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Development of powerful new high-
throughput technologies for probing the 
transcriptome, proteome and metabolome 
is driving the rapid acquisition of 
information on the function of molecular 
systems. The importance of these 
achievements cannot be understated 
– they have transformed the nature of 
both biology and medicine. Despite this 
dramatic progress, one of the greatest 
challenges that continues to confront 
modern biology is to understand how 
behavior at the level of genome, proteome 
and metabolome determines physiological 
function at the level of cell, tissue and organ 
in both health and disease. Because of the 
inherent complexity of biological systems, 
the development, analysis, and validation 
of integrative computational models based 

directly on experimental data is necessary to achieve this understanding. This approach, 
known as systems biology, integrates computational and experimental approaches through 
iterative development of mathematical models and experimental validation and testing. The 
combination of these approaches allows for a mechanistic understanding of the function of 
complex biological systems in health and their dysfunction in disease. 
 
The National Heart, Lung, and Blood Institute (NHLBI) has recognized the importance of the 
systems biology approach for understanding normal physiology and perturbations associated 
with heart, lung, blood, and sleep diseases and disorders. In 2006, NHLBI announced the 
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Exploratory Program in Systems Biology, followed in 2010 by the NHLBI Systems Biology 
Collaborations. The goal of these programs is to support collaborative teams of investigators 
in using experimental and computational strategies to integrate the component parts of 
biological networks and pathways into computational models that are based firmly on and 
validated using experimental data. These validated models are then applied to gain insights 
into the mechanisms of altered system function in disease, to generate novel hypotheses 
regarding these mechanisms that can be tested experimentally, and to then use the results of 
experiments to refine the models. 
 
The purpose of this Research Topic is to present the range of innovative, new approaches 
being developed by investigators working in areas of systems biology that couple experimental 
and modeling studies to understand the cause and possible treatment of heart, lung, 
blood and sleep diseases and disorders. This Research Topic will be of great interest to the 
cardiovascular research community as well as to the general community of systems biologists.
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Development of powerful new high-throughput technologies for
probing the transcriptome, proteome, and metabolome is driving
the rapid acquisition of information on the function of molecular
systems. One of the greatest challenges that we now confront is to
understand how behavior at the level of genome, proteome, and
metabolome shapes physiological function at the level of cell, tis-
sue and organ in both health and disease. Because of the inherent
complexity of biological systems, the development, analysis, and
validation of integrative computational models based directly on
experimental data is necessary to achieve this understanding. This
approach, known as systems biology, integrates computational and
experimental approaches through iterative development of math-
ematical models and experimental validation and testing. The
combination of these approaches allows for a mechanistic under-
standing of the function of complex biological systems in health,
and their dysfunction in disease.

In 2006, the National Heart, Lung, and Blood Institute
(NHLBI) announced the Exploratory Program in Systems
Biology, followed in 2010 by the NHLBI Systems Biology
Collaborations. The goal of these programs is to support collab-
orative teams of investigators in using experimental and compu-
tational strategies to integrate the component parts of biological
networks and pathways into computational models that are based
firmly on and validated using experimental data. These validated
models are then applied to gain insights into the mechanisms of
altered system function in disease, to generate novel hypotheses
regarding these mechanisms that can be tested experimentally,
and to then use the results of experiments to refine the mod-
els. This Research Topic is comprised of articles by researchers
funded by this NHLBI program. One set of publications focus
on lung function in health and disease. Lauzon et al. (2012)
present a multi-scale model of lung function spanning molecular
(force production by actin-myosin proteins), cellular (regulation
of force production by calcium signaling), tissue (smooth muscle
contraction coupled with the biomechanics of airway narrow-
ing), and organ scales (mechanical lung impedance). The model
provides a new tool for investigating airway hyper responsive-
ness in the setting of asthma and other lung diseases. O’Connor
et al. (2012) present a closed-loop model of neural control of
breathing that includes a neural network model of the respiratory
pattern generator that drives a systems-level model of lung con-
traction with feedback to the respiratory pattern generator driven
by mechano- and baro-receptor reflexes. The model provides
a framework for studying cough disorders. Segers et al. (2012)

present results from an experimental study aimed at identifying
the role of different neuronal populations in regulating fricative
cough. Finally, Fallahi-Sichani et al. (2012) present a multi-scale
model of the lung immune response to Mycobacterium tubercu-
losis and use the model to examine the ways in which the NF-kB
signaling pathway regulates inflammatory responses. Another set
of publications focus on blood disease. Dick et al. (2012) develop
a multi-scale model of acute inflammatory disease, such as sep-
sis, that describes baro-, chemo-, and cytokine-reflex control of
cardio-pulmonary function mediated by the nucleus tractus soli-
tarius (nTS). They present the model-motivated hypothesis that
the dis-regulation of cardio-respiratory patterns in the setting of
sepsis results from expression of cytokines in the nTS. Goldman
et al. (2012) develop models of the erythrocyte signaling path-
ways that control ATP release as a function of hemoglobin oxygen
saturation. These models provide a new framework for study-
ing regulation of microvascular perfusion distribution. Diamond
et al. (2013) resent a modeling approach that combines fluid-
dynamics simulation of blood flow in the presence of a developing
thrombus, which drives formation of a boundary layer of soluble
agonists that drives blood platelet motion and binding to the ves-
sel wall. Platelet activation state is driven by the history of intracel-
lular calcium concentration as determined using a neural network
model. This work stands out in terms of the different biological
scales that are modeled, the different computational approaches
employed at each of these scales, and the ability to personalize
the model and predict patient-specific responses. Ghonaim et al.
(2013) present results from a combined experimental and mod-
eling study of the relationship between hemoglobin oxygen sat-
uration, erythrocyte capillary transit times, and stimulated ATP
release. They use a novel experimental approach that uses micro-
patterned plastic/glass substrates and a flow chamber to measure
tissue hemoglobin oxygen saturation level in response to different
patterns of tissue oxygen exposure. Experimental and modeling
results demonstrate that erythrocyte ATP release is best stimu-
lated by exposing a larger number of capillaries and endothelial
cells to the oxygen signal. The paper by Lemons et al. (2013) is
focused on the regulation of protein-protein interaction networks.
They propose, given the large number of protein-protein interac-
tions regulated by micro-RNAs (miRNAs), that miRNA screening
may provide key insights into the specific gene-protein networks
that are dis-regulated in disease. Using miRNA screening and
analytical approaches for identifying miRNA targets, these inves-
tigators identified two miRNAs that are up-regulated in human
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heart failure, and that inhibit SERCA2. This novel finding is
supported by the fact that down-regulation of SERCA2 is a well-
known hall-mark of heart failure. Finally, Gauthier et al. (2012)
develop a novel, highly integrative model of the guinea pig ven-
tricular myocyte describing the key properties of calcium-induced
calcium-release that drives cardiac muscle contraction. Using the
model, they show that even subtle changes of action potential
shape (as is common in many different types of heart disease)
can lead to significant changes in the timing and amplitude of
intracellular calcium transients and force generation in the heart.

This body of work illustrates the exciting, new, emerging direc-
tions that research on heart, lung, blood, and sleep disorders
is taking. This work shares common features. Each takes a sys-
tems biology approach in which experimental data are used to
formulate and refine computational models. Each of the mod-
els presented are multi-scale in that they describe function across
different levels of biological organization—ranging from molec-
ular interactions to the function of cells, tissue, and in some cases
organs. Some models couple different computational methods
between scales. In every case, this dove-tailing of experiment and
modeling is leading to novel, deep insights into the nature of
heart, lung, and blood disease.
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The NF-κB signaling pathway is central to the body’s response to many pathogens. Math-
ematical models based on cell culture experiments have identified important molecular
mechanisms controlling the dynamics of NF-κB signaling, but the dynamics of this path-
way have never been studied in the context of an infection in a host. Here, we incorporate
these dynamics into a virtual infection setting. We build a multi-scale model of the immune
response to the pathogen Mycobacterium tuberculosis (Mtb) to explore the impact of NF-κB
dynamics occurring across molecular, cellular, and tissue scales in the lung. NF-κB signaling
is triggered via tumor necrosis factor-α (TNF) binding to receptors on macrophages; TNF
has been shown to play a key role in infection dynamics in humans and multiple animal sys-
tems. Using our multi-scale model, we predict the impact of TNF-induced NF-κB-mediated
responses on the outcome of infection at the level of a granuloma, an aggregate of immune
cells and bacteria that forms in response to infection and is key to containment of infec-
tion and clinical latency. We show how the stability of mRNA transcripts corresponding
to NF-κB-mediated responses significantly controls bacterial load in a granuloma, inflam-
mation level in tissue, and granuloma size. Because we incorporate intracellular signaling
pathways explicitly, our analysis also elucidates NF-κB-associated signaling molecules and
processes that may be new targets for infection control.

Keywords: tuberculosis, granuloma, NF-κB signaling pathway, tumor necrosis factor, systems biology, multi-scale

modeling

INTRODUCTION
The transcription factor NF-κB is a central inflammatory medi-
ator that is essential for the induction of a variety of inflamma-
tory genes in response to various pathogens and inflammatory
cytokines. One such cytokine is tumor necrosis factor-α (TNF), a
key regulator of host responses to infection, in particular immune
response to Mycobacterium tuberculosis (Mtb), the causative agent
of tuberculosis (TB). TNF affects the immune response to Mtb
through several mechanisms, including induction of macrophage
activation to efficiently kill bacteria (Gutierrez et al., 2008; Harris
et al., 2008; Mosser and Edwards, 2008), induction of chemokine
and cytokine expression (Algood et al., 2004), and apoptosis (Beg
and Baltimore, 1996; Van Antwerp et al., 1996; Keane et al., 1997,
2002). These activities, regulated by the NF-κB signaling pathway,
have made TNF a key factor for restricting bacterial growth in
granulomas, aggregates of bacteria and immune cells within the
lung that form as a result of the immune response (Algood et al.,
2003; Turner et al., 2003; Ulrichs et al., 2004; Lin et al., 2006; Morel
et al., 2006; Tsai et al., 2006; Davis and Ramakrishnan, 2008).
Hence, the TNF-induced NF-κB signaling pathway is central to
the Mtb immune response, and regulation of intracellular NF-κB
signaling dynamics may be key to controlling Mtb infection.

Granulomas are the key pathological feature of TB. If gran-
ulomas are capable of containing mycobacteria growth and
spread, humans develop a clinically latent infection (Flynn and
Klein, 2010; Russell et al., 2010; Flynn et al., 2011). However, if

granulomas are impaired in function, infection progresses, gran-
ulomas enlarge, and bacteria seed new granulomas; this results in
progressive pathology and disease, i.e., active TB. In clinical latency,
immunologic perturbation at the level of the granuloma can result
in reactivation of infection (Lin et al., 2010). Several experimental
(Flynn et al., 1995; Bean et al., 1999; Roach et al., 2002; Chakravarty
et al., 2008; Clay et al., 2008; Lin et al., 2010) and theoretical
(Marino et al., 2007, 2012; Ray et al., 2009; Fallahi-Sichani et al.,
2010, 2011, 2012) studies have confirmed the principal role of TNF
in containment of bacteria within TB granulomas.

NF-κB in resting cells is bound to IκB proteins that hold
it latent in cytoplasm. Binding of TNF to TNF receptor type
1 (TNFR1) results in activation of IκB kinase (IKK) and IKK-
mediated phosphorylation of IκB proteins that ultimately leads
to ubiquitination and proteasome-mediated degradation of IκB.
Free NF-κB then accumulates in the nucleus and mediates the
transcription of target genes (Hayden and Ghosh, 2008; Balti-
more, 2011). These genes include extracellular signaling mole-
cules such as TNF and chemokines, intracellular proteins such as
macrophage-activating molecules (referred to here as ACT) and
inhibitor of apoptosis proteins (IAPs), as well as negative regula-
tors of NF-κB such as IκBα and A20 (Pahl, 1999; Hoffmann and
Baltimore, 2006; Gutierrez et al., 2008). The inhibitory impact of
A20 on NF-κB results from its roles in attenuating TNFR1 activity
and inhibiting IKK activation (Wertz et al., 2004). The regulation
of NF-κB via multiple critical intracellular feedback mechanisms
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is important for the control of inflammation and immune acti-
vation (Hoffmann et al., 2002; Cheong et al., 2006, 2008; Kearns
and Hoffmann, 2009). Further, the structural characteristics of
the inflammatory genes induced by NF-κB, particularly stability
of their corresponding mRNA transcripts, control the dynamics
of NF-κB-mediated responses in cells (Hao and Baltimore, 2009).
However, the significance of intracellular molecular mechanisms
controlling the dynamics of TNF-induced NF-κB signaling in reg-
ulating the long-term immune response to Mtb infection is poorly
characterized.

One can hypothesize that molecules such as NF-κB that have
been shown to be critical to immunity against Mtb may have sig-
nificant effects at the cell and tissue scale, namely on the formation
and function of granulomas (Barry et al., 2009; Kirschner et al.,
2010). However, these effects have not been identified. For exam-
ple, it is unclear how the dynamics of NF-κB-mediated responses
(i.e., expression of chemokines, TNF and IAPs, and activation of
macrophages) affect formation and function of a granuloma. A
critical requirement for such studies is the integration of biological
information across multiple biological scales (molecular, cellular,
and tissue; Figure 1). In this study, we describe a multi-scale com-
putational model that includes: (i) molecular interactions describ-
ing the dynamics of the TNF-induced NF-κB signaling pathway,
(ii) molecular interactions describing the dynamics of TNFR bind-
ing and trafficking, and (iii) cellular/tissue-scale dynamics of the
immune response to Mtb. These processes altogether lead to for-
mation of a granuloma. We incorporate a recent model of the
NF-κB pathway developed by Tay et al. (2010) based on cell cul-
ture data but never explored in the context of an infection in a
host. We show that dynamics of TNF-induced NF-κB signaling
are critical to controlling bacterial load and inflammation levels
at the tissue scale. Further, TNF-mediated activation of resting
macrophages, in addition to infected macrophages, is required
for a protective immune response, but must be optimally regu-
lated by the immune system to prevent excessive inflammation.
We also predict the impact of the dynamics (the extent and the
timing) of various NF-κB-mediated responses (i.e., expression of
chemokines, TNF, IAPs, and activation of macrophages) on both
formation and function of a granuloma. Finally, we ask whether
pharmacologically manipulating the NF-κB signaling pathway (for
example, by affecting mRNA stability) can improve the outcome
of a granuloma that is initially unable to control infection.

MATERIALS AND METHODS
MULTI-SCALE GRANULOMA MODEL
To address questions regarding TNF-regulated host immune
responses to Mtb infection in the lung and the impact of NF-κB
signaling dynamics on these responses, we developed a multi-
scale computational model (Figure 1) that describes processes
over three biological length scales: tissue, cellular, and molecular.
Cellular and tissue-scale dynamics are captured via probabilistic
rules for interactions between immune cells and Mtb using a sto-
chastic two-dimensional agent-based model (ABM). Single-cell
level molecular scale processes include TNF/TNFR binding and
trafficking events (defined here to include synthesis, internaliza-
tion, recycling, and degradation of ligand and receptors) as well as
intracellular NF-κB signaling pathway interactions and reactions

that are captured by non-linear ordinary differential equations
(ODEs). We briefly describe these models below and then describe
our approach for linking them.

Our ABM builds on our previous models that capture cel-
lular scale interactions leading to a tissue-level readout, namely
granuloma formation in response to Mtb infection in primates
(Segovia-Juarez et al., 2004; Ray et al., 2009; Fallahi-Sichani et al.,
2011). The ABM has the following components: agents (immune
cells, bacteria, chemokines, and cytokines), the environment where
agents reside (a two-dimensional grid representing a section of
lung tissue), probabilistic rules that govern the dynamics of agents,
including movement, actions, and interactions among agents and
between agents and environment, and time-scales on which the
rules are executed. Briefly,ABM events include: chemotactic move-
ment and recruitment of immune cells from vascular sources to
site of infection, intracellular and extracellular growth of Mtb,
phagocytosis of bacteria by macrophages, cell death and apoptosis,
macrophage/T-cell interactions such as cytolytic functions of cyto-
toxic T cells (Tc) and IFN-γ-mediated activation of macrophages
by pro-inflammatory T cells (Tγ), down-regulation of immune
cells by regulatory T cells (Treg), diffusion of chemokines and
soluble TNF (sTNF), and caseation (formation of an area of
dead tissue with a cheese-like appearance in the center of gran-
uloma). Some of the ABM rules are shown in Figure 1A and a
detailed description of these aspects of ABM structure and rules
can be found in Fallahi-Sichani et al. (2011). ABM parameters
that reflect known biological activities are provided in Table A1 in
Appendix. We have now modified our ABM described in Fallahi-
Sichani et al. (2011) to facilitate its linking to an NF-κB signaling
dynamics model. We now include NF-κB-mediated macrophage
activation, NF-κB-mediated chemokine and TNF expression, and
NF-κB-mediated inhibition of apoptosis. All of these activities
are now controlled as part of the NF-κB signaling dynamics
model.

The ODE model describing kinetic processes of TNF/TNFR
binding and trafficking occurring in individual cells follows our
previous models (Fallahi-Sichani et al., 2010, 2011; Figure 1B;
Tables A2 and A3 in Appendix). We modified the reactions asso-
ciated with TNF expression in this model to capture the linkage
between this process and the NF-κB signaling pathway.

In order to capture the molecular mechanisms that control
TNF-mediated responses at the single-cell level, we first need
to have a model describing intracellular NF-κB signaling path-
way activation that follows TNFR activation due to TNF binding.
Then, NF-κB activation must be linked to each of the NF-κB-
mediated cell responses that include macrophage activation and
expression of chemokines, TNF and IAPs. The single-cell level
intracellular NF-κB signaling pathway interactions and reactions
are captured by using the deterministic approximation of the
two-compartment NF-κB dynamics model presented by Tay et al.
(2010). This model combines the two-feedback NF-κB-IκBα-A20
regulatory module with the signal transduction cascade trans-
mitting the signal from sTNF-bound TNFR1 receptors. TNFR1
activation results in an oscillatory NF-κB response that controls
the dynamics of gene expression (Nelson et al., 2004). The model
includes noise due to different levels of TNFRs and total NF-
κB molecules across the cell population. This noise results from
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FIGURE 1 | Schematic diagram of the multi-scale model of the

immune response to Mtb infection in the lung. (A) An overview of
selected cell- and tissue-level ABM rules based on known immunological
activities and interactions (Mr, resting macrophage; Mi, infected
macrophage; Mci, chronically infected macrophage; Ma, activated
macrophage; Tγ, pro-inflammatory IFN-γ producing T cell; Tc, cytotoxic T
cell). Example rules are: (I) infection of a resting macrophage after
phagocytosis of extracellular Mtb, (II) intracellular growth of Mtb within an
infected macrophage, (III) cytotoxic T cell-mediated killing of an infected
macrophage, (IV) activation of a macrophage as a result of interaction with
IFN-γ producing T cells and TNF, (V) secretion of TNF (and chemokines)

from an activated macrophage and diffusion in tissue, (VI) TNF interactions
with a macrophage and induction of feedback mechanisms that control
TNF-mediated cell responses. For a full description of all ABM rules (see
Fallahi-Sichani et al., 2011). (B) An overview of TNF/TNFR binding and
trafficking interactions and reactions and the NF-κB signal transduction
cascade at the level of individual cell. TNF/TNFR-associated processes are
modeled in both macrophages and T cells. (C) Detailed description of the
regulation of the TNF-induced NF-κB signaling pathway and
NF-κB-mediated responses [expression of chemokines (CHEM), TNF,
inhibitors of apoptosis (IAP), and macrophage-activating molecules (ACT)]
for an individual macrophage.

random assignment of initial values for TNFR densities and total
NF-κB molecules to each single cell as described in Tay et al. (2010).

In this study, we link the molecular scale NF-κB dynam-
ics model described above to four major NF-κB-mediated cell
responses in macrophages (Figure 1C). These responses are:
TNF expression, chemokine expression, macrophage activation,

and inhibition of apoptosis. To do this, we incorporate NF-κB-
mediated expression of genes corresponding to TNF, chemokines,
a generic IAP, and a generic macrophage-activating molecule
(ACT), translation of their mRNA transcripts, and secretion of
translated TNF and chemokines into the single-cell level NF-κB
dynamics model. The generic IAP represents a family of proteins
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that serve as inhibitors of apoptosis (e.g., cellular inhibitors of
apoptosis, c-IAPs) via binding and inhibiting caspase activities
(Karin and Lin, 2002). The generic ACT represents various mole-
cules (e.g., membrane trafficking molecules or lysosomal enzyme)
that are induced by NF-κB and are required for activation of a
macrophage to efficiently kill bacteria (Gutierrez et al., 2008). The
reactions, parameters, and equations describing intracellular NF-
κB signaling pathway processes and NF-κB-mediated responses
for an individual cell are listed in Tables A4–A6 in Appendix. The
full range of parameter values explored is given in Table A5 in
Appendix; values in parentheses indicate baseline model values,
which are intermediate values in the ranges explored and yield the
containment outcome.

LINKING THE SINGLE-CELL MOLECULAR SCALE NF-κB SIGNALING
DYNAMICS TO THE TNF/TNFR KINETIC MODEL AND THE
CELLULAR/TISSUE-SCALE MODEL
The activation of TNF-induced NF-κB signaling pathway requires
sTNF binding to cell surface TNFR1. It is this process that links
the TNF/TNFR kinetic model to the intracellular NF-κB signaling
dynamics model. The activation of the NF-κB signaling pathway
initiates four major cellular responses: induction of chemokine
expression, TNF expression, macrophage activation (to efficiently
kill bacteria), and inhibition of apoptosis. These responses serve
as the link between the single-cell molecular scale NF-κB signaling
dynamics model and the cellular/tissue-scale model (Figure 1).
Secretion of chemokines and TNF by macrophages into extracel-
lular spaces follows NF-κB-mediated expression of their genes and
translation of their mRNA transcripts as described in the NF-κB
signaling equations (see Tables A4 and A6 in Appendix). Recent
studies on NF-κB activation and apoptosis have shown that these
are processes with discrete nature at the single-cell level, with more
cells responding to higher doses of stimuli and longer periods of
stimulation (Albeck et al., 2008; Tay et al., 2010). Accordingly, we
describe NF-κB-mediated activation of a macrophage as a Pois-
son process with a probability determined within each time-step
(Δt ), based on a Poisson rate parameter that is a function of
the macrophage activation rate constant (kACT), intracellular con-
centration of ACT protein [ACT], and the ACT concentration
threshold for macrophage activation (τACT):

Pactivation =
{

0 ; [ACT] < τACT

1 − e−kACT([ACT]−τACT)Δt ; [ACT] ≥ τACT
(1)

Similarly, we model TNF-induced apoptosis for each individual
cell by:

Papoptosis ={
0 ; [sTNF/TNFR1i] < τapopt

1 − e−kapopt([sTNF/TNFR1i ]−τapopt)Δt ; [sTNF/TNFR1i] ≥ τapopt

(2)

We use a Poisson process with a probability computed as a func-
tion of the apoptosis rate constant (kapopt), the concentration of
internalized sTNF/TNFR1 complexes (sTNF/TNFR1i), and the
concentration threshold for internalized sTNF/TNFR1 (τapopt).

The inhibitory impact of the NF-κB activation on macrophage
apoptosis is captured by:

kapopt = kIAP

kIAP + [IAP]
k0

apopt (3)

The magnitude of kapopt is a function of the intracellular con-
centration of IAP, the apoptosis inhibition coefficient (kIAP),
and the intrinsic TNF-induced apoptosis rate constant (k0

apopt).
Parameters introduced in Eqs 1–3 are listed in Table A5 in
Appendix.

COMPUTER SIMULATIONS AND MODEL OUTPUTS
The multi-scale computational model is used to simulate the
immune response to Mtb and granuloma formation in the lung for
200 days post-infection. Simulations are initiated following place-
ment of one infected macrophage with one intracellular bacterium
at the center of a grid representing a section of lung tissue (see
Fallahi-Sichani et al., 2011 for details). Cell-cell interactions gov-
erned by ABM rules are updated within every ABM time-step
(Δt = 10 min). Molecular scale processes, including TNF/TNFR
dynamics and NF-κB signaling dynamics at the single-cell level,
are updated within shorter time-steps (dt = 0.5 s).

We use several model outputs to track formation and function
of a granuloma during the immune response to Mtb. Granuloma
size and total number of macrophages and T cells in tissue are
used as readouts to track granuloma formation. We also track total
number of bacteria and total number of activated macrophages as
readouts for quantifying granuloma function. These outputs rep-
resent the ability of a granuloma to control infection and inflam-
mation, respectively. Other outputs of interest include chemokine
and TNF concentrations in tissue, and caseation area.

We previously showed that the efficacy of TNF in controlling
Mtb infection is strongly affected by whether or not macrophages
stimulated by TNF are infected (Fallahi-Sichani et al., 2011). To
analyze how NF-κB signaling affects infected versus uninfected
(resting) macrophages in a granuloma, we define infected/resting
cell ratios, Rapoptosis and Ractivation, as follows. Rapoptosis is defined
as the ratio of the number of infected macrophages that undergo
TNF-mediated apoptosis to the number of resting macrophages
that undergo TNF-mediated apoptosis during a 200-day period
post-infection. Ractivation is similarly defined as the number of
infected macrophages that become activated (to efficiently kill bac-
teria) to the number of resting macrophages that become activated
during a 200-day period post-infection.

PARAMETER ESTIMATION
We estimate ABM parameter values from literature data or by
using uncertainty analysis as described in detail in Marino et al.
(2008); Ray et al. (2009); Fallahi-Sichani et al. (2011). Cell-specific
TNFR densities and rate constants for TNF/TNFR processes are
estimated based on experimental data from our group (Fallahi-
Sichani et al., 2010) and other groups as indicated in Table A3
in Appendix. Intracellular NF-κB signaling parameters are as in
Tay et al. (2010; Table A5 in Appendix). Values of parameters
used to describe TNF-induced apoptosis and NF-κB-mediated
cell responses, including induction of expression of chemokines
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and TNF, macrophage activation and inhibition of apoptosis,
are estimated via uncertainty analysis. This is done by varying
parameter values in ranges that are consistent with experimental
and modeling data on time-scales of events associated with these
responses (Fotin-Mleczek et al., 2002; Rangamani and Sirovich,
2007; Albeck et al., 2008; Hao and Baltimore, 2009; Tay et al.,
2010). We specify a baseline set of parameter values (containment
baseline values as listed in Tables A1, A3, and A5 in Appendix)
that robustly leads to control of infection in granulomas with
organized structures as reported for humans and non-human
primates.

MODEL VALIDATION
Immunity to Mtb in humans and animal studies has been attrib-
uted to activities of a variety of factors, including specific immune
cells (e.g., macrophages and T cells), cytokines (e.g., TNF and
IFN-γ), chemokines (e.g., CCL2, CCL5, CXCL9/10/11), immune
receptors (e.g., TNFR1), and signaling pathways (e.g., NF-κB). Our
new multi-scale computational model [resulting from the incor-
poration of the single-cell level NF-κB signaling dynamics (Tay
et al., 2010), as indicated in Figure 1, into our previous genera-
tion model (Fallahi-Sichani et al., 2011)] must retain its ability
to reproduce experimental findings regarding the importance of
these factors in control of infection. Our model is able to reca-
pitulate different types of granuloma with different abilities to
control infection and inflammation (Figure 2). Using a baseline
set of values for model parameters (Tables A1, A3, and A5 in
Appendix), our model captures a state of equilibrium between
the host and Mtb termed bacterial containment (Figure 2A). This
state represents control of infection for more than 200 days within
a well-circumscribed granuloma containing stable bacteria num-
bers (<103 total bacteria). Simulated containment granulomas
closely represent experimentally characterized solid granulomas
(Algood et al., 2003; Turner et al., 2003; Ulrichs et al., 2004; Lin
et al., 2006; Morel et al., 2006; Tsai et al., 2006; Davis and Ramakr-
ishnan, 2008) that are predominantly composed of uninfected
macrophages surrounding a core of bacteria and infected and acti-
vated macrophages with T cells localized at the periphery. Varying
values of important model parameters lead to other possibilities,

including clearance of bacteria, uncontrolled growth of bacteria,
or excessive inflammation.

We also perform virtual deletion and depletion experiments
that mimic experimental gene knockout or molecule depletion
studies. Loss of activity is achieved by setting relevant parame-
ters (e.g., probabilities or rate constants) to zero or raising rele-
vant thresholds to an unattainable level. Virtual deletion refers to
the loss of activity from the beginning of simulation (such as a
gene knockout) and virtual depletion refers to the loss of activ-
ity after establishment of a granuloma. Specifically, we simulate
gene knockouts of previously identified essential components of
the Mtb immune response (e.g., TNF, TNFR1, IFN-γ, and T cell
knockouts). These simulation studies are used for testing the abil-
ity of the model to predict different infection outcomes under
pathological conditions compatible with both experimental and
previous modeling data on granuloma formation. Simulations of
TNF or TNFR1 knockout (Figure 2B), IFN-γ gene knockout, and
deletion of T cells (data not shown), in agreement with exper-
imental data and our previous modeling studies (Flynn, 2004;
Segovia-Juarez et al., 2004; Lin et al., 2007; Ray et al., 2009; Lin
and Flynn, 2010; Fallahi-Sichani et al., 2011), lead to uncontrolled
growth of Mtb and formation of granulomas with irregular struc-
tures that include very high numbers of extracellular bacteria, large
numbers of infected macrophages, and widespread caseation. In
contrast, inhibition of TNFR1 internalization, a process critical to
control of TNF concentration and apoptosis (Fallahi-Sichani et al.,
2010, 2011), leads to excessive inflammation by which we mean
recruitment of a large number of immune cells in tissue, uncon-
trolled activation of macrophages, and very high concentrations
of TNF (Figure 2C).

