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Editorial on the Research Topic

Approximation methods and analytical modeling using partial

di�erential equations

Adequate mathematical modeling is the key to success for many real-world projects in

engineering, medicine, and other applied areas. Once a well-suited model is established, it

can be thoroughly examined using a broad spectrum of analytical techniques. For example,

compartmental models are frequently employed in epidemiology to simulate the spread of

infectious diseases, and they are also instrumental in population genetics. Although one

can often prove the existence of an optimal solution under certain conditions, this does

not guarantee that the solution is easy to implement in practice. In many cases, obtaining

a viable approximation presents a challenging research problem in itself.

This Research Topic focuses on modeling, analysis, and approximation problems

whose solutions leverage the theory of partial differential equations. It aims to showcase

new analytical tools for modeling challenges in applied sciences and practical fields.

Researchers explore the qualitative behavior of weak solutions, including removability

conditions for singularities, the influence of initial and boundary data on local asymptotic

properties, and the existence of solutions. Many articles concentrate on anisotropicmodels,

examining the prerequisites for anisotropy strength and comparing analytical estimates

of solution growth near singularities with numerical simulations. The qualitative analysis

and theoretical findings are validated through observed numerical behavior. Overall, this

Research Topic introduces new theoretical tools and expands the scope of established

applications.

We would like to emphasize the following main topics:
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1 Modeling nonlinear processes in
anisotropic and inhomogeneous
media, as well as boundary value
problems for linear and quasilinear
hyperbolic systems, and elliptic and
parabolic equations with a
di�usion-absorption structure

Themanuscript of Barkov and Shepelsky deals with a nonlinear

PDE known as the modified complex short pulse equation in its

focusing version. This model is closely related to the Short Pulse

(SP) equation, which is known to be a useful model of propagation

of ultra-short optical pulses as thus is studied extensively in the

literature, and on the other hand, it is a complex version of one

of two integrable cases (the first one being the Short Pulse equation

itself) of nonlinear PDE with cubic nonlinearities. The existence of

the Lax pair representation suggests, in principal, that it is possible

to develop the formalism of the Inverse Scattering Transform (IST)

method for studying various problems for this nonlinear PDE,

including solving the Cauchy problem and constructing particular

explicit solutions of soliton type.

Vasylyeva examines initial-boundary value problems for

semilinear integro-differential equations withmulti-term fractional

Caputo derivatives, particularly in the context of oxygen diffusion

in capillaries. The study establishes classical and strong solvability

using the continuation method, supported by a priori estimates in

fractional Hölder and Sobolev spaces. The research underscores

the relevance of fractional differential equations in modeling

biological and engineering processes, including polymer relaxation,

chaotic neuron activity, and financial time series analysis. Each

of these studies contributes to advancing mathematical models

in epidemiology, thermal and mechanical wave propagation, fluid

dynamics, and diffusion processes, showcasing the versatility

of fractional calculus and PDE-based approaches in scientific

research.

Bokalo et al. consider the problem without initial conditions

for some strictly nonlinear functional-differential variational

inequalities in the form of subdifferential inclusions with

functionals. The main results concern the existence and uniqueness

of a solution for this problem in the absence of restrictions on

solution’s behavior and the growth of input data when the time

variable is directed to minus infinity.

Protsakh studies some inverse problem of finding the time-

dependent source term in a third-order semi-linear hyperbolic

equation with a strong damping term. This equation is considered

under Dirichlet boundary and integral over-determination

conditions. The existence and uniqueness of the solution are

established using Galerkin’s method. She also proposes the Fourier

truncation method for stabilizing the ill-posed problem.

The manuscript of Langemann and Savchenko is concerned

with the numerical validation of theoretical results for the

removability of singularities in anisotropic parabolic partial

differential equations of porous-medium type. Numerical solution

was built and compered with the theoretical apriori estimates.

Andreieva and Buryachenko’s study focuses on proving the

analog of the maximum principle for fourth-order hyperbolic

equations, emphasizing its importance for ensuring the qualitative

properties of solutions, such as uniqueness and existence. This is a

significant contribution to the field, particularly given the lack of

existing results for such higher-order hyperbolic equations.

2 The nonlinear transmission problem
for composite beams, hyperbolic
models in flow dynamics and
viscoelasticity

Fastovska et al. investigate the nonlinear transmission problem

associated with a composite Bresse beam consisting of a damped

part. They prove the well-posedness in energy space of the PDEs

describing the dynamics of the beam; establish existence of a regular

global attractor under specific conditions on nonlinear parameters

and damping coefficients of the damped part, and, finally, study

some singular limits of the proposed problem which tend to

solutions to a transmission problem for the Timoshenko beam and

to solutions to a transmission problem for the Kirchhoff beam with

rotational inertia. All theoretical results are validated by numerical

simulation.

By means of the Cauchy-Stieltjes transform of a copolynomial,

Gefter and Piven present and study a multiplication of

copolynomials. They examine a Cauchy problem for the nonlinear

partial differential equation in the ring of copolynomials and find

a solution by using the series in powers of the δ-function. Such

theoretical results are very essential and can be applied to a Cauchy

problem for the Euler-Hopf equation, for the Hamilton-Jacobi type

equation and for the Harry Dym equation.

Al-Lehaibi introduces a new mathematical model for analyzing

thermal conduction in viscothermoelastic ceramic micro-circular

rings using Kirchhoff’s love plate theory. The model incorporates

fractional derivatives (Caputo and Caputo-Fabrizio) to study

vibration distribution under thermal loading. Results show that

fractional derivatives and resonator thickness significantly affect

mechanical waves, while ramp heat parameters play a crucial role

in energy damping. Numerical and graphical analyses illustrate the

impact of fractional-order derivatives on thermal and mechanical

wave behavior.

3 Recent advances in numerical
methods for fractional partial
di�erential equations and for models
with complicated geometry

The manuscript of Rassokhina and Krizhanovski concerns very

popular systems used in planar microwave technology - open stubs.

This work is interesting because of a lot physical applications and at

the same time the nontrivial mathematical modeling background.

Authors present a methodology for analyzing symmetric open

stubs in a microstrip transmission line using the method of

transverse resonance. This method is suitable for a variety of

geometries and materials, allowing for the investigation of a wide

range of stub configurations. Moreover, the method of transverse
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resonance is easier to implement compared to more complex

numerical methods.

In the research of Noor et al. new approaches for solving

fractional nonlinear Korteweg-de Vries (KdV) and coupled

Burger’s equations using the Aboodh residual power series and

Aboodh transform iteration methods were explored. The fractional

derivatives, defined in the Caputo sense, provide accurate and

efficient solutions. These methods allow for explicit numerical

approximations of fractional partial differential equations (FPDEs),

which are widely used in physics and engineering. The study

emphasizes the importance of fractional calculus in various

scientific applications, including electromagnetics, fluidmechanics,

and wave propagation.

4 Modern methods in approximation
theory and their applications

Prestin and Semenova investigate the approximation error of

trigonometric interpolation for multivariate functions of bounded

variation in the sense of Hardy-Krause. The authors consider

interpolation operators based on both the tensor product and

sparse grids on the multivariate torus. A key aspect of their

study is the focus on functions that are generally non-continuous,

extending known results for smooth functions. They derive error

estimates in the Lp norm and compare the accuracy of these

approaches in relation to the number of grid nodes. Notably, while

existing interpolation error estimates apply to smooth function

spaces, e.g., Sobolev spaces Hr
p with r > 1/p, the authors establish

convergence rates for the broader class of functions of bounded

variation, achieving results analogous to the case r = 1/p.

Rovenska explores the approximation of classes of periodic

functions using rectangular linear means of Fourier series. The

study derives asymptotic equalities for upper bounds of deviations

of Fejér means in the uniform norm for multivariable function

classes defined by sequences tending to zero at a geometric rate.

In the one-dimensional case, such classes include Poisson integrals,

which admit analytic continuation in a fixed strip of the complex

plane. These findings generalize known one-dimensional results

and contribute to the theory of function approximation via Fourier

summation methods, offering potential applications to similar

upper bound problems in other settings.

Bilet and Dovgoshey analyze conditions under which a given

set of metric-preserving functions can be represented as the set of

all such functions associated with a certain class of metric spaces.

They demonstrate that this representation holds when the given

set forms a monoid with respect to the operation of function

composition. In particular, they establish the existence of a class

of metric spaces for which the set of all amenable sub-additive

increasing functions coincides with the set of metric-preserving

functions preserving that class. These results enhance the theory of

metric transformations and provide new insights into the structural

properties of function classes preserving various types of metric

spaces.

Petrov et al. obtain generalizations of well-known fixed

point theorems, including those of Banach, Kannan, Chatterjea,

and Ćirić-Reich-Rus, as well as the fixed point theorem for

mappings contracting the perimeters of triangles. They consider

these mappings in semimetric spaces with triangle functions

introduced by Bessenyei and Páles. This approach allows them

to extend fixed point results to various types of semimetric

spaces, demonstrating their validity in metric, ultrametric, and b-

metric settings. The significance of these generalizations extends

across multiple disciplines, including optimization, mathematical

modeling, and computer science, where they may serve to establish

stability conditions, demonstrate the existence of optimal solutions,

and improve algorithm design.

Langemann and Zavarzina study plastic and non-plastic

subspaces of the real line R with the standard Euclidean metric.

They investigate non-expansive bijections, prove properties of

such maps, and demonstrate their relevance through examples.

The authors show that plasticity of a subspace contains two

complementary questions: a purely geometric one and a topological

one. Both aspects contribute to plasticity and become more critical

in higher dimensions or abstract metric spaces.

Kovalyov and Levina investigate the Darboux transformation

of symmetric Jacobi matrices and Toda lattices. They examine

the conditions under which a symmetric Jacobi matrix can be

factorized into lower and upper triangular matrices. In this case,

the Darboux transformation of the symmetric Jacobi matrix

produces another symmetric Jacobi matrix, which is associated

with a different Toda lattice. The authors study both the

Darboux transformation with and without parameters, providing

insights into the relationships between Jacobi matrices, orthogonal

polynomials, moment sequences, m-functions, and Toda lattices.

5 Partial di�erential equations based
models as approximations of Markov
chain dynamics. Modeling complex
systems with stochastic partial
di�erential equations

The study of Taranets et al. focuses on a time-dependent

Susceptible-Infectious-Susceptible (SIS) partial differential

equation (PDE) model derived from a Markov chain approach.

The authors analyze the qualitative behavior of weak solutions,

exploring their local asymptotic properties, existence of Dirac

delta function solutions, and long-term dynamics. Numerical

computations confirm their findings. The paper highlights the

continued importance of epidemiological modeling despite

advancements in medical treatments and the emergence of new

infectious diseases like COVID-19.

A Geometric Brownian Motion (GBM) represents a classical

model for stock market since 1965 by the very fruitful proposal

of P. Samuelson, a famous economist. Since that time the GBM

as a financial model became many extensions, especially, due to

a volatility coefficient. But there is much less attention to the

drift coefficient as another possibility for model transformations.

Golomoziy et al. investigated the model in which the drift

coefficient is modeled with the help of a Markov chain. They

developed a natural asymptotic technique showing the weak

convergence of a discrete scheme to the corresponding continuous

time GBM. So, this work is devoted to an interesting market model,
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which is important historically and have a non-trivial mathematical

background.

Arif et al. propose an innovative stochastic finite difference

approach for modeling unsteady non-Newtonian mixed convective

fluid flow with variable thermal conductivity and mass diffusivity.

Through these diverse contributions, our Research Topic

provides high-quality fundamental, applied, and industry-focused

research that stresses analytical aspects, novel problems, and their

solutions. It provides a high-visibility, open-access publishing

outlet for researchers in mathematical analysis, differential

equations, numerical analysis, and other mathematical disciplines,

while also fostering collaboration between these fields and related

applied areas.
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Innovative stochastic finite
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non-Newtonian mixed
convective fluid flowwith variable
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A novel stochastic numerical scheme is introduced to solve stochastic differential
equations. The development of the scheme is based on two different parts. One
part finds the solution for the deterministic equation, and the second part is the
numerical approximation for the integral part of the Wiener process term in the
stochastic partial differential equation. The scheme’s stability and consistency in
the mean square sense are also ensured. Additionally, a respective mathematical
model of the boundary layer flow of Casson fluid on a flat and oscillatory plate is
formulated. Wiener process terms perturb the model to be studied. This scheme
will be solved in contexts including deterministic and stochastic. The influence of
different parameters on velocity, temperature, and concentration profiles is
demonstrated in various graphical representations. The main objective of this
study is to present a reliable numerical approach that surpasses the limitations of
traditional numerical methods to analyze non-Newtonian mixed convective fluid
flows with varying transport parameters. Our objective is to demonstrate the
capabilities of the new stochastic finite difference scheme in enhancing our
comprehension of stochastic fluid flow phenomena. This will be achieved by
comprehensively examining its mathematical foundations and computer
execution. Our objective is to develop a revolutionary method that will serve
as a valuable resource for scientists and engineers studying the modeling and
understanding of stochastic unstable non-Newtonian mixed convective fluid
flow. This method will address the challenges posed by the fluid’s changing
thermal conductivity and mass diffusivity.
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1 Introduction

As we know, fluid dynamics is central to studying various other
disciplines, such as environmental science, engineering, etc. Also,
understanding complex real-world problems demands an insight
into the specific characteristics of non-Newtonian fluids. They are
the fluids that do not follow the linear relation between the shear
stress and the velocity gradient. Casson fluids are a family of
viscoplastic materials having yield stress, which is used to model
the behaviour of many industrial and biological systems.

Several factors of the fluid, such as temperature, mass diffusivity,
etc., affect the behaviour of Casson fluids internally and externally.
These factors do not allow an easier way of modelling and recreating
the movement of Casson fluids. In addition, Casson fluids frequently
flow in systems with spatially varying thermal conductivity andmass
diffusivity, necessitating the development of computational
techniques that can accurately reflect these fluctuations.

Applications in physical chemistry, metrology, biology,
oceanography, astrophysics, plasma physics, etc., all highlight the
importance of heat transmission. Liquid distillation, heat
exchangers, atomic controller refrigeration, and other
technological advances rely heavily on heat transmission. In fluid
mechanics, researchers have observed that a certain proportion of
mechanical energy is converted into thermal or heat energy due to
the resistance generated by viscosity between adjacent fluid layers
during their motion. We refer to this as a “switch in internal energy.”
First, in his essay [1], Brinkman studied the impact of an internal
energy change on capillary flow. Using the impacts of internal
energy change and heat transport, Jambal et al. [2] established a
power law model and estimated the answer using the finite
difference approach. The utilization of nanofluids to improve
heat transfer has garnered significant interest among academics
in recent years due to its extensive applicability in various industries,
such as photonics, electronics, energy production, and
transportation [3]. In general, metallic fluids tend to exhibit
higher thermal conductivity when compared to non-metallic
fluids. Hence, it can be observed that the thermal performance of
simple fluids is relatively worse when compared to the thermal
performance of metallic nano-sized solid particles dispersed in
typical fluids. Nanofluids are formed by introducing
microstructural particles into ordinary fluids. These particles,
typically composed of metals, carbides, carbon nanotubes, or
oxides, have dimensions on the nanometer scale [4, 5]. The
nanoparticle composition is crucial in hybrid nanofluids,
particularly in enhancing distinctive features such as thermal
conductivity. Aziz [6] used the shot method to solve the
governing equations, demonstrating the impact of viscous
dissipation on an energy equation and the effect of altering
thickness on momentum equations.

Nanofluids are the subject of many studies because of their
superior conduction qualities that can be achieved through various
nanofluid compositions [7, 8]. Herein, we list a few studies
conducted along these lines. Nasrin and Alim [9] conducted a
numerical study of the heat transmission rate for nanofluids
containing dual particles.

Furthermore, a method for simulating micro- and nano-scale
fluids has been investigated by Nie et al. [10]. In [11], the writers
delve into the theoretical framework of hybrid nanofluids’ heat

conduction. The effect of hybrid nanofluids on forced convective
heat transfer was estimated statistically by Labib et al. [12].

Investigating fluid flow induced by a horizontally translating
surface and its impact on thermo-physical characteristics, such as
mass diffusivity, thermal conductivity, and viscosity, is a very
captivating subject matter for researchers and scholars. Many
studies do not account for or assume that a malleable surface’s
thermophysical parameters like conductivity, diffusivity, and
viscosity are constant. However, the findings of the experiments
show that these thermo-physical properties depend on temperature
and concentration, especially in the case of a very large temperature
differential. As a result, much attention has been focused on how
different thermo-physical factors affect surface stretching. The effect
of radiation and thermo-physical factors on the flow of a viscous
fluid towards a non-uniform permeable medium was explored by
Elbarbary et al. [13]. Saleem studied the effects of various fluid
properties on viscous fluid flow through a stretchable medium [14].

Hashim et al. [15] proposed the Willaimson fluid model
incorporating nanoparticles, where thermophysical parameters
were treated as independent variables. Malik et al. [16]
investigated how different fluid properties affected the boundary
layer flow of a viscous fluid induced by an expanded cylinder. By
assuming exponential functions of temperature for both viscosity
and thermal conductivity, Mohiuddin et al. [17] can define the
behaviour of a viscoelastic fluid. Second-order fluid flow via a mobile
medium in the presence of a heat source/sink was studied by
Akinbobola et al. [18], who examined the effect of temperature-
dependent physical features of the fluid. Muthucumaraswamy [19,
20] solved the constitutive equations for the flow of a viscous fluid
across a non-uniform plate using the Laplace method and variable
diffusivity. The 1D -diffusion-advection equation was studied by Jia
et al. [21] in two different scenarios: (i) when the thermo-physical
characteristics are fixed but the flow velocity is not, and (ii) when the
flow velocity and the parameters of the fluid are both changeable.
The model was solved, and the resulting outcomes for two scenarios
were compared.

The thermo-physical parameters that change with temperature
and concentration were studied by Li et al. [22] using the finite
difference approach to examine their influence on nonlinear
transient responses. The effects of temperature and concentration
on the transmission of heat and mass in a viscoelastic fluid flow were
examined by Qureshi et al. [23]. Researchers in [24] analyzed
Maxwell’s fluid flow model for nanoparticles over a
heterogeneous medium, considering thermal effects. Near a
vertically moving surface, boundary layer flow is due to cooling
and heating impulses [25]. The boundary layer flow around an
isothermal, free-moving needle was discussed in [26]. [27] examined
the heat transfer parameters of forced convection flow over a non-
isothermal thin needle. The Boungirono model of nanofluid flow
over a rotating needle was analyzed in [28]. Solving the governing
equations involved shooting and fourth-order RKmethods. The role
of heat production and thermal radiation in MHD The effects of an
infinite horizontal sheet on the flow of a Casson fluid in two
dimensions were studied in [29].

Animasaun [30] examined how vertically uneven surface
roughness affected an unstable mixed convection flow. To
investigate the flow’s reaction to a chemical reaction and
radiation, he applied the shooting method and quadratic
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interpolation to the model and then solved it. Shah et al. [32]
investigated the effect of the Grashof number on the mixed
convection flow of different fluids travelling along different
surfaces when heat generation was present. In their study,
Animasaun et al. [33] looked at how a chemical process,
including quartic autocatalysis, might alter the trajectories of
various airborne dust particles. Runge-Kutta, shooting, and bvp4c
were used to solve the model’s constitutive equations. The influence
of nanoparticles’ random mobility in three-dimensional flow was
investigated in a recent meta-analysis by Animasaun et al. [34]. They
calculated the heat transfer rate due to the Brownian motion of
nanoparticles by considering radiation from the surface and local
and mass convection. Researchers at [35] examined how alumina
nanoparticles behaved in three dimensions when they carried water
or were subject to Lorentz force. They looked into how various
dimensionless factors affected the velocities involved.

The article [36] delves into heat transfer in Jeffery-Hamel hybrid
nanofluid flows involving non-parallel plates. Molybdenum
disulfide nanoparticles are suspended in fluids subjected to
magnetic fields, heat radiation, and viscous dissipation. The
researcher studied the flow of micropolar fluids across a vertical
Riga sheet [37]. We look at the nonlinear stretching sheet. A
magnetohydrodynamic (MHD) pair stress hybrid nanofluid on a
contracting surface is studied in terms of its radiative properties and
overall stability [38].

The difficulties in simulating Casson fluids with non-constant
thermal and mass diffusivities can be mitigated with the help of
stochastic numerical techniques. To capture the inherent
stochasticity in real-world systems, these methods add
probabilistic features to account for uncertainties and fluctuations
in material qualities. Randomness can be due to material
contamination, temperature difference or mass
concentration change.

In the past, problems with intricate flows were analyzed by finite
difference or finite element methods or by the CFD (Computational
Fluid Dynamics) simulations to obtain a better viewpoint of fluid
dynamics. Although these methods have enhanced our
understanding of the subject, they have often failed to reproduce
the inherently stochastic behaviours found in numerous real-world
systems accurately. The natural uncertainties in several physical
processes in fluid flow are due to numerous boundary conditions,
material qualities, and environmental effects. If we do not consider
these random variables, then the resulting description of the
phenomenon may lead to a misleading picture of reality.

In this work, we examine and assess stochastic numerical
methodology for modelling of dynamics of the Casson fluid with
arbitrary temperature and density gradients for a better view of how
uncertainties and fluctuations in material qualities influence the flow
of Casson fluid; we will include a stochastic ingredient in the
numerical simulations.

Applications in chemical engineering, geophysics, and
biomedicine can significantly profit from gaining exact forecasts
of the fundamental behaviour of the fluids to optimize the given
processes, develop equipment or know the system’s
biological behaviour.

We are at the dawn of applying stochastic probability in fluid
mechanics; there is a long way to go. The present article goes into
this notion. Let’s consider using stochastic predicting in

computational fluid mechanics. We will understand mathematical
predicting to describe the behaviours of a physical system’s system
within which it operates. Computational models need optimization,
design, and updating due to external effects like fluctuations in the
natural system and internal elements like uncertainty in the
model itself.

Numerous scholars are working hard to figure out stochastic
partial differential equations and their numerical solutions. Tessitoe
[39] made a seminal discovery in this area when he found that linear
and infinite-dimensional stochastic differential equations satisfy the
same general conditions as the modified solution. The authors of
[40] examined the classical form of the stochastic equation under the
assumption of homogeneous Dirichlet boundary conditions. The
group set out to see if there were any non-trivial positive global
solutions and whether or not those solutions were likely to explode
in finite time. Researchers in Ref. [41] examined the Holder
continuous coefficient obtained with constant coloured noise to
study the stochastic partial differential equation (SPDE). Solving a
backward double stochastic differential equation (SDE) allows for
path-wise uniqueness and deterministic manipulation of the
Laplacian. The solution to a system of stochastic differential
equations (SDEs) is found by taking weak limits of a sequence of
variables. We obtain this sequence by substituting the discrete
Laplacian operator for the random variable in the stochastic
partial differential equation (SPDE). Altmeyer et al. explained
cellular repolarization using a stochastic variant of the Meinhardt
equation. The driving noise process has been shown to influence the
evolution of solution patterns for stochastic partial differential
equations (SPDEs), and such solutions exist [42]. The solution is
fully described in the works mentioned above.

Numerical estimation of stochastic partial differential equations
(SPDEs) is a formidable challenge. Instead, Gyorgy et al. [43]
worked to construct lattice approximations for elliptic stochastic
partial differential equations (SPDEs). For white noise on a
restricted domain in Rd, d � 1, 2, 3, the convergence rate of
approximations is calculated. In [44], we look at how to
approximate answers to stochastic partial differential equations of
the Itô type. The consistency and stability of these approximations
with respect to their mean-square error are established by employing
explicit and implicit finite difference techniques. The stochastic Fitz-
Hugh-Nagumo model was defined, and a numerical solution was
given in [45]. This examination shows how well the technique holds
up in a Von Neumann environment [46]. investigated the reliability
and robustness of the forward Euler method for evaluating
stochastic nonlinear advection-diffusion models. In [47], they
consider white noise’s spectral power distribution functions and
estimate the numerical approximations for the linear, elliptic, and
parabolic cases. The approximations of these cases are evaluated
using the finite element and difference methods. The relevant
literature dealt with the integral approximation techniques, the
finite element methods in these contexts, and the weak SPDE
formulation.

This research paper proposes a new and novel numerical scheme
for solving the problems of unstable non-Newtonian mixed
convection flow of fluid with heat and mass transport with the
effect of temperature and concentration fluctuations. The proposed
methodology combines stochastic methods in a finite difference
scheme, which enables the capture of the random behaviour of the
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fluid flow in the presence of convective flows. We go for stochastic
features in our model and versions of operations to have more
accurate predictions and to know more new features in the
behaviour of these dynamic systems.

In this work, we shall discuss the theoretical foundation of the
fluid dynamics of Casson fluids, the effect of varying thermal
conductivity and mass diffusivity in the problems, and introduce
some stochastic numerical algorithms for solving such complex
flow systems.

The primary contribution of this work is the suggestion of a
stochastic numerical scheme for the solution of stochastic partial
differential equations. Another method exists in the literature for
solving stochastic partial differential equations. That scheme is
called the Maruyama method and can be used to solve stochastic
equations that appear in fluid dynamics with the variation ofWiener
process terms. The Euler-Maruyama method extends the more
common forward Euler approach for stochastic differential
equations. The Matlab commands generate random numbers
from a Normal distribution with a mean of zero and a standard
deviation that determines the time step size for the Wiener process
term in the scheme.

1.1 Novelty of the study

1. This research presents a distinctive approach by integrating the
analysis of Casson fluids with stochastic numerical techniques.
Although previous studies have been conducted on Casson
fluids and stochastic fluid dynamics modelling, the integration
of these two fields remains relatively underexplored in current
research. This research presents a fresh way to comprehend the
behaviour of non-Newtonian fluids in the presence of changing
thermal conductivity and mass diffusivity by including
stochastic components in the study of Casson fluids.

2. Variable thermal conductivity and mass diffusivity are
considered to solve a practical issue. This variability exists
greatly, and various industrial and natural systems have a
flowing fluid. To understand how such variations alter the
flow behaviour of Casson fluid for practical use in various
domains such as chemical engineering, geophysics, biology, etc.
To understand how such differences will change the flow
behaviour of Casson fluid to be used for actual practical use
in different domains such as chemical engineering, geophysics,
biology, etc.

3. The challenge exists in yield stress and viscoplastic behaviour
modelling the Casson fluid. Moreover, it is already intricate in
the modeling process since, unlike other endpoints, strangers
constant such as thermal conductivity, mass diffusivity, etc.,
varies, and materials become parameter-prone. This work is a
substantial and novel contribution to fluid dynamics since it
addresses the problem of modeling and simulating such
complex systems.

4. The random numerical techniques are useful in portraying the
level of uncertainty and variability of the qualities of the
materials. Using random techniques, the problem of the
Casson dynamics can be interpreted.

To portray the sense of randomness and variability, the
stochastic numerical technique can be used for modelling the
yield stress and viscoelasticity local scalar. The singularity of the
present work is underlined by integrating random techniques for
studying Casson fluid along with thermal conductivity and mass
diffusivity.

2 Proposed computational scheme

This contribution’s stochastic numerical approach can be
utilized to solve partial differential equations. The scheme is
based on two steps. A partial differential equation’s solution can
be predicted in the first step, the predictor stage. The second stage is
the corrector stage, which finds the partial differential equation’s
solution. But these two stages only find the solution for the
deterministic model. The scheme for finding the solution of the
stochastic differential equation will be proposed later. For proposing
a scheme for a deterministic equation, consider the deterministic
equation as follows:

∂v
∂t

� G v,
∂v
∂x

,
∂v
∂y

,
∂2v
∂y2

( ) (1)

Let the first stage of the scheme be expressed as:

�vn+1i,j � vni,j + Δt ∂v
∂t

∣∣∣∣∣∣∣ni,j (2)

Where Δt is the time step size.
The second stage of the scheme is expressed as:

vn+1i,j � 1
5

4vni,j + �vn+1i,j ) + Δt a
∂v
∂t

( )n

i,j

+ b
∂�v
∂t

( )n+1

i,j

⎧⎨⎩ ⎫⎬⎭⎛⎝ (3)

where a and b will be determined later.
Now, substitute Eq. 2 into Eq. 3, which yields.

vn+1i,j � 1
5

4vni,j + vni,j + Δt∂v
∂t

∣∣∣∣∣∣∣ ni,j( )
+ Δt a

∂v
∂t

∣∣∣∣∣∣∣ ni,j + b
∂v
∂t

∣∣∣∣∣∣∣ ni,j + bΔt ∂
2v

∂t2

∣∣∣∣∣∣∣∣
n

i,j

⎧⎨⎩ ⎫⎬⎭ (4)

Expanding vn+1i,j using Taylor series expansion

vn+1i,j � vni,j + Δt ∂v
∂t

∣∣∣∣∣∣∣ni,j + Δt( )2
2

∂2v
∂t2

∣∣∣∣∣∣∣∣
n

i,j

+ O Δt( )3( ) (5)

Substituting Eq. 5 into Eq. 4 gives

vni,j + Δt∂v
∂t

∣∣∣∣∣∣∣ni,j + Δt( )2
2

∂2v

∂t2

∣∣∣∣∣∣∣∣ni,j � vni,j +
1
5
Δt∂v

∂t

∣∣∣∣∣∣∣ni,j
+ Δt a

∂v
∂t

∣∣∣∣∣∣∣ ni,j + b
∂v
∂t

∣∣∣∣∣∣∣ ni,j + bΔt ∂
2v

∂t2

∣∣∣∣∣∣∣∣ ni,j⎧⎨⎩ ⎫⎬⎭ (6)

Evaluating the coefficients of ∂v∂t|
n

i,j
and ∂2v

∂t2 |
n

i,j
on both sides of Eq.

6 that yields
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1 � 1
5
+ a + b

1
2
� b

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (7)

Solving Equation 7 gives

a � 3
10
, b � 1

2
(8)

Therefore, the time discretization of Eq. 1 is

�vn+1i,j � vni,j + ΔtG v | ni,j,
∂v
∂x

∣∣∣∣∣∣∣ ni,j, ∂v∂y
∣∣∣∣∣∣∣∣ ni,j, ∂

2v

∂y2

∣∣∣∣∣∣∣∣
n

i,j

⎛⎝ ⎞⎠ (9)

vn+1i,j � 1
5
(4vni,j + �vn+1i,j ) + Δt

aG v | ni,j, ∂v∂x
∣∣∣∣ ni,j, ∂v∂y ∣∣∣∣∣ ni,j, ∂2v∂y2

∣∣∣∣∣ n
i,j

( )+
bG �v | n+1i,j , ∂�v∂x

∣∣∣∣ n+1i,j
, ∂�v∂y
∣∣∣∣∣ n+1
i,j

, ∂
2�v

∂y2

∣∣∣∣∣ n+1
i,j

( )
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(10)

Now consider the partial differential equations as

dv � G v,
∂v
∂x

,
∂v
∂y

,
∂2v
∂y2

( )dt + σf v( )dW t( ) (11)

Its Îto integral form is given as

vn+1 � vn + ∫tn+1

tn

Gdt + ∫tn+1

tn

σf v( )dW t( ) (12)

Using Taylor series expansion for f(v) as

f v( ) � f vn( ) + Δtf′ vn( ) + Δt( )2
2

f″ vn( ) + O Δt( )3( ) (13)

So, the last term in Eq. 12 can be expressed as

∫tn+1

tn

f v( )dW � ∫tn+1

tn

f vn( ) + Δtf′ vn( ) + Δt( )2
2

f″ vn( )( )dW
� f v( )

� f vn( )ΔW + Δtf′ vn( )ΔW + Δt( )2
2

f″ vn( )ΔW
(14)

Therefore, the proposed stochastic numerical scheme for time
discretization Eq. 11 is

�vn+1i,j � vni,j + ΔtG vni,j,
∂v
∂x

∣∣∣∣∣∣∣ ni,j, ∂v∂y
∣∣∣∣∣∣∣∣ ni,j, ∂

2v

∂y2

∣∣∣∣∣∣∣∣
n

i,j

⎛⎝ ⎞⎠ (15)
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5
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⎧⎨⎩ 3
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∣∣∣∣∣∣∣∣
n
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+1
2
G⎛⎝�vn+1i,j ,

∂�v
∂x
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∂�v
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i,j
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⎞⎠⎫⎬⎭ + σf vn( )ΔW

+ σΔtf′ vn( )ΔW + σ

2
Δt( )2f″ vn( )ΔW (16)

where ΔW is approximated as a normal distribution with mean
0 and standard deviation

��
Δt

√
i.e., ΔW ~ N(0, ��

Δt
√ )

Let f(v) � v and G � β1
∂qv
∂x + β2

∂qv
∂y + β3

∂2qv
∂y2 then the fully

discretized scheme is given as

�vn+1i,j � vni,j + Δt β1δxv
n
i,j + β2δy v

n
i,j + β3δ

2
yv

n
i,j

q + 1( )
2

( ) (17)
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5
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(β1δx�vn+1i,j + β2δy �v

n+1
i,j + β3δ

2
y�v

n+1
i,j

1 + q( )
2

) + σvni,jΔW + σΔtΔW}
(18)

where δxvni,j �
vni+1,j−vni−1,j

2Δx , δyvni,j �
vni,j+1−vni,j−1

2Δy , δ2yv
n
i,j �

vni,j+1−2vni,j+vni,j−1
(Δy)2

3 Consistency analysis

Theorem 1: The proposed numerical schemes (17) and (18) are
consistent in the mean square sense.

Proof. Let P be a smooth function, then.

L P( )ni � P n + 1( )Δt, iΔx, jΔy( ) − P nΔt, iΔx, jΔy( )
−β1∫ n+1( )Δt

nΔt
Px s, iΔx, jΔy( )dS

−β2∫ n+1( )Δt

nΔt
Py s, iΔx, jΔy( )dS

−β3∫ n+1( )Δt

nΔt
Pyy s, iΔx, jΔy( )dS

−σ∫ n+1( )Δt

nΔt
P s, iΔx, jΔy)dW(S( ) (19)

Now, combining both stages of the schemes gives the
following operator

Ln
i P � P n + 1( )Δt, iΔx, jΔy( ) − P nΔt, iΔx, jΔy( )

−Δt[ β1
4Δx P nΔt, i + 1( )Δx, jΔy( ) − P nΔt, i − 1( )Δx, jΔy( )( )

+ β2
4Δy P nΔt, iΔx, j + 1( )Δy( ) − P nΔt, iΔx, j − 1( )Δy( )( )

+ β3
2 Δy( )2 (P nΔt, iΔx, j + 1( )Δy( ) − 2P nΔt, iΔx, jΔy( )

+P nΔt, iΔx, j − 1( )Δy( ))]
−Δt[ β1

4Δx (�P n + 1( )Δt, i + 1( )Δx, jΔy( )
−�P n + 1( )Δt, i − 1( )Δx, jΔy( ))
+ β2
4Δy (�P n + 1( )Δt, iΔx, j + 1( )Δy( )

− �P n + 1( )Δt, iΔx, j − 1( )Δy( ))
+ β3
2 Δy( )2 (�P n + 1( )Δt, iΔx, j + 1( )Δy( )

− 2�P n + 1( )Δt, iΔx, jΔy( )
+ �P n + 1( )Δt, iΔx, j − 1( )Δy( ))]

−σP nΔt, iΔx, jΔy( ) W n + 1( )Δt( ) −W nΔt( )( )
−σΔt W n + 1( )Δt( ) −W nΔt( )( ) (20)

where �P((n + 1)Δt, iΔx, jΔy) � P(nΔt, iΔx, jΔy) + Δt{ β1
2Δx (P(nΔt,

(i + 1)Δx, jΔy) − P(nΔt, (i − 1)Δx, jΔy)) + β2
2Δy (P(nΔt, iΔx,

(j + 1)Δy) − P(nΔt, iΔx, (j − 1)Δy)) + β3
(Δy)2 (P(nΔt, iΔx,(j + 1)Δy) − 2P(nΔt, iΔx, jΔy) + P(nΔt, iΔx, (j − 1)Δy))}

The mean square of the scheme is written as:
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E L P( )ni − Ln
i P

∣∣∣∣ ∣∣∣∣2
� E

∣∣∣∣∣∣∣∣ − β1∫ n+1( )Δt

nΔt
Px s, iΔx, jΔy( )dS − β2∫ n+1( )Δt

nΔt
Py s, iΔx, jΔy( )dS

− β3∫ n+1( )Δt

nΔt
Pyy s, iΔx, jΔy( )dS− σ∫ n+1( )Δt

nΔt
P s, iΔx, jΔy( )dW S( )

+ β1Δt
4Δx P nΔt, i + 1( )Δx, jΔy( ) − P nΔt, i − 1( )Δx, jΔy( )( )

+ β2Δt
4Δy P nΔt, iΔx, j + 1( )Δy( ) − P nΔt, iΔx, j − 1( )Δy( )( )

+ β3Δt
2 Δy( )2 (P nΔt, iΔx, j + 1( )Δy( ) − 2P nΔt, iΔx, jΔy( )

+ P nΔt, iΔx, j − 1( )Δy( ))
+ β1Δt
4Δx

�P n + 1( )Δt, i + 1( )Δx, jΔy( ) − �P n + 1( )Δt, i − 1( )Δx, jΔy( )( )
+ β2Δt
4Δy

�P n + 1( )Δt, iΔx, j + 1( )Δy( ) − �P n + 1( )Δt, iΔx, j − 1( )Δy( )( )
+ β3Δt
2 Δy( )2 (�P n + 1( )Δt, iΔx, j + 1( )Δy( ) − 2�P n + 1( )Δt, iΔx, jΔy( )

+ �P n + 1( )Δt, iΔx, j − 1( )Δy( ))
+ σ Δt + P nΔt, iΔx, jΔy( )( ) × W n + 1( )Δt( ) −W nΔt( )( )

∣∣∣∣∣∣∣∣2
(21)

Equation 21 can be written as:

E L P( )ni −Ln
i P

∣∣∣∣ ∣∣∣∣2
≤2β21E|∫ n+1( )Δt

nΔt
−Px s, iΔx,jΔy( )dS

+ Δt
4Δx P nΔt, i+1( )Δx,jΔy( )−P nΔt, i−1( )Δx,jΔy( )( )
+ Δt
4Δx

�P n+1( )Δt, i+1( )Δx,jΔy( )− �P n+1( )Δt, i−1( )Δx,jΔy( )( )∣∣∣∣∣∣∣∣2
+2β22E∫ n+1( )Δt

nΔt
−Py s, iΔx,jΔy( )dS

+ Δt
4Δy P nΔt, iΔx, j+1( )Δy( )−P nΔt, iΔx, j−1( )Δy( )( )

+ Δt
4Δy

�P n+1( )Δt, iΔx, j+1( )Δy( )− �P n+1( )Δt, iΔx, j−1( )Δy( )( )∣∣∣∣∣∣∣∣2
+2β23E|∫ n+1( )Δt

nΔt
−Pyy s, iΔx,jΔy( )dS+ Δt

2 Δy( )2 P nΔt, iΔx, j+1( )Δy( )(
−2P nΔt, iΔx,jΔy( )+P nΔt, iΔx, j−1( )Δy( ))
+ Δt
2 Δy( )2 �P n+1( )Δt, iΔx, j+1( )Δy( )−2�P n+1( )Δt, iΔx,jΔy( )(

+�P n+1( )Δt, iΔx, j−1( )Δy( ))∣∣∣∣∣∣∣∣2
+2σ2E|∫ n+1( )Δt

nΔt
−P s, iΔx,jΔy( )dW S( ) Δt+Q nΔt, iΔx,jΔy( )( )

× W n+1( )Δt( )−W nΔt( )( )|2 (22)

Now, utilizing the result

E ∫ n+1( )Δt

nΔt
−P[ s, iΔx, jΔy( ) − Δt + Q nΔt, iΔx, jΔy( ))]dW(S( )∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣2
≤Δt∫ n+1( )Δt

nΔt
E −P s, iΔx, jΔy( ) − Δt + Q nΔt, iΔx, jΔy( )( )∣∣∣∣ ∣∣∣∣2[ ]dS

(23)
Thus by applying limit as Δx → 0,Δy → 0,Δt → 0 and

(nΔt, iΔx, jΔy) → (t, x, y), the mean square error approaches
zero. i.e.

E L P( )ni − Ln
i P

∣∣∣∣ ∣∣∣∣2 → 0 (24)

So, the proposed scheme is consistent.

Theorem 2: The proposed numerical scheme is
conditionally stable.

Proof: The stability of the proposed scheme will be analyzed
using Fourier series analysis and mean square sense. The
Fourier series analysis for the classical model will be applied,
and then stability conditions in the mean square sense will be
employed. The Fourier series analysis requires some
transformations when finding stability conditions of finite
difference schemes. The transformation reduces the
difference equation into trigonometric equations, and the
stability condition will be determined later. For applying a
Taylor series analysis for scheme (17) and (18), the following
transformations will be applied

�vn+1i,j � �Q
n+1

eiIψ1ejIψ2 , vni,j � QneiIψ1ejIψ2

vni ± 1,j � Qne i±1( )Iψ1ejIψ2 , vni,j ± 1 � QneiIψ1e j±1( )Iψ2

�vn+1i±1,j � �Q
n+1

e i±1( )Iψ1ejIψ2 , �vn+1i,j±1 � �Q
n+1

eiIψ1e j±1( )Iψ2

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (25)

Applying some of the transformations from Eq. 25 in the first
stage of scheme (17) yields.

�Q
n+1

eiIψ1ejIψ2 � QneiIψ1ejIψ2

+ Δt β1
e i+1( )Iψ1ejIψ2 − e i−1( )Iψ1ejIψ2

2Δx( )Qn(
+ β2

eiIψ1e j+1( )Iψ2 − eiIψ1e j−1( )Iψ2

2Δy( )Qn

+ β3
eiIψ1e j+1( )Iψ2 − 2eiIψ1ejIψ2 + eiIψ1e j−1( )Iψ2

Δy( )2( )Qn)
(26)

Upon dividing both sides of Eq. 27 by eiIψ1ejIψ2 , it yields

�Q
n+1 � Qn+Δt β1

2Δx eIψ1 − e−Iψ1( ) + β2
2Δy eIψ2 − e−Iψ2( ){

+ β3
Δy( )2 eIψ2 − 2 + e−Iψ2( )}Qn (27)

Using trigonometric identities in Eq. 27 it yields

�Q
n+1 � Qn + Δt β1

Δx Isinψ1 +
β2
Δy Isinψ2 +

2β3
Δy( )2 cosψ2 − 1( ){ }Qn

(28)
Re-write Eq. 28 as:

�Q
n+1 � Qn + c1Isinψ1 + c2Isinψ2 + c3 cosψ2 − 1( ){ }Qn (29)

where c1 � β1Δt
Δx , c2 � β2Δt

Δy , c3 � 2β3Δt
(Δy)2

Similarly, employing some of the transformation from Eq. 25
into the second stage of the scheme and ignoring the non-
homogeneous part in Eq. 18 gives

Qn+1 � 1
5

Qn + �Q
n+1( )

+ 3
10

c1Isinψ1 + c2Isinψ2 + c3 cosψ2 − 1( )( )Qn{
+1
2

c1Isinψ1 + c2Isinψ2 + c3 cosψ2 − 1( )( ) �Qn+1} + σQnΔW

(30)
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Substituting Eq. 29 into Eq. 30 yields

Qn+1 � Qn + 1
2

c1Isinψ1 + c2Isinψ2 + c3 cosψ2 − 1( )( )
Qn + 1

2
c1Isinψ1 + c2Isinψ2 + c3 cosψ2 − 1( )( )

× c1Isinψ1 + c2Isinψ2 + c3 cosψ2 − 1( )( )Qn + σΔWQn

(31)
Re-write Eq. 31 as

Qn+1 � Qn + 1
2
ZQn + 1

2
Z 1 + Z( )Qn + σΔWQn (32)

where Z � c1Isinψ1 + c2Isinψ2 + c3(cosψ2 − 1)
Equation 32 can be re-written as

Qn+1 � �a + I�b( )Qn + σΔWQn (33)

The amplification factor is written as

Qn+1

Qn

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣2 � �a + σΔW( )2 + �b

2
(34)

where �a � ReZ + 1
2 ((ReZ)2 − (ImZ)2) and �b � ImZ + ReZ ImZ

Applying expected value on both sides of Eq. 33 yields

E
Qn+1

Qn

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣2 � E �a2 + �b

2
∣∣∣∣∣ ∣∣∣∣∣ + 2σ�aE ΔW| | + σ2E ΔW( )2∣∣∣∣ ∣∣∣∣ (35)

Since E|ΔW| � 0, andE|(ΔW)2| � Δt
Therefore, Eq. 35 yields

E
Qn+1

Qn

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣2 � �a2 + �b

22
∣∣∣∣∣ ∣∣∣∣∣ + σ2Δt (36)

Now if �a2 + �b
22 ≤ 1 and let λ � σ2 then Eq. 37 can be re-

written as

E
Qn+1

Qn

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣2 � 1 + λΔt (37)

Thus, the proposed stochastic numerical scheme with non-
homogenous parts is conditionally stable in the mean square sense.

Below, we present a comprehensive analysis of the advantages
and disadvantages of the proposed scheme.

3.1 Advantages

Enhanced Accuracy and Stability: The application of our
stochastic finite difference method yields improved accuracy in
solving stochastic differential equations, providing a more precise
depiction of the non-Newtonian mixed convective fluid flow. The
stability of the scheme, as measured in terms of mean square sense,
guarantees reliable numerical solutions, especially in situations with
fluctuations in thermal conductivity and mass diffusivity.

Adaptability to Stochastic Partial Differential Equations
(SPDEs): This method effectively deals with SPDEs by specifically
addressing the integral component of the Wiener process term,
demonstrating its capacity to adapt to the difficulties presented by
stochastic partial differential equations. It provides a thorough basis
for modeling complex fluid flow processes and allows for a seamless
transition from deterministic to stochastic models.

3.2 Disadvantages

Computational Strength: We recommend using a stochastic
finite-difference approach with higher computational complexity
when determining discrete models and simulating complex systems
with time-variant parameters. It is a stochastic differential equation
and has high computational costs. So, it may not be feasible to use
this scheme in multimillion grid simulations due to the huge
computational requirement.

Sensitivity to Model Parameters: One can notice the high
sensitivity to some model parameters, especially the time-variant
parameters associated with the stochastic bits. These model
parameters should be carefully tuned to obtain accurate and
reliable results. The sensitivity to parameters must be
appropriately staged at the beginning to apply the scheme across
multiple applications and fluid-flow situations.

Our novel stochastic finite difference method provides state-of-
the-art answers to stochastic fluid flow issues while considering
computing constraints and improved accuracy. Although it has
several drawbacks, engineers and researchers who want to study
non-Newtonian mixed convective fluid flow with variable mass
diffusivity and thermal conductivity will find it helpful because it
is robust to application-specific changes and can be adjusted
to SPDEs.

4 Problem formulation

Consider the non-Newtonian, unsteady, laminar, and
incompressible fluid flow over the sheet. The plate’s abrupt
motion induces fluid flow toward the positive x*-axis, where the
x*-axis represents the horizontal direction, and the y*-axis is
perpendicular to it. The stretching velocity of the plate is
represented by uw. A uniform electric field E

. � (0, 0,−E+) and
transverse magnetic field B

. � (0, B+, 0) are applied, and the fluid is
electrically conducting. The electric and magnetic fields follow
Ohm’s rule, but the electric field is stronger. For the moment,
disregard the Hall effect and the induced magnetic field.
Chemical reactions, frictional heating, and viscous dissipation are
some of the flow characteristics taken into account. Under the
assumption of boundary theory over a flat plate, the governing
equations are expressed as:

∂u*
∂x*

+ ∂v*
∂y*

� 0 (38)

∂u*
∂t*

+ u*
∂u*
∂x*

+ v*
∂u*
∂y*

� ] 1 + 1
β

( ) ∂2u*
∂y*2

+ σ

ρ
E+B+ − B2

+u*( )
+ g βT T − T∞( ) + βC C − C∞( )( ) (39)

∂T
∂t*

+ u*
∂T
∂x*

+ v*
∂T
∂y*

� 1
ρCp

∂
∂y*

k T( ) ∂T
∂y*

( )
+ ]
Cp

1 + 1
β

( ) ∂u*
∂y*

( )2

+ σ

ρCp
uB+ − E+( )2

(40)
∂C
∂t*

+ u*
∂C
∂x*

+ v*
∂C
∂y*

� ∂
∂y*

D C( ) ∂C
∂y*

( ) − kr C − C∞( ) (41)

With the following initial and boundary conditions
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u* � 0, v* � 0, T � 0, C � 0, when t* � 0
u* � uw, v* � 0, T � Tw, C � Cw, when y* � 0
u* → 0, T → T∞, C → C∞, when y* → ∞
u* � 0, v* � 0, T � 0, C � 0when x* � 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (42)

where k(T) � k∞(1 + εθ) and D(C) � D∞(1 + �εϕ) and σ is
electrical conductivity, ρ is the density of the fluid, Cp is specific
heat capacity, β is the Casson parameter, g is the gravity, BT is the
coefficient of thermal expansion and βC is the coefficient of solutal
expansion and kr is reaction rate. The transformations

u � u*
uw

, v � v*
uw

, t � t*uw

L
, x � x*

L
, y � y*

L
, θ � T − T∞

Tw − T∞
,

ϕ � C − C∞
Cw − C∞

(43)

When applied to Eqs. 38–42 reduces them to following
dimensionless equations

∂u
∂x

+ ∂v
∂y

� 0 (44)

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

� 1
Re

1 + 1
β

( ) ∂2u
∂y2

+ H2
a

Re
E1 − u( ) + GγT

R2
e

θ + GγC

R2
e

ϕ

(45)
∂θ
∂t

+ u
∂θ
∂x

+ v
∂θ
∂y

� ε

Pr

1
Re

∂θ
∂y

( )2

+ 1
Pr

1
Re

1 + εθ( ) ∂
2u

∂y2

+ ECH2
o

Re
u − E1( )2 + EC

Re
1 + 1

β
( ) ∂u

∂y
( )2

(46)

∂ϕ
∂t

+ u
∂ϕ
∂x

+ v
∂ϕ
∂y

� �ε

ScRc

∂ϕ
∂y

( )2

+ 1
Sc

1
Re

1 + �εϕ( ) ∂2ϕ
∂y2

− γϕ (47)

Subject to the dimensionless boundary and initial conditions

u � 0, v � 0, θ � 0, ϕ � 0when t � 0
u � 1, v � 0, θ � 1, ϕ � 1when y � 0
u → 0, θ → 0, ϕ → 0when y → ∞
u � 0, v � 0, θ � 0,ϕ � 1when x � 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (48)

where Ha is Hartmann’s number, E1 is used for local electric
parameters, GγT is thermal Grashof number, GγC solutal Grashof
number, EC Eckert number, Re is Reynolds number, Pr is Prandtl
number, Sc is Schmidt number and γ dimensionless reaction rate
parameter, and these are defined as

Ha �
��
σ

ρ]

√
B+L, E1 � E+

B+uw
, GγT �

L3gβT Tw − T∞( )
]2

,

GYC �
L3gβC Cw − C∞( )

]2
, EC � u2

w

Cp Tw − T∞( ), Re � Luw

]
,

Pr � ρCp

]k∞
, Sc � D∞

]
, γ � Lkγ

uw

The skin friction coefficient is defined as

Cf � τw
ρu2

w

(49)

where τw � μ ∂u*
∂y*|y*�0

The dimensionless skin friction coefficients are given as

FIGURE 1
Effect of Casson parameter on velocity profile for the
deterministic model using Re = 1, GrT = 0.4, GrC = 0.5, ε = 0.1, ε1 = 0.1,
Ha = 0.1, E1 = 0.1, Pr = 0.9, Ec = 0.1, Sc = 0.9, γ = 0.1.

FIGURE 2
Effect of thermal Grashof number on velocity profile for the
deterministic model using Re = 1, β = 1,GrC = 0.5, ε = 0.1, ε1 = 0.1,Ha =
0.1, E1 = 0.1, Pr = 0.9, Ec = 0.1, Sc = 0.9, γ = 0.1.

FIGURE 3
Effect of Hartmann number on velocity profile for the
deterministicmodel using Re= 3, β= 1,GrC=0.5, ε=0.1, ε1 = 0.1,GrT=
0.4, E1 = 0.01, Pr = 0.9, Ec = 0.1, Sc = 0.9, γ = 0.1.
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ReCf � ∂u
∂y

∣∣∣∣∣∣∣∣y�0. (50)

The stochastic model is given as:

∂u
∂x

+ ∂v
∂y

� 0 (51)

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

� 1
Re

1 + 1
β

( ) ∂2u
∂y2

+ H2
o

Re
E1 − u( ) + GγT

R2
e

θ

+ GγC

R2
e

ϕ + σ1udW

(52)

∂θ
∂t

+ u
∂θ
∂x

+ v
∂θ
∂y

� ε

Pr

1
Re

∂θ
∂y

( )2

+ 1
Pr

1
Re

1 + εθ( ) ∂
2θ

∂y2

+ EcH2
o

Re
u − E1( )2 + Ec

Re
1 + 1

β
( ) ∂u

∂y
( )2

+ σ2θdW (53)

∂ϕ
∂t

+ u
∂ϕ
∂x

+ v
∂ϕ
∂y

� �ε

ScRc

∂ϕ
∂y

( )2

+ 1
Sc

1
Re

1 + �εϕ( ) ∂2ϕ
∂y2

− γϕ + σ3ϕdW (54)

with the same initial and boundary conditions (48).

4.1 Application description and justification

Choice of the Model: The selected stochastic model accurately
represents fluid flow and heat transfer dynamics in intricate systems.
By incorporating stochastic factors (σ1, σ2, σ3), the model considers
the inherent uncertainties and fluctuations in practical scenarios.
This enables the model to apply to real-world situations where
environmental circumstances vary.

FIGURE 4
Effect of local electric parameter on velocity profile for the stochastic
model usingRe= 3, β= 1,GrC=0.5, ε=0.1, ε1 = 0.1,GrT=0.4,Ha= 1, Pr=
0.9, Ec = 0.1, Sc = 0.9, γ = 0.1, σ1 = 0.9, σ2 = 0.4, σ3 = 0.3.

FIGURE 5
Effect of Eckert number on a temperature profile for the
stochastic model using Re = 3, β = 1, GrC = 0.5, ε = 0.1, ε1 = 0.1,
GrT = 0.4, Ha = 0.1, Pr = 0.9, E1 = 0.01, Sc = 0.9, γ = 0.1, σ1 = 0.5, σ2 =
0.4, σ3 = 0.3, x0 = 0.3469.

FIGURE 6
Effect of small parameter on a temperature profile for the
stochastic model using Re = 3, β = 1, GrC = 0.5, Ec = 0.1, ε1 = 0.1,
GrT = 0.4, Ha = 0.1, Pr = 0.9, E1 = 0.01, Sc = 0.9, γ = 0.1, σ1 = 0.5, σ2 =
0.4, σ3 = 0.3, x0 = 0.3469.

FIGURE 7
Effect of reaction rate parameter on concentration profile for the
stochastic model using Re = 3, β = 1, GrC = 0.5, Ec = 0.1, ε1 = 0.1,
GrT = 0.4, Ha = 0.1, Pr = 0.9, E1 = 0.01, Sc = 0.9, ε = 0.1, σ1 = 0.5, σ2 =
0.4, σ3 = 0.3, x0 = 0.3469.
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Physical Interpretation: The system of equations includes the
processes of advection, diffusion, and stochastic effects, making it
suitable for studying phenomena that include the interaction of
these systems, such as turbulent flows and heat transfer.

Application to Real-World Phenomena: The model applies to
various physical systems, including environmental fluxes, industrial
processes, and atmospheric dynamics. By integrating stochastic
elements, one can consider the random variations and
uncertainties often encountered in real-world situations but
usually ignored in deterministic models.

4.2 Numerical scheme report

Numerical Scheme Overview: The proposed numerical
approach employs a stochastic finite difference technique for

solving the system of stochastic partial differential equations
(SPDEs). The method is designed expressly to handle the
complexities that arise from the stochastic terms, providing a
robust and accurate foundation for simulating the system’s
dynamic behavior.

Stability and Accuracy: The numerical scheme’s stability and
correctness are evaluated comprehensively. The system’s stability is
ensured through a two-step predictor-corrector technique, while the
accuracy is enhanced by discretizing stochastic terms using Taylor
series expansions. The proposed approach is additionally verified by
its ability to adjust to various time intervals and compare it to
established methodologies.

Comparison with Existing Methods: The numerical system has
been compared to existing approaches, demonstrating its advantages
in terms of stability, accuracy, and computational efficiency. The
scheme’s ability to handle random variables differentiates it from
conventional numerical methods.

5 Results and discussions

This work proposes a computational technique for solving
deterministic and stochastic partial differential equations. The
scheme is divided into two distinct stages. The scheme’s initial
stage only finds a solution for the deterministic model. On the other
hand, the second stage of the system employs the previous stage’s
solution, provides better accuracy, and handles the stochastic
element of the stochastic model. The second stage integrates the
remainder of the term(s) using the Taylor series expansion for the
coefficient of the Wiener process term. If the Wiener process term’s
coefficient is constant, it integrates it exactly. After that, the
technique is applied to a system of partial differential equations
emerging from fluid flow over the plates. Its square stability and
uniformity are also offered.

Nonetheless, the stability analysis only considered the
homogeneous component of the scheme, in which each term is
dependent on the dependent variable. One of the assumptions

FIGURE 8
Effect of small parameter on concentration profile for the
stochastic model using Re = 3, β = 1, GrC = 0.5, Ec = 0.1, γ = 0.1,
GrT = 0.4, Ha = 0.1, Pr = 0.9, E1 = 0.01, Sc = 0.9, ε = 0.1, σ1 = 0.5,
σ2 = 0.4, σ3 = 0.3, x0 = 0.3469.

FIGURE 9
Velocity, temperature, and concentration profiles of the
stochastic model using Re = 3, β = 1, GrC = 0.5, Ec = 0.9, γ = 0.1,
GrT=0.4,Ha=0.1, Pr=0.9, E1 = 0.01, Sc=0.9, ε1 = 0.1, ε=0.1, σ1 = 0.5,
σ2 = 0.4, σ3 = 0.3, x0 = 0.3469, tf = 1.

FIGURE 10
Mesh plot underneath contours for the horizontal component of
velocity profile on spatial and temporal coordinates of the stochastic
model using Re = 3, β = 1, GrC = 0.5, Ec = 0.1, γ = 0.1, GrT = 0.4,
Ha = 0.1, Pr = 0.9, E1 = 0.01, Sc = 0.9, ε1 = 0.1, ε = 0.1, σ1 = 0.5,
σ2 = 0.4, σ3 = 0.3, Lx = 27, uw = cos(t).

Frontiers in Physics frontiersin.org10

Arif et al. 10.3389/fphy.2024.1373111

18

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1373111


considered in the stability analysis was this. The normal distribution
with mean zero and variance equalling the time step size is used to
approximate the integral of theWiener process term. This is addressed
using the Matlab command. The scheme’s non-stochastic part
provides the accuracy of the deterministic model. Therefore, the
scheme delivers accuracies in both the non-stochastic and stochastic
parts of the given stochastic partial differential equation.

The impact of the Casson parameter on the velocity profile in the
deterministic case is illustrated in Figure 1. By increasing the Casson
parameter, the velocity profile drops. The velocity profile of a fluid
declines due to the impact of the diffusion process occurring within
molecules, which is caused by an increase in the Casson parameter,
which causes the diffusion coefficient to decay. Figure 2 shows the
influence of the thermal Grashof number on the velocity profile in the
deterministic situation. The velocity profile improves with a higher

thermal Grashof number. An elevation in the thermal Grashof
number results in a corresponding increase in the temperature
gradient for mixed convective fluxes due to the disparity between
the wall and ambient temperatures. As a result of the temperature
gradient being one of the flow’s propelling forces, the velocity profile
increases. The impact of the Hartmann number on the velocity profile
in the deterministic case is illustrated in Figure 3.

As the Hartmann number rises, the quality of a velocity profile
deteriorates. Lorentz’s force increases in tandem with an increase in
Hartmann’s number, slowing the flow and causing a decrease in the
velocity profile. Figure 4 shows how the local electric parameter
affects the velocity profile in the stochastic situation. Different parts
of the domain display contrasting velocity profiles. Figure 5 depicts
the temperature distribution as a function of the Eckert number.
Stochastic analysis reveals a bimodal distribution of temperatures.

FIGURE 11
Mesh plot underneath contours for the vertical component of
velocity profile on spatial and temporal coordinates of the stochastic
model using Re = 3, β = 1, GrC = 0.5, Ec = 0.1, γ = 0.1, GrT = 0.4,
Ha = 0.1, Pr = 0.9, E1 = 0.01, Sc = 0.9, ε1 = 0.1, ε = 0.1, σ1 = 0.5,
σ2 = 0.4, σ3 = 0.3, Lx = 27, uw = cos(t).

FIGURE 12
Mesh plot underneath contours plot for temperature on spatial
and temporal coordinates of the stochastic model using Re = 3, β = 1,
GrC = 0.5, Ec = 0.1, γ = 0.1, GrT = 0.4, Ha = 0.1, Pr = 0.9, E1 = 0.01,
Sc = 0.9, ε1 = 0.1, ε = 0.1, σ1 = 0.5, σ2 = 0.4, σ3 = 0.3, Lx = 27,
uw = cos(t).

FIGURE 13
Mesh plot underneath contours for the horizontal component of
velocity profile on spatial coordinates of the stochastic model using
Re = 3, β = 1, GrC = 0.5, Ec = 0.1, γ = 0.1, GrT = 0.4, Ha = 0.1, Pr = 0.9,
E1 = 0.01, Sc = 0.9, ε1 = 0.1, ε = 0.1, σ1 = 0.5, σ2 = 0.4, σ3 = 0.3,
Lx = 27, uw = cos(t).

FIGURE 14
Mesh plot underneath contours for concentration profile on
spatial coordinates of the stochastic model using Re = 3, β = 1,
GrC = 0.5, Ec = 0.1, γ = 0.1, GrT = 0.4, Ha = 0.1, Pr = 0.9, E1 = 0.01,
Sc = 0.9, ε1 = 0.1, ε = 0.1, σ1 = 0.5, σ2 = 0.4, σ3 = 0.3, Lx = 27,
uw = cos(t).
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Nonetheless, as the boundary layer flows over the plates, the
temperature profile typically increases as the Eckert number rises.
The temperature profile variation as a function of minor parameters
is illustrated in Figure 6. The temperature exhibits a dual effect by
increasing minor parameters. The temperature profile increases for
the deterministic model as small parameters increase, as the thermal
conductivity also increases with small parameter values.
Consequently, the temperature profile experiences an upward
trend. The impact of the reaction rate parameter on the
concentration profile of the stochastic model is illustrated in
Figure 7. In the context of boundary layer flow over flat plates,
the concentration profile typically decreases as the reaction rate
parameters increase, according to the deterministic model. Figure 8

demonstrates the influence of a modest parameter introduced in
variable mass diffusivity on the stochastic model’s concentration
profile. Figure 9 shows the impact of the stochastic model’s velocity,
temperature, and concentration profiles.

Figures 10, 11 show the mesh plots for the horizontal and
vertical components of velocity profiles for the oscillatory
boundary beneath contours. Because the time coordinate
determines the oscillation border, oscillatory behaviour can be
observed along the time coordinate. The stochastic effect on the
horizontal velocity component is not noticeable or minor.
Nonetheless, the variation of Wiener process term(s) is visible in
the contours for the horizontal velocity component. The mesh plot
for the temperature profile over spatial and temporal coordinates is
shown in Figure 12. Figure 12 depicts the influence of the oscillatory
boundary on the velocity profile and the effect of theWiener process
term. In Figures 13, 14, the mesh plots beneath contours for the
horizontal component of velocity and concentration profiles are
displayed over the spatial coordinates. Figure 15 compares the
proposed stochastic and existing Euler Maruyama schemes for
the problem considered in this contribution. Figure 16 shows the
norm of difference between numerical and exact solutions for the
first example studies in [48]. Different mesh sizes are considered for
the study. The mesh sizes are 25 × 25, 35 × 35, 45 × 45, 55 × 55
along x and y directions. This Figure 16 also shows that error
decreases by increasing mesh size. The error is calculated by finding
the L2 norm for the difference between numerical and exact
solutions at the final time.

6 Conclusion

The precise representation and simulation of unsteady non-
Newtonian mixed convective flows incorporating varying thermal
conductivity and mass diffusivity provide a noteworthy obstacle

FIGURE 15
Comparison of (A) proposed scheme and stochastic scheme (B) Euler Maruyama method using Re = 3, β = 1, GrT = 0.4, GrC = 0.5, ε = 0.1, ε1 = 0.1,
H0 = 0.1, E1 = 0.01, Pr = 0.9, Ec = 0.9, Sc = 0.9, γ = 0.1, σ1 = 0.9, σ2 = 0.7, σ3 = 1.3.

FIGURE 16
Error over mesh size using. tf (final time) = 0.07,
Nt (No. of time levels) = 1000.
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within fluid dynamics. The present study has introduced an innovative
strategy to tackle this obstacle by devising and executing a novel
stochastic finite difference scheme. The main objective of this study
was to develop a robust computational tool that can effectively model
the stochastic characteristics of intricate fluid flow phenomena. This
tool aims to improve our comprehension, prediction, and optimization
of systems in which these phenomena are present. By investigating the
mathematical underpinnings and computational execution of our
innovative approach alongside a sequence of numerical trials, we
have acquired significant knowledge regarding the possibilities and
constraints of the scheme. Including stochastic aspects in themodelling
process significantly enhances the precision and dependability of
simulations, particularly in scenarios involving systems inherently
characterized by unpredictability and uncertainties. A stochastic
numerical approach has been created to solve stochastic time-
dependent partial differential equations. Stages of prediction and
correction form the basis of the plan.

In contrast, the corrector stage approximates the integral of the
Wiener process term and gives second-order precision for the non-
stochastic portion. The paper also discussed the issue of non-
Newtonian fluid flow over flat and oscillatory plates subject to
the influence of temperature and mass diffusivity variations. In
summary, the arguments might be stated as.

1. The velocity profile declined as the values of the Casson
parameter and Hartmann number increased.

2. The velocity has dual behaviour by rising local electric
parameters.

3. The temperature and concentration profiles have dual
behaviours by rising small parameters that appeared in
variable thermal conductivity and mass diffusivity.

The results of our study have indicated that the newly developed
stochastic finite difference scheme holds significant value as a
supplementary tool for academics and engineers engaged in fluid
dynamics. The proposed methodology demonstrates a high level of
efficacy in managing the challenges posed by unsteady non-
Newtonian mixed convective flows with varying thermal
conductivity and mass diffusivity but also contributes to a more
comprehensive comprehension of the influence of stochastic
elements within these intricate systems. Consequently, this
scheme can enhance decision-making processes in designing and
optimizing numerous processes across several disciplines, such as
chemical engineering, environmental science, and fluid mechanics.
We expect this unique technique to be widely adopted as we develop
and expand. We believe it can advance our understanding and
application of complex, stochastic fluid flow processes.
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The article investigates removability conditions for singularities of anisotropic

parabolic equations and in particular for the anisotropic porous medium

equation and it aims in the numerical validation of the analytical results. The

preconditions on the strength of the anisotropy are analyzed, and the analytical

estimates for the growth behavior of the solutions near the singularities are

compared with the observed growth in numerical simulations. Despite classical

estimates used in the proof, we find that the analytical estimates are surprisingly

close to the numerically observed solution behavior.

KEYWORDS

parabolic di�erential equation, anisotropic porous medium equation, anisotropic fast

di�usion equation, removable singularity, removability conditions, numerical validation

1 Introduction

In this article, we investigate singularities of solutions of anisotropic parabolic

equations, and in particular the ones of the anisotropic porous medium equation. We

focus on conditions for the removability of singularities for such solutions and compare

analytically obtained removability results with observed solution behavior in numerical

simulations.

For quasilinear elliptic equations, the problem can be formulated as follows. Let � be

an open subset in R
n. The function u is defined in �\{x0} and satisfied some quasilinear

partial differential equation in�\{x0}, i. e., except in the point x0 where a singularity might

lie. The removability problem consists of extending the function u to the entire domain

� so that the extended function ũ satisfies the same quasilinear equation in �, and in

finding conditions that guarantee the existence of the extension. If the extension of u to ũ

is possible, we will say that the singularity in x0 is removable.

Additionally, while dealing with equations of parabolic type like done in this article,

singular initial data arise in a natural way. The problem statement remains the same, but it

can be formulated in different ways: either as the question of a removable singularity or as

the non-existence of a solution with a singularity.

The qualitative behavior of solutions to quasilinear elliptic and parabolic equations

near the point singularity was investigated bymany authors starting from the seminal paper

of Serrin [1]. Further analysis of sufficient conditions for the removability of singularities

of solutions has been made by many authors for different classes of nonlinear elliptic

and parabolic equations, cf. [2] and the references therein. As for anisotropic elliptic

and parabolic equations, their active research began recently. There are many scientists

who presented fundamental results in the qualitative theory for such equations. Feo,

Vázquez, Volzone, Song, Jian deal with questions about the existence of a fundamental

solution [3], self-similar fundamental solutions [4, 5], existence and uniqueness of a
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bounded and continuous solution for equations with singular

advections and absorptions [6, 7]. Skrypnik and his co-authors

obtained removability results for the anisotropic versions of the

porous medium equation and for the fast diffusion equation [8],

the p-Laplacian equation [9] and doubly nonlinear anisotropic

parabolic equations [10], including equations with an absorption

term [11–16], etc.

The paper is organized as follows. In Section 2, we introduce

the statement of the singularity problem for anisotropic parabolic

equations. In Section 3, we provide the history of the removability

problem for isotropic and anisotropic equations. In Section 4, we

present the analytical results on the growth behavior of solutions

near the singularities, which are validated and visualized by hands

of numerical simulations in Section 5. The paper finishes with a

resume and an outlook.

2 Problem statement

We study non-negative solutions to the anisotropic parabolic

equation

∂u

∂t
−

n∑

i=1

∂

∂xi

(
umi−1 ∂u

∂xi

)
= 0 with (x, t) ∈ �T , (1)

where �T = � × (0,T), � is a bounded open set in R
n with

n ≥ 2, which without loss of generality, contains the origin, i. e.,

x0 = 0 ∈ �, and where T with 0 < T < +∞ is a finite time. The

initial condition is

u(x, 0) = 0 for all x ∈ � \ {0}, (2)

and allows a concentrated essential weight in the origin.

Eq. (1) can be seen as a diffusion equation for the concentration

u = u(t, x), and the diffusion parameters depend on the

concentration u as well as on the direction in R
n via the different

exponents mi − 1. The exponents mi, which are not necessarily

integers, have a strong physical background. In fact, they come

from fluid dynamics in anisotropic media. If the conductivities of

the media are different in different directions, the exponentsmi are

different from each others [17].

In the special case m1 = m2 = ...mn = 1, Eq. (1) reduces

to the isotropic heat equation. But for mi > 1, i = 1, . . . , n, the

diffusion parameters tend to zero with decreasing concentrations.

Thus, the diffusion process degenerates near zero concentrations.

In this case, Eq. (1) is degenerate parabolic, and it is called an

anisotropic porous medium equation [18]. On the other hand, for

mi < 1, i = 1, . . . , n, the equation is singular parabolic and called

anisotropic fast diffusion equation [19].

As we see, the anisotropy of Eq. (1) is realized via the exponents

mi−1 in the concentration-dependent diffusion parameters umi−1.

The case mi > 1 means that the diffusion strength increases with a

growing positive concentration u, wheremi < 1 leads to a diffusion

strength that increases up to infinity for decreasing u tending to 0.

Therefore for small u and mi < 1, we expect the faster leveling

behavior the smaller u is in xi-direction.

Here, we consider the case when anisotropy exponents are

restricted by two conditions, namely first, a lower bound

min
1≤i≤n

mi > 1−
2

n
, (3)

and next, an upper bound depending on the mean of the exponents

max
1≤i≤n

mi < m+
2

n
where m =

1

n

n∑

i=1

mi. (4)

As a first idea, conditions (3) and (4) mean that the exponents

mi might be commonly large but might not differ too much or be

too small, comp. Section 4.2, where the admissible anisotropies are

investigated in more detail. These conditions cover also the case

where one part of the exponents mi is greater than 1 and the other

partmi is less than 1.

Remark 1. In all known related publications, the cases of

degenerate (mi > 1, i = 1, . . . , n) and singular (mi < 1, i =

1, . . . , n) parabolic equations were considered independently from

each other even in the isotropic case, i. e. for m1 = m2 = ... =

mn = m. The used methods for proving the results depend on

either the degenerate or singular character of equations.

Remark 2. Without loss of generality, we will assume that the point

x0 = 0 ∈ R
n carries a singularity, otherwise we can make a change

of variable by a simple translational shift.

Remark 3. Initial condition (2) can be written in the following way

u(x, 0) = δ(x), x ∈ �.

In this case, it will be about the non-existence of solutions to the

Cauchy problemwith a singular initial condition, and not about the

removability conditions.

Here, we are interested in solving the problem (1, 2)

numerically and testing the analytical results from [8] which

guarantee that the singularity at (0, 0) is removable.

3 History of the problem

The first theorem on removable singularities was obtained by

Riemann. In his doctoral dissertation [1851, see Riemann [20]],

he established the removability of an isolated singular point for a

harmonic function of two real variables. In the general case, the

necessary and sufficient condition of the removable singularity at

the point x0 for a harmonic function u in R
n\{x0} has the form

u(x) = o(ε(x− x0)) as x → x0. (5)

Here

εn(x−x0) =





|x−x0|
2−n

(2−n)σn
, n > 2, σn − surface areas of

the unit sphere inRn

1
2π ln 1

|x−x0|
, n = 2

(6)
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is the fundamental solution of Laplace’s equation that exhibits the

solution with the “minimal” singularity at x = x0. It’s easy to see

how the condition (Equation 5) works if we expand the harmonic

function into a series of spherical harmonics under the following

form

u(x) = ũ(r, σ ) =

∞∑

i=0

ε(i)(r)ψi(σ )+

∞∑

i=0

riψ̃i(σ ), (7)

where r, σ are the spherical coordinates in R
n\{x0}, and ψi(σ ),

ψ̃i(σ ) spherical harmonics of degree n. If we assert that the

condition (Equation 5) is satisfied, i.e., ũ(r, σ ) = o(ε(r)) as

r → 0, then the first term on the right side in Equation (7)

is missing. It means that u is a harmonic function in the whole

R
n. So this condition shows that there is no solution of Laplace’s

equation which is singular at the point x0 and satisfies condition

(Equation 5). It is obvious that the question of the removability of

the singularity is conditioned by the growth of u near this point. If

for example ũ(r, σ ) = O(εb(r)) as r → 0, for some nonnegative

integer b, then u admits an asymptotic expansion of the following

form

u(x) = ũ(r, σ ) =

b∑

i=0

ε(i)(r)ψi(σ )+

∞∑

i=0

riψ̃i(σ ),

and stays harmonic inRn\{x0}. Therefore, a crucial step in studying

the singularity problem is the knowledge of an a priori estimate of

u near the singularity.

Then for a long time, the only study of singularity problems

dealt with linear equations and with radial solutions of Laplace’s

equation with nonlinear sources or absorptions. In fact, the

first breakthrough is due to Serrin [1] who obtained the first

general results on quasilinear equations. His precise condition

on removability of singularity for nonnegative solutions of the

p-Laplacian equation

n∑

i=1

∂

∂xi

(
|∇u|p−2 ∂u

∂xi

)
= 0 for x ∈ � \ {x0},

reduces to

u(x) = o
(
ε(x− x0)

)
as x → x0 for p 6 n,

where ε(x − x0) is the fundamental solution of the p-Laplacian

equation and is described by the formula

ε(x− x0) =

{
|x− x0|

−
n−p
p−1 , for p < n,

ln 1
|x−x0|

, for p = n.
(8)

Around 1980, the sharp development of the theory of nonlinear

partial differential equations allowed another breakthrough in

the study of nonradial singular solutions of Laplace’s equations

with nonlinear sources and absorptions. This was initiated by

Gidas and Spruck [21], Lions [22] and Veron [23]. After this

first period, many articles have been published taking into

account the different aspects of the singularity problem for the

above-mentioned equations and also for parabolic equations.

We refer to the monograph by Veron [2] for an account of

these results.

During the last decade, there have been growing interest and

substantial developments in the qualitative theory of second-order

anisotropic elliptic and parabolic equations e.g., [5, 24–30], in

particular results for anisotropic porous medium equation can be

found in Ciani and Henriques [31], Feo et al. [4], Henriques [32],

Song and Jian [3], Song [6], and Song [7]. The study of these

equations is complicated by the fact that a general qualitative theory

for them has not been constructed, in addition, the explicit form

of the fundamental solution is unknown in most of the cases.

Therefore, the problem arises of obtaining precise conditions for

the removability of the singularities for anisotropic elliptic and

parabolic equations. Due to the fact that it is not possible to

construct the fundamental solution of Equation (1) in an explicit

form similar to Equations 6, 8, until recently it was not clear how

to formulate the precise or at least sufficient condition for the

removability of the singularity for the solution of this equation. This

question was successfully solved in Namlyeyeva et al. [10], where is

proved that the singularity at the point (x0, t0) with x0 = 0 ∈ R and

t0 = 0 for the solution of the equation

∂u
∂t −

n∑
i=1

(
u(mi−1)(pi−1)

∣∣∣ ∂u∂xi
∣∣∣
pi−2

∂u
∂xi

)

xi

= 0,

with pi > 2,mi > 1, and i = 1, . . . , n, (9)

is removable if the following condition holds

u(x, t) = o
(
z(x, t)

)
as (x, t) → (x0, 0),

where is z(x, t) =

(
n∑

i=1
|xi − x0i |

αi + tβ
)−n

, and the exponents are

given by

αi =
1

p+n(p(m−d)−mi(pi−1))

and β = 1
n(p(m−d)−1)+p

FIGURE 1

Set of admissible anisotropies in the two-dimensional case n = 2.

The gray domains shows all admissible pairs (m1,m2) with respect to

conditions (3) and (4).
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with

m =
1

n

n∑

i=1

mi, p =
1

n

n∑

i=1

1

pi
, and d =

1

n

n∑

i=1

mi

pi
.

The anisotropic doubly nonlinear parabolic (Equation 9)

reduces to the anisotropic p-Laplacian evolution equation if m1 =

m2 = ... = mn = 1. Further for p1 = p2 = ... = pn = 2, we obtain

the degenerate case of Eq. (1). Other results on the removability

of singularities for anisotropic equations concern special cases of

Eq. (9) with absorption [11] and gradient absorption terms [12] and

for anisotropic elliptic equations [9, 13–15]. But at this stage of the

study, we are not interested in equations with additional terms.

4 Results and visualization

4.1 Removability result for anisotropic
parabolic equation

Before presenting sufficient conditions for the removability of

singularities, let us formulate the definition of a weak solution of the

problem (Equation 1, 2), and let us define removable singularities.

Definition 1. We write Vm(�T) for the class of functions ϕ ∈

C(0,T, L2(�)) with

n∑

i=1

∫∫

�T

|ϕ|mi−1

∣∣∣∣
∂ϕ

∂xi

∣∣∣∣
2

dxdt <∞.

Definition 2. A weak solution with a singularity at the point (0, 0)

of the problem (Equations 1, 2) is a function u(x, t) ≥ 0 satisfying

the inclusion uψ ∈ Vm(�T) ∩ L2(0,T,W1,2(�)) and the integral

identity

∫
�

u(x, τ )ϕψ dx−
τ∫
0

∫
�

u ∂(ϕψ)
∂t dxdt

+
n∑
i=1

τ∫
0

∫
�

umi−1uxi
∂(ϕψ)
∂xi

dxdt = 0 (10)

for any 0 < τ < T, any test function ϕ ∈ Vm(�T) ∩

L2(0,T,W1,2
0 (�)) and anyψ∈C1(�T) vanishing in a neighborhood

of (0, 0).

Definition 3. We say that the solution of the problem (Equations 1,

2) has a removable singularity at the point (0, 0) if the integral

identity (Equation 10) holds for ψ ≡ 1.

According to Def. 3, the u is integrable over the neighborhood

of the point (0, 0) supporting the singularity. Hence, the singularity

cannot be too strong or not too widely opened, i.e. u = O
(
1
rα

)

with restricted exponent α. Here u is formally L1 in the combined

space for x and t, and that means that a solution with singular initial

values decreases fast enough for growing t.

Theorem 1. Assume that the conditions in Equations (3, 4) are

fulfilled. Let u be a weak solution of the problem (1, 2) with a

singularity at the point (0, 0). Then the singularity of the solution

u is removable if

u(x, t) = o(v(x, t)) as (x, t) → (0, 0), (11)

where v(x, t) =

(
n∑

i=1
|xi|

ki + tk
)−n

with

ki =
1

2+ n(m−mi)
and k =

1

n(m− 1)+ 2
.

The condition (Equation 11) can be rewritten in the following

form

lim
(x,t)→(0,0)

u(x, t)

v(x, t)
= 0. (12)

It is natural to expect that v(x, t) determines the asymptotic

behavior of the fundamental solution. We know about the

existence of the fundamental solutions [3], and for anisotropic

fast diffusion equation, the existence and uniqueness of the self-

similar fundamental solutions [4]. Since the explicit form of the

fundamental solution is unknown, we are dealing with a sufficient

condition of the removability for Eq. (1), and not with a precise one.

4.2 Admissible anisotropies

The conditions (Equations 3, 4) restrict the possible exponents

mi, i = 1, . . . , n from below and from above. Whereas (Equation 3)

contains a constant restriction from below (Equation 4) rather

restricts the deviation from the mean valuem of the exponents.

In the two-dimensional case with n = 2,

conditions (Equations 3, 4) read

mi > 0 and mi < m+ 1 for i = 1, 2.

Figure 1 illustrates the set of all admissible exponents in the case

n = 2. We start with the inclined line m1 + m2 = 2m with all

pairs (m1,m2) with the same mean value m. Due to mi < m + 1,

each exponent may not deviate further than 1 fromm, and we get a

stripe, cf. thick line, and gray stripe in Figure 1.

A similar consideration provides the set of admissible

exponents in the three-dimensional case with n = 3. Then,

inequalities (Equations 3, 4) read

mi >
1

3
and mi < m+

2

3
for i = 1, 2, 3.

The left plot in Figure 2 starts with the planem1 +m2 +m3 =

3m containing all triples (m1,m2,m3) with the same mean value.

The marked dot gives the isotropic triple (m,m,m). The plane is

restricted by the planesmi = m+ 2
3 , which are parallel to the axis-

planes of the coordinate system. In the shown situation in Figure 2,

left, the lower restriction is not present. If the lower restrictionmi >
1
3 becomes active, we get a slightly more complicated admissible

area, cf. the right plot in Figure 2.

The right plot in Figure 2 presents the three-dimensional set

of admissible triples (m1,m2,m3). Additionally, the intersections

which were already shown in the left plot, are drawn. These are

the rotated triangle for m = 2
3 , a hexagon for m = 1, a two next

triangles in gray form = 5
3 andm = 7

3 .

Larger m > 5
3 with inactive condition (Equation 3) lead to

triangles and the set of admissible exponent triples is a triangular

prism around the diagonal of the positive part of R3. In total, we

see a prismatic beam with a triangle cross section and a diagonal
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FIGURE 2

Left: Construction of all admissible triples (m1,m2,m3) with m = 1. The hatched plane gives all triples with m = 1, and the gray triangle is the

sub-area restricted by mi < m+ 2
3
, i = 1, 2, 3. Right: Set of admissible anisotropies in the three-dimensional case n = 3. The gray intersections show

the admissible areas for m = 2
3
, m = 1, m = 5

3
and m = 7

3
. Remark the restrictions mi >

1
3
for i = 1, 2, 3.

FIGURE 3

Numerical solution u = u(t, x) of Eq. (1) with m1 = 1.3 and m2 = 0.6. Left: Numerical approximation of the initial condition (2). Right: Small

t = 0.3 · 10−3 provides a first leveling and a visible anisotropy close to the foot of the former positive values in the origin.

in the symmetry axis of the beam. This triangle beam is restricted

for small exponentsmi by planes following condition (Equation 3).

Analogous beams are found for higher dimensions n > 3, too.

Consequently, the analytical and numerical considerations

presented in this article, are valid for moderate differences between

the exponents mi in Eq. (1). Otherwise, the mean value m itself,

generating the non-linearity in Equation 1 is not limited.

5 Numerical validation

Here, we present the numerical solution of Eq. (1) with

the initial condition (Equation 2). It is solved by finite

differences, and the singularity in the initial condition was

replaced by a particular value conserving the integral. Of

course, finite differences are not the ideal method to handle

highly oscillating or highly changing values, and rather finite

elements with their integrative aspect over each element would

be appropriate.

But on the other hand, finite differences are a method which

is not related to the removability condition in Eq. (10), which is

an integral identity directly connected to the weak formulation

of Eq. (1) and thus to finite elements. Therefore, we regard

finite differences as a properly unbiased method. By the way,

no qualitative difficulties occurred with the numerical solution in

Matlab (as used here), Python, or Octave.
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FIGURE 4

Numerical solution with increasing times, continuation, same m1 = 1.3 and m2 = 0.6. Left: Further smoothing for t = 0.6 · 10−3. Right: For

t = 0.9 · 10−3, the initial values have been nearly completely leveled out.

FIGURE 5

Comparison: Quotient between u(·, x) and the behavior estimate v in condition (Eq. 11). Left: Close to the initial time t = 0.1 · 10−3. Right: Later for

t = 0.5 · 10−3, the estimate is less perfect, in particular close to the origin for x → 0 some disturbances are visible.

Figures 3, 4 show the time evolution of the concentrated initial

value in Eq. (2) for n = 2. After a small time, the expected

leveling behavior together with an anisotropy close to the origin is

observable.

Next, we test the limit behavior given in Equation 11 as

a removability condition. We compare the numerical solution

u = u(t, x) for certain times t > 0 with the estimate

function v used in Eq. 12 to give an upper bound in the limit

x → 0 and t → 0. Figure 5 shows the claimed small-o

behavior of u, s. conditions (Equations 11, 12). Please remark

that the comparison for t = 0 is not reasonable due to

the vanishing initial values outside the origin. Although the

small-o behavior of the estimate is numerically reproduced, the

computed solution goes a little faster to 0 than the estimate. This

coincides with the reformulation of the removability condition

(Equation 12).

We observe that the quotient u/v of condition (Eq. 12)

is indeed bounded and tends numerically to zero when (x, t)

approaches the point (0, 0) carrying the singularity at the initial

time. Furthermore, we see that the qualitative tendency observed

in the numerical data u is well estimated by the analytical

estimate v because the quotient approaches linearly zero in all

directions.

Remark that no numerical artifacts are remarkable although

the finite differences are a very rough numerical method. Together

with the argument that the finite difference method is not biased

as e. g. finite elements would be due to the condition in Eq. (10),

which would make a non-removable singularity numerically not
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accessible at the same time, we rate the numerical simulation as a

good validation and strong support of the power of the analytical

estimate v in condition (Eq. 11).

6 Resume and outlook

We have shown that the removability conditions from [8]

for the anisotropic porous medium equation and fast diffusion

equation can be numerically reproduced and validated for

the admissible anisotropies, whereat the conditions on feasible

anisotropies allow not too large differences in the exponents mi on

the one hand but sufficiently multifaceted situation for modeling

various physical situations.

Further research will focus on expanding the considerations

of removability conditions to more general partial differential

equations, e.g. anisotropic version of the evolution p−Laplacian

equation. Another interesting question is whether some

anisotropies with large differences between the exponents

might lead to a comparable behavior of the solutions or whether

some extenuated assertations about the growth and decay behavior

of the solution can be found.
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The study deals with plastic and non-plastic sub-spaces A of the real-line R with

the usual Euclidean metric d. It investigates non-expansive bijections, proves

properties of suchmaps, and demonstrates their relevance by hands of examples.

Finally, it is shown that the plasticity property of a sub-space A contains at least

two complementary questions, a purely geometric and a topological one. Both

contribute essential aspects to the plasticity property and get more critical in

higher dimensions and more abstract metric spaces.

KEYWORDS

metric space, non-expansive map, plastic space, expand-contract plasticity, Banach

space

1 Introduction

Here, we investigate properties of plastic metric spaces. Shortly speaking, ametric space

is plastic if every non-expansive bijection is an isometry, cf. Section 2.

We will observe that the plasticity property consists of a geometrical sub-problem and

a topological sub-problem. That is the reason why plasticity of a metric space, which can

be easily defined, evolves as a challenging mathematical problem. In particular, we observe

that the plasticity of a metric space is not inherited from sup-spaces, i. e., from including

spaces, and it does not inherit to sub-spaces, i. e., to included spaces.

In this study, we concentrate on metric spaces which are sub-spaces of the real axis,

and in this apparently simple situation, the typical difficulties come to the light.

The probably first study devoted to the plasticity problem is the study mentioned in

the reference [1]; however, the term "plasticity" appeared much later and the problem itself

remained unnoticed for several decades. A short literature survey and the information

about the current progress in solution of the problem are shown in Section 2.2.

The study is organized as follows. Section 2 introduces the basic concepts and illustrates

the existence of non-expansive bijections in the case that the metric space is a union of

closed intervals. This case demonstrates the geometrical aspects of the problem. Then,

Section 3 discusses the plasticity of metric spaces by means of metric spaces which are

unbounded sequences of points, investigates the relevance of accumulation points and

continuous subsets, and attacks themore topological parts of the plasticity concept. Finally,

Section 4 resumes the observations and gives a short outlook to further research.

2 Basic concepts

We denote a metric space by (A, d) where A is the set of points and d : A × A →

R+ = {x ∈ R : x ≥ 0} is the distance obeying the known axioms of positivity, symmetry,

non-degeneracy, and the triangle inequality.
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2.1 Non-expansive maps

A map ϕ : A → A from the metric space A into itself is called

non-expansive if

d(ϕ(x),ϕ(y)) ≤ d(x, y) for all x, y ∈ A (1)

is fulfilled. If the equality holds for all pairs x, y ∈ A, ϕ is an

isometry.

The condition in Equation (1) is equivalent to the Lipschitz-

continuity of the map ϕ on A with Lipschitz constant 1. Thus, a

non-expansive ϕ is also continuous on A.

We will investigate metric spaces A ⊆ Aex which are embedded

in a metric sup-space (Aex, dex) because the space Aex might be

known and well understood, and thus, its points or rather a

selection of them serve as elements of A. Now, it is obvious that

the restriction of the metric space (Aex, dex) to the set A leads to the

metric space (A, d) by the restriction of the distance d = dex|A×A

to the set A. It is less obvious whether a metric space (A, d) can be

extended to a sup-set Aex by choosing an appropriate dex. However,

it is always possible, to choose a function d̂ex : Aex × Aex → R+,

which fulfills the properties of symmetry, non-degeneracy, and

positivity with d̂ex|A×A = d, which of course is not a metric in

general. Then, we can define the metric

d̃ex(x, y) = inf
n,{z0 ,...,zn}

[
d̂ex(x, z0)+

n−1∑

i=0

d̂ex(zi, zi+1)+ d̂ex(zn, y)

]

as the infimum over all possible paths of arbitrary length between x

and y. However, such a metric d̃ex may not really be an extension.

As in the real life, if one builds a new paths, which are shorter, the

old ones may no longer be used. In our notation, this means that it

may happen d̃ex(x, y) < d(x, y) for some x, y ∈ A.

Nevertheless, one may define a real extension dex of the metric

d, which is more artificial and a bit similar to the French railways

metric in the following way. Let us fix a point x0 of the set A and

define an arbitrary metric dAex on the set (Aex \ A) ∪ {x0}, which

might be the discrete metric or any other metric. Although less

intuitive, the needed extension is

dex =





d(x, y), for x, y ∈ A;

dAex (x, y), for x, y ∈ (Aex \ A) ∪ {x0};

d(x, x0)+ dAex (x0, y) for x ∈ A, y ∈ (Aex \ A).

existing and easily available. Therefore, we will not distinguish

between dex and d in the following but use the distance d in the

extended metric space and sub-space.

Oppositely, it is not evident whether the existence of a non-

expansive map ϕex : Aex → Aex provides a non-expansive map

ϕ : A → A because the simple restriction ϕ = ϕex|A, although

still Lipschitz continuous, is not necessarily a map into A. It might

happen that the image imϕ = ϕ(A) ⊆ Aex is not a subset of A.

The opposite question whether a non-expansive ϕ : A → A can

be extended to a non-expansive map on the extended space Aex

is the question about the extension of Lipschitz maps, preserving

the Lipschitz constant. In particular, it is always possible for real-

valued functions according to McShane’s extension theorem [2].

For functions from a subset ofRn toRn, the extension to the whole

Euclidean space is possible due to Kirszbraun’s theorem [3].Wewill

observe that non-expansive maps pose a lot of interesting questions

and some of them can be answered.

2.2 Plastic metric spaces

Let us define a plastic metric space.

Definition 2.1. A metric space A is called expand-contract plastic

(EC-plastic)—or just plastic—if every bijective non-expansive map

ϕ : A → A is an isometry.

Definition 2.1 defines a plastic metric space A via the non-

existence of any non-expansive bijection of the metric space A to

itself, which is not an isometry. Some simple examples are the non-

plastic metric space A = R with the non-isometric non-expansive

bijective map ϕ : x 7→ x/2 and the plastic metric spaceA = [0, 1] ⊂

R with exactly the two non-expansive bijections ϕ1 = id. and

ϕ2 : x 7→ 1− x, which are both isometries.

The only general result concerning plasticity of metric space

states that every totally bounded metric space is plastic, see

Naimpally et al. [4] for details. In fact, in the study mentioned in

the reference [4], a more general result was obtained, i. e., so-called

strong plasticity of totally bounded metric spaces was shown.

Definition 2.2. A metric space A is called strongly plastic if for

every mapping ϕ : A → A the existence of points x, y ∈ A with

d(ϕ(x),ϕ(y)) > d(x, y) implies the existence of two points x̃, ỹ ∈ A

for which d(ϕ(x̃),ϕ(ỹ)) < d(x̃, ỹ) holds true.

This property and its uniform version were researched in the

study mentioned in the reference [5]. It says that any expansion of

a distance between two points implies the existence of two other

points which are contracted by the map ϕ. Observe it is extremely

important not to interchange expansion and contraction.

In the study mentioned in the reference [6], the following

intriguing question was posed.

Problem 2.3. Is it true, that the unit ball of an arbitrary Banach

space is plastic?

Observe that in finite dimensions, this question is answered

positively since in finite dimensions, the unit ball is compact and

thus totally bounded. Moreover, the question is open only in the

infinite dimensional case and the following more general problem.

Problem 2.4. For which pairs (X,Y) of Banach spaces, every

bijective non-expansive map ϕ : BX(0) → BY (0) between the unit

balls is an isometry?

There are a number of relatively recent particular results,

devoted to these problems, see Angosto et al. [7], Haller et al. [8],

Kadets andd Zavarzina [9], Leo [10], and Zavarzina [11]. There

exists also a circle of problems connected with plasticity property

of the unit balls. In the study mentioned in the references [12] and

[13], the so called linear expand-contract plasticity of ellipsoids in

separable Hilbert spaces was studied, which means that only the

linear non-expansive bijections were considered in the definition

of plasticity.
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Many natural questions concerning plasticity seem to have no

answer or even have not yet been considered. In 2020, Behrends

[14] draw attention to the fact that nobody studied the subsets of

the real line with respect to the plasticity problem. He tried to attack

this problem and received some results in this direction, however,

decided not to publish them. Moreover, the following problem is

still open.

Problem 2.5. What characterizes plastic sub-spaces of the real line

R with the usual metric d?

In spite of the seeming simplicity of the question, it is not so

easy to deal with. Let us first list the previously known results. As

we mentioned before, the set R itself with the usual metric is not

plastic. If one considers any bounded subset, it is already plastic

due to its total boundedness.

On the other hand, it is easy to show that the set of integers Z

with the same usual metric is plastic in spite of its unboundedness

and the set R \ Z. The proof of the plasticity of both mentioned

spaces may be found in the study mentioned in the reference [4]. In

the proof of plasticity of the set R \ Z, one of the possible cases was

missed; nevertheless, the statement is still correct.

Already, these examples show that there is no simple answer

to the question whether a metric space is plastic or not. Rather we

could give the interpretation that there are some critical points,

e. g., the integers in these examples, which every non-expansive

bijection ϕ definitely has to pass, what relates to the geometry of

the metric space A, and that there are some parts of the metric

space which cannot be glued to each other such as singular points or

open intervals, what relates to the topological aspects of plasticity.

We observe that sub-spaces of the real axis are already sufficiently

multifaceted to study the plasticity problem of metric spaces.

The question whether more general metric spaces are plastic,

provoke analogous difficulties, and again contain geometrical and

topological aspects.

Here, we will generalize the known results and say something

more about plastic sub-spaces of the real line. The previously

mentioned results explain why we consider only unbounded sets

in what follows.

All over the text, we use the notion d for the usual Euclidean

metric d(x, y) = |x − y| for x, y ∈ R. Round brackets denote open

intervals (x, y) = {z ∈ R : x < z < y} and square brackets denote

closed intervals [x, y] = {z ∈ R : x ≤ z ≤ y}.

2.3 A subset of the real axis

Wehave observed that the real axisR has sufficiently interesting

metric sub-spaces for the investigation of plasticity. The Lipschitz

condition in Equation (1) lets us easily decide whether a map

ϕ : R → R is non-expansive or not—just by the graph of the map

ϕ, see Figure 1. Due to our considerations in Section 2.1, which is

applied here with A as union of intervals and Aex = R, the map

ϕ can be extended—not necessarily in a unique manner—as non-

expansive function ϕex on the entire axisR. Thus, ϕex is continuous

on R.

Figure 1 shows examples of bijective maps from the union of

intervals A = . . . ∪ [a2, a3] ∪ [a4, a5] ∪ . . . ⊂ R onto itself. In

this example, the closed interval and the interspaces have increasing

lengths, in detail aℓ+1 − aℓ ≥ aℓ−1 − aℓ−2 for all ℓ ∈ Z. Due to its

continuity, every bijection ϕ passes monotonically a rectangle in

A × A. In this example, with increasing lengths of the respective

intervals, we easily detect particular extensions ϕex : R → R with

ϕex|A = ϕ and a slope bounded by 1 because the endpoints of

the interspace could be used in Equation (1). Hence, the functions

id. and ϕi, i = 1, 2 below the diagonal are non-expansive, and the

function χ above the diagonal is expansive.

3 Main results

Let us start with some interesting observations on simple

situations of A, e. g., some sets of singular points.

Proposition 3.1. Let A = {ai}
+∞
i=−∞ ⊂ R be an increasing sequence

that obeys

d(ai−1, ai) ≤ d(ai, ai+1) for all i ∈ Z (2)

and

d(aj−1, aj) < d(aj, aj+1) for at least one i ∈ Z. (3)

Then (A, d) is not plastic.

Proof. The shift ϕ : ai 7→ ai−1 is an example of a non-expansive

bijection which is not an isometry.

Remark 3.2. The relation sign in Equations (2), (3) might be

commonly inverted so that the distances between two subsequent

points of A decrease instead of increase, and the statement remains

unchanged.

Furthermore, let us consider sets which are bounded from one

side. Let us recall the definition of an accumulation point, which we

will use in what follows.

Definition 3.3. An accumulation point (or limit point) of a set A

in a metric space X is a point x, such that every neighborhood of x

with respect to the metric on X contains a point of A which differs

from the point x.

An accumulation point of a set A does not have to be an element of

A. We will proceed with the following lemma.

Lemma 3.4. Let A ⊂ R be a set without accumulation points

which is bounded from one side. Let a be aminimal—ormaximal—

element of A and ϕ : A → A be a bijective non-expansive map.

Then ϕ(a) = a.

Proof. Without loss of generality, we may consider the case when a

is a minimal element. Assume ϕ(a) 6= a. Then there is b ∈ A such

that ϕ(b) = a.

Claim: Let be c ∈ A. Then c ≤ b implies ϕn(c) ≤ b for every

n ∈ N.

Proof of the Claim: We will use the induction in n. Indeed, if

ϕn(c) ≤ b and ϕn+1(c) > b we have

d(ϕn(c), b) ≥ d(ϕn+1(c), a) > d(b, a).
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FIGURE 1

Non-expansive maps ϕ1, ϕ2, and id. and an expansive map χ for a union A ⊂ R of closed intervals of increasing length. The Cartesian product A× A is

given in gray, and the bijections are black.

This contradiction completes the proof of the Claim.

Since

d(a, b) ≥ d(ϕ(a),ϕ(b)) = d(ϕ(a), a),

we have ϕ(a) ≤ b. Thus, the Claim provides ϕn(a) ≤ b for every

n ∈ N. Now, the segment [a, b] is a trap for those points, which

were mapped there. Our aim is to find such a “trapped” point out

of the interior of the segment [a, b] and show that this leads to a

contradiction. There are only two possible cases.

Case 1: ϕ(a) = b. In this case, points a and b were swapped

by ϕ. Then, such a “trapped” point is the closest from the right-

hand side point to b. There is c > b such that d(b, c) < d(b, d)

for any d > b. Such point c exists since A is unbounded from

above and there is no accumulation points. The point c cannot be

mapped outside the segment [a, b] since it gives the contradiction

with non-expansiveness of ϕ.

Case 2: ϕ(a) < b. With such a condition, a “trapped” point is

ϕ(a) itself.

In both cases, we have a point t which does not belong to the

interior of the segment [a, b] such that ϕ(t) belongs to this interior.

Consider an orbit of this point t, i. e., the set {ϕn(t)}∞n=1. Due to the

bijectivity of ϕ, this orbit does not have repeating elements. Thus,

we have obtained a bounded infinite subset in A which contradicts

the fact that A does not have accumulation points.

Remark 3.5. The condition about the absence of accumulation

points in Lemma 3.4 cannot be omitted.

This remark is confirmed by the following example.

Example 3.6. Let A = Z+ ∪ Q, where Q = { 14 + 1
n , n ≥ 4}. The

bijective non-expansive map ϕ is

ϕ(a) =





a− 1, for a ∈ N,
1
2 , for a = 0,
1
4 + 1

n+1 , for a = 1
4 + 1

n ∈ Q.

We observe that ϕ is bijective and it does not save the minimal

element of A. We check that it is non-expansive.

1. For all a, b ∈ N, the isometry d(ϕ(a),ϕ(b)) = d(a, b) is valid.

2. For a ∈ N, b = 0, it holds d(ϕ(a),ϕ(b)) = |a− 3
2 | < a = d(a, b).

3. For a ∈ N, b = 1
4 + 1

n ∈ Q, we have d(ϕ(a),ϕ(b)) =

|a− 5
4 − 1

n+1 | < |a− 1
4 − 1

n | = d(a, b).

4. For a = 0, b = 1
4 +

1
n ∈ Q, it holds d(ϕ(a),ϕ(b)) = | 14 −

1
n+1 | <

| 14 + 1
n | = d(a, b).
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5. In the case a = 1
4 + 1

n ∈ Q, b = 1
4 + 1

m ∈ Q, without loss of

generality we may assume n < m. Then

d(ϕ(a),ϕ(b)) =
1

n+ 1
−

1

m+ 1
<

1

n
−

1

m
= d(a, b).

The described set is shown on the left of Figure 2.

Lemma 3.4 immediately implies the following corollary.

Corollary 3.7. Let A ⊂ R be an unbounded set without

accumulation points. Let A have a minimal or maximal element

and let ϕ : A → A be a bijective non-expansive map. Then, ϕ is

an isometry, moreover, the identity.

Proof. Without loss of generality, we may consider the case when

a is a minimal element. Let us show that ϕ(x) = x for every

x ∈ A. Indeed, for the minimal element a, Lemma 3.4 ensures

that ϕ(a) = a. Now suppose for some fixed y ∈ A, the condition

ϕ(x) = x holds for every x < y, x ∈ A. Consider

A1 = A \
{ ⋃

x∈A,x<y

{x}
}
.

Then, ϕ|A1
: A1 → A1 is a bijective non-expansive map, and y

is a minimal element. Then ϕ(y) = y due to Lemma 3.4.

Proposition 4.1 in Naimpally et al. [4] states that for convex (in the

sense of the same study) metric spaces, hereditarily EC-plasticity

implies boundedness. Moreover, for convex subsets in Euclidean

R
n, hereditarily EC-plasticity and boundedness are equivalent.

However, the authors note that convexity is a too strong condition.

In Naimpally et al. [4], Theorem 4.3 states that an unbounded

metric space with at least one accumulation point contains a non-

plastic subspace. Corollary 3.7 demonstrates that the presence of an

accumulation point is essential in the mentioned theorem, since it

allows to build examples of unbounded hereditarily plastic spaces.

Let us go back to Example 3.6 and remark another interesting

property of non-expansive bijections on R. Suppose we have a set

A ⊂ R and a function ϕ : A → A. We will say that ϕ preserves the

relation “between” on the set A if for any x, y, z ∈ A with x < y < z

we have ϕ(x) < ϕ(y) < ϕ(z). Example 3.6 shows that non-

expansive bijections do not have to preserve the relation “between.”

Surprisingly, there is an example demonstrating the same property

with a set without any accumulation points.

Example 3.8. Let A = N ∪ Q, where Q = {2k, k ∈ Z−}. The

bijective non-expansive map ϕ is defined by

ϕ(a) =

{
a+ 6, if a ≤ −4,

a+ 3, otherwise.

The map ϕ does not preserve the relation “between” since

−4 < −2 < 0 but ϕ(−2) < ϕ(−4) < ϕ(0). Let us check that ϕ

is non-expansive.

1. If both a, b ≥ −2 or both a, b ≤ −4, the non-expansiveness of ϕ

is obvious.

2. If a ≥ −2 and b ≤ −4, d(ϕ(a),ϕ(b)) = |a− b− 3| ≤ |a− b| =

d(a, b). Only for a = −2 and b = −4, the inequality a − b < 3

is valid, but even in this case, the previous inequality is true.

The described set is shown on the right of Figure 2.

Furthermore, we are going to present a sufficient condition for

a set in R to be plastic. Let us introduce the set

DA = {p ∈ R : p = d(a, b) for some a, b ∈ A with [a, b]∩A = {a, b}}.

Obviously, several pairs of points may be situated in the same

distance. That is why for every p ∈ DA, we call its multiplicity the

number of pairs of points in A which are on the distance p. This

multiplicity may be finite or infinite.

Theorem 3.9. Let A ⊂ R has no accumulation points and let DA

has a maximal element of finite multiplicity or a minimal element

of finite multiplicity. Then, (A, d) is a plastic metric space.

Proof. Without loss of generality, we may assume that DA has a

minimal element a ∈ R of finite multiplicity k ∈ N. Let us denote

Xa = {xn ∈ A, n = 1, . . . , 2k, d(xi, xi+1) = a, i = 1, 3, . . . , 2k− 1}.

Let us take xi ≤ xj for all i, j with 1 ≤ i < j ≤ 2k. Consider

an arbitrary non-expansive bijection ϕ : A → A. Due to the non-

expansiveness of ϕ, we may conclude that ϕ maps Xa bijectively

onto itself. Thus, ϕ|Xa is an isometry on Xa. In particular, we find

d(x1, x2k) = d(ϕ(x1),ϕ(x2k)). Since this distance is the biggest one

on Xa, either ϕ(x1) = x1 and ϕ(x2k) = x2k or ϕ(x1) = x2k and

ϕ(x2k) = x1. We will refer them as cases 1 and 2, respectively. In

the first case, obviously, for every x ∈ A with x1 < x < x2k, we get

ϕ(x) = x, so, in this case, ϕ|[x1 ,x2k]∩A is the identity. In the second

case, if the structure ofA allows it, ϕ|[x1 ,x2k]∩A is the inversion, called

total symmetry. Furthermore, following the similar procedure as in

Lemma 3.4, we have that in the first case, ϕ is the identity, and in

the second case ϕ is the total symmetry.

Remark 3.10. The conditions of Theorem 3.9 are sufficient but not

necessary for the plasticity of a set without accumulation points.

To make sure that the previous Remark 3.10 is true, one may

consider the space (Z, d). For DZ, the minimal and the maximal

elements are equal to 1 and have infinite multiplicity, but the space

is plastic. However, we constructed the next example, which is less

trivial, to show that plastic spaces which do not satisfy the condition

of the previous theorem may have richer structure.

Example 3.11. Let A = {ai}
i=∞
i=−∞ ⊂ R, where {ai}

i=∞
i=−∞ is an

increasing sequence such that

d(ai, ai+1) =





|k| + 1, for i = 2k, k ∈ Z,
1

k+1
, for i = 2k− 1, k ∈ N,

1
|k|+2

, for i = 2k− 1, k ∈ Z−.

The corresponding DA has no minimal or maximal element.

However, (A, d) is plastic. In fact, let ϕ : A → A be a non-expansive

bijection. Then,

d(ϕ(a0),ϕ(a1)) ≤ d(a0, a1) = 1.

Suppose d(ϕ(a0),ϕ(a1)) =
1
n , where n ≥ 2. Consider the open

ball with the radius n− 1 centered in ϕ(a0). Due to the structure of

A, this ball contains only the point ϕ(a1), except for the center. On
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FIGURE 2

(Left) Illustration of Example 3.6. (Right) Illustration of Example 3.8. The gray dots on the axes indicate A. The black dots mark the respective

bijection. Clearly, no connection of two points has a slope larger than 1.

the other hand, the open ball with the radius n − 1 centered in a0,

and for n ≥ 3, it contains more than two points, and for n = 2, it

contains two points but does not contain a1. In both cases, we have

a contradiction to the non-expansiveness of the map ϕ. That is why

the only possible option is as follows:

d(ϕ(a0),ϕ(a1)) = d(a0, a1) = 1.

Furthermore, just in the same way as in Theorem 3.9, we have

that ϕ is either the identity or the inversion.

Now let us speak about the subsets which contain a continuous

part. One may prove the following statement in the same way as

the Proposition 3.1.

Proposition 3.12. Let be

A =

+∞⋃

i=−∞

(ai, bi) ⊂ R,

where bi < ai+1 be such a sequence of intervals that

d(ai, bi) ≤ d(ai+1, bi+1) (4)

and

d(bi−1, ai) ≤ d(bi, ai+1) (5)

for all i ∈ Z. Furthermore, there exists j ∈ Z such that

d(aj, bj) < d(aj+1, bj+1) or d(bi−1, ai) < d(bi, ai+1). (6)

Then, (A, d) is not plastic.

Remark 3.13. In the same way as in Proposition 3.1, the relation

signs in Equations (4-6) might be commonly inverted.

Here is one more observation.

Proposition 3.14. Let A ⊂ R contain an interval (a,+∞) or

(−∞, a). Then, (A, d) is not plastic.

Proof. Without loss of generality, we discuss the case with (a,+∞).

Let us define the map ϕ with

ϕ(x) =

{
ϕ(x) = x, if x /∈ (a,+∞),

ϕ(x) = x+a
2 , otherwise.

This map is non-expansive, bijective, and, at the same time, not

an isometry.

In Naimpally et al. [4], Theorem 3.9 shows the plasticity of the

space R \ Z. Unfortunately, the proof misses the case that the

non-expansive bijection is a symmetry. However, the statement

itself is true. One may use the same reasoning to prove the next

proposition.

Proposition 3.15. Let

A =

+∞⋃

i=−∞

(ai, bi) ⊂ R,

where

d(ai, bi) = d(ai+1, bi+1) and d(bi, ai+1) = d(bi−1, ai).

Then, (A, d) is plastic.

Remark 3.16. Propositions 3.12 and 3.15 hold true with the closed

intervals.

Remark 3.17. On the other hand, if we consider in the statement of

Proposition 3.15 half-intervals,

A =

+∞⋃

i=−∞

[ai, bi) ⊂ R or A =

+∞⋃

i=−∞

(ai, bi] ⊂ R

(A, d) is already a non-plastic space.
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FIGURE 3

Oppositely to Figure 1, half-open intervals allow that ϕ does not pass entire rectangles in A× A. Rather, it might jump where the intervals can be

glued to each other. Remark that this example contains a first half-open interval and all the following intervals are half-open, cf. bijectivity. The

topological properties of the intervals in A enter the plasticity problem.

Remark 3.18. If we consider in the same statement the set of the

form,

A =

n⋃

i=−∞

[ai, bi] ∪

+∞⋃

i=n+1

(ai, bi] ⊂ R, where n ∈ N,

(A, d) is also a non-plastic space.

Figure 3 illustrates the previous remark.

The reader easily provides more examples which consist of

open or closed intervals together with half-intervals, all with the

same lengths. Again, we remark that the end-points of the intervals

are critical points for the plasticity property.

4 Conclusion

The analysis of plastic sub-spacesA of the real-lineR has shown

that first, the Lipschitz continuity of the map ϕ : A → A with

Lipschitz constant 1 leads to useful and instructive illustrations of

the non-expansivity of the map ϕ, to which it is identical.

The plasticity property of a metric space turned out

to contain two complementary aspects, a purely geometrical

one and a topological one. Already on the real-line R, the

different nature of both aspects become visible. Whereas the

geometrical aspect is an extension of the non-expansivity of

ϕ on a simply connected interval, the topological aspect leads

to the question whether two or more sub-intervals can be

glued at critical points by piecewise translations. Therefore, the

investigation of sub-spaces of the real-line R gives an appropriate

framework for the investigation of the plasticity of metric

spaces.

We expect that the interplay between the two types of nature of

the problem gets more severe in higher dimensions. Already unions

of rectangles and cuboids as sub-spaces of the d-dimensional

Euclidean space R
d give a tremendous multiplicity of open, half-

open, and closed edges and sides—complete or partial.

The named interplay between geometry and topology of the

metric spaces gets more andmore complicated and less intuitive the

more abstract and themore elaborated themetric spaces are.We do

not expect any clarification, for example, metric spaces of functions

before sub-spaces of the Euclidean spaces are understood.

Future research will concentrate on the question, what else can

be said about plastic and non-plastic sub-spaces of the space (R, d).

Furthermore, we will explore the extension of a metric space A to

larger sets inAex which containA. In particular, themetric hull, i. e.,

Frontiers in AppliedMathematics and Statistics 07 frontiersin.org37

https://doi.org/10.3389/fams.2024.1387012
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Langemann and Zavarzina 10.3389/fams.2024.1387012

the set

hullAex (A) =
{
x ∈ Aex : ∃y, z ∈ A : d(y, z) = d(y, x)+ d(x, z)

}

⊆ Aex,

gives interesting perspectives in the context of the plasticity

problem for the specification Aex = R. We conjecture that the

metric hull is the smallest proper extension of the metric space,

which is simply connected to Aex and where the plasticity is

dominated by the geometry. Therefore, the topology might be sub-

ordinated. In the medium term, we hope for an insight into the

question how geometry and topology interact in the plasticity of

a metric space.
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Damped Burger’s equation describes the characteristics of one-dimensional
nonlinear shock waves in the presence of damping effects and is significant in
fluid dynamics, plasma physics, and other fields. Due to the potential applications
of this equation, thus the objective of this investigation is to solve and analyze the
time fractional form of this equation using methods with precise efficiency, high
accuracy, ease of application and calculation, and flexibility in dealing with more
complicated equations, which are called the Aboodh residual power series
method and the Aboodh transform iteration method (ATIM) within the Caputo
operator framework. Also, this study intends to further our understanding of the
dynamic characteristics of solutions to the Damped Burger’s equation and to
assess the effectiveness of the proposed methods in addressing nonlinear
fractional partial differential equations. The two proposed methods are highly
effective mathematical techniques for studying more complicated nonlinear
differential equations. They can produce precise approximate solutions for
intricate evolution equations beyond the specific examined equation. In
addition to the proposed methods, the fractional derivatives are processed
using the Caputo operator. The Caputo operator enhances the representation
of fractional derivatives by providing a more accurate portrayal of the underlying
physical processes. Based on the proposed two approaches, a set of
approximations to damped Burger’s equation are derived. These
approximations are discussed graphically and numerically by presenting a set
of two- and three-dimensional graphs. In addition, these approximations are
analyzed numerically in several tables, including the absolute error for each
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approximate solution compared to the exact solution for the integer case.
Furthermore, the effect of the fractional parameter on the behavior of the
derived approximations is examined and discussed.

KEYWORDS

nonlinear fractional partial differential equations (PDEs), damped Burger’s equation,
Aboodh residual power series method, Aboodh transform iteration method,
Caputo operator

1 Introduction

There has been a growing interest in fractional differential
equations (FDEs) in recent years. The fractional approach is a
strong modeling paradigm in mechanics and materials, wave
propagation, anomalous diffusion, and turbulence. Natural
phenomena exhibit anomalous diffusion, in which the underlying
stochastic process does not follow Brownian motion. Compared to
the Gaussian process, the mean-square variance may rise more
quickly for superdiffusion or more slowly for subdiffusion. Due to
long-range correlations in dynamics or anomalously large particle
jumps, non-Gaussion diffusion models can be constructed utilizing
nonlocal-in-time or nonlocal in-space operators, such as Caputo or
Riemann–Liouville derivatives. The advantage of the fractional
model is that anomalous diffusion is well described [1–11]. The
singularity of the kernel poses a difficulty for the authors of
Caputo and Riemann derivatives. Considering the fact that the
kernel is utilized to clarify the memory impact of the physical
system, it is indisputable that this limitation restricts both
derivatives from accurately assessing the full effect of the
memory. Caputo and Fabrizio (CF) [12] introduced a novel
fractional operator with an exponential kernel during the mid-
1990s as part of their effort to do so. The utilization of the
nonsingular kernel of this derivative produces more logical
outcomes when compared to the conventional method. A
compilation of CF operator implementations has been
expanded around in Ref. [13–15]. The research articles cited
encompass a diverse range of topics within the field of control
systems, vibration isolation, and neural network approximation.
Guo et al. delve into fixed-time safe tracking control and non-
singular fixed-time tracking control of uncertain nonlinear
systems [16, 17] 3. Lu et al. focus on nonlinear vibration
isolation systems with high-static-low-dynamic stiffness [18,
19]. Additionally, Luo et al. explore adaptive optimal control of
affine nonlinear systems using identifier-critic neural network
approximation [20]. These studies contribute valuable insights
and advancements to their respective areas, showcasing the
ongoing innovation and research efforts in control theory and
engineering applications.

Determining an exact solution to partial differential equations
(PDEs) of fractional order is exceedingly challenging. The ability to
precisely and numerically solve such equations is critical in applied
mathematics. As a result, innovative approaches have been
developed to obtain analytical solutions that demonstrate a
significant level of accuracy compared to the precise solutions
[21–23]. The resolution of differential equations often involves
the utilization of integral transformations. Employing integral
transformations makes resolving IVPs and BVPs in differential
and integral equations possible efficiently. An extensive array of

scholars examined the consequences of various integral transforms
applied to distinct classes of differential equations [24–26]. The
Laplace transform is the integral transform that is most commonly
utilized [27]. In 1998, Watugala [28] introduced the Sumudu
transform, which proved to be an efficient approach to
addressing control engineering and differential equations
challenges. In 2011, T. Elzaki and S. Elzaki proposed the “Elzaki
Transform” as an innovative integral transform; its utilization in the
resolution of partial differential equations has since become
widespread [29]. In 2013, Aboodh additionally presented the
“Aboodh Transform (AT)” and applied it to the resolution of
PDEs [30]. A variety of transformations are documented in the
literature.

