are divided into five different
tables: metabolites, Snf1pw, R2S3Pathway, PKApw, and Miscl.
The last table, Miscl, is for the metabolites and components of
the Snf1 pathway, Rgt2/Snf3 pathway, cAMP-PKA pathway, and
protein components belonging to neither or being shared over
more than one of the previously named pathways. These tables
are comprised of the component vectors. Further the model
includes one complex component to signal the formation of
an active PKA complex. Overall, the components take part in
61 rules or conditions (Table S5). This model reconstruction
gives an overview of the connections between the involved
components in glucose signaling reactions.

3.2. Gap Filling Processes Reveal a Lack of
Protein Phosphatase Components and the
Importance of Crosstalk From PKA
Pathway
From this model we set out to make a system that can switch
between “glucose” and “no glucose” as input conditions and
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make it reproduce the correct RNA expression profile as an
output. To validate this we let the model reach the LSS for
a certain condition after initialization and thereafter switch to
the other condition. The original model from the literature
reconstruction (Figure 1B) was able to correctly simulate the
LSS for the first input conditions but unable to switch to
the second expected LSS (Figure 2A). We therefore used the
simulation to analyze what steps in the network are missing to
successfully simulate the expected outcome. Additional unknown
components needed to be added in the model to compensate for
missing reactions that eventually lead to correct RNA expression
profiles in all cases. This gap filling process was performed in
an iterative model extension process suggested in an earlier
study on carbon signaling pathways (Lubitz et al., 2015). To
successfully reproduce the input/output of the network we added
six additional conditions (Table 1). This resulted in the addition
of four unknown protein components to the model. These
unknown components were added to the table of miscellaneous
protein components (Miscl). Interestingly, the first four gaps
required the addition of a protein phosphatase component.

TABLE 1 | Gap filling: Added parts after gap filling procedure in order to make the

model switch between LSS for “glucose” and “no glucose” conditions.

# Involved

components

Gap description Added

component

1 Std1, Rgt1 Dephosphorylation of Std1 and

Rgt1

Xxx1

2 Yak1, Rim15 Dephosphorylation of Yak1 and

Rim5

Xxx2

3 Reg1, Glc7 Dephosphorylation of PP1

complex Reg1-Glc7

Xxx3

4 Msn2, Msn4 Dephosphorylation of Msn2 and

Msn4

Xxx4

5 Glc7, Reg1 Phosphorylation of Glc7-Reg1 Crosstalk 7

(Table 2)

6 Rgt1 Phosphorylation of Rgt1 Crosstalk 9

(Table 2)

The finding that four out of six unknown parts that needed
to be added to the model contained protein phosphatases is
intriguing. This suggests a general lack of knowledge about
dephosphorylation processes of proteins in the glucose signaling
network. The other two parts required the addition of a known
crosstalk reaction from the PKA pathway to the Rgt2/Snf3 and
Snf1 pathways (Table 2).

3.3. Vector Format Boolean Network
Simulation Can Predict and Visualize the
State of Network Components
After the gap filling process the model could simulate the
switching between input conditions and predict the matching
output status (Figure 2A). When predicting the outcome for
one condition we initialize the model to the opposite condition
first, since signaling networks are in place to sense changing
conditions. Through model simulations we can test the effect of
“glucose” and “no glucose” conditions on the model components.
By plotting the component tables of these simulations in a
graphical overview we create a coherent and legible way to view
the pathway components and their different states (Figure 3).
This neat overview simplifies comparison of the simulated LSS
for the components with physical experiments. To show this
feature we selected the transcription factors Msn2, Rgt1, and
Mig1 to represent each pathway involved in glucose signaling and
the general transcriptional repressors Tup1 and Ssn6. A version
of these proteins, tagged with a fluorescent protein, was observed
under the microscope in 4% glucose and in 3% ethanol as
carbon source, representing “glucose” condition and “no glucose”
condition respectively. Msn2, a transcription factor targeted by
the PKA complex, localized to the nucleus with ethanol as carbon
source and remained in the cytosol when exposed to glucose
according to the model predictions (Figure 3A and Figure S2).
When observing Msn2 labeled with a fluorescent green protein
(GFP) in “glucose” conditions we detect a uniform distribution
throughout the cell of the fluorescent signal from the GFP
molecule. When the cells are grown in “no glucose” conditions
the signal from the GFP molecule is no longer evenly distributed

TABLE 2 | Crosstalk: different types of crosstalk added to the model.

# Involved components Description Source

1 Snf1, Mth1, Std1 Active Snf1 prevents inactivation of Mth1 and Std1 Gadura et al., 2006; Pasula et al., 2007

2 Snf1, Std1 Std1 stimulates the Snf1 kinase activity Hubbard et al., 1994; Tomás-Cobos and Sanz, 2002;

Kuchin et al., 2003

3 Reg1, Glc7, Yck1, Yck2 Reg1-Glc7 acts as an upstream activator of Yck1 and Yck2 Gadura et al., 2006

4 PKA complex, Sak1 PKA complex phosphorylates Sak1 Barrett et al., 2012

5 Snf1, PKA complex PKA complex negatively regulates the Snf1 pathway (Sak1

independent)

Barrett et al., 2012

6 Snf1, Msn2 Snf1 can phosphorylate Msn2 De Wever et al., 2005

7 PKA complex, glucose activation of the PKA complex pathway Castermans et al., 2012

Glc7, Reg1 is required for activation of PP1 (Glc7-Reg1)

8 Snf1, Cyr1 Snf1 deactivates Cyr1 by phosphorylation Nicastro et al., 2015

9 PKA complex, Rgt1 Bcy1 phosphorylates Rgt1 under high “glucose” conditions Kim et al., 2006; Jouandot et al., 2011; Roy et al., 2013
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FIGURE 3 | Simulated localization vs. microscopy data for Msn2 in the PKA pathway (A), Rgt1 in the Rgt2/Snf3 pathway (B), Mig1 in the Snf1 pathway (C) and both

Ssn6 and Tup1 as general transcription repressors (D). The upper part of the each panel displays the graphical representation of the simulated vector tables for each

pathway. Protein location is depicting by the box in either the membrane (black line), cytosol (green area) or nucleus (gray area). Post-translational modification such as

GDP/GTP binding and phosphorylation are displayed by a black ellipse or circle on the protein box. The DNA bound status is give by the protein box being connected

to the line (which displays DNA). The lower part of each panel displays the microscopy data. The images above display the bright field, the lower images displays the

fluorescent marked transcription factor for (A,B). The middle image display the fluorescent marked Mig1 transcription factor and the lower image display Nrd1 bound

with a red fluorescent protein used a marker for the nucleus (C). Panel (D) displays the bright field images in the upper panel and the fluorescently marked general

transcription repressors Ssn6 and Tup1 in the lower part.

with the majority of signal focused in one part of the cell. This
result indicates that Msn2 protein is localized in the nucleus.
For Rgt1 the model prediction anticipates Rgt1 to be present
in the nucleus for both “glucose” and “no glucose” conditions
(Figure 3B and Figure S2). Because it either activates the HXT1
promoter in response to glucose availability (Mosley et al., 2003)
or binds to the promoters of the hexose transporters to recruit

transcription repressors when glucose is depleted (Kim et al.,
2003; Broach, 2012). Observation of the yeast strain with GFP
labeled Rgt1 showed that under both environmental conditions
Rgt1 remained in the nucleus. As it has been shown in the
literature and in our model predictions transcription factor Mig1
targeted by the Snf1 pathway. Mig1 is nuclear when the cell is
exposed to glucose and remains in the cytosol when growing
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on ethanol (De Vit et al., 1997) (Figure 3C and Figure S2). A
yeast strain with both Mig1 tagged with GFP and Nrd1, a protein
that always resides in the nucleus, bound to a red fluorescent
protein (RFP) was used to determine the localization of Mig1.
We observed that under “glucose” conditions Mig1 co-localizes
to the Nrd1-RFP signal, but under “no glucose” conditions
it remains uniformly distributed throughout the cell. The
transcription repressor complex Ssn6-Tup1 is either recruited by
Mig1 under “glucose” conditions or by Rgt1 when the cells are
not exposed to glucose (Treitel and Carlson, 1995; Roy et al.,
2013) (Figure 3D and Figure S2). Indeed, it was observed that
under 4% glucose and 3% ethanol both Ssn6 and Tup1 are
localized in the nucleus. In addition to component localization,
the model also considers post-transcriptional modifications such
as phosphorylation. The phosphorylation state can be used
to validate the model. Dephosphorylation of the protein Snf1
occurs when the cells are exposed to glucose and Snf1 becomes
phosphorylated when grown on ethanol as sole carbon source.
Typically, phosphorylation status of proteins is measured by
Western blot. When looking at the phosphorylation status of
Snf1 via Western blot we observed that the Snf1 phosphorylation
status from the model predictions and experimental results are
similar (Figure 3C and Figure S1). In general, this shows that
the model prediction can be validated not only with the RNA
expression but also through observation of localization and post-
transscriptional modification.