SENSITIVITY ANALYSIS
A second approach to identify important processes that determine
infection outcome is to use sensitivity analysis. We use sensitiv-
ity analysis to analyze the impact of parameters describing events
at different scales (molecular, cellular, or tissue scales) on model
outputs describing granuloma outcomes. In particular, we use
sensitivity analysis techniques adapted for use in ABMs (Marino
et al., 2008) to analyze the impact of NF-κB signaling-associated

FIGURE 2 | Examples of virtual control experiments for the multi-scale

computational model of granuloma formation in response to Mtb

infection. (A–C) Granuloma snapshots for (A) a scenario of containment
(200 days post-infection), (B) a TNFR1 knockout (TNFR1mac =TNFR1Tcell = 0)
scenario resulting in uncontrolled growth of bacteria 200 days post-infection,
and (C) a scenario of blocking TNFR1 internalization (k int1 = 0) resulting in
excessive inflammation 5 weeks post-infection, respectively. All other model

parameter values used for these experiments are listed inTables A1, A3, and
A5 in Appendix. Cell types and status are shown by different color squares, as
indicated on the right side of the figure (Mr, resting macrophage; Mi, infected
macrophage; Mci, chronically infected macrophage; Ma, activated
macrophage; Be, extracellular bacteria; Tγ, pro-inflammatory IFN-γ producing T
cell; Tc, cytotoxic T cell; Treg, regulatory T cell). Caseation and vascular sources
are also indicated.
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parameter values on model outputs such as bacteria numbers,
macrophage and T cell numbers, chemokine and TNF concentra-
tions in tissue, granuloma size, and caseation area. Latin hypercube
sampling (LHS) is an algorithm that allows multiple parameters to
be varied and sampled simultaneously in a computationally effi-
cient manner (Blower and Dowlatabadi, 1994). The correlation
of model outputs with each parameter is quantified via calcula-
tion of a partial rank correlation coefficient (PRCC). PRCC values
vary between −1 (perfect negative correlation) and +1 (perfect
positive correlation) and can be differentiated based on p-values
derived from Student’s t test. Here, we performed 700-sample LHS
simulations for each parameter. Each sampled parameter set was
run four times (to account for stochasticity) and averages of the
outputs were used to calculate PRCC values. The choice of the
number of simulations is determined by the desired significance
level for the PRCC (Blower and Dowlatabadi, 1994; Marino et al.,
2008). Here, 700 runs imply that PRCC values above +0.13 or
below −0.13 are significantly different from zero (p < 0.001).

PROGRAMMING AND VISUALIZATION
The model was implemented in C++. We use Qt, a C++ frame-
work that runs our simulations on multiple platforms (Linux,
Windows, and Mac OS) with a graphical user interface (GUI).
Through the GUI, one can visualize and track different aspects
of the granuloma, including the structure and molecular con-
centration gradients, as the granuloma forms and is maintained.
Simulations can be run with or without graphical visualization.
For more detailed description of the Qt framework applications
in studying granuloma characteristics see (Marino et al., 2011).

RESULTS
CONTRIBUTION OF NF-κB SIGNALING FACTORS TO CONTROL OF
GRANULOMA OUTCOMES
We know from both experimental data and our previous modeling
studies that TNF availability and activities (i.e., macrophage acti-
vation, induction of TNF and chemokine expression, regulation
of immune cell recruitment, and induction of apoptosis) within a
granuloma are essential to control of infection (Keane et al., 2001;
Winthrop, 2006; Marino et al., 2007; Chakravarty et al., 2008; Ray
et al., 2009; Lin et al., 2010; Fallahi-Sichani et al., 2011). The NF-κB
signaling pathway activated as a result of TNF binding to TNFR1
on the membrane of immune cells is critical for regulation of
these activities. Having validated that our multi-scale model gives
results consistent with experimental data (see Materials and Meth-
ods, Figure 2), we now predict the role of biochemical factors
and interactions associated with the NF-κB signaling pathway on
important outcomes at the granuloma level: number of bacteria,
granuloma size and amount of caseation, and TNF concentration.

We analyze the impact of TNF-mediated NF-κB signaling-
associated parameters in six groups as defined in Table A5
in Appendix: (1) concentration of intracellular signaling mole-
cules [NF-κB, IκBα kinase (IKK), and IKK kinase (IKKK)], (2)
processes associated with activation of the signal transduction
cascade, (3) A20 and IκBα synthesis, (4) IκBα interactions, (5)
NF-κB and IκBα transport between cytoplasm and nucleus, and
(6) NF-κB-mediated cell responses (TNF and chemokine expres-
sion, macrophage activation, inhibition of apoptosis). Notably,

parameters identified to have strong correlations with bacterial
levels within a granuloma, i.e., granuloma function, belong to
groups 1–3 and group 6 (see Table 1 and Tables A7 and A8 in
Appendix). Processes within groups 4 and 5, although essential for
NF-κB activation, have a less significant impact on model outputs
as compared to other groups when they are all varied within a 10-
fold range around their baseline values. Within group 1, increasing
the average number of NF-κB molecules per macrophage signifi-
cantly enhances macrophage activation and thus reduces bacterial
numbers within a granuloma. This is consistent with the pub-
lished data on the role of NF-κB in activating macrophages to kill
mycobacteria (Gutierrez et al., 2008). Similarly, IKKK activation
(from group 2), a key process in NF-κB signaling cascade that
occurs following TNF binding to TNFR1, strongly and negatively
correlates with bacterial load. Among group 3 parameters, the rate
of NF-κB binding at A20 and IκBα gene promoters as well as the
rates of A20 and IκBα mRNA synthesis and translation positively
correlate with bacterial levels. In contrast, increasing A20 and IκBα

mRNA and protein degradation rates impairs granuloma’s abil-
ity to control infection. These results highlight the important role
that the NF-κB-IκBα-A20 feedback regulatory module plays in the
regulation of the NF-κB-mediated cell responses (Cheong et al.,
2008), and thus in the regulation of granuloma function.

Finally, group 6 comprises important parameters with strong
effects on most model outcomes. Parameters that control either
TNF expression or macrophage activation significantly influence
granuloma function and thus bacterial load within a granuloma.
In contrast, parameters that only affect chemokine expression
or apoptosis do control granuloma size (formation) but with-
out exerting strong effects on bacterial load (see Table 1 and
Table A8 in Appendix). This is consistent with our previous stud-
ies indicating that TNF-induced macrophage activation is a key
mechanism for controlling bacterial growth (Ray et al., 2009).
The rate of NF-κB-dependent mRNA synthesis for chemokines,
TNF, the generic macrophage-activating molecule (ACT), and
the inhibitor of apoptosis (IAP) is an important parameter. It
strongly and positively correlates with all TNF-induced cellular
responses in tissue (i.e., apoptosis, TNF and chemokine expres-
sion, and macrophage activation) and negatively correlates with
bacterial load, caseation, and granuloma size. The stability of TNF
mRNA, as well as TNF translation, degradation, and secretion
significantly control granuloma outcomes. Increasing the rates
of degradation of TNF mRNA and intracellular TNF or reduc-
ing the rates of TNF translation and secretion enhance bacterial
numbers, caseation, and granuloma size. In addition, the ACT
translation rate (negatively), and the ACT degradation rate as
well as the ACT concentration threshold for macrophage acti-
vation (positively) correlate with bacterial load within a granu-
loma. Increasing the chemokine secretion rate or reducing the
chemokine mRNA degradation rate elevates chemokine con-
centration in tissue, enhancing immune cell recruitment, and
granuloma growth.

Overall, each of the above parameters identified as critical
for formation and function of a granuloma represents a poten-
tial target for therapeutic modulation. Hence, we focus our next
analysis on the potential effects of manipulation of each of these
parameters.
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Table 1 | NF-κB-associated model parameters significantly correlated with outputs of interest, i.e., bacterial numbers, granuloma size, caseation

area, andTNF concentration at day 200 post-infection.

NF-κB-associated

parameter*

Parameter description
†

(parameter group number
‡
)

Selected model outputs

Total number

of bacteria

Granuloma

size

Caseation Average tissue

concentration of

sTNF

NF-κBtot Average number of NF-κB molecules per cell (1) −− −
ka IKKK activation rate (2) −−
ki IKKK inactivation rate (2) +
q1 Rate of NF-κB binding at A20 and IκBα gene promoters (3) +
c1 Inducible A20 and IκBα mRNA synthesis rate (3) ++ +
c3 A20 and IκBα mRNA degradation rate (3) −−
c4 A20 and IκBα translation rate (3) ++ −−
c5 A20 degradation rate (3) −− ++
c1r Rate of NF-κB-induced mRNA synthesis for chemokines,

TNF, ACT, and IAP (6)

−− −− −− ++

c3rchem Chemokine mRNA degradation rate (6) −− ++
c4chem Chemokine translation rate (6) −−
e3chem Chemokine secretion rate (6) ++ −
c3rTNF TNF mRNA degradation rate (6) ++ ++ ++
c4TNF TNF translation rate (6) −− −− −− ++
c5TNF Intracellular TNF degradation rate (6) ++ ++ ++
e3TNF TNF secretion rate (6) −− −− −− ++
c4ACT ACT translation rate (6) −−
c5ACT ACT degradation rate (6) ++
τACT ACT concentration threshold for macrophage activation (6) ++
c5IAP IAP degradation rate (6) −− −− −

Detailed sensitivity analysis results are presented inTables A7 and A8 in Appendix.

*Only parameters with significant PRCC values are indicated. Significant positive and negative correlations are shown using + and − as follows: −/+: 0.001 < p-

value < 0.01, −−/++: p-value < 0.001.
† IKKK, IKK kinase; IKK, IκBα kinase; ACT, generic macrophage-activating molecule; IAP, inhibitor of apoptosis.
‡ NF-κB signaling-associated parameters are categorized in six groups as defined inTable A5 in Appendix: (1) concentration of intracellular signaling molecules [NF-κB,

IκBα kinase (IKK), and IKK kinase (IKKK)], (2) processes associated with activation of the signal transduction cascade, (3) A20 and IκBα synthesis, (4) IκBα interactions,

(5) NF-κB and IκBα transport between cytoplasm and nucleus, and (6) NF-κB-mediated cell responses.

OPTIMAL REGULATION OF NF-κB SIGNALING DYNAMICS FOR CONTROL
OF INFECTION WITHOUT INDUCING EXCESSIVE INFLAMMATION
The analysis above highlights various NF-κB signaling pathway-
associated biochemical factors and intracellular interactions that
show significant impacts on infection outcomes at all scales (mole-
cular, cellular, and tissue). How do these responses influence gran-
uloma formation? Does manipulation of these mechanisms alter
infection outcome at the granuloma level? The effects of manip-
ulation of four important NF-κB-associated factors as identified
by sensitivity analysis - (i) average number of NF-κB molecules
per cell, NF-κBtot, (ii) IKKK inactivation rate constant, ki, (iii)
A20 and IκBα mRNA degradation rate constant, c3, and (iv)
TNF mRNA degradation rate constant, c3rTNF - on granuloma
formation, total number of bacteria, sTNF concentration, and
macrophage activation after Mtb infection are shown in Figure 3.

The values of these parameters significantly determine the
ability of a granuloma to control bacterial load. Small num-
bers of NF-κB molecules per cell, slow rates of A20 and IκBα

mRNA degradation, rapid rates of IKKK inactivation, and rapid

rates of TNF mRNA degradation all lead to uncontrolled growth
of bacteria within a 200-day period post-infection (Figure 3B).
These effects result from reduced rates of TNF-induced activa-
tion of macrophages, diminishing their ability to kill bacteria.
Slowly altering the values of these parameters to intermediate
levels reduces bacteria numbers and leads to containment of bac-
teria within a stable granuloma. Further increasing the values of
parameters NF-κBtot and c3, or further reducing the values of para-
meters c3rTNF and ki from their containment-level values each
further reduces bacterial numbers and increases the chance of
infection clearance. However, these clearance outcomes are gener-
ally accompanied by uncontrolled rates of macrophage activation
and cell infiltration as well as very high concentrations of TNF in
tissue; markers of excessive inflammation and immunopathology
(Figures 3C,D). Overall, as depicted in Figures 3A–D, intermedi-
ate (containment baseline) values of NF-κBtot, ki, c3 and c3rTNF

(listed in Table A5 in Appendix) lead to control of infection in
stable granulomas with very low bacteria numbers (and sometimes
clearance), low levels of TNF, and low levels of macrophage
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FIGURE 3 | NF-κB signaling dynamics control bacterial growth and

inflammation level in tissue. (A) Granuloma snapshots for slow
(ki = 3.2 × 10−3 s−1), intermediate (ki = 10−2 s−1), and rapid (ki = 3.2 × 10−2 s−1)
rates of IKKK inactivation. Slow rates of IKKK inactivation lead to uncontrolled
macrophage activation and excessive inflammation. An intermediate value of ki

results in control of infection in a stable granuloma containing small numbers
of bacteria. Rapid rates of IKKK inactivation lead to large numbers of bacteria
and infected macrophages as well as widespread caseation. The colors
representing cells of different type and status in granuloma snapshots are the
same as those shown and defined in Figure 2. (B–D) Simulation results
showing the effects of four important parameters, as identified by sensitivity
analysis, controlling NF-κB signaling dynamics on granuloma outcomes (total
number of bacteria, tissue concentration of TNF, and macrophage activation).

The parameters are: the average number of NF-κB molecules per cell (NF-κBtot),
IKKK inactivation rate (ki), A20 and IκBα mRNA degradation rate (c3), and TNF
mRNA degradation rate (c3rTNF). In each simulation, only one of these
parameters is varied. The baseline (intermediate) values of these parameters
lead to clearance or control of infection in stable granulomas with very low
bacterial numbers, low levels of TNF, and low levels of macrophage activation.
Perturbing the NF-κB signaling dynamics by varying values of these
parameters impair the balance toward either uncontrolled growth of bacteria
or excessive inflammation (high TNF concentrations and high levels of
macrophage activation) in tissue. The baseline value of each parameter is as
reported inTable A5 in Appendix and is as follows: NF-κBtot = 105, ki = 10−2 s−1,
c3 = 7.5 × 10−4 s−1, c3rTNF = 3.8 × 10−4 s−1. The difference between the low value
and high value presented in the figure is one order of magnitude.

activation. Perturbing NF-κB signaling dynamics by varying val-
ues of these parameters (i.e., rates at which these processes occur)
impairs the balance toward either uncontrolled growth of bacte-
ria or excessive inflammation in tissue. Hence, our model predicts
that the optimal regulation of the TNF-mediated NF-κB signaling
pathway is essential to controlling infection and inflammation in
tissue. The balance between the NF-κB-mediated bacterial killing
activities and the NF-κB-mediated inflammation results in an
equilibrium state, i.e., containment of bacteria within a stable
granuloma with minimal inflammation.

HOW DO NF-κB SIGNALING DYNAMICS BALANCE INFLAMMATION
AND BACTERIAL KILLING?
How do the NF-κB-associated intracellular processes identified
above affect the balance of inflammation and bacterial killing
activities within a granuloma? We previously showed that the

impact of TNF concentration on granuloma outcomes is strongly
correlated with whether or not macrophages stimulated by TNF
are infected (Fallahi-Sichani et al., 2011). This motivates us to test
whether there is a correlation between the effect of NF-κB signal-
ing dynamics on granuloma function (as described in Figure 3)
and the infection status of macrophages stimulated by TNF dur-
ing the immune response. Thus, we analyze the infection status
of macrophages that become activated or undergo apoptosis after
Mtb infection by computing infected/resting cell ratios, Ractivation

and Rapoptosis, as defined in Section “Materials and Methods.”
Our model predicts a very significant effect of important NF-κB-
associated parameters on both Ractivation and Rapoptosis (Figure 4).
At small numbers of NF-κB molecules per cell, slow rates of A20
and IκBα mRNA degradation, rapid rates of IKKK inactivation,
or rapid rates of TNF mRNA degradation, infected macrophages
are the main cells that become activated or undergo apoptosis as
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FIGURE 4 |The impact of important processes associated with the NF-κB

signaling dynamics on granuloma outcomes is correlated with status of

macrophages that undergo apoptosis or become activated byTNF.

Simulation results show the effect of (A) the average number of NF-κB

molecules per cell, NF-κBtot, (B) IKKK inactivation rate, ki, (C) A20 and IκBα

mRNA degradation rate, c3, and (D) TNF mRNA degradation rate, c3rTNF on
infected/resting cell ratios Rapoptosis and Ractivation within a 200 day period after
Mtb infection.

a result of TNF activities (Ractivation and Rapoptosis � 1). However,
with one order of magnitude increase in each of these parameters,
resting macrophages become the main responders to TNF signal-
ing (Ractivation and Rapoptosis � 1). Comparing these results with
results from the previous section (Figure 3), we observe a signifi-
cant correlation between infected/resting cell ratios, Ractivation and
Rapoptosis, and the granuloma outcomes (i.e., bacterial load and
inflammation). At large values of Ractivation and Rapoptosis (values
of 1–10 or greater), we observe uncontrolled growth of Mtb. Small
values of these ratios (smaller than ∼0.1) correlate with excessive
inflammation in tissue. Intermediate values of infected/resting cell
ratios (between 0.1 and 1) are correlated with control of infec-
tion without excessive inflammation. The absolute values of these
ratios are calculated based on our two-dimensional simulations
and might change in three-dimensional settings. These results
suggest that a balance between the number of resting macrophages
and infected macrophages responding to TNF signaling is required
for control of infection and inflammation within a stable granu-
loma, and that such a balance is critically regulated by NF-κB
signaling dynamics.

THE STABILITY OF mRNA TRANSCRIPTS CONTROLS BACTERIAL LOAD,
INFLAMMATION, AND GRANULOMA SIZE BY AFFECTING THE
DYNAMICS OF NF-κB-MEDIATED RESPONSES
A key advantage of incorporating NF-κB signaling dynamics
into our granuloma model is the ability to study the impact of

the dynamics of NF-κB-mediated responses (i.e., macrophage
activation, expression of chemokines, TNF, and inhibitors of
apoptosis) on granuloma outcomes. These responses follow NF-
κB oscillations (Nelson et al., 2004). The dynamics of these
responses depend, to a large extent, on the stability of their
corresponding mRNA transcripts (Hao and Baltimore, 2009).
Thus, we analyzed the effect of varying the stability of mRNA
transcripts corresponding to macrophage activation (ACT), and
expression of chemokines (CHEM), TNF, and inhibitors of
apoptosis (IAP) on granuloma outcomes, bacterial load, and
inflammation level (represented by the activated fraction of
macrophages). Varying the stability (half-life; t 1/2) of mRNA
transcripts significantly influences the dynamics of the NF-κB-
mediated responses (e.g., chemokine secretion) in an individ-
ual cell (Figure 5A). Simulations show that the stability of
mRNA transcripts for NF-κB-mediated responses, particularly
ACT, TNF, and CHEM, significantly control bacteria numbers
and inflammation level in tissue (Figures 5B,C). The impact
of the IAP mRNA stability on these model outcomes is less
significant.

Our analysis shows that there are combinations of TNF,
ACT, CHEM, and IAP mRNA transcript half-lives that lead to
distinct model outcomes such as control of infection within sta-
ble granulomas, clearance, uncontrolled growth of bacteria, or
excessive inflammation (see Figure 2). For example, a contain-
ment outcome (as highlighted by yellow stars in Figures 5B,C)
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FIGURE 5 |The stability of mRNA transcripts controls bacterial load and

inflammation by affecting the dynamics of NF-κB-mediated responses.

(A) The effect of the stability (half-life) of chemokine mRNA transcripts
[t 1/2(CHEM)] on the dynamics of chemokine secretion by an individual cell.
Simulated results are produced using the single-cell level NF-κB signaling
dynamics model for continuous stimulation of a cell by 1 ng/ml TNF, with
parameters and equations as described inTables A3, A5, and A6 in
Appendix. A similar pattern of response can be observed when the effects
of mRNA stability on the dynamics of other NF-κB-mediated responses (i.e.,
expression of ACT, IAP, and TNF) are studied (data not shown). (B,C)

Simulation results for the effect of the stability of mRNA transcripts
corresponding to major NF-κB-mediated responses, including macrophage
activation [t 1/2(ACT)], TNF expression [t 1/2(TNF)], chemokine expression

[t 1/2(CHEM)], and inhibitor of apoptosis protein expression [t 1/2(IAP)], on
bacteria numbers (B) and on the activated fraction of macrophages (C)

200 days post-infection. Small squares represent different values of
t 1/2(CHEM) vertically and different values of t 1/2(TNF) horizontally. Large
boxes represent different values of t 1/2(ACT) vertically and different values of
t 1/2(IAP) horizontally. Four values of mRNA half-life were tested in
simulations: 12 min, 30 min, 1 h, and 3 h. Simulation results were averaged
over 10 repetitions. Yellow stars represent an example scenario with
containment outcome. This state represents control of infection for more
than 200 days within a well-circumscribed granuloma containing stable
bacteria numbers (<103 total bacteria). Red stars represent an example
scenario that leads to clearance of Mtb (total bacteria = 0) without inducing
excessive inflammation (activated fraction of macrophages <0.15).

may result from the following parameter combination: mRNA
transcript half-life of 30 min for TNF, mRNA transcript half-life
of 1 h for ACT, mRNA transcript half-life of 1 h for CHEM, and
mRNA transcript half-life of 30 min for IAP. Increasing mRNA
transcript stabilities for TNF and ACT from these values increases
the chance of extensive inflammation in tissue, whereas reduc-
ing their values significantly enhance bacterial load. Increasing
mRNA transcript stabilities for CHEM from the suggested value
also slightly enhances bacterial load as well as granuloma size (data
not shown). Further, our results suggest that there are combina-
tions of mRNA stabilities for TNF-mediated responses that lead
to clearance of Mtb without inducing excessive inflammation (see
red stars in Figures 5B,C as an example). This set of mRNA sta-
bility values significantly enhances the ability of granuloma to kill
bacteria while limiting inflammation by controlling macrophage
activation and apoptosis. Overall, these results suggest that the dif-
ferential dynamics of NF-κB-mediated responses resulting from
differential stabilities of their corresponding mRNA transcripts

are essential to regulate granuloma’s ability to control infection
and inflammation.

THE TIMING OF NF-κB-INDUCED MACROPHAGE ACTIVATION IS
CRITICAL TO CONTROLLING EXCESSIVE INFLAMMATION
In the previous section, we showed that stability of mRNA tran-
scripts associated with NF-κB-mediated inflammatory molecules
significantly affects the immune response to Mtb. The stability
of mRNA controls both the extent and the timing of NF-κB-
mediated responses in individual cells (Tay et al., 2010). However,
it is not clear whether it is mostly the extent of response, the
timing of response, or both that influence granuloma outcomes.
In other words, how important is the speed of each individual
macrophage’s response to TNF signals in determining the overall
function of a granuloma? To address this question, we analyzed
the effect on granuloma outcomes of varying the stability of ACT,
CHEM, TNF, and IAP mRNA transcripts while maintaining the
average extent of these responses at their containment baseline

Frontiers in Physiology | Computational Physiology and Medicine June 2012 | Volume 3 | Article 170 | 17

http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Computational_Physiology_and_Medicine
http://www.frontiersin.org/Computational_Physiology_and_Medicine/archive


Fallahi-Sichani et al. NF-κB signaling in a tuberculosis granuloma

levels (determined in the previous section). To maintain the aver-
age extent of each response as its corresponding mRNA stability is
varied, we simultaneously vary another parameter associated with
a process downstream of mRNA translation. Parameters varied
to adjust the extent of the four NF-κB-mediated responses are:
TNF secretion rate (e3TNF), chemokine secretion rate (e3chem),
ACT concentration threshold for macrophage activation (τACT),
macrophage activation rate constant (kACT), and apoptosis inhi-
bition constant (kIAP). For example, we increase the chemokine
mRNA half-life [t 1/2(CHEM)] and decrease the chemokine secre-
tion rate (e3chem) simultaneously to achieve the same average
number of chemokine molecules secreted in tissue by an individual
macrophage (Figure 6A).

Analysis of granuloma simulations indicates that among the
four major NF-κB-mediated responses studied here (TNF, CHEM,
ACT, and IAP), only the timing of ACT response, i.e., macrophage
activation, is critical to control of inflammation in tissue as
well as bacterial load within a granuloma (Figures 6B,C). Early

NF-κB-mediated activation of macrophages that occurs because
of highly unstable ACT mRNA transcripts lead to uncontrolled
activation of macrophages and excessive inflammation in tissue.
This suggests that both extent and timing of NF-κB-mediated
macrophage activation are critical to control of the immune
response to Mtb.

CAN MANIPULATING TNF-MEDIATED NF-κB SIGNALING DYNAMICS
IMPROVE GRANULOMA FUNCTION?
Above we showed that optimal regulation of NF-κB signaling
dynamics is critical to control of infection within a granuloma
and control of inflammation in lung tissue. Thus, impairing NF-κB
activation leads to uncontrolled growth of bacteria that is in agree-
ment with NF-κB knockout experimental studies (Yamada et al.,
2001). The repression of NF-κB signaling in infected macrophages
is also a mechanism that pathogenic mycobacteria use to enhance
their survival and growth (Gutierrez et al., 2008). An important
question is then: can we find a hypothetical treatment strategy that

FIGURE 6 |The timing of NF-κB-induced macrophage activation is critical

to control of inflammation. (A) Varying the chemokine mRNA half-life
[t 1/2(CHEM): 12 min, 1 h, and 3 h, respectively] and the chemokine secretion
rate (e3chem: 7.65 × 10−5 s−1, 1.39 × 10−5 s−1, 4.52 × 10−6 s−1, respectively) by an
individual macrophage simultaneously leads to secretion of the same average
number of chemokine molecules, but with distinct temporal patterns of
chemokine secretion. Simulated results are produced using the single-cell
level NF-κB signaling dynamics model for continuous stimulation of a cell by
1 ng/ml TNF, with parameters and equations as described inTables A3, A5,
and A6 in Appendix. A similar pattern of response can be observed when the
effects of mRNA stability on the timing of other NF-κB-mediated responses

(i.e., expression of ACT, IAP, and TNF) are studied (data not shown). (B,C)

Simulation results for the effect of the timing of NF-κB-mediated responses,
including macrophage activation [regulated by t 1/2(ACT)], TNF expression
[regulated by t 1/2(TNF)], chemokine expression [regulated by t 1/2(CHEM)], and
inhibitor of apoptosis protein expression [regulated by t 1/2(IAP)], on bacteria
numbers (B), and on the activated fraction of macrophages (C) at 200 days
post-infection. Small squares represent different values of t 1/2(CHEM)
vertically and different values of t 1/2(TNF) horizontally. Large boxes represent
different values of t 1/2(ACT) vertically and different values of t 1/2(IAP)
horizontally. Four values of mRNA half-life were tested in simulations: 12 min,
30 min, 1 h, and 3 h. Simulation results were averaged over 10 repetitions.
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affects TNF-mediated NF-κB signaling in a granuloma to improve
ability to control bacteria? We first simulate formation of a gran-
uloma that is unable to control bacterial growth due to impaired
NF-κB signaling (e.g., at high rates of IKKK inactivation, ki) for
100 days. Then, we change one or more of the NF-κB-associated
parameters to restore NF-κB activities within the granuloma and
resume simulation for another 100 days.

Our analysis, as depicted in Figure 7, indicates that reducing ki

(IKKK inactivation rate constant) from high values to intermediate
(containment-level) values (Treatment I) enhances the ability of a
granuloma to control bacteria. However, average bacteria levels for

a 200-day granuloma after changing ki are generally higher than
bacteria levels resulting from simulating a containment scenario.
A further decrease in the value of ki (Treatment II) is more success-
ful in killing bacteria. However, it leads to uncontrolled activation
of macrophages and excessive inflammation in tissue. This sug-
gests that targeting the process of IKKK inactivation alone is not
sufficient for infection control at the granuloma scale. In another
set of simulations (Treatment III), decreasing ki to intermediate
values, together with manipulating stability of mRNA transcripts
associated with NF-κB-mediated responses (based on results from
Figure 5) leads to better outcomes. Increasing the half-life of TNF

FIGURE 7 | Manipulation ofTNF-mediated NF-κB signaling for

improving granuloma function. Comparison of the dynamics of (A)

bacteria growth, (B) activated fraction of macrophages, and (C) granuloma
snapshots among three different treatment methods for enhancing NF-κB
activities. In all treatments, we first simulate formation of a granuloma that
is unable to control bacteria growth due to impaired NF-κB signaling at
high rates of IKKK inactivation (ki = 3.16 × 10−2 s−1) for 100 days (all other
parameter values are as listed inTables A1, A3, and A5 in Appendix). Then,

we change one or more of the NF-κB-associated parameters to restore
NF-κB activities within the granuloma and resume simulation for another
100 days. Parameter changes in each treatment are as follows: treatment I:
ki = 1 × 10−2 s−1, Treatment II: ki = 3.16 × 10−3 s−1, Treatment III:
ki = 1 × 10−2 s−1, t1/2(TNF) = 3 h, t 1/2(ACT) = 30 min, t1/2(TNF) = 1 h.
Simulation results were averaged over 10 repetitions. The colors
representing cells of different type and status in granuloma snapshots are
the same as those shown and defined in Figure 2.
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mRNA transcripts to 3 h, reducing the half-life of ACT mRNA
transcripts to 30 min, and setting the IAP mRNA transcripts to
1 h improves the granuloma outcome, inducing efficient killing
of bacteria without excessive inflammation. Overall, this suggests
that manipulating the dynamics of NF-κB-mediated responses,
particularly macrophage activation, TNF and IAP expression, can
improve the function of a TB granuloma.