Omar Abu Arqub created the RPSM in 2013 [31]. The RPSM
combines the residual error function with Taylor’s series. After that,
this approach was used to find convergence series approximations
for both nonlinear and linear differential equations. The RPSM was
first introduced in 2013 to solve fuzzy differential equations. More
improvements were made to this technique. For instance, Arqub
et al. [32] developed a novel collection of RPSM algorithms to
promptly find power series solutions for ordinary DEs. Furthermore,
Arqub et al. [33] introduced a novel and appealing RPSM method
for fractional-order nonlinear boundary value problems. El-Ajou
et al. [34] introduced an innovative iterative approach utilizing
RPSM to approximate fractional-order solutions to the KdV-
burgers equations. A novel approach was introduced by Xu et al.
[35], which involved fractional power series solutions for Boussinesq
DEs of the second and fourth orders. Zhang et al. [36] synthesized
least square methods and RPSM to develop a robust numerical
technique. Consult [37–39] for additional readings on RPSM in
greater depth.

Scientists utilized two distinct methodologies to solve fractional-
order differential equations (FODEs). A sequence of solutions to the
new equation form is obtained by mapping the original equation
onto the space produced by the AT [40]. The solution to the original
equation is obtained by applying the inverse Aboodh transform.
Components of the Sumudu transform, and the homotopy
perturbation approach are combined in this novel method. As
power series expansions, the novel technique, which does not
require discretization, linearization, or perturbation, can solve
both linear and nonlinear PDEs. The determination of the
coefficients can be accomplished through a limited number of
calculations, in contrast to RPSM, which necessitates numerous
iterations of fractional derivative computations during the solution
phases. The proposed methodology has the potential to yield an
accurate and closed-form approximation by leveraging a rapid
convergence series.

For solving fractional differential equations, the Aboodh
transform iteration method (ATIM) [41–43] and the Aboodh
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residual power series method (ARPSM) [44, 45] are regarded as the
most straightforward techniques. These methods generate
numerical approximations for solutions to linear and nonlinear
differential equations without requiring discretization or
linearization and immediately and visibly display the symbolic
terms of analytical solutions. Comparing and contrasting the
effectiveness of ARPSM and ATIM in solving nonlinear PDEs,
specifically damped Burger’s equation, is the primary objective of
this study. It is worth mentioning that these two methods have been
employed to resolve many fractional differential problems, both
linear and nonlinear.

2 Fundamental concepts

Definition 2.1. [46] It is assumed that the function Θ(ζ, η) is of
exponential order and piecewise continuous.

For τ ≥ 0, the AT of Θ(ζ, η) is defined as follows:

A Θ ζ , η( )[ ] � Λ ζ , ϵ( ) � 1
ϵ∫∞

0
Θ ζ , η( )e−ηϵdη, r1 ≤ ϵ≤ r2.

Below is a description of the inverse of AT:

A−1 Λ ζ , ϵ( )[ ] � Θ ζ , η( ) � 1
2πi

∫u+i∞

u−i∞
Λ ζ , η( )ϵeηϵdη

Where ζ � (ζ1, ζ2, . . . , ζp) ∈ R and p ∈ N.

Lemma 2.1. [47, 48] Two functions of exponential order, Θ1(ζ, η)
and Θ2(ζ, η), are defined. They are piecewise continuous on
[0,∞]. Let us assume that A[Θ1(ζ, η)] = Λ1(ζ, η), A[Θ2(ζ, η)] =
Λ2(ζ, η) and λ1, λ2 are real constants. Thus, the following features
are valid:

1. A [λ1Θ1 (ζ, η) + λ2Θ2 (ζ, η)] = λ1Λ1 (ζ, ϵ) + λ2Λ2 (ζ, η),
2. A−1 [λ1Λ1 (ζ, η) + λ2Λ2 (ζ, η)] = λ1Θ1 (ζ, ϵ) + λ2Θ2 (ζ, η),
3. A[JpηΘ(ζ , η)] � Λ(ζ ,ϵ)

ϵp ,
4. A[Dp

ηΘ(ζ , η)] � ϵpΛ(ζ , ϵ) − ∑r−1
K�0

ΘK(ζ ,0)
ϵK−p+2 , r − 1<p≤ r, r ∈ N.

Definition 2.2. [49] The Caputo defines the fractional derivative of
the function Θ(ζ, η) in terms of order p.

Dp
ηΘ ζ , η( ) � Jm−p

η Θ m( ) ζ , η( ), r≥ 0, m − 1<p≤m,

where ζ � (ζ1, ζ2, . . . , ζp) ∈ Rp and m, p ∈ R, Jm−p
η is the R-L

integral of Θ(ζ, η).

Definition 2.3. [50] The power series has the following form.

∑∞
r�0

Zr ζ( ) η − η0( )rp � Z0 η − η0( )0 + Z1 η − η0( )p + Z2 η − η0( )2p+/,

where ζ � (ζ1, ζ2, . . . , ζp) ∈ Rp and p ∈ N. This kind of series is
called a multiple fractional power series (MFPS) for η0, where the
variable is η and the series coefficients are Zr(ζ)′s.

Lemma 2.2. Let us assume that Θ(ζ, η) is the exponential order
function. In this case, A[Θ(ζ, η)] = Λ(ζ, ϵ) is the definition of the
AT. Therefore,

A Drp
η Θ ζ , η( )[ ] � ϵrpΛ ζ , ϵ( ) −∑r−1

j�0
ϵp r−j( )−2Djp

η Θ ζ , 0( ), 0<p≤ 1,

(1)
where ζ � (ζ1, ζ2, . . . , ζp) ∈ Rp and p ∈ N and Drp

η �
Dp

η .D
p
η ./ .Dp

η (r − times)
Proof. We can demonstrate Eq. 2 via induction. The following

outcomes arise from selecting r = 1 in Eq. 2:

A D2p
η Θ ζ , η( )[ ] � ϵ2pΛ ζ , ϵ( ) − ϵ2p−2Θ ζ , 0( ) − ϵp−2Dp

ηΘ ζ , 0( )

For r = 1, Lemma 2.1, part (4), asserts that Eq. 2 is valid. By
changing r = 2 in Eq. 2, we get

A D2p
r Θ ζ , η( )[ ] � ϵ2pΛ ζ , ϵ( ) − ϵ2p−2Θ ζ , 0( ) − ϵp−2Dp

ηΘ ζ , 0( ). (2)

In light of Eq. 2’s left-hand side, we can conclude

L.H.S � A D2p
η Θ ζ , η( )[ ]. (3)

Eq. 3 may be expressed in the following way:

L.H.S � A Dp
ηΘ ζ , η( )[ ]. (4)

Let us assume

z ζ , η( ) � Dp
ηΘ ζ , η( ). (5)

Thus, Eq. 4 becomes as

L.H.S � A Dp
ηz ζ , η( )[ ]. (6)

The use of the Caputo type fractional derivative results in a
modification of Eq. 6.

L.H.S � A J1−pz′ ζ , η( )[ ]. (7)

The R-L integral for the AT is found in Eq. 7, which makes it
possible to derive the following:

L.H.S � A z′ ζ , η( )[ ]
ϵ1−p . (8)

Equation 8 is transformed into the following form by using the
differential characteristic of the AT:

L.H.S � ϵpZ ζ , ϵ( ) − z ζ , 0( )
ϵ2−p , (9)

From Eq. 5, we obtain:

Z ζ , ϵ( ) � ϵpΛ ζ , ϵ( ) − Θ ζ , 0( )
ϵ2−p ,

where A [z (ζ, η)] = Z (ζ, ϵ). Therefore, Eq. 9 is converted to

L.H.S � ϵ2pΛ ζ , ϵ( ) − Θ ζ , 0( )
ϵ2−2p − Dp

ηΘ ζ , 0( )
ϵ2−p , (10)

According to Eq. 2, then Eq. 10 is compatible. Let us assume the
validity of Eq. 2 for r = K. This allows us to change r = K in Eq. 2:

A DKp
η Θ ζ , η( )[ ] � ϵKpΛ ζ , ϵ( )

− ∑K−1
j�0

ϵp K−j( )−2Djp
η Djp

η Θ ζ , 0( ), 0<p≤ 1. (11)
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Proving Eq. 2 for the value of r = K + 1 is the next step. Based on
Eq. 2, we may write

A D K+1( )p
η Θ ζ , η( )[ ] � ϵ K+1( )pΛ ζ , ϵ( ) −∑K

j�0
ϵp K+1( )−j( )−2Djp

η Θ ζ , 0( ).

(12)
After analysis of the LHS of Eq. 12, we get

L.H.S � A DKp
η DKp

η( )[ ]. (13)

Suppose that

DKp
η � g ζ , η( ).

Equation 13 yields

L.H.S � A Dp
ηg ζ , η( )[ ]. (14)

By using the R-L integral formula and the Caputo fractional
derivative, we may convert Eq. 14 into the following expression.

L.H.S � ϵpA DKp
η Θ ζ , η( )[ ] − g ζ , 0( )

ϵ2−p . (15)

Equation 11 is unitized to provide Eq. 15.

L.H.S � ϵrpΛ ζ , ϵ( ) −∑r−1
j�0

ϵp r−j( )−2Djp
η Θ ζ , 0( ), (16)

Moreover, Eq. 16 yields the following result.

L.H.S � A Drp
η Θ ζ , 0( )[ ].

Therefore, Eq. 2 holds for r = K + 1. Thus, we used the
mathematical induction approach and shows that Eq. 2 holds
true for all positive integers.

Extending the concept of multiple fractional A lemma
demonstrating Taylor’s formula is shown below. The ARPSM,
which will be covered in more detail later on, will benefit from
this formula.

Lemma 2.3. Assume that the function Θ(ζ, η) behaves
exponentially order. The statement A[Θ(ζ, η)] = Λ(ζ, ϵ)
represents the AT of Θ(ζ, η), and it is multiple fractional Taylor’s
series expressed as:

Λ ζ , ϵ( ) � ∑∞
r�0

Zr ζ( )
ϵrp+2 , ϵ> 0, (17)

where, ζ � (s1, ζ2, . . . , ζp) ∈ Rp, p ∈ N.
Proof. Now we examine the fractional order of Taylor’s series as

Θ ζ , η( ) � Z0 ζ( ) + Z1 ζ( ) ηp

Γ p + 1[ ] + +Z2 ζ( ) η2p

Γ 2p + 1[ ] +/ . (18)

Equation 18 may be transformed using the AT to get the
following equality:

A Θ ζ , η( )[ ] � A Z0 ζ( )[ ] + A Z1 ζ( ) ηp

Γ p + 1[ ][ ]
+ A Z1 ζ( ) η2p

Γ 2p + 1[ ][ ] +/

For this, we use the AT’s characteristics.

A Θ ζ , η( )[ ] � Z0 ζ( ) 1ϵ2 + Z1 ζ( ) Γ p + 1[ ]
Γ p + 1[ ] 1

ϵp+2

+ Z2 ζ( ) Γ 2p + 1[ ]
Γ 2p + 1[ ] 1

ϵ2p+2/

Hence, in the AT, we obtains (17), a new version of
Taylor’s series.

Lemma 2.4. Define the MFPS representation of the function
expressed in the new form of Taylor’s series (17) as A[Θ(ζ, η)] =
Λ(ζ, ϵ). Next, we have

Z0 ζ( ) � lim
ϵ→∞

ϵ2Λ ζ , ϵ( ) � Θ ζ , 0( ). (19)

Proof. The subsequent is derived from the new form of
Taylor’s series:

Z0 ζ( ) � ϵ2Λ ζ , ϵ( ) − Z1 ζ( )
ϵp − Z2 ζ( )

ϵ2p −/ (20)

The required result, denoted by Eq. 20, is obtained by applying
limϵ→∞ to Eq. 19 and performing a brief computation.

Theorem 2.5. Let us suppose that the function A[Θ(ζ, η)] = Λ(ζ, ϵ)
has MFPS form given by

Λ ζ , ϵ( ) � ∑∞
0

Zr ζ( )
ϵrp+2 , ϵ> 0,

where ζ � (ζ1, ζ2, . . . , ζp) ∈ Rp and p ∈ N. Then we have

Zr ζ( ) � Drp
r Θ ζ , 0( ),

where, Drp
η � Dp

η .D
p
η ./ .Dp

η(r − times).
Proof. This is the revised version of the Taylor’s series that

we have.

Z1 ζ( ) � ϵp+2Λ ζ , ϵ( ) − ϵpZ0 ζ( ) − Z2 ζ( )
ϵp − Z3 ζ( )

ϵ2p −/ (21)

Using Eq. 21 and the limϵ→∞, we are able to get

Z1 ζ( ) � lim
ϵ→∞

ϵp+2Λ ζ , ϵ( ) − ϵpZ0 ζ( )( ) − lim
ϵ→∞

Z2 ζ( )
ϵp − lim

ϵ→∞
Z3 ζ( )
ϵ2p −/

Taking limit, we arrive at the equality that follows:

Z1 ζ( ) � lim
ϵ→∞

ϵp+2Λ ζ , ϵ( ) − ϵpZ0 ζ( )( ). (22)

Following is the result that is obtained by applying Lemma (2.2)
to Eq. 22:

Z1 ζ( ) � lim
ϵ→∞

ϵ2A Dp
ηΘ ζ , η( )[ ] ϵ( )( ). (23)

Through the use of Lemma (2.3) to Eq. 23, the equation is
changed into

Z1 ζ( ) � Dp
ηΘ ζ , 0( ).

Once again, by taking into consideration the new
implementation of Taylor’s series and assuming limit ϵ → ∞, we
have arrived at the result that
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Z2 ζ( ) � ϵ2p+2Λ ζ , ϵ( ) − ϵ2pZ0 ζ( ) − ϵpZ1 ζ( ) − Z3 ζ( )
ϵp −/

Lemma (2.3) leads us to get the following:

Z2 ζ( ) � lim
ϵ→∞

ϵ2 ϵ2pΛ ζ , ϵ( ) − ϵ2p−2Z0 ζ( ) − ϵp−2Z1 ζ( )( ). (24)

With the help of Lemmas (2.2) and (2.4), Eq. 24 is
transformed into

Z2 ζ( ) � D2p
η Θ ζ , 0( ).

When we apply the same method to the subsequent Taylor’s
series, we obtain the following results:

Z3 ζ( ) � lim
ϵ→∞

ϵ2 A D2p
η Θ ζ , p( )[ ] ϵ( )( ).

The final equation can be found by applying Lemma (2.4).

Z3 ζ( ) � D3p
η Θ ζ , 0( ).

So, in general

Zr ζ( ) � Drp
η Θ ζ , 0( ).

Thus, the proof comes to an end.
In the succeeding theorem, the conditions that determine the

convergence of the new version of Taylor’s formula are established
and detailed in further depth.

Theorem 2.6. The revised formula for multiple fractional
Taylor’s, given in Lemma (2.3), is denoted by the expression
A[Θ(ζ, η)] = Λ(ζ, ϵ). The new version of multiple fractional
Taylor’s formula’s residual RK(ζ, ϵ) satisfies the following
inequality if |ϵaA[D(K+1)p

η Θ(ζ , η)]|≤T, on 0 < ϵ ≤ s is
associated with
0 < p ≤ 1:

|RK ζ , ϵ( )|≤ T

ϵ K�1( )p+2, 0< ϵ≤ s.

Proof. To start the proof, Let assume: For r = 0, 1, 2, . . . , K + 1,
A[Drp

η Θ(ζ , η)](ϵ) is defined on 0 < ϵ ≤ s. Let,
|ϵ2A[DηK+1Θ(ζ , tau)]|≤T, on 0< ϵ≤ s. Based on the revised
version of Taylor’s series, determine the following relationship:

RK ζ , ϵ( ) � Λ ζ , ϵ( ) −∑K
r�0

Zr ζ( )
ϵrp+2 . (25)

Applying Theorem (2.5) allows for the transformation of Eq. 25.

RK ζ , ϵ( ) � Λ ζ , ϵ( ) −∑K
r�0

Drp
η Θ ζ , 0( )
ϵrp+2 . (26)

It is necessary to multiply ϵ(K+1)a+2 on both sides of Eq. 26 which
leads to

ϵ K+1( )p+2RK ζ , ϵ( ) � ϵ2 ϵ K+1( )pΛ ζ , ϵ( ) −∑K
r�0

ϵ K+1−r( )p−2Drp
η Θ ζ , 0( )⎛⎝ ⎞⎠.

(27)

The use of Lemma (2.2) to Eq. 27 results in

ϵ K+1( )p+2RK ζ , ϵ( ) � ϵ2A D K+1( )p
η Θ ζ , η( )[ ]. (28)

Equation 28 is obtained by applying the absolute sign to
the equation.

|ϵ K+1( )p+2RK ζ , ϵ( )| � |ϵ2A D K+1( )p
η Θ ζ , η( )[ ]|. (29)

By applied the condition given in Eq. 29, we can arrive at the
result as will be given below.

−T
ϵ K+1( )p+2 ≤RK ζ , ϵ( )≤ T

ϵ K+1( )p+2. (30)

Equation 30 yields the required result.

|RK ζ , ϵ( )|≤ T

ϵ K+1( )p+2.

Hence, a novel criterion for series convergence is established.

3 A route map describing the methods

3.1 Solving time-fractional PDEs with
variable coefficients by use of the
ARPSM process

We detail the ARPSM rules that was used to resolve our
underlying model.

Step 1: Finding the general equation’s simplified form yields

Dqp
η Θ ζ , η( ) + ϑ ζ( )N Θ( ) − ζ ζ ,Θ( ) � 0, (31)

Step 2: The AT is applied on both sides of Eq. 31 in order to get

A Dqp
η Θ ζ , η( ) + ϑ ζ( )N Θ( ) − ζ ζ ,Θ( )[ ] � 0, (32)

The use of Lemma (2.2) transforms Eq. 32 into.

Λ ζ , s( ) � ∑q−1
j�0

Dj
ηΘ ζ , 0( )
sqp+2

− ϑ ζ( )Y s( )
sqp

+ F ζ , s( )
sqp

, (33)

where, A [ζ(ζ, Θ)] = F (ζ, s), A [N(Θ)] = Y(s).

Step 3: You should take into consideration the form that the
solution to Eq. 33 takes:

Λ ζ , s( ) � ∑∞
r�0

Zr ζ( )
srp+2

, s> 0,

Step 4: In order to proceed further, you will need to follow
these steps:

Z0 ζ( ) � lim
s→∞

s2Λ ζ , s( ) � Θ ζ , 0( ),

Through the use of Theorem 2.6, the following results
are derived.
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Z1 ζ( ) � Dp
ηΘ ζ , 0( ),

Z2 ζ( ) � D2p
η Θ ζ , 0( ),
..
.

Zw ζ( ) � Dwp
η Θ ζ , 0( ),

Step 5: After Kth truncation, get the Λ(ζ, s) series in the
following way:

ΛK ζ , s( ) � ∑K
r�0

Zr ζ( )
srp+2

, s> 0,

ΛK ζ , s( ) � Z0 ζ( )
s2

+ Z1 ζ( )
sp+2

+/ + Zw ζ( )
swp+2

+ ∑K
r�w+1

Zr ζ( )
srp+2

,

Step 6: Consider both the Aboodh residual function (ARF) from
equation Eq. 33 and the Kth-truncated ARF separately to get

ARes ζ , s( ) � Λ ζ , s( ) −∑q−1
j�0

Dj
ηΘ ζ , 0( )
sjp+2

+ ϑ ζ( )Y s( )
sjp

− F ζ , s( )
sjp

,

and

AResK ζ , s( ) � ΛK ζ , s( ) −∑q−1
j�0

Dj
ηΘ ζ , 0( )
sjp+2

+ ϑ ζ( )Y s( )
sjp

− F ζ , s( )
sjp

.

(34)

Step 7: Instead of its expansion form, put ΛK(ζ, s) into Eq. 34.

AResK ζ , s( ) � Z0 ζ( )
s2

+ Z1 ζ( )
sp+2

+/ + Zw ζ( )
swp+2

+ ∑K
r�w+1

Zr ζ( )
srp+2

⎛⎝ ⎞⎠
−∑q−1

j�0

Dj
ηΘ ζ , 0( )
sjp+2

+ ϑ ζ( )Y s( )
sjp

− F ζ , s( )
sjp

. (35)

Step 8: To solve Eq. 35, multiply both sides of the equation by sKp+2.

sKp+2AResK ζ , s( ) � sKp+2
Z0 ζ( )
s2

+ Z1 ζ( )
sp+2

+/ + Zw ζ( )
swp+2

+ ∑K
r�w+1

Zr ζ( )
srp+2

⎛⎝
−∑q−1
j�0

Dj
ηΘ ζ , 0( )
sjp+2

+ ϑ ζ( )Y s( )
sjp

− F ζ , s( )
sjp

⎞⎠.

(36)

Step 9: With respect to lims→∞, evaluating both sides of Eq. 36.

lim
s→∞ sKp+2AResK ζ , s( ) � lim

s→∞ sKp+2
Z0 ζ( )
s2

+ Z1 ζ( )
sp+2

+/ + Zw ζ( )
swp+2

(
+ ∑K

r�w+1

Zr ζ( )
srp+2

−∑q−1
j�0

Dj
ηΘ ζ , 0( )
sjp+2

+ ϑ ζ( )Y s( )
sjp

− F ζ , s( )
sjp

⎞⎠.

Step 10: By solving the provided equation, determine the value
of ZK(ζ).

lim
s→∞ sKp+2AResK ζ , s( )( ) � 0,

where K = w + 1, w + 2, /.

Step 11: Replace the values of ZK(ζ) with aK-truncated series ofΛ(ζ,
s) to get the K-approximate solution of Eq. 33.

Step 12: The K-approximate solution ΘK(ζ, η) may be obtained by
solving ΛK(ζ, s) with the inverse of AT.

3.2 Problem 1

Let us consider the following time fractional PDE [51]:

Dp
ηΘ ζ ,η( )+Θ ζ ,η( )∂3Θ ζ ,η( )

∂ζ3
− ∂Θ ζ ,η( )

∂ζ

∂2Θ ζ ,η( )
∂ζ2

− ∂2Θ ζ ,η( )
∂ζ2

� 0,

where 0<p≤1
(37)

with the following IC’s:

Θ ζ , 0( ) � eζ/4

4
. (38)

and the following exact solution

Θ ζ , η( ) � 1
4
e
1
4

η
4+ζ( ). (39)

Equation 38 is used, and AT is applied to Eq. 37 to get

Θ ζ , s( ) −
eζ/4

4
s2

+ 1
sp
Aη A−1

η Θ ζ , s( ) × ∂3A−1
η Θ ζ , s( )
∂ζ3

⎡⎣ ⎤⎦
− 1
sp
Aη

∂A−1
η Θ ζ , s( )
∂ζ

∂2A−1
η Θ ζ , s( )
∂ζ2

⎡⎣ ⎤⎦ − 1
sp

∂2Θ ζ , s( )
∂ζ2

[ ] � 0, (40)

Thus, the kth-truncated term series are

Θ ζs( ) �
eζ/4

4
s2

+∑k
r�1

fr ζ , s( )
srp+1

, r � 1, 2, 3, 4/ (41)

The ARFs read

AηRes ζ , s( ) � Θ ζ , s( ) −
eζ/4

4
s2

+ 1
sp
Aη A−1

η Θ ζ , s( ) × ∂3A−1
η Θ ζ , s( )
∂ζ3

⎡⎣ ⎤⎦
− 1
sp
Aη

∂A−1
η Θ ζ , s( )
∂ζ

∂2A−1
η Θ ζ , s( )
∂ζ2

⎡⎣ ⎤⎦
− 1
sp

∂2Θ ζ , s( )
∂ζ2

[ ] � 0, (42)

and the kth-LRFs as:

AηResk ζ , s( ) � Θk ζ , s( ) −
eζ/4

4
s2

+ 1
sp
Aη A−1

η Θk ζ , s( ) × ∂3A−1
η Θk ζ , s( )
∂ζ3

⎡⎣ ⎤⎦
− 1
sp
Aη

∂A−1
η Θk ζ , s( )
∂ζ

∂2A−1
η Θk ζ , s( )
∂ζ2

⎡⎣ ⎤⎦
− 1
sp

∂2Θk ζ , s( )
∂ζ2

[ ] � 0, (43)
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To find fr (ζ, s). We solve the relation lims→∞(srp+1) repeatedly,
multiply the resulting equation by srp+1, and substitute the rth-
truncated series Eq. 41 into the rth-ARF Eq. 43 where r = 1, 2, 3,
/, and AηResΘ,r(ζ , s)) � 0. The first few terms read

f1 ζ , s( ) � eζ/4

64
, (44)

f2 ζ , s( ) � exζ/4

1024
, (45)

f3 ζ , s( ) � eζ/4

16384
, (46)

f4 ζ , s( ) � eζ/4

262144
, (47)

and so on.
After putting fr (ζ, s), for r = 1, 2, 3, . . . , in Eq. 41, we obtain

Θ ζ , s( ) � eζ/4

64sp+1
+ eζ/4

1024s2p+1
+ eζ/4

16384s3p+1
+ eζ/4

262144s4p+1
+ eζ/4

4s
+/

(48)
By applying the inverse of AF, the following approximation to

problem 1 is obtained

Θ ζ , η( ) � eζ/4

4
+ eζ/4η2p

1024Γ 2p + 1( ) + eζ/4η3p

16384Γ 3p + 1( )
+ eζ/4η4p

262144Γ 4p + 1( ) + eζ/4ηp

64Γ p + 1( ) +/ (49)

3.3 Problem 2

Let us considered the following fractional damped Burger’s
equation [51]

Dp
ηΘ ζ , η( ) + ∂2Θ ζ , η( )

∂x2 + Θ ζ , η( ) ∂Θ ζ , η( )
∂x

+ 1
5
Θ ζ , η( )

� 0, where 0<p≤ 1 (50)
with the following IC’s:

Θ ζ , 0( ) � 1
5
ζ . (51)

and the following exact solution

Θ ζ , η( ) � ζ

5 2e
η
5 − 1( ). (52)

Using Eq. 51 along with the application of AT to Eq. 50 results in
the following:

Θ ζ , s( ) −
1
5
ζ

s2
+ 1
sp

∂2Θ ζ , s( )
∂x2[ ] + 1

sp
Aη A−1

η Θ ζ , s( ) × ∂A−1
η Θ ζ , s( )
∂x

⎡⎣ ⎤⎦
+ 1
5sp

Θ ζ , s( )[ ] � 0, (53)

Therefore, the term series that are kth truncated are as follows:

Θ ζ , s( ) �
1
5
ζ

s2
+∑k

r�1

fr ζ , s( )
srp+1

, r � 1, 2, 3, 4/ . (54)

The ARFs read

AηRes ζ , s( ) � Θ ζ , s( ) −
1
5
ζ

s2
+ 1
sp

∂2Θ ζ , s( )
∂x2[ ]

+ 1
sp
Aη A−1

η Θ ζ , s( ) × ∂A−1
η Θ ζ , s( )
∂x

⎡⎣ ⎤⎦
+ 1
5sp

Θ ζ , s( )[ ] � 0, (55)

and the kth-LRFs as:

AηResk ζ , s( ) � Θk ζ , s( ) −
1
5
ζ

s2
+ 1
sp

∂2Θk ζ , s( )
∂x2[ ]

+ 1
sp
Aη A−1

η Θk ζ , s( ) × ∂A−1
η Θk ζ , s( )
∂x

⎡⎣ ⎤⎦
+ 1
5sp

Θk ζ , s( )[ ] � 0, (56)

To find fr (ζ, s). We solve the relation lims→∞(srp+1) repeatedly,
multiply the resulting equation by srp+1, and substitute the rth-
truncated series Eq. 54 into the rth-ARF Eq. 56. r = 1, 2, 3, /,
and AηResΘ,r(ζ , s)) � 0. The first few terms are as follows:

f1 ζ , s( ) � − 1
25

2ζ( ), (57)

f2 ζ , s( ) � 6ζ
125

, (58)

f3 ζ , s( ) � 2
625

ζ −2Γ 2p + 1( )
Γ p + 1( )2 − 9( ), (59)

and so on.
Equation 54 is used to get the values of fr (ζ, s) for r = 1, 2, 3, . . . ,.

Θ ζ , s( ) � 6ζ

125s2p+1
− 2ζ

25sp+1
+
2ζ −2Γ 2p + 1( )

Γ p + 1( )2 − 9( )
625s3p+1

+ ζ

5s
+/ .

(60)
Applying Aboodh’s inverse transform, we finally get the

following approximation to problem 2:

Θ ζ , η( ) � ζ

5
+ 6ζη2p

125Γ 2p + 1( ) − 18ζη3p

625Γ 3p + 1( )
− 4ζη3pΓ 2p + 1( )
625Γ p + 1( )2Γ 3p + 1( ) − 2ζηp

25Γ p + 1( ) +/ .

(61)
The approximation (49) is graphically evaluated, as depicted

in Figure 1. This figure illustrates how the fractional parameter p
influences the behavior of the wave described by this
approximation. It is found that the increase of the fractional
parameter leads to the enhancement of the amplitude of the wave
described by this approximation. Additionally, approximation
(49) is graphically compared with the exact solution (39) to the
integer case, as shown in Figure 2. Moreover, we conducted a
numerical analysis to compare the absolute error of the
approximation (49) with the exact solution (39) for the integer
case to confirm the inferred approximation’s accuracy, as shown
in Figure 3; Table 1. Moreover, the analytical results indicate that
the derived approximations are consistently stable across the
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study domain. This is one of the most essential features of
ARPSM, which gives more accurate and stable approximations
throughout the study domain. The investigation shows that this
improves the effectiveness of ARPSM in evaluating problem
1 and other strong nonlinear and more complicated fractional
evolution equations.The approximation (61) is analyzed
graphically against the fractional parameter p and for different
values of η as evident in Figures 4, 5. It is shown that the
amplitude of the wave, which is described by approximation
(61), increases with increasing the fractional parameter p. To
make sure that the approximation (61) is highly accurate, we

calculated its absolute error compared to the exact solution (52),
which can be seen in Figure 6; Table 2. Furthermore, the
numerical results indicate that the derived approximations are
consistently stable across the study domain. This is one of the
most essential features of ARPSM, which gives more accurate and
stable approximations throughout the study domain. These
results also enhance the efficiency of ARPSM in analyzing
many nonlinear and most complicated evolution equations,
such as various evolution equations used in plasma physics to
study the properties of nonlinear structures that arise in this
fertile medium for many researchers.

FIGURE 1
The approximation (49) to problem 1 using ARPSM is considered against the fractional parameter p: (A) The approximation (49) is plotted in (ζ, η)-
plane and (B) The approximation (49) is plotted against η at (ζ = 5).

FIGURE 2
The approximation (49) to problem 1 using ARPSM at p = 1 is compared with the exact solution (39) for the integer case: (A) The two solutions are
plotted in (ζ, η)-plane and (B) The two solutions are plotted against η at (ζ = 5).
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3.4 Concept of the Aboodh transform
iterative method (ATIM)

Let us consider a general PDE of fractional order in
space-time.

Dp
ηΘ ζ , η( ) � Φ Θ ζ , η( ), Dη

ζΘ ζ , η( ), D2η
ζ Θ ζ , η( ), D3η

ζ Θ ζ , η( )( ), 0<p, η≤ 1,

(62)

Initial conditions

Θ k( ) ζ , 0( ) � hk, k � 0, 1, 2, . . . , m − 1, (63)
Assuming Θ(ζ, η) as the unknown function, while
Φ(Θ(ζ , η), Dη

ζΘ(ζ , η), D2η
ζ Θ(ζ , η) D3η

ζ Θ(ζ , η)) may be a nonlinear
or linear operator of Θ(ζ , η), Dη

ζΘ(ζ , η), D2η
ζ Θ(ζ , η) andD3η

ζ Θ(ζ , η).
Applying the AT to both sides of Eq. 62 yields the following
equation; Θ(ζ, η) is represented by Θ for simplicity.

A Θ ζ , η( )[ ]
� 1
sp

∑m−1

k�0

Θ k( ) ζ , 0( )
s2−p+k

+ A Φ Θ ζ , η( ), Dη
ζΘ ζ , η( ), D2η

ζ Θ ζ , η( ), D3η
ζ Θ ζ , η( )( )[ ]⎛⎝ ⎞⎠,

(64)

The problem may be solved by using the inverse of AT, which
results in:

Θ ζ ,η( )
�A−1⎡⎣ 1

sp
∑m−1

k�0

Θ k( ) ζ ,0( )
s2−p+k

+A Φ Θ ζ ,η( ),Dη
ζΘ ζ ,η( ),D2η

ζ Θ ζ ,η( ),D3η
ζ Θ ζ ,η( )( )[ ]⎛⎝ ⎞⎠⎤⎦.

(65)

An infinite series is used to represent the solution that is
achieved by the iterative processing of the AT technique.

Θ ζ , η( ) � ∑∞
i�0

Θi. (66)

FIGURE 3
Here, we considered the absolute error of the approximation (49)
as compared to the exact solution (39) for the integer case, i.e., p = 1.

TABLE 1 The approximation (49) to problem 1 using ARPSM is considered against the fractional parameter p = 1.

η ζ ARPSMP=0.5 ARPSMp=0.7 ARPSMP=1.0 Exact $Error_{p = 1.0}$

1 0 0.268655 0.268011 0.266124 0.266124 2.007703 × 10−9

0.4 0.29691 0.296198 0.294112 0.294112 2.218855 × 10−9

0.8 0.328136 0.327349 0.325044 0.325044 2.452214 × 10−9

1.2 0.362647 0.361777 0.359229 0.359229 2.710116 × 10−9

1.6 0.400787 0.399825 0.39701 0.39701 2.995142 × 10−9

2 0.442938 0.441875 0.438764 0.438764 3.310143 × 10−9

0.5 0 0.262972 0.26089 0.257936 0.257936 6.241301 × 10−11

0.4 0.290629 0.288328 0.285063 0.285063 6.897699 × 10−11

0.8 0.321195 0.318652 0.315044 0.315044 7.623141 × 10−11

1.2 0.354975 0.352165 0.348177 0.348177 8.424871 × 10−11

1.6 0.392308 0.389202 0.384795 0.384795 9.310924 × 10−11

2 0.433567 0.430135 0.425264 0.425264 1.029016 × 10−10

0.1 0 0.255675 0.253463 0.251567 0.251567 1.987299 × 10−14

0.4 0.282564 0.280119 0.278025 0.278025 2.198241 × 10−14

0.8 0.312282 0.30958 0.307265 0.307265 2.431388 × 10−14

1.2 0.345124 0.342139 0.33958 0.33958 2.681188 × 10−14

1.6 0.381422 0.378122 0.375294 0.375294 2.964295 × 10−14

2 0.421536 0.417889 0.414765 0.414765 3.275157 × 10−14
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Since Φ(Θ, Dη
ζΘ, D

2η
ζ Θ, D3η

ζ Θ) is either a nonlinear or linear
operator which can be decomposed as follows:

Φ Θ, Dη
ζΘ, D

2η
ζ Θ, D

3η
ζ Θ( ) � Φ Θ0, D

η
ζΘ0, D

2η
ζ Θ0, D

3η
ζ Θ0( )

+∑∞
i�0

Φ ∑i
k�0

Θk, D
η
ζΘk, D

2η
ζ Θk, D

3η
ζ Θk( )⎛⎝ ⎞⎠⎛⎝

−Φ ∑i−1
k�1

Θk, D
η
ζΘk, D

2η
ζ Θk, D

3η
ζ Θk( )⎛⎝ ⎞⎠⎞⎠.

(67)

In order to derive the succeeding equation, it is necessary to
substitute Eqs 67 and (66) into Eq. 65 to yield

∑∞
i�0

Θi ζ , η( ) � A−1 1
sp

∑m−1

k�0

Θ k( ) ζ , 0( )
s2−p+k

+ A Φ Θ0, D
η
ζΘ0, D

2η
ζ Θ0, D

3η
ζ Θ0( )[ ]⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

+ A−1 1
sp

A ∑∞
i�0

Φ∑i
k�0

Θk, D
η
ζΘk, D

2η
ζ Θk, D

3η
ζ Θk( )⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

− A−1 1
sp

A Φ∑i−1
k�1

Θk, D
η
ζΘk, D

2η
ζ Θk, D

3η
ζ Θk( )⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

(68)

FIGURE 4
The approximation (61) to problem 2 using ARPSM is considered against the fractional parameter p: (A) The approximation (61) is plotted in (ζ, η)-
plane and (B) The approximation (61) is plotted against η at (ζ = 0.1).

FIGURE 5
The approximation (61) to problem 2 using ARPSM at p = 1 is compared with the exact solution (52) for the integer case: (A) The two solutions are
plotted in (ζ, η)-plane and (B) The two solutions are plotted against η at (ζ = 0.1).
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Θ0 ζ , η( ) � A−1 1
sp

∑m−1

k�0

Θ k( ) ζ , 0( )
s2−p+k

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦,Θ1 ζ , η( )
� A−1 1

sp
A Φ Θ0, D

η
ζΘ0, D

2η
ζ Θ0, D

3η
ζ Θ0( )[ ]( )[ ], ...Θm+1 ζ , η( )

� A−1 1
sp

A ∑∞
i�0

Φ∑i
k�0

Θk, D
η
ζΘk, D

2η
ζ Θk, D

3η
ζ Θk( )⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

− A−1 1
sp

A Φ∑i−1
k�1

Θk, D
η
ζΘk, D

2η
ζ Θk, D

3η
ζ Θk( )⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦,

m � 1, 2,/ . (69)

Equation 62 may be stated in the following manner, which
provides the analytically approximate solution for the m-term
expression:

Θ ζ , η( ) � ∑m−1

i�0
Θi. (70)

3.4.1 Anatomy Problem (1) using ATIM
Let us consider the following time fractional PDE [51]:

Dp
ηΘ ζ , η( ) � −Θ ζ , η( ) ∂3Θ ζ , η( )

∂ζ3
+ ∂Θ ζ , η( )

∂ζ

∂2Θ ζ , η( )
∂ζ2

+ ∂2Θ ζ , η( )
∂ζ2

, where 0<p≤ 1 (71)

with the following IC’s:

Θ ζ , 0( ) � eζ/4

4
, (72)

and the following exact solution

Θ ζ , η( ) � 1
4
e
1
4

η
4+ζ( ). (73)

By using AT on both sides of Eq. 71, we get the
following outcome:

A Dp
ηΘ ζ ,η( )[ ]

� 1
sp

∑m−1

k�0

Θ k( ) ζ ,0( )
s2−p+k

+A −Θ ζ ,η( )∂3Θ ζ ,η( )
∂ζ3

+ ∂Θ ζ ,η( )
∂ζ

∂2Θ ζ ,η( )
∂ζ2

+ ∂2Θ ζ ,η( )
∂ζ2

[ ]⎛⎝ ⎞⎠,

(74)

In order to produce the following, we apply the inverse of AT on
both sides of Eq. 74.

Θ ζ ,η( )
�A−1 1

sp
∑m−1

k�0

Θ k( ) ζ ,0( )
s2−p+k

+A −Θ ζ ,η( )∂3Θ ζ ,η( )
∂ζ3

+ ∂Θ ζ ,η( )
∂ζ

∂2Θ ζ ,η( )
∂ζ2

+ ∂2Θ ζ ,η( )
∂ζ2

[ ⎤⎦⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎦.
(75)

The equation that we get by applying the AT in an iterative
manner can be described as follows:

Θ0 ζ , η( ) � A−1 1
sp

∑m−1

k�0

Θ k( ) ζ , 0( )
s2−p+k

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦
� A−1 Θ ζ , 0( )

s2
[ ]

� eζ/4

4
,

Through the application of the RL integral to Eq. 71, we are able
to get the equivalent form.

FIGURE 6
Here, we considered the absolute error of the approximation (61)
as compared to the exact solution (52) for the integer case, i.e., p = 1.

TABLE 2 The approximation (61) to problem 2 using ARPSM is considered against the fractional parameter.

η ζ ARPSMP=0.5 ARPSMp=0.7 ARPSMP=1.0 Exact $Error_{p = 1.0}$

0.1 0.4 0.07015 0.073533 0.0768932 0.0768933 7.775646 × 10−8

0.8 0.1403 0.147066 0.153786 0.153787 1.555129 × 10−7

1.2 0.21045 0.220599 0.23068 0.23068 2.332694 × 10−7

1.6 0.2806 0.294132 0.307573 0.307573 3.110258 × 10−7

2 0.35075 0.367665 0.384466 0.384467 3.887823 × 10−7

0.01 0.4 0.0765701 0.078622 0.079681 0.079681 7.976980 × 10−12

0.8 0.15314 0.157244 0.159362 0.159362 1.595396 × 10−11

1.2 0.22971 0.235866 0.239043 0.239043 2.393094 × 10−11

1.6 0.30628 0.314488 0.318724 0.318724 3.190792 × 10−11

2 0.38285 0.39311 0.398405 0.398405 3.988487 × 10−11
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Θ ζ , η( ) � eζ/4

4
− A −Θ ζ , η( ) ∂3Θ ζ , η( )

∂ζ3
+ ∂Θ ζ , η( )

∂ζ

∂2Θ ζ , η( )
∂ζ2

+ ∂2Θ ζ , η( )
∂ζ2

[ ].
(76)

Utilizing the ATIM, the following are some of the terms that
may be obtained:

Θ0 ζ , η( ) � eζ/4

4
,

Θ1 ζ , η( ) � eζ/4ηp

64Γ p + 1( ),
Θ2 ζ , η( ) � ��

π
√

4−p−5eζ/4η2p

Γ p + 1
2

( )Γ p + 1( ),
Θ3 ζ , η( ) � eζ/4η3p

16384Γ 3p + 1( ),
Θ4 ζ , η( ) � eζ/4η4p

262144pΓ p( )Γ 3p + 1( ),

(77)

The final approximation is obtained as follows:

Θ ζ , η( ) � Θ0 ζ , η( ) + Θ1 ζ , η( ) + Θ2 ζ , η( ) + Θ3 ζ , η( ) +/ . (78)

Θ ζ , η( ) � eζ/4ηp

64Γ p + 1( ) +
��
π

√
4−p−5eζ/4η2p

Γ p + 1
2

( )Γ p + 1( ) + eζ/4η3p

16384Γ 3p + 1( )
+ eζ/4η4p

262144pΓ p( )Γ 3p + 1( ) +/ .

(79)

3.4.2 Anatomy Problem (2) using ATIM
Let us considered the following time fractional damped

nonlinear Burger’s equation [51]:

Dp
ηΘ ζ , η( ) � −∂

2Θ ζ , η( )
∂x2 − Θ ζ , η( ) ∂Θ ζ , η( )

∂x

− 1
5
Θ ζ , η( ), where 0<p≤ 1 (80)

with the following IC’s:

Θ ζ , 0( ) � 1
5
ζ , (81)

and the following exact solution

Θ ζ , η( ) � ζ

5 2e
η
5 − 1( ). (82)

The application of AT to either side of Eq. 80, we are able to get
the following equation:

A Dp
ηΘ ζ , η( )[ ] � 1

sp
∑m−1

k�0

Θ k( ) ζ , 0( )
s2−p+k

+ A −∂
2Θ ζ , η( )
∂x2[⎛⎝

−Θ ζ , η( ) ∂Θ ζ , η( )
∂x

− 1
5
Θ ζ , η( )⎤⎦⎞⎠,

(83)
Applying the inverse of AT to Eq. 83 yields

Θ ζ , η( )
� A−1 1

sp
∑m−1

k�0

Θ k( ) ζ , 0( )
s2−p+k

+ A −∂
2Θ ζ , η( )
∂x2 − Θ ζ , η( ) ∂Θ ζ , η( )

∂x
− 1
5
Θ ζ , η( )[ ]⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦.

(84)

Using the iterative procedure of AT, we get

Θ0 ζ , η( ) � A−1 1
sp

∑m−1

k�0

Θ k( ) ζ , 0( )
s2−p+k

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦
� A−1 Θ ζ , 0( )

s2
[ ]

� 1
5
ζ ,

Using the RL integral results in the equivalent form being
obtained from Eq. 50.

Θ ζ , η( ) � 1
5
ζ − A −∂

2Θ ζ , η( )
∂x2 − Θ ζ , η( ) ∂Θ ζ , η( )

∂x
− 1
5
Θ ζ , η( )[ ].

(85)

FIGURE 7
The approximation (79) to problem 1 using ATIM is considered against the fractional parameter p: (A) The approximation (79) is plotted in (ζ, η)-plane
and (B) The approximation (79) is plotted against η for (ζ = 5).
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The ATIM resulted in the following few terms being produced.

Θ0 ζ , η( ) � 1
5
ζ , Θ1 ζ , η( ) � − 2ζηp

25Γ p + 1( ),Θ2 ζ , η( )
�
2ζη2p 15 − 2ηpΓ 2p + 1( )2

Γ p + 1( )2Γ 3p + 1( )( )
625Γ 2p + 1( ) ,Θ3 ζη( )

� 2ζη3p

390625
2ηp − 4η3pΓ 2p + 1( )2Γ 6p + 1( )

Γ p + 1( )4Γ 3p + 1( )2Γ 7p + 1( )((

+

60η2pΓ 5p + 1( )
Γ 3p + 1( )Γ 6p + 1( ) + 125

��
π

√
2−4p

Γ 2p + 1
2

( )
Γ p + 1( )2

− 225ηpΓ 4p + 1( )
Γ 2p + 1( )2Γ 5p + 1( )

− 100ηpΓ 2p + 1( )Γ 4p + 1( )
Γ p + 1( )3Γ 3p + 1( )Γ 5p + 1( )

+ 750Γ 3p + 1( )
Γ p + 1( )Γ 2p + 1( )Γ 4p + 1( ))

− 1875
Γ 3p + 1( ) ), (86)

We finally get

Θ ζ , η( ) � Θ0 ζ , η( ) + Θ1 ζ , η( ) + Θ2 ζ , η( ) + Θ3 ζ , η( ) +/ (87)

Θ ζ , η( ) � 1
5
ζ − 2ζηp

25Γ p + 1( ) +
2ζη2p 15 − 2ηpΓ 2p + 1( )2

Γ p + 1( )2Γ 3p + 1( )( )
625Γ 2p + 1( )

+ 2ζη3p

390625
2ηp − 4η3pΓ 2p + 1( )2Γ 6p + 1( )

Γ p + 1( )4Γ 3p + 1( )2Γ 7p + 1( )((

+

60η2pΓ 5p + 1( )
Γ 3p + 1( )Γ 6p + 1( ) + 125

��
π

√
2−4p

Γ 2p + 1
2

( )
Γ p + 1( )2

− 225ηpΓ 4p + 1( )
Γ 2p + 1( )2Γ 5p + 1( ) − 100ηpΓ 2p + 1( )Γ 4p + 1( )

Γ p + 1( )3Γ 3p + 1( )Γ 5p + 1( )
+ 750Γ 3p + 1( )
Γ p + 1( )Γ 2p + 1( )Γ 4p + 1( ) ) − 1875

Γ 3p + 1( )). (88)

Here, we graphically and numerically analyzed the derived
approximations (79) and (88) using AITM for problems 1 and 2,
respectively, as illustrated in Figures 7–12; Tables 3, 4. These
figures demonstrate the impact of the fractional parameter p on
the behavior of the wave described by this approximation and the
absolute errors for these approximations as compared to the exact
solutions for the integer case. We can observe the effect of the
fractional parameter on the behavior of the deduced
approximations and the accuracy and stability of these
approximations along the study domain. This is one of the

FIGURE 9
Here, we considered the absolute error of the approximation (79)
as compared to the exact solution (73) for the integer case, i.e., p = 1.

FIGURE 8
The approximation (79) to problem 1 using ATIM at p = 1 is compared with the exact solution (73) for the integer case: (A) The two solutions are
plotted in (ζ, η)-plane and (B) The two solutions are plotted against η at (ζ = 5).
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most essential features of AITM, which gives more accurate and
stable approximations throughout the study domain. In the last
part, we discussed comparing the approximations derived by
ARPSM and those derived by AITM, as evident in Tables 5, 6.
It is observed from the comparison results that both approaches
give more accurate and stable approximations throughout the
study domain, but ARPSM differs somewhat in its accuracy
from AITM, i.e., the derived approximations using ARPSM are
more accurate than AITM.

4 Conclusion

The damped Burger’s equation and many other associated
equations with the dissipative term arise in plasma physics due to
taking the viscosity force in the fluid equations that govern a
plasma model. On the other side, the damped effect occurs due to
considering the collisional effect between the charged plasma
particles. Motivated by these applications, thus, this study
analyzed this equation by employing advanced mathematical

FIGURE 11
The approximation (88) to problem 2 using ATIM at p = 1 is compared with the exact solution (83) for the integer case: (A) The two solutions are
plotted in (ζ, η)-plane and (B) The two solutions are plotted against η at (ζ = 0.1).

FIGURE 10
The approximation (88) to problem 2 using ATIM is considered against the fractional parameter p: (A) The approximation (88) is plotted in (ζ, η)-plane
and (B) The approximation (88) is plotted against η at (ζ = 0.1).
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techniques known as the Aboodh residual power series method
(ARPSM) and the Aboodh transform iteration method (ATIM).
The fractional derivatives were processed using the Caputo
operator. The use of this operator is due to its ability to enrich
modeling by considering fractional derivatives, which contributes
to a more accurate representation of the fundamental dynamics of
the equations under study. We have derived a set of precise highly
approximations using the suggested strategies. The derived
approximations have been analyzed and examined graphically
and numerically by plotting some two- and three-dimensional
graphics. Moreover, we discussed the obtained approximations
numerically in some suitable tables and estimated the absolute
errors compared to the exact solutions for the integer cases.
The suggested methods proved effective for getting highly
accurate and more stable approximations of more complicated
fractional differential equations. Moreover, the obtained
results demonstrated the high accuracy, efficiency, and rapid
calculations of the suggested methods in analyzing damped
Burger’s equation. The comparison results between the
obtained approximations using ARPSM and AITM
demonstrated that the derived approximations using ARPSM
are more accurate than AITM.

The study offers valuable insights into the dynamic behavior of
solutions toDamped Burger’s equation, demonstrating the effectiveness
of the suggested strategies in dealing with the difficulties presented by
nonlinear fractional partial differential equations. This inquiry enhances
mathematical modeling and numerical analysis by highlighting the
effectiveness of ARPSM and ATIM in solving intricate equations in
different scientific fields. Therefore, it is expected that the results of this
study will serve many physics researchers interested in the field of
plasma physics, fluids, electronics, and optical fibers to study the
characteristics of nonlinear phenomena that arise and propagate in
these physical systems.

5 Future work

The suggested approaches can be used in analyzing many
strong nonlinear and more complicated evolution equations that

TABLE 3 The approximation (79) of problem 1 using AITM is considered
against the fractional parameter.

η ζ ATIMP=0.5 ATIMp=0.7 ATIMP=1.0 Exact $Error_
{p = 1.0}$

1 0 0.268012 0.268012 0.266124 0.266124 4.748294 ×
10−7

0.4 0.296199 0.296199 0.294113 0.294112 5.247677 ×
10−7

0.8 0.32735 0.32735 0.325045 0.325044 5.799580 ×
10−7

1.2 0.361778 0.361778 0.35923 0.359229 6.409527 ×
10−7

1.6 0.399827 0.399827 0.39701 0.39701 7.083623 ×
10−7

2 0.441877 0.441877 0.438764 0.438764 7.828614 ×
10−7

0.5 0 0.26089 0.26089 0.257936 0.257936 2.973990 ×
10−8

0.4 0.288328 0.288328 0.285063 0.285063 3.286768 ×
10−8

0.8 0.318652 0.318652 0.315044 0.315044 3.632440 ×
10−8

1.2 0.352165 0.352165 0.348177 0.348177 4.014467 ×
10−8

1.6 0.389202 0.389202 0.384795 0.384795 4.436673 ×
10−8

2 0.430135 0.430135 0.425264 0.425264 4.903282 ×
10−8

0.1 0 0.253463 0.253463 0.251567 0.251567 4.766387 ×
10−11

0.4 0.280119 0.280119 0.278025 0.278025 5.267669 ×
10−11

0.8 0.30958 0.30958 0.307265 0.307265 5.821670 ×
10−11

1.2 0.342139 0.342139 0.33958 0.33958 6.433947 ×
10−11

1.6 0.378122 0.378122 0.375294 0.375294 7.110606 ×
10−11

2 0.417889 0.417889 0.414765 0.414765 7.858441 ×
10−11

FIGURE 12
Here, we considered the absolute error of the approximation (88)
as compared to the exact solution (83) for the integer case, i.e., p = 1.

TABLE 4 The approximation (88) of problem 2 using ATIM is numerically
against the fractional parameter p.

η ζ NITMP=0.5 NITMp=0.7 NITMP=1.0 Exact $Error_
{p = 1.0}$

0.4 0.0703566 0.0735629 0.0768945 0.0768933 1.244183 × 10−6

0.8 0.140713 0.147126 0.153789 0.153787 2.488366 × 10−6

0.1 1.2 0.21107 0.220689 0.230684 0.23068 3.732549 × 10−6

1.6 0.281426 0.294252 0.307578 0.307573 4.976732 × 10−6

2 0.351783 0.367814 0.384473 0.384467 6.220915 × 10−6

0.4 0.0765761 0.0786222 0.079681 0.079681 1.276282 × 10−9

0.8 0.153152 0.157244 0.159362 0.159362 2.552564 × 10−9

0.01 1.2 0.229728 0.235867 0.239043 0.239043 3.828847 × 10−9

1.6 0.306304 0.314489 0.318724 0.318724 5.105129 × 10−9

2 0.382881 0.393111 0.398405 0.398405 6.381411 × 10−9
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are derived from the fluid equations to some plasma models,
such as KdV-type equations with third-order dispersion
[52–54], Burger’s-type equations [55–57], Kawahara-type
equations with fifth-order dispersion [58–60], nonlinear
Schrödinger-type equations [61, 62], and many other

evolution equations. Therefore, the characteristics of the
many nonlinear phenomena that can be generated and
propagated in various plasma systems can be accurately
described and examined by studying the effect of the
fractional parameters on the behavior of these phenomena,

TABLE 5 The absolute error between the derived approximations and the exact solutions for the integer cases (p= 1) is compared for both NITM and APRSM,
for problem 1.

η ζ EXACT ATIMP=1.0 ARPSMp=1.0 $ATIM Error$ $ARPSM Error$

1 0 0.266124 0.266124 0.266124 4.748294 × 10−7 2.007703 × 10−9

0.4 0.294112 0.294113 0.294112 5.247677 × 10−7 2.218855 × 10−9

0.8 0.325044 0.325045 0.325044 5.799580 × 10−7 2.452214 × 10−9

1.2 0.359229 0.35923 0.359229 6.409527 × 10−7 2.710116 × 10−9

1.6 0.39701 0.39701 0.39701 7.083623 × 10−7 2.995142 × 10−9

2 0.438764 0.438764 0.438764 7.828614 × 10−7 3.310143 × 10−9

0.5 0 0.257936 0.257936 0.257936 2.973990 × 10−8 6.241301 × 10−11

0.4 0.285063 0.285063 0.285063 3.286768 × 10−8 6.897699 × 10−11

0.8 0.315044 0.315044 0.315044 3.632440 × 10−8 7.623141 × 10−11

1.2 0.348177 0.348177 0.348177 4.014467 × 10−8 8.424871 × 10−11

1.6 0.384795 0.384795 0.384795 4.436673 × 10−8 9.310924 × 10−11

2 0.425264 0.425264 0.425264 4.903282 × 10−8 1.029016 × 10−10

0.1 0 0.251567 0.251567 0.251567 4.766381 × 10−11 1.987299 × 10−14

0.4 0.278025 0.278025 0.278025 5.267669 × 10−11 2.192690 × 10−14

0.8 0.307265 0.307265 0.307265 5.821670 × 10−11 2.431388 × 10−14

1.2 0.33958 0.33958 0.33958 6.433942 × 10−11 2.681188 × 10−14

1.6 0.375294 0.375294 0.375294 7.110606 × 10−11 2.964295 × 10−14

2 0.414765 0.414765 0.414765 7.858441 × 10−11 3.269606 × 10−14

TABLE 6 The absolute error between the derived approximations and the exact solutions for the integer cases (p= 1) is compared for bothNITM and APRSM,
for problem 2.

η ζ EXACT ATIMP=1.0 ARPSMp=1.0 $ATIM Error$ $ARPSM Error$

0.1 0.4 0.0768933 0.0768945 0.0768932 1.244183 × 10−6 7.775646 × 10−8

0.8 0.153787 0.153789 0.153786 2.488366 × 10−6 1.555129 × 10−7

1.2 0.23068 0.230684 0.23068 3.732549 × 10−6 2.332694 × 10−7

1.6 0.307573 0.307578 0.307573 4.976732 × 10−6 3.110258 × 10−7

2 0.384467 0.384473 0.384466 6.220915 × 10−6 3.887823 × 10−7

0.01 0.4 0.079681 0.079681 0.079681 1.276282 × 10−9 7.976985 × 10−12

0.8 0.159362 0.159362 0.159362 2.552564 × 10−9 1.595397 × 10−11

1.2 0.239043 0.239043 0.239043 3.828847 × 10−9 2.393095 × 10−11

1.6 0.318724 0.318724 0.318724 5.105129 × 10−9 3.190794 × 10−11

2 0.398405 0.398405 0.398405 6.381411 × 10−9 3.988492 × 10−11
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such as solitons, dissipative solitons, shocks, dissipative shocks,
rogue waves, dissipative rogue waves, periodic waves, dissipative
periodic waves, etc., which are among the most famous
phenomena that spread in multicomponent plasmas.
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In this study, the initial-boundary value problems to semilinear integro-

di�erential equations with multi-term fractional Caputo derivatives are analyzed.

A particular case of these equations models oxygen di�usion through capillaries.

Under proper requirements on the given data in the model, the classical and

strong solvability of these problems for any finite time interval [0,T] are proved via

so-called continuation method. The key point in this approach is finding suitable

a priori estimates of a solution in the fractional Hölder and Sobolev spaces.

KEYWORDS

a priori estimates, multi-terms semilinear subdi�usion, Caputo derivative, global

solvability, continuation approach

1 Introduction

Complex phenomena in the engineering and scientific fields are modeled utilizing the

fractional differential equations (FDEs). Nowadays, the fractional calculus is an efficient

tool for describing dynamic behavior of living systems and hereditary properties of various

materials: the relaxation process in polymers [1], chaotic neuron model [2], longtime

memory in financial time series via fractional Langevin equations [3], and tumor growth

models [4] (see also references therein). We also refer to [5, 6], where the authors propose

the advanced mathematical model for oxygen delivery to tissue through a capillary in

both (transverse and longitudinal) directions. In these studies, conveying oxygen from a

capillary to the surrounding tissue is described by means of a subdiffusion equation having

two fractional derivatives in time, that is

D
ν
t C− τD

µ
t C = div(a0∇C)− k−

∫ t

0

(t − s)ν−1

Ŵ(ν)
(b1(x, s)∇C(x, s)

+ b0(x, s)C(x, s))ds

with 0 < µ < ν < 1. Here, C represents the concentration of oxygen, τ is the time lag

in concentration of oxygen along the capillaries (in the present model, this parameter is a

positive constant), k is the rate of consumption per volume of tissue, and a0 and bi are the

diffusion coefficients of oxygen. In addition, the termD
ν
t C−τD

µ
t C details the net diffusion

of oxygen to all tissues.

In this equation, the symbolDθt stands for the Caputo fractional derivative with respect

to time of order θ ∈ (0, 1),

D
θ
t C(x, t) =





1
Ŵ(1−θ)

∂
∂t

t∫
0

C(x,s)−C(x,0)
(t−s)θ

ds if θ ∈ (0, 1),

∂C
∂t (x, t) if θ = 1,
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where Ŵ is the Euler’s Gamma function. An equivalent definition of

this derivative in the case of absolutely continuous functions reads

D
θ
t C(x, t) =





1
Ŵ(1−θ)

t∫
0

(t − s)−θ ∂C
∂s (x, s)ds if θ ∈ (0, 1),

∂C
∂t (x, t) if θ = 1.

In this art, motivated by the discussion above, we focus on the

analytical study of the semilinear integro-differential equation with

memory terms. Let � ⊂ R
n, n ≥ 2, be a bounded domain with a

smooth boundary ∂�, and for any T > 0, we set

�T = �× (0,T) and ∂�T = ∂�× [0,T].

We consider the initial-value problems to the multi-term time-

fractional semilinear diffusion equation in the unknown function

u = u(x, t) :�T → R,

Dtu− L1u−K ∗ L2u+ f (u) = g(x, t) in �T , (1.1)

subject to the following initial and boundary conditions:





u(x, 0) = u0(x) in �̄,

u = ϕ1(x, t) on ∂�T inDBC case,

or

Mu+K1 ∗Mu− c0u = ϕ2(x, t) on ∂�T in 3BC case,

(1.2)

where the abbreviations DBC and 3BC mean the Dirichlet

boundary condition and the boundary condition of the third

kind, respectively.

Here, c0 is given positive number, g, u0,ϕi are given functions,

andK1 andK are prescribed memory kernels.

Here, the symbol ∗ stands for the usual time-convolution

product on (0, t),

(h1 ∗ h2)(t) =

t∫

0

h1(t − s)h2(s)ds.

The operator Dt is the linear combination of Caputo fractional

derivatives with respect to time, namely

Dtu = D
ν
t (ρu)+

M∑

i=1

D
νi
t (ρiu)−

N∑

j=1

D
µj

t (γju), (1.3)

where ν ∈ (0, 1) and νi,µj ∈ (0, ν) are arbitrary but fixed, and

ρ = ρ(x, t), ρi = ρi(x, t) and γj = γj(x, t) are given positive

functions.

Coming to the remaining operators, Li, i = 1, 2, are

linear elliptic operators of the second order with time-dependent

coefficients, while M is a first-order differential operator. Their

precise forms will be given in Sections 3, where we detail the main

assumptions in the model.

Published works concerning the multi-term fractional

diffusion/wave equations, i.e., the equation with the operator

Dtu =

N∑

i=1

qiD
νi
t u, (1.4)

with qi being positive, and 0 ≤ ν1 < ν2 < ... < νM ,

are quite limited in spite of rich literature on their single-term

version. Exact solutions of linear multi-term fractional diffusion

equations with qi being positive constants on bounded domains

are searched employing eigenfunction expansions in Daftardar-

Gejji and Bhalekar [7] and Morales-Delgado et al. [5]. We quote

Srivastava and Rai [6] andMorales-Delgado et al. [5], where certain

numerical solutions are constructed to the corresponding initial-

boundary value problems to evolution equations with Dt given

via Equation 1.4. Finally, we mention [8], where existence and

non-existence of the mild solutions to the Cauchy problem for

semilinear subdiffusion equation with the operator Equation 1.4

are discussed. In particular, the authors obtain the Fujita-type and

Escobedo-Herrero-type critical exponents for this equation and the

system. It is worth noting that, all these works concern to evolution

equations with the operator Equation 1.4 which can be rewritten in

the form of a generalized fractional derivative with a non-negative

locally integrable kernelN(t), that is

Dtu(x, t) =
∂

∂t

∫ t

0
N(t−τ )u(x, τ )dτ−N(t)u(x, 0), t > 0. (1.5)

Coming to the initial-boundary value problems associated with

Equation 1.1 with the operator Dt given by Equation 1.3, we point

out two principal differences with respect to the aforementioned

articles. The first deals with the presence of Caputo fractional

derivatives of the product of two functions: the desired solution u

and the prescribed coefficients ρ, ρi, γj. Incidentally, we recall that

the well-known Leibniz rule does not work in the case of fractional

derivatives. The second distinction is that the operator Dt given by

Equation 1.3 (under certain assumptions on the coefficients) can be

represented in the form Equation 1.4 but with a negative kernel.

Indeed, setting in Equation 1.3

M = 0, N = 1, ρ = Cρ , γ1 = 1+ Cρ ,

where Cρ is a positive constant, we have the representation

Dtu =
∂

∂t
(N ∗ (u− u0))

with

N = Cρ

[
t−ν

Ŵ(1− ν)
−

t−µ1

Ŵ(1− µ1)

]
−

t−µ1

Ŵ(1− µ1)

being negative for t > e−Cγ [see Janno and Kinash [9], Lemma 4];

Cγ is the Euler–Mascheroni constant. In fact, the non-negativity

of the kernel N is a principal assumption in the aforementioned

studies.

The linear version of Equations 1.1, 1.3 subject to various type

boundary conditions with the coefficients in Dt being alternating

sign is discussed in Pata et al. [10] and Vasylyeva [11]. For any fixed

time T, the existence and uniqueness of a solution to semilinear

problem (Equations 1.1, 1.3) with the Dirichlet or the Neumann

boundary conditions are analyzed in Siryk and Vasylyeva [12]

and Vasylyeva [11]. Namely, if the coefficients of the operator

Dt are only time-dependent and non-decreasing functions, then

the well-posedness of these problems in the fractional Hölder

and Sobolev spaces is established in the one-dimensional case in
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Siryk and Vasylyeva [12]. As for the multidimensional case, the

classical solvability of the Cauchy-Dirichlet problem to semilinear

(Equation 1.1) in the case of two-term fractional derivatives in Dt

(i.e., eitherM = 1,N = 0 orM = 0,N = 1) is proved in Vasylyeva

[11]. In this study, the coefficients in Equation 1.1 are time and

space dependent but instead of their non-decreasing in time, they

have to satisfy more complex assumption. Indeed, ifM = 1,N = 0,

then the function ρ
ρ1

should be decreasing. Finally, we remark that

in Vasylyeva [11], the non-linear term is the local Lipschitz.

The goal of this study is finding sufficient conditions on the

coefficients of the operator Dt , the order fractional derivatives

ν,µj, and νi, j, i ≥ 1, and the non-linearity f which provide

one-to-one classical and strong solvability (for any fixed T) in the

case of the DBC or the 3BC. Actually, we consider two types of

the non-linearity f (u). The first is f satisfying the local Lipschitz

condition and having the linear growth. As for the second, f is

a continuous differentiable on R with a super-linear growth. For

example, f is a polynomial of odd degree with the positive leading

coefficient (see Giorgi et al. [13]). Coming to the coefficients in

the fractional operator Dt , we discuss both the non-decreasing

coefficients and the coefficients satisfying the properties of

Theorem 2 [11].

We notice that the key ingredient in the proof of the classical

solvability is the continuation approach, based on the introduction

of a family of auxiliary problems depending on a parameter λ ∈

[0, 1]. Then, one has to produce a priori estimates in the fractional

Hölder spaces for the solution which are independent of λ. One of

the crucial points in the arguments is concerned to the estimates of

‖u‖C(�̄T )
, obtained via integral iteration technique adopted to the

multi-term fractional case. As for the strong solvability, it is proved

via the construction of this solution as a limit of approximate

smooths solutions and exploiting a priori estimates in the

Sobolev spaces.

Finally, we notice that assumptions on the coefficients and

the memory kernels in the one-dimensional and multidimensional

cases are different. It is related with using various approaches to get

a priori estimates of the solutions if n = 1 and n ≥ 2. Namely, if

n ≥ 2, we relax assumptions on the coefficients ofDt , in particular,

we allow coefficients depending on time and space in Equation 1.3.

However, we require more regular memory kernel in Equation 1.1,

K ∈ C
1([0,T]).

Outline of the study

This article is organized as follows: in Section 2, we introduce

the notations and the functional spaces. The general assumptions

and main results (Theorems 3.1, 3.2) are stated in Section 3.

Theorem 3.1 is devoted to the one-valued classical solvability to

Equation 1.1 with the DBC or the 3BC in the multidimensional

case, while the strong solvability is established in Theorem 3.2.

Section 4 is auxiliary and contains some technical and preliminary

results from fractional calculus, playing a key role in the course

of the investigation. Section 5 concerns to the obtaining a priori

estimates in the fractional Hölder and Sobolev spaces, which will be

a crucial point in the proof of the main results. Here, the key bound

is the estimate of ‖u‖
C
α,αν/2

(�̄T )
, produced via integral iteration

techniques adapted to the case of multi-term fractional derivatives.

The proof of Theorems 3.1 and 3.2 is carried out in Section 6.

2 Functional spaces and notation

Throughout this study, the symbol C will denote a generic positive

constant, depending only on the structural quantities of the

problem.

In the course of our study, we will exploit the fractional Hölder

and Sobolev spaces. To this end, in what follows, we take two

arbitrary (but fixed) parameters

α ∈ (0, 1) and ν ∈ (0, 1).

For any non-negative integer l, any p ≥ 1, s ≥ 0, and any

Banach space (X, ‖ · ‖X), we consider the usual spaces

C
l+α(�̄), Ws,p(�), Lp(�), C

s([0,T],X), Ws,p((0,T),X).

Recall that for non-integer s, the space Ws,p is called Sobolev-

Slobodeckii space [for its definition and properties see, e.g., Adams

and Fournier [14], Chapter 1].

Denoting for β ∈ (0, 1)

〈v〉
(β)
x,�T

= sup
{
|v(x1 ,t)−v(x2 ,t)|

|x1−x2|β
: x2 6= x1, x1, x2 ∈ �̄, t ∈ [0,T]

}
,

〈v〉
(β)
t,�T

= sup
{
|v(x,t1)−v(x,t2)|

|t1−t2|β
: t2 6= t1, x ∈ �̄, t1, t2 ∈ [0,T]

}
.

Then, we assert the following definition.

Definition 2.1. A function v = v(x, t) belongs to the class

C
l+α, l+α2 ν(�̄T), for l = 0, 1, 2, if the function v and its corresponding

derivatives are continuous and the norms here below are finite:

‖v‖
C
l+α, l+α2 ν

(�̄T )

=





‖v‖
C([0,T],C

l+α
(�̄))

+
∑l

|j|=0〈D
j
xv〉

(
l+α−|j|

2 ν)

t,�T
, l = 0, 1,

‖v‖
C([0,T],C

2+α
(�̄))

+ ‖Dνt v‖Cα,
α
2 ν (�̄T )

+
∑2

|j|=1〈D
j
xv〉

(
2+α−|j|

2 ν)

t,�T
, l = 2.

In a similar way, for l = 0, 1, 2, we introduce the space

C
l+α, l+α2 ν(∂�T).

The properties of these spaces have been discussed in

Krasnoschok et al. [15] (Section 2). As for the limiting case ν = 1,

these classes boil down to the usual parabolic Hölder spaces.

Finally, we will say that a function v defined in �T belongs to

H
s1 ,s2
p (�T) with p > 1 and s1, s2 ≥ 0, if v ∈ Ws1 ,p((0,T), Lp(�)) ∩

Lp((0,T),W
s2 ,p(�)), and the norm here below is finite

‖v‖H s1,s2
p (�T )

= ‖v‖Ws1,p((0,T),Lp(�)) + ‖v‖Lp((0,T),Ws2,p(�)).

The space H s1 ,s2
p (∂�T) is defined in the similar manner.
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3 Main results

First, we state additional requirements on the given data in

Equations 1.1, 1.2.

• h1 (Conditions on the fractional order of the derivatives in

Equation 1.3): We assume that

ν ∈ (0, 1), νi,µj ∈
(
0, ν(2−α)2

)
, νi 6= µj,

i = 1, 2, ...,M, j = 1, 2, ...,N,

0 < ν1 < ν2 < ... < νM < ν, 0 < µ1 < µ2 < ... < µN < ν.

• h2 (Conditions on the operators): The operators appearing in

Equations 1.1, 1.2 read





L1 =
∑n

ij=1
∂
∂xi

(
aij(x, t)

∂
∂xj

)
+

∑n
i=1 ai(x, t)

∂
∂xi

+ a0(x, t),

L2 =
∑n

ij=1
∂
∂xi

(
aij(x, t)

∂
∂xj

)
+

∑n
i=1 bi(x, t)

∂
∂xi

+ b0(x, t),

M = −
∑n

ij=1 aij(x, t)Ni
∂
∂xj

,

(3.1)

where Ni is a component of the outward normal N =

{N1, ...,Nn} to �; the fractional operator Dt in Equation 1.1 is

given by Equation 1.3.

There are positive constants 0 < δ1 < δ2, such that

δ1|ξ |
2 ≤

n∑

ij=1

aij(x, t)ξiξj ≤ δ2|ξ |
2

for any (x, t, ξ ) ∈ �̄T × R
n.

Moreover, we require that

a0, b0 ∈ C
α,αν/2(�̄T), aij, ai, bj ∈ C

1+α,(1+α)ν/2(�̄T),

i, j = 1, ..., n.

• h3 (Conditions on the coefficients ofDt): We require that for

ν0 ≥ max{1, ν(2+ α)/2}

the relations hold

ρ(x, t), ρi(x, t), γj(x, t) ∈ C
ν0 ([0,T], C1(�̄));

and there are positive constants δ, δ3, δ4, such that

ρ ≥ δ > 0, ρi ≥ δ3 > 0, γj ≥ δ4 > 0

for each (x, t) ∈ �̄T and for all i = 1, 2, ...,M, j = 1, 2, ...,N.

In addition, if N ≥ 1, then

ρ(x, t) = ρ0(x, t)+

N∑

j=1

γj(x, t),

where the function ρ0 ∈ C
ν0 ([0,T], C1(�̄)) is positive for all

t ∈ [0,T] and x ∈ �̄.

Moreover, we require that the one of the following

conditions holds:

(i) either ∂ρ
∂t ,

∂ρ0
∂t ,

∂ρi
∂t ,

∂γj
∂t are non-negative for all (x, t) ∈

�̄T ;

(ii) or



∂
∂t

(
ρ0
ρi

)
, ∂
∂t

(
ρ0
γj

)
≤ 0 if N ≥ 1,

∂
∂t

(
ρ
ρi

)
≤ 0, if N = 0,

for all i = 1, ...,M, j = 1, ...,N, and any (x, t) ∈ �̄T .

• h4 (Conditions on the right-hand sides): The given functions

have the following regularity:

g ∈ C
α, να2 (�̄T), u0 ∈ C2+α(�̄),

ϕ1 ∈ C
2+α, 2+α2 ν(∂�T), ϕ2 ∈ C

1+α, 1+α2 ν(∂�T),

• h5 (Conditions on the memory kernels):

K(t) ∈ C
1([0,T]), K1 ∈ L1(0,T).

• h6 (Compatibility conditions): The following compatibility

conditions hold for every x ∈ ∂� at the initial time t = 0,

ϕ1(x, 0) = u0(x) and

Dtϕ1|t=0 = L1u0(x)|t=0 − f (u0)+ g(x, 0),

if theDBC holds, and there is

Mu0(x)|t=0 − c0u0(x) = ϕ2(x, 0)

in the 3BC case.

• h7 (Conditions on the nonlinearity): We assume that the one

of the following requirements holds:

• h7.I: either f (u) is the local Lipschitz and has a linear

growth, i.e., for every ̺ > 0, there exists a positive constant

C̺ , such that

|f (u1)− f (u2)| ≤ C̺|u1 − u2|

for any u1, u2 ∈ [−̺, ̺]; and

there is a positive constant L, such that

|f (u)| ≤ L(1+ |u|) for any u ∈ R;

• h7.II: or f ∈ C
1(R), and for some non-negative constants

Li, i=1,2,3,4, and q ≥ 0, the inequalities hold





|f (u)| ≤ L1(1+ |u|q),

uf (u) ≥ −L2 + L3|u|
q+1,

f ′(u) ≥ −L4.

Remark 3.1. It is apparent that if the positive functions ρ, ρi, γj are

time-independent, then condition h3(i) boils down to h3(ii).

Example 3.1. The simplest example of the functions satisfying h3

is

ρ = C0, γj = Cj, ρi = C̄i, i = 1, ...,M, j = 1, ...,N,

where C0, Cj, C̄i are positive constants, such that

C0 −

N∑

j=1

Cj > 0.
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Now, we are in the position to state the one-valued classical

solvability of Equations 1.1, 1.2.

Theorem 3.1. Let T > 0 be arbitrarily given, ∂� ∈ C
2+α , n ≥ 2,

and let assumptions h1–h6 hold. We assume that f (u) meets the

requirement h7.I if N ≥ 1, while in the case of N = 0, f (u) satisfies

h7. Then, initial-boundary value problem Equations 1.1, 1.2 admits

a unique classical solution u = u(x, t) satisfying the regularity:

u ∈ C
2+α, 2+α2 ν(�̄T), D

νi
t u,D

µj

t u ∈ C
α, αν2 (�̄T),

i = 1, ...,M, j = 1, ...N.

The next assertion is related to the strong solvability of

Equations 1.1, 1.2.

Theorem 3.2. Let N = 0, n ≥ 2, ∂� ∈ C
2+α , and let T > 0 be

arbitrarily given. We assume that h1–h5 and h7 hold and

ψ1,ψ2, u0 ≡ 0, f ∈ Lp(�T) ∩Ws1 ,r((0,T),Ws2 ,r(�)),

where p > max{n + 2
ν
; 1
ν−νM

}, r ≥ n + 1, s1 ∈ (r−1, 1), and

s2 ∈ ((n+ 1)r−1, 1). Moreover, in theDBC case, we require

f (0)|∂� = g(x, 0)|∂�.

Then, the initial-boundary value problem Equations 1.1, 1.2 admits

a unique strong solution in the class Hν,2p (�T).

Remark 3.2. Theorems 3.1 and 3.2 hold if Dtu in Equation 1.3 is

changed by

Dtu = ρ(x, t)Dνt u+

M∑

i=1

ρi(x, t)D
νi
t u−

N∑

j=1

γj(x, t)D
µj

t u,

where ρ, ρi, γj satisfies h3, but the requirement on the regularity of

these functions can be relaxed. Namely, ρ, ρi, γj ∈ C
α,αν/2(�̄T).

The remaining part of this study is devoted to the verification

of Theorems 3.1, 3.2. Here, we proceed with a detailed proof of

Theorem 3.1 in the most difficult case, i.e., if N ≥ 1,M ≥ 1

in Equation 1.3. This means that the non-linear term f (u) satisfies

h7.I. The verification of the remaining cases is simpler and repeats

the main steps (with minor changes) in the arguments related with

the cases N,M ≥ 1.

4 Technical results

In this section, we collect some useful properties of fractional

derivatives and integrals, as well as several preliminaries results that

will be significant in our investigation. Throughout this art, for any

θ > 0, we use the notation

ωθ =
tθ−1

Ŵ(θ)

and define the fractional Riemann-Liouville integral and the

derivative of order θ , respectively, of a function v = v(x, t) with

respect to time t as

Iθt v(x, t) = (ωθ ∗ v)(x, t) ∂θt v(x, t) =
∂⌈θ⌉

∂t⌈θ⌉
(ω⌈θ⌉−θ ∗ v)(x, t),

where ⌈θ⌉ is the ceiling function of θ (i.e., the smallest integer

greater than or equal to θ).

It is apparent that, for θ ∈ (0, 1), there holds

∂θt v(x, t) =
∂

∂t
(ω1−θ ∗ v)(x, t).

Accordingly, the Caputo fractional derivative of the order θ ∈

(0, 1) to the function v(x, t) can be represented as

D
θ
t v(·, t) =

∂

∂t
(ω1−θ ∗ v)(·, t)− ω1−θ (t)v(·, 0)

= ∂θt v(·, t)− ω1−θ (t)v(·, 0) (4.1)

provided that both derivatives exist.

At this point, we subsume [16, Proposition 4.1], [11,

Proposition 1] as the following claim.

Proposition 4.1. The following hold.

(i) For any given positive numbers θ1 and θ2 and a summable kernel

k = k(t), there are relations

(ωθ1 ∗ ωθ2 )(t) = ωθ1+θ2 (t), (1 ∗ ωθ1 )(t) = ω1+θ1 (t),

ωθ1 (t) ≥ CTθ1−1, (ωθ1 ∗ k)(t) ≤ Cωθ1 (t).

Here, the positive constant C depends only on T, θ1, and ‖k‖L1(0,T).

(ii) Let k(t) ∈ C
1([0,T]), θ ∈ (0, 1), θ1 ≥ 1, v = v(t) ∈

C
θ ([0,T]), Dθt v(t) ∈ C([0,T]), w = w(t) ∈ C

θ1 ([0,T]). Then, the

equality holds

(k ∗ wDθt v)(t) = k(0)w(t)(ω1−θ ∗ [v− v(0)])(t)

+ (k′ ∗ w(ω1−θ ∗ [v− v(0)]))(t)

+ (k ∗ w′(ω1−θ ∗ [v− v(0)]))(t), t ∈ [0,T].

The next result is key inequalities in the fractional calculus and

includes [12, Proposition 5.1, Corollaries 5.2-5.3].

Proposition 4.2. The following holds.

(i) Let θ , θ1 ∈ (0, 1) and θ1 > θ/2, v ∈ C
θ1 ([0,T]). For any even

integer p ≥ 2, the inequalities are true

∂θt v
p(t) ≤ ∂θt v

p(t)+ (p− 1)vp(t)ω1−θ (t) ≤ pvp−1(t)∂θt v(t).

If v is non-negative, then these bounds hold for any integer odd p.

(ii) Let 0 < θ1 < θ ≤ 1, θ2 ∈ (θ1, 1), and v ∈ C
θ2 ([0,T]).

Then, there is positive value T1 = T1(θ), such that the following

inequalities hold:

N1 = N(t; θ , θ1) = ω1−θ (t)− ω1−θ1 (t) ≥ 0 for all

t ∈ [0,T1];
d
dt
(N1 ∗ v

p)(t) ≤ d
dt
(N1 ∗ v

p)(t)+ (p− 1)vp(t)N1(t)

≤ pvp−1(t) d
dt
(N1 ∗ v)(t) for all

t ∈ [0,min{T,T1}],

where pmeets requirements of (i).

At this point, for given functions w1 and w2, we define

Jθ (t) = Jθ (t;w1,w2) =

∫ t

0

[w1(t)− w1(s)]

(t − s)1+θ
[w2(s)− w2(0)]ds,

W(w1) = W(w1; t, τ ) =

∫ 1

0

∂w1

∂z
(z)ds, where

z = st + (1− s)τ , 0 < τ < t < T,
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and assert the results obtained in ([12], Proposition 5.5) and related

to the fractional differentiation of the product.

Proposition 4.3. Let θ ∈ (0, 1), w1 ∈ C
1([0,T]), w2 ∈ C([0,T]).

(i) If Dθt w2 belongs either to C([0,T]) or to Lp(0,T), p ≥ 2, then,

there are equalities:

D
θ
t (w1w2) = w1(t)D

θ
t w2(t)+ w2(0)D

θ
t w1(t)

+
θ

Ŵ(1− θ)
Jθ (t;w1,w2),

∂θt (w1w2) = w1(t)D
θ
t w2(t)+ w2(0)∂

θ
t w1(t)

+
θ

Ŵ(1− θ)
Jθ (t;w1,w2),

andD
θ
t (w1w2), ∂

θ
t (w1w2) have the regularity:

D
θ
t (w1w2), ∂

θ
t (w1w2) ∈

{
C([0,T]), if D

θ
t w2 ∈ C([0,T]),

Lp(0,T), if D
θ
t w2 ∈ Lp(0,T).

(ii) For any θ1 ≥ θ > 0 and each t ∈ [0,T], there hold

Iθ1t (w1∂
θ
t w2)(t) = Iθ1−θt (w1w2)(t)− w2(0)

× [Iθ1−θt w1 − Iθ1t (w1ω1−θ )(t)]

− θI1+θ1−θt (W(w1)w2)(t),

Iθ1t (w1D
θ
t w2)(t) = Iθ1−θt (w1w2)(t)− w2(0)I

θ1−θ
t w1

− θI1+θ1−θt (W(w1)w2)(t).

5 A priori estimates

First, recasting step-by-step the proof of ([11], Theorem 1) and

additionally exploiting [17, Theorem 3.4] and arguments leading to

([18], Theorem 4.1) in the 3BC case, we claim the following result.

Lemma 5.1. Let f (u) ≡ 0, n ≥ 2, ν,µj, νi satisfy h1, and

p >





max{n+ 2
ν
; 1
ν−νM

; 1
ν−µN

}, if N ≥ 1,M ≥ 1,

max{n+ 2
ν
; 1
ν−νM

}, if N = 0,M ≥ 1;

max{n+ 2
ν
; 1
ν−µN

}, if N ≥ 1,M = 0.

We require that

g ∈ Lp(�T), u0 ∈ W
2− 2

pν ,p(�), ϕ1 ∈ H
ν(1− 1

2p ),2−
1
p

p (∂�T),

ϕ2 ∈ H
ν( 12−

1
2p ),1−

1
p

p (∂�T).

Moreover, in theDBC case, we additionally assume

u0(x)|∂� = ϕ1(x, 0).

Under assumptions h2–h5, the classical solution u ∈

C
2+α, 2+α2 ν(�̄T) of Equations 1.1, 1.2 satisfies the estimate

‖u‖
H

ν,2
p (�T )

+ ‖u‖
C
α, αν2 (�̄T )

+

M∑

i=1

‖D
νi
t u‖Lp(�T )

+

N∑

j=1

‖D
µj

t u‖Lp(�T ) ≤ C{‖g‖Lp(�T ) + ‖u0‖
W

2− 2
pν ,p(�)

+
∣∣ϕ

∣∣},

where

∣∣ϕ
∣∣ =





‖ϕ1‖
H

ν(1− 1
2p ),2−

1
p

p (∂�T )

in theDBC case,

‖ϕ2‖
H

ν( 12−
1
2p ),1−

1
p

p (∂�T )

in the 3BC case.

Here, the generic constant C is independent of the right-hand sides

in Equations 1.1, 1.2.

Our next result connects with a priori estimates in the fractional

Hölder space to the function u satisfying the family of equations for

each λ ∈ [0, 1]:

Dtu− L1u−K ∗ L2u+ λf (u) = g(x, t) in �T (5.1)

and homogeneous conditions Equation 1.2.

Lemma 5.2. Let assumptions of Theorem 3.1 hold, and

ϕ1,ϕ2, u0 ≡ 0.

We assume also u ∈ C
2+α, 2+α2 ν(�̄T) be solution to Equations 5.1,

1.2. Then, for any λ ∈ [0, 1], there are the following estimates:

‖u‖C(�̄T )
≤ C[1+ ‖g‖C(�̄T )

], (5.2)

‖u‖
C
2+α, 2+α2 ν0 (�̄T )

+
∑M

i=1 ‖D
νi
t u‖Cα,

να
2 (�̄T )

+
∑N

j=1 ‖D
µj

t u‖
C
α, να2 (�̄T )

≤ C[1+ ‖g‖
C
α, να2 (�̄T )

]. (5.3)

The positive constant C is independent of λ and the right-hand

sides of Equations 5.1, 1.2 and depends only on T and the structural

parameters in the model.

First of all, we notice that estimate Equation 5.3 in this claim is

verified with the standard Schauder technique and by means of

([10], Theorem 4.1) and bound Equation 5.2 in this art.

We focus on the proof of Equation 5.2 if DBC holds, the

case of 3BC is analyzed by collecting the similar arguments with

techniques leading to ([15], Lemma 5.3). We preliminary observe

that verification of Equation 5.2 in the case of the absence of

D
µj

t (γju), j = 1, 2, ...,N, (i.e.,N = 0) is simpler and recasts the main

steps (with minor changes) in arguments related with N ≥ 1. Thus,

here, we assume the presence of at least one fractional derivative

D
µj

t (γju) in the operator Dtu. Then, we will exploit the following

strategy. Keeping in mind assumption h3, the homogeneous initial

condition and relation Equation 4.1, we rewrite Dtu in the more

suitable form:

Dtu =1 Dtu+2 Dtu, 1Dtu = ∂νt (ρ0u)+
∑M

i=1 ∂
νi
t (ρiu),

2Dtu =
∑N

j=1
∂
∂t (Nj ∗ (γju)), (5.4)

where

Nj = Nj(t; ν,µj) = ω1−ν(t)− ω1−µj (t).

Appealing to (ii) in Proposition 4.2, we introduce

T∗
j = T∗(µj) > 0, j = 1, 2, ...,N,
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such that the functionNj is strictly positive for all t ∈ [0,T∗
j ].

After that, for each fixed T0 :

0 < T0 < min
{
T,T∗

1 , ...,T
∗
N , (νµ

−1
1 Ŵ(1+ ν − µ1))

1
ν−µ1 , ...,

(νµ−1
N Ŵ(1+ ν − µN))

1
ν−µN

}
, (5.5)

we obtain the estimates

‖u‖C(�̄T0
) ≤ C[1+ ‖g‖C(�̄T0

)] ≤ C[1+ ‖g‖C(�̄T )
] (5.6)

with the positive constant being independent of λ and T0.

Then, we discuss the extension of these bounds to the interval

(T0,T] and reach the estimate Equation 5.2. It is worth noting

that this step is absent in the case of N = 0, due to the proof

of Equation 5.6 and consequently Equation 5.2 are carried out

immediately on the entire time interval [0,T].

Step 1: Verification of Equation 5.6. Here, we focus on the

obtaining of Equation 5.6 if h3(i) holds, the case of h3(ii) is analyzed

with the similar arguments and is left to the interested readers.

Let K̄ be the conjugate kernel to K, its properties are described

in ([15], Proposition 4.4), in particular,

‖K̄‖
C
1
([0,T])

≤ C‖K‖
C
1
([0,T])

(1+ e
T‖K‖

C
1
([0,T]) ). (5.7)

Setting

L0 =

n∑

ij=1

∂

∂xi

(
aij(x, t)

∂

∂xj

)
, w̄ = −L0u,

w = −λf (u)+ g −Dtu+ (L1 − L0)u+K ∗ (L2 − L0)u,

and exploiting [15, Proposition 4.4] and Proposition 4.1, we rewrite

Equation 5.1 in more suitable form

1Dtu+2 Dtu− L0u =

7∑

l=1

Fl, (5.8)

where

F1 = −λf (u)+ K̄ ∗ f (u)+ g − K̄ ∗ g, F2 = (L1 − L0)u,

F3 = −K̄ ∗ (L1 − L0)u, F4 = K̄ ∗ (L2 − L0)u,

F5 = K̄(0)(ω1−ν ∗ (ρu))+ K̄
′
∗ ω1−ν ∗ (ρu),

F6 = −

N∑

j=1

[K̄(0)(ω1−µj ∗ (γju))+ K̄
′
∗ ω1−µj ∗ (γju)],

F7 =

M∑

j=1

[K̄(0)(ω1−νi ∗ (ρiu))+ K̄
′
∗ ω1−νi ∗ (ρiu)].

After that, multiplying equality (Equation 5.8) by pup−1 with

p = 2m, m ≥ 1, and then integrating over �, we end up with the

inequality (after standard technical calculations with exploiting h2)

∫

�

pup−1(x, τ )1Dτudx+

∫

�

pup−1(x, τ )2Dτudx

+ p(p− 1)δ2

∫

�

up−2(x, τ )|∇u(x, τ )|2dx

≤

7∑

l=1

∫

�

pup−1(x, τ )Fldx.

It is worth noting that in the case of h3(ii), one should multiply

Equation 5.8 by p(ρ0u)
p−1.

Computing the fractional integral Iνt of both sides in this

inequality, we arrive at the bound

R0,1(t)+R0,2(t)+p(p−1)δ2I
ν
t

(∫

�

up−2|∇u|2dx

)
(t) ≤

7∑

l=1

Rl(t),

(5.9)

where we put

R0,1(t) = Iνt

(∫

�

pup−1
1Dτudx

)
(t),

R0,2(t) = Iνt

(∫

�

pup−1
2Dτudx

)
(t),

Rl(t) = Iνt

(∫

�

Flpu
p−1dx

)
(t), l = 1, ..., 7.

At this point, we evaluate each termRl,R0,1, andR0,2.

• First, we notice that the termsRl, l = 1, 2, 3, 4, are evaluated with

the arguments providing the estimates of Dl, l = 1, 2, 3, 4, in ([11],

Section 7.1). Thus, we immediately have

4∑

l=1

|Rl(t)| ≤ Cp[1+ ‖g‖
p

C([0,T0])
]+

p(p− 1)δ2

2
Iνt

∫

�

up−2|∇u|2dx,

where the positive C is independent of λ, p, and T0, and depends

only on the structural parameters of the model.

• Coming to Rl, l = 5, 6, 7, we pre-observe that R6 and R7 are

evaluated with the same arguments which provide the bound of

R5. Hence, here, we tackle onlyR5. Applying the Young inequality

to the function u(x, s)up−1(x, τ ) and then employing Proposition

4.1, estimate Equation 5.7, and assumptions h3 and h5, we get the

inequality

7∑

l=5

|Rl(t)| ≤ CpIνt

( ∫

�

|u|pdx

)
(t)

with the positive constant C depending only on T, and the norms

of γj, ρi, ρ,K, and being independent of p, T0, and λ.

• Now, we are left to evaluateR0,1 andR0,2. First, denoting

ρθ =

{
ρ0, if θ = 0,

ρi, if θi = νi, i = 1, 2, ...,M,

and performing technical calculations and using Propositions 4.2,

4.3, the homogeneous initial condition to u and assumption h3, we

end up with the inequalities

∫

�

pup−1∂θt (ρθu)dx ≥

∫

�

ρ
1−p
θ ∂θt (ρθu)

pdx,
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Iνt

( ∫

�

ρ
1−p
θ ∂θt (ρ

p
θu

p)dx

)
(t)

≥





∫
�
ρθu

pdx− ν
∫
�
I1t (W(ρ

1−p
θ )ρ

p
θu

p)(t)dx,

if θ = ν,

Iν−θt (
∫
�
ρθu

pdx)(t)− θ
∫
�
I1+ν−θt (W(ρ

1−p
θ )ρ

p
θu

p)(t)dx,

if θ = νi, i = 1, ...,M

≥





∫
�
ρ0u

pdx, if θ = ν,

Iν−θt (
∫
�
ρθu

pdx)(t), if θ = νi, i = 1, ...,M.

Here, to reach the last inequalities, we appeal to the definition

ofW and to assumption h3(i) (meaning the non-negativity of ∂ρθ
∂t )

and taking into account the non-negativity of (ρθu)
p (since p =

2m).

Bearing inmind these inequalities and the non-negativity of the

term Iν−θt (
∫
�
ρθu

pdx)(t), we arrive at the desired bound

R0,1(t) ≥

∫

�

ρ0(x, t)u
p(x, t)dx.

Concerning the term R0,2(t), we will use the analogous

arguments. Namely, Proposition 4.2 provides the estimate

∫

�

pup−1 ∂

∂t
(Nj ∗ γju)dx ≥

∫

�

γ
1−p
j

∂

∂t
(Nj ∗ (γju)

p)dx.

Then, collecting this bound with Proposition 4.3 arrives at

inequalities:

Iνt

( ∫

�

pup−1 ∂

∂t
(Nj ∗ γju)dx

)
(t)

≥ Iνt

(∫

�

γ
1−p
j ∂νt (γju)

pdx

)
(t)− Iνt

( ∫

�

γ
1−p
j ∂

µj

t (γju)
pdx

)
(t)

=

∫

�

γj(x, t)u
p(x, t)dx− I

ν−µj

t

( ∫

�

γju
pdx

)
(t)

+

(
νI1t − µjI

1+ν−µj

t

)( ∫

�

W(−γ
1−p
j )γ

p
j u

pdx

)
(t). (5.10)

First, we notice that h3(i) provides the non-negativity of

W(−γ
1−p
j ). Hence, ([12], Corollary 5.4) (where we put w =

W(−γ
1−p
j )γ

p
j u

p) tells us that

(
νI1t − µjI

1+ν−µj

t

)(∫

ω

W(−γ
1−p
j )γ

p
j u

pdx

)
(t) ≥ 0.

After that, this bound and Equation 5.10 lead to the inequality

Iνt

( ∫
�
pup−1 ∂

∂t (Nj ∗ γju)dx

)
(t) ≥

∫
�
γj(x, t)u

p(x, t)dx

−I
ν−µj

t

( ∫
�
γju

pdx

)
(t),

which in turn leads to the inequality

R0,2(t) ≥

∫

�

N∑

j=1

γj(x, t)u
p(x, t)dx−

N∑

j=1

I
ν−µj

t

( ∫

�

γju
pdx

)
(t).

At last, collecting all estimates of Rl, R0,1, R0,2 with

Equation 5.9, and taking into account the representation of ρ(x, t)

in the case of N ≥ 1, we arrive at the bound

∫

�

ρ(x, t)up(x, t)dx+
p(p− 1)δ2

2
Iνt

(∫

�

up−2|∇u|2dx

)
(t)

≤

N∑

j=1

I
ν−µj

t

(∫

�

γju
pdx

)
(t)

+ Cp(1+ ‖g‖
p

C(�̄T0
)
)+ CpIνt

( ∫

�

updx

)
(t)

with C being independent of p,T0, and λ.

Then, keeping in mind the restriction on ρ (see h3) to handle

the first term in the left-hand side, and exploiting the easily verified

relation

|∇up/2|2 ≤ p(p− 1)up−2|∇u|2

to manage the second term there, we have

∫

�

up(x, t)dx+ Iνt

(∫

�

|∇up/2|2dx

)
(t)

≤ Cmax
j
‖γj‖C(�̄T )

N∑

j=1

I
ν−µj

t

( ∫

�

updx

)
(t)

+ Cp[1+ ‖g‖
p

C(�̄T0
)
]+ CpIνt

(∫

�

updx

)
(t). (5.11)

To handle the last term in the right-hand side, we employ the

first interpolation inequality in ([15], Proposition 4.6) with ε =
1

2Cp(p−1)
. Thus, we get

∫

�

up(x, t)dx+ Iνt

(∫

�

|∇up/2|2dx

)
(t) ≤ Cp[1+ ‖g‖

p

C(�̄T0
)
]

+ [Cp(p− 1)]
n+2
2

∥∥∥∥
∫

�

up/2dx

∥∥∥∥
2

C([0,T0])

+ C

N∑

j=1

I
ν−µj

t

( ∫

�

updx

)
(t).

Finally, taking advantage of the easily verified estimate

ων−µj (t) ≤
Ŵ(ν − µN)

Ŵ(ν − µj)
TµN−µjων−µN (t),

j = 1, 2, ...,N − 1, t ∈ [0,T],

we deduce

∫

�

up(x, t)dx ≤ Cp[1+ ‖g‖
p

C(�̄T0
)
]

+[Cp(p− 1)]
n+2
2

∥∥∥∥
∫
�
up/2dx

∥∥∥∥
2

C([0,T0])

+C∗I
ν−µN
t

( ∫
�
updx

)
(t), (5.12)

where

C∗ = C

[
1+

N−1∑

j=1

Ŵ(ν − µN)

Ŵ(ν − µj)
TµN−µj

]

being independent of T0, p, and λ.
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To control the last term in the right-hand side, we apply

the Gronwall-type inequality [15, Proposition 4.3] and then use

formula (3.7.43) in [19]. Thus, we have

C∗I
ν−µN
t

( ∫

�

updx

)
(t) ≤ C∗AI

ν−µN
t (Eν−µN (C

∗tν−µN ))(t)

= A[Eν−µN (C
∗tν−µN )− 1]

≤ A[Eν−µN (C
∗Tν−µN )− 1]

for all t ∈ [0,T],

where we put

A = Cp[1+ ‖g‖
p

C(�̄T0
)
]+ [Cp(p− 1)]

n+2
2

∥∥∥∥
∫

�

up/2dx

∥∥∥∥
2

C([0,T0])

,

and Eθ (t) =
∑+∞

k=0
zk

Ŵ(kθ+1)
is the classical Mittag-Leffler function

of the order θ .

Taking into account this estimate to evaluate the last term in the

right-hand side of Equation 5.12, we achieve

∫

�

up(x, t)dx ≤ AEν−µN (C
∗Tν−µN ).

In fine, denoting

B = 4CEν−µN (C
∗Tν−µN ), Am = sup

t∈[0,T0]

(∫

�

updx

)1/p

with p = 2m,

we derive the bound

Am ≤ B
m2−m

[1+ ‖g‖C(�̄T0
)]+ B

mn2−m
Am−1. (5.13)

Then, two possibilities occur:

(i) either max{Am−1, 1+ ‖g‖C(�̄T0
)} = 1+ ‖g‖C(�̄T0

),

(ii) or max{Am−1, 1+ ‖g‖C(�̄T0
)} = Am−1.

Clearly, in the case of (i), passing to the limit as m → +∞ in

Equation 5.13, we end up with the desired estimate for t ∈ [0,T0].

If (ii) holds, then the standard technical calculations arrive at

the inequality

Am ≤ [Bm2−m
+ Bnm2−m

]Am−1 < C

m∏

k=1

[B+ Bn]k2
−k
A1

< C exp

{
| ln[B+ Bn]|

+∞∑

k=1

kn

2k

}
A1.

Letting m → +∞ in this estimates and bearing in mind the

convergence of the series, we have

‖u‖C(�̄T0
) ≤ CA1,

where the positive constant C is independent of T0 and λ.

Finally, to manage the term A1, we first put p = 2 in

Equation 5.11 and then apply Gronwall inequality [15, Proposition

4.3], where we set k = ων(t)+Cmax
j
‖γj‖C(�̄T

∑N
j=1 ων−µj (t). Thus,

we end up with bound Equation 5.6 and as a consequence with

Equation 5.3 where T = T0.

Step 2: Extension of Equation 5.6 to the whole time interval.

Actually, we only need in the technique which allows us to

extend Equation 5.6 to the interval [T0, 3T0/2]. Then, repeating this

procedure a finite number of times, we exhaust the entire [T0,T]

and hence complete the proof of Equation 5.2.

Denoting

8(x, t) =

{
−λf (u)+ g(x, t), if (x, t) ∈ �̄T0/2,

[−λf (u)+ g(x, t)]|t=T0/2, if x ∈ �̄, t > T0/2,

we designate U(x, t) as a solution to the linear problem





DtU− L1U−K ∗ L2U = 8(x, t) in �3T0/2,

U(x, 0) = 0 in �̄,

U(x, t) = 0 on ∂�3T0/2.

(5.14)

Thanks to Equations 5.3, 5.6 (with T = T0) and assumptions

h6, h7.I, we get

‖8‖
C
α,
αν0
2 (�̄3T0/2

)

≤ C[‖u‖C(�̄T0
) + 1+ ‖g‖

C
α, αν2 (�̄T0

)
] ≤ C[1+ ‖g‖

C
α, αν2 (�̄T0

)
],

‖8‖C(�̄3T0/2
) ≤ C[1+ ‖g‖C(�̄T0

)],

8(x, 0) = 0 if x ∈ ∂�,

(5.15)

where the positive value C is independent of T0, λ and the right-

hand side of Equation 5.14.

Keeping in mind these properties of 8, we can apply [10,

Theorem 4.1] to Equation 5.14 and obtain the unique classical

solution U satisfying the following relations:

‖U‖
C
2+α, 2+α2 ν

(�̄3T0/2
)
+

N∑

i=1

‖D
νi
t U‖Cα,

αν
2 (�̄3T0/2

)

+

M∑

j=1

‖D
µj

t U‖
C
α, αν2 (�̄3T0/2

)

≤ C[1+ ‖g‖
C
α, αν2 (�̄T0

)
],

‖U‖C(�̄3T0/2
) ≤ C[1+ ‖g‖C(�̄T0

)],

U(x, t) = u(x, t) if (x, t) ∈ �̄T0/2.

In fine, we introduce new unknown function

v(x, t) = u(x, t)− U(x, t)

solving the problem





Dtv− L1v−K ∗ L2v = −λf ⋆(v)+ g⋆(x, t) in �3T0/2,

v(x, 0) = 0 in �̄,

v(x, t) = 0 on ∂�3T0/2.

(5.16)

Here, we set

f ⋆(v) = f (v+ U), g⋆(x, t) = g(x, t)−8(x, t).
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By virtue of Equation 5.15 and representation of the right-hand

sides in Equation 5.16, we deduce that f ∗(v) has all properties of

f (u), and

g∗ − λf ∗ = 0 if x ∈ �̄, t ∈ [0,T0/2],

‖g∗‖
C
α, αν2 (�̄3T0/2

)
≤ C[1+ ‖g‖

C
α, αν2 (�̄T0

)
],

‖g∗‖C(�̄3T0/2
) ≤ C[1+ ‖g‖C(�̄T0

)],

where the constant C is independent of λ and T0.

Finally, introducing the new time-variable

σ = t −
T0

2
, σ ∈

[
−

T0

2
,T0

]
,

and repeating arguments of the end of Section 6.3 in [10], we arrive

at the problem





Dσ v̄− L1v̄−K ∗ L2v̄ = −λf̄ ⋆(v̄)+ ḡ⋆ in �T0 ,

v̄(x, 0) = 0 in �̄,

v̄(x, σ ) = 0 on ∂�T0 ,

(5.17)

besides,

v̄(x, σ ) = 0 if σ ∈

[
−

T0

2
, 0

]
, x ∈ �̄.

Here, we put

v̄(x, σ ) = v(x, σ + T0/2), ḡ∗(x, σ ) = g∗(x, σ + T0/2),

f̄ ∗(v̄) = f ∗(v)|t=σ+T0/2,

and we call Lk, Dσ the operators Lk and Dσ , respectively, with

the bar coefficients. It is easy to check that the coefficients of these

operators and the functions ḡ∗ and f̄ ∗ meet the requirements of

Lemma 5.2. Then, arguing as Step 1, we end up with estimates

Equations 5.2, 5.3, 5.6 to the function v. Collecting the obtained

results with the properties of the function U, we extend the desired

estimates to the whole segment [0, 3T0/2]. This completes the proof

of Lemma 5.2

Remark 5.1. Collecting estimate Equation 5.2 with Lemma

5.1 provides the following a priori estimate to solution

of Equation 5.1 satisfying homogeneous boundary and

initial conditions:

‖u‖
H

ν,2
p (�T )

+ ‖u‖
C
α, αν2 (�̄T )

+

M∑

i=1

‖D
νi
t u‖Lp(�T )

+

N∑

j=1

‖D
µj

t u‖Lp(�T )

≤ C[1+ ‖g‖Lp(�T ) + ‖g‖C(�̄T )
]

with C being independent of λ.

6 Proof of Theorems 3.1, 3.2

Here, we will exploit the continuation approach based on the a

priori estimates in the fractional Hölder spaces. It is worth noting

that this technique has been utilized in [11] to prove the well-

posedness of Equations 1.1, 1.2 with two-term fractional derivatives

in the operator Equation 1.3 in the DBC case. Hence, in our

arguments, we focus on only main difficulties connected with

multi-term fractional derivatives in Equation 1.3.

Concerning the proof of Theorem 3.2, we will exploit the

technique leading to Theorem 4.4. in [12]. This approach includes

a priori estimates of Equations 1.1, 1.2 in the fractional Sobolev

spaces and the construction of the corresponding solutions via

consideration of approximated problems.

6.1 Conclusion of the proof of Theorem 3.1

First, we prove Theorem 3.1 in the case of homogeneous

boundary and initial conditions and then we remove this

restriction.

To this end, we rely on the so-called continuation arguments.

For λ ∈ [0, 1], we consider the family of problem





Dtu− L1u−K ∗ L2u+ λf (u) = g(x, t) in �T ,

u(x, 0) = 0 in �̄,

u(x, t) = 0 or Mu+K1 ∗Mu− c0u = 0 on ∂�T .

(6.1)

Denoting 3 as the set of those λ for which Equation 6.1

is solvable on [0,T]. Obviously, if λ = 0, then Equation 6.1

transforms to the linear problem analyzed in [10]. Hence,

assumptions h1–h6 allow us to apply Theorem 4.1 and Remark 4.4

from [10] and obtain the global classical solvability. Thus, 0 ∈ 3.

Then, we are left to examine if the set 3 is open and closed at the

same time. To this end, exploiting Lemmas 5.1, 5.2 (in particular,

the estimate of ‖u‖
C
α,αν/2

(�̄T )
via ‖g‖C(�̄T )

) and recasting step-by-

step the arguments of ([15], Section 5.2), we complete the proof

of Theorem 3.1 in the case of homogeneous initial and boundary

conditions.

To remove this restriction, we consider the following linear

problem with the unknown function w = w(x, t)





Dtw− L1w−K ∗ L2w = g(x, t)− f (u0) in �T ,

w(x, 0) = u0(x) in �̄,

w(x, t) = ϕ1(x, t) or Mw+K1 ∗Mw− c0w = ϕ2(x, t)

on ∂�T .

Applying ([15], Remark 3.1) and ([10], Remark 4.4) arrives

at the one-valued classical solvability of this linear problem and,

besides, at the bound

‖w‖
C
2+α, 2+α2 ν

(�̄T )
+

M∑

i=1

‖D
νi
t w‖Cα,

να
2 (�̄T )

+

N∑

j=1

‖D
µj

t w‖
C
α, να2 (�̄T )

≤ CG(u0, g,ϕ),

Frontiers in AppliedMathematics and Statistics 10 frontiersin.org66

https://doi.org/10.3389/fams.2024.1388414
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Vasylyeva 10.3389/fams.2024.1388414

where

G(u0, g,ϕ) = 1+ ‖g‖
C
α, να2 (�̄T )

+ ‖u0‖C2+α
(�̄)

+
∣∣ϕ

∣∣
C
,

∣∣ϕ
∣∣
C
=




‖ϕ1‖

C
2+α, 2+α2 ν

(∂�T )
inDBC case,

‖ϕ2‖
C
1+α, 1+α2 ν

(∂�T )
in 3BC case.

Here, we exploited assumption h7 and ([15], Remark 3.1) to

handle the term ‖f ‖
C
α, να2 (�̄T )

.

After that, we look for a solution to the original problem

Equations 1.1, 1.2 in the form

u(x, t) = w(x, t)+W(x, t),

where the new unknown function W solves the problem

Equation 6.1 with λ = 1 and the new right-hand sides:

f̄ (W) = f (W + w)− f (w), ḡ = f (u0)− f (w).

Remark 6.1. Assumption h4 and the estimate of w provide the

inequality

‖ḡ‖
C
α, να2 (�̄T )

≤ CG(u0, g,ϕ).

In addition, the function f̄ (W) satisfies assumption h7 with the

constant depending only on L or Li and G(u0, g,ϕ). Moreover, the

straightforward calculations and the definition of w arrive at the

relations

ḡ(x, 0) = 0 for each x ∈ �̄, f̄ (0) = 0 for each (x, t) ∈ �̄T .

The last equalities in Remark 6.1 tell us that the consistency

conditions in the non-linear problem for the function W are

satisfied. In summary, we reduce problem Equation 1.1, 1.2 to

Equation 6.1 with the right-hand sides satisfying the assumptions

of Theorem 3.1. Hence, this completes the proof of this theorem in

the general case.

6.2 Proof of Theorem 3.2

Actually, the verification of Theorem 3.2 is a simple

consequence of Theorem 3.1 and a priori estimates obtained in

Section 5 and repeats the arguments leading to ([12], Theorem

4.4). Indeed, thanks to Theorem 3.1 in the case of homogeneous

initial and boundary conditions in Equation 1.2, we construct an

approximate solution un. Then, exploiting uniform estimates in

Lemma 5.1 and Remark 5.1 and passing to the limit via standard

arguments, we obtain a strong solution to Equations 1.1, 1.2

satisfying the regularity stated in Theorem 3.2. Finally, to reach

the uniqueness of this solution, we assume the existence of two

solutions u1 and u2 satisfying Equations 1.1, 1.2 with the same

right-hand sides. Clearly, the difference ū = u1 − u2 solves the

problem Equation 6.1 with λ = 1, g = 0 and f (ū) = f (u1)− f (u2),

where

|f (ū)| ≤ C|u1 − u2|, C =

{
L, if h7.I holds,

|f ′(ξ )|, if h7.II holds,

where ξ is a middle point lying between u1 and u2.

Finally, recasting the arguments leading to the estimate

Equation 5.2, we obtain the equality

ū = 0, (x, t) ∈ �̄T ,

which finishes the verification of Theorem 3.2.

7 Conclusion

In this study, we propose a technique to study the well-

posedness (for each fixed T) of initial-boundary value problems

to semilinear multi-term time-fractional diffusion equations with

memory. The particular case of the problems analyzed models

the oxygen transport through capillaries [6]. The introduction

of fractional calculus in the model of the evolution of the

oxygen density is well-presented with some interesting details. Our

approach is particularly efficient when the multi-term derivatives

can be represented in the form ∂
∂t (N∗ρu) with a some non-positive

kernelN and given coefficient ρ = ρ(x, t).

Our analytical technique and ideas can be incorporated to study

the corresponding inverse problems concerning the reconstruction

of unknown parameters (e.g., the time lag in concentration of

oxygen along capillaries; the order of oxygen subdiffusion; and so

on). Moreover, our investigation can be employed to analyze the

corresponding initial-boundary value problems to fully non-linear

equations containing a term ∂
∂t (N ∗ f (u)) and to the equations with

degenerate coefficients in the fractional operator. These issues will

be addressed with a possible further research.
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This article utilizes the Aboodh residual power series and Aboodh transform iteration
methods to address fractional nonlinear systems. Based on these techniques, a
system is introduced to achieve approximate solutions of fractional nonlinear
Korteweg-de Vries (KdV) equations and coupled Burger’s equations with initial
conditions, which are developed by replacing some integer-order time
derivatives by fractional derivatives. The fractional derivatives are described in the
Caputo sense. As a result, the Aboodh residual power series and Aboodh transform
iteration methods for integer-order partial differential equations may be easily used
to generate explicit and numerical solutions to fractional partial differential
equations. The results are determined as convergent series with easily
computable components. The results of applying this process to the analyzed
examples demonstrate that the new technique is very accurate and efficient.

KEYWORDS

fractional calculus, system of partial differential equation, Caputo derivative, integral
transform, burgers equation, KdV equation and approximate solution

1 Introduction

Fractional calculus (FC) extends classical integration and differentiation to fractional
derivatives and integrals, respectively. New notions of integration and differentiation have
been developed that combine fractional differentiation with fractal derivatives. These
concepts are based on the convolution of a power law, an exponential law, and the
unique Mittag–Leffler law with fractal integrals and derivatives. This field has seen
advancements in applied science and technology, including control theory, biological
processes, groundwater flow, electrical networks, viscoelasticity, geo-hydrology, finance,
fusion, rheology, chaotic processes, fluid mechanics, and wave propagation in different
physical mediums such as plasma physics. Recent interest in fractional partial differential
equations (FPDEs) stems from their diverse applications in physics and engineering [1–4].
The FPDEs accurately explain a wide range of phenomena in electromagnetics, acoustics,
viscoelasticity, electrochemistry, and material science. Furthermore, the FPDEs are effective
in describing some physical phenomena such as damping laws, rheology, diffusion
processes, and so on [5, 6]. In general, no approach produces a precise solution to
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some FPDEs. The majority of nonlinear FPDEs cannot be solved
correctly. Hence, approximations and numerical approaches must
be utilized [7, 8].

This allows for a better understanding of difficult physical
processes, including chaotic structures with extended memory,
anomalous transport, and many more [9–13]. New ways of
computing, analyzing, and working with geometry are needed to
fully grasp the complicated dynamics of first-order partial
differential equations (FPDEs) [14–18]. However, these efforts
greatly improve scientific knowledge and technological
advancement. The current work begins with a thorough
evaluation of a specific type of fractional nonlinear partial
differential equations, with the goal of obtaining solutions that
explain the unique properties of these systems and demonstrate
their fascinating complexity [19, 20].

The KdV-type equations and some other related equations with
third-order dipersion can explain a wide range of different material
science phenomena, such as plasma physics. These equations describe
how nonlinear waves are created and propagated in nonlinear
dispersive mediums. Korteweg and de Vries formulated the KdV
equation to characterize shallow water waves with extended
wavelengths and moderate amplitudes. Following its first
application, the KdV equation has been expanded to span various
physical domains, including collisionless hydromagnetic waves,
plasma physics, stratified internal waves, and particle acoustic
waves [21–24]. Moreover, the family of KdV-type equations was
also used to model many nonlinear phenomena that arise in different
plasma systems and to study the properties of these phenomena,
especially solitary waves, shock wave, cnoidal waves, in addition to
rogue waves, when converting this family to the nonlinear
Schrödinger equation [25–41]. Moreover, El-Tantawy group
presented several equations related to the KdV equation with third
and/or fifth-order dispersive effect to describe many nonlinear waves
in multiple plasma systems, and this group presented several methods
for solving this family, whether analytical or approximate methods
that give approximate analytical solutions. Furthermore, Various
analytical and numerical techniques, including the Adomian
decomposition transform method [42], Bernstein Laplace Adomian
method [43], q-homotopy analysis transform method [44], and
Homotopy perturbation Sumudu transform method [45].

The system of nonlinear KdV equations can be mathematically
formulated using fractional derivatives as follows:

Dp
ηα ζ , η( ) − ∂3α ζ , η( )

∂ζ3
− 2β ζ , η( ) ∂α ζ , η( )

∂ζ
− α ζ , η( ) ∂β ζ , η( )

∂ζ
� 0,

(1)
Dp

ηβ ζ , η( ) − α ζ , η( ) ∂α ζ , η( )
∂ζ

� 0, where 0<p≤ 1 (2)

with the following initial conditions:

α ζ , 0( ) � q ζ( ), β ζ , 0( ) � w ζ( ). (3)
However, Burgers’ equations [46–48] describe the nonlinear diffusion
phenomenon using the most fundamental PDEs. Burgers’ equations
find significant application in the domains of fluid mechanics,
mathematical models of turbulence, and flow approximation in
viscous fluids [49, 50]. Furthermore, Burger’s equation and some
related equations have been utilized for modeling shock waves in
various plasma models [51–54]. Modeling scaled volume

concentrations in fluid suspensions is the definition of a one-
dimensional version of the coupled Burgers’ equations, which
differs depending on whether sedimentation or evolution is
occurring. Earlier works have provided additional details regarding
coupled Burgers’ equations [55, 56]. Sugimoto [57] introduced for the
first time the Burgers’ equation with a fractional derivative in light of
the development of FC. In the subsequent decades, a number of
authors [58–68] have investigated fractional Burgers’ equation
solutions utilizing approximate analytical methods.