3.4. Crosstalk Reactions From cAMP-PKA
to Rgt2/Snf3 can Restore Perturbed
Network Signaling
The gap filling process showed that crosstalk reactions were
required in order for the model to switch from one condition
to another. We therefore collected known crosstalk reactions
from the literature and selected 9 crosstalk reactions to test in
our model (Table 2). Next, we looked for crosstalk combinations
that contribute to the robustness of the yeast cell carbon source
sensing system. The carbon source sensing system was perturbed
for each pathway by removing (a) key protein component(s) from
the model simulation (analogous to protein deletion). From her
on the wild-type model with the gap filling parts (Table 1) and
crosstalk reaction promoting PKA-dependent phosphorylation
of Glc7 and Rgt1 will be referred as the wild-type (WT) model.
We always included these additions in the WT simulations since
they were crucial to have the correct expected gene expression
profile as simulation outcome (Figure 2A). When referred to the
WT model we mean the model in which no protein components
are removed from the simulation. Removing components leads
to an activation of different set of reactions, which in turn alters
the LSS. Consequently, the gene expression levels are changed
compared to the original (i.e., WT) state (Figure 2B). For the
Snf1 pathway we removed the Snf1 protein component and this
perturbation is referred as snf11. For the snf11model simulation
of the predicted gene expression state only changed for the
SUC2 genes in the “no glucose” conditions compared to the WT
model. Perturbation of the Snf3/Rgt2 pathway was performed
by removing Snf3 and Rgt2 from the model, this model is
referred to as rgt21snf31. This perturbation showed a different

gene expression state for both expression of the HXT and HXK
gene groups than the WT-model. Finally, for the disruption of
the cAMP-PKA signaling all components of the PKA-complex
were removed from the system (Tpk1, Tpk2, Tpk3, and Bcy1).
This perturbed model was designated tpk11tpk21tpk31bcy11
and displayed a different predicted gene expression pattern for
the PDS genes compared to the WT (Figure 2B). Although
the tpk11tpk21tpk31bcy11 showed continuously active PDS
gene group it did not for the STRE gene group. This is
because of a gap filling part that was added that caused Msn2
and Msn4 dephosphorylation in “glucose” conditions (Table 1).
This dephosphorylation part caused inactivation of Msn2 and
Msn4 even when the inactivation of Yak1 and Rim15 was
disrupted in the tpk11tpk21tpk31bcy11 model. To find out
which crosstalk reaction can overcome the consequences of
signaling disruption the effect of crosstalk on the altered gene
expression patterns was analyzed. This was done by simulating
all possible combinations of crosstalk 1-6 and 8 from Table 2

in the “on” or “off” state. This resulted in 128 crosstalk
combination vectors, which were used to activate crosstalk in the
snf11, the rgt21snf31, and the tpk11tpk21tpk31bcy11model.
Simulations were only done for the environmental conditions
that showed a different gene expression pattern, namely for
rgt21snf31 in “glucose”, tpk11tpk21tpk31bcy11 in “glucose”
and snf11 in “no glucose” conditions. Each crosstalk reaction is
active in half of the simulated crosstalk combinations. Every time
a crosstalk reaction was active it was scored whether the predicted
gene expression pattern behaved as the WT model or the
perturbed systemwith all crosstalk reactions inactive (Figure S3).
For tpk11tpk21tpk31bcy11 in “glucose” and snf11 in “no
glucose” and “glucose” conditions no combination of crosstalk
reactions was able to overcome the effects of the perturbation
(Figures S3C–E). Crosstalk 1 and 3 were shown to overcome
the disruption effect of rgt21snf31 in “glucose” conditions with
every crosstalk combination they were active in. Crosstalk 1 and
3 are connections between the Snf1 and Rgt2/Snf3 pathway.
If we simulated the rgt21snf31 model with the connections
between the Snf1 and Rgt2/Snf3 pathway included we were able
to restore the WT gene expression pattern again (Figure 2C and
Figures S3A,B). Considering a perturbed model, the crosstalk
reactions that could restore the gene expression to the pattern
predicted by the WT model may contribute to the signaling
robustness of the yeast cell in vivo.

3.5. Addition of the TOR Pathway to the
Model Shows Inter-connectivity Between
Nitrogen and Glucose Signaling
The vector format rule-based modeling allows the model to be
altered by addition of single components or even new pathways.
Here, we added regulation by the nitrogen sensing TOR
pathway (Figure 4). The TOR pathway regulation is interesting
to consider since glucose sensing pathways Snf1 and PKA-cAMP
and the nitrogen sensing pathways TOR have shown to be highly
intertwined (Broach, 2012; Sanz et al., 2016). Therefore, we added
the nitrogen sensing pathway to our model focusing on the
Sch9 and PP2A downstream targets. The TOR pathway includes
15 proteins and one gap filler which controls the NCR genes
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FIGURE 4 | TOR pathway: (A) the graphical representation of the simulated

vector tables for the TOR pathway. Protein location is given by depicting the

box in either the membrane (black line), cytosol (green area), or nucleus (gray

area). Post-translational modifications such as phosphorylation are displayed

by a black ellipse or circle on the protein box. The DNA bound status is give by

the protein box being connected to the line (which displays DNA). (B)

Expected gene expression pattern (black, left) compared to the predicted

gene expression state from the model without (white, middle) and with addition

of crosstalk reactions, and after the gap filling process (blue, right) for “no

nitrogen” conditions (upper part) and “nitrogen” conditions (lower part) given

for the NCR genes in addition with and without glucose (Glc).

(Figure 4A). The TOR complex 1 (TORC1) was handled as the
second complex component in the model. This expanded the
model to 67 components of which 57 proteins, 4 metabolites,
and 6 unknown components (Tables S6, S9), adding another
10 conditions to the Boolean model (Table S7). Furthermore,
it led to four additional crosstalk reactions (Table S8), which
connected glucose and nitrogen signaling. These connections
converge on two components: Rim15 in the PKA-cAMP pathway
and Gln3 in the TOR pathway (Rødkær and Færgeman, 2014).
The model shows the importance of Snf1 in glucose starvation,
specifically, throughNCR gene expression in addition to nitrogen
starvation through mediation of Gln3 nuclear localization.
Thereby expressing NCR genes, during glucose limitation, even
in nitrogen rich conditions. This crosstalk reaction allows the
cells to use amino acids as an alternative nitrogen and carbon
source (Bertram et al., 2002). Note that even though TOR
and Snf1 dependent phosphorylation of Gln3 have different
phosphorylation sites (Bertram et al., 2002), they are treated
equivalently in the model. In both single cases and in the
hyper-phosphorylated state it corresponds to a phosphorylation

status “1” in the state vector. These phosphorylation sites are
considered equivalent because they both cause Gln5/mediator
interaction. After adding crosstalk the model was capable of
simulating the expected gene expression of the NCR genes
Bertram et al. (2002) (Figure 4B). The gap filling process led
to two unknown components (Table S9) that are responsible
for dephosphorylation of Kog1 and Par32. These additional
parts are only affecting the outcome when crosstalk is present.
Remarkably, similar to the glucose signaling, information about
protein phosphatases is missing. Along with the increased size
of the model, nitrogen availability was included as an additional
input, allowing twice as many possible combinations of nutrient
inputs. By adding the TOR pathway to the model we showed
that the model is easily extended by single components and
whole pathways due to the simple structure and modularity.
Furthermore, the importance of crosstalk in signaling pathways
shows the inter-connectivity of glucose and nitrogen signaling.

4. DISCUSSION

To increase the information content of Boolean models from
simple binary states, we assigned a vector to each component
describing following features: localization, phosphorylation
status, GDP/GTP exchange status, and DNA binding status
(See section 2.1). Using this model, we found during the gap
filling process that most lacking components are phosphatases,
which indicates a lack of knowledge on phosphatases involved in
nutrient sensing processes. The gap filling process also identified
crosstalk from the PKA and Snf1 pathway to other pathways
as a vital aspect to make the model switch between nutrient
conditions. Model simulation of perturbed systems revealed that
the crosstalk from the Snf1 pathway to the Rgt2/Snf3 pathway
contributes to the robustness of this signaling network. The
literature on nutrient sensing is quite extensive and this is a
great resource to find mechanistic details on how the nutrient
sensing network works. We set out to create a minimal system
that can describe the RNA expression profile based on the input
conditions. Most of the components and condition included in
the model were shown in previous reports. However, for a few
reactions different activation conditions were found, which are
not mutually exclusive. Msn2 andMsn4 have been reported to be
phosphorylated by Rim15, Yak1, and the PKA complex (Gorner
et al., 2002; Lee et al., 2008, 2013). All these phosphorylation
reactions have occurred in the active form of Msn2 and Msn4,
although it is unclear which phosphorylation site(s) is/are
deterministic for the function of Msn2 and Msn4. Since such
reactions are closely related and appear almost simultaneously
it is challenging distinguishing which reaction determines the
occurrence of others, both computationally and experimentally.
Such ambiguous mechanisms might result in multiple required
conditions for a reaction to occur. All these conditions might not
be representative in vivo, but do result in the same outcome as
to be in vivo system. This is a limitation of modeling, since the
model is only a representation of the knowledge we have of the
system.
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Since the knowledge gap in the literature did not allow
us to create a model that could switch between nutrient
conditions the gray areas needed to be filled in with a gap
filling process. This network validation revealed that a common
shortcoming on the knowledge of nutrient signaling pathways
is how phosphate groups are removed from proteins, since the
majority of the gaps in the model required addition of protein
phosphatase reactions (Table 1 and Table S9). This led us to
identify protein phosphatases as major unknown components of
the glucose signaling pathways. The addition of a component
does not necessarily mean a protein function is missing, also
degradation of a phosphorylated component has been identified
as a efficient phosphatase system (Rowland et al., 2015). Most
studies on signaling pathways focus on phosphorylation of
proteins, but for a precise regulation dephosphorylation most
also be tightly regulated. However, research has been biased
toward phosphorylation event and therefore dephosphorylation
of proteins has received much less attention (Castermans
et al., 2012). High-throughput studies have identified around 40
different proteins as protein phosphatase in S. cerevisiae (Fiedler
et al., 2009). This overabundance and the overlapping function
of these protein phosphatases has made the identification of
the exact function of these phosphatases a challenging task. To
illustrate, three different protein phosphatases have shown to
be responsible for Snf1 dephosphorylation, namely the protein
phosphatase complex 1 Reg1-Glc7, Sir4, and Ptc1 (Ruiz et al.,
2011, 2013; Zhang et al., 2011; Castermans et al., 2012). It remains
unclear how the two latter are regulated by glucose and what
their direct function is in nutrient signaling. Also, only recently
has the Glc7-Reg1 protein phosphatase complex been identified
as the Mig1 glucose-dependent phosphatase, however there is
also a glucose independent dephosphorylation mechanism which
is unknown (Shashkova et al., 2017). The lack of knowledge
on protein phosphatase function is not restricted to nutrient
signaling, and is absent in other pathways in yeast (Sacristan-
Reviriego et al., 2015).