DISCUSSION
Systems biology approaches have been increasingly helpful for
studying the interactions between the components of biological
systems, and understanding how these interactions give rise to the
function of the system. These approaches are particularly essential
for studying systems that consist of several components on differ-
ent spatial and temporal scales, as they are extremely challenging
to study using traditional experimental methods. An important
example is to study the role that the dynamics of intracellular
signaling pathways, with time-scales of seconds to hours, play in
the long-term immune response of a host to a pathogen. In this
work, we focus on this problem by asking if simulations of the
immune response can successfully capture both short and long-
term dynamics over length scales that range from molecular to
tissue. We build and simulate a multi-scale model to explore the
impact of NF-κB dynamics on the long-term immune response
to the pathogen Mtb. NF-κB plays an important role in coordi-
nating both innate and adaptive immunity. A recently published
study of the pathway uses data from cells in culture to elucidate
the kinetics of the pathway and to identify critical intracellular
mechanisms controlling the NF-κB response in a single cell (Tay
et al., 2010). A recent modeling study has also shown how NF-κB
response can control cytokine waves in tissue (Yde et al., 2011). Yet
it is unclear how these mechanisms affect the immune response in
tissue, where immune cells and bacteria interact with each other
and determine the outcome of infection.

Immune responses induced by Mtb infection are myriad and
complex, and it remains incompletely understood which responses
are required for protection and which contribute to pathology
(Cooper, 2009; Lin and Flynn, 2010). Indeed, there is signifi-
cant overlap among protective and pathological responses. An
important example, as dissected in this study, is TNF-induced
NF-κB activation. Figure 8 summarizes our results showing how
NF-κB-mediated responses are critical for restricting bacterial
growth in a granuloma, but excessive activation of the NF-κB
pathway in macrophages leads to pathological inflammation in
tissue. Containment of bacteria, particularly at the level of the
granuloma, is achieved when a balance exists between the NF-
κB-mediated bacterial killing activities and the NF-κB-mediated
inflammation. Such a balance is controlled by a combination
of molecular scale biochemical processes identified in detail in
this study, such as IKKK activity, A20 and IκBα interactions, and
stability of mRNA transcripts associated with NF-κB-mediated
responses. Optimal regulation of these processes, in the pres-
ence of an efficient T cell-meditated response, can lead to clear-
ance of bacteria. Further, we find that processes controlling the
dynamics of NF-κB signaling critically regulate whether resting
macrophages or infected macrophages are the major targets for
TNF signaling within a granuloma. Unless sufficient numbers

FIGURE 8 | Optimal regulation of theTNF-mediated NF-κB signaling

dynamics is essential for optimal granuloma outcomes. Impaired NF-κB
activity leads to uncontrolled growth of bacteria within a granuloma
(outcome I). Containment or clearance of bacteria (outcome II) is achieved
when the NF-κB-mediated responses are regulated such that small, but
sufficient numbers of macrophages become activated to kill bacteria.
Uncontrolled macrophage activation due to over-activity of NF-κB leads to
excessive inflammation in tissue (outcome III).

of resting macrophages relative to infected macrophages become
activated by TNF, uncontrolled growth of Mtb occurs. On the
other hand, excessive activation of resting macrophages leads to
uncontrolled inflammation. These findings highlight the poten-
tial importance of NF-κB-associated processes as targets in future
studies examining approaches to controlling both TB infection
and pathology.

Another interesting finding from our study is that the sta-
bility of mRNA transcripts corresponding to NF-κB-mediated
responses, particularly macrophage activation and expression of
TNF and chemokines, significantly affects bacterial load in a gran-
uloma, inflammation level in tissue, and granuloma size. This
is due to the impact of mRNA stability on the kinetics of these
responses (Hao and Baltimore, 2009). Tay et al. (2010) have also
described how differences in stability of NF-κB-induced mRNA
transcripts and TNF concentration influence the dynamics of
expression of different inflammatory genes. We find that both the
extent and the timing of NF-κB-mediated macrophage activation
are critical to control of the immune response to Mtb. However, the
significance of the stability of TNF and chemokine mRNA tran-
scripts is mostly due its effect on the extent of these responses. This
is the first study, to our knowledge, that reveals the importance of
the dynamics of various NF-κB-mediated responses on immunity
to Mtb. Further, we show that manipulating the dynamics of these
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responses in a granuloma that is unable to contain infection due
to, for example, pathogen-induced inhibition of NF-κB activation
can significantly improve granuloma function.

Finally, our approach is an initial step toward understanding the
molecular targets at the level of intracellular signaling pathways for
control of the tissue-scale outcomes of the immune response to
Mtb, particularly granuloma formation. We anticipate that other
factors, including crosstalk between signaling mediated by the Mtb
bacteria and other cytokines through various types of receptors
and different signaling pathways (Basak and Hoffmann, 2008) in
various types of cells, or the noise resulting from discrete regu-
lation of TNFR activity and transcription regulation (Lipniacki
et al., 2007) will further influence the ability of a granuloma to
contain infection. Importantly, our unique multi-scale approach

provides a platform for discovering which intracellular interven-
tions may enhance immunity to Mtb, and has implications for
testing and optimizing new vaccine and therapeutic strategies that
minimize non-specific or off-target side effects.
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APPENDIX

Table A1 |TNF-independent and cellular/tissue-scale parameters, definitions, and values estimated from literature or approximated via

uncertainty analysis as described in Ray et al. (2009); Fallahi-Sichani et al. (2011).

Parameter Parameter description Value*

Nsource Number of vascular sources 50

Ncaseum Number of qualified cell deaths required for caseation 10

Dchem (cm2/s) Diffusion coefficient of chemokines 10−8–10−7 (5.2 × 10−8)

δchem (s−1) Chemokine degradation rate constant 10−4–10−3 (4.58 × 10−4)

τchem (molecules) Minimum chemokine concentration threshold 1–10 (2)

schem (molecules) Saturating chemokine concentration threshold 103–104 (2000)

M init Initial number of resident macrophages 105

maxageMac (day) Maximum lifespan of macrophages 100

maxageActive (day) Maximum lifespan of an activated macrophage 10

t regMac (h) Macrophage inactivity time after down-regulation by Treg 12

tmoveMr (min) Time interval for Mr movement 20

tmoveMa (h) Time interval for Ma movement 7.8

tmoveMi (h) Time interval for Mi movement 24

ωrecTNF Effect of TNF on cell recruitment 1

ωrecCCL2 Effect of CCL2 on cell recruitment 0.0507

ωrecCCL5 Effect of CCL5 on cell recruitment 0.0507

ωrecCXCL9/10/11 Effect of CXCL9 on cell recruitment 0.0254

N rk Number of extracellular Mtb engulfed by Mr or Mi 1

Pk Probability of Mr killing bacteria 0.01–0.1 (0.015)

BactM Number of extracellular Mtb activating a macrophage 50–150 (110)

Nc Number of intracellular Mtb for Mi → Mci transition 10

Nburst Number of intracellular Mtb that leads to Mci bursting 20–30 (20)

PSTAT1 Probability of STAT-1 activation in Mr or Mi 0.001–0.1 (0.085)

Nak Number of extracellular Mtb killed by Ma at each ABM time-step 10

τrecMac TNF/chemokine threshold for Mr recruitment 0.01–0.1 (0.023)

M recr Probability of Mr recruitment 0.01–0.1 (0.04)

maxageTcell (day) Maximum lifespan of T cells 3

tdelay (day) T cell recruitment delay 20

T moveM Probability of T cell moving to a mac-containing location 0.001–0.1 (0.014)

T moveT Probability of T cell moving to a T cell-containing location 0.001–0.1 (0.08)

T recr Probability of T cell recruitment 0.05–0.5 (0.15)

t regTgam (min) Tγ inactivity time after down-regulation by Treg 100

Papop/Fas Probability of Fas/FasL apoptosis by Tγ 0.01–0.1 (0.06)

τrecTgam TNF/chemokine threshold for Tγ recruitment 0.1–1.0 (0.4)

T recTgam Probability of Tγ recruitment 0.54

t regTcyt (min) Tc inactivity time after down-regulation by Treg 100

τrecTcyt TNF/chemokine threshold for Tc recruitment 0.1–1.0 (0.4)

T recTcyt Probability of Tc recruitment 0.36

PcytKill Probability of Tc killing Mi or Mci 0.02 0.2 (0.12)

PcytKillClean Probability of Tc killing all intracellular Mtb by killing Mci 0.75

τrecTreg TNF/chemokine threshold for Treg recruitment 0.01–0.1 (0.05)

T recTreg Probability of Treg recruitment 0.1

αBi (per 10 min) Intracellular Mtb growth rate 2 × 10−4–2 × 10−3 (1.5 × 10−3)

αBe (per 10 min) Extracellular Mtb growth rate 10−4–10−3 (7 × 10−4)

K be Capacity of a micro-compartment for extracellular Mtb 200

*Parameters used for sensitivity analysis are indicated by their ranges of values. Values in parentheses are used to generate containment baseline.
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Table A2 | Definition of reaction species, reactions describingTNF/TNFR processes and their rates (v i ).

REACTION SPECIES

mTNF Membrane-bound TNF sTNF/TNFR2 sTNF/TNFR2 complex on the membrane

sTNF Extracellular soluble TNF sTNF/TNFR1i Internalized sTNF/TNFR1 complex

TNFR1 Cell surface TNF receptor 1 sTNF/TNFR2i Internalized sTNF/TNFR2 complex

TNFR2 Cell surface TNF receptor 2 sTNF/TNFR2shed Shed sTNF/TNFR2 complex

sTNF/TNFR1 sTNF/TNFR1 complex on the membrane TNFi Intracellular translated TNF

MODEL REACTIONS

1 mTNF expression

(T cells): v 1 = ksynthTcell

(Macrophages): v 1 = e3TNF[TNFi]

9 TNFR2 synthesis

v 9 =V r2

2 mTNF → sTNF

v 2 = kTACE[mTNF]

10 TNFR1 →TNFR1i

v 10 = k t1[TNFR1]

3 sTNF +TNFR1 ↔ sTNF/TNFR1

v 3 = kon1[sTNF][TNFR1]-koff1[sTNF/TNFR1]

11 TNFR2 →TNFR2i

v 11 = k t2[TNFR2]

4 sTNF +TNFR2 ↔ sTNF/TNFR2

v 4 = kon2[sTNF][TNFR2]-koff2[sTNF/TNFR2]

12 sTNF/TNFR1i → degradation

v 12 = kdeg1[sTNF/TNFR1i]

5 sTNF/TNFR1 → sTNF/TNFR1i

v 5 = k int1[sTNF/TNFR1]

13 sTNF/TNFR2i → degradation

v 13 = kdeg2[sTNF/TNFR2i]

6 sTNF/TNFR2 → sTNF/TNFR2i

v 6 = k int2[sTNF/TNFR2]

14 sTNF/TNFR1i →TNFR1

v 14 = k rec1[sTNF/TNFR1i]

7 sTNF/TNFR2 → sTNF/TNFR2shed

v 7 = kshed[sTNF/TNFR2]

15 sTNF/TNFR2i →TNFR2

v 15 = k rec2[sTNF/TNFR2i]

8 TNFR1 synthesis

v 8 =V r1

16 sTNF/TNFR2shed → sTNF +TNFR2shed

v 16 = koff2[sTNF/TNFR2shed]
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Table A3 | Molecular/single-cell scaleTNF/TNFR parameters, definitions and values estimated from literature.

Parameter Parameter description Value* Reference

ksynthTcell (#/cell.s) Full synthesis rate of mTNF for T cells 10−2–10−1 (0.021) Marino et al., 2007)

TNFR1mac (#/cell) TNFR1 density on the surface of

macrophages

500–5000 (1100–1900)
†

Fallahi-Sichani et al. (2010); Imamura et al. (1987);

Pocsik et al. (1994); van Riemsdijk-Van Overbeeke

et al. (2001)

TNFR1Tcell (#/cell) TNFR1 density on the surface of T cells 500–5000 (400–1200)
†

Fallahi-Sichani et al. (2010); Imamura et al. (1987);

Pocsik et al. (1994); van Riemsdijk-Van Overbeeke

et al. (2001)

TNFR2mac (#/cell) TNFR2 density on the surface of

macrophages

500–5000 (400–800)
†

Fallahi-Sichani et al. (2010); Imamura et al. (1987);

Pocsik et al. (1994); van Riemsdijk-Van Overbeeke

et al. (2001)

TNFR2Tcell (#/cell) TNFR2 density on the surface of T cells 500–5000 (600–800)
†

Fallahi-Sichani et al. (2010); Imamura et al. (1987);

Pocsik et al. (1994); van Riemsdijk-Van Overbeeke

et al. (2001)

D1 (cm2/s)
‡

Diffusion coefficient of sTNF 10−8–10−7 (5.2 × 10−8) Nugent and Jain (1984); Pluen et al. (2001)

D2 (cm2/s)
‡

Diffusion coefficient of shed

TNF/TNFR2 complex

10−8–10−7 (3.2 × 10−8) Nugent and Jain (1984); Pluen et al. (2001)

kTACE Mac (s−1) Rate constant for TNF release by TACE

activity on a macrophage

10−4–10−3 (4.4 × 10−4) Fallahi-Sichani et al. (2010); Newton et al. (2001);

Solomon et al. (1997); Crowe et al. (1995)

kTACE Tcell (s−1) Rate constant for TNF release by TACE

activity on a T cell

10−5–10−4 (4.4 × 10−5)

δTNF (s−1) sTNF degradation rate constant 10−4–10−3 (4.58 × 10−4) Cheong et al. (2006)

K d1 (M) Equilibrium dissociation constant of

sTNF/TNFR1

10−12–10−10 (1.9 × 10−11) Imamura et al. (1987); Grell et al. (1998)

K d2 (M) Equilibrium dissociation constant of

sTNF/TNFR2

10−10–10−9 (4.2 × 10−10) Imamura et al. (1987); Grell et al. (1998); Pennica

et al. (1992)

kon1 (M−1s−1) sTNF/TNFR1 association rate constant 107–108 (2.8 × 107) Grell et al. (1998)

kon2 (M−1s−1) sTNF/TNFR2 association rate constant 107–108 (3.5 × 107) Grell et al. (1998)

koff1 (s−1) sTNF/TNFR1 dissociation rate constant kon1 × Kd1

koff2 (s−1) sTNF/TNFR2 dissociation rate constant kon2 × Kd2

k int1 (s−1) TNFR1 internalization rate constant 1.5 × 10−4–1.5 × 10−3 (7.7 × 10−4) Grell et al. (1998); Higuchi and Aggarwal (1994)

k int2 (s−1) TNFR2 internalization rate constant 3.9 × 10−4–5 × 10−4 (4.6 × 10−4) Pennica et al. (1992)

kshed (s−1) TNFR2 shedding rate constant 3.9 × 10−4–1.5 × 10−3 (5 × 10−4) Crowe et al. (1995); Higuchi and Aggarwal (1994)

k rec1 (s−1) TNFR1 recycling rate constant 8.8 × 10−5–5.5 × 10−4 (1.8 × 10−5) Vuk-Pavlovic and Kovach (1989); Bajzer et al. (1989)

k rec2 (s−1) TNFR2 recycling rate constant 8.8 × 10−5–5.5 × 10−4 (1.8 × 10−5) Vuk-Pavlovic and Kovach (1989); Bajzer et al. (1989)

k t1 (s−1) TNFR1 turn-over rate constant 3 × 10−4–5 × 10−4 (3.8 × 10−4) Vuk-Pavlovic and Kovach (1989); Bajzer et al. (1989)

k t2 (s−1) TNFR2 turn-over rate constant 3 × 10−4–5 × 10−4 (3.8 × 10−4) Vuk-Pavlovic and Kovach (1989); Bajzer et al. (1989)

kdeg1 (s−1) TNFR1 degradation rate constant 10−5–10−4 (5 × 10−5) Imamura et al. (1987); Vuk-Pavlovic and Kovach

(1989); Bajzer et al. (1989); Tsujimoto et al. (1985)

kdeg2 (s−1) TNFR2 degradation rate constant 10−5–10−4 (5 × 10−5) Imamura et al. (1987); Vuk-Pavlovic and Kovach

(1989); Bajzer et al. (1989); Tsujimoto et al. (1985)

V r1 mac (#/cell.s) Cell surface TNFR1 synthesis rate

constant for macrophages

k t1 ×TNFR1mac

V r1 Tcell (#/cell.s) Cell surface TNFR1 synthesis rate

constant for T cells

k t1 ×TNFR1Tcell

V r2 mac (#/cell.s) Cell surface TNFR2 synthesis rate

constant for macrophages

k t2 ×TNF21mac

V r2 Tcell (#/cell.s) Cell surface TNFR2 synthesis rate

constant for T cells

k t2 ×TNF21Tcell

*Ranges of parameter values used for sensitivity analysis are indicated out of parentheses. Values in parentheses are used to generate baseline model results.
† Baseline model values for TNFR densities on each recruited individual cell was randomly chosen from the range shown in parentheses.
‡ Diffusion coefficients of the soluble species in granuloma were estimated in line with estimates for diffusible factors of similar molecular weight in tumors (Nugent

and Jain, 1984; Pluen et al., 2001).
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Table A4 | Definition of reaction species, reactions describing NF-κB signaling and response-associated processes in macrophages and their

rates (v i ).

REACTION SPECIES

sTNF/TNFR1 sTNF/TNFR1 complex on the membrane NFkB Cytoplasmic NF-κB

IKKn Neutral form of IKK kinase NFkBn Nuclear NF-κB

IKKa Active form of IKK A20 Translated A20

IKKi Inactive form of IKK A20t A20 transcript

IKKii Inactive intermediate form of IKK GA20 State of A20 gene

K NN Total number of IKK molecules (assumed

constant in time)

GIkB State of IκBα gene

IKKKa Active form of IKKK GR State of genes corresponding to

NF-κB-mediated responses

IKKKn Neutral form of IKKK chemi Intracellular translated chemokines

K N Total number of IKKK molecules (assumed to be

constant in time)

chemt Chemokine transcript

IkB Cytoplasmic IκBα TNFi Intracellular translated TNF

IkBn Nuclear IκBα TNFt TNF transcript

IkBt IκBα transcript ACT Generic macrophage-activating molecule

IkBp Phosphorylated cytoplasmic IκBα ACTt ACT transcript

NFkB|IkB Cytoplasmic IκBα|NF-κB complex IAP Inhibitor of apoptosis protein

NFkB|IkBp Phosphorylated cytoplasmic IκBα in complex

with NF-κB

IAPt IAP transcript

NFkB|IkBn Nuclear IκBα|NF-κB complex

MODEL REACTIONS

17 IKKK kinase activation and activity attenuation

by A20

v 17 = ka[sTNF/TNFR1].([K N] - [IKKKa]). KA20
kA20+[A20]

42 Transport of NF-κB|IκBα complex out of nucleus

v 42 = e2a[NFkB|IkBn]

18 Spontaneous inactivation of IKKKa

v 18 = k i[IKKKa]

43 A20 gene activation due to NF-κB binding

v 43 = q1[NFkBn](2 − [GA20])

19 IKKii → IKKn

v 19 = k4([KNN] − [IKKn] − [IKKa] − [IKKi])

44 A20 gene inactivation due to removal of NF-κB

molecules by IκBα

v44 = q2[IkBn][GA20]

20 IKKn → IKKa mediated by IKKKa

phosphorylation at two sites

v 20 = k1[IKKKa]2[IKKn]

45 IκBα gene activation due to NF-κB binding

v 45 = q1[NFkBn](2 − [GIkB])

21 IKKa → IKKi mediated by A20

v 21 = k3[IKKa].(k2 + [A20])/k2

46 IκBα gene inactivation due to removal of NF-κB

molecules by IκBα

v 46 = q2[IkBn][GIkB]

22 IKKi → IKKii

v 22 = k4[IKKi]

47 NF-κB-mediated response gene activation due

to NF-κB binding

v 47 = q1r[NFkBn](2 − [GR])

23 IκBα phosphorylation by IKKa

v 23 = a2[IKKa][IkB]

48 NF-κB-mediated response gene inactivation due

to spontaneous removal of NF-κB molecules

v 48 = q2rr[GR]

24 Degradation of phosphorylated IκBα

v 24 = tp[IkBp]

49 NF-κB-mediated response gene inactivation due

to removal of NF-κB molecules by IκBα

v 49 = q2r[IkBn][GR]

25 Phosphorylation of IκBα in complex with NF-κB

by IKKa

v 25 = a3[IKKa][NFkB|IkB]

50 Constitutive transcription of TNF and

chemokines

v 50 = c1rrchemTNF

26 Degradation of phosphorylated IκBα in complex

with NF-κB

v 26 = tp[NFkB|IkBp]

51 NF-κB-dependent transcription of chemokines

and TNF

v 51 = c1r[GR]

27 Liberation of free NF-κB due to degradation of

IκBα in their complex

v 27 = c6a[NFkB|IkB]

52 Chemokine mRNA degradation

v 52 = c3rchem[chemt]

(Continued)
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Table A4 | Continued

28 Formation of NF-κB and IκBα complex

v 28 = a1[NFkB][IkB]

53 Chemokine translation

v 53 = c4chem[chemt]

29 Transport of free cytoplasmic NF-κB to nucleus

v 29 = i1[NFkB]

54 Intracellular chemokine degradation

v 54 = c5chem[chemi]

30 Association of nuclear NF-κB with nuclear IκBα

v 30 = a1kv[IkBn][NFkBn]

55 Chemokine secretion

v 55 = e3chem[chemi]

31 A20 translation

v 31 = c4[A20t]

56 TNF mRNA degradation

v 56 = c3rTNF[TNFt]

32 Constitutive degradation of A20

v 32 = c5[A20]

57 TNF translation

v 57 = c4TNF[TNFt]

33 NF-κB inducible transcription of A20

v 33 = c1[GA20]

58 Intracellular TNF degradation

v 58 = c5TNF[TNFi]

34 Degradation of A20 transcript

v 34 = c3[A20t]

59 Constitutive transcription of ACT

v 59 = c1rrACT

35 IκBα translation

v 35 = c4[IkBt]

60 ACT mRNA degradation

v 60 = c3rACT[ACTt]

36 Constitutive degradation of IκBα

v 36 = c5a[IkB]

61 ACT translation

v 61 = c4ACT[ACTt]

37 Transport of IκBα into nucleus

v 37 = i1a[IkB]

62 ACT degradation

v 62 = c5ACT[ACT]

38 Transport of IκBα out of nucleus

v 38 = e1a[IkBn]

63 Constitutive transcription of IAP

v 63 = c1rrIAP

39 NF-κB inducible transcription of IκBα

v 39 = c1[GIkB]

64 IAP mRNA degradation

v 64 = c3rIAP[IAPt]

40 Degradation of IκBα transcript

v 40 = c3[IkBt]

65 IAP translation

v 65 = c4IAP[IAPt]

41 Association of NF-κB with IκBα in cytoplasm

v 41 = a1[IkB][NFkB]

66 IAP degradation

v 66 = c5IAP[IAP]
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Table A5 | Molecular/single-cell scale NF-κB signaling-associated parameters, definitions and values fromTay et al. (2010), or approximated via

uncertainty analysis.

Parameter Parameter description Value*

CONCENTRATION OF INTRACELLULAR SIGNALING MOLECULES

K N (#/cell) Number of IKKK molecules 3.16 × 104–3.16 × 105 (105)

K NN (#/cell) Number of IKK molecules 6.32 × 104–6.32 × 105 (2 × 105)

NF-κBtot (#/cell) Average number of NF-κB molecules 3.16 × 104–3.16 × 105 (105)

ACTIVATION OFTHE SIGNALTRANSDUCTION CASCADE

ka (s−1) IKKK activation rate 6.32 × 10−7–6.32 × 10−6 (2 × 10−6)

ki (s−1) IKKK inactivation rate 3.16 × 10−3–3.16 × 10−2 (10−2)

k1 (s−1) IKKn activation rate 1.9 × 10−10–1.9 × 10−9 (6 × 10−10)

kA20 (#/cell) Michaelis coefficient in TNFR1 activity attenuation 3.16 × 104–3.16 × 105 (105)

k2 (#/cell) Michaelis coefficient in IKKa inactivation 3.16 × 103–3.16 × 104 (104)

k3 (s−1) IKKn inactivation rate 6.32 × 10−4–6.32 × 10−3 (2 × 10−3)

k4 (s−1) IKKi → IKKii and IKKii → IKKn transformation 3.16 × 10−4–3.16 × 10−3 (10−3)

A20 AND IκBα SYNTHESIS

q1 (s−1) NF-κB binding at A20 and IκBα gene promoters 1.26 × 10−7–1.26 × 10−6 (4 × 10−7)

q2 (s−1) IκBα inducible NF-κB detaching from A20 and IκBα genes 3.16 × 10−7–3.16 × 10−6 (10−6)

c1 (s−1) Inducible A20 and IκBα mRNA synthesis 3.16 × 10−2–3.16 × 10−1 (10−1)

c3 (s−1) A20 and IκBα mRNA degradation 2.37 × 10−4–2.37 × 10−3 (7.5 × 10−4)

c4 (s−1) A20 and IκBα translation 1.58 × 10−1–1.58 (5 × 10−1)

c5 (s−1) A20 degradation rate 1.58 × 10−4–1.58 × 10−3 (5 × 10−4)

IκBα INTERACTIONS

a1 (s−1) IκBα-NF-κB association 1.58 × 10−7–1.58 × 10−6 (5 × 10−7)

a2 (s−1) IκBα phosphorylation 3.16 × 10−8–3.16 × 10−7 (10−7)

a3 (s−1) IκBα phosphorylation in IκBα|NF-κB complexes 1.58 × 10−7–1.58 × 10−6 (5 × 10−7)

tp (s−1) Degradation of phosphorylated IκBα 3.16 × 10−3–3.16 × 10−2 (10−2)

c5a (s−1) Spontaneous IκBα degradation 3.16 × 10−5–3.16 × 10−4 (10−4)

c6a (s−1) Spontaneous IκBα degradation in IκBα|NF-κB complexes 6.32 × 10−6–6.32 × 10−5 (2 × 10−5)

NF-κB AND IκBαTRANSPORT BETWEEN CYTOPLASM AND NUCLEUS

i1 (s−1) NF-κB nuclear import 3.16 × 10−3–3.16 × 10−2 (10−2)

e2a (s−1) IκBα|NF-κB nuclear export 1.58 × 10−2–1.58 × 10−1 (5 × 10−2)

i1a (s−1) IκBα nuclear import 6.32 × 10−4–6.32 × 10−3 (2 × 10−3)

e1a (s−1) IκBα nuclear export 1.58 × 10−3–1.58 × 10−2 (5 × 10−3)

kv Ratio of cytoplasmic to nuclear volume for a macrophage 5

NF-κB-MEDIATED CELL RESPONSES AND APOPTOSIS

q1r (s−1) NF-κB binding at response gene promoters 3.16 × 10−8–3.16 × 10−7 (10−7)

q2r (s−1) IκBα inducible NF-κB detaching from response gene promoters 3.16 × 10−8–3.16 × 10−7 (10−7)

q2rr (s−1) Spontaneous NF-κB detaching from response gene promoters 3.16 × 10−4–3.16 × 10−3 (10−3)

c1r (s−1) Inducible response mRNA synthesis 0 (only resting macrophage), 1.58 × 10−2–1.58 × 10−1

(5 × 10−2)

c1rrchemTNF (s−1) Constitutive transcription rate for chemokines and TNF 0 (resting macrophage), 0.5 × c1r (infected macrophage),

c1r (activated or chronically infected macrophage)

c3rchem (s−1) Chemokine mRNA degradation rate 6.1 × 10−5–6.1 × 10−4 (1.92 × 10−4)

c4chem (s−1) Chemokine translation rate 1.42 × 10−1–1.42 (4.5 × 10−1)

c5chem (s−1) Intracellular chemokine degradation rate 1.58 × 10−5–1.58 × 10−4 (5 × 10−4)

e3chem (s−1) Chemokine secretion rate 4.4 × 10−6–4.4 × 10−5 (1.39 × 10−5)

c3rTNF (s−1) TNF mRNA degradation rate 1.2 × 10−4–1.2 × 10−3 (3.8 × 10−4)

c4TNF (s−1) TNF translation rate 4.74 × 10−2–4.74 × 10−1 (1.5 × 10−1)

c5TNF (s−1) Intracellular TNF degradation rate 1.58 × 10−4–1.58 × 10−3 (5 × 10−4)

e3TNF (s−1) TNF secretion rate 7.87 × 10−7–7.87 × 10−6 (2.5 × 10−6)

c1rrACT (s−1) ACT mRNA constitutive synthesis rate 3.16 × 10−4–3.16 × 10−3 (1 × 10−3)

c3rACT (s−1) ACT mRNA degradation rate 6.1 × 10−5–6.1 × 10−4 (1.92 × 10−4)

(Continued)
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Table A5 | Continued

Parameter Parameter description Value*

c4ACT (s−1) ACT translation rate 1.58 × 10−1–1.58 (5 × 10−1)

c5ACT (s−1) ACT degradation rate 1.58 × 10−4–1.58 × 10−3 (5 × 10−4)

τACT (#/cell) ACT concentration threshold for macrophage activation 8–80 (25)

kACT [(#/cell)−1s−1] Macrophage activation rate constant 1.46 × 10−6–1.46 × 10−5 (7.7 × 10−6)

c1rrIAP (s−1) IAP mRNA constitutive synthesis rate 3.16 × 10−4–3.16 × 10−3 (1 × 10−3)

c3rIAP (s−1) IAP mRNA degradation rate 6.1 × 10−5–6.1 × 10−4 (1.92 × 10−4)

c4IAP (s−1) IAP translation rate 1.58 × 10−1–1.58 (5 × 10−1)

c5IAP (s−1) IAP degradation rate 1.58 × 10−4–1.58 × 10−3 (5 × 10−4)

k IAP (#/cell) Apoptosis inhibition coefficient 1.22 × 101–1.22 × 102 (3.86 × 101)

k0
apopt((#cell)−1s−1) Intrinsic TNF-induced apoptosis rate constant 4.2 × 10−10–4.2 × 10−9 (1.33 × 10−9)

τapopt (#/cell) Internalized sTNF/TNFR1 threshold for TNF-induced apoptosis 50–500 (300)

*Parameters used for sensitivity analysis are indicated by their ranges of values. Values in parentheses are used to generate containment baseline.
† Baseline model values for intracellular NF-κBtot on each recruited individual macrophage was randomly based on a log-normal distribution as described in Tay et al.