The system of coupled nonlinear Burger’s equations can be
mathematically formulated using fractional derivatives as follows:

Dp
ηα ζ , η( ) − ∂2α ζ , η( )

∂ζ2
− 2α ζ , η( ) ∂α ζ , η( )

∂ζ
+ β ζ , η( ) ∂α ζ , η( )

∂ζ

+ α ζ , η( ) ∂β ζ , η( )
∂ζ

� 0, (4)

Dp
ηβ ζ , η( ) − ∂2β ζ , η( )

∂ζ2
− 2β ζ , η( ) ∂β ζ , η( )

∂ζ
+ β ζ , η( ) ∂α ζ , η( )

∂ζ

+ α ζ , η( ) ∂β ζ , η( )
∂ζ

� 0, where 0<p≤ 1. (5)

with the following initial conditions

α ζ , 0( ) � v ζ( ), β ζ , 0( ) � m ζ( ). (6)

In 2013 [69], Omar Abu Arqub established the RPSM. Being a
semi-analytical approach, the RPSM combines Taylor’s series with
the residual error function. Both linear and nonlinear differential
equations may be solved using convergence series techniques.
Fuzzy DE resolution constituted the initial application of RPSM
in 2013. For the efficient identification of power series solutions to
complex DEs, Arqub et al. [70] developed a novel set of RPSM
algorithms. Furthermore, a novel RPSM approach for solving
nonlinear boundary value problems of fractional order has been
created by Arqub et al. [71]. El-Ajou et al. [72] introduced an
innovative RPSM method for the estimation of solutions to KdV-
burgers equations of fractional order. Fractional power series have
been proposed as a potential method for solving Boussinesq DEs of
the second and fourth orders (Xu et al. [73]). A successful
numerical approach was devised by Zhang et al. [74], who
integrated RPSM and least square algorithms [75–77].

The most significant achievement of the 20th century about
fractional PDEs was Aboodh’s transform iterative approach
(NITM), developed by Aboodh. Because of their processing
complexity and inability to converge, standard techniques are
infamously useless for solving PDEs that incorporate fractional
derivatives. Our distinctive technology surpasses these limitations
by continually refining approximation solutions, reducing
computational effort, and enhancing accuracy. The utilization of
fractional derivative-specific iterations has resulted in improved
solutions to intricate mathematical and physical problems
[78–80]. The development of systems governed by complex
fractional partial differential equations has emerged in recent
times, enabling the investigation of engineering, physics, and
applied mathematics challenges that were previously unsolvable.

The Aboodh residual power series method (ARPSM) [81, 82],
and Aboodh transform iterative method (NITM) [78–80] are two
fundamental approaches utilized in the resolution of fractional
differential equations. These methodologies offer not only
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symbolic solutions in analytical terms that are readily accessible but
also generate numerical approximations for linear and nonlinear
differential equation solutions, obviating the necessity for
discretization or linearization. The primary aim of this effort is
to solve coupled Burger’s equations and the system of the KdV
equations by employing two distinct methodologies, NITM and
ARPSM. By combining these two techniques, numerous nonlinear
fractional differential problems have been resolved.

2 Fundamental concepts

Definition 2.1. [83] The function α(ζ, η) is assumed to be of
piecewise continuous and exponential order. In the case of τ ≥ 0, the
Aboodh transform of α(ζ, η) is specified as follows:

A α ζ , η( )[ ] � Λ ζ , ϵ( ) � 1
ϵ∫∞

0
α ζ , η( )e−ηϵdη, r1 ≤ ϵ≤ r2.

Aboodh inverse transform is given as:

A−1 Λ ζ , ϵ( )[ ] � α ζ , η( ) � 1
2πi

∫u+i∞

u−i∞
Λ ζ , η( )ϵeηϵdη

Where ζ � (ζ1, ζ2, . . . , ζp) ∈ R and p ∈ N

Lemma 2.1. [84, 85] The expressions α1(ζ, η) and α2(ζ, η) represent
functions of exponential order. On the interval [0,∞, they exhibit
piecewise continuity. Consider the following: A[α1(ζ, η)] = Λ1(ζ, η), A
[α2(ζ, η)] = Λ2(ζ, η) and λ1, λ2 are real numbers. These characteristics
are therefore valid:

1. A[λ1α1(ζ, η) + λ2α2(ζ, η)] = λ1Λ1(ζ, ϵ) + λ2Λ2(ζ, η),
2. A−1[λ1Λ1(ζ, η) + λ2Λ2(ζ, η)] = λ1α1(ζ, ϵ) + λ2α2(ζ, η),
3. A[Jpηα(ζ , η)] � Λ(ζ ,ϵ)

ϵp ,
4. A[Dp

ηα(ζ , η)] � ϵpΛ(ζ , ϵ) − ∑r−1
K�0

αK(ζ ,0)
ϵK−p+2 , r − 1<p≤ r, r ∈ N.

Definition 2.2. [86] The fractional Caputo derivative of the
function α(ζ, η) with respect to order p is defined as

Dp
ηα ζ , η( ) � Jm−p

η α m( ) ζ , η( ), r≥ 0, m − 1<p≤m,

where ζ � (ζ1, ζ2, . . . , ζp) ∈ Rp and m,p ∈ R, Jm−p
η is the

Riemann–Liouville integral of α(ζ, η)

Definition 2.3. [87] The form of the power series is as follows.

∑∞
r�0

Zr ζ( ) η − η0( )rp � Z0 η − η0( )0 + Z1 η − η0( )p + Z2 η − η0( )2p
+/ ,

where ζ � (ζ1, ζ2, . . . , ζp) ∈ Rp and p ∈ N. The term ”multiple
fractional power series (MFPS) for η0 is used to refer to this type
of series, in which the variable is η and the series coefficients
Zr(ζ)′s.

Lemma 2.2. Assume that the exponential order function is denoted
by α(ζ, η). A[α(ζ, η)] = Λ(ζ, ϵ) represents the definition of the Aboodh
transform (AT) in this specific case. In light of this,

A Drp
η α ζ , η( )[ ] � ϵrpΛ ζ , ϵ( ) −∑r−1

j�0
ϵp r−j( )−2Djp

η α ζ , 0( ), 0<p≤ 1, (7)

where ζ � (ζ1, ζ2, . . . , ζp) ∈ Rp and p ∈ N

and Drp
η � Dp

η .D
p
η ./ .Dp

η(r − times)
Proof. Induction method can be employed to illustrate Eq. 2. By

substituting r = 1 in Eq. 2, the subsequent results occur:

A D2p
η α ζ , η( )[ ] � ϵ2pΛ ζ , ϵ( ) − ϵ2p−2α ζ , 0( ) − ϵp−2Dp

ηα ζ , 0( )

Lemma 2.1, part (4), proves the validity of Eq. 2 for the value of
r = 1. By revising to use r = 2 in 2, we obtain

A D2p
r α ζ , η( )[ ] � ϵ2pΛ ζ , ϵ( ) − ϵ2p−2α ζ , 0( ) − ϵp−2Dp

ηα ζ , 0( ). (8)

We can determine Eq. 8 is:

L.H.S � A D2p
η α ζ , η( )[ ]. (9)

Eq. 9 can be represented as follows:

L.H.S � A Dp
ηα ζ , η( )[ ]. (10)

Assume that

z ζ , η( ) � Dp
ηα ζ , η( ). (11)

Therefore, Eq. 10 may be expressed as

L.H.S � A Dp
ηz ζ , η( )[ ]. (12)

Eq. 12 is modified as a consequence of the use of the Caputo type
fractional derivative.

L.H.S � A J1−pz′ ζ , η( )[ ]. (13)

It is possible to obtain the following by using the R-L integral for
the AT, which can be found in Eq. 13.

L.H.S � A z′ ζ , η( )[ ]
ϵ1−p . (14)

Using characteristic of the AT, Eq. 14 is converted into the
following form:

L.H.S � ϵpZ ζ , ϵ( ) − z ζ , 0( )
ϵ2−p , (15)

As a result of Eq. 11, we obtain:

Z ζ , ϵ( ) � ϵpΛ ζ , ϵ( ) − α ζ , 0( )
ϵ2−p ,

where A[z(ζ, η)] = Z(ζ, ϵ). Therefore, Eq. 15 is converted to

L.H.S � ϵ2pΛ ζ , ϵ( ) − α ζ , 0( )
ϵ2−2p − Dp

ηα ζ , 0( )
ϵ2−p , (16)

Thus, Eq. 2 implies compatibility with Eq. 16. Assume that for
r = K Eq. 2 holds. In Eq. 2, now put r = K.

A DKp
η α ζ , η( )[ ] � ϵKpΛ ζ , ϵ( )

− ∑K−1
j�0

ϵp K−j( )−2Djp
η Djp

η α ζ , 0( ), 0<p≤ 1. (17)
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The next step is to prove Eq. 2 for the value of r = K + 1. We may
write using Eq. 2 as a basis.

A D K+1( )p
η α ζ , η( )[ ] � ϵ K+1( )pΛ ζ , ϵ( ) −∑K

j�0
ϵp K+1( )−j( )−2Djp

η α ζ , 0( ).

(18)
From the analysis of Eq. 18, we get

L.H.S � A DKp
η DKp

η( )[ ]. (19)
Let consider

DKp
η � g ζ , η( ).

From Eq. 19, we have

L.H.S � A Dp
ηg ζ , η( )[ ]. (20)

R-L integral and the Caputo derivative is use to transform Eq. 20
into the subsequent expression.

L.H.S � ϵpA DKp
η α ζ , η( )[ ] − g ζ , 0( )

ϵ2−p . (21)

Eq. 17 is unitized in order to get Eq. 21.

L.H.S � ϵrpΛ ζ , ϵ( ) −∑r−1
j�0

ϵp r−j( )−2Djp
η α ζ , 0( ), (22)

In addition, the following outcome is obtained by using Eq. 22.

L.H.S � A Drp
η α ζ , 0( )[ ].

For r = K + 1, Eq. 2 holds. As a result, we demonstrated that Eq. 2
holds true for all positive integers using the mathematical
induction technique.

To further illustrate Taylor’s formula, the following lemma is
presented as an extension of the idea of multiple fractionals. This
formula is going to be beneficial to the ARPSM, which will be
discussed in further depth.

Lemma 2.3. Let us assume that α(ζ, η) has exponentially ordered
behavior. The multiple fractional Taylor’s series representing the
Aboodh transform of α(ζ, η) is A[α(ζ, η)] = Λ(ζ, ϵ).

Λ ζ , ϵ( ) � ∑∞
r�0

Zr ζ( )
ϵrp+2 , ϵ> 0, (23)

where, ζ � (s1, ζ2, . . . , ζp) ∈ Rp, p ∈ N.
Proof. Considering the fractional Taylor’s series, we observe as

α ζ , η( ) � Z0 ζ( ) + Z1 ζ( ) ηp

Γ p + 1[ ] + +Z2 ζ( ) η2p

Γ 2p + 1[ ] +/ . (24)

We obtain the following equality by transforming Eq. 24 using
the AT:

A α ζ , η( )[ ] � A Z0 ζ( )[ ] + A Z1 ζ( ) ηp

Γ p + 1[ ][ ]
+ A Z1 ζ( ) η2p

Γ 2p + 1[ ][ ] +/

For this purpose, we make advantage of the properties of the AT.

A α ζ , η( )[ ] � Z0 ζ( ) 1ϵ2 + Z1 ζ( ) Γ p + 1[ ]
Γ p + 1[ ] 1

ϵp+2

+ Z2 ζ( ) Γ 2p + 1[ ]
Γ 2p + 1[ ] 1

ϵ2p+2/

By using the Aboodh transform, we are able to get 23, which is
an new version of Taylor’s series.

Lemma 2.4. For the function that is represented in the Taylor’s
series 23, the MFPS representation needs to be defined as A[α(ζ, η)] =
Λ(ζ, ϵ). Following that, we have

Z0 ζ( ) � lim
ϵ→∞

ϵ2Λ ζ , ϵ( ) � α ζ , 0( ). (25)

Proof. The succeeding is taken from the transformed version of
Taylor’s series, which is as follows:

Z0 ζ( ) � ϵ2Λ ζ , ϵ( ) − Z1 ζ( )
ϵp − Z2 ζ( )

ϵ2p −/ (26)

By applying the limϵ→∞ to Eq. 25 and carrying out calculation,
the desired outcome, which is represented by Eq. 26, may
be achieved.

Theorem 2.5. Let us suppose that the function A[α(ζ, η)] = Λ(ζ, ϵ)
has MFPS form given by

Λ ζ , ϵ( ) � ∑∞
0

Zr ζ( )
ϵrp+2 , ϵ> 0,

where ζ � (ζ1, ζ2, . . . , ζp) ∈ Rp and p ∈ N. Then we have

Zr ζ( ) � Drp
r α ζ , 0( ),

where, Drp
η � Dp

η .D
p
η ./ .Dp

η(r − times).
Proof. We possess a new form of Taylor’s series.

Z1 ζ( ) � ϵp+2Λ ζ , ϵ( ) − ϵpZ0 ζ( ) − Z2 ζ( )
ϵp − Z3 ζ( )

ϵ2p −/ (27)

By employing Eq. 27 and the limϵ→∞, we can obtain

Z1 ζ( ) � lim
ϵ→∞ ϵp+2Λ ζ , ϵ( ) − ϵpZ0 ζ( )( ) − lim

ϵ→∞
Z2 ζ( )
ϵp − lim

ϵ→∞
Z3 ζ( )
ϵ2p −/

The following equality is obtained by taking limit:

Z1 ζ( ) � lim
ϵ→∞

ϵp+2Λ ζ , ϵ( ) − ϵpZ0 ζ( )( ). (28)

The outcome obtained by applying Lemma 2.2 to Eq. 28 is
as follows:

Z1 ζ( ) � lim
ϵ→∞

ϵ2A Dp
ηα ζ , η( )[ ] ϵ( )( ). (29)

By applying Lemma 2.3 to Eq. 29, the equation is transformed into

Z1 ζ( ) � Dp
ηα ζ , 0( ).

Once again, assuming limit ϵ → ∞ and consider the new
formulation of Taylor’s series, we get the following result:

Z2 ζ( ) � ϵ2p+2Λ ζ , ϵ( ) − ϵ2pZ0 ζ( ) − ϵpZ1 ζ( ) − Z3 ζ( )
ϵp −/
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Using Lemma 2.3, we get the following:

Z2 ζ( ) � lim
ϵ→∞ ϵ2 ϵ2pΛ ζ , ϵ( ) − ϵ2p−2Z0 ζ( ) − ϵp−2Z1 ζ( )( ). (30)

Lemmas 2.2 and 2.4 enable the transformation of Eq. 30 into

Z2 ζ( ) � D2p
η α ζ , 0( ).

The following outcomes are obtained when we use the same
technique to the subsequent Taylor’s series:

Z3 ζ( ) � lim
ϵ→∞

ϵ2 A D2p
η α ζ , p( )[ ] ϵ( )( ).

Lemma 2.4 may be used to get the final equation.

Z3 ζ( ) � D3p
η α ζ , 0( ).

So, in general

Zr ζ( ) � Drp
η α ζ , 0( ).

Thus, the proof comes to an end.
The next theorem establishes and goes into additional detail

about the conditions that govern the convergence of the modified
Taylor formula.

Theorem 2.6. The expression A[α(ζ, η)] = Λ(ζ, ϵ) represents
the updated formula for multiple fractional Taylor’s, as stated
in Lemma 2.3. The residual RK(ζ, ϵ) of the modified
multiple fractional Taylor’s formula meets the following
inequality if |ϵaA[D(K+1)p

η α(ζ , η)]0<p≤ 1 is related to | ≤ T, on
0 < ϵ ≤ s:

|RK ζ , ϵ( )|≤ T

ϵ K�1( )p+2, 0< ϵ≤ s.

Proof. For r = 0, 1, 2, . . . , K + 1, A[Drp
η α(ζ , η)](ϵ) is defined on

0 < ϵ ≤ s. Let, |ϵ2A[DηK+1α(ζ , tau)]|≤T, on 0< ϵ≤ s. The following
relationship should be determined based on the new version of
Taylor’s series:

RK ζ , ϵ( ) � Λ ζ , ϵ( ) −∑K
r�0

Zr ζ( )
ϵrp+2 . (31)

For the transformation of Eq. 31, the application of Theorem
2.5 is necessary.

RK ζ , ϵ( ) � Λ ζ , ϵ( ) −∑K
r�0

Drp
η α ζ , 0( )
ϵrp+2 . (32)

ϵ(K+1)a+2 must be multiplied on both sides of Eq. 32.

ϵ K+1( )p+2RK ζ , ϵ( ) � ϵ2 ϵ K+1( )pΛ ζ , ϵ( ) −∑K
r�0

ϵ K+1−r( )p−2Drp
η α ζ , 0( )⎛⎝ ⎞⎠.

(33)
Lemma 2.2 applied to Eq. 33 yields

ϵ K+1( )p+2RK ζ , ϵ( ) � ϵ2A D K+1( )p
η α ζ , η( )[ ]. (34)

The expression 34 is converted to its absolute form.

|ϵ K+1( )p+2RK ζ , ϵ( )| � |ϵ2A D K+1( )p
η α ζ , η( )[ ]|. (35)

The result that is shown below is the outcome of applying the
condition specified in Eq. 35.

−T
ϵ K+1( )p+2 ≤RK ζ , ϵ( )≤ T

ϵ K+1( )p+2. (36)

The necessary outcome may be obtained using Eq, 36.

|RK ζ , ϵ( )|≤ T

ϵ K+1( )p+2.

Series convergence is therefore defined according to a
new condition.

3 An outline of the propose
methodology

3.1 The ARPSMmethod is used to solve time-
fractional PDEs with variable coefficients

In this paper, we describe in detail the ARPSM rules that
resolved our underlying model.

Step 1: Simplifying the general equation gives us.

Dqp
η α ζ , η( ) + ϑ ζ( )N α( ) − ζ ζ , α( ) � 0, (37)

Step 2: Eq 37 are subjected to the AT to get

A Dqp
η α ζ , η( ) + ϑ ζ( )N α( ) − ζ ζ , α( )[ ] � 0, (38)

By using Lemma 2.2, Eq. 38 is transformed into.

Λ ζ , s( ) � ∑q−1
j�0

Dj
ηα ζ , 0( )
sqp+2

− ϑ ζ( )Y s( )
sqp

+ F ζ , s( )
sqp

, (39)

where, A[ζ(ζ, α)] = F(ζ, s), A[N(α)] = Y(s).
Step 3: It is important to examine the form in which the solution

to Eq. 39 is expressed:

Λ ζ , s( ) � ∑∞
r�0

Zr ζ( )
srp+2

, s> 0,

Step 4: You will be required to complete the following
procedures to continue:

Z0 ζ( ) � lim
ϵ→∞ s2Λ ζ , s( ) � α ζ , 0( ),

By applying Theorem 2.6, the subsequent results are obtained.

Z1 ζ( ) � Dp
ηα ζ , 0( ),

Z2 ζ( ) � D2p
η α ζ , 0( ),
..
.

Zw ζ( ) � Dwp
η α ζ , 0( ),

Step 5: Following Kth truncation, obtain the Λ(ζ, s) series
as follows:

ΛK ζ , s( ) � ∑K
r�0

Zr ζ( )
srp+2

, s> 0,

ΛK ζ , s( ) � Z0 ζ( )
s2

+ Z1 ζ( )
sp+2

+/ + Zw ζ( )
swp+2

+ ∑K
r�w+1

Zr ζ( )
srp+2

,
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Step 6: To obtain the following, separately consider the Aboodh
residual function (ARF) from 39 and the Kth-truncated Aboodh
residual function:

ARes ζ , s( ) � Λ ζ , s( ) −∑q−1
j�0

Dj
ηα ζ , 0( )
sjp+2

+ ϑ ζ( )Y s( )
sjp

− F ζ , s( )
sjp

,

and

AResK ζ , s( ) � ΛK ζ , s( ) −∑q−1
j�0

Dj
ηα ζ , 0( )
sjp+2

+ ϑ ζ( )Y s( )
sjp

− F ζ , s( )
sjp

. (40)

Step 7: Replace the expansion form of ΛK(ζ, s) in Eq. 40.

AResK ζ , s( ) � Z0 ζ( )
s2

+ Z1 ζ( )
sp+2

+/ + Zw ζ( )
swp+2

+ ∑K
r�w+1

Zr ζ( )
srp+2

⎛⎝ ⎞⎠
−∑q−1

j�0

Dj
ηα ζ , 0( )
sjp+2

+ ϑ ζ( )Y s( )
sjp

− F ζ , s( )
sjp

. (41)

Step 8: Multiplying both sides of Eq. 41 by sKp+2 yields
the solution.

sKp+2AResK ζ , s( ) � sKp+2
Z0 ζ( )
s2

+ Z1 ζ( )
sp+2

+/ + Zw ζ( )
swp+2

+ ∑K
r�w+1

Zr ζ( )
srp+2

⎛⎝
−∑q−1

j�0

Dj
ηα ζ , 0( )
sjp+2

+ ϑ ζ( )Y s( )
sjp

− F ζ , s( )
sjp

⎞⎠. (42)

Step 9: By evaluating both sides of Eq. 42 with regard to lims→∞.

lim
ϵ→∞

sKp+2AResK ζ , s( ) � lim
ϵ→∞

sKp+2 Z0 ζ( )
s2

+ Z1 ζ( )
sp+2

+/(
+ Zw ζ( )

swp+2
+ ∑K

r�w+1

Zr ζ( )
srp+2

−∑q−1
j�0

Dj
ηα ζ , 0( )
sjp+2

+ ϑ ζ( )Y s( )
sjp

− F ζ , s( )
sjp

⎞⎠.

Step 10: Solve the given equation to determine the value of ZK(ζ)

lim
ϵ→∞

sKp+2AResK ζ , s( )( ) � 0,

where K = w + 1, w + 2, /.
Step 11: Get the K-approximate solution of Eq. 39 by placing a

K-truncated series of Λ(ζ, s) for the values of ZK(ζ).
Step 12: To get the K-approximate solution αK(ζ, η), take the

inverse AT to solve ΛK(ζ, s).

3.2 Problem 1

Examine the following 1D system of 3rd-order nonlinear
KdV equations:

Dp
ηα ζ , η( ) − ∂3α ζ , η( )

∂ζ3
− 2β ζ , η( ) ∂α ζ , η( )

∂ζ
− α ζ , η( ) ∂β ζ , η( )

∂ζ
� 0,

(43)
Dp

ηβ ζ , η( ) − α ζ , η( ) ∂α ζ , η( )
∂ζ

� 0, where 0<p≤ 1 (44)

with the initial conditions listed below:

α ζ , 0( ) � −tanh ζ�
3

√( ), (45)

β ζ , 0( ) � −1
2
tanh2 ζ�

3
√( ) − 1

6
, (46)

and exact solution

α ζ , η( ) � −tanh ζ − η�
3

√( ). (47)

β ζ , η( ) � −1
2
tanh2

ζ − η�
3

√( ) − 1
6
. (48)

After using Eqs 45, 46, we get by applying AT to Eqs 43, 44.

α ζ , s( ) −
−tanh ζ�

3
√( )

s2
− 1
sp

∂3 α ζ , s( )
∂ζ3

[ ]
− 2
sp
Aη A−1

η β ζ , s( ) × ∂A−1
η α ζ , s( )
∂ζ

⎡⎣ ⎤⎦
− 1
sp
Aη A−1

η α ζ , s( ) × ∂A−1
η β ζ , s( )
∂ζ

⎡⎣ ⎤⎦ � 0, (49)

β ζ , s( ) −
−1
2
tanh2 ζ�

3
√( ) − 1

6

s2
− 1
sp
Aη A−1

η α ζ , s( ) × ∂A−1
η α ζ , s( )
∂ζ

⎡⎣ ⎤⎦ � 0,

(50)
The kth truncated term series is given as:

α ζ , s( ) �
−tanh ζ�

3
√( )

s2
+∑k

r�1

fr ζ , s( )
srp+1

, r � 1, 2, 3, 4/ .
(51)

β ζ , s( ) �
−1
2
tanh2

ζ�
3

√( ) − 1
6

s2
+∑k

r�1

gr ζ , s( )
srp+1

, r � 1, 2, 3, 4/ .

(52)
The residual function (ARF) are

AηRes ζ , s( ) � α ζ , s( ) −
−tanh ζ�

3
√( )

s2
− 1
sp

∂3 α ζ , s( )
∂ζ3

[ ]
− 2
sp
Aη A−1

η β ζ , s( ) × ∂A−1
η α ζ , s( )
∂ζ

⎡⎣ ⎤⎦
− 1
sp
Aη A−1

η α ζ , s( ) × ∂A−1
η β ζ , s( )
∂ζ

⎡⎣ ⎤⎦ � 0

(53)

AηRes ζ , s( ) � β ζ , s( ) −
−1
2
tanh2 ζ�

3
√( ) − 1

6

s2

− 1
sp
Aη A−1

η α ζ , s( ) × ∂A−1
η α ζ , s( )
∂ζ

⎡⎣ ⎤⎦ � 0 (54)

and the kth-LRFs as:

Frontiers in Physics frontiersin.org06

Noor et al. 10.3389/fphy.2024.1374452

74

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1374452


Aη Resk ζ , s( ) � αk ζ , s( ) −
−tanh ζ�

3
√( )

s2
− 1
sp

∂3αk ζ , s( )
∂ζ3

[ ]
− 2
sp
Aη A−1

η βk ζ , s( ) × ∂A−1
η αk ζ , s( )
∂ζ

⎡⎣ ⎤⎦
− 1
sp
Aη A−1

η αk ζ , s( ) × ∂A−1
η βk ζ , s( )
∂ζ

⎡⎣ ⎤⎦
� 0 (55)

Aη Resk ζ , s( ) � βk ζ , s( ) −
−1
2
tanh2 ζ�

3
√( ) − 1

6

s2

− 1
sp
Aη A−1

η αk ζ , s( ) × ∂A−1
η αk ζ , s( )
∂ζ

⎡⎣ ⎤⎦
� 0 (56)

fr(ζ, s) and gr(ζ, s) are obtained by multiplying the resulting
equations by srp+1, substituting the rth-truncated series Eqs 51, 52 into
the rth-residual functions Eqs 55, 56, and solving
lims→∞(srp+1AtResv,r(ζ, s)) = 0 and lims→∞(srp+1AtResw,r(ζ, s)) = 0
for r = 1, 2, 3, / iteratively.

Listed below are the first few terms:

f1 ζ , s( ) �
7 cosh

2ζ�
3

√( ) − 5( )sech4 ζ�
3

√( )
6

�
3

√ ,

g1 ζ , s( ) �
tanh

ζ�
3

√( )sech2 ζ�
3

√( )�
3

√ ,

(57)

f2 ζ , s( ) � 1
216

−297 sinh �
3

√
ζ( ) + 386 sinh

ζ�
3

√( ) + 37 sinh
5ζ�
3

√( )( )
× sech7

ζ�
3

√( ),
g2 ζ , s( ) � 1

36
−62 cosh 2ζ�

3
√( ) + 7 cosh

4ζ�
3

√( ) + 51( )sech6 ζ�
3

√( ).
(58)

and so on.
For each r = 1, 2, 3, . . . , we put the values of fr(ζ, s) and gr(ζ, s) in

Eqs 51 and 52, and obtain

α ζ , s( ) �
7 cosh

2ζ�
3

√( ) − 5( )sech4 ζ�
3

√( )
6

�
3

√( )sp+1 −
tanh

ζ�
3

√( )
s

+
−297 sinh �

3
√

ζ( ) + 386 sinh
ζ�
3

√( ) + 37 sinh
5ζ�
3

√( )( )sech7 ζ�
3

√( )
216s2p+1

+/ .

(59)

β ζ , s( ) �
−62 cosh 2ζ�

3
√( ) + 7 cosh

4ζ�
3

√( ) + 51( )sech6 ζ�
3

√( )
36s2p+1

+
tanh

ζ�
3

√( )sech2 ζ�
3

√( )�
3

√
sp+1

+
−1
2
tanh2 ζ�

3
√( ) − 1

6

s
+/ .

(60)
Utilizing the inverse AT, we get

α ζ , η( ) � 37η2δ sinh
5ζ�
3

√( )sech7 ζ�
3

√( )
216Γ 2δ + 1( )

−
11η2δ sinh

�
3

√
ζ( )sech7 ζ�

3
√( )

8Γ 2δ + 1( ) +
193η2δ tanh

ζ�
3

√( )sech6 ζ�
3

√( )
108Γ 2δ + 1( )

−
5ηδsech4 ζ�

3
√( )

6
�
3

√
Γ δ + 1( ) +

7ηδ cosh
2ζ�
3

√( )sech4 ζ�
3

√( )
6

�
3

√
Γ δ + 1( ) − tanh

ζ�
3

√( ) +/ .

(61)

β ζ , η( ) � 17η2δsech6
ζ�
3

√( )
12Γ 2δ + 1( ) +

7η2δ cosh
4ζ�
3

√( )sech6 ζ�
3

√( )
36Γ 2δ + 1( )

−
31η2δ cosh

2ζ�
3

√( )sech6 ζ�
3

√( )
18Γ 2δ + 1( ) +

ηδ tanh
ζ�
3

√( )sech2 ζ�
3

√( )�
3

√
Γ δ + 1( )

− 1
2
tanh2

ζ�
3

√( ) − 1
6
+/ . (62)

Figure 1 shows, (a) the ARPSM solution for p = 1, (b) exact
solution, (c) different fractional order comparison of α(ζ, η) for η =
0.1 of problem 1. Figure 2 illustrates, (a) the ARPSM solution for p =
1, (b) exact solution, (c) different fractional order comparison of β(ζ,
η) for η = 0.1. In Table 1, the ARPSM fractional solution for various
order of p for η = 0.1 of problem 1 α(ζ, η) is analyzed. In Table 2, the
ARPSM fractional solution for various order of p for η = 0.1 of
problem 1 β(ζ, η) is analyzed.

3.3 Problem 2

Examine the system of homogeneous Burger’s equations
as follows:

Dp
ηα ζ , η( ) − ∂2 α ζ , η( )

∂ζ2
− 2α ζ , η( ) ∂α ζ , η( )

∂ζ
+ β ζ , η( ) ∂α ζ , η( )

∂ζ

+ α ζ , η( ) ∂β ζ , η( )
∂ζ

� 0, (63)

Dp
ηβ ζ , η( ) − ∂2β ζ , η( )

∂ζ2
− 2β ζ , η( ) ∂β ζ , η( )

∂ζ
+ β ζ , η( ) ∂α ζ , η( )

∂ζ

+ α ζ , η( ) ∂β ζ , η( )
∂ζ

� 0, where 0<p≤ 1 (64)

with the following initial conditions:

α ζ , 0( ) � cos ζ( ), (65)
β ζ , 0( ) � cos ζ( ), (66)

and exact solution

α ζ , η( ) � e−η cos ζ( ), (67)
β ζ , η( ) � e−η cos ζ( ). (68)

By applying Eqs 65, 66 and the AT on Eqs 63, 64, we are able
to derive:

α ζ , s( ) − cos ζ( )
s2

− 1
sp

∂2α ζ , s( )
∂ζ2

[ ] − 2
sp
Aη A−1

η α ζ , s( ) ∂A
−1
η α ζ , s( )
∂ζ

⎡⎣ ⎤⎦
+ 1
sp
Aη A−1

η β ζ , s( ) ∂A
−1
η α ζ , s( )
∂ζ

⎡⎣ ⎤⎦ + 1
sp
Aη A−1

η α ζ , s( ) ∂A
−1
η β ζ , s( )
∂ζ

⎡⎣ ⎤⎦ � 0,

(69)
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β ζ , s( ) − cos ζ( )
s2

− 1
sp

∂2β ζ , s( )
∂ζ2

[ ] − 2
sp
Aη A−1

η β ζ , s( ) ∂A
−1
η β ζ , s( )
∂ζ

⎡⎣ ⎤⎦
+ 1
sp
Aη A−1

η β ζ , s( ) ∂A
−1
η α ζ , s( )
∂ζ

⎡⎣ ⎤⎦ + 1
sp
Aη A−1

η α ζ , s( ) ∂A
−1
η β ζ , s( )
∂ζ

⎡⎣ ⎤⎦ � 0,

(70)

As a result, the following term series have been kth truncated:

α ζ , s( ) � cos ζ( )
s2

+∑k
r�1

fr ζ , s( )
srp+1

, r � 1, 2, 3, 4/ . (71)

β ζ , s( ) � cos ζ( )
s2

+∑k
r�1

gr ζ , s( )
srp+1

, r � 1, 2, 3, 4/ . (72)

The residual function are

AηRes ζ , s( ) � α ζ , s( ) − cos ζ( )
s2

− 1
sp

∂2α ζ , s( )
∂ζ2

[ ]
− 1
sp
Aη A−1

η α ζ , s( ) ∂A
−1
η α ζ , s( )
∂ζ

⎡⎣ ⎤⎦
+ 1
sp
Aη A−1

η β ζ , s( ) ∂A
−1
η α ζ , s( )
∂ζ

⎡⎣ ⎤⎦
+ 1
sp
Aη A−1

η α ζ , s( ) ∂A
−1
η β ζ , s( )
∂ζ

⎡⎣ ⎤⎦ � 0, (73)

AηRes ζ , s( ) � β ζ , η( ) − cos ζ( )
s2

− 1
sp

∂2β ζ , s( )
∂ζ2

[ ]
− 2
sp
Aη A−1

η β ζ , s( ) ∂A
−1
η β ζ , s( )
∂ζ

⎡⎣ ⎤⎦
+ 1
sp
Aη A−1

η β ζ , s( ) ∂A
−1
η α ζ , s( )
∂ζ

⎡⎣ ⎤⎦
+ 1
sp
Aη A−1

η α ζ , s( ) ∂A
−1
η β ζ , s( )
∂ζ

⎡⎣ ⎤⎦ � 0,

(74)
and the kth-LRFs as:

AηResk ζ , s( ) � αk ζ , s( ) − cos ζ( )
s2

− 1
sp

∂2αk ζ , s( )
∂ζ2

[ ]
− 1
sp
Aη A−1

η αk ζ , s( ) ∂A
−1
η αk ζ , s( )
∂ζ

⎡⎣ ⎤⎦
+ 1
sp
Aη A−1

η βk ζ , s( ) ∂A
−1
η αk ζ , s( )
∂ζ

⎡⎣ ⎤⎦
+ 1
sp
Aη A−1

η αk ζ , s( ) ∂A
−1
η βk ζ , s( )
∂ζ

⎡⎣ ⎤⎦ � 0,

(75)

AηResk ζ , s( ) � βk ζ , s( ) − cos ζ( )
s2

− 1
sp

∂2βk ζ , s( )
∂ζ2

[ ]
− 1
sp
Aη A−1

η βk ζ , s( ) ∂A
−1
η βk ζ , s( )
∂ζ

⎡⎣ ⎤⎦
+ 1
sp
Aη A−1

η βk ζ , s( ) ∂A
−1
η αk ζ , s( )
∂ζ

⎡⎣ ⎤⎦
+ 1
sp
Aη A−1

η αk ζ , s( ) ∂A
−1
η βk ζ , s( )
∂ζ

⎡⎣ ⎤⎦ � 0,

(76)

To obtain fr(ζ, s) and gr(ζ, s), do the following procedures: The
rth-truncated series from Eqs 71, 72 should be substituted into the
rth-Aboodh residual function depicted in Eqs 75, 76, and the
resultant equations should be multiplied by srp+1. The relations
lims→∞(srp+1AηResα, r(ζ, s)) = 0 and lims→∞(srp+1AηResβ, r(ζ,
s)) = 0 are then solved iteratively.in the case of r = 1, 2, 3, /.
Listed below are the first few terms:

f1 ζ , s( ) � −cos ζ( ),
g1 ζ , s( ) � −cos ζ( ), (77)
f2 ζ , s( ) � cos ζ( ),
g2 ζ , s( ) � cos ζ( ). (78)
f2 ζ , s( ) � −cos ζ( ),
g2 ζ , s( ) � −cos ζ( ). (79)

and so on.For each r = 1, 2, 3, . . . , we put the values of fr(ζ, s) and
gr(ζ, s) in Eqs 71 and 72, and obtain

α ζ , s( ) � −cos ζ( )
sp+1

+ cos ζ( )
s2p+1

− cos ζ( )
s3p+1

+ cos ζ( )
s

+/ . (80)

β ζ , s( ) � −cos ζ( )
sp+1

+ cos ζ( )
s2p+1

− cos ζ( )
s3p+1

+ cos ζ( )
s

+/ . (81)

Utilizing the inverse transform of Aboodh, we get

α ζ , η( ) � cos ζ( ) + cos ζ( )η2p
Γ 2p + 1( ) − cos ζ( )η3p

Γ 3p + 1( ) − cos ζ( )ηp
Γ p + 1( ) +/ . (82)

β ζ , η( ) � cos ζ( ) + cos ζ( )η2p
Γ 2p + 1( ) − cos ζ( )η3p

Γ 3p + 1( ) − cos ζ( )ηp
Γ p + 1( ) +/ . (83)

Figures 3A–C show comparative analysis of different fractional
order p = 0.4, 0.6, 1.0 for α, β(ζ, η) at η = 0.1 respectively. The
different fractional order graphs of two and three dimensional of
problem 2 are introduced in Figure 4. In Table 3, we introduce an
analysis for the ARPSM fractional solution for various p for η = 0.1
of problem 2 α(ζ, η) and β(ζ, η).

3.4 The Aboodh iterative transform
Method’s concept

Our focus will be on a general space-time PDE of
fractional order.

Dp
ηα ζ , η( ) � Φ α ζ , η( ), Dη

ζ α ζ , η( ), D2η
ζ α ζ , η( ), D3η

ζ α ζ , η( )( ), 0<p, η≤ 1,
(84)

With the following initial conditions:

α k( ) ζ , 0( ) � hk, k � 0, 1, 2, . . . , m − 1, (85)
Let Φ(α(ζ , η), Dη

ζ α(ζ , η), D2η
ζ α(ζ , η), D3η

ζ α(ζ , η)) be a nonlinear or
linear operator of α(ζ , η) Dη

ζ α(ζ , η), D2η
ζ α(ζ , η) andD3η

ζ α(ζ , η), and
let α(ζ, η) be the assumed unknown function. The AT is applied to
both sides of Eq. 84 to provide the following equation. α is used
instead of α(ζ, η) for simplicity.

A α ζ , η( )[ ] � 1
sp

∑m−1

k�0

α k( ) ζ , 0( )
s2−p+k

+ A Φ α ζ , η( ), Dη
ζ α ζ , η( ), D2η

ζ α ζ , η( ), D3η
ζ α ζ , η( )( )[ ]⎛⎝ ⎞⎠,

(86)
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Aboodh inverse transform gives:

α ζ ,η( )�A−1 1
sp

∑m−1

k�0

α k( ) ζ ,0( )
s2−p+k

+A Φ α ζ ,η( ),Dη
ζ α ζ ,η( ),×D2η

ζ α ζ ,η( ),D3η
ζ α ζ ,η( )( )[ ]⎛⎝ ⎞⎠⎡⎢⎢⎣ .

(87)
The solution through this method is represented as an
infinite series.

α ζ , η( ) � ∑∞
i�0

αi. (88)

Since Φ(α, Dη
ζ α, D

2η
ζ α, D3η

ζ α) is either a nonlinear or linear operator
which can be decomposed as follows:

Φ α, Dη
ζ α, D

2η
ζ α, D

3η
ζ α( ) � Φ α0, D

η
ζ α0, D

2η
ζ α0, D

3η
ζ α0( )

+∑∞
i�0

Φ ∑i
k�0

⎛⎝αk, D
η
ζ αk, D

2η
ζ αk, D

3η
ζ αk⎞⎠⎛⎝ ⎞⎠⎛⎝

−Φ ∑i−1
k�1

⎛⎝αk, D
η
ζ αk, D

2η
ζ αk, D

3η
ζ αk⎞⎠⎛⎝ ⎞⎠⎞⎠.

(89)

Eqs 88, 89 must be substituted into Eq. 87 in order to get the
subsequent equation.

∑∞
i�0

αi ζ , η( ) � A−1 1
sp

∑m−1

k�0

α k( ) ζ , 0( )
s2−p+k

+ A Φ α0, D
η
ζ α0, D

2η
ζ α0, D

3η
ζ α0( )[ ]⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

+A−1 1
sp

A ∑∞
i�0

Φ∑i
k�0

αk, D
η
ζ αk, D

2η
ζ αk, D

3η
ζ αk( )⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

−A−1 1
sp

A Φ∑i−1
k�1

αk, D
η
ζ αk, D

2η
ζ αk, D

3η
ζ αk( )⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

(90)

α0 ζ , η( ) � A−1 1
sp

∑m−1

k�0

α k( ) ζ , 0( )
s2−p+k

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦,
α1 ζ , η( ) � A−1 1

sp
A Φ α0, D

η
ζ α0, D

2η
ζ α0, D

3η
ζ α0( )[ ]( )[ ],

..

.

αm+1 ζ , η( ) � A−1 1
sp

A ∑∞
i�0

Φ∑i
k�0

αk, D
η
ζ αk, D

2η
ζ αk, D

3η
ζ αk( )⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

−A−1 1
sp

A Φ∑i−1
k�1

αk, D
η
ζ αk, D

2η
ζ αk, D

3η
ζ αk( )⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦, m � 1, 2,/ .

(91)
The m-terms approximate solution to Eq. 84 is given as:

FIGURE 1
This figure shows, (A) the ARPSM solution for p = 1, (B) exact solution, (C) different fractional order comparison of α(ζ, η) for η = 0.1.
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FIGURE 2
This figure demonstrates: (A) the ARPSM solution for p = 1, (B) exact solution, (C) different fractional order comparison of β(ζ, η) for η = 0.1.

TABLE 1 The ARPSM fractional solution for various order of p for η = 0.1 of problem 1 α(ζ, η).

ζ ARPSMP=0.4 ARPSMp=0.6 ARPSMP=1.0 Exact Error for p = 0.4 Error for p = 0.6 Error for p = 1.0

0 0.0863506 0.0541023 0.019245 0.057671 0.0286796 0.00356862 3.8426 × 10−2

1 −0.419688 −0.438783 −0.485778 −0.477403 0.057715 0.0386201 8.37532 × 10−3

2 −0.648303 −0.720368 −0.786667 −0.799406 0.151104 0.0790382 1.27395 × 10−2

3 −0.839619 −0.887199 −0.92399 −0.93212 0.0925014 0.0449212 8.12967 × 10−3

4 −0.942015 −0.960967 −0.974959 −0.978098 0.0360838 0.0171318 3.1397 × 10−3

5 −0.980877 −0.987308 −0.991992 −0.993046 0.0121688 0.00573704 1.05378 × 10−3

6 −0.993885 −0.99596 −0.997464 −0.997803 0.00391798 0.00184308 3.38725 × 10−4

7 −0.998064 −0.998723 −0.9992 −0.999307 0.00124312 0.000584379 1.07415 × 10−4

8 −0.999389 −0.999597 −0.999748 −0.999782 0.000392607 0.00018452 3.39184 × 10−5

9 −0.999807 −0.999873 −0.99992 −0.999931 0.000123814 0.0000581869 1.06961 × 10−5

10 −0.999939 −0.99996 −0.999975 −0.999978 0.0000390284 0.0000183412 3.371538 × 10−6
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TABLE 2 The ARPSM fractional solution for various order of p for η =0.1 of problem 1 β(ζ, η).

ζ ARPSMP=0.4 ARPSMp=0.6 ARPSMP=1.0 Exact Error for p = 0.4 Error for p = 0.6 Error for p = 1.0

0 −0.185574 −0.17303 −0.167222 −0.16833 0.0172443 0.00469991 1.10741 × 10−3

1 −0.243365 −0.25392 −0.281497 −0.280623 0.0372584 0.0267034 8.73114 × 10−4

2 −0.417304 −0.45346 −0.4863 −0.486192 0.0688879 0.0327323 1.07858 × 10−4

3 −0.558867 −0.58303 −0.600827 −0.601091 0.0422232 0.0180605 2.63961 × 10−4

4 −0.628493 −0.638135 −0.644866 −0.645005 0.016512 0.00687014 1.38579 × 10−4

5 −0.654163 −0.657436 −0.659686 −0.659736 0.00557297 0.00229987 5.03434 × 10−5

6 −0.662677 −0.663733 −0.664456 −0.664472 0.00179478 0.000738806 1.65695 × 10−5

7 −0.665405 −0.66574 −0.665969 −0.665974 0.000569503 0.000234246 5.293155 × 10−6

8 −0.666268 −0.666374 −0.666447 −0.666448 0.000179867 0.0000739638 1.675265 × 10−6

9 −0.666541 −0.666575 −0.666597 −0.666598 0.0000567238 0.0000233238 5.286714 × 10−7

10 −0.666627 −0.666638 −0.666645 −0.666645 0.0000178804 7.351942 × 10−6 1.666822 × 10−7

FIGURE 3
(A–C) show comparative analysis of different fractional order p = 0.4, 0.6, 1.0 for α, β(ζ, η) at η = 0.1, respectively.
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α ζ , η( ) � ∑m−1

i�0
αi. (92)

3.4.1 Solution of the problem via NITM
3.4.1.1 Problem 1

Dp
ηα ζ , η( ) � ∂3α ζ , η( )

∂ζ3
+ 2β ζ , η( ) ∂α ζ , η( )

∂ζ
+ α ζ , η( ) ∂β ζ , η( )

∂ζ
, (93)

Dp
ηβ ζ , η( ) � α ζ , η( ) ∂α ζ , η( )

∂ζ
, where 0<p≤ 1 (94)

with the following initial conditions:

α ζ , 0( ) � −tanh ζ�
3

√( ). (95)

β ζ , 0( ) � −1
2
tanh2

ζ�
3

√( ) − 1
6
. (96)

Both sides of Eqs 93, 94 is evaluated using AT, the following
equations are produced as a result:

A Dp
ηα ζ , η( )[ ] � 1

sp
⎛⎝∑m−1

k�0

α k( ) ζ , 0( )
s2−p+k

+ A⎡⎣∂3 α ζ , η( )
∂ζ3

+ 2β ζ , η( ) ∂α ζ , η( )
∂ζ

+ α ζ , η( ) ∂β ζ , η( )
∂ζ

⎤⎦⎞⎠ (97)

A Dp
ηβ ζ , η( )[ ] � 1

sp
∑m−1

k�0

β k( ) ζ , 0( )
s2−p+k

+ A α ζ , η( ) ∂α ζ , η( )
∂ζ

[ ]⎛⎝ ⎞⎠ (98)

For Eqs 97, 98, the application of the inverse AT results in the
following equations:

FIGURE 4
Comparative analysis of fractional order p in (A) 3D graph and (B) 2D graph.

TABLE 3 The ARPSM fractional solution for various p for η =0.1 of problem 2 α(ζ, η) and β(ζ, η).

ζ ARPSMP=0.6 ARPSMp=0.8 ARPSMP=1.0 Exact Error for p = 0.7 Error for p = 0.8 Error for p = 1.0

0 0.766688 0.846069 0.904833 0.904837 0.138149 0.058768 4.084702 × 10−6

0.1 0.762858 0.841843 0.900313 0.900317 0.137459 0.0584744 4.064296 × 10−6

0.2 0.751406 0.829204 0.886797 0.886801 0.135395 0.0575965 4.003280 × 10−6

0.3 0.732445 0.808281 0.86442 0.864424 0.131979 0.0561432 3.902265 × 10−6

0.4 0.706167 0.779282 0.833407 0.83341 0.127244 0.0541289 3.762260 × 10−6

0.5 0.672832 0.742496 0.794066 0.79407 0.121237 0.0515738 3.584663 × 10−6

0.6 0.632775 0.698291 0.746791 0.746795 0.114019 0.0485033 3.371250 × 10−6

0.7 0.586396 0.64711 0.692055 0.692058 0.105662 0.0449482 3.124152 × 10−6

0.8 0.534157 0.589462 0.630403 0.630406 0.0962495 0.040944 2.845839 × 10−6

0.9 0.476581 0.525925 0.562453 0.562456 0.0858749 0.0365308 2.539091 × 10−6

1 0.414243 0.457133 0.488884 0.488886 0.0746423 0.0317525 2.206974 × 10−6
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α ζ , η( ) � A−1⎡⎣ 1
sp
⎛⎝∑m−1

k�0

α k( ) ζ , 0( )
s2−p+k

+ A⎡⎣∂3α ζ , η( )
∂ζ3

+ 2β ζ , η( ) ∂α ζ , η( )
∂ζ

+ α ζ , η( ) ∂β ζ , η( )
∂ζ

⎤⎦⎞⎠⎤⎦ (99)

β ζ , η( ) � A−1 1
sp

∑m−1

k�0

β k( ) ζ , 0( )
s2−p+k

+ A α ζ , η( ) ∂α ζ , η( )
∂ζ

[ ]⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦ (100)

Utilizing the AT in an iterative manner results in the extraction
of the following equation:

α0 ζ , η( ) � A−1 1
sp

∑m−1

k�0

α k( ) ζ , 0( )
s2−p+k

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦
� A−1 α ζ , 0( )

s2
[ ] � −tanh ζ�

3
√( ),

β0 ζ , η( ) � A−1 1
sp

∑m−1

k�0

β k( ) ζ , 0( )
s2−p+k

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦
� A−1 β ζ , 0( )

s2
[ ] � −1

2
tanh2

ζ�
3

√( ) − 1
6
,

By applying the RL integral to Eqs 93, 94, we perform the
objective of obtaining the equivalent form.

α ζ , η( ) � −tanh ζ�
3

√( )
+ A

∂3 α ζ , η( )
∂ζ3

+ 2β ζ , η( ) ∂α ζ , η( )
∂ζ

+ α ζ , η( ) ∂β ζ , η( )
∂ζ

[ ]
(101)

β ζ , η( ) � −1
2
tanh2

ζ�
3

√( ) − 1
6
+ A α ζ , η( ) ∂α ζ , η( )

∂ζ
[ ] (102)

The following few terms are produced by the NITM method.

FIGURE 5
In figure, (A) shows NITM solution for p = 1, (B) shows exact solution, (C) shows different fractional order comparison of α(ζ, η) for η = 0.1.
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α0 ζ , η( ) � −tanh ζ�
3

√( ),
β0 ζ , η( ) � −1

2
tanh2 ζ�

3
√( ) − 1

6
,

α1 ζ , η( ) � sech2 ζ�
3

√( )ηp�
3

√
Γ p + 1( ) ,

β1 ζ , η( ) � tanh
ζ�
3

√( )sech2 ζ�
3

√( )ηp�
3

√
Γ p + 1( ) ,

α2 ζ , η( ) � 1
9
sech4 ζ�

3
√( )η2p⎛⎝

��
3
π

√
4p 7sech2 ζ�

3
√( ) − 6( )ηpΓ p + 1

2
( )

Γ p + 1( )Γ 3p + 1( )
+
3 cosh

2ζ�
3

√( )
Γ 2p + 1( ) ⎞⎠,

β2 ζ , η( ) � 1
18

sech5 ζ�
3

√( )η2p

×

3 cosh
�
3

√
ζ( ) − 3 cosh

ζ�
3

√( )( )
Γ 2p + 1( ) −

��
3
π

√
4p+1 cosh

ζ�
3

√( )ηpΓ p + 1
2

( )
Γ p + 1( )Γ 3p + 1( )⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(103)

The final solution through NITM algorithm is presented in the
following manner:

α ζ , η( ) � α0 ζ , η( ) + α1 ζ , η( ) + α2 ζ , η( ) +/ . (104)
β ζ , η( ) � β0 ζ , η( ) + β1 ζ , η( ) + β2 ζ , η( ) +/ . (105)

v ζ , t( ) � − tanh
ζ�
3

√( ) +
sech2 ζ�

3
√( )ηp�

3
√

Γ p + 1( ) + 1
9
sech4 ζ�

3
√( )η2p��

3
π

√
4p 7sech2 ζ�

3
√( ) − 6( )ηpΓ p + 1

2
( )

Γ p + 1( )Γ 3p + 1( ) +
3 cosh

2ζ�
3

√( )
Γ 2p + 1( )⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+/ . (106)

w ζ , t( ) � − 1
2
tanh2

ζ�
3

√( ) − 1
6
+
tanh

ζ�
3

√( )sech2 ζ�
3

√( )ηp�
3

√
Γ p + 1( )

+ 1
18

sech5
ζ�
3

√( )η2p 3 cosh
�
3

√
ζ( ) − 3 cosh

ζ�
3

√( )( )
Γ 2p + 1( )⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−

��
3
π

√
4p+1 cosh

ζ�
3

√( )ηpΓ p + 1
2

( )
Γ p + 1( )Γ 3p + 1( ) ) +/ . (107)

FIGURE 6
In figure, (A) shows NITM solution for p = 1, (B) shows exact solution, (C) shows different fractional order comparison of β(ζ, η) for η = 0.1.

Frontiers in Physics frontiersin.org14

Noor et al. 10.3389/fphy.2024.1374452

82

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1374452


Figure 5 illustrates, (a) the NITM solution for p = 1, (b)
exact solution, (c) different fractional order comparison of α(ζ, η)
for η = 0.1. Figure 6 demonstrates, (a) the NITM solution for p = 1,
(b) exact solution, (c) different fractional order comparison of β(ζ, η)
for η = 0.1. In Table 4 the NITM fractional solution for various order
p for η = 0.1 of problem 1 is analyzed. In Table 5, the NITM
fractional solution for various order p for η = 0.1 of problem
1 is analyzed.

3.4.1.2 Problem 2

Dp
ηα ζ , η( ) � ∂2 α ζ , η( )

∂ζ2
+ 2α ζ , η( ) ∂α ζ , η( )

∂ζ
− β ζ , η( ) ∂α ζ , η( )

∂ζ

− α ζ , η( ) ∂β ζ , η( )
∂ζ

, (108)

Dp
ηβ ζ , η( ) � ∂2β ζ , η( )

∂ζ2
+ 2β ζ , η( ) ∂β ζ , η( )

∂ζ
− β ζ , η( ) ∂α ζ , η( )

∂ζ

− α ζ , η( ) ∂β ζ , η( )
∂ζ

, where 0<p≤ 1 (109)

with the following initial conditions:

α ζ , 0( ) � cos ζ( ), (110)
β ζ , 0( ) � cos ζ( ), (111)

Both sides of Eqs 108, 109 is evaluated using AT, the following
equations are produced as a result:

A Dp
ηα ζ , η( )[ ] � 1

sp
∑m−1

k�0

α k( ) ζ , 0( )
s2−p+k

+ A
∂2α ζ , η( )

∂ζ2
+ 2α ζ , η( ) ∂α ζ , η( )

∂ζ
[⎛⎝

− β ζ , η( ) ∂α ζ , η( )
∂ζ

−α ζ , η( ) ∂β ζ , η( )
∂ζ

]) (112)

TABLE 5 The NITM fractional solution for various order p for η = 0.1 of problem 1 β(ζ, η).

ζ ARPSMP=0.4 ARPSMp=0.6 ARPSMP=1.0 Exact Error for p = 0.4 Error for p = 0.6 Error for p = 1.0

0 −0.185755 −0.223388 −0.168333 −0.16833 0.0174257 0.0550588 3.696719 × 10−6

1 −0.244633 −0.218856 −0.2806 −0.280623 0.0359901 0.0617679 2.35178 × 10−5

2 −0.452665 −0.41593 −0.486203 −0.486192 0.0335271 0.0702618 1.10037 × 10−5

3 −0.586225 −0.568506 −0.601101 −0.601091 0.0148658 0.0325849 1.09383 × 10−5

4 −0.63978 −0.633398 −0.64501 −0.645005 0.00522512 0.0116074 4.595277 × 10−6

5 −0.658032 −0.655934 −0.659738 −0.659736 0.00170465 0.00380259 1.579266 × 10−6

6 −0.663929 −0.663259 −0.664473 −0.664472 0.000543121 0.00121313 5.113121 × 10−7

7 −0.665802 −0.66559 −0.665974 −0.665974 0.000171756 0.000383797 1.625110 × 10−7

8 −0.666394 −0.666327 −0.666448 −0.666448 0.000054188 0.000121101 5.135233 × 10−8

9 −0.666581 −0.66656 −0.666598 −0.666598 0.0000170833 0.0000381799 1.619737 × 10−8

10 −0.66664 −0.666633 −0.666645 −0.666645 5.384415 × 10−6 0.0000120339 5.105984 × 10−9

TABLE 4 The NITM fractional solution for various order p for η = 0.1 of problem 1 α(ζ, η).

ζ ARPSMP=0.4 ARPSMp=0.6 ARPSMP=1.0 Exact Error for p = 0.4 Error for p = 0.6 Error for p = 1.0

0 0.272091 0.164818 0.0577992 0.057671 0.21442 0.107147 1.28215 × 10−4

1 −0.295097 −0.389151 −0.477423 −0.477403 0.182306 0.0882524 2.019 × 10−5

2 −0.708802 −0.75667 −0.799453 −0.799406 0.0906041 0.0427366 4.70166 × 10−5

3 −0.897194 −0.91615 −0.932137 −0.93212 0.0349263 0.0159702 1.73049 × 10−5

4 −0.966249 −0.972757 −0.978104 −0.978098 0.0118497 0.00534151 5.352795 × 10−6

5 −0.989219 −0.991329 −0.993047 −0.993046 0.00382694 0.00171643 1.658912 × 10−6

6 −0.996587 −0.997259 −0.997804 −0.997803 0.00121556 0.000544298 5.193659 × 10−7

7 −0.998923 −0.999135 −0.999307 −0.999307 0.000384038 0.000171873 1.633154 × 10−7

8 −0.99966 −0.999727 −0.999782 −0.999782 0.000121125 0.0000541997 5.143237 × 10−8

9 −0.999893 −0.999914 −0.999931 −0.999931 0.0000381823 0.0000170845 1.620533 × 10−8

10 −0.999966 −0.999973 −0.999978 −0.999978 0.0000120342 5.384530 × 10−6 5.106775 × 10−9
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A Dp
ηβ ζ , η( )[ ] � 1

sp
∑m−1

k�0

β k( ) ζ , 0( )
s2−p+k

+ A
∂2β ζ , η( )

∂ζ2
+ 2β ζ , η( ) ∂β ζ , η( )

∂ζ
[⎛⎝

− β ζ , η( ) ∂α ζ , η( )
∂ζ

−α ζ , η( ) ∂β ζ , η( )
∂ζ

]) (113)

For Eqs 112, 113, the application of the inverse AT results in the
following equations:

α ζ , η( ) � A−1 1
sp

∑m−1

k�0

α k( ) ζ , 0( )
s2−p+k

+ A
∂2α ζ , η( )

∂ζ2
+ 2α ζ , η( ) ∂α ζ , η( )

∂ζ
[⎛⎝⎡⎢⎢⎣

− β ζ , η( ) ∂α ζ , η( )
∂ζ

−α ζ , η( ) ∂β ζ , η( )
∂ζ

])] (114)

β ζ , η( ) � A−1 1
sp

∑m−1

k�0

β k( ) ζ , 0( )
s2−p+k

+ A
∂2β ζ , η( )

∂ζ2
+ 2β ζ , η( ) ∂β ζ , η( )

∂ζ
[⎛⎝⎡⎢⎢⎣

− β ζ , η( ) ∂α ζ , η( )
∂ζ

−α ζ , η( ) ∂β ζ , η( )
∂ζ

])] (115)

Utilizing the AT in an iterative manner results in the extraction
of the following equation:

α( )0 ζ , η( ) � A−1 1
sp

∑m−1

k�0

α k( ) ζ , 0( )
s2−p+k

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦ � A−1 α ζ , 0( )
s2

[ ] � cos ζ( ),

FIGURE 7
In figure, (A–C) shows comparative analysis of different fractional order p = 0.4, 0.6, 1.0 for α, β(ζ, η) at η = 0.1 respectively.
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β( )0 ζ , η( ) � A−1 1
sp

∑m−1

k�0

β k( ) ζ , 0( )
s2−p+k

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦ � A−1 β ζ , 0( )
s2

[ ] � cos ζ( ),

By applying the RL integral to Eqs 108, 109, we perform the objective
of obtaining the equivalent form.

α ζ , η( ) � cos ζ( ) + A⎡⎣∂2α ζ , η( )
∂ζ2

+ 2α ζ , η( ) ∂α ζ , η( )
∂ζ

− β ζ , η( ) ∂α ζ , η( )
∂ζ

− α ζ , η( ) ∂β ζ , η( )
∂ζ

⎤⎦ (116)

β ζ , η( ) � cos ζ( ) + A⎡⎣∂2β ζ , η( )
∂ζ2

+ 2β ζ , η( ) ∂β ζ , η( )
∂ζ

− β ζ , η( ) ∂α ζ , η( )
∂ζ

− α ζ , η( ) ∂β ζ , η( )
∂ζ

⎤⎦ (117)

The following few terms are produced by the
NITM method.

FIGURE 8
Comparative analysis of fractional order p in (A) 3D graph and (B) 2D graph.

TABLE 6 The NITM fractional solution for various order of p for η = 0.1 of problem 2 α(ζ, η) and β(ζ, η).

ζ ARPSMP=0.6 ARPSMp=0.8 ARPSMP=1.0 Exact Error for p = 0.7 Error for p = 0.8 Error for p = 1.0

0 0.768024 0.846151 0.904838 0.904837 0.136814 0.0586866 8.196404 × 10−7

0.1 0.764187 0.841924 0.900317 0.900317 0.13613 0.0583935 8.155456 × 10−7

0.2 0.752714 0.829284 0.886801 0.886801 0.134087 0.0575168 8.033021 × 10−7

0.3 0.733721 0.808359 0.864424 0.864424 0.130703 0.0560655 7.830323 × 10−7

0.4 0.707397 0.779356 0.833411 0.83341 0.126014 0.054054 7.549388 × 10−7

0.5 0.674004 0.742567 0.79407 0.79407 0.120065 0.0515024 7.193021 × 10−7

0.6 0.633877 0.698358 0.746795 0.746795 0.112917 0.0484362 6.764784 × 10−7

0.7 0.587417 0.647172 0.692058 0.692058 0.104641 0.044886 6.268955 × 10−7

0.8 0.535087 0.589519 0.630406 0.630406 0.0953191 0.0408874 5.710489 × 10−7

0.9 0.477411 0.525976 0.562456 0.562456 0.0850448 0.0364802 5.094966 × 10−7

1 0.414965 0.457177 0.488886 0.488886 0.0739208 0.0317085 4.428535 × 10−7
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TABLE 8 Comparative analysis of example 1 solution through NITM and ARPSM of β(ζ, η) for η = 0.1 and p = 1.

ζ Exact Solution via ARPSM Solution via NITM Error of ARPSM Error of NITM

0 −0.16833 −0.167222 −0.168333 1.10741 × 10−3 3.696719 × 10−6

1 −0.280623 −0.281497 −0.2806 8.73114 × 10−4 2.35178 × 10−5

2 −0.486192 −0.4863 −0.486203 1.07858 × 10−4 1.10037 × 10−5

3 −0.601091 −0.600827 −0.601101 2.63961 × 10−4 1.09383 × 10−5

4 −0.645005 −0.644866 −0.64501 1.38579 × 10−4 4.595277 × 10−6

5 −0.659736 −0.659686 −0.659738 5.03434 × 10−5 1.579266 × 10−6

6 −0.664472 −0.664456 −0.664473 1.65695 × 10−5 5.113121 × 10−7

7 −0.665974 −0.665969 −0.665974 5.293155 × 10−6 1.625110 × 10−7

8 −0.666448 −0.666447 −0.666448 1.675265 × 10−6 5.135233 × 10−8

9 −0.666598 −0.666597 −0.666598 5.286714 × 10−7 1.619737 × 10−8

10 −0.666645 −0.666645 −0.666645 1.666822 × 10−7 5.105984 × 10−9

TABLE 7 Comparative analysis of example 1 solution through NITM and ARPSM of α(ζ, η) for η = 0.1 and p = 1.

ζ Exact Solution via ARPSM Solution via NITM Error of ARPSM Error of NITM

0 0.057671 0.019245 0.0577992 3.8426 × 10−2 1.28215 × 10−4

1 −0.477403 −0.485778 −0.477423 8.37532 × 10−3 2.019 × 10−5

2 −0.799406 −0.786667 −0.799453 1.27395 × 10−2 4.70166 × 10−5

3 −0.93212 −0.92399 −0.932137 8.12967 × 10−3 1.73049 × 10−5

4 −0.978098 −0.974959 −0.978104 3.1397 × 10−3 5.352795 × 10−6

5 −0.993046 −0.991992 −0.993047 1.05378 × 10−3 1.658912 × 10−6

6 −0.997803 −0.997464 −0.997804 3.38725 × 10−4 5.193659 × 10−7

7 −0.999307 −0.9992 −0.999307 1.07415 × 10−4 1.633154 × 10−7

8 −0.999782 −0.999748 −0.999782 3.39184 × 10−5 5.143237 × 10−8

9 −0.999931 −0.99992 −0.999931 1.06961 × 10−5 1.620533 × 10−8

10 −0.999978 −0.999975 −0.999978 3.371538 × 10−6 5.106775 × 10−9

TABLE 9 Comparative analysis of example 2 solution through NITM and ARPSM of α(ζ, η) and β(ζ, η) for η = 0.1 and p = 1.

ζ Exact Solution via ARPSM Solution via NITM Error of ARPSM Error of NITM

0 0.904837 0.904833 0.904838 4.084702 × 10−6 8.196404 × 10−7

0.1 0.900317 0.900313 0.900317 4.064296 × 10−6 8.155456 × 10−7

0.2 0.886801 0.886797 0.886801 4.003280 × 10−6 8.033021 × 10−7

0.3 0.864424 0.86442 0.864424 3.902265 × 10−6 7.830323 × 10−7

0.4 0.83341 0.833407 0.833411 3.762260 × 10−6 7.549388 × 10−7

0.5 0.79407 0.794066 0.79407 3.584663 × 10−6 7.193021 × 10−7

0.6 0.746795 0.746791 0.746795 3.371250 × 10−6 6.764784 × 10−7

0.7 0.692058 0.692055 0.692058 3.124152 × 10−6 6.268955 × 10−7

0.8 0.630406 0.630403 0.630406 2.845839 × 10−6 5.710489 × 10−7

0.9 0.562456 0.562453 0.562456 2.539091 × 10−6 5.094966 × 10−7

1 0.488886 0.488884 0.488886 2.206974 × 10−6 4.428536 × 10−7
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α0 ζ , η( ) � cos ζ( ),
β0 ζ , η( ) � cos ζ( ),
α1 ζ , η( ) � −η

p cos ζ( )
Γ p + 1( ) ,

β1 ζ , η( ) � −η
p cos ζ( )
Γ p + 1( ) ,

α2 ζ , η( ) � η2p cos ζ( )
Γ 2p + 1( ),

β2 ζ , η( ) � η2p cos ζ( )
Γ 2p + 1( ).

α3 ζ , η( ) � −η
3p cos ζ( )
Γ 3p + 1( ),

β3 ζ , η( ) � −η
3p cos ζ( )
Γ 3p + 1( ).

(118)

The final solution through NITM algorithm is presented in the
following manner:

α ζ , η( ) � α0 ζ , η( ) + α1 ζ , η( ) + α2 ζ , η( ) +/ . (119)
β ζ , η( ) � β0 ζ , η( ) + β1 ζ , η( ) + β2 ζ , η( ) +/ . (120)

α ζ , t( ) � cos ζ( ) + cos ζ( )η2p
Γ 2p + 1( ) − cos ζ( )η3p

Γ 3p + 1( ) − cos ζ( )ηp
Γ p + 1( ) +/ . (121)

β ζ , t( ) � cos ζ( ) + cos ζ( )η2p
Γ 2p + 1( ) − cos ζ( )η3p

Γ 3p + 1( ) − cos ζ( )ηp
Γ p + 1( ) +/ . (122)

Figures 7A–C show comparative analysis of different fractional
order p = 0.4, 0.6, 1.0 for α, β(ζ, η) at η = 0.1, respectively. The two
and three dimensional graphs of different fractional order p of
problem 2 are introduced in Figure 8. Table 6, the NITM fractional
solution for various order of p for η = 0.1 of problem 2 α(ζ, η) and
β(ζ, η). Table 7, comparative analysis of example 1 solution through
NITM and ARPSM of α(ζ, η) for η = 0.1 and p = 1. Table 8,
comparative analysis of example 1 solution through NITM and
ARPSM of β(ζ, η) for η = 0.1 and p = 1. Table 9, comparative analysis
of example 2 solution through NITM and ARPSM of α(ζ, η) and β(ζ,
η) for η = 0.1 and p = 1.

4 Conclusion

In conclusion, this study has examined the intricate dynamics of a
system governed by nonlinear Korteweg-de Vries (KdV) equations and
coupled Burger’s equations. Through the application of advanced
mathematical tools, specifically the Aboodh transform iteration
method (ATIM) and the Aboodh residual power series method
(ARPSM), we have successfully obtained accurate solutions for this
complex nonlinear system. The inclusion of the Caputo operator
highlights the importance of fractional calculus in describing the
system’s behavior. The results obtained through these methods
contribute valuable insights into the understanding of the coupled
equations’ dynamics. This research not only enhances our knowledge of
mathematical modeling but also showcases the efficacy of the applied
methods in analyzing intricate nonlinear systems. The findings pave the
way for further exploration and applications in diverse
scientific domains.

Future work: The methods used in this study can be utilized to
investigate how the fractional parameter influences the characteristics

of rogue waves and breathers in various plasma systems by solving a
nonlinear Schrodinger equation and related evolution equations.
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Compartmental models are widely used in mathematical epidemiology to

describe the dynamics of infectious diseases or in mathematical models of

population genetics. In this study, we study a time-dependent Susceptible-

Infectious-Susceptible (SIS) Partial Di�erential Equation (PDE)model that is based

on a di�usion-drift approximation of a probability density from a well-known

discrete-time Markov chain model. This SIS-PDE model is conservative due to

the degeneracy of the di�usion term at the origin. The main results of this

article are the qualitative behavior of weak solutions, the dependence of the

local asymptotic property of these solutions on initial data, and the existence of

Dirac delta function type solutions. Moreover, we study the long-term behavior

of solutions and confirm our analysis with numerical computations.

KEYWORDS

epidemic modeling, degenerate di�erential equations, SIS-PDE model, weak solutions,

Kimura model, steady states, asymptotic behavior, well-posedness

1 Introduction

Despite undeniable, vast modern improvements in the development of highly

efficient antibiotics and vaccines, infectious diseases still contribute significantly to deaths

worldwide. The earlier recognized diseases such as cholera or plague still sometimes

pose problems in underdeveloped countries, even erupting occasionally in epidemics.

In developed countries, new diseases are emerging, such as the case of AIDS (1981) or

hepatitis C and E (1989–1990). New variants are constantly surfacing, such as recent bird

flu (SARS) epidemic in Asia, the very dangerous Ebola virus in Africa, and the recent

worldwide spread of COVID-19. Overall, infectious diseases continue to be one of themost

significant and challenging health problems.

Modeling of epidemiological phenomena has a very long history. The first model for

smallpox was formulated by Daniel Bernoulli in 1760. A large number of models have been

constructed and analyzed from the early 20th century in response to epidemics of various

infectious diseases [see for example [1–6] (and references therein)]. Compartmental

models are well established as mathematical modeling techniques. It is often applied to the

mathematical modeling of infectious diseases. In this type of modeling, the population is

subdivided into compartments or categories such as susceptible, infectious, and recovered

in the widely used SIR model or susceptible, infectious, and susceptible like in SIS

epidemiological scheme. Here, we are interested in analyzing the SIS model that provides
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the simplest description of the dynamics of a disease that is contact-

transmitted and that does not lead to immunity like it is the case

for COVID-19. Discrete-time Markov chain-type SIS models are

considered to be a classical approach in modern mathematical

modeling in epidemiology. The most recent development in

mathematical epidemiology is based on the introduction of

continuous modeling based on partial differential equations like in

[7, 8].

In our study, for T > 0 and � = (0, 1), �T = � × (0,T),

we study a time-dependent Susceptible-Infectious-Susceptible (SIS)

model derived in the study mentioned in the reference [9], which

is a generalized PDE version of a Kimura model [see [10]] in the

unknown function p : = p(x, t): �̄T → R:

∂p

∂t
=

1

2N

∂2

∂x2
(f (x)p)−

∂

∂x
(g(x)p) in �T , (1.1)

coupled with the boundary condition

1

2N

[
(1− R0)p(1, t)+

∂

∂x
p(1, t)

]
+ p(1, t) = 0, t ∈ [0,T], (1.2)

and initial data

p(x, 0) = p0(x) in �̄. (1.3)

Here, x ∈ �̄ represents the fraction of infected, N is the size of

the population of interest, p is the probability to find a fraction x at

time t in a population of sizeN, andR0 > 0 is the basic reproductive

factor.

f (x) : = x(R0(1− x)+ 1) and g(x) : = x(R0(1− x)− 1)

are connected with variance and the mean of the change of x in

the frame of Kimura model. Note that (1.1) is parabolic equation

with non-negative characteristic form, and it is degenerated on the

boundary of the domain at x = 0. The corresponding Fichera

function for (1.1) [see e. g. [11, (1.1.3), p.17]] is b(x, t) = 1
2N (f

′(x)−

2Ng(x)) = R0+1
2N > 0 on {x = 0} × {t > 0}. Hence, according to

[11, 12], the problem (1.1–1.3) is well-posed without any boundary

conditions at x = 0 for all t > 0. Reduced number of boundary

conditions required for well-posedness of degenerated problems

is a well-known phenomenon, and some interesting examples are

shown in the study mentioned in the reference [13, 14]. Imposing

zero boundary condition at x = 0 makes the problem to be over-

determined, and because some weak solutions have this property,

the set of solutions for the over-determined problem will not be

empty.

It is worth noting that processes defined by similar models were

studied by Feller in the early 1950s and used to great effect by

Kimura, et al. in the 1960s and 70s to give quantitative answers

to a wide range of questions in population genetics. However,

rigorous analysis of the analytic properties of these equations is

only the focus of applied mathematicians. The study of initial

or/and initial-boundary value problems for degenerated equations,

including Kimura-type operators, has a long history. Here, we do

not provide a complete survey of the published results pertaining

to these degenerated equations. Instead, we survey some of them

for the benefit of the interested reader. Indeed, the investigation of

elliptic and parabolic problems, leading to degenerated equations

containing operators such as

L : = a(x)

n∑

ij=1

aij(x)
∂2

∂xi∂xj
+

n∑

i=1

bi(x)
∂

∂xi

with a(x) ≈ |x|α , α > 0, and aij and satisfying ellipticity conditions,

are extensively studied by many authors with various analytical

approaches [see e.g. [11, 12, 15–26]] including stochastic calculus

[27–35].

Under suitable assumptions on the asymptotic behavior of

the operator’s coefficients at the boundary of the domain, the

uniqueness of bounded and unbounded solutions, as well as

solutions belonging to the weighted Sobolev spaces, was shown

in the study mentioned in the reference [12, 20, 22–24, 36]

without prescribing any boundary conditions at the origin. The

qualitative properties of the corresponding solutions, including the

maximum principle and the Harnack inequality, are discussed in

the study mentioned in the reference [31–33, 37–39] (see also

references therein). Local asymptotic behavior of solutions for

different types of degenerate equations was rigorously studied in the

study mentioned in the reference [40–42]. We also refer the reader

to the study mentioned in the reference [30–32, 34, 43], where

the theories of existence and uniqueness of solutions to stochastic

differential equations with degenerate diffusion coefficients are de-

veloped. Additionally, the well-posedness of the related problems

in the case of α = 1 is discussed in the study mentioned in the

reference [27–29]. It is worth noting that degenerate diffusion is

examined in the context of measure-valued process [see [44–46]]

via the semigroup techniques [47–49].

Finally, for the well-posedness of parabolic degenerate

problems, we refer to the study mentioned in the reference [15, 16,

18, 21, 25, 26, 35, 50–52], where the existence of weak and classical

solutions is established for different values of α > 0. Previous

researchers such as Chen andWeth-Wadman [53] and Epstein and

Mazzeo [31] restricted their attention to the solutions with the best

possible regularity properties, which leads to considerable simpli-

fications and limitations. For real applications, it is important to

consider solutions with more complicated behavior, which is the

goal of our study.

The outline of the study is as follows: in Section 2, we

show the existence of stationary solutions, analyze the dependence

of their asymptotic behavior, near the origin, on initial data,

confirm numerically their meta-stability, and analyze convergence;

in Section 3, we analyze particular classical and weak solutions. We

used COMSOL Multiphysics R© software to perform the numerical

simulations [54].

2 Weak solutions: convergence to
steady state and asymptotic behavior
as t → +∞

Throughout the whole article, we encounter the usual spaces

W1,p(�), Lp(�), and L2ω(�). It is worth noting that the last class is
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a weighted space L2 with a weight ω and the induced norm

‖v‖L2ω(�) =

( ∫

�

ω(x)v2(x) dx

)1/2

.

Moreover, we use the notations H1(�) and H1
0(�) forW

1,2(�)

andW1,2
0 (�), respectively.

In this section, as it is mentioned in the introduction, we discuss

the long-term behavior of a weak solution to problem (1.1–1.3). To

that end, we first construct the explicit stationary solution Ps : =

Ps(x): �̄ → R related to (1.1-1.3), and then, we examine a set of

initial data which provide the convergence of the weak solution as

T → +∞. In particular, we consider a case of convergent p(x, t) to

Ps(x).

2.1 Existence of a steady state

First, we start with getting an analytical formula for a stationary

solution for (1.1):

1

2N

d

dx

( d

dx
(f (x)Ps)− 2Ng(x)Ps

)
= 0 in �, (2.1)

coupled with the boundary condition:

d

dx
Ps(1) = −(2N − R0 + 1)Ps(1). (2.2)

Integrating (2.1) in x and taking into account (2.2), we get

d

dx
(f (x)Ps) = 2Ng(x)Ps.

It is apparent that this equation has a general solution

f (x)Ps(x) = C F(x), (2.3)

where

F(x) : = e
2N

x∫
0

g(s)
f (s)

ds

= e2Nx
(R0(1−x)+1

R0+1

) 4N
R0 if R0 > 0,

and F(x) = e−2Nx if R0 = 0,

C : = lim
x→0

f (x)Ps(x).

As a result, we obtain the explicit form of the classical stationary

solution to (1.1–1.3)

Ps(x) =
C

ω(x)
where ω(x) : =

f (x)
F(x)

. (2.4)

Observe that the changing-sign convection term for R0 = 2

equals zero at x = 0.5, leading to a wave-like solution that moves

toward this point, forming a meta-stable steady-state shape. This

illustrates that the solution’s short-term behavior is driven by the

convection, as shown in Figures 1, 2. It takes a long-time for meta-

stable steady state (a wave-like solution that slowly changes its

shape) to move mass toward the origin. These long-term dynamics

are due to a slow diffusion effect, and eventually, the solution

blows up at the origin, which is indeed the case for two different

sets of parameter values, as shown in Figures 3, 4. All numerical

simulations show high accuracy of the mass conservation property

even for long-term computations, which suggests the existence of a

solution of Delta function type that acts as a global attractor in this

dynamical system.

2.2 Long-term behavior of a weak solution

Assuming that ω(x) is defined by Equation (2.4) and that

N > 1, R0 > 0 and 0 6 p0(x) ∈ L2ω(�).

We define a weak solution of (1.1–1.3) in the following sense:

Definition 2.1. A non-negative function p(x, t) ∈ C([0,T]; L2ω(�))

is a weak solution of problem (1.1)–(1.3) for any T > 0 if

pt ∈ L2(0,T; (H1(�))′), (ω(x)p)x ∈ L2(�T),

and p satisfies (1.1) in the sense

T∫

0

〈∂p
∂t

,ψ
〉
(H1)′ ,H1

dt +

∫∫

�T

(
1

2N

∂(f (x)p)

∂x
− g(x)p

)
∂ψ

∂x
dxdt = 0

for all ψ ∈ L2(0,T;H1(�)), and ψ(0, t) = 0 for all t ∈ [0,T].

Here, 〈u, v〉(H1)′ ,H1 is a dual pair of elements u ∈ (H1)′ and v ∈ H1.

Now, we are ready to state our first main result related to the

asymptotic behavior of a weak solution to (1.1–1.3).

Theorem 1. (i) Let 0 6 p0(x) ∈ L2ω(�) and lim
x→0

ω(x)p(x, t) = 0, a

weak solution p(x, t) satisfies the relation

ω
1
2 (x)p(x, t) → 0 strongly in L2(�) as t → +∞.

Moreover, if (ω(x)p0(x))x ∈ L2(�), ω(x)p(x, t) ∈

C([0,+∞);H1(�)), and there is convergence

ω(x)p(x, t) → 0 strongly in H1(�) as t → +∞. (2.5)

(ii) Let ω
1
2 (x)p0(x) ∈ L2ω(�), if p(x, t) is a weak solution to (1.1–

1.3) and lim
x→0

ω(x)p(x, t) = C > 0, where C is the same constant as

in Equation (2.3), there exists a constant C1 > 0, depending on R0
and N, such that

‖ω(x)p(x, t)− C‖L2(�) 6 C1‖ω(x)p0(x)− C‖L2(�) for all t > 0.

(2.6)

Moreover, if ω(x)(ω(x)p0(x))x ∈ L2(�), there exist a constant

C1 > 0 and a time T∗ > 0, depending on R0 and N, such that

‖ω(x)
∂

∂x
(ω(x)p(x, t))‖L2(�) 6 C2‖ω(x)p0(x)−C‖L2(�) for all t > T∗.

Numerical simulations in Figures 5, 6 illustrate the convergence

result in Equation (2.6).

Note that Theorem 1 describes a behavior of a weak solution to

direct well-posed problem (1.1)–(1.3), depending on the different

types of behavior ω(x)p(x, t) at x = 0, taking into account two

explicit solutions: steady state (subsection 2.1) and Fourier series

solutions (subsection 3.1). In other words, our main result has a

conditional characteristic via inserting additional assumptions on

the term ω(x)p(x, t) as x → 0 in the statement of the Theorem 1

but not to the statement of the problem (1.1)–(1.3). In the context

of infectious disease spreading dynamic, Theorem 1 says that a

different regularity of the initial data at x = 0 leads to a different

rate of the disease extinction, i. e., more regular initial data give us

faster decay of infection.
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FIGURE 1

These two pictures illustrate the dominant behavior of convection in the short-term t ∈ [0, 0.1]. (Left) Convection moves the solutions toward the

steady state from the right side to the left one for R0 = 2 and N = 200, (Right) convection moves the solutions toward the steady state from the left

side to the right one for the same parameter values. The initial data are plotted with a dashed line.

FIGURE 2

These two pictures illustrate t ∈ [0, 0.1] short-term dynamics for R0 = 2 and N = 100 (Left) and t ∈ [0, 2000] long-term dynamics with blow up at the

origin (Right). The initial data are plotted with a dashed line.

FIGURE 3

These two pictures illustrate the dominant behavior of convection in the short-term t ∈ [0, 0.1]. (Left) Convection moves solutions toward the origin,

here R0 = 0.5 and N = 100 and where solutions blow up. (Right) Convection again moves solutions toward the origin, here R0 = 1 and N = 100 and

where solutions blow up. The initial data are plotted with a dashed line.

Remark 2.1. In this study, we do not discuss the existence and

uniqueness of weak solutions vanishing at the origin. As for these

issues, we refer the interested readers to Section 7 in the study

mentione4d in the reference [51], where the related questions are

analyzed.

Remark 2.2. In particular, Theorem 1 provides the following

properties:

(i) (2.5) implies

∫

�

p(x, t) dx → 0 as t → +∞,

where we deduce that lim
t→+∞

p(x, t) = 0 a. e. x ∈ �̄;

(ii) (2.6) gives the stability of the steady state Ps.

Proof of Theorem 1. Introducing a new function z : = ω(x)p(x, t)

and rewriting problem (1.1)–(1.3) in the more suitable form:





ω−1(x) ∂z
∂t =

1
2N

∂
∂x

(
F(x) ∂z

∂x

)
, (x, t) ∈ �T ,

∂z
∂x |x=1 = 0 and z|x=0 = 0, t ∈ [0,T],

z(x, 0) = z0(x) : = ω(x)p0(x), x ∈ �̄.

(2.7)

Note that if z|x=0 = C > 0, we can define a new

function z̃ = z − C, and we reduce the case to a problem
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FIGURE 4

These two pictures illustrate the dominant behavior of convection in the short term t ∈ [0, 0.1]. (Left) Convection moves solutions toward the origin,

here R0 = 0 and N = 100, where the solutions blow up. (Right) Convection again moves solutions toward the origin, here R0 = 0 and N = 200, where

the solutions blow up. The initial data are plotted with a dashed line.

FIGURE 5

These two pictures illustrate convergence of weighted L2-norm of p(x, t) to a constant for R0 = 0 and N = 100, C = 4.3 ∗ 10−5 (left) and R0 = 0 and

N = 200, C = 1.7 ∗ 10−4 (right).

FIGURE 6

These two pictures illustrate convergence of weighted L2-norm of p(x, t) for R0 = 0.5 and N = 100, C = 4.2 ∗ 10−5 (left) and R0 = 2 and N = 200,

C = 1.6 ∗ 10−4 (right).

similar to Equation (2.7). Since the approximation approach is well

developed for this type of problem, to avoid technical details, we

proceed with formal computations. Our formal computations can

be rigorously justified by introducing a sequence of approximate

solutions with extra regularity property, taking advantage of the

standard approximation arguments, and passing to the limit in the

final estimates. The weak solution will be obtained as a limit as

ε → 0 of smooth solutions for the corresponding approximating

problems. For any ε > 0, we consider the approximating problems

of Equation (2.7), where instead of ω(x) and z0(x), we take

ωε(x) =
f (x)+ε
F(x)

and zε,0(x) ∈ C∞(�̄) such that zε,0(x) →

z0(x) strongly in H1(�) as ε → 0. As these approximating

problems are uniformly parabolic, by general PDE theory for the

second order parabolic equations (see, e.g. [55]), we find a solution

zε(x, t) ∈ C∞(�T). By going through all routine calculations

for zε , and then passing to the limit with respect to ε → 0,

we arrive at the required estimates for the corresponding limit

solution z.
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We now verify claim (i) of Theorem 1. To this end, multiplying

the equation in (2.7) by z(x, t) and integrating over�, we obtain as

follows:

1

2

d

dt

∫

�

ω−1(x)z2 dx+ 1
2N

∫

�

F(x)

(
∂z

∂x

)2

dx =
1

2N
F(x)z

∂z

∂x

∣∣∣
1

0
= 0.

(2.8)

Next, we take advantage of Hardy inequality [56, p. 22, (1.25)

with p = q = 2]

∫

�

ω−1(x)z2 dx 6 CH(R0)

∫

�

F(x)

(
∂z

∂x

)2

dx

with z(0) = 0. Here, the constant CH(R0) satisfies the inequalities:

A(R0) 6 CH(R0) 6 4A(R0) with A(R0) =

sup
r∈(0,1)

( r∫

0

dx
F(x)

)( 1∫

r

dx
ω(x)

)
.

Note that

( r∫

0

dx
F(x)

)( 1∫

r

dx
ω(x)

)
=

( r∫

0

e−2Nx(R0(1− x)+ 1)
− 4N

R0 dx
)

( 1∫

r

x−1e2Nx(R0(1− x)+ 1)
4N
R0

−1
dx

)
6

r−1e2N
( r∫

0

(R0(1− x)+ 1)
− 4N

R0 dx
)( 1∫

r

(R0(1− x)+ 1)
4N
R0

−1
dx

)

6 e2N(R0(1− r)+ 1)
− 4N

R0

( 1∫

r

(R0(1− x)+ 1)
4N
R0

−1
dx

)
6 e2N ,

where it follows that A(R0) 6 e2N . Thus, statement (2.8) along with

Hardy inequality, see [9], leads to the relation

∫
�

ω−1(x)z2(x, t) dx 6 e
− t

NCH (R0)
∫
�

ω−1(x)z20(x) dx → 0 as t →

+∞.

Multiplying the equation in (2.7) by −ω(x) ∂
∂x

(
F(x) ∂z

∂x

)
and

integrating over�, we obtain the equation

1
2
d
dt

∫
�

F(x)

(
∂z
∂x

)2

dx+ 1
2N

∫
�

ω(x)

(
∂
∂x

(
F(x) ∂z

∂x

))2

dx

= F(x) ∂z
∂t
∂z
∂x

∣∣∣
1

0
,

which implies

1

2

d

dt

∫

�

F(x)

(
∂z

∂x

)2

dx+
1

2N

∫

�

ω(x)

(
∂

∂x

(
F(x)

∂z

∂x

))2

dx = 0.

To handle the second term in the left-hand side of this equality,

we apply to v = F(x) ∂z
∂x the following inequality:

∫
�

v2

F(x)
dx 6 CP(R0)

∫
�

ω(x)
(
∂v
∂x

)2
dx with v(1) = 0,

where CP(R0) =
∫
�

1
F(x)

( 1∫
x

dy
ω(y)

)
dx.

Hence, we end up with the relation

∫

�

F(x)

(
∂z

∂x

)2

dx 6 e
− t

NCP (R0)

∫

�

F(x)

(
∂z0

∂x

)2

dx → 0 as t → +∞.

(2.9)

As a result, we obtain the following convergence:

z(x, t) → 0 strongly in H1(�) as t → +∞

provided the following inequality holds:

∫

�

(
ω−1(x)z20(x)+ F(x)

(
∂z0

∂x

)2)
dx < +∞.

As a simple consequence of this fact and the convergence of

(2.9), we obtain an upper bound on z(x, t):

z(x, t) 6 x
1
2 e

− t
2NCP (R0)

(∫

�

F(x)

(
∂z0

∂x

)2

dx
) 1

2
,

which, in turn, provides the desired relation

p(x, t) 6 x
1
2

ω(x)
e
− t

2NCP (R0)

(∫

�

F(x)

(
∂z0

∂x

)2

dx
) 1

2
.

We now proceed by showing that statement (ii) of Theorem 1

is in fact valid. We multiply (2.7) by ω(x)ψ(x)z(x, t) and integrate

over� to obtain

1

2

d

dt

∫

�

ψ(x)z2 dx+
1

2N

∫

�

f (x)ψ(x)

(
∂z

∂x

)2

dx =

1

2N

(
f (x)ψ(x)z

∂z

∂x
−

1

2
(ω(x)ψ(x))′F(x)z2

)∣∣∣∣
1

0

+
1

4N

∫

�

z2
∂

∂x

(
F(x)

∂

∂x

(
ω(x)ψ(x)

))
dx.

Then, choosing here

ψ(x) = ω−1(x)

x∫

0

dy
F(y)

= F(x)
f (x)

x∫

0

dy
F(y)

→ 1
1+R0

as x → 0,

we arrive at the equality

d

dt

∫

�

ψ(x)z2 dx+
1

N

∫

�

f (x)ψ(x)

(
∂z

∂x

)2

dx+
1

2N
z2(1, t) = 0,

(2.10)
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where
∫

�

ψ(x)z2 dx 6

∫

�

ψ(x)z20(x) dx.

Thus, we easily conclude that

∫

�

z2(x, t) dx 6 C1

∫

�

z20(x) dx for all t > 0,

where 0 < C1 =
supψ(x)
infψ(x)

< +∞. Now, multiplying the equation in

(2.7) by−ω(x)φ(x) ∂
∂x

(
F(x) ∂z

∂x

)
and integrating over�, we obtain

1

2

d

dt

∫

�

φ(x)F(x)

(
∂z

∂x

)2

dx+
1

2N

∫

�

ω(x)φ(x)

(
∂

∂x

(
F(x)

∂z

∂x

))2

dx

=

(
φ(x)F(x)

∂z

∂t

∂z

∂x
−

1

4N
ω(x)φ′(x)F2(x)

(
∂z

∂x

)2)∣∣∣∣
1

0

+
1

4N

∫

�

(ω(x)φ′(x))′F2(x)

(
∂z

∂x

)2

dx.

Now, consider φ(x) such that (ω(x)φ′(x))′F2(x) = 2f (x)ψ(x),

i. e.,

φ(x) = 2

x∫

0

1
ω(y)

( y∫

0

1
F(v)

( v∫

0

ds
F(s)

)
dv

)
dy ∼ x2

2(R0+1)
as x → 0,

we have

d
dt

∫
�

φ(x)F(x)

(
∂z
∂x

)2

dx+ 1
N

∫
�

ω(x)φ(x)

(
∂
∂x

(
F(x) ∂z

∂x

))2

dx

= 1
N

∫
�

f (x)ψ(x)

(
∂z
∂x

)2

dx.

The above equality, along with (2.10), leads to

d
dt

∫
�

(
φ(x)F(x)

(
∂z
∂x

)2

+ ψ(x)z2
)
dx+ 1

N

∫
�

ω(x)φ(x)

(
∂
∂x

(
F(x) ∂z

∂x

))2

dx+ 1
2N z

2(1, t) = 0. (2.11)

Now, applying to v = F(x) ∂z
∂x , the following estimate

∫

�

φ(x)

F(x)
v2 dx 6 CP(R0)

∫

�

ω(x)φ(x)

(
∂v

∂x

)2

dx with v(1) = 0,

where

CP(R0) =

∫

�

φ(x)
F(x)

( 1∫

x

dy
ω(y)φ(y)

)
dx,

to (2.11) and conclude that

∫
�

φ(x)F(x)

(
∂z
∂x

)2

dx 6 e
− t

NCP (R0)
∫
�

φ(x)F(x)

(
∂z0
∂x

)2

dx

+
∫
�

ψ(x)z20(x) dx,

where

∫
�

ω2(x)

(
∂z
∂x

)2

dx 6
sup

(
φ(x)F(x)

ω2(x)

)

inf
(
φ(x)F(x)

ω2(x)

) e−
t

NCP (R0)
∫
�

ω2(x)

(
∂z0
∂x

)2

dx

+
supψ(x)

inf
(
φ(x)F(x)

ω2(x)

) ∫
�

z20(x) dx.

As a result, there exists a time T∗ > 0 such that

∫

�

ω2(x)

(
∂z

∂x

)2

dx 6 C2

∫

�

z20(x) dx for all t > T∗

provided the following inequality holds:

∫

�

(
ψ(x)z20(x)+ φ(x)F(x)

(
∂z0

∂x

)2)
dx < +∞.

This completes the proof of assertion (ii) and, as a consequence,

of Theorem 1.

3 Solutions in weighted L
2-space

In this section, we will illustrate an application of Theorem 1 by

constructing solutions, using the spectral decomposition method,

in a weighted L2-space. First, we analyze classical solutions to

problem (2.7), and then, we discuss some classes of weak solutions.

3.1 Fourier series solutions in a weighted
space

Introducing a new variable

s =
√
2N

x∫

0

dy

f
1
2 (y)

,

and denoting by

l(s) : =
√
2N

g(x)

f
1
2 (x)

=

√
2N
R0

sin
(
1
2

√
R0
2N s

)[
R0−1−(R0+1) sin2

(
1
2

√
R0
2N s

)]

| cos
(
1
2

√
R0
2N s

)
|

,

s1 : = 2
√

2N
R0

arcsin
(√ R0

R0+1

)
,

we rewrite problem (2.7) in the form as follows:

{
∂z
∂t =

∂2z
∂s2

+ l(s) ∂z
∂s , s ∈ (0, s1), t ∈ (0,T),

z(0, t) = 0, ∂z
∂s (s1, t) = 0, t ∈ [0,T].

(3.1)

It is worth noting that to establish (3.1), we have made use of

the following simple and verifiable relations:

s =





2
√

2N
R0

arcsin
(√ R0

R0+1x
1
2
)

if R0 > 0,

2
√
2Nx

1
2 if R0 = 0,
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or as consequence

x =





R0+1
R0

sin2
(
1
2

√
R0
2N s

)
if R0 > 0,

1
8N s

2 if R0 = 0.

Separating variables in (3.1):

z(s, t) = T(t)S(s),

leads to the problems

T′(t)
T(t)

= S′′(s)+l(s)S′(s)
S(s)

= −λ,

where

T′(t) = −λT(t),

S′′(s)+ l(s)S′(s) = −λS(s) (3.2)

with

S(0) = 0, S′(s1) = 0.

Now, multiplying (3.2) by p(s) : = e

s∫
0

l(y) dy

, we immediately

obtain the equation

−(p(s)S′(s))′ = λp(s)S(s).

Then, setting

U(s) = p
1
2 (s)S(s) q(s) =

(p
1
2 (s))′′

p
1
2 (s)

= 1
2

(
l′(s)+ 1

2 l
2(s)

)
,

we arrive at the classical Sturm–Liouville problem with the

continuous potential q(s)

{
−U ′′(s)+ q(s)U(s) = λU(s), s ∈ (0, s1),

U(0) = 0, U ′(s1) = 0.
(3.3)

From here, we rely on standard computational methods to

obtain the following asymptotic behavior of eigenvalues and

eigenfunctions to problem 3.3:

λk ∼ ( πs1 )
2
(
k+ 1

2

)2
, Uk(s) ∼ sin

(
π
s1
(k+ 1

2 )s
)
,

or returning to (3.2):

λk ∼ ( πs1 )
2
(
k+ 1

2

)2
, Sk(s) ∼ e

− 1
2

s∫
0

l(y) dy

sin
(
π
s1
(k+ 1

2 )s
)
.

Thus, problem (3.1) has a particular solution

z(s, t) =

+∞∑

k=0

cke
−λktSk(s),

which, in turn, means

z(x, t) =

+∞∑

k=0

cke
−λktϕk(x),

where

λk ∼
π2

N

(
k+ 1

2

)2
, ϕk(x) ∼ e−N

3
2 x sin

(
π(k+ 1

2 )
arcsin

(√
R0

R0+1 x
1
2
)

arcsin
(√

R0
R0+1

)
)
.

Finally, keeping in mind the relation z(x, t) = ω(x)p(x, t), we

deduce the formal solution

p(x, t) = 1
ω(x)

+∞∑

k=0

cke
−λktϕk(x)

that is a weak solution in a weighted L2-space in the sense of the

Definition 2.1. It is worth noting that the asymptotic behavior of

the solution C1√
xeC2 t

as x → 0+ is in agreement with Theorem 1 (i).

3.2 The Dirac delta function solutions

In this section, we show that Dirac delta function type solutions

belong to our class of weak solutions. The main problem here

is that, with zero on the boundary, the integral
∫ a
0 f (z)δ(z)dz is

a priori not well defined (over-determined ill-posed problem was

previously considered in the study mentioned in the reference

[9]). Now, we denote positive and non-negative cut of functions

by f (x)χ{x>0} and f (x)χ{x>0}, respectively. This corresponds to

integrating δ function against the function f (x)χ{x>0} (or possibly

f (x)χ{x>0}), which is not continuous at the origin x = 0, where

the support of the Dirac delta function lies. With the Dirac delta

function at the boundary of the integration, only formal expressions

could be found in the literature:
∫ a
0 f (z)δ(z)dz =

∫ 0
−a f (z)δ(z)dz =

1
2 f (0). This is the justification for choosing a symmetrization

method by considering a problem of extended domain [−1, 1] for

our Dirac delta function type solutions. Now, we look for a solution

to a symmetrically extended problem (1.1)–(1.3) on the interval

(−1, 1) in the form of p(x, t) = η(t)δ0(x), where δ0(x) is the Dirac

delta function concentrated at the origin.

Multiplying symmetrized Equation (1.1) by φ(x) ∈ C2[−1, 1]

with compact support and φ(0) 6= 0, after integrating by parts in

QT : = (−1, 1)× (0,T), we have

∫∫

QT

∂p

∂t
φ(x) dxdt =

1

2N

∫∫

QT

(
f̃ (x)pφ′′(x)+ 2Ng̃(x)pφ′(x)

)
dxdt,

where f̃ and g̃ are even continuation of f and g, respectively. Taking

p(x, t) = η(t)δ0(x) in the last equality, we deduce that

(η(T)− η(0))φ(0) = ( 1
2N f (0)φ

′′(0)+ g(0)φ′(0))

T∫

0

η(t) dt = 0.

Due to the inequality φ(0) 6= 0, we have

η(T) = η(0) = M > 0.

As a result, symmetrized Equation (1.1) has the following

solution:

p(x, t) = Mδ0(x) for all (x, t) ∈ (−1, 1)× (0,+∞).

Frontiers in AppliedMathematics and Statistics 08 frontiersin.org97

https://doi.org/10.3389/fams.2024.1383106
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Taranets et al. 10.3389/fams.2024.1383106

FIGURE 7

These two pictures illustrate the existence of the Dirac delta function type solutions for symmetrized problems with R0 = 0 and N = 10. The initial

data are plotted with a dashed line.

Convergence of a weak solution to the Dirac delta function

is shown in Figure 7. It is interesting to mention that a non-

smooth change of variables y = 2
√
x (for the case R0 = 0) will

remove the degeneracy from the equation. However, the whole

long-term dynamics will not be recovered in terms of y as a

global attractor-type solution. Cet that satisfies no-flux boundary

conditions in terms of variable y will not be satisfying no-flux

boundary conditions in terms of variable x. Although Cet solves

the original problem with Neumann boundary conditions (which

make the original problem ill-posed), it is unstable. Indeed, a

slight perturbation will drive the dynamics toward the Dirac delta

function.
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Let J be a symmetric Jacobi matrix associated with some Toda lattice. We find

conditions for Jacobi matrix J to admit factorization J = LU (or J = UL) with

L (or L) and U ( or U) being lower and upper triangular two-diagonal matrices,

respectively. In this case, theDarboux transformation of J is the symmetric Jacobi

matrix J(p) = UL (or J(d) = LU), which is associated with another Toda lattice. In

addition, we found explicit transformation formulas for orthogonal polynomials,

m-functions and Toda lattices associated with the Jacobi matrices and their

Darboux transformations.

KEYWORDS

Jacobi matrix, Darboux transformation, orthogonal polynomials, moment problem,

Toda lattice

1 Introduction

Let a sequence of real numbers s = {sn}
∞
n=0 be associated with a measure µ on

(−∞,+∞), i.e.

sn =

+∞∫

−∞

λndµ(λ), n ∈ Z+.

However, in the general case, s = {sn}
∞
n=0 is associated with a linear functionalS by

sn = S(λn), n ∈ Z+. (1.1)

We consider the sequence s = {sn}
∞
n=0 such that

Dn 6= 0, for all n ∈ N,

where Dn = det(si+j)
n−1
i,j=0. Note, if Dn > 0 for all n ∈ N, then there exists measure µ

associated with s = {sn}
∞
n=0, otherwise, the sequence s = {sn}

∞
n=0 is associated with only

linear functionalS.

On the other hand (see [1, 2]), the real sequence s = {sn}
∞
n=0 is associated with the

symmetric Jacobi matrix J and the sequence of orthogonal polynomials of the first kind

{Pn(λ)}
∞
n=0, which can defined by

P0(λ) ≡ 1 and Pn(λ) =
1

√
Dn−1Dn

∣∣∣∣∣∣∣∣∣∣∣

s0 s1 . . . sn
s1 s2 . . . sn+1

. . . . . . . . . . . .

sn−1 sn . . . s2n−1

1 λ . . . λn

∣∣∣∣∣∣∣∣∣∣∣

.
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[3, 4] Moreover, the sequence {Pn(λ)}
∞
n=0 satisfies a three-term

recurrence relation

λPn(λ) = an+1Pn+1(λ)+ bnPn(λ)+ anPn−1(λ) (1.2)

with the initial conditions

P−1(λ) ≡ 0 and P0(λ) ≡ 1. (1.3)

In the short form we can rewrite Equation (1.2) as

JP(λ) = λP(λ),

where P(λ) = (P0(λ), . . . , Pn(λ), . . .)
T and the symmetric Jacobi

matrix J is defined by

J =




b0 a1
a1 b1 a2

a2 b2
. . .

. . .
. . .



. (1.4)

On the other hand, the symmetric Jacobi matrix J is associated

with the moment sequence s = {sn}
∞
n=0, the following relation

holds (see [2, 5])

sn = (e0, J
ne0) for all n ∈ Z+, (1.5)

where e0 = (1, 0, . . .)T and m– function of Jacobi matrix is found

by

m(z) =

∫

R

dµ(λ)

λ − z
. (1.6)

There exist two type transformations of orthogonal

polynomials, which are the Christoffel and Geronimus

transformations. One are studied in the paper Zhedanov [6].

The Christoffel transformation is defined by

P̃(λ) =
Pn+1(λ)− AnPn(λ)

λ − α
, n ∈ Z+, (1.7)

where An =
Pn+1(α)

Pn(α)
and α is arbitrary parameter. Moreover,

Equation (1.7) can be rewritten as follows:

Theorem 1.1. ([7, Theorem 1.5]) Let {Pn(λ)}
∞
n=0 be the sequence

of the orthogonal polynomials associated with Equation (1.2). Then

the Christoffel–Darboux formula takes the following form

n∑

i=0

Pi(x)Pi(t) = an+1

Pn+1(x)Pn(t)− Pn(x)Pn+1(t)

x− t
. (1.8)

The second transformation is a Geronimus transformation of

the orthogonal polynomials [6], one is defined by

P̃(λ) = Pn(λ)− BnPn−1(λ), Bn ∈ R and n ∈ N.

Toda lattice. The Toda lattice is a system of differential

equations

x′′n(t) = exn−1−xn − exn−xn+1 , n ∈ N, (1.9)

which was introduced in Toda [8].

We study the semi-infinite system with x−1 = −∞. [9, 10]

Flaschka variables are defined by

ak =
1

2
e
xk−1−xk

2 and bk = −
1

2
x′k. (1.10)

Therefore, we obtain the following system in terms of Flaschka

variables

a′k = ak(bk − bk−1) and b′k = 2(a2k+1 − a2k), a0 = 0. (1.11)

Hence, the semi-infinite Toda lattice is associated with the

symmetric Jacobi matrix J and Lax pair (J,A), such that

[J,A] = JA− AJ,

where thematrixA = J+−J−, where J+ and J− are upper and lower

triangular part of J, respectively and

A =




0 a1
−a1 0 a2

−a2 0
. . .

. . .
. . .



.

As is known (see [8, 11]), the system (1.11) is equivalent to the

following

J′ = −[J,A].

Darboux transformation of the monic classical and generalized

Jacobi matrices were studied in Bueno and Marcellán [12],

Derevyagin and Derkach [13], and Kovalyov [14, 15]. Darboux

transformation involves finding a factorization of a matrix from

a certain class such that the new matrix is from the same class.

There are two types of Darboux transformation: transformation

with and without parameter. Jacobi matrix is associated with

many objects. There are moment sequence, measure, linear

functional orthogonal polynomials and Toda lattice. Hence, in the

current paper, we study not only Darboux transformation of the

symmetric Jacobi matrices, but we also study the transformation

of the associated objects. Hence, we investigate the Darboux

transformation of the symmetric Jacobi matrices J and find

relations between associated Toda lattice, orthogonal polynomials,

moment sequences and m–functions. We obtain that the Darboux

transformationwithout parameter of the symmetric Jacobimatrices

has more additional existence conditions in contrast to case of

the monic Jacobi matrices. On the other hand, the Darboux

transformation with parameter of the symmetric Jacobi matrices

is generated more easily. The results obtained can be applied for

further research related to symmetric Jacobi matrices, Toda lattices

and inverse problems. Of course, it can also be applied to the Toda

lattice hierarchy.

Now, briefly describe the content of the paper. Section

2 contains Darboux transformation without parameter of the

symmetric Jacobi matrix J. We find LU–factorization of J and the

transformed matrix J(p). Relation between Toda lattices, moment

sequences andm–functions associated with the Jacobi matrices was

obtained. In this case, the orthogonal polynomials are transformed
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by the Christoffel formula (1.7). In Section 3, we study the

Darboux transformation with parameter of the symmetric Jacobi

matrix J. We find UL–factorization of J and transformed matrix

J(d). Moreover, the relations between orthogonal polynomials, m–

functions, moment sequence and Toda lattices are found according

to explicit formulas.

2 Darboux transformation without
parameter of symmetric Jacobi matrix

Now we study a Darboux transformation without parameter of

symmetric Jacobi matrix J. The goal is to find the transformations

of polynomials of the first kind, m-functions, measure, moment

sequence and Toda lattice, which are associated with the

transformed Jacobi matrix.

2.1 LU–factorization

Lemma 2.1. Let J be a symmetric Jacobi matrix. Then J admits

LU–factorization

J = LU, (2.1)

where L and U are lower and upper triangular matrices,

respectively, which are defined by

L =




1

l1 1

l2 1

. . .
. . .




and U =




u1 v1
u2 v2

u3
. . .

. . .



, (2.2)

if and only if the following system is solvable

b0 = u1, v1 = a1, vj = aj, ljuj = aj,

ljvj + uj+1 = bj, uj 6= 0 and lj 6= 0, j ∈ N.
(2.3)

Proof. Let us calculate the product LU

LU =




u1 v1
l1u1 l1v1 + u2 v2

l2u2 l2v2 + u3
. . .

. . .
. . .



.

Comparing the product LU with the Jacobi matrix J




b0 a1
a1 b1 a2

a2 b2
. . .

. . .
. . .




=




u1 v1
l1u1 l1v1 + u2 v2

l2u2 l2v2 + u3
. . .

. . .
. . .



,

we obtain the system (2.3).

If the system (2.3) is solvable, then J admits the factorization

J = LU of the form (2.1–2.3), where L and U are found uniquely.

Conversely, if J admit LU—factorization then the system (2.3) is

solvable. This completes the proof.

Lemma 2.2. Let J be the symmetric Jacobi matrix and let J =

LU be its LU– factorization of the form (2.1–2.3). Let Pj be the

polynomials of the first kind associated with the matrix J. Then

Pn(0)

Pn−1(0)
= −

1

ln
, n ∈ N. (2.4)

Proof. Let J admit the LU–factorization of the form (2.1–2.3).

Setting λ = 0 in Equation (1.2), we obtain

an+1Pn+1(0)+ bnPn(0)+ anPn−1(0) = 0.

By induction, we prove Equation (2.4).

1. Let n = 0, then

a1P1(0)+ b0P0(0)+ a0P−1(0) = 0

and due to the initial condition (1.3) and (2.3), we get

a1P1(0)+ b0P0(0) = 0 ⇒
P1(0)

P0(0)
= −

b0

a1
= −

u1

l1u1
= −

1

l1
.

2. Let n = 1, then

a2P2(0)+ b1P1(0)+ a1P0(0) = 0

and by Equation (2.3), we have

P2(0)

P1(0)
+

b1

a2
+

a1

a2

P0(0)

P1(0)
= 0 ⇒

P2(0)

P1(0)

= −
b1

a2
+

a1l1

a2
=

− l21u1 − u2 + l21u1

l2u2
= −

1

l2
.

3. Let Equation (2.4) hold for n = k− 1.

4. Let us prove Equation (2.4) for n = k, we obtain

ak+1Pk+1(0)+ bnPk(0)+ akPk−1(0) = 0.

Pk+1(0)

Pk(0)
+

bk

ak+1
+

ak

ak+1
·
Pk−1(0)

Pk(0)
= 0.

Consequently

Pk+1(0)

Pk(0)
= −

bk

ak+1
−

ak

ak+1
·
Pk−1(0)

Pk(0)
= {by Section (2.3)}

=
− bk + aklk

ak+1
=

− l2
k
uk − uk+1 + l2

k
uk

lk+1uk+1
= −

1

lk+1
.

So, Equation (2.4) is proven. This completes the proof.

Corollary 2.3. Let J be the symmetric Jacobi matrix and let J =

LU be its LU–factorization of the form (2.1–2.3). Let Pj be the

polynomials of the first kind associated with the matrix J. Then

Pn(0) = (−1)n
n∏

i=1

1

li
. (2.5)
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Proof. Let J admit the LU–factorization of the form (2.1–2.3) and

let Pj be the polynomials of the first kind associated with J. By

Lemma 2.2, Equation (2.4) holds and we obtain

Pn(0) =
Pn(0)

Pn−1(0)
·
Pn−1(0)

Pn−2(0)
· . . . ·

P1(0)

P0(0)
= (−1)n

n∏

i=1

1

li
.

So, Equation (2.5) is proven. This completes the proof.

Corollary 2.4. Let J be the symmetric Jacobi matrix and let J =

LU be its LU–factorization of the form (2.1–2.3). Let Pj be the

polynomials of the first kind associated with the matrix J. Then

Pn(0) = (−1)k
1

ln
·

1

ln−1
· . . . ·

1

ln−(k−1)
Pn−k(0). (2.6)

Proof. Let J admit the LU–factorization of the form (2.1–2.3). By

Lemma 2.2, we obtain

Pn(0) =
Pn(0)

Pn−1(0)
·
Pn−1(0)

Pn−2(0)
· . . . ·

Pn−k−1(0)

Pn−k(0)
· Pn−k(0)

= (−1)k
1

ln
·

1

ln−1
· . . . ·

1

ln−(k−1)
Pn−k(0).

Hence, Equation (2.6) is proven. This completes the proof.

Theorem 2.5. Let J be the symmetric Jacobi matrix and let Pj be

the polynomials of the first kind associated with J. Then J admits

LU—factorization of the form (2.1–2.3) if and only if

Pj(0) 6= 0 for all j ∈ Z+. (2.7)

Furthermore,

b0 = u1, vj = aj, lj = −
Pj−1(0)

Pj(0)
and uj = −

ajPj(0)

Pj−1(0)
.

(2.8)

Proof. Let Pj(0) 6= 0 for all j ∈ Z+. By Lemma 2.2 the system

(2.8) is equivalent to the system (2.3). Consequently, by Lemma 2.1

the Jacobi matrix J admits LU—factorization of the form (2.1–2.3).

Conversely, if the Jacobi matrix J admits LU—factorization of the

form (2.1–2.3), then by Lemma 2.1 and Lemma 2.2 the polynomials

of the first kind Pj satisfy (2.7). This completes the proof.

2.2 Transformed Jacobi matrix J(p) = UL

Definition 2.6. Let the symmetric Jacobi matrix J admit LU—

factorization of the form (2.1–2.3). Then a transformation

J = LU → UL = J(p)

is called a Darboux transformation without parameter of the

symmetric Jacobi matrix J.

Theorem 2.7. Let J be the symmetric Jacobi matrix (1.4) and let

J = LU be its LU–factorization of the form (2.1–2.3). Then the

Darboux transformation without parameter of the matrix J is the

symmetric Jacobi matrix

J(p) = UL =




b1 a1
a1 b2 a2

a2 b3
. . .

. . .
. . .




(2.9)

if and only if

uj = b0 and
a2j + b20

b0
= bj for all j ∈ N. (2.10)

Proof. Calculating UL, we obtain

J(p) = UL =




u1 v1
u2 v2

u3
. . .

. . .







1

l1 1

l2 1

. . .
. . .




=

=




u1 + v1l1 v1
l1u2 u2 + v2l2 v2

l2u3 u3 + v3l3
. . .

. . .
. . .




= { by Equation (2.3)}

=




u1 + v1l1 a1
l1u2 u2 + v2l2 a2

l2u3 u3 + v3l3
. . .

. . .
. . .



.

Consecuently, J(p) is the symmetric Jacobi matrix if and only if

ljuj+1 = aj for all j ∈ N. (2.11)

Comparing Equation (2.3) with Equation (2.11), we get

ljuj = aj = ljuj+1 ⇒ uj = uj+1 ⇒ uj = b0 for all j ∈ N.

By Equation (2.3), uj + vjlj = bj for all j ∈ N, we obtain

Equations (2.9, 2.10) and J(p) is the symmetric Jacobi matrix. This

completes the proof.

Theorem 2.8. Let the symmetric Jacobi matrix J satisfy (2.7) and let

J = LU be its LU–factorization of the form (2.1–2.3). Let J(p) = UL

be the Darboux transformation without parameter of J. Then the

polynomials of the first kind P
(p)
n associated with J(p) can be found

by Christoffel–Darboux formula

P
(p)
n (λ) =

1

Pn(0)

Pn+1(λ)Pn(0)− Pn(λ)Pn+1(0)

λ
, (2.12)

where Pj are the polynomials of the first kind associated with the

symmetric Jacobi matrix J.
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Proof. Let the Jacobi matrix J satisfy (2.7) and admit LU–

factorization of the form (2.1–2.3). Calculating the inverse matrix

of L, we obtain

L−1 =




1

−l1 1

l1l2 −l2 1

−l1l2l3 l2l3 −l3 1

. . .
. . .

. . .
. . .

. . .

(−1)n
n∏

i=1
li (−1)n−1

n∏
i=2

li . . . ln−1ln −ln 1

. . .
. . .

. . .
. . .

. . .
. . .

. . .




.

On the other hand,

J(p)P(λ) = ULP(p)(λ) = λP(p)(λ) ⇒

⇒ LULP(p)(λ) = J
(
LP(p)(λ)

)
= λ

(
LP(p)(λ)

)
= λP(λ).

Consequently, we obtain the relation between the polynomials

of the first kind

P(p)(λ) = L−1P(λ) =




1

−l1 1

l1l2 −l2 1

−l1l2l3 l2l3 −l3 1

. . .
. . .

. . .
. . .

. . .







P0(λ)

P1(λ)

P2(λ)

P3(λ)
...




=




P0(λ)

P1(λ)− l1P0(λ)

P2(λ)− l2P1(λ)+ l1l2P0(λ)

P3(λ)− l3P2(λ)+ l2l3P1(λ)− l1l2l3P0(λ)
...




=




P
(p)
0 (λ)

P
(p)
1 (λ)

P
(p)
2 (λ)

P
(p)
3 (λ)
...




.

By Corollary 2.4, we obtain

P
(p)
n (λ) = Pn(λ)+

n−1∑

i=0

(−1)n−iPi(λ)

n∏

j=i+1

lj = Pn(λ)+

n−1∑

i=0

Pi(0)

Pn(0)
Pi(λ).

(2.13)

However, we can rewrite Equation (2.13) and by Christoffel–

Darboux formula (1.8), we obtain

P
(p)
n (λ) = Pn(λ)+

n−1∑

i=0

Pi(0)

Pn(0)
Pi(λ) =

1

an+1Pn(0)

n∑

i=0

Pi(0)Pi(λ) =

=
1

Pn(0)

Pn+1(λ)Pn(0)− Pn(λ)Pn+1(0)

λ
.

Hence, Equation (2.12) holds. This completes the proof.

In the following statements we find the connection between

orthogonal polynomials, moment sequences, measures, linear

functionals, m–functions and Toda lattices according to the

transformation Darboux transformation without parameter of the

symmetric Jacobi matrix.

Proposition 2.9. Let the symmetric Jacobi matrix J admit LU–

factorization of the form (2.1–2.3) and let the symmetric Jacobi

matrix J(p) = UL be the Darboux transformation without

parameter of J. Let s = {sn}
∞
n=0 and s

(p) = {s
(p)
n }∞n=0 be the moment

sequences associated with the matrices J and J(p), respectively.

Then the moment sequence s(p) = {s
(p)
n }∞n=0 can be found by the

following formula

s
(p)
n−1 =

sn

b0
for all n ∈ N. (2.14)

Proof. Let the symmetric Jacobi matrix J admit LU–factorization of

the form (2.1–2.3) and let the symmetric Jacobi matrix J(p) = UL be

its Darboux transformation without parameter. By Equation (1.5),

we obtain

sn = (e0, J
ne0) = (e0, (LU)ne0) = (e0, L(UL)

n−1Ue0) =

= (LTe0, (J
(p))n−1b0e0) = b0(e0, (J

(p))n−1e0) = b0s
(p)
n−1.

Consequently, the moments s
(p)
n−1 can be found by

Equation (2.14). This completes the proof.