During the gap filling process we also found that known
crosstalk reactions needed to be added to fill gaps (Table 1).
Since these mainly included the PKA pathway it is suggested that
this pathway has established crosstalk toward other pathways.
These connections might be vital for the correct functioning
of the carbon sensing network. This explains the observation
that most glucose-responsive genes are regulated by a PKA-
dependent pathway (Wang et al., 2004). Further, the inviability
of the tpk11tpk21tpk31 triple mutant indicates the important
role of the PKA complex in the cell (Pan and Heitman, 1999).
This shows the importance of the PKA pathway as regulator of
carbon availability and suggests the PKA pathway as a possible
intervention point for drugs targeting nutrient sensing in cancer
cells. This was confirmed with recent publications suggesting that
intervention in the PKA signaling pathway might prove to be a
effective strategy to eliminate cancer cells (Klutzny et al., 2018; Le
et al., 2018; Wu et al., 2018).

The crosstalk analysis shown here suggests that the Snf1
pathway interaction with the Rgt2/Snf3 pathway contribute
to the robustness of nutrient signaling, since crosstalk was
able to overcome the perturbation of the Rgt2 and Snf3

components (Figure 2C). This shows the overlap between
the Snf1 and the Rgt2/Snf3 pathway. Earlier study on
downstream targets of these pathways, namely Mig1 and Mig2,
have shown a considerable overlap of targeted promoters
(Westholm et al., 2008). Also the connection from the Snf1
pathway to the TOR pathway maintains correct balance in
metabolism and shows how interaction between signaling
pathways maintain signaling robustness in the cell. This study,
together with others, has shown that pathways are not linear
and do not exist parallel next to each other. There is a
significant crosstalk between pathways, which is essential for
the functioning of nutrient signaling (Zaman et al., 2008).
Classically a sensing pathway is viewed as a singular element.
However, it seems that sensing pathways reside within a
large regulatory network, which overlaps between the different
pathways.

Further, addition of other signaling pathways to our
model is straightforward, which we demonstrated with the
inclusion of TOR pathway. This opens the path of adding
sensing and signaling mechanisms for other essential nutrients
such as macro-nutrients phosphate and sulfate or micro-
nutrients like metal ions (Conrad et al., 2014; Bird, 2015;
Qi et al., 2016; Samyn and Persson, 2016). Potentially
this could contribute to the understanding of how the
cell senses macro-nutrients, which provide the cell carbon,
nitrogen, phosphorus and sulfur, or micro-nutrients, such as
metal ions and vitamins. The realization of this complete
model would increase the perception of how nutrient
sensing systems achieve sensitive cellular gene expression
reprogramming.

The Boolean modeling system created in this work is
discrete, deterministic, and semi-quantitative. This is an
oversimplification of real sensing networks, but this problem
could be overcome using a probabilistic Boolean modeling
approach. This approach would be able to add molecular and
genetic noise to the model (Liang and Han, 2012; Zhu et al.,
2014), which would allow the input and output of the model to
be continuous instead of discrete. This added complexity would
result in a model that can provide more mechanistic detail.
However, this would require a more complicated computational
setup, whichmight prove to be a trade-off toward the modularity.

Overall, in this work we have developed, simulated and
validated a Boolean logic model describing the nutrient
sensing network in yeast. The development and validation
process revealed the importance of crosstalk from one pathway
to other nutrient sensing pathways and showed that the
unknown components in the glucose signaling pathway are
mostly phosphatases. By studying the interactions within the
nutrient sensing network this work contributes to the holistic
understanding of nutrient sensing and shows the impact of
crosstalk on network robustness and functioning.
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Logical models of cancer pathways are typically built by mining the literature for relevant

experimental observations. They are usually generic as they apply for large cohorts of

individuals. As a consequence, they generally do not capture the heterogeneity of patient

tumors and their therapeutic responses. We present here a novel framework, referred to

as PROFILE, to tailor logical models to a particular biological sample such as a patient

tumor. This methodology permits to compare the model simulations to individual clinical

data, i.e., survival time. Our approach focuses on integrating mutation data, copy number

alterations (CNA), and expression data (transcriptomics or proteomics) to logical models.

These data need first to be either binarized or set between 0 and 1, and can then

be incorporated in the logical model by modifying the activity of the node, the initial

conditions or the state transition rates. The use of MaBoSS, a tool based on Monte-Carlo

kinetic algorithm to perform stochastic simulations on logical models results in model

state probabilities, and allows for a semi-quantitative study of the model phenotypes

and perturbations. As a proof of concept, we use a published generic model of cancer

signaling pathways and molecular data from METABRIC breast cancer patients. For

this example, we test several combinations of data incorporation and discuss that, with

these data, the most comprehensive patient-specific cancer models are obtained by

modifying the nodes’ activity of the model with mutations, in combination or not with

CNA data, and altering the transition rates with RNA expression. We conclude that these

model simulations show good correlation with clinical data such as patients’ Nottingham

prognostic index (NPI) subgrouping and survival time.We observe that two highly relevant

cancer phenotypes derived from personalized models, Proliferation and Apoptosis, are

biologically consistent prognostic factors: patients with both high proliferation and low

apoptosis have the worst survival rate, and conversely. Our approach aims to combine

the mechanistic insights of logical modeling with multi-omics data integration to provide

patient-relevant models. This work leads to the use of logical modeling for precision

medicine and will eventually facilitate the choice of patient-specific drug treatments by

physicians.

Keywords: logical models, personalized mechanistic models, personalized medicine, breast cancer, data

discretization, stochastic simulations
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1. INTRODUCTION

Molecular profiling of patient samples is now becoming clinical
routine in diseases like cancer, where it has shown therapeutic
utility. Typically, tumor DNA or RNA are sequenced, and if
an oncogene mutation is found, then it opens the opportunity
to treat the patient with a targeted inhibitory drug which
counteracts the mutated oncoprotein effect. Nevertheless, this
strategy has often limited impact, because the tumor will
eventually activate compensatory pathways or acquire novel
mutations and escape the treatment. To anticipate drug
resistance and optimize treatments, a better understanding of
the regulatory network dynamics is needed. As a consequence,
mathematical modeling has been increasingly used to formally
describe the dynamics of regulatory networks representing the
signaling pathways that are frequently altered in cancers. Many
of these signaling pathways, e.g., apoptosis, mTOR pathway, RTK
signaling, or DNA repair pathways, are shared among diverse
cancers and contain common mutations or gene alterations. The
translation of the networks recapitulating these pathways into
mathematical models can be done using different formalisms.
Over the past decades, numerous uses of logical modeling have
shown that this framework is able to characterize the main
dynamical properties of complex biological regulatory networks
(Faure et al., 2006; Abou-Jaoudé et al., 2011; Grieco et al., 2013),
as well as to predict the behavior of molecular networks affected
in human diseases (Fumiã and Martins, 2013; Arshad and Datta,
2017).

However, these models usually describe general processes and
tend to be generic, missing patients’ specificities and possible
patient-tailored interventions. To avoid the relapse that follows
many treatments, these models need to be adjusted to each
individual patient, capitalizing on omics profile of the patient
tumor. Some work has been done on trying to contextualize
these models to perturbation data (often (phospho-)proteomics
data) (Saez-Rodriguez et al., 2009; Rodriguez et al., 2015; Dorier
et al., 2016) but it remains difficult to apply these methods
to patient data (typically genome and transcriptome) and get
clinical insight. Additionally, some network-based methods
have been investigated for patient stratification, using network
propagation with somatic mutations (Hofree et al., 2013) or
applying propagation of gene expression data onKEGGpathways
coupled with mutation information (Hidalgo et al., 2017).

Our PROFILE (PeRsonalization OF logIcaL ModEls)
approach aims to combine the mechanistic insights of logical
modeling with multi-omics data integration to provide patient-
relevant models (Figure 1). The generic logical model can be any
model in standard format, automatically translated into a format
specific to MaBoSS (Markovian Boolean Stochastic Simulator),
a tool that simulates continuous time Markov processes on
Boolean networks (Stoll et al., 2012, 2017). The biological data
are extracted from existing repositories or from private sources
into a data frame per data type. The merging of these two inputs
provides a personalized logical model per patient. Therefore, we
define a personalization of a logical model as a specification of
a generic logical model using available patient data. We present
here a framework to tailor a logical model to patient-specific

multi-omics data, thereby personalizing these generic models to
particular patients or sets of patients with the goal to treat these
patients in a personalized manner. We also show how to best
use mutation, copy number and transcriptome patient data for
model personalization. To illustrate the method, we gathered
2,509 breast cancer data genomic profiles from METABRIC
project, including somatic mutations, copy number alterations,
and gene expression (Curtis et al., 2012; Pereira et al., 2016),
and integrated the data on a published logical model of generic
cancer pathways (Fumiã and Martins, 2013) using MaBoSS.
Lastly, we show evidence that our patient-specific models can be
used to stratify patients by groups and by survival data.