(2010).

Table A6 | Differential equations describing molecular single-cell scaleTNF/TNFR and NF-κB signaling and response-associated processes.

d [mTNF]
d t

= v1 − v2
d [A20t]

d t
= v33 − v34

d [sTNF]
d t

= (
ρ

Nav
)(v2 − v3 − v4) + v16

d [IkB]
d t

= v23 − v28 + v35 − v36 − v37 + v38

d [TNFR1]
d t

= v8 − v3 − v10 + v14
d [IkBn]

d t
= −v30 + v37 − v38

d [TNFR2]
d t

= v9 − v4 − v11 + v15
d [IkBt]

d t
= v39 − v40

d [sTNF/TNFR1]
d t

= v3 − v5
d [NFkB|IkB]

d t
= v41 − v27 − v25 + v42

d [sTNF/TNFR2]
d t

= v4 − v6 − v7
d [NFkB|IkBn]

d t
= v30 − v42

d [sTNF/TNFR1i]
dt

= v5 − v12 − v14
d [GA20]

d t
= v43 − v44

d [sTNF/TNFR2i]
d t

= v6 − v13 − v15
d [GIkB]

d t
= v45 − v46

d [sTNF/TNFR2shed]
d t

=
(

ρ

Nav

)
v7 − v16

d [GR]
d t

= v47 − v48 − v49

d [IKKKa]
d t

= v17 − v18
d [chemt]

d t
= v50 + v51 − v52

d [IKKn]
d t

= v19 − v20
d [chemi]

d t
= v53 − v54 − v55

d [IKKa]
d t

= v20 − v21
d [TNFt]

d t
= v50 + v51 − v56

d [IKKi]
d t

= v21 − v22
d [TNFi]

d t
= v57 − v58 − v1

d [IkBp]
d t

= v23 − v24
d [ACTt]

d t
= v59 + v51 − v60

d [NFkB|IkBp]
d t

= v25 − v26
d [ACT]

d t
= v61 − v62

d [NFkB]
d t

= v27 − v28 + v26 − v29
d [IAPt]

d t
= v63 + v51 − v64

d [NFkBn]
d t

= v29 − v30
d [IAP]

d t
= v65 − v66

d [A20]
d t

= v31 − v32

In equations describing a reaction or interaction between a soluble molecule and a cell membrane-associated molecule, a scaling factor (ρ/Nav) is required as indicated

above, where ρ is the cell density in the ABM micro-compartment and can be computed as (dx)−3 assuming that each micro-compartment is a cube of side dx = 20 μm.

Nav is the Avogadro’s number.
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Table A7 | LHS sensitivity analysis results for the effect of important NF-κB-associated model parameters (groups 1–3) on model outputs at day

200 post-infection.

NF-κBtot ka k i q1 c1 c3 c4 c5

TNF FUNCTION-RELATED OUTPUTS

(No. apoptosis)Macs

(No. apoptosis)Mr

(No. apoptosis)Mi and Mci −−
(No. apoptosis)Ma − +
(No. apoptosis)T cells + −− ++
(No. activation)Mr ++ ++ ++ −− ++
(No. activation)Mi −
CELLULAR-LEVEL OUTPUTS

Bint (intracellular Mtb) −− −−− + + + −−− ++ −−
Bext (extracellular Mtb) −− −−− + ++ −−− ++ −−
Btot (total Mtb) −− −−− + + ++ −−− ++ −−
Total macrophages

Mr −−− −−− +++ ++ +++ −−− +++ −−−
Mi and Mci −− −−− + + + −−− ++ −−
Ma + + ++ −− ++
Total T cells + + +
Tγ + − +
Tc + + − +
Treg + ++ + ++
TISSUE-LEVEL OUTPUTS

Caseation − +
Granuloma size

TISSUE CONCENTRATIONS

[sTNF]avg −− ++
[Chemokines]avg −− − +

Parameter definitions are presented inTable A5 in Appendix.

Only parameters with significant PRCC values are indicated. Significant positive and negative correlations are shown using ± as follows:

−/+, 0.001 < p-value < 0.01.

−−/++, 0.0001 < p-value < 0.001.

−−−/+++, p-value < 0.0001.
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Table A8 | LHS sensitivity analysis results for the effect of important NF-κB-associated model parameters (group 6) on model outputs at day 200

post-infection.

c1r c3rchem c4chem e3chem c3rTNF c4TNF c5TNF e3TNF c4ACT c5ACT τACT c5IAP

TNF FUNCTION-RELATED OUTPUTS

(No. apoptosis)Macs +++ −− +++ −−− +++
(No. apoptosis)Mr +++ −−− +++ −−− +++
(No. apoptosis)Mi and Mci −− ++ −−− +++ −−− +++ +++
(No. apoptosis)Ma +++ +++ +++ ++ −− −
(No. apoptosis)T cells +++ −− +++ −−− +++ +
(No. activation)Mr +++ + +++ −−− −−−
(No. activation)Mi +++ ++ ++ − +++ −−− −−−
CELLULAR-LEVEL OUTPUTS

Bint (intracellular Mtb) −−− ++ −−− ++ −− −−− +++ +++
Bext (extracellular Mtb) −−− ++ −− ++ −− −−− +++ +++
Btot (total Mtb) −−− ++ −−− ++ −− −−− +++ +++
Total Macrophages −−− ++ +++ +++ −−− +++ −−− −
Mr −−− −− + +++ +++ −−− +++ −−− −−− +++ +++
Mi and Mci −−− ++ −−− ++ −− −−− +++ +++
Ma +++ +++ −− +++ −−− +++ −−− −−−
Total T cells +++ ++ +++ −− +++ −−− +++ −−− −−−
Tγ +++ ++ +++ −− +++ −−− +++ −−− −−−
Tc +++ ++ +++ −− +++ −−− +++ −−− −−−
Treg +++ + +++ −− +++ −−− +++ −−− −−−
TISSUE-LEVEL OUTPUTS

Caseation −−− +++ −− − +++ −−− +++ −−− −−−
Granuloma size −−− −− +++ +++ −−− +++ −−− −−
TISSUE CONCENTRATIONS

[sTNF]avg +++ ++ ++ −
[Chemokines]avg +++ −−− +++ +++ +++ −−− +++ −−− −−

Parameter definitions are presented inTable A5 in Appendix.

Only parameters with significant PRCC values are indicated. Significant positive and negative correlations are shown using ± as follows:

−/+, 0.001 < p-value < 0.01.

−−/++, 0.0001 < p-value < 0.001.

−−−/+++, p-value < 0.0001.
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Airway hyperresponsiveness (AHR), a characteristic of asthma that involves an excessive
reduction in airway caliber, is a complex mechanism reflecting multiple processes that man-
ifest over a large range of length and time scales. At one extreme, molecular interactions
determine the force generated by airway smooth muscle (ASM). At the other, the spatially
distributed constriction of the branching airways leads to breathing difficulties. Similarly,
asthma therapies act at the molecular scale while clinical outcomes are determined by
lung function. These extremes are linked by events operating over intermediate scales of
length and time. Thus, AHR is an emergent phenomenon that limits our understanding
of asthma and confounds the interpretation of studies that address physiological mech-
anisms over a limited range of scales. A solution is a modular computational model that
integrates experimental and mathematical data from multiple scales. This includes, at the
molecular scale, kinetics, and force production of actin-myosin contractile proteins during
cross-bridge and latch-state cycling; at the cellular scale, Ca2+ signaling mechanisms that
regulate ASM force production; at the tissue scale, forces acting between contracting ASM
and opposing viscoelastic tissue that determine airway narrowing; at the organ scale, the
topographic distribution of ASM contraction dynamics that determine mechanical imped-
ance of the lung. At each scale, models are constructed with iterations between theory and
experimentation to identify the parameters that link adjacent scales. This modular model
establishes algorithms for modeling over a wide range of scales and provides a framework
for the inclusion of other responses such as inflammation or therapeutic regimes.The goal
is to develop this lung model so that it can make predictions about bronchoconstriction
and identify the pathophysiologic mechanisms having the greatest impact on AHR and its
therapy.

Keywords: smooth muscle contraction, latch-bridge, calcium oscillations and waves, asthma, computational

modeling, parenchyma tethering

INTRODUCTION
Airway hyperresponsiveness (AHR) is defined as an excessive
and inappropriate narrowing of the airways in response to bron-
choconstrictive challenge. While AHR and inflammation are hall-
marks of asthma and are primarily responsible for patient dyspnea,
we still have an incomplete understanding of how airway smooth
muscle (ASM) activation leads to airway narrowing and why
asthma exacerbates this response.

Nevertheless, it is clear that AHR involves a dynamic balance
between the active forces generated by ASM and the opposing
passive forces exerted by the airway and surrounding parenchy-
mal tissues. Importantly, these forces manifest at many length and
time scales; from molecular interactions within cells to changes
in airway morphology at the level of the whole lung. Further-
more, these forces are dynamic and, in particular, are rhythmi-
cally modulated by the act of breathing. For practical reasons,

traditional experimental approaches tend to focus on specific levels
of time and length scale and this has resulted in the accumula-
tion of numerous disparate facts about many of the individual
mechanisms pertaining to AHR. However, a clear view of how
these mechanisms interact to mediate AHR has remained elusive
because of the difficulty of integrating the many different time and
length scales involved.

It is our view that computational modeling provides a way
forward, therefore our primary goal is to construct a multi-level
computational model of the lung that embodies the key mecha-
nisms impinging on the phenomenon of airway responsiveness.
Such a model will not only contribute to a more complete under-
standing of the pathogenesis of AHR, but it will also provide a
virtual laboratory for in silico investigation of potential new ther-
apies for obstructive lung diseases and their modes of delivery.
This is particularly important in the current era of evidence-based
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medicine in which advances in medical practice are driven by the
outcomes of clinical trials. The expense and effort involved in such
trials are considerable and only a very limited number of questions
can be addressed. It is therefore crucial that these questions be
selected on the basis of their having the greatest likelihood of yield-
ing useful results. This can be greatly facilitated if the questions are
first vetted on the basis of predictions made by a computational
model of the lung that integrates experimental data relevant to
AHR from all relevant length and time scales.

So far, our modeling and experimental studies have focused on
the basic mechanisms of ASM contraction in the healthy state. The
initial aim was to develop the basic model framework onto which
pathological conditions could be imposed. The obvious next step
will be to include, in the case of asthma, the complex process of
inflammation. Unfortunately, at the current time, we have inade-
quate information or models reflecting the action of inflammation
on ASM. Therefore, we have not attempted to extensively address
this complex aspect of asthma in this review. However, experimen-
tal work is proposed to examine ASM responses from asthmatic
tissues.

MULTI-SCALE COMPUTATIONAL MODELING
An interest in creating multi-scale models of biological systems
has developed rapidly in recent years along with the availability
of the required computing power. However, models of biological
systems should always be motivated by the need to address bio-
logical questions rather than a demonstration that a model can be
created. Furthermore, the purpose of a multi-scale model must be
more than just a representation of the biological system at different
scales of length or time. Ideally, the model must provide scientific
insight, particularly in terms of how changes in behavior at one
level of scale influence behavior at other scales within the system.

Biological systems are hierarchical; organs are composed of
tissues, tissues of cells, cells of organelles, and organelles of macro-
molecules, with each step exhibiting qualitatively different behav-
iors. Importantly, interactions between these scales often lead to
emergent phenomena that cannot be envisaged when considering
only a single scale. Thus, a key goal of multi-scale modeling is to
understand how integration of system components at one level
of scale produces emergent behavior at higher levels of scale. The
model should also provide the reverse function to elucidate how
high scale behavior can influence lower scale activity. Multi-scale
modeling requires the distillation of these scale-dependent behav-
ioral characteristics into their essential elements for inclusion into
the model rather than the inclusion of every detailed interaction.
This approach is more efficient from a computational viewpoint
and facilitates the likelihood of gaining insight and understanding.

PRINCIPAL LENGTH AND TIME SCALES INVOLVED IN AHR
Because ASM is the source of contractile force in the airway, AHR
is a manifestation of its activity. This activity has consequences at
four major scales: that of the molecular, the cell, the tissue, and the
organ scale.

At the molecular scale
Airway smooth muscle cell (ASMC) contraction is produced by
the cyclic cross-bridge formation between myosin and actin that

generates force and movement; the kinetics of these cross-bridge
interactions primarily determines force-velocity output. However,
these cross-bridges can take a unique form called latch-bridges that
maintain the ASMC at a shortened length to exert prolonged con-
traction. For the model, characterization, and understanding of
these two cross-bridge mechanisms are required in order to predict
their force output and how molecular alterations of actin-myosin
interactions may be useful for the relaxation of ASMCs.

At the cellular scale
The contractile activity of the actin-myosin filaments is enzy-
matically regulated by the antagonistic activities of myosin light
chain (MLC) kinase (MLCK) and MLC phosphatase (MLCP). The
activity of MLCK is in turn regulated by complex spatiotemporal
patterns of Ca2+ changes within the ASMC, while MLCP is regu-
lated by a phosphorylation signaling cascade primarily involving
Rho Kinase. Of equal importance are the signaling pathways that
lead to ASMC relaxation; while this can simply involve the cessa-
tion of Ca2+ signals, the activation of relaxing signals mediated
via protein kinase A (PKA; via β2-adrenergic agonists) or protein
kinase G (PKG; via NO production) is frequently involved. The
contractile activity of the ASMC thus reflects a balance between
opposing signaling cascades. Consequently, characterization of
these regulatory mechanisms of ASMCs is required to make the
model responsive to external contractile stimuli.

At the tissue scale
Airway constriction is a dynamic event reflecting the opposing
influences of the active forces generated by ASMCs, which act to
narrow the airway, and the passive mechanical forces of the air-
way wall and the surrounding parenchyma, which resist airway
narrowing. The passive forces are due to numerous structures in
and around the airways including the alveolar walls that tether
the airway from the outside, the compressive stiffness of airway
wall components such as the epithelium and basement membrane,
and the intrinsic stiffness of the ASMC itself. All of these fac-
tors, including the force-generating capacity of the ASMC, have
the potential to become markedly altered in diseases that involve
significant degrees of airway remodeling, such as asthma. A par-
ticular challenge in modeling AHR at this level of scale is thus to
identify those mechanisms that have the most influence on airway
narrowing.

At the organ scale
The lung has a complex anatomy comprising of asymmetrically
branching airway and vascular trees embedded in viscoelastic
parenchymal tissue. In health, this structure brings air and blood in
close juxtaposition over the enormous surface area that is required
for adequate diffusive fluxes of oxygen and carbon dioxide, with
regional variability in ventilation-perfusion matching having a
small influence on total lung gas exchange. In a lung suffering from
AHR, however, substantial heterogeneities of regional mechani-
cal function may arise that severely alter the ventilation-perfusion
ratios, compromising gas exchange. A computational model that is
able to recapitulate this type of behavior, therefore, must incorpo-
rate accurate anatomical geometry together with local mechanical
properties of both airway and tissue. The respiratory tract is in
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constant motion as a result of breathing. Consequently, the spatial
distribution of local changes in airway constriction will deter-
mine the overall airway impedance, which in turn will influence
the distribution and ease of ventilation. To understand this com-
plex behavior, it is necessary to model breathing dynamics in
addition to the branching geometry, material properties, and inter-
dependence (through parenchymal tethering) of the airways and
parenchyma in which they are embedded. This model incorporates
the foregoing scales and thereby provides the ability to observe how
emergent properties alter ventilation.

APPROACHES TO MODELING
Predictive modeling
It is common for models to be purely constructive, i.e., con-
structed in great detail and validated by comparison to existing
experimental data. Because these models essentially provide a
quantitative explanation for what was already known, they are
constrained in their usefulness. By contrast, a model based on
physiological principles that can predict novel outcomes that are
not intuitively obvious, but which can be experimentally tested, is
extremely valuable for advancing an understanding of a system.
This modeling approach is successful because it inspires further
investigation and thereby provides additional evidence with which
to evaluate the predictions. This property of predictive models is
the key reason for constructing a multi-scale model of the air-
way, because it is only with such a model that the complicated
behavior of AHR can be evaluated. While experimental investiga-
tions are forced to accept limitations, predictive modeling is less
constrained.

Functional modeling
A major caveat of building a multi-scale model is that, at least
in the initial stages, it is undesirable to include all known com-
plexities. From a practical viewpoint, an all-inclusive model is not
feasible because such a model would require excessive computing.
Importantly, the model should be constructed on fundamental
principles of operation. Most researchers agree with this premise,
but can quickly lose confidence in a model if specific details central
to their work are not included. However, it is common that the sig-
nificance of such details to the overall system is rarely known and
therefore must be initially omitted. With a basic working model,
additional complexity can be added, if validated by iterative testing
between model and experiment.

Our approach to building an airway lung model initially follows
the fundamental concept of force generation by myosin and actin
that is primarily controlled by cellular Ca2+ and converted into
airway narrowing by the mechanical properties of the lung as out-
lined across the four major scales. The auxiliary control processes
and tissue characteristics can then be applied to this framework. In
this review the important details of the physiological process will
be initially addressed, for each of the four major scales, followed by
the relevant modeling approaches to build the sub-models of each
scale. It must be emphasized that this is an on-going endeavor and
that the parameters currently included in the model only reflect
current progress. The ultimate aim for the model is for it to become
a predictive tool that can be used for clinical evaluation and insight.
This will require substantially more complexity, but the first step is

the construction of a robust foundation and a flexible open-source
framework for future development.

Our approach to multi-scale modeling
To construct a multi-scale model there are two major problems
that must be solved. Firstly, models for each level need to be
constructed, validated against existing data, and improved iter-
atively with additional experimental data. In general, this first step
uses traditional modeling methods and is largely based on existing
approaches. Secondly, methods must be devised for coupling these
scales together into a single unified model. At this stage, new math-
ematical methods may need to be developed. There are no standard
procedures for the construction of such multi-scale models; every
multi-scale model, particularly one that spans such a wide range
of spatial scales as ours, will likely depend on the invention of new
methods. In addition, the entire multi-scale model must be mod-
ular in order to avoid the rebuilding of the entire model with each
new iteration or error correction at each scale.

Linking the various spatial scales requires connecting partial
and ordinary differential equations, together with judicious use of
linearization and interpolation methods. Our approach has been
to retain, as far as possible, the richness of our cellular and sub-
cellular models (an alternative would have been to parameterize a
lumped-parameter model to represent their essential behaviors).
This means that we can explore the sensitivity of the large-scale
model behavior to perturbations at the smallest scales; for exam-
ple, in our multi-scale model it is possible to predict how changes
at the level of myosin and actin kinetics will affect ventilation or
heterogeneity at the level of the entire lung. Without a multi-scale
model, such predictions are simply not possible. One drawback is
that computations for a whole lung are demanding. We minimize
this problem by use of interpolation methods in the coupling of
the spatial scales, but each full model simulation may still take
many days of computer time.

THE MOLECULAR SCALE
CONTRACTILE MECHANISMS AND PROTEINS
The contraction of ASM cells appears to be mediated by a two-
step process; the first or precursor step is proposed to be a
dynamic assembly of actin filaments into a cortical cytoskele-
ton that couples the cell membrane with more central and stable
actin filaments to enable effective force transmission. This is fol-
lowed by the traditional or familiar role of force generation by
cyclic myosin interactions with the pre-formed or stable actin
filaments.

The formation of the cortical cytoskeleton is reviewed by Gunst
and Zhang (2008) and is only briefly summarized here. A key
observation is that agonist-induced tension development is largely
inhibited, in a manner independent of MLC phosphorylation, by
preventing actin polymerization (Adler et al., 1983; Mauss et al.,
1989; An et al., 2002; Shaw et al., 2003). This cytoskeletal assem-
bly involves an increase of ∼20% F-actin (and decrease of ∼30%
G-actin), occurs quickly (within ∼60 s) and involves the translo-
cation and interaction of numerous actin-binding proteins and
nucleation factors to the adhesion junctions that link the cytoskele-
ton to the extracellular matrix (Gunst and Zhang, 2008; Huang
et al., 2010; Zhang et al., 2010b). Gunst and Zhang (2008) propose
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that this dynamically polymerizing actin is required to transmit
and potentially amplify the forces generated by the more central
actomyosin interactions to the cell-surface. However, it is unclear if
this cytoskeletal formation is immediately reversed when the ASM
relaxes (e.g., upon agonist removal) or if an extended relaxed state
is required. At the current time, our modeling approach assumes
a fixed anchorage of the actin-myosin filaments but the inclusion
of a cortical cytoskeletal sub-model would be a desirable future
direction.

The contractile or “functional” sarcomere
Airway smooth muscle cells generate force by the hydrolysis of
MgATP (magnesium ion-adenosine trisphosphate) which pro-
vides the energy to power a sliding filament mechanism mediated
by cyclic interactions between myosin filament heads and actin
filament binding sites (Adelstein and Sellers, 1996). The actin fila-
ments are approximately orientated along the length of the ASMCs
(Stephens and Kroeger, 1980). Traditionally, it was believed that
actin filaments were embedded in dense bodies that served as
anchor points at the cell membrane or within the cell (Bond and
Somlyo, 1982; Fay et al., 1983). However, more recent studies have
observed that dense bodies are actually tubular structures that run
parallel to the contractile filaments (Zhang et al., 2010a). Never-
theless, it is likely that actin filaments are anchored in some sort
of alpha-actinin based structure, similar to the z-lines of skeletal
muscle, so that contraction at the molecular level can be transmit-
ted to the cellular scale (Gunst and Tang, 2000; Gunst and Zhang,
2008).

The myosin filaments are interspersed between the actin fila-
ments and typically appear thicker being composed of multiple
myosin dimers with the myosin heads projecting outward toward
the actin filaments (Trybus, 1996). Whereas the myosin heads have
a bi-polar orientation in striated muscles, in smooth muscle most
of the myosin filaments have a side-polar orientation (Xu et al.,
1996). The exact nature of the myosin filaments also varies with
the contractile state (Ip et al., 2007). From electron microscopy
observations, the thickest and longest myosin filaments appear to
occur in relaxed ASMCs whereas myosin filaments appear to redis-
tribute and are difficult to observe in contracted ASMCs (Chin and
Seow, personal communication). A possible explanation for this is
that unconnected myosin dimers may be able to mediate filament
sliding.

Regulation of myosin cross-bridge activity
The ability of myosin to perform force-generating cross-bridge
cycling is regulated by Ca2+/calmodulin-MLCK dependent phos-
phorylation of the regulatory MLCs (rMLC). Once phosphory-
lated, myosin can hydrolyze MgATP into MgADP and Pi and
associate with actin filaments to generate force. It is believed
that the faster kinetics of rapidly contracting phasic smooth mus-
cle (e.g., in intestines), as compared to slower contracting tonic
smooth muscle (e.g., in blood vessels), is caused by a faster reg-
ulatory and contractile system (Horiuti et al., 1989). However, it
is unclear whether ASMC exhibits a tonic (Horiuti et al., 1989)
or phasic (Malmqvist and Arner, 1991) phenotype. Furthermore,
ASM may potentially change its behavior in disease (Souhrada and
Dickey, 1976; Davis et al., 1982).

Several accessory proteins, including tropomyosin, caldesmon,
calponin, and transgelin are all structurally associated with the
actin filaments (Morgan and Gangopadhyay, 2001) and are pro-
posed to play a role in contraction regulation. Tropomyosin
appears to have similar properties as in skeletal muscle and
facilitates cooperativity between cross-bridges (Morgan and Gan-
gopadhyay, 2001) as well as the action of caldesmon (Shirin-
sky et al., 1992). Caldesmon inhibits actomyosin ATPase activity
(Nagai et al., 1989) and decreases the actin sliding velocity (νmax)
in in vitro motility assays (Shirinsky et al., 1992; Horiuchi and
Chacko, 1995). The inhibitory action of caldesmon is reversed
by its phosphorylation that can be achieved by several agents
including Ca2+-calmodulin, Cam Kinase II (Ngai and Walsh, 1984;
Shirinsky et al., 1992).

Similarly, calponin inhibits actomyosin ATPase activity
(Winder et al., 1998) and decreases νmax in in vitro motility assays
(Shirinsky et al., 1992). Contrary to the effect of calponin, this
decrease in νmax is more of an “all or none” mechanism. That
is, some of the filaments are completely stopped rather than dis-
playing a simple decrease in νmax (Shirinsky et al., 1992). This
inhibitory action of calponin is reversed by its phosphorylation
by PKC or Cam Kinase II, etc. (Winder and Walsh, 1990; Winder
et al., 1998).

Taken together, the above data suggest that activation (by
phosphorylation) of actin regulatory proteins may be necessary
for cross-bridge cycling and contraction (Winder et al., 1993;
Gerthoffer et al., 1996; Pohl et al., 1997). However other studies
reported the absence of phosphorylation in vivo (Gimona et al.,
1992; Adam et al., 1995).

Transgelin (SM22α), a ubiquitous protein found in smooth
muscle cells (Solway et al., 1995; Fu et al., 2000), is thought to
interact with, or bind to, actin (Gimona and Mital, 1998; Fu et al.,
2000) and potentially modulate actin cytoskeleton organization by
increasing F-actin bundling to enhance contractility (Han et al.,
2009). Studies on smooth muscle from SM22α knockout mice have
demonstrated that SM22α is necessary for Ca2+ independent con-
traction but not for Ca2+ dependent force generation (Je and Sohn,
2007). Interestingly, SM22α appears to be significantly increased
in asthmatic ASMCs, at least at the mRNA level (Leguillette et al.,
2009).

Enhanced contraction rates in AHR
There are two isoforms of smooth muscle myosin heavy chain
(SMMHC) that are generated by alternative mRNA splicing at
the amino-terminus (Eddinger and Murphy, 1988; Nagai et al.,
1989). These isoforms differ by the absence [(−)insert] or pres-
ence [(+)insert] of a seven amino acid sequence near the ATPase
site (Kelley et al., 1993; White et al., 1993). The importance of
this insert is that it doubles the actin-activated ATPase activity and
actin filament movement in in vitro motility assays (νmax; Kelley
et al., 1993; Rovner et al., 1997; Lauzon et al., 1998). Myosin puri-
fied from multiple rat tissues shows a rank correlation between the
(+)insert protein expression and νmax (Leguillette et al., 2005).

Airway smooth muscle cells from asthmatics and animal mod-
els of asthma exhibit increased rates and extents of shortening
(Jiang et al., 1992; Bramley et al., 1994; Mitchell et al., 1994; Fan
et al., 1997; Wang et al., 1997). This increased shortening rate
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correlates with the over-expression of the fast SMMHC mRNA in
asthmatic human ASMCs (Leguillette et al., 2009). Increased rates
of ASM shortening have also been correlated with increased levels
of MLCK (Jiang et al., 1992, 1995; Ma et al., 2002), but a direct link
between rMLC phosphorylation and shortening velocity remains
controversial (Gerthoffer, 1987; Merkel et al., 1990; Mitchell et al.,
2001). Thus, the importance of increased activation or altered
expression of contractile proteins in AHR is unknown.

The latch-state
The latch-bridge, or latch-state, is a unique form of the myosin
cross-bridge and was originally defined as a state of force mainte-
nance that occurs when rMLC is deactivated by dephosphorylation
while the myosin head is still attached to actin (Dillon et al., 1981).
Despite the wide acceptance of this hypothesis, a verification of
the occurrence of latch-bridges at the molecular level is lacking
in both animal and human tissues. This latch-bridge hypothe-
sis also assumes that myosin must be initially phosphorylated in
order to attach to actin (Hai and Murphy, 1988). However, tonic
force can develop with little or no rMLC phosphorylation sug-
gesting that latch-bridges can be formed by dephosphorylated or
unphosphorylated myosin (Sato et al., 1992). Indeed, evidence is
accumulating to suggest that unphosphorylated myosin can attach
to actin (Leguillette et al., 2008) and our preliminary data also indi-
cate that it can occur in the presence of actin regulatory proteins.
Furthermore, the (−)insert SMMHC is preferentially expressed in
tonic smooth muscle, where the latch-state is prevalent. This sug-
gests that the unphosphorylated isoform might play a role in force
maintenance (Leguillette et al., 2008).