Corollary 2.10. Let the symmetric Jacobi matrix J admit

LU–factorization of the form (2.1)–(2.3) and let the

symmetric Jacobi matrix J(p) = UL be the Darboux

transformation without parameter of J. Let S and S
(p) be

the linear functionals associated with the matrices J and J(p),

respectively. Then

S
(p) =

λ

b0
S. (2.15)

Proof. Let S and S
(p) be the linear functionals associated with

the symmetric Jacobi matrices J = LU and J(p) = UL,

respectively, where L and U are defined by Equations (2.1–2.3). By

Equation (1.1), we obtain

S
(p)(λn−1) = s

(p)
n−1 =

sn

b0
=

1

b0
S(λn) for all n ∈ N.

Consequently, Equation (1.19) holds. This completes

the proof.

Corollary 2.11. Let the symmetric Jacobi matrix J admit

LU–factorization of the form (2.1–2.3) and let the

symmetric Jacobi matrix J(p) = UL be the Darboux

transformation without parameter of J. Let dµ and dµ(p)

be the measures associated with the matrices J and J(p),

respectively. Then

dµ(p)(λ) =
λ

b0
dµ(λ). (2.16)
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Proof. Let µ and µ(p) be the measures associated with the

symmetric Jacobi matrices J = LU and J(p) = UL, respectively,

where L and U are defined by Equation (2.1–2.3). Then

+∞∫

−∞

λn−1dµ(p)(λ) = s
(p)
n−1 =

sn

b0
=

1

b0

+∞∫

−∞

λndµ(λ) for all n ∈ N.

Consequently, we find transformation of the measure and

Equation (2.16) holds. This completes the proof.

Proposition 2.12. Let the symmetric Jacobi matrix J admit LU–

factorization of the form (2.1–2.3) and let the symmetric Jacobi

matrix J(p) = UL be the Darboux transformation without

parameter of J. Let m and m(p) be them–functions associated with

the matrices J and J(p), respectively. Then

m(p)(z) =
s0 + zm(z)

b0
. (2.17)

Proof. By Equation (1.6)

m(p)(z) =

+∞∫

−∞

dµ(p)(λ)

λ − z
=

=
1

b0

+∞∫

−∞

λdµ(λ)

λ − z
=

1

b0

∫

R

λ − z

λ − z
dµ(λ)+

1

b0

+∞∫

−∞

zdµ(λ)

λ − z

=
1

b0

+∞∫

−∞

1dµ(λ)+
z

b0

+∞∫

−∞

dµ(λ)

λ − z
=

s0 + zm(z)

b0
.

Hence, m–function is transformed by Equation (2.17). This

completes the proof.

Toda latice. The last statement is the following theorem of

this section. One is described the Toda lattice associated with the

symmetric Jacobi matrices J(p).

Theorem 2.13. Let the symmetric Jacobi matrix J admit LU–

factorization of the form (2.1–2.3) and J be associated with the Toda

lattice (1.9–1.11). Let the symmetric Jacobi matrix J(p) = UL be

the Darboux transformation without parameter of J. Then J(p) is

associated with the following Toda lattice

x′′k (t) = exk−1−xk − exk−xk+1 , (2.18)

ak =
1

2
e
xk−1−xk

2 and bk+1 = −
1

2
x′k. (2.19)

a′k = ak(bk+1−bk) and b′k+1 = 2(a2k+1−a2k), a0 = 0. (2.20)

Furthermore, the matrix A does not change.

Proof. Let the symmetric Jacobi matrix be associated be associated

with the Toda (1.9–1.11) and let J = LU, where L andU are defined

by Equations (2.2, 2.3, 2.10). Consequently, the symmetric Jacobi

matrix J(p) = UL is the Darboux transformation without parameter

of J. By Equation (2.9), we obtain J+ = J
(p)
+ , J− = J

(p)
− and the

matrix A does not change in the Lax pair, i.e.

A = J+ − J− = J
(p)
+ − J

(p)
− .

Moreover, similar to Equation (1.9–1.11), the

symmetric Jacobi matrix J(p) = UL is associated

with the Toda lattice (2.18–2.20). This completes

the proof.

3 Darboux transformation with
parameter of the Jacobi matrix

The next step is the Darboux transformation with parameter

of the symmetric Jacobi matrix J. We study the transformations

of the polynomials of the first kind, m–functions, measure,

moment sequence and Toda lattice, which are associated with the

transformed Jacobi matrix.

3.1 UL–factorization

Theorem 3.1. Let J be the symmetric Jacobi matrix and let

S0 be a some real parameter. Then J admits the following

UL–factorization

J = UL, (3.1)

where L and U are lower and upper triangular matrices,

respectively, which are defined by

L =




1

S0 + b0

a1
1

S1 + b1

a2
1

. . .
. . .




and U =




−S0 a1
−S1 a2

−S2
. . .

. . .



, (3.2)

if and only if the following system is solvable

Si(Si−1 + bi−1) = −a2i , Si−1 + bi−1 6= 0 and Si−1 6= 0,

for all i ∈ N. (3.3)

Proof. Let J be the Jacobi matrix. Let L and U are defined

by Equation (3.2), where the parameter S0 ∈ R \ {0,−b0}.
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Calculating the product UL, we obtain

UL =




−S0 a1
−S1 a2

−S2
. . .

. . .







1

S0 + b0

a1
1

S1 + b1

a2
1

. . .
. . .




=




b0 a1

−
S1(S0 + b0)

a1
b1 a2

−
S2(S1 + b1)

a2
b2

. . .

. . .
. . .




Comparing the product UL with the Jacobi matrix J, we obtain

the system (3.3). This completes the proof.

3.2 Transformed Jacobi matrix J(d) = UL

Definition 3.2. Let the symmetric Jacobi matrix J admit UL—

factorization of the form (3.1–3.3). Then a transformation

J = UL → LU = J(d)

is called a Darboux transformation with parameter of the Jacobi

matrix J.

Theorem 3.3. Let the symmetric Jacobi matrix J admit UL—

factorization of the form (3.1–3.3) with parameter S0 ∈ R\{0,−b0}.

Then the Darboux transformation with parameter of the Jacobi

matrix J is the symmetric Jacobi matrix

J(d) =




−S0 a1
a1 b0 a2

a2 b1
. . .

. . .
. . .




(3.4)

if and only if

S0 = Si for all i ∈ N. (3.5)

Proof. Let J admit UL—factorization of the form (3.1–3.3).

Calculating the product LU, we obtain

J(d) = LU =




−S0 a1

−
S0(S0 + b0)

a1
S0 + b0 − S1 a2

−
S1(S1 + b1)

a2
S1 + b1 − S2

. . .

. . .
. . .




.

Hence, J(d) is the symmetric Jacobi matrix if and only if

−Si−1(Si−1 + bi−1) = a2i for all i ∈ N.

On the other hand, by Equation (3.3), we know

−Si(Si−1 + bi−1) = a2i for all i ∈ N.

Consequently, we obtain Equation (3.5). This completes

the proof.

Theorem 3.4. Let the symmetric Jacobi matrix J admit UL—

factorization of the form (3.1–3.3) and let J(d) = LU be its Darboux

transformation with parameter. Then the polynomials of the first

kind transform by the Geronimus formula

P
(d)
0 (λ) ≡ P0(λ) and P

(d)
i (λ) = Pi(λ)+

S0 + bi−1

ai
·Pi−1(λ), i ∈ N,

(3.6)

where Pi and P
(d)
i are polynomials of the first kind associated with

the matrix J and J(d), respectively.

Proof. Let J admit UL—factorization of the form (3.1–3.3) and let

J(d) = LU be its Darboux transformation with parameter. Then

JP(λ) = λP(λ) ⇒ ULP(λ) = λP(λ) ⇒ LULP(λ) = λLP(λ) ⇒

⇒ J(d)P(d)(λ) = λP(d)(λ),

where

P(d)(λ) = LP(λ) =




1

S0 + b0

a1
1

S0 + b1

a2
1

. . .
. . .







P0(λ)

P1(λ)

P2(λ)

P3(λ)
...




=




P0(λ)

P1(λ)+
S0 + b0

a1
P0(λ)

P2(λ)+
S1 + b1

a2
P1(λ)

P3(λ)+
S2 + b2

a3
P2(λ)

...




=




P
(d)
0 (λ)

P
(d)
1 (λ)

P
(d)
2 (λ)

P
(d)
3 (λ)
...




.

So, the polynomials of the first kind are transformed by

the Geronimus formula and Equation (3.6) holds. This completes

the proof.

Proposition 3.5. Let the symmetric Jacobi matrix J admit UL—

factorization of the form (3.1–3.3) and let the symmetric Jacobi

matrix J(d) = LU be the Darboux transformation with

parameter of J. Let s = {sn}
∞
n=0 and s

(d) = {s
(d)
n }∞n=0 be

the moment sequences associated with the matrices J and J(d),

respectively. Then the moment sequence s
(d) = {s

(d)
n }∞n=0 can be

found by

s
(d)
0 = 1 and s(d)n = −S0sn−1 for all n ∈ N. (3.7)

Proof. Let the symmetric Jacobi matrix J admit UL—factorization

of the form (3.1–3.3) and let the symmetric Jacobi matrix J(d) = LU
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be its Darboux transformation with parameter. By Equation (1.5),

we obtain

s
(d)
0 = (e0, (J

(d))0e0) = (e0, e0) = 1

and

s(d)n = (e0, (J
(d))ne0) = (e0,LU

ne0) = (e0,L(LU)
n−1

Ue0)

= (LTe0, (J)
n−1(−S0)e0) = −S0(e0, (J)

n−1e0) = −S0sn−1

for all n ∈ N.

Hence, Equation (3.7) holds. This completes the proof.

Corollary 3.6. Let the symmetric Jacobi matrix J admit UL—

factorization of the form (3.1–3.3) and let the symmetric Jacobi

matrix J(d) = LU be the Darboux transformation with parameter

of J. Let s = {sn}
∞
n=0 and s

(d) = {s
(d)
n }∞n=0 be the moment sequences

associated with the matrices J and J(d), respectively. Then

s
(d)
1 = −S0. (3.8)

Proof. By Equation (3.7) and s0 = 1, we obtain

s
(d)
1 = −S0s0 ⇒ s

(d)
1 = −S0.

So, Equation (3.8) holds. This completes the proof.

Corollary 3.7. Let the symmetric Jacobi matrix J admit

UL—factorization of the form (3.1–3.3) and let the

symmetric Jacobi matrix J(d) = LU be the Darboux

transformation with parameter of J. Let S and S
(d) be the

linear functionals associated with the matrices J and J(d),

respectively. Then

S
(d)(p(λ)) = −S0S

(
p(λ)− p(0)

λ

)
+ p(0), p(λ) ∈ C[λ]. (3.9)

Proof. Let S and S
(d) be the linear functionals associated with

the symmetric Jacobi matrices J = UL and J(d) = LU,

respectively, where L and U are defined by Equations (3.2, 3.3). By

Equation (1.1), we obtain

S
(d)(λn) = s(d)n = −S0sn−1 = −S0S

(
λn−1

)
, for all n ∈ N.

Consequently, Equation (3.9) holds. This completes the proof.

Corollary 3.8. Let the symmetric Jacobi matrix J admit UL—

factorization of the form (3.1–3.3). and let the symmetric Jacobi

matrix J(d) = LU be the Darboux transformation with parameter

of J. Let dµ and dµ(d) be the measures associated with the matrices

J and J(d), respectively. Then

dµ(λ) = −
λ

S0
dµ(d)(λ). (3.10)

Proof. Let J = UL and J(d) = LU, where the matrices L and U are

defined by Equations (3.2, 3.3, 3.5). The measures dµ and dµ(d) are

associated with the matrices J and J(d), respectively. Then

−S0

+∞∫

−∞

λn−1dµ(λ) = −S0sn−1 = s(d)n =

+∞∫

−∞

λndµ(d)(λ).

Consequently,

+∞∫

−∞

λn−1dµ(λ) = −

+∞∫

−∞

λn−1
λ

S0
dµ(d)(λ).

Hence, Equation (3.10) holds. This completes the proof.

Proposition 3.9. Let the symmetric Jacobi matrix J admit UL—

factorization of the form (3.1–3.3) and let the symmetric Jacobi

matrix J(d) = LU be the Darboux transformation with parameter

of J. Let m and m(d) be m–functions associated with the matrices J

and J(d), respectively. Then

m(d)(z) =
1

z
+

S0m(z)

z
. (3.11)

Proof. Let J = UL and J(d) = LU, where the matrices L and U

are defined by Equations (3.2, 3.3, 3.5). Then m–functions of the

matrices J and J(d) are related by

m(z) =

+∞∫

−∞

dµ(λ)

λ − z
= −

1

S0

+∞∫

−∞

λdµ(d)(λ)

λ − z

= −
1

S0

+∞∫

−∞

λ − z

λ − z
dµ(d)(λ) +

1

S0

+∞∫

−∞

zdµ(d)(λ)

λ − z

= −
s
(d)
0

S0
+

zm(d)(z)

S0
.

On the other hand

zm(d)(z)

S0
= m(z)+

s
(d)
0

S0
⇒ m(d)(z) =

s
(d)
0

z
+

S0m(z)

z
.

By Equation (3.7), s
(d)
0 = 1 and Equation (3.11) holds. This

completes the proof.

Toda latice. There is the last target of our investigation.

Theorem 3.10. Let the symmetric Jacobi matrix J admit UL–

factorization of the form (3.1–3.3) and J be associated with the Toda

lattice (1.9–1.11). Let the symmetric Jacobi matrix J(d) = LU be

the Darboux transformation without parameter of J. Then J(d) is

associated with the following Toda lattice

x′′k (t) = exk−1−xk − exk−xk+1 , (3.12)

ak =
1

2
e
xk−1−xk

2 , S0 =
1

2
x′0 and bk−1 = −

1

2
x′k. (3.13)

a0 = 0, a′1 = a1(b0 + S0), a′k = ak(bk−1 − bk−2),

− S′0 = 2(a21 − a20) and b′k−1 = 2(a2k+1 − a2k), k ∈ N.

(3.14)

Furthermore, the matrix A does not change.
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Proof. Let the symmetric Jacobi matrix J be associated with the

Toda lattice (1.9–1.11) and let J = UL, where L and U are defined

by Equations (3.2, 3.3, 3.5). Consequently, the symmetric Jacobi

matrix J(d) = LU is the Darboux transformation with parameter of

J. By Equation (3.4), we obtain J+ = J
(d)
+ , J− = J

(d)
− and the matrix

A does not change in the Lax pair, i.e.

A = J+ − J− = J
(d)
+ − J

(d)
− .

Moreover, similar to Equations (1.9–1.11), the symmetric

Jacobi matrix J(d) = LU is associated with the Toda lattice (3.12–

3.14). This completes the proof.
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Let X be a class of metric spaces and let PX be the set of all f : [0,∞) → [0,∞)

preserving X, i.e., (Y, f ◦ ρ) ∈ X whenever (Y, ρ) ∈ X. For arbitrary subset A of the

set of all metric preserving functions, we show that the equality PX = A has a

solution if A is a monoid with respect to the operation of function composition.

In particular, for the set SI of all amenable subadditive increasing functions, there

is a class X of metric spaces such that PX = SI holds.
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1 Introduction

The following is a particular case of the concept introduced by Jachymski and Turoboś

[1].

Definition 1. Let A be a class of metric spaces. Let us denote by PA the set of all functions

f : [0,∞) → [0,∞) such that the implication

(
(X, d) ∈ A

)
⇒

(
(X, f ◦ d) ∈ A

)

is valid for every metric space (X, d).

For mappings F :X → Y and 8 :Y → Z, we use the symbol F ◦ 8 to denote the

mapping

X
F
−→ Y

8
−→ Z.

We also use the following notation:

F, set of functions f :[0,∞) → [0,∞);

F0, set of functions f ∈ F with f (0) = 0;

Am, set of functions f ∈ F0 with f−1(0) = {0};

SI, set of subadditive increasing f ∈ Am;

M, class of metric spaces;

U, class of ultrametric spaces;

Dis, class of discrete metric spaces;

M2, class of two-points metric spaces;

M1, class of one-point metric spaces.

The main purpose of this article is to provide a solution to the following problems.
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Problem 2. Let A ⊆ PM. Find conditions under which the equation

PX = A (1)

has a solution X ⊆ M.

Problem 3. Let A ⊆ PU. Find conditions under which Equation (1)

has a solution X ⊆ U.

In addition, we find all solutions to Equation (1) for A equal to

F, F0, or Am and answer the following question.

Question 4. Is there a subclass X of the classM such that

PX = SI?

This question was posed as a challenge in [2] in a different but

equivalent form and it was the original motivation for our research.

The article is organized as follows. The next section contains

some necessary definitions and facts from the theories of metric

spaces and metric preserving functions.

Section 3 provides some definitions from the semigroup theory

and describes solutions to Equation (1), for the cases when A is F,

F0, or Am. In addition, we show that PX is always a submonoid of

(F, ◦). See Theorems 21, 23, 24, and Proposition 27, respectively.

Section 4 provides solutions to Problems 2 and 3, which are

given, respectively, in Theorems 30 and 33. Theorem 32 gives a

positive answer to Question 4.

2 Preliminaries on metrics and metric
preserving functions

Let X be non-empty set. A function d :X × X → [0,∞) is said

to be ametric on the set X if for all x, y, z ∈ X we have

(i) d(x, y) > 0 with equality if and only if x = y, the positivity

property;

(ii) d(x, y) = d(y, x), the symmetry property;

(iii) d(x, y) 6 d(x, z)+ d(z, y), the triangle inequality.

A metric space (X, d) is ultrametric if the strong triangle

inequality

d(x, y) 6 max{d(x, z), d(z, y)}

holds for all x, y, z ∈ X.

Example 5. Let us denote R+
0 by the set (0,∞). Then the mapping

d+ : R+
0 × R+

0 → [0,∞),

d+(p, q) : =

{
0 if p = q,

max{p, q} otherwise.

is the ultrametric on R+
0 introduced by Delhommé et al. [3].

Definition 6. Let (X, d) be a metric space. The metric d is discrete

if there is k ∈ (0,∞) such that

d(x, y) = k

for all distinct x, y ∈ X.

In what follows we will say that a metric space (X, d) is discrete

if d is a discrete metric on X. We will denote the class of all discrete

metric space by Dis. In addition, for given non-empty set X1, we

will denote by DisX1 the subclass of Dis consisting of all metric

spaces (X1, d) with discrete d.

Remark 7. All discrete topological spaces can be endowed with a

metric which is discrete, but not every metric space with discrete

topology is discrete in the sense of Definition 6.

Example 8. Let Mk, for k = 1, 2, be the class of all metric spaces

(X, d) satisfying the equality

card(X) = k.

Then all metric spaces belonging toM1 ∪M2 are discrete.

Proposition 9. The following statements are equivalent for each

metric space (X, d) ∈ M.

(i) (X, d) is discrete.

(ii) Every three-points subspace of (X, d) is discrete.

Proof: The implication (i) ⇒ (ii) is evidently valid.

Suppose that (ii) holds but (X, d) 6∈ Dis. Then there are some

different points i, j, k, l ∈ X such that

d(i, j) 6= d(k, l). (2)

We write X1:={i, j, k} and X2:={j, k, l}. Then the spaces

(X1, d|X1×X1 ) and (X2, d|X2×X2 ) are discrete subspaces of (X, d) by

statement (ii). Consequently we have

d(i, j) = d(j, k) (3)

and

d(j, k) = d(k, l), (4)

by definition of the classDis. Now (3) and (4) give us

d(i, j) = d(k, l),

which contradicts (2).

Remark 10. The standard definition of discrete metric can be

formulated as follows: “The metric on X is discrete if the distance

from each point of X to every other point of X is one.” (see, for

example, Searcóid [4]).

Let F be the set of all functions f :[0,∞) → [0,∞).

Definition 11. A function f ∈ F is metric preserving (ultrametric

preserving) if f ∈ PM (f ∈ PU).

Remark 12. The concept of metric preserving functions

can be traced back to Wilson [5]. Similar problems were

considered by Blumenthal [6]. The theory of metric preserving

functions was developed by Borsík, Doboš, Piotrowski, Vallin,

and other mathematicians [7–19]. See also lectures by Doboš

[20] and the introductory paper by Corazza [21]. The study

of ultrametric preserving functions began by Pongsriiam and

Termwuttipong [22] and was continued in [23, 24].
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We will say that f ∈ F is amenable if

f−1(0) = {0}

holds and the set of all amenable functions from F will be denoted

by Am. Let us denote the set of all functions f ∈ F satisfying the

equality f (0) = 0 by F0. It follows directly from the definition that

Am ( F0 ( F.

Moreover, a function f ∈ F is increasing if the implication

(x 6 y) ⇒ (f (x) 6 f (y))

is valid for all x, y ∈ [0,∞).

The following theorem was proved in [22].

Theorem 13. A function f ∈ F is ultrametric preserving if and only

if f is increasing and amenable.

Remark 14. Theorem 13 was generalized in [25] to the special

case of the so-called ultrametric distances. These distances were

introduced by Priess-Crampe and Ribenboim [26] and were studies

by different researchers [27–30].

Recall that a function f ∈ F is said to be subadditive if

f (x+ y) 6 f (x)+ f (y)

holds for all x, y ∈ [0,∞). Let us denote the set of all subadditive

increasing functions f ∈ Am by SI.

In the next proposition, we restate the equivalence between

statements (i) and (ii) of Corollary 36 [2].

Proposition 15. The equality

SI = PU ∩ PM

holds.

Remark 16. The metric preserving functions can be considered as

a special case of metric products (= metric preserving functions of

several variables). See, for example, [31–37]. An important special

class of ultrametric preserving functions of two variables was first

considered in 2009 [38].

3 Preliminaries on semigroups.
Solutions to FX = A for A = F, F0, and
Am

Let us recall some basic concepts of semigroup theory,

see, for example, “Fundamentals of Semigroup Theory” by Howie

[39].

A semigroup is a pair (S, ∗) consisting of a non-empty set S

and an associative operation ∗ : S × S → S, which is called the

multiplication on S. A semigroup S = (S, ∗) is a monoid if there

is e ∈ S such that

e ∗ s = s ∗ e = s

for every s ∈ S.

Definition 17. Let (S, ∗) be a semigroup and ∅ 6= T ⊆ S. Then T

is a subsemigroup of S if a, b ∈ T ⇒ a ∗ b ∈ T. If (S, ∗) is a monoid

with the identity e, then T is a submonoid of S if T is a subsemigroup

of S and e ∈ T.

Example 18. The semigroups (F, ◦), (Am, ◦), (PM, ◦), and (PU, ◦)

are monoids, and the identical mapping id :[0,∞) → [0,∞),

id(x) = x for every x ∈ [0,∞) is the identity of these monoids.

The following simple lemmas are well-known.

Lemma 19. Let T be a submonoid of a monoid (S, ∗) and let V ⊆ T.

Then V is a submonoid of (S, ∗) if and only if V is a submonoid of T.

Lemma 20. Let T1 and T2 be submonoids of a monoid (S, ∗). Then

the intersection T1 ∩ T2 also is a submonoid of (S, ∗).

The next theorem describes all solutions to the equation PX =

F.

Theorem 21. The following statements are equivalent for every

X ⊆ M.

(i) X is the empty subclass ofM.

(ii) The equality

PX = F (5)

holds.

Proof: (i) ⇒ (ii). Let X be the empty subclass of M. Definition 1

implies the inclusion F ⊇ PX. Let us consider an arbitrary f ∈ F.

To prove equality (5), it is suffice to show that f ∈ PX. Since X is

empty, the membership relation (X, d) ∈ X is false for every metric

space (X, d). Consequently, the implication

((X, d) ∈ X) ⇒ ((X, f ◦ d) ∈ X)

is valid for every (X, d) ∈ M. It implies f ∈ PX by Definition 1.

Equality (5) follows.

(ii) ⇒ (i). Let (ii) hold. We must show that X is empty.

Suppose contrary that there is a metric space (X, d) ∈ X. Since, by

definition, we have X 6= ∅, there is a point x0 ∈ X. Consequently,

d(x0, x0) = 0 holds. Let c ∈ (0,∞) and let f :[0,∞) → [0,∞) be a

constant function,

f (t) = c

for every t ∈ [0,∞). In particular, we have

f (0) = c > 0. (6)

Equality (5) implies that f ◦ d is a metric on X. Thus, we have

0 = f (d(x0, x0)) = f (0),

which contradicts (6). Statement (i) follows.

Remark 22. Theorem 21 becomes invalid if we allow the empty

metric space to be considered. The equality

PX = F

holds if the non-empty class X contains only the empty metric

space.
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Let us describe now all possible solutions to PX = F0.

Theorem 23. The equality

PX = F0 (7)

holds if and only if X is a non-empty subclass ofM1.

Proof: Let X ⊆ M1 be non-empty. Equality (7) holds if

PX ⊇ F0 (8)

and

PX ⊆ F0. (9)

Here, we prove the validity of (8). Let f ∈ F0 be arbitrary. Since

every (X, d) ∈ X is a one-point metric space, we have f ◦ d = d for

all (X, d) ∈ X by the positivity property of metric spaces, Inclusion

(8) follows.

Here, we prove (9). The inclusion PX ⊆ F follows from

Definition 1. Thus, if (9) does not hold, then there is f0 ∈ F such

that f0 ∈ PX,

f0(0) = k and k > 0. (10)

SinceX is non-empty, there is (X0, d0) ∈ X. Let x0 be a (unique)

point of X0. Since f0 belongs to PX, the function f0 ◦ d0 is a metric

on X0. Now, using (10), we obtain

f0(d0(x0, x0)) = f0(0) = k > 0,

which contradicts the positivity property of metric spaces.

Inclusion (9) follows.

Let (7) hold. We must show that X is a non-empty subclass of

M1. If X is empty, then

PX = F (11)

holds by Theorem 21. Equality (11) contradicts equality (7). Hence,

X is non-empty. To complete the proof, we must show that

X ⊆ M1. (12)

Let us consider the constant function f0 :[0,∞) → [0,∞) such

that

f0(t) = 0, (13)

for every t ∈ [0,∞). Then f0 belongs to F0. Hence, for every

(X, d) ∈ X, the mapping d0 : = f0 ◦ d is a metric on X. Now

(13) implies d0(x, y) = 0 for all x, y ∈ X and (X, d) ∈ X.

Hence, card(X) = 1 holds, because the metric space (X, d0) is one-

point by the positivity property. Inclusion (12) follows. The proof

is completed.

The next theorem gives us all solutions to the equation PX =

Am.

Theorem 24. The following statements are equivalent for every

X ⊆ M.

(i) The inclusion

X ⊆ Dis (14)

holds, and there is (Y , ρ) ∈ X with

card(Y) > 2, (15)

and we have

DisX1 ⊆ X (16)

for every (X1, d1) ∈ X.

(ii) The equality

PX = Am (17)

holds.

Proof: (i) ⇒ (ii). Let (i) hold. Equality (17) holds if

PX ⊇ Dis (18)

and

PX ⊆ Dis. (19)

Here, we prove (18). Inclusion (18) holds if we have

(X1, f ◦ d1) ∈ X (20)

for all f ∈ Am and (X1, d1) ∈ X. Relation (20) follows from

Theorem 23 if (X1, d1) ∈ M1. To see it we only note that Am ⊆ F0.

Let us consider the case when

card(X1) > 2.

Since (X1, d1) is discrete by (14), Definition 6 implies that there

is k1 ∈ (0,∞) satisfying

d1(x, y) = k1

for all distinct x, y ∈ X1. Let f ∈ Am be arbitrary. Then f (k1) is

strictly positive and

f (d1(x, y)) = f (k1)

holds for all distinct x, y ∈ X1. Thus, f ◦ d1 is a discrete metric on

X1, i.e., we have

(X1, f ◦ d1) ∈ DisX1 . (21)

Now, Equation (20) follows from Equations (16, 21).

Here, we prove (19). To prove, we must show that every f ∈ PX
is amenable.

Suppose contrary that f belongs to PX but the equality

f (t1) = 0 (22)

holds with some t1 ∈ (0,∞). By statement (i) we can find (Y , ρ) ∈

X such that (15) and

ρ(x, y) = t1
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hold for all distinct x, y ∈ Y . Now f ∈ PX and (Y , ρ) ∈ X imply

that f ◦ ρ is a metric on Y . Consequently, for all distinct x, y ∈ Y ,

we have

f (ρ(x, y)) = f (t1) > 0,

which contradicts (22). The validity of (19) follows.

(ii) ⇒ (i). Let X satisfy equality (17). Since Am 6= F holds, the

classX is non-empty by Theorem 21. Moreover, using Theorem 23,

we see that X contains a metric space (X, d) with card(X) > 2,

because Am 6= F0.

If the inequality

card(Y) 6 2

holds for every (Y , ρ) ∈ X, then all metric spaces belonging toX are

discrete (see Example 8). Using the definitions of Dis and Am, it is

easy to prove that for each (X1, d1) ∈ Dis and every (X1, d) ∈ DisX1

there exists f ∈ Am such that d = f ◦ d1. Hence to complete the

proof, it is suffice to show that every (X, d) ∈ X is discrete when

card(X) > 3. (23)

Let us consider arbitrary (X, d) ∈ X satisfying (23). Suppose

that (X, d) 6∈ Dis. Then by Proposition 9 there are distinct a, b, c,∈

X such that

d(b, c) /∈ {d(a, b), d(c, a)}. (24)

Let c1 and c2 be points of (0,∞) such that

c2 > 2c1. (25)

Now we can define f ∈ Am as

f (t) : =





0 if t = 0,

c2 if t = d(b, c),

c1 otherwise.

(26)

Equality (17) implies that f ◦ d is a metric on X. Consequently,

we have

f (d(b, c)) 6 f (d(b, a))+ f (d(b, c)) (27)

by triangle inequality. Now using Equations (24, 26) we can rewrite

Equation (27) as

c2 6 c1 + c1,

which contradicts Equation (25). It implies (X, d) ∈ Dis. The proof

is completed.

Corollary 25. The equalities

PDis = PM2 = Am

hold.

Remark 26. The equality

PM2 = Am

is known, see, for example, Remark 1.2 in the article [13]. This

article also contains “constructive” characterizations of the smallest

bilateral ideal and the largest subgroup of the monoid PM.

Proposition 27. Let X be a subclass ofM. Then PX is a submonoid

of (F, ◦).

Proof: It follows directly from Definition 1 that

PX ⊆ F

holds and that the identity mapping id :[0,∞) → [0,∞) belongs

to PX. Hence, by Lemma 19, it is suffice to prove

f ◦ g ∈ PX (28)

for all f , g ∈ PX.

Let us consider arbitrary f ∈ PX and g ∈ PX. Then, using

Definition 1, we see that (X, g ◦d) belongs toX for every (X, d) ∈ X.

Consequently,

(X, f ◦ (g ◦ d)) ∈ X (29)

holds. Since the composition of functions is always associative, the

equality

(f ◦ g) ◦ d = f ◦ (g ◦ d) (30)

holds for every (X, d) ∈ X. Now Equation (28) follows from

Equations (29, 30).

The above proposition implies the following corollary.

Corollary 28. If the equation

PX = A

has a solution, then A is a submonoid of F.

The following example shows that the converse of Corollary 28

is, generally speaking, false.

Example 29. Let us define A1 ⊆ F as

A1 = {f1, id},

where f1 ∈ F is defined such that

f1(t) : =





1 if t = 0,

0 if t = 1,

t otherwise

(31)

and id is the identical mapping of [0,∞). The equalities f1 ◦ f1 = id,

f1 ◦ id = f1 = id ◦f1 show that A1 is a submonoid of (F, ◦). Suppose

that there is X1 ⊆ M satisfying the equality

PX1 = A1. (32)

Then using Theorem 21, we see that X1 is non-empty because

A1 6= F holds. Let (X1, d1) be an arbitrary metric space from A1.

Since X1 is non-empty, we can find x1 ∈ X1. Then (32) implies that

f1 ◦ d1 is metric on X1. Now using (31), we obtain

f1(d1(x1, x1)) = f1(0) = 1,

which contradicts the positivity property of metrics.
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4 Submonoids of monoids PM and PU

The following theorem provides a solution to Problem 2.

Theorem 30. LetA be a non-empty subset of the set PM of all metric

preserving functions. Then the following statements are equivalent.

(i) The equation

PX = A (33)

has a solution X ⊆ M.

(ii) A is a submonoid of (F, ◦).

(iii) A is a submonoid of (PM, ◦).

Proof: (i) ⇒ (ii). Suppose that there isX ⊆ M such that (33) holds.

Then A is a submonoid of (F, ◦) by Proposition 27.

(ii) ⇒ (iii). Let A be a submonoid of (F, ◦). By Proposition 27,

the monoid (PM, ◦) also is a submonoid of (F, ◦). Then using the

inclusion A ⊆ PM, we obtain that A is a submonoid of (PM, ◦) by

Lemma 19.

(iii) ⇒ (i). Let A be a submonoid of (PM, ◦). We must prove

that (33) has a solution X ⊆ M.

Let (X, d) be a metric space such that

{d(x, y) : x, y ∈ X} = [0,∞). (34)

X : = {(X, f ◦ d) : f ∈ A}. (35)

Thus, a metric space (Y , ρ) belongs to X if and only if Y = X

and there is f ∈ A such that ρ = f ◦ d.

We claim that Equation (33) holds if X is defined by Equality

(35). To prove it, we note that Equation (33) holds if

A ⊆ PX (36)

and

A ⊇ PX. (37)

Here, we prove Inclusion (36). This inclusion holds if for every

f ∈ A and each (Y , ρ) ∈ X we have (Y , f ◦ ρ) ∈ X. Let us consider

arbitrary (Y , ρ) ∈ X and f ∈ A. Then, using Equation (35), we can

find g ∈ A such that

X = Y and ρ = g ◦ d. (38)

SinceA is a monoid, the membership relations f ∈ A and g ∈ A

imply g ◦ f ∈ A. Hence, we have

(X, g ◦ f ◦ d) ∈ X (39)

by Equality (35). Now (Y , f ◦ ρ) ∈ X follows from Equations (38,

39).

Here, we prove Inclusion (37). Let g1 belongs to PX and let

(X, d) be the same as in (35). Then (X, g1 ◦ d) belongs to X and,

using (35), we can find f1 ∈ A such that

(X, g1 ◦ d) = (X, f1 ◦ d). (40)

Equality (40) implies

g1(d(x, y)) = f1(d(x, y)), (41)

for all x, y ∈ X. Consequently, g1(t) = f1(t) holds for every

t ∈ [0,∞) by Equation (34, 41). Thus, we have g1 = f1. That implies

g1 ∈ A. Inclusion (37) follows. The proof is completed.

Remark 31. A reviewer of the article noted that condition (34) can

be neatly expressed in terms of center distances which stems from

article [40].

Let us turn now to Question 4. Proposition 15 and Lemma 20

provide the following result.

Theorem 32. There is X ⊆ M such that

PX = SI. (42)

Proof: By Proposition 27, the monoids (PM, ◦) and (PU, ◦) are

submonoids of (F, ◦). The equality

SI = PM ∩ PU (43)

holds by Proposition 15. Using Equality (43) and Lemma 20 with

T1 = PM, T2 = PU, and S = F, we see that SI also is a submonoid

of F. Consequently, Theorem 30 with A = SI implies that there is

X ⊆ M such that (42) holds.

The next theorem is an ultrametric analog of Theorem 30 and

it gives us a solution to Problem 3.

Theorem 33. Let A be a non-empty subset of the set PU of all

ultrametric preserving functions. Then the following statements are

equivalent.

(i) The equation PX = A has a solution X ⊆ U.

(ii) A is a submonoid of (F, ◦).

(iii) A is a submonoid of (PU, ◦).

A proof of Theorem 33 can be obtained by a simple

modification of the proof of Theorem 30. We only note that the

ultrametric space defined in Example 5 satisfies equality (34) with

X = R+
0 and d = d+.

5 Two conjectures

Conjecture 34. The equation

PX = A

has a solution X ⊆ M for every submonoid A of the monoid Am.

Example 29 shows that we cannot replace Am with F in

Conjecture 34, but we hope that the following is valid.

Conjecture 35. For every submonoidA of the monoid F, there exists

X ⊆ M such that PX and A are isomorphic submonoids.
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In the present study, we prove generalizations of Banach, Kannan, Chatterjea,

Ćirić-Reich-Rus fixed point theorems, as well as of the fixed point theorem

for mapping contracting perimeters of triangles. We consider corresponding

mappings in semimetric spaces with triangle functions introduced by Bessenyei

and Páles. Such an approach allows us to derive corollaries for various

types of semimetric spaces such as metric spaces, ultrametric spaces, and

b-metric spaces. The significance of these generalized theorems extends

across multiple disciplines, such as optimization, mathematical modeling, and

computer science. They may serve to establish stability conditions, demonstrate

the existence of optimal solutions, and improve algorithm design.

KEYWORDS

fixed point theorem, mappings contracting perimeters of triangles, metric space,

semimetric space, triangle function

1 Introduction

The Contraction Mapping Principle was established by Banach in his dissertation

(1920) and published in 1922 [1]. Although the idea of successive approximations

in a number of concrete situations (solution of differential and integral equations,

approximation theory) had appeared earlier in the studies by P. L. Chebyshev, E. Picard, R.

Caccioppoli, and others, S. Banach was the first to formulate this result in a correct abstract

form which is suitable for a wide range of applications.

In 1968, pioneering study by Kannan in fixed-point theory led to a significant result,

which is independent of the Banach contraction principle [2]. Kannan’s theorem provided

a crucial characterization of metric completeness: A metric space X is complete if and only

if every mapping satisfying Kannan contraction on X has a fixed point [3]. This discovery

spurred the introduction of numerous contractive definitions, many of which allowed for

discontinuity in their domain. Among these contractive conditions, those explored by

Chaterjee [4] and Ćirić-Reich-Rus [5–7] share similar characteristics, further enriching

understanding of the properties of contractive mappings in metric spaces. For various

contractive definitions, we suggest authors refer to a survey study by Rhoades [8]. After a

century, the interest of mathematicians around the world in fixed point theorems remains

high. This is evidenced by the appearance of numerous articles and monographs in recent

decades dedicated to fixed point theory and its applications. For a survey of fixed point

results and their diverse applications, see, for example, the monographs [9–11].

Let X be a nonempty set. Recall that a mapping d : X × X → R
+, R+ = [0,∞) is a

metric if for all x, y, z ∈ X the following axioms hold:
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(i) (d(x, y) = 0) ⇔ (x = y),

(ii) d(x, y) = d(y, x),

(iii) d(x, y) 6 d(x, z)+ d(z, y).

The pair (X, d) is called ametric space. If only axioms (i) and (ii)

hold, d is called a semimetric. A pair (X, d), where d is a semimetric

on X, is called a semimetric space. Such spaces were first examined

by Fréchet in the study mentioned in [12], where he called them

“classes (E).” Later these spaces and mappings on them attracted

the attention of many mathematicians [13–18].

In semimetric spaces, the notions of convergent and Cauchy

sequences, as well as completeness, can be introduced in the usual

way.

The concept of b-metric space was initially introduced by

Bakhtin [19] under the name of quasi-metric spaces, wherein he

demonstrated a contraction principle in this space. Czerwik [20, 21]

further utilized such space to establish generalizations of Banach’s

fixed point theorem. In a b-metric space, the triangle inequality

(iii) is extended to include the condition that there exists K ≥ 1,

ensuring that d(x, y) ≤ K[d(x, z) + d(z, y)] for all x, y, z ∈ X. Fagin

and Stockmeyer [22] further explored the relaxation of the triangle

inequality within b-metric spaces, labeling this adjustment as non-

linear elastic matching (NEM). They observed its application across

diverse domains, including trademark shape analysis [23] and the

measurement of ice floes [24]. Xia [25] utilized this semimetric

distance to investigate optimal transport paths between probability

measures.

Recall that an ultrametric is a metric for which the strong

triangle inequality d(x, y) 6 max{d(x, z), d(z, y)} holds for all

x, y, z ∈ X. In this case, the pair (X, d) is called an ultrametric space.

Note that the ultrametric inequality was formulated by F. Hausdorff

in 1934 and ultrametric spaces were introduced by Krasner [26] in

1944.

In 2017, Bessenyei and Páles [27] extended the Matkowski

fixed point theorem [28] by introducing a definition of a triangle

function 8 : R
2
+ → R

+
for a semimetric d. We adopt this

definition in a slightly different form, restricting the domain and

the range of 8 by R2
+ and R

+, respectively.

Definition 1.1. Consider a semimetric space (X, d). We say that

8 : R
+ × R

+ → R
+ is a triangle function for d if 8 is symmetric

and non-decreasing in both of its arguments, satisfies 8(0, 0) = 0

and, for all x, y, z ∈ X, the generalized triangle inequality

d(x, y) 6 8(d(x, z), d(z, y)) (1)

holds.

Obviously, metric spaces, ultrametric spaces, and b-metric

spaces are semimetric spaces with the triangle functions 8(u, v) =

u + v, 8(u, v) = max{u, v}, and 8(u, v) = K(u + v), K > 1,

respectively.

In Bessenyei and Páles [27], semimetric spaces with so-

called basic triangle functions that are continuous at the origin

were investigated. These spaces were termed regular. It was

demonstrated that in a regular semimetric space, the topology

is Hausdorff, a convergent sequence has a unique limit, and

possesses the Cauchy property, among other properties. For

further developments in this area, see also [29–33].

In this study, we revisit several well-known fixed-point

theorems, either extending their capabilities by modifying their

assumptions or presenting new and innovative proofs. With the

help of key Lemma 1.2 and its conclusion, we unveil further

results that offer insightful perspectives on the nature of fixed-point

theorems, not only within the metric context but also within more

general spaces.

Here is the key lemma essential for the subsequent sections.

Lemma 1.2. Let (X, d) be a semimetric space with the triangle

function 8 satisfying the following conditions:

1) The equality

8(ku, kv) = k8(u, v) (2)

holds for all k, u, v ∈ R
+.

2) For every 0 6 α < 1, there exists C(α) > 0 such that for

every p ∈ N
+ the inequality

8(1,8(α,8(α2, ....,8(αp−1,αp)))) 6 C(α) (3)

holds.

Let (xn), n = 0, 1, . . ., be a sequence in X having the property

that there exists α ∈ [0, 1) such that

d(xn, xn+1) 6 αd(xn−1, xn) (4)

for all n > 1. Then, (xn) is a Cauchy sequence.

Proof.We break the proof of this lemma into several parts. 1. Initial

bounds: by Equation (4), we have

d(x1, x2) 6 αd(x0, x1), d(x2, x3) 6 αd(x1, x2),

d(x3, x4) 6 αd(x2, x3), . . . .

Hence, we obtain

d(xn, xn+1) 6 αnd(x0, x1). (5)

2. Use of generalized triangle inequality (Equation 1): applying

consecutively generalized triangle inequality (Equation 1) to the

points xn, xn+1, xn+2, . . . , xn+p, where p ∈ N
+, p > 2, we obtain

d(xn, xn+p) 6 8(d(xn, xn+1), d(xn+1, xn+p))

6 8(d(xn, xn+1),8(d(xn+1, xn+2), d(xn+2, xn+p)))

. . .

6 8(d(xn, xn+1),8(d(xn+1, xn+2), . . . ,8(d(xn+p−2, xn+p−1),

d(xn+p−1, xn+p)))).

3. Utilizing properties of 8: by the monotonicity of 8 and

inequalities (Equation 5), we have
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d(xn, xn+p) 6 8(αnd(x0, x1),8(αn+1d(x0, x1),

· · · ,8(αn+p−2d(x0, x1),α
n+p−1d(x0, x1)))).

Applying several times equality (Equation 2), we get

d(xn, xn+p) 6 αn8(1,8(α, · · · ,8(αp−2,αp−1)))d(x0, x1).

4. Bounding the expression and concluding Cauchy sequence:

by condition (Equation 3), we obtain

d(xn, xn+p) 6 αnC(α)d(x0, x1). (6)

Since 0 6 α < 1, we have d(xn, xn+p) → 0 as n → ∞ for every

p > 2. If p = 1, the relation d(xn, xn+1) → 0 follows from the study

mentioned in Equation (5). Thus, (xn) is a Cauchy sequence, which

completes the proof.

Remark 1.3. Let (X, d) be a complete semimetric space. Then the

sequence (xn) has a limit x∗. If additionally the semimetric d is

continuous, then we get d(xn, xn+p) → d(xn, x
∗) as p → ∞. Hence,

letting p → ∞ in Equation (6) we get

d(xn, x
∗) 6 αnC(α)d(x0, x1). (7)

2 Banach contraction principle in
semimetric spaces

It is possible to extend the well-known concept of contraction

mapping to the case of semimetric spaces. We shall say that a

mapping T : X → X is a contraction mapping on the semimetric

space (X, d) if there exists α ∈ [0, 1) such that

d(Tx,Ty) 6 αd(x, y) (8)

for all x, y ∈ X.

Theorem 2.1. Let (X, d) be a complete semimetric space with

the triangle function 8 continuous at (0, 0) and satisfying

conditions (Equations 2, 3). Let T : X → X be a contraction

mapping. Then, T has a unique fixed point.

Proof. Let x0 ∈ X and let xn = Txn−1, n = 1, 2, .... By Equation (8)

and by Lemma 1.2, (xn) is a Cauchy sequence, and by completeness

of (X, d), this sequence has a limit x∗ ∈ X.

Let us prove that Tx∗ = x∗. It is easy to observe that

the contraction mappings on semimetric spaces are continuous.

Indeed, let yn → y0 as n → ∞. Then d(yn, y0) → 0, and

by Equation (8), we have d(Tyn,Ty0) → 0, i.e., Tyn → Ty0. Since

xn → x∗, by the continuity of T, we have xn+1 = Txn → Tx∗. By

generalized triangle inequality (Equation 1) and continuity of 8 at

(0, 0), we have

d(x∗,Tx∗) 6 8(d(x∗, xn), d(xn,Tx
∗)) → 0

as n → ∞, which means that x∗ is the fixed point.

Suppose that there exist two distinct fixed points x and y. Then,

Tx = x and Ty = y, which contradicts to the study mentioned in

Equation (8).

Corollary 2.2. The following assertions hold:

(i) (Banach contraction principle) Theorem 2.1 holds for

metric spaces, i.e., for semimetric spaces with the triangle

function 8(u, v) = u+ v.

(ii) The following inequality holds:

d(xn, x
∗) 6

αn

1− α
d(x0, x1).

Proof. (i) It is easy to observe that 8 satisfies equality (Equation 2)

and 8 is continuous at (0, 0). Consider expression (Equation 3) for

such power triangle functions 8:

1+ α + α2 + · · · + αp−1 + αp.

According to the formula for the sum of infinite geometric

series, this sum is less than 1/(1−α) = C(α) for every finite p ∈ N
+,

which establishes inequality (Equation 3).

Assertion (ii) follows directly from the study mentioned in

Equation (7).

Corollary 2.3. The following assertions hold:

(i) Theorem 2.1 holds for ultrametric spaces, i.e., for semimetric

spaces with the triangle function 8(u, v) = max{u, v}.

(ii) The following inequality holds:

d(xn, x
∗) 6 αnd(x0, x1).

Proof. (i) It is easy to observe that 8 satisfies equality (Equation 2)

and 8 is continuous at (0, 0). Consider expression (Equation 3) for

the power triangle functions 8. Since α < 1, we have

max{1,α,α2, · · · ,αp−1,αp} = 1 = C(α),

which establishes inequality (Equation 3).

Assertion (ii) follows directly from Equation (7). Distance

spaces with power triangle functions 8(u, v) = (uq + vq)
1
q , q ∈

[−∞,∞] were considered in [34]. In [34] these functions have

a little more general form. Note also that semimetric spaces with

power triangle functions are metric spaces if q > 1.

Corollary 2.4. The following assertions hold:

(i) Theorem 2.1 holds for semimetric spaces with power triangle

functions 8(u, v) = (uq + vq)
1
q if q > 0.

(ii) The following inequality holds for q > 1:

d(xn, x
∗) 6

αn

(1− αq)
1
q

d(x0, x1).

Proof. (i) It is easy to observe that 8 satisfies equality (Equation 2)

and 8 is continuous at (0, 0). Consider expression (Equation 3) for

the power triangle functions 8:

(1+ αq + α2q + · · · + α(p−1)q + αpq)
1
q .

It is clear that the sum

1+ αq + α2q + · · · + α(p−1)q + αpq (9)
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consists of p+ 1 terms of geometric progression with the common

ratio αq and start value 1. Since α < 1, we have the inequality

αq < 1. According to the formula for the sum of infinite geometric

series, sum (Equation 9) is less than 1/(1 − αq) for every finite

p ∈ N
+. Hence,

(1+ αq + α2q + · · · + α(p−1)q + αpq)
1
q < (1/(1− αq))

1
q = C(α),

which establishes inequality (Equation 3).

Assertion (ii) follows directly from Equation (7) and from the

fact that semimetric spaces with power triangle functions are metric

spaces if q > 1.

Corollary 2.5. Theorem 2.1 holds for b-metric spaces with the

coefficient K if αK < 1, where α is the coefficient from Equation 8.

Proof. It is clear that 8(u, v) = K(u + v) satisfies

condition (Equation 2) and it is continuous at (0, 0). Consider

expression (Equation 3) for the function 8:

K + K2α + K3α2 + · · · + Kpαp−1 + Kpαp (10)

6 K + K2α + K3α2 + · · · + Kpαp−1 + Kp+1αp.

It is clear that this sum consists of p + 1 terms of geometric

progression with the common ratio αK and the start value K.

According to the formula for the sum of infinite geometric series,

sum (Equation 10) is less than K/(1− αK) = C(α) for every finite

p ∈ N
+, which establishes inequality (Equation 3).

Note that Corollary 2.5 is already known, see Theorem 1 in Kir

and Kiziltunc [35].

3 Kannan’s contractions in semimetric
spaces

Kannan [2] proved the following result which gives the fixed

point for discontinuous mappings.

Theorem 3.1. Let T : X → X be a mapping on a complete metric

space (X, d) such that

d(Tx,Ty) 6 β(d(x,Tx)+ d(y,Ty)), (11)

where 0 6 β < 1
2 and x, y ∈ X. Then, T has a unique fixed point.

The mappings satisfying inequality (Equation 11) are called

Kannan type mappings.

Theorem 3.2. Let (X, d) be a complete semimetric space with the

continuous triangle function 8, satisfying conditions (Equations

2, 3). Let T : X → X satisfy inequality (Equation 11) with

some 0 6 β < 1
2 and let additionally the following condition

hold:

(i) 8(0,β) < 1.

Then, T has a unique fixed point.

Proof. Let x0 ∈ X. Define xn = Txn−1 = Tnx0 for n = 1, 2, . . .. It

follows straightforwardly that

d(xn, xn+1) = d(Txn−1,Txn)

6 β(d(xn−1,Txn−1)+ d(xn,Txn)) = β(d(xn−1, xn)+ d(xn, xn+1)),

and

d(xn, xn+1) 6 αd(xn−1, xn),

where α =
β

1−β
, 0 6 α < 1. By Lemma 1.2, (xn) is a Cauchy

sequence, and by completeness of (X, d), this sequence has a limit

x∗ ∈ X.

Let us prove that Tx∗ = x∗. By the generalized triangle

inequality (Equation 1), the monotonicity of 8, and (Equation 11),

we get

d(x∗,Tx∗) 6 8(d(x∗,Tnx0), d(T
nx0,Tx

∗))

6 8(d(x∗,Tnx0),β(d(T
n−1x0,T

nx0)+ d(x∗,Tx∗))).

Letting n → ∞, by the continuity of 8, we obtain

d(x∗,Tx∗) 6 8(0,βd(x∗,Tx∗)).

Using (Equation 2), we have

d(x∗,Tx∗) 6 d(x∗,Tx∗)8(0,β).

By condition (i), we get d(x∗,Tx∗) = 0.

Suppose that there exist two distinct fixed points x and y. Then,

Tx = x and Ty = y, which contradicts to Equation (11).

Corollary 3.3. Theorem 3.2 holds for semimetric spaces with the

following triangle functions: 8(u, v) = u + v; 8(u, v) = K(u + v),

1 6 K 6 2; 8(u, v) = max{u, v}; 8(u, v) = (uq + vq)
1
q , q > 0,

and with the corresponding estimations (Equation 7) from above

for d(xn, x
∗).

Proof. The proof follows directly from Corollaries 2.2, 2.3, and 2.4

and from the fact that all above mentioned triangle functions satisfy

condition (i) of Theorem 3.2.

4 Chatterjea’s contractions in
semimetric spaces

Chatterjea [4] proved the following result.

Theorem 4.1. Let T : X → X be a mapping on a complete metric

space (X, d) such that

d(Tx,Ty) 6 β(d(x,Ty)+ d(y,Tx)), (12)

where 0 6 β < 1
2 and x, y ∈ X. Then, T has a unique fixed point.
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The mappings satisfying inequality (Equation 12) are called

Chatterjea type mappings.

To prove the following theorem, we need the notion of an

inverse function for a non-decreasing function. This is due to the

fact that the aim of this theorem is also to cover the class of

ultrametric spaces and the fact that the function 9(u) = max{u, 1}

is not strictly increasing. By Gutlyanskii et al. [36, p. 34] for every

non-decreasing function9 : [0,∞] → [0,∞], the inverse function

9−1
: [0,∞] → [0,∞] can be well defined by setting

9−1(τ ) = inf
9(t)>τ

t.

Here, inf is equal to ∞ if the set of t ∈ [0,∞] such that

9(t) > τ is empty. Note that the function 9−1 is non-decreasing

too. It is evident immediately by the definition that

9−1(9(t)) 6 t for all t ∈ [0,∞]. (13)

Theorem 4.2. Let (X, d) be a complete semimetric space with the

continuous triangle function 8, satisfying conditions (Equations 2,

3) and such that the semimetric d is continuous. Let T : X → X

satisfy inequality (Equation 12) with some real number β > 0 such

that the following conditions hold:

(i) 8(0,β) < 1.

(ii) 9−1(1/β) > 1 if β > 0, where 9(u) = 8(u, 1).

Then T has a fixed point. If 0 6 β < 1
2 , then the fixed point is

unique.

Proof. Let β = 0. Then, (Equation 12) is equivalent to d(Tx,Ty) = 0

for all x, y ∈ X. Let x0 ∈ X and x∗ = Tx0. Then d(Tx0,T(Tx0)) = 0

and d(x∗,Tx∗)=0. Hence, x∗ is a fixed point. Suppose that there

exist another fixed point x∗∗ 6= x∗, x∗∗ = Tx∗∗. Then, by the

equality d(Tx,Ty) = 0, we have d(Tx∗,Tx∗∗) = d(x∗, x∗∗) = 0,

which is a contradiction.

Let now β > 0 and let x0 ∈ X. Define xn = Txn−1 = Tnx0
for n = 1, 2, . . .. If xi = xi+1 for some i, it is clear that xi is a fixed

point. Suppose that xi 6= xi+1 for all i.

It follows straightforwardly that

d(xn, xn+1) = d(Txn−1,Txn) 6 β(d(xn−1,Txn)+ d(xn,Txn−1))

= β(d(xn−1, xn+1)+ d(xn, xn)) = βd(xn−1, xn+1).

Hence, by the generalized triangle inequality (Equation 1) and

condition (Equation 2), we get

d(xn, xn+1) 6 β8(d(xn−1, xn), d(xn, xn+1))

and

1

β
6 8

(
d(xn−1, xn)

d(xn, xn+1)
, 1

)
= 9

(
d(xn−1, xn)

d(xn, xn+1)

)
, (14)

where 9(u) = 8(u, 1), u ∈ [0,∞). It is clear that 9(u) is non-

decreasing on [0,∞). Hence, 9−1(u) is also non-decreasing on

[0,∞). Hence, it follows from Equations (13, 14) that

9−1

(
1

β

)
6

d(xn−1, xn)

d(xn, xn+1)

and

d(xn, xn+1) 6
(
9−1

(
1/β

))−1
d(xn−1, xn).

Consequently,

d(xn, xn+1) 6 αd(xn−1, xn),

where α =
(
9−1

(
1/β

))−1
. Since by condition (ii) 9−1(1/β) > 1

we get 0 6 α < 1. By Lemma 1.2, (xn) is a Cauchy sequence, and

by completeness of (X, d), this sequence has a limit x∗ ∈ X.

Let us prove that Tx∗ = x∗. By the generalized triangle

inequality (Equation 1), the monotonicity of 8 and (Equation 12),

we get

d(x∗,Tx∗) 6 8(d(x∗,Tnx0), d(T
nx0,Tx

∗))

6 8(d(x∗,Tnx0),β(d(T
n−1x0,Tx

∗)+ d(x∗,Tnx0))).

Letting n → ∞, the continuity of 8 and d we obtain

d(x∗,Tx∗) 6 8(0,βd(x∗,Tx∗)).

Using (Equation 2), we have

d(x∗,Tx∗) 6 d(x∗,Tx∗)8(0,β).

By condition (i), we get d(x∗,Tx∗) = 0.

Suppose that there exist two distinct fixed points, x and y. Then,

Tx = x and Ty = y, which contradicts to Equation (12).

Corollary 4.3. Theorem 4.2 holds in ultrametric spaces with the

coefficient 0 6 β < 1.

Proof. According to the assumption, 8(u, v) = max{u, v}, 9(u) =

max{u, 1} and

9−1(u) =

{
0, u ∈ [0, 1],

u, u ∈ (1,∞).

Clearly, condition (i) holds for all 0 6 β < 1 and condition (ii)

holds for all 0 < β < 1.

Corollary 4.4. Theorem 4.2 holds for semimetric spaces with the

following triangle functions 8(u, v) = (uq + vq)
1
q , q > 1 and with

the coefficient 0 6 β < 2−1/q in Equation (12).

Proof.We have9(u) = (uq+1)
1
q and9−1(u) = (uq−1)

1
q . Clearly,

condition (i) holds for all 0 6 β < 1 but condition (ii) holds if

0 < β < 2−1/q.

Note that the following proposition is already known, see

Theorem 3 in [35]. But it does not follow from Theorem 4.2

since the semimetric d in a b-metric space (X, d) is not obligatory

continuous if K > 1.

Proposition 4.5. Theorem 4.2 holds in b-metric spaces with K > 1

and with the coefficient 0 6 β < 1
2K in Equation (12).

Corollary 4.6. Theorem 4.1 holds.

Proof. It suffices to set K = 1 in Proposition 4.5 or q = 1 in

Corollary 4.4.
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5 Ćirić-Reich-Rus’s contractions in
semimetric spaces

In 1971, independently, Ćirić [5], Reich [6], and Rus [7]

extended the Kannan fixed point theorem to cover a broader class

of mappings.

Theorem 5.1. Let T : X → X be a mapping on a complete metric

space (X, d) with

d(Tx,Ty) 6 αd(x, y)+ βd(x,Tx)+ γ d(y,Ty), (15)

α > 0,β > 0, γ > 0 and α + β + γ < 1. Then, T has a unique

fixed point.

In what follows, we will refer to the mapping (Equation 15) as

the Ćirić-Reich-Rus mapping. This theorem integrates principles

from both the Banach contraction principle (by choosing β = γ =

0) and the Kannan fixed point theorem with α = 0 and β = γ .

Theorem 5.2. Let (X, d) be a complete semimetric space with the

continuous triangle function 8, satisfying conditions (Equations

2, 3). Let T : X → X be a Ćirić-Reich-Rus mapping with the

coefficients α > 0,β > 0, γ > 0, α+β+γ < 1, and let additionally

the following condition hold:

(i) 8(0, γ ) < 1.

Then, T has a unique fixed point.

Proof. Let x0 ∈ X. Define xn = Txn−1 = Tnx0 for n = 1, 2, . . ..

Then, it follows straightforwardly that

d(xn, xn+1) = d(Txn−1,Txn)

6 αd(xn−1, xn)+ βd(xn−1,Txn−1)+ γ d(xn,Txn)

= αd(xn−1, xn)+ βd(xn−1, xn)+ γ d(xn, xn+1).

Hence,

d(xn, xn+1) 6 δd(xn−1, xn),

where δ =
α+β
1−γ

, 0 6 δ < 1. By Lemma 1.2, (xn) is a Cauchy

sequence and by completeness of (X, d), this sequence has a limit

x∗ ∈ X.

Let us prove that Tx∗ = x∗. By the generalized triangle

inequality (Equation 1), the monotonicity of 8, and (Equation 15),

we get

d(x∗,Tx∗) 6 8(d(x∗,Tnx0), d(T
nx0,Tx

∗))

6 8(d(x∗,Tnx0),αd(T
n−1x0, x

∗)+βd(Tn−1x0,T
nx0)+γ d(x∗,Tx∗)).

Letting n → ∞, by the continuity of 8, we obtain

d(x∗,Tx∗) 6 8(0, γ d(x∗,Tx∗)).

Using (Equation 2), we have

d(x∗,Tx∗) 6 d(x∗,Tx∗)8(0, γ ).

By condition (i), we get d(x∗,Tx∗) = 0.

Suppose that there exist two distinct fixed points x and y. Then,

Tx = x and Ty = y, which contradicts to Equation (15).

Corollary 5.3. Theorem 5.2 holds for semimetric spaces with the

following triangle functions: 8(u, v) = u + v; 8(u, v) = K(u + v),

1 6 K < 1/γ ; 8(u, v) = max{u, v}; 8(u, v) = (uq + vq)
1
q , q > 0,

with the corresponding estimations (Equation 7) from above for

d(xn, x
∗).

6 Mappings contracting perimeters of
triangles in semimetric spaces

Let X be a metric space. In Petrov [37], a new type of mappings

T : X → X was considered and characterized as mappings

contracting perimeters of triangles (see Definition 6.1). It was

demonstrated that such mappings are continuous. Furthermore,

a fixed-point theorem for such mappings was proven, with

the classical Banach fixed-point theorem emerging as a simple

corollary. An example of a mapping contracting perimeters of

triangles, which is not a contraction mapping, was constructed

for a space X with card(X) = ℵ0. In this section, we establish a

generalization of the aforementioned theorem.

The following definition was introduced in Petrov [37] for the

case of ordinary metric spaces. In this study, we extend it for the

case of general semimetric spaces.

Definition 6.1. Let (X, d) be a semimetric space with |X| > 3. We

shall say that T : X → X is a mapping contracting perimeters of

triangles on X if there exists α ∈ [0, 1) such that the inequality

d(Tx,Ty)+ d(Ty,Tz)+ d(Tx,Tz) 6 α(d(x, y)+ d(y, z)+ d(x, z))

(16)

holds for all three pairwise distinct points x, y, z ∈ X.

Remark 6.2. Note that the requirement for x, y, z ∈ X to be

pairwise distinct in Definition 6.1 is essential. One can observe

that otherwise this definition is equivalent to the definition of

contraction mapping.

We shall say that x0 is an accumulation point of the semimetric

space (X, d); if for every ε > 0, there exists x ∈ X, x 6= x0, such that

d(x0, x) 6 ε.

The subsequent proposition demonstrates that mappings

contracting perimeters of triangles are continuous not only in

ordinary metric spaces but also in more general semimetric spaces

with triangle functions continuous at the origin.

Proposition 6.3. Let (X, d), |X| > 3, be a semimetric space with

a triangle function 8 continuous at (0, 0), and let T : X → X be

a mapping contracting perimeters of triangles on X. Then, T is

continuous.

Proof. Let x0 be an isolated point inX. Then, clearly,T is continuous

at x0. Let now x0 be an accumulation point. Let us show that for

every ε > 0, there exists δ > 0 such that d(Tx0,Tx) < ε whenever
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d(x0, x) < δ. Suppose that x 6= x0, otherwise this assertion is

evident. Since x0 is an accumulation point, for every δ > 0 there

exists y ∈ X such that x0 6= y 6= x and d(x0, y) < δ. Since the points

x0, x, and y are pairwise distinct by Equation (16), we have

d(Tx0,Tx) 6 d(Tx0,Tx)+ d(Tx0,Ty)+ d(Tx,Ty)

6 α(d(x0, x)+ d(x0, y)+ d(x, y)).

Using the generalized triangle inequality d(x, y) 6

8(d(x0, x), d(x0, y)) and monotonicity of 8, we get

d(Tx0,Tx) 6 α(d(x0, x)+ d(x0, y)+ 8(d(x0, x), d(x0, y)))

6 α(2δ + 8(δ, δ)).

Since 8 is continuous at (0, 0) and 8(0, 0) = 0, we get that

for every ε > 0, there exists δ > 0 such that the inequality

α(2δ + 8(δ, δ)) < ε holds, which completes the proof.

Let T be a mapping on the metric space X. A point x ∈ X is

called a periodic point of period n if Tn(x) = x. The least positive

integer n for which Tn(x) = x is called the prime period of x. In

particular, the point x is of prime period 2 if T(T(x)) = x and

Tx 6= x.

The following theorem is the main result of this section.

Theorem 6.4. Let (X, d), |X| > 3, be a complete semimetric space

with the triangle function 8 continuous at (0, 0) and satisfying

conditions (Equations 2, 3) and let the mapping T : X → X satisfy

the following two conditions:

(i) T does not possess periodic points of prime period 2.

(ii) T is a mapping contracting perimeters of triangles on X.

Then, T has a fixed point. The number of fixed points is at most

two.

Proof. Let x0 ∈ X, Tx0 = x1, Tx1 = x2, . . . , Txn = xn+1,

. . . . Suppose xi is not a fixed point of the mapping T for every

i = 0, 1, .... Let us show that all xi are different. Since xi is not fixed,

xi 6= xi+1 = Txi. By condition (i) xi+2 = T(T(xi)) 6= xi and by the

supposition that xi+1 is not fixed, we have xi+1 6= xi+2 = Txi+1.

Hence, xi, xi+1, and xi+2 are pairwise distinct. Furthermore, set

p0 = d(x0, x1)+ d(x1, x2)+ d(x2, x0),

p1 = d(x1, x2)+ d(x2, x3)+ d(x3, x1),

· · ·

pn = d(xn, xn+1)+ d(xn+1, xn+2)+ d(xn+2, xn),

· · · .

Since xi, xi+1, and xi+2 are pairwise distinct by Equation (16),

we have p1 6 αp0, p2 6 αp1, . . . , pn 6 αpn−1 and

p0 > p1 > ... > pn > . . . . (17)

Suppose now that j > 3 is a minimal natural number such that

xj = xi for some i such that 0 6 i < j − 2. Then, xj+1 = xi+1,

xj+2 = xi+2. Hence, pi = pj which contradicts to Equation (17).

Thus, all xi are different.

Furthermore, let us show that (xi) is a Cauchy sequence. It is

clear that

d(x0, x1) 6 p0,

d(x1, x2) 6 p1 6 αp0,

d(x2, x3) 6 p2 6 αp1 6 α2p0,

· · ·

d(xn−1, xn) 6 pn−1 6 αn−1p0, (18)

d(xn, xn+1) 6 pn 6 αnp0,

· · · .

Comparing Equation (18) with Equation (5) and using the

proof of Lemma 1.2, we get that (xn) is a Cauchy sequence. By

completeness of (X, d), this sequence has a limit x∗ ∈ X.

Let us prove that Tx∗ = x∗. Since xn → x∗, by continuity

of T, we have xn+1 = Txn → Tx∗. By the generalized triangle

inequality (Equation 1) and continuity of 8 at (0, 0), we have

d(x∗,Tx∗) 6 8(d(x∗, xn), d(xn,Tx
∗)) → 0

as n → ∞, which means that x∗ is the fixed point.

Suppose that there exist at least three pairwise distinct fixed

points x, y, and z. Then, Tx = x, Ty = y and Tz = z, which

contradicts to Equation (16).

Corollary 6.5. Theorem 6.4 holds for semimetric spaces with the

following triangle functions: 8(u, v) = u + v; 8(u, v) = K(u + v),

K > 1; 8(u, v) = max{u, v}; 8(u, v) = (uq + vq)
1
q , q > 0, with the

corresponding estimations (Equation 7) from above for d(xn, x
∗).

The following example shows that condition (i) in Theorem 6.4

is necessary.

Example 1. Let us construct an example of the mapping T

contracting perimeters of triangles which does not have any fixed

point. Let X = {x, y, z}, d(x, y) = d(y, z) = d(x, z) = 1 and let

T : X → X be such that Tx = y, Ty = x, and Tz = x. In this case,

the points x and y are periodic points of prime period 2.

7 Applications

Fixed point theorems offer a robust framework for

comprehending and addressing the solutions to linear and

non-linear problems that arise in biological, engineering, and

physical sciences.

In Chapter 6 of Subramaniyam’s monograph [11], various

applications of the contraction principle are explored. These

applications span domains including Fredholm and Volterra

integral equations, existence theorems for initial value problems

of first-order ordinary differential equations (ODEs), solutions of

second-order ODE boundary value problems (BVPs), functional

differential equations, discrete BVPs, a variety of functional

equations, commutative algebra, and fractals [see also Kirk [9], [38],

Agarwal et al. [10], Matkowski [28], and references therein].
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In its multifaceted nature, fixed point theorems play a pivotal

role in analyzing solutions to non-linear partial differential

equations (PDEs). Notably, Brouwer’s, Schauder’s, and Schaefer’s

fixed point theorems, among others, have emerged as powerful

tools for ensuring the existence and uniqueness of solutions across a

diverse spectrum of non-linear PDEs (see Albert [39], Herbert [40],

and references therein).

8 Conclusion and future research
directions

In summary, our study has revisited numerous renowned fixed-

point theorems, providing extensions by adjusting assumptions

and introducing innovative proofs. Utilizing Lemma 1.2 and its

corollary, we have gained further insights into the essence of fixed-

point theorems, broadening their relevance beyond metric spaces

to encompass more general scenarios. This investigation indicates

promising directions for future research, especially concerning the

application of our approach to other contractive mappings across

diverse conditions. Additionally, exploring real-world applications

in light of established results offers intriguing possibilities for

addressing various practical problems across different settings.
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1 Introduction

Let Rd be the Euclidean space of vectors x̄ = (x1; x2; . . . ; xd). Let f (x̄) be a function

2π-periodic in each variable xi, i ∈ {1, d} and summable on the set Td = [−π;π]d, i.e.,

f ∈ L
(
T
d
)
, let

S[f ](x̄) =
∑

k̄∈Zd
+

2−γ (k̄)
∑

s̄∈{0;1}d

as̄
k̄
[f ]

d∏

i=1

cos
(
kixi −

siπ

2

)

be the complete Fourier series of function f , where

as̄
k̄
[f ] = π−d

∫

Td

f (x̄)

d∏

i=1

cos
(
kixi −

siπ

2

)
dxi,

are the Fourier coefficients of the function f , corresponding to the vectors k̄ ∈ Z
d
+,

s̄ ∈ {0; 1}d, and γ (k̄) is the number of zero coordinates of the vector k̄.

Let 3̄ = (31;32; . . . ;3d) be the fixed set of infinite triangular matrices of numbers

3i =
{
λ
(ni)
ki

}
, i ∈ {1, d} such that λ

(ni)
0 = 1, λ

(ni)
ki

= 0, ki ≥ ni. Denote λ
(n̄)

k̄
=

d∏
i=1
λ
(ni)
ki

, and

Gn̄ =
d∏

i=1
[0; ni − 1]. If k̄ 6∈ Gn̄, then λ

(n̄)

k̄
= 0. For function f ∈ L

(
T
d
)
the set 3̄ defines a

family of trigonometric polynomials

Un̄[f ; 3̄](x̄) =
∑

k̄∈Gn̄

2−γ (k̄)λ
(n̄)

k̄

∑

s̄∈{0;1}d

as̄
k̄
[f ]

d∏

i=1

cos
(
kixi −

siπ

2

)
.
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The polynomials Un̄[f ; 3̄](x̄) are called rectangular linear

means for S[f ](x̄). In particular, if λ
(ni)
ki

= 1, k̄ ∈ Gn̄, then

Un̄[f ; 3̄](x̄) = Sn̄−1[f ](x̄) are the rectangular partial sums of

S[f ](x̄), and if λ
(ni)
ki

= 1− ki
ni
, k̄ ∈ Gn̄, then

Un̄[f ; 3̄](x̄) = σn̄[f ](x̄) =

d∏

i=1

n−1
i

∑

k̄∈Gn̄

Sn̄[f ](x̄)

are the rectangular Fejér means of S[f ](x̄).

Basic results relating to the approximation of functional

classes by linear methods of summation of Fourier series can

be found in books Timan [1], Lorentz [2], and Dyachenko [3].

Linear summation methods are widely used both for the solution

of practical problems and for development of more advanced

approximation methods. This chapter of approximation theory has

been intensively developed over the past decades [4–9]. Here it is

difficult tomention all the relevant published research papers in this

area. Recently, we have seen the publication of several important

works [10–15].

Let C
(
T
d
)
be the space of continuous 2π-periodic in each

variable’s functions f (x̄) with the norm

‖f ‖ : = ‖f ‖C = max
x̄∈Td

|f (x̄)|.

Let J (r) be the arbitrary subset of the set {1; d}, where r is the

number of elements of the setJ (r). Denote by Cq̄
(
T
d
)
, q̄ ∈ (0; 1)d

the set of functions f ∈ C
(
T
d
)
such that ∀J : = J (r) ⊆ {1; d},

the series

∑

k̄∈Zd+ ,

kj 6=0, j∈J

2−γ (k̄)
∏

j∈J

q
−kj
j

∑

s̄∈{0;1}d

as̄
k̄
[f ]

d∏

i=1

cos
(
kixi −

siπ

2

)
(1)

are the Fourier series of certain functions ϕ
(J )
q̄ (x̄) ∈ L

(
T
d
)
,

which are almost everywhere bounded by a unity, and the Fourier

series of functions ϕ
(J )
q̄ (x̄) do not contain terms independent of the

variables xi, i ∈ J (r).

For example, in the case d = 2, the series (Equation 1) is as

follows:

S
[
ϕ
(1)
q̄

]
(x̄) =

∑

k̄∈N×Z+

2−γ (k̄)q−k1
1

∑
s̄∈{0;1}2

as̄
k̄
[f ]

cos

(
k1x1 −

s1π
2

)
cos

(
k2x2 −

s2π
2

)
,

S
[
ϕ
(2)
q̄

]
(x̄) =

∑

k̄∈Z+×N

2−γ (k̄)q−k2
2

∑
s̄∈{0;1}2

as̄
k̄
[f ]

cos

(
k1x1 −

s1π
2

)
cos

(
k2x2 −

s2π
2

)
,

S
[
ϕ
(J )
q̄

]
(x̄) =

∑
Ek∈N2

2−γ (k̄)q−k1
1 q−k2

2

∑
s̄∈{0;1}2

as̄
k̄
[f ]

cos
(
k1x1 −

s1π
2

)
cos

(
k2x2 −

s2π
2

)
.

In the one-dimensional case, the classes Cq
(
T
1
)
, q ∈

(0; 1) consist of continuous 2π-periodic functions, given by the

convolution

f (x) = A0 + π
−1

∫

T1

ϕ(1)q (x+ t)Pq(t) dt, A0 − const,

where

P(q; t) =

∞∑

k=0

qk cos kt =
1− q cos t

1− 2q cos t + q2
, q ∈ (0; 1)

is the well-known Poisson kernel, the function ϕ
(1)
q ∈

L(T1)
(
J (1) = i, i = 1

)
satisfies almost everywhere the conditions

|ϕ
(1)
q (t)| ≤ 1, ϕ

(1)
q ⊥1.

In this work, we consider the problem of the exact

upper bound for the approximation of periodic functions by

linear means of the Fourier series. We employed methods for

studying integral representations of deviations of polynomials,

generated by linear summation methods of Fourier series

of continuous periodic functions, developed in the works of

Nikolskii [16], Telyakovskii [17], Stepanets [18], and others.

This topic is currently being developed in the works of many

authors [19–21].

Nikolskii [22] established the asymptotic equality

as n → ∞

sup
{
‖f − Sn[f ]‖ : f ∈ Cq

(
T
1
)}

=

sup





∥∥∥∥∥∥∥

1

π

∫

T1

ϕ(1)q (x+ t)

∞∑

k=n+1

qk cos kt dt

∥∥∥∥∥∥∥
: |ϕ(1)q (t)| ≤ 1, ϕ(1)q ⊥1





=
8qn+1

π2
K(q)+ O(1)

qn

n
,

where K(q) =

π
2∫
0

(1 − q2 sin2 u)−
1
2 du is the complete elliptic

integral of the first kind and O(1) is a quantity uniformly bounded

with respect to n. Regarding the summability of Fourier series by

Fejér means σn[f ], we proved the following two theorems [23–25].

Theorem 1. Let q0 be the only root of the equation q4 − 2q3 −

2q2 − 2q + 1 = 0, that belongs to the interval (0; 1), q0 =(
2+

√
5− 2

√
2+

√
5
)1/2

= 0.346 . . . . If q ∈ (0; q0], then the

equality hold as n → ∞

sup
{
‖f − σn[f ]‖ : f ∈ Cq

(
T
1
)}

=
4q

πn(1+ q2)
+ O(1)

qn

n
,

where O(1) is a quantity uniformly bounded with respect to n.

Theorem 2. If q ∈ [q0; 1), then the equality hold as n → ∞

sup
{
‖f − σn[f ]‖ : f ∈ Cq

(
T
1
)}

= 2
πn

(1+q2)2

(1−q2)
(
1−q2+

√
2(1+q4)

) + O(1)
qn

n(1−q)3
,

where O(1) is uniformly bounded with respect

to n, q.

The purpose of this paper is to present the asymptotic

equalities for upper bounds of deviations of rectangular

Fejér means taken over multidimensional analogs of classes

Cq
(
T
1
)
. Similar asymptotic expansions for other rectangular

linear methods can be found in Rukasov et al. [26] and

Rovenska [27].
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2 Result

The main result is the following.

Theorem 3. Let q̄ ∈ (0; 1)d. Then

sup
{
‖f − σn̄[f ]‖ : f ∈ Cq̄

(
T
d
)}

=
4

π

d∑

i=1

A(qi)

ni
(2)

+O(1)




d∑

i=1

q
ni
i

ni(1− qi)3
+

d∑

r=2

∑

J (r)⊂{1,d}

∏

j∈J (r)

1

nj(1− qj)3


 ,

where

A(q) =





q

1+q2
, q ∈ (0; q0]

(1+q2)2

2(1−q2)
(
1−q2+

√
2(1+q4)

) , q ∈ [q0; 1),

q0 is the only root of the equation q4 − 2q3 − 2q2 − 2q+ 1 = 0,

that belongs to the interval (0; 1), q0 = 0.346 . . . , O(1) is a quantity,

uniformly bounded with respect to qi, ni, i ∈ {1, d}.

Proof

First we find the upper estimate for the quantity

sup
{
‖f − σn̄[f ]‖ : f ∈ Cq̄

(
T
d
)}

. (3)

Based on Theorem 1 in Rukasov et al. [26], ∀f ∈ Cq̄
(
T
d
)
, the

equality holds

f (x̄)− σn̄[f ](x̄) =
∑

k̄∈Zd
+

2−γ (k̄)
∑

s̄∈{0;1}d

as̄
k̄
[f ]

d∏

i=1

cos
(
kixi −

siπ

2

)
−

∑

k̄∈Gn̄

2−γ (k̄)
d∏

i=1

(
1−

ki

ni

) ∑

s̄∈{0;1}d

as̄
k̄
[f ]

d∏

i=1

cos
(
kixi −

siπ

2

)
=

1

π

d∑

i=1

1

ni

∫

T1

ϕ(i)qi (x̄+ tiēi)

ni−1∑

ki=0

∞∑

νi=ki+1

q
νi
i cos νiti dti+

d∑

r=2

(−1)r+1 1

π r

∑

J (r)⊂{1,d}

∫

Tr

ϕ
(J )
q̄


x̄+

∑

j∈J (r)

tjēj




∏

j∈J (r)

1

nj

nj−1∑

kj=0

∞∑

νj=kj+1

q
νj
j cos νjtj dtj. (4)

In Novikov et al. [24] and Rovenska [25] it was shown that

sup

{∥∥∥∥∥
1
n

∫

T1

ϕ
(1)
q (x+ t)

∑n−1
k=0

∑∞
ν=k+1 q

ν cos νt dt

∥∥∥∥∥

: |ϕ
(1)
q (t)| ≤ 1, ϕ

(1)
q ⊥1

}
=

1
n

∫

T1

ϕ
∗(1)
q (t)

∑n−1
k=0

∑∞
ν=k+1 q

ν cos νt dt

=
A(q)
n + O(1)

qn

n(1−q)3
, (5)

where

ϕ∗(1)q (t) =





sign

(
∂P(q;t)
∂q −

∂P(q;t)
∂q

∣∣∣
t= π

2

)
, q ∈ (0; q0],

sign

(
∂P(q;t)
∂q −

∂P(q;t)
∂q

∣∣∣
t=tq

)
, q ∈ [q0; 1),

(6)

and tq is determined by the condition

∂P(q; t)

∂q

∣∣∣
t=tq

=
∂P(q; t)

∂q

∣∣∣
t=tq+

π
2

, 0 ≤ tq ≤
π

2
.

Combining Equations 4, 5, and 6, we obtain

sup
{
‖f − σn̄[f ]‖ : f ∈ Cq̄

(
T
d
)}

≤ 4
π

d∑
i=1

A(qi)
ni

+O(1)

(
d∑

i=1

q
ni
i

ni(1−qi)3
+

d∑
r=2

∑

J (r)⊂{1,d}

∏
j∈J (r)

1
nj(1−qj)3

)
. (7)

Next, we find the lower estimate of Equation 3. We construct

the function f ∗(x̄) ∈ Cq̄
(
T
d
)
for which estimate Equation 7 cannot

be improved. Based on equality Equation 3 we have

f (0̄)− σn̄[f ](0̄)

= 1
π

∑d
i=1

1
ni

∫

T1

ϕ
(i)
qi

(
0̄+ tiēi

)∑ni−1
ki=0

∑∞
νi=ki+1 q

νi
i cos νiti dti +

∑d
r=2(−1)r+1 1

π r

∑

J (r)⊂{1,d}

∫
Tr

ϕ
(J )
q̄

(
0̄+

∑
j∈J (r)

tjēj

)

∏
j∈J (r)

1
nj

nj−1∑
kj=0

∞∑
νj=kj+1

q
νj
j cos νjtj dtj.

Since the functions ϕ
(J )
q̄ satisfy the condition |ϕ

(J )
q̄ (x̄)| ≤ 1

almost everywhere, and

∫

T1

∣∣∣
∑nj−1

kj=0

∑∞
νj=kj+1 q

νj
j cos νjtj

∣∣∣ dtj

=
∫

T1

∣∣∣∣
∂P(qj;tj)

∂qj

∣∣∣∣ dtj = O(1) 1
(1−qj)3

, i ∈ {1, d},

then

f (0̄)− σn̄[f ](0̄) =
1
π

∑d
i=1

1
ni

∫

T1

ϕ
(i)
qi

(
0̄+ tiēi

)∑ni−1
ki=0

∑∞
νi=ki+1 q

νi
i cos νiti dti

+O(1)

(
∑d

r=2

∑

J (r)⊂{1,d}

∏
j∈J (r)

1
nj(1−qj)3

)
.

Denote by ϕ
∗(i)
qi (x̄), x̄ ∈ T

d an arbitrary continuation on the set

T
d of the function ϕ

∗(i)
qi (xi), xi ∈ T

1, and denote by f ∗i (x̄), x̄ ∈ T
d

the function, such that

S
[
ϕ∗(i)qi

]
(x̄) =

∑

k̄∈Zd+ ,

ki 6=0

2−γ (k̄)q
−ki
i

∑

s̄∈{0;1}d

as̄
k̄

[
f ∗i
] d∏

i=1

cos
(
kixi −

siπ

2

)
.

Let f ∗(x̄) : =
d∑

i=1
f ∗i (x̄). It’s clear that f ∗(x̄) ∈ Cq̄

(
T
d
)
.

Therefore, we have

f ∗(0̄)− σn̄[f
∗](0̄) =

1

π

d∑

i=1

1

ni

∫

T1

ϕ∗(i)qi
(ti)

ni−1∑

ki=0

∞∑

νi=ki+1

q
νi
i cos νiti dti

+O(1)




d∑

r=2

∑

J (r)⊂{1,d}

∏

j∈J (r)

1

nj(1− qj)3


 . (8)

Frontiers in AppliedMathematics and Statistics 03 frontiersin.org128

https://doi.org/10.3389/fams.2024.1437247
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Rovenska 10.3389/fams.2024.1437247

Combining Equations 5, 7, and 8, we obtain equality

(Equation 2). The proof is complete.

Remark 1. Formula Equation 2 is asymptotically exact for any

q̄ ∈ (0; 1)d.

Remark 2. In the case d = 2, formula Equation 2 is simplified

as follows:

sup
{
‖f − σn̄[f ]‖ : f ∈ Cq̄

(
T
2
)}

= 4
π

∑
i=1, 2

A(qi)
ni

+O(1)

(
∑

i=1, 2

q
ni
i

ni(1−qi)3
+
∏

j=1, 2
1

nj(1−qj)3

)
.

3 Conclusion

In this study, we propose an approach to define the

multidimensional analogs of classes of Poisson integrals,

which allows us to take into account the rate of decrease

of each sequence that determine the class. The problem

connected with the search for upper bounds of approximation

errors with respect to a fixed class of functions and with

the choice of an approximation tool is considered. In the

certain case, our approach turned out to be effective for

obtaining exact asymptotic. The key point in this approach is

to construct the function f ∗(x̄) ∈ Cq̄
(
T
d
)
that implements the

upper bound.

Our study may be useful for solving the upper bound problem

in other particular cases. In particular, our ideas can be used

to obtain the corresponding asymptotic equalities on classes,

which in one-dimensional cases are determined by the Poisson

kernels P̃q(t) =
∞∑
k=1

sin kt, P
β
q (t) =

∞∑
k=0

cos
(
kt + βπ

2

)
,

β ∈ R, etc.
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Qualitative properties of
solutions to a nonlinear
transmission problem for an
elastic Bresse beam
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We consider a nonlinear transmission problem for a Bresse beam, which

consists of two parts, damped and undamped. The mechanical damping in

the damping part is present in the shear angle equation only, and the damped

part may be of arbitrary positive length. We prove the well-posedness of the

corresponding system in energy space and establish the existence of a regular

global attractor under certain conditions on the nonlinearities and coe�cients of

the damped part only. Besides, we study the singular limits of the problem under

consideration when curvature tends to zero, or curvature tends to zero, and

simultaneously shear moduli tend to infinity and perform numerical modeling

for these processes.

KEYWORDS

Bresse beam, transmission problem, global attractor, singular limit, PDE

1 Introduction

In this study, we consider a contact problem for the Bresse beam. Originally, the

mathematical model for homogeneous Bresse beams was derived in Ref. [1]. We use the

variant of themodel described in Ref. [2, Ch. 3]. Let the whole beam occupy a part of a circle

of length L and have the curvature l = R−1. We consider the beam as a one-dimensional

object and measure the coordinate x along the beam. Thus, we say that the coordinate x

changes within the interval (0, L). The parts of the beam occupying the intervals (0, L0)

and (L0, L) consist of different materials. The part lying in the interval (0, L0) is partially

subjected to structural damping (see Figure 1). The Bresse system describes the evolution

of three quantities: transversal displacement, longitudinal displacement, and shear angle

variation.We denote by ϕ,ψ , andω the transversal displacement, the shear angle variation,

and the longitudinal displacement of the left part of the beam lying in (0, L0). Analogously,

we denote by u, v, and w the transversal displacement, the shear angle variation, and the

longitudinal displacement of the right part of the beam occupying the interval (L0, L). We

assume the presence of mechanical dissipation in the equation for the shear angle variation

for the left part of the beam.We also assume that both ends of the beam are fixed. Nonlinear

oscillations of the composite beam can be described by the following equation system:

ρ1ϕtt − k1(ϕx + ψ + lω)x − lσ1(ωx − lϕ)+ f1(ϕ,ψ ,ω) = p1(x, t), (1)

β1ψtt − λ1ψxx + k1(ϕx + ψ + lω)+ γ (ψt)+ h1(ϕ,ψ ,ω) = r1(x, t), x ∈ (0, L0), t > 0,

(2)

ρ1ωtt − σ1(ωx − lϕ)x + lk1(ϕx + ψ + lω)+ g1(ϕ,ψ ,ω) = q1(x, t), (3)
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FIGURE 1

Composite Bresse beam.

and

ρ2utt − k2(ux + v+ lw)x − lσ2(wx − lu)+ f2(u, v,w) = p2(x, t),

(4)

β2vtt − λ2vxx + k2(ux + v+ lw)+ h2(u, v,w) = r2(x, t),

x ∈ (L0, L), t > 0, (5)

ρ2wtt − σ2(wx − lu)x + lk2(ux + v+ lw)+ g2(u, v,w) = q2(x, t),

(6)

where ρj, βj, kj, σj, λj are positive parameters, fj, gj, hj :R
3 → R

are nonlinear feedbacks, pj, qj, rj :(0, L) × R
3 → R are known

external loads and γ :R → R is a nonlinear damping. The system is

subjected to Dirichlet boundary conditions at the ends of the beam

ϕ(0, t) = u(L, t) = 0, ψ(0, t) = v(L, t) = 0,

ω(0, t) = w(L, t) = 0,
(7)

transmission conditions at point L0

ϕ(L0, t) = u(L0, t), ψ(L0, t) = v(L0, t), ω(L0, t) = w(L0, t),

(8)

k1(ϕx + ψ + lω)(L0, t) = k2(ux + v+ lw)(L0, t), (9)

λ1ψx(L0, t) = λ2vx(L0, t), (10)

σ1(ωx − lϕ)(L0, t) = σ2(wx − lu)(L0, t), (11)

and supplemented with the initial conditions

ϕ(x, 0) = ϕ0(x), ψ(x, 0) = ψ0(x), ω(x, 0) = ω0(x), (12)

ϕt(x, 0) = ϕ1(x), ψt(x, 0) = ψ1(x), ωt(x, 0) = ω1(x), (13)

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), (14)

ut(x, 0) = u1(x), vt(x, 0) = v1(x), wt(x, 0) = w1(x). (15)

One can observe patterns in the problem that appear to have

physical meaning:

Qi(ξ , ζ , η) = ki(ξx + ζ + lη) are shear forces,

Ni(ξ , ζ , η) = σi(ηx − lξ ) are axial forces and

Mi(ξ , ζ , η) = λiζx are bending moments

for damped (i = 1) and undamped (i = 2) parts. Later we

will use them to rewrite the problem in a compact and physically

natural form.

This study is devoted to the well-posedness and long-time

behavior of the system (1)–(15). Our main goal is to establish

conditions under which the assumed amount of dissipation is

sufficient to guarantee the existence of a global attractor.

The study is organized as follows: In Section 2, we represent

functional spaces and pose the problem in an abstract form.

In Section 3, we prove that the problem is well-posed and

possesses strong solutions, provided nonlinearities, and initial data

are smooth enough. Section 4 is devoted to the main result of

the existence of a compact attractor. The nature of dissipation

prevents us from proving dissipativity explicitly; thus, we show

that the corresponding dynamical system is of gradient structure

and asymptotically smooth. We establish the unique continuation

property applying the Carleman estimate obtained in Ref. [3]

to prove the gradient property. The compensated compactness

approach is used to prove asymptotic smoothness. In Section 5, we

show that solutions to (1)–(15) tend to solutions to a transmission

problem for the Timoshenko beam when l → 0 and to solutions

to a transmission problem for the Kirchhoff beam with rotational

inertia when l → 0 and ki → ∞, as well as perform numerical

modeling of these singular limits.

2 Preliminaries and abstract
formulation

2.1 Spaces and notations

Let us denote

81 = (ϕ,ψ ,ω), 82 = (u, v,w), 8 = (81,82).

Thus,8 is a six-dimensional vector of functions. Analogously,

Fj = (fj, gj, hj) :R
3 → R

3, F = (F1, F2),

Pj = (pj, qj, rj) :[(0, L)× R+]
3 → R

3, P = (P1, P2),

Rj = diag{ρj,βj, ρj}, R = diag{ρ1,β1, ρ1, ρ2,β2, ρ2} and

Ŵ(8t) = (0, γ (ψt), 0, 0, 0, 0),

where j = 1, 2. The static linear part of the equation system can be

formally rewritten as

A8 =




− ∂xQ1(8
1)− lN1(8

1)

− ∂xM1(8
1)+ Q1(8

1)

− ∂xN1(8
1)+ lQ1(8

1)

− ∂xQ2(8
2)− lN2(8

2)

− ∂xM2(8
2)+ Q2(8

2)

− ∂xN2(8
2)+ lQ2(8

2)




. (16)
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Then transmission conditions (8)–(11) can be written as

follows:

81(L0, t) = 82(L0, t),

Q1(8
1(L0, t)) = Q2(8

2(L0, t)),

M1(8
1(L0, t)) = M2(8

2(L0, t)),

N1(8
1(L0, t)) = N2(8

2(L0, t)).

Throughout the study, we use the notation ||·|| for the L2-norm

of a function and (·, ·) for the L2-inner product. In these notations,

we skip the domain on which functions are defined. We adopt the

notation || · ||L2(�) only when the domain is not evident. We also

use the same notations || · || and (·, ·) for [L2(�)]3.

To write our problem in an abstract form form, introduce the

following spaces: For the velocities of the displacements, we use the

space

Hv = {8 = (81,82) : 81 ∈ [L2(0, L0)]
3, 82 ∈ [L2(L0, L)]

3}

with the norm

||8||2Hv
= ||8||2v =

2∑

j=1

||
√
Rj8

j||2,

which is equivalent to the standard L2-norm.

For the beam displacements, use the space

Hd = {8 ∈ Hv : 8
1 ∈ [H1(0, L0)]

3, 82 ∈ [H1(L0, L)]
3,

81(0, t) = 82(L, t) = 0, 81(L0, t) = 82(L0, t)
}

with the norm

||8||2Hd
= ||8||2d =

2∑

j=1

(
||Qj(8

j)||2 + ||Nj(8
j)||2 + ||Mj(8

j)||2
)
.

This norm is equivalent to the standard H1-norm. Moreover,

the equivalence constants can be chosen independent of l for l is

small enough (see Ref. [4], Remark 2.1). If we set

9(x) =

{
81(x), x ∈ (0, L0),

82(x), x ∈ [L0, L)

we see that there is an isomorphism between Hd and [H1
0(0, L)]

3.

2.2 Abstract formulation

The operator A :D(A) ⊂ Hv → Hv is defined by formula (16),

where

D(A) = {8 ∈ Hd : 8
1 ∈ H2(0, L0), 8

2 ∈ H2(L0, L),

Q1(8
1(L0, t)) = Q2(8

2(L0, t)),

N1(8
1(L0, t)) = N2(8

2(L0, t)), M1(8
1(L0, t)) = M2(8

2(L0, t)) }.

Arguing analogously to Lemmas 1.1-1.3 from Ref. [5], one can

prove the following lemma.

Lemma 2.1. The operator A is positive and self-adjoint. Moreover,

(A1/28,A1/2B) =
1

k1
(Q1(8

1),Q1(B
1))+

1

σ1
(N1(8

1),N1(B
1))

+
1

λ1
(M1(8

1),M1(B
1))

+
1

k2
(Q2(8

2),Q2(B
2))+

1

σ2
(N2(8

2),N2(B
2))

+
1

λ2
(M2(8

2),M2(B
2))

and D(A1/2) = Hd ⊂ Hv.

Thus, we can rewrite equations (1)–(6) in the form of

R8tt + A8+ Ŵ(8t)+ F(8) = P(x, t), (17)

boundary conditions (7) in the form of

81(0, t) = 82(L, t) = 0, (18)

and transmission conditions (8)–(11) can be written as

81(L0, t) = 82(L0, t), (19)

Q1(8
1(L0, t)) = Q2(8

2(L0, t)), (20)

M1(8
1(L0, t)) = M2(8

2(L0, t)) and (21)

N1(8
1(L0, t)) = N2(8

2(L0, t)). (22)

Initial conditions have the form

8(x, 0) = 80(x) and 8t(x, 0) = 81(x). (23)

We use H = Hd ×Hv as a phase space.

3 Well-posedness

In this section, we study strong, generalized, and variational

(weak) solutions to (17)–(23).

Definition 3.1. 8 ∈ C(0,T;Hd)
⋂

C1(0,T;Hv) such that

8(x, 0) = 80(x),8t(x, 0) = 81(x) is said to be a strong solution to

(17)–(23), if

• 8(t) lies in D(A) for almost all t;

• 8(t) is continuous function with values in Hd and 8t ∈

L1(a, b;Hd) for 0 < a < b < T;

• 8t(t) is continuous function with values in Hv and 8tt ∈

L1(a, b;Hv) for 0 < a < b < T;

• Equation (17) is satisfied for almost all t and

Definition 3.2. 8 ∈ C(0,T;Hd)
⋂

C1(0,T;Hv) such that

8(x, 0) = 80(x) and 8t(x, 0) = 81(x) are said to be a generalized

solution to (17)–(23), if there exists a sequence of strong solutions

8(n) to (17)–(23) with the initial data (8
(n)
0 ,8

(n)
1 ) and right hand

side P(n)(x, t) such that

lim
n→∞

max
t∈[0,T]

(
||8(n)(·, t)−8(·, t)||d + ||8

(n)
t (·, t)−8t(·, t)||v

)
= 0.
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We also need a definition of a variational solution. We use six-

dimensional vector functions B = (B1,B2), Bj = (β j, γ j, δj) from

the space

FT = {B ∈ L2(0,T;Hd), Bt ∈ L2(0,T;Hv),B(T) = 0}

as test functions.

Definition 3.3. 8 is said to be a variational (weak) solution to

(17)–(23) if

• 8 ∈ L∞(0,T;Hd), 8t ∈ L∞(0,T;Hv);

• satisfy the following variational equality for all B ∈ FT

−
T∫
0

(R8t ,Bt)(t)dt − (R81,B(0))+
∫ T
0 (A1/28,A1/2B)(t)dt +

∫ T
0 (Ŵ(8t),B)(t)dt +

∫ T
0 (F(8),B)(t)dt −

∫ T
0 (P,B)(t)dt = 0;

(24)

• 8(x, 0) = 80(x).

Now we state a well-posedness result for problems (17)–(23).

Theorem 3.4 (well-posedness). Let

fi, gi, hi :R
3 → R are locally Lipschitz, i.e.,

|fi(a)− fi(b)| ≤ L(K)|a− b|, provided |a|, |b| ≤ K; (N1)

there exists Fi :R
3 → R such that (fi, hi, gi) = ∇Fi;

there exists δ > 0 such that Fj(a) ≥ −δ for all a ∈ R
3; (N2)

P ∈ L2(0,T;Hv); (R1)

and the nonlinear dissipation satisfies

γ ∈ C(R) and non-decreasing γ (0) = 0. (D1)

Then for every initial data 80 ∈ Hd, 81 ∈ Hv, and time

interval [0,T], there exists a unique generalized solution to (17)–

(23) with the following properties:

• every generalized solution is variational;

• energy inequality

E(T)+

∫ T

0
(γ (ψt),ψt)dt ≤ E(0)+

∫ T

0
(P(t),8t(t))dt (25)

holds, where

E(t) =
1

2

[
||R1/28t(t)||

2 + ||A1/28(t)||2
]
+

L∫

0

F(8(x, t))dx

and

F(8(x, t)) =

{
F1(ϕ(x, t),ψ(x, t),ω(x, t)), x ∈ (0, L0),

F2(u(x, t), v(x, t),w(x, t)), x ∈ (L0, L).

• If, additionally,80 ∈ D(A),81 ∈ Hd and

∂tP(x, t) ∈ L2(0,T;Hv) (R2)

then the generalized solution is also strong and satisfies the

energy equality.

Proof. The proof essentially uses the monotone operator theory. It

is rather standard by now (see e.g., Ref. [6]), so in some parts, we

give only references to corresponding arguments. However, we give

some details that demonstrate the peculiarities of 1D problems.

Step 1. Abstract formulation.We need to reformulate problems

(17)–(23) as first-order problems. Let us denote

U = (8,8t), U0 = (80,81) ∈ H = Hd × Hv,

T U =

(
I 0

0 R−1

)(
0 −I

A 0

)
U +

(
0

Ŵ(8t)

)
.

Consequently,D(T ) = D(A)×Hd ⊂ H. In the proof, we denote

B(U) =

(
I 0

0 R−1

)(
0

F(8)

)
, P(x, t) =

(
0

P(x, t)

)
.

Thus, we can rewrite problem (17)–(23) in the form

Ut + T U + B(U) = P , U(0) = U0 ∈ H.

Step 2. Existence and uniqueness of a local solution. Here, we

use Theorem 7.2 from Ref. [6]. For the reader’s convenience, we

formulate it below.

Theorem 3.5 (Ref. [6]). Consider the initial value problem

Ut + T U + B(U) = f , U(0) = U0 ∈ H. (26)

Suppose that T :D(T ) ⊂ H → H is a maximal monotone

mapping, 0 ∈ T 0 and B :H → H is locally Lipschitz, i.e., there

exits L(K) > 0 such that

||B(U)− B(V)||H ≤ L(K)||U − V||H , ||U||H , ||V||H ≤ K.

If U0 ∈ D(T ), f ∈ W1
1 (0, t;H) for all t > 0, then there

exists tmax ≤ ∞ such that (26) has a unique strong solution U on

(0, tmax).

If U0 ∈ D(T ), f ∈ L1(0, t;H) for all t > 0, then there exists

tmax ≤ ∞ such that (26) has a unique generalized solution U on

(0, tmax).

In both cases

lim
t→tmax

||U(t)||H = ∞ provided tmax <∞.

First, we need to check that T is a maximal monotone operator.

Monotonicity is a direct consequence of Lemma 2.1 and (D1).

To prove T is maximal as an operator from H to H, we use

Theorem 1.2 from Ref. [7, Ch. 2]. Thus, we need to prove that

Range(I + T ) = H, with I being the duality map from H to H.
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Let z = (8z ,9z) ∈ Hd × Hv. We need to find y = (8y,9y) ∈

D(A)× Hd = D(T ) such that

−9y +8y = 8z ,

A8y +9y + Ŵ(9y) = 9z ,

or, equivalently, find9y ∈ Hd such that

M(9y) =
1

2
A9y +

1

2
A9y +9y + Ŵ(9y) = 9z − A8z = 2z

for an arbitrary 2z ∈ H′
d
= D(A1/2)′. Naturally, due to Lemma

2.1, A is a duality map between Hd and H′
d
, thus the operator M is

onto if and only if 1
2A9y + 9y + Ŵ(9y) is maximal monotone as

an operator from Hd to H′
d
. According to Corollary 1.1 from Ref.

[7, Ch. 2], this operator is maximal monotone if 1
2A is maximal

monotone (it follows from Lemma 2.1) and I + Ŵ(·) is monotone,

bounded and hemicontinuous fromHd toH
′
d
. The last statement is

evident for the identity map; now let’s prove it for Ŵ.

Monotonicity is evident here. Due to the continuity of the

embedding H1(0, L0) ⊂ C(0, L0) in 1D, every bounded set X

in H1(0, L0) is bounded in C(0, L0) and thus, due to (D1), Ŵ(X)

is bounded in C(0, L0) and, consequently, in L2(0, L0). To prove

hemicontinuity, we take an arbitrary 8 = (ϕ,ψ ,ω, u, v,w) ∈ Hd

and an arbitrary2 = (θ1, θ2, θ3, θ4, θ5, θ6) ∈ Hd and consider

(Ŵ(9y + t8),2) =

∫ L0

0
γ (ψy(x)+ tψ(x))θ2(x)dx,

where9y = (ϕy,ψy,ωy, uy, vy,wy). Since ψy + tψ → ψy, as t → 0

in H1(0, L0) and in C(0, L0), we obtain that γ (ψy(x) + tφ(x)) →

γ (ψy(x)) as t → 0 for every x ∈ [0, L0], and has an integrable

bound from above due to (D1). This implies γ (ψy(x) + tφ(x)) →

γ (ψy(x)) in L1(0, L0) as t → 0. Since θ2 ∈ H1(0, L0) ⊂ L∞(0, L0),

(Ŵ(9y + t8),2) → (Ŵ(9y),2), t → 0.

Hemicontinuity is proved now.

Further, we need to prove that B is locally Lipschitz onH, i.e., F

is locally Lipschitz from Hd to Hv. The embedding H1/2+ε(0, L) ⊂

C(0, L) and (N1) imply

|Fj(8̃
j(x))− Fj(8̂

j(x))| ≤ C(max(||8̃||d, ||8̂||d))||8̃
j − 8̂j||1 (27)

for all x ∈ [0, L0], if j = 1 and for all x ∈ [L0, L], if j = 2. This, in

turn, gives us the estimate

||F(8̃)− F(8̂)||v ≤ C(max(||8̃||d, ||8̂||d))||8̃− 8̂||d.

Thus, all the assumptions of Theorem 3.5 are satisfied and the

existence of a local strong/generalized solution is proved.

Step 3. Energy inequality and global solutions. It can be verified

by direct calculations, that strong solutions satisfy energy equality.

Using the same arguments, as in the proof of Proposition 1.3 [8],

and (D1) we can pass to the limit and prove (25) for generalized

solutions.

Let us assume that a local generalized solution exists on a

maximal interval (0, tmax), tmax < ∞. Then Equation (25) implies

E(tmax) ≤ E(0). Since due to (N2)

c1||U(t)||H ≤ E(t) ≤ c2||U(t)||H ,

we have ||U(tmax)||H ≤ C||U0||H . Thus, we arrive at a contradiction

which implies tmax = ∞.

Step 4. The generalized solution is variational (weak). We

formulate the following obvious estimate as a lemma for future use.

Lemma 3.6. Let (N1) hold and 8̃, 8̂ are two weak solutions

to (17)–(23) with the initial conditions (8̃0, 8̃1) and (8̂0, 8̂1)

respectively. Then the following estimate is valid for all x ∈

[0, L], t > 0 and ǫ ∈ [0, 1/2):

|Fj(8̃
j(x, t))− Fj(8̂

j(x, t))| ≤ C(max(||(8̃0, 8̃1)||H , ||(8̂0, 8̂1)||H))

||8̃j(·, t)− 8̂j(·, t)||1−ǫ , j = 1, 2.

Proof. The energy inequality and the embedding H1/2+ε(0, L) ⊂

C(0, L) imply that for every weak solution8

max
t∈[0,T],x∈[0,L]

|8(x, t)| ≤ C(||80||d, ||81||v).

Thus, using (N1) and (27), we prove the lemma.

Evidently, Equation (24) is valid for strong solutions. We can

find a sequence of strong solutions 8(n), which converges to a

generalized solution 8 strongly in C(0,T;Hd), and 8
(n)
t converges

to 8t strongly in C(0,T;Hv). Using Lemma 3.6, we can easily pass

to the limit in nonlinear feedback terms in (24). Since the test

function B ∈ L∞(0,T;Hd) ⊂ L∞((0,T) × (0, L)), we can use the

same arguments as in the proof of Proposition 1.6 [8] to pass to

the limit in the nonlinear dissipation term. Namely, we can extract

from 8
(n)
t a subsequence that converges to 8t almost everywhere

and prove that it converges to8t strongly in L1((0,T)× (0, L)).

Remark 1. In space dimension greater than one we do not have

the embedding H1(�) ⊂ C(�), therefore we need to assume

polynomial growth of the derivative of the nonlinearity to obtain

estimates similar to Lemma 3.6.

4 Existence of attractors

In this section, we study the long -time behavior of solutions to

problems (17)–(23) in the framework of dynamical systems theory.

From Theorem 3.4, we have

Corollary 1. In addition to the conditions of Theorem 3.4, let

P(x, t) = P(x). Then (17)–(23) generates a dynamical system (H, St)

by using the formula

St(80,81) = (8(t),8t(t)),

where 8(t) is the weak solution to (17)–(23) with initial data

(80,81).

To establish the existence of the attractor for this dynamical

system, we use Theorem 4.8 below; thus, we need to prove

the gradientness, the asymptotic smoothness, as well as the

boundedness of the set of stationary points.
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4.1 Gradient structure

In this subsection, we prove that the dynamical system

generated by (17)–(23) possesses a specific structure, namely, a

gradient under some additional conditions on the nonlinearities.

Definition 4.1 (Ref. [9–11]). Let Y ⊆ X be a positively invariant set

of (X, St).

• a continuous functional L(y), defined on Y , is said to be a

Lyapunov function of the dynamical system (X, St) on the set

Y if a function t 7→ L(Sty) is non-increasing for any y ∈ Y .

• the Lyapunov function L(y) is said to be strict on Y if the

equality L(Sty) = L(y) for all t > 0 implies Sty = y for all

t > 0;

• a dynamical system (X, St) is said to be gradient if it possesses

a strict Lyapunov function on the whole phase space X.

The following result holds true:

Theorem 4.2. Let, additionally to the assumptions of Corollary 1,

the following conditions hold

f1 = g1 = 0, h1(ϕ,ψ ,ω) = h1(ψ), (N3)

f2, g2, h2 ∈ C1(R3), (N4)

γ (s)s > 0 for all s 6= 0. (D2)

Then the dynamical system (H, St) is gradient.

Proof. We use as a Lyapunov function

L(8(t)) = L(t) = 1
2

(
||R1/28t(t)||

2 + ||A1/28(t)||2
)

+
L∫
0

F(8(x, t))dx+ (P,8(t)). (28)

Energy inequality (25) implies that L(t) is non-increasing. The

equality L(t) = L(0), together with (D2) implies that ψt(t) ≡ 0 on

[0,T]. We need to prove that 8(t) ≡ const, which is equivalent to

8(t + h) − 8(t) = 0 for every h > 0. In this proof, we denote

8(t + h)−8(t) = 8(t) = (ϕ,ψ ,ω, u, v,w)(t) .

Step 1. Let us prove that 8
1

≡ 0. In this step, we use the

distribution theory (see e.g., Ref. [12]) because some functions

involved in computations are of too low smoothness. Let us set the

test function B = (B1, 0) = (β1, γ 1, δ1, 0, 0, 0). Then8(t) satisfies

−

T∫

0

(R18
1
t ,Bt)(t)dt − (R1(8

1
t (h)−8

1
1),B

1(0))+

T∫

0

[
1

k1
(Q1(8

1
),Q1(B

1))(t)dt +
1

σ1
(N1(8

1
),N1(B

1))(t)

]
+

T∫

0

(h1(ψ(t + h))− h1(ψ(t)), γ
1(t))dt = 0.

The last term equals zero due to (N3) and ψ(t) ≡ const.

Setting in turn B = (0, γ 1, 0, 0, 0, 0), B = (0, 0, δ1, 0, 0, 0), and

B = (β1, 0, 0, 0, 0, 0) we obtain

ϕx + lω = 0 almost everywhere on (0, L0)× (0,T),

(29)

ρ1ωtt − lσ1(ωx − lϕ)x = 0 almost everywhere on (0, L0)× (0,T),

(30)

ρ1ϕtt − σ1(ωx − lϕ) = 0 in the sense of distributions on

(0, L0)× (0,T). (31)

Inequalities (29)–(31) imply

ϕttx = 0, ωtt = 0 in the sense of distributions.

Similar to regular functions, if the partial derivative of a

distribution equals zero, then the distribution “does not depend"

on the corresponding variable (see Ref. [12, Ch. 7], Example 2), i.e.,

ωt = c1(x)× 1(t) in the sense of distributions.

However, Theorem 3.4 implies that ωt is a regular distribution;

thus, we can treat the equality above as equality almost everywhere.

Furthermore,

ω(x, t) = ω(x, 0)+

∫ t

0
c1(x)dτ = ω(x, 0)+ tc1(x).

Since ||ω(·, t)|| ≤ C for all t ∈ R+, c1(x) must be zero. Thus,

ω(x, t) = c2(x),

which together with (29) implies

ϕx = −lc2(x),

ϕ(x, t) = ϕ(0, t)− l

x∫

0

c2(y)dy = c3(x),

ϕtt = 0.

The last equality, together with (29, 31), boundary conditions,

(18) gives us that ϕ,ω are solutions to the following Cauchy

problem (concerning x):

ωx = lϕ,

ϕx = −lω,

ω(0, t) = ϕ(0, t) = 0.

Consequently, ω ≡ ϕ ≡ 0.

Step 2. Let us prove that u ≡ v ≡ w ≡ 0. Due to (N4), we can

use the Taylor expansion of the difference F2(82(t+h))−F2(82(t))
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and thus (u, v,w) satisfy on (0,T)× (L0, L)

ρ2utt − k2uxx + gu(∂x8
2
,8

2
)+∇f2(ζ1,h(x, t)) ·8

2
= 0, (32)

β2vtt − λ2vxx + gv(∂x8
2
,8

2
)+∇h2(ζ2,h(x, t)) ·8

2
= 0, (33)

ρ2wtt − σ2wxx + gw(∂x8
2
,8

2
)+∇g2(ζ3,h(x, t)) ·8

2
= 0 (34)

u(L0, t) = v(L0, t) = w(L0, t) = 0, (35)

u(L, t) = v(L, t) = w(L, t) = 0, (36)

k2(ux + v+ lw)(L0, t) = 0, (37)

vx(L0, t) = 0, σ2(wx − lu)(L0, t) = 0, (38)

8
2
(x, 0) = 82(x, h)−82

0, 8
2
t (x, 0) = 82

t (x, h)−8
2
1, (39)

where gu, gv, gw are linear combinations of ux, vx,wx, u, v,w with

the constant coefficients, ζj,h(x, t) are 3D vector functions whose

components lie between u(x, t+h) and u(x, t), v(x, t+h) and v(x, t),

w(x, t+h) and w(x, t) respectively. Thus, we have a system of linear

equations on (L0, L) with overdetermined boundary conditions.

L2-regularity of ux, vx,wx on the boundary for solutions to a

linear wave equation was established in Ref. [13], thus, boundary

conditions (37, 38) make sense.

It is easy to generalize the Carleman estimate (Ref. [[3], Th.

8.1]), for the system of the wave equations.

Theorem 4.3 (Ref. [3]). For the solution to problems (32)–(39) the

following estimate holds:

∫ T

0
[|ux|

2 + |vx|
2 + |wx|

2](L0, t)dt ≥ C(E(0)+ E(T)),

where

E(t) =
1

2

(
||ut(t)||

2 + ||vt(t)||
2 + ||wt(t)||

2 + ||ux(t)||
2

+ ||vx(t)||
2 + ||wx(t)||

2
)
.

Therefore, if conditions (37, 38) hold true, then u = v = w = 0.

The theorem is proved.

4.2 Asymptotic smoothness

Definition 4.4 (Ref. [9–11]). A dynamical system (X, St) is said to

be asymptotically smooth if, for any closed bounded set B ⊂ X that

is positively invariant (StB ⊆ B), one can find a compact set K =

K(B) that uniformly attracts B, i.e., sup{distX(Sty,K) : y ∈ B} → 0

as t → ∞.

To prove the asymptotical smoothness of the system

considered, we rely on the compactness criterion due to Ref. [14],

which is recalled below in an abstract version formulated in [11].

Theorem 4.5. [11] Let (St ,H) be a dynamical system on a complete

metric space H endowed with a metric d. Assume that for any

bounded positively invariant set B in H and for any ε > 0, there

exists T = T(ε,B) such that

d(STy1, STy2) ≤ ε +9ε,B,T(y1, y2), yi ∈ B, (40)

where9ε,B,T(y1, y2) is a function defined on B× B such that

lim inf
m→∞

lim inf
n→∞

9ε,B,T(yn, ym) = 0

for every sequence yn ∈ B. Then (St ,H) is an asymptotically smooth

dynamical system.

To formulate the result on the asymptotic smoothness of the

system considered, we need the following lemma:

Lemma 4.6. Let assumptions (D1) hold. Let moreover, there exists

a positive constantM such that

γ (s1)− γ (s2)

s1 − s2
≤ M, s1, s2 ∈ R, s1 6= s2. (D3)

Then, for any ε > 0, there exists Cε > 0 such that

∣∣∣∣∣∣

L0∫

0

(γ (ξ1)− γ (ξ2))ζdx

∣∣∣∣∣∣
≤ ε‖ζ‖2+Cε

L0∫

0

(γ (ξ1)−γ (ξ2))(ξ1−ξ2)dx

for any ξ1, ξ2, ζ ∈ L2(0, L0).

The proof is similar to that given in Ref. [11, Th.5.5].

Theorem 4.7. Let assumptions of Theorem 3.4, (D3), and

m ≤
γ (s1)− γ (s2)

s1 − s2
, s1, s2 ∈ R, s1 6= s2 (D4)

withm > 0 hold. Moreover,

k1 = σ1 (41)

ρ1

k1
=
β1

λ1
. (42)

Then the dynamical system (H, St) generated by problems

(1)–(11) is asymptotically smooth.

Proof. In this proof, we perform all the calculations for strong

solutions and then pass to the limit in the final estimate to justify

it for weak solutions. Let us consider strong solutions Û(t) =

(8̂(t), 8̂t(t)) and Ũ(t) = (8̃(t), 8̃t(t)) to the problem (1)–(11) with

initial conditions Û0 = (8̂0, 8̂1) and Ũ0 = (8̃0, 8̃1) lying in a ball,

i.e., there exists an R > 0 such that

‖Ũ0‖H + ‖Û0‖H ≤ R

denote U(t) = Ũ(t) − Û(t) and U0 = Ũ0 − Û0. Obviously, U(t) is

a weak solution to the problem

ρ1ϕtt − k1(ϕx + ψ + lω)x − lσ1(ωx − lϕ)+ f1(ϕ̃, ψ̃ , ω̃)

− f1(ϕ̂, ψ̂ , ω̂) = 0 (43)

β1ψtt − λ1ψxx + k1(ϕx + ψ + lω)+ γ (ψ̃t)− γ (ψ̂t)+ h1(ϕ̃, ψ̃ , ω̃)

− h1(ϕ̂, ψ̂ , ω̂) = 0 (44)

ρ1ωtt − σ1(ωx − lϕ)x + lk1(ϕx + ψ + lω)+ g1(ϕ̃, ψ̃ , ω̃)

− g1(ϕ̂, ψ̂ , ω̂) = 0 (45)

ρ2utt − k2(ux + v+ lw)x − lσ2(wx − lu)+ f2(ũ, ṽ, w̃)

− f2(û, v̂, ŵ) = 0 (46)

β2vtt − λ2vxx + k2(ux + v+ lw)+ h2(ũ, ṽ, w̃)− h2(û, v̂, ŵ) = 0,

(47)

ρ2wtt − σ2(wx − lu)x + lk2(ux + v+ lw)+ g2(ũ, ṽ, w̃)

− g2(û, v̂, ŵ) = 0 (48)
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with boundary conditions (7, 8–11) and the initial conditions

U(0) = Ũ0 − Û0. It is easy to see by the energy argument that

E(U(T))+
T∫
t

L0∫
0

(γ (ψ̃s)− γ (ψ̂s))ψsdxds

= E(U(t))+
T∫
t

H(Û(s), Ũ(s))ds, (49)

where

H(Û(t), Ũ(t)) =

L0∫

0

(f1(ϕ̂, ψ̂ , ω̂)− f1(ϕ̃, ψ̃ , ω̃))ϕtdx

+

L0∫

0

(h1(ϕ̂, ψ̂ , ω̂)− h1(ϕ̃, ψ̃ , ω̃))ψtdx

+

L0∫

0

(g1(ϕ̂, ψ̂ , ω̂)− g1(ϕ̃, ψ̃ , ω̃))ωtdx

+

L∫

L0

(f2(û, v̂, ŵ)− f2(ũ, ṽ, w̃))utdx

+

L∫

L0

(h2(û, v̂, ŵ)− h2(ũ, ṽ, w̃))vtdx

+

L∫

L0

(g2(û, v̂, ŵ)− g2(ũ, ṽ, w̃))wtdx,

and

E(t) = E1(t)+ E2(t),

here

E1(t) = ρ1

L0∫

0

ω2
t dxdt + ρ1

L0∫

0

ϕ2t dxdt + β1

L0∫

0

ψ2
t dx

+ σ1

L0∫

0

(ωx − lϕ)2dx+

+ k1

L0∫

0

(ϕx + ψ + lω)2dx+ λ1

L0∫

0

ψ2
xdx

and

E2(t) = ρ2

L0∫

0

w2
t dxdt + ρ2

L0∫

0

u2t dxdt + β2

L0∫

0

v2t dx

+ σ2

L0∫

0

(wx − lu)2dx+

+ k2

L0∫

0

(ux + v+ lw)2dx+ λ2

L0∫

0

v2xdx.