We conclude that this framework allows us to provide
models that can capture detailed descriptions of patient data,
paving the way to modeling patient response to many potential
targeted treatments or combination of treatments, and helping
the clinical oncologists to choose the best option for personalized
treatment (Figure 1). The framework can be used on any
logical model, available in databases such as Cell Collective
(https://cellcollective.org), and with any set of patient data, and
thus used by non-experts in modeling.

It is freely available on GitHub
(https://github.com/sysbio-curie/PROFILE) and is distributed
open source under the BSD 3-clause license.

2. MATERIALS AND METHODS

2.1. Logical Modeling
2.1.1. Principles
Although continuous mathematical modeling based on chemical
kinetics has been widely used to study cellular biochemistry
dynamics (e.g., ordinary differential equations) (Novák and
Tyson, 2004; Fey et al., 2015), this formalism faces limits
for modeling large-scale signaling networks, due to the
difficulty of estimating kinetic parameter values. In contrast,
the logical modeling formalism represents a convenient mean
of abstraction, where the causal relationships between proteins
(or genes) are encoded with logical statements and dynamical
behaviors are represented by transitions between discrete states
of the system. The logical formalism is flexible, requires in
principle no quantitative information, and, hence, can be applied
to large networks combining multiple pathways. It can also
provide a qualitative understanding of molecular systems lacking
mechanistic detailed information. A brief summary of the main
features of logical modeling is provided hereunder and a more
detailed primer can be found in Supplementary Material. For
more in-depth reviews on logical models, their construction and
analyses, we refer the reader to several sources (Saadatpour and
Albert, 2013; Le Novère, 2015; Abou-Jaoudé et al., 2016).

A logical model is based on a regulatory graph, where each
node represents a component (e.g., a protein, gene, complex,
process, etc.), and is associated with discrete levels of activity
(0, 1, or more when justified) as represented in Figure 2A. Each
edge corresponds to a regulatory interaction between the source
and target nodes, and is represented by a positive or negative
influence, depending on the type of regulation. Logical rules (or
functions) are assigned to each node of the network. These rules
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FIGURE 1 | PROFILE methodology for personalization of logical models. On the one hand (upper left), a generic logical model, in a MaBoSS format (a BND file for

model description with logical rules and a CFG file for definition of the simulation parameters), is selected to serve as the starting-point. Note that any SBML qual

(Continued)
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FIGURE 1 | model can be easily translated into a MaBoSS format. The parameters related to the nodes (initial states and transition rates) are chosen to be generic in

the initial CFG file. On the other hand (upper right), omics data are gathered (e.g., genome and transcriptome) as data frames, and processed through functional

inference methods (for already discrete genome data) or binarization/normalization (for continuous expression data). The resulting patient profiles are used to perform

model personalization, i.e., adapt the generic model with patient data. The merging of the generic model with the patient profiles creates a personalized MaBoSS

model with an unchanged BND file and a CFG file per patient. Then, clinical relevance of these patient-specific models can be assessed before providing original and

personalized therapeutic strategies and drug predictions.

FIGURE 2 | Main principles of MaBoSS simulation framework and Gillespie algorithm (A) Toy model with B and C regulated by A. (B) In the first column, logical rules

of the logical model: as an input A remains in its initial state; presence of A triggers B activation and C inhibition. In the second column, MaBoSS activation and

inactivation transition rates are defined for each possible transition (C) In an asynchronous update scheme, starting from S0 state, there are two possible following

states S1a and S1b with their corresponding probabilities.

connect input nodes with logical operators AND (&), OR (|) and
NOT (!), or a combination of these operators (Figure 2B). An
example of a toy model can be found in Figure 2A and Figure S1.

The resulting dynamics can be represented in terms of a
second type of graphs, the state transition graph (STG), where
the nodes account for the states of the system, referred to
as the model states (Figure 2C). The model states correspond
to vectors of the nodes’ activity, and the edges to the
possible state transitions from one model state to another.
When concurrent variable changes are enabled at a given
state, the resulting state transition depends on the chosen
updating assumption. Numerous studies use the simple fully
synchronous strategy where all variables are updated through
a unique transition (Weinstein et al., 2017). This assumption
leads to relatively simple STG and deterministic dynamics
(Helikar et al., 2008; Fumiã and Martins, 2013; Cho et al.,
2016). However, the synchronous updating assumption may
lead to spurious cyclic attractors. The asynchronous updating
strategy considers separately all possible transitions and therefore

provides alternative dynamics in the absence of kinetic data. The
resulting dynamics have a branching structure that complicates
its evaluation. An example of such graphs can be found in
Figure 2C or Figure S2 for an asynchronous graph and Figure S3
for a synchronous graph.

In this work, asynchronous dynamics with stochastic
simulations have been considered.

More details of logical models and their uses can be found in
other works such as Abou-Jaoudé et al. (2016) and Chaouiya et al.
(2012).

2.1.2. Simulations With MaBoSS
MaBoSS software is applied to obtain probabilities for each of the
model states of the system using continuous time Markov chain
simulations on the Boolean network (Stoll et al., 2012, 2017).
Its principles are summarized in Figure 2 and in Figure S5 for
a more comprehensive version. MaBoSS uses a specific language
for associating transition rates, k0→1 (or kup) and k1→0 (or kdown),
to each node (Figure 2B), enabling to account for different time
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scales of the processes described by the model. Given some initial
conditions (i.e., either 0 or 1 state for each node), MaBoSS applies
Monte-Carlo kinetic algorithm (or Gillespie algorithm) to the
network.

This algorithm provides a stochastic way to choose a specific
transition among several possible ones (Figure 2C), to perform
asynchronous updates and finally to infer a corresponding
time for this transition (Figure S5D). Thus, by concatenating
stochastic updates,MaBoSS computation results in one stochastic
trajectory as a function of time. The transition rates can be
understood as probabilities in order to determine the actual
transition. For our simulations, unless otherwise specified, all
transition states were initially assigned to 1. Since MaBoSS
computes stochastic trajectories, it is relevant to generate a
population of stochastic trajectories to gain insight into the
average behavior over the asynchronous STG.

The aggregation of stochastic trajectories can also be
interpreted as a description of an heterogeneous population.
Since several trajectories are simulated, initial values of each
node can be defined with a continuous value between 0 and
1 representing the probability for the node to be defined to 1
for each new trajectory. For instance, a node with a 0.6 initial
condition will be set to 1 in 60% of simulated trajectories and to
0 in 40% of them.

Two files are needed to runMaBoSS: amodel file (BND) where
the nodes of the model and their logical rules are listed and a
configuration file (CFG) where initial states, transition rates and
other parameters of the simulation are specified.

In the present work, all simulations were performed with
MaBoSS and the focus has been set on the probabilities of nodes
and phenotypes at the asymptotic state. Indeed, asymptotic states
are more closely related to logical model attractors than transient
dynamics. They are therefore less dependent on updating
stochasticity and are more meaningful biologically (Huang et al.,
2009).

Only 1,000 stochastic trajectories were computed in all
simulations since it appeared as a sufficient number to obtain
a median standard deviation below 0.01 (see Figure S9). For
any study using MaBoSS, to insure that the state space is well
explored, it is advised to start with a higher number of trajectories
at first and reduce it when the median deviation is below a
reasonable threshold.

Examples of MaBoSS applied to biological questions can be
found in Calzone et al. (2010); Cohen et al. (2015); Remy et al.
(2015); or Montagud et al. (2017). Any logical model in SBML
qual format (Chaouiya et al., 2013) can be exported fromGINsim
(Chaouiya et al., 2012) into MaBoSS format, allowing the use of
any logical model from databases for the PROFILE framework.

2.1.3. Generic Logical Model of Cancer Pathways
A published Boolean network model was used to illustrate our
PROFILE methodology (Fumiã and Martins, 2013). It is based
on a regulatory network summarizing several key players and
pathways involved in cancer mechanisms: RTKs, PI3K/AKT,
WNT/β-catenin, TGF-β/Smads, Rb, HIF-1, p53 and ATM/ATR.
An input node Acidosis and an output node Proliferation used as
a read-out were added to ease the analysis. Based on the model’s

logical rules from Fumiã and Martins (2013), Proliferation node
is activated by any of the cyclins (CyclinA, CyclinB, CyclinD,
and CyclinE) and is, thus, an indicator of cyclin activity as an
abstraction of the cell cycle behavior. This is a simplification
of cell cycle, and if readers would like to go beyond this
abstraction, a detailed study on the dynamics of a mammalian
cell cycle that takes into account cyclins and cyclin-dependent
kinases can be found in Gérard and Goldbeter (2016). The
generic model of Fumiã and Martins (2013) contains 98 nodes
and 254 edges, and can be visually inspected in Figure S6.
It is available in MaBoSS format in our GitHub repository:
(https://github.com/sysbio-curie/PROFILE/tree/master/Models
/Fumia2013).

2.2. Generation of Patient Profiles From
Multi-Omics Datasets
2.2.1. TCGA and METABRIC Data
Patient data from METABRIC (Curtis et al., 2012; Pereira et al.,
2016) with RNA expression data (n = 1,904), mutation profiles
(n = 2,509), CNA (n = 2,173) and clinical data (n = 1,980) were
gathered. Missing values were considered on an personalization-
specific basis: if the personalization method used mutation
profiles and RNA data, only the patients with data of these types
were considered. More details on the abundance of data types’
samples can be found in Figure S11A.

Breast cancer patient data from TCGA (Cancer Genome Atlas
Network, 2012; Ciriello et al., 2015) with RNA expression data (n
= 816), mutation profiles (n = 817), CNA (n = 816) and clinical
data (n = 817) were also gathered. For TCGA RNA expression
data, data from healthy samples are available (112 samples) along
with protein data (RPPA) for 673 patients. More details on the
abundance of data types’ samples can be found in Figure S11B.