In an alternative hypothesis for latch-bridge formation, the
rMLC remains phosphorylated but force regulation is modulated
by caldesmon and calponin (Hai and Kim, 2005). Because, in
asthma, there is a possibility that contractile protein expression
and function are altered by airway inflammation, latch-bridge
formation may contribute to the force maintenance observed in
AHR.

Dynamic relaxation of ASMCs
A striking feature of AHR in asthmatic subjects is an apparent
failure of the ASMCs to relax in response to deep inspiration.
The putative mechanisms for this clinically important effect (An
et al., 2007) include an alteration of the molecular mechanisms
of ASMC force production. Force generation in ASMCs normally
results from rapidly cycling cross-bridges but may also result from
slowly cycling latch-bridges. These latch-bridges have the potential
for force maintenance and thereby prevent relaxation of asthmatic
airways (Fredberg et al., 1997). Alternatively, sustained contrac-
tion may result from a reduced rate of myosin dephosphorylation;
a condition consistent with increased Ca2+-sensitivity mediated
by Rho activated Rho kinase (ROK; Somlyo and Somlyo, 2003).

EXPERIMENTAL APPROACHES
Multiple studies have addressed and compared the mechanical
properties of normal or asthmatic ASMCs, but none of these stud-
ies have performed a multi-level investigation of the component
proteins in a single animal species. Our approach is to charac-
terize how the basic properties of ASMC proteins (from mice,

rats, and humans) influence actin-myosin interactions in terms of
sliding velocity and force production. These studies will provide
the parameters necessary to build our model of the normal and
hyper-responsive lung.

Purification of ASMC proteins
The functional analysis of individual myosin molecules from ani-
mal models has only recently been made possible by our devel-
opment of techniques to purify it from small tissue samples
(Sobieszek, 1994; Leguillette et al., 2005). The main challenge in
smooth muscle myosin purification is to detach it from actin. This
is achieved by extracting myosin in folding conditions, decreasing
its access to actin (Sobieszek, 1994) followed by myosin filament
formation. Precipitation of myosin is then performed by ammo-
nium sulfate fractionation. Myosin fractions are then dissolved and
dialyzed against low-salt buffer to purify the myosin filaments from
tropomyosin. The purified myosin is then thiophosphorylated,
a stable form of phosphorylation that allows mechanics studies
without the confounding effect of dephosphorylation. This purifi-
cation procedure has made possible, for the first time, the study of
ASM myosin from rat models of asthma (Leguillette et al., 2005).

In vitro motility assays
The in vitro motility assay (Figure 1) consists of observing the slid-
ing velocity of fluorescently labeled actin filaments as they are pro-
pelled by myosin molecules randomly adhered to a nitrocellulose-
coated coverslip (Warshaw et al., 1990; Leguillette et al., 2008). The
role of the actin regulatory proteins can be addressed by adding
them individually or in combination to the assay. The sliding veloc-
ity (νmax) of single actin filaments is determined in presence of
MgATP and is calculated by dividing the path length traveled by
the elapsed time.

Force measurements with optical tweezers
The laser trap assay is used to measure unitary displacement and
force generated by myosin molecules. The assay uses laser light to
create potential energy wells which are capable of capturing and
manipulating beads in solution (Dupuis et al., 1997). By attaching
actin filaments to two such beads, a single fluorescently labeled
actin filament can be brought into contact with myosin molecules
adhered to a pedestal on a coverslip. The displacement distance and
attachment time of a single myosin molecule can be estimated by
measuring the movement of one of the beads while myosin under-
goes its power-stroke. Alternatively, the force generated by a single
myosin molecule can be estimated by using a feedback system to
prevent bead movement by generating an equal and opposite force.
The laser trap can also be used to measure the behavior of several
myosin molecules at a time (Leguillette et al., 2008; Figure 2A). In
this case, only one bead is required to bring an actin filament in
contact with multiple myosin molecules. Displacement and force
will again be estimated from the displacement of the bead and
normalized by the actin filament length or the estimated number
of myosin molecules interacting with the filament. To estimate the
force of binding of non-phosphorylated myosin to actin (myosin
molecules that do not generate movement) the actin-attached bead
is moved away from the pedestal at constant velocity (Figure 2B).
When the pulling force exerted by the laser trap exceeds the binding
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FIGURE 1 |The in vitro motility assay. The in vitro motility assay consists of
measuring the velocity (νmax) of actin filaments as they get propelled by
myosin molecules randomly adhered to a microscope coverslip (B). The

flow-through chamber to setup and perform the assay is constructed from a
nitrocellulose-coated coverslip and a microscope slide separated by plastic
shims (A).

force of the non-phosphorylated myosin molecules to actin, the
trapped bead snaps back to its unloaded position (Figure 2C). The
product of the laser trap stiffness (Dupuis et al., 1997) and the max-
imum distance between the bead and the trap center (Figure 2B)
gives the binding force of the unphosphorylated myosin to actin.
This force is then normalized as above.

MODELING APPROACHES AT THE MOLECULAR SCALE
Our initial model of the smooth muscle cross-bridge cycle (Wang
et al., 2008) is based on a modified version of the Hai–Murphy
model (Hai and Murphy, 1988; Mijailovich et al., 2000; Hai and
Kim, 2005; Figure 3). Myosin is assumed to exist in one of four
states: the base state of myosin (M) that is neither phosphory-
lated nor attached to actin; a phosphorylated myosin that is not
attached to actin (Mp); a phosphorylated myosin that is attached
to actin (AMp); and a myosin that is attached to actin but not
phosphorylated (AM).

Myosin can only exert a force when it is attached to actin. The
transition from Mp to AMp, i.e., the attachment of phosphory-
lated myosin to actin, is believed to occur upon hydrolysis of ATP.
During the cross-bridge cycle, myosin cycles between the Mp and
AMp states, continually binding to and unbinding from actin, and
hence consuming ATP to generate force. By controlling the rate
of myosin phosphorylation, the ASMC can presumably control
the velocity of shortening and the amount of force generated. The
Ca2+-dependent mechanisms by which myosin phosphorylation
is regulated are discussed in Section “The Cellular Scale.”

In smooth muscle, myosin is believed to remain attached to
actin after dephosphorylation (Dillon et al., 1981). As mentioned

above, this state (AM) is called the latch-state. Because the rate of
transition from AM to M is typically slow, this allows the smooth
muscle to remain in a state where it can no longer relax or con-
tract quickly, but requires less ATP to maintain contraction. The
kinetics of the latch-state, as well as that of the cross-bridge cycle
are vital for understanding ASMC contraction and relaxation.

This model plays two major roles. Firstly, it is the force-
generating mechanism that, ultimately, results in airway narrow-
ing in the full multi-scale model. To accomplish this, the model
parameters are determined by comparison with data taken from
molecular scale experiments, as well as data collected from muscle
strips. Thus, we aim to ensure the model generates physiological
levels of force when incorporated into the multi-scale model. Sec-
ondly, the model can be used as a predictive tool to understand
the consequences of the possible binding of unphosphorylated
myosin.

In addition to modeling the cross-bridges with a version of the
Hai–Murphy model, our molecular scale model also includes a
hypothetical type of binding protein, which we call a cross-linker
(Donovan et al., 2010). Cross-linkers are included to give a bio-
physical basis for the plastic-like properties of unactivated smooth
muscle, such as fluidization upon stretching. They are modeled
similarly to cross-bridges, except that the attachment functions
are symmetrical with respect to the distance variable. A cross-
bridge generates active force as a result of the attachment function
being asymmetrical, thus biasing the cross-bridge to bind in a posi-
tion that exerts active force. An identical binding mechanism, but
one with a symmetrical binding function, does not generate active
force, but exhibits similar dynamic behavior upon stretching. Since
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FIGURE 2 |The laser trap assay. To measure the force of binding to actin of
unphosphorylated myosin, a single beam laser trap assay is used as follows:
The laser trap is used to capture a polystyrene bead coated with
N -ethylmaleimide modified myosin. Such myosin can attach to actin but does
not cycle, so it is used to glue the fluorescently labeled actin filament. The
actin is then brought in contact with the randomly adhered unphosphorylated
myosin on a pedestal on the coverslip (A). After allowing time for binding, the

pedestal is moved away from the laser trap at constant speed (B). Initially, the
bead remains offset from the trap center. When the pulling force exerted by
the trap exceeds the binding force of the unphosphorylated myosin molecules,
the bead springs back into the trap center, its unloaded position. (C) The
unbinding force is the product of the maximal distance between the bead and
the trap center (Δd ) by the trap stiffness. This force can be normalized by the
number of myosin molecules estimated to interact with the actin filament.

the cross-linker model is validated mostly by comparison to data
collected at the tissue scale, and has no known specific associated
proteins, it is discussed further in Section “The Tissue Scale.”

THE CELLULAR SCALE
PHYSIOLOGICAL SIGNALING MECHANISMS
Ca2+ oscillations and waves
A fundamental stimulus for ASMC contraction is an increase in
[Ca2+]i. This commonly occurs in ASMCs in response to ago-
nist activation of G-protein coupled receptors (GPCRs; Sanderson
et al., 2008; Figure 4). We have found that Ca2+ oscillations
are induced in mouse, rat, and human ASMCs by methacholine,
5HT, histamine, NO, endothelin, and LTD4 (Perez and Sander-
son, 2005; Perez-Zoghbi and Sanderson, 2007, 2010; Bai et al.,
2009; Ressmeyer et al., 2010). However, changes in membrane
potential (e.g., induced with external KCl) can also lead to Ca2+
changes (Perez-Zoghbi et al., 2009; Figure 4). The key function
of the increased [Ca2+]i is the activation, via calmodulin, of
MLCK to phosphorylate rMLC to initiate cross-bridge formation

(Figure 3) Consequently, the form and magnitude of the Ca2+
signals influence the extent of force generation.

Importantly, these changes in [Ca2+]i in ASMC from the small
airways of a variety of species in near in situ conditions occur as
sustained Ca2+ oscillations rather than static elevations of [Ca2+]i

while the agonist remains present (Figure 5; Sanderson et al., 2008;
Bai et al., 2009; Delmotte and Sanderson, 2010; Perez-Zoghbi and
Sanderson, 2010; Ressmeyer et al., 2010). Each Ca2+ oscillation is
often initiated at one end of the cell and propagates along the cell
as a Ca2+ wave. By correlating airway responses with the occur-
rence of agonist-induced Ca2+ oscillations, it has become clear
that increased airway contraction correlates with an increased
Ca2+ oscillation frequency (Figure 6; Sanderson et al., 2008;
Delmotte et al., 2010; Ressmeyer et al., 2010). Because it appears
that the frequency of the Ca2+ oscillations is important in force
regulation, this relationship is termed frequency-modulated (FM)
regulation (Berridge, 1997). However, the outcome of our mod-
eling indicates that this form of control involves more than just
the frequency aspect of the Ca2+ oscillation and probably relates
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FIGURE 3 | Schematic diagram of the cross-bridge model. Following Hai
and Murphy (1988) the myosin is assumed to exist in four forms;
unphosphorylated and unattached (M), phosphorylated and unattached
(Mp), phosphorylated and attached (AMp), attached and unphosphorylated
(AM). Cycling between the Mp and AMp states generates active force,
while the AM state can maintain tension but cannot generate force (and is
thus called the latch-state). Rates of phosphorylation are assumed to be
sigmoidal functions of Ca2+ concentration (c). The rates of attachment and
detachment are functions of the distance (x ) to the actin-binding site, and
thus the model is a system of partial differential equations of conservation
type.

to frequency-dependent changes in the form of the Ca2+ oscilla-
tions (Wang et al., 2010). A second interesting finding is that the
relationship between contraction and the frequency of the Ca2+
oscillations differs between species (Figure 6; Bai and Sanderson,
2009). In mouse, Ca2+ oscillations of about 20–30 min−1 induced
a similar extent of airway contraction as 8–10 Ca2+ oscillations per
minute in human airways (Ressmeyer et al., 2010). While some of
this difference may be attributable to the form of the Ca2+ oscilla-
tion at different rates, it is likely that a second mechanism termed
“Ca2+ sensitivity” is responsible (see later; Bai and Sanderson,
2009).

Mechanisms of agonist-induced Ca2+ signaling
Agonist-induced Ca2+ oscillations in ASMCs primarily rely
on Ca2+ release from the sarcoplasmic/endoplasmic reticulum
(S/ER). In general, agonist stimulation of GPCRs results in the
production of inositol trisphosphate (IP3). This, in turn, binds
to and releases Ca2+ from the S/ER via IP3 receptors (IP3Rs).
The sensitization of all the IP3Rs of an ASMC with IP3 primes
the ASMC to display Ca2+ oscillations and waves. A Ca2+ tran-
sient occurring at one group or cluster of IP3Rs leads to, by the
diffusion of Ca2+ through the cytosol, the stimulation of other
nearby IP3Rs to release Ca2+, a process called Ca2+-induced Ca2+
release (CICR; Berridge et al., 2003; Berridge,2009). The sequential
repeat of this activity propagates a Ca2+ wave. Therefore, it appears
that Ca2+ wave properties are a consequence of Ca2+ diffusion

rates and IP3R distribution and sensitivity. The S/ER Ca2+ ATPase
(SERCA) pumps sequester much of the cytosolic Ca2+ back into
the S/ER to allow the process to recycle. Although a direct role for
Ca2+ influx is not required for Ca2+ oscillations, the long-term
maintenance of Ca2+ oscillations does rely on the Ca2+ content of
the SR (Perez and Sanderson, 2005). Most likely, Ca2+ enters the
cell via a store-operated channel (SOC) influx mediated by mem-
brane channels, Orai1, activated by STIM1, a Ca2+ sensor within
the S/ER (Parekh and Putney, 2005; Putney and Bird, 2008). How-
ever, when the S/ER Ca2+ content is low, Ca2+ may also enter via
receptor-operated channels, TRP channels, or the reversal of the
Na+-Ca2+ exchanger (Rahman et al., 2012).

Ca2+ oscillations have also been proposed to be mediated by
CICR via the ryanodine receptor (RyR) of the S/ER (Dai et al.,
2007). These may result by a direct influx action of Ca2+ or fol-
lowing sensitization of the RyR by cADP-ribose (cADPR; Prakash
et al., 1998; Jude et al., 2008). However, in all our experiments
with normal lung slices, on-going Ca2+ oscillations or waves are
not inhibited in anyway by ryanodine (Bai et al., 2009), an antag-
onist of the RyR or antagonists of cADP-ribose. While other RyR
antagonists such as tetracaine do inhibit Ca2+ oscillations (Dai
et al., 2007), these appear to result from their non-specific anes-
thetic effects that decrease IP3 production or Ca2+ sensitivity (Bai
et al., 2009).

Ca2+ signaling associated changes in membrane potential
Membrane depolarization has commonly been associated with
smooth muscle contraction; and is believed to be mediated by
the opening of voltage-dependent Ca2+ channels and the influx
of Ca2+ perhaps followed by CICR via the RyR (Janssen, 2002).
However,ASMCs in lung slices do not appear to follow this scheme.
In response to membrane depolarization, induced by external KCl,
ASMCs display Ca2+ oscillations with a very slow rate (1–2 min−1)
as compared to agonist-induced Ca2+ oscillations (Figure 5; Perez
and Sanderson, 2005; Bai et al., 2009; Ressmeyer et al., 2010).
Importantly, these Ca2+ oscillations have a significantly differ-
ent appearance and occur as large prolonged increases in [Ca2+]i

that are preceded by numerous elemental Ca2+ responses. In con-
trast to agonist-induced oscillations, KCl-induced oscillations are
inhibited by ryanodine (Figure 5) and the removal of extracellular
Ca2+ (Perez and Sanderson, 2005; Bai et al., 2009). The implica-
tion is that KCl-induced oscillations are mediated by a slow Ca2+
influx that overfills the S/ER to sensitize the RyR to CICR.

It seems clear from these studies that both IP3Rs and RyR are
present in ASMCs, but they appear to function independently of
each other during normal Ca2+ signaling. However, since both
receptors rely on the same Ca2+ resource, they are unavoidably
linked by the Ca2+content of the S/ER. Indeed, slow Ca2+ oscilla-
tions mediated by the RyR can be replaced by fast Ca2+ oscillations
via the IP3R. An explanation for this conversion is that the partial
emptying of the S/ER Ca2+ inactivates the RyR (Wang et al., 2010)
and this also explains why the RyR does participate in CICR Ca2+
signaling during IP3-dependent Ca2+ oscillations.

Ca2+ sensitivity
A complementary mechanism enhancing ASMC that works in
parallel to the activation of MLCK by Ca2+ is the inactivation
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FIGURE 4 | Airways in human lung slices. (A) A human small airway in
Hanks’ balanced salt solution (HBSS). (B) In response to 1 μM MCH, the
airway has contracted. (C) The change in airway cross section area (as a % of

the initial area) in response to a variety of contractile stimuli. Agonists
Histamine, Methacholine and leukotriene D4 and membrane depolarization
with KCl induce airway contraction.

of the antagonistic enzyme, MLCP that dephosphorylates rMLC
to mediate ASMC relaxation (Schaafsma et al., 2008; Chiba et al.,
2010; Mbikou et al., 2011). The inhibition of MLCP is commonly
achieved by an increased activity of Rho kinase (ROK; by Rho A)
in response to the same agonist stimulation that induced increases
in Ca2+. Similar changes can be induced by PKC in response to
activation by diacylglycerol. Phosphorylation of the regulatory or
accessory proteins of MLCP by ROK or PKC prevent its association
with rMLC; decreased MLCP activity allows the phosphorylation
state of rMLC to persist (Somlyo and Somlyo, 2003; Sanderson
et al., 2008).

ASMC relaxation by β2-adrenergic receptor agonists
A major objective of therapies for AHR is the relaxation of con-
tracted ASMCs and the prominent pharmaceuticals in this strategy
are β2-adrenergic receptor agonists. Although widely used, the
mechanism of action of these compounds is not fully understood
at the cellular level; a common belief is that increases in cAMP
lead to Ca2+ decreases and thereby relaxation.

Because it will be important to include β2-adrenergic recep-
tor signaling in our lung model, we have initially explored this
signaling pathway with lung slices (see below). An important
finding was that both short-acting (albuterol) and long-acting
(formoterol) β2-adrenergic receptor agonists slowed the Ca2+
oscillations induced by methacholine or histamine in mouse or
human airways (Delmotte et al., 2010). This appeared to be
achieved by a reduced activation-sensitivity to IP3 and increased
inhibition-sensitivity to Ca2+ of the IP3R (Bai and Sanderson,
2006a). The production of IP3 may have also been reduced in the
case of high formoterol concentrations (Delmotte and Sanderson,
2010). These conclusions appear to differ from earlier studies that
proposed that increased cAMP reduced internal Ca2+ by activating
Ca2+-dependent K+ channels that mediate membrane hyperpo-
larization to reduce Ca2+ influx (Kume et al., 1994). Although
the earlier studies implied that this was a direct mechanism to
reduce [Ca2+]i, it is not totally incompatible with decreased Ca2+
oscillation frequency if the Ca2+ influx is directed to refilling the
supportive Ca2+ store. This hypothesis has similar implications
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FIGURE 5 | Ca2+ oscillations in ASMCs in lung slices. (A–C) The
contractile agonists methacholine and histamine induce Ca2+ Oscillations in
mouse, rat, and human ASMCs in lung slices. The frequency of the Ca2+

oscillations varies between species. (D) KCl also induces Ca2+ oscillations
in human ASMCs in lung slices. Theses Ca2+ oscillations are slow and are
inhibited by RyR.

for the idea that spontaneous Ca2+ sparks, (mediated by RyRs)
that also activate Ca2+-dependent K+ channels and observed
in isolated ASMCs (Zhuge et al., 2010), serve as a relaxation
mechanism.

In addition to Ca2+ reduction, β2-adrenergic receptor ago-
nists also reduce the Ca2+ sensitivity of ASMCs. Importantly, this
effect is very potent with formoterol (Delmotte and Sanderson,
2010; Delmotte et al., 2010). At a low concentration (5 nM) that
is insufficient to alter the Ca2+ oscillation frequency, formoterol
induces a substantial relaxation of the ASM. A change in ASMC
Ca2+ sensitivity may also explain some of the effects of mem-
brane hyperpolarization; with the Ca2+ clamped in a lung slice,

FIGURE 6 |The relationship between Ca2+ oscillation frequency of

ASMCs and the extent of airway contraction. The gradient of the
relationship is different for each species.

we have found that KCl (depolarization) also increased contrac-
tion. KCl can activate Rho kinase (Janssen et al., 2004) and this
suggests that hyperpolarization will decrease Ca2+ sensitivity to
help relax ASMCs. These mechanisms emphasize that Ca2+ sen-
sitivity is an equally relevant signaling mechanism that must be
considered when addressing the cause and relief of AHR (Chiba
et al., 2010).

EXPERIMENTAL APPROACHES
A major advance that has facilitated our investigation of the cel-
lular regulation of airway contraction is our ability to examine
changes in ASMC physiology while simultaneously measuring air-
way contraction. These correlations are made possible by a unique
lung slice preparation that has been used with mouse, rat, guinea
pig, horse, monkey (Sanderson, 2011), and most importantly,
human airways (Ressmeyer et al., 2010; Figure 4).

Briefly, isolated lungs are re-inflated via the trachea to a nor-
mal size with a solution of warm agarose (∼2%). After cooling
and gelling of the agarose, the lungs are sufficiently stiff to be
cut into serial slices, ∼200 μm thick (Perez and Sanderson, 2005).
Only lung slices containing airway cross sections that lack agarose
within the lumen and have an intact epithelium and ciliary activity
are selected for study. Lung slices are robust, being viable for 3 days
and highly compatible with experimental imaging. By loading the
cells of the lung slice with Ca2+ reporter dyes, changes in [Ca2+]i

in ASMCs can be observed with scanning laser microscopy during
contraction.

The lung slices can also be used to investigate the mechanism of
“Ca2+ sensitivity.” This requires that the [Ca2+]i of the ASMCs is
“clamped” to a constant level. This is achieved by irreversibly emp-
tying the S/ER of Ca2+ by treatment with caffeine and ryanodine
to invoke continuous Ca2+ influx via SOCs (Bai and Sanderson,
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FIGURE 7 | Schematic diagram of the Ca2+ model. Calcium can enter the
cytosol through IP3 receptors (IPR), ryanodine receptors (RyR), or generic
voltage-gated channels and leaks. Ca2+ is removed from the cytoplasm by
ATPase pumps on the membrane of the SR and on the plasma cell
membrane. IPR are activated by IP3, which is produced as an end-product
of agonist stimulation of cell-surface receptors. Calcium in the cytosol can
diffuse, and is heavily buffered. The buffers are not shown explicitly as they
are incorporated via an effective diffusion coefficient and effective reaction
rates.

2006b; Cahalan, 2009). Increased force production under these
conditions implies that an alternative method besides Ca2+ is
acting.

MODELING APPROACHES
Ca2+ oscillations
The model of Ca2+ oscillations is based on the dynamics of Ca2+
leaving or entering the cytosol (Figure 7). Ca2+ can enter the
cytosol from outside the cell (Jin) or from the S/ER (JSR). Con-
versely, Ca2+ can be removed from the cytoplasm by Ca2+ATPase
pumps in the SR (Jserca) and the plasma membrane (Jpm). This
model construction is well developed (Falcke, 2004) and has been
used extensively to further develop our model and test predictions
(Sneyd et al., 2004, 2006).

Although the overall structure is simple, each of the individual
fluxes can be modeled in a complex way; JSR includes Ca2+ flux
through IP3 receptors (JIPR) as well as ryanodine receptors (JRyR).
The JIPR flux also requires that we incorporate sensitivity to IP3

binding and Ca2+ feedback. In the initial version of the model,
this was achieved by using a model of the IP3R developed by De
Young and Keizer (1992), although more recent work uses more
modern IP3R models (Gin et al., 2009a,b,c; Siekmann et al., 2011).
The RyR is modeled using the model of Keizer and Levine (1996).

Jin incorporates Ca2+ fluxes through voltage-gated Ca2+ chan-
nels and this is regulated by the membrane potential. Ca2+ influx
via a capacitative Ca2+ entry mechanism or arachidonic-acid-
regulated channels is incorporated in the current model of mouse

ASMCs, but only in a simplistic way. More detailed models of Ca2+
influx in human ASMCs are being developed by an associated
group (Croisier and Brook, unpublished).

Ca2+ buffering is modeled by incorporating a fast buffering
approximation. Nuclear and mitochondrial Ca2+ fluxes, although
present, have a secondary effect and are modeled as immobile
buffers. The modulation of IP3 production and degradation is not
an important part of the mechanism underlying Ca2+ oscillations
in ASMC (Sneyd et al., 2006) so these pathways are not included.

Our current model of Ca2+ dynamics does not attempt to
include a wide variety of membrane ion channels that have been
found in ASM, primarily because there are few data directly link-
ing the activity of such channels to agonist-induced Ca2+ changes
in ASM in situ. Although a correlation of ASM contraction and
channel activity has been often observed, this is inadequate for
Ca2+ modeling since the underlying Ca2+ changes cannot be
assumed. The induction of slow Ca2+ oscillations by KCl is a good
example of an unexpected form of Ca2+ signaling in response
to a stimulus that is commonly expected to induce a sustained
Ca2+ elevation in response to the opening of voltage-dependent
Ca2+ channels. Ion channel activity may also affect Ca2+ sensi-
tivity. From our experience, we emphasize that it is essential to
collect information on contraction, Ca2+ changes and Ca2+ sen-
sitivity, before mechanisms and conclusions can be made with
models.

The full model provides a good fit to Ca2+ oscillations induced
by stimulation with MCh (Figures 8A,B) and importantly has
made some interesting predictions (Wang et al., 2010). Although
experiments and model indicate that the RyR is not a key feature
of on-going Ca2+ oscillations, the model surprisingly predicts that
the first Ca2+ transient is dominated by RyR activity (Figure 8).
This possibility was not original envisaged and resulted in experi-
mental design that only added ryanodine to on-going Ca2+ oscilla-
tions. However, an initial role for RyR can be experimentally tested
by having ryanodine present before the stimulation of Ca2+ oscil-
lations with agonist. A second model prediction is that the S/ER
Ca2+ content rapidly falls with each Ca2+ oscillation to reach a new
but lower equilibrium. This lower S/ER Ca2+concentration pre-
dicts that the RyR will be insensitive to CICR and explains why the
RyR cannot contribute to on-going Ca2+ oscillations. Importantly,
the model also reproduces the experimental response of slow Ca2+
oscillations upon depolarization with KCl (Figures 8B,C). The
prediction of this aspect of the model is that the SR becomes over-
filled with Ca2+ to sensitize the RyR to CICR. The model further
predicts that agonist-induced oscillations would empty the SR so
that the KCl-induced Ca2+ oscillations operating through the RyR
would become inoperative as a result of reduced SR Ca2+. This
prediction was upheld in the experimental examination of cytoso-
lic Ca2+ oscillations; measurement of SR Ca2+ is still required
(Figure 8E).

Ca2+ waves
An important aspect of the Ca2+ signaling occurring within the
ASMCs is their spatial organization; each Ca2+ oscillation propa-
gates as a Ca2+ wave. This serves to distribute the stimulus equally
across the cell but it also determines the duration of the sig-
nal at points within the cell. To model this spatial behavior, it

www.frontiersin.org June 2012 | Volume 3 | Article 191 | 43

http://www.frontiersin.org
http://www.frontiersin.org/Computational_Physiology_and_Medicine/archive


Lauzon et al. A multi-scale lung model

FIGURE 8 | A comparison of experimental and model Ca2+

oscillations induced by agonist (A,B) and KCl (C,D). Agonist-induced
Ca2+ oscillations are fast compared to KCl-induced Ca2+ oscillations. (E)

Experimentally, we observe that slow Ca2+ oscillations induced by KCl
are converted into fast Ca2+ oscillations by the addition of agonist in the
presence of KCl.

is necessary to incorporate a spatial distribution for the release
channels and to model the diffusion of Ca2+. The Ca2+ oscilla-
tions can then be visualized as propagating waves (for both agonist
and KCl stimulation) that reflect the experimental data (Wang
et al., 2010). However, the model predicts that both the IP3Rs and
RyRs need to be asymmetrically distributed; there appears to be
a requirement for receptor density to be greater toward one end
of the cell in order to reproduce the propensity for Ca2+ waves to
initiate at one end of the cell, as well as show intermittent wave
failure followed by a reversal of the wave propagation direction.

It is not clear why this organization is required, or if it occurs
biologically, but we intend to test this prediction by examining
receptor distribution.

Coupling Ca2+ signal to force production
To incorporate the cellular signaling into the larger lung model, it
is necessary to couple our Ca2+ dynamics model to our model for
force generation. We discussed the cross-bridge model in Section
“The Molecular Scale.” The coupling of Ca2+ to force generation
requires the activation of MLCK by Ca2+/calmodulin and we use

Frontiers in Physiology | Computational Physiology and Medicine June 2012 | Volume 3 | Article 191 | 44

http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Computational_Physiology_and_Medicine
http://www.frontiersin.org/Computational_Physiology_and_Medicine/archive


Lauzon et al. A multi-scale lung model

a Hill function to mimic cooperative binding of four Ca2+ ions to
calmodulin.