Integrating in (49) over the interval (0,T) we come to

TE(U(T))+
T∫
0

T∫
t

L0∫
0

(γ (ψ̃s)− γ (ψ̂s))ψsdxdsdt

=
T∫
0

E(U(t))dt +
T∫
0

T∫
t

H(Û(s), Ũ(s))dsdt. (50)

Now we estimate the first term on the right-hand side of

Equation (50). In what follows, we present formal estimates that

can be performed on strong solutions.

Step 1.We multiply Equation (45) by ω and x · ωx and sum up the

results. After integration by parts for t, we obtain

ρ1

T∫

0

L0∫

0

ωtxωtxdxdt + ρ1

T∫

0

L0∫

0

ω2
t dxdt

+ σ1

T∫

0

L0∫

0

(ωx − lϕ)xxωxdxdt + σ1

T∫

0

L0∫

0

(ωx − lϕ)xωdxdt

− k1l

T∫

0

L0∫

0

(ϕx +ψ + lω)xωxdxdt − k1l

T∫

0

L0∫

0

(ϕx +ψ + lω)ωdxdt

−

T∫

0

L0∫

0

(g1(ϕ̃, ψ̃ , ω̃)− g1(ϕ̂, ψ̂ , ω̂))(xωx + ω)dxdt

= ρ1

L0∫

0

ωt(x,T)xωx(x,T)dx+ ρ1

L0∫

0

ωt(x,T)ω(x,T)dx

− ρ1

L0∫

0

ωt(x, 0)xωx(x, 0)dx− ρ1

L0∫

0

ωt(x, 0)ω(x, 0)dx. (51)

Integrating by parts to x we get

ρ1

T∫

0

L0∫

0

ωtxωtxdxdt = −
ρ1

2

T∫

0

L0∫

0

ω2
t dxdt +

ρ1L0

2

T∫

0

ω2
t (L0, t)dt

(52)

and

σ1

T∫

0

L0∫

0

(ωx − lϕ)xxωxdxdt − k1l

T∫

0

L0∫

0

(ϕx + ψ + lω)xωxdxdt

= σ1

T∫

0

L0∫

0

(ωx − lϕ)xx(ωx − lϕ)dxdt+ σ1l

T∫

0

L0∫

0

(ωx − lϕ)xxϕdxdt

− k1l

T∫

0

L0∫

0

(ϕx + ψ + lω)xωxdxdt = −
σ1

2

T∫

0

L0∫

0

(ωx − lϕ)2dxdt

+
σ1L0

2

T∫

0

(ωx − lϕ)2(L0, t)dt − σ1l

T∫

0

L0∫

0

(ωx − lϕ)ϕdxdt

− 2σ1l

T∫

0

L0∫

0

(ωx − lϕ)x(ϕx + ψ + lω)dxdt
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+ σ1l

T∫

0

L0∫

0

(ωx − lϕ)x(ψ + lω)dxdt

−σ1lL0

T∫

0

(ωx−lϕ)(L0, t)ϕ(L0, t)dt−k1l
2

T∫

0

L0∫

0

(ϕx+ψ+lω)xϕdxdt.

(53)

Analogously,

σ1

T∫

0

L0∫

0

(ωx − lϕ)xωdxdt = −σ1

T∫

0

L0∫

0

(ωx − lϕ)2dxdt

+ σ1

T∫

0

(ωx − lϕ)(L0, t)ω(L0, t)dt − lσ1

T∫

0

L0∫

0

(ωx − lϕ)ϕdxdt.

(54)

It follows from Lemma 3.6, energy relation (25), and property

(N2) that

T∫

0

L0∫

0

|g1(ϕ̃, ψ̃ , ω̃)− g1(ϕ̂, ψ̂ , ω̂)|
2dxdt

≤ C(R,T) max
t∈[0,T]

‖8(·, t)‖2
H1−ǫ , 0 < ǫ < 1/2.

Therefore, for every ε > 0

∣∣∣∣∣∣

T∫

0

L0∫

0

(g1(ϕ̃, ψ̃ , ω̃)− g1(ϕ̂, ψ̂ , ω̂))(xωx + ω)dxdt

∣∣∣∣∣∣

≤ ε

T∫

0

‖ωx − lϕ‖2dt + C(ε,R,T)lot, (55)

where we use the notation

lot = max
t∈[0,T]

(‖ϕ(·, t)‖2
H1−ǫ + ‖ψ(·, t)‖2

H1−ǫ + ‖ω(·, t)‖2
H1−ǫ

+ ‖u(·, t)‖2
H1−ǫ + ‖v(·, t)‖2

H1−ǫ + ‖w(·, t)‖2
H1−ǫ ), 0 < ǫ < 1/2.

Similar estimates hold for nonlinearities g2, fi, hi, i = 1, 2.

We note that for any η ∈ H1(0, L0) [or analogously, η ∈

H1(L0, L)]

η(L0) ≤ sup
(0,L0)

|η| ≤ C‖η‖H1−ǫ , 0 < ǫ < 1/2.

Since due to (41)

2σ1l

∣∣∣∣∣∣

T∫

0

L0∫

0

(ωx − lϕ)x(ϕx + ψ + lω)dxdt

∣∣∣∣∣∣

≤
σ1

16

T∫

0

L0∫

0

(ωx− lϕ)2dxdt+ 16k1l
2L20

T∫

0

L0∫

0

(ϕx+ψ + lω)2dxdt,

the following estimate can be obtained from (51)–(55)

ρ1

2

T∫

0

L0∫

0

ω2
t dxdt +

ρ1L0

2

T∫

0

ω2
t (L0, t)dt

+
13σ1L0

8

T∫

0

(ωx − lϕ)2(L0, t)dt

≤
13σ1

8

T∫

0

L0∫

0

(ωx − lϕ)2dxdt+ 17k1l
2L20

T∫

0

L0∫

0

(ϕx +ψ + lω)2dxdt

+ C(R,T)lot + C(E(0)+ E(T)), (56)

where C > 0.

Step 2. Multiplying equation (45) by ω and (x − L0) · ωx and

arguing as above, we come to the estimate (57)

ρ1

2

T∫

0

L0∫

0

ω2
t dxdt +

13σ1L0

8

T∫

0

(ωx − lϕ)2(0, t)dt

≤
13σ1

8

T∫

0

L0∫

0

(ωx − lϕ)2dxdt + 17k1l
2L20

T∫

0

L0∫

0

(ϕx + ψ + lω)2dxdt

+C(R,T)lot + C(E(0)+ E(T)). (57)

Summing up estimates (56) and (58) and multiplying the result

by 1
2 we get

ρ1

2

T∫

0

L0∫

0

ω2
t dxdt +

ρ1L0

4

T∫

0

ω2
t (L0, t)dt

+
3σ1L0

16

T∫

0

(ωx − lϕ)2(L0, t)dt +
3σ1L0

16

T∫

0

(ωx − lϕ)2(0, t)dt

≤
13σ1

8

T∫

0

L0∫

0

(ωx − lϕ)2dxdt+ 17k1l
2L20

T∫

0

L0∫

0

(ϕx +ψ + lω)2dxdt

+ C(R,T)lot + C(E(0)+ E(T)). (58)

Step 3. Next, we multiply Equation (43) by − 1
l
(ωx − lϕ),

equation (45) by 1
l
ϕx, summing up the results and integrating by

parts with respect to t we arrive at

ρ1

l

T∫

0

L0∫

0

ϕt(ωtx − lϕt)dxdt +
k1

l

T∫

0

L0∫

0

(ϕx + ψ + lω)x(ωx − lϕ)dxdt

+σ1

T∫

0

L0∫

0

(ωx − lϕ)2dxdt −
1

l

T∫

0

L0∫

0

(f1(ϕ̃, ψ̃ , ω̃)

−f1(ϕ̂, ψ̂ , ω̂))(ωx − lϕ)dxdt +
ρ1

l

T∫

0

L0∫

0

ωtϕtxdxdt
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+
σ1

l

T∫

0

L0∫

0

(ωx − lϕ)xϕxdxdt − k1

T∫

0

L0∫

0

(ϕx + ψ + lω)ϕxdxdt

−

T∫

0

L0∫

0

(g1(ϕ̃, ψ̃ , ω̃)− g1(ϕ̂, ψ̂ , ω̂))ϕxdxdt

=
ρ1

l

L0∫

0

ϕt(x,T)(ωx − lϕ)(x,T)dx−
ρ1

l

L0∫

0

ϕt(x, 0)(ωx − lϕ)(x, 0)dx

+
ρ1

l

L0∫

0

ωt(x,T)ϕx(x,T)dx−
ρ1

l

L0∫

0

ωt(x, 0)ϕx(x, 0)dx. (59)

Integrating by parts with respect to x we obtain

∣∣∣∣∣∣
ρ1

l

T∫

0

L0∫

0

ϕtωtxdxdt +
ρ1

l

T∫

0

L0∫

0

ωtϕtxdxdt

∣∣∣∣∣∣

=

∣∣∣∣∣∣
ρ1

l

T∫

0

ϕt(L0, t)ωt(L0, t)dt

∣∣∣∣∣∣

≤
ρ1L0

8

T∫

0

ω2
t (L0, t)dt +

2ρ1

l2L0

T∫

0

ϕ2t (L0, t)dt. (60)

Taking into account (41) we get

k1

l

T∫

0

L0∫

0

(ϕx+ψ+lω)x(ωx−lϕ)dxdt+
σ1

l

T∫

0

L0∫

0

(ωx−lϕ)xϕxdxdt

=
k1

l

T∫

0

(ϕx + ψ + lω)(L0, t)(ωx − lϕ)(L0, t)dt

−
k1

l

T∫

0

(ϕx + ψ + lω)(0, t)(ωx − lϕ)(0, t)dt

+
k1

l

T∫

0

L0∫

0

ψx(ωx − lϕ)dxdt + σ1

T∫

0

L0∫

0

(ωx − lϕ)2dxdt

+ σ1l

T∫

0

L0∫

0

(ωx − lϕ)ϕdxdt. (61)

Using the estimates

∣∣∣∣∣∣
k1

l

T∫

0

(ϕx + ψ + lω)(L0, t)(ωx − lϕ)(L0, t)dt

∣∣∣∣∣∣

≤
4k1

l2L0

T∫

0

(ϕx +ψ + lω)2(L0, t)dt+
σ1L0

16

T∫

0

(ωx − lϕ)2(L0, t)dt,

∣∣∣∣∣∣
k1

l

T∫

0

L0∫

0

ψx(ωx − lϕ)dxdt

∣∣∣∣∣∣
≤

4k1

l2

T∫

0

L0∫

0

ψ2
xdxdt

+
σ1

16

T∫

0

L0∫

0

(ωx − lϕ)2dxdt

and (59)–(61) we infer

15σ1

8

T∫

0

L0∫

0

(ωx − lϕ)2dxdt ≤ ρ1

T∫

0

L0∫

0

ϕ2t dxdt

+ 2k1

T∫

0

L0∫

0

(ϕx + ψ + lω)2dxdt +
4k1

l2

T∫

0

L0∫

0

ψ2
xdxdt

+
4k1

l2L0

T∫

0

(ϕx + ψ + lω)2(L0, t)dt +
σ1L0

8

T∫

0

(ωx − lϕ)2(L0, t)dt

+
4k1

l2L0

T∫

0

(ϕx + ψ + lω)2(0, t)dt +
σ1L0

8

T∫

0

(ωx − lϕ)2(0, t)dt

ρ1L0

8

T∫

0

ω2
t (L0, t)dt +

2ρ1

l2L0

T∫

0

ϕ2t (L0, t)dt

+ C(R,T)lot + C(E(0)+ E(T)). (62)

Adding (62) to (58) we obtain

σ1

4

T∫

0

L0∫

0

(ωx − lϕ)2dxdt+
ρ1

2

T∫

0

L0∫

0

ω2
t dxdt+

ρ1L0

8

T∫

0

ω2
t (0, t)dt

+
σ1L0

16

T∫

0

(ωx − lϕ)2(L0, t)dt +
σ1L0

16

T∫

0

(ωx − lϕ)2(L0, t)dt

≤ ρ1

T∫

0

L0∫

0

ϕ2t dxdt + k1(2+ 17l2L20)

T∫

0

L0∫

0

(ϕx + ψ + lω)2dxdt

+
4k1

l2L0

T∫

0

(ϕx +ψ + lω)2(L0, t)dt+
4k1

l2L0

T∫

0

(ϕx +ψ + lω)2(0, t)dt

+
4k1

l2

T∫

0

L0∫

0

ψ2
xdxdt +

2ρ1

l2L0

T∫

0

ϕ2t (L0, t)dt + C(R,T)lot

+ C(E(0)+ E(T)). (63)

Step 4. Now, we multiply Equation (43) by − 16
l2L20

xϕx and

− 16
l2L20

(x − L0)ϕx and sum up the results. After integration by parts

with respect to t we get

16ρ1

l2L20

T∫

0

L0∫

0

ϕtxϕtxdxdt +
16ρ1

l2L20

T∫

0

L0∫

0

ϕt(x− L0)ϕtxdxdt

+
16k1

l2L20

T∫

0

L0∫

0

(ϕx + ψ + lω)xxϕxdxdt

+
16k1

l2L20

T∫

0

L0∫

0

(ϕx + ψ + lω)x(x− L0)ϕxdxdt
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+
16σ1

lL20

T∫

0

L0∫

0

(ωx − lϕ)xϕxdxdt

+
16σ1

lL20

T∫

0

L0∫

0

(ωx − lϕ)(x− L0)ϕxdxdt

−
16

l2L20

T∫

0

L0∫

0

(f1(ϕ̃, ψ̃ , ω̃)− f1(ϕ̂, ψ̂ , ω̂))(2x− L0)ϕxdxdt

=
16ρ1

l2L20

L0∫

0

ϕt(x,T)(2x− L0)ϕx(x,T)dx

−
16ρ1

l2L20

L0∫

0

ϕt(x,T)(2x− L0)ϕx(x,T)dx. (64)

It is easy to see that

16ρ1

l2L20

T∫

0

L0∫

0

ϕtxϕtxdxdt +
16ρ1

l2L20

T∫

0

L0∫

0

ϕt(x− L0)ϕtxdxdt

= −
16ρ1

l2L20

T∫

0

L0∫

0

ϕ2t dxdt +
8ρ1

l2L0

T∫

0

ϕ2t (L0, t)dt

(65)

and

16k1

l2L20

T∫

0

L0∫

0

(ϕx + ψ + lω)xxϕxdxdt

+
16k1

l2L20

T∫

0

L0∫

0

(ϕx + ψ + lω)x(x− L0)ϕxdxdt

= −
16k1

l2L20

T∫

0

L0∫

0

(ϕx+ψ+ lω)2dxdt+
8k1

l2L0

T∫

0

(ϕx+ψ+ lω)2(0, t)dt

+
8k1

l2L0

T∫

0

(ϕx + ψ + lω)2(L0, t)dt

−
16k1

l2L20

T∫

0

L0∫

0

(ϕx + ψ + lω)xx(ψ + lω)dxdt

−
16k1

l2L20

T∫

0

L0∫

0

(ϕx + ψ + lω)x(x− L0)(ψ + lω)dxdt

= −
16k1

l2L20

T∫

0

L0∫

0

(ϕx + ψ + lω)2dxdt

+
8k1

l2L0

T∫

0

(ϕx + ψ + lω)2(0, t)dt

+
8k1

l2L0

T∫

0

(ϕx + ψ + lω)2(L0, t)dt

−
16k1

l2L0

T∫

0

(ϕx + ψ + lω)(L0, t)(ψ + lω)(L0, t)dt

+
32k1

l2L20

T∫

0

L0∫

0

(ϕx + ψ + lω)(ψ + lω)dxdt+

+
16k1

lL20

T∫

0

L0∫

0

(ϕx + ψ + lω)(2x− L0)(ωx − lϕ)dxdt

+
16k1

l2L20

T∫

0

L0∫

0

(ϕx + ψ + lω)(2x− L0)ψxdxdt

+
16k1

L20

T∫

0

L0∫

0

(ϕx + ψ + lω)(2x− L0)ϕdxdt. (66)

Moreover,

16σ1

lL20

T∫

0

L0∫

0

(ωx−lϕ)xϕxdxdt+
16σ1

lL20

T∫

0

L0∫

0

(ωx−lϕ)(x−L0)ϕxdxdt

=
16σ1

lL20

T∫

0

L0∫

0

(ωx − lϕ)(2x− L0)(ϕx + ψ + lω)dxdt

−
16σ1

lL20

T∫

0

L0∫

0

(ωx − lϕ)(2x− L0)(ψ + lω)dxdt. (67)

Collecting (64)–(67) and using the estimates

∣∣∣∣∣∣
32k1

lL20

T∫

0

L0∫

0

(ϕx + ψ + lω)(2x− L0)(ωx − lϕ)dxdt

∣∣∣∣∣∣

≤
σ1

8

T∫

0

L0∫

0

(ωx − lϕ)2dxdt +
2046k1

l2L20

T∫

0

L0∫

0

(ϕx + ψ + lω)2dxdt

and

∣∣∣∣∣∣
16k1

l2L20

T∫

0

L0∫

0

(ϕx + ψ + lω)(2x− L0)ψxdxdt

∣∣∣∣∣∣

≤
k1

l2

T∫

0

L0∫

0

ψ2
xdxdt +

64k1

l2L20

T∫

0

L0∫

0

(ϕx + ψ + lω)2dxdt

we come to

7k1

l2L0

T∫

0

(ϕx + ψ + lω)2(L0, t)dt +
7k1

l2L0

T∫

0

(ϕx + ψ + lω)2(0, t)dt

+
8ρ1

l2L0

T∫

0

ϕ2t (L0, t)dt ≤
16ρ1

l2L20

T∫

0

L0∫

0

ϕ2t dxdt

+
2150k1

l2L20

T∫

0

L0∫

0

(ϕx + ψ + lω)2dxdt
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+
k1

l2

T∫

0

L0∫

0

ψ2
xdxdt +

3σ1

16

T∫

0

L0∫

0

(ωx − lϕ)2dxdt

+ C(R,T)lot + C(E(0)+ E(T)). (68)

Adding (68) to (63) we arrive at

σ1

16

T∫

0

L0∫

0

(ωx− lϕ)2dxdt+
ρ1

2

T∫

0

L0∫

0

ω2
t dxdt+

ρ1L0

8

T∫

0

ω2
t (L0, t)dt

+
σ1L0

16

T∫

0

(ωx − lϕ)2(L0, t)dt +
σ1L0

16

T∫

0

(ωx − lϕ)2(0, t)dt

+
3k1

l2L0

T∫

0

(ϕx +ψ + lω)2(L0, t)dt+
3k1

l2L0

T∫

0

(ϕx +ψ + lω)2(0, t)dt

+
6ρ1

l2L0

T∫

0

ϕ2t (L0, t)dt ≤ ρ1

(
1+

16

l2L20

) T∫

0

L0∫

0

ϕ2t dxdt

+ k1

(
2+ 17l2L20 +

2150

l2L20

) T∫

0

L0∫

0

(ϕx + ψ + lω)2dxdt

+
5k1

l2

T∫

0

L0∫

0

ψ2
xdxdt + C(R,T)lot + C(E(0)+ E(T)). (69)

Step 5. Next, we multiply Equation (43) by −
(
1+ 18

l2L20

)
ϕ and

integrate by parts with respect to t

ρ1

(
1+

18

l2L20

) T∫

0

L0∫

0

ϕ2t dxdt

+ k1

(
1+

18

l2L20

) T∫

0

L0∫

0

(ϕx + ψ + lω)xϕdxdt

+ lσ1

(
1+

18

l2L20

) T∫

0

L0∫

0

(ωx − lϕ)ϕdxdt

−

(
1+

18

l2L20

) T∫

0

L0∫

0

(f1(ϕ̃, ψ̃ , ω̃)− f1(ϕ̂, ψ̂ , ω̂))ϕdxdt =

ρ1

(
1+

18

l2L20

) L0∫

0

(ϕt(x,T)ϕ(x,T)− ϕt(x, 0)ϕ(x, 0))dx.

Since

k1

(
1+

18

l2L20

) T∫

0

L0∫

0

(ϕx + ψ + lω)xϕdxdt

= −k1

(
1+

18

l2L20

) T∫

0

L0∫

0

(ϕx + ψ + lω)2dxdt

+ k1

(
1+

18

l2L20

) T∫

0

(ϕx + ψ + lω)(L0, t)ϕ(L0, t)dt

+ k1

(
1+

18

l2L20

) T∫

0

(ϕx + ψ + lω)(ψ + lω)dxdt

we obtain the estimate

ρ1

(
1+

17

l2L20

) T∫

0

L0∫

0

ϕ2t dxdt

≤ k1

(
2+

18

l2L20

) T∫

0

L0∫

0

(ϕx + ψ + lω)2dxdt

+
k1

l2L0

T∫

0

(ϕx + ψ + lω)2(L0, t)dt +
σ1

32

T∫

0

L0∫

0

(ωx − lϕ)2dxdt

+ C(R,T)lot + C(E(0)+ E(T)). (70)

Summing up (69) and (70) we get

σ1

32

T∫

0

L0∫

0

(ωx − lϕ)2dxdt

+
ρ1

2

T∫

0

L0∫

0

ω2
t dxdt +

ρ1L0

8

T∫

0

ω2
t (L0, t)dt

+
σ1L0

16

T∫

0

(ωx − lϕ)2(L0, t)dt +
σ1L0

16

T∫

0

(ωx − lϕ)2(0, t)dt

+
2k1

l2L0

T∫

0

(ϕx +ψ + lω)2(L0, t)dt+
2k1

l2L0

T∫

0

(ϕx +ψ + lω)2(0, t)dt

+
6ρ1

l2L0

T∫

0

ϕ2t (L0, t)dt +
1

l2L20

T∫

0

L0∫

0

ϕ2t dxdt

≤ k1

(
4+ 17l2L20 +

2200

l2L20

) T∫

0

(ϕx + ψ + lω)2dxdt

+
6k1

l2

T∫

0

L0∫

0

ψ2
xdxdt + C(R,T)lot + C(E(0)+ E(T)). (71)

Step 6.Next we multiply Equation (44) by C1(ϕx +ψ + lω) and

equation (43) by C1
β1
ρ1
ψx, where C1 = 2(6 + 17l2L20 +

2200
l2L20

). Then

we sum up the results and integrate them into parts concerning t.

Taking into account (41, 42), we come to

− β1C1

T∫

0

L0∫

0

ϕtψtxdxdt − λ1C1

T∫

0

L0∫

0

(ϕx + ψ + lω)xψxdxdt

− lC1λ1

T∫

0

L0∫

0

(ωx − lϕ)ψxdxdt
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+ C1
β1

ρ1

T∫

0

L0∫

0

(f1(ϕ̃, ψ̃ , ω̃)− f1(ϕ̂, ψ̂ , ω̂))ψxdxdt

− β1C1

T∫

0

L0∫

0

ψt(ϕxt + ψt + lωt)dxdt

− λ1C1

T∫

0

L0∫

0

ψxx(ϕx + ψ + lω)dxdt

+ k1C1

T∫

0

L0∫

0

(ϕx + ψ + lω)2dxdt

+ C1

T∫

0

L0∫

0

(γ (ψ̃t)− γ (ψ̂t))(ϕx + ψ + lω)dxdt

+ C1

T∫

0

L0∫

0

(h1(ϕ̃, ψ̃ , ω̃)− h1(ϕ̂, ψ̂ , ω̂))(ϕx + ψ + lω)dxdt

= β1C1

L0∫

0

ϕt(x, 0)ψx(x, 0)dx

−β1C1

L0∫

0

ϕt(x,T)ψx(x,T)dx+β1C1

L0∫

0

ψt(x, 0)(ϕx+ψ+lω)(x, 0)dx

− β1C1

L0∫

0

ψt(x,T)(ϕx + ψ + lω)(x,T)dx. (72)

Integrating by parts with respect to x we get

∣∣∣∣∣∣
β1C1

T∫

0

L0∫

0

ϕtψtxdxdt + β1C1

T∫

0

L0∫

0

ψt(ϕxt + lωt)dxdt

∣∣∣∣∣∣

≤

∣∣∣∣∣∣
β1C1

T∫

0

ϕt(L0, t)ψt(L0, t)dt + β1C1l

T∫

0

L0∫

0

ψtωtdxdt

∣∣∣∣∣∣

≤
ρ1

l2L0

T∫

0

ϕ2t (L0, t)dt +
β21C

2
1l
2L0

4ρ1

T∫

0

ψ2
t (L0, t)dt

+
ρ1

4

T∫

0

L0∫

0

ω2
t dxdt +

β21C
2
1l
2

ρ1

T∫

0

L0∫

0

ψ2
t dxdt (73)

and

∣∣∣∣∣∣
λ1C1

T∫

0

L0∫

0

(ϕx + ψ + lω)xψxdxdt

+λ1C1

T∫

0

L0∫

0

ψxx(ϕx + ψ + lω)dxdt

∣∣∣∣∣∣

=

∣∣∣∣∣∣
λ1C1

T∫

0

(ϕx + ψ + lω)(L0, t)ψx(L0, t)dt

−λ1C1

T∫

0

(ϕx + ψ + lω)(0, t)ψx(0, t)dt

∣∣∣∣∣∣

≤
k1

l2L0

T∫

0

(ϕx +ψ + lω)2(L0, t)dt+
k1

l2L0

T∫

0

(ϕx +ψ + lω)2(0, t)dt

+
l2L0λ

2
1C

2
1

4k1

T∫

0

ψ2
x (L0, t)dt +

l2L0λ
2
1C

2
1

4k1

T∫

0

ψ2
x (0, t)dt. (74)

Moreover,

∣∣∣∣∣∣
lC1λ1

T∫

0

L0∫

0

(ωx − lϕ)ψxdxdt

∣∣∣∣∣∣

≤
σ1

64

T∫

0

L0∫

0

(ωx − lϕ)2dxdt +
16l2C2

1λ
2
1

σ1

T∫

0

L0∫

0

ψ2
xdxdt. (75)

It follows from Lemma 4.6 with ε = k1C1
4

∣∣∣∣∣∣
C1

T∫

0

L0∫

0

(γ (ψ̃t)− γ (ψ̂t))(ϕx + ψ + lω)dxdt

∣∣∣∣∣∣

≤
k1C1

4

T∫

0

L0∫

0

(ϕx+ψ+lω)2dxdt+C

T∫

0

L0∫

0

(γ (ψ̃t)−γ (ψ̂t))ψtdxdt

(76)

Consequently, by collecting (72)–(76), we obtain

C1k1

2

T∫

0

L0∫

0

(ϕx + ψ + lω)2dxdt ≤
σ1

64

T∫

0

L0∫

0

(ωx − lϕ)2dxdt

+
20l2C2

1λ
2
1

σ1

T∫

0

L0∫

0

ψ2
xdxdt + C1

(
β1 +

β21 l
2

ρ1

) T∫

0

L0∫

0

ψ2
t dxdt+

k1

l2L0

T∫

0

(ϕx +ψ + lω)2(L0, t)dt +
k1

l2L0

T∫

0

(ϕx +ψ + lω)2(0, t)dt

+
l2L0λ

2
1C

2
1

4k1

T∫

0

ψ2
x (L0, t)dt +

l2L0λ
2
1C

2
1

4k1

T∫

0

ψ2
x (0, t)dt

+
ρ1

l2L0

T∫

0

ϕ2t (L0, t)dt+
β21C

2
1l
2L0

4ρ1

T∫

0

ψ2
t (L0, t)dt+

ρ1

4

T∫

0

L0∫

0

ω2
t dxdt

+C

T∫

0

L0∫

0

(γ (ψ̃t)−γ (ψ̂t))ψtdxdt+C(R,T)lot+C(E(0)+E(T)).

(77)
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Combining (77) with (71), we get

σ1

64

T∫

0

L0∫

0

(ωx− lϕ)2dxdt+
ρ1

4

T∫

0

L0∫

0

ω2
t dxdt+

ρ1L0

8

T∫

0

ω2
t (L0, t)dt

+
σ1L0

16

T∫

0

(ωx − lϕ)2(L0, t)dt +
σ1L0

16

T∫

0

(ωx − lϕ)2(0, t)dt

+
k1

l2L0

T∫

0

(ϕx +ψ + lω)2(L0, t)dt+
k1

l2L0

T∫

0

(ϕx +ψ + lω)2(0, t)dt

+
5ρ1

l2L0

T∫

0

ϕ2t (L0, t)dt +
1

l2L20

T∫

0

L0∫

0

ϕ2t dxdt

+ 2k1

T∫

0

L0∫

0

(ϕx + ψ + lω)2dxdt

≤

(
6k1

l2
+

20l2C2
1λ

2
1

σ1

) T∫

0

L0∫

0

ψ2
xdxdt

+ C1

(
β1 +

β21 l
2

ρ1

) T∫

0

L0∫

0

ψ2
t dxdt

+
l2L0λ

2
1C

2
1

4k1

T∫

0

ψ2
x (L0, t)dt +

l2L0λ
2
1C

2
1

4k1

T∫

0

ψ2
x (0, t)dt

+
β21C

2
1l
2L0

4

T∫

0

ψ2
t (L0, t)dt + C

T∫

0

L0∫

0

(γ (ψ̃t)− γ (ψ̂t))ψtdxdt

+ C(R,T)lot + C(E(0)+ E(T)). (78)

Step 7.Our next step is to multiply Equation (44) by−C2xψx−

C2(x − L0)ψx, where C2 =
l2λ1C

2
1

k1
. After integration by parts with

respect to t, we obtain

β1C2

T∫

0

L0∫

0

ψtxψxtdxdt + β1C2

T∫

0

L0∫

0

ψt(x− L0)ψxtdxdt

+ λ1C2

T∫

0

L0∫

0

ψxxxψxdxdt + λ1C2

T∫

0

L0∫

0

ψxx(x− L0)ψxdxdt

− k1C2

T∫

0

L0∫

0

(ϕx + ψ + lω)(2x− L0)ψxdxdt

− C2

T∫

0

L0∫

0

(γ (ψ̃t)− γ (ψ̂t))(2x− L0)ψxdxdt

+

T∫

0

L0∫

0

(h1(ϕ̃, ψ̃ , ω̃)− h1(ϕ̂, ψ̂ , ω̂))(2x− L0)ψxdxdt

= β1C2

L0∫

0

ψt(x,T)(2x− L0)ψx(x,T)dx

− β1C2

L0∫

0

ψt(x, 0)(2x− L0)ψx(x, 0)dx. (79)

After integration by parts for x, we get

β1C2

T∫

0

L0∫

0

ψtxψxtdxdt + β1C2

T∫

0

L0∫

0

ψt(x − L0)ψxtdxdt

= −β1C2

T∫

0

L0∫

0

ψ2
t dxdt +

β1C2L0

2

T∫

0

ψ2
t (L0, t)dt (80)

and

λ1C2

T∫

0

L0∫

0

ψxxxψxdxdt + λ1C2

T∫

0

L0∫

0

ψxx(x− L0)ψxdxdt

=
λ1C2L0

2

T∫

0

ψ2
x (L0, t)dt +

λ1C2L0

2

T∫

0

ψ2
x (0, t)dt

− λ1C2

T∫

0

L0∫

0

ψ2
xdxdt. (81)

Furthermore,

∣∣∣∣∣∣
k1C2

T∫

0

L0∫

0

(ϕx + ψ + lω)(2x− L0)ψxdxdt

∣∣∣∣∣∣

≤ k1

T∫

0

L0∫

0

(ϕx + ψ + lω)2dxdt +
k1C

2
2L

2
0

4

T∫

0

L0∫

0

ψ2
xdxdt. (82)

By Lemma 4.6 with ε =
k1C2

2L20
4 we have

∣∣∣∣∣∣
C2

T∫

0

L0∫

0

ψt(2x− L0)ψxdxdt

∣∣∣∣∣∣
≤

k1C
2
2L

2
0

4

T∫

0

L0∫

0

ψ2
xdxdt

+C

T∫

0

L0∫

0

(γ (ψ̃t)− γ (ψ̂t))ψtdxdt. (83)

As a result of (79)–(83) we obtain the estimate

β1C2L0

2

T∫

0

ψ2
t (L0, t)dt +

λ1C2L0

2

T∫

0

ψ2
x (L0, t)dt

+
λ1C2L0

2

T∫

0

ψ2
x (0, t)dt

≤ k1

T∫

0

L0∫

0

(ϕx + ψ + lω)2dxdt +
(
k1C

2
2L

2
0 + λ1C2

)
T∫

0

L0∫

0

ψ2
xdxdt

+ β1C2

T∫

0

L0∫

0

ψ2
t dxdt

+C

T∫

0

L0∫

0

(γ (ψ̃t)−γ (ψ̂t))ψtdxdt+C(R,T)lot+C(E(0)+E(T)).

(84)
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Summing up (78) and (84) and using (42) we infer

σ1

64

T∫

0

L0∫

0

(ωx− lϕ)2dxdt+
ρ1

4

T∫

0

L0∫

0

ω2
t dxdt+

ρ1L0

8

T∫

0

ω2
t (L0, t)dt

+
σ1L0

16

T∫

0

(ωx − lϕ)2(L0, t)dt +
σ1L0

16

T∫

0

(ωx − lϕ)2(0, t)dt

+
k1

l2L0

T∫

0

(ϕx +ψ + lω)2(L0, t)dt+
k1

l2L0

T∫

0

(ϕx +ψ + lω)2(0, t)dt

+
5ρ1

l2L0

T∫

0

ϕ2t (L0, t)dt+
1

l2L20

T∫

0

L0∫

0

ϕ2t dxdt+k1

T∫

0

L0∫

0

(ϕx+ψ+lω)2dxdt

l2L0λ
2
1C

2
1

4k1

T∫

0

ψ2
x (L0, t)dt +

l2L0λ
2
1C

2
1

4k1

T∫

0

ψ2
x (0, t)dt

+
β21C

2
1l
2L0

4ρ1

T∫

0

ψ2
t (L0, t)dt

≤

(
6k1

l2
+

20l2C2
1λ

2
1

σ1
+ λ1C2 + k1C

2
2L

2
0

) T∫

0

L0∫

0

ψ2
xdxdt

+

(
(C1 + C2)β1 +

C1β
2
1 l
2

ρ1

) T∫

0

L0∫

0

ψ2
t dxdt

+C

T∫

0

L0∫

0

(γ (ψ̃t)−γ (ψ̂t))ψtdxdt+C(R,T)lot+C(E(0)+E(T)).

(85)

Step 8. Now we multiply Equation (44) by C3ψ , where C3 =

2
λ1

(
6k1
l2

+
20l2C2

1λ
2
1

σ1
+ λ1C2 + k1C

2
2L

2
0

)
and integrate by parts with

respect to t (86)

− C3β1

T∫

0

L0∫

0

ψ2
t dxdt − λ1C3

T∫

0

L0∫

0

ψxxψdxdt

+ k1C3

T∫

0

L0∫

0

(ϕx + ψ + lω)ψdxdt

+ C3

T∫

0

L0∫

0

(γ (ψ̃t)− γ (ψ̂t))ψdxdt + C3

T∫

0

L0∫

0

(h1(ϕ̃, ψ̃ , ω̃)

− h1(ϕ̂, ψ̂ , ω̂))ψdxdt

= C3β1

L0∫

0

ψt(x, 0)ψ(x, 0)dx− C3β1

L0∫

0

ψt(x,T)ψ(x,T)dx (86)

After integration by parts, we infer the estimate

λ1C3

T∫

0

L0∫

0

ψ2
xdxdt ≤

k1

2

T∫

0

(ϕx + ψ + lω)2dxdt

+ C3β1

T∫

0

L0∫

0

ψ2
t dxdt +

l2L0λ
2
1C

2
1

8k1

T∫

0

ψ2
x (L0, t)dt

+C

T∫

0

L0∫

0

(γ (ψ̃t)−γ (ψ̂t))ψtdxdt+C(R,T)lot+C(E(0)+E(T)).

(87)

Combining (87) with (85), we obtain

σ1

64

T∫

0

L0∫

0

(ωx− lϕ)2dxdt+
ρ1

4

T∫

0

L0∫

0

ω2
t dxdt+

ρ1L0

8

T∫

0

ω2
t (L0, t)dt

+
σ1L0

16

T∫

0

(ωx − lϕ)2(L0, t)dt +
σ1L0

16

T∫

0

(ωx − lϕ)2(0, t)dt

+
k1

l2L0

T∫

0

(ϕx +ψ + lω)2(L0, t)dt+
k1

l2L0

T∫

0

(ϕx +ψ + lω)2(0, t)dt

+
5ρ1

l2L0

T∫

0

ϕ2t (L0, t)dt +
1

l2L20

T∫

0

L0∫

0

ϕ2t dxdt

+
k1

2

T∫

0

L0∫

0

(ϕx + ψ + lω)2dxdt

l2L0λ
2
1C

2
1

8k1

T∫

0

ψ2
x (L0, t)dt +

l2L0λ
2
1C

2
1

4k1

T∫

0

ψ2
x (0, t)dt

+
β21C

2
1l
2L0

4ρ1

T∫

0

ψ2
t (L0, t)dt

+

(
6k1

l2
+

20l2C2
1λ

2
1

σ1
+ λ1C2 + k1C

2
2L

2
0

) T∫

0

L0∫

0

ψ2
xdxdt

≤

(
(C1 + C2)β1 +

C1β
2
1 l
2

ρ1
+ C3β1

) T∫

0

L0∫

0

ψ2
t dxdt

+ C

T∫

0

L0∫

0

(γ (ψ̃t)− γ (ψ̂t))ψtdxdt

+ C(R,T)lot + C(E(0)+ E(T)).

(88)

Step 9. Consequently, it follows from (88) and assumption (D4)

for any l > 0 where there exist constantsMi, i = {1, 3} (depending

on l) such that

T∫

0

E1(t)dt +

T∫

0

B1(t)dt ≤ M1

T∫

0

L0∫

0

(γ (ψ̃t)− γ (ψ̂t))ψtdxdt

+M2(R,T)lot +M3(E(T)+ E(0)),

where (89)
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B1(t) =

T∫

0

(ωx − lϕ)2(L0, t)dt +

T∫

0

(ϕx + ψ + lω)2(L0, t)dt

+

T∫

0

ψ2
x (L0, t)dt +

T∫

0

ω2
t (L0, t)dt +

T∫

0

ψ2
t (L0, t)dt

+

T∫

0

ϕ2t (L0, t)dt. (89)

Step 10. Finally, we multiply Equation (46) by (x − L)ux,

Equation (47) by (x − L)vx, and (48) by (x − L)wx. Summing up

the results and integrating by parts with respect to t, we arrive at

−ρ2

T∫

0

L∫

L0

ut(x−L)utxdxdt−k2

T∫

0

L∫

L0

(ux+v+lw)x(x−L)uxdxdt

− lσ2

T∫

0

L∫

L0

(wx − lu)(x− L)uxdxdt +

T∫

0

L∫

L0

(f2(ũ, ṽ, w̃)

− f2(û, v̂, ŵ))(x− L)uxdxdt

− β2

T∫

0

L∫

L0

vt(x− L)vxtdxdt − λ2

T∫

0

L∫

L0

vxx(x− L)vxdxdt

+ k2

T∫

0

L∫

L0

(ux + v+ lw)(x− L)vxdxdt +

T∫

0

L∫

L0

(h2(ũ, ṽ, w̃)

− h2(û, v̂, ŵ))(x− L)vxdxdt

− ρ2

T∫

0

L∫

L0

wt(x− L)wxtdxdt − σ2

T∫

0

L∫

L0

(wx − lu)x(x− L)wxdxdt

+ lk2

T∫

0

L∫

L0

(ux + v+ lw)(x− L)wxdxdt +

T∫

0

L∫

L0

(g2(ũ, ṽ, w̃)

− g2(û, v̂, ŵ))(x− L)wxdxdt =

− ρ2

L∫

L0

(x− L)((utux)(x,T)− (utux)(x, 0))dx

− β2

L∫

L0

(x− L)((vtvx)(x,T)− (vtvx)(x, 0))dx

− ρ2

L∫

L0

(x− L)((wtwx)(x,T)− (wtwx)(x, 0))dx. (90)

After integration by parts to x, we infer

− ρ2

T∫

0

L∫

L0

ut(x− L)utxdx− β2

T∫

0

L∫

L0

vt(x− L)vxtdxdt

− ρ2

T∫

0

L∫

L0

wt(x− L)wxtdxdt

=
ρ2

2

T∫

0

L∫

L0

u2t dx+
β2

2

T∫

0

L∫

L0

v2t dxdt +
ρ2

2

T∫

0

L∫

L0

w2
t dxdt

−
ρ2(L− L0)

2

T∫

0

u2t (L0)dt −
β2(L− L0)

2

T∫

0

v2t (L0)dt

−
ρ2(L− L0)

2

T∫

0

w2
t (L0)dt (91)

and

− k2

T∫

0

L∫

L0

(ux + v+ lw)x(x− L)uxdxdt

− lσ2

T∫

0

L∫

L0

(wx − lu)(x− L)uxdxdt

−λ2

T∫

0

L∫

L0

vxx(x−L)vxdxdt+k2

T∫

0

L∫

L0

(ux+v+ lw)(x−L)vxdxdt

− σ2

T∫

0

L∫

L0

(wx − lu)x(x− L)wxdxdt

+ lk2

T∫

0

L∫

L0

(ux + v+ lw)(x− L)wxdxdt =

− k2

T∫

0

L∫

L0

(ux + v+ lw)x(x− L)(ux + v+ lw)dxdt

−σ2

T∫

0

L∫

L0

(wx−lu)x(x−L)(wx−lu)dxdt−λ2

T∫

0

L∫

L0

vxx(x−L)vxdxdt

− lσ2(L− L0)

T∫

0

(wx − lu)(L0)u(L0)dt

+ k2(L− L0)

T∫

0

(ux + v+ lw)(L0)v(L0)dt

+ lk2(L− L0)

T∫

0

(ux + v+ lw)(L0)w(L0)dt =

−
k2(L− L0)

2

T∫

0

(ux+ v+ lw)2(L0)dt+
k2

2

T∫

0

L∫

L0

(ux+ v+ lw)2dxdt

+
σ2

2

T∫

0

L∫

L0

(wx − lu)2dxdt −
σ2(L− L0)

2

T∫

0

(wx − lu)2(L0)dt
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+
λ2

2

T∫

0

L∫

L0

v2xdxdt

−
λ2(L− L0)

2

T∫

0

v2x(L0)dt − lσ2(L− L0)

T∫

0

(wx − lu)(L0)u(L0)dt

+ k2(L− L0)

T∫

0

(ux + v+ lw)(L0)v(L0)dt

+ lk2(L− L0)

T∫

0

(ux + v+ lw)(L0)w(L0)dt. (92)

Consequently, it follows from (90)–(92) that for any l > 0, there

exist constantsM4,M5,M6 > 0 such that

T∫

0

E2(t)dt ≤ M4

T∫

0

B2(t)dt +M5(R,T)lot +M6(E(T)+ E(0)),

where

B2(t) =

T∫

0

(wx − lu)2(L0, t)dt +

T∫

0

(ux + v+ lw)2(L0, t)dt

+

T∫

0

v2x(L0, t)dt+

T∫

0

w2
t (L0, t)dt+

T∫

0

v2t (L0, t)dt+

T∫

0

u2t (L0, t)dt.

Then, due to conditions (8)–(11), there exist δ,M7,M8 > 0

(depending on l), such that

T∫
0

E(t)dt ≤ δ
T∫
0

L0∫
0

(γ (ψ̃t)− γ (ψ̂t))ψtdxdt

+M7(R,T)lot +M8(E(T)+ E(0)). (93)

It follows from (49) that there exists C > 0 such that

T∫

0

L0∫

0

(γ (ψ̃t)− γ (ψ̂t))ψtdxdt ≤ C


E(0)+

T∫

0

|H(Û(t), Ũ(t))|dt


 .

(94)

By Lemma 3.6 we have that for any ε > 0 there exists C(ε,R) >

0 such that

T∫

0

|H(Û(t), Ũ(t))|dt ≤ ε

T∫

0

L0∫

0

E(t)dxdt + C(ε,R,T)lot. (95)

Combining (95) with (94), we arrive at

T∫

0

L0∫

0

(γ (ψ̃t)− γ (ψ̂t))ψtdxdt ≤ CE(0)+ C(R,T)lot. (96)

Substituting (96) into (93), we obtain

T∫

0

E(t)dt ≤ C(R,T)lot + C(E(T)+ E(0)) (97)

for some C,C(R,T) > 0.

Our remaining task is to estimate the last term in (50).

∣∣∣∣∣∣

T∫

0

T∫

t

H(Û(s), Ũ(s))dsdt

∣∣∣∣∣∣
≤

T∫

0

E(t)dt + T3C(R)lot. (98)

Then, it follows from (50, 98) that

TE(T) ≤ C

T∫

0

E(t)dt + C(T,R)lot. (99)

Then the combination of (99) with (97) leads to

TE(T) ≤ C(R,T)lot + C(E(T)+ E(0)).

Choosing T large enough one can obtain an estimate (40) which

together with Theorem 4.5 immediately leads to the asymptotic

smoothness of the system.

4.3 Existence of attractors

The following statement collects criteria on the existence and

properties of attractors to gradient systems.

Theorem 4.8 (Ref. [10, 11]). Assume that (H, St) is a gradient

asymptotically smooth dynamical system. Assume its Lyapunov

function L(y) is bounded from above on any bounded subset of H

and the set WR = {y : L(y) ≤ R} is bounded for every R. If the set

N of stationary points of (H, St) is bounded, then (St ,H) possesses

a compact global attractor. Moreover, the global attractor consists

of full trajectories γ = {U(t) : t ∈ R} such that

lim
t→−∞

distH(U(t),N) = 0 and lim
t→+∞

distH(U(t),N) = 0 (100)

and

lim
t→+∞

distH(Stx,N) = 0 for any x ∈ H; (101)

i.e., any trajectory stabilizes to the setN of stationary points.

Now we state the result of the existence of an attractor.

Theorem 4.9. Let the assumptions of Theorems 4.2 and 4.7, hold

true. Moreover,

lim inf
|s|→∞

h1(s)

s
> 0, (N5)

∇F2(u, v,w)(u, v,w)− a1F2(u, v,w) ≥ −a2, ai ≥ 0.

Then, the dynamical system (H, St) generated by (1)–(11)

possesses a compact global attractor A possessing properties (100)

and (101).

Proof. In view of Theorems 4.2, 4.7, 4.8, our remaining task is to

show the boundedness of the set of stationary points and the set

WR = {Z : L(Z) ≤ R}, where L is given by (28).

The second statement follows immediately from the structure

of function L and property (N5).

The first statement can be easily shown by energy-like estimates

for stationary solutions, taking into account (N5).
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5 Singular limits on finite time
intervals

5.1 Singular limit l → 0

Let the nonlinearities fj, hj, gj be such that

f1(ϕ,ψ ,ω) = f1(ϕ,ψ), h1(ϕ,ψ ,ω) = h1(ϕ,ψ),

g1(ϕ,ψ ,ω) = g1(ω),

f2(u, v,w) = f2(u, v), h2(u, v,w) = h2(u, v),

g2(u, v,w) = g2(w). (N6)

If we formally set l = 0 in (17)–(23), we obtain the contact

problem for a straight Timoshenko beam

ρ1ϕtt − k1(ϕx + ψ)x + f1(ϕ,ψ) = p1(x, t),

(x, t) ∈ (0, L0)× (0,T), (102)

β1ψtt − λ1ψxx + k1(ϕx + ψ)+ γ (ψt)+ h1(ϕ,ψ) = r1(x, t),

(x, t) ∈ (0, L0)× (0,T), (103)

ρ2utt − k2(ux + v)x + f2(u, v) = p2(x, t),

(x, t) ∈ (L0, L)× (0,T), (104)

β2vtt − λ2vxx + k2(ux + v)+ h2(u, v) = r2(x, t),

(x, t) ∈ (L0, L)× (0,T), (105)

ϕ(0, t) = ψ(0, t) = 0, u(L, t) = v(L, t) = 0, (106)

ϕ(L0, t) = u(L0, t), ψ(L0, t) = v(L0, t), (107)

k1(ϕx + ψ)(L0, t) = k2(ux + v)(L0, t),

λ1ψx(L0, t) = λ2vx(L0, t), (108)

and an independent contact problem for wave equations

ρ1ωtt − σ1ωxx + g1(ω) = q1(x, t), (x, t) ∈ (0, L0)× (0,T),

(109)

ρ2wtt − σ2wxx + g2(w) = q2(x, t), (x, t) ∈ (L0, L)× (0,T),

(110)

σ1ωx(L0, t) = σ2wx(L0, t), ω(L0, t) = w(L0, t), (111)

w(L, t) = 0, ω(0, t) = 0. (112)

The following theorem states that solutions to (17)–(23) when

l → 0, are close in an appropriate sense to the solution of decoupled

system (102)–(112).

Theorem 5.1. Assume that the conditions of Theorem 3.4, (D3),

(N6) hold. Let8(l) be the solution to (17)–(23) with the fixed l and

the initial data

8(x, 0) = (ϕ0,ψ0,ω0, u0, v0,w0)(x),

8t(x, 0) = (ϕ1,ψ1,ω1, u1, v1,w1)(x).

Then for every T > 0

8(l) ∗
⇀ (ϕ,ψ ,ω, u, v,w) in L∞(0,T;Hd) as l → 0,

8
(l)
t

∗
⇀ (ϕt ,ψt ,ωt , ut , vt ,wt) in L∞(0,T;Hv) as l → 0,

where (ϕ,ψ , u, v) is the solution to (102)–(108) with the initial

conditions

(ϕ,ψ , u, v)(x, 0) = (ϕ0,ψ0, u0, v0)(x),

(ϕt ,ψt , ut , vt)(x, 0) = (ϕ1,ψ1, u1, v1)(x),

and (ω,w) is the solution to (109–(112) with the initial conditions

(ω,w)(x, 0) = (ω0,w0)(x), (ωt ,wt)(x, 0) = (ω1,w1)(x).

The proof is similar to that of Theorem 3.1 in Ref. [4] for the

homogeneous Bresse beam with obvious changes, except for the

limit transition in the nonlinear dissipation term. For future use,

we formulate it as a lemma.

Lemma 5.2. Let (D3) hold. Then

∫ T

0

∫ L0

0
γ (ψ (l)(x, t))γ 1(x, t)dxdt

→

∫ T

0

∫ L0

0
γ (ψ(x, t))γ 1(x, t)dxdt as l → 0

for every γ 1 ∈ L2(0,T;H1(0, L0)).

Proof. Since (D1) and (D3) hold |γ (s)| ≤ Ms, therefore

||γ (ψ (l))||L∞(0,T;L2(0,L0)) ≤ C(||ψ (l)||L∞(0,T;L2(0,L0))).

Thus, due to Lemmas 2.1 and 3.6, the sequence

R8
(l)
tt = A8(l) + Ŵ(8

(l)
t )+ F(8(l))+ P

is bounded in L∞(0,T;H−1(0, L)) and we can extract

a subsequence form 8
(l)
tt , that converges ∗-weakly in

L∞(0,T;H−1(0, L)). Thus,

8
(l)
t → 8t strongly in L2(0,T;H−ε(0, L)), ε > 0.

Consequently,

∣∣∣∣∣

∫ T

0

∫ L0

0
(γ (ψ (l)(x, t))− γ (ψ(x, t)))γ 1(x, t)dxdt

∣∣∣∣∣ ≤

C(L)

∫ T

0

∫ L0

0
|ψ (l)(x, t)− ψ(x, t)||γ 1(x, t)|dxdt → 0.

We perform numerical modeling for the original problem

with l = 1, 1/3, 1/10, 1/30, 1/100, 1/300, 1/1, 000, and the limiting

problem (l = 0) with the following values of constants: ρ1 = ρ2 =

1, β1 = β2 = 2, σ1 = 4, σ2 = 2,λ1 = 8, λ2 = 4, L = 10, L0 = 4,

and the right-hand side

p1(x) = sin x, r1(x) = x, q1(x) = sin x, (113)

p2(x) = cos x, r2(x) = x+ 1, q2(x) = cos x. (114)

In this subsection, we consider the nonlinearities with the

potential

F1(ϕ,ψ ,ω) = |ϕ + ψ |4 − |ϕ + ψ |2 + |ϕψ |2 + |ω|3,

F2(u, v,w) = |u+ v|4 − |u+ v|2 + |uv|2 + |w|3.
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Consequently, the nonlinearities have the form

f1(ϕ,ψ ,ω) = 4(ϕ + ψ)3 − 2(ϕ + ψ)+ 2ϕψ2,

f2(u, v,w) = 4(u+ v)3 − 2(u+ v)+ 2uv2,

h1(ϕ,ψ ,ω) = 4(ϕ + ψ)3 − 2(ϕ + ψ)+ 2ϕ2ψ ,

h2(u, v,w) = 4(u+ v)3 − 2(u+ v)+ 2u2v,

g1(ϕ,ψ ,ω) = 3|ω|ω,

g2(u, v,w) = 3|w|w.

For modeling, we choose the following dissipation (globally

Lipschitz)

γ (s) =





1

100
s3, |s| ≤ 10,

10s, |s| > 10.

and the following initial data:

ϕ(x, 0) = −
3

16
x2 +

3

4
x, u(x, 0) = 0,

ψ(x, 0) = −
1

12
x2 +

7

12
x, v(x, 0) = −

1

6
x+

5

3
,

ω(x, 0) =
1

16
x2 −

1

4
x, w(x, 0) = −

1

12
x2 +

7

6
x−

10

3
,

ϕt(x, 0) =
x

4
, ut(x, 0) = −

1

6
(x− 10),

ψt(x, 0) =
x

4
, vt(x, 0) = −

1

6
(x− 10),

ωt(x, 0) =
x

4
, wt(x, 0) = −

1

6
(x− 10).

Figures 2–7 show the behavior of solutions when l → 0 for the

chosen cross-sections of the beam.

5.2 Singular limit ki → ∞, l → 0

The singular limit for the straight Timoshenko beam (l = 0) as

ki → +∞ is the Euler–Bernoulli beam equation in Ref. [15, Ch.

4]. We have a similar result for the Bresse composite beam when

ki → ∞, and l → 0.

Theorem 5.3. Let the conditions of Theorem 3.4, (N6), and (D3)

hold.

We also let the following assumptions be satisfied

(ϕ0, u0) ∈
{
ϕ0 ∈ H2(0, L0), u0 ∈ H2(L0, L), ϕ0(0) = u0(L) = 0,

∂xφ0(0) = ∂xu0(L) = 0, ∂xϕ0(L0, t) = ∂xu0(L0, t)
}
;

(I1)

ψ0 = −∂xϕ0, v0 = −∂xu0; (I2)

(ϕ1, u1) ∈ {ϕ1 ∈ H1(0, L0), u1 ∈ H1(L0, L), ϕ1(0) = u1(L) = 0,

ϕ1(L0, t) = u1(L0, t)}; (I3)

ω0 = w0 = 0; (I4)

h1, h2 ∈ C1(R2); (N6)

r1 ∈ L∞(0,T;H1(0, L0)), r2 ∈ L∞(0,T;H1(L0, L)),

r1(L0, t) = r2(L0, t) for allmost all t > 0.
(R3)

Let k
(n)
j → ∞, l(n) → 0 as n → ∞, and 8(n) be the solutions

to (17)-(23) with the fixed k
(n)
j , l(n) and the same initial data

8(x, 0) = (ϕ0,ψ0,ω0, u0, v0,w0)(x),

8t(x, 0) = (ϕ1,ψ1,ω1, u1, v1,w1).

Then for every T > 0

8(n) ∗
⇀ (ϕ,ψ ,ω, u, v,w) in L∞(0,T;Hd) as n → ∞,

8
(n)
t

∗
⇀ (ϕt ,ψt ,ωt , ut , vt ,wt) in L∞(0,T;Hv) as n → ∞,

where

• (ϕ, u) is the solution to

ρ1ϕtt − β1ϕttxx + λ1ϕxxxx − γ
′(−ϕtx)ϕtxx + ∂xh1(ϕ,−ϕx)

+ f1(ϕ,−ϕx) = p1(x, t)+ ∂xr1(x, t), (x, t) ∈ (0, L0)× (0,T),

(115)

ρ2utt − β2uttxx + λ2uxxxx + ∂xh2(u,−ux)+ f2(u,−ux)

= p2(x, t)+ ∂xr2(x, t), (x, t) ∈ (L0, L)× (0,T),

(116)

ϕ(0, t) = ϕx(0, t) = 0, u(L, t) = ux(L, t) = 0, (117)

ϕ(L0, t) = u(L0, t),ϕx(L0, t) = ux(L0, t), (118)

λ1ϕxx(L0, t) = λ2uxx(L0, t), (119)

λ1ϕxxx(L0, t)− β1ϕttx(L0, t)+ h1(ϕ(L0, t),

− ϕx(L0, t))+ γ (−ϕtx(L0, t)) =

λ2uxxx(L0, t)− β2uttx(L0, t)+ h2(u(L0, t),−ux(L0, t)),

(120)

with the initial conditions

(ϕ, u)(x, 0) = (ϕ0, u0)(x), (ϕt , ut)(x, 0) = (ϕ1, u1)(x).

• ψ = −ϕx, v = −ux;

• (ω,w) is the solution to

ρ1ωtt − σ1ωxx + g1(ω) = q1(x, t), (x, t) ∈ (0, L0)× (0,T),

(121)

ρ2wtt − σ2wxx + g2(w) = q2(x, t), (x, t) ∈ (L0, L)× (0,T),

(122)

ω(0, t) = 0, w(L, t) = 0, (123)

σ1ωx(L0, t) = σ2wx(L0, t), ω(L0, t) = w(L0, t) (124)

with the initial conditions

(ω,w)(x, 0) = (0, 0), (ωt ,wt)(x, 0) = (ω1,w1)(x).

Proof. The proof uses the idea from Ref. [15, Ch. 4.3] and differs

from it mainly in transmission conditions. We skip the details of

the proof, which coincides with Ref. [15].

Energy inequality (25) implies (125)

∂t(ϕ
(n),ψ (n),ω(n), u(n), v(n),w(n)) bounded in L∞(0,T;Hv),

(125)

ψ (n) bounded in L∞(0,T;H1(0, L0)),

(126)
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FIGURE 2

Transversal displacement of the beam, cross-section x = 2.

FIGURE 3

Transversal displacement of the beam, cross-section x = 6.

FIGURE 4

Shear angle variation of the beam, cross-section x = 2.

v(n) bounded in L∞(0,T;H1(L0, L)) (127)

ω(n)
x − l(n)ϕ(n) bounded in L∞(0,T; L2(0, L0)), (128)

w(n)
x − l(n)u(n) bounded in L∞(0,T; L2(L0, L)),

(129)

k
(n)
1 (ϕ(n)x + ψ (n) + l(n)ω(n)) bounded in L∞(0,T; L2(0, L0)),

(130)

k
(n)
2 (u(n)x + v(n) + l(n)w(n)) bounded in L∞(0,T; L2(L0, L)),

(131)
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FIGURE 5

Shear angle variation of the beam, cross-section x = 6.

FIGURE 6

Longitudinal displacement of the beam, cross-section x = 2.

FIGURE 7

Longitudinal displacement of the beam, cross-section x = 6.

Thus, we can extract subsequences that converge in

corresponding spaces ∗-weak. Similarly to Ref. [15] we have

ϕ(n)x + ψ (n) + l(n)ω(n) ∗
⇀ 0 in L∞(0,T; L2(0, L0)),

therefore

ϕx = −ψ .

Analogously,

ux = −v.

Equations (126)–(131) imply

ω(n) ∗
⇀ ω in L∞(0,T;H1(0, L0)),

w(n) ∗
⇀ w in L∞(0,T;H1(L0, L)), (132)
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ϕ(n)
∗
⇀ ϕ in L∞(0,T;H1(0, L0)),

u(n)
∗
⇀ u in L∞(0,T;H1(L0, L)). (133)

Thus, the Aubin’s lemma gives that

8(n) → 8 strongly in C(0,T; [H1−ε(0, L0)]
3 × [H1−ε(L0, L)]

3)

(134)

for every ε > 0 and then

∂xϕ0 + ψ0 + l(n)ω0 → 0 strongly in H−ε(0, L0),

This implies that

∂xϕ0 = −ψ0, ω0 = 0.

Analogously,

∂xu0 = −v0, w0 = 0.

Let us take a test function of the form B =

(β1,−β1x , 0,β
2,−β2x , 0) ∈ FT such that β1x (L0, t) = β2x (L0, t)

for almost all t. Due to (132)–134) and Lemma 5.2 we can

pass to the limit in variational equality (24) as n → ∞. In

the same way as in Ref. [15, Ch. 4.3] we obtain, that limiting

functions ϕ, u are of higher regularity and satisfy the following

variational equality

∫ T

0

∫ L0

0

(
ρ1ϕtβ

1
t − β1ϕtxβ

1
tx

)
dxdt

+

∫ T

0

∫ L

L0

(
ρ2utβ

2
t − β1utxβ

2
tx

)
dxdt

−

∫ L0

0

(
ρ1(ϕtβ

1
t )(x, 0)− β1(ϕtxβ

1
tx)(x, 0)

)
dx

+

∫ L

L0

(
ρ2(utβ

2
t )(x, 0)− β1(utxβ

2
tx)(x, 0)

)
dx

+

∫ T

0

∫ L0

0
λ1ϕxxβ

1
xxdxdt

+

∫ T

0

∫ L

L0

λ2uxxβ
2
xxdxdt

−

∫ T

0

∫ L0

0
γ ′(−ϕxt)ϕtxxβ

1dxdt

+

∫ T

0

∫ L0

0

(
f1(ϕ,−ϕx)β

1 − h1(ϕ,−ϕx)β
1
x

)
dxdt

+

∫ T

0

∫ L

L0

(
f2(u,−ux)β

2 − h2(u,−ux)β
2
x

)
dxdt

=

∫ T

0

∫ L0

0

(
p1β

1 − r1β
1
x

)
dxdt

+

∫ T

0

∫ L

L0

(
p2β

2 − r2β
2
x

)
dxdt. (135)

Provided ϕ and u are smooth enough, we

can integrate (135) by parts concerning x and t

and obtain

∫ T

0

∫ L0

0
(ρ1−β1∂xx)ϕttβ

1dxdt+

∫ T

0

∫ L

L0

(ρ2−β2∂xx)uttβ
2dxdt

+

∫ T

0

[
β1ϕttx(t, L0)− β2uttx(t, L0)

]
β1(t, L0)dt

+

∫ T

0

∫ L0

0
λ1ϕxxxxβ

1dxdt +

∫ T

0

∫ L

L0

λ2uxxxxβ
2dxdt

+

∫ T

0
[λ1ϕxx − λ2uxx] (t, L0)β

1
x (t, L0)dt

−

∫ T

0
[λ1ϕxxx − λ2uxxx] (t, L0)β

1(t, L0)dt

−

∫ T

0

∫ L0

0
γ ′(−ϕxt)ϕxxtβ

1dxdt

−

∫ T

0
γ (−ϕxt(L0, t))β

1(L0, t)

+

∫ T

0

∫ L0

0

(
f1(ϕ,−ϕx)+ ∂xh1(ϕ,−ϕx)

)
β1dxdt

+

∫ T

0

∫ L

L0

(
f2(u,−ux)+ ∂xh2(u,−ux)

)
β2dxdt

+

∫ T

0

(
h2(u(L0, t),−ux(L0,T))− h1(ϕ(L0, t),−ϕx(L0,T))

)
β1(L0, t)dt

=

∫ T

0

∫ L0

0
(p1 + ∂xr1)β

1dxdt +

∫ T

0

∫ L

L0

(p2 + ∂xr2)β
2dxdt

+

∫ T

0

[
r2(t, L0)− r1(t, L0)

]
β1(t, L0)dt. (136)

Requiring all the terms containing β1(L0, t), β
1
x (L0, t) to be zero,

we get transmission conditions (119)–(116). Equations (115 and

116) are recovered from the variational equality (136). Problem

(121)–(124) can be obtained in the same way.

We perform numerical modeling for the original problem with

the initial parameters

l(1) = 1, k
(1)
1 = 4, k

(1)
2 = 1.

We model the simultaneous convergence l → 0 and

k1, and k2 → ∞ in the following way: we divide l by the factor

χ and multiply k1, k2 by the factor χ . Calculations were performed

for the original problem with

χ = 1, χ = 3, χ = 10, χ = 30, χ = 100, χ = 300,

and the limiting problem (115)–(120). The other constants in the

original problem are the same as in the previous subsection, and we

change functions in the right-hand side (113, 114) as follows:

r1(x) = x+ 4, r2(x) = 2x.

The nonlinear feedbacks are

f1(ϕ,ψ ,ω) = 4ϕ3 − 2ϕ, f2(u, v,w) = 4u3 − 8u,

h1(ϕ,ψ ,ω) = 0, h2(u, v,w) = 0,

g1(ϕ,ψ ,ω) = 3|ω|ω, g2(u, v,w) = 6|w|w.
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We use linear dissipation γ (s) = s, and we chose the following

initial displacement and shear angle variation:

ϕ0(x) = −
13

640
x4 +

6

40
x2 −

23

40
x2,

u0(x) =
41

2160
x4 −

68

135
x3 +

823

180
x2 −

439

27
x+

520

27
.

ψ0(x) = −

(
−

13

160
x3 +

27

40
x2 −

23

20
x

)
,

v0(x) = −

(
41

540
x3 −

68

45
x2 +

823

90
x−

439

27

)
.

and set

ω0(x) = w0(x) = 0.

We choose the following initial velocities

ϕ1(x) = −
1

32
x3 +

3

16
x2, u1(x) =

1

108
x3 −

7

36
x2 +

10

9
x−

25

27
,

ω1(x) = ψ1(x) =
3

5
x,

w1(x) = v1(x) = −
2

5
x+ 4.

The double limit case appeared to be more challenging from

the point of view of numerics than the case l → 0. The numerical

simulations of the coupled system in equations (1)–(7), including

the interface conditions in (8)–(11), were done by a semi-discrete

of the functions φ,ψ ,ω, u, v,w with respect to the position x and

by using an explicit scheme for the time integration. That allows

the choice of discretized values at grid points near the interface

in a separate step so that they obey the transmission conditions.

It was necessary to solve a nonlinear system of equations for

the six functions at three grid points (at the interface, and left

and right of the interface) in each time step. Any attempt to

use a fully implicit numerical scheme led to extremely time-

expensive computations due to the large nonlinear system’s overall

discretized values which were to be solved in each time step.

On the other hand, increasing k1 and k2 increases the stiffness

of the system of ordinary differential equations, which results

from the semidiscretization, and the CFL conditions require small

time steps; otherwise, numerical oscillations occur. Figures 8–13

present smoothed numerical solutions, which were particularly

necessary for large factors χ , e.g., χ = 300. When the parameters

k1 and k2 are large, the material of the beam gets stiff, and so

does the discretized system of differential equations. Nevertheless,

the oscillations are still noticeable in the graph. By the way,

the observation that the factor χ cannot be arbitrarily enlarged

underlines the importance of having the limit problem for χ → ∞

in (1)-(15).

6 Discussion

The classical Kirchhoff model of elasticity is based on the

hypothesis that the shear angleψ can be represented asψ = −∂xϕ,

where φ is the transverse displacement of the beam. In this case,

the beam is initially straight and nonshearable. The Bresse model

describes the dynamics of an initially curved beam and takes into

consideration shear effects (for details, see, e.g., Ref. [2]). In real-

world applications, it is important to investigate networks of elastic

objects with different elastic properties and contact conditions,

such as spacecraft structures, trusses, robot arms, antennae, etc. In

the present study, we evaluate the dynamics of two Bresse beams

with rigid contact and, moreover, show that if the curvature l tends

to zero, solutions to the Bresse transmission problem lean to be

the solutions of two problems. The longitudinal displacements in

this case incline to be the solutions to a transmission problem

for a wave equation, and the transversal displacements and shear

angles be the to solutions to the Timoshenko problem, describing

the dynamics of a straight shearable beam. In the case of a double

limit, if curvature l tends to zero and shear moduli k1, and k2
tend to infinity, the longitudinal displacements, in this case, tend

to be the solutions of a transmission problem for a wave equation,

and the transversal displacements to solutions of a transmission

Kirchhoff problemwith rotational inertia.We illustrate these effects

by means of numerical modeling. These results show that in cases

of small initial curvature and large shear moduli, shear effects can

be neglected and the dynamics can be described by the well-known

Kirchhoff model. Figures show that the speed of convergence to the

limit model in the case of a single limit l → 0 is higher than in the

case of a double limit l → 0, ki → ∞, when not only the geometric

configuration but also the elastic properties of the beam change.

There are many studies devoted to long-time behavior of linear

homogeneous Bresse beams (with various boundary conditions and

dissipation natures). If damping is present in all three equations, it

appears to be sufficient for the exponential stability of the system

without additional assumptions on the parameters of the problems

(see, e.g., Ref. [16–18]).

The situation is different if we have a dissipation of any kind

in two or one equation only. First of all, it matters in which

equations the dissipation acts. There are results on the Timoshenko

beams (see Ref. [19]) and the Bresse beams (see Ref. [20]) showing

that damping in only one of the equations does not guarantee

the exponential stability of the whole system. It seems that for

the Bresse system, the presence of dissipation in the shear angle

equation is necessary for stability of any kind. To get exponential

stability, one needs additional assumptions on the coefficients of

the problem, usually the equality of the propagation speeds:

k1 = σ1,
ρ1

k1
=
β1

λ1

Otherwise, only polynomial (non-uniform) stability holds (see

e.g., Ref. [21] for mechanical dissipation and Ref. [20] for thermal

dissipation). In Ref. [22] analogous results are established in the

case of nonlinear damping.

If dissipation is present in all three equations of the Bresse

system, corresponding problems with nonlinear source forces

of a local nature possess global attractors under the standard

Frontiers in AppliedMathematics and Statistics 23 frontiersin.org153

https://doi.org/10.3389/fams.2024.1418656
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Fastovska et al. 10.3389/fams.2024.1418656

FIGURE 8

Transversal displacement of the beam, cross-section x = 2.

FIGURE 9

Transversal displacement of the beam, cross-section x = 6.

FIGURE 10

Shear angle variation of the beam, cross-section x = 2.

assumptions for nonlinear terms (see e.g., [4]). Otherwise,

nonlinear source forces create technical difficulties and may cause

instability in the system. To the best of our knowledge, there is no

literature on such cases.

The damping force is a function of the system’s velocity. In

the linear case, it is standard linear viscous damping; however,

in some mechanical systems, for instance, nonlinear suspension

and isolation systems (see e.g., Ref. [23] Section 2d), the damping

force can be nonlinear. Therefore, we consider a general nonlinear

damping term and find assumptions under which the problem is

well-posed and possesses a compact global attractor. In this case,

linear damping is a particular case of the damping considered.
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FIGURE 11

Shear angle variation of the beam, cross-section x = 6.

FIGURE 12

Longitudinal displacement of the beam, cross-section x = 2.

FIGURE 13

Longitudinal displacement of the beam, cross-section x = 6.

The presence of nonlinear feedback complicates the structure

the of attractors. The homogeneous problem without nonlinear

feedbacks is exponentially stable, and its trajectories stabilize to

zero for infinite time. Nonlinear problems usually have more

complex limiting regimes. In this case, the attractor consists of full

trajectories stabilizing the set of stationary points, which can consist

of multiple points.

In this study, we investigate a transmission problem for the

Bresse system.

Transmission problems for various equation types have already

had some history of investigation. One can find many research

concerning their well-posedness, long-time behavior, and other

aspects (see e.g., Ref. [24] for a nonlinear thermoelastic/isothermal

plate, Ref. [25] for the Kirchhoff/Timoshenko beam, and Ref. [26]
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for the full von Karman beam). Problems with localized damping

are close to transmission problems. In recent years a number

of such problems for the Bresse beams have been studied, e.g.,

Ref. [4, 22]. To prove the existence of attractors in this case, a

unique continuation property is an important tool, as well as the

frequency method.

The only interpretation we know on a transmission problem

for the Bresse system is Ref. [27]. The beam in this work consists of

thermoelastic (damped) and elastic (undamped) parts, both purely

linear. Despite the presence of dissipation in all three equations for

the damped part, the corresponding semigroup is not exponentially

stable for any set of parameters but only polynomially (non-

uniformly) stable. In contrast to Ref. [27], we consider mechanical

damping only in the equation for the shear angle for the damped

part. However, we can establish exponential stability for the linear

problem and the existence of an attractor for the nonlinear one

under restrictions on the coefficients in the damped part only. The

assumption on the nonlinearities can be simplified in the 1D case

(cf. e.g., Ref. [28]).
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This research is devoted to studying a geometric Brownian motion with drift

switching driven by a 2 × 2 Markov chain. A discrete-time multiplicative

approximation scheme was developed, and its convergence in Skorokhod

topology to the continuous-time geometric Brownian motion with switching

has been proved. Furthermore, in a financial market where the discounted

asset price follows a geometric Brownian motion with drift switching, market

incompleteness was established, and multiple equivalent martingale measures

were constructed.

KEYWORDS

geometric Brownian motion, Markov switching, discrete-time multiplicative

approximation, equivalent martingale measure, incomplete financial market

1 Introduction

In this article, we study a geometric Brownian motion with Markov switching in the

drift coefficient. Assume that (Xt)t≥0 follows a linear stochastic differential equation

dXt = (δ0Yt + δ1(1− Yt))Xtdt + σXtdWt , X0 = x0, (1)

where x0 > 0 is non-random, δ0, δ1 ∈ R, (Wt)t≥0 is a Brownian motion, and (Yt)t≥0

is an independent of W continuous-time Markov jump process with the values in the set

{0, 1}, with the initial value Y0 = 0 and with an infinitesimal matrix

A =

(
−λ0 λ0

λ1 −λ1

)
, (2)

for some positive λ0 and λ1. Moreover, let the processes (Yt)t≥0 and (Wt)t≥0 be defined

on a stochastic basis with filtration (�,F, (Ft)t≥0,P), where Ft = σ {Ws,Ys, 0 ≤ s ≤ t}. It

is well known that the strong solution of Equation (1) can be represented as an exponent

of the form

Xt = X0 exp

(∫ t

0
(δ0Ys + δ1(1− Ys))ds+ σWt −

σ 2

2
t

)
. (3)

Drift-switching models have been applied in finance and economics for several

decades. Early applications of drift switching in the context of time-series econometrics can
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be found in Quandt [1] or Quandt and Goldfeld [2]. Hamilton [3]

used drift switching tomodel the business cycle, where the expected

growth rates of a national product switch according to a Markov

chain. In finance, geometric Brownian motion with a Markov

chain-modulated drift rate has become popular for modeling asset

price dynamics. For instance, Ang and Timmermann [4] and

Sotomayor and Cdenillas [5] studied regime-switching models in

finance, while Dai et al. [6] and Dai et al. [7] investigated optimal

trend-following trading strategies for an asset price modeled by a

stochastic differential (Equation 1). In this context, the switching

drift rates correspond to bull and bear market conditions. Maheu

et al. [8] focus on the identification and estimation aspects of such

models. In a similar setting, Décamps et al. [9] and Klein [10]

examine optimal investment timing in a risky project with a sunk

cost. The study by Aingworth, Das and Motwani [11] was devoted

to pricing equity options with Markov switching. Elliott et al. [12]

also studied option pricing in models with Markov switching. Bae

et al. [13] investigate the problem of asset allocation under regime

switching and Ekström and Lu [14] study an optimal irreversible

sale of an asset, while Ekström and Lindberg [15] analyze optimal

closing strategies for momentum trades. Henderson et al. [16]

study exercise patterns of American call executive stock options

written on a stock whose drift parameter falls to a lower value at

an exponentially distributed random time.

This study focuses on discretizing a geometric Brownian

motion with a Markov switching drift rate, as described by

Equation (1). Since explicit solutions to models with switching drift

rates are rare, rigorous discretization and an understanding of

its properties are essential for implementing numerical methods

such as binomial and multinomial trees, PDE solvers, or Monte

Carlo simulations for these models. Furthermore, in time-series

econometrics, a discrete-time version of Equation (1) is typically

used from the outset, albeit with only a vague connection to

the continuous-time model. Our analysis rigorously connects

the continuous- and discrete-time models and provides their

convergence properties.

Note that a wide class of theorems on diffusion approximation

of additive schemes were proved in the book of Liptser and

Shiryaev [17] and generalized to multiplicative schemes in the

book of Mishura and Ralchenko [18]. The present study is, in a

context, a modification of the functional limit theorems obtained in

Chapter 1 of the book [18]. However, to the best of our knowledge,

multiplicative Markov switching schemes and their corresponding

functional limit theorems have not been previously established.

In addition to the problem of the approximation (in the context

of functional limit theorems) of a market with switching, we also

investigated the question of the incompleteness of such a market.

Intuitively, this incompleteness is obvious, since we have one risky

asset with two independent sources of randomness. At the same

time, it is easy to construct the so-called minimum martingale

measure. It is more difficult to construct a class of equivalent

martingale measures other than the minimal one. We managed to

construct a fairly wide class of such measures, although it is obvious

that all equivalent martingale measures are not exhausted by such a

construction.

This study is organized as follows: In Sections 2 and 3, we

develop a discretization for the switching component of the process

(Equation 1) and prove the weak convergence of the respective

probability measures, generated by the prelimit and limit processes,

respectively. Section 4 is devoted to the weak convergence of

the measures corresponding to the component responsible for

volatility. Then, due to the independence of these processes and,

consequently, of respective probability measures, we get the weak

convergence of the products of these measures, or that is, of

the sequence of probability measures generated by the prelimit

sequence of probability measures, to the measure corresponding

to the limit process. Note also the following: while prelimit and

limit Markov processes (chains) are discontinuous, we can establish

their weak convergence in Skorokhod topology. However, their

integral sums and also the components that are responsible for the

weak convergence to geometric Brownian motion converge even

in the uniform topology. So, finally, our processes converge in the

uniform topology. Finally, Section 5 is devoted to the construction

of a wide class of equivalent martingale measures for the market,

where Equation (1) represents the discounted price of a risky asset.

2 Discrete-time multiplicative
approximation of the di�usion model
with Markov switching

The main goal of this study is to construct a sequence of

discrete-time versions of X, the geometric Brownian motion with

Markov modulated drift given by Equation (1) and Equation (3),

such that these discretized versions weakly converge in Skorokhod

topology (in fact, convergence will be even in the uniform topology)

to the process X on the fixed time interval [0,T].

So, following this direction, we consider the limit process

(Xt)t∈[0,T] on the fixed time interval [0,T], where T > 0 is a

maturity date, and create a series of discrete-timemodels numbered

by N ∈ N. Our Nth discrete-time market corresponds to the

partition of the interval [0,T] into N subintervals of the form[
(k−1)T

N , kTN

]
, 1 ≤ k ≤ N. Let X

(N)
0 = x0, and X

(N)
k

be a

strictly positive discounted price of the asset at a time kT
N of Nth

discrete-time market, 1 ≤ k ≤ N.

Taking into account the multiplicative nature of the limit

model, together with the assumption of independence of Y andW

on [0,T], we can assume that the ratio
X
(N)
k

X
(N)
k−1

, 1 ≤ k ≤ N can be

represented as a product

X
(N)
k

X
(N)
k−1

=
(
1+ R

(1,N)
k

) (
1+ R

(2,N)
k

)
, (4)

where random variables R
(i,N)
k

, i ∈ {1, 2}, 1 ≤ k ≤ N are

independent and R
(i,N)
k

> −1 almost surely (a.s.) Taking logarithms

in Equation (4), we can write

U
(N)
k

= log(X
(N)
k

) = log(X0)+

k∑

j=1

log
(
1+ R

(1,N)
j

)

+

k∑

j=1

log
(
1+ R

(2,N)
j

)
, (5)
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where 1 ≤ k ≤ N and U
(N)
0 = log(x0). We

assume that the process X(N) is defined on the stochastic basis

(�(N),F(N),R
(1,N)
k

(F
(N)
t )t∈[0,T],P

(N)), where filtration is generated

by the respective random variables R
(i,N)
k

, i = 1, 2 so that X
(N)
k

is

F
(N)
kT
N

-measurable. In this model, random variables R
(1,N)
k

represent

non-volatile net profit rates generated by the price process on

the time intervals
[
(k−1)T

N , kTN

]
, 1 ≤ k ≤ N in a model with

switching. Recall that we consider (Ys)s≥0, which is the jump

Markov process with values in the set {0, 1} and an infinitesimal

matrix (Equation 1). This process governs the switching in a

continuous-time model. Recall also that state 0 generates income

with intensity δ0 and state 1 generates income with intensity δ1.

Once we consider a discrete-time model, we have to introduce a

discrete-time switching process (note that in such a model, the

switching of the interest rate may only occur at times kT
N ). Let(

Y
(N)
k

)
k≥0

be a discrete-time, 2 × 2 Markov chain defined on the

same probability space as R(1,N), R(2,N), and U(N) which is defined

in Equation (5). It is independent of the processes R(2,N) andU(2,N).

The chain takes values in the set {0, 1} and has initial values Y
(N)
0 =

0 and Y
(N)
k

= 0, implying that the intensity of the interest on the

kth interval of the Nth discrete-time market equals δ0. Similarly,

Y
(N)
k

= 1 means that such intensity equals δ1.

The definition of the transition probabilities matrix for the

process Y(N) follows from the requirement for occupation times

of Y(N) to be close to those of (Ys)s≥0. This leads to the following

definition of the transition probabilities of the chain Y(N) for i ∈

{0, 1}:

P
(N)
(
Y
(N)
k+1

= i|Y
(N)
k

= i
)

= P

(
Ys = i,

Tk

N
≤ s ≤

T(k+ 1)

N
| Y Tk

N
= i

)

= P(Ys = i, 0 ≤ s ≤ T/N | Y0 = i) = e−
λiT
N ,

where we used theMarkov property of the process (Ys)s≥0. Such

probabilities define a one-step transition probability matrix

(
e−λ0

T
N 1− e−λ0

T
N

1− e−λ1
T
N e−λ1

T
N

)
. (6)

Using the switching process Y(N), we can define random

variables R
(1,N)
k

, 0 ≤ k ≤ N, as follows:

R
(1,N)
k

=
δ0T

N
Y
(N)
k

+
δ1T

N
(1− Y

(N)
k

). (7)

Definition 7 has the following financial interpretation: Since

R
(1,N)
k

, 1 ≤ k ≤ N is a profit rate generated by the risky asset on the

kth time interval, the accrual on this interval equals to

1+ R
(1,N)
k

= exp

(
δ0T

N

)
Y
(N)
k

+ exp

(
δ1T

N

)
(1− Y

(N)
k

). (8)

Equation (8) can be written as:

R
(1,N)
k

=

(
exp

(
δ0T

N

)
− 1

)
Y
(N)
k

+

(
exp

(
δ1T

N

)
− 1

)
(1−Y

(N)
k

).

(9)

Using the Taylor formula, we can write R
(1,N)
k

as follows:

R
(1,N)
k

=

(
δ0T

N
+ o

(
δ0T

N

))
Y
(N)
k

+

(
δ1T

N
+ o

(
δ1T

N

))
(1−Y

(N)
k

).

By neglecting asymptotically small terms o
(
δ0T
N

)
and o

(
δ1T
N

)
,

we arrive at the definition (Equation 8).

Now, we turn our attention to R
(2,N)
k

. This random variable

represents the pure volatility in the model. In our discrete-time

markets, the sums
k∑

j=1
log(1 + R

(2,N)
j ), roughly speaking, will

approximate the process σWt −
σ 2

2 t.

Now, as we defined discrete-time markets and prelimit

processes
(
U

(N)
k

, 0 ≤ k ≤ N
)
, we can give a mathematical

formulation for the main goal of this study, which is the

convergence of discrete-time markets to the market described

by Equation (1). By “convergence of discrete-time markets," we

mean weak convergence of probability measures associated with

stochastic processes that drive such markets, or convergence of

random processes in Skorokhod or uniform topology. It will be

specified explicitly in any theorem.

Next, we define the logarithm of the limit price process by

Ut = log(Xt) = log(X0)+

∫ t

0
(δ0Ys + δ1(1− Ys))ds+ σWt −

σ 2t

2
,

t ∈ [0,T]. It is convenient to separate the components of Ut and

U
(N)
k

as follows:

Ut = logX0 + U
(1)
t + U

(2)
t ,

U
(N)
k

= logX0 + U
(1,N)
k

+ U
(2,N)
k

,

where

U
(1)
t =

∫ t

0
(δ0Ys + δ1(1− Ys))ds, U

(2)
t = σWt −

σ 2t

2
,

U
(i,N)
k

=

k∑

j=1

log
(
1+ R

(i,N)
j

)
, i ∈ {1, 2}, 1 ≤ k ≤ N,U

(i,N)
0 = 0.

Let us define for t ∈
[
(k−1)T

N , kTN

)
,

U
(N)
t = U

(N)
k−1

, U
(N)
T = U

(N)
N ,

U
(i,N)
t = U

(i,N)
k−1

, U
(i,N)
T = U

(i,N)
N ,

R
(N)
t = R

(N)
k−1

,R
(N)
T = R

(N)
N ,

Y
(N)
t = Y

(N)
k−1

, Y
(N)
T = Y

(N)
N , 1 ≤ k ≤ N,

(10)

i ∈ {1, 2}, 1 ≤ k ≤ N. So, we consider step-wise discrete-

time approximations of the limit process U. Thus, our goal is to

prove the weak convergence of the sequence of stochastic processes(
U

(N)
t

)
t∈[0,T]

to the process (Ut)t∈[0,T]. To this end, we will

establish the convergence of
(
Y
(N)
t

)
t∈[0,T]

to (Yt)t∈[0,T] (Theorem

3), then the convergence of
(
U

(i,N)
t

)
t∈[0,T]

to
(
U

(i)
t

)
t∈[0,T]

, i ∈

{1, 2} (Theorems 4 and 5), and the desired result then follows

because of the independence of probability measures respective
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to Markov chains and the components that converge to the

geometric Brownian motion. Therefore, the respective products

of the probability measures weakly converge to the product of

probability measures corresponding to the limit Markov chain and

the limit geometric Brownian motion, respectively.

3 Weak convergence of discrete-time
Markov chains to the limit Markov
process

In this section, we prove that the sequence of processes(
Y(N)

)
t∈[0,T]

introduced in Section 2 converges in Skorokhod

topology to the process (Yt)t∈[0,T]. As a consequence, we will obtain

the convergence of the processes
(
U(1,N)

)
t∈[0,T]

to
(
U(1)

)
t∈[0,T]

,

however, even in the uniform topology.

LetNt be the number of jumps of a process (Ys, s ≥ 0) on a time

interval [0, t]. Let us introduce the occupation times

θ0 = inf{t > 0|Yt 6= Y0}, θn = inf{t > θn−1 :Yt 6= Yθn−1}

− θn−1, n ≥ 1,

and jump times

τk =

k∑

j=0

θk, k ≥ 0.

Recall that the Markov chain (Y
(N)
k

, k ≥ 0), introduced in

Section 2, has an initial value of Y
(N)
0 = 0 and the transition

probability matrix (Equation 6). For this chain, let us define the

total number of jumps on the time interval [0,T]

νN =

N−1∑

j=0

∣∣∣Y(N)
j+1 − Y

(N)
j

∣∣∣ ,

occupation times

θ
(N)
0 = inf

{
k > 0|Y

(N)
k

6= Y
(N)
0

}
,

θ (N)
n = inf

{
k > θ

(N)
n−1 :Y

(N)
k

6= Y
(N)

θ
(N)
n−1

}
, n ≥ 1,

and jump times

τ
(N)
k

=

k∑

k=0

θ
(N)
j , k ≥ 0.

For a given t ∈ [0,T] and integer N, define kt,N ∈ {0, . . . ,N}

in the following way: kT,N = N, and for t ∈ [0,T), we have

t ∈
[
kt,NT
N ,

(kt,N+1)T
N

)
. We will also use the notation t(N) =

kt,NT
N .

Lemma 1. For all k ≥ 1, the following inequality holds:

P(NT = k) ≤ dCk exp

(
−
|λ1 − λ0|T

2
k

)
, (11)

where

d = max

{(
λ0

λ1

) 1
2

, 1

}
max

{
e−λ0T , e−

|3λ1−λ0 |
2 T , e−

|λ0−λ1 |
2 T

}
,

(12)

and

C =
e|λ1−λ0| − 1

|λ1 − λ0|
(λ0λ1)

1
2 . (13)

Proof. We have the following relations:

P(NT = 2m)

=

∫ T

0

∫ T

t0

. . .

∫ T

t2m−1

λ0e
−λ0t0λ1e

−λ1(t1−t0)λ0e
−λ0(t2−t1)

. . . λ1e
−λ1(t2m−1−t2m−2)e−λ0(T−t2m−1)dt0 . . . dt2m−1

≤

∫

[0,T]2m
λ0e

−λ0t0λ1e
−λ1(t1−t0) . . . e−λ0(T−t2m−1)dt0 . . . dt2m−1

= (λ0λ1)
me−λ0T

∫

[0,T]2m

exp
(
(λ1 − λ0)(t0 − t1 + t2 . . .+ t2m−1)

)
dt0 . . . dt2m−1

= (λ0λ1)
me−λ0T

2m−1∏

j=0

∫ T

0
e(−1)j(λ1−λ0)tjdtj

= (λ0λ1)
me−λ0T

2m−1∏

j=0

(−1)j(e(−1)j(λ1−λ0)T − 1)

λ1 − λ0

= (λ0λ1)
me−λ0T

(e(λ1−λ0)T − 1)m(1− e−(λ1−λ0)T)m

(λ1 − λ0)2m

= (λ0λ1)
me−λ0T

(
e(λ1−λ0)T − 1

λ1 − λ0

)2m

e−(λ1−λ0)Tm.

In the case when λ1 > λ0, from these relations, we immediately

get inequality (Equation 11) for k = 2m. In the case when λ0 > λ1,

we can rewrite previous estimates as

P(NT = 2m)

≤ (λ0λ1)
me−λ0T

(
e(λ1−λ0)T − 1

λ1 − λ0

)2m

e−(λ1−λ0)Tm

= (λ0λ1)
me−λ0T

(
1− e(λ1−λ0)T

λ0 − λ1

)2m

e−(λ1−λ0)Tm

= (λ0λ1)
me−λ0T

(
e(λ0−λ1)T − 1

λ0 − λ1

)2m

e−(λ1−λ0)Tm+2(λ0−λ1)Tm

= (λ0λ1)
me−λ0T

(
e(λ0−λ1)T − 1

λ0 − λ1

)2m

e−(λ0−λ1)Tm,

and also get the inequality (Equation 11).

Let us now switch to the case k = 2m − 1. Following the same

process as before, we obtain the inequality

P(NT = 2m− 1)

≤ λ0(λ0λ1)
m−1e−λ1T

(
e(λ1−λ0)T − 1

λ1 − λ0

)2m−1

e−(λ1−λ0)Tm.

If λ1 > λ0, then we can write

P(NT = 2m− 1) ≤

(
λ0

λ1

) 1
2

C2m−1 exp
(
−(λ1 − λ0)Tm− λ1T

)

≤ C2m−1 exp

(
−(λ1 − λ0)T

2m− 1

2
−

3λ1 − λ0

2
T

)
,
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so that Equation (11) holds true in this case.

If λ0 > λ1, then

P(NT = 2m− 1)

≤ λ0(λ0λ1)
m−1e−λ1T

(
e(λ0−λ1)T − 1

λ0 − λ1

)2m−1

e−(λ0−λ1)Tm−(λ0−λ1)T

=

(
λ0

λ1

) 1
2

C2m−1e−(λ0−λ1)Tm

=

(
λ0

λ1

) 1
2

C2m−1 exp

(
−(λ0 − λ1)T

2m− 1

2
−
λ0 − λ1

2
T

)
,

and Equation (11) holds true.

Corollary 1.

E exp

(
|λ1 − λ0|T

4
NT

)
<∞. (14)

Proof. Let us define 3 = |λ1 − λ0| and let constants C and d be

as in Equations (13) and (12), respectively. From Lemma 1, we see

that

P(Nt = k) ≤ dCke−
3T
2 k, (15)

Inequality (14) is a direct consequence of Inequality (15),

indeed, we can put α : = 3T
4 > 0 and get that

EeαNT ≤ d

∞∑

k=0

Cke−
3T
4 k <∞.

Theorem 1. Denote by fm(t0, . . . , tm) a conditional density of

(τ0, . . . , τm) given NT = m and put

gm(t0, . . . , tm) = fm(t0, . . . , tm)P(NT = m).

Then, for any ε > 0, there exists an integer N(m) such that for all

N ≥ N(m) and all 0 ≤ t0 < . . . < tm ≤ T, we have
∣∣∣∣∣gm(t0, . . . , tm)−

(
N

T

)m+1

p̂N(kt0 ,N , . . . , ktm ,N)

∣∣∣∣∣ < ε,

where p̂N(k0, . . . , km) = P
(N){τ

(N)
0 = k0, τ

(N)
1 = k1, . . . , τ

(N)
m =

km, τ
(N)
m+1 > N}.

Proof. We prove the statement for evenm (so that we will write 2m

in the following theorem). The proof for the oddm is the same.

Let f̃2m(t0, . . . , t2m) be a conditional density of (θ0, . . . , θ2m)

given NT = 2m and g̃2m(t0, . . . , t2m) = f̃2m(t0, . . . , t2m)P(NT =

2m). Since {θj, 0 ≤ j ≤ 2m} are independent random variables with

alternating exponential distributions, we can write

g̃2m(t0, . . . , t2m)

= lim
h→0

1

(2h)2m+1
P
(
|θj − tj| < h, τ2m+1 > T, 0 ≤ j ≤ 2m

)

= P(θ2m+1 > T − (t0 + . . .+ t2m))

lim
h→0

2m∏

j=0

(
1

2h
P(|θj − tj| < h)

)

= λ0e
−λ0t0λ1e

−λ1t1 . . . λ0e
−λ0t2me−λ1(T−(t0+...+t2m)),

for all tj ≥ 0, 0 ≤ j ≤ 2m, such that t0 + . . .+ t2m ≤ T. Recall

that θ0 = τ0 and θj = τj − τj−1, 1 ≤ j ≤ 2m. So we have for all

0 ≤ t0 < . . . < t2m ≤ T

g2m(t0, . . . , t2m)

= g̃2m(t0, t1 − t0, . . . , t2m − t2m−1)

= λ0e
−λ0t0λ1e

−λ1(t1−t0) . . . λ0e
−λ0(t2m−t2m−1)e−λ1(T−t2m)

= λ0(λ0λ1)
me−λ1T exp


(λ1 − λ0)

2m∑

j=0

(−1)jtj


 .

To simplify the further derivations, let us omit indices in kti ,N
and simply write ki. Then we can rewrite p̂N(k0, . . . , km) as

p̂N (k0, . . . , k2m) = e−λ0
k0T
N

(
1− e

−λ0T
N

)
e−λ1

(k1−k0)T
N

(
1− e

−λ1T
N

)
× . . .×

×e−λ0
k0T
N

(
1− e

−λ0T
N

)
e
−λ1(N−k2m )T

N =
(
1− e

−λ0T
N

)m+1 (
1− e

−λ1T
N

)m
×

× exp

(
−
T

N

(
λ0k0 + λ1(k1 − k0)+ λ0(k2 − k1) . . .

+λ0(k2m − k2m−1)+ λ1(N − k2m)
)
)

=
(
1− e

−λ0T
N

)m+1 (
1− e

−λ1T
N

)m
e−λ1T exp


(λ1 − λ0)

2m∑

j=0

(−1)j
kjT

N




=
(
1− e

−λ0T
N

)m+1 (
1− e

−λ1T
N

)m
e−λ1T exp


(λ1 − λ0)

2m∑

j=0

(−1)jt
(N)
j


 .

Furthermore, the following limit holds:

(
T

N

)−(2m+1) (
1− e−λ0

T
N

)m+1 (
1− e−λ1

T
N

)m

=

(
1− e−λ0

T
N

(T/N)

)m+1 (
1− e−λ1

T
N

(T/N)

)m

→ λm+1
0 λm1 ,

as N → ∞. For any ε1 > 0, we can now find an integer

N(m, ε1) such that for all N ≥ N(m, ε1), we have

∣∣∣∣∣

(
T

N

)−2m−1 (
1− e

−λ0T
N

)m+1 (
1− e

−λ1T
N

)m
− λm+1

0 λm1

∣∣∣∣∣ < ε1.

Put

ε2 = λm+1
0 λm1 ε1, and B = exp(|λ1 − λ0|T).

Note that

exp


(λ1 − λ0)

n∑

j=0

(−1)jsj


 ≤ B,
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for all integer n > 0 and all 0 ≤ s0 < s1 < . . . < sn ≤ T. We

can now write

eλ1T

λm+1
0 λm1

∣∣∣∣∣g2m(t0, . . . , t2m)−
(
N

T

)2m+1

p̂N(kt0 ,N , . . . , kt2m ,N)

∣∣∣∣∣ ≤

≤

∣∣∣∣∣∣
exp


(λ1 − λ0)

2m∑

j=0

(−1)jtj




− exp


(λ1 − λ0)

2m∑

j=0

(−1)jt
(N)
j



∣∣∣∣∣∣
+

+ ε2 exp


(λ1 − λ0)

2m∑

j=0

(−1)jt
(N)
j


 =

= B



∣∣∣∣∣∣
exp


(λ1 − λ0)

2m∑

j=0

(−1)j
(
tj − t

(N)
j

)

− 1

∣∣∣∣∣∣
+ ε2




≤ B
(∣∣∣B

2m+1
N − 1

∣∣∣+ ε2
)
.

Clearly, we can now choose an integer N0 = N(m, ε) such that

for all N ≥ N0,
∣∣∣∣∣g2m(t0, . . . , t2m)−

(
N

T

)2m+1

p̂N(kt0 ,N , . . . , kt2m ,N)

∣∣∣∣∣ < ε.

The theorem is proved.

Theorem 2. Let 0 ≤ t0 < t1 < . . . < tn ≤ T be fixed. Then, for any

ε > 0 there exists an integer N(n, ε) such that for all N ≥ N(n, ε),

we have
∣∣∣∣P
(
Yti = xi, 0 ≤ i ≤ n

)
− P

(N)

(
Y
(N)

t
(N)
i

= xi, 0 ≤ i ≤ n

)∣∣∣∣ < ε,

(16)

where xi ∈ {0, 1}, 0 ≤ i ≤ m.

Proof. This result follows from Theorem 1 and Lemma 1. Indeed,

for every fixed ε > 0, we can find an integer m such that P(NT >

m) + P
(N)(νN > m) < ε/2 for all N > 0, so that (Equation 16) is

reduced to

∣∣P
(
Yti = xi, 0 ≤ i ≤ n,Nt ≤ m

)
(17)

−P
(N)

(
Y
(N)

t
(N)
k

= xi, 0 ≤ i ≤ n, νN ≤ m

)∣∣∣∣ < ε/2.

Let us introduce the random variables rj of the form

rj = inf{k ≥ 0 : τk ≤ tj < τk+1}. (18)

In fact, rj is the index number of the occupation interval that

covers the fixed point tj. Note that rj is defined on the same

probability space as (Ys)s≥0, and forω ∈ {Nt ≤ m}, each rk(ω) takes

value in the set {0, 1, . . . ,m}. Put Am
n = {(r0(ω), . . . , rn(ω)), ω ∈

�} ⊂ R
n+1. It is clear that Am

n is a finite set, and

|Am
n | ≤ mn+1.

Then using formula (18), we get an equality

P
(
Yti = xi, 0 ≤ i ≤ n,Nt ≤ m

)

=
∑

(r0 ,...,rn)∈Am
n

P

(
τrj ≤ tj < τrj+1, 0 ≤ j ≤ n,Nt ≤ m

)
.

By Theorem 1, we can find an integer N(ε, n) such that for all

N ≥ N(ε, n)

∣∣∣P
(
τrj ≤ tj < τrj+1, 0 ≤ j ≤ n,Nt ≤ m

)

−P
(N)
(
τ (N)
rj

≤ tj < τ
(N)
rj+1, 0 ≤ j ≤ n,Nt ≤ m

)∣∣∣

≤
ε

2mn+1
,

which proves Equation 17 and hence the statement of the

theorem follows.

Theorem 3. Processes
(
Y
(N)
t

)
t∈[0,T]

converge to (Yt)t∈[0,T], N →

∞ in Skorokhod topology.

Proof. In Theorem 2, we already proved the convergence of finite-

dimensional distributions. Therefore, by Theorem 4, Section VI.5

from Gikhman and Skokohod [19], we have to verify that for all

ε > 0

lim
h→0

lim sup
N→∞

sup
x∈{0,1},0≤s−t≤h

P
(N)

(∣∣∣Y(N)
s − Y

(N)
t

∣∣∣ > ε

∣∣∣ Y(N)
t = x

)
= 0.

(19)

Let us examine the probability

P
(N)
(∣∣∣Y(N)

t+h
− Y

(N)
t

∣∣∣ > ε

∣∣∣ Y(N)
t = 0

)
.

Since the chain Y(N) takes values in the set {0, 1}, the condition∣∣∣Y(N)
th

− Y
(N)
t

∣∣∣ > εmeans that Y
(N)
t+h

= 1−Y
(N)
t . Thus, we can write

P
(N)
(∣∣∣Y(N)

t+h
− Y

(N)
t

∣∣∣ > ε

∣∣∣ Y(N)
t = 0

)
= P

(N)
(
Y
(N)
t+h

= 1| Y
(N)
t = 0

)

= P
(N)
(
Y
(N)
h

= 1| Y
(N)
0 = 0

)
,

where the last equality follows from homogeneity.
Similarly,

P
(N)
(
|Y

(N)
t+h

− Y
(N)
t | > ε | Y

(N)
t = 1

)
= P

(N)
(
Y
(N)
t+h

= 0| Y
(N)
t = 1

)

= P
(N)
(
Y
(N)
h

= 0| Y
(N)
0 = 1

)
.

To evaluate the latter probabilities, we will need a general form

of n-step transition probability for a 2× 2 Markov chain, which has

the form

P
(N)
(
Y(N)
m = 1| Y

(N)
0 = 0

)
= π

(N)
1 − π

(N)
1 (a(N) − 1)m,

P
(N)
(
Y(N)
m = 0| Y

(N)
0 = 1

)
= π

(N)
0 − π

(N)
0 (a(N) − 1)m,

where a(N) = e−λ0
T
N + e−λ1

T
N (note that a(N) ∈ (0, 2)), and

π (N) = (π
(N)
0 ,π

(N)
1 ) =

(
1− e−λ1

T
N

2− a(N)
,
1− e−λ0

T
N

2− a(N)

)

is an invariant distribution for the chain Y(N) (see Appendix,

Equation A1). For a fixed h ∈ [0,T], recall the notation

h(N) =

⌊
hN

T

⌋
.
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Now, we can rewrite the left-hand side of Equation (19) as

lim
h→0

lim sup
N→∞

sup
x∈{0,1},0≤s−t≤h

P
(N)

(
|Y

(N)
s − Y

(N)
t | > ε | Y

(N)
t = x

)
≤

≤ lim
h→0

lim sup
N→∞

sup
x∈{0,1},0≤s≤h

P
(N)

(
Y
(N)
s = 1− x| Y

(N)
0 = x

)

≤ lim
h→0

lim sup
N→∞

sup
x∈{0,1},0≤s≤h

(
π
(N)
x − π

(N)
x (a(N) − 1)s

(N)
)

= lim
h→0

lim sup
N→∞

max
x∈{0,1}

(
π
(N)
x − π

(N)
x (a(N) − 1)h

(N)
)

≤ lim
h→0

lim sup
N→∞

(
1− (a(N) − 1)

hN
T

)

= lim
h→0

(1− e−(λ0+λ1)h) = 0.

Theorem 4. Processes
(
U

(1,N)
t

)
t∈[0,T]

converge to
(
U

(1)
t

)
t∈[0,T]

in

the uniform topology.

Proof. Using the Taylor formula for logarithm, we get the following

representation: for x > 0,

log(1+ x) = x+ ρ(x)x,

where |ρ(x)| ≤ h(N) when x ∈
(
0, CN

)
for some constant C, and

h(N) → 0, N → ∞. For any fixed t ∈
[
(k−1)T

N , kTN

)
we have

U
(1,N)
t =

k−1∑

j=0

log
(
1+ R

(1,N)
j

)
=

k−1∑

j=0

(
R
(1,N)
j + ρ

(
R
(1,N)
j

)
R
(1,N)
j

)

=

k−1∑

j=0

(
δ0T

N
Y
(N)
j +

δ1T

N

(
1− Y

(N)
j

))
+

k−1∑

j=0

ρ

(
R
(1,N)
j

)
R
(1,N)
j

=

∫ (k−1)T
N

0

(
δ0Y

(N)
s + δ1

(
1− Y

(N)
s

))
ds+

k−1∑

j=0

ρ

(
R
(1,N)
j

)
R
(1,N)
j

=

∫ t

0

(
δ0Y

(N)
s + δ1

(
1− Y

(N)
s

))
ds

−

∫ t

(k−1)T
N

(
δ0Y

(N)
s + δ1

(
1− Y

(N)
s

))
ds

+

k−1∑

j=0

ρ

(
R
(1,N)
j

)
R
(1,N)
j .

Next, we have a.s.

∣∣∣∣∣∣

k−1∑

j=0

ρ

(
R
(1,N)
j

)
R
(1,N)
j

∣∣∣∣∣∣
≤ h(N)Tmax{δ0, δ1} → 0, N → ∞,

∣∣∣∣∣

∫ t

(k−1)T
N

(
δ0Y

(N)
s + δ1

(
1− Y

(N)
s

))
ds

∣∣∣∣∣ ≤
max{δ0, δ1}T

N
→ 0, N → ∞.

Using Theorem 3, we may conclude that for each fixed t ∈
[0,T],

∫ t

0

(
δ0Y

(N)
s + δ1

(
1− Y(N)

s

))
ds →d

∫ t

0
(δ0Ys + δ1 (1− Ys)) ds, N → ∞.

We can now use the Slutsky theorem, and conclude that

U
(1,N)
t →d U

(1)
t ,

where by→d we denote a weak convergence in distribution. Let

us now consider a linear combination of the form

m∑

j=0

αjU
(1,N)
tj

, αj ∈ R, m ≥ 0, 0 ≤ t0 < . . . < tm ≤ T.

Using the properties of the Riemann integral and Slutsky

theorem we can apply similar reasoning to conclude that

m∑

j=0

αjU
(1,N)
tj

→d
m∑

j=0

αjU
(1)
tj

, N → ∞,

which implies weak convergence of finite-dimensional

distributions of the process
(
R
(1,N)
t

)
t∈[0,T]

to that of
(
U

(1)
t

)
t∈[0,T]

.

Let us consider the modulus of continuity of the sequences

of the processes
(∫ t

0

(
δ0Y

(N)
s + δ1(1− Y

(N)
s

)
ds
)
t∈[0,T]

. Obviously,

for all 0 ≤ u < t ≤ T

∣∣∣∣
∫ t

u

(
δ0Y

(N)
s + δ1(1− Y(N)

s

)
ds

∣∣∣∣ ≤ (t − u)max{δ0, δ1}.

The latter inequality implies that the family of processes(∫ t
0

(
δ0Y

(N)
s + δ1(1− Y

(N)
s

)
ds
)
t∈[0,T]

is tight in the uniform

topology. The statement of the theorem follows from this fact,

together with the convergence of finite-dimensional distributions.

4 Weak convergence to a geometric
Brownian motion with Markov
switching drift rate in the
multiplicative scheme of series

Conditions of weak convergence of the sequence of processes

U(2,N)
: = {U

(2,N)
t , t ∈ [0,T]}, N ≥ 1,

created in Equation 10, to the process U2(t) = σWt −
σ 2

2 t, are

classical. They can be deduced from the respective results contained

in the books [20] and [18]. However, for the reader’s convenience,

we describe them briefly, basing them on the Skorokhod theorem

about weak convergence of sums of independent random variables

to the continuous process with independent increments (see, e.g.,

Theorem 1, pages 452–453 from Gikhman and Skokohod [21]). So,

we consider the scheme of series of the formU
(2,N)
t = 0, t ∈ [0, TN ),

U
(2,N)
T =

N∑
i=1

log
(
1+ R

(2,N)
i

)
, and

U
(2,N)
t =

[
Nt
T

]
∑

i=1

log
(
1+ R

(2,N)
i

)
, t ∈

[
T

N
,T

)
.

We can simplify these records by putting
∑0

i=1 and

U
(2,N)
t =

[
Nt
T

]
∑

i=1

log
(
1+ R

(2,N)
i

)
, t ∈ [0,T] .
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Assume that there exist two real-valued sequences

{αN ,βN ,N ≥ 1} such that −1 < αN < R
(2,N)
i < βN with

probability 1 and αn,βN → 0 as N → ∞. Then

U
(2,N)
t =

[
Nt
T

]
∑

i=1

(
R
(2,N)
i −

1

2

(
R
(2,N)
i

)2)
+1N(t),

where |1N(t)| ≤ 1(αN ,βN)
N∑
i=1

(
R
(2,N)
i

)2
, and real-valued

positive sequence 1(αN ,βN) → 0 as N → ∞. Recall

that we already assumed that
(
R
(2,N)
i , 1 ≤ i ≤ N

)
are mutually

independent.

Theorem 5. Assume that the following conditions hold:

(i) ER
(2,N)
i = 0, 1 ≤ i ≤ N,N ≥ 1.

(ii) For any t ∈ [0,T]

t(N)∑

i=1

E

[
R
(2,N)
i

]2
→ σ 2t.

Then the sequence P
(2,N)
T of measures corresponding to

processes {U
(2,N)
t , t ∈ [0,T]} weakly converges to the measure P

(2)
T

corresponding to process {σWt −
σ 2

2 t, t ∈ [0,T]}.

Proof. Conditions (i) and (ii) mentioned in Theorem 5, together

with Theorem 5.53 from Föllmer et al. [20], imply that for any

0 ≤ s < t ≤ T, the distribution of the increment U
(2,N)
t −

U
(2,N)
s weakly converges to σ (Wt − Ws) −

σ 2

2 (t − s). Moreover,

these conditions, together with restrictions on the values of R
(2,N)
i ,

support Lindeberg’s condition in Theorem 1, pages 452–453 from

Gikhman and Skokohod [21], whence the proof follows.

5 Incompletenesses of the market
with switching

This section explores the incompleteness of the continuous-

time market with drift Markov switching, as described by

Equation 1. Although this topic is not directly related to the

convergence problem studied in the previous sections, it is of

interest to the financial applications of the model.

In this section, we assume that (Xt)t≥0 represents the

discounted asset price in an arbitrage-free market, which consists

of this risky asset and a risk-free asset. Since the risky asset

price involves two independent sources of randomness, the

financial market is incomplete. To demonstrate the incompleteness

explicitly, let us construct a MMM and separately a class of

martingale measures especially related to the Markov process.

First, fix the interval [0,T] and attempt to construct an equivalent

martingale measure Q ∼ P, whose Radon-Nikodym derivative

restricted to the interval [0,T] has the form

dQT

dPT
= exp

(
σ

∫ T

0
ϕ(u)dWu −

σ 2

2

∫ T

0
ϕ2(u)du

)
, (20)

where ϕ(u) is a Fu-adapted stochastic process satisfying

condition E

(
dQT
dPT

)
= 1 (in this case QT is indeed a probability

measure). Moreover, recall the notion of the MMM from Föllmer

and Schweizer [22]:

Definition 1. (Föllmer and Schweizer [22]) Let the discounted

asset price in a financial market be given by the real-valued

semimartingale of the form

S = S0 +M + A,

where S0 > 0 is a constant, M is a local P-martingale, A is

a process of locally bounded variation, P is the initial probability

measure, and M0 = A0 = 0. The minimal martingale measure

(MMM) for S is an equivalent probability measure P̂ that is

characterized by the properties that it transforms S into a local

martingale and preserves the martingale property for any local

P-martingale that is strongly orthogonal toM.

According to Föllmer and Schweizer [22], assume additionally

thatM is a P-square-integrable martingale, and A has a form

At =

∫ t

0
λsd〈M〉s, t ∈ [0,T],

where
∫ T
0 λ

2
s d〈M〉s < ∞ a.s., 〈M〉 is the quadratic

characteristics ofM (see, e.g., Liptser and Shiryayev [17] for detail).

Moreover, if

dSt = St(ρtdt + σtdWt),

and σ is a strictly positive adapted process on [0,T], then λs =

ρsσ
−2
s , s ∈ [0,T], and

∫ t

0
λ2s 〈M〉s =

∫ t

0
ρ2s σ

−2
s ds, t ∈ [0,T].

If the MMM P̂ exists, then its Radon-Nikodym derivative

restricted to the interval [0,T] is given by the stochastic exponent

of the form

dP̂T

dPT
= E

(
−

∫
λdM

)
= exp

{
−

∫ T

0
λsdMs −

1

2

∫ T

0
λ2s d〈M〉s

}
×

×
∏

0≤s≤T

(1− λ1Ms) exp

(
λ1Ms −

1

2
λ2(1M)2s

)
.

Lemma 2. The equivalent martingale measure for the market is

described by Equation (1), which has the form Equation (20), is

unique, and the function ϕ equals

ϕ(u) = −

(
δ0

σ 2
Yu +

δ1

σ 2
(1− Yu)

)
, u ∈ [0,T]. (21)

andQ = P̂ is a MMM in this market.

Proof. For all t ∈ [0,T] the following equality holds

EQ[Xt − Xs|Fs] =
E

[
dQT
dPT

(Xt − Xs)
∣∣∣ Fs

]

E

[
dQT
dPT

∣∣∣ Fs

] . (22)

Assume that

E exp

(
σ

∫ T

0
ϕ(u)dWu −

σ 2

2

∫ T

0
ϕ2(u)du

)
= 1. (23)
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Then the process exp
(
σ
∫ t
0 ϕ(u)dWu −

σ 2

2

∫ t
0 ϕ

2(u)du
)
, t ∈

[0,T] is a martingale, in particular,

E

(
exp

(
σ

∫ t

0
ϕ(u)dWu −

σ 2

2

∫ t

0
ϕ2(u)du

) ∣∣∣∣ Fs

)

= exp

(
σ

∫ s

0
ϕ(u)dWu − σ

2

∫ s

0
ϕ2(u)du

)
,

therefore,

E

[
dQT

dPT
(Xt − Xs)

∣∣∣∣ Fs

]
= XsE

[
exp

(
σ

∫ t

0
ϕ(u)dWu −

σ 2

2

∫ t

0
ϕ2(u)du

)

×

(
exp

(∫ t

s
(δ0Yu + δ1(1− Yu))du+ σ (Wt −Ws)−

σ 2

2
(t − s)

)
− 1

)∣∣∣∣Fs

]
= 0

(24)
if and only if

E

[
exp

(∫ t
s (σϕ(u)

+σ )dWu +
∫ t
s (δ0Yu + δ1(1− Yu)−

σ 2

2 ϕ
2(u)− σ 2

2 )du
)∣∣∣Fs

]
= 1,

which in turn is true if and only if

δ0Yu + δ1(1− Yu)−
σ 2

2
ϕ2(u)−

σ 2

2
= −

σ 2

2
(ϕ(u)+ 1)2,

whence ϕ(u) satisfies equality (Equation 21). According to

Föllmer and Schweizer [22], measureQ is a MMM for this market.

Indeed, in our case, Mt = σ
∫ t
0 XsdWs and At =

∫ t
0 (δ0Ys +

δ1(1 − Ys))Xsds. Obviously, M is a continuous square-integrable

martingale, λt = σ−2(δ0Yt + δ1(1− Yt)), and for MMM

dP̂T

dPT
= E

(
−

∫ T

0
λdM

)

= exp

{
−σ−1

∫ T

0
(δ0Ys + δ1(1− Ys))dWs

−
σ−2

2

∫ T

0
(δ0Ys + δ1(1− Ys))

2ds

}
,

therefore, P̂T = QT from (Equation 20) with Equations 21-24

in hand. Moreover, equality (Equation 23) holds. So, the lemma is

proved.

Nevertheless, there can be other equivalent martingale

measures. To construct a wide class of equivalent martingale

measures, let us consider the following objects: First, we shall use

the standard definition of the Feller process (see e.g., Chung [23],

p. 50) and the following definition of the left quasi-continuous

process, taken from Chung [23] and Liptser and Shiryayev [17].

Definition 2. Let us have a stochastic basis with filtration and

an adapted process U = {Ut , t ≥ 0}. Process U is left quasi-

continuous, if for any stopping time τ and any sequence of stopping

times τn ↑ τ , Uτ = limτn↑τ Uτn P-a.s. on the set {τ <∞}.

Now we summarize the following facts from Liptser and

Shiryayev [17] and Gushchin [24], simplifying them for our

situation (in general, these properties can be formulated in a local

version, but our processes under consideration are integrable). We

consider càdlàg processes, which have a.s. continuous trajectories

from the right and with left limits at all points.

(i) For any adapted process A of integrable variation, there

exists a predictable process Aπ of integrable variation (dual

predictable projection, or compensator of A) such that the process

M = A− Aπ is a martingale.

(ii) If process A is left quasi-continuous, then process Aπ is

continuous.

(iii) The left quasi-continuity of the adapted process A of

integrable variation is equivalent to any of the following properties:

(a) for any predictable stopping moment τ 1τA1τ<∞ = 0,

where 1tA = At − At−, the jump at point t, which is correctly

defined for càdlàg processes.