Data were downloaded from cBioPortal1 (Gao et al., 2013).
To explore all possibilities offered by the two datasets, we have
used both of them to show different outcomes, METABRIC
results are hereby showcased and TCGA results can be found in
Supplementary Material.

2.3. Adapting Patient Profiles to a Logical
Model
For this analysis, we gathered the following types of data:
mutations, copy number variations, transcriptomics, proteomics
and clinical data. Usually, mutations and copy number variations
can be considered as discrete data and gene or protein expression
data as continuous data. Two approaches for handling the data
can be used inMaBoSS: (1) discrete data can be directly binarized,
and (2) continuous data can either be binarized or normalized
(expression values are modified so as to fit between 0 and 1). A
logical model is personalized differently according to the type of
data used. For instance, a deleterious mutation is integrated into
the model by setting the corresponding node to 0 and ignoring
the logical rule associated to it. For activating mutation, the node
is set to 1. Another approach is to modify the transition rates
(speed of activation or inactivation of a node, see section 2.1.2

1http://www.cbioportal.org/index.do
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and Figure S5) according to the impact of the mutation or the
level of gene or protein expression (further details in section 2.4).

In many mathematical models related to gene networks, some
genes are often listed with a generic name and it is not always
clear which gene is responsible of the reaction or if it rather refers
to a family of genes (e.g., AKT for AKT1, AKT2, AKT3). Thus,
before personalizing themodels to patient data, a correspondence
between model genes and data must be established and choices
must be made on which genes to associate to the model’s nodes.
For our example, the complete table of correspondence of the
model is available in our GitHub repository.

2.3.1. Processing of Discrete Data
Discrete data can be integrated in a straightforward manner
through functional inference. From METABRIC database, we
gathered mutations and copy number alterations.

2.3.1.1. Mutations
Based on the variant classification provided by the data,
inactivating mutations (nonsense, frame-shift insertions or
deletions and mutation in splice or translation start sites)
are assumed to correspond to loss of function mutations and
therefore the corresponding nodes of the model are forced
to 0. Missense mutations are matched with OncoKB database
(Chakravarty et al., 2017). For each mutation present in the
database, an effect is assessed (gain or loss of function assigned to
1 and 0, respectively) with a corresponding confidence based on
expert and literature knowledge. Mutations targeting oncogenes
(resp. tumor-suppressor genes), as defined in the 2020+ driver
gene predictionmethod (Tokheim et al., 2016), are assumed to be
gain of function mutations (resp. loss of function) and therefore
assigned to 1 (resp. 0). To rule potential passenger mutations out,
each assignment requires a label of deleteriousness either from
SIFT (Kumar et al., 2009) or from PolyPhen scores (Adzhubei
et al., 2010).

2.3.1.2. Copy number alterations
For CNA integration, only amplifications (+2) and homozygous
deletions (–2) (based on GISTIC processing Mermel et al., 2011)
are considered, but this choice can be adapted to the focus of the
study. Nodes corresponding to amplified genes are set to 1 and
those associated with homozygous deletions are set to 0 in patient
profiles. In our approach, we chose to discard CNA GISTIC
variations with values –1 and +1 due to their low-confidence
significance.

2.3.2. Processing of Expression Data
To be integrated into the logical model, continuous data
must be either binarized or normalized between 0 and 1.
To do so, gene expression data are first classified in three
broad categories according to their distribution across samples:
bimodal, unimodal, and zero-inflated distribution. Genes with
different distributions are treated differently as summarized in
Figure 3. Binarization and normalizationmethods different from
the ones proposed here (e.g., Müssel et al., 2015; Jung et al., 2017)
may also be used and directly integrated in the pipeline presented
in the 2.4 section.

2.3.2.1. Distribution classification
Non-variant genes are discarded based on the admissibility test:
the test verifies that the gene expression is included in a sufficient
range of values compared to other genes (i.e., a gene’s amplitude
across the cohort above one tenth of median amplitude across
all genes) and contains a sufficient number of non-zero values
(i.e., at least 5% of non-zero values). In single-cell transcriptomics
terminology, the latter corresponds to a low drop-out rate.

In order to classify the remaining genes, we identify bimodal
patterns based on three distinct criteria: Hartigan’s dip test of
unimodality, Bimodality Index (BI) and kurtosis.

The dip test measures multi-modality in a sample using the
maximum difference between empirical distribution and the best
unimodal distribution, i.e., the one that minimizes this maximum
difference (Hartigan and Hartigan, 1985). Values below 0.05
indicate a significant multi-modality. In PROFILE, this dip
statistic is computed using the R package diptest.

The Bimodality Index (BI) evaluates the ability to fit two
distinct Gaussian components with equal variance (Wang et al.,
2009). Once the best 2-Gaussian fit is determined, along with
the respective means µ1 and µ2 and common variance σ , the
standardized distance δ between the two populations is given by

δ =
| µ1 − µ2 |

σ
(1)

and the BI is defined by

BI = [π(1− π)]
1
2 δ (2)

where π is the proportion of observations in the first component.
In PROFILE, BI is computed using the R package mclust.

Finally, the kurtosis method corresponds to a descriptor of the
shape of the distribution, of its tailedness, or non-Gaussianity.
A negative kurtosis distribution, especially, defines platykurtic
(flattened) distributions, and potentially bimodal distributions. It
has been proposed as a tool to identify small outliers subgroups
or major subdivisions (Teschendorff et al., 2006). In our case, we
focus on negative kurtosis distributions to rule out non-relevant
bimodal distributions composed of a major mode and a very
small outliers’ group or a single outlier (an example of which can
be seen in Figure S7).

Although dip test, BI and negative kurtosis criteria emerge as
similar tools in the sense that they select genes whose values can
be clustered in two distinct groups of comparable size, we choose
to combine them in order to correct their respective limits and
increase the robustness of our method (see bimodality test in
Figure 3C). For that, we consider that all three conditions (Dip
test, Bimodality Index and kurtosis) must be fulfilled in order for
a gene to be considered as bimodal.

The thresholds of each test are inspired by those advocated
in the papers presenting the tools individually. Dip test is a
statistical test to which the classical 0.05 threshold has been
chosen. In the article describing BI, authors explored a cut-off
range between 1.1 and 1.5 and we chose 1.5 for the present
work. Regarding kurtosis, the usual cut-off is 0, but since this
criterion does not directly target bimodality, this criterion has
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FIGURE 3 | Processing pipeline to classify genes in different categories based on their expression pattern across the cohort. (A) Tests to separate bimodal from

non-bimodal genes before subsequent binarization. (B) Test to classify non-bimodal genes in unimodal or zero-inflated genes. (C) Statistical and logical content of the

various tests used in (A,B), thresholds have been taken from the papers presenting each tool and are more precisely justified in the Methods section.

been relaxed toK < 1. Several examples of the relative differences
and complementarities between these criteria can be seen in
Figure S7.

This method is enough to binarize continuous data as can
be seen in Figure S8. However, to normalize continuous data,
we need to further classify non-bimodal gene distributions
among unimodal or zero-inflated, looking at the position of
the distribution density peak. Then, based on this three-
category classification of genes, we performed binarization and
normalization processing as summarized in Figure S8.

Because the normalization of continuous data preserves more
original information than its binarization, we will detail here only
the normalization process. However, it should be noted that the
preliminary classification of gene distributions into three distinct
categories allows for a simple binarization (Figure S8).

Normalization functions are thus defined as follows:

Bin : OriginalValues → BinarizedValues

X 7→ Bin(X)

Norm : OriginalValues → NormalizedValues

X 7→ Norm(X)

2.3.2.2. Bimodal genes processing: Gaussian mixture models
In PROFILE, a 2-component Gaussian mixture model is fitted
using mclust R package resulting in a lower mode M0 and a
upper mode M1 (Figure 4). Each data point X has a probability
to belong toM0 orM1 such as

Prob(Xgenei ,samplej ∈ M0,genei )+ Prob(Xgenei,samplej ∈ M1,genei ) = 1
(3)

For these bimodal genes, the normalization processing is defined
as:

Norm(Xgenei ,samplej ) = Prob(Xgenei,samplej ∈ M1,genei ) (4)

2.3.2.3. Unimodal gene sigmoid normalization
For unimodal distributions, we transform data through a sigmoid
function in order to maintain the most common pattern which is
unimodal and nearly-symmetric. First of all, expression data are
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FIGURE 4 | Normalization methods for expression data of genes of all three categories (bimodal, unimodal and zero-inflated). First column panels show examples of

original patterns from the three categories. Second column panels illustrate the processing methods used for normalization (GMM 2-component, sigmoid

normalization and linear normalization). Third column panels correspond to normalized distributions.

centered around the median, which is more robust than using the
mean regarding outliers:

X′
genei ,samplej

= Xgenei ,samplej −mediangenei (X) (5)

Then data are normalized through the sigmoid function:

Norm(X′
genei ,samplej

) =
1

1+ e
−λX′

genei ,samplej

(6)

Since the slope of the function depends on λ, we adapt
λ to the dispersion of initial data in order to maintain
a significant dispersion in [0, 1] interval: more dispersed
unimodal distributions are mapped with a gentle slope, peaked
distributions with a steep one. We map the median absolute
deviation (MAD) on both sides of the median respectively to 0.25
and 0.75 to ensure aminimal dispersion of themapping. First, the
MAD is defined as:

MADgenei (X) = median(| xi −mediangenei (Xgenei ,samplej ) |) (7)

Therefore, to fulfill the proposed mapping, we solve:

1

1+ e±λMAD
=

1

2
∓

1

4
, (8)

and derive:

λ =
loge(3)

MAD
(9)

Thus, we obtain data normalized in [0, 1] for unimodal genes, as
in Figure 4.