Force generation also requires the consideration of myosin
dephosphorylation by MLCP. This is influenced by both agonist
and KCl. An additional complication is that in mouse but not
human ASMCs, MLCP appears to be activated (on a slower time
base relative to MLCK) by Ca2+ (Bai and Sanderson, 2006b, 2009;
Ressmeyer et al., 2010). To model fast Ca2+ activation of MLCK
followed by slower Ca2+ activation of MLCP, we introduced an
additional differential equation for Q, the fraction of activated
MLCP (Wang et al., 2008). The rate constants were determined by
fitting to the airway response to a step increase in Ca2+ (Figure 3).

With this mouse model, that translates Ca2+ oscillations into
force production, we were able to explore the hypothesis of FM
regulation to identify the key features of the Ca2+ oscillations that
are the most significant in force generation. Interestingly, whole-
cell Ca2+ oscillations (a simultaneous uniform increase in Ca2+
throughout the whole-cell) induced greater force than propagating
Ca2+ oscillations (i.e., Ca2+ waves), even through the frequency
and mean Ca2+ concentration of the two processes were similar
(Wang et al., 2010). It is important to point out that in this mouse
model, a constant increase in [Ca2+]i induced less force than either
type of Ca2+ oscillation. This is believed to result, in part, from
the slow activation of MLCP that can decrease force. Therefore,
what appears to be important for force production is the shape or
duration of the Ca2+ oscillation. If the Ca2+ oscillation becomes
more like that of a constant increase in [Ca2+]i, (i.e., it broadens)
by becoming lower in magnitude but longer in duration in the case
of a whole-cell Ca2+ oscillation or spatially broader in the case of
the Ca2+ wave, it will induce less force even though the mean Ca2+
remains little changed. This relationship between oscillatory Ca2+
changes and force may be different in human ASM cells, in view
of the fact that Ca2+ has less effect on Ca2+ sensitivity of human
ASM cells.

By examining the proportion of cross-bridges in the latch-state,
the model is used to determine the importance of the latch-state in
controlling the speed of relaxation. Initial results from the model
indicate that the gradual movement of cross-bridges into the latch-
state causes a gradual decline in the speed of contraction, with a
power-law decay profile (see The Tissue Scale). These model results
agree qualitatively with experimental data. However, understand-
ing of the relationship between the latch-state, muscle stiffness,
and the speed of contraction remains incomplete.

Stochastic modeling of Ca2+ oscillations and waves
The current Ca2+ signaling models are deterministic. However, the
behavior of channels such as the IP3R, are for the most part, essen-
tially stochastic. Stochastic behavior is observable in long-duration
recordings of low frequency Ca2+ oscillations, which have an
increased variance in the inter-spike interval. Even at higher IP3

concentrations, i.e., at higher oscillation frequencies, there is clear
stochastic variation in the oscillation period. Consequently, a
major goal will be to convert our models to include stochastic
behavior, in order to see how important stochastic effects are in
force generation.

Our initial stochastic models have incorporated the most recent
data on the dynamical behavior of IP3R, collected from single

channels in the nuclear membrane (Betzenhauser et al., 2008). By
fitting new Markov models to these single channel data, the next
generation of IP3R models has more accurately determined the
time scales of Ca2+ and IP3 control of IP3R open probability (Gin
et al., 2009a,b; Siekmann et al., 2011). Initial simulations using a
more accurate IP3R model suggest that a stochastic IP3R-based
model is unable to generate long-period oscillations. How such
long-period oscillations occur remains an open question.

Once stochastic effects are incorporated in the model, and
their effects on force generation determined, the challenge will
be to develop formulations of the stochastic model that allow for
coupling to the next higher spatial scale. There is no standard
methodology for such coupling, and new methods will have to be
developed.

THE TISSUE SCALE
The aim of the tissue scale model is to reproduce the active and
passive mechanical properties of ASMCs and the viscoelastic prop-
erties of the surrounding tissue against which the ASMC shortens.
However, ASMCs are complicated by the fact that their mechan-
ical properties are malleable depending on the physiological
circumstances.

ASMC AND TISSUE MECHANICAL PROPERTIES
Inherent ASMC properties
Airway smooth muscle cells exhibit a hyperbolic force-velocity
relationship (Hanks and Stephens, 1981) and a characteristic ten-
sion transient in response to step length changes (Fredberg et al.,
1997; Bates et al., 2009). However, this force-length relationship is
not fixed; when stimulated repeatedly, at a given length, ASMCs
adapt in order to maintain their current length at the peak of the
force-length relationship (Bullimore et al., 2011). This provides
the ASMCs with the ability to generate maximal force even after
shortening; a response that, if unregulated, would enhance AHR.
In addition, and as mentioned earlier, ASMCs are able to form
latch-bridges. Such latch-bridges maintain force for long periods
with low energy consumption and a decreased ASMC shortening
velocity (Dillon et al., 1981; Fredberg et al., 1997). Thus, by enter-
ing the latch-state the mechanical properties of ASMCs markedly
change to a stiffened state. ASMCs also exhibit force adaptation;
total force gradually increases when ASM is stimulated repeatedly
in the presence of baseline tone (Gunst and Wu, 2001; Gunst et al.,
2003).

Parenchyma tissue properties
The dynamic environment of the in vivo airway is determined to
a substantial extent by the forces imparted by parenchymal teth-
ering. Parenchymal attachments to the outside of the airway wall
are responsible for conveying transpulmonary pressure from the
pleural surface to the airway wall, and thus impart an outwardly
directed force that opposes airway narrowing. Consequently, when
the airways are challenged with a smooth muscle agonist, their
contractile response is exquisitely sensitive to transpulmonary
pressure.

The mechanical properties of the parenchyma can be described
to a first approximation in terms of a linear single-valued stress-
strain function such that transpulmonary pressure depends lin-
early on lung volume. This description accounts for the majority
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of the mechanical behavior that influences airways responsiveness
over the range of volumes encountered during normal breathing.
However, the stress-strain behavior of lung tissue exhibits signifi-
cant strain stiffening beyond this volume range due to a variety of
mechanisms; a key mechanism being the progressive recruitment
of collagen fibers that become straight and bear the load as volume
increases (Maksym and Bates, 1997; Maksym et al., 1998). Lung
tissue is also highly viscoelastic (Bates et al., 1994), so the outward
force it exerts on a tethered airway depends on volume history in
addition to the current volume itself.

EXPERIMENTAL METHODS
ASM strips
We have made substantial progress toward understanding the
mechanical behavior of activated and non-activated ASM by char-
acterizing the dynamic force-length behavior of strips of rat tra-
chealis muscle (Bates et al., 2009; Bullimore et al., 2011). We
measured the slowing of contraction velocity during activation
(a characteristic of the latch-state) and examined if the isotonic
releases influence the degree of velocity slowing. This was done by
comparing shortening velocity after 15 min of isometric activation
with the shortening velocity of the same ASM strip when velocity
was measured once per min for 15 min. Velocity at 15 min was very
similar under the two conditions. We also studied velocity slowing
over time in ASM from rat and sheep trachea and found that the
time course of velocity slowing was similar in both preparations
and could be described by a power-law.

Stretching lung slices
To explore if airway stretching associated with breathing relaxes
airway ASM, lung slices can be stretched and changes in airway
size recorded. To ensure tethering is active, the lung slice periph-
ery must be stabilized and this can be achieved by attaching the
lung slice edge to a silicon sheet with glue. By applying oscillat-
ing stretches to the preparation the airway appears to simulate
the cyclic expansion during breathing. Preliminary data indicate
that human airways contracted with MCh respond to rhythmic

stretch by relaxing (Figure 9). When stretching ceased, the air-
way re-contracted. These results are consistent with the idea that
stretching is a protective mechanism against agonist-induced con-
traction, which was inspired by studies in isolated strips of ASM
(Fredberg et al., 1997; Wang et al., 2000) leading to the hypothesis
that fluidization of the ASM causes its contractile state to be deter-
mined dynamically (Krishnan et al., 2008). On the other hand,
evidence of this effect in vivo is scant, being limited to volume
changes that are very large (Bates et al., 2007). Recent studies of
the contractile response of isolated airways subjected to trans-
mural pressure changes have also failed to show that pressure
oscillations reduce airway contractility (LaPrad et al., 2010; Noble
et al., 2011). Our working hypothesis is that the protective mech-
anism we observe in our explant preparation derives from the
dynamic properties of the ASM cross-linkers and cross-bridges,
which exhibit fluidization when stretched. Nevertheless, it will be
interesting to see whether these effects manifest in a measurable
way at the level of the whole organ when incorporated into a global
model of lung responsiveness.

MODELING APPROACHES
Empirical models of ASM contraction dynamics
To model the dynamic force-length behavior of an ASM strip,
we have used two complementary approaches. One uses tradi-
tional viscoelastic theory (Bates et al., 2009) based on spring-and-
dashpot models and has the advantage that it is based on ordinary
differential equations and is therefore relatively straightforward to
simulate. Here, we assume that the contractile machinery in the
ASMC is presented as a force generator that acts in concert with
non-linear passive elements representing the connective tissues
that are mechanically arranged both in series and parallel with
the force generator. This model mimics the key features of the
oscillatory force-length behavior of ASM strips both when they
are passive and when the ASMCs are activated by an applied stim-
ulus (Figure 10). Of particular note, in order to reproduce the
rapid transient decrease in peak oscillatory force observed upon
the initiation of activation (Figure 10), it is necessary to have the

FIGURE 9 | Effect of stretch on airway contraction. A human airway
contracted with MCh and exposed to sequential uni-axial stretching to mimic
breathing (details of the effect of each stretch is shown in the insert box)

responded with an increase in the baseline of airway size (relaxed). When
stretching was terminated, the airway began to slowly re-contract in response
to the continual presence of MCH.
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FIGURE 10 | Force-time traces obtained in a strip of rat trachealis muscle.

The gray curves show data obtained with 2 Hz length oscillations having
amplitudes of ±1, ±2, and ±4% baseline length as indicated. Isometric
force-time curves are shown in black (solid lines obtained prior to collecting

oscillation data, dashed lines obtained afterward). The black curves in the
right-hand panels show corresponding force-time plots simulated by a
lumped-parameter model of the ASM strip that includes an empirical
mechanism accounting for cross-bridge attachment and detachment kinetics.

force-generating capacity of the ASMCs be reduced in propor-
tion to the rate of change of ASM strip length. This mechanism
is still empirical, but is motivated by the notion that cross-bridge
attachment is impaired by relative movement of actin and myosin
filaments (Fredberg et al., 1999).

We have incorporated a simplified version of the above model
into a model of the contraction of ASM around an airway embed-
ded in the lung parenchyma in order to mimic the marked depen-
dence of airway responsiveness on transpulmonary pressure. Here,
it is necessary to take into account not only transpulmonary pres-
sure itself, but also the increased translumenal pressure across the
airway wall that arises from local distortion of the parenchyma
caused by airway narrowing. The latter can be usefully approx-
imated by a relationship derived by Lai-Fook (1979). Using this
relationship, together with the classic hyperbolic description of
the force-velocity relationship for ASM, the dynamic response of
the airways to intravenous methacholine over a range of infla-
tion pressures can be accurately reproduced by a model consisting
of a single airway embedded within linearly elastic parenchyma
(Bates and Lauzon, 2007; Cojocaru et al., 2008). Importantly, the
adequacy of the model fit (Figure 11) relies on the inclusion of
a finite stiffness to the airway wall, which provides a significant
load opposing smooth muscle shortening in addition to that of the
parenchyma itself. This approach to balancing the force of smooth
muscle contraction against the opposing mechanical loads can be
taken with respect to the individual airways in a model of the lung
that includes the branching structure of the airway tree, thereby
allowing regional differences in responsiveness to be taken into
account (Politi et al., 2010).

Mechanistic models of ASM force-length dynamics
The second approach we have used to model the dynamic force-
length behavior of the ASM strip takes the underlying cross-bridge
mechanism specifically into account (Wang et al., 2008; Dono-
van et al., 2010). This approach has the advantage of a specific
biophysical basis, but it is based on partial differential equations
and is therefore more difficult to implement than the spring-and-
dashpot model described above. Again, the dynamic mechanical
properties of ASM are obtained experimentally from its transient
force-length behavior during cyclic stretching, with peak force
and stiffness being initially high but rapidly falling to become
at or below isometric values. While some of this behavior can be
predicted using an adaptation of Huxley’s cross-bridge model of
skeletal muscle (Mijailovich et al., 2000) we have found that the
non-linear viscoelastic properties of ASM tissue must also be taken
into account (Bates and Lauzon, 2005). However, this still does not
account for all the dynamic force-length behavior of ASM. In par-
ticular, when activated ASM is stretched to mimic deep inhalation,
there is a protracted decrease in its subsequent ability to generate
force that is not predicted by models based solely on cross-bridges.
We have proposed that this loss of ASM force generation results
from the disruption of the contractile apparatus (Bates et al., 2009),
the actin cytoskeleton, or other proteins comprising ASM and its
connections to the airway.

Models of passive parenchymal tissue
The modeling of soft tissue mechanics using empirical constructs
such as assemblies of springs and dashpots is well-established
(Fung, 1981). Such models do not, however, embody any particular
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FIGURE 11 | Airway resistance measured in mice (open circles:

mean ± SEM) following an intravenous injection of

methacholine at time 0, when the lung inflation pressure was

set to the three different values indicated at the right of the

figure. The solid line shows the fit provided by a computational
model of an elastic airway embedded in parenchyma that contracts
according to a hyperbolic force-velocity relationship. Adapted from
Cojocaru et al. (2008).

underlying biophysical mechanisms for complex tissue rheology;
indeed, this remains an active research field that has much atten-
tion from both biological and physical scientists (Suki and Bates,
2011). Recently, we have proposed a novel mechanism for the gene-
sis of the rheological behavior that has been observed in lung tissue
(Bates et al., 1994). This mechanism is based around the notion
that stress is released within stressed tissue through a sequence of
micro yield events that occur throughout the tissue (Bates, 2007),
as opposed to the smooth relative sliding of multiple components
as is implied by spring-and-dashpot models. The appeal of this
model is that, although still empirical in terms of specific mech-
anisms, it exhibits quasi-linear viscoelastic behavior in which the
static non-linear stress-strain behavior of the tissue is separable
from the dynamic non-linear behavior. Furthermore, the latter is
predicted to manifest as a power-law decay of stress with time
following a step increase in strain, as is observed experimentally
(Bates et al., 1994).

We have recently proposed a specific mechanism for the micro
yield events described above that derives from the Huxley-type
cross-bridge models of active ASM that are now well-established
(Mijailovich et al., 2000). Specifically, we have proposed that the
passive stress in ASM tissue is mediated by cross-linking proteins
that temporarily bind protein fibers together within the tissue via
thermodynamically driven interactions (Donovan et al., 2010).
The cross-linkers extend from one filament and bind to attach-
ment sites on an adjacent filament, and can account for many

of the passive mechanical behaviors observed in ASMC such as
the responses to cyclic stretching and deep inspirations and flu-
idization upon stretching. The cross-linker model also suggests
a compelling unification between the mechanical mechanisms of
passive and active tissue; both involve cross-bridges, the only dif-
ference being that the binding probabilities in passive tissue are
symmetric functions of distance and are driven thermodynami-
cally while the binding probabilities in active tissue are asymmetric
and require the energy supplied by ATP (Donovan et al., 2010).

THE ORGAN SCALE
To this point we have described the balance of forces for a sin-
gle airway. However, the mechanical properties of the lung vary
significantly along the airway tree. For example, the amounts of
collagen and ASM in the airway wall progressively decrease toward
the periphery. In lung disease, it is also common that the prop-
erties of the airway wall and the parenchyma are altered, (e.g.,
airway remodeling associated with AHR). These regional passive
(mechanical and structural) and active (force-generating) het-
erogeneities have a major influence on the overall mechanical
behavior of the lungs. For example, when regions of the lung that
are connected in parallel become mechanically disparate (so-called
“parallel heterogeneities”), the apparent overall resistance of the
lung, which normally has an inverse dependence on the frequency
of oscillatory flow, decreases with frequency even more precipi-
tously. Conversely, for mechanically disparate regions of the lung
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that are connected in series, some of the oscillatory flow can be
shunted into the proximal elastic compartment (e.g., the central
airways) which causes overall lung elastance to increase dramati-
cally with frequency. Thus, the crucial question is: how does the
function of the whole organ arise from the distributed nature of
structure and function at the level of the individual airways?

EXPERIMENTAL METHODS
The state-of-the-art method to assess the overall mechanical prop-
erties of the lung is based on the measurement of input impedance.
A broad-band flow perturbation is applied at the trachea while
pressure is measured at the same site. This is achieved with a
forced flow oscillation technique. In mice, a computer-controlled
mechanical ventilator (Flexivent) can be used to apply and mea-
sure a controlled mechanical perturbation to the lungs at frequen-
cies of up to 20 Hz or more (Schuessler and Bates, 1995). Although
technically less challenging due to the larger lung volume, the
approach is essentially the same for human subjects (Bates et al.,
2011). However, flow perturbations in human subjects have to be
applied via the mouth rather than the trachea so some shunting
of flow into cheeks and pharynx can influence the results related
to the lung.

The pressure [P(t )] and flow signals [V ′(t )] are related in
the frequency domain by the relationship P(f) = Z (f)V ′(f), where
frequency (f) indicates the Fourier transform of the correspond-
ing function of time (t ). The complex function Z (f) is the input
impedance and is a model independent function that encapsulates
the mechanical properties of the lung. The physiological informa-
tion inferred from measurements of Z (f) depends on the frequency
range of the flow oscillations applied to the lungs (Bates, 2009;
Bates et al., 2011). By fitting physiologically motivated mathe-
matical models to Z (f), the model parameters can be determined
as measures of the physiological quantities they represent (Bates,
2009).

INCREASED LUNG IMPEDANCE ASSOCIATED WITH AHR
Using these approaches, Hantos et al. (1992) proposed a model
known as the constant-phase model. In this model, a uniformly
ventilated lung is accessed by single airway that has a Newtonian
resistance (Rn). This airway is coupled to a distal alveolar unit
composed of viscoelastic tissue that has mechanical impedance
with real and imaginary parts that have a constant ratio to each
other with frequency (i.e.,“constant-phase”). The dissipative com-
ponent, G, of this tissue impedance reflects the resistive properties
of the tissue, while the conservative component, H, is a measure
of tissue stiffness.

We have used the constant-phase model in studies of AHR in
mice to help identify the underlying mechanisms that are respon-
sible for exaggerated responses to methacholine. For example, in
BALB/c mice that were allergically sensitized to challenge with
ovalbumin, we found that AHR to a methacholine aerosol resulted
from a thickened epithelium and increased airway secretions, but
not from increased shortening of ASM (Wagers et al., 2004).
By contrast, when mice were treated with intra-tracheal cationic
protein, which has the effect of damaging the epithelium, mice
exhibited AHR characterized by increased ASM shortening (Bates
et al., 2006). When both mechanisms were present simultaneously,

mice were extremely hyperresponsive, arguably recapitulating the
essential features of a severe asthma attack (Bates et al., 2008).
However, when methacholine is administered via the peripheral
circulation rather than as an aerosol, the ASM exhibits increased
shortening relative to the control. We hypothesize that this exag-
gerated response to injection reflects an increased leakiness of
an inflamed pulmonary endothelium, allowing a greater dose of
methacholine to reach the ASM (Cojocaru et al., 2008). These
results highlight the important role that inflammation plays in
AHR. This role is well known in allergic asthma, which has been
shown to lead to alterations in the excitation-contraction cou-
pling behavior of ASM (Bjorck et al., 1992; Mitchell et al., 1994),
in addition to the biophysical roles alluded to above.

THE MULTI-SCALE MODEL OF THE LUNG
INTEGRATING ACROSS THE SCALES TO ACHIEVE A FULL LUNG MODEL
To scale up to the level of the lung from a model of a single airway,
we embed the conducting airway tree within a parenchymal tissue
continuum (Figure 12 – organ scale). The airway tree geometry is
generated using an asymmetrically branching, 3-D tree-generating
algorithm that aims to be morphometrically accurate (Tawhai
et al., 2004). There are several important reasons for scaling to a full
lung topology instead of only studying the behavior of a limited
number of airways. First, we can impose physiological boundary
conditions that are consistent with the environment and function
of the lung. Second, we can exploit medical lung imaging to create
subject-specific models in order to test the sensitivity of regional
bronchoconstriction to airway geometry. And third, it is only by
correctly accounting for the spatial distribution of the airway tree
within the lung parenchyma that the appropriate contribution of
regional differences in tissue expansion (due to gravity and normal
variability in material properties) can be assigned to the balance
of forces on the airway wall during its constriction.

To achieve computational feasibility when scaling the model
to represent an entire human lung (that contains about 60,000
bronchial airways), we assume each airway is radially symmetric
and that changes in airway mechanics during breathing are deter-
mined only by changes in radius and not length. At the tissue level,
each airway is comprised of an airway wall and a surrounding ASM
layer that interacts mechanically with the parenchyma (Figure 12 –
tissue scale). In this way, we calculate the active contractive force
generated by the ASM and the opposing passive mechanical forces
provided by airway wall stiffness and outward parenchymal tether-
ing. From the resulting balance of all these forces, we can determine
the airway radius; this calculation is repeated for each airway with
respect to time.

For computational simplification, we initially considered an
arbitrary 3-D unit of lung tissue that is representative of the whole
lung and its airways (this includes a range of airway sizes). The
location of the unit is relatively unimportant for establishing an
initial understanding of the system behavior, but it can be scaled
to the whole lung and fitted to the anatomically based geometry
of the full conducting airway tree – this is a question of computa-
tional rather than conceptual complexity. The tissue unit contains
all the key elements of the airways embedded in a parenchymal
continuum. The alveoli are not represented discretely, but are
assumed to operate as a smooth, homogeneous material (as part of
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FIGURE 12 |The four spatial scales and their interactions in the

multi-scale lung and airway model. The four scales of organ, tissue, cell,
and molecule interact as follows: (A) anisotropic strain from the parenchymal
continuum model (organ scale), linearized to an expression for parenchymal

tethering, (B) Shortening velocity that is limited by the balance of active and
passive forces, (C) Coupling of calcium to force generation via activation of
MLCK, (D) Active and passive force generation from cross-bridges and
cross-linkers, (E) Airway constriction and redistribution of ventilation.

the organ scale parenchymal continuum) regardless of the airway
size or order. The airways included in the unit have eight orders
of branching (generated by a space-filling branching algorithm;
Tawhai et al., 2004). Again, for simplification and scaling feasibil-
ity, each airway segment is assumed to be radially symmetric and
longitudinally stiff. Length changes are assumed independent of
radial changes.

We use a continuum approach to embed the airway tree
within “lung tissue” that is a compressible, hyper-elastic mater-
ial in 3-D (Tawhai et al., 2006, 2009). This “tissue” is essentially a
homogenization of the elastic properties of the parenchyma, air,
airways, and blood vessels. We assume material compressibility
because the tissue contains air that is free to move into or out of
the lung. Stress and strain are related by a strain energy density
function, and the response parameters of the tissue are selected
such that normal lung inflation pressures give rise to expected
expansion volumes for the tissue (Tawhai et al., 2009). By solv-
ing the governing equations of finite elasticity (large deformation)
mechanics using a finite element method, our model is capable of
simulating tissue deformation due to both gravity and the expan-
sion and recoil associated with cyclic changes in pressure on the

model surface due to breathing. Figure 12 (organ level) illustrates
a distribution of recoil pressures on a finite element model of the
right lung in the upright position under gravitational load. Due
to the inaccessibility of the lung tissue to direct measurement and
limitation of high resolution imaging of supine or prone postures,
data for the validation of the tissue mechanics model are lim-
ited (discussed later). However, we have validated the prediction
of the distribution of tissue density due to the model’s defor-
mation under gravity in the supine posture by comparing this
against imaging data of subjects in the same posture (Tawhai et al.,
2009). This model provides the boundary pressures and local elas-
tic properties of the parenchyma that are required for interaction
with the tissue level model. The airway lumen radii computed
at the tissue level depend on their coupling with the organ level
model, the non-linear properties of the airway wall, and ASM force
generation.

Each airway segment is classified according to its Horsfield
order and has three layers with properties that depend on the order:
an inner wall layer that contributes passive stiffness, an active
ASM layer that generates force, and an outer parenchymal layer,
which serves as an interface with the parenchymal continuum that
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surrounds the lung segment, and mediates tethering (Figure 12 –
tissue scale). Airway diameter is a function of transmural pressure
generated by stress within the ASM layer, external forces acting via
the parenchyma,and luminal air pressure (Lambert et al., 1982). To
enable coupling across the tissue-organ scales, the model uses two
representations of the parenchyma: a local layer and the conditions
of the parenchymal continuum at the location of the airway. These
layers are connected with the material properties of the local layer
determined from a linearization of the anisotropic continuum at
the location of the airway (Figure 12). That is, the lung tissue will
have undergone local volumetric changes that depend on its loca-
tion in the lung; tissue in the gravitationally dependent regions will
generally be under less tension than tissue in the non-dependent
regions, and the irregular curvilinear shape of the lung introduces
variability in the distribution of strain. Note that this variability
occurs independently of any assumptions of heterogeneity in the
intrinsic tissue properties.

Airway smooth muscle stress is generated by a cross-bridge
model of sliding filaments within the ASMCs (Figure 12 – mole-
cule scale) under the regulation of Ca2+ signaling (Figure 12 – cell
scale). The models defining these processes were addressed in
detail earlier and are include in the whole lung model. Thus,
overall airway diameter is regulated by ASMC contraction act-
ing against parenchymal tethering which varies with gravity and
breathing. We consider breathing that is driven by changes in force
or displacement at the (pleural) surface of the model, as opposed
to positive pressure ventilation that is driven by increasing the
pressure at the mouth. We have therefore assumed that the air
pressure remains small relative to the parenchymal and ASMC
forces, and so does not make a significant contribution to the
transmural pressure. This is in contrast to positive pressure mod-
els with fixed tidal volume in which the air pressure can make a
significant contribution (Venegas et al., 2005).

Coupling of all of these models and solving simultaneously for
each airway with respect to time is a significant computational
problem. Not only must all models be solved simultaneously for
force balance, but a numerical continuation is also required (All-
gower and Georg, 2003) because of the bistability inherent in the
Lambert model of the pressure-radius relationship for the small
airways (Affonce and Lutchen, 2006). It is this computational com-
plexity (i.e., modulating transitions between the two stable states
for each airway) which most limits the computational scope. How-
ever, the process is inherently parallel and potentially amenable to
parallel computing approaches.

MODEL OUTCOMES
It should be initially emphasized that the major outcome of this
multi-scale modeling is the first working, biologically based in sil-
ico lung and the proof-of concept of the feasibility of this approach
(Politi et al., 2010). Although many aspects of lung physiology are
not yet included in the current model, their incorporation is now
more a function of time and experimentation rather than a major
modeling concept.

Reduced airway contraction due to breathing
Our simulations of breathing with contractile agonist exposure
demonstrated that, as expected, the extent of airway contraction

was a function of pressure changes induced by breathing imposed
on pressure changes induced by ASMC stress. Importantly, the
organ model also revealed the emergent behavior of increased
airway diameter associated with breathing as compared to static
conditions. Sensitivity analysis suggested this response was (again,
as expected from experimental work) a function of the ASMC
cross-bridge kinetics determined by the attachment and detach-
ment rates. However, the model also suggested that the maximal
isometric force and the rMLC dephosphorylation rate were also
important (Politi et al., 2010).

Although airway radius was increased by breathing, this
increase was smaller than that proposed from experimental stud-
ies (Politi et al., 2010). This raises interesting questions about the
significance of the effect and the conditions under which it is
observed. Our model simulates tidal breathing rather than exper-
imental deep inspiration which appears to have a large relaxation
effect on ASMCs. More importantly, experimental approaches
often examine isolated ASM strips which alter or abolish the orga-
nization constraints of the airway and remove the multi-scale
interactions. Thus, a small change in airway diameter may be a
more realistic response. On the other hand, passive ASMC prop-
erties, which exhibit fluidization responses, are not yet included
in the multi-scale model and these are expected to enhance the
magnitude of airway relaxation.

The importance of spatial heterogeneity at the cellular scale
Simulations at the scale of the individual ASMCs have shown that
the amount of force generated by the ASMCs is especially sensitive
to the spatial distributions of the Ca2+ responses (i.e., the shape
of the Ca2+ waves; Wang et al., 2008, 2010). Thus, unexpectedly,
overall airway contraction can be modified and controlled by rel-
atively minor and subtle changes in Ca2+ signaling at the cellular
scale.

The interplay between passive and active elements at the
molecular scale
At the molecular scale, passive elements such as cross-linkers
generate complex dynamic behavior, including fluidization, adap-
tation, and velocity-dependent force generation (Donovan et al.,
2010). Hence, many of the mechanical properties of ASMCs are the
emergent result of these molecular scale interactions, and are thus
a blend of both active and passive processes. Tissue scale mechan-
ical behavior cannot be understood by considering cross-bridges
alone.