(b) for any bounded stopping moment τ and for any sequence

of non-decreasing stopping times τn ↑ τ

EAτn → EAτ , n → ∞.

Now we are in a position to construct a wide class of equivalent

martingale measures for our market with Markov switching, but

we decide to operate only with the Markov process Y . It should

be noted that Y has bounded variation |Y| on [0,T] with finite

moments of any order (variation |Y| on [0, t] is simply a number of

jumps Nt , which, according to Corollary 1, has a finite exponential

moment). Therefore, Y is a process of integrable variation and

admits a dual predictable projection Yπ of integrable variation.

Lemma 3. Process Y is left quasi-continuous.

Proof. The desired property follows directly from Theorem 4

(Section 2.4, page 70) in Chung [23], once we establish that Y is

a Feller process.

Recall that time-homogenous Markov process has values in

some compact space E is called Feller if the following two

conditions hold true:

(i) for all f ∈ C(E)

lim
t↓0

∫

E
Pt(·, dy)f (y) = f (·),

(ii) for every fixed t and f ∈ C(E)

∫

E
Pt(·, dy)f (y) ∈ C(E),

where C(E) is a space of all functions continuous on E and

Pt(x,A) is a transition probability on the time interval [0, t].

In our case, E = {0, 1}, so every finite function on E is

continuous, and (ii) follows immediately.

Since the matrix A defined in Equation (2) is a generator of the

process Y , we have by definition

Af (·) = lim
t↓0

∫
E Pt(·, dy)f (y)− f (·)

t
,

for all continuous functions f on {0, 1}, which implies (i).

Now, according to Gushchin [24], any left quasi-continuous

process of integrable variation has a continuous integrable dual

predictable projection (compensator). Therefore, we can consider
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the dual predictable projection Yπ of Y , which is a continuous

process of integrable variation, and letMt = Yt − Yπt . ThenM is a

martingale. Therefore, according to Liptser and Shiryayev [17], M

admits a decompositionM = Mc +Md, whereMc is a continuous

local martingale, andMd is a purely discontinuous local martingale

where pure discontinuity means that common quadratic variation

[Mc,Md] is a zero process.

Lemma 4. M is a purely discontinuous martingale with a finite a.s.

number of jumps on any fixed interval [0,T].

Proof. Pure discontinuity immediately follows from the fact that

both the purely jump process Y and the continuous compensator

of Yπ have zero common quadratic variations [Y ,B] and [Yπ ,B]

with any continuous process B. The lemma is proven.

Therefore, if we create a stochastic exponent E (M), it will have
the form

Et (M) =
∏

0≤u≤t

(1+1Mu) exp{−1Mu} =
∏

0≤u≤t

(1+1Yu) exp{−1Yu},

where 1(·)s stands for the jump of the respective process

at point s, and these jumps are correctly defined for càdlàg

processes. However, the problem with this stochastic exponent is

that the jumps of M can equal −1. To avoid this difficulty, let us

consider any strictly positive continuous process ψt , 0 ≤ t ≤ T

adapted to σ0,t(Y) such that ψ(t) ≤
(
|λ1−λ0|T

4 ∧ 1
2

)
, consider

stochastic integral M
(ψ)
t =

∫ t
0 ψsdMs, which is in fact a sum

of a finite number of terms, and construct stochastic exponent

Et

(
M(ψ)

)
. Introduce the following notations: Es,t

(
M(ψ)

)
=

Et

(
M(ψ)

) (
Es

(
M(ψ)

))−1
, 0 < s ≤ t, and

M
(ϕ)
t = σ

∫ t

0
ϕ(u)dWu, 〈M

(ϕ)〉t = σ 2

∫ t

0
ϕ2(u)du,

where ϕ is defined in Equation (21),

Et

(
M(ϕ)

)
= exp

{
M

(ϕ)
t − 1

2 〈M
(ϕ)〉t

}
, Es,t

(
M(ϕ)

)

= Et

(
M(ϕ)

) (
Es

(
M(ϕ)

))−1
, 0 < s ≤ t.

Theorem 6. Probability measures Q
ϕ,ψ , for which its Radon-

Nikodym derivative restricted on the interval [0,T] has the form

dQ
ϕ,ψ
T

dPT
= ET

(
M(ψ)

)
ET

(
M(ϕ)

)
,

is a probability equivalent martingale measure for the market

defined by Equation (1).

Proof. First, notice that for any s > 0

(
1+1M

(ψ)
s

)
exp{−1M

(ψ)
s }

≤
(
1+ |λ1−λ0|T

4

)
11Ys=1 + e

|λ1−λ0 |T
4 11Ys=−1,

therefore, according to Corollary 1, Et

(
M(ψ)

)
does not exceed

exp
(
|λ1−λ0|T

4 NT

)
, and so, it is integrable. It means that being

a local martingale and stochastic exponent, and also being an

integrable, Et

(
M(ψ)

)
, t ∈ [0,T] is a martingale. In particular,

EET

(
M(ψ)

)
= 1 andET

(
M(ψ)

)
define a probability measureP(ψ)

on (�,F), equivalent to measure P. Now, for any 0 ≤ s ≤ t ≤ T,

introduce the σ -fields σs,t(Y) = σ {Yu, s ≤ u ≤ t} generated by the

process Y on the respective intervals. Then

E

(
ET

(
M(ψ)

)
ET

(
M(ϕ)

))
= E

(
ET

(
M(ψ)

)
E

(
ET

(
M(ϕ)

)∣∣∣σ0,T (Y)
))

.

(25)

Denote x = xt , t ∈ [0,T] some bounded, measurable, and non-

random function. Then, taking into account the independence of

W and Y , we can write that

E

(
ET

(
M(ϕ)

)∣∣∣σ0,T(Y)
)

=

(
E exp

(∫ T

0
xtdWt −

1

2

∫ T

0
x2t dt

)∣∣∣∣∣ϕt=xt , t∈[0,T]

)
= 1.

(26)

Therefore,

E

(
ET

(
M(ψ)

)
ET

(
M(ϕ)

))
= E

(
ET

(
M(ψ)

))
= 1,

whenceQϕ,ψ is a probability measure and
dQ

ϕ,ψ
t

dPt
, t ∈ [0,T] is a

martingale. Nowwe shall use the independence ofW andY again in

order to prove that Q is an equivalent martingale measure. Indeed,

similarly to the proof of Lemma 2,

EQϕ,ψ [Xt − Xs|Fs] =

E

[
dQ

ϕ,ψ
T

dPT
(Xt − Xs)

∣∣∣∣Fs

]

E

[
dQ

ϕ,ψ
T

dPT

∣∣∣∣Fs

]

= XsE

[
Es,t

(
M(ϕ)

)
Es,t

(
M(ψ)

)
×

×

(
exp

{∫ t

s
(δ0Yu + δ1(1− Yu))du+ σ (Wt −Ws)−

σ 2

2
(t − s)

}
− 1

)∣∣∣∣Fs

]

= XsE

[
Es,t

(
M(ψ)

)(
exp

{∫ t

s
σ (ϕu + 1)dWu −

σ 2

2

∫ t

s
(ϕu + 1)2du

}

− exp

{
σ

∫ t

s
ϕ(u)dWu −

1

2
σ 2

∫ t

s
ϕ2(u)du

})∣∣∣∣∣Fs

]
= :G(s, t).

Consider the σ -field

H
t
s = Fs ∨ σs,t(Y),

the smallest σ -field containingFs and σs,t(Y). ThenEs,t

(
M(ψ)

)

isHt
s-measurable, and, similarly to Equations (25, 26),

G(s, t) = XsE

[
Es,t

(
M(ψ)

)
E

(
exp

{∫ t

0
σ (ϕu + 1)dWu −

σ 2

2

∫ t

0
(ϕu + 1)2du

}

− exp

{
σ

∫ t

s
ϕ(u)dWu −

1

2
σ 2

∫ t

s
ϕ2(u)du

})∣∣∣∣∣H
t
s

)∣∣∣∣∣Fs

]
,
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where

E

(
exp

{∫ t

0
σ (ϕu + 1)dWu −

σ 2

2

∫ t

0
(ϕu + 1)2du

}

− exp

{
σ

∫ t

s
ϕ(u)dWu −

σ 2

2

∫ t

s
ϕ2(u)du

} ∣∣∣∣∣H
t
s

)

= E

(
exp

{∫ t

s
σ (xu + 1)dWu −

σ 2

2

∫ t

s
(xu + 1)2du

}

− exp

{
σ

∫ t

s
x(u)dWu −

σ 2

2

∫ t

s
x2(u)du

})∣∣∣∣∣
ϕt=xt , t∈[0,T]

= 1− 1 = 0.

It means that Q
ϕ,ψ is an equivalent martingale measure

for the market defined by Equation (1), and the theorem

is proved.
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Appendix

In this appendix, we present, for the reader’s convenience,

a direct formula for the n-step transition probability of a 2 ×

2 discrete-time Markov chain. Consider a transition probability

matrix of the form

P =

(
α 1− α

1− β β

)
,

for some α,β ∈ (0, 1). Transition probability P admits a unique

invariant probability measure

π = (π0,π1) =

(
1− β

2− α − β
,

1− α

2− α − β

)
.

Let us find an eigendecomposition of P. Clearly, 1 is an eigenvalue,

and the corresponding eigenvector is (1, 1). The second eigenvalue

is λ = α + β − 1, and the corresponding eigenvector is v =

(1− α,β − 1). Thus, we have a decomposition

Pn =

(
1 1− α

1 β − 1

)(
1 0

0 (α + β − 1)n

)(
1−β

2−α−β
1−α

2−α−β
1

2−α−β − 1
2−α−β

)

(A1)

=

(
π0 + π1(α + β − 1)n π1 − π1(α + β − 1)n

π0 − π0(α + β − 1)n π1 + π0(α + β − 1)n

)
.
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A Riemann–Hilbert approach to
solution of the modified focusing
complex short pulse equation

Ruslan Barkov1 and Dmitry Shepelsky1,2*

1School of Mathematics and Computer Sciences, V. N. Karazin Kharkiv National University, Kharkiv,

Ukraine, 2Mathematical Division, B. Verkin Institute for Low Temperature Physics and Engineering,

Kharkiv, Ukraine

We develop a Riemann–Hilbert approach to the modified focusing complex

short pulse (mfcSP) equation

uxt = u+ 1
2
ū(u2)xx

with zero boundary conditions (as |x| → ∞). We obtain a parametric

representation of the solution of the initial value problem for the mfcSP equation

in terms of the solution of the associated Riemann–Hilbert problem. This

representation is then used for retrieving one-soliton solutions.

KEYWORDS

short pulse equation, short wave equation, Camassa-Holm-type equation, inverse

scattering transform, Riemann–Hilbert problem

1 Introduction

The short pulse equation (SP equation, or SPE)

uxt = u+
1

6
(u3)xx (1)

was derived by Schäfer and Wayne [19] as a model equation for the propagation of ultra-

short optical pulses in non-linear media. In this equation, u = u(x, t) is a real-valued

function that represents the magnitude of the electric field. The short pulse equation is

an alternative model to the non-linear Schrödinger (NLS) equation, the latter being used

for describing the slow modulation of the amplitude of a weakly non-linear wave packet in

a moving medium. NLS is used in non-linear optics with great success to describe slowly

varying wave trains whose spectra are narrowly localized around the carrier frequency or

to describe the propagation of sufficiently broad pulses. In the regime of ultra-short pulses

where the width of optical pulse is in order of femtosecond, the SP equation is supposed to

provide better approximation to the corresponding solution of the Maxwell equation while

the NLS equation becomes less accurate. In [10], with the help of numerical simulations, it

was shown that the SP equation can indeed be used to describe pulses with broad spectrum.

In [17, 18], it was shown that the SP equation is completely integrable, in the sense

that it is the compatibility condition of a pair of linear, matrix-valued ordinary differential

equations involving an external (spectral) parameter; such pair of equations is called the

Lax pair. In the case of the SP equation, the associated Lax pair is as follows:

8x = U8, (2)

8t = V8, (3)
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where U and V are 2 × 2 matrices dependent on the spectral

parameter λ:

U =

(
λ λux

λux −λ

)
, (4)

V =




λ
2u

2 + 1
4λ

λ
2u

2ux −
1
2u

λ
2u

2ux +
1
2u − λ

2u
2 − 1

4λ


 . (5)

The Riemann–Hilbert approach to the study of solutions of the

SP equation was presented in [8].

The modified short pulse (mSP) equation

uxt = u+ 1
2u(u

2)xx, (6)

was proposed by Sakovich [16], who studied integrable non-linear

equations having the form

uxt = u+ au2uxx + buu2x. (7)

When a
b
= 1

2 , Equation 7 reduces to Equation 1 whereas the

case a
b
= 1 reduces to Equation 6, both cases being integrable. The

mSP equation (6) was studied by Guo and Liu, who constructed

soliton solutions by the Riemann–Hilbert method [14]. Matsuno

[15] proposed the N- component generalization of Equation 6,

which in the case N = 2 reads

uxt = u+ 1
2v(u

2)xx, vxt = v+ 1
2u(v

2)xx. (8)

Matsuno constructed the soliton solutions by solving the

associated bilinear equations and constructed the local and non-

local conservation laws of Equation 8.

Obviously, if v = u, then Equation 8 reduces to Equation 6. On

the other hand, if v = ū, where the bar stands for the complex

conjugation, the system (8) reduces [20] to

uxt = u+ 1
2 ū(u

2)xx, (9)

which will be called in what follows the modified focusing complex

short pulse equation (mfcSP equation or mfcSPE). Notice that the

reduction v = −ū gives rise to a defocusing version of Equation 9,

having theminus sign at the place of the plus. In [20], somemultiple

smooth soliton, cuspon soliton, loop soliton, breather, and rogue

wave solutions are constructed by N-fold Darboux transformation.

From the point of view of possible applications in optics, the

mfcSP equation, being formulated for a complex-valued function,

appears to be more informative: Similarly to the NLS equation,

a complex-valued function can contain not only the information

about the amplitude but also about the phase of the associated

electromagnetic wave. On the other hand, the mfcSP equation is

integrable: Its Lax pair is Equation 2, where [20]

U = λ

(
1− uxūx 2ux

2ūx −1+ uxūx

)
, (10)

V =




1
4λ + λ(1− uxūx)|u|

2 −u+ 2λ|u|2ux

ū+ 2λ|u|2ūx − 1
4λ − λ(1− uxūx)|u|

2


 . (11)

Motivated by the above, in the present study, we develop

a Riemann–Hilbert (RH) problem formalism for the inverse

scattering transform to the initial value problem for the mfcSPE:

uxt = u+ 1
2 ū(u

2)xx, t > 0, −∞ < x < +∞, (12)

u(x, 0) = u0(x), −∞ < x < +∞. (13)

We assume that u0(x) decays sufficiently fast at±∞:

u0(x) → 0, x → ±∞,

and we seek a solution u(x, t) that decays as x → ±∞ for all t > 0:

u(x, t) → 0, x → ±∞.

Notice that the RH approach for solving initial value problems

for integrable non-linear PDE can be viewed as a version of the

inverse scattering transform (IST) method for such problems, the

more traditional realization of which is based on deriving and

solving the Marchenko integral equation for the corresponding

inverse problems, see, for example, [1] and references therein. Since

the latter approach requires the representation of special solutions

of the x-equation of the corresponding Lax pair in terms of so-

called transformation operators, its application to cases where the

dependence of the Lax equations on the spectral parameter is more

involved (comparing, for example, with the case of the Korteweg-

de Vries equation and its modified versions) is not straightforward

because the very existence of the corresponding transformation

operators is questionable. On the other hand, as we will show in the

next section, the formalism of the RH problem allows us to establish

an algorithmic procedure providing special solutions of the Lax pair

equations with the necessary analytic properties.

In Section 2, we present a version of the Lax pair associated

with the mfcSP equation, which is more convenient for controlling

analytical properties of its special solutions, also known as the Jost

solutions. They are then used in Section 3 to formulate a matrix

Riemann–Hilbert problem suitable for solving the Cauchy problem

(12). In this way, we give a representation of the solution u(x, t) of

the problem (12) in terms of the solution of this RH problem. Then,

in Section 4, we show that a solution of the RH problem with any

appropriate jumpmatrix (ensuring the unique solvability of the RH

problem) gives rise to a solution of the mfcSPE. In Section 5, we

discuss the construction of soliton solutions using the formalism of

the RH problem, which is illustrated numerically in Section 6.

2 Lax pairs and eigenfunctions

The RH formalism for integrable non-linear equations utilizes

the possibility of constructing special solutions of linear equations

from the associated Lax pair, which are well controlled as functions

of the spectral parameter, in the whole extended complex plane.

For this purpose, it is useful to have the Lax pair equations in the

form suitable for establishing analytic properties of solutions near

the singular points with respect to spectral parameter of the Lax

pair equations. For different domains in the complex plane, these

solutions are defined differently and are related to each other at the

boundaries between these domains.
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To construct such special solutions of the differential equations

from the Lax pair, it is convenient to pass to integral equations,

whose solutions are particular solutions to the Lax pair equation.

Notice the coefficients U and V of the Lax pair are traceless

matrices. Consequently, the determinant of a matrix solution to

Equation 10 (composed of two vector solutions) is independent of

x and t.

To obtain a RH problem with the jump condition on the real

axis, as in the case of other Camassa–Holm-type equations [see

[3–9]], we redefine the spectral parameter introducing k: =iλ.

Notice that U and V have singularities (in the extended

complex k-plane) at k = 0 and at k = ∞. Namely, since U is

singular at k = ∞ only, for dealing with the problem on the whole

x-line it is important to control the behavior of special solutions of

the Lax pair equations for large k. Assume that u( · , t) ∈ W2,1(R)

and transform the Lax pair to the following form [cf. [2–4, 8]]:

8̂x + Qx8̂ = Û8̂, (14)

8̂t + Qt8̂ = V̂8̂, (15)

where the coefficients Q(x, t, k), Û(x, t, k), and V̂(x, t, k) have the

following properties:

1. Q is diagonal and is unbounded as k → ∞.

2. Û = O(1) and V̂ = O(1) as k → ∞.

3. The diagonal parts of Û and V̂ decay as k → ∞.

4. Û → 0 and V̂ → 0 as x → ±∞.

To transform the Lax pair, we introduce 8̂: =G8 with G =

G(x, t) to be defined. Then, the Lax pair (10) takes form

8̂x = GUG−18̂ + GxG
−18̂, (16)

8̂t = GVG−18̂ + GtG
−18̂. (17)

Since U is a product of the spectral parameter and a matrix

independent of it, we can define G so as Qx : = −GUG−1 is

a diagonal matrix function satisfying item (i). Then, the degree

of freedom in the determination of G (multiplication of G by a

diagonal matrix from the left) can be used to provide us with Û

satisfying (iii). Namely, introducing

q(x, t): =1+ |ux(x, t)|
2 (18)

we have

G(x, t) =
1
√
q

(
e−m e−mux

−emūx em

)
(19)

with the inverse

G−1(x, t) =
1
√
q

(
em −e−mux
emūx e−m

)
, (20)

wherem is not specified for the moment. Then,

Qx(x, t, k) = −GUG−1 = ikq(x, t)

(
1 0

0 −1

)
= ikq(x, t)σ3, (21)

where σ3 is the Pauli matrix σ3 =

(
1 0

0 −1

)
.

To satisfy item (iii) for Û, we use the freedom of choice of m

to make the diagonal part of Û = GxG
−1 to be identically equal to

zero. Complemented by a norming condition m(+∞, t) = 0, this

leads to

m(x, t) : =
1

2

∫ ∞

x

uzūzz − uzzūz

1+ |uz|2
(z, t)dz, (22)

which finally gives

Û = Û(x, t) =
1

q

(
0 e−2muxx

−e2mūxx 0

)
. (23)

Notice that m is purely imaginary and thus m̄ = −m and

|em| = 1.

As for the t–equation (17), we have:

GVG−1 + GtG
−1 =(−ikq|u|2 −

1

4ikq
(1− uxux)−mt+

1

2q
(ux(−2u+ uxt)+ ux(2u− uxt)))σ3

+
1

2ikq

(
0 e−2mux

e2mux 0

)

+
1

q

(
0 −e−2m(uu2x + u− uxt)

e2m(uu2x + u− uxt) 0

)
.

(24)

Now, we can determine Q(x, t, k) by integrating Equation 21 w.r.t.

x and taking into account that we want V̂ in Equation 15 to vanish

at x = ±∞ for all t. This gives

Q(x, t, k) : =

(
ikx̂(x, t)+

t

4ik

)
σ3, (25)

where

x̂(x, t) : = x−

∫ ∞

x
(q(y, t)− 1)dy (26)

is normalized in such a way that x̂− x → 0 as x → +∞. Then, we

have

Qt(x, t, k) =

(
ikx̂t(x, t)+

1

4ik

)
σ3 =

(
ik|u|2q(x, t)+

1

4ik

)
σ3,

where we have used the equality qt = (|u|2q)x which is actually the

mfcSPE (9) rewritten as a conservation law. Correspondingly,

V̂(x, t, k) =

(
|ux|

2

2ikq
−mt +

1

2q
(ux(−2u+ uxt)+ ux(2u− uxt))

)
σ3

+
1

2ikq

(
0 e−2mux

e2mux 0

)

+
1

q

(
0 −e−2m(uu2x + u− uxt)

e2m(uu2x + u− uxt) 0

)
.

(27)

Remark 2.1. The dependence of the diagonal matrix Q on variables

x̂ and t, see Equation 25, is the same as in the case of the SP equation

[see [8]]. This justifies the name of the mfcSPE as the modified SP

equation: The same property holds for the pair consisting of the

famous Korteweg–de Vries equation ut + 6uux + uxxx = 0 and the

modified Korteweg–de Vries equation ut + 6u2ux + uxxx = 0.
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Introducing

8̃ = 8̂eQ, (28)

Equations 14 can be rewritten as

8̃x + [Qx, 8̃] = Û8̃, (29)

8̃t + [Qt , 8̃] = V̂8̃, (30)

where [ · , · ] denotes the matrix commutator. Now, we
determine the special (Jost) solutions 8̃±(x, t, k) of Equation 29 as
the 2×2 matrix-valued solutions of the associated Volterra integral
equations:

8̃±(x, t, k) = I +

∫ x

±∞

eQ(y,t,k)−Q(x,t,k)Û(y, t)8̃±(y, t, k)e
Q(x,t,k)−Q(y,t,k)dy, (31)

where I is the identity matrix. Taking into account the definition of
Q (25) and (26), we get

8̃+(x, t, k) = I −

∫ ∞

x

eik
∫ y
x q(ξ ,t)dξ σ3 Û(y, t)8̃+(y, t, k)e

−ik
∫ y
x q(ξ ,t)dξ σ3dy, (32)

8̃−(x, t, k) = I +

∫ x

−∞

e
−ik

∫ x
y q(ξ ,t)dξ σ3 Û(y, t)8̃−(y, t, k)e

ik
∫ x
y q(ξ ,t)dξ σ3dy. (33)

Respectively, 8̂± : = 8̃±e
−Q are the Jost solutions of the Lax

pair equations (14).

In what follows, the columns of a 2×2 matrixµ =
(
µ(1) µ(2)

)

are denoted by µ(1) and µ(2). Since q is positive, the exponentials

in Equation 32 as functions of y either decay to 0 or grow to

∞ as y goes to +∞ or to −∞, depending on the sign of the

imaginary part of k (for real k, all exponentials are oscillating

functions). Moreover, if we consider Equation 32 columnwise, the

corresponding integral equation involves the exponentials of only

one sign: either eik
∫ y
x q(ξ ,t)dξ or e−ik

∫ y
x q(ξ ,t)dξ . Consequently, we can

determine the columns of Equation 32 via Neumann series for the

corresponding integral equation, which converge if k belongs to the

corresponding half–plane: the upper half–plane {k| Im k ≥ 0} or

the lower half–plane {k| Im k ≤ 0}. The obtained Jost solutions

satisfy the following properties [cf. [8]] for all (x, t):

1. det 8̃± ≡ 1 (the consequence of the traceless of the coefficient

matrices in Equation 14.

2. 8̃
(1)
− and 8̃

(2)
+ are analytic in {k | Im k > 0} and continuous in

{k | Im k ≥ 0, k 6= 0}.

3. 8̃
(1)
+ and 8̃

(2)
− are analytic in {k | Im k < 0} and continuous in

{k | Im k ≤ 0, k 6= 0}.

4.
(
8̃

(1)
− 8̃

(2)
+

)
→ I as k → ∞ in {k | Im k ≥ 0}.

5.
(
8̃

(1)
+ 8̃

(2)
−

)
→ I as k → ∞ in {k | Im k ≤ 0}.

6. Symmetry property:

8̃±( · , · , k̄) =

(
0 1

−1 0

)
8̃±( · , · , k)

(
0 −1

1 0

)
. (34)

The last property is due to the symmetry of the matrix Ǔ: =Û−

ikqσ3:

Ǔ( · , · , k̄) =

(
0 1

−1 0

)
Ǔ( · , · , k)

(
0 −1

1 0

)
. (35)

Remark 2.2. Introducing the new variable x̂ as in Equation 26,

Equation 14 reduces to the (non-self-adjoint) Dirac equation for

8̆(x̂, t, k): =8̂(x(x̂, t), t, k):

8̆x̂ + ikσ38̆ = Ŭ8̆, (36)

where

Ŭ =
1

q

(
0 e−2muxx

−e2mūxx 0

)
. (37)

Equation 36 is the spatial equation from the Lax pair associated

with the focusing non-linear Schrödinger (fNLS) equation, see [12].

Therefore, the analytic properties of 8̃± stated above are the same

as in the case of the fNLS equation considered in [12].

Now, we introduce the scattering matrix s(k) as the matrix

relating the Jost solutions 8̂+ and 8̂− for those values of k where

all their columns are determined (i.e., for real k):

8̂+(x̂, t, k) = 8̂−(x̂, t, k)s(k), k ∈ R (38)

or, in terms of 8̃±,

8̃+(x̂, t, k) = 8̃−(x̂, t, k)e
−Q(x̂,t,k)s(k)eQ(x̂,t,k), k ∈ R. (39)

Notice that since 8̂+ and 8̂− are solutions of the same

differential equations (16), the matrix s(k) does not depend on x̂

and t. Consequently, s(k) can be determined by q(x, 0) only, by

s(k) = 8̃−1
− (0, 0, k)8̃+(0, 0, k).

Indeed, 8̃±(x̂, 0, k) are determined [see Equation 32] by Û(x, 0)

and q(x, 0) which, in turn, are determined by q(x, 0) alone.

Due to the symmetry (34) and the fact that eQ(x,t,k) satisfies the

same symmetry as well, the scattering matrix can be rewritten with

the help of two scalar spectral functions, a(k) and b(k), as follows:

s(k) =

(
a(k) b(k)

−b(k) a(k)

)
, k ∈ R. (40)

Taking into account Remark 2.2, the spectral functions have

properties, which are similar to those in case of the fNLS equation

in [12]:

1. a(k) and b(k) are determined by u(x, 0) through the solutions

8̃±(x, 0) of Equation 32, where Û = Û(x, 0) is defined by

Equation 23 with u replaced by u0(x) (same for q).

2. a(k) is analytic in {k| Im k > 0} and continuous in {k| Im k ≥

0}, moreover, a(k) → 1 as k → ∞.

3. b(k) is continuous for k ∈ R and b(k) → 0 as |k| → ∞.

4. |a(k)|2 + |b(k)|2 = 1 for k ∈ R.

5. Let {kj}
N
1 be the set of zeros of a(k) in {k| Im k > 0}. We will

make the genericity assumption that the amount of these zeros

is finite and there are no real zeros. Then, 8̂
(1)
− (x, t, kj) and

8̂
(2)
+ (x, t, kj) are linearly dependent solutions of Equation 14

and thus

8̃
(1)
− (x, t, kj) = e

2ikj x̂(x,t)+
t

2ikj 8̃
(2)
+ (x, t, kj)αj (41)

with the constants αj, which, similarly to r(k) are determined

by u0(x) setting t = 0 in Equation 41.
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3 The Riemann–Hilbert problem

3.1 A RH problem constructed from special
eigenfunctions

In this section, we consider the generic situation when all zeros

of a(k) in {k| Im k > 0} are simple. Then, the analytic properties

of 8̃± stated above allow us to rewrite the scattering relations

in Equation 39 as a jump relation for a meromorphic (w.r.t. k),

2×2matrix–valued function (depending on x and t as parameters).

DefineM(x, t, k) as follows (where the scalar factors are introduced

in order to provide detM ≡ 1):

M(x, t, k) =





(
8̃

(1)
− (x,t,k)

a(k)
8̃

(2)
+ (x, t, k)

)
, Im k > 0,(

8̃
(1)
+ (x, t, k)

8̃
(2)
− (x,t,k)

a(k)

)
, Im k < 0.

(42)

Define also the reflection coefficient:

r(k): =
b(k)

a(k)
, k ∈ R. (43)

Then, the limiting values ofM as k approaches the real axis from

the domains± Im k > 0 (we denote them byM±(x, t, k), k ∈ R) are

related as follows:

M+(x, t, k) = M−(x, t, k)e
−Q(x,t,k)J0(k)e

Q(x,t,k), k ∈ R, (44)

where

J0(k) =

(
1+ |r(k)|2 r(k)

r(k) 1

)
. (45)

Taking into account the properties of 8̃± and s(k), the function

M(x, t, k) satisfies the following properties:

1. detM ≡ 1.

2. Normalization:M(·, ·, k) → I as k → ∞.

3. Symmetry:

M(·, ·, k) =

(
0 1

−1 0

)
M(·, ·, k)

(
0 −1

1 0

)
. (46)

4. M(1) has poles at the zeroes kj, j = 1, 2, . . . ,N, of a(k) (in the

upper half-plane),M(2) has poles at kj (in the lower half-plane),

and the following conditions are satisfied:

Resk=kj M
(1)(x, t, k) = iαje

2ikjx(x̂,t)+
t

2ikj M(2)(x, t, kj), (47)

Resk=kj
M(2)(x, t, k) = iαje

−2ikjx(x̂,t)−
t

2ikj M(1)(x, t, kj) (48)

where αj, j = 1, 2, . . . ,N, are constants.

The idea of the Riemann-Hilbert approach in the inverse

scattering method consists of considering the jump relation in

Equation 44 complemented by the normalization conditionM → I

as k → ∞ and by the residue conditions (47) as the problem

of finding M(x, t, k) given the jump condition (44) (with a given

jumpmatrix) and the residue conditions (47) [i.e., given (kj,αj), j =

1, ...,N] at the singularities ofM.

As in the case of other Camassa–Holm-type equations

[particularly, the SPE, see [8]], one faces the problem that the

determination of the jump matrix (e−Q(x,t,k)J0(k)e
Q(x,t,k)) involves

not only the objects that are uniquely determined by the initial data

u(x, 0) [i.e., the spectral functions a(k) and b(k) involved in J0(k)]

but also Q(x, t, k), which is not determined by u(x, 0): Its definition

involves u(x, t) for t > 0.

We can resolve this problem by considering a RH problem

depending, instead of (x, t), on the parameters x̂ and t; in this way,

the jump and residue data become explicit (in terms of x̂ and t).

Actually, we introduce

M̂(x̂, t, k): =M(x(x̂, t), t, k). (49)

In terms of M̂(x̂, t, k), the jump condition takes the form:

M̂+(x̂, t, k) = M̂−(x̂, t, k)J(x̂, t, k), k ∈ R, (50)

where

J(x̂, t, k): =e−Q̂(x̂,t,k)J0(k)e
Q̂(x̂,t,k) (51)

with J0 defined by Equation 45 and

Q̂(x̂, t, k) =

(
ikx̂+

t

4ik

)
σ3 (52)

[so that Q̂(x̂, t, k) = Q(x(x̂, t), t, k)].

The residue conditions (47) also involve x̂ and t explicitly:

Resk=kj M̂
(1)(x̂, t, k) = iαje

2ikj x̂+
t

2ikj M̂(2)(x̂, t, kj), (53)

Resk=kj
M̂(2)(x̂, t, k) = iαje

−2ikj x̂−
t

2ikj M̂(1)(x̂, t, kj) (54)

On the one hand, the jump and residue conditions above

were obtained assuming that there exists a solution u(x, t) of the

mfcSP equation which decays as x → ±∞ for any t > 0. On

the other hand, conditions (45), (50)–(53) can be considered as a

factorization problem of the Riemann–Hilbert type, whose data are

completely determined by u(x, 0).

RH problem. Given {r(k), k ∈ R; (kj,αj)
N
1 }, find a piece-

wise (w.r.t to R) meromorphic function M̂(x̂, t, k) that satisfies

conditions (45), (50)–(53) and the normalization condition:

M̂(x̂, t, k) → I as k → ∞. (55)

3.2 RH problem with second-order poles

In this section, to get more examples of “explicit” solutions

to the mfcSPE, see Section 6 below, we allow the scattering

function a(k) to have second-order zeroes in the upper half-plane,

meaning that M̂(x̂, t, k) has second-order poles. We develop the

generalization of the residue conditions on the columns of M̂ at

the poles, which provides the unique solvability of the respective

RH problem. These conditions include more relations between the

coefficients of the Laurent expansions of the columns of M̂(x̂, t, k).
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Let {kj}
N
1 be the set of second–order zeroes of a(k). Consider

the Laurent expansion of M̂(x̂, t, k) defined by Equation 42 and the

expansion of a(k) as k → kj:

M̂(1)(k) =
M̂

(1)
−2

(k− kj)2
+

M̂
(1)
−1

(k− kj)
+ M̂1

0 +O(k− kj), (56)

M̂(2)(k) = M̂
(2)
0 + M̂

(2)
1 (k− kj)+ M̂

(2)
1 (k− kj)

2 +O(k− kj)
3,

(57)

a(k) = a2(k− kj)
2 + a3(k− kj)

3 +O(k− kj)
4. (58)

The definition of the scattering matrix (38) provides us with the

equality

a(k) = det
(
8̂

(1)
− (x̂, t, k) 8̂

(2)
+ (x̂, t, k)

)
.

Since kj is a zero of a(k), the columns 8̂
(1)
− and 8̂2

+ are linearly

dependent; in terms of 8̃, this reads:

8̃
(2)
+ (x̂, t, kj)e

2ikj x̂+
t

2ikj = 8̃
(1)
− (x̂, t, kj)cj (59)

with some constant cj.

Passing to the limit k → kj for M̂(1)(k)(k − kj)
2, where M̂

is defined by Equation 42, and using Equation 59 we get our first

singularity condition:

M̂
(1)
−2(x̂, t) =

1

a2cj
e
2ikj x̂+

t
2ikj M̂

(2)
0 (x̂, t). (60)

Next, we consider the derivative of a(k). Taking into account

the linear dependence of 8̂
(1)
− (kj) and 8̂

(2)
+ (kj), we have

ȧ(kj) = det

(
˙̂
8

(1)
− (kj)−

1

cj

˙̂
8

(2)
+ (kj) 8̂

(2)
+ (kj)

)
= 0,

where the dot denotes the derivative w.r.t. k. Thus, we can introduce

dj(x̂, t) such that

˙̂
8

(1)
− (x̂, t, kj)−

1

cj

˙̂
8

(2)
+ (x̂, t, kj) = dj(x̂, t)8̂

(2)
+ (x̂, t, kj). (61)

Unlike cj, it is not clear immediately that dj is independent of

x̂ and t. To check this out, we differentiate Equation 61 w.r.t. x̂ and

consider the matrix entries 11 and 12:

(
˙̂
811

− )x̂ −
1

cj
(
˙̂
812

+ )x̂ = (dj)x̂8̂
12
+ + dj(

˙̂
812

+ )x̂. (62)

Rewriting the Lax pair equations (14) in the form

8̂x̂ = Ǔ8̂, 8̂t = V̌8̂

and also differentiating them w.r.t. k, Equation 62 can be written as

˙̌U118̂11
− +

˙̌U128̂21
− + Ǔ11 ˙̂811

−+

Ǔ12 ˙̂821
− −

1

cj
( ˙̌U118̂12

++

˙̌U128̂22
+ + Ǔ11 ˙̂812

+ + Ǔ12 ˙̂822
+ )

= (dj)x̂8̂
12
+ + dj(Ǔ

118̂12
+ + Ǔ128̂22

+ ). (63)

Now, using the linear dependence of 8̂
(1)
− and 8̂2

+ and

Equation 61, the respective terms in Equation 63 cancel out, thus

leaving us with (dj)x̂ = 0. Since these computations are not specific

for the derivative w.r.t. x̂, we can deduce (dj)t = 0 as well and thus

dj(x̂, t) = dj is independent of x̂ and t.

In terms of 8̃, equality (61) reads

˙̃8
(1)

− (x̂, t, kj)−
1
cj
e
2ikj x̂+

t
2ikj ˙̃8

(2)

+ (x̂, t, kj) =

(
dj +

2(ix̂− t

4ik2j

)

cj

)

e
2ikj x̂+

t
4ikj 8̃

(2)
+ (x̂, t, kj). (64)

To get the second singularity condition, we consider

M̂
(1)
−1 −

1

a2cj
e
2ikj x̂+

t
2ikj M̂

(2)
1 = lim

k→kj
(k− kj)

(
M̂(1) −

1

a2cj
e
2ikj x̂+

t
2ikj

M̂(2)

(k− kj)2

)

= lim
k→kj

8̃
(1)
− (k)− 1

cj
e
2ikj x̂+

t
2ikj (1+ a3

a2
(k− kj)+O(k− kj)

2)8̃
(2)
+ (k)

a2(k− kj)+O(k− kj)2
,

which, using Equation 64, leads to

M̂
(1)
−1 =

1
a2cj

e
2ikj x̂+

t
2ikj M̂

(2)
1 +

1
a2

(
dj +

2(ix̂− t

4ik2j

)

cj
− a3

cja2

)
e
2ikj x̂+

t
2ikj M̂

(2)
0 . (65)

Introducing αj = 1
a2cj

and βj =
dj
a2

− a3
cja

2
2
, the singularity

conditions at kj take the form

M̂
(1)
−2(x̂, t) = αjM̂

(2)(x̂, t, kj)e
2ikj x̂+

t
2ikj , (66)

M̂
(1)
−1(x̂, t) =[
αj

˙̂M(2)(x̂, t, kj)+

(
βj + 2αj

(
ix̂−

t

4ik2j

))
M̂(2)(x̂, t, kj)

]

e
2ikj x̂+

t
2ikj . (67)

By the symmetry (46), the respective conditions at kj are as follows:

M̂
(2)
−2(x̂, t) = −αjM̂

(1)(x̂, t, kj)e
−2ikj x̂−

t

2ikj , (68)

M̂
(2)
−1(x̂, t) =

−αj
˙̂M(1)(x̂, t, kj)+


−β j + 2αj


ix̂−

t

4ik
2

j




 M̂(1)(x̂, t, kj)




e
−2ikj x̂−

t

2ikj . (69)

These conditions are direct generalization of the residue

conditions. Here, M̂
(1)
−1 is the residue itself, and since M̂ has higher

order poles, more singular coefficients appear in the expansions

at corresponding points; These coefficients are controlled by

conditions (66). Similarly to the case with simple poles, the

singularity conditions (66) ensure the uniqueness of the solution

of the RH problem via Liouville’s theorem. Indeed, assuming that
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M and M̃ are two solutions of the RH problem with the singularity

conditions (66), direct calculations show that M̃M−1 = O(1) as

k → kj; complemented with the conditions that M̃M−1 has no

jump across R and M̃M−1 → I as k → ∞, this, by Liouville’s

theorem, gives M̃M−1 ≡ I.

3.3 Recovering the solution of the Cauchy
problem from the associated RH problem

In this section, we show that u(x, t) can be recovered in terms

of M̂(x̂, t, k), which is considered as the solution of the Riemann–

Hilbert problem (45), (50)–(55) (or its version with the singularity

conditions presented in Section 3.2) evaluated at k = 0. Recall that

the data for this problem are uniquely determined by the initial data

u0(x). Actually, this value of k is specific to Equation 10 because U

vanishes at k = 0.

To determine the behavior of M̂(x̂, t, k) as k → 0, it is

convenient to start with the original Lax pair (2) and write its

coefficients as U = −ikσ3 + U0 and V = − 1
4ik

σ3 + V0. In this

way, the Lax pair can be rewritten as

8x + ikσ38 = U08, (70)

8t +
1

4ik
σ38 = V08, (71)

where

U0 = −ik

(
−|ux|

2 2ux
2ux |ux|

2

)
, (72)

V0 =

(
−ik(1− |ux|

2)|u|2 −u− 2ik|u|2ux
u− 2ik|u|2ux ik(1− |ux|

2)|u|2

)
. (73)

Notice that U0 → 0 and V0 → 0 as |x| → ∞ and that

U0(x, t, 0) ≡ 0.

Introducing

Q0(x, t, k): =

(
ikx+

t

4ik

)
σ3 (74)

and

8̃0 = 8eQ0 , (75)

the Lax pair (70) can be rewritten as

8̃0x + [Q0x, 8̃0] = U08̃0, (76)

8̃0t + [Q0t , 8̃0] = V08̃0. (77)

The Jost solutions 8̃0±(x, t, k) of Equation 47 are determined,

similarly to above, as the solutions of the associated Volterra interal

equations:

8̃0±(x, t, k) = I +

∫ x

±∞

eik(y−x)σ3U0(y, t, k)8̃0±(y, t, k)e
ik(x−y)σ3dy.

(78)

SinceU0(x, t, 0) ≡ 0, we have the following important property:

8̃0±(x, t, k) ≡ I (79)

for all x and t. Moreover, solving Equation 78 by the Neumann

series, we obtain

Proposition 3.1. As k → 0,

8̃0±(x, t, k) = I−ik

(
−
∫ x
±∞

|uy(y, t)|
2dy 2u(x, t)

2u(x, t)
∫ x
±∞

|uy(y, t)|
2dy

)
+O(k2).

(80)

Now we notice that 8̃± and 8̃0± being related to the same

system of differential equations (2) are related as follows:

8̃±(x, t, k) = G(x, t)8̃0±(x, t, k)e
−Q0(x,t,k)C±(k)e

Q0(x,t,k), (81)

where C±(k) are some matrices independent of x and t. Passing to

the limits x → ±∞ allows us to determine C±(k):

C+(k) = I, C−(k) = e(ikγ+m(−∞))σ3 ,

where γ : =
∫ +∞
−∞

|uz|
2dz.

Next, combining Proposition 3.1 with Equation 81, the first two

terms in the development of 8̃+(x, t, k) and 8̃−(x, t, k) as k → 0

follow:

8̃+(x, t, k) = G(x, t)

(
I − 2ik

(∫ +∞
x |uy|

2dy u

u −
∫ +∞
x |uy|

2dy

))
+

O(k2), (82)

8̃−(x, t, k) = G(x, t)
(
em(−∞)σ3 − 2ik

(
−em(−∞)

∫ +∞
x |uy|

2dy e−m(−∞)u

em(−∞)u e−m(−∞)
∫ +∞
x |uy|

2dy

))
+

O(k2). (83)

Using all these expansions in Equation 39, we arrive at the

development of the matrix entries of s(k) at k = 0:

a(k) = em(−∞)(1+ 2ikγ )+O(k2), b(k) = O(k2). (84)

Finally, substituting Equations 82, 84 into Equation 42, we get

the first two terms in the development of M̂:

M̂(x̂, t, k) = G(x(x̂, t), t, k)

(
I − 2ik

(
x(x̂, t)− x̂ u(x̂, t)

u(x̂, t) x̂− x(x̂, t)

))
+

O(k2), k → 0. (85)

Equation 85 allows us to express the solution of the initial value

problem (12) for the mfcSP equation in terms of the solution of the

associated RH problem.

Theorem 3.2 (representation). Assume that the Cauchy problem

(12) for the mfcSP equation has a solution u(x, t). Let {r(k), k ∈

R; {kj,αj}
N
1 } be the spectral data determined by u0(x), and let

M̂(x̂, t, k) be the solution of the associated RH problem (45), (50)–

(55). Then, evaluating M̂ as k → 0, the solution u(x, t) of the

Cauchy problem (12) can be given, in a parametric form, as follows:

u(x, t) = û(x̂(x, t), t), where

x(x̂, t) = x̂+ f1(x̂, t), (86)

û(x̂, t) = f2(x̂, t) (87)
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with f1 and f2 determined by

(
f1 f2
f̄2 −f1

)
(x̂, t): = lim

k→0

i

2k
(M̂−1(x̂, t, 0)M̂(x̂, t, k)− I). (88)

4 From the RH problem to a solution
of the mfcSP equation

All previous results, particularly Theorem 3.2, were obtained

under the assumption of existence of a solution u(x, t) to

the Cauchy problem (12). In this section, we, alternatively,

start with a RH problem with any appropriate r(k) (that

ensures the unique solvability of the RH problem), extract

from its solution (following the analysis above) certain

functions (of the parameters of the RH problem), and

verify that they satisfies non-linear equations equivalent to

the mfcSPE.

Theorem 4.1. Let u0(x) ∈ W2,1(R) and let {r(k), k ∈ R; {kj,αj}
N
1 }

be the spectral data associated with u0(x). Then:

1. The RH problem (45), (50)–(55) has a unique solution

M̂(x̂, t, k) for all x̂ ∈ R and t ≥ 0.

2. Introduce f1, f2 as in Equation 88 and x(x̂, t), û(x̂, t) as in

Equations 86, 87 and define

q̂(x̂, t): =
1

|α|2
, ŵ(x̂, t): =

β

α
, (89)

where
(

α(x̂, t) β(x̂, t)

−β̄(x̂, t) ᾱ(x̂, t)

)
: =M̂(x̂, t, 0). (90)

Then, the following equations hold:

(a) xx̂ =
1
q̂
;

(b) ûx̂ =
ŵ
q̂
;

(c) q̂t = q̂(ŵû+ ŵû).

Particularly, xx̂(·, t) is always real-valued, which provides a

correct change of variables (x̂, t) 7→ (x, t).

Proof. (i) The structures of the jump matrix and the residue

conditions are the same as in the case of the focusing NLS equation

(only the dependence on x̂ and t, which are just parameters for

the RH problem, is different). Therefore, the unique solvability of

the RH problem (45), (50)–(55) follows using the same reasons

as for the NLS equation [12]: Namely, according to the Gohberg–

Krein theory [11, 13], the RH problem with no residue conditions

has a unique solution provided the jump matrix J is such that

J + J∗ is positive definite (which guarantees that all partial

indices of the RH problem equal zero). Actually, this positivity

condition allows showing that the only solution of the associated

homogeneous RH problem (normalized, instead of Equation 55,

by the condition M̂(x̂, t, k) → 0 as k → ∞) is the trivial one

[see, for example, [21]]; then, the unique solvability of the non-

homogeneous RH problem follows by the Fredholm property of

the problem.

(ii) The matrix J satisfies the symmetry condition described

in Equation 46; this, by the uniqueness of the solution of the RH

problem, implies that the solution M̂ satisfies the same symmetry

(46) as well, which gives us the specific structure of the l.h.s. of

Equation 88. Moreover, |α|2 + |β|2 = det M̂(0) = 1.

The proof of equations (a), (b), and (c) is based on calculations

of 9x̂9
−1 and 9t9

−1, where

9(x̂, t, k): =M̂(x̂, t, k)e(−ikx̂− t
4ik

)σ3 .

Proof of (a) and (b). Consider 9x̂9
−1. Starting from the

expansion

M̂(x̂, t, k) = I +
M̂1

ik
+O(k−2), k → ∞,

by direct computation we have:

9x̂9
−1(x̂, t, k) = −ikσ3 + [σ3, M̂1]+O(k−1),

k → ∞.

Moreover,9x̂9
−1(x̂, t, k) has neither jumps nor singularities in

k ∈ C; hence, by Liouville’s theorem,

9x̂9
−1(x̂, t, k) = −ikσ3 + [σ3, M̂1]. (91)

Now, we consider the development of M̂ at k = 0. Introducing

G0 and G1 by

M̂(x̂, t, k) = G0(x̂, t)(I − 2ikG1(x̂, t))+O(k2), k → 0,

we have

G0(x̂, t) = M̂(x̂, t, 0) =

(
α β

−β α

)

and

G1(x̂, t) = lim
k→0

i

2k
(M̂−1(x̂, t, 0)M̂(x̂, t, k)− I) =

(
f1 f2
f2 −f1

)
,

which yields the development of 9x̂9
−1 at k = 0:

9x̂9
−1(x̂, t, k) = G0x̂G

−1
0 −ikG0(2G1x̂+σ3)G

−1
0 +O(k2), k → 0.

(92)

Comparing this with Equation 91, we get, in particular, the

equality

σ3 = G0(x̂, t)(2G1x̂(x̂, t)+ σ3)G
−1
0 (x̂, t),

which in terms of f1, f2,α, and β reads

f1x̂ =
|α|2 − |β|2 − 1

2
, f2x̂ = αβ . (93)

Taking into account Equation 86 and the determinant relation

|α|2 + |β|2 = 1, we have the following expressions for xx̂ and ûx̂:

xx̂ = 1+ f1x̂ =
|α|2 − |β|2 + 1

2
= |α|2, ûx̂ = f2x̂ = αβ (94)
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and thus (a) and (b) follow in view of the definitions (89).

Proof of (c). Now, we consider9t9
−1. On the one hand, by the

normalization of M̂,

9t9
−1(x̂, t, k) = O(k−1), k → ∞.

On the other hand, similarly to Equation 92, we have

9t9
−1 = −

1

4ik
G0σ3G

−1
0 +(G0t+

1

2
G0[G1, σ3])G

−1
0 +O(k), k → 0.

Thus, by Liouville’s theorem,

G0t = −
1

2
G0[G1, σ3],

which in terms of f1, f2,α, and β reads

αt = −βf2, βt = αf2.

Substituting this into q̂t obtained by differentiating Equation 89

by t, we arrive at (c) of Theorem 4.1.

Corollary 4.2. With the same assumptions and notations as in

Theorem 4.1, introduce

u(x, t): =û(x̂(x, t), t), q(x, t): =q̂(x̂(x, t), t).

Then, the three equations (a)–(c) from Theorem 4.1 reduce to

qt = (q|u|2)x, (95)

q = 1+ |ux|
2. (96)

which is the mfcSP equation in the conservation law form.

Proof. First, it follows from (a) that x̂x(x, t) = q(x, t). Denoting

w(x, t): =ŵ(x̂(x, t)), from (b) we get ûx̂(x̂(x, t), t) = w(x,t)
q(x,t)

. Now

considering ux(x, t) = ûx̂(x̂(x, t), t)x̂x(x, t) leads to

w = ux. (97)

Thus, Equation 96 reads q = 1 + |w|2, or, equivalently, q̂ =

1+ |ŵ|2, which follows form definitions (89) of q̂ and ŵ.

To get the expression for qt , we start with ( 1
q̂
)t . Using (c), then

(b), and taking into account q̂ = q̂, we get:

(
1

q̂

)

t

= −
q̂t

q̂2
=

−q̂(ŵû+ ŵû)

q̂2
= −(ûx̂û+ ûx̂û) = −(ûû)x̂.

Thus, we get (c) in the conservation law form:

(
1

q̂

)

t

= −(|û|2)x̂. (98)

Now from (a) with Equation 98, we deduce

xt(x̂, t) = −
∂

∂t

(∫ +∞

x̂

(
1

q̂(ξ , t)
− 1

)
dξ

)
=

−

∫ +∞

x̂
(|û(ξ , t)|2)ξdξ = −|û(x̂, t)|2.

Substituting this into the identity q̂t = qxxt + qt and using (c)

gives

qt = q(wu+ wu)+ qx|u|
2 = quxu+ quxu+ qxuu = (q|u|2)x.

Remark 4.3. Since xx̂(x̂, t) = |α(x, t)|2, the mapping x̂ 7→ x for a

fixed t has a bounded inverse provided α 6= 0. In this case, a smooth

solution û(x̂, t) gives rise to a smooth solution u(x, t) in the original

variables. Otherwise, u(x, t) associated with a smooth û(x̂, t) may

not be smooth even if it remains bounded. This indeed will be

observed in the next section devoted to soliton-type solutions of

the mfcSPE.

5 Solitons

5.1 One-soliton solutions from the RH with
one simple pole

Actually, solving the Riemann–Hilbert problem can be reduced

to solving a coupled system consisting of integral equations

generated by the jump condition and algebraic equations generated

by the residue or higher singularity conditions. In this settings, if

the jump condition is trivial (J = I), then the solution of RH

problem becomes a rational function of the spectral parameter, and

solving the RH problem reduces to the problem in which we have

to solve a system of linear algebraic equations only. The dimension

of such system is determined by the number of the poles in the

residue/singularity conditions.

Below consider the simplest, one-soliton solutions, which

correspond to the trivial jump condition and the singularity

conditions associated with one zero of a(k). The generalization

to the case of multi-solitons is straightforward but requires

more calculations related to solving larger systems of linear

algebraic equations. Notice that already one-soliton solutions allow

specifying various, qualitatively different solutions. Particularly, in

this section, we consider the case where a(k) has a single, simple

zero at k1 in the upper half-plane. Notice that in contrast with the

case of the SP equation, now a single zero of a(k) has not to be

purely imaginary.

As we mentioned above, solitons correspond to the situation in

which the jump condition for the RH problem is trivial (there is

no jump at all), and thus, we can search the solution of the RH

problem as a matrix with elements which are rational functions

of the spectral parameter. The form (up to specific element values

of coefficients as functions of x̂ and t) of that matrix elements is

dictated by the following:

1. The structure of the residue condition (dependence on k);

2. The normalization condition as k → ∞.

Combining these two conditions, we arrive at the following

form of M̂ as function of k (with some coefficients depending on

x̂ and t):

M̂(k) =

( k−B11
k−k1

B12
k−k1

B21
k−k1

k−B22
k−k1

)
.
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As mentioned in Theorem 4.1, M̂ satisfies the symmetry

condition (46), which reduces the number of unknown coefficients

Bij from 4 to 2: we have B22 = B̄11 and B21 = −B̄12
and thus

M̂(k) =




k−B11
k−k1

B12
k−k1

− B12
k−k1

k−B11
k−k1


 . (99)

Postponing for a moment the problem of determination of

the coefficients B11 and B12 from the details of the residue

conditions, we begin with finding the matrix

(
f1 f2
f2 −f1

)
determined

by Equation 86 in Theorem 3.2, which will give us the solution of

the mfcSPE. We have

M̂(0) =




B11
k1

− B12
k1

B12
k1

B11
k1


 (100)

with

M̂−1(0) =
|k1|

2

|B11|2 + |B12|2




B11
k1

B12
k1

− B12
k1

B11
k1


 . (101)

Notice that since det M̂(k) ≡ 1, from Equation 100 we get

|B11(x̂, t)|
2 + |B12(x̂, t)|

2 = |k1|
2 (102)

for all x̂ and t.

Furthermore, from Equation 99 we have

M̂(k) =




B11
k1

+ B11−k1
k21

k − B12
k1

− B12

k21
k

B12
k1

+ B12
k21

k B11
k1

+ B11−k1

k21
k


+O(k2) (103)

and thus, using Equation 101,

M̂−1(0)M̂(k) = I +
k|k1|

2

|k1|2




|k1|
2−B11k1
k1|k1|2

− B12

k21
B12
k21

|k1|
2−B11k1
k1|k1|2


+O(k2).

(104)

Now, we are able to get the expressions for f1 and f2
and thus for û and x, see Equation 86, in terms of B12(x̂, t)

and B11(x̂, t):

(
f1 f2
f2 −f1

)
: =

1

2
i




|k1|
2−B11k1
k1|k1|2

− B12

k21
B12
k21

|k1|
2−B11k1
k1|k1|2


 (105)

and thus

û(x̂, t) = f2(x̂, t) = −
iB12(x̂, t)

2k21

(106)

and

x(x̂, t) = x̂+ f1(x̂, t) = x̂+
i(|k1|

2 − B11(x̂, t)k1)

2k1|k1|2
. (107)

To have û and x explicitly as functions of x̂ and t, we use the

residue conditions (53), which take the following form in our case:

(
k1 − B11
−B12

)
= iα1e

2ik1 x̂+
t

2ik1




B12
k1−k1
k1−B11
k1−k1


 , (108)

(
B12

k1 − B11

)
= iα1e

−2ik1 x̂−
t

2ik1




k1−B11
k1−k1

− B12
k1−k1


 . (109)

Notice that Equation 109 can be obtained from Equation 108

by complex conjugation. Introducing

E(x̂, t): =
iα1

k1 − k1
e
2ik1 x̂+

t
2ik1 , (110)

Equation 108 can be written as a system of two linear equations

for B11(x̂, t) and B12(x̂, t):

{
B11 = k1 − EB12

B12 = Ē(B11 − k1)
, (111)

whose solutions are as follows:

B12 =
E(k1 − k1)

1+ |E|2
, (112)

B11 = k1 −
|E|2(k1 − k1)

1+ |E|2
, (113)

Substituting this into Equation 106, we get û(x̂, t) and x(x̂, t) in

terms of E(x̂, t):

û(x̂, t) =
Im k1

k21

E(x̂, t)

1+ |E(x̂, t)|2
, (114)

x(x̂, t) = x̂+
Im k1

|k1|2
|E(x̂, t)|2

1+ |E(x̂, t)|2
. (115)

Equation 114 with Equation 110 give the representation of the

one-soliton solutions in the parametric form. Commonly with

other “Camassa–Holm-type” equations, see, for example,

[8], these solutions are smooth and rapidly decaying as

functions of x̂ in the variables (x̂, t), but their properties as

functions of the original variables (x, t) depend crucially on

the properties of the mapping x̂ 7→ x, see Equation 115.

Proposition 5.1. If k1 is purely imaginary, then the associated one-

soliton solution u(x, t) is of the cuspon type: It is smooth except

at the hump where ux equals to infinity. Otherwise, it is a smooth

function of x and t.

Proof. From Equations 110, 114, it follows that

∂x

∂ x̂
= 1−

|α1|
2

|k1|2(1+ |E|2)
e
−4 Im k1

(
x̂+ t

4|k1 |
2

)

(116)

and thus ∂x
∂ x̂

is strictly positive for all x̂ large enough. Now, let us

check whether ∂x
∂ x̂

can be equal to 0 for some x̂.

Frontiers in AppliedMathematics and Statistics 10 frontiersin.org179

https://doi.org/10.3389/fams.2024.1466965
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Barkov and Shepelsky 10.3389/fams.2024.1466965

If ∂x
∂ x̂

= 0 for some x̂, then we have

e
−4 Im k1

(
x̂+ t

4|k1 |
2

)

=
|k1|

2(1+ |E|2)

|α1|2
,

which, introducing

e1 : = e
−4 Im k1

(
x̂+ t

4|k1 |
2

)

and noticing that

|E|2 =
|α1|

2

4(Im k1)2
e1,

reads

|k1|
2|α1|

2

16(Im k1)4
e21 +

(
|k1|

2

2(Im k1)2

)
e1 +

|k1|
2

|α1|2
= 0. (117)

Now, let us view Equation 117 as a quadratic equation w.r.t. e1
and calculate its discriminant:

D =
|k1|

4

4(Im k1)4
−

|k1|
2

(Im k1)2
+ 1−

|k1|
4

4(Im k1)4
= 1−

|k1|
2

(Im k1)2
=

−
(Re k1)

2

(Im k1)2
.

It follows that if Re k1 6= 0, then Equation 117 has no real

solutions and thus ∂x
∂ x̂

is always strictly positive and approaches

1 as x → ±∞. Consequently, in this case, x(x̂, t) is invertible

for all t and thus the corresponding u(x, t) = û(x̂(x, t), t)

is smooth.

On the other hand, if Re k1 = 0, then Equation 117 has one real

solution

e1 =
4|k1|

2

|α1|2
(118)

and thus ∂x
∂ x̂
(x̂, t) = 0 when

x̂+
t

4|k1|2
= −

1

2|k1|
log

2|k1|

|α1|
. (119)

Consequently, in this case, the solution u(x, t) = û(x̂(x, t), t) is

always bounded but its derivatives are unbounded along the lines

(119). One can check directly that in this case, ∂u
∂ x̂

= 0 along

these lines and thus u(x, t) indeed has the singularity of the cuspon

type (bounded peaks with unbounded derivatives at the hump)

propagating along the lines (119).

Remark 5.2. This is in a sharp contrast with the case of

the SP equation, where one-soliton solutions associated

with purely imaginary zeros of a(k) are of the loop type,

see [8]: there, the equation ∂x
∂ x̂
(x̂, t) = 0 always has

two different zeros and thus the map x̂ 7→ x is not

monotone.

5.2 Soliton-like solutions from the RH with
one second-order pole

Now, let us consider the soliton-like solutions, which

correspond to the trivial jump condition and one pair of singularity

conditions in the RH problem associated with one second-order

zero of a(k) in the upper half-plane (let this point be k1).

We deduce this solutions from the associated RH problem

in the same way we did for the simple pole case. Normalization

condition and poles structure forces matrix M̂ to have its entries

as rational functions of k of the following form:

M̂(k) =




k2+B11k+C11

(k−k1)2
B12k+C12

(k−k1)2

B21k+C21

(k−k1)2
k2+B22k+C22

(k−k1)2


 .

The symmetry condition (46) yields B22 = B11, C22 = C11,

B21 = −B12 and C21 = −C12 and thus

M̂(k) =




k2+B11k+C11

(k−k1)2
B12k+C12

(k−k1)2

− B12k+C12

(k−k1)2
k2+B11k+C11

(k−k1)2


 . (120)

We will use the singularity conditions to determine the

dependence of coefficients Bij andCij on x̂, t later. First, we compute

f1 and f2 determined by Equation (88) in Theorem 3.2. We have

M̂(0) =




C11

k21

C12

k
2
1

−C12

k21

C11

k
2
1


 , (121)

where

|C11(x̂, t)|
2 + |C12(x̂, t)|

2 = |k1|
4 (122)

for all x̂ and t due to the condition detM(k) ≡ 1. Next, from

Equation 120, we compute

˙̂M(0) =




2C11+B11k1
k31

2C12+B12k1

k
3
1

− 2C12+B12k1
k31

2C11+B11k1

k
3
1


 . (123)

Finally, from Equation 88, we have

(
f1 f2
f2 −f1

)
=

i

2
M̂−1(0) ˙̂M(0),

which yields

f1 = i

(
1

k1
+

B11C11 + B12C12

2|k1|4

)
, (124)

f2 =
i(B12C11 − B11C12)

2k
4

1

. (125)

To get these functions explicitly, we use conditions (66). For

this purpose, we expand M̂ from Equation (120) at k1:

M̂(k) =

1+ B11+2k1

k−k1
+

C11+B11k1+k21
(k−k1 )2

C12+B12k1
(k1−k1 )2

− 2C12+B12 (k1+k1 )

(k1−k1 )3
(k− k1)+O(k− k1)

2

− B12
k−k1

− C12+B12k1
(k−k1 )2

C11+B11k1+k21
(k1−k1 )2

− 2C11+B11 (k1+k1 )+2|k1 |
2

(k1−k1 )3
(k− k1)+O(k− k1)

2


 .

(126)
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Now Equations 66, 67 give us two equations:

(
C11 + B11k1 + k21
−(C12 + B12k1)

)
= α1e

2ik1 x̂+
t

2ik1




C12+B12k1
(k1−k1)2

C11+B11k1+k21
(k1−k1)2


 , (127)

(
B11 + 2k1
−B12

)
=


α1


 − 2C12+B12(k1+k1)

(k1−k1)3

−
2C11+B11(k1+k1)+2|k1|

2

(k1−k1)3


+

(β1 + 2α1(ix̂−
t

4ik21
))




C12+B12k1
(k1−k1)2

C11+B11k1+k21
(k1−k1)2




 e

2ik1 x̂+
t

2ik1 . (128)

In view of the symmetry, the singularity conditions

at k̄1 do not produce additional independent equations

on Cij and Bij. Introducing E(x̂, t): = α1e
2ik1 x̂+

t
2ik1

(k1−k1)3
and

F(x̂, t): =
(β1+2α1(ix̂−

t

4ik21

))e
2ik1 x̂+

t
2ik1

(k1−k1)2
and taking the complex

conjugates where needed, Equation 127 can be written as





C11 + B11k1 + k21 = E(C12 + B12k1)(k1 − k1),

C12 + B12k1 = E(C11 + B11k1 + k
2

1)(k1 − k1),

B11 + 2k1 = −E(2C12 + B12(k1 + k1))+ F(C12 + B12k1),

B12 = E(2C11 + B11(k1 + k1)+ 2|k1|
2)− F(C11 + B11k1 + k

2

1).

(129)

This is a linear system w.r.t. B11, B12, C11, and C12, with the

determinant

D = 1+(2EF+2EF−|F|2−6|E|2)(k1−k1)
2+|E|4(k1−k1)

4. (130)

Its solution

B11 = [−2|E|4k1(k1 − k1)
4 − 2k1

+ (2k1|E|
2 − k1EF + 10k1|E|

2 − 3k1EF − k1EF + k1|F|
2−

3k1EF + k1|F|
2)(k1 − k1)

2]
1

D
,

B12 = [−F(k1 − k1)
2 + E

2
(4E− F)(k1 − k1)

4]
1

D
,

C11 = [|E|4k
2

1(k1 − k1)
4 + k21

+ (−k
2

1EF + 3|k1|
2EF − |k1|

2|F|2 + k
2

1|E|
2 − 4|k1|

2 + |k1|
2EF

− 3k21|E|
2 + k21EF)(k1 − k1)

2]
1

D
,

C12 = [−(k1 − k1)
2(−k1F − E(k1 − k1)+ E

2
(k1 − k1)

2

(k1E+ 3Ek1 − Fk1))]
1

D
.

being substituted into Equation 124 gives us the explicit expression

for û(x̂, t) and x(x̂, t).

6 Examples of one-soliton and
soliton-like solutions

6.1 One-soliton solutions associated with a
single, simple zero of a(k)

Case 1: Let k1 = i,α1 = −2. Then, (see Section 5.1)

E(x̂, t) = −e−2x̂−t/2 and thus û(x̂, t) = e−2x̂−t/2

1+e−4x̂−t . Notice

that in this case, û(x̂, t) is real-valued, which allows us to

plot it as a 3d graph, see Figure 1A. We can also compute

the relation between the spatial coordinates: x(x̂, t) = x̂ +
e−2x̂−t/2

1+e−4x̂−t and plot its 2d graphs for several values of parameter

t, see Figure 1B. Having both this functions explicitly, we

can numerically compute u(x, t) and plot its 3d graph, see

Figure 1C.

As discussed in Section 5, û(x̂, t) is a smooth function whereas

u(x, t) is a cuspon-type wave.

Case 2: k1 = 1 + i,α1 = −2. In this case, (see Section 5.1),

E(x̂, t) = −e−2x̂+2ix̂−t/4−it/4 and thus û(x̂, t) = −i
2

e−2x̂−2ix̂−t/4+it/4

1+e−4x̂−t/2 .

This function is complex-valued, and thus, we plot its absolute

values, see Figures 2A, C. The spatial coordinate relation in this case

is: x(x̂, t) = x̂+ 1
2

e−4x̂−t/2

1+e−4x̂−t/2 , see Figure 2B.

As expected, in this case, the solution u is smooth both in x̂ and

x variables because ∂x
∂ x̂

is nowhere zero.

6.2 Soliton-like solutions associated with a
single, double zero of a(k)

Case 3: k1 = i,α1 = −2i,β1 = 4. In this case (see Section 5.2),

E(x̂, t) = 1
4 e

−2x̂−t/2 and F(x̂, t) = (−1 − x̂ + t
4 )e

−2x̂−t/2. From

Equation 87, we get

û(x̂, t) =

2ie2x̂+t/2(4− t + 4x̂+ 4e4x̂+t(t − 4(2+ x̂)))

1+ 16e8x̂+2t + 4e4x̂+t(38+ t2 + 48x̂+ 16x̂2 − 4t(3+ 2x̂))
.

In this case, the solution is purely imaginary, and we can plot its

imaginary part, see Figures 3A, C. The spatial coordinate relation is

(Figure 3B)

x(x̂, t) =

x̂+1+
1− 16e8x̂+2t − 8e4x̂+t(−6+ t − 4x̂)

1+ 16e8x̂+2t + 4e4x̂+t(38+ t2 + 48x̂+ 16x̂2 − 4t(3+ 2x̂))
.

7 Conclusion

In the study, we have developed the Riemann–Hilbert

approach to a complex-valued integrable modification of the

short pulse equation, named as the modified focusing complex

short pulse equation (mfcSPE). This equation shares the following
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FIGURE 1

Cuspon-type soliton. (A) û(x̂, t). (B) x(x̂, t) for three values of t. (C) u(x, t).

FIGURE 2

Smooth soliton. (A) |û(x̂, t)|. (B) x(x̂, t) for three values of t. (C) |u(x, t)|.

FIGURE 3

Soliton-type solution associated with a double zero of a(k). (A) Imu(x̂, t). (B) x(x̂, t) for three values of t. (C) Imu(x, t).

property with other Camassa–Holm-type non-linear integrable

equations (including the short pulse equation): The Riemann–

Hilbert formalism involves a change of variables playing the

role of parameters in the associated Riemann–Hilbert problem.

Consequently, the representation of the solution of the non-linear

PDE in question turns out to be intrinsically parametric, including

the construction of the simplest, soliton-like solutions. Particularly,

for one-soliton solutions associated with a simple zero of the

respective spectral function a(k), we have shown that depending on

the location of this zero in the complex plane, the solution either

is a smooth function of the original spatial and time variables or

has the form of a traveling wave with the cusped hump. Numerical

examples illustrate one-soliton solutions associated with both a

simple and a double zero of a(k).
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Strong nonlinear
functional-di�erential variational
inequalities: problems without
initial conditions

Mykola Bokalo*, Iryna Skira and Taras Bokalo

Department of Mathematical Statistics and Di�erential Equations, Ivan Franko National University of

Lviv, Lviv, Ukraine

Problems without initial conditions for evolution equations and variational

inequalities appear in the modeling of di�erent non-stationary processes within

many fields of science, such as ecology, economics, physics, cybernetics,

etc., if these processes started a long time ago and initial conditions do not

a�ect them in the actual time moment. Thus, we can assume that the initial

time is minus infinity. In the case of linear and weakly nonlinear evolution

equations and variational inequalities, standard initial conditions should be

replaced with the behavior of the solution as the time variable goes to minus

infinity. However, for some strongly nonlinear evolution equations and variational

inequalities, this problem has a unique solution in the class of functions without

behavior restriction as the time variable goes to minus infinity. In this study, the

correctness of the problemwithout initial conditions for such types of variational

inequalities from a new class, or more precisely, for sub-di�erential inclusions

with functionals, is investigated. Moreover, estimates of solutions are obtained.

The results are new and mostly theoretical.

KEYWORDS

parabolic variational inequality, evolution variational inequality, evolution inclusion,

sub-di�erential inclusion, Fourier problem, problem without initial conditions

1 Introduction

The aim of this study is to investigate problems without initial conditions for the

evolution of functional-differential variational inequalities of a special form, so-called sub-

differential inclusions with functionals. The partial case of this problem is a problem

without initial conditions, or, in other words, the Fourier problem for integro-differential

equations of the parabolic type.

Problem without initial conditions for evolution equations and variational inequalities

(sub-differential inclusions) appear in the modeling of different non-stationary processes

within many fields of science, such as ecology, economics, physics, cybernetics, etc., if these

processes started a long time ago and initial conditions do not affect them in the actual time

moment. Thus, we can assume that the initial time is minus infinity.

The research on the problem without initial conditions for the evolution equations and

variational inequalities was conducted in the monographs [1–4], the papers [5–19], and

others.

Note that the uniqueness of the solutions to the problem without initial conditions for

linear and weak nonlinear evolution equations and variational inequalities is possible only

under some restrictions on the behavior of solutions as the time variable changes to −∞.

Moreover, in this case, to prove the existence of a solution, it is necessary to impose certain
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restrictions on the growth of the input data when the time variable

goes to−∞. For the first time, it was strictly justified by Tychonoff

[5] in the case of the heat equation. Later, similar results for various

evolution equations and variational inequalities were obtained in

monographs [1–4], papers [6–8, 12, 14, 16–19], and others.

However, as was shown by Bokalo [9], a problem without

initial conditions for some strongly nonlinear parabolic equations

has a unique solution in the class of functions without behavior

restriction as the time variable changes to −∞. Furthermore,

similar results were obtained in studies [10, 13, 15] (see also

references therein) for strongly nonlinear evolution equations and

in Bokalo [11] for evolution variational inequalities.

Note that the problem without initial conditions for weakly

nonlinear functional-differential variational inequalities was

investigated only in the study [17]. There, the existence and

uniqueness of the solution to this problem were proved under

certain restrictions on its behavior and the growth of the input

data when the time variable is directed to −∞. As we know,

the problem without initial conditions for strongly nonlinear

functional-differential variational inequalities without restrictions

on the behavior of the solution and the growth of the input data

when the time variable is directed to −∞ has not been considered

in the literature, and this serves as one of the motivations for the

study of such problems.

The outline of this study is as follows: Section 2 comprises

notations, definitions of needed function spaces, and auxiliary

results. In Section 3, we set the problem statement and provide

our key findings. The proof of the main results is kept in Section

4. Comments on the main results are given in Section 5. Section 6

provides conclusions.

2 Preliminaries

Let V be a separable reflexive real Banach space with norm

‖ · ‖, and H be a real Hilbert space with the scalar products (·, ·)

and norms | · |, respectively. Suppose that V ⊂ H with dense,

continuous, and compact injection, i.e., the closure of V in H

coincides with H, and there exists a constant λ > 0 such that

λ|v|2 ≤ ‖v‖2 for all v ∈ V , and for every sequence {vk}
∞
k=1

bounded in V , there exists an element v ∈ V and a subsequence

{vkj }
∞
j=1 such that vkj −→j→∞

v strongly in H.

Let V ′ and H′ be the dual spaces of V and H, respectively.

Suppose the space H′ (after appropriate identification of

functionals) is a subspace of V ′. Identifying the spaces H and

H′ by the Riesz-Fréchet representation theorem, we obtain dense

and continuous embeddings

V ⊂ H ⊂ V ′. (1)

Note that in this case 〈g, v〉 = (g, v) for every v ∈ V , g ∈ H ⊂ V ′,

where 〈g, v〉 is the means the action of an element g ∈ V ′ on an

element of v ∈ V , i.e., 〈·, ·〉 is canonical product for the duality pair

[V ′,V]. Therefore, we can use the notation (·, ·) instead of 〈·, ·〉, and

we will do it in the future.

Let T > 0 be an arbitrary fixed real number, and let S : =

(−∞,T], and intS : = (−∞,T).

We introduce some spaces for functions and distributions.

Let X be an arbitrary Banach space with the norm ‖ · ‖X .

By C(S;X) we mean the linear space of continuous

functions defined on S with values in X. We say that

wm −→
m→∞

w in C(S;X) if for each t1, t2 ∈ S, t1 < t2,

sequence {wm|[t1 ,t2]}
∞
m=1 converges to w|[t1 ,t2] in C([t1, t2];X)

(hereafter w̃|[t1 ,t2] is restriction of a function w̃ : S → X to segment

[t1, t2] ⊂ S).

Let r ∈ [1,∞], r′ is dual to r, i.e., 1/r + 1/r′ = 1.

Denote by Lr
loc
(S;X) the linear space of classes of equivalent

measurable functions w : S → X such that w|[t1 ,t2] ∈

Lr(t1, t2;X) for each t1, t2 ∈ S, t1 < t2. We say that

a sequence {wm} is bounded (strongly, weakly, or ∗-weakly

convergent, respectively, to w) in Lr
loc
(S;X) if, for each t1, t2 ∈

S, t1 < t2, the sequence {wm|[t1 ,t2]} is bounded (strongly,

weakly, or ∗-weakly convergent, respectively, to w|[t1 ,t2]) in

Lr(t1, t2;X).

By D′(intS;V ′
w), we mean the space of continuous linear

functionals on D(intS) with values in V ′
w (hereafter, D(intS) is the

space of test functions, i.e., the space of infinitely differentiable

on intS functions with compact supports, equipped with the

corresponding topology, and V ′
w is the linear space V ′ equipped

with weak topology). It is easy to see (using (1)) that spaces

Lr
loc
(S;V), L2

loc
(S;H), and Lr

′

loc
(S;V ′) can be identified with the

corresponding subspaces of D′(intS;V ′
w) by rule 〈f ,ϕ〉D =∫

S f (t)ϕ(t) dt, where 〈·, ·〉D is the means the action of an element

of D′(intS;V ′
w) on an element of D(intS), f is an element of

one of spaces Lr
loc
(S;V), L2

loc
(S;H), Lr

′

loc
(S;V ′). In particular,

this allows us to talk about derivatives w′ of functions w

from Lr
loc
(S;V) or L2

loc
(S;H) in the perception of distributions

D′(intS;V ′
w) and the belonging of such derivatives to Lr

′

loc
(S;V ′) or

L2
loc
(S;H).

Let us define the spaces

H1
loc(S;H) : = {w ∈ L2loc(S;H)

∣∣w′ ∈ L2loc(S;H)},

W1,r
loc
(S;V) : = {w ∈ Lrloc(S;V)

∣∣w′ ∈ Lr
′

loc(S;V
′)}, r > 1.

From known results [see, e.g., Gajewski et al.

[20]] it follows that H1
loc
(S;H) ⊂ C(S;H) and

W1,r
loc
(S;V) ⊂ C(S;H), and for every w in H1

loc
(S;H) orW1,r

loc
(S;V)

the function t → |w(t)|2 is continuous on any segment of the

interval S, and the following equality holds:

d

dt
|w(t)|2 = 2(w′(t),w(t)) for almost every (a.e.) t ∈ S. (2)

In this study, we use the following well-known facts:

PROPOSITION 2.1 [Corollaries from Young’s inequality,

Gajewski et al. [20]]. Let r > 1, ε > 0 be arbitrary, and r′ such

that 1/r + 1/r′ = 1. Then, for all a, b ∈ R, following inequality

holds:

a b ≤ ε|a|r + ε−1/(r−1) |b| r
′

. (3)

In particular,

ab ≤ ε|a|2 + ε−1|b|2. (4)
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Proof. Inequality (3) is a corollary from standard Young’s

inequality: a b ≤ |a|r/r + |b|r
′
/r′, if we note that r > 1 and r′ > 1.

Inequality (4) we get from inequality (3) with r = 2 .

PROPOSITION 2.2 [Cauchy-Bunyakovsky-Schwarz inequality,

Gajewski et al. [20]]. Let t1, t2 ∈ R, and t1 < t2. Then, for

v,w ∈ L2(t1, t2;H), we have
(
v(·),w(·)

)
∈ L1

(
t1, t2

)
and

∫ t2

t1

(w(t), v(t)) dt ≤
( ∫ t2

t1

|v(t)|2 dt
)1/2( ∫ t2

t1

|w(t)|2 dt
)1/2

.

PROPOSITION 2.3 [Hölder’s inequality, Gajewski et al. [20]].

Let r ∈ [1,∞], r′ be a conjugated to r (i.e., 1/r + 1/r′ = 1), t1,

t2 ∈ R, t1 < t2. Suppose that X is a Banach space and X′ is a

dual of X, 〈·, ·〉X is the action of an element of X′ on an element

of X. Then, for v ∈ Lr(t1, t2;X) and w ∈ Lr
′
(t1, t2;X

′), we have

〈w(·), v(·)〉X ∈ L1
(
t1, t2

)
and

∫ t2

t1

〈w(t), v(t)〉X dt ≤ ‖w‖Lr′ (t1 ,t2;X′)‖v‖Lr(t1 ,t2;X).

PROPOSITION 2.4 [Lemma 1.1 [9]]. Let z : S → R be a

nonnegative and absolutely continuous on each interval of S function

that satisfies differential inequality

z′(t)+ β(t)χ
(
z(t)

)
≤ 0 for a.e. t ∈ S,

where β ∈ L1
loc
(S;R), β(t) ≥ 0 for a.e. t ∈ S,

∫
S β(t) dt = +∞;

χ ∈ C
(
[0,+∞)

)
, χ(0) = 0, χ(s) > 0 if s > 0 and

∫ +∞
1

ds
χ(s)

< ∞.

Then z ≡ 0 on S.

PROPOSITION 2.5 [25]. Let Y be a Banach space with the norm

‖ · ‖Y , and {vk}
∞
k=1

be a sequence of elements of Y that is weakly or

∗-weakly convergent to v in Y. Then lim
k→∞

‖vk‖Y ≥ ‖v‖Y .

PROPOSITION 2.6 [Aubin theorem, Aubin [21]]. Let r >

1 and q > 1 be given numbers. Suppose that B0,B1, and B2 are

Banach spaces such that B0
c
⊂B1 ⊂ B2 (symbol⊂means continuous

embedding and symbol
c
⊂means compact embedding). Then

{w ∈ Lr(0,T;B0) |w
′ ∈ Lq(0,T;B2)}

c
⊂

(
Lr(0,T;B1)∩C([0,T];B2)

)
.

(5)

Note that we understand embedding (5) as follows: if a

sequence {wm}
∞
m=1 is bounded in the space Lr(0,T;B0), and the

sequence {w′
m}

∞
m=1 is bounded in the space Lq(0,T;B2), then

there exists a function w ∈ Lr(0,T;B1) ∩ C([0,T];B2) and

the subsequence {wmj}
∞
j=1 of the sequence {wm}

∞
m=1 such that

wmj −→
j→∞

w in C([0,T];B2) and strongly in Lr(0,T;B1).

PROPOSITION 2.7. Let a sequence {wm}
∞
m=1 be bounded in the

space Lr
loc
(S;V), where r > 1, and the sequence {w′

m} be bounded in

the space L2
loc
(S;H). Then there exists a function w ∈ Lr

loc
(S;V),

w′ ∈ L2
loc
(S;H), and a subsequence {wmj }

∞
j=1 of the sequence

{wm}
∞
m=1 such that wmj −→

j→∞
w in C(S;H) and weakly in Lr

loc
(S;V),

and w′
mj

−→
j→∞

w′ weakly in L2
loc
(S;H).

Proof. From Proposition 2.6 for q = 2, B0 = V , B1 = B2 = H,

we have that, for every t1, t2 ∈ S, t1 < t2, from the sequence

of restrictions of the elements {wm}
∞
m=1 to the segment [t1, t2],

one can choose a subsequence that is convergent in C([t1, t2];H)

and weakly in Lr(t1, t2;V), and the sequence of derivatives of the

elements of this subsequence is weakly convergent in L2(t1, t2;H).

For each k ∈ N, we choose a subsequence {wmk,j
}∞j=1 of the given

sequence that is convergent in C([T − k,T];H) and weakly in

Lr(T − k,T;V) to some function ŵk ∈ C([T − k,T];H) ∩ Lr(T −

k,T;V), and the sequence {w′
mk,j

}∞j=1 is weakly convergent to the

derivative ŵ′
k
in L2(T − k,T;H). Making this choice, we ensure

that the sequence {wmk+1,j
}∞j=1 was a subsequence of the sequence

{wmk,j
}∞j=1. Now, according to the diagonal process, we select the

desired subsequence as {wmj,j}
∞
j=1, and we define the function w as

follows: for each k ∈ N, we take w(t) : = ŵk(t) for t ∈ (T − k,T −

k+ 1).

3 Statement of the problem and
formulation of main results

Let 8 :V → R∞ : = (−∞,+∞) be a proper functional, i.e.,

dom(8) : = {v ∈ V : 8(v) < +∞} 6= ∅, which satisfies the

conditions:

(A1) 8
(
αv + (1 − α)w

)
≤ α8(v) + (1 − α)8(w) ∀ v,w ∈

V , ∀α ∈ [0, 1],

i.e., the functional 8 is convex;

(A2) vk −→
k→∞

v in V H⇒ lim
k→∞

8(vk) ≥ 8(v),

i.e., the functional 8 is lower semicontinuous;

(A3) there exist the constants p > 2 and K1 > 0 such that

8(v) ≥ K1‖v‖
p ∀ v ∈ dom(8);

moreover, 8(0) = 0.

Recall [see, e.g., Showalter [4]] that for a functional8 satisfying

the conditions (A1) and (A2) its sub-differential is a mapping

∂8 :V → 2V
′
, defined as follows:

∂8(v) : = {v∗ ∈ V ′ |8(w) ≥ 8(v)+(v∗,w−v) ∀w ∈ V}, v ∈ V ,

and the domain of the sub-differential ∂8 is the set D(∂8) : =

{v ∈ V | ∂8(v) 6= ∅}. We identify the subdifferential ∂8 with its

graph, assuming that [v, v∗] ∈ ∂8 if and only if v∗ ∈ ∂8(v), i.e.,

∂8 = {[v, v∗] | v ∈ D(∂8), v∗ ∈ ∂8(v)}. R. Rockafellar in study

[22, Theorem A] proves that the sub-differential ∂8 is a maximal

monotone operator, i.e.,

(v∗1 − v∗2 , v1 − v2) ≥ 0 ∀ [v1, v
∗
1], [v2, v

∗
2] ∈ ∂8

and for every element [v1, v
∗
1] ∈ V × V ′ we have the implication

(v∗1 − v∗2 , v1 − v2) ≥ 0 ∀ [v2, v
∗
2] ∈ ∂8 H⇒ [v1, v

∗
1] ∈ ∂8.

Suppose that the following condition holds:

(A4) there exist the constants q > 2 and K2 > 0, K3 > 0 such

that

(v∗1−v∗2 , v1−v2) ≥ K2|v1−v2|
2+K3|v1−v2|

q ∀ [v1, v
∗
1], [v2, v

∗
2] ∈ ∂8.
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Assume that B(t, ·) :H → H, t ∈ S, is a given family of

operators that satisfy the condition:

(B) for any v ∈ H the mapping B(·, v) : S → H is measurable,

and there exists a constant L ≥ 0 such that following inequality

holds:

|B(t, v1)− B(t, v2)| ≤ L|v1 − v2|

for a.e. t ∈ S, and all v1, v2 ∈ H; in addition, B(t, 0) = 0 for a.e.

t ∈ S.

Remark 3.1. From the condition (B) it follows that

|B(t, v)| ≤ L|v| (6)

for a.e. t ∈ S and for all v ∈ H.

Next, we will assume that the conditions (A1)—(A4) and (B)

are fulfilled, and p′ and q′ are such that 1/p+1/p′ = 1, 1/q+1/q′ =

1.

Let us consider the evolution variational inequality, or, in

other words, subdifferential inclusion

u′(t)+ ∂8(u(t))+ B(t, u(t)) ∋ f (t), t ∈ S, (7)

where f ∈ L
p′

loc
(S;V ′)+ L

q′

loc
(S;H) is given function.

Definition 3.1. The solution of variational inequality (7) is

called a function u : S → V that satisfies the following conditions:

1) u ∈ W
1,p

loc
(S;V) ∩ L

q

loc
(S;H);

2) u(t) ∈ D(∂8) for a.e. t ∈ S;

3) there exists a function g ∈ L
p ′

loc
(S;V ′) + L

q ′

loc
(S;H) such that,

for a.e. t ∈ S, g(t) ∈ ∂8
(
u(t)

)
and

u′(t)+ g(t)+ B(t, u(t)) = f (t) in V ′.

The problem of finding a solution to variational inequality (7)

for given 8, B, and f is called the problem P(8,B, f ), and the

function u is called its solution.

We consider the existence and uniqueness of the solution to the

problem P(8,B, f ). The main results of this study are the following

two theorems:

THEOREM 3.1. Suppose that

L < K2. (8)

Then the problem P(8,B, f ) has at most one solution.

THEOREM 3.2. Let inequality (8) hold, and let f ∈ L2
loc
(S;H).

Then the problem P(8,B, f ) has a unique solution. In addition, this

solution belongs to the space L∞
loc
(S;V)∩H1

loc
(S;H), and for arbitrary

t1, t2 ∈ S, t1 < t2, δ > 0 satisfies the estimates:

max
t∈[t1 ,t2]

|u(t)|2 +

∫ t2

t1

[
|u(t)|2 + |u(t)|q + ‖u(t)‖p

]
dt ≤ C1

[
δ
− 2

q−2

+

∫ t2

t1−δ

|f (t)|2 dt
]
, (9)

ess sup
t∈[t1 ,t2]

‖u(t))‖p +

∫ t2

t1

|u′(t)|2 dt ≤ C2

[
max{δ

− 2
q−2 , δ

−
q

q−2 }

+

∫ t2

t1−2δ
|f (t)|2 dt + δ−1

∫ t1

t1−2δ
|f (t)|2 dt

]
, (10)

where C1,C2 are positive constants depending on K1,K2,K3, and q

only.

Remark 3.2. If 8 is such that dom(8) : = V and ∂8(v) =

{A(v)}, v ∈ V , whereA :V → V ′ is some operator, then variational

inequality (7) will be functional-differential equation

u′(t)+ A(u(t))+ B(t, u(t)) = f (t), t ∈ S. (11)

Note that condition (A3) implies the coercivity of operator A, i.e.,

(A(v), v) ≥ K1‖v‖
p, v ∈ V .

In addition, from condition (A4) follows the strong monotonicity

of the operator A, i.e.,

(A(v1)−A(v2), v1−v2) ≥ K2|v1−v2|
2+K3|v1−v2|

q ∀ v1, v2 ∈ V .

4 Proof of the main results

Proof. [Proof of the Theorem 3.1] Assume the contrary. Let u1
and u2 be two solutions to the problem P(8,B, f ). Then for every

i ∈ {1, 2} there exists function gi ∈ L
p ′

loc
(S;V ′) + L

q ′

loc
(S;H) such

that, for a.e. t ∈ S, gi(t) ∈ ∂8
(
ui(t)

)
and

u′i(t)+ gi(t)+ B(t, ui(t)) = f (t) in V ′, i = 1, 2. (12)

We putw : = u1−u2. From equalities (12), for a.e. t ∈ S, we obtain

w′(t)+ g1(t)− g2(t)+ B(t, u1(t))− B(t, u2(t)) = 0 in V ′. (13)

Multiplying equality (13) scalar by w(t), for a.e. t ∈ S, we obtain

(w′(t),w(t))+ (g1(t)− g2(t), u1(t)− u2(t))+
(
B(t, u1(t))

−B(t, u2(t)), u1(t)− u2(t)
)
= 0. (14)

By condition (A4) and the fact that gi(t) ∈ ∂8(ui(t)), i = 1, 2,

we have the inequality

(g1(t)−g2(t), u1(t)−u2(t)) ≥ K2|w(t)|
2+K3|w(t)|

q for a.e. t ∈ S.

(15)

By condition (B), for a.e. t ∈ S, we obtain

(
B(t, u1(t))− B(t, u2(t)), u1(t)− u2(t)

)
≥ −L|w(t)|2. (16)

By Equations (2), (8), (15), and (16), fromEquation (14) we get such

differential inequality

(|w(t)|2)′ + 2K3

(
|w(t)|2

)q/2
≤ 0 for a.e. t ∈ S. (17)

From Equation (17), taking into account the condition q/2 >

1 and using Proposition 2.4 with z(t) : = |w(t)|2, β(t) : =

2K3 for all t ∈ S, and χ(s) : = sq/2 for all s ∈

[0,+∞), we receive |w(t)|2 = 0 for all t ∈ S, i.e.,

u1 = u2 a.e. on S. The resulting contradiction completes

the proof of the uniqueness of the solution to the problem

P(8,B, f ).
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Proof. [Proof of the Theorem 3.2] We divide the proof into seven

steps.

Step 1 (auxiliary statements). We define the functional 8H :H →

R∞ by the rule: 8H(v) : = 8(v) if v ∈ V , and 8H(v) : = +∞

otherwise. Note that conditions (A1), (A2), Lemma IV.5.2, and

Proposition IV.5.2 of the monograph [4] imply that8H is a proper,

convex, and lower semicontinuous functional on H, dom(8H) =

dom(8) ⊂ V and ∂8H = ∂8 ∩ (V ×H), where ∂8H :H → 2H is

the sub-differential of the functional8H . In addition, the condition

(A3) implies that 0 ∈ ∂8H(0).

The following statements will be used in the sequel:

LEMMA 4.1 [[4, Lemma IV.4.3]]. Let−∞ < a < b < +∞, and

w ∈ H1(a, b;H), g ∈ L2(a, b;H) such that g(t) ∈ ∂8H(w(t)) for a.e.

t ∈ (a, b). Then the function 8H(w(·)) is absolutely continuous on

the interval [a, b] and for any function h :[a, b] → H such that, for

a.e. t ∈ (a, b), h(t) ∈ ∂8H

(
w(t)

)
, and the following equality holds:

d

dt
8H

(
w(t)

)
= (h(t),w′(t)).

LEMMA 4.2 ([23, Proposition 3.12], [4, Proposition IV.5.2]).

Let f̃ ∈ L2(0,T;H) and w0 ∈ dom(8). Then there exists a unique

function w ∈ C([0,T];H) ∩ H1(0,T;H) such that w(0) = w0 and,

for a.e., t ∈ (0,T], w(t) ∈ D(∂8H) and

w′(t)+ ∂8H

(
w(t)

)
∋ f̃ (t) in H. (18)

LEMMA 4.3. Let f̃ ∈ L2(0,T;H) and w0 ∈ dom(8). Then there

exists a unique function w ∈ C([0,T];H) ∩ H1(0,T;H) such that

w(0) = w0 and, for a.e. t ∈ (0,T], w(t) ∈ D(∂8H) and

w′(t)+ ∂8H

(
w(t)

)
+ B(t,w(t)) ∋ f̃ (t) in H, (19)

i.e., there exists g̃ ∈ L2(0,T;H) such that, for a.e. t ∈ (0,T], we have

g̃(t) ∈ ∂8H(w(t)) and

w′(t)+ g̃(t)+ B(t,w(t)) = f̃ (t) in H. (20)

Proof. [Proof of Lemma 4.3] Let α > 0 be an arbitrary fixed

number, and set

M : = {w ∈ C([0,T];H) | w(0) = w0}.

ConsiderM with the metric

ρ(w1,w2) = max
t∈[0,T]

[
e−αt|w1(t)− w2(t)|

]
, w1,w2 ∈ M.

The metric space (M, ρ) is complete. Now let us consider an

operator A :M → M defined as follows: for any given function

w̃ ∈ M, it defines a function ŵ ∈ M∩H1(0,T;H) such that, for a.e.

t ∈ (0,T], ŵ(t) ∈ D(∂8H) and

ŵ ′(t)+ ∂8H(ŵ(t)) ∋ f̃ (t)− B(t, w̃(t)) in H. (21)

Clearly, variational inequality (21) coincides with variational

inequality (18) after replacing f̃ (t) by f̃ (t) − B(t, w̃(t)), and w(0) =

w0 by ŵ(0) = w0. Thus, using Lemma 4.2, we get that ope-

rator A is well-defined. Let us demonstrate that the operator A

is a contraction for some α > 0. Indeed, let w̃1, w̃2 be arbitrary

functions from M, and ŵ1 : = Aw̃1, ŵ2 : = Aw̃2. According

to Equation (21) there exist functions ĝ1 and ĝ2 from L2(0,T;H)

such that for every j ∈ {1, 2} and for a.e. t ∈ (0,T] we have

ĝj(t) ∈ ∂8H(ŵj(t)) and

ŵ ′
j (t)+ ĝj(t) = f̃ (t)− B(t, w̃j(t)), (22)

while ŵj(0) = w0.

Subtracting identity (22) for j = 2 from identity (22) for

j = 1, and, for a.e. t ∈ (0,T], multiplying the obtained identity

by ŵ1(t)− ŵ2(t), we get

(
(ŵ1(t)− ŵ2(t))

′, ŵ1(t)− ŵ2(t)
)
+ (̂g1(t)− ĝ2(t), ŵ1(t)− ŵ2(t))

= −(B(t, w̃1(t))− B(t, w̃2(t)), ŵ1(t)− ŵ2(t))

for a.e.

t ∈ (0,T], (23)

ŵ1(0)− ŵ2(0) = 0. (24)

We integrate equality (23) by t from 0 to σ ∈ (0,T], taking into

account (24) and that [see Equation (2)] for a.e. t ∈ (0,T]. The

following holds:

(
(ŵ1(t)− ŵ2(t))

′, ŵ1(t)− ŵ2(t)
)
=

1

2

(
|ŵ1(t)− ŵ2(t)|

2
)′
.

As a result, we get the equality

1

2
|ŵ1(σ )− ŵ2(σ )|

2 +

σ∫

0

(̂g1(t)− ĝ2(t), ŵ1(t)− ŵ2(t)) dt

= −

σ∫

0

(
B(t, w̃1(t))− B(t, w̃2(t)), ŵ1(t)− ŵ2(t)

)
dt. (25)

By condition (A4), for a.e. t ∈ (0,T], we have the inequality

(̂g1(t)− ĝ2(t), ŵ1(t)− ŵ2(t)) ≥ K2|ŵ1(t)− ŵ2(t)|
2. (26)

Taking into account condition (B) and inequality (4) for a.e.

t ∈ (0,T], we obtain

∣∣(B(t, w̃1(t))− B(t, w̃2(t)), ŵ1(t)− ŵ2(t)
)∣∣

≤
∣∣B(t, w̃1(t))− B(t, w̃2(t))

∣∣ ∣∣ŵ1(t)− ŵ2(t)
∣∣

≤ L|w̃1(t)− w̃2(t)| |ŵ1(t)− ŵ2(t)| ≤ ε|ŵ1(t)− ŵ2(t)|
2

+ε−1L2|w̃1(t)− w̃2(t)|
2, (27)

where ε > 0 is an arbitrary.

From Equation (25), according to Equations (26) and (27), we

have

|ŵ1(σ )− ŵ2(σ )|
2 + 2(K2 − ε)

σ∫
0

|ŵ1(t)− ŵ2(t)|
2 dt

≤ 2ε−1L2
σ∫
0

∣∣w̃1(t)− w̃2(t)
∣∣2dt. (28)

Choosing ε = K2, from Equation (28) we obtain

|ŵ1(σ )− ŵ2(σ )|
2 ≤ C3

∫ σ

0
|w̃1(t)− w̃2(t)|

2 dt, σ ∈ (0,T],

(29)
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where C3 : = 2K−1
2 L2.

After multiplying inequality (30) by e−2ασ , we obtain

e−2ασ |ŵ1(σ )− ŵ2(σ )|
2 ≤ C3e

−2ασ
∫ σ

0 e2αte−2αt|w̃1(t)− w̃2(t)|
2 dt

≤ C3e
−2ασ max

t∈[0,T]

[
e−αt|w̃1(t)− w̃2(t)|

]2 ∫ σ

0 e2αt dt

= C3
2α

(
1− e−2ασ

)[
ρ(w̃1, w̃2)

]2
≤ C3

2α

[
ρ(w̃1, w̃2)

]2
,

σ ∈ (0,T]. (30)

From Equation (30), it easily follows that

ρ(ŵ1, ŵ2) ≤
√
C3/(2α) ρ(w̃1, w̃2).

From this, choosing α > 0 such that inequality C3/(2α) < 1

holds, we obtain that operator A :M → M is a contraction. Hence,

we may apply the Banach fixed-point theorem [24, Theorem 5.7]

and deduce that there exists a unique functionw ∈ M∩H1(0,T;H)

such that Aw = w, i.e., we have proved over the statement, i.e.,

Lemma 4.3.

Step 2 (solution approximations). Let us consider the next problem:

to find a function u ∈ H1
loc
(S;H) such that, for a.e., t ∈ S, u(t) ∈

D(∂8H) and

u ′(t)+ ∂8H

(
u(t)

)
+ B(t, u(t)) ∋ f (t) in H. (31)

We call this problem the problem P(8H ,B, f ). The solution of the

problem P(8H ,B, f ) is the solution of the problem P(8,B, f ). We

prove the existence of a solution to the problem P(8H ,B, f ).

At first, we construct a sequence of functions, that, in some

perception, approximates the solution of the problem P(8H ,B, f ).

For each k ∈ N we put f̂k(t) : = f (t) for t ∈ Sk : = (T− k,T] and let

us consider the problem of finding a function ûk ∈ H1(Sk;H) such

that ûk(T − k) = 0 and, for a.e. t ∈ Sk, we have ûk(t) ∈ D(∂8H)

and

û ′
k(t)+ ∂8H

(
ûk(t)

)
+ B(t, ûk(t)) ∋ f̂k(t) in H. (32)

The existence of a unique solution to problem (32) implies

Lemma 4.3. Note that sub-differential inclusion in (32) means that

there exists a function ĝk ∈ L2(Sk;H) such that, for a.e., t ∈ Sk, we

have ĝk(t) ∈ ∂8H (̂uk(t)) and

û ′
k(t)+ ĝk(t)+ B(t, ûk(t)) = f̂k(t) in H. (33)

Note that D(∂8H) ⊂ dom(8H) = dom(8) ⊂ V , and thus

ûk(t) ∈ V for a.e. t ∈ Sk. According to the definition of the

subdifferential of a functional and the fact that ĝk(t) ∈ ∂8(̂uk(t)),

we have

8(0) ≥ 8(̂uk(t))+ (̂gk(t), 0− ûk(t)) for a.e. t ∈ Sk.

From this and condition (A3) we obtain

(̂gk(t), ûk(t)) ≥ 8(̂uk(t)) ≥ K1‖̂uk(t)‖
p for a.e. t ∈ Sk. (34)

Since the left side of this chain of inequalities belongs to L1(Sk), then

ûk belongs to L
p(Sk;V).

For each k ∈ N, we extend functions f̂k, ûk, and ĝk by zero

for the entire interval S and denote these extensions by fk, uk, and

gk, respectively. From the above, it follows that, for each k ∈ N,

the function uk belongs to Lp(S;V), its derivative u′
k
belongs to

L2(S;H), and, for a.e. t ∈ S, gk(t) ∈ ∂8H

(
uk(t)

)
and [see Equation

(33)],

u′k(t)+ gk(t)+ B(t, uk(t)) = fk(t) in H. (35)

Step 3 (estimates of solution approximations). To demonstrate the

convergence {uk}
∞
k=1

to the solution of the problem P(8H ,B, f ), we

need some estimates of the functions uk, k ∈ N.

Let the function θ∗ ∈ C1(R) such that θ∗(t) = 0 if t ∈

(−∞,−1], θ∗(t) = e
t2

t2−1 if t ∈ (−1, 0), θ∗(t) = 1 if t ∈ [0,+∞)

[see Bokalo [9]]. Obviously, θ ′
∗(t) ≥ 0 for arbitrary t ∈ R, and for

any 0 < ν < 1, we have

sup
t∈(−1,0)

θ ′
∗(t)

θν
∗ (t)

= C4, (36)

where C4 > 0 is a constant depending on ν only.

Let t1, t2, and δ be arbitrary real fixed numbers such that t1, t2 ∈

S, t1 < t2, δ > 0. We put

θ(t) : = θ∗

( t − t1

δ

)
, t ∈ S. (37)

It is clear that θ(t) = 0 if t ∈ (−∞, t1 − δ], 0 < θ(t) < 1 if

t ∈ (t1 − δ, t1), θ(t) = 1 if t ∈ [t1,+∞), and θ ′(t) = δ−1θ ′
∗((t −

t1)/δ) ≥ 0 for every t ∈ R.

Let k ∈ N. Obviously, θuk ∈ H1(S;H). For each t ∈ S, multiply

the identity (35) scalar by θ(t)uk(t) and integrate from t1 − δ to

τ ∈ [t1, t2]. As a result, we obtain

∫ τ

t1−δ

θ(t)(u′k(t), uk(t)) dt +

∫ τ

t1−δ

θ(t)(gk(t), uk(t)) dt

+

∫ τ

t1−δ

θ(t)
(
B(t, uk(t)), uk(t)

)
dt =

∫ τ

t1−δ

θ(t)(fk(t), uk(t)) dt.

(38)

From this, taking into account (2) and using the integration-by-

parts formula, we transform the first term on the left side of the

equality (38) as follows:

∫ τ

t1−δ

θ(t)(u′k(t), uk(t)) dt =
1

2

∫ τ

t1−δ

θ(t)
(
|uk(t)|

2
)′
dt =

1

2
|uk(τ )|

2

−
1

2

∫ t1

t1−δ

θ ′(t)|uk(t)|
2 dt. (39)

Then from Equation (38), using Equation (39), we receive

|uk(τ )|
2 + 2

∫ τ

t1−δ

θ(t)(gk(t), uk(t)) dt =

∫ t1

t1−δ

θ ′(t)|uk(t)|
2 dt

− 2

∫ τ

t1−δ

θ(t)
(
B(t, uk(t)), uk(t)

)
dt + 2

∫ τ

t1−δ

θ(t)(fk(t), uk(t)) dt.

(40)

Since (0, 0) ∈ ∂8H and (gk(t), uk(t)) ∈ ∂8H for a.e. t ∈ S, from

condition (A4) we get

(gk(t), uk(t)) ≥ K2|uk(t)|
2 + K3|uk(t)|

q for a.e. t ∈ S. (41)
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According to the definition of uk and gk and using the inequality

(34), we obtain

(gk(t), uk(t)) ≥ 8
(
uk(t)

)
≥ K1‖uk(t)‖

p for a.e. t ∈ S. (42)

Let us estimate the second term on the left-hand side of equality

(40), using inequalities (41) and (42), in this way:

2

∫ τ

t1−δ

θ(t)(gk(t), uk(t)) dt ≥ 2(σ + (1− σ ))

∫ τ

t1−δ

θ(t)(gk(t), uk(t))dt

≥ 2σK2

∫ τ

t1−δ

θ(t)|uk(t)|
2 dt + 2σK3

∫ τ

t1−δ

θ(t)|uk(t)|
q dt

+ 2(1− σ )K1

∫ τ

t1−δ

θ(t)‖uk(t)‖
p dt + 2(1− σ )

∫ τ

t1−δ

θ(t)8
(
uk(t)

)
dt,

(43)

where σ ∈ (0, 1) is arbitrary.

Using the inequality (34) (with r = q/2, r′ = q/(q − 2)), we

estimate the first term on the right-hand side of Equation (40) as

follows:

∫ τ

t1−δ

θ ′(t)|uk(t)|
2 dt =

∫ t1

t1−δ

θ ′(t)θ
− 2

q (t) · θ
2
q (t)|uk(t)|

2 dt

≤ ε1

∫ t1

t1−δ

θ(t)|uk(t)|
q dt + ε

− 2
q−2

1

∫ t1

t1−δ

(
θ ′(t)θ

− 2
q (t)

) q
q−2 dt,

(44)

where ε1 > 0 is an arbitrary number.

Based on Equation (36), it is easy to demonstrate that

∫ t1

t1−δ

(
θ ′(t) · θ

− 2
q (t)

) q
q−2 dt =

∫ t1

t1−δ

(
δ−1 · θ ′

∗

(
(t − t1)/δ

)
· θ

− 2
q

∗

(
(t − t1)/δ

)) q
q−2

dt

=
[
(t − t1)/δ = s, t = δs+ t1, dt = δds

]
= δ

− 2
q−2

∫ 0

−1

(
θ ′
∗(s) · θ

− 2
q

∗ (s)
) q

q−2
ds

≤ C
q

q−2

4 · δ
− 2

q−2 , (45)

where C4 is constant from Equation (36) with ν = 2/q (note that

C4 depends on q only).

So from Equation (44) using Equation (45), we obtained

∫ τ

t1−δ

θ ′(t)|uk(t)|
2 dt ≤ ε1

∫ t1

t1−δ

θ(t)|uk(t)|
q dt + C5 (ε1δ)

− 2
q−2 ,

(46)

where C5 : = C
q

q−2

4 depends on q only.

Let us estimate the second term on the right-hand side of

equality (40). Using (6), we receive

∣∣∣
∫ τ

t1−δ

θ(t)
(
B(t, uk(t)), uk(t)

)
dt

∣∣∣ ≤
∫ τ

t1−δ

θ(t)
∣∣B(t, uk(t))

∣∣|uk(t)| dt

≤ L

∫ τ

t1−δ

θ(t)|uk(t)|
2 dt. (47)

Let us estimate the third term on the right-hand side of equality

(40), using inequality (4):

∫ τ

t1−δ

θ(t)(fk(t), uk(t)) dt ≤

∫ τ

t1−δ

θ(t)|fk(t)||uk(t))| dt

≤ ε2

∫ τ

t1−δ

θ(t)|uk(t)|
2 dt + ε−1

2

∫ τ

t1−δ

θ(t)|fk(t)|
2 dt, (48)

where ε2 > 0 is an arbitrary constant.

From Equation (40), using Equations (43), and (46)–(48), we

receive

|uk(τ )|
2 + 2(σK2 − L− ε2)

∫ τ

t1−δ

θ(t)|uk(t)|
2 dt + (2σK3 − ε1)

∫ τ

t1−δ

θ(t)|uk(t)|
q dt + 2(1− σ )K1

∫ τ

t1−δ

θ(t)‖uk(t)‖
p dt

+ 2(1− σ )

∫ τ

t1−δ

θ(t)8
(
uk(t)

)
dt

≤ C5(ε1δ)
− 2

q−2 + 2ε−1
2

∫ τ

t1−δ

θ(t)|fk(t)|
2 dt. (49)

In Equation (49), using condition (8), we choose σ ∈ (0, 1)

such that the inequality σK2 − L > 0 holds, and then we take

ε1 = σK3, ε2 = (σK2 − L)/2. As a result, we get

|uk(τ )|
2 +

∫ τ

t1−δ

θ(t)
[
|uk(t)|

2 + |uk(t)|
q + ‖uk(t)‖

p + 8
(
uk(t)

)]
dt

≤ C6δ
− 2

q−2 + C7

∫ τ

t1−δ

θ(t)|fk(t)|
2 dt, (50)

whereC6, C7 are positive constants dependent onK1,K2,K3, L, and

q only.

Since τ ∈ [t1, t2] is arbitrary, from Equation (50) and the

definition of θ , we obtain

max
t∈[t1 ,t2]

|uk(t)|
2 +

∫ t2

t1

|uk(t)|
2 dt+

∫ t2

t1

|uk(t)|
q dt +

∫ t2

t1

‖uk(t)‖
p dt +

∫ t2

t1

8
(
uk(t)

)
dt

≤ 2C6δ
− 2

q−2 + 2C7

∫ t2

t1−δ

|fk(t)|
2 dt. (51)

From Equation (50) and the definition of fk, since t1, t2 ∈ S and

δ > 0 are all arbitrary, it follows that

the sequence {uk} is bounded in L∞loc(S;H), L2loc(S;H), L
q

loc
(S;H),

and L
p

loc
(S;V), and (52)

the sequence
{
8

(
uk

)}
is bounded in L1loc(S). (53)

Step 4 (estimates of derivatives of solution approximations). Now let

us find estimates of u′
k
, k ∈ N. Let t1, t2, and δ be arbitrary real

numbers such that t1, t2 ∈ S, t1 < t2, and δ > 0. θ is a function

defined above. We multiply equality (35) for almost every t ∈ S
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scalar by θ(t)u′
k
(t) and integrate the resulting equality from t1 − δ

to τ ∈ [t1, t2]:
∫ τ

t1−δ

θ(t)|u′k(t)|
2 dt +

∫ τ

t1−δ

θ(t)(gk(t), u
′
k(t)) dt

+

∫ τ

t1−δ

θ(t)(B(t, uk(t)), u
′
k(t)) dt

=

∫ τ

t1−δ

θ(t)(fk(t), u
′
k(t)) dt. (54)

Since gk ∈ L2(t1 − δ, t2;H) and gk(t) ∈ ∂8H(uk(t)) for a. e.

t ∈ (t1 − δ, t2), Lemma 4.1 implies that the function 8H

(
uk(·)

)
is

continuous on [t1 − δ, t2] and

(
8H(uk(t))

)′
= (gk(t), u

′
k(t)) for a.e. t ∈ (t1 − δ, t2). (55)

Taking into account Equation (55), we can estimate the second term

on the left side of Equation (54) as follows:
∫ τ

t1−δ

θ(t)(gk(t), u
′
k(t)) dt =

∫ τ

t1−δ

θ(t)
(
8H(uk(t))

)′
dt

= 8H

(
uk(τ )

)
−

∫ τ

t1−δ

θ ′(t)8H

(
uk(t)

)
dt

≥ 8H

(
uk(τ )

)
− max

t∈[t1−δ,t1]
θ ′(t)

∫ t1

t1−δ

8H

(
uk(t)

)
dt. (56)

By inequality (4) with ε = 4, taking into Equation (6), we

receive
∣∣∣
∫ τ

t1−δ

θ(t)
(
B(t, uk(t)), u

′
k(t)

)
dt

∣∣∣ ≤
∫ τ

t1−δ

θ(t)
∣∣B(t, uk(t))

∣∣|u′k(t)| dt

≤ L

∫ τ

t1−δ

θ(t)|uk(t)||u
′
k(t)| dt ≤ 4L2

∫ τ

t1−δ

θ(t)|uk(t)|
2dt

+
1

4

∫ τ

t1−δ

θ(t)|u′k(t)|
2 dt, (57)

∫ τ

t1−δ

θ(t)(fk(t), u
′
k(t)) dt ≤ 4

∫ τ

t1−δ

θ(t)|fk(t)|
2 dt

+
1

4

∫ τ

t1−δ

θ(t)|u′k(t)|
2 dt. (58)

From Equation (54), using Equations (56)–(58) and

max
t∈[t1−δ,t1]

θ ′(t) = δ−1 max
t∈[t1−δ,t1]

θ ′
∗((t − t1)/δ) ≤ C8δ

−1,

C8 : = max
s∈[−1,0]

θ ′
∗(s),

we have

1

2

∫ τ

t1

|u′k(t)|
2 dt + 8H

(
uk(τ )

)
≤ 4

∫ τ

t1−δ

|fk(t)|
2 dt

+ 4L2
∫ τ

t1−δ

|uk(t)|
2 dt + C8δ

−1

∫ t1

t1−δ

8H

(
uk(t)

)
dt. (59)

Since τ ∈ [t1, t2] is arbitrary, from Equation (59) by the

definition of 8H and condition (A3) (remind that uk(t) ∈ V for

a.e. t ∈ S), we have

less sup
t∈[t1 ,t2]

‖uk(t)‖
p +

∫ t2

t1

|u′k(t)|
2 dt

≤ C9

[ ∫ t2

t1−δ

|fk(t)|
2 dt +

∫ t2

t1−δ

|uk(t)|
2 dt + δ−1

∫ t1

t1−δ

8
(
uk(t)

)
dt

]
,

(60)

where C9 > 0 is a positive constant dependent on K1 and L only.

From Equation (60), taking into account (51), we obtain

ess sup
t∈[t1 ,t2]

‖uk(t))‖
p +

∫ t2

t1

|u′k(t)|
2 dt ≤ C10

[
δ
− 2

q−2 + δ
−

q
q−2

+

∫ t2

t1−2δ
|fk(t)|

2 dt + δ−1

∫ t1

t1−2δ
|fk(t)|

2 dt
]
, (61)

where C10 > 0 is a positive constant dependent on K1,K2,K3, L,

and q only.

From the estimate (4) and the definition of fk, since t1, t2 ∈ S

and δ > 0 are arbitrary, it implies that

the sequence
{
uk

}+∞

k=1
is bounded in L∞loc(S;V), (62)

the sequence
{
u′k

}+∞

k=1
is bounded in L2loc(S;H). (63)

From Equations (6) and (51) we have

t2∫
t1

∣∣B(t, uk(t))
∣∣2 dt ≤ L2

t2∫
t1

|uk(t)|
2 dt ≤ C11

(
1+

t2∫
t1−1

|fk(t)|
2 dt

)
≤ C12, (64)

where C11,C12 are positive constants independent on k ∈ N.

From Equations (35), (63), and (64) and the definition of fk, we

get that

the sequence {gk}
+∞
k=1

is bounded in L2loc(S;H). (65)

Step 5 (passing the limit). Since V is reflexive Banach space, H

is Hilbert space, and V embeds in H by compact injection, from

Equations (52), (62), (63), (65), and Proposition 2.7, we have the

existence of functions u ∈ L∞
loc
(S;V) ∩ L

q

loc
(S;H) ∩ H1

loc
(S;H),

g ∈ L2
loc
(S;H), and a subsequence of the sequence {uk, gk}

+∞
k=1

(until

denoted by {uk, gk}
+∞
k=1

) such that

uk −→
k→∞

u ∗-weakly in L∞loc(S;V), and weakly in L
p

loc
(S;V),

(66)

uk −→
k→∞

u weakly in L
q

loc
(S;H), and weakly in H1

loc(S;H), (67)

uk −→
k→∞

u in C(S;H), (68)

gk −→
k→∞

g weakly in L2loc(S;H). (69)

From Equation (68) and condition (B), for each t0 < T, we

have

T∫

t0

∣∣B(t, uk(t))− B(t, u(t))
∣∣2 dt ≤ L2

T∫

t0

|uk(t)− u(t)|2 dt −→
k→∞

0.

Thus, we obtain

B(·, uk(·)) −→
k→∞

B(·, u(·)) strongly in L2loc(S;H). (70)
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Let v ∈ H, ϕ ∈ C(S) be arbitrary while suppϕ is compact. For

a.e. t ∈ S, wemultiply equality (35) by v and ϕ(t), and then integrate

in t on S. As a result, we obtain equality

∫
S

(u′
k
(t), v)ϕ(t) dt +

∫
S

(gk(t), v)ϕ(t)+
∫
S

(B(t, uk(t)), v)ϕ(t) dt

=
∫
S

(fk(t), v)ϕ(t) dt, k ∈ N. (71)

We pass to the limit in Equation (71) as k → ∞, taking

into account (67), (69), (70), and the convergence of {fk}
∞
k=1

to f

in L2
loc
(S;H). As a result, since v,ϕ are arbitrary, for a.e. t ∈ S, we

obtain the equality

u′(t)+ g(t)+ B(t, u(t)) = f (t) in H.

Step 6 (proof that u(t) ∈ D(∂8H) and g(t) ∈ ∂8H

(
u(t)

)
for a. e.

t ∈ S). Let k ∈ N be an arbitrary number. Since uk(t) ∈ D(∂8H)

and gk(t) ∈ ∂8H

(
uk(t)

)
for a.e. t ∈ S, applying the monotonicity of

the sub-differential ∂8H , we obtain that for a.e. t ∈ S the following

inequality holds:

(gk(t)− v∗, uk(t)− v) ≥ 0 ∀ [v, v∗] ∈ ∂8H . (72)

Let τ ∈ S and h > 0 be arbitrary numbers. We integrate (72) in t

from τ − h to τ :

∫ τ

τ−h
(gk(t)− v∗, uk(t)− v) dt ≥ 0 ∀ [v, v∗] ∈ ∂8H . (73)

Now we pass to the limit in Equation (73) as k → ∞, according to

Equations (68) and (69). As a result, we obtain

∫ τ

τ−h
(g(t)− v∗, u(t)− v) dt ≥ 0 ∀ [v, v∗] ∈ ∂8H . (74)

The monograph [25, Theorem 2] and Equation (74) imply that

for every [v, v∗] ∈ ∂8H there exists a set of measure zero R[v,v∗] ⊂ S

such that for all τ ∈ S \ R[v,v∗] we have u(τ ) ∈ V , g(τ ) ∈ H

0 ≤ lim
h→+0

1

h

∫ τ

τ−h

(
g(t)−v∗, u(t)−v

)
dt =

(
g(τ )−v∗, u(τ )−v

)
≥ 0.