2.3.2.4. Zero-inflated genes sigmoid normalization
Zero-inflated genes are characterized by a distribution density
peak (computed in PROFILE with the density function of
stats R package) close to 0 (Figure 3B). For this case, we
linearly transform the initial distribution in order to maintain the
asymmetric original pattern:

Norm(Xgenei ,samplej ) =
Xgenei ,samplej −mingenei (X)

maxgenei (X)−mingenei (X)
(10)

The transformation is applied to data between 1st and 99th
quantiles to be more robust to outliers. Values below q1 or above
q99 are respectively assigned to 0 and 1.

2.3.2.5. Reference expression dataset
For the processing of expression data, two main options are
available in PROFILE depending on what reference dataset is
taken into account. We can either binarize/normalize genes
based on distribution patterns across the whole cancer cohort
or based on healthy patients. In the latter case, the type of
gene distributions (bimodal, unimodal and zero-inflated) and the
corresponding parameters (like inter-quartile range) are defined
based on distribution patterns for healthy samples only, and the
binarization/normalization is then applied on cancer patients. In
the datasets under consideration in the present work, only the
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TCGA RNA dataset includes healthy samples. Except otherwise
stated, genes are processed based on cancer cohort and not based
on healthy samples.

2.4. Personalization of Logical Models
Using Patient Data
Personalization has been defined here as the specification of
a logical model with data from a given patient: each patient
has a personalized model tailored to his/her data, so that all
personalized models are different specifications of the same
logical model, using data from different patients (Figure 1).
Based on MaBoSS formalism and the processed patient data,
there are several possibilities to personalize a generic logical
model with patient data as represented in Figure 5.

2.4.1. Activity of Model Nodes
One possibility to have patient-specific models is to force the
value of the variables corresponding to the altered genes, i.e.,
constraining some model nodes to an inactive (0) or active (1)
state. In order to constrain a node to 0 (resp. 1), the initial value
of the node is set to 0 (resp. 1) and kup (resp. kdown) to 0 to
force the node to maintain its defined state. For instance, the
effect of a p53 inactivating mutation can be modeled by setting
the node TP53 in the model and its initial condition to 0 and
ignoring the logical rule of TP53 variable. Thesemodifications are
referred to as node activity in the logical model. This constraint
affects the simulation trajectories and consequently may shift the
trajectories in the solution state space (referred to as the state
transition graph, STG) leading to a change in probabilities of
the resulting stable states (very often, these nodes are the ones
representing biological phenotypes that are used as read-outs of
the model) (Grieco et al., 2013; Remy et al., 2015).

2.4.2. Initial Conditions
Another possible strategy is to modify the initial conditions of
the variables of the altered genes according to the results of the
binarization/normalization. These initial conditions can capture
different environmental and genetic conditions. Nevertheless, in
the course of the simulation, these variables will be prone to be
updated depending on their logical rules. These initial conditions
can either be binary or continuous between 0 and 1, so both
binarized and normalized profiles can be used. In the present
study, we have only considered patients’ expression data to be
included as initial conditions, but PROFILE allows for more data
types to be used as initial conditions.

2.4.3. Transition Rates
Finally, as MaBoSS uses Gillespie algorithm to explore the STG,
data can be mapped to the transition rates of this algorithm.
In the simplest case, all transition rates of the model are set
to 1, meaning that all possible transitions are equally probable.
Alternatively, it is possible to separate the speed of processes
by setting the transition rates to different values to account for
what is known about the reactions: more probable reactions will
have a larger transition rate than less probable reactions (Stoll
et al., 2012). For this, different orders of magnitude for these
values can be used. They are set according to the activation status

of the node (derived from normalized or binarized values) and
an “amplification factor,” designed to generate a higher relative
difference in the transition rates, as follows:

k
up

genei ,samplej
= AmplificationFactor

2(Norm(Xgenei ,samplej
)−0.5)

(11)

kdowngenei ,samplej
=

1

k
up

genei ,samplej

(12)

Thus, if a gene has a value of 1 based on its RNA profile, its
transition rate from 0 to 1 (resp. from 1 to 0) will be 102 (resp.
10−2) with an amplification factor of 100.

Note that in the present study, we have only considered
normalized patients’ expression data to be included as transition
rates (RNA for METABRIC data and RNA or Protein for TCGA
data). The influence of the amplification factor on the results
is discussed in Section 1.6.2 and Figure S10 (Supplementary
Material). Based on this analysis, we chose an amplification factor
of 100.

2.4.4. Synthetic Definition of Logical Model

Personalization
We propose to summarize personalization methods in two
different strategies (Figure 5). One one hand, applying Strict
Node Variants (Strict NV) method, nodes for which data are
available, are set to a given value for the whole simulation. For
these nodes, logical rules are no longer in use, as they will always
have a given value (0 or 1).

On the other hand, combining Initial States and Transition
Rates modifications, we define a Soft Node Variants (Soft
NV) method. Using this method, if a given node has a
normalized value of 0.8 after data processing (based on proteins
levels for instance), it will be initialized as 1 in 80% of the
stochastic trajectories, its transition rate k0→1 will be increased
(favoring its activation) and its transition rate k1→0 will be
decreased (hampering its inactivation). These changes increase
the probability that this node will remain in an activated
state close to the one inferred from the patient’s data, while
maintaining the validity of its logical rule. Thus, Soft NV appears
as a smoother way to shape logical models’ simulations based on
patient data.

2.4.5. Combinations of Data Types
The choice of which data types to include and where to map these
data on the modeling framework is dependent on the goals of
the study. If mutations, CNA and gene and protein expression
data are provided for a given patient, one could include all
these data types as follows: nodes corresponding to mutations
and CNA could be used to specify model nodes (set to 0 or
1 if they are inhibiting or activating mutations or if they are
homozygous deletions or amplifications), and transition rates
could be modified to account for gene and protein expression
levels.

Mapping different data types with different personalization
methods avoids potential conflicts. However, combining different

Frontiers in Physiology | www.frontiersin.org January 2019 | Volume 9 | Article 1965329

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Béal et al. Logical Model Personalization

FIGURE 5 | Graphical summary of personalization methods for logical models: node activity status (nodes set to a given value for the full run of the simulation, without

consideration for logical rules), initial states (nods initialized to a given proportion of 0 or 1 states) and transition rates (weighted stochastic transitions depending on

the assumed activity level of nodes). Tuning node activity status, we define Strict Node Variants or Strict NV, i.e., forcing the activity (either present or absent) of a

node. Tuning both initial states and transition rates, we define Soft Node Variants or Soft NV, i.e, nodes whose initial activation proportion is close to that of the patient

and whose transition rates promote maintenance in its state of activity.

data types with the same personalization method raises some
ambiguity issues. For instance, a gene can be inferred as a loss of
function from the mutation data and can be found as amplified
from CNA data. In this case, we consider that the information
from mutations always overrides the information coming from
CNA or binarized RNA/protein. Since both RNA and protein
expression are available in the TCGA dataset, we explored the
possibility to combine the two data types as follows: the RNA
expression level is taken into account to define soft node variants
only if there is no corresponding data in the protein dataset
for that specific node. In the section 3.2, we present different
choices that can be made according to the studied goals and data
availability and in section 3.3, we analyze which combination is
best suited to explain our patients’ clinical data.

2.5. Comparison With Clinical Data
In order to assess the relevance of the different scenarios of model
personalization, we investigate the correlationwith biological and
clinical factors.

For METABRIC dataset, signatures from the Molecular
Signature Database (MSigDB) described in Liberzon et al.
(2015) were used to classify the relevance of Proliferation and
Apoptosis probabilities obtained from different personalization
methods. We selected the Hallmarks “G2M Checkpoint” (resp.
“Apoptosis”), a gene set composed of 200 genes (resp. 161)
to correlate with the Proliferation (resp. Apoptosis) model
probabilities. Genes used to personalize the models are excluded

from the gene set, which reduces it to 185 (resp. 150) genes.
Signature scores are then computed with the Gene Set Variation
Analysis (GSVA) method, described in Hänzelmann et al. (2013)
and implemented in GSVA R package. Correlations are assessed
based on Spearman rank method and 95% confidence intervals
are obtained by bootstrap (n = 1, 000). For the METABRIC
cohort, the patient’s Nottingham prognostic index (NPI) and
survival data are also gathered. NPI is a prognostic score based on
clinical features such as tumor size, tumor grade and node status.

Regarding the survival data, there is data for all but one of the
1980 METABRIC patients. The overall survival time points are
between 0 and 355 months with a median survival time of 283
months and 646 events (patients died of disease). Kaplan-Meier
fits are obtained using the survival R package.

2.6. Availability
All the scripts and models are freely available on GitHub
(https://github.com/sysbio-curie/PROFILE) and are
distributed open source under the BSD 3-clause license.
This repository can be referred to with its own DOI:
(https://doi.org/10.5281/zenodo.1491229).

3. RESULTS

3.1. Breast Cancer Data Processing
Our framework has been applied to 2,509 breast cancer patients’
molecular data that were collected from METABRIC. Patients’
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data types include exome mutations, CNA and RNA expression
as well as clinical data such as survival data. One thousand
nine hundred and four patients of the 2,509 total have all these
data types available (Curtis et al., 2012; Pereira et al., 2016)
(Figure S8A). Data were processed as described in previous
sections.