Slow transitions between open and closed airway states
A result which has emerged only from the coupling of multiple
scales in the model is a slow and steady transition between an
open and closed airway state, with the transition being modulated
by cross-bridge dynamics (Politi et al., 2010). It s well known
that bistability between open and closed states is an inherent
characteristic of the Lambert airway wall model (Lambert et al.,
1982; Affonce and Lutchen, 2006) but this static model allows
for instantaneous transitions between the open and closed state.
Only by coupling the tissue scale with the dynamics of the cross-
bridge model of ASMCs are these airway transitions modulated
into the slow and steady behavior seen experimentally (Latourelle
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et al., 2002; Oliver et al., 2007). This result cannot be obtained by
considering either scale in isolation.

Heterogeneity and gravitational gradients
Heterogeneity in airway constriction is an important aspect in the
manifestation of AHR and changes in ventilation and has been
explained by changes in dynamic factors as opposed to struc-
tural factors. Some studies suggest the constriction pattern can be
altered by deep inspiration while other studies suggest that clus-
tered ventilation occurs preferentially in gravitationally dependent
tissue (Venegas et al.,2005; Tgavalekos et al.,2007). The coupling of
non-linear sub-scale models in the multi-scale model allows us to
consider the degree of heterogeneity attributable to structural fac-
tors. A significant gravitational gradient is developed, and airways
located in dependent tissue are exposed to parenchymal conditions
which differ significantly (Politi et al., 2010). This suggests that
some heterogeneity, particularly that found in dependent tissue,
may be explained by structural phenomena; however, “resetting”
of the constriction pattern still requires a dynamic explanation.

Passive tissue fluidization
One result which has the potential to significantly impact the
dynamic equilibration of in vivo airways is strain-induced flu-
idization of passive ASM. When exposed to oscillatory strain, the
force exerted by stretched, passive ASM is reduced. This reduction
in force is proportional to the strain oscillation amplitude, and
persists beyond a 30-s timescale; this occurs in both the experi-
mental and modeling results (Donovan et al., 2010). This has the
potential to reduced airway constriction due to tidal breathing
and/or deep inspirations (Ijpma and Lauzon, 2012).

FUTURE DIRECTIONS
We emphasize here that the multi-scale model is a work-in-
progress. Although there are a huge number of possible additions
to the model, we propose a series of questions and modifications
we consider to be most important to our current sub-scale models.

AT THE MOLECULAR SCALE
How important is the latch-state in the long-term modulation of
force generation?
Can passive elements such as cross-linkers, independent of cross-
bridges, reproduce any of the behaviors traditionally thought to
be caused by the latch-state? This is question is closely related to
the question of how the active and passive elements interact to
control force generation in a single ASMC; the latch-state, being
in a half-way state between active and passive, will play a central
role in these investigations.

What happens if unphosphorylated myosin can bind to actin?
How will this influence AMSC stiffness as a function of time after
stimulation or stretching? How should this best be modeled?

Should an ASMC be modeled using a Huxley-style formation for the
cross-bridges and cross-linkers, or is a more continuous (a more
complicated) approach necessary?
Data indicate that breakage of cross-linkers and cross-bridges after
a large stretch plays an important role in decreasing the active force,
but such breakage has not yet been included in our models.

AT THE CELLULAR SCALE
How important are stochastic properties of Ca2+ release?
We have to develop a stochastic model of Ca2+ oscillations
and waves and determine whether the measured single channel
properties of the IP3R are sufficient to generate the observed
behavior.

How do the patterns of Ca2+ waves and oscillations modulate force
generation?
Although we know that the shape of the Ca2+ oscillation plays a
role in modulating force generation, and thus there is a measurable
difference between the force generated by Ca2+ oscillations and
the force generated by Ca2+ waves, we need to develop mathemat-
ical methods that can take these differences into account without
greatly increasing the required computer time for simulations.

How will a human ASMC model differ from a mouse model?
As yet, we have only developed a mouse model. We need to develop
a detailed model of Ca2+ signaling in human ASMC. This will
require additional data from human tissues.

What are the effects of inflammation on force generation?
Inflammatory aspects of the Ca2+ signaling pathways and their
connection (for example) to Ca2+ influx, need to be included in
the model so that we can study the effects of inflammation on
force generation.

What is the role of mechanotransduction in Ca2+ signaling in
ASMCs?
Are stretch-activated or compression-activated calcium channels
present? If so, how important are they? Can we use a model to
predict how important such channels would be expected to be?

AT THE TISSUE SCALE
How important are the interactions between active and passive
elements in force generation?
The passive adaptation of stress in lung tissue will change the
stress acting on actively cycling cross-bridges and thereby affect
their actin-binding probabilities. Conversely, active force genera-
tion within the ASM tissue will affect the stress bearing role of the
passive connective tissue via the cross-linker mechanism.

How important are regional tissue heterogeneities in
airway-parenchymal tethering?
So far, we have modeled the parenchyma as a homogeneous
isotropic material, but this is far from reality, particularly in asthma
that involves regional tissue remodeling. We have begun to simu-
late the parenchyma as heterogeneous networks of springs, some
of which may be stiffened to represent fibrotic remodeling, in
order to determine how parenchymal tethering modulates airway
responsiveness.

How important is the complex rheology of lung tissue in
determining AHR?
We have also modeled airway-parenchymal interactions under the
assumption that the tissue is purely elastic, but we know it is
markedly viscoelastic. We would therefore expect that the infla-
tion history of the lung to also affect the extent to which the
parenchyma is able to resist ASM contraction.
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AT THE ORGAN SCALE
Major assumptions and/or limitations in the model at the organ
level are our definition of the material law, neglecting the potential
influence of air pressure, weak coupling between the tissue and
organ level mechanical models, and limitations on data against
which we can validate the model function.

How important is surfactant dynamics to the regional tissue
elasticity?
Our continuum model combines the contributions of tissue elas-
ticity and surface forces into a single description of the elastic
behavior of the lung parenchyma, parameterized to the expected
pressure-volume relationship for an intact lung at only two vol-
umes (functional residual capacity and total lung capacity). This
approach has been shown to be satisfactory for simulating static
lung deformations in the supine posture in two human subjects,
however this single material law parameterization is likely to be
inadequate for representing the mechanics of individual subjects,
particularly those with chronic lung disease. We have treated the
lung tissue mechanics as a sequence of static deformations, but
in the dynamic lung the contribution of surfactant dynamics and
how this changes with stretch (Majumdar et al., 2011) may be
important in the force balances that influence emergent behavior.

Does airway pressure make a significant contribution to the
balance of pressures in a breathing lung?
Our initial model has neglected the contribution of air pressure
to the balance of forces on the airway. However, other breathing
lung models driven by positive pressure inflation with fixed tidal
volume have shown that the contribution of the air pressure can
be significant (Venegas et al., 2005). We have recently developed
a model that couples the tissue deformation model to pressure
development and flow distribution in the full airway tree (Swan
et al., 2012). This ventilation model is not yet a component of the
multi-scale model, however we can control the degree and loca-
tion of static bronchoconstriction in the model and evaluate the
redistribution of alveolar and luminal pressures, which the model
predicts are relatively modest. Figure 12 (organ scale) illustrates a
“patchy”flow distribution in this model that results from the inter-
action of increased airway resistance (Figure 12E) and distributed
tissue compliance.

How do we introduce bi-directionality in tissue and airway
mechanics?
In our multi-scale model, the airways and parenchyma are not
tightly coupled. That is, while the balance of forces acting on each
airway includes input from the parenchymal mechanics, the defor-
mation of the airway, or its closure does not act in the opposite
direction to contribute to the balance of forces in the continuum
model. Over long times scales this could exhibit as changes in the
surface forces, as we have already described. This limitation in
existing models means that we do not yet understand the depen-
dence between local airway constriction and the cyclic pressures
of breathing that are transmitted throughout the lung tissue: it
is not clear whether airway-parenchymal interdependence will
act to further impede flow or to maintain flow to constricted
regions.

Can we define a new protocol for validating multi-scale models?
For single scale models that have been designed to test a hypoth-
esis, the model is considered validated (at least to some degree)
if it qualitatively and quantitatively predicts an independent set
of experimental data. While the components of these large-scale
physiome-type models are data driven, every component is not
amenable to independent validation against experiment. This is
partly due to limitations on the data that can be acquired for val-
idation, and partly because the intrinsic structural and functional
connections across the scales can render meaningless a“validation”
that is performed at a single scale or under non-physiological con-
ditions. It is important to emphasize that we have developed the
multi-scale model to have a strong biophysical basis: it is grounded
in physical conservation laws, and is constrained by physiological
and biological parameters. The model’s foundation in physical
laws means that we only rarely have to revisit our description of
the fundamental behavior of its components; rather, our modeling
iterations are usually a matter of revisiting the model’s parame-
terization, or our computational methods that allow us to couple
different scales. And operating within physiological constraints
considerably – and conveniently – reduces the range of parameters
that can be chosen for the model. These two considerations pro-
vide some assurance that the model does not violate either physical
laws or physiological behaviors; this is necessary to demonstrate,
but it is not a sufficient “validation.” At the level of the integrated
model we can say with confidence that the model is predictive
of several emergent behaviors that are consistent with pulmonary
physiology and asthmatic pathophysiology. This is one impor-
tant and necessary validation, but it does not guarantee that each
model scale is realistic. Understanding uncertainties at each scale
in the model is therefore imperative to providing confidence in its
integrated predictions.

There are uncertainties in the model parameterization, as well
as natural variability in material properties and anatomical geom-
etry in the population. Rather than implementing the multi-scale
model in numerous subjects and/or computing a stochastic variant
of the model, a more systematic approach can be taken to address
uncertainty and to provide confidence in the model predictions.
That is, the nature of the model enables us to discover which
structural or functional aspects of the integrated system are most
critical in the development of bronchoconstriction. Conversely –
and just as important – we can identify which model components
our predictions are not sensitive to. The most straightforward
approach is to perform a sensitivity analysis: simulating whole
model bronchoconstriction during systematic variation in the
model parameters. This is a standard approach to address uncer-
tainty in model parameterization, but we are not aware of it being
used to address the contribution of airway topology to lung func-
tion. In terms of addressing population variability, this systematic
approach is more useful than repeated analysis of multiple subjects
because we can control the nature and extent of the anatomical
variation and provide comment on how this contributes to local
force balance. For example, a subject-specific definition of the dis-
tribution of airway wall thickness and stiffness, and distribution of
ASM cell type would be desirable for a truly subject-specific predic-
tion of bronchoconstriction. New insight into how, e.g., localized
wall thickening impacts on regional ASM force development could
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be gained through pooling simulation data from (many) subject-
specific modeling studies, but this introduces similar uncertainty
to an experimental study. In contrast, a systematic sensitivity
analysis can distinguish between the contribution of airway wall
thickening and stiffening (which would not be separable experi-
mentally in the subject-specific analysis), the thresholds at which
they become significant, and whether their regional distribution is
of importance in the development of localized ventilation defects.
Because our model is amenable to implementation in a test unit or
in the whole lung, we can test its emergent behavior at the whole
organ level against clinical data. Lutchen et al. (Tgavalekos et al.,
2003, 2005) have demonstrated the potential of this approach by
validating complex global-level model behavior against multiple
physiological measurements through their “image-function mod-
eling” approach. In their studies they chose to constrict airways
within imaged regions of ventilation defect, and – through trial
and error – fit a constriction distribution throughout the conduct-
ing airway tree that gave realistic prediction of airway impedance.
We now have the opportunity to extend this approach, by predict-
ing the spatial distribution of airway closure, and validating the
integrative behavior of the model against measurements of inert
gas washout, oscillation mechanics, and gas exchange.

CONCLUSION
We focus here on developing a whole lung model to address the
phenomenon of AHR, a cardinal feature of asthma. This is a chal-

lenging task in its entity because the lung is a complex organ
within which qualitatively different behaviors manifest over an
enormous range of length and time scales. So far, our approach
has been to select what we consider to be the most important
levels of scale involved in the genesis of AHR, and to model
these phenomena at each level of scale separately before com-
bining the resulting sub-models into a global model that links
behaviors between scales. We have made considerable progress
by establishing the fundamental framework for an in silico lung
model that based on key experimental observations made at
the levels of the molecule, the cell, the tissue, and the whole
organ. Furthermore, at each level of scale these representations
are, for the most, based on biophysical mechanisms operative
at lower levels of scale, allowing us to trace the global response
of the lung, following challenge with ASM agonist, to processes
operative all the way down to the molecules involved in ASM
force generation. In the future, we anticipate that many other
aspects of lung physiology will be included and that the model
will be developed to the stage where it can be used to gain
further insight into the understanding of AHR and potential
therapies.
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Acute inflammation leads to organ failure by engaging catastrophic feedback loops in which
stressed tissue evokes an inflammatory response and, in turn, inflammation damages tis-
sue. Manifestations of this maladaptive inflammatory response include cardio-respiratory
dysfunction that may be reflected in reduced heart rate and ventilatory pattern variabili-
ties.We have developed signal-processing algorithms that quantify non-linear deterministic
characteristics of variability in biologic signals. Now, coalescing under the aegis of the
NIH Computational Biology Program and the Society for Complexity in Acute Illness, two
research teams performed iterative experiments and computational modeling on inflamma-
tion and cardio-pulmonary dysfunction in sepsis as well as on neural control of respiration
and ventilatory pattern variability.These teams, with additional collaborators, have recently
formed a multi-institutional, interdisciplinary consortium, whose goal is to delineate the
fundamental interrelationship between the inflammatory response and physiologic vari-
ability. Multi-scale mathematical modeling and complementary physiological experiments
will provide insight into autonomic neural mechanisms that may modulate the inflammatory
response to sepsis and simultaneously reduce heart rate and ventilatory pattern variabilities
associated with sepsis. This approach integrates computational models of neural control
of breathing and cardio-respiratory coupling with models that combine inflammation, car-
diovascular function, and heart rate variability. The resulting integrated model will provide
mechanistic explanations for the phenomena of respiratory sinus-arrhythmia and cardio-
ventilatory coupling observed under normal conditions, and the loss of these properties
during sepsis.This approach holds the potential of modeling cross-scale physiological inter-
actions to improve both basic knowledge and clinical management of acute inflammatory
diseases such as sepsis and trauma.

Keywords: mathematical model, inflammation, physiologic variability, heart rate variability, neural control

INTRODUCTION
Sepsis is a significant public health concern, accounting for
approximately 10% of total U.S. deaths annually (Angus et al.,
2001; Martin et al., 2003; Vincent et al., 2006; Heron et al., 2009).
For most infections, despite antibiotic treatments, death occurs
primarily through the final common pathway of sepsis-induced
multiple organ dysfunction syndrome (MODS).As the popula-
tion ages, the preponderance of complex medical co-morbidities
increases and the impact of sepsis is expected to increase

(Anonymous, 1990; Angus et al., 2001; Martin et al., 2003; Weycker
et al., 2003).

Despite a large body of scientific literature concerning indi-
vidual mechanisms involved in sepsis – disordered endothelial
activation (Aird, 2003; Ait-Oufella et al., 2010), organ dysfunction
due to epithelial cell failure (Protti and Singer, 2006; Balestra et al.,
2009), dysregulated inflammation and the associated complement,
and coagulation networks (Rittirsch et al., 2008; Levi and van der
Poll, 2010) – the primary challenge lies in integrating a large body
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of data into a cohesive whole that can guide novel therapies. Effec-
tively modulating, or controlling, the inflammatory response in
sepsis, without adverse effects, has proven daunting. Currently no
drug is approved by the U.S. Food and Drug Administration (FDA)
for MODS. A previously approved drug, recombinant human acti-
vated protein C, failed to offer a benefit over standard of care on
a FDA-mandated repeat Phase III clinical trial and was removed
from the market (Angus, 2011; Mitka, 2011).

We suggest that the rational development of new therapies
for sepsis and other acute inflammatory diseases requires char-
acterizing the functional architecture and control points of multi-
compartment inflammation. Specifically, we suggest that MODS
could be thought of as arising from containment failure (i.e.,
failure to contain pathogens as well as failure to contain inflam-
mation appropriately) driven by multi-scale “tipping points” that
drive a forward feedback loop of inflammation → tissue dam-
age/dysfunction → inflammation (An et al., 2012). We use the
term “tipping point” to refer to a functional threshold beyond
which a particular compartment/subsystem/system undergoes a
phase transition from one range of dynamic behaviors to another.
Implicit in this concept is that the internal feedback control
processes of a particular compartment/subsystem act to maintain
its behavior within a physiological functional range in response to
perturbation, but that eventually the persistence and magnitude
of the perturbation can lead to control failure. This control feature
leads to a shift in the behavioral domain of the subsystem that can
in turn lead to disorders in associated compartments/subsystems.
This conceptual architecture has the potential to allow: (1) iden-
tification of intra-compartment-specific metrics that can be used
to determine how close that compartment is to its “tipping point;”
(2) identification of inter-compartmental control structures and
their associated metrics for efficacy of control; and (3) propose
both intra- and inter-compartmental control points that can be
targeted for therapeutic intervention.

Studies from our groups, which coalesced under the U.S.
National Institute of Health Computational Biology Program1

and the Society for Complexity in Acute Illness2, have led
us to hypothesize that these multi-scale inflammatory “tip-
ping points,” subsequent containment failure, and forward feed-
back to further propagate inflammation are either centrally
controlled by neural circuits, or that neural circuits are acti-
vated once inflammation is induced in the brain during sep-
sis. We hypothesize that the structural/functional (parenchy-
mal) cells of a given organ, once stressed or injured in a
process that accompanies the degradation of organ physiology,
release damage-associated molecular patterns (DAMPs) that in
turn induce resident inflammatory (non-parenchymal) cells to
produce classical pro-inflammatory cytokines, which in turn
cause further release of DAMPs. Thus, inflammation would
be controlled locally until the threshold for local control is
exceeded. Co-incident with the peripheral inflammation, the brain
“maps” the peripheral inflammation through its own expression
of inflammatory cytokines. Brain inflammation would trigger
processes aimed at vagal control of inflammation, to maintain
physiologic homeostasis (Piepoli et al., 1995; Annane et al., 1999;

1http://www.nigms.nih.gov/About/Overview/bbcb.htm
2www.scai-med.org

Korach et al., 2001).This is a key point: parenchymal cells have no
way of “sensing”directly that the organ in which they are contained
is functioning in- or out-side its optimal operating parameters;
only the brain can “sense” this dysfunction. Moreover, parenchy-
mal cells exhibit dysfunction locally through the release of DAMPs
that are “sensed” by inflammatory cells. In this scheme, “tipping
points” could occur in two distinct locations – a peripheral com-
partment in which the initial inflammation is manifest, and a
“mirrored” representation of that compartment in the neural cir-
cuitry and tissue; both of these “tipping points” would affect – and
be affected by – the physiologic function of a given organ. The
implication of this hypothesis would be that centrally not only
is there a loss of control but also dysfunctional control of other
compartments, and that this dysfunction arises from the unique
role of the brain as sensor and regulator of both organ function
and inflammation.

We suggest that the use of data-driven and computational mod-
eling, combined with experiments in relevant animals models of
sepsis/MODS, is necessary to define and rationally modulate these
“tipping points.” Time-domain signal-processing analysis has cor-
related alterations (primarily decreases) in physiologic variability
with morbidity and mortality in critically ill patients (Pomer-
anz et al., 1985; Anonymous, 1996; Godin et al., 1996; Korach
et al., 2001; Barnaby et al., 2002; Pontet et al., 2003; Kleiger et al.,
2005; Chen and Kuo, 2007; Ahmad et al., 2009; Fairchild et al.,
2009). To unify these diverse observations, we hypothesize that the
progress of tissue-level failure toward MODS is accompanied by
defined inflammatory networks in different organs, is controlled
by inflammation “maps” in the brain, and manifests as decreased
physiologic variability (Figure 1A).

We have previously suggested a computational modeling
approach to the dilemma of MODS that represents a concep-
tual departure from the current view of acute inflammation and
MODS, and offers a new paradigm of MODS pathogenesis based
on multifaceted, multi-compartment, and multi-scale inflamma-
tory processes (An et al., 2012). This approach is based on the
following premises:

• The recognition – suggested, driven, and linked by compu-
tational modeling – that the inflammatory response is both
compartmentalized and tightly coupled with physiological
processes.
• Given this architecture, that at a certain level of perturba-

tion the reinforcing feedback loop of inflammation → dam-
age/dysfunction → inflammation leads to failure of intra-
compartment control. Such failure manifests as the crossing of
compartment-specific “tipping points” that have “all-or-none”
systemic and physiologic consequences (An et al., 2012).
• That the control structure for integrating inflammation and

physiology is based on neural circuits, and thus disordered and
failing control of effectively contained inflammation is manifest
as altered physiological variability (Namas et al., 2012).
• Finally, that therapies should be targeted based on this structure

and dynamic behavior.

Below, we discuss each of these points and suggest how they
connect to drive a novel view of MODS.
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FIGURE 1 | Conceptual models of organization. (A) Inter-compartmental
communication. Immune cells provoke activation of hormonal responses and
neural controls, systemically manifested in alterations in cardiac activity. The
interconnected nature of the regulatory interactions among compartments
leads to the emergence of complex systemic responses.
(B) Intra-compartment dynamics. At the cellular level, LPS is recognized by
TLR4, activating the NF-κB signaling, leading to release of pro-inflammatory
cytokines which turn on the anti-inflammatory machinery eventually leading to
release of hormones driving sympathetic/parasympathetic imbalance altering
heart beat patterns leading to diminished heart rate variability. Each individual
compartment is characterized by its own, embedded, feedback regulatory
structures. (C) Basic compartments of a physiologic system: Plant, Controlled
Variables, and Controller. The plant is the coupled cardio-respiratory system
functioning as single physiologic system serving gas exchange. In this
system, blood gases and flow (e.g., vascular resistance, heart rate) are the
controlled variables in delivering oxygen to various tissues. The controller
generates rhythmic respiratory sympathetic and parasympathetic activities.
Pink highlight, these red arrows relate to variables in the red box (1) Efference

copy and (2) Mechano-receptors [pulmonary stretch, muscle- and joint-, and
baro-receptors] which provide input to controller regarding plant performance
on a breath-by-breath or beat-by-beat basis for a given motor signal (large
black arrow). Yellow highlight: these arrows relate to how the controlled
variables and the mechano-receptor afferents are modulated by the controller
and in the presence of cytokines. The yellow and pink highlight areas relate to
the nTS and dl pons, respectively. In the dl pons, we hypothesize that
mechano-receptor afferent project to the dl pons (via the nTS) and interact
with an Efference Copy produced by the controller. Efference Copy is defined
as a copy of the motor signal delivered to the plant. Differences between
these dl pontine inputs (e.g., the magnitude and strength of the muscle
contraction, the lung inflation, etc) are compared to the generated motor
signal. Loss of variability in the activity pattern of the plant can result from a
failure of the controller to adapt to disparities between sensory input and
Efference Copy. In the nTS, cytokines are expressed during ALI and, we
expect sepsis, and may affect how afferent input is relayed to the controller.
We propose a gating mechanism; one in which afferent inputs are depolarized
and neural transmission efficacy is diminished.

THE INFLAMMATORY RESPONSE HAS A COMPARTMENTAL
ARCHITECTURE
Inflammation is a prototypical complex system, with multi-
feedback interactions among its components, robustness to per-
turbation coupled with the potential for severe failure at key
nodes, and system-level properties difficult to intuit from reduc-
tionist analysis (Csete and Doyle, 2002; Vodovotz and An, 2009).
We assert that these properties have led to the ineffectiveness
of mediator-targeting systemic therapies. As a result, the clinical
approach to MODS is focused on providing supportive care of spe-
cific points of end-organ failure (e.g., fluids and drugs to alleviate
hypotension, ventilation to support failing lungs, etc.). Unfortu-
nately, these interventions often have unintended “ripple effects”
that propagate the disordered systemic inflammatory response to
the overall detriment of the patient (Ferguson et al., 2005; Sakr
et al., 2005; Cotton et al., 2006). Therefore, a disconnect exists

between the clinical needs of supporting physiology-level organ
function and the need to control the dynamics of the generative
cellular-molecular processes that eventually determine that func-
tion. This gulf between the cellular-molecular biology of inflam-
mation and organ physiology seen in MODS is precisely the
multi-scale barrier that must be traversed to provide a rational
basis for potential therapies for MODS.

We view the inflammatory response as compartmentalized both
structurally and across multiple scales of organization (Boujoukos
et al., 1993; Schein et al., 1996; Molina et al., 2001; Cavaillon and
Annane, 2006). Why focus on compartments, when inflamma-
tion in sepsis manifests systemically? Despite the attractiveness
of purely systemic therapy, the ineffectiveness of such interven-
tions has been demonstrated in multiple studies in animal models
of sepsis in which suppressing systemic inflammation resulted in
immunosuppression and elevated morbidity and mortality due
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to overwhelming infection (Remick et al., 1995; Natanson, 1997).
Similarly, an insufficient systemic inflammatory response is asso-
ciated with elevated morbidity and mortality even in nominally
sterile trauma/hemorrhage in both humans and swine (Namas
et al., 2009a). Thus, systemic-level interventions may lead to
inappropriate damping of a necessary inflammatory response
in those tissues and compartments that have not approached
their “tipping point.” We have begun to refine the dynamic
relationships between inflammatory compartments to develop
a roadmap toward the translational engineering of therapeutic
interventions. We employ progressive use of traditional in vivo
experiments and platforms, augmented by computational mod-
els to explore, explain, and bridge the fundamental aspects of
multi-compartment inflammation.

THE ARCHITECTURE OF INFLAMMATION LEADS TO “TIPPING
POINTS” OF LOCAL CONTROL FAILURE THAT CAN
PROPAGATE TO SYSTEMIC FAILURE
A central aspect of our interdisciplinary approach to deciphering
the inflammatory response involves augmenting laboratory stud-
ies with computational models that can integrate, suggest, explain,
and potentially predict biological knowledge and data. These com-
putational models include both traditional mathematical models
based on ordinary differential equations,as well as agent-based and
rules-based models (Vodovotz et al., 2004, 2008, 2009; An et al.,
2008, 2009; Foteinou et al., 2009b; Vodovotz and An, 2009; Mi
et al., 2010; Namas et al., 2012). We initially discerned inflamma-
tory “tipping points” using a multi-scale, multi-tissue, and multi-
organ agent-based model (ABM) of the gut-lung axis of systemic
inflammation (An, 2008). In this ABM, both organs are repre-
sented by spatially distinct, aggregated populations of epithelial
and endothelial cells that interact with circulating inflammatory
cells and mediators. Simulations of gut ischemia demonstrated
a clear gut ischemia threshold, or “tipping point,” beyond which
MODS could be discerned: first ARDS, then systemic hypoxia, and
ultimately in silico “death” (An, 2008). Simulation of ventilatory
support allowed the system to tolerate more severe gut ischemia,
but the “tipping point” persisted. Despite the abstraction of this
ABM, it did provide early evidence of the role of compartmental
inflammation on the generation of inflammatory “tipping points”
and subsequent MODS, and suggested that interventions for sep-
sis might need to be targeted at the compartment level rather than
systemically, or as an adjunct to systemic therapy.

In a similar vein, we created a two-compartment mathemat-
ical model of porcine endotoxemia (Nieman et al., 2012), based
on an existing mathematical model of mouse endotoxemia (Chow
et al., 2005; Lagoa et al., 2006; Prince et al., 2006; Torres et al.,
2009). This previous single-compartment mathematical model of
inflammation was capable of making qualitative and quantitative
predictions with regard to endotoxin-induced inflammation and
blood pressure in genetically identical mice (Chow et al., 2005;
Lagoa et al., 2006; Prince et al., 2006; Torres et al., 2009). With-
out compartmentalization, we realized that key meta-behaviors of
inflammation were absent, and thus multi-compartment models
would be necessary to address the role of inflammatory “tipping.”
As in the gut/lung ABM described above, this equation-based
model was extended to support clinical interventions such as

a fluid resuscitation and mechanical ventilation (Nieman et al.,
2012). Importantly, this model was capable of addressing individ-
ual variations in the porcine inflammatory and pathophysiologic
response to endotoxin, including correlation with clinically useful
indices such as the Oxygen Index (Nieman et al., 2012).

To define inflammatory networks that drive compartment-
specific“tipping points,”we have applied Dynamic Network Analy-
sis (DyNA) algorithm (Mi et al., 2011), with a more recently devel-
oped Dynamic Bayesian Network (DyBN) algorithm (adapted
from; Grzegorczyk and Husmeier, 2011). We utilized the DyBN
method to examine the connectivity of inflammation in multiple
organs in endotoxemic mice. These studies suggested a high degree
of connectivity as well as feed-forward behavior for multiple
chemokines, as well as the presence of indirect positive feedback
loops, all of which appeared to induce the cytokine IL-6 (a bio-
marker of dysregulated inflammation in multiple contexts; Abra-
ham and Singer, 2007; Namas et al., 2009b).Based on these studies,
we suggest that the compartment-specific response to inflam-
matory stimuli initially remains within a given compartment,
helping to coordinate responses appropriate to a given stimulus.
However, when the magnitude or duration of an inflammatory
stimulus exceeds certain (likely genetically encoded) thresholds,
the response spills over into other compartments. This process
could occur via both the systemic and lymphatic circulation, lead-
ing to progressive organ dysfunction. We hypothesize that this
dysfunction, in turn, further aggravates inflammation.