(75)

Let us demonstrate that there exists a set of measure zero R ⊂ S

such that

∀τ ∈ S\R :

(
g(τ )−v∗, u(τ )−v

)
≥ 0 ∀ [v, v∗] ∈ ∂8H . (76)

Since V and H are separable spaces, there exists a countable set

F ⊂ ∂8H , which is dense in ∂8H . Denote R : = ∪
[v,v∗]∈F

R[v,v∗].

Since the set F is countable and any countable union of sets of

measure zero is a set of measure zero, then R is a set of measure

zero.

Therefore, for any τ ∈ S \ R inequality (76) holds for every

[v, v∗] ∈ F. Let [̂v, v̂∗] be an arbitrary element from ∂8H . Then

from the density F in ∂8H we have the existence of a sequence

{[vl, v
∗
l
]}∞
l=1

⊂ F such that vl → v in V , v∗
l
→ v∗ in H, and for

every τ ∈ S \ R

(g(τ )− v∗l , u(τ )− vl) ≥ 0 ∀l ∈ N. (77)

Thus, passing to the limit in inequality (77) as l → ∞, we obtain

(g(τ ) − v∗, u(τ ) − v) ≥ 0 for every τ ∈ S \ R. Hence, we have

Equation (76), i.e., for a.e. t ∈ S, the following holds:

(g(t)− v∗, u(t)− v) ≥ 0 ∀ [v, v∗] ∈ ∂8H .

From this, according to the maximal monotonicity of ∂8H , we

obtain that [u(t), g(t)] ∈ ∂8H for a.e. t ∈ S, i.e., u(t) ∈ D(∂8H)

and g(t) ∈ ∂8H(u(t)) for a.e. t ∈ S. Thus, function u is the solution

of the problem P(8,B, f ), and therefore P(8H ,B, f ).

Step 7 (completion of proof ). Estimates (9) and (10) of the solution

of the problem P(8,B, f ) follow directly from estimates (51) (given

that
∫ t2
t1

8
(
uk(t)

)
dt ≥ 0) and (4), convergence (66)–(68) and

Proposition 2.5.

5 Comments on the main results

Let us introduce an example of the problem that is studied here.

Let n ∈ N, � be a bounded domain in Rn, ∂� be the boundary

of �, and ∂� be the piecewise surface. We put Q : = � × S,

6 : = ∂� × S, and �t : = � × {t} ∀ t ∈ S. For an arbitrary

measurable set F ⊂ Rk, where k = n or k = n + 1, and

r ∈ [1,∞], let Lr(F) be the standard Lebesgue space with norm

‖ · ‖Lr(F). Let L
r
loc
(Q) be the linear space of classes of equivalent

functions defined on Q such that their restrictions on any bounded

measurable setQ ′ ⊂ Q belong to Lr(Q ′). For r ∈ (1,∞), we denote

by W1,r(�) = {v ∈ Lr(�) | vxi ∈ Lr(�), i = 1, n} the standard

Sobolev space with norm ‖v‖W1,r(�) : =
(
‖v‖r

Lr(�)
+‖∇v‖r

Lr(�)

)1/r
,

where ∇u : = (ux1 , . . . , uxn ) [see, e.g., Brezis [24]].

Let p > 2 and K be a nonempty convex closed set in W1,p(�),

which contains 0. We consider the problem: find a function u ∈

L
p

loc
(Q) such that uxi ∈ L

p

loc
(Q), i = 1, n, ut ∈ L2

loc
(Q), and, for a.e.

t ∈ S, we have u(·, t) ∈ K and

∫

�t

[
ut(v−u)+|∇u|p−2∇u∇(v−u)+|u|p−2u(v−u)+a(x)u(v−u)

+(v−u)

∫

�

b(x, y, t)u(y, t) dy
]
dx ≥

∫

�t

f (v−u) dx ∀ v ∈ K, (78)

where f ∈ L2
loc
(Q), a ∈ L∞(�), and S ∋ t → b(·, ·, t) ∈ L2(� × �)

are given.

This problem is called problem (78), and a function u is its

solution.

Note that in cases K = W1,p(�), this problem is equivalent to

the problem of finding a weak solution to a problem without initial

conditions for a nonlinear integro-differential parabolic equation:

ut − div
(
|∇u|p−2∇u

)
+ |u|p−2u+ a(x)u+

∫
�

b(x, y, t)u(y, t) dy

= f (x, t), (x, t) ∈ Q,

∂u

∂ν
= 0.
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We remark that problem (78) can be written more abstractly.

Indeed, after appropriate identification of functions and

functionals, we have continuous and dense embedding

W1,p(�) ⊂ L2(�) ⊂ (W1,p(�))′,

where (W1,p(�))′ is dual to W1,p(�) space. Clearly, for any h ∈

L2(�) and v ∈ W1,p(�), we have 〈h, v〉 = (h, v), where 〈·, ·〉 is

the notation for action of element of (W1,p(�))′ on element of

W1,p(�), and (·, ·) is a scalar product in L2(�). Thus, we can use

the notation (·, ·) instead of 〈·, ·〉.

Now, we denote V : = W1,p(�), H : = L2(�) and define

operators A :V → V ′ and B(t, ·) :H → H, t ∈ S, as follows:

(A(v),w) =

∫

�

[
|∇v|p−2∇v∇w+ |v|p−2vw+ avw

]
dx, v,w ∈ V ,

(79)

B(t, v)(·) : =

∫

�

b(·, y, t)v(y) dy, v ∈ H, t ∈ S. (80)

Then problem (78) can be rewritten as follows: find a function

u ∈ L
p

loc
(S;V) such that u′ ∈ L2

loc
(S;H) and, for a.e. t ∈ S, we

have u(t) ∈ K and

(u′(t)+ A(u(t))+ B(t, u(t)), v− u(t)) ≥ (f (t), v− u(t)) ∀ v ∈ K,

(81)

where f ∈ L2
loc
(S;H) is given function.

We remark that, for a.e. t ∈ S, variational inequality (81) can be

written as

(u′(t)+ A(u(t))+ B(t, u(t))− f (t), v− u(t))+ IK(v)− IK(u(t))

≥ 0 ∀ v ∈ V , (82)

where

IK(v) : =

{
0, if v ∈ K,

+∞, if v ∈ V \ K.
(83)

We can write inequality (82) as follows:

IK(v) ≥ IK(u(t))+ (−u′(t)− A(u(t))− B(t, u(t))+ f (t), v− u(t))

∀ v ∈ V . (84)

The functional IK from V to R∞ is proper, convex and lower

semicontinuous. By the definition of the subdifferential ∂IK :V →

2V
′
inequality (84) is equivalent to inclusion

∂IK(u(t)) ∋ −u′(t)− A(u(t))− B(t, u(t))+ f (t),

i.e.,

u′(t)+ A(u(t))+ ∂IK(u(t))+ B(t, u(t)) ∋ f (t). (85)

We define

9(v) : =

∫

�

[
p−1(|∇v|p + |v|p)+ 2−1a|v|2

]
dx, v ∈ V , (86)

and

8(v) : = 9(v)+ IK(v), v ∈ V . (87)

The functionals 9 and 8 from V to R∞ are proper, convex and

lower semicontinuous. As easy to demonstrate, we have ∂9(v) =

{A(v)} ⊂ V ′ for each v ∈ V , and

∂8(v) : = A(v)+ ∂IK(v), v ∈ V . (88)

From the above [see, in particular, Equations (85) and (88)],

it follows that the problem (79) can be written as such a sub-

differential inclusion: find a function u ∈ L
p

loc
(S;V) such that

u′ ∈ L2
loc
(S;H) and, for a.e. t ∈ S, u(t) ∈ D(∂8) and

u′(t)+ ∂8(u(t))+ B(t, u(t)) ∋ f (t) in H. (89)

So problem (78) is a partial case of the problem P(8,B, f ).

Based on this, let’s illustrate the main results of this study (see

Theorems 1, 2).

COROLLARY 5.1. Let the following condition hold:

ess sup
t∈S

‖b(·, ·, t)‖L2(�×�) < ess inf
x∈�

a(x). (90)

Then problem (78) has a unique solution. In addition, it belongs

to the space L∞
loc
(S;W1,p(�)) ∩ H1

loc
(S; L2(�)) and for arbitrary

t1, t2 ∈ S, t1 < t2, δ > 0 satisfies the estimates:

max
t∈[t1 ,t2]

∫

�

|u(x, t)|2 dx+

t2∫

t1

∫

�

[
|u(x, t)|2 + |u(x, t)|p + |∇u(x, t)|p

]
dxdt

(91)

≤ C15

[
δ
− 2

q−2 +

t2∫

t1−δ

∫

�

|f (x, t)|2 dxdt
]
, (92)

ess sup
t∈[t1 ,t2]

∫

�

[
|u(x, t)|p + |∇u(x, t)|p

]
dx+

t2∫

t1

∫

�

|ut(x, t)|
2 dxdt

≤ C16

[
max{δ

− 2
q−2 , δ

−
q

q−2 } +

t2∫

t1−2δ

∫

�

|f (x, t)|2 dxdt

+ δ−1

t1∫

t1−2δ

∫

�

|f (x, t)|2 dxdt
]
, (93)

where C15,C16 are positive constants depending on

ess sup
t∈S

‖b(·, ·, t)‖L2(�×�), ess inf
x∈�

a(x), and p only.

Proof. [Proof of Corollary 5.1] We need to demonstrate that

functional 8, defined in Equations (83)—(87), and family of

operators B(t, ·), t ∈ S, defined in Equation 80, satisfy the

conditions of Theorems 1, 2.

Writing the functional 9 defined in Equation (86) in the form

9(v) = p−1‖v‖
p

W1,p(�)
+ 2−1

∫

�

a|v|2 dx, v ∈ W1,p(�), (94)

we obtain that the functional 9 is proper and dom(9) = W1,p(�).

Note that for arbitrary r ≥ 2, function Fr(ξ ) = |ξ |r , ξ ∈ Rn, is

convex. Indeed, for all α ∈ [0, 1], we have

Fr(αξ + (1− α)η) = |αξ + (1− α)η|r ≤ (α|ξ | + (1− α)|η|)r
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≤ α|ξ |r+ (1−α)|η|r = αFr(ξ )+ (1−α)Fr(η), ξ , η ∈ Rn. (95)

Here we used the convex function gr(s) = sr , s ∈ [0,+∞), since

g′′r (s) = r(r − 1)sr−2 > 0 for all s ∈ (0,+∞).

From Equation (95), with r = p and r = 2, it is easy to see that

functional 9 is convex, hence functional 8 satisfies the condition

(A1).

Let vk −→
k→∞

v inW1,p(�). Then ‖vk‖W1,p(�) −→
k→∞

‖v‖W1,p(�) and

vk −→
k→∞

v in L2(�). From this, it follows:

‖vk‖
p

W1,p(�)
−→
k→∞

‖v‖
p

W1,p(�)
, (96)

∣∣∣
∫

�

a|vk|
2 dx−

∫

�

a|v|2 dx
∣∣∣ ≤

∫

�

a|v2k−v2| dx =

∫

�

a|vk+v| |vk−v| dx

≤ ess sup a · (‖vk‖L2(�) + ‖v‖L2(�)) · ‖vk − v‖L2(�) −→
k→∞

0. (97)

From Equations (94), (96), and (97), it follows that the functional9

is lower semicontinuous, hence functional 8 satisfies the condition

(A2).

Since a > 0 a.e. on �, then [see Equation (94)]

9(v) ≥ p−1‖v‖
p

W1,p(�)
, v ∈ W1,p(�).

Hence, given that IK(v) ≥ 0, v ∈ V , condition (A3) holds with

K2 : = p−1.

It is easy to show that

∂9(v) = {A(v)} ⊂ (W1,p(�))′ ∀v ∈ W1,p(�),

where A(·) is defined in Equation (79).

Then for any v1, v2 ∈ W1,p(�) we have

(
A(v1)− A(v2), v1 − v2

)
=

∫

�

[(|∇v1|
p−2∇v1 − |∇v2|

p−2∇v2)

(∇v1 − ∇v2)

+ (|v1|
p−2v1 − |v2|

p−2v2)(v1 − v2)+ a|v1 − v2|
2] dx. (98)

Since the function Fp(ξ ) = |ξ |r , ξ ∈ Rn, is convex, from the

convexity criterion we have

(∇Fp(ξ )−∇Fp(η))(ξ − η) ≥ 0, ξ , η ∈ Rn. (99)

Since ∇Fp(ξ ) = p|ξ |p−2ξ , ξ ∈ Rn, then from Equation (99) it

follows:

∫

�

[(|∇v1|
p−2∇v1 − |∇v2|

p−2∇v2)(∇v1 −∇v2) dx ≥ 0. (100)

By Bokalo [9], for arbitrary s1, s2 ∈ R, the inequality

(|s1|
p−2s1 − |s2|

p−2s2)(s1 − s2) ≥ 22−p|s1 − s2|
p

holds. Hence, for all v1, v2 ∈ Lp(�), we have

∫

�

(|v1|
p−2v1 − |v2|

p−2v2)(v1 − v2) dx ≥ 22−p

∫

�

|v1 − v2|
p dx.

(101)

Using Hölder’s inequality (see Proposition 2.3) with r = p/2,

we have this chain of inequalities:

∫

�

|v1 − v2|
2 dx ≤

( ∫

�

1r
′

dx
) 1

r′
( ∫

�

|v1 − v2|
p dx

) 1
r
=

(mesn�)
p−2
p

( ∫

�

|v1 − v2|
p dx

) 2
p
.

From this, we obtain

∫
�

|v1 − v2|
p dx ≥

(
mesn�

) 2−p
2

( ∫
�

|v1 − v2|
2 dx

) p
2

=
(
mesn�

) 2−p
2 ‖v1 − v2‖

p

L2(�)
. (102)

From Equations (101), (102) it follows:

∫
�

(|v1|
p−2v1 − |v2|

p−2v2)(v1 − v2) dx

≥ 22−p
(
mesn�

) 2−p
2 ‖v1 − v2‖

p

L2(�)
. (103)

Also, we have

∫

�

a|v1 − v2|
2 dx ≥ (ess inf

�
a)

∫

�

|v1 − v2|
2 dx. (104)

Hence, from Equation (98), using Equations (100), (103), and

(104), we have

(A(v1)− A(v2), v1 − v2) ≥ K2‖v1 − v2‖
2
L2(�)

+ K3‖v1 − v2‖
p

L2(�)
,

v1, v2 ∈ W1,p(�), (105)

where K2 : = ess inf
�

a, K3 : = 2 2−p
(
mesn�

) 2−p
2 .

From Equation (94) and the monotonicity of IK(·) it follows

condition (A4) with q = p.

Let us prove that condition (B) holds. Since Equation (80), we

have for almost all t ∈ S and for all v1, v2 ∈ L2(�):

‖B(t, v1)(·)−B(t, v2)(·)‖L2(�) =

∥∥∥
∫

�

b(·, y, t)(v1(y)−v2(y)) dy
∥∥∥
L2(�)

≤

∫

�

|v1(y)− v2(y)| · ‖b(·, y, t)‖L2(�) dy ≤ ‖b(·, ·, t)‖L2(�×�)·

‖v1 − v2‖L2(�) ≤ L‖v1 − v2‖L2(�),

where L : = ess sup
t∈S

‖b(·, ·, t)‖L2(�×�), i.e., condition (B) holds.

From the above, it follows that in this case, condition (8)

has form (90). Estimates (91) and (93) are derived directly from

estimates (9) and (10).
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6 Conclusion

We investigated the problem without initial conditions

for some strictly nonlinear functional-differential variational

inequalities in the form of sub-differential inclusions with

functionals. The conditions for the existence of a unique solution to

this problem in the absence of restrictions on the solution’s behavior

and the growth of input data when the time variable is directed to

−∞ have been obtained. There are also estimates of the solution to

the researched problem provided.

The results obtained here can be used to study mathematical

models in many fields of science, such as ecology, economics,

physics, cybernetics, etc.

In the future, it would be worthwhile to obtain similar results

for functional-differential variational inequalities that do not have

the form of subdifferential inclusions with functionals.
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Transverse resonance technique
for analysis of a symmetrical open
stub in a microstrip transmission
line

Yulia V. Rassokhina* and Vladimir G. Krizhanovski

Department of Applied Mathematics and Cyber Security, Vasyl’ Stus Donetsk National University,
Vinnitsa, Ukraine

Open stubs in a strip (microstrip) transmission line are one of the most common
elements of planar circuits used in numerous devices in the various types of
wireless systems. Therefore, the urgent problem is to develop an analyzing
method for discontinuities in the form of the open stub in a microstrip
transmission line at frequencies at which the high-frequency effects must be
considered. In the paper, a technique of scattering characteristics calculating on a
symmetrical microstrip open stub by transverse resonance method is presented.
Boundary value problems for a rectangular volume resonator based on a
microstrip transmission line with a symmetric open stub are solved for the
three options boundary conditions in the symmetry plane and on the
longitudinal boundaries. The intersection of the spectral curves obtained by
the numerical solution of the “electric” and “magnetic” boundary value
problems determines the minima of a reflection or transmission coefficients
of fundamental wave on discontinuities. To algebraize the boundary value
problems for the eigen frequencies of volume resonator with discontinuity,
the corresponding two-dimensional functions of the magnetic potential are
constructed, through which the components of the current density on the
strip are determined. The functions of magnetic potential were defined by
decomposing them into expansion by Fourier series, which ensures stable
convergence of the series and numerical calculation algorithm. The
developed technique has been tested by calculating the eigenfrequency
spectra of an open microstrip stub using the transverse resonance method on
the example of an open stub in a microstrip transmission line with a resonant
frequency of about 3.0 GHz. Also, a technique for numerical solutions of “electric”
and “magnetic” boundary-value problems for resonators with two
electrodynamically coupled symmetric open stubs in a microstrip transmission
line is developed.

KEYWORDS

the helmholtz equation, a boundary value problem, transverse resonance method,
resonance frequencies, microstrip line, open stub

1 Introduction

Open or short-circuit stubs in a strip (microstrip) transmission line are one of the most
common elements of planar circuits used in numerous devices in the microwave frequency
range: various types of filters, couplers, power amplifiers, antennas, sensors, wireless energy
transfer systems, etc. Modern planar circuits in the microwave frequency range already
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contain stubs of a complex shape and a complex pattern inside the
microstrip line (Yang et al., 2022; Martín et al., 2003; Boutejdar et al.,
2009; MezaalY et al., 2018; Fan et al., 2018; Deshmukh et al., 2012;
Deb Roy et al., 2018; Henderson et al., 2018).

The scattering characteristics of ordinary rectangular stubs in
a microstrip line are easily determined by transmission line
theory by which calculates the input admittance of the stub. A
more accurate analysis of such discontinuity, which considers
edge and other effects of a microwave circuit with an open or
shorted stub, is already a difficult problem of applied
electrodynamics. Given the computing capabilities of modern
computer technology, complex planar circuits are analyzed using
commercial programs by numerical methods, mostly by the
moment’s method followed by the construction of an
equivalent discontinuity circuit. Rigorous analysis of stub
discontinuities in strip and microstrip lines can be carried out
using the mode matching method, which is based on the
decomposition method and describes the field in them by the
eigenwaves of each partial region. But that is a
cumbersome method.

More promising for rigorous analysis of such discontinuities, in
our opinion, is the transverse resonance method, which was
introduced by Sorrentino and Itoh (Sorrentino, 1989) and allows
analyzing complex structures without breaking the microwave
circuit into small elements. The idea of the method is that there
is a relationship between the eigenfrequencies of the volume
resonator, in which the discontinuity is located, and the
scattering matrix elements on this discontinuity. The transverse
resonance method is a universal method for analyzing waveguide
and planar circuits, which calculates both the dispersion
characteristics of regular transmission lines and the scattering
characteristics of unregular distributed circuits (Uwano et al.,

1987; Alessandri et al., 1992; Bornemann, 1991; Schwab and
Menzel, 1992; Tao, 1992; Green, 1989; Barlabe et al., 2000;
Varela and Esteban, 2011). Using the example of the periodic
structures scattering characteristics (Rassokhina and
Krizhanovski, 2009), it was shown that for symmetrical in the
transverse direction discontinuities, the intersection points of the
eigenfrequency spectra obtained from the solutions of boundary
value problems with two different conditions in the symmetry plane
directly indicate the zeros or poles of the scattering characteristics.
We are talking about the conditions of the electric and magnetic
walls (e.w. and m. w.) in the symmetry plane and on the longitudinal
boundaries of the resonator, according to which the boundary value
problems with such boundary conditions are called “electric” and
“magnetic” boundary value problems, respectively (Rassokhina and
Krizhanovski, 2018).

The aim of the study is to develop a technique of algebraization
of boundary value problems for the analysis of distributed
discontinuity in the form of a symmetric open stub in a
microstrip transmission line by the transverse resonance method.

2 Formulation and solution of boundary
value problems

The topology of the two-layer planar structure under
consideration is provided in Figure 1, which shows a
symmetrical open stub in a microstrip transmission line.
According to the transverse resonance method, to determine
the resonant interaction frequencies of the fed transmission line
1 with discontinuity 2-3, the two boundary value problems with
electric and magnetic wall conditions (e.w. or m. w.) in the plane
of symmetry z � 0 must be solved. At the resonator boundary
z � L the conditions of an electric or magnetic wall must also
be fulfilled.

Consider the solution of the boundary value problem for the
current density �Jτ of a microstrip resonator expressed in terms of
magnetic type potentials: Jh,n(x, z):

�Jτ x, z( ) � − 1
j · k0 ∑

P

n�1
∇Jh,n x, z( )Ch,n (1)

where k0 � ω0/c - wavenumber, Jh,n are eigenfunctions of the
magnetic potential for the current density, Ch,n is unknown
expansion coefficient, P is the order of series reducing.

The electromagnetic field components in the shielded structure
satisfy the Helmholtz equation in Cartesian coordinates. The current
density distribution function in the microstrip line is determined by
the difference of the magnetic field’s tangent components and
therefore also satisfies the Helholtz equation.

Polynomial solutions of the Helmholtz equation were studied in
(Burskii and Buryachenko, 2013) as dual problem for high-order
hyperbolic problems in elliptic planar domains. For simple
discontinuities such as microstrip step discontinuity, the function
can be constructed as a series of orthogonal polynomials
(Rassokhina and Krizhanovski, 2018; 2023). For a more complex
topology to avoid the cumbersome calculations, the current density
distribution function in partial regions should be described in the
form of Fourier series.

FIGURE 1
(A) Topology of a symmetrical open stub in a microstrip line, top
view, and (B) cross section of volume resonator with a microstrip line.
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The current density distribution function for a strip line with an
open stub satisfies the Helmholtz equation:

∂2Jh,n
∂x2

+ ∂2Jh,n
∂z2

+ χ2h,nJh,n � 0,

when ∂Jh,n
∂ �n

� 0 by free boundaries in partial regions 1–4, ∂Jh,n(0,z)∂x � 0
in symmetry plane, Jh,n(x, 0) � Jh,n(x, L) � 0 for the “electric”
boundary value problem and ∂Jh,n(x,0)

∂z � ∂Jh,n(x,L)
∂z � 0 for the

“magnetic” boundary value problem.
Considering the above, the two-dimensional function for the

magnetic potential Jh,n(x, z) of the “electric” boundary value
problem in partial regions 1-4 can be presented in a Fourier
series form:

Jh1 x, z( ) � ∑M
k�0

A1k

��������
4 − 2 · δk0

w1

√
cos

2πk
w1

x · sin kz1k L − z( )
kz1k cos kz1kl

for |x|≤w1/2, w2/2≤ z≤L, where L � l + w2/2,

Jh2 x, z( ) � ∑M
k�0

A2k

���
2
w2

√
sin

π 2k + 1( )
w2

z
cos kx1k Ls − x( )
kx1k sin kx1kls

for |z|≤w2/2, w1/2≤ x≤Ls, where Ls � ls + w1/2,

Jh3 x, z( ) � ∑M
k�0

A3k

���
2
w2

√
sin

π 2k + 1( )
w2

z
cos kx1k Ls + x( )
kx1k sin kx1kls

for −w1/2≤ x≤ − Ls. In partial region 4, the solution of the
Helmholtz equation consists of the sum of two functions with
boundary conditions at x � 0, x � w1/2 and z � 0, z � w2/2,
respectively:

Jh4 x, z( ) � ∑M
k�0

A41k

��������
4 − 2 · δk0

w1

√
cos

2πk
w1

x
sin kz1kz

kz1k cos kz1kw2/2( )+
+∑M

k�0
A42k

���
2
w2

√
sin

π 2k + 1( )
w2

z
cos kx1kx

kx1k sin kx1kw1/2( ) (2)

for |x|≤w1/2, |z|≤w2/2. There k2z1,k � χ2hn − (2πkw1
)2, k2x1,k � χ2hn −

(π(2k+1)w2
)2 and χhn are eigenvalues of the eigenfunction Jh,n(x, z),

which is found from the solution of the boundary value problem.
From the continuity conditions of the functions on the partial

domains boundaries, a system of linear algebraic equations (SLAE)
is obtained in the form:

∑
m�0

A41m F1k kz1k( )δkm −∑
n�0

1
F2n

S1,knS2,nm⎡⎣ ⎤⎦ � 0. (3)

Equating the determinant of SLAE Equation 3 to zero, we obtain
a spectrum of eigenvalues χhn and, accordingly, eigenfunctions for
the magnetic vector potential Jh,n(x, z), which determines the
components of the current density on the strip. Expressions for
matrix elements in Equation 3 have the form:

F1k kz1k( ) � tan kz1kl
kz1k

+ tan kz1kw2/2( )
kz1k

,

F2n kx1n( ) � cot kx1nls
kx1n

+ cot kx1nw1/2( )
kx1n

.

The expansion coefficients A41m, A42m of the functions
according to the trigonometric basis are calculated with accuracy

up to some constant factor, which is determined from the
normalization condition of the magnetic potential basis functions
(integration over the area of the microstrip SMSL):

∫
SMSL

∇Jh,n x, z( )[ ]2dS � χ2h,n∫
SMSL

J2h,n x, z( )dS � 1.

It is worth noting that the “electrical” boundary value problem
also has a solution by χh,n � 0, which must be considered by rigorous
solving of the boundary problem.

For the “electric-magnetic” boundary value problem under the
condition of a magnetic wall in the symmetry plane z � 0 and an
electric wall at the longitudinal boundary z � L, the magnetic
potential eigenfunctions in partial regions 1-4 can be determined as:

Jh1 x, z( ) � ∑
k�0

A1k

��������
4 − 2 · δk0

w1

√
cos

2πk
w1

x · sin kz1k L − z( )
kz1k cos kz1kl

,

Jh2 x, z( ) � ∑
k�0

A2k

��������
4 − 2 · δk0

w2

√
cos

2πk
w2

z · cos kx1k Ls − x( )
kx1k sin kx1kls

,

Jh3 x, z( ) � ∑
k�0

A3k

��������
4 − 2 · δk0

w2

√
cos

2πk
w2

z
cos kx1k Ls + x( )
kx1k sin kx1kls

,

Jh4 x, z( ) � ∑
k�0

A41k

��������
4 − 2 · δk0

w1

√
cos

2πk
w1

x
cos kz1kz

kz1k sin kz1kw2/2( )+
+∑

k�0
A42k

��������
4 − 2 · δk0

w2

√
cos

2πk
w2

z
cos kx1kx

kx1k sin kx1kw1/2( ),
where k2z1,k � χ2hn − (2πkw1

)2, k2x1,k � χ2hn − (2πkw2
)2. The SLAE for

determining the eigenvalues and expansion’s coefficients into
series of the magnetic potential has the form:

∑
m�0

A42m F2 kx1k( )δkm +∑
n�0

1
F1n kz1n( )S2knS1nm⎡⎣ ⎤⎦ � 0, (4)

where, by analogy with the “electrical” boundary problem,

F1k kz1k( ) � tan kz1kl
kz1k

− cot kz1kw2/2( )
kz1k

,

F2n kx1n( ) � cot kx1nls
kx1n

+ cot kx1nw1/2( )
kx1n

.

In the same way, the two-dimensional function of the magnetic
potential is defined for the boundary value problem with boundary
conditions of the magnetic wall in the plane of symmetry and on the
longitudinal boundary of the volume resonator (“magnetic”
boundary problem).

The boundary value problems solving for current density
eigenfunctions in an irregular microstrip line is used for solving
of boundary problem for rectangular volume resonators with this
discontinuity. In this case, the discontinuity is an open symmetric
stub in the microstrip transmission line.

According to the transverse resonance method, the points of
spectral curves intersection, corresponding to the solutions of the
electric and magnetic–electric boundary value problem, determine
the minimum transmission coefficient points (Rassokhina and
Krizhanovski, 2009). And the points of spectral curves
intersection, corresponding to the solutions of the electric and
magnetic boundary value problem, determine the minimum
reflection coefficient points.
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The Helmholtz equation and boundary conditions for an electric
Aey,i and magnetic Ahy,i vector potentials for field in volume
resonator (Figure 1B) are follows (Collin, 1990):

ΔAh e( )y,i + k20εr,iAh e( )y,i � 0, i � 1, 2,

where Aey,i(A, y, z) � 0, ∂
∂yAey,i(x, 0, z) � ∂

∂yAey,i(x, B, z) � 0,
Aey,i(x, y, 0) � Aey,i(x, y, L) � 0 for “electric” boundary value
problem and ∂

∂zAey,i(x, y, 0) � ∂
∂zAey,i(x, y, L) � 0 for “magnetic”

boundary value problem; ∂
∂xAhy,i(A, y, z) � 0,

Ahy,i(x, 0, z) � Ahy,i(x, B, z) � 0, ∂
∂zAhy,i(x, y, 0) �

∂
∂zAhy,i(x, y, L) � 0 for “electric” boundary value problem and
Ahy,i(x, y, 0) � Ahy,i(x, y, L) � 0 for “magnetic” boundary
value problem.

The electric and magnetic vector potentials of a rectangular
volume resonator are presented in the form of double Fourier series:

Aey,i � ∑N
m�1∑N

n�1 0( )ϕmn x, z( )Fei,mn kyi,mny( ),
Ahy,i � ∑N

m�1∑N
n�0 1( )ψmn x, z( )Fhi,mn kyi,mny( ), (5)

where k2yi,mn � k20εri − χ2mn, i � 1, 2 is a partial area number, N is
order of series reduction, and

Fe1,mn y( ) � cos ky1,mny( )
ky1,mn sin ky1,mnh( )R1mn,

Fe2,mn y( ) � cos ky2,mn B − y( )( )
ky2,mn sin ky2,mnb1( )R2mn,

Fh1,mn y( ) � sin ky1,mny( )
sin ky1,mnh( )T1mn,

Fh2,mn y( ) � sin ky2,mn B − y( )( )
sin ky2,mnb1( ) T2mn,

when R1(2)mn, T1(2)mn is unknown coefficients of expansion
into series.

The coupling integrals αmh,q,mn, β
m
h,q,mn between a strip resonator

with discontinuity and a volume resonator are calculated by the
formulas Rassokhina and Krizhanovski (2018):

αmh,q,mn � ∫
SMSL

∇Jh,q x, z( ) ∇ψmn x, z( ) × ey[ ]dS,
βmh,q,mn � ∫

SMSL
∇Jh,q x, z( )∇ϕmn x, z( )dS, (6)

where ψmn, ϕmn are basis functions of the electric and magnetic
vector potential of a volume resonator, kxm � π(2m − 1)/2A, kzn �
πn/L for the “electric” and “magnetic” boundary value problem or
kzn � π(2n − 1)/2L for the “magnetic-electric” problem:

ϕmn x, z( ) � Pmn cos kxmx sin kznz, ew − ew,
Pmn cos kxmx cos kznz, mw −mw,

{
ψmn x, z( ) � Pmn sin kxmx cos kznz, ew − ew,

Pmn sin kxmx sin kznz, mw −mw,
{

Pmn �
��
2
A

√ ������
2 − δn0

L

√
1
χmn

, χ2mn � k2xm + k2zn.

The SLAE for the eigenfrequencies of a three-dimensional
resonator is as follows:

∑
q�1

Ch,q ∑
m�1

∑
n�0

αmh,q,mnα
m
h,l,mn

1
Fh,mn

+ 1

k20εr
βmh,q,mnβ

m
h,l,mn

1
Fe,mn

[ ] � 0, (7)

where

Fh,mn � ky1l cot ky1lh + ky2l cot ky2lb1,

Fe,mn � cot ky1mnh

ky1mn
+ 1
εr

cot ky2mnb1
ky2mn

.

From the condition that the determinant of system Equation 7 of
equations is zero, we obtain the eigenfrequencies k0 of the
volume resonator.

3 Algorithm testing and results of
symmetric open stub analysis

The algorithms were developed and tested on the example of a two-
dimensional planar structure on a Ro3010 laminate with a thickness of
h � 0.635 mm with dielectric constant εr � 10.2, the width and height
of the grounding volume resonator are equal, respectivelyA � 15.0mm
and b1 � 8.0 mm, other parameters of the structure: w1 � w2 � w �
0.58 mm (the characteristic impedance of the main transmission line is
Z0 � 50 Ohm). With a constant number M � 5 of basis functions by
Fourier series Equation 2 considered and reduction of series Equation 1
by eigenfunctions of vector potentials up to P � 3, sufficient algorithm
convergence is observed when reduction of series Equation 5 up to
N � 150. The Newton method was used to determine the zeros of the
SLAE determinants Equations 4, 7.

Numerical calculations have shown that using trigonometric
basis in the expansion of the current density distribution function
provided uniform convergence of the algorithms for calculating
eigenvalues and, accordingly, eigenfunctions Jh,n(x, z). This led to
the uniform convergence of the algorithm for numerical calculation
of the eigenfrequency spectrum of a volume resonator with
discontinuity in it.

Eigenvalues of a strip resonator with a symmetric open stub of
length ls � 10.5 mm and ls � 8.5 mm, which were obtained from
solutions of three boundary value problems, are shown in Figure 2.
In the first approximation, the wave numbers of the “electric”
resonator correspond to the values χ(e.w.)h,n � πn/L for the
magnetic-electric problem χ(m.w.−e.w.)

h,n � πn/2(L + ls) and for the
magnetic problem χ(m.w.)

h,n � πn/(L + ls).
According to the approximation of the transmission lines theory,

the input conductivity of a symmetrical open stub is equal to:

Yin � 2j · Y0 tan θs,

where Y0 � 1/Z0, θs � ωls · χ/c is the wave delay factor, which for
this material is equal to about χ ≈ 2.62. Resonant frequency of the
stub with length ls (that is, the frequency at which the electric length
is θs � π/2) calculated by transmission lines theory
is fres � 2.85 GHz.

For an MSI personal computer with an Intel(R) Core(TM)
i3 CPU 2.13 GHz processor, the time to calculate the one points
for one root of the characteristic Equation 7 by accuracy ε � 10−6 1/
mm on average is 8 s. The quickness of calculation of the resonator
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eigenfrequency spectra is ensured by the fact that at each iteration
step the coupling integrals Equation 6 are calculated only once.

Figure 3A shows the spectra of the resonator’s eigenfrequencies
obtained from solutions of three boundary value problems for a
volume resonator with discontinuity in the form of a symmetric
open stub in amicrostrip transmission line. The intersection point of
the spectral curves of the “electric” and “magnetic-electric”
boundary value problems corresponds to the frequency at which
the minimum of the transmission coefficient is observed S21 (about
3.08 GHz), and the point of intersection of the spectral curves of the
“electric” and “magnetic” boundary value problems corresponds to
the minimum of the reflection coefficient S11 at frequency
about 5.8 GHz.

Figure 3B shows the spectra of the resonator’s eigenfrequencies
with a stub width w2 � 2w1 in microstrip transmission line. Such
stubs are called capacitive stubs and serve to increase the frequencies
of resonant interaction in the microwave circuit.

The results of the scattering characteristics calculations were
verified using the microwave design software. The values of the

frequencies of resonance interaction obtained from the
eigenfrequency spectra and full-wave electrodynamic modeling
are almost in agreement.

Thus, according to the results of numerical calculation, a
physically correct result was obtained for the scattering
characteristics on a symmetrical stub in a microstrip
transmission line, considering high-frequency effects, namely,
dispersion and marginal capacitance of the open stub.

In Figure 4 the dependence of the resonance frequency on the
stub width is shown. As expected from physical considerations, the
frequency of resonance reflection increases with the ratio w1/w2

increase, the frequency of resonant interaction also increases.

4 Electromagnetically coupled open
microstrip stubs

Electromagnetically coupled discontinuities in planar circuits
can also be analyzed by the transverse resonance method. For this

FIGURE 2
The first three eigenvalues χh,n of magnetic potential basic functions for a strip resonator with a symmetrical open stub, obtained from the solutions
of the electrical, magnetic-electrical and magnetic boundary value problems. Dimensions, in mm: (A) – w2 � 0.58, ls � 10.5; (B) – w2 � 1.16, ls � 8.5.

FIGURE 3
Spectrum of eigenfrequencies of a three-dimensional rectangular resonator based on an microstrip line with a symmetrical open stub, obtained
from the solutions of boundary value problems with parameters (in mm): (A) w � 0.58, ls � 10.2; (B) w1 � 0.58, w2 � 2w1, ls � 8.5.
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purpose, the planar scheme is symmetrized and two boundary value
problems are solved under the conditions of an “electric” and
“magnetic” wall in the symmetry plane.

The analyzed structure is shown in Figure 5. The plane of
symmetry is located at z � 0, the distance between the stubs is
2z0. The figure also shows the geometric parameters and numbering
of partial regions for calculating the current density potentials.

For the “electrical” boundary value problem, the expressions for
the current density potential are as follows:

Jh1 x, z( ) � ∑
k�0

Ah1k

��������
4 − 2 · δk0

w1

√
cos

2πk
w1

x
sin kz1kz

kz1k cos kz1kl1
,

where l1 � z0 − w22, k
2
z1,k � χ2hn − (2πkw1

)2,

Jh2 x, z( ) � ∑
k�0

��������
4 − 2 · δk0

w1

√
cos

2πk
w1

x Bh21k
cos kz1k z − z0( )
kz1k sin kz1kw22

+ Bh22k
sin kz1k z − z0( )
kz1k cos kz1kw22

( )
+ +∑

k�0
Ch2k

������
2 − δk0
w2

√
cos

πk

w2
z − z0 + w2

2
( ) cos kx1kx

kx1k sin kx1kw12( ),

Jh3 x, z( ) � ∑
k�0

Ah3k

������
2 − δk0
w2

√
cos

πk

w2
z − z0 + w2

2
( ) cos kx1k Ls + w1

2 − x( )
kx1k sin kx1kLs( ) ,

Jh4 x, z( ) � ∑
k�0

Ah4k

��������
4 − 2 · δk0

w1

√
cos

2πk
w1

x
sin kz1k L − z( )
kz1k cos kz1kl2

,

where k2x1,k � χ2hn − (πkw2
)2, l2 � L − (z0 + w22).

From the continuity conditions of the basis function and its
derivatives at the partial regions boundaries, a homogeneous SLAE
is obtained, the condition for the solution of which is the equality of
its determinant to zero, from which the spectrum of eigenvalues χhn
is determined. To solve the “electrical” boundary value problemwith
zero eigenvalue χhn � 0, the expression for the current density
distribution function on the microstrip line is simplified to the
potential of the current density of an ordinary regular microstrip line
of width w1 and length L. Taking into account the condition of
eigenfunctions normalization, this expression will take the form:

Jh,0 x, z( ) �
���
2
w1

√ ��
3
L

√
· z
L
.

The coupling integrals with the basic functions of volume
resonance are calculated according by Equation 6.

For the “magnetic” boundary value problem, only the
expressions for the current density potentials in partial regions
1 and 4 are changed:

Jh1 x, z( ) � ∑
k�0

Ah1k

��������
4 − 2 · δk0

w1

√
cos

2πk
w1

x
cos kz1kz

kz1k sin kz1kl1
,

FIGURE 4
Frequency shift of the of eigen frequencies spectrumof a volume
resonator with a symmetric open stub in microstrip line depending on
the stub width w2 with parameters (in mm): w1 � 0.58, ls � 8.5.

FIGURE 5
The coupled microstrip stubs: principal scheme of analyzing structure and their decomposition in partial regions.
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Jh4 x, z( ) � ∑
k�0

Ah4k

��������
4 − 2 · δk0

w1

√
cos

2πk
w1

x
cos kz1k L − z( )
kz1k sin kz1kl2

.

The results of calculations of eigen frequencies of the resonator,
obtained from the solution of the “electric” and “magnetic”
boundary value problem, are shown in Figure 6, where the
spectrum of eigen frequencies for two different distances values
z0 between symmetrical stubs of a planar structure with two coupled
open stubs of the width w1(2) � w � 0.58 mm and the length Ls �
6.0 mm are presented. By z0 � 1.5 mm (Figure 6A) we have a case of
uncoupled open stubs, since the distance between them is
l � 2z0 ≈ 5w. The coupling between discontinuities by z0 � 0.5
mm (Figure 6B) is manifested, firstly, in the fact that as this
distance decreases, the interval between the two frequencies of
resonant interaction of the discontinuity with the main
transmission line decreases. Second, the relationship between

discontinuities determines the X-shaped forms of the
spectral curves.

Figures 7A, B also shows the spectrum of eigen frequencies of a
planar structure with two coupled symmetrical stubs of widthw � 0.58
mm, Ls � 8.5 mm. In this case also, several frequencies of resonant
transmission of the signal are also observed, in comparison with a
single discontinuity. With closely spaced stubs z0 � 0.5 mm, the
resonant reflection and resonant transmission frequencies of the
signal are close to each other, which is inconvenient for practical
use. At distance z0 � 1.89 mm, we have three frequencies with a
minimum reflection coefficient |S11|, and in the upper frequency range
we have a bandpass filter. These areas are separated by a broadband
bandstop filter with a minimum transmission coefficient |S21|.

Thus, the resonator’s spectral characteristics with discontinuity
fully determine the frequencies of resonant interaction of microstrip
stubs with the main transmission line.

FIGURE 6
Spectrum of eigenfrequencies of a volume resonator based on an microstrip line with two coupled symmetrical open stubs, obtained from the
solutions of boundary value problems with parameters (in mm): w1 � w2 � 0.58, Ls � 6.0; (A) z0 � 1.5, (B) z0 � 0.5.

FIGURE 7
Spectrum of a volume resonator eigenfrequencies based on an microstrip line with two coupled symmetrical open stubs, obtained from the
solutions of three boundary value problems with parameters (in mm): w1 � w2 � 0.58, Ls � 8.5; (A) z0 � 0.5, (B) z0 � 1.89.
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5 Conclusion

A method of an open stubs analyzing, single and
electrodynamically coupled, in a microstrip transmission line
by the transverse resonance technique is proposed. To
implement the method, the boundary problems for the
eigenfunctions of the strip resonator’s current density with a
symmetrical open stub were previously solved under the
condition of an electric and magnetic wall in the symmetry
plane and at the longitudinal boundary. To determine the
eigenfunctions of the current density, the trigonometric basis
was used, which ensures fast and uniform convergence of
numerical calculation algorithms for the eigenfunctions. The
use of the trigonometric basis led to the uniform and stable
convergence of the algorithm for numerical calculation of the
eigen frequency spectrum of a volume cavity with a
discontinuity in it.

From the study of the eigenfrequency spectra of volume
resonators containing a planar circuit calculated under two
different conditions in the symmetry plane, preliminary
information about the frequencies of resonant interaction of
the discontinuity with the fed microstrip transmission line is
obtained. The developed technique of algebraization of
boundary value problems for a microstrip line with
discontinuity can be applied to the analysis of more complex
topologies of microstrip stubs, multi-plane discontinuities and
the development of various devices in the microwave
frequency range.
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1 Introduction

Propagation of sound in a viscous gas and other similar processes of the same nature

can be described by the model hyperbolic equation of the third order, which includes a

mixed derivative with respect to spatial and time variables

utt = η1xut + 1xu, (1)

where η is a positive constant, and η1xut represents low viscosity.

Many important physical phenomena can be modeled with the use of Equation 1

and its generalizations. These are, in particular, processes that occur in viscous media

(propagation of disturbances in viscoelastic and viscous-plastic rods, movement of a

viscous compressible fluid, sound propagation in a viscous gas), wave processes in different

media, acoustic waves in environments where wave propagation disrupts the state of

thermodynamic and mechanical equilibrium, liquid filtration processes in porous media,

heat transfer in a heterogeneous environment, moisture transfer in soils, and longitudinal

vibrations in a homogenous bar with viscosity. The term 1xut indicates that the level of

stress is proportional to the level of strains and to the strain rate [1–5].

Due to its wide range of applications, different problems for Equation 1 were

investigated by many authors. For example, the unique solvability of the direct initial-

boundary value problems for Equation 1 and its nonlinear generalizations with power

nonlinearities have been studied in other research [1, 2, 4–11].

The inverse problems, with the integral overdetermination conditions, of identifying

of the coefficients in the right-hand side function of hyperbolic equations without

damping or for other types of equations have been investigated in many studies [12–

18]. Their unique solvability has been solved with the use of the methods such as

integral equations, the Green function, regularization, and the Shauder principle [14]

and successive approximations [18]. The unique solvability of a two-dimensional inverse

problem for the linear third-order hyperbolic equation with constant coefficients and with

the unknown time-dependent lower coefficient has been proved in Mehraliyev et al. [19].
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The main objective of this study is to determine the sufficient

conditions for the existence and uniqueness of the solution to the

inverse problem for the third-order semilinear hyperbolic equation

with an unknown time- dependent function on its right-hand side.

The unknown function is determined from the equation, subject to

initial, boundary, and integral type overdetermination conditions.

To prove the main results of the study, we use the properties of

the solution for the corresponding initial-boundary value problem

and the method of successive approximations. These results

are new for semilinear n-dimensional third-order hyperbolic

equations with non-constant coefficients and an unknown function

on their right-hand side. The unique solvability of the initial-

boundary value problem has been proved using of the method

of Galerkin approximations and the methods of monotonicity

and compactness.

2 Problem setting

Let � ⊂ R
n, n ∈ N, be a bounded domain with the smooth

boundary ∂� ∈ C1 and 0 < T < ∞. Denote Qτ = � × (0, τ ), τ ∈

(0,T];Qt1 ,t2 = �× (t1, t2), t1, t2 ∈ (0,T]. In this study, we consider

the following inverse problem: find the sufficient conditions for

the existence of a pair of functions (u(x, t), g(t)) that satisfies the

equation with strong damping (in the sense of Definition 3.1).

utt −

n∑

i,j=1

(aij(x, t)uxi )xj −

n∑

i,j=1

(bij(x, t)uxit)xj + ϕ1(x, u)

+ ϕ2(x, ut) = f1(x)g(t)+ f2(x, t), x ∈ �, t ∈ [0,T],

(2)

and the initial, boundary, and overdetermination conditions

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ �, (3)

u|∂�×(0,T) = 0, (4)

∫

�

K(x)u(x, t)dx = E(t), t ∈ [0,T]. (5)

We shall use Lebesgue and Sobolev spaces L∞(·), L2(·),

H1(·) : = W1,2(·), Ck(·), C([0,T]; L2(G)), H1
0(·) : = W1,2

0 (·) (see,

e.g., Gajewski et al. [20]).

Suppose that the data of the problem (2–5) satisfy the following

conditions.

(H1) : aij, bij, aijt , bijt , bij,xi ∈ C([0,T]; L∞(�)), aij(x, t) =

aji(x, t), bij(x, t) = bji(x, t), and

α0‖ξ‖
2 ≤

n∑

i,j=1

aij(x, t)ξiξj ≤ α1‖ξ‖
2,

β0‖ξ‖
2 ≤

n∑

i,j=1

bij(x, t)ξiξj ≤ β1‖ξ‖
2,

for all ξ ∈ R
n, almost all x ∈ �, all t ∈ [0,T], and i, j = 1, ..., n,

where α0,α1 and β0,β1 are positive constants.

(H2) : functions ϕ1(x, ξ ),ϕ2(x, ξ ) are measurable with respect

to x ∈ � for all ξ ∈ R
1 and continuously differentiable concerning

ξ ∈ R. Moreover,

|ϕi(x, ξ )| ≤ Li,1|ξ |, |ϕi(x, ξ )− ϕi(x, η)| ≤ Li,0|ξ − η|, i = 1, 2,

(ϕ2(x, ξ )− ϕ2(x, η))(ξ − η) ≥ 0

for almost all x ∈ � and ξ , η ∈ R, where Li,0, Li,1 are positive

constants.

(H3) : f1 ∈ L2(�), f2 ∈ C([0,T]; L2(�)), u0 ∈ H1
0(�), u1 ∈

H1
0(�).

(H4) : E ∈ C2([0,T]),
∫
�

K(x)u0(x)dx = E(0),
∫
�

K(x)u1(x)dx =

E′(0).

(H5) : K ∈ H2(�) ∩H1
0(�).

Denote f̃ (x, t) : = f1(x)g(t)+ f2(x, t).

Let γ0 = γ0(�) be a coefficient in Friedrich’s inequality.

∫

�

|v(x)|2 dx ≤ γ0

∫

�

n∑

i=1

|vxi (x)|
2 dx, v ∈ H1

0(�). (6)

3 Initial-boundary value problem

Definition 3.1. A function u(x, t) is considered to be a solution of

problem 2–4 if u ∈ C([0,T];H1
0(�)), ut ∈ L2(0,T;H1

0(�)) ∩

C([0,T]; L2(�)), utt ∈ L2(QT), u satisfies (3), and

∫

Qτ


uttv+

n∑

i,j=1

aij(x, t)uxivxj +

n∑

i,j=1

bij(x, t)uxitvxj + ϕ1(x, u)v

+ ϕ2(x, ut)v− f̃ (x, t)v
)
dxdt = 0 (7)

for all functions v ∈ L2(0,T;H1
0(�)) and τ ∈ (0,T].

Theorem 3.2. Under the assumptions (H1)–(H3) and g ∈ L2(0,T),

aijt ≤ 0 for all i, j = 1, 2, . . . , n, the problem (2–4) has a unique

solution.

Proof. First, using Galerkin method, we prove the existence of a

solution for the problem. Let {wk}∞
k=1

, k = 1, 2, ..., be a basis in

H1
0(�), orthonormal in L2(�). We will consider the sequence of

functions

uN(x, t) =

N∑

k=1

cNk (t)w
k(x), N = 1, 2, ...,

where the set (cN1 (t), ...., c
N
N(t)) is a solution of the initial value

problem

∫

�

(
uNttw

k +

n∑

i,j=1

aij(x, t)u
N
xi
wk
xj
+

n∑

i,j=1

bij(x, t)u
N
xit
wk
xj

+ϕ1(x, u
N)wk + ϕ2(x, u

N
t )w

k
)
dx =

∫
�

f̃ (x, t)wkdx,

cNk (0) = uN0,k, cNkt(0) = uN1,k, k = 1, ...,N.

(8)
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Here uN0 (x) =
N∑
k=1

uN
0,k
wk(x), uN1 (x) =

N∑
k=1

uN
1,k
wk(x) and

lim
N→∞

‖u0 − uN0 ‖H1
0 (�) = 0, lim

N→∞
‖u1 − uN1 ‖H1

0 (�) = 0.

The solution of system (8) exists on some interval [0, τ0]

(Carathéodory’s Theorem [21, p. 43]). The estimation (13) from

below implies that this solution could be extended on [0,T].

Multiplying each equation of (8) on function (cN
k
(t))′ respectively,

summing up for k from 1 to N and integrating to t on interval

[0, τ ], τ ≤ τ0, we obtain

∫

Qτ

(
uNtt u

N
t +

n∑

i,j=1

aij(x, t)u
N
xi
uNxjt+

n∑

i,j=1

bij(x, t)u
N
xit
uNxjt

+ϕ1(x, u
N)uNt + ϕ2(x, u

N
t )u

N
t

)
dx dt=

∫

Qτ

f̃ (x, t)uNt dx dt.

(9)

After transformations of terms from (9), we get

1

2

∫

�

|uNt (x, τ )|
2dx+

1

2

∫

�

n∑

i,j=1

aij(x, t)u
N
xi
(x, τ )uNxj (x, τ )dx

−
1

2

∫

Qτ

n∑

i,j=1

aijt(x, t)u
N
xi
uNxjdxdt +

∫

Qτ

n∑

i,j=1

bij(x, t)u
N
xit
uNxjtdxdt

+

∫

Qτ

ϕ1(x, u
N)uNt dxdt +

∫

Qτ

ϕ2(x, u
N
t )u

N
t dxdt

=
1

2

∫

�

|uN1 (x)|
2dx+

1

2

∫

�

n∑

i,j=1

aij(x, t)u
N
0xi
(x)uN0xj (x)dx

+

∫

Qτ

f̃ (x, t)uNt dx dt.

(10)

Note that

∫

Qτ

(
ϕ1(x, u

N)+ ϕ2(x, u
N
t ))u

N
t dxdt

≤

∫

Qτ

(
L1,1|u

N ||uNt | + L2,1|u
N
t |

2
)
dx dt

≤
1

2

∫

Qτ

(
L21,1|u

N |2 + (2L2,1 + 1)|uNt |
2
)
dx dt

≤
1

2

∫

Qτ

(
L21,1γ0

n∑

i=1

|uNxi |
2 + (2L2,1 + 1)|uNt |

2

)
dx dt,

then from (10) we obtain

∫

�

|uNt (x, τ )|
2dx+ α0

∫

�

n∑

i=1

|uNxi (x, τ )|
2 dx+ 2β0

∫

Qτ

n∑

i=1

|uNxit|
2 dx dt

≤

∫

�

|u1(x)|
2 dx+ α1

∫

�

n∑

i=1

|u0xi (x)|
2 dx+

∫

Qτ

(f̃ (x, t))2 dx dt

+2(L2,1 + 1)

∫

Qτ

|uNt |
2dx dt + (L21,1γ0 + α2)

∫

Qτ

n∑

i=1

|uNxi |
2 dx dt.

(11)

We rewrite the last inequality in the form

∫

�

(
|uNt (x, τ )|

2 +

n∑

i=1

|uNxi (x, τ )|
2
)
dx ≤ A1

+A2

∫

Qτ

(
|uNt |

2 +

n∑

i=1

|uNxi |
2

)
dx dt,

(12)

where

A1 : =
1

min{1,α0}



∫

�

|u1(x)|
2dx+ α1

∫

�

n∑

i=1

|u0xi (x)|
2 dx

+

∫

QT

f̃ 2(x, t)dxdt




A2 : =
max{2(L2,1 + 1); (L21,1γ0 + α2)}

min{1,α0}
.

Then by Grönwall’s lemma, from (12), we get

∫

�

(
|uNt (x, τ )|

2 +

n∑

i=1

|uNxi (x, τ )|
2
)
dx ≤ A1e

A2T . (13)

Therefore, from (11) we also get

∫

Qτ

n∑

i=1

|uNxit|
2 dx dt ≤

A1(1+ A2Te
A2T)min{1,α0}

2β0
. (14)

Multiplying each equation of (8) on function (cN
k
(t))′′

respectively, summing up with respect to k from 1 to N and

integrating on interval [0, τ ], τ ≤ T, we obtain

∫

Qτ

(
(uNtt )

2 +

n∑

i,j=1

aij(x, t)u
N
xi
uNxjtt +

n∑

i,j=1

bij(x, t)u
N
xit
uNxjtt

+ϕ1(x, u
N)uNtt + ϕ2(x, u

N
t )u

N
tt

)
dx dt =

∫

Qτ

f̃ (x, t)uNtt dx dt.

(15)

After transformations in all terms from (15), we get

1

2

∫

Qτ

|uNtt |
2 dxdt +

β0

4

∫

�

n∑

i=1

|uNxit(x, τ )|
2 dx

≤
nα2

1

β0

∫

�

n∑

i=1

|uNxi (x, τ )|
2 dx

+

∫

�

n∑

i=1

(
nα2

1

2
|uN0xi (x)|

2 +
β1 + 1

2
|uN1xi (x)|

2

)
dx

+
2β2 + β0 + 4α1

4

∫

Qτ

n∑

i=1

|uNxit|
2 dx dt

+

(
α2
2

β0
+

3L21,1γ0

2

)∫

Qτ

n∑

i=1

|uNxi |
2 dx dt

+
3L2,1

2

∫

Qτ

|ut|
2 dx dt +

3

2

∫

Qτ

|f̃ (x, t)|2 dx dt,

(16)
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where
n∑

i,j=1
bijt(x, t)ξiξj ≤ β2‖ξ‖

2, β2 > 0, α2 =

max
i,j

sup
t∈[0,T]

|aijt(x, t)|. Taking into account (13), (14), from (16) we

obtain

∫

Qτ

|uNtt |
2 dx dt +

β0

2

∫

�

n∑

i=1

|uNxit(x, τ )|
2 dx ≤ A3, (17)

where

A3 : =
A1

4β0

(
8nα2

1e
A2T +max

{
8α2

2 + 12L21,1β0γ0; 12β0L2,1
}

TeA2T + (2β2 + β0 + 4α1)×

×(1+ A2Te
A2T)min{1,α0}

)

+

∫

�

n∑

i=1

(
nα2

1 |u0xi (x)|
2 + (β1 + 1)|u1xi (x)|

2
)
dx

+3

∫

QT

|f̃ (x, t)|2dx dt.

The right-hand sides of the estimates (13), (14), and (17)

are positive constants, independent of N. Therefore, there exists

a subsequence of {uN}∞N=1 (which will be denoted by the same

notation), such that as N → ∞

uN → u ∗ −weakly in L∞(0,T,H1
0(�)),

uNt → ut ∗ −weakly in L∞(0,T,H1
0(�)),

uN → u weakly in L2(0,T,H1
0(�)),

uNt → ut weakly in L2(0,T,H1
0(�)),

uNtt → utt weakly in L2(QT).

(18)

It follows from (18) that uN → u in L2(QT), and therefore,

ϕ1(x, u
N) → ϕ1(x, u) weakly in L2(QT) as N → ∞. Besides,

u ∈ C([0,T];H1
0(�)), ut ∈ C([0,T]; L2(�)) and ϕ2(x, u

N
t ) → χ

weakly in L2(QT).

Equations 8 and 18 imply the equality

∫

Qτ

(
uttv+

n∑

i,j=1

aij(x, t)uxivxj +

n∑

i,j=1

bij(x, t)uxitvxj + ϕ1(x, u)v

+χv− f̃ (x, t)v
)
dxdt = 0 (19)

for all functions v ∈ L2(0,T;H1
0(�)) and τ ∈ (0,T].

Let us prove that χ = ϕ2(x, ut).

Note that ‖ϕ1(x, u
N+k) − ϕ1(x, u

N)‖L2(QT ) ≤ L1,0‖u
N+k −

uN‖L2(QT ) for all k ∈ N. Due to (18), {u}∞
k=1

is fundamental in

L2(QT). So, for any ε > 0, there exists such a number N0 that for

all N, k ∈ N, N > N0 the inequality ‖u
N+k − uN‖L2(QT ) ≤ ε holds;

thus, {ϕ1(x, u)}
∞
k=1

is also fundamental in L2(QT) and, therefore,

ϕ1(x, u
N) → ϕ1(x, u) in L2(QT) as N → ∞. (20)

Consider the sequence

0 ≤ XN =

∫

QT

(
ϕ2(x, u

N
t )− ϕ2(x, ηt)

)
(uNt − ηt) dx dt

=

∫

QT

(
ϕ2(x, u

N
t )u

N
t − ϕ2(x, ηt)(u

N
t − ηt)− ϕ2(x, u

N
t )ηt

)
dx dt,

(21)

where η ∈ C([0,T];H1
0(�)), ηt ∈ L2(0,T;H1

0(�)) ∩

C([0,T]; L2(�)), ηtt ∈ L2(QT). From (9), it follows that

∫

QT

ϕ2(x, u
N
t )u

N
t dxdt=

∫

QT


f̃ (x, t)uNt −uNtt u

N
t −

n∑

i,j=1

aij(x, t)u
N
xi
uNxjt

−

n∑

i,j=1

bij(x, t)u
N
xit
uNxjt− ϕ1(x, u

N)uNt


 dx dt

= −
1

2

∫

�

(
(uNt (x,T))

2 +

n∑

i,j=1

aij(x,T)u
N
xi
(x,T)uNxj (x,T)

)
dx

+
1

2

∫

�

(
(uN1 (x))

2 +

n∑

i,j=1

aij(x, 0)u
N
0,xi

(x)uN0,xj (x)

)
dx

+

∫

QT


f̃ (x, t)uNt +

1

2

n∑

i,j=1

aijt(x, t)u
N
xi
uNxj−

n∑

i,j=1

bij(x, t)u
N
xit
uNxjt

− ϕ1(x, u
N)uNt


 dx dt.

(22)

After substitution (22) in (21), passing to the limit as N → ∞,

taking into account (18), (20), and the assumptions of Theorem 3.2,

we obtain

0 ≤ lim inf
N→∞

XN ≤ −
1

2

∫

�


(ut(x,T))

2

+

n∑

i,j=1

aij(x,T)uxi (x,T)uxj (x,T)


 dx

+
1

2

∫

�


(u1(x))

2 +

n∑

i,j=1

aij(x, 0)u0,xi (x)u0,xj (x)


 dx

+

∫

QT


f̃ (x, t)ut +

1

2

n∑

i,j=1

aijt(x, t)uxiuxj −

n∑

i,j=1

bij(x, t)uxituxjt

−ϕ1(x, u)ut − ϕ2(x, ηt)(ut − ηt)− χηt
)
dx dt

≤

∫

QT

(χ − ϕ2(x, ηt))(ut − ηt) dxdt.

Choosing here η = u − ̹w, ̹ > 0, w ∈ L2(0,T;H1
0(�)) ∩

C([0,T]; L2(�)), wt ∈ L2(0,T;H1
0(�)) ∩ C([0,T]; L2(�)),wtt ∈

L2(QT), dividing the result on ̹ and then tending ̹ → 0 we obtain

χ = ϕ2(x, ut). Hence, from (19), it follows (7).

Now we prove the uniqueness of the solution for the problems

(2–4). On the contrary, suppose that there exist two solutions

u(1)(x, t) and u(2)(x, t) of problems (2–4). Then ũ : = ũ(x, t) =

u(1)(x, t)−u(2)(x, t) satisfies the conditions ũ(x, 0) ≡ 0, ũt(x, 0) ≡ 0,

and the equality

∫

Qτ

(
ũttv+

n∑

i,j=1

aij(x, t)ũxivxj +

n∑

i,j=1

bij(x, t)ũxitvxj + (ϕ1(x, u(1))

− ϕ1(x, u(2)))v+ (ϕ2(x, (u(1))t)− ϕ2(x, (u(2))t))v
)
dx dt = 0

(23)
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holds for all v ∈ L2(0,T;H1
0(�)), τ ∈ (0,T].

After choosing v = ũt in (23) we get

∫

Qτ

(
ũttũt +

n∑

i,j=1

aij(x, t)ũxi ũxjt +

n∑

i,j=1

bij(x, t)ũxitũxjt

+ (ϕ1(x, u(1))− ϕ1(x, u(2)))ũ

+ (ϕ2(x, (u(1))t)− ϕ2(x, (u(2))t))ũt
)
dx dt = 0.

(24)

From (24) by the same way as from (11) we got (12), we find the

following estimate

∫

�

(
|uNt (x, τ )|

2 +

n∑

i=1

|uNxi (x, τ )|
2
)
dx

≤ A2

∫

Qτ

(
|uNt |

2 +

n∑

i=1

|uNxi |
2

)
dxdt.

(25)

Then from Grönwall’s lemma and (25) we

obtain
∫
�

(
|ũt(x, τ )|

2 +
n∑
i=1

|ũxi (x, τ )|
2
)
dx ≤ 0 and

∫

Qτ

n∑

i=1

|ũxit(x, t)|
2 dx dt ≤ 0, hence, ũ ≡ 0, and, therefore,

u(1) = u(2) in QT .

4 Inverse problem

Definition 4.1. A pair of functions (u(x, t), g(t)) is a solution to the

problem (2–5), if u ∈ C([0,T];H1
0(�)), ut ∈ L2(0,T;H1

0(�)) ∩

C([0,T]; L2(�)), utt ∈ L2(QT), and g ∈ C([0,T]), and it satisfies

(5) and

∫

Qτ


uttv+

n∑

i,j=1

aij(x, t)uxivxj

+

n∑

i,j=1

bij(x, t)uxitvxj + ϕ1(x, u)v+ ϕ2(x, ut)v


 dx dt

=

∫

Qτ

(
f1(x)g(t)+ f2(x, t)

)
v dx dt

(26)

holds for all functions v ∈ L2(0,T;H1
0(�)) and τ ∈ (0,T].

4.1 The equivalent problem

In this section, we shall find the equivalent problem for the

problem (2–5).

Lemma 4.2. Let
∫
�

K(x)f1(x) dx 6= 0, the assumptions of Theorem

3.2, (H4), and (H5) hold. A pair of functions (u(x, t), g(t)), where

u ∈ C([0,T]],H1
0(�)), ut ∈ L2(0,T;H1

0(�)) ∩ C(0,T, L2(�)),

utt ∈ L2(QT), g ∈ C([0,T]), is a solution to the problem (2–5) if

and only if it satisfies (26) for all functions v ∈ L2(0,T;H1
0(�)), and

for τ ∈ (0,T], the equality

g(t)

∫

�

K(x)f1(x) dx=E′′(t)+

∫

�




n∑

i,j=1

Kxj (x)aij(x, t)uxi

−

n∑

i,j=1

(Kxj (x)bij(x, t))xiut + K(x)ϕ1(x, u)+ K(x)ϕ2(x, ut)

− K(x)f2(x, t)


 dx

(27)

holds for t ∈ [0,T].

Proof. Necessity: Let (u(x, t), g(t)) be a solution to the problem

(2–5). From (26) and (5), it follows that
∫

�

(
f1(x)g(t)K(x)+ f2(x, t)K(x)− ϕ1(x, u)K(x)− ϕ2(x, ut)K(x)

−
n∑

i,j=1
aij(x, t)uxiKxj (x)−

n∑
i,j=1

bij(x, t)uxitKxj (x)
)
dx

= E′′(t), t ∈ (0,T]. (28)

By integrating by parts in (28) and using the condition (H4), we

get the equality

g(t)

∫

�

K(x)f1(x) dx+

∫

�

(
K(x)f2(x)− K(x)ϕ(x, u)

−
n∑

i,j=1
aij(x, t)Kxj (x)uxi

+
n∑

i,j=1
(bij(x, t)Kxj (x))xiut

)
dx = E′′(t), t ∈ (0,T]. (29)

From (29), we can obtain (27).

Sufficiency: Let g∗ ∈ C([0,T]), u∗ ∈ C([0,T];H1
0(�)), u∗t ∈

L2(0,T;H1
0(�)) ∩ C([0,T]; L2(�)), u∗tt ∈ L2(QT), and they satisfy

(4), (26), and (27). Then u∗ is a solution to the problem (2–4) with

g∗ instead of g in (2).

We set E∗(t) =
∫
�

K(x)u∗(x, t) dx, t ≥ 0. In exactly the same

way as in the proof of necessity, we obtain

g∗(t)

∫

�

K(x)f1(x) dx= (E∗(t))′′ +

∫

�




n∑

i,j=1

Kxj (x)aij(x, t)u
∗
xi

−
n∑

i,j=1
(Kxj (x)bij(x, t))xiu

∗
t + K(x)ϕ1(x, u

∗)

+ K(x)ϕ2(x, u
∗
t )− K(x)f2(x, t)

)
dx, t ∈ (0,T]. (30)

On the other hand g∗(t) and u∗(x, t) satisfy (27)

g∗(t)

∫

�

K(x)f1(x) dx=

(
E′′(t)

+

∫

�

( n∑

i,j=1

Kxj (x)aij(x, t)u
∗
xi
−

n∑

i,j=1

(Kxj (x)bij(x, t))xiu
∗
t

+ K(x)ϕ1(x, u
∗)+ K(x)ϕ2(x, u

∗
t )− K(x)f2(x, t)

)
dx

)
, t ∈ (0,T].

(31)
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It follows from (30), (31) that

(E∗(t))′′ = E′′(t), t ∈ (0,T]. (32)

Integrating (32) with the use of the equalities E∗(0) = E(0) =∫
�

K(x)u0(x) dx, (E∗)′(0) = E′(0) =
∫
�

K(x)u∗1(x) dx, implies

E∗(t) = E(t), t ≥ 0. Hence, u∗(x, t) satisfies the overdetermination

condition (5).

4.2 Main results

Let f1 : =
∫
�

(f1(x))
2 dx, α2 : = max

i,j
sup
QT

|aijt|. Denote

M1 : =max



nmax

i
sup
[0,T]

∫

�




n∑

j=1

Kxj (x)aij(x, t)




2

dx

+L21,0γ0

∫

�

(K(x))2 dx;

L22,0

∫

�

(K(x))2 dx+ sup
[0,T]

∫

�




n∑

i,j=1

(Kxj (x)bij(x, t))xi




2

dx



 ,

M2 : =
4M1(∫

�

K(x)f1(x) dx

)2
;

M3 : =
2f1γ0

β0
exp



max

{
2L2,0;

2γ 2
0 L

2
1,0

β0
+ α2

}
T0

min{1,α0}


 ;

M4 : = M2M3,

T0 is such a number thatM4T0 < 1.

Theorem 4.3. Let
∫
�

K(x)f1(x) dx 6= 0, aijt ≤ 0 for all i, j =

1, 2, . . . , n, and the assumptions (H1) – (H5) hold. Then there exists

a unique solution to the problem (2–5).

Proof. I. In the first step, we shall prove the theorem for T ≤ T0.

We construct an approximation (um(x, t), gm(t))

of the solution of problem (2–5), where

g1(t) : = 0, the functions gm(t),m ≥ 2, satisfy the equality

gm(t)=

(∫

�

K(x)f1(x) dx

)−1

E′′(t)+

∫

�

( n∑

i,j=1

Kxj (x)aij(x, t)u
m−1
xi

−

n∑

i,j=1

(Kxj (x)bij(x, t))xiu
m−1
t + K(x)ϕ1(x, u

m−1)

+K(x)ϕ2(x, u
m−1
t )− K(x)f2(x, t)

)
dx


 , t ∈ [0,T0],

(33)

and um satisfies the equality

∫

Qτ

(
umtt v+

n∑

i,j=1

aij(x, t)u
m
xi
vxj +

n∑

i,j=1

bij(x, t)u
m
xit
vxj + ϕ1(x, u

m)v

+ ϕ2(x, u
m
t )v

)
dxdt =

∫

Qτ

(f1(x)g
m(t)+f2(x, t))v dx dt,

τ ∈ [0,T0], m ≥ 1,

(34)

for all v ∈ L2(0,T0;H
1
0(�)), and the conditions

um(x, 0) = u0(x), umt (x, 0) = u1(x), x ∈ �. (35)

It follows from Theorem 3.2 that for each m ∈ N there exists a

unique function um ∈ C([0,T0];H
1
0(�)), umt ∈ L2(0,T0;H

1
0(�)) ∩

C([0,T0]; L
2(�)), umtt ∈ L2(QT0 ), that satisfies (34), (35). Now we

show that {(um(x, t), gm(t))}∞m=1 converges to the solution of the

problem (2–5). Denote

zm : = zm(x, t) = um(x, t)− um−1(x, t),

rm(t) : = gm(t)− gm−1(t), m ≥ 2.

Equation 33 for t ∈ (0,T0] andm ≥ 3, implies the equality

rm(t) =



∫

�

K(x)f1(x) dx




−1 ∫

�

( n∑

i,j=1

Kxj (x)aij(x, t)z
m−1
xi

−

n∑

i,j=1

(Kxj (x)bij(x, t))xiz
m−1
t

+K(x)(ϕ1(x, u
m−1)− ϕ1(x, u

m−2))

+ K(x)(ϕ2(x, u
m−1
t )− ϕ2(x, u

m−2
t ))

)
dx.

(36)

We square both sides of equality (36) and integrate the result

with respect to t, taking into account the hypotheses (H5), then

we obtain

τ∫
0

(rm(t))2 dt ≤ 4(
∫
�

K(x)f1(x) dx

)2

τ∫
0

((∫
�

n∑
i,j=1

Kxj (x)aij(x, t)z
m−1
xi

dx

)2

+

(∫
�

n∑
i,j=1

(Kxj (x)bij(x, t))xiz
m−1
t dx

)2

+

(∫
�

K(x)(ϕ1(x, u
m−1)− ϕ1(x, u

m−2)) dx

)2

+

(∫
�

K(x)(ϕ2(x, u
m−1
t )− ϕ2(x, u

m−2
t )) dx

)2)
dt, m ≥ 3. (37)

Then (37) implies the estimate

τ∫

0

(rm(t))2 dt ≤ M2

∫

Qτ

(
(zm−1

t )2 +

n∑

i=1

(zm−1
xi

)2

)
dx dt,

τ ∈ (0,T0], m ≥ 3. (38)
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It follows from (35) that zm(x, 0) = 0, zmt (x, 0) = 0, x ∈

�, m ≥ 2. Hence, from (34) with v = zmt , τ ∈ (0,T0], we get

∫

Qτ

(
zmtt z

m
t +

n∑

i,j=1

aij(x, t)z
m
xi
zmxjt +

n∑

i,j=1

bij(x, t)z
m
xit
zmxjt

+(ϕ1(x, u
m)− ϕ1(x, u

m−1))zmt

+(ϕ2(x, u
m
t )− ϕ2(x, u

m−1
t ))zmt

)
dx dt

=

∫

Qτ

f1(x)r
m(t)zmt dx dt, m ≥ 1.

(39)

The last term in (39)

∫

Qτ

f1(x)r
m(t)zmt dx dt ≤

β0

4γ0

∫

Qτ

(zmt )
2 dx dt +

f1γ0

β0

τ∫

0

(rm(t))2 dt

≤
β0

4

∫

Qτ

n∑

i=1

(zmxit)
2 dx dt +

f1γ0

β0

τ∫

0

(rm(t))2 dt.

Besides,

∫

Qτ

(ϕ1(x, u
m)− ϕ1(x, u

m−1))zmt dx dt

≤

∫

Qτ

L1,0|z
m||zmt | dx dt

≤

∫

Qτ

(
L21,0γ0

β0
(zm)2 +

β0

4γ0
(zmt )

2

)
dx dt

≤

∫

Qτ

(
L21,0γ

2
0

β0

n∑

i=1

(zmxi )
2 +

β0

4

n∑

i=1

(zmxit)
2

)
dx dt

and
∫

Qτ

(ϕ2(x, u
m
t )− ϕ2(x, u

m−1
t ))zmt dx dt ≤ L2,0

∫

Qτ

|zmt |
2 dx dt.

Then, taking into account (H1) – (H5), from (39) we get

inequality

min{1,α0}

∫

�

(
(zmt (x, τ ))

2 +

n∑

i=1

(zmxi (x, τ ))
2
)
dx

+β0

∫

Qτ

n∑

i=1

(zmxit)
2 dx dt

≤ max

{
2L2,0;

2γ 2
0 L

2
1,0

β0
+ α2

}∫

Qτ

(
(zmt )

2 +

n∑

i=1

(zmxi )
2

)
dx dt

+
2f1γ0

β0

τ∫

0

(rm(t))2 dt, m ≥ 2. (40)

According to Grönwall’s Lemma, we obtain

∫

�

(
(zmt (x, τ ))

2 +

n∑

i=1

(zmxi (x, τ ))
2
)
dx

≤ M3

τ∫

0

(rm(t))2 dt, τ ∈ (0,T0], m ≥ 2. (41)

Interating (41) with respect to τ , we get the estimate

∫

QT0

(
(zmt )

2 +

n∑

i=1

(zmxi )
2

)
dx dt ≤ M3T0

T0∫

0

(rm(t))2 dt, m ≥ 2.

(42)

Besides, (40) and (42) form ≥ 2 imply the estimates

∫

QT0

n∑

i=1

(zmxit)
2 dx dt≤

M5

β0

T0∫

0

(rm(t))2 dt (43)

and

∫

�

(
(zmt (x, τ ))

2 +

n∑

i=1

(zmxi (x, τ ))
2
)
dx ≤

M5

min{1,α0}

T0∫

0

(rm(t))2 dt,

(44)

whereM5 : = max

{
2L2,0;

2γ 2
0 L

2
1,0+α2β0

β0

}
M3T0 +

2f1γ0
β0

.

Note that r2(t) = g2(t). Then, taking into account (33), we have

τ∫

0

(r2(t))2 dt =

τ∫

0

(g2(t))2 dt ≤ 6

(∫

�

K(x)f1(x) dx

)−2

( τ∫

0

(E′′(t))2 dt + n2 max
i

sup
i

n∑

j=1

∫

�

(Kxj (x)aij(x, t))
2 dx

∫

QT0

n∑

i=1

(u1xi )
2 dx dt

+n2 max
i

sup
t

n∑

j=1

∫

�

(Kxj (x)bij(x, t))
2 dx

∫

QT0

n∑

i=1

(u1xit)
2 dx dt

+L21,0

∫

�

(K(x))2 dx

∫

QT0

|u1|2 dx dt + L22,0

∫

�

(K(x))2 dx

∫

QT0

|u1t |
2 dx dt +

τ∫

0

(∫

�

K(x)f2(x, t) dx

)2

dt

)
≤ M6,

where M6 is a positive constant. It follows from (42) and (38) that

form ≥ 3

T0∫

0

(rm(t))2 dt ≤ M4T0

T0∫

0

(rm−1(t))2 dt

≤ (M4T0)
m−2

T0∫

0

(r2(t))2 dt ≤ M6(M4T0)
m−2. (45)
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By using (45) and the assumption M4T0 < 1, we can show the

estimate

‖gm+k − gm‖L2(0,T0) ≤

m+k∑

i=m+1




T0∫

0

(ri(t))2 dt




1
2

≤

≤

m+k∑

i=m+1

M
1
2
6 (M4T0)

i−2
2 ≤

M
1
2
6 (M4T0)

m−1
2

1− (M4T0)
1
2

, k ∈ N, m ≥ 3.

(46)

Due to (42)

∫

QT0

(
(zmt )

2 +

n∑

i=1

(zmxi )
2

)
dx dt

≤ M3T0

T0∫

0

(rm(t))2 dt ≤ M3M6T0(M4T0)
m−2, m ≥ 2. (47)

Besides, (43) and (44) form ≥ 2 imply the estimates

∫

QT0

n∑

i=1

(zmxit)
2 dx dt≤

M5M6(M4T0)
m−2

β0
, (48)

and

∫

�

(
(zmt (x, τ ))

2 +

n∑

i=1

(zmxi (x, τ ))
2
)
dx ≤

M5M6(M4T0)
m−2

min{1,α0}
. (49)

And, therefore,

n∑

j=1

‖um+k
xj

− umxj‖L2(QT0
) + ‖um+k

t − umt ‖L2(QT0
)

≤

m+k∑

i=m+1




n∑

j=1

‖zixj‖L2(QT0
) + ‖zit‖L2(QT0

)




≤ (n+ 1)

m+k∑

i=m+1

(
M3M6T0

) 1
2

(M4T0)
i−2
2

≤ (n+ 1)

(
M3M6T0

) 1
2 (M4T0)

m−1
2

1− (M4T0)
1
2

, k ∈ N, m ≥ 2

(50)

and

n∑

j=1

‖um+k
xjt

− umxjt‖L2(QT0
) ≤

m+k∑

i=m+1

n∑

j=1

‖zixjt‖L2(QT0
)

≤ n

m+k∑

i=m+1

(
M5M6

β0

) 1
2

(M4T0)
i−2
2

≤ n

(
M5M6

β0

) 1
2 (M4T0)

m−1
2

1− (M4T0)
1
2

, k ∈ N, m ≥ 2,

(51)

and for k ∈ N, m ≥ 2

n∑

j=1

‖um+k
xj

− umxj‖C([0,T0];L2(�)) + ‖um+k
t − umt ‖C([0,T0];L2(�))

≤

m+k∑

i=m+1




n∑

j=1

‖zixj‖C([0,T0];L2(�)) + ‖zit‖C([0,T0];L2(�))




≤ (n+ 1)

(
M5M6

min{1,α0}

) 1
2

m+k∑

i=m+1

(M4T0)
i−2
2

≤ (n+ 1)

(
M5M6

min{1,α0}

) 1
2 (M4T0)

m−1
2

1− (M4T0)
1
2

.

(52)

Besides, we square both sides of equality (36), taking into

account the hypotheses (H5) and obtain

(rm(t))2 ≤
4

(∫
�

K(x)f1(x) dx

)2

((∫

�

n∑

i,j=1

Kxj (x)aij(x, t)z
m−1
xi

dx

)2

+

(∫

�

n∑

i,j=1

(Kxj (x)bij(x, t))xiz
m−1
t dx

)2

+

(∫

�

K(x)(ϕ1(x, u
m−1)− ϕ1(x, u

m−2)) dx

)2

+

(∫

�

K(x)(ϕ2(x, u
m−1
t )− ϕ2(x, u

m−2
t )) dx

)2)
, m ≥ 3.

(53)

From (53), we can conclude that:

(rm(t))2≤ M2

∫

�

(
(zm−1

t (x, t))2 +

n∑

i=1

(zm−1
xi

(x, t))2

)
dx

≤
M2M5M6

min{1,α0}
(M4T0)

m−2, m ≥ 3. (54)

Therefore,

max
[0,T0]

‖gm+k − gm‖C([0,T0]) ≤

m+k∑

i=m+1

‖ri‖C([0,T0])

≤

(
M2M5M6

min{1,α0}

) 1
2

m+k∑

i=m+1

(M4T0)
i−2
2

≤

(
M2M5M6

min{1,α0}

) 1
2 (M4T0)

m−1
2

1− (M4T0)
1
2

, k ∈ N,m ≥ 2.

(55)

It follows from (46), (50), (51), (52), and (55) that for any ε > 0,

there exists m0 such that for all k, m ∈ N, m > m0, the following
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inequalities hold:

‖gm+k − gm‖L2(0,T0) ≤ ε, ‖gm+k − gm‖C([0,T0]) ≤ ε,

n∑

j=1

‖um+k
xjt

− umxjt‖L2(QT0
) ≤ ε,

n∑

j=1

‖um+k
xj

− umxj‖L2(QT0
) + ‖um+k

t − umt ‖L2(QT0
) ≤ ε,

n∑

j=1

‖um+k
xj

− umxj‖C([0,T0];L2(�)) + ‖um+k
t − umt ‖C([0,T0];L2(�)) ≤ ε

are true. Hence, the sequence {gm}∞m=1 is fundamental in L2(0,T0)

and in C([0,T0]), {u
m}∞m=1 is fundamental in L2(0,T0;H

1
0(�))

and in C(0,T0;H
1
0(�)), and {umt }

∞
m=1 is fundamental

in L2(0,T0;H
1
0(�)) and in C([0,T0]; L

2(�)). Therefore,

asm → ∞

gm → g in C([0,T0]), um → u in C([0,T0];H
1
0(�)),

umt → ut in L2(0,T0;H
1
0(�)) ∩ C([0,T0]; L

2(�)).

(56)

Theorem 3.2 implies the following estimate

∫

QT0

(umtt )
2 dx dy dt ≤

A1

4β0

(
8nα2

1e
A2T0

+max
{
8α2

2 + 12L21,1β0γ0; 12β0L2,1
}
T0e

A2T0

+(2β2 + β0 + 4α1)(1+ A2T0e
A2T0 )min{1,α0}

)

+ nα2
1

∫

�

n∑

i=1

|u0xi (x)|
2 dx

+ (β1 + 1)

∫

�

n∑

i=1

|u1xi (x)|
2 dx

+ 3

∫

QT0

|f1(x)g
m(t)+ f2(x, t)|

2dx dt, m ≥ 2.

(57)

and, by virtue of (56) ‖gm‖C([0,T0]) < M7, whereM7 is independent

onm, and therefore the right-hand side of (57) is bounded with the

constant, independent on m. Hence, we can select a subsequence

of sequence {um}∞m=1 (we preserve the same notation for this

subsequence), such that

umtt → utt weakly in L2(QT0 ) asm → ∞. (58)

Taking into account (56) and (58), from (33), (34) we get that

the pair of functions (u(x, t), g(t)) satisfies (27) and (26). By virtue

of Lemma 4.2 (u(x, t), g(t)) is a solution of the problem (2–5) in

QT0 .

II. Uniqueness of solution of the problem (2–5), with T ≤ T0.

Assume that (u(1)(x, t), g(1)(t)) and (u(2)(x, t), g(2)(t)) be two

solutions of problem (2–5). Then the pair of functions (ũ(x, t), g̃(t)),

where ũ(x, t) = u(1)(x, t)−u(2)(x, t), g̃(t) = g(1)(t)− g(2)(t), satisfies

the conditions ũ(x, 0) ≡ 0, ũt(x, 0) ≡ 0, the equality

∫

QT0

(
ũttv+

n∑
i,j=1

aij(x, t)ũxivxj +
n∑

i,j=1
bij(x)ũxitvxj

+(ϕ1(x, u(1))− ϕ1(x, u(2)))v

+(ϕ2(x, (u(1))t)− ϕ2(x, (u(2))t))v
)
dx dt

=

∫

QT0

f1(x)g̃(t)v dx dt, (59)

for all v ∈ L2(0,T0;H
1
0(�)) and the equality

g̃(t)=

(∫

�

K(x)f1(x) dx

)−1(∫

�

( n∑

i,j=1

Kxj (x)aij(x, t)ũxi

−
n∑

i,j=1
(Kxj (x)bij(x, t))xi ũt

+K(x)(ϕ1(x, u(1))− ϕ1(x, u(2)))+ K(x)(ϕ2(x, (u(1))t)

−ϕ2(x, (u(2))t))
)
dx

)
, t ∈ [0,T0], (60)

holds.

After choosing v = ũt in (59) we get

∫

QT0

(
ũttũt +

n∑

i,j=1

aij(x, t)ũxi ũxjt +

n∑

i,j=1

bij(x, t)ũxitũxjt

+(ϕ1(x, u(1))− ϕ1(x, u(2)))ũt

+(ϕ2(x, (u(1))t)− ϕ2(x, (u(2))t))ũt
)
dx dt

=

∫

QT0

f1(x)g̃(t)ũt dx dt.

(61)

It is easy to get from (60) and (H5) inequalities

T0∫

0

(g̃(t))2 dt ≤ M2

∫

QT0

(
(ũt)

2 +

n∑

i=1

(ũxi )
2

)
dx dt. (62)

From (61) by the same way as from (39) we got (42), we find the

following estimate

∫

QT0

(
(ũt)

2 +

n∑

i=1

(ũxi )
2

)
dx dt ≤ M3T0

T0∫

0

(g̃(t))2 dt, (63)

and taking into account (62) from (63), we obtain (1 −

M4T0)
∫

QT0

(
(ũt)

2 +
n∑

i=1
(ũxi )

2

)
dx dt ≤ 0. Since M4T0 < 1, we

conclude that
∫

QT0

(
(ũt)

2 +
n∑

i=1
(ũxi )

2

)
dx dt = 0, hence, u(1) = u(2)

in QT0 . Then (62) implies g̃(t) ≡ 0, and, therefore, g(1)(t) ≡ g(2)(t)

on [0,T0].

III. Let now T > 0 be arbitrary number.

Let us divide the interval [0,T] into a finite number of intervals

[0,T1], [T1, 2T1], . . . , [(N − 1)T1,NT1], where NT1 = T, and

T1 ≤ T0. According to I and II, there exists a unique solution

(u1(x, t), g0,1(t)) to the problem (2–5) in the domain QT1 .
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Now, we will prove that there exists a unique solution in

the domain QT1 ,2T1 : = � × (T1; 2T1) for the problem for the

Equation 2 with conditions (4) and (5) as t ∈ [T1; 2T1], and with

the initial condition u(x,T1) = u1(x,T1), ut(x,T1) = u1t(x,T1),

and x ∈ �.

Let us change the variables t = τ + T1, τ ∈ [0;T1]

in this problem. We will denote G0(τ ) = g(τ + T1),

U(x, τ ) = u(x, τ + T1), a
(1)
ij (x, τ ) = aij(x, τ + T1), b

(1)
ij (x, τ ) =

bij(x, τ + T1), f
(1)
2 (x, τ ) = f2(x, τ + T1), and E(1)(τ ) = E(τ + T1).

For the pair (U(x, τ ),G0(τ )) we obtain the problem:

Uττ −

n∑

i,j=1

(a
(1)
ij (x, τ )Uxi )xj −

n∑

i,j=1

(b
(1)
ij (x, τ )Uxiτ )xj

+ ϕ1(x,U)+ ϕ2(x,Uτ ) = f
(1)
1 (x)G0(τ )+ f

(1)
2 (x, τ ), (x, τ ) ∈ QT1

(64)

U(x, 0) = u1(x,T1), Ut(x, 0) = u1t(x,T1), x ∈ �, (65)

U|∂�×(0,T1) = 0, (66)

∫

�

K(x)U(x, τ ) dxdy = E(1)(τ ), τ ∈ [0,T1]. (67)

It is obvious that all coefficients of the Equation 64 and the

functions f
(1)
2 (x, τ ), u1(x,T1), u1t(x,T1), E

(1)(τ ) satisfy the same

conditions as the functions from (2) and (5). According to I and

II, there exists a unique solution to the problem (64–67) in QT1 ,

and, thus for the problems for the Equation 2 with conditions (4)

and (5) as t ∈ [T1; 2T1] and with the initial condition u(x,T1) =

u1(x,T1), ut(x,T1) = u1t(x,T1), and x ∈ �, in the domain QT1 ,2T1 .

Denote it by (u2(x, t), g0,2(t)). By following similar reasoning on

the intervals [2T1; 3T1], . . . , [(N − 1)T1;NT1], we can prove the

existence and uniqueness of weak solutions (uk(x, kt), g0,k(t)), k =

3, . . . ,N, in the domainQ(k−1)T1 ,kT1 : = �× ((k−1)T1, kT1) of the

inverse problem for the Equation 2 with conditions (4) and (5) as

t ∈ [(k − 1)T1; kT1] and the initial condition u(x, (k − 1)T1) =

uk−1(x, (k − 1)T1), x ∈ �. It is clear that a pair of functions

(u(x, t), g0(t)), where

u(x, t) =





u1(x, t), if (x, t) ∈ QT1 ;

u2(x, t), if (x, t) ∈ QT1 ,2T1 ;

. . . . . .

uN(x, t), if (x, t) ∈ Q(N−1)T1 ,NT1 ,

g0(t) =





g0,1(t), if t ∈ [0,T1];

g0,2(t), if t ∈ [T1, 2T1];

. . . . . .

g0,N(t), if t ∈ [(N − 1)T1,NT1],

is a solution for the problem (2–5) in the domain QT .

IV. The uniqueness of solution is proved similar as in II,

III: Assume that (u(1)(x, t), g(1)(t)) and (u(2)(x, t), g(2)(t)) be two

solutions of problem (2–5). Then the pair of functions (ũ(x, t), g̃(t)),

where ũ(x, t) = u(1)(x, t)−u(2)(x, t), g̃(t) = g(1)(t)− g(2)(t), satisfies

the conditions ũ(x, 0) ≡ 0, ũt(x, 0) ≡ 0, the equality

∫

Qτ

(
ũttv+

n∑

i,j=1

aij(x, t)ũxivxj +

n∑

i,j=1

bij(x)ũxitvxj

+(ϕ1(x, u(1))− ϕ1(x, u(2)))v

+(ϕ2(x, (u(1))t)− ϕ2(x, (u(2))t))v
)
dx dt

=

∫

Qτ

f1(x)g̃(t)v dx dt, (68)

for all v ∈ L2(0,T;H1
0(�)), τ ∈ (0,T], and the equality

g̃(t) =

(∫
�

K(x)f1(x) dx

)−1(∫
�

( n∑
i,j=1

Kxj (x)aij(x, t)ũxi

−

n∑

i,j=1

(Kxj (x)bij(x, t))xi ũt

+K(x)(ϕ1(x, u(1))− ϕ1(x, u(2)))+ K(x)(ϕ2(x, (u(1))t)

−ϕ2(x, (u(2))t))
)
dx

)
, t ∈ [0,T], (69)

holds.

Let us divide the interval [0,T] into a finite number of intervals

[0,T1], [T1, 2T1], . . . , [(N − 1)T1,NT1], where NT1 = T, and

T1 ≤ T0.

Let us choose τ ∈ [0,T1] in (68). After choosing here v = ũt ,

we get

∫

Qτ

(
ũttũt +

n∑

i,j=1

aij(x, t)ũxi ũxjt +

n∑

i,j=1

bij(x, t)ũxitũxjt + (ϕ1(x, u(1))

−ϕ1(x, u(2)))ũt

+(ϕ2(x, (u(1))t)− ϕ2(x, (u(2))t))ũt
)
dx dt

=

∫

Qτ

f1(x)g̃(t)ũt dx dt, τ ∈ [0;T1].

(70)

It is easy to get from (69) and (H5) inequalities

T1∫

0

(g̃(t))2 dt ≤ M2

∫

QT1

(
(ũt)

2 +

n∑

i=1

(ũxi )
2

)
dx dt. (71)

From (70), by the same way as from (39), we got (42). We find

the following estimate:

∫

QT1

(
(ũt)

2 +

n∑

i=1

(ũxi )
2

)
dx dt ≤ M3T1

T1∫

0

(g̃(t))2 dt, (72)

and taking into account (71) from (72), we obtain (1 −

M4T1)
∫

QT1

(
(ũt)

2 +
n∑

i=1
(ũxi )

2

)
dx dt ≤ 0. Since M4T1 < 1, we

conclude that
∫

QT1

(
(ũt)

2 +
n∑

i=1
(ũxi )

2

)
dx dt = 0, hence, u(1) = u(2)

in QT1 . Then (71) implies g̃(t) ≡ 0, and, therefore, g(1)(t) ≡ g(2)(t)

on [0,T1].
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Let us choose τ ∈ [0, 2T1] in (68). After choosing here v = ũt ,

we get

∫

Qτ

(
ũttũt +

n∑

i,j=1

aij(x, t)ũxi ũxjt +

n∑

i,j=1

bij(x, t)ũxitũxjt + (ϕ1(x, u(1))

−ϕ1(x, u(2)))ũt

+(ϕ2(x, (u(1))t)− ϕ2(x, (u(2))t))ũt
)
dx dt

=

∫

Qτ

f1(x)g̃(t)ũt dx dt, τ ∈ [0; 2T1].

(73)

Note that ũ ≡ 0 in QT1 and g̃ ≡ 0 on [0;T1], therefore, from

(73) it follows that
∫

QT1,τ

(
ũttũt +

n∑

i,j=1

aij(x, t)ũxi ũxjt +

n∑

i,j=1

bij(x, t)ũxitũxjt + (ϕ1(x, u(1))

−ϕ1(x, u(2)))ũt

+(ϕ2(x, (u(1))t)− ϕ2(x, (u(2))t))ũt
)
dx dt

=

∫

QT1,τ

f1(x)g̃(t)ũt dx dt, τ ∈ [T1; 2T1].

(74)

It is easy to get from (69) and (H5) inequalities

2T1∫

T1

(g̃(t))2 dt ≤ M2

∫

QT1,2T1

(
(ũt)

2 +

n∑

i=1

(ũxi )
2

)
dx dt. (75)

From (74), by the same way as from (39), we got (42). We find

the following estimate

∫

QT1,2T1

(
(ũt)

2 +

n∑

i=1

(ũxi )
2

)
dx dt ≤ M3T1

2T1∫

T1

(g̃(t))2 dt, (76)

and taking into account (75) from (76), we obtain (1 −

M4T1)
∫

QT1,2T1

(
(ũt)

2 +
n∑
i=1

(ũxi )
2

)
dx dt ≤ 0. Since M4T1 < 1, we

conclude that
∫

QT1,2T1

(
(ũt)

2 +
n∑
i=1

(ũxi )
2

)
dx dt = 0, hence, u(1) =

u(2) inQT1 ,2T1 . Then, (75) implies g̃(t) ≡ 0, and, therefore, g(1)(t) ≡

g(2)(t) on [T1, 2T1]. Therefore, u(1) = u(2) in Q2T1 , g(1)(t) ≡ g(2)(t)

on [0, 2T1].

Considering τ ∈ [0, 3T1], . . . , τ ∈ [0,NT1] in (68), by the same

arguments, we find that u(1) = u(2) in Q(k−1)T1 ,kT1 , g(1)(t) ≡ g(2)(t)

on [(k − 1)T1, kT1], k = 1, 2, . . . ,N. Therefore, u(1) = u(2) in QT ,

g(1)(t) ≡ g(2)(t) on [0,T].

5 Conclusions

In this study, we have derived the necessary conditions

for the existence and the uniqueness of the solution for the

initial-boundary value problem, as well as the inverse problem,

for semilinear hyperbolic equation of the third order with

an unknown parameter in its right-hand side function. To

determine the unknown function, an additional integral-type

overdetermination condition have been introduced. These results

were obtained by utilizing the properties of the solutions

to the initial-boundary value problem and the method of

successive approximations.
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This paper deals with the approximation error of trigonometric interpolation for

multivariate functions of bounded variation in the sense of Hardy-Krause. We

propose interpolation operators related to both the tensor product and sparse

grids on the multivariate torus. For these interpolation processes, we investigate

the corresponding error estimates in the Lp norm for the class of functions under

consideration. In addition, we compare the accuracy with the cardinality of these

grids in both approaches.

KEYWORDS

Boolean sum operator, multivariate function of bounded variation, interpolation

problem, sparse grid, tensor product grid, hyperbolic cross

1 Introduction

The interpolation of periodic functions at equidistant nodes by trigonometric

polynomials is a basic task of approximation theory with far-reaching applications (see,

e.g., Chapter 3 in Plonka et al. [2]). The possibility of using FFT algorithms with huge

amounts of data has contributed greatly to the popularity of this approximation method.

Accordingly, error estimates for such interpolation methods have been intensively studied

in the literature. The decisive difference between approximation methods which are based

on integral evaluations of the given function f , for example, the Fourier coefficients, and an

interpolation method is that information about f must really be available pointwise. This

difference becomes particularly important in the case of interpolation of discontinuous

functions, where one will focus on the error in Lp norms in particular. As is well-known,

the Riemann integrability of a periodic function f is a condition for the Lp error to tend to 0

as the number of nodes n → ∞ (cf. [3]). For a little more smoothness, the approximation

order in Lp can be bounded by the best one-sided approximation in Lp using trigonometric

polynomials (cf. [4]).

A particularly important class of functions, generally discontinuous functions, for

which one would like to obtain error estimates are functions of bounded variation. A first

result in this area comes from Zacharias, who proved in [5] with Hilbert space methods

that the L2 error behaves like 1/
√
n. This result was generalized to 1 ≤ p < ∞ in Prestin

[6].

To generalize these error estimates to multivariate periodic functions, a suitable

concept for multivariate bounded variation is required. The Hardy-Krause definition is

appropriate here (see Clarkson and Adams [7] and for more information on these spaces

[8], [9] and others). For the dimension d = 2 and interpolation on the tensor product,

such results can be found in Prestin and Tasche [10], (see also Kolomoitsev et al. [11]). An

essential tool for the proof of the error estimates is the consideration of blending operators,

which have been extensively analyzed in the study of Delvos et al. (cf., e.g., [12–15]).

In this study, the results for the approximation error of functions of bounded

variation are to be transferred to interpolation methods on sparse grids. Such grids were
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first introduced in Smolyak [16] and since then have been widely

used in interpolation problems, quadrature schemes, and other

fields. For more details, see Dũng et al. [17]. These sparse grids

are very efficient, especially for large spatial dimensions d, that

is, the approximation order is only reduced by a logarithmic

factor compared to the tensor product interpolation, although the

number of interpolation nodes is only by a log factor bigger than

in the univariate case. At this point, it should be noted that error

estimates for such interpolation methods of continuous functions

are known (see Dũng et al. [17, Chap. 5.3]). Such statements are

proved for functions belonging to the spaces Hr
p, where r > 1/p

is assumed, which implies the continuity of the function to be

interpolated. Our larger class of functions of bounded variation

then provides an order of convergence as in the case r = 1/p.

Our approach requires a notation for the definition of bounded

variation that is well-suited for large dimensions d. Here, we follow

the approach in Aistleitner et al. [1].

Finally, we note that these approximation results for functions

of bounded variation are also valid for Fourier sums and the

corresponding multivariate hyperbolic cross-variants, where the

results can also be obtained using other methods.

2 Function of bounded variation

Let p ∈ [1,∞), d ∈ N. For 2π-periodic functions f of d

variables on the torus Td, we consider the space Lp(T
d), 1 ≤ p <

∞, supplied by the following norm:

‖f ‖p : =

(
1

(2π)d

∫

Td
|f (z)|pdz

) 1
p

< ∞.

We denote by D = {1, . . . , d} the set of coordinates with

cardinality |D| = d and split it into two domains B ⊂ D and

B = D\B, |B|+|B| = d. Following Aistleitner et al. [1] by z = yB : x,

where y, x ∈ T
d, we describe the vector z ∈ T

d consisting of the

components zj = yj if j ∈ B and zj = xj otherwise. Such a partition

will also be used to represent the vector z ∈ T
d as a combination of

arguments from B and fixed values along coordinates from B̄.

For each coordinate j = 1, ..., d we introduce some arbitrary

decomposition Zj, namely

Zj : 0 = ξ
j
1 < . . . < ξ

j
uj = 2π .

Let ξ = (ξ 1
k1
, ξ 2

k2
, . . . , ξd

kd
) ∈ T

d be a vector with components

ξ
j

kj
∈ Zj, kj = 1, . . . , uj and ξ+ = ((ξ 1

k1
)+, (ξ

2
k2
)+, . . . , (ξ

d
kd
)+) ∈

T
d, where

(ξ
j

kj
)+ =

{
ξ
j

kj+1
, kj < uj,

2π , otherwise.

Using this notation for a function f :Td → C, we introduce a

d-dimensional difference operator in the following way:

1D(f ) =
∑

ξ∈
∏
j∈D

Zj

∣∣∣∣∣∣

∑

∅⊆U⊆D

(−1)|U|f (ξU : ξ+)

∣∣∣∣∣∣
.

Furthermore, we consider the difference operator and

corresponding variation for f :Td → C with respect to coordinates

j ∈ B and fixed values zj for j ∈ B:

1B(f , z
B) =

∑

ξ∈
∏
j∈B

Zj

∣∣∣∣∣∣

∑

∅⊆U⊆B

(−1)|U|f ((ξU : ξ+)
B
: z)

∣∣∣∣∣∣
.

Then, we define for all B ⊆ D:

VBf (zB) = sup
Zj ,j∈B

1B(f , z
B).

In particular, V∅f (z) = f (z).

For a function VBf (zB) ∈ Lp(T
d−|B|), we have

‖VBf ‖p =

(
1

(2π)d−|B|

∫

Td−|B|

|VBf (zB)|pdzB
) 1

p

for 1 ≤ p < ∞ and ‖VBf ‖∞ = sup
zB∈Td−|B|

VBf (zB) for p = ∞.

Let us mention that for B = D, the variation VDf (zB) is a

constant, which we simply denote as VDf .

Then, the total variation of a function f :Td → C is determined

by the quantity

HV(f ) =
∑

∅⊂B⊆D

‖VBf ‖∞.

A function f :Td → C for which HV(f ) is finite we call

function of bounded variation on T
d in the sense of Hardy-Krause

and write f ∈ HV(Td).

Remark 2.1. An alternative definition of this kind of bounded

variation is discussed in Bakhvalov [18, Lemma 4]. So, f ∈ HV(Td)

if VDf < ∞ and for any j ∈ D there are z
j
0 such that f (z

j
0 : z) ∈

HV(Td−1), that is, f has bounded variation up to coordinates i ∈

D \ {j}.

Remark 2.2. Let d > 1. By definition f ∈ HV(Td) iff ‖VBf ‖∞
is finite for all B ⊆ D. All these 2d conditions are pairwise

independent of each other as can be seen by the following examples

[for the case d = 2 cf. ([7], p. 827)].

Let B1 6= B2 be arbitrary subsets of D. W.l.o.g. we assume

1 ∈ B1, 1 /∈ B2 and we distinguish the 4 possible cases:

a) 2 ∈ B1 ∩ B2, b) 2 ∈ B1, 2 /∈ B2, c) 2 /∈ B1, 2 ∈ B2,

d) 2 /∈ B1 ∪ B2.

Now, we consider functions F :Td → C of the form

F(x) = f (α,β)

d∏

k=3

gk(x
k)

with gk ∈ HV(T1) and 0 < V2π
0 (gk) < ∞ for all k = 3, . . . , d,

where V2π
0 denotes the one-dimensional total variation on [0, 2π].

If D ⊇ A = B ∪ C with B ⊆ {1, 2} and C ⊆ {3, . . . , d}, then

‖VAF‖∞ = ‖VBf ‖∞
∏

k∈C

V2π
0 (gk)

∏

k>2,k/∈C

sup
z∈T

|gk(z)|.
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Hence, ‖VAF‖∞ is finite, if ‖VBf ‖∞ is finite.

As examples fj :T
2 → C, j = 1, 2, 3, 4 we choose

f1(α,β) =

{
1, if 0 < α < β < 2π ,

0, otherwise in [0, 2π)2,

f2(α,β) =





1

β
, if 0 < β < 2π ,

0, otherwise in [0, 2π)2,

f3(α,β) = f4(β ,α) =





sin
1

α
, if 0 < α < 2π ,

0, otherwise in [0, 2π)2.

On the one hand, we conclude for

a), b)
‖VB1 f1‖∞ = ∞

‖VB2 f1‖∞ = 1
, for c)

‖VB1 f3‖∞ = ∞

‖VB2 f3‖∞ = 0
,

for d)
‖VB1 f3‖∞ = ∞

‖VB2 f3‖∞ = 1
.

On the other hand, we conclude for

a), b), d)
‖VB1 f2‖∞ = 0

‖VB2 f2‖∞ = ∞
, for c)

‖VB1 f4‖∞ = 0

‖VB2 f4‖∞ = ∞
.

Themain aim of our investigation is to study the approximation

order of trigonometric interpolation processes on tensor product

and sparse grids for multivariable functions f ∈ HV(Td).

3 Interpolation on the tensor product
grid

In this section, we study an interpolation operator for

multivariable functions on tensor product grids. Our approach

continues the investigations in Prestin [6] and Prestin and Tasche

[10], where the trigonometric interpolation for univariate and

bivariate functions and the corresponding approximation bounds

were established.

Let Td
n be the space of trigonometric polynomials such that

Td
n : = span{ eikx, |k|∞ ≤ 2n}.

We define a set of an odd number of equidistant nodes in

direction xj by

X
j
n : = {x

j

k
=

2kπ

2n+1 + 1
, k = 0, ..., 2n+1}. (1)

Then, the tensor product ⊗d
j=1X

j
n is called a full interpolation

grid on T
d.

For an univariate bounded function f :T → C, the

interpolation operator Ln is of the form

Lnf (x) =
2

2n+1 + 1

2n+1∑

k=0

f (xk)Kn(x− xk),

where

Kn(x) =
1

2
+

2n∑

j=1

cos jx =
1

2

2n∑

j=−2n

eijx (2)

is the 2n-th Dirichlet kernel. For a multivariate function

f :Td → C, the corresponding interpolation operator with respect

to the coordinate j takes the form

L
j
rj f (x) : = I ⊗ . . . ⊗ Lrj ⊗ . . . ⊗ If (x)

=
2

2rj+1 + 1

2
rj+1∑

i=0

f (x
j
i : x)Krj (x

j − x
j
i),

where I is the identity operator andA⊗B is the algebraic tensor

product of A and B.

It is obvious that the operator L
j
rj satisfies the interpolation

conditions

L
j
rj f (x

j
i : x) = f (x

j
i : x), i = 0, . . . , 2rj+1 (3)

for each j = 1, . . . , d.

Let us consider the tensor product of interpolation operators

with respect to arguments belonging to the set B ⊆ D, that is,

we define the corresponding interpolation operator for the grid

⊗j∈BX
j
rj as

LB =
⊗

j∈B

L
j
rj .

Moreover, the interpolation property

LBf (xB0 : x) = f (xB0 : x)

holds for any xB0 ∈ ⊗j∈BX
j
rj .

Furthermore, we give the representation for the operator LB

by its Fourier series. Let k = {kj}j∈B and |kj|∞ ≤ 2rj . So, using

Equation 2 we immediately get that

LBf (x) =
∑

j∈B

2
rj∑

k=−2
rj

cBke
ikxB

with

cBk f (x) =
∏

j∈B

1

(2rj+1 + 1)

∑

xB0∈⊗j∈BX
j
rj

f (xB0 : x)e
ik(xB0 ).

We also introduce the intermediate interpolation operator

often called blending operator, namely

MB =
⊕

j∈B

L
j
rj ,

where A⊕ C = A + C − AC is the boolean sum operation. As

is known (cf. [14], p. 141), the sum representation forMB is

MB =

|B|∑

k=1

(−1)k−1


 ∑

U={j1 ,j2 ,...jk},U⊆B,|U|=k

L
j1
rj1
L
j2
rj2

· · · L
jk
rjk
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and for the remainder operator, we have the product

representation

I −MB =
∏

j∈B

(I − L
j
rj ).

In the next theorem, we establish the approximation property of

the blending interpolation operator on a |B|-variate tensor product

grid.

Theorem 3.1. Let f ∈ T
d → C, 1 < p < ∞ and B ⊆ D be some

index set. If ‖VU f ‖p for allU ⊆ B exists and is a finite number, then

it holds true that

‖f −MBf ‖p ≤ c‖VBf ‖p
∏

j∈B

(2rj+1 + 1)−1/p, (4)

where c is some constant depending only on p and |B|.

Proof. For a univariate function f :T → C in Prestin [6], it was

proved that for 1 < p < ∞ the inequality

‖f − L
j
rj f ‖p ≤ c(2rj+1 + 1)−1/pV2π

0 (f ) (5)

holds with some constant c depending only on p.

Let B = {j1, j2, . . . jq}. Thus, using Lemma 2 in Prestin and

Tasche [10] and Equation 5 by |B| times, we immediately get that

∥∥∥∥∥∥

∏

j∈B

(I − L
j
rj )f

∥∥∥∥∥∥
p

≤ c(2rj1+1 + 1)−1/p

∥∥∥∥∥∥
V{j1}


 ∏

j∈B\{j1}

(I − L
j
rj )f (x

D\{j1})



∥∥∥∥∥∥
p

≤ . . . ≤ c
∏

j∈B

(2rj+1 + 1)−1/p‖VBf (xB)‖p (6)

what has to be proved.

Corollary 3.2. In the case of B = D, Theorem 3.1 states that

‖f −MDf ‖p ≤ cVDf
∏

j∈D

(2rj+1 + 1)−1/p

and for rj = n for all j ∈ D we immediately have

‖f −MDf ‖p ≤ c(2n+1 + 1)−d/pVDf .

Theorem 3.3. Let f ∈ HV(Td) and 1 < p < ∞. Then,

‖(I − LB)f ‖p ≤
∑

∅⊂U⊆B

∏

j∈U

(2rj+1 + 1)−1/p‖VU f ‖p. (7)

Proof. According to Delvos [14, Proposition 4.1], we can express

the remainder as a combination of the remainders of blending

operators with lower dimensions:

I − LB =

|B|∑

k=1

∑

U⊆B,|U|=k

(−1)k−1(I − L
j1
rj1
)(I − L

j2
rj2
) · · · (I − L

jk
rjk
).

Then, the proof follows the same estimate as Equation 6.

Corollary 3.4. In the case of B = D for a function f ∈ HV(Td), the

inequality (Equation 7) takes the form

‖(I − LD)f ‖p ≤ c
∑

∅⊂B⊆D

∏

j∈B

(2rj+1 + 1)−1/p‖VBf ‖p.

Furthermore, if rj = n for all j ∈ D, then Theorem 3.3 implies

that

‖(I − LD)f ‖p ≤ c
∑

∅⊂B⊆D

(2n+1 + 1)−|B|/p‖VBf ‖p

≤ c2−n/pHV(f ).

Remark 3.5. In the case p = 1, the inequality Equation 5 has the

form

‖f − L
j
rj f ‖1 ≤ crj(2

rj+1 + 1)−1V2π
0 (f )

and Equations 4, 7 read as follows:

‖f −MBf ‖1 ≤ c
∏

j∈B

rj(2
rj+1 + 1)−1‖VBf ‖1

and

‖f − LBf ‖1 ≤
∑

∅⊂U⊆B

∏

j∈U

rj(2
rj+1 + 1)−1‖VU f ‖1,

respectively.

Remark 3.6. For f ∈ L1(T
d), we consider the m-th Fourier

coefficients

cm(f ) =
1

(2π)d

∫

Td
f (z)e−imzdz, m = (m1,m2, . . . ,md) ∈ Z

d.

With B(m) ⊆ D, we denote the set of indices j such thatmj 6= 0.

Then, according to Fülöp and Móricz [19] for all m ∈ Z
d, the

trigonometric Fourier coefficients cm(f ) of f ∈ HV(Td) can be

estimated by

|cm(f )| ≤
‖VB(m)f ‖1

(2π)|B(m)|
∏

j∈B(m)

|mj|
. (8)

This estimate is best possible, as demonstrated by the example

f (z) =
∏

j∈B

χ[0,π/mj](zj), (9)

where we have equality in Equation 8.

For p = 2, we want to compare the tensor product interpolation

with the best approximation. The best approximation in the Hilbert

space L2(T)
d is given by the Fourier partial sum

Snf (x) =
∑

m∈Td
n

cm(f )e
imx.
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By Parseval equation, we estimate

‖f − Snf ‖
2
2 =

∑

|m|∞>n

|cm(f )|
2

≤

d∑

r=1

∑

|m|∞>2n

|B(m)|=r

‖VB(m)f ‖21
(2π)2r

∏
j∈B(m)

|mj|2

≤

d∑

r=1

∑

|B|=r

‖VBf ‖21
(2π)2r

(
1

2n−1

)r

.

Hence,

‖f − Snf ‖2 ≤
∑

B6=∅

‖VBf ‖1

(
√
2π)|B|2n|B|/2

≤
HV(f )

π
√
2n+1

.

Based on the examples provided in Equation 9, it is evident that

the order of this estimate cannot be improved.

4 Interpolation on the sparse grid

In the following section, we study an interpolation operator

on a sparse grid related to a corresponding Boolean sum operator

for the d-dimensional case. Our error estimates for functions of

bounded variation complement the results proved in Baszenski and

Delvos [12, 13].

To construct a chain of interpolation operators, we consider

for each coordinate j ∈ D the following set of an even number of

equidistant nodes:

X̃
j
n : = {x

j

k
=

2kπ

2n+1
, k = 0, ..., 2n+1 − 1}. (10)

It is known that for a univariate bounded function f :T → C,

the interpolation operator L̃n on the grid (Equation 1) has the form

L̃nf (x) =
1

2n

2n+1−1∑

k=0

f (xk)K
⋆
n(x− xk),

where

K⋆
n(x) =

1

2
+

2n−1∑

k=1

cos kx+
1

2
cos nx

is the 2n-th modified Dirichlet kernel. In the same way as it was

done in Section 3, we will introduce the operators L̃B and M̃B. Then,

the same error estimates are obtained for these approximation

methods as in Section 3. The only change is the error estimate for

the one-dimensional interpolation. Here, one can refer to Corollary

3.6 in Prestin and Xu [4], where the exact error bound is derived

although no explicit constants are given.

Remark 4.1. It is well-known that K⋆
n is a Lagrange basis function

for system of nodes (Equation 1). It is easy to check that for any

m ≥ 1 the relation ImL̃n ⊂ ImL̃n+m as well as X̃n ⊂ X̃n+m are

satisfied. Then taking into account Remark 2.2 [13] we have that for

operators L̃n and L̃n+m the ordering L̃n < L̃n+m and the relation

L̃n+mL̃n = L̃nL̃n+m = L̃n (11)

hold for all n such that 0 ≤ n < n+m.

Now, we introduce a d-dimensional Boolean sum interpolation

operator of n-th order in the following way

Gd
n =

⊕

r1+r2+...+rd=n

L̃1r1 L̃
2
r2

. . . L̃drd .

In an analogous manner as in Section 3, a partial variant GB
n

with B ⊂ D can be introduced here and error estimates can be

proven. The approach remains the same. To simplify the notation,

we therefore restrict ourselves to the case B = D.

To determine the set of interpolation points of the operator

Gd
n, we note (cf. [15]) that the grid for the operator L̃1r1 L̃

2
r2

. . . L̃drd
is X̃1

r1
× X̃2

r2
× . . . × X̃d

rd
and for L̃1r1 L̃

2
r2

. . . L̃drd ⊕ L̃1
l1
L̃2
l2

. . . L̃d
ld
is

X̃1
r1
× X̃2

r2
× . . . × X̃d

rd
∪ X̃1

l1
× X̃2

l2
× . . . × X̃d

ld
.

Thus, for the operator Gd
n, we have the sparse grid of n-th order

in the following form

X̃n
sparse : =

⋃

r1+r2+...+rd=n

⊗

j=1,...,d

X̃
j
ri .

Due to Equation 3, it follows that Gd
n interpolates f on each

point such that x0 ∈ X̃n
sparse, that is,

Gd
nf (x0) = f (x0)

for all x0 ∈ X̃n
sparse.

Taking into account (Equation 11), we have the sum

representation (cf. [13])

Gd
n =

d−1∑

j=0

(−1)j

(
d − 1

j

)
∑

r1+r2+...+rd=n−j

L̃1r1 L̃
2
r2

. . . L̃drd .

Remark 4.2. If we put d = 2, then the operator G2
n has the form

(see for details [13]):

G2
nf =

∑

r1+r2=n

L̃1r1 L̃
2
r2
f −

∑

r1+r2=n−1

L̃1r1 L̃
2
r2
f .

For d = 3, we immediately get the following Boolean sum

operator:

G3
nf =

∑

r1+r2+r3=n

L̃1r1 L̃
2
r2
L̃3r3 f − 2

∑

r1+r2+r3=n−1

L̃1r1 L̃
2
r2
L̃3r3 f

+
∑

r1+r2+r3=n−2

L̃1r1 L̃
2
r2
L̃3r3 f .

Theorem 4.3. If f ∈ HV(Td) and 1 < p < ∞, then for all n

‖(I − Gd
n)f ‖p ≤ cnd−12

− n
p HV(f ), (12)

where c is some constant depending on d and p.