The logical model of cancer pathways (Fumiã and Martins,
2013) was chosen as a working example as it is a generic model
with a relatively big number of nodes that span several pathways
relevant to cancer. This model was initally used to study the
effects of microenvironment conditions, to simulate the response
to driver mutations in colorectal cancer progression and the
effect of genes’ perturbations as therapeutic targets (Fumiã and
Martins, 2013).

Data from the METABRIC dataset that were relevant to the
model were selected. Focusing on the 110 genes overlapping
with nodes of the logical model, exome sequencing resulted
in 2,659 mutations, of which 1,431 mutations were inferred as
loss of function and 1,228 as gain of function. Besides, 634
mutations have unknown or silent effects and therefore were
not considered. These 3,293 model-related mutations represent
19% of all mutations of the METABRIC dataset. Note that
these numbers show the intersection of a generic model and
a breast-cancer-specific dataset, so this percentage could be
further increased by using a model with breast-specific pathways.
Patients’ profiles were found to have up to 7 mutations with most
patients having only one assigned mutation. PIK3CA and TP53
were found to be the most frequently mutated genes.

For CNA data, patients’ profiles had up to 19 perturbations,
with a median number of 2. MYC gene was the most frequent
gene with copy number alterations.

RNA expression data were processed and genes were separated
in bimodal, unimodal and zero-inflated categories (Figure 3 and
section 2.3). All model-related genes in METABRIC cohort were
found to be unimodal. Note that bimodal genes occur in several
biologically meaningful situations like fusion genes such as ERG
in prostate cancer or hormone genes such as ESR1 in breast
cancer. We chose to explore the results of the METABRIC data
with a model built specifically for breast cancer analysis (Zañudo
et al., 2017) in order to assess the importance of including cancer-
specific genes. Indeed, ESR1 is present in the breast-specific
logical model analyzed in Supplementary Material.

The methods of binarization and normalization are applied
to each data type according to the previously presented rules
(Figure 4 and Figure S8).

We further compared our binarization method to an existing
tool, RefBool framework (Jung et al., 2017), using the same
METABRIC dataset. This tool uses a set of reference distributions
and it results in p-values for each sample and gene, assessing
the significance of its putative binarization. Using 0.05 as
a binarization threshold for RefBool p-values on the whole
METABRIC RNA dataset (1904 samples and 24368 genes),
around 4.4 million values were binarized (9.5% of the total).
All of these binarizations resulted in active nodes and thus set
to 1. Notably, RefBool was designed to use a reference dataset
to binarize new data. Due to the lack of a reference healthy
dataset in METABRIC, the whole dataset has been used as its
own reference: each gene was compared to the distribution of that

gene across all samples. Comparatively, our method results in 2.8
million of binarized values (6.1% of the total), respectively 4.2%
of 1 s and 1.9% of 0 s. There seems to be a trend for RefBool
in METABRIC dataset to emphasize positive outliers at the
expense of negative ones, even for roughly symmetric unimodal
distributions (Figure S18). Some examples of this dataset can be
studied in Supplementary Material, together with the analysis
on TCGA dataset, that bears healthy samples, and should be a
better showcase to RefBool capabilities (Figure S19).

3.2. Personalization of a Generic Logical
Cancer Model With Breast Cancer Data
We proceeded to personalize the logical model using different
types of data and several data integration methods, such as on
the activity of the nodes, the initial conditions and the transition
rates. The effect of integrating different data at different levels of
the model are represented by different phenotypes’ distributions
that can be used to study the respective effects of model
personalization methods in Figure 6. Note that the probabilities
for the wild type conditions are 0.019 for Proliferation and 0.906
for Apoptosis and are represented as a black dashed vertical line
in Figure 6.

Using mutation data as a forced activity (either present or
absent) of a node of the model (termed Strict Node Variants
or Strict NV throughout the text), resulted in the distribution
of Proliferation probabilities around the value 0.05 and the
distribution of Apoptosis probabilities around two values (0.5
and 0.85) in Figure 6 (upper panels, case 1). It is important
to note that as these data are discrete and sparse, this causes
the Proliferation distribution to be quite sharp. The distribution
becomes smoother when exome mutations and CNA are both
considered as Strict NV of the model and peaked around
two values (0.05 and 1 for Proliferation and 0.5 and 0.85 for
Apoptosis), as shown on Figure 6, case 2. Using CNA information
as Soft Node Variants (Soft NV) and mutation as Strict NV,
the highly proliferative mode is slightly decreased, consistent
with less stringent constraints (Figure 6, case 3). When only
RNA expression levels are used as modified transition rates,
the resulting distribution of phenotypes’ probabilities is more
dispersed (Figure 6, case 4) and only one lowly proliferative
peak appears. Adding mutations information as Strict NV does
not shift the probabilities’ distributions (case 5). Lastly, when
we consider mutations and CNA as nodes’ activity and RNA
expression levels as modified transition rates, it results in a
combination of the previously observed patterns (Figure 6,
case 6).

Nevertheless, the generic logical model we use here does not
take into account key genes in breast cancer progression such as
hormone receptors and their associated signaling networks. As
previously mentioned, a breast-cancer-specific model (Zañudo
et al., 2017) was investigated using the same METABRIC dataset
to personalize breast patient-specific models with similar trends
to those of the generic model’s study (Figure S12). Zañudo et al.
(2017) model generates narrower distributions and therefore
less discriminating probabilities from one patient to another,
which is mainly due to the fact that it captures less information
due to its lower number of nodes (especially with sparse data
such as mutations). For these reasons, and having in mind the
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FIGURE 6 | Impact of different model personalization methods on the distribution of phenotypic nodes Proliferation and Apoptosis, using a generic cancer model and

METABRIC data. On the left, description of data types used as Strict or Soft Node Variants to personalize the model resulting in different phenotypic probabilities’

distributions across the cohort, as shown on the right. Dashed lines correspond to the probabilities of the phenotypes obtained from the original model without any

personalization: 0.019 for Proliferation and 0.906 for Apoptosis.

methodological scope of present work, we will focus on the
discussion on results of the more comprehensive generic model.

In order to present the use of one model with more than
one dataset, PROFILE method was also done and analyzed using
TCGA molecular data on Fumiã and Martins (2013) generic
model (Figure S14).

Figures such as Figure 6 are useful to identify the integration
of which data in which part of the model has a greater impact in
the change in phenotypes’ distributions, but say little about the
biological relevance of these distributions. To further investigate
which combinations of methodology provides better biological
or clinical insights, we compared these models’ results to several
signatures or clinical factors used in breast cancer studies.

3.3. Selecting Personalization Methods
Using Correlation of Phenotypic
Probabilities to Signature Scores
To classify the relevance of the six personalization methods
presented in the previous section, we studied the correlations
of the probabilities of the model phenotypes with representative
signatures of the same phenotypic processes. This methodology
allows to classify the different personalization methods and to

study which one is better suited to describe the diversity of
patients when tailoring a given model to a given dataset.

The Spearman rank correlations of the Apoptosis probabilities
from personalized models with the RNA-based "Apoptosis"
signature defined in the Hallmarks (Liberzon et al., 2015) gene
set was computed (Figure 7A). Sparse binary data (when using
mutations or CNA data) appear to be a poor choice to recover a
consistent Apoptosis probability with the logical models (cases
1, 2 and 3). Only models personalized with RNA data as Soft
NV are able to mimic an Apoptosis behavior consistent with the
signature.

When comparing the Proliferation probabilities from
the models to the Hallmarks’ "G2M Checkpoint" signature
(Figure 7A), personalized models are able to capture consistent
behavior regardless of the type of data used as input.
Nevertheless, the best Spearman rank correlations coefficients
used as classifiers singled out the cases that use RNA as Soft NV
(cases 4, 5 and 6), specially when the activity of nodes was fixed
by mutations and transition rates by RNA values (case 5, mean
Spearman’s ρ of 0.61). In spite of their smaller correlation, the
first three cases are also of interest since they only make use of
originally sparse and discrete information: mutations and CNA
data used as Strict and/or Soft NV. For instance, in case 3, using
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FIGURE 7 | Biological and clinical classification of phenotypic probabilities from personalized models. (A) Model personalization methods used and the corresponding

Spearman rank correlation between phenotypic probabilities from personalized model and the corresponding Hallmark signatures score based on RNA gene sets. (B)

Spearman rank correlation between personalized Proliferation probabilities and the Nottingham Prognostic Index (NPI) score based on clinical features (size and grade

of tumor, node status).

mutations as Strict NV and CNA as Soft NV, personalized models
are able to retrieve 44% of proliferation information contained
in RNA-based “G2M Checkpoint” signature (Figure 7A, case 3).

Similarly, when comparing the probabilities of the
Proliferation phenotype to NPI scores (Figure 7B), a purely
clinical index that is not based on omics data, we observe the
same trends for correlations, but with decreased coefficients.
This supports the potential of these personalized models to
partially identify clinical information as discussed in the survival
data in section 3.5.

3.4. Clinical Subgrouping of Patients’
Specific Model Outputs
Next, we studied the relationship of our patients’ specific
model probabilities to the PAM50 subgrouping, defined by the
expression of 50 genes (Parker et al., 2009). For this, Proliferation
probabilities from the personalizedmodels were compared across
subtypes (Figures 8A–C).

Using only mutations and CNA (Figure 8A), two different
patterns may be observed: Basal, Her2 and Luminal B patients
have balanced Proliferation bimodal probabilities with both lowly
and highly proliferative patients. The second pattern involves
Claudin-low, Luminal A and Normal-like patients that are
mainly lowly proliferative with a smaller highly-proliferative
mode. This grouping of subtypes, based on distribution trends,
is consistent with the distinct proliferative behaviors of breast-
cancer subtypes as described in Prat and Perou (2011): although
similar in some aspects Luminal subtypes are distinguished by
the more proliferative aspect of Luminal B; Basal and Her2
subtypes are also considered as aggressive tumors in contrast to
Luminal A and Normal-like; Claudin-low subtypes have mixed
behaviors depending on conditions but are usually described as
lowly proliferative in vivo. The trends captured by the model are
therefore consistent with clinical knowledge.