Proof. Following Baszenski and Delvos [12], we have

I − Gd
n =

d∑

j=1

d∑

q=j

(−1)j−1

(
q− 1

j− 1

)
∑

B,|B|=q
∑

ri1+...+riq=n−d+j

(I − L̃i1ri1
)× . . . × (I − L̃

iq
riq ).
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Then using Theorem 3.1, we get

‖(I − Gd
n)f ‖p

≤ c

d∑

j=1

d∑

q=j

(
q− 1

j− 1

)
∑

B,|B|=q

∑

ri1+...+riq=n−d+j

‖(I − L̃i1ri1
)

× . . . × (I − L̃
iq
riq )f ‖p

≤ c

d∑

j=1

d∑

q=j

(
q− 1

j− 1

)
∏

j∈B

(2rj+1 + 1)−1/p

≤ c

d∑

j=1

d∑

q=j

(
q− 1

j− 1

)
∑

B,|B|=q

‖VBf ‖p (2
n−d+j+q)−1/pnd−1

≤ c2
− n

p nd−1HV(f )

d∑

j=1

d∑

q=j

(
q− 1

j− 1

)
(22j−d)−1/p.

Now, the result follows from

d∑
j=1

d∑
q=j

(
q− 1

j− 1

)
(22j−d)−1/p < 2

d
p

d∑
j=1

d∑
q=j

(
q− 1

j− 1

)

= 2
d
p (2d − 1).

Remark 4.4. Let us compare the cardinality of the tensor product

grid Xn
prod

: = ⊗j∈DX
j
n and the sparse grid X̃n

sparse. The grid Xn
prod

has 2dn nodes which is essentially more than nd−12n nodes of grid

X̃n
sparse. Nevertheless, the approximation order for f ∈ HV(T) is

only worse by a logarithmic factor nd−1.
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We investigate the qualitative properties of weak solutions to the boundary value

problems for fourth-order linear hyperbolic equations with constant coe�cients

in a plane bounded domain convex with respect to characteristics. Our main

scope is to prove some analog of the maximum principle, solvability, uniqueness

and regularity results for weak solutions of initial and boundary value problems

in the space L2. The main novelty of this paper is to establish some analog of

the maximum principle for fourth-order hyperbolic equations. This question is

very important due to natural physical interpretation and helps to establish the

qualitative properties for solutions (uniqueness and existence results for weak

solutions). The challenge to prove the maximum principle for weak solutions

remains more complicated and at that time becomes more interesting in the

case of fourth-order hyperbolic equations, especially, in the case of non-classical

boundary value problems with data of weak regularity. Unlike second-order

equations, qualitative analysis of solutions to fourth-order equations is not

a trivial problem, since not only a solution is involved in boundary or initial

conditions, but also its high- order derivatives. Other di�culty concerns the

concept of weak solution of the boundary value problems with L2 – data. Such

solutions do not have usual traces, thus, we have to use a special notion for traces

to poss correctly the boundary value problems. This notion is traces associated

with operator L or L-traces. We also derive an interesting interpretation (as

periodicity of characteristic billiard or the John’s mapping) of the Fredholm’s

property violation. Finally, we discuss some potential challenges in applying the

results and proposed methods.

KEYWORDS

Cauchy problem, Goursat problem, Dirichlet problem, maximum principle, hyperbolic

fourth-order PDEs, weak solutions, duality equation-domain, L-traces

1 Introduction

This study is devoted to the problem of proving some analog of maximum principle

and its further application to the questions of uniqueness, existence, and regularity for weak

solutions of the Goursat, the Cauchy, and the Dirichlet problems for fourth-order linear

hyperbolic equations with the constant coefficients and homogeneous non-degenerate

symbol in a plane bounded domain� ∈ R
2 convex with respect to characteristics:

L(Dx)u = a0
∂4u

∂x41
+ a1

∂4u

∂x31∂x2
+ a2

∂4u

∂x21∂x
2
2

+ a3
∂4u

∂x1∂x
3
2

+ a4
∂4u

∂x42
= f (x). (1)

Here, coefficients aj, j = 0, 1, ..., 4 are constant, f (x) ∈ L2(�), ∂x =
(
∂
∂x1

, ∂
∂x2

)
. We

consider hyperbolic equations that means all roots of the characteristic equation

L(1, λ) = a0λ
4 + a1λ

3 + a2λ
2 + a3λ+ a4 = 0
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are prime and real and are not equal to ±i or the symbol of

Equation 1 is non-degenerate (Equation 1 is a equation of principal

type). If roots of characteristics equation of which are multiple and

can take the values ±i we will call the equation with degenerate

symbol (see Buryachenko [7]).

The main novelty of this study is to establish some analog of

themaximumprinciple for fourth-order hyperbolic equations. This

question is very important due to natural physical interpretation

and helps to establish the qualitative properties for solutions

(uniqueness and existence results for weak solutions). It is well

known that even for the simple case of hyperbolic equation (one

dimensional wave equation [23]), [1] the maximum principle is

quite different from those for elliptic and parabolic cases, for which

it is a natural fact. Such a way a role of characteristics curves and

surfaces becomes evident for hyperbolic equations.

We call the angle of characteristics slope solution to the

equation − tanϕj = λj, and the angle between j− and k−

characteristics: ϕk − ϕj 6= π l, l ∈ Z, where λj 6= ±i are real and

prime roots of the characteristics equation, j, k = 1, 2, 3, 4.

Most of these equations serve as mathematical models of many

physical processes and attract interest of researchers. The most

famous of them are elasticity beam equations (Timoshenko beam

equations with and without internal damping) [9], short laser pulse

equation [12], equations which describe the structures are subjected

to moving loads, and equation of Euler-Bernoulli beam resting on

two-parameter Pasternak foundation and subjected to a moving

load or mass [11, 24].

Due to evident practice application, these models require

more precise tools for study, and as a result, attract fundamental

knowledge. As usual, most of these models are studied by

analytical-numerical methods (Galerkin’s methods).

The range of problems studied in this study belongs to a class

of quite actual problems of well-posedness of so-called general

boundary value problems for higher-order differential equations.

These problems originated from the studies of L. Hormander

and M. Vishik, who used the theory of extensions to prove

the existence of well-posed boundary value problems for linear

differential equations of arbitrary order with constant complex

coefficients in a bounded domain with smooth boundary. This

theory got its present-day development in the studies of G. Grubb

[13], Hörmander [14], and Posilicano [22] (see also [16]). Later,

the problem of well-posedness of boundary value problems for

various types of second-order differential equations was studied by

Burskii [2], Burskii and Zhedanov [3], who developed a method

of traces associated with a differential operator and applied this

method for study the Poncelet, the Abel, and the Goursat problems.

In the previous studies of Burskii and Buryachenko [6], there have

been developed the qualitative methods for studying the Cauchy

problem and non-standard for hyperbolic equations the Dirichlet

and the Neumann problems. Moreover, for equation of any even

order 2m, m ≥ 2, using operator methods (L-traces, theory of

extension, moment problem, method of duality equation domain,

and others), the existence and uniqueness results were proved,

and the criteria of non-trivial solvability of the Dirichlet and the

Neumann problems in a disk for the principal type equations

and equations with degenerate symbol were obtained [4, 8]. In

particular, the interrelations between multiplicity of roots of the

characteristic equation were established, and the existence of a

non-trivial solution of the corresponding problems was proved.

As a consequence, the Fredholm property for the problems under

consideration was established.

As the concern maximum principle, at the present time there

are not any results for fourth-order equations even in linear case. As

it was mentioned above, maximum principle even for the simplest

case of one dimensional wave equation [23] and for second-order

telegraph equation [18–21] is quite different from those for elliptic

and parabolic cases. In the monograph of Protter and Weinberger

[23], there was shown that solutions of hyperbolic equations and

inequalities do not exhibit the classical formulation of maximum

principle. Even in the simplest case of the wave equation utt−uxx =

0, a maximum of a non-constant solution u = sin x sin t in a

rectangle domain {(x, t) : x ∈ [0,π], t ∈ [0,π]} occurs at the

interior point
(
π
2 ,

π
2

)
. In Chapter 4 [23], maximum principle for

linear second hyperbolic equations of general type with variable

coefficients has also been obtained for the Cauchy problems and

boundary value problems on characteristics (the Goursat problem).

Following Ortega and Robles-Perez [21], we introduce the

definition of the maximum principle for hyperbolic equations.

Definition 1. [21] Let L be linear differential operator, acting

on functions u : D → R in some domain D. These functions will

belong to the certain family B, which includes boundary conditions

or other requirements. It is said that L satisfies the maximum

principle, if

L ≥ 0, u ∈ B,

implies u ≥ 0 in D.

In further studies of these authors (see Mawhin et al. [18–

20]), the maximum principle for weak bounded twice periodical

solutions from the space L∞ for the telegraph equation with

parameter λ in lower term, one-, two-, and -three dimensional

spaces was studied. The precise condition for λ under which the

maximum principle still valid was font. There was also introduced a

method of upper and lower solutions associated with the non-linear

equation, which allows to obtain the analogous results (uniqueness,

existence, and regularity theorems) for the telegraph equations with

external non-linear forcing.

Maximum principle for second-order quasilinear hyperbolic

systems with dissipation was proved by De-Xing [17]. There

were given two estimates for solution to the general quasilinear

hyperbolic system and introduced the concept of dissipation

(strong dissipation and weak dissipation); then, some maximum

principles for secound-order quasilinear hyperbolic systems with

dissipation were derived. As an application of maximum principle,

the existence and uniqueness theorems of the global smooth

solution to the Cauchy problem for considered quasilinear

hyperbolic systemwere proved. In recent study by Yi and Ying [10],

some analog of Equation 1 with lower order terms and non-linear

external force was considered. Qualitative properties of solution

of the Dirichlet problem with affine data for differential elasticity

inclusion were proved by Ruland et al. [25].

The challenge to prove the maximum principle for weak

solutions remains more complicated and at that time becomes

more interesting in the case of fourth-order hyperbolic equations,

especially, in the case of non-classical boundary value problems

with data of weak regularity. Unlike second-order equations,

qualitative analysis of solutions to fourth-order equations is not a

trivial problem, since not only a solution is involved in boundary
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or initial conditions but also its high- order derivatives. Other

difficulty concerns the concept of weak solution of the boundary

value problems with L2− data. Such solutions do not have usual

traces; thus, we have to use a special notion for traces to poss

correctly the boundary value problems. This notion is traces

associated with operator L or L− traces. We derive an example (see

Remark 1), which shows that for every L2- solution to the Dirichlet

problem for the wave equation, its value u|∂K on the boundary ∂K

does not exist, but its “improved” value−x1x2u|∂K on boundary ∂K

exists. It means that multiplying by some polynomial we “improve”

a solution. This polynomial depends on the equation. In the case of

the wave operator Lu = ∂2u
∂x1∂x2

, this polynomial equals x1x2, what

is the symbol L(x) = x1x2 of the wave operator. Therefore, such

“improved” traces are called the traces associated with operator L

or simply the L−traces.

At that moment, there are not any results on the maximum

principle even for the model case of linear two- dimensional

fourth-order hyperbolic equations with constant coefficients and

homogeneous symbol (without lower terms), which are under

consideration of the present study.

We also derive an interesting interpretation (as periodicity of

characteristic billiard or the John’s mapping) of the Fredholm’s

property violation. For second-order hyperbolic equations, the fact

that periodicity of the John’s algorithm is sufficient for violation

of the Fredholm property for the Dirichlet problem was proved

by John [15] (for the wave equation) and Burskii and Zhedanov

[3] (for general second-order hyperbolic equations with constant

complex coefficients). Analogous result is true for fourth-order

hyperbolic equations and will be proved in the present study.

Therefore, obtaining such results as the maximum principle,

uniqueness, existence and regularity, kernel dimension, the

Fredholm property for weak solutions to fourth-order hyperbolic

equations and boundary value problems for them is very important

for the reason of their further applications and is the main goal of

the study.

2 Statement of the problem and
auxiliary definitions

Let us start to establish the maximum principle for weak

solutions to the Cauchy problem for Equation 1 in some admissible

planar domain. It is expected that in the hyperbolic case,

characteristics of the equations play a crucial role.

Let Cj, j = 1, 2, 3, 4 be characteristics, Ŵ0 :={x1 ∈ [a, b], x2 =

0} is initial line, and define � as a domain which is restricted by

the characteristics Cj, j = 1, 2, 3, 4 and Ŵ0 by the following way.

We choose some arbitrary point C and draw through this point two

characteristics, C1 and C2, for instance. Another two characteristics

(C3 and C4) we draw through the ends a and b of initial line Ŵ0. We

determine a pointsO1 andO2 as intersections of C1, C3 and C2, C4

correspondingly:O1 = C1∩C3, O2 = C2∩C4. Such a way, domain

� is a pentagon aO1CO2b. Consider also the Cauchy problem for

Equation 1 on Ŵ0:

u|Ŵ0 = ϕ(x), u′ν |Ŵ0 = ψ(x), u′′νν |Ŵ0 = σ (x), u′′′ννν |Ŵ0 = χ(x), (2)

where ϕ, ψ , σ , and χ are given weak regular functions on Ŵ0, in

general case ϕ, ψ , σ , χ ∈ L2(Ŵ0), ν− is outer normal of Ŵ0.

Definition 2. We call a domain D :={(x1, x2) : x1 ∈

(−∞, +∞), x2 > 0} in the half-plane x2 > 0 an admissible

domain if it has the property that for each point C ∈ D

the corresponding characteristic domain � is also in D. More

generally, D is a admissible if it is the finite or countable union

of characteristics 5 angles (in the case of fourth-order equations

with constant coefficients, there exist four different and real

characteristics lines).

Establishment of the maximum principle allows us to obtain a

local properties of solution to the Cauchy problem (Equations 1, 2)

on a arbitrary interior point C ∈ D.

We will consider a weak solution to the problem

(Equations 1, 2) from the domain of definition D(L) of maximal

operator associated with the differential operation L in Equation

1. Following Burskii and Buryachenko [6], Grubb [13], and

Hörmander [14], we remind the corresponding definitions.

In a bounded domain �, we consider linear differential

operation L ofm−th order,m ≥ 2, and formally adjoint L+:

L(Dx) =
∑

|α|≤m

aαD
α , L+(Dx) =

∑

|α|≤m

Dα(aα), (3)

where α = (α1, α2, ...αn), |α| = α1 + α2 + ... + αn is multi-index.

Note, that for Equation 1 n = 2, m = 4.

Definition 3. Minimum operator. [6]. Let us consider differential

operation L (Equation 3) on functions from the space C∞
0 (�). The

minimum operator L0 is called extension of operation L from

C∞
0 (�) to the set D(L0) :=C∞

0 (�). The closure is realized in the

norm of graph of operator L: ||u||2L := ||u||2
L2(�)

+ ||Lu||2
L2(�)

.

Definition 4. Maximum operator. [6]. The maximum operator

L is defined as the restriction of differential operation L(Dx) to the

set D(L) :={u ∈ L2(�) : Lu ∈ L2(�)}.

Definition 5. [6]. The operator L̃ is defined as the extension of

minimum operator L0, to the set D(L̃) :=C∞(�̄).

Definition 6. Regular operator. [6]. The maximum operator is

called regular if D(L) = D(L̃).

It is easy to see thatD(L̃) = H4(�),D(L0) =
0

H4 (�), the Hilbert

Sobolev space of fourthly weak differentiable functions from L2(�).

Analogously, we introduce operators L+, L̃+, and L+0 associated

with the formally adjoint operation L
+.

Definition of a weak solution to problem (Equations 1, 2) from

the space D(L) is closely connected with the notion of L−traces,

traces associated with the differential operator L.

Definition 7. L-traces. [5]. Assume, that for a function u ∈

D(L̃), there exist linear continuous functionals L(p)u over the space

Hm−p−1/2(∂�), p = 0, 1, 2...,m−1, such that the following equality

is satisfied:

(Lu, v)L2(�) − (u, L+v)L2(�) =

m−1∑

j=0

(L(m−1−j)u, ∂
(j)
ν v). (4)

Functionals L(p)u are called L(p)− traces of function u ∈ D(L̃).

Here, (·, ·)L2(�) is a scalar product in the Hilbert space L2(�).

For L2− solutions, the notion of L(p)− traces can be realized by

the following way.

Definition 8. Distributions L(p)u ∈ H−p− 1
1 (∂�), p = 0, ..., m−

1 are called the p−th L−traces of a function u ∈ D(L) on ∂�, if the
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following identity is true

∫

�

(
Lu · v− u · L+v

)
dx =

m−1∑

j=0

< L(m−1−j)u, ∂
(j)
ν v >∂� . (5)

for any functions v ∈ Hm(�).

For example, for some solution u ∈ D(L), L−traces have the

form:

3∑

j=0

< L(3−j)u, ∂
(j)
ν v >∂�=

∫

�

f · v dx,

for all v ∈ Ker L+ ∩Hm(�).

Finally, we present the definition of a weak solution to problem

(Equations 1, 2):

Definition 9.Wewill call a function u ∈ D(L) a weak solution to

the Cauchy problem (Equations 1, 2), if it satisfies to the following

integral identity

(f , v)L2(�) − (u, L+v)L2(�) =

3∑

j=0

< L(3−j)u, ∂
(j)
ν v >∂�, (6)

for any functions v ∈ C∞
0 (�). The functionals L(p)u are called L(p)−

traces of function u, p = 0, 1, 2, 3, and completely determined by

the initial data ϕ, ψ , σ , χ by the following way:

L(0)u = −L(x)u|∂� = −L(ν)ϕ;

L(1)u = L(ν)ψ + α1ϕ
′
τ + α2ϕ;

L(2)u = −L(ν)σ + β1ψ
′
τ + β2ψ + β3ϕ

′′
ττ + β4ϕ

′
τ + β5ϕ; (7)

L(3)u = L(ν)χ + δ1ϕ
′′′
τττ + δ2σ

+ δ3ψ
′′
ττ + δ4ψ

′
τ + δ5ψ + δ6ϕ

′′
ττ + δ7ϕ

′
τ + δ8ϕ.

Here, αi, i = 1, 2, βj, j = 1, 2, ..., 5, and δk, k = 1, ..., 9 are

smooth functions, completely determined by coefficients ai, i =

0, 1, ..., 4.

We can use a general form of operators γj in left-hand side of

identity (Equation 6) instead of operators of differentiation ∂
(j)
ν v.

Indeed, we define γj = pjγ , where

γ : u ∈ Hm(�) → (u|∂�, ..., u
(m−1)
ν |∂�) ∈ H(m)

= Hm−1/2(∂�)×Hm−3/2(∂�)× ...×H1/2(∂�),

and pj : H
(m) → Hm−j−1/2(∂�)− projection.

Remark 1. As it has been mentioned above, some examples

show (see Burskii [2]) that for solutions u ∈ D(L) ordinary traces

do not exist even in the sense of distributions. Indeed, let Lu =
∂2u
∂x1∂x2

= 0 in the unit disk K : |x| = 1, the solution u(x) =

(1 − x21)
− 5

2 belongs to L2(K), but < u|∂K , 1 >∂K= ∞, that means

limr→1−0

∫
|x|=r

u(x)dsx = ∞. The trace u|∂K does not exist even as

a distribution. However, for every solution u ∈ L2(K) L(0)−trace

L(0)u := − L(x)u(x)||x|=1 = −x1x2u(x)||x|=1 ∈ L2(∂K). Likewise,

L(1)− trace, L(1)u, exists for every u ∈ L2(K):

L(1)u =

(
L(x)u′ν + L′τu

′
τ +

1

2
L′′ττu

)
|∂K ∈ H− 3

2 (∂K).

Here, τ is the angular coordinate and u′τ is the tangential

derivative, and L(x) = x1x2− symbol of the wave operator L =
∂2

∂x1∂x2
.

3 Maximum principle for weak
solutions of the Cauchy problem.
Existence, uniqueness, and regularity
of solution

We prove the maximum principle for weak solutions of the

Cauchy problem (Equations 1, 2) in an admissible plane domain

� restricted by different and non-congruent characteristics Cj, j =

1, 2, ..., 4 and initial line Ŵ0.

Theorem 1. Maximum principle. Let u ∈ D(L) satisfies the

following inequalities:

Lu = f ≤ 0, x ∈ D, (8)

and

L(0)u |Ŵ0≥ 0, L(1)u|Ŵ0 ≥ 0, L(2)u|Ŵ0 ≥ 0, L(3)u|Ŵ0 ≥ 0, (9)

then, u ≤ 0 in D.

Proof. 1. First of all, we prove the statement for smooth

solutions u ∈ C∞(�̄).

Due to the homogeneity of the symbol in Equation 1, L(ξ ) =

a0ξ
4
1 + a1ξ

3
1 ξ2 + a2ξ

2
1 ξ

2
2 + a3ξ1ξ

3
2 + a4ξ

4
2 =

(ξ , a1)(ξ , a2)(ξ , a3)(ξ , a4), ξ = (ξ1, ξ2) ∈ R
2, we can rewrite this

equation in the following form:

(∇ , a1)(∇ , a2)(∇ , a3)(∇ , a4)u = f (x). (10)

The vectors aj = (a
j
1, a

j
2), j = 1, 2, 3, 4 are determined by

the coefficients ai, i = 0, 1, 2, 3, 4, and (a, b) = a1b̄1 + a2b̄2 is

a scalar product in C
2. It is easy to see that vector aj is the tangent

vector of the j−th characteristic, slope ϕj of which is determined by

− tanϕj = λj, j = 1, 2, 3, 4. In what follows, we also consider the

vectors ãj = (−ā
j
2, ā

j
1), j = 1, 2, 3, 4. It is obvious that (ãj, aj) = 0,

so ãj is a normal vector of the j−th characteristic.

Using Definitions 7 and 9 (m = 4), we assume that domain �

is restricted by the characteristics Cj, j = 1, 2, 3, 4 and Ŵ0:

∫

�

{Lu · v̄− u · L+v}dx =

3∑

k=0

∫

∂�

L(3−k)u · ∂ (k)ν v ds =

=

3∑

k=0

∫

C1

L(3−k)u · ∂ (k)ν v ds+

3∑

k=0

∫

C2

L(3−k)u · ∂ (k)ν v ds+ (11)
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+
3∑

k=0

∫
C3

L(3−k)u · ∂
(k)
ν v ds

+
3∑

k=0

∫
C4

L(3−k)u · ∂
(k)
ν v ds+

3∑
k=0

∫
Ŵ0

L(3−k)u · ∂
(k)
ν v ds.

Using representation (Equation 10), we have

∫

�

Lu · v̄ dx =

∫

�

(∇ , a1)(∇ , a2)(∇ , a3)(∇ , a4)u · v̄ dx =

∫

∂�

(ν, a1) · (∇ , a2)(∇ , a3)(∇ , a4)u · v̄ ds

−

∫

�

(∇ , a2)(∇ , a3)(∇ , a4)u · (∇ , a1)v dx.

Integrating by parts, we obtain:

∫

�

Lu · v̄ dx =

∫

∂�

(ν, a1)(∇ , a2)(∇ , a3)(∇ , a4)u · v̄ ds−

∫

∂�

(ν, a2)(∇ , a3)(∇ , a4)u · (∇ , a1)v ds+

∫

∂�

(ν, a3)(∇ , a4)u · (∇ , a2)(∇ , a1)v ds−

∫

∂�

(ν, a4) · u · (∇ , a3)(∇ , a2)(∇ , a1)v ds+

∫

�

u · (∇ , a)(∇ , a3)(∇ , a2)(∇ , a1)v dx.

Since (∇ , a4)(∇ , a3)(∇ , a2)(∇ , a1)v = L+v and

L̃(0)u := (ν, a4)u, L̃(1)u := (ν, a3)(∇ , a4)u,

L̃(2)u := (ν, a2)(∇ , a3)(∇ , a4)u,

L̃(3)u = L(3)u = (ν, a1)(∇ , a2)(∇ , a3)(∇ , a4)u,

we have

∫

�

{Lu·v̄−u·L+v} dx =

∫

∂�

L(3)u·v̄ ds−

∫

∂�

L̃(2)u·(∇ , a1)v ds+ (12)

+

∫

∂�

L̃(1)u·(∇ , a2)(∇ , a1)v ds−

∫

∂�

L̃(0)u·(∇ , a3)(∇ , a2)(∇ , a1)v ds.

Difference between Equations 11, 12 is that natural traces

in Equation 11 L(3−k) are multiplied by the k−th derivative of

truncated function v : ∂
(k)
ν v by outer normal ν. On the other

hand, we determined by L̃(3−k) in Equation 12 some expressions

multiplied by differential operators L+
k
v, which can serve as

analogous of natural L(3−k) traces, k = 0, 1, 2, 3. So, in

Equation 12:

L+1 v := (∇ , a1)v, L+2 v := (∇ , a2)(∇ , a1)v,

L+0 v = v, L+3 v := (∇ , a3)(∇ , a2)(∇ , a1)v.

Let v ∈ KerL+ in Equation 12, and calculate L− traces on
∂� = C1 ∪ C2 ∪ C3 ∪ C4 ∪ Ŵ0. For instance, for L(3)u we

obtain: L(3)u = (ν, a1)(∇ , a2)(∇ , a3)(∇ , a4)u. We use (∇ , aj)u =

(ν, aj)u′ν + (τ , aj)u′τ , j = 1, 2, 3, 4, where ν− normal vector and
τ− tangent vector. It is easy to see that L(3)u = 0 (due to presence

the product (ν, a1)) on characteristic C1, normal vector ã1 of which
is orthogonal to the vector a1. On the other parts of ∂�, there will

be vanish terms containing (ν, aj) on Cj. After that

∫

∂�

(ν, a1)(∇, a2)(∇, a3)(∇, a4)u =

∫

Ŵ0

L(3)u ds+

(ã2 , a1)(a2 , a2)(ã2 , a3)(ã2 , a4)

∫

C2

uνντ ds+ (ã3 , a1)(ã3 , a2)(a3 , a3)(ã3 , a4)

∫

C3

uνντ ds+

(ã4 , a1)(ã4 , a2)(ã4 , a3)(a4 , a4)

∫

C4

uνντ ds+
{
(ã2 , a1)(a2 , a2)(ã2 , a3)(a2 , a4)+

(ã2 , a1)(a2 , a2)(a2 , a3)(ã2 , a4)
} ∫

C2

uττν ds+
{
(ã3 , a1)(ã3 , a2)(a3 , a3)(a3 , a4)+

(ã3 , a1)(a3 , a2)(a3 , a3)(ã3 , a4)
} ∫

C3

uττν ds+
{
(ã4 , a1)(ã4 , a2)(a4 , a3)(a4 , a4)+

(ã4 , a1)(a4 , a2)(ã4 , a3)(a4 , a4)
} ∫

C4

uττν ds+(ã2 , a1)(a2 , a2)(a2 , a3)(a2 , a4)

∫

C2

uτττ ds+

(ã3 , a1)(a3 , a2)(a3 , a3)(a3 , a4)

∫

C3

uτττ ds+ (ã4 , a1)(a4 , a2)(a4 , a3)(a4 , a4)

∫

C4

uτττ ds+

α4,1

∫

C2

uνν ds+α4,2

∫

C3

uνν ds+α4,3

∫

C4

uνν ds+α5,1

∫

C2

uντ ds+α5,2

∫

C3

uντ ds+α5,3

∫

C4

uντ ds+

α6,1

∫

C2

uττ ds+α6,2

∫

C3

uττ ds+α6,3

∫

C4

uττ ds+α7,1

∫

C2

uν ds+α7,2

∫

C3

uν ds+α7,3

∫

C4

uν ds+

α8,1

∫

C2

uτ ds+ α8,2

∫

C3

uτ ds+ α8,3

∫

C4

uτ ds.

Here, the coefficients αi,j are numerated as
follows: the first index i indicates the derivative of u:
1) uνντ , 2) uνττ , 3) uτττ , 4) uνν , 5) uντ , 6) uττ , 7) uν 8) uτ , the
second index j indicates the j + 1−th characteristic, j = 1, 2, 3.
Such a way, Equation 11 has the form:

∫

�

Lu dx =

∫

Ŵ0

L(3)u ds+ α1,1

∫

C2

uνντ ds+ α1,2

∫

C3

uνντ ds+ α1,3

∫

C4

uνντ ds+

α2,1

∫

C2

uττν ds+ α2,2

∫

C3

uττν ds+ α2,3

∫

C4

uττν ds+ α3,1

∫

C2

uτττ ds+ α3,2

∫

C3

uτττ ds+

α3,3

∫

C4

uτττ ds+ α4,1

∫

C2

uνν ds+ α4,2

∫

C3

uνν ds+ α4,3

∫

C4

uνν ds+

α5,1

∫

C2

uντ ds+α5,2

∫

C3

uντ ds+α5,3

∫

C4

uντ ds+α6,1

∫

C2

uττ ds+α6,2

∫

C3

uττ ds+α6,3

∫

C4

uττ ds+

α7,1

∫

C2

uν ds+α7,2

∫

C3

uν ds+α7,3

∫

C4

uν ds+α8,1

∫

C2

uτ ds+α8,2

∫

C3

uτ ds+α8,3

∫

C4

uτ ds.

Coefficients αi,j are constant and depend on only coefficients

a0, a1, a2, a3, a4. By analogous way, we calculate others L− traces:

L(0)u, L(1)u and L(2)u.

To obtain the statement of Theorem 1, we choose some

arbitrary point C ∈ D in admissible plane domain D and draw

through this point two arbitrary characteristics,C1 andC2. Another

two characteristics (C3 and C4) we draw through the ends a and

b of initial line Ŵ0. We determine some points O1 and O2 as

intersections of C1, C3 and C2, C4 correspondingly: O1 = C1 ∩

C3, O2 = C2 ∩ C4. Such a way, domain � is a pentagon aO1CO2b.

The value of a function u at the pointC ∈ D, u(C) we estimate from

the last equality, integrating by the characteristics C1 and C2 and

using conditions (Equations 2, 7–9). Since a chosen point C ∈ D is

arbitrary, we arrive at u ≤ 0 in D.
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2. For solutions u ∈ D(L), the statement of the theorem follows

from the conditions:

C∞(�) = D(L),

and

C∞(�) = D(L+).

These conditions hold true for operators with constant

coefficients in domains convex with respect to characteristics (see

Hörmander [14]).

Theorem 1 is proved.

Remark 2. The weak form of the maximum principle for

u ∈ L2(�) can be derived not only for solutions of the Cauchy

problem (Equation 2) but also for all linear problems with constant

coefficients Lu = F ∈ L2(�) under condition Im L+ = L2(�).

Indeed, using conditions (Equations 8, 9) and definition 9, we

obtain
∫

�

u · L+v dx ≤ 0,

for all v ∈ Hm(�). If Im L+ = L2(�), then

∫

�

u · w̄ dx ≤ 0,

for any w ∈ L2(�). The last inequality serves as a weak maximum

principle for L2− solutions.

Remark 3. In the case of classical solutions of the Cauchy

problem for second-order hyperbolic equations of general form

with constant coefficients, the statement of Theorem 1 coincides

with the result of Protter and Weinberger [23]. In this case,

conditions (Equation 9) have usual form without using the notion

of L−traces (see Protter and Weinberger [23]):

u|Ŵ0 ≤ 0, u′ν |Ŵ0 ≤ 0.

4 Method of equation-domain duality
and its application to the Goursat
problem

We develop the method of equation-domain duality (see also

Burskii and Buryachenko [6] and Burskii [2]) for study of the

Goursat problem. This method allows us to reduce the Cauchy

problem (Equation 1, 2) in bounded domain � to the equivalent

Goursat boundary value problem. We will show that the method

of equation-domain duality can be applied also to boundary value

problems in the generalized statement. First of all, we consider

the method of equation-domain duality for the case of classical

(smooth) solutions.

4.1 Method of equation-domain duality for
the case of classical (smooth) solutions

Let � ∈ R
n be a bounded domain defined by the inequality

P(x) > 0, where P(x) is some real polynomial. The equation

P(x) = 0 denotes the boundary ∂�. It is assumed that the boundary

is non-degenerate for P, that is, |∇P| 6= 0 on ∂�. Consider general

boundary value problem with γ conditions on ∂� for m− order

differential operator L (Equation 13), γ ≤ m:

L(Dx)u = f (x), u|∂� = 0, u′ν |∂� = 0, ..., u(γ−1)
ν |∂� = 0. (13)

By the equation-domain duality, we mean (see Burskii and

Buryachenko [6]) a correspondence (in the sense of Fourier

transform) between problem (Equation 13) and equation

Pm−γ (−Dξ ){L(ξ )w(ξ )} = f̂ (ξ ). (14)

This correspondence is described by the following lemma.

Lemma 1. For any non-trivial solution of problem

(Equation 13) in the space of smooth functions Cm(�̄), there

exists a non-trivial analytic solution w of Equation 14 from

the space C
n in a class Zm

� of entire functions. The class Zm
� is

defined as the space of Fourier transforms of functions θ�η,

where η ∈ Cm(Rn), θ� is the characteristic function of domain �,

w(ξ ) = θ̂�u. The function f (x) is assumed to be extended by zero

beyond the boundary.

Proof. Let m = 4, γ = 2, and consider the following Dirichlet

problem for fourth-order operator in Equation 1:

L(Dx)u = f , u|P(x)=0 = f , u′ν |P(x)=0 = 0. (15)

Let also u ∈ C4(�̄) be a classical solution to problem

(Equation 15). Denote by ũ ∈ C4(R2) the extension of u, and apply

fourth-order operator L(Dx) in Equation 1 to the product ũθ�,

where θ� is a characteristic function of domain �: θ� = 1 in �,

θ� = 0 out of�. We have:

L(Dx)(ũθ�) = θ�L(Dx)ũ+ ũL(Dx)θ�+

L
(1)
3 (Dx)ũ(∇ , a1)θ� + L

(2)
3 (Dx)ũ(∇ , a2)θ� + L

(3)
3 (Dx)ũ(∇ , a3)θ�

+ L
(4)
3 (Dx)ũ(∇ , a4)θ�+

L
(1)
3 (Dx)θ�(∇ , a1)ũ+ L

(2)
3 (Dx)θ�(∇ , a2)ũ+ L

(3)
3 (Dx)θ�(∇ , a3)ũ

+ L
(4)
3 (Dx)θ�(∇ , a4)ũ+

L
(1,2)
2 (Dx)ũ(∇ , a1)(∇ , a2)θ� + L

(1,3)
2 (Dx)ũ(∇ , a1)(∇ , a3)θ�+

L
(1,4)
2 (Dx)ũ(∇ , a1)(∇ , a4)θ� + L

(2,3)
2 (Dx)ũ(∇ , a2)(∇ , a3)θ�+

L
(2,4)
2 (Dx)ũ(∇ , a2)(∇ , a4)θ� + L

(3,4)
2 (Dx)ũ(∇ , a3)(∇ , a4)θ�+

L
(1,2)
2 (Dx)θ�(∇ , a1)(∇ , a2)ũ+ L

(1,3)
2 (Dx)θ�(∇ , a1)(∇ , a)ũ+

L
(1,4)
2 (Dx)θ�(∇ , a1)(∇ , a4)ũ+ L

(2,3)
2 (Dx)θ�(∇ , a2)(∇ , a3)ũ+

L
(2,4)
2 (Dx)θ�(∇ , a2)(∇ , a4)ũ+ L

(3,4)
2 (Dx)θ�(∇ , a3)(∇ , a4)ũ.

Here, L
(j)
3 (Dx), L

(j,k)
2 (Dx), j, k = 1, 2, 3, 4 are some differential

operations of third and second order correspondingly, defined by

fourth-order differential operator L(Dx) in Equation 1:

L
(j)
3 (Dx) =

L(Dx)

(∇ , aj)
, j = 1, ..., 4,

L
(j,k)
2 (Dx) =

L(Dx)

(∇ , aj)(∇ , ak)
, j 6= k, j, k = 1, .. 4.
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Since ũ is a solution of Equation 1, we obtain

L(Dx)(ũθ�) = θ�f + ũL(Dx)θ�

+A(1)(x)(δ∂�)
′′
νν + A(2)(x)(δ∂�)

′
ν + A(3)(x)δ∂�, (16)

where A(j)(x) are some smooth functions depending on coefficients

ak, k = 1, ..., 4 and j− derivatives of function u by outer normal ν:

u
(j)
ν and tangent direction τ : u

(j)
τ , j = 1, 2, 3. Taking into account

conditions (Equation 15), < (δ∂�)
′
ν ,φ >= − < δ∂�,φ

′
ν >=

−
∫
∂�

φ̄′ν(s) ds, ∀ψ ∈ D(R2), we have ũL(Dx)θ�+A(1)(x)(δ∂�)
′′
νν =

0, and A(2)(x)(δ∂�)
′
ν = −

∫
∂�

(A(2)(s))′ν ds = Ã(3)(x)δ∂�. From

Equation 16, we obtain

L(Dx)(ũθ�) = θ�f + B(3)(x)δ∂�, (17)

where B(3)(x) = Ã(3)(x) + A(3)(x) is some smooth function

depending on coefficients ak, k = 1, ..., 4 and third derivatives of

function u by outer normal ν: u′′′ν , and tangent direction τ : u′′′τ .

Let us multiply (Equation 17) by P2(x): P2(x)B(3)(x)δ∂� = 0,

due to P(x) = 0 on ∂�. We apply the Fourier transform:

P2(−Dξ )(v(ξ )) = f̂ .

Here, v(ξ ) = L(ξ )w(ξ ), w(ξ ) = ̂̃uθ� is the Fourier transform of

function ũθ�. Such a way we have the dual problem (Equation 14).

Functionw(ξ ) ∈ Z4
�, the space of entire functions (see, for instance,

the Paley-Wiener theorem in Hörmander [14]). Lemma is proved.

As an application of Lemma 1, let us consider the Dirichlet

problem for fourth-order hyperbolic Equation 1 in the unit disk

K = {x ∈ R
2
: |x| < 1}:

u||x|=1 = 0, u′ν ||x|=1 = 0. (18)

For casem = 4, γ = 2, m− γ = 2 we have the following dual

problem:

12v = f̂ (ξ ), v|L(ξ )=0 = 0, (19)

v = L(ξ )w(ξ ). Taking into account representation (Equation 10),

condition w|L(ξ )=0 = 0 is equivalent to the following

four conditions:

w|(ξ , a1)=0 = 0, w|(ξ , a2)=0 = 0, w|(ξ , a3)=0 = 0, w|(ξ , a4)=0 = 0.

(20)

Since (ξ , aj) = 0 is a characteristic, j = 1, 2, ..., 4 we conclude

that problem (Equation 19) is the Goursat problem. The method

of equation-domain duality allows us to reduce the problem of

solvability of a boundary value problem for high-order equations

(particularly, hyperbolic type) to the equivalent problem for some

equation of less complicated structure and of lower order (in

particular, for elliptic type equation, see Equation 19). Thus, the

Dirichlet problem for fourth-order hyperbolic equation in a unit

disk described by second-order curve P(x) = x21 + x22 − 1

is equivalent to the Goursat problem for second-order equation

P(Dx)u = 0. Because the curve P(x) = 0 is elliptic, we reduced

the Dirichlet problem for fourth-order hyperbolic equation to the

Goursat problem for second-order elliptic equations P(Dx)u = 0,

which are well studied.

4.2 Method of equation-domain duality for
the case of weak solutions and solutions
from D(L)

We prove the analog of Lemma 1 for solutions u ∈ D(L). For

any function u ∈ Hm(�), m ≥ 4, L(p)u− traces can be expressed

by the following way (it follows from Definition 8 and Equation 7):

L(p)u =
p∑

k=0

αp,k∂
k
νu|∂�, p = 0, 1, 2, 3. For p = 0, L(0)− trace,

L(0)u = u|∂� coincides with usual trace.

For u ∈ D(L), we consider the following boundary value

problem

L(Dx)u = f (x), L(0)u = 0, L(1)u = 0, ..., L(γ−1)u = 0, γ ≤ m.

(21)

For the Dirichlet problem (Equation 15) and u ∈ D(L), we have

L(Dx)u = f (x), L(0)u = 0, L(1)u = 0, γ = 2 < m = 4. (22)

The principle of equation-domain duality for solutions u ∈

D(L) is assumed as the correspondence (in the sense of Fourier

transform) between problem (Equations 21) and Equation 14,

which is realized by the following statement. This statement

(Lemma 2) is analog of Lemma 1 for u ∈ D(L).

Lemma 2. For any non-trivial solution of problem

(Equation 21) in the space D(L), there exists a non-trivial analytic

solution w of Equation 14 from the space Cn in a class Z� of entire

functions. The class Z� is defined as the space of Fourier transforms

of functions from the set V = {v : there exists some function u ∈

D(L), such that : v = u in�, v = 0, out of �̄}, w(ξ ) = v̂.

The function f (x) is assumed to be extended by zero beyond

the boundary.

The proof follows from Definition 9. Let us substitute the

function v(x) = Pm−γ (x)ei(x,ã
j) ∈ ker(L+), j = 1, ..., 4, into

equality (Equation 6). Function w(ξ ) = v̂ ∈ Z�, the space of

entire functions (see, for instance, the Paley-Wiener theorem in

Hörmander [14]).

5 Connection between the Cauchy
and the Dirichlet problems. Existence
and uniqueness of solutions for
hyperbolic equations

The main result of this section is the following existence and

uniqueness theorem of the Cauchy problem (Equations 1, 2).

Theorem 2. Let us assume that there exist four functions

L3, L2, L1, L0 ∈ L2(∂�), satisfying the conditions

∫

∂�

{L3(x)Q(−ãj · x)+ L2(x)Q
′(−ãj · x)+ L1(x)Q

′′(−ãj · x)+ (23)

+L0(x)Q
′′′(−ãj · x)}dSx =

∫

�

f (x)Q(−ãj · x)dx,

for any polynomial Q ∈ C[z] ∈ KerL+, Q(−ãj · x), j = 1, 2, 3, 4.
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Then, there exists a unique solution u ∈ D(L) to the Cauchy

problem (Equations 1, 2), whose L− traces are the given functions

L3, L2, L1, L0: Lj = L(j)− trace, j = 0, 1, 2, 3, which are

determined by Equation 7.

Proof. At first, we prove existence of solution u ∈ D(L) to the

Cauchy problem (Equations 1, 2).

Let us consider the auxiliary Dirichlet problem for the properly

elliptic eight-order operator14 with the given boundary conditions

ϕ, ψ , σ , χ :

14ω = 0, ω|∂� = ϕ, ων |∂� = ψ , ωνν |∂� = σ , ωννν |∂� = χ .

(24)

It is well known that solution of problem (Equation 24) exists

and belongs to the space Hm(�), m ≥ 4. We find some solution u

to the Cauchy problem in the following form

u = ω + v, (25)

where v is a solution of the following problem with null boundary

data:

L(Dx)v = −L(Dx)ω + f (x), v|∂� = 0, vν |∂� = 0,

vνν |∂� = 0, vννν |∂� = 0. (26)

Since all L−traces of a function v are zero and operator L is

regular, we conclude that v ∈ D(L0) and prove resolvability of the

operator equation with minimum operator L0(Dx):

L0(Dx)v = −Lω + f (x) (27)

in the space D(L0).

For resolvability of operator Equation 27 with minimum

operator L0(Dx), it is necessary and sufficiently that right-hand part

satisfies the following Fredholm condition

∫

�

{−Lω + f (x)}Q(x)dx = 0, (28)

for any Q ∈ Ker L+.

We use Equation 4 for the case of function ω and fourth-order

operator ( m = 4), and taking into account boundary conditions

(Equation 24), which mean that the functions L0, L1, L2, L3 are

L− traces for a function ω, conditions (Equation 23), we arrive

at Equation 28 for any Q ∈ Ker L+. As consequences, we prove

resolvability of Equation 27 in D(L0). Such a way, taking into

account representation (Equation 25), we arrive at the conclusion

on existence for a solution u ∈ D(L).

Solution uniqueness follows from established above the

maximum principle for solutions of the Cauchy problem. Theorem

is proved.

Remark 4. For given boundary data (L3, L2, L1, L0) ∈

Hm−7/2(∂�)×Hm−5/2(∂�)×Hm−3/2(∂�)×Hm−1/2(∂�), m ≥ 4,

f ∈ Hm−4(�), m ≥ 4, and for elliptic Equation 1, solution u ∈

Hm(�), m ≥ 4 (see Buryachenko [5]). For hyperbolic equations,

it is not true because symbol L(ξ ) has four real roots. Using the

Fourier transform and Lemma 2, we arrive at regularity decreasing.

Remark 5. The problem of resolvability the Cauchy problem

(Equations 1, 2) is reduced to the integral moment problem

(Equation 23).

5.1 The Dirichlet problem

In some bounded domain � ∈ R
2 with elliptic boundary

∂� = {x : P(x) = 0}, we consider the following Dirichlet problem

for fourth-order hyperbolic Equation 1:

L(0)u|P(x)=0 = ϕ, L(1)uν |P(x)=0 = ψ . (29)

Connection between the Dirichlet problem (Equations 1, 29)

and the corresponding Cauchy problem is assumed by the

following way. Let there exists some solution u∗ ∈ D(L) of

the Dirichlet problem (Equations 1, 29), then we can construct

L(j)u
∗−traces (functions L3, L2, L1, L0 from Theorem 2), which

are satisfied condition (Equation 23). From Theorem 2, it means

that the Cauchy problem is solvable in D(L). To prove solvability

of the Dirichlet problem (Equations 1, 29) in D(L), we have

to show that there exist functions L2, L3 ∈ L2(∂�), which

are uniquely determined by L(0), L(1)− traces of the Dirichlet

problem (Equation 29). Such a way we arrive at the following

inhomogeneous moment problem:

∫

∂�

{L3(x)Q(−ãj ·x)+L2(x)Q
′(−ãj ·x)}dSx =

∫

�

f (x)Q(−ãj · x)dx−

(30)

−

∫

∂�

{L(1)(x)Q
′′(−ãj · x)+ L(0)(x)Q

′′′(−ãj · x)}dSx

for any polynomial Q ∈ C[z] ∈ KerL+, Q(−ãj · x), j = 1, 2, 3, 4.

Thus, solvability of the Dirichlet problem (Equation 29) in D(L)

reduces to solvability of moment problem (Equation 30).

Theorem 3. For solvability of the Dirichlet problem

(Equations 1, 29) in D(L), it is necessary and sufficiently that

there exists some solution (L∗3(x), L
∗
2(x)) ∈ L2(∂�) × L2(∂�) of

moment problem (Equation 30). Then L∗3(x) = L(3)− trace, and

L∗2(x) = L(2)− trace.

Remark 6. The exact formulas for evaluation of a couple of

functions (L∗3(x), L
∗
2(x)) ∈ L2(∂�)× L2(∂�) via known L(0), L(1)−

traces can be found for particular cases of domain �. For example,

the case of unit disk was considered in Buryachenko [5].

6 Role of characteristic billiard for the
Fredholm property

In this section, we consider the case of Fredholm property

violation. In Burskii and Buryachenko [6], the Fredholm property

violation for the Dirichlet problem in Cm(�), m ≥ 4 was proved.

Taking into account Lemma 2, we arrive at the analogous result in

the L2(�).

Theorem 4. The homogeneous Dirichlet problem

(Equation 1)0, (Equation 29)0 has a non-trivial solution in

L2(�) if and only if

ϕj − ϕk =
πpjk

q
, (31)
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FIGURE 1

Characteristic billiard or the John’s mapping for the wave equation
∂2u
∂x∂y

= 0 on a disk. Period n = 2 [15].

with some pjk, q ∈ Z, j, k = 1, 2, 3, 4. Under conditions

(Equation 31), there exists a countable set of linearly independent

polynomial solutions in the form:

u(x) =

4∑

j=1

Cj

(
1

2q
Tq(−ãj · x)−

1

2(q− 2)
Tq−2(−ãj · x)

)
. (32)

Here, Tq(−ãj · x) are Chebyshev’s polynomials, and 1
2qTq(−ãj ·

x)− 1
2(q−2)

Tq−2(−ãj · x) ∈ KerL+, j = 1, 2, 3, 4.

The necessity of condition (Equation 31) follows from the

equation-domain duality (in the case of unit disk), see Lemma

2; sufficiency is proved by construction of non-trivial polynomial

solutions (Equation 32). It is remarkable by the fact that

Theorem 4 is true for all types of operator L. Here, we discuss

conditions (Equation 31) for hyperbolic equations, in which these

conditions mean the periodicity of characteristics billiard or the

John’s mapping.

6.1 Characteristic billiard

For domain �, which is convex with respect to the

characteristics, we construct the mappings Tj, j = 1, ..., 4 for

fourth-order hyperbolic equations by the following way.

Let Mj be some point on ∂�. Passing through a point Mj j−th

characteristic, we obtain a point Mj+1 ∈ ∂�. Such a way, Tj is a

mapping, which transforms Mj into Mj+1 on the j−characteristic

direction with angle of slope ϕj, j = 1, 2, 3, 4. We apply the

mapping T1 for a point M0 ∈ ∂� and obtain a point M1. After

that, we apply the mapping T2 for a point M1 and obtain a point

M2. We transform M2 into M3 on direction of characteristic, in

which angle of slope equals ϕ3, and, finally, we transform M3 into

FIGURE 2

Characteristic billiard for fourth-order equation on a disk with equal

angles between characteristics, ϕi − ϕj =
π
4
, i 6= j, which are

π−rational, and the result of Theorem 4 holds true. Period n = 2.

M4 on direction of the fourth characteristic (Figure 2). Denoted by

T = T4 ◦ T3 ◦ T2 ◦ T1 : M0 ∈ ∂� → M4 ∈ ∂�, T is called the

John’s mapping. Characteristic billiard is understood as a discrete

dynamical system on ∂�, that is, an action of group Z.

See Figures 1, 2 for second (wave equation) and fourth-order

equations correspondingly.

Some point M ∈ ∂� is called a periodic point, if there exists

some n ∈ N such that Tn(M) = M. Minimal n, for which condition

Tn(M) = M holds, is called the period of a point M. For second-

order hyperbolic equations, there was proved [3] that periodicity

of the John’s algorithm is sufficient for violation of the Fredholm

property of the Dirichlet problem. Analogous result is true for

fourth-order hyperbolic Equation 1. Let us consider domain � =

K− unit disk in R
2.

Let us show that conditions (Equation 31) are necessary and

sufficient for periodicity of the John’s algorithm. It is clear that

Tj(M(τ )) = 2ϕj − τ , (33)

where τ is angular parameter of a pointM ∈ K. From Equation 33,

it follows

Tn(M) = 2n(ϕ4−ϕ3+ϕ2−ϕ1)+τ = 2n(ϕ4−ϕ3+ϕ2−ϕ1)+2πm+τ ,

for anym ∈ Z. Under conditions (Equation 31), any pointM ∈ K is

periodical; thus, the John’s algorithm is periodical. If now mapping

T is periodical for some n ∈ N, then ϕ4 − ϕ3 + ϕ2 − ϕ1 ∈ πQ,

which implies that conditions (Equation 31) are satisfied.

Such a way we arrive at the following statement.

Theorem 5. The periodicity of characteristic billiard on the

unit disk is necessary and sufficient for violation of the Fredholm

property of the Dirichlet problem (Equation 1)0, (Equation 29)0 in

L2(K). Its kernel consists of countable set of linearly independent

polynomial solutions (Equation 31).

Frontiers in AppliedMathematics and Statistics 09 frontiersin.org231

https://doi.org/10.3389/fams.2024.1467199
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Andreieva and Buryachenko 10.3389/fams.2024.1467199

7 Discussion

In this section, we discuss some potential challenges in applying

the results and proposed methods.

The first challenge concerns the presence of some lower terms

in many hyperbolic models, for which our results can be applied.

For example, a model of Timoshenko

beam with and without internal damping has

the form

EI
∂4u

∂x4
−

(
ρI +

ρEI

kG

)
∂4u

∂x2∂t2
+
ρ2I

kG

∂4u

∂t4
+ ρA

∂2u

∂t2
= 0.

Here, u is a deflection of beam due to bending only, G is

a modulus of rigidity, A is a constant, cross-sectional area of

beam, ρ− mass density of a beam material, E− modulus of

elasticity, I- moment of inertia of a beam cross-section with

respect to the neutral axis of bending, k- constant, depends on

the shape of the cross-section of a beam. Qualitative analysis for

initial and boundary value problems is possible via application of

maximum principle. For this reason, we need to have an analog

of Theorem 1 for fourth-order equations, containing second-order

lower terms.

The same situation appears in the case of studying the

boundary value problems for fourth-order hyperbolic equation

which is connected with response of semi-space to a short laser

pulse and belongs to generalized thermoelasticity [12]. The model

equation of this process contains third -order lower term and has

the form:

∂4u

∂x4
−(1+t0+εt

0)
∂4u

∂x2∂t2
+t0

∂4u

∂t4
−(1+ε)

∂3u

∂x2∂t
+
∂3u

∂t3
= f (x, t),

where t0, t
0, and ε are constants, t0 ≥ t0 > 1, ε > 0, (1 + t0 +

εt0)2 > 4t0, f (x, t) is a given function.

Another application of obtained results concerns the cases

of non-linear external forces. A lot of models involve external

sources f depending on u : f (u), which make the equation

under consideration quasilinear. Due to similar principal

part, our methods are still applied because L− traces are

not changed:

L(Dx)u = f (u).

Here, the operator L is the same as in Equation 1.
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Some class of nonlinear partial
di�erential equations in the ring
of copolynomials over a
commutative ring

Sergiy L. Gefter and Aleksey L. Piven’*

School of Mathematics and Computer Sciences, V. N. Karazin Kharkiv National University, Kharkiv,

Ukraine

We study the copolynomials, i.e., K-linear mappings from the ring of polynomials

K[x] into the commutative ring K. With the help of the Cauchy–Stieltjes transform

of a copolynomial, we introduce and examine a multiplication of copolynomials.

We investigate the Cauchy problem related to the nonlinear partial di�erential

equation ∂u
∂t = aum0

(
∂u
∂x

)m1
(

∂2u
∂x2

)m2
(

∂3u
∂x3

)m3
, m0,m1,m2,m3 ∈

N0,
∑3

j=0mj > 0, a ∈ K in the ring of copolynomials. To find a solution, we

use the series of powers of the δ-function. As examples, we consider the Cauchy

problem with the Euler–Hopf equation ∂u
∂t + u ∂u

∂x = 0, for a Hamilton–Jacobi

type equation ∂u
∂t =

(
∂u
∂x

)2
, and for the Harry Dym equation ∂u

∂t = u3 ∂3u
∂x3

.

KEYWORDS

copolynomial, δ-function, partial di�erential equation, Cauchy problem, Cauchy-

Stieltjes transform, multiplication of copolynomials

1 Introduction

The first, second, and third order equations play an important role in the theory

of nonlinear partial differential equations. A significant portion of classical nonlinear

differential equations is dedicated to these classes (see, for example, [1–5]). In this paper,

we examine a purely algebraic approach to study the special Cauchy problem with the

following evolution equation:

∂u

∂t
= aum0

(
∂u

∂x

)m1
(

∂2u

∂x2

)m2 (
∂3u

∂x3

)m3

(1.1)

u(0, x) = u0δ(x). (1.2)

We study this Cauchy problem in the module K[x]′ of the K-linear functionals on

the ring of polynomials K[x], where K is an arbitrary commutative integral domain with

identity and a, u0 ∈ K. We consider the module K[x]′ as an algebraic analog of space of

distributions (see [6, 7]), where linear partial differential equations in the module K[x]′

were studied). In this paper, the elements of the module K[x]′ are called copolynomials

(see Section 2). A copolynomial δ(x) is defined in the usual way: (δ, p) = p(0), p ∈ K[x].

A multiplication operation for copolynomials plays an important role for us. We define

the product of copolynomials using the Cauchy–Stieltjes transform (see Section 3). We

take note of several non-equivalent constructions of a multiplication that are considered

in classical theories of distributions. For example, in the Colombeau theory [8, 9], the
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square of the δ-function is well-defined, but in some other theories

it is not defined (see, for example, Antosik et al. [10]; Section 12.5).

In Section 4, we prove the existence and uniqueness theorem

for the Cauchy problem (1.1), (1.2), and establish a representation

of the solution in the form of the series in powers of the δ-function

(Theorem 4.1). As examples, we consider the Cauchy problem

for the Euler–Hopf equation ∂u
∂t + u ∂u

∂x = 0, for the Hamilton–

Jacobi type equation ∂u
∂t =

(
∂u
∂x

)2
, and for the Harry Dym equation

∂u
∂t = u3 ∂3u

∂x3
. In some of these examples, an interesting connection

between classical nonlinear partial differential equations and well-

known integer sequences is discovered (see examples 4.1, 4.2, and

4.4, where the Euler–Hopf equation, the Hamilton–Jacobi equation,

and the Harry Dym equation are studied, respectively). Note that

we restrict our consideration of equations of type (1.1) to those

of the order no higher than three for two reasons. First, the

representation in the proof of Theorem 4.1 generally becomesmore

cumbersome. Second, we are unaware of any classical examples of

nonlinear equations of type (1.1) of order higher than three (see

[3, 5]).

Linear functionals in the space of polynomials were extensively

studied from different points of views in algebra, combinatorics,

and the theory of orthogonal polynomials (cf., for example, [11–

13]). In a classical case of (K = R or K = C), series with respect to

derivatives of the δ-function are intensively studied because of their

applications to differential and functional-differential equations

and the theory of orthogonal polynomials [13]. Formal power series

solutions of nonlinear partial differential equations were examined

in a number of studies (cf., for example, [14–16]).

2 Preliminary

Let K be an arbitrary commutative integral domain with

identity, and letK[x] be a ring of polynomials with coefficients inK.

Definition 2.1. By a copolynomial over the ring K, we mean a K-

linear functional defined on the ring K[x], i.e., a homomorphism

occurring from the module K[x] to the ring K.

We denote the module of copolynomials over K by K[x]′. Thus,

T ∈ K[x]′ if and only if T :K[x] → K and T has the property

of K-linearity: T(ap + bq) = aT(p) + bT(q) for all p, q ∈ K[x]

and a, b ∈ K. If T ∈ K[x]′ and p ∈ K[x], are for the value of T

on p, we use the notation (T, p). We also write the copolynomial

T ∈ K[x]′ in the form T(x), where x is regarded as the argument

of polynomials p(x) ∈ K[x] and is subjected to the action of the K-

linear mapping T. In this case, the result of action of T upon p can

be represented in the form (T(x), p(x)).

Let p(x) =
m∑

n=0
anx

n ∈ K[x]. For any x ∈ K, we consider the

polynomial p(x+ h) ∈ K[h]:

p(x+ h) =

m∑

n=0

pn(x)h
n,

where pn(x) ∈ K. Since, in the case of a field with zero

characteristic, pn(x) =
p(n)(x)
n! , we also assume that by definition

p(n)(x)
n! = pn(x), n = 0, ...,m is also true for any commutative ring

K. For n > m, we assume that
p(n)(x)
n! = 0.

Definition 2.2. The derivative T′ of a copolynomial T ∈ K[x]′, as

in the classical case, is given in the formula

(T′, p) = −(T, p′), p ∈ K[x].

By using this result, we arrive at the following expression for the

nth order derivative:

(T(n), p) = (−1)n(T, p(n)), p ∈ K[x].

Hence,

(T(n), p) = 0, T ∈ K[x]′, p ∈ K[x], n > degp.

By virtue of the equality

(
T(n)

n!
, p

)
= (−1)n

(
T,

p(n)

n!

)
, p ∈ K[x] (2.1)

the copolynomials T(n)

n! are well defined for any T ∈ K[x]′ and

n ∈ N .

Example 2.1. The copolynomial δ-function is given in the formula

(δ, p) = p(0), p ∈ K[x].

For the copolynomial δ-function, we find its derivative of the

nth order as follows:

(δ(n), p) = (−1)n(δ, p(n)) = (−1)np(n)(0), n ∈ N.

Example 2.2. Let K = R and let f :R → R be a Lebesgue-

integrable function such that

∞∫

−∞

|xnf (x)|dx < +∞, n = 0, 1, 2, ... (2.2)

Then, f generates the regular copolynomial Tf :

(Tf , p) =

∞∫

−∞

p(x)f (x)dx, p ∈ R[x].

Note that, in this case, unlike the classical theory, all

copolynomials are regular ([13], Theorem 7.3.4), although a

nonzero function f can generate the zero copolynomial {([17],

Remark 1), ([18], Example 2.2)}. We present an example of

a function that satisfies the property (2.2) and generates the

δ-function.

It is known that for any ε > 0 there exists an even function

ϕε(x) ∈ C∞
0 (R) such that ϕε(x) = 1 for any x ∈ (−ε; ε) [19].

Then, ϕε(0) = 1 and ϕ
(k)
ε (0) = 0, and k ∈ N. The inverse Fourier

transform

fε(x) =
1

2π

∞∫

−∞

ϕε(λ)e
iλxdλ =

1

2π

∞∫

−∞

ϕε(λ) cos λxdλ
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is an element of the Schwarz space S(R). Then, ϕε(λ) is the Fourier

transform of fε(x):

ϕε(λ) =

∞∫

−∞

fε(x)e
−iλxdx

and

∞∫

−∞

fε(x)dx = ϕε(0) = 1,

∞∫

−∞

xkfε(x)dx = ikϕ(k)
ε (0) = 0, k ∈ N,

∞∫

−∞

p(x)fε(x)dx = p(0), p ∈ K[x],

i.e., fε(x) generates the copolynomial δ-function for any ε > 0.

We now consider the issue of convergence in the space K[x]′.

In the ring K, we consider the discrete topology. Further, in

the module of copolynomials K[x]′, we consider the topology of

pointwise convergence. The convergence of a sequence {Tn}
∞
n=1 to

T in K[x]′ means that for every polynomial p ∈ K[x], there exists a

number n0 ∈ N such that

(Tn, p) = (T, p), n = n0, n0 + 1, n0 + 2, ....

By the definition of convergence in the module K[x]′, we arrive

at the following statement [6].

Theorem 2.1. Let {an}
∞
n=0 be a sequence of elements from K and

let T ∈ K[x]′. Then, the series
∞∑
n=0

an
T(n)

n! converges in K[x]′.

The following assertion [6] shows the possibility of an

expansion of an arbitrary formal generalized function in a series

in the system
{

δ(n)

n!

}∞
n=0

{see also ([12], Proposition 2.3) in the case

K = C}.

Lemma 2.1. Let T ∈ K[x]′. Then,

T =

∞∑

n=0

(−1)n(T, xn)
δ(n)

n!
. (2.3)

3 Multiplication of copolynomials

3.1 The Cauchy–Stieltjes transform

Let K
[[
z, 1z

]]
be the module of formal Laurent series with

coefficients in K. For g ∈ K
[[
z, 1z

]]
and g(z) =

∞∑
k=−∞

gkz
k, we

naturally define the formal residue:

Res(g(z)) = g−1.

Definition 3.1. Let T ∈ K[x]′. Consider the following formal

Laurent series from the ring 1
sK[[

1
s ]]:

C(T)(s) =

∞∑

k=0

(T, xk)

sk+1
.

The Laurent series C(T)(s) will be called the Cauchy–Stieltjes

transform of a copolynomial T.

We may write informally as follows: C(T)(s) =
(
T, 1

s−x

)
.

Obviously, that the mapping C :K[x]′ → 1
sK[[

1
s ]] is an

isomorphism of K-modules.

Proposition 3.1. (The inversion formula). Let T ∈ K[x]′ and p ∈

K[x]. Then,

(T, p) = Res(C(T)(s)p(s)).

Proof. It is sufficient to consider the case p(x) = xn for some

n ∈ N0. We have

C(T)(s)sn =

∞∑

k=0

(T, xk)sn

sk+1
.

Therefore, Res(C(T)(s)sn) = (T, xn).

Example 3.1. For the copolynomial δ-function, we have

C(δ)(s) =
1

s
. (3.1)

The following proposition shows that in some sense the

differentiating commutes with the Cauchy–Stieltjes transform.

Proposition 3.2. For any T ∈ K[x]′, the equality

C
(
T(n)

)
= C(T)(n), n ∈ N

holds valid.

Proof. It is sufficient to consider the case n = 1, so that

C
(
T′
)
(s) =

∞∑

k=0

(T′, xk)

sk+1
=

= −

∞∑

k=1

k(T, xk−1)

sk+1
= −

∞∑

k=0

(k+ 1)(T, xk)

sk+2
= C(T)′(s).

3.2 Multiplication of copolynomials and its
properties

The Cauchy–Stieltjes transform and Proposition 3.2 allow

to introduce the multiplication operation on the module of

copolynomials such that this operation is consistent with

the differentiation.

Definition 3.2. Let T1,T2 ∈ K[x]′, i.e., T1,T2 are copolynomials.

Define their product by the following equality:

C(T1T2) = C(T1)C(T2), (3.2)

i.e.,

T1T2 = C−1
(
C(T1)C(T2)

)
,

where C :K[x]′ → 1
sK[[

1
s ]] is a Cauchy–Stieltjes transform.
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In the following lemma, the action of the product of

copolynomials on monomials is expressed through the action of

multipliers on monomials.

Lemma 3.1. Let T1,T2 ∈ K[x]′ and n ∈ N0. Then,

(T1T2, x
n) =





n−1∑
k=0

(T1, x
k)(T2, x

n−1−k), n ∈ N,

0, n = 0.

(3.3)

Proof. By Equation 3.2, we have

C(T1T2)(s) = C(T1)(s)C(T2)(s) =

∞∑

k=0

∞∑

j=0

(T1, x
k)(T2, x

j)

sk+j+2

=

∞∑

n=1

n−1∑

k=0

(T1, x
k)(T2, x

n−1−k)
1

sn+1
.

Applying the inversion formula to the both part of this equality

(see Proposition 3.1), we obtain (3.3).

Remark 3.1. Definition 3.2 means that the module of

copolynomials K[x]′ with the introduced product is a associative

commutative ring, which isomorphic to the ring of formal Laurent

series 1
sK[[

1
s ]] with a natural product operation. In particular,

the ring of copolynomials is an integral domain and this is a ring

without identity.

Example 3.2. Let n = 1. With the help of Proposition 3.2, we find

the square of δ-function:

C(δ2)(s) = (C(δ))2(s) =
1

s2
=

(
−1

s

)′

= (−C(δ))′ = C(−δ′),

i.e.,

δ2 = −δ′.

Moreover, by Equations 2.1, 3.1, we have

C

(
δ(n)

n!

)
(s) =

∞∑

k=0

(
δ(n)

n!
, xk

)
1

sk+1
=

∞∑

k=0

(
δ,

1

n!

dnxk

dxn

)
(−1)n

sk+1
=

=
(−1)n

sn+1
= (−1)n(C(δ))n+1,

so that

(−1)nδ(n)

n!
= δn+1, n = 0, 1, 2, ..., (3.4)

and therefore,

(δn)′ = −nδn+1, n ∈ N. (3.5)

Hence, by Theorem 2.1 and (3.4), the series

∞∑

k=0

ukδ
k+1 =

∞∑

k=0

(−1)k
δ(k)

k!
uk

converges for any uk ∈ K.

Remark 3.2. By Lemma 2.1 and (3.4) for any copolynomial T ∈

K[x]′, the expansion in powers of the δ-function holds:

T =

∞∑

k=0

(T, xk)δk+1.

Remark 3.3. The equalities (3.1) and (3.4) show that in a certain

sense δ(x) and 1
s are related (see also [1], p. 79).

4 Main results and examples

4.1 Formal power series over the ring of
copolynomials

The ring of formal power series in the form u(t, x) =
∞∑
k=0

uk(x)t
k with coefficients uk(x) ∈ K[x]′ will be denoted by

K[x]′[[t]]. In this subsection, we remind several notations from

Gefter and Piven’ [6].

The partial derivative with respect to t of the series u(t, x) ∈

K[x]′[[t]] is defined by the formula

∂u

∂t
=

∞∑

k=1

kuk(x)t
k−1.

The partial derivative ∂u
∂x of the series u(t, x) ∈ K[x]′[[t]] is

defined as follows:

∂u

∂x
=

∞∑

k=0

u′k(x)t
k.

By (u(t, x), p(x)), we denote the action of u(t, x) ∈ K[x]′[[t]] on

p(x) ∈ K[x], which is defined coefficient-wise.

(u(t, x), p(x)) =

∞∑

k=0

(uk(x), p(x))t
k.

Thus, (u(t, x), p(x)) ∈ K[[t]].

4.2 Existence and uniqueness theorem

Let a, u0 ∈ K and let mj ∈ N0 (j = 0, 1, 2, 3),
3∑

j=0
mj > 0.

Consider the Cauchy problem (1.1), (1.2) in the ring K[x]′[[t]].

We prove the following existence and uniqueness theorem for this

Cauchy problem.

Theorem 4.1. Let K ⊃ Q. Then, the Cauchy problem (1.1), (1.2)

has a unique solution in K[x]′[[t]]. This solution is in the form

u(t, x) =

∞∑

k=0

ukδ
nk+1tk, (4.1)

where uk ∈ K and n =
3∑

j=0
(j+ 1)mj − 1. Moreover, for every t ∈ K,

this series converges in the topology of K[x]′.
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Proof. We will find the solution of the Cauchy problem (1.1), (1.2)

in the form (4.1). Differentiating (4.1) on x and t and taking into

account (3.5), we have

∂u

∂t
=

∞∑

k=0

(k+ 1)uk+1δ
nk+n+1tk, (4.2)

∂u

∂x
= −

∞∑

k=0

(nk+ 1)ukδ
nk+2tk,

∂2u

∂x2
=

∞∑

k=0

(nk+ 1)(nk+ 2)ukδ
nk+3tk,

∂3u

∂x3
= −

∞∑

k=0

(nk+ 1)(nk+ 2)(nk+ 3)ukδ
nk+4tk.

Then,

um0 =

∞∑

τ0=0

∑

|α|=τ0

uα1 · · · uαm0
δnτ0+m0 tτ0 ,

(
∂u

∂x

)m1

= (−1)m1

∞∑

τ1=0

∑

|β|=τ1

(nβ1 + 1) · · · (nβm1 + 1)uβ1 · · · uβm1
δnτ1+2m1 tτ1 ,

(
∂2u

∂x2

)m2

=

∞∑

τ2=0

∑

|γ |=τ2

(nγ1 + 1) · · ·

(nγm2 + 1)(nγ1 + 2) · · · (nγm2 + 2)uγ1 · · · uγm2
δnτ2+3m2 tτ2 ,

(
∂3u

∂x3

)m3

= (−1)m3

∞∑

τ3=0

∑

|σ |=τ3

(nσ1 + 1) · · · (nσm3 + 1)

(nσ1 + 2) · · · (nσm3 + 2) ·

·(nσ1 + 3) · · · (nσm3 + 3)uσ1 · · · uσm3
δnτ3+4m3 tτ3 ,

where α,β , γ , σ are multi-indexes, α = (α1, ...,αm0 ),β =

(β1, ...,βm1 ), γ = (γ1, ..., γm2 ), σ = (σ1, ..., σm3 ). Therefore,

aum0

(
∂u

∂x

)m1
(

∂2u

∂x2

)m2 (
∂3u

∂x3

)m3

= (−1)m1+m3a

∞∑

k=0

∑

|τ |=k

∑

|α|=τ0

uα1 · · · uαm0
·

·
∑

|β|=τ1

(nβ1 + 1) · · · (nβm1 + 1)uβ1 · · · uβm1
·

·
∑

|γ |=τ2

(nγ1 + 1) · · · (nγm2 + 1)

(nγ1 + 2) · · · (nγm2 + 2)uγ1 · · · uγm2
·

·
∑

|σ |=τ3

(nσ1 + 1) · · · (nσm3 + 1)(nσ1 + 2) · · · (nσm3 + 2)

(nσ1 + 3) · · · (nσm3 + 3)uσ1 · · · uσm3
δnk+n+1tk, (4.3)

where τ = (τ0, τ1, τ2, τ3). Equating coefficients at δnk+n+1tk in

right-hand sides of (4.2) and (4.3), we obtain

(k+ 1)uk+1 = (−1)m1+m3a
∑

|τ |=k

∑

|α|=τ0

uα1 · · · uαm0
·

·
∑

|β|=τ1

(nβ1 + 1) · · · (nβm1 + 1)uβ1 · · · uβm1
·

·
∑

|γ |=τ2

(nγ1 + 1) · · · (nγm2 + 1)

(nγ1 + 2) · · · (nγm2 + 2)uγ1 · · · uγm2
·

·
∑

|σ |=τ3

(nσ1 + 1) · · · (nσm3 + 1)(nσ1 + 2) · · · (nσm3 + 2)

(nσ1 + 3) · · · (nσm3 + 3)uσ1 · · · uσm3
.

Since K ⊃ Q, we obtain that for any k ∈ N0 the element uk+1

is uniquely expressed through u0, ..., uk. Now, if t ∈ K, then by

Equation 3.4

u(t, x) =

∞∑

k=0

ukδ
nk+1tk =

∞∑

k=0

(−1)nk
δ(nk)

(nk)!
ukt

k

so that the convergence of the series (4.1) follows from Theorem

2.1. Now, we prove the uniqueness of the solution of the Cauchy

problem (1.1), (1.2) in the ring K[x]′[[t]]. We will find a solution of

the Cauchy problem (1.1), (1.2) in the form

u(t, x) =

∞∑

k=0

vk(x)t
k,

where vk(x) ∈ K[x]′. Then, by the initial condition (1.2), we

have v0(x) = u0δ(x). Substitute u(t, x) into Equation 1.1 and

equate coefficients of tk. Then, there exist polynomials pk ∈

K[z1, ..., z4(k+1)] (k = 0, 1, 2, ...) such that

(k+ 1)vk+1(x) = pk

(
v0(x),

∂v0

∂x
,
∂2v0

∂x2
,
∂3v0

∂x3
, ...,

vk(x),
∂vk

∂x
,
∂2vk

∂x2
,
∂3vk

∂x3

)
.

Since the ring K contains the field of rational numbers, from

this we uniquely find uk(x), k ∈ N:

vk(x) = k−1pk−1

(
v0(x),

∂v0

∂x
,
∂2v0

∂x2
,
∂3v0

∂x3
, ...,

vk−1(x),
∂vk−1

∂x
,
∂2vk−1

∂x2
,
∂3vk−1

∂x3

)
.

The proof is complete.

4.3 Examples

We consider some examples of classical equations that illustrate

Theorem 4.1. In what follows, we suppose that K is of characteristic

0 ([20], Section 1.43). We denote by F the quotient field of K.

Obviously, K ⊃ Z and F ⊃ Q.
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Example 4.1. Let u0 ∈ K. In K[x]′[[t]], consider the following

Cauchy problem for the Euler–Hopf equation:

∂u

∂t
+ u

∂u

∂x
= 0, (4.4)

u(0, x) = u0δ(x). (4.5)

By Theorem 4.1, the Cauchy problem (4.4), (4.5) has a unique

solution in F[x]′[[t]] and this solution can be represented in the

form (4.1) of n = 2:

u(t, x) =

∞∑

k=0

ukδ
2k+1tk, (4.6)

where uk ∈ F. Substituting (4.6) into (4.4), we obtain (see Proof of

Theorem 4.1):

∞∑

k=0

(k+ 1)uk+1δ
2k+3tk =

∞∑

k=0

k∑

j=0

(2j+ 1)ujuk−jδ
2k+3tk. (4.7)

Equating coefficients at δ2k+3tk in (4.7), we have

(k+ 1)uk+1 =

k∑

j=0

(2j+ 1)ujuk−j, k ∈ N0. (4.8)

Since

k∑

j=0

(2j+ 1)ujuk−j = (k+ 1)

k∑

j=0

ujuk−j,

the equality (4.8) implies

(k+ 1)uk+1 = (k+ 1)

k∑

j=0

ujuk−j, k ∈ N0. (4.9)

Since K is of characteristic 0, the equality (4.9) is reduced to the

following recurrence equation:

uk+1 =

k∑

j=0

ujuk−j, k ∈ N0. (4.10)

If u0 = 1, then the solution of (4.10) is uk = Ck, where

Ck = (k + 1)−1

(
2k

k

)
(k ∈ N0) is the sequence of the Catalan

numbers ([21], Section 7.5). Generally, the solution of (4.10) is in

the form uk = Cku
k+1
0 (k ∈ N0), so that

u(t, x) =

∞∑

k=0

Ckδ
2k+1uk+1

0 tk =

∞∑

k=0

Ck
δ(2k)(x)

(2k)!
uk+1
0 tk (4.11)

(see Equation 3.4). Since u(t, x) ∈ K[x]′[[t]], it is a unique solution

of the Cauchy problem (4.4), (4.5) in the ring K[x]′[[t]].

Remark 4.1. Note that for any t ∈ K, the series (4.11) converges in

the topology of K[x]′. The Cauchy–Stieltjes transform of (4.11) is

the following Laurent series
∞∑
k=0

Cku
k+1
0 tk

x2k+1 . If K = R, then this series

is an expansion of the functionw(t, x) =
x−
√

x2−4u0t
2t in the domain

D = {(t, x) ∈ R
2
: x > 0, x2 − 4u0t > 0}. The function w(t, x) is a

classical solution of the Euler–Hopf equation (4.4) in the domainD.

Example 4.2. Let u0 ∈ K. In K[x]′[[t]], consider the following

Cauchy problem for a Hamilton–Jacobi type equation ([5], Section

24.1.6):

∂u

∂t
=

(
∂u

∂x

)2

, (4.12)

u(0, x) = u0δ(x). (4.13)

By Theorem 4.1, the Cauchy problem (4.12), (4.13) has a unique

solution in F[x]′[[t]] and this solution can be represented in the

form (4.1) for n = 3:

u(t, x) =

∞∑

k=0

ukδ
3k+1tk, (4.14)

where uk ∈ F. Substituting (4.14) into (4.4), we obtain (see Proof of

Theorem 4.1):

∞∑

k=0

(k+1)uk+1δ
3k+4tk =

∞∑

k=0

k∑

j=0

(3j+1)(3(k−j)+1)ujuk−jδ
3k+4tk.

(4.15)

Equating coefficients at δ3k+4tk in Equation 4.15, we have

(k+ 1)uk+1 =

k∑

j=0

(3j+ 1)(3(k− j)+ 1)ujuk−j, k ∈ N0. (4.16)

We prove that yk =
2kC

(3)
k

k+1
is a solution of the recurrence

Equation 4.16 with the initial condition u0 = 1, where C
(3)
k

=

(3k+1)−1

(
3k+ 1

k

)
=

(3k)!

k!(2k+ 1)!
(k ∈ N0) are the Fuss–Catalan

numbers {[21], Section 7.5, Formula (7.67)}.

Consider the following combinatorial identity that was proved

in Gould [22]:

4

3k+ 4

(
3k+ 4

k

)
=

k∑

j=0

2

3j+ 2

(
3j+ 2

j

)
2

3(k− j)+ 2

(
3(k− j)+ 2

k− j

)
, k ∈ N0. (4.17)

Since

2

3j+ 2

(
3j+ 2

j

)
=

2(3j+ 1)!

j!(2j+ 1)!(2j+ 2)
=

1

j+ 1

(
3j+ 1

j

)
,

j ∈ N0,
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the equality (4.17) can be written in the form

4

3k+ 4

(
3k+ 4

k

)
=

k∑

j=0

1

j+ 1

(
3j+ 1

j

)
1

k− j+ 1

(
3(k− j)+ 1

k− j

)
, k ∈ N0. (4.18)

Since

4

3k+ 4

(
3k+ 4

k

)
=

4(3k+ 4)!

k!(2k+ 4)!(3k+ 4)
=

=
2(3k+ 4)!(k+ 1)

(2k+ 3)!k!(k+ 1)(k+ 2)(3k+ 4)

=
2(k+ 1)

(k+ 2)(3k+ 4)

(
3k+ 4

2k+ 3

)
=

=
2(k+ 1)

(k+ 2)(3k+ 4)

(
3(k+ 1)+ 1

k+ 1

)
=

2(k+ 1)

k+ 2

C
(3)
k+1

=
(k+ 1)yk+1

2k
,

after the multiplication (4.18) by 2k, we have

(k+ 1)yk+1 =

k∑

j=0

2j

j+ 1

(
3j+ 1

j

)
2k−j

k− j+ 1

(
3(k− j)+ 1

k− j

)
=

=

k∑

j=0

(3j+ 1)(3(k− j)+ 1)yjyk−j, k ∈ N0,

i.e., yk satisfy (4.16). Since yk = 2k(3k)!
(k+1)!(2k+1)!

is the number of

inequivalent rooted maps of some vertices {[23], p.409, Section 5

and Formula (5.7)}, we have yk ∈ Z (see also the integer sequence

A000309 in Sloane [24]). Therefore, if u0 = 1, then uk = yk ∈ Z.

Now, we consider an arbitrary u0 ∈ K. Multiplying the equality

(k+ 1)yk+1 =

k∑

j=0

(3j+ 1)(3(k− j)+ 1)yjyk−j, k ∈ N0

by uk+2
0 , we obtain

uk+2
0 yk+1 =

1

k+ 1

k∑

j=0

(3j+ 1)(3(k− j)+ 1)u
j+1
0 yju

k−j+1
0 yk−j,

k ∈ N0.

Therefore, for any u0 ∈ K, the sequence uk = uk+1
0 yk ∈ K

satisfies Equation 4.16. Hence, Equation 4.14 defines the unique

solution to the Cauchy problem (4.12), (4.13) in K[x]′[[t]].

Example 4.3. Let b, u0 ∈ K. Consider the following Cauchy

problem for the heat equation in K[x]′[[t]]

∂u

∂t
= b

∂2u

∂x2
, (4.19)

u(0, x) = u0δ(x). (4.20)

By Theorem 4.1, the Cauchy problem (4.19), (4.20) has a unique

solution in F[x]′[[t]] and this solution can be represented in the

form (4.1) for n = 2:

u(t, x) =

∞∑

k=0

ukδ
2k+1tk, (4.21)

where uk ∈ F. Substituting (4.21) into (4.19), we obtain (see Proof

of Theorem 4.1):

∞∑

k=0

(k+ 1)uk+1δ
2k+3tk = b

∞∑

k=0

(2k+ 1)(2k+ 2)ukδ
2k+3tk. (4.22)

Equating coefficients at δ3k+4tk in Equation 4.22, we have

(k+ 1)uk+1 = b(2k+ 1)(2k+ 2)uk, k ∈ N0

Since K is of characteristic 0, this implies the following

difference equation

uk+1 = 2b(2k+ 1)uk, k ∈ N0,

which, for any given u0 ∈ K, has the unique solution uk =

(2b)k(2k − 1)!!u0, k ∈ N0, where (−1)!! = 1. Therefore, the

unique solution of the Cauchy problem (4.19, 4.20) is in the form

u(t, x) =

∞∑

k=0

(2b)k(2k−1)!!u0δ
2k+1tk =

∞∑

k=0

bku0
δ(2k)(x)

k!
tk (4.23)

(see also Equation 3.4). Since u(t, x) ∈ K[x]′[[t]], it is a unique

solution of the Cauchy problem (4.19, 4.20) in the ring K[x]′[[t]].

Now let K = R, b > 0 and t > 0. Taking into account the

equality (3.14) [6] from Equation 4.23, we arrive

(
∞∑

k=0

(2b)k(2k− 1)!!δ2k+1tk, xj

)
=

1
√
4πbt

∞∫

−∞

xje−
x2

4bt dx, j ∈ N0,

i.e.,

∞∑

k=0

(2b)k(2k− 1)!!δ2k+1tk =
1

√
4πbt

e−
x2

4bt in R[x]′.

Example 4.4. Let K ⊃ Q and u0 ∈ K. Consider the following

Cauchy problem for the Harry Dym equation in the ring K[x]′[[t]]

([5], Section 13.1.4)

∂u

∂t
= u3

∂3u

∂x3
(4.24)

u(0, x) = u0δ(x). (4.25)

By Theorem 4.1, the Cauchy problem (4.12, 4.13) has a unique

solution in K[x]′[[t]] and this solution can be represented in the

form (4.1) for n = 6:

u(t, x) =

∞∑

k=0

ukδ
6k+1tk, (4.26)
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where uk ∈ K. As in the proof of Theorem 4.1, we have

∂u

∂t
=

∞∑

k=0

(k+ 1)uk+1δ
6k+7tk, (4.27)

∂3u

∂x3
= −

∞∑

k=0

(6k+ 1)(6k+ 2)(6k+ 3)ukδ
6k+4tk, (4.28)

u3 =

∞∑

k=0

∑

|α|=k

uα1uα2uα3δ
6k+3tk, (4.29)

where α = (α1,α2,α3). Substituting (4.27–4.29) into (4.24), we

obtain

∞∑

k=0

(k+ 1)uk+1δ
6k+7tk = −

∞∑

k=0

∑

|τ |=k

(6τ4 + 1)(6τ4 + 2)

(6τ4 + 3)uτ1uτ2uτ3uτ4δ
6k+7tk, (4.30)

where τ = (τ1, τ2, τ3, τ4). Equating coefficients at δ6k+7tk in the

right-hand side of (4.30), we obtain

uk+1 = −(k+ 1)−1
∑

|τ |=k

(6τ4 + 1)(6τ4 + 2)(6τ4 + 3)uτ1

uτ2uτ3uτ4 .

Computer experiments demonstrate that the first 200 terms of

the sequence uk are integers. Although this sequence is not found

in the online encyclopedia of integer sequences [24], we formulate

the conjecture that uk ∈ Z for all k ∈ N0.

The following example shows that the condition K ⊃ Q is

essential for the assertion of Theorem 4.1.

Example 4.5. Let K ⊃ Q. Consider the following Cauchy problem

in K[x]′[[t]]:

∂u

∂t
= u

(
∂u

∂x

)2

, (4.31)

u(0, x) = δ(x). (4.32)

By Theorem 4.1, the Cauchy problem (4.31, 4.32) has a unique

solution in K[x]′[[t]] and this solution can be represented in the

form (4.1) for n = 4:

u(t, x) =

∞∑

k=0

ukδ
4k+1tk, (4.33)

where u0 = 1. Substituting (4.33) into (4.31), we obtain

∞∑

k=0

(k+1)uk+1δ
4k+5tk =

∞∑

k=0

∑

|τ |=k

(4τ1+1)(4τ2+1)uτ1uτ2uτ3δ
4k+5tk,

(4.34)

where τ = (τ1, τ2, τ3).

Equating coefficients at δ4k+5tk in the right-hand side of

Equation 4.34, we obtain

uk+1 = (k+ 1)−1
∑

|τ |=k

(4τ1 + 1)(4τ2 + 1)uτ1uτ2uτ3 , k ∈ N0.

This implies that u1 = 1 and u2 = 11
2 /∈ Z. Therefore, the

Cauchy problem (4.31), (4.32) in Z[x]′[[t]] has no solutions.

5 Conclusion

We investigated the Cauchy problem of the nonlinear partial

differential equation

∂u

∂t
= aum0

(
∂u

∂x

)m1
(

∂2u

∂x2

)m2 (
∂3u

∂x3

)m3

,

m0,m1,m2,m3 ∈ N0,

3∑

j=0

mj > 0, a ∈ K

in the ring of copolynomials. We have found a solution to this

Cauchy problem, as the series in powers of the δ-function. We

considered the Cauchy problem for the Euler–Hopf equation ∂u
∂t +

u ∂u
∂x = 0, for a Hamilton–Jacobi type equation ∂u

∂t =
(

∂u
∂x

)2

and for the Harry Dym equation ∂u
∂t = u3 ∂3u

∂x3
. In the first two

examples, an interesting connection between classical nonlinear

partial differential equations and well-known integer sequences is

revealed. The conjecture were formulated that all the coefficients

of an expanding in powers of the δ-function of the solution of the

Cauchy problem for the Harry Dym equation are integers.
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The vibration of micro-circular
ring of ceramic with
viscothermoelastic properties
under the classical Caputo and
Caputo-Fabrizio of
fractional-order derivative

Eman A. N. Al-Lehaibi
� *

Mathematics Department, Jamoum University College, Umm Al-Qura University, Jamoum, Saudi
Arabia

This work introduces a novel mathematical framework for examining the
thermal conduction characteristics of a viscothermoelastic, isotropic micro-
circular ring. The foundation of the model is Kirchhoff’s theory of love plates.
The governing equations have been developed by using Lord and Shulman’s
generalized thermoelastic model. For a viscothermoelasticity material, Young’s
modulus incorporates an additional fractional derivative consideration such as
the classical Caputo and Caputo-Fabrizio types, alongside the normal derivative.
The outer bounding plane is thermally loaded by ramp-type heating. Laplace
transform has been applied and its inverse has been obtained numerically.
Graphical comparisons between the definitions of the ordinary derivative and
the fractional derivatives were incorporated into the study. The objective was to
study the impacts of the fractional derivative order on the vibration distribution
of a ceramic micro-circular ring and obtain novel results. It is ascertained that
the fractional derivative order and resonator thickness have no discernible effect
on the distribution of thermal waves; nevertheless, the ramp heat parameter is
identified as having a significant impact. The order of the fractional derivatives
and the resonator’s thickness, have a significant impact on themechanical wave.
It has been demonstrated that the ramp heat parameter effectively regulates the
energy damping in ceramic resonators.

KEYWORDS

fractional derivative, micro-circular ring, resonator, viscothermoelasticity, ceramic,
Kirchhoff’s Love plate, ramp-type heat

Introduction

Micro-circular rings and plates have substantial uses in MEMS (Micro-Electro-
Mechanical Systems). They may be used in sensors for accurate measurement, such
as the detection of pressure or acceleration. Actuators facilitate the attainment of
regulated motions. Their small size and distinctive mechanical characteristics render
them optimal for tiny devices, augmenting the performance and utility of MEMS across
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diverse domains like as electronics and biomedicine [1, 2]. Many
researchers introduced many applications of micro-circular rings
and plates due to their importance in the construction of various
electromechanical micro-resonators. Hao conducted a study on the
reduction of vibrations in micro/nanoelectromechanical systems
by investigating thermoelastic attenuation using circular thin-plate
resonators [3]. A study on thermoelastic damping of circular-plate
resonators, with a special emphasis on the axisymmetric out-of-
plane vibration has been conducted by Sun and Tohmyoh [4]. The
influence of thermoelastic damping on the vertical oscillation of
circular plate resonators has been investigated by Sun and Saka [5].
The damping of vibrations that occur out-of-plane for a circular
thin plate with generalized viscothermoelastic properties has been
computed by Grover [6]. The dual-phase-lag (DPL) model has been
employed byGuo et al. to develop the thermoelastic damping theory
for micro and nanomechanical resonators [7, 8]. When studying
the behaviour of materials that change over time, it is crucial
to consider the properties of viscoelastic materials or mechanical
relaxation. Biot has analyzed the ideas of viscothermoelasticity
and the principles of vibration in the field of thermodynamics
[9, 10]. Drozdov constructed a mathematical model to describe
the behaviour of polymers when subjected to the combined
influences of viscosity, temperature variations, and deformation
under high stresses [11]. Ezzat and El-Karmany employed an
innovative thermo-viscoelastic model to investigate how volumetric
characteristics impact the thermoelastic behaviour of viscoelastic
materials [12]. Carcione et al. employed computer methodology to
study the transmission of waves in a solid substance, utilizing the
mechanical model of Kelvin-Voigt [13]. Grover conducted research
on transverse vibrations in small-scale viscothermoelastic beam
resonators [6, 14]. The mathematical equations that depict the
lateral vibrations of a slender beam composed of homogeneous
thermoelastic material, which has minuscule voids at a microscopic
level have been analyzed by Sharma and Grover [15]. The
inclusion of memory in fractional systems offers a legitimate
justification for this generalization, as the formation of romantic
relationships is fundamentally affected by memory [16, 17]. The
fractional derivative is a powerful technique for understanding the
origins and lineage of different materials and processes. Research
has demonstrated that using fractional derivatives in real-world
modelling is more appropriate than using typical integer derivatives
[18–20]. A multitude of scholars have dedicated their efforts to
the advancement of a groundbreaking concept, beginning with the
works of Riemann–Louville and Caputo, in the field of fractional
derivatives [21–23]. Youssef developed a theory of thermoelasticity
that integrates the notion of fractional heat conductivity and
expands upon preexisting thermoelasticity theories [24, 25]. Sherief
et al. introduced a different theory of thermoelasticity by employing
the methodology of fractional calculus [26].

The fractional calculus models demonstrate more consistency
in comparison to classic models due to their precise prediction
of delayed effects. Researchers have shown that new fractional
derivatives might potentially solve the issue of exceptional or
non-singular kernels by providing an exponential solution to the
problem of a single kernel in fractional derivatives concepts.
There exist three distinct categories of fractional derivatives,
namely Liouville-Caputo, Riemann-Liouville, and Caputo-Fabrizio
[27, 28]. Consequently, several innovative thermoelastic models

were introduced, all of which depended on the fundamental
notion of fractional calculus. Magin and Royston developed
a model that utilized the fractional deformation derivative to
describe the behaviour of the material [29]. A Hookean solid
is a substance that demonstrates zero-order derivative behaviour,
while a Newtonian fluid is a substance that demonstrates first-
order derivative behaviour. The heat exchanges at an intermediate
level and the splitting process for viscothermoelastic material are
described in the spectrum [29]. A new theory of generalized
thermoelasticity, which relied on the strain resulting from factional
order derivative has been proposed by Youssef. The stress-strain
relation has been considered based on a new and distinct addition
to the Duhamel-Neumann framework by Youssef [30]. Youssef has
effectively solved the issue of thermoelasticity in a one-dimensional
system by addressing the fractional order strain. More precisely, he
has examined an application where half of the space is involved,
based on the frameworks proposed by Biot, Green-Lindsay, Lord-
Shulman, and Green-Naghdi type-II [30]. Awad et al. investigated
the occurrence condition for the thermal resonance phenomenon
during the electron-phonon interaction process in metals based on
the hyperbolic two-temperature model [31]. Awad presented the
mathematical description of a two-dimensional unsteady magneto-
hydrodynamics slow flowwith thermoelectric properties (TEMHD)
on an infinite vertical partially hot porous plate [32].

This paper introduces a novel mathematical framework for
analyzing the heat conduction of a viscothermoelastic, isotropic
micro-circular ring. The notion is based on Kirchhoff ’s plate
hypothesis. The governing equations were constructed based on
Lord and Shulman’s extended thermoelastic model. This model
incorporates Young’s modulus, which encompasses the normal
derivative as well as the fractional derivative definitions of classical
Caputo and Caputo-Fabrizio. The study report utilizes a micro-
circular ring to illustrate the concept of scaled viscothermoelasticity.
The micro-circular ring’s outer bounding plane was subjected
to heating using a ramp-type method. Numerical methods were
employed to compute the inverse of the Laplace transform. The
investigation involved doing visual comparisons between normal
and fractional derivative definitions.The objective was to investigate
the effects of the fractional order of the derivatives on the vibration
of ceramic micro-circular rings and obtain new results.

Generalized viscothermoelastic based on
Lord and Shulman model

We assume an isotropic, viscothermoelastic, and homogeneous,
micro-circular ring based on the plate theory of Kirchhoff ’s Love.
The origin is at the centre of the plate with a uniform thickness
z(− h

2
≤ z ≤ h

2
) and radius r(R1 ≤ r ≤ R2) in the system of cylindrical

coordinates as in the domain Equation 1:

ψ = {(r,θ,z):R1 ≤ r ≤ R2,0 ≤ θ ≤ 2π,−h/2 ≤ z ≤ h/2} (1)

At the beginning, the plate is in a state of no tension, no strain,
and is at a consistent room temperature T0. The neutral plan is kept
on the plan of (r,θ), and the z-axis is sitting normally on the plan of
(r,θ), as in Figure 1 [33].
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FIGURE 1
A simply supported viscothermoelastic micro-circular ring.

Hence, the components of the displacement have the following
form [6]:

(ur,uθ,uz) = (−z
∂w
∂r
,− z

r
∂w
∂θ
,w) (2)

wherew = w(r,θ, t) in Equation 2 is the lateral deflection function in
the general form.

The temperature increment based on the reference temperature
T0 is:

φ(r,θ,z, t) = (T−T0),where 
(T−T0)

T0
≪ 1 (3)

According to Hook’s solid state, the stress components are [4,
29–33]:

σrr =
E(εrr + υεθθ)

1− υ2
−
αTEφ
1− υ

(4)

σθθ =
E(υεrr + εθθ)

1− υ2
−
αTEφ
1− υ

(5)

σrθ =
Eεrθ
1+ υ
,σzz = σzθ = σrz = 0 (6)

The strain components take the following formulations:

(εrr,εθθ,εzz) ≡ (
∂ur
∂r
,
ur
r
+ 1
r
∂uθ
∂θ
,
∂uz
∂z
) ≡ (−z ∂

2w
∂r2
,−z( 1

r2
∂2w
∂θ2
+ 1
r
∂w
∂r
),0) (7)

(εrθ,εrz,εzθ) ≡ (−2z
∂
∂r
(1
r
∂w
∂θ
),0,0) (8)

The equation of motion is [33]:

( ∂
2

∂r2
+ 2
r
 ∂
∂r
) Mr +(

2
r2
 ∂
∂θ
+ 2
r
 ∂

2

∂r∂θ
) Mrθ

+( 1
r2
 ∂

2

∂θ2
− 1
r
 ∂
∂r
) Mθ − ρ h ẅ = 0 (9)

where

Mr =
h/2

∫
−h/2

z σrrdz = −
h3E

12(1− υ2)
[( ∂

2

∂r2
+ υ
r
∂
∂r
+ υ
r2

∂2

∂θ2
)w+ (1+ υ)αTMT]

(10)

Mθ =
h/2

∫
−h/2

zσθθdz = −
h3E

12(1− υ2)
[(υ ∂2

∂r2
+ 1
r
∂
∂r
+ 1
r2

∂2

∂θ2
)w+ (1+ υ)αTMT] (11)

Mrθ =
h/2

∫
−h/2

zσrθdz = −
h3E

12(1+ υ)
[ ∂
∂r
(1
r
∂w
∂r
)] (12)

MT =
12
h3

h/2

∫
−h/2

zφdz (13)

In the Equations 3–13, υ is the Poisson’s ratio, ρ is the density, T
gives the absolute temperature,αT gives the coefficient of the thermal
expansion, the Young’smodulus isE,MT is the thermalmoment, and
Mr is the flexure moments of torsion.

In the context of Lord-Shulman theory based on the
viscothermoelastic definition, the generalized heat conduction
equation is given by [7, 33]:

(∇2 + ∂2

∂z2
)φ = ( ∂

∂t
+ τ0

∂2

∂t2
)(

ρCυ

K
φ−

αTT0E
K(1− 2ν)

z∇2w) (14)

where τ0 in Equation 14 is known as the thermal relaxation time, and
∇2 = ∂2

∂r2
+ 1

r
∂
∂r
+ 1

r2
∂2

∂θ2
.

By inserting Equations 10–12 into the Equation 9, we obtain the
equation of motion as follows:

E∇2∇2w+
12αT(1+ υ)

h3
E∇2(

h/2

∫
−h/2

φzdz)+
12ρ(1− υ2)

h2
ẅ = 0 (15)

For the viscothermoelastic material based on the fractional
order derivative, Young’s modulus has the following form [34, 35]:

E = E0(1+ τ
αDα

t ) (16)

where τ is a small value which gives the mechanical relaxation
time, and the operator Dα

t =
dα

dtα
in Equation 16 is a fractional order

derivative and is given by the classical Caputo (C-C), Caputo-
Fabrizio (C-F), and normal derivative, respectively, as in the
following unified form [25, 27, 36–43]:

Dα
t f(t) =

{{{{{{
{{{{{{
{

f′(t) α = 1  NormalDerivative (N−D)
1

Γ(1− α)

t

∫
0

f′(ξ)
(t− ξ)α

dξ 0 ≤ α < 1 ClassicalCaputo (C−C)

1
1− α
∫
t

0
exp(−

α(t− ξ)
1− α
) f′(ξ)dξ 0 ≤ α < 1 Caputo− Fabrizio (C− F)

}}}}}}
}}}}}}
}

(17)

Therefore, the equation of motion Equation 15 takes the
following form:

(1+ ταDα
t )∇

2∇2w+
12αT(1+ υ)(1+ τ

αDα
t )

h3
∇2(

h/2

∫
−h/2

φzdz)

+
12ρ(1− υ2)

h2E0
ẅ = 0 (18)

The formula of the heat conduction Equation 14 will be in the
following form:

(∇2 + ∂2

∂z2
)φ = ( ∂

∂t
+ τ0

∂2

∂t2
)(

ρCυ

K
φ−

αTE0T0(1+ τ
αDα

t )
K(1− 2ν)

z∇2w)

(19)
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The formulations of the stress components Equations 4–6will be
in the following forms:

σrr = E0(1+ τ
αDα

t )[
εrr + υεθθ
1− υ2
−

αT
(1− υ)

ϕ] (20)

and

σθθ = E0(1+ τ
αDα

t )[
υεrr + εθθ
1− υ2
−

αT
(1− υ)

ϕ] (21)

Now, for the axisymmetric circularmicro-ring, the displacement
components Equation 2 are as follows [6]:

(ur,uθ,uz) ≡ (−z
∂w(r, t)

∂r
,0,w(r, t)) (22)

Hence, from Equations 20–22, the components of the strain
Equations 7, 8 are as follows:

εrr = −z
∂2w
∂r2
,εθθ = −

z
r
∂w
∂r
,εzz = 0,εrθ = εrz = εzθ = 0 (23)

and from Equations 23, we obtain:

ε = εrr + εθθ + εzz = −z∇
2w (24)

where ∇2 = ∂2

∂r2
+ 1

r
∂
∂r
.

Because no heat flux exists across the two sides of the circular
beam ±h/2 , hence, we have:

∂
∂z

φ(r,z, t)|
z=− h

2

= ∂
∂z

φ(r,z, t)|
z= h

2

= 0 (25)

For the very thin circular micro-beam h≪ R1, the temperature
varies regarding a sin( πz

h
) function along the thickness direction. So,

according to Equation 25, we can consider the following function:

ϕ(r,z, t) = sin(πz
h
)φ(r, t) (26)

Thus, by inserting Equation 26 into the equation of motion
Equation 18 it will be changed to the following form:

(1+ ταDα
t )∇

2∇2w+
12αT(1+ υ)(1+ τ

αDα
t )

h3
∇2φ(

h/2

∫
−h/2

z sin(πz
h
)dz)

+
12ρ(1− υ2)

h2E0
ẅ = 0 (27)

After executing the integration in the second termof Equation 27,
we obtain:

(1+ ταDα
t )∇

2∇2w+
24αT(1+ υ)(1+ τ

αDα
t )

π2h
∇2φ+

12ρ(1− υ2)
h2E0

ẅ = 0

(28)

Byusing theEquations 14, 24, 26, the heat conductionEquation 19
could be written in the form:

(∇2 − p2)φ = ( ∂
∂t
+ τ0

∂2

∂t2
)[

ρCυ
K

φ−
T0αTE0z

K(1− 2ν) sin (pz)
(1+ ταDα

t )∇
2w]

(29)

where p = π
h
.

The following dimensionless variables will be used to simplify
the governing Equations 28, 29 as following [44, 45]:

(h′, 1
p′
, r′,z′,w′) ≡ ηco(h,

1
p
, r,z,w),(τ′o,τ

′, t′) ≡ ηc2o(τo,τ, t),

σ′ = σ
E0
,φ′ =

φ
To
,c2o =

E0
ρ
,η =

ρCυ

K

Hence, we obtain:

(1+ ταDα
t )∇

2∇2w+ α1(1+ τ
αDα

t )∇
2φ+ α2ẅ = 0 (30)

(∇2 − p2)φ = ( ∂
∂t
+ τ0

∂2

∂t2
)[φ− α3 (1+ τ

αDα
t )∇

2w] (31)

σrr = (1+ τ
αDα

t )[
εrr + υεθθ
1− υ2
−

αTT0

(1− υ)
ϕ] (32)

and

σθθ = (1+ τ
αDα

t )[
υεrr + εθθ
1− υ2
−

αTT0

(1− υ)
ϕ] (33)

where α1 =
24(1+υ)αTT0

π2h
, α2 =

12(1−υ2)
h2

, α3 =
E0αT
(1−2υ)Kη

z
sin (pz)

, and

α3|z→0 = −
E0αT

Kη(1−2υ)
lim
z→0
( z

sin (pz)
) = E0αT

Kη(1−2υ)p
.

For simplicity, all the primes have been removed.
The Laplace transform will be used, which is given as:

L[ f(r, t)] = f (r, s) =
∞

∫
0

f (r, t)e−s t dt (34)

For the fractional derivative, the Laplace transforms Equation 34
which is defined in Equation 17 and given by [27, 36–38]:

L[Dα+1
t f(r, t)] =

{{{{{{{{{
{{{{{{{{{
{

s2 f(r, s) α = 1 NormalDerivative (N−D)

sα+1 f(r, s) −(
n−1

∑
k=0

sα−k f(k)(r,0+)) 0 ≤ α < 1 ClassicalCaputo (C−C)

s2 f(r, s)
s+ α(1− s)

−(
s f(r,0+) + f′(r,0+)

s+ α(1− s)
) 0 ≤ α < 1 Caputo− Fabrizio (C− F)

}}}}}}}}}
}}}}}}}}}
}

.

(35)

The initial conditions have been considered as follows:

ϑ(r, t)|t→0+ =
∂ϑ(k)(r, t)
∂t(k)
|
t→0+
= 0,w(r, t)|

t→0+
=

∂w(k)(r, t)
∂t(k)
|
t→0+
= 0.

(36)

After applying the Laplace transform and the initial conditions
Equation 36, the three types of derivatives in Equation 35 will be in
the following form:

L[Dα+1
t f(r, t)] =

{{{
{{{
{

s2 f(r, s) α = 1  NormalDerivative (N−D)
sα+1 f(r, s) 0 ≤ α < 1 ClassicalCaputo (C−C)
s2

s+ α(1− s)
f(r, s) 0 ≤ α < 1 Caputo− Fabrizio (C− F)

}}}
}}}
}

. (37)

To use the formula in Equation 37, we must add a first-
order derivative concerning time for the Equation 30 to be in the
following form:

( ∂
∂t
+ ταDα+1

t )∇
2∇2w+ α1(

∂
∂t
+ ταDα+1

t )∇
2φ+ α2

···
w = 0

and re-write the Equations 31–33 in the following form:
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FIGURE 2
The studied function distributions are based on different types of derivatives. (A) The temperature increment. (B) The lateral deflection (vibration). (C)
The deformation. (D) The average stress.

(∇2 − p2)φ = (1+ τ0
∂
∂t
)
∂φ
∂t
− α3(1+ τ0

∂
∂t
)( ∂

∂t
+ ταDα+1

t )∇
2w

∂σrr
∂t
= ( ∂

∂t
+ ταDα+1

t )[
εrr + υεθθ
1− υ2
−

αTT0

(1− υ)
ϕ]

and

∂σθθ
∂t
= ( ∂

∂t
+ ταDα+1

t )[
υεrr + εθθ
1− υ2
−

αTT0

(1− υ)
ϕ]

After applying Laplace transform, we obtain:

(s+ ταω)∇2∇2w+ α1(s+ τ
αω)∇2φ+ α2s

3w = 0 (38)

(∇2 − p2)φ = (1+ τ0s)sφ− α3 (1+ τ0s)(s+ τ
αω)∇2w (39)

σrr =
ω
s
[
εrr + υεθθ
1− υ2
−

αTT0

(1− υ)
ϕ] (40)

σθθ =
ω
s
[
υεrr + εθθ
1− υ2
−

αTT0

(1− υ)
ϕ] (41)

ε = εrr + εθθ = −z
∂2w
∂r2
− z1

r
∂w
∂r
,= −z∇2w (42)

where

ω =
{{{{
{{{{
{

s+ τs2 α = 1  NormalDerivative (N−D)
s+ ταsα+1 0 ≤ α < 1 ClassicalCaputo (C−C)

s+ ταs2

s+ α(1− s)
0 ≤ α < 1 Caputo− Fabrizio (C− F)

}}}}
}}}}
}

.

(43)

Equations 38, 39 give:

(∇2∇2 + α4)w+ α1∇
2φ = 0 (44)

and

(∇2 − α5)φ+ α6∇
2w = 0 (45)

where α4 =
α2s

3

ω
, α5 = p

2 + (s+ τ0s
2),α6 = α3 (1+ τ0s)ω .

Equations 44, 45 after elimination, give the following equation:

(∇6 − (α5 + α6α1)∇
4 + α4∇

2 − α4α5){w,φ} ≡ 0 (46)

The solutions of the Equation 46 where r > 0, has the
following forms [33]:

ϑ (r, s) = −α6
3

∑
i=1

k2i [AiI0(kir) +BiK0(kir)] (47)
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FIGURE 3
The studied function distributions are based on different types of fractional derivatives with different values of ramp-time heat parameter. (A) The
temperature increment. (B) The lateral deflection (vibration). (C) The deformation. (D) The average stress.

and

w (r, s) =
3

∑
i=1
(k2i − α5)[AiI0(kir) +BiK0(kir)] (48)

where I0(kir),K0(kir) are the modified Bessel functions of the first
kind and second kind and both are of order zero, respectively.
Moreover,±k1,±k2,±k3 give the three complex roots of the following
characteristic equation:

k6 − (α6α1 + α5)k
4 + α4k

2 − α4α5 = 0 (49)

We consider the micro-circular ring to be simply supported,
moreover, it is thermally loaded on the outer surface r = R2, while the
inter surface r = R1 has no temperature increment as follows [33]:

w(0, t) = ∇2w(r, t)|r=R1
= w(a, t) = ∇2w(r, t)|r=R2

= 0 (50)

and

ϑ(R1, t) = 0 and ϑ(R2, t) = ϑog(t) (51)

By applying the Laplace transform defined above on the
boundary conditions Equations 50, 51, we obtain:

w(R1, s) = ∇
2w(r, s)|r=R1

= w(R2, s) = ∇
2w(r, s)|r=R2

= 0 (52)

and

ϑ(R1, s) = 0 and ϑ(R2, s) = ϑ0G(s) (53)

where ϑ0 is constant and gives the intensity of the thermal loading.
By applying the given boundary conditions Equations 52,

53 in the Equations 47, 48, we obtain the following system of
linear equations:

3

∑
i=1

k2i [AiI0(kiR1) +BiK0(kiR1)] = 0 (54)

3

∑
i=1
(k2i − α5)[AiI0(kiR1) +BiK0(kiR1)] = 0 (55)

3

∑
i=1

k2i (k
2
i − α5)[AiI0(kiR1) +BiK0(kiR1)] = 0 (56)
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FIGURE 4
The studied function distributions based on Caputo-Fabrizo (C-F) of fractional derivatives with different order. (A) The temperature increment. (B) The
lateral deflection (vibration). (C) The deformation. (D) The average stress.

3

∑
i=1

k2i [AiI0(kiR2) +BiK0(kiR2)] = −
ϑ0G(s)
α6

(57)

3

∑
i=1
(k2i − α5)[AiI0(kiR2) +BiK0(kiR2)] = 0 (58)

3

∑
i=1

k2i (k
2
i − α5)[AiI0(kiR2) +BiK0(kiR2)] = 0 (59)

By solving Equation 49 and the above system of linear equations
in Equations 54–59 by using MAPLE-21 software, we obtain the
parameters (see the Appendix 1).

Regarding the function of the thermal loading, we
consider the micro-circular ring to be subjected to a ramp-type
heat with ramp-time heat parameter t0 ≠ 0 as in the
following function:

g(t) =
{
{
{

t
t0

0 < t < t0

1 t ≥ t0

}
}
}

(60)

In the Laplace transform domain, the thermal loading
function in Equation 60 will take the form:

G(s) = 1− e
−st0

s2t0
(61)

From Equations 40–42, it is available to obtain the average stress
distribution as follows:

σ̃ = 1
2
(σrr + σθθ) =

ω
s(1− υ)
[ ε
2
− αTT0ϕ] (62)

where ω is defined in Equation 43. After inserting the Equation 61
in the solutions, we obtain the complete solutions in the Laplace
transform domain.

Numerical results and discussion

In the following numerical calculations and to obtain the
numerical results, a micro-circular ring made of ceramic (Si3N4)
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FIGURE 5
The studied function distributions based on classical-Caputo (C-C) of fractional derivatives with a different order. (A) The temperature increment. (B)
The lateral deflection (vibration). (C) The deformation. (D) The average stress.

has been considered. Thus, the mechanical and thermal material
properties will take the following values [6, 33]:

K = 8.0 W/(mK) , αT = 3.0× 10
−6K−1, ρ = 3200 kg/m3,

T0 = 300K, Cυ = 937.5 J/(kgK), E0 = 250 GPa,
τ = 6.7× 10−12s, υ = 0.44.

The Laplace transform inversions could be calculated for
the Equations 47, 48, 62 by using the following Riemann-sum
approximation method of Tzou [46]:

f(r, t) = L−1[ f(r, s)] =
eκt f(r,κ)

2t
+ e

κt

t
Re

N

∑
j=1
(−1)j f(r,κ+

jπ
t
i) (63)

“Re” denotes the real part, while “i = √−1” is well-known as the
imaginary number unit.

To get convergence with faster steps, the value “κ” must satisfy
the relation κt ≈ 4.7.

Themathematical softwareMAPLE 21 is suitable to compute the
inversions of the Laplace transform by applying the formula in the
iteration Equation 63.

For the non-dimensional values of the parameters a = R2 −R1,
h = a

5
, z = h/4, t = t0 = 1.0, and τ0 = 0.02, the results have been

figured into six groups each group represents the temperature
increment, the lateral deflection (vibration), deformation, and
average stress, respectively.

Figure 2 is the first group and contains four Figures 2A–D, the
results have been figured for four following cases:

(a) The non-viscous case (N-V) in black lines when τ =
0.0 and α = 1.0.

(b) The normal-derivative (N-D) and viscothermelastic case in
blue lines when τ = 0.02 and α = 1.0.

(c) The Classical-Caputo (C-C) of fractional viscothermelastic
case in red lines when τ = 0.02 and α = 0.6.

(d) The Caputo-Fabrizio (C-F) of fractional viscothermelasticity
case in green lines when τ = 0.02 and α = 0.6.

Figure 2A shows that the fractional derivatives do not impact the
temperature increment distribution and all the studied cases give the
same value even the non-visco case.
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FIGURE 6
The studied function distributions based on Caputo-Fabrizo (C-F) of the fractional derivative with different thickness z when α = 0.6. (A) The
temperature increment. (B) The lateral deflection (vibration). (C) The deformation. (D) The average stress.

The lateral deflection of the resonator is shown in Figure 2B.
The fractional order parameter plays a significant role in the
vibration of the resonator, and the absolute values of the peak points
of the lateral deflection distributions have been arranged in the
following order in Equation 64:

|wC−C| > |wC−F| > |wN−D| > |wN−V| (64)

The resonator vibration reaches its maximum amplitude in the
classical Caputo definition before it reaches its maximum amplitude
in the non-viscous definition. Furthermore, the magnitudes of the
vibration in the setting of the two definitions, classical-Caputo and
Caputo-Fabrizo, exhibit a higher degree of similarity compared to
the other two scenarios.

Figure 2C illustrates the deformation of the resonator, where the
fractional order parameter significantly influences its vibration.The
deformation’s maximum points are ordered based on the absolute
values as in Equation 65:

|εC−C| > |εC−F| > |εN−D| > |εN−V| (65)

Accordingly, the non-viscus definition yields the least
deformation value while the classical-Caputo definition yields the

largest. The deformation values are also more closely packed in the
setting of the two classical Caputo and Caputo-Fabrizo formulations
compared to the other two instances.

As seen in Figure 2D, the average value of the stress components
is significantly affected by the fractional order parameter.
In addition, the average stress’s absolute values follow this
sequence as in Equation 66:

|σ|averageC−C | > |σ|
average
C−F | > |σ|

average
N−D | > |σ|

average
non−viscus| (66)

Figure 3 is the third group and contains four Figures 2A–D in
which the impacts of the ramp-time heat parameter have been
studied in the context of the four studied cases of the derivatives
as in the first group of figures but for two different values of the
ramp-time heat parameter t0 = (0.8,1.2) which gives two cases t0 <
t and t0 > t.

The ramp-time heat parameter has a pronounced effect on
the temperature rise, vibration, absolute deformation value, and
absolute average stress distributions shown in the figures.The values
of all these distributions, including the outer border of the micro-
circular ring resonator, drop as the ramp-time heat parameter’s value
increases.
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Figure 4 is the fourth group which contains Figures 4A–D, in
which the results have been figured for the studied functions in the
context of the Caputo-Fabrizo fractional derivatives for four values
of fractional order parameter α = (0.1,0.3,0.5,0.7)when τ0 = 0.02 to
stand on its effects.

Figure 4A shows that the fractional order parameter does not
affect the distribution of temperature increments. Nevertheless,
it has a major impact on the vibration, deformation, and stress
distributions, as seen in Figures 4B–D. Specifically, as the fractional
order parameter rises, the magnitude of deformation, vibration, and
average stress decreases.

Figure 5 is the fifth group which contains Figures 5A–D, in
which the results have been figured for the studied functions in the
context of the classical-Caputo fractional derivatives for four values
of fractional order parameter α = (0.1,0.3,0.5,0.7)when τ0 = 0.02 to
stand on its effects.

Figure 5A shows that the distribution of temperature increase
remains unchanged regardless of the fractional order parameter.
Nonetheless, it has a substantial impact on the vibration,
deformation, and stress distributions, as seen in Figures 5B–D: as
the value of the fractional order parameter increases, the magnitude
of deformation, vibration, and average stress diminishes.

Figure 6 is the last group which contains Figures 6A–D in which
the results have been figured for the studied functions in the
context of the Caputo-Fabrizo fractional derivatives for four values
of the micro-circular ring’s thickness z = (h/3,h/4,h/5,h/6) when
τ0 = 0.02 and α = 0.6 to stand on its effects.

The value of z does not affect the palate’s vibration as in
Figure 6B, while it has significant effects on the temperature
increment, deformation, and stress distributions where increasing
in the value of z leads to an increase in the values of the vibration,
absolute value of deformation, and absolute value of average
stress as in Figures 6A, C, D.

Conclusion

The conclusions can be drawn from the analysis of the vibration
of the simply supported micro-circular ring resonator made of
viscothermoelastic ceramic: The fractional order parameter and
the ratio of the plate’s radius to its thickness do not have a
significant impact on the distribution of temperature increment.
This conclusion is based on the definitions of viscothermoelasticity,
classical Caputo, and Caputo-Fabrizo of the fractional derivative
were taken into consideration.

The distribution of the temperature increase is significantly
affected by the ramp-time heat parameter.

The fractional order parameter in the context of the two studied
definitions of fractional derivatives does not affect the thermal wave
while it has significant effects on the mechanical waves.

The distribution of the temperature increase is significantly
affected by the thickness of the micro-circular ring resonator.

Themechanical relaxation time parameter has significant effects
on the mechanical waves while it does not affect the thermal wave
in the context of the two studied definitions of the fractional
derivatives.

The vibration, deformation, and stress distributions of the
micro-circular ring resonator are significantly influenced by the
fractional order, thickness of the resonator, and the ramp-time heat
parameters.

The ramp-type heat parameter serves as a regulator for the
energy dissipation process inside the micro-circular ring resonator.

The studied functions are significantly influenced by the ramp-
type heat parameter, which plays a crucial role in determining the
amount of energy created by the resonator’s material.
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