When personalizing logical models with RNA but no
CNA (Figure 8B), only the proliferative nature of the Basal
subtype seems to be well described, even when using mutation

data. When combining RNA and CNA data (Figure 8C), the
previously described clinical trends are again observed with
clearer distinctions between subtypes.

In order to provide a reference of subtyping using omics
data, a Principal Component Analysis (PCA) was performed
taking into account the RNA expression levels of the 114 genes
related to all nodes of the model (Figure 8D). The first principal
component (PC1) of this PCA captured the different molecular
subtypes and sequentially separated different subtypes (Luminal
A, Luminal B, Her2 and Basal). This analysis shows a smoother
and more linear distribution of the different subtypes, while
personalized models seem to assign them more discrete patterns.

3.5. Survival Analyses of Patients’ Specific
Model Outputs
As a follow-up to the correlation studies of phenotypes’
probabilities and clinical NPI scores, METABRIC survival data
were correlated to the Proliferation and Apoptosis probabilities.
For the survival analysis, thresholds needed to be set for the
probabilities for each phenotype in order to separate between two
groups: high and low. These thresholds were defined using the
median for each phenotype probability across the cohort. Thus,
each patient was grouped into two groups (high or low) for each
phenotype (Proliferation or Apoptosis).

Studying simulation results from case 3 (mutations as
Strict and CNA as Soft NV), thresholds of 0.12 and 0.87
were determined for Proliferation and Apoptosis phenotypes
respectively. Kaplan—Meier plot (Kaplan and Meier, 1958) for
Proliferation low and high probabilities’ groups were significantly
different (log-rank test, p = 2.05e−11) and low proliferative
patients’ models had better prognostic than the high ones
(Figure 9A). When considered as a continuous biomarker,
Proliferation appeared significant in a Cox model with a p-value
of p = 2.13e−8.

Similarly, Kaplan—Meier plot for Apoptosis low and high
probabilities’ groups were significantly different (log-rank test,
p = 8.82e−8) and high apoptotic patients’ models had better
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FIGURE 8 | Breast-cancer subtypes and personalized logical models. (A–C) Patterns of Proliferation probabilities per subtype with different personalization methods

results in different grouping of subtypes. (D) Densities of breast-cancer subtypes along first principal component, PCA transformation based on METABRIC RNA data

limited to the 114 genes described in the logical model ; percentage of variance explained by PC1 in parenthesis.

prognostic than the low ones (Figure 9B). When considered as
a continuous biomarker, Apoptosis appeared significant in a Cox
model with a p-value of 1.09e−8. The observation of survival
curves for high apoptotic or low proliferative patients’ models
having a much better prognostic than the opposite phenotypes
(Figures 9A,B) is in accordance with the underlying cancer
biology and is an implicit validation on the relevance of themodel
and its simulations.

We next combined both thresholds to separate patients in
four groups (high and low Proliferation and high and low
Apoptosis) (Figure 9C) that was also significantly different (log-
rank test, p-value of 9.57e−14). Using this combination, the best
prognosis was for patients’ models with low Proliferation and
highApoptosis and the worst prognosis was associated to patients’
models with high Proliferation and low Apoptosis. Groups with
the other labels (either high Proliferation and high Apoptosis or
low Proliferation and low Apoptosis) had mild prognoses. This
observed behavior is fully consistent with the expected influence
of proliferation and apoptosis in cancer prognosis. Thus, using
sparse and binary data, we show that personalized logical models
result in a meaningful stratification of patients.

Next, based on Figure 7, the most effective personalization
method was selected (case 5 using mutations as Strict and
RNA as Soft NV) and its survival analysis had similarly
consistent behaviors (Figure 10). Nevertheless, using only RNA
as Soft NV (case 4 of Figure 7), Proliferation remains very
significantly correlated with survival data but Apoptosis is not
(Figure S16), supporting the importance of mutations data to
retrieve biologically consistent behaviors.

Based on Figures 7–10 we conclude that for an optimal
integration of the data available in this logical model, the best
combinations are to binarize mutations and treat them as Strict
NV, and to integrate RNA as Soft NV. Replacing RNA with CNA
data results also in largely consistent behaviors with sparser data.

We conclude that our personalization protocol is useful
to build data-tailored models that can capture patient-specific
phenotypes’ behaviors which correlate to survival data.

4. DISCUSSION

In order to reach its full potential, personalized medicine needs
precise mathematical models, and this will only be achieved
with models tailored to the data for a given patient. These
patient-specific models can be of great help to study patient-
tailored drug combinations or the different drug responses in a
group of patients with similar profiles and to advice the clinical
oncologist as to the optimal treatment to choose for a given
patient. The methodology presented here is a first step toward
the personalization of a logical model to different patient profiles
such that their results can be matched to clinical data and
patients’ subgrouping.

Our PROFILE framework is able to use different data types
(mutation, CNA and gene and protein expression data) and
incorporate them at different levels of the logical modeling
formalism. The personalization strategies presented here have
been compared to well-established signatures and NPI score,
and the outcomes of these patient-specific models have shown
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FIGURE 9 | Survival analyses of METABRIC samples from which exome mutations are used as Strict Node Variants and CNA as Soft Node Variants in the model

(case 3). All p-values are derived from a log-rank test. (A) Survival curves with high and low Proliferation groups. (B) Survival curves with high and low Apoptosis

groups. (C) Survival curves with combined groups.

FIGURE 10 | Survival analyses of METABRIC samples from which exome mutations are used as Strict Node Variants and RNA as Soft Node Variants in the model

(case 5). All p-values are derived from a log-rank test. (A) Survival curves with high and low Proliferation groups. (B) Survival curves with high and low Apoptosis

groups. (C) Survival curves with combined groups.
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to correlate well with clinical data. Any other relevant clinical
measure could be used, especially more specific features
corresponding to molecular mechanisms studied in the models.
Notably, some choices on which data to include in the
specification of the models are better than others when studying
the correlation of the phenotypic probabilities of the logical
model to signatures or the model ability to differentiate patients
by prognostic outcome. To summarize, associating genetic
mutations with the most stringent personalization method (i.e.,
Strict NV, constraining activity of nodes to either 0 or 1)
and variation of copy number and expression levels with more
permissive and stochastic personalization methods (i.e., Soft NV,
intervening in initial states and transition rates) can be seen
as biologically consistent. It is indeed expected that a genetic
mutation can have a very strong and lasting effect that makes the
gene independent of any regulation such as in the loss of function
mutations. Conversely, the RNA expression level will affect the
activity level of the genes but may not alter its regulation.

Using our PROFILE methodology, we are able to provide
guidelines regarding the patient-data personalizations of logical
models. Firstly, it is important to consider the nature of the
node (gene or protein) in order to match the proper data type
to the node. In the generic model used in our study, most
of the nodes are supposed to be proteins, therefore it would
be advisable to focus on protein data, which is unfortunately
unavailable in the METABRIC dataset. In any case, the proposed
framework could be easily adapted to the ideal case where each
node would have a well-defined nature and a proper mapping of
the corresponding data types. It is important to note that in the
context of phospho-proteomic data (like RPPA’s phosphosites),
highly phosphorylated species can correspond to an inactive
state that must be taken into consideration as mentioned in
Supplementary Materials with TCGA data.

Secondly, healthy samples should be used if they are available
in the dataset. Using an independent healthy samples for
RNA normalization in TCGA dataset not only improved the
correlation performances (Figure S15, case 4) but also the
qualitative trend of the results (Figure S17). It can be seen
that using healthy samples instead of cancer samples as a
reference for RNA normalization results in a significant shift
of the distribution toward high Proliferation model probabilities
(Figure S17).

Thirdly, to improve the results of personalized logical models,
the model used must be big enough, but also cover specificities of
the cancer under study. Models should not be too generic, as they
should include important read-outs of cancer types such as AR
for prostate or ER and BRCA1 for breast cancer allowing them
to better separate cancer subgroups. Also, they should include a
sufficiently meaningful number of genes in order to be able to
differentiate among patients.

In order to achieve clinically relevant models, it will be
necessary to bring together the best of both worlds: large models
able to integrate most alterations of common cancer pathways
(e.g., DNA repair) and cancer-specific nodes (e.g., hormone
receptors) able to explain the particular behavior of each cancer.

As perspectives, we plan to explore methods that will allow to
use the solutions of the logical model for patient-specific studies.
One possibility that would allow for personalized drug treatments
is to integrate drug interactions in these personalized models,
uncovering patient-specific drug targets whose behaviors might
depend on environmental conditions. Another possibility that
would enable a better patient stratification is to compute the
Hamming distance of a binarized profile of a patient with each
of the stable states obtained by the non-personalized model. That
way, a patient can be considered "closer" to a given phenotype,
such as Proliferation, Apoptosis or Senescence, etc. This approach
raises problems such as how to treat attractors such as limit
cycles, which are usually found in logical models, since this
comparison can only be done on stable state solutions. We have
started exploring this possibility (Cohen et al., 2015) and some
work has been done by other groups in this direction (Dorier
et al., 2016).

In conclusion, our PROFILE methodology allows to build
precise mathematical models that captures the heterogeneity
of patients profiles and their diverse behaviors. These logical
models, which are properly specified with patient information,
would enable clinicians to test personalized drugs combinations
or therapeutic strategies in silico and pave the way to precision
medicine.
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