As noted above, one of our goals is to create multi-scale,
multi-compartment computational models of inflammation, and
(patho) physiology applicable across species, to transcend the bar-
rier between pre-clinical and clinical studies (An et al., 2010).
Accordingly, to facilitate comparison to computational model-
ing studies calibrated against data in mice (Chow et al., 2005),
rats (Daun et al., 2008), and swine (Nieman et al., 2012), we
have studied human systemic inflammation in the setting of
endotoxemia.Even though species-specific thresholds of respon-
siveness to microbial product differ, each of the animal models
share a common mammalian inflammatory response (Parker and
Watkins, 2001). Endotoxemia triggers Toll-like receptor (TLR)4
signaling, and subsequent events propagate through a network of
intimately connected and interacting compartments with an end
result of either resolution of the inflammatory response, or a self-
sustaining imbalance that, we hypothesize, drives inflammatory
“tipping points” that manifest in organ dysfunction (Figure 1B).

In addition we performed data-driven analyses of high-
dimensional leukocyte microarray data taken from human endo-
toxemia experiments (Calvano et al., 2005), identifying critical
transcriptional responses to endotoxemia through a novel clus-
tering approach (Yang et al., 2009). These responses were quan-
titatively linked through physicochemical modeling, producing
an initial computational model of the transcriptional response
to human endotoxemia (Foteinou et al., 2009a).

To account for hormonal modulation of the inflammatory
response (Figure 1B), pharmacokinetic/pharmacodynamic mod-
els linking the dynamics of epinephrine, cortisol, and endotox-
emia were proposed (Foteinou et al., 2009a). This approach pro-
vided fundamental information, so we could explore the impact
of hormonal rhythmicity on host fitness, specifically Circadian
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rhythms (Coogan and Wyse, 2008). We developed a model to
assess the impacts of circadian rhythmicity, as imposed by the
suprachiasmatic nucleus (SCN) through circadian hormones, on
the response to endotoxemia (Scheff et al., 2010). This model pre-
dicted a differential response to identical inflammatory inputs
depending on the circadian phase, thus illustrating the impor-
tance in circadian rhythmicity in determining the response to
endotoxemia.

Hormonal rhythmicity at time scales faster than circadian,
called ultradian rhythms, are also increasingly being seen as
partaking in important physiological functions (Desvergne and
Heligon, 2009; Lightman and Conway-Campbell, 2010). Promi-
nent among the implications of pulsatile secretion of cortisol is
the potential role of these ultradian rhythms in regulating the
appropriate homeostatic expression of glucocorticoid-responsive
genes, including components of the peripheral circadian clock and
inflammatory mediators. To investigate the impacts of ultradian
rhythms further, we developed a model linking the ultradian pro-
duction of cortisol in the hypothalamic-pituitary-adrenal (HPA)
axis with its downstream effects, which showed the importance of
rhythmic hormone patterns in signal transduction (Scheff et al.,
2011b). This work was extended to consider the same system in the
stress response. One of our key findings was that the homeostatic
amplitude of ultradian rhythms was predictive of the responsive-
ness of the HPA axis to stress (Scheff et al., 2012). This is an
example of how characteristics embedded in physiologic rhythms
can contain information about the state of a biological system.
However, analysis at the level of heart rate variability (HRV) allows
for much more significant translational applications through the
potential to incorporate hormonal rhythms into single clinically
accessible metric.

INFLAMMATION, BREATHING PATTERN VARIABILITY AND
BIOLOGICALLY VARIABLE VENTILATION
A central hypothesis underlying our work involves the cross-
regulation of inflammation and physiology via neural control
mechanisms. The basic elements of a physiologic system defined in
engineering terms are the plant, controller, and sensor (Figure 1C).
Generally, the plant is the end organ whose function is regulated
to maintain controlled variables; the controller, a neural network
modulating the plant; and the sensor, specialized cells monitoring
levels of the controlled variables. Here (Figure 1C), the plant is
the cardio-pulmonary system; the controller, the coupled cardio-
respiratory central pattern generator (CPG; for details see; Baekey
et al., 2010; Molkov et al., 2010, 2011); and the controlled variables,
blood gases, and flow for gas exchange.

Fundamental questions, which we are beginning to address, are:
(1) How does cardio-respiratory control system “sense” peripheral
dysfunction? (2) How does central expression of cytokines affect
the control of a peripheral compartment and neural function
itself? and (3) How are compartments organized in the brain-
stem? To sense dysfunction, we propose an interaction between
efference copy and sensory input [Figure 1C (1 and 2, in red high-
light)]. Efference copy is the expected effect, specifically, a “copy”
of the motor output produced by the controller. This is com-
pared to the sensory input, which is the effective output. Central
expression of cytokines could modulate the controller within this

functional loop (Figure 1C2, in yellow highlight) and by directly
affecting the function of neurons in the CPG (Figure 1C1, no high-
light). Further, the time-dependent properties of the expression of
cytokines in this reduced control circuit are unknown; for instance,
do cytokines become expressed sequentially or co-incidentally in
different control nuclei? Further, cytokines definitely elicit “sick-
ness” behavior, which will affect the output of automatic nuclei.
Finally, cytokines evoke various second-messenger systems from
glia and neurons and many of these second-messengers, including
nitric oxide, act extracellularly. Control of other compartments
may be elicited through spread of cytokines themselves, or of their
second-order messengers.

As a dynamic controller, the respiratory CPG is capable of pro-
ducing a wide repertoire of “output patterns” and a particular
output pattern depends on peripheral and central inputs but also
on prior experience and local internal milieu (Rybak et al., 2008).
Without peripheral or central inputs, the respiratory CPG pro-
vides an output that is rhythmic and regular, i.e., characterized by
low deterministic variability (Dhingra et al., 2011). Under normal
conditions the intact cardio-respiratory system exhibits chaotic
dynamics with deterministic variability (Sammon and Bruce,
1991). We theorize that alterations in the non-linear properties
of cardio-respiratory variability associated with disease depend,
at least partially, on cytokine-modulation of sensory feedback,
and ponto-sensory interactions. In the presence of elevated levels
of cytokines, the efficacy of sensory input is reduced, minimiz-
ing the non-linear deterministic properties of pattern variability
(Figure 1C; Dhingra et al., 2011). Early models of breathing pat-
tern during heart failure have demonstrated that increased gain
and delayed feedback lead to sensor over-response and results in a
waxing and waning pattern (Cherniack et al., 1966; Cherniack
and Longobardo, 2006). In addition, pressure support ventila-
tion (which effectively facilitates a gain of lung stretch receptors
feedback) helps to maintain normal breathing pattern variabil-
ity, which reduces when a patient is separated from ventilation
(Wysocki et al., 2006).

We speculate that changes in deterministic variability in the
cardio-respiratory patterns associated with systemic inflammation
(Figure 2B3) are related to expression of cytokines in the nucleus
tractus solitarius (nTS); which result from vagal input and which
“maps” peripheral inflammation. We have preliminary evidence
that acute lung injury results in specific expression of IL-1β in the
commissural subnucleus in the nTS (Jacono et al., 2011; Figure 2A,
serology in lower panel and Figure 2C, red fluorescent staining).
This expression occurred in the absence of significant increases
IL-1β, TNFα, and IL-6 in the plasma (Jacono et al., 2011). We have
focused on the vagal afferent limb in controlling biologic pattern
variability but this neural feedback lies in the context of its own
control loop. The respiratory CPG, a major determinant of vagal
efferent activity, modulates variability but may also regulate the
expression of cytokines.Vagal efferent activity decreases peripheral
levels of cytokines, acting as a negative feedback modulating the
magnitude of the inflammatory response (Andersson and Tracey,
2012). However, the brainstem connectivity between the CPG
network and the immunologic loop is unknown. In particular,
it is unknown if the network that mediates biologic variability
also modulates the magnitude of the inflammatory response. In
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FIGURE 2 | Interleukin-1β expression is increased in the commissural
subnucleus of the nTS in the setting of acute lung injury (ALI) and
altered ventilatory pattern. Bleomycin (three units) was instilled
intratracheally causing ALI. Ventilatory pattern was measured and tissues
were obtained 48 h later. (A) Histologic examination identified a significant
increase in IL-1β in the commissural subnucleus of the nucleus Tractus
Solitarius (nTS) in the dorsomedial medulla (shown). Abbreviations: AP, area
postrema; CC, central canal; IV, fourth ventricle; X, dorsal motor nucleus of
the vagus; XII, hypoglossal motor nucleus; white dashed line, solitary tract.

(B) Compares ventilatory patterns of sham (blue) and ALI (red) rats at baseline
and 48 h. After ALI: (1) Increased respiratory rate (significant decrease in cycle
duration, TTOT), (2) Increased coefficient of variation (CV) of respiratory cycle
length (CV of TTOT), and (3) Increased deterministic non-linear variability of
the ventilatory pattern, as measured by a non-linear complexity index (NLCI,
yellow highlight) computed using surrogate data analysis. (C) Fluorescent
staining: IL-1β co-localized with nTS neurons (white arrows) identified using
antibodies against the neuronal specific nuclear protein NeuN. (Adapted from;
Wysocki et al., 2006).

defining this network, we speculate that this loop is affected by
central expression of cytokines and, thus, has a role in determining
the “tipping point” and systemic dysfunction.

Further, improved understanding of the feedback loops
involved in the neural control of inflammation will serve to iden-
tify novel targets for modulation of the immune response. For
example, imposing rhythmic vagal afferent activity by mechan-
ical ventilation may impact the neural and peripheral immune
responses. Thus, one potential benefit of biologically variable ven-
tilation is that it imposes a sensory input related to lung inflation
that artificially replicates a variable “normal” signal. This may
predispose the CPG to produce “normal” pattern that, perhaps,
reduces inflammation. If biologic variability of rhythmic pat-
terns decreases the cytokine concentration as compared to the
“autonomous regime” then cardio-respiratory coupling and the
variability in the bursting pattern of its activity, may prevent
MODS and the inflammatory response from reaching its “tipping
point.”

IMPAIRED PHYSIOLOGY MANIFESTS AS ALTERED AND
OFTEN REDUCED PHYSIOLOGIC VARIABILITY
Variability is a property of the biological systems we have stud-
ied, that in and of itself is neither good nor bad, but may reflect
a “state” of the system that is adaptable and responsive (within
boundaries). HRV is diminished in various inflammatory condi-
tions, including experimental human endotoxemia. Recent studies

have investigated HRV as a predictive metric in trauma patients
(Morris et al., 2007; Cancio et al., 2008; Riordan et al., 2009;
Batchinsky et al., 2010) and sepsis (Ahmad et al., 2009; Moor-
man et al., 2011). Although correlations of HRV with disease
state have produced many important insights, the physiological
processes linking inflammation with systemic changes are not
well defined, motivating the development of mathematical models
linking inflammation, and HRV (Buchman, 2009; Foteinou et al.,
2010; Scheff et al., 2011a; Namas et al., 2012). We linked multi-
level dynamics of the molecular and cellular patterns occurring in
human endotoxemia to cardiac function through a model that out-
puts discrete heart beats as modulated by physiological rhythms,
which can then be post-processed to assess HR and HRV (Scheff
et al., 2011a). Action potentials at the sinoatrial (SA) node of the
heart initiate the contraction of cardiac tissue, producing rhythmic
heart beats. Sympathetic and parasympathetic nerves converging
at the SA node result in fluctuating levels of autonomic neuro-
transmitters which modulate the firing pattern of SA node cells.
Variability in the firing of the SA node, and thus variability in the
beating of the heart, is regulated by autonomic output. Thus, we
proposed a model of autonomic activity at the SA node, influ-
enced by the inflammatory mediators in our model of human
endotoxemia, to modulate the HRV (Scheff et al., 2011a). Our
discrete modeling of heart beats allowed the calculation of HRV
metrics used in the clinical setting. The diversity of data support-
ing this modeling work at transcriptional, hormonal, and systemic
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levels was matched by appropriate computational modeling tech-
niques to allow for the assessment of autonomic dysfunction,
manifested in altered HR rhythmicity, in human endotoxemia.
We have demonstrated that stress induces alterations in the home-
ostatic dynamics of the feedback structures such that some level
of perturbation permanently disrupts these regulatory structures;
i.e.,“tipping points.” Progressive crossing of these “tipping points”
would lead to cascading systems failure and the clinical syndrome
of MODS/sepsis.

CONCLUSIONS, FUTURE DEVELOPMENTS, AND
PERSPECTIVES
We suggest that our evolving mathematical models will help iden-
tify and predict potential bioactive interventions, and validate
those predictions in further experiments in rodents, swine, and,
ultimately, in clinical trials based on our in silico studies. The
multi-compartment/multi-scale computational models could be
used to test interventions targeted at effector organs, such as ven-
tilation strategies aimed at manipulating the lung. Importantly,
despite their limitations of abstraction of relevant biological inter-
actions, mechanistic mathematical models have the potential to
allow us to bridge the gap from rodent studies to large-animal
studies and eventually to clinical studies (Vodovotz et al., 2006; An
et al., 2010). Trans-species and trans-compartment mechanistic

and data-driven modeling will also allow us to integrate those
inflammatory networks that help drive “tipping point” behavior.
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Integration of the numerous mechanisms that have been suggested to contribute to opti-
mization of O2 supply to meet O2 need in skeletal muscle requires a systems biology
approach which permits quantification of these physiological processes over a wide range
of length scales. Here we describe two individual computational models based on in vivo
and in vitro studies which, when incorporated into a single robust multiscale model, will
provide information on the role of erythrocyte-released ATP in perfusion distribution in
skeletal muscle under both physiological and pathophysiological conditions. Healthy human
erythrocytes exposed to low O2 tension release ATP via a well characterized signaling path-
way requiring activation of the G-protein, Gi, and adenylyl cyclase leading to increases in
cAMP. This cAMP then activates PKA and subsequently CFTR culminating in ATP release
via pannexin 1. A critical control point in this pathway is the level of cAMP which is reg-
ulated by pathway-specific phosphodiesterases. Using time constants (∼100 ms) that are
consistent with measured erythrocyte ATP release, we have constructed a dynamic model
of this pathway. The model predicts levels of ATP release consistent with measurements
obtained over a wide range of hemoglobin O2 saturations (sO2).The model further predicts
how insulin, at concentrations found in pre-diabetes, enhances the activity of PDE3 and
reduces intracellular cAMP levels leading to decreased low O2-induced ATP release from
erythrocytes.The second model, which couples O2 and ATP transport in capillary networks,
shows how intravascular ATP and the resulting conducted vasodilation are affected by local
sO2, convection and ATP degradation. This model also predicts network-level effects of
decreased ATP release resulting from elevated insulin levels.Taken together, these models
lay the groundwork for investigating the systems biology of the regulation of microvascular
perfusion distribution by erythrocyte-derived ATP.

Keywords: oxygen supply regulation, signal pathway modeling, ATP transport model, O2 transport model

INTRODUCTION
The regulation of blood flow involves interplay among numerous
mechanisms including the tissue specific microvascular architec-
ture, wall shear stress and pressure (myogenic tone), and the
activity of the sympathetic nervous system. Although each of these
clearly contributes to total microvascular perfusion, these factors
alone are insufficient to regulate dynamically the precise distrib-
ution of perfusion to meet local tissue oxygen (O2) need. Such
a system requires a mechanism by which the need is detected,
quantified, and coupled to a mechanism for the alteration of O2

delivery. A number of theories have been proposed by which blood
flow can be increased in response to decreases in tissue oxygen ten-
sion including the arterioles themselves being sensitive to low O2

levels (Pittman and Duling, 1973; Duling, 1974; Jackson, 1987)
the release of vasodilatory metabolites within the tissues or vessels
(Hester, 1993), and more recently the release of nitric oxide (Jia

et al., 1996) and/or nitrite (Gladwin et al., 2004) from erythrocytes.
Although each may play a role, none provides the sensitivity and
rapid time course necessary for the precise matching of oxygen
supply with need.

One mechanism which has been the subject of significant inter-
est in recent years involves the regulated release of ATP (adeno-
sine triphosphate) from erythrocytes in response to a decrease
in hemoglobin oxygen saturation (sO2; Ellsworth et al., 1995,
2009; Jagger et al., 2001) as would result from their exposure to
a reduced oxygen tension environment. The ATP released would
bind to endothelial purinergic receptors inducing vasodilation via
the synthesis and release of endothelium-derived relaxing factors.
Experimentally, studies have established that infusion of ATP into
hamster skeletal muscle arterioles and venules, at concentrations
observed in vivo (Gonzalez-Alonso et al., 2002), induces a vasodi-
lation that is conducted upstream to feed arterioles resulting in
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increased perfusion (McCullough et al., 1997; Collins et al., 1998).
Such a mechanism would permit the erythrocyte, via a local release
of ATP, to evoke an increase in O2 supply to discrete regions of
the microvasculature enabling the dynamic changes in O2 deliv-
ery needed to meet changing local tissue oxygen needs. For this
mechanism to be effective, the amount of ATP released from ery-
throcytes needs to be directly related to the extent of hemoglobin
O2 desaturation (or decrease in sO2) that occurs when erythro-
cytes are exposed to low O2 tension (or partial pressure, PO2;
Jagger et al., 2001).

Several recent reviews (Ellsworth, 2000, 2004; Gonzalez-
Alonso, 2008; Ellsworth et al., 2009; Sprague et al., 2011) and
previous theoretical models (Arciero et al., 2008; Sprague et al.,
2010) have evaluated the impact of erythrocyte-released ATP
on microvascular flow regulation. However, a full understand-
ing of the effect of erythrocyte-derived ATP on the regulation
of O2 delivery requires quantification of the interacting physi-
ological processes over a wide range of physical length scales. To
accomplish this necessitates the incorporation of several individual
experiment-based computational models into a novel multiscale
model. Two critical components of such a dynamic model are
delineated here.

Significant progress has been made in defining the components
of a signaling pathway for ATP release from erythrocytes under
conditions of low O2 tension (Ellsworth et al., 2009). Important
elements of this pathway (see Figure 1) include activation of the
heterotrimeric G-protein Gi (Sprague et al., 2002; Olearczyk et al.,
2004a,b) and, subsequently, the activation of adenylyl cyclase (AC)
resulting in increases in intracellular cyclic adenosine monophos-
phate (cAMP; Sprague et al., 2002, 2005, 2006). This results in
activation of protein kinase A (PKA; Sprague et al., 2001) and
the cystic fibrosis transmembrane conductance regulator (CFTR;
Sprague et al., 1998). The final conduit for ATP release in response
to this stimulus has been determined to be pannexin 1 (Locovei
et al., 2006; Sridharan et al., 2010).

Recent experimental studies demonstrate that insulin, at con-
centrations observed in humans with pre-diabetes and used to

treat individuals with diabetes mellitus type 2 (type 2 diabetes),
inhibits low O2 tension-induced ATP release from human erythro-
cytes (Hanson et al., 2009). Importantly, animal studies suggest
that this defect contributes to the impaired tissue oxygenation
in pre-diabetes (Ellis et al., 2010). A critical control point in the
low O2 signaling pathway for regulated ATP release is the con-
centration of cAMP which is determined by a balance between
cAMP synthesis by adenylyl cyclase and its hydrolysis by phospho-
diesterases (PDEs). Insulin has been shown to increase hydrolysis
of cAMP via the enhancement of PDE3 activity (Hanson et al.,
2010).

Although signaling pathways similar to the one responsible for
ATP release from erythrocytes have been described previously
in other cells (Cazzaniga et al., 2008; Williamson et al., 2009),
no quantitative approach has integrated the signaling compo-
nents of low O2 tension-induced ATP release from erythrocytes
into a unified mathematical framework that would permit the
comprehensive study of its regulation. Here we present a single
compartment kinetic model of the low O2 tension-induced ATP
release pathway in human erythrocytes that incorporates para-
meters consistent with experimentally measured ATP release in
response to this stimulus in the absence (Sprague and Ellsworth,
2012) and presence (Hanson et al., 2009) of insulin. This model,
based on a previously described deterministic model of a G-
protein coupled cAMP pathway (Williamson et al., 2009), incor-
porates interactions among individual cellular components based
on our current understanding of the signaling pathway for low
O2 tension-induced ATP release. Our approach involves the use
of data obtained from experimental studies including those defin-
ing PDE3-mediated cAMP hydrolysis as a critical control point
for the regulation of low O2-induced ATP release from human
erythrocytes (Hanson et al., 2010).

In addition to our model of the intracellular ATP release path-
way, we utilized in vivo data obtained from rat skeletal muscle
to construct a realistic model of blood flow, O2 transport, and
ATP transport at the capillary network level to investigate the
impact of low O2-induced ATP release from erythrocytes on

FIGURE 1 | Illustration showing known components of the oxygen-dependent erythrocyte ATP release pathway.
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the regulation of perfusion distribution in skeletal muscle under
physiological conditions and when plasma insulin is increased.
Our model of capillary network ATP transport, although used to
obtain steady-state results in the present work, is novel in that it
is time-dependent and hence permits simulation of the dynam-
ics of this process. This model will be crucial in future studies
of microvascular flow regulation, which is an inherently dynamic
physiological process (e.g., due to temporal variations in both local
blood flow and O2 consumption rate), and will allow us to include
the ATP release dynamics from our pathway model into a larger-
scale model of flow regulation in complete networks containing
capillaries, arterioles, and venules.

Our underlying hypothesis is that the O2-dependent release
of ATP from erythrocytes is a key mechanism for the dynamic
regulation of the distribution of microvascular perfusion to meet
local tissue O2 needs in skeletal muscle. The long-term goal is
to utilize a combination of computational models and experi-
mental studies to ascertain how and under what conditions ATP
release from erythrocytes contributes to appropriate O2 deliv-
ery. Furthermore, the use of computational models provides a
mechanism by which predictions of impaired ATP release based
on known defects associated with certain disease states, and the
potential effectiveness of pharmacological interventions to res-
cue the defect, can be evaluated. Experimental data supporting
the stated hypothesis have been reported previously (Collins
et al., 1998; Dietrich et al., 2000; Sprague et al., 2009) and were
used as a basis for constructing the models. The two compo-
nents described here complement models of 3D blood-tissue
O2 transport and two-phase blood flow presented previously
and will become an important part of a multiscale simulation
required to characterize flow regulation based on ATP release from
erythrocytes.

MATERIALS AND METHODS
SIMPLIFIED MODEL OF O2-DEPENDENT Gi-ACTIVATED cAMP PATHWAY
As described above, the basic components of heterotrimeric G-
protein (GP)-activated signaling pathways involving cAMP are
well-known in many cell types including the erythrocyte. To
begin modeling the key components of the O2-dependent ery-
throcyte ATP release pathway (Figure 1), we modified a sim-
ple model of a GP-activated cAMP pathway from the liter-
ature (Williamson et al., 2009). Although the exact mecha-
nism that couples a decrease in hemoglobin saturation with
GP activation has not been fully elucidated, several studies
have linked mechanical force with activation of Gi (Li and
Xu, 2000; Wan et al., 2008; Forsyth et al., 2011). Our model
requires that the desaturation of oxyhemoglobin induces acti-
vation of Gi, identified here as the activated form of GP
(GPa). When erythrocyte Gi dissociates, the βγ subunit stim-
ulates production of cAMP (via adenylyl cyclase, AC; Sprague
et al., 2002, 2005, 2006) leading to activation of protein kinase
A (PKAi→PKAa; Sprague et al., 2001, 2006). The kinetic
equations adapted for the activation of PKA in the present
model are:

d [GPa]

dt
= kGPf [GPi] [tHb]α − kGPr [GPa] (1)

d [cAMP]

dt
=

ACbase + kcAMPf [GPa]

1+ kcAMPi [PKAa]
−

vPDE3 [PKAa] [cAMP]

KPDE3 + [cAMP]
(2)

d [PKAa]

dt
= kPKAf [PKAi] [cAMP]− kPKAr [PKAa] (3)

Equation 1 above describes GP activation resulting from changes
in oxyhemoglobin saturation where [tHb] is the fraction of desat-
urated Hb (in the tense or “t” state; [tHb]= 1− sO2) and the
exponent α is used to modulate the relationship between [tHb]
and GPa. Equation 2 describes cAMP production and degradation,
where ACbase represents the baseline rate of cAMP production
(in the absence of GP activation) and the vPDE3 term repre-
sents degradation of cAMP by the phosphodiesterase PDE3, a
PDE shown to regulate cAMP concentrations in the erythro-
cyte O2-dependent ATP release pathway (Adderley et al., 2010).
Here, vPDE3= v0∗PDE3rel where v0 is a baseline rate of cAMP
degradation and PDE3rel is the relative amount of PDE3 activ-
ity (assumed to be one under normal baseline conditions). The
PKAa terms on the right-hand side represent negative feedback
to either inhibit cAMP production (Sobolewski et al., 2004) or
enhance cAMP degradation (Murthy et al., 2002). Eq.3 represents
direct activation of PKA by cAMP. In all our kinetic equations,
the subscript “f” indicates the forward rate constant (e.g., kPKAf)
governing production of the species of interest, while the sub-
script “r” indicates the reverse rate constant (e.g., kPKAr) governing
degradation.

PKA/CFTR-ACTIVATED ATP RELEASE
To link the PKA activation as described in Eq. 3 to the release of
ATP, two kinetic equations are employed that describe the other
known regulatory steps in the process:

d [CFTRa]

dt
= kCFTRf [CFTRi] [PKAa]β − kCFTRr [CFTRa] (4)

FATP = kATPflux [CFTRa] (5)

where the exponent β is used to modulate the relationship between
PKA activation and CFTR activation. For simplicity it is assumed
that FATP, the release rate or flux of ATP (via pannexin 1, Sridharan
et al., 2010), is proportional to activation of CFTR. In addition to
Eqs 1–5, our model assumes conservation of GP, PKA, and CFTR:

[GPtotal] = [GPi]+ [GPa]

[PKAtotal] = [PKAi]+ [PKAa]

[CFTRtotal] = [CFTRi]+ [CFTRa]

(6)

Figure 2 shows the ATP release pathway model that was orig-
inally created using the free software package Cell Designer
(http://celldesigner.org). Solution of Eqs 1–6 was implemented
in Matlab (Mathworks, Natick, MA, USA) to allow more flexibility
in exploring the model (e.g., specifying time-dependent saturation
functions and automatically integrating and averaging results over
time). A version of our Matlab simulation code is included online
as Supplementary Material.

Parameters used in Eqs 2–3 were initially those used by
Williamson et al. (2009) with modifications to reflect the much
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FIGURE 2 | Schematic showing the components and interactions included in our dynamic model of the oxygen-dependent erythrocyte ATP release
pathway.

faster time-scale of erythrocyte ATP release (∼100 ms vs. ∼10 s in,
Williamson et al., 2009) as reported for shear-induced ATP release
in microfluidic experiments (Wan et al., 2008). It is important to
recognize that available evidence suggests that shear stress applied
to human erythrocytes activates the same pathway as does expo-
sure to reduced O2 (Sprague and Ellsworth, 2012). Parameters for
Eqs 1, 4, and 5 (in particular, the exponents α and β) were then set
to represent those required for a similar time-scale, and were var-
ied to match in vitro measurements of ATP release as a function
of hemoglobin saturation (Sprague and Ellsworth, 2012) where
erythrocytes were rapidly desaturated to various sO2 values start-
ing from ∼100% sO2. Although the dynamics of O2-dependent
erythrocyte ATP release are important in vivo, no dynamic mea-
surements are currently available (Sprague and Ellsworth, 2012).
Therefore, we chose to use brief desaturation steps of fixed dura-
tion (40 ms) and varying magnitude (38–84%) to investigate the
sO2 dependence of our dynamic ATP release model. The stimula-
tion time of 40 ms was motivated by the experiments by Wan et al.
(2008) in which changes in shear needed to be longer than ∼6 ms
(activation time) to produce changes in erythrocyte ATP release
while the delay time between changes in shear and changes in ATP
release was ∼29 ms.

An underlying assumption in our model is that the O2-
dependent pathway does not release ATP when hemoglobin is
fully saturated with oxygen (i.e., ACbase= 0). Therefore, the sO2

dependence of the model was based on the results reported by
Sprague and Ellsworth (2012) with the measured ATP release for
98% sO2 (5.4 nmol ATP per 4× 108 erythrocytes) taken to rep-
resent full saturation which was subtracted from the ATP release
values for lower saturations. This yielded target ATP release values
of 3.1, 7.1, and 13.1 nmol ATP/4× 108 erythrocytes for 61.8, 41.3,
and 21.6% sO2, respectively. To enable the model to predict the

inhibitory effect of insulin on O2-induced ATP release, as reported
experimentally (Hanson et al., 2009, 2010), the value of PDE3rel

was adjusted to model erythrocyte ATP release upon exposure to
reduced O2 tension in the presence of levels of insulin seen in pre-
diabetes or required for the treatment of type 2 diabetes (Kanauchi
et al., 2007; Ellis et al., 2010). Again, the ATP release values were
adjusted for zero ATP release at full saturation, yielding a target
value for ATP release of 11.8 nmol ATP/4× 108 erythrocytes at
15.7% sO2 without insulin and a target value of 2.77 at 20.9%
sO2 with insulin, both determined experimentally (Hanson et al.,
2009).

COMPUTATIONAL MODEL OF O2 AND ATP TRANSPORT IN CAPILLARY
NETWORKS
Numerical simulations of steady-state O2 transport were per-
formed using an established time-dependent, finite-difference
computational model (Goldman and Popel, 1999, 2000; Ellis et al.,
2010; Sprague et al., 2010) that couples the continuum partial
differential equations describing convective transport by flowing
blood in the capillaries with equations describing O2 diffusion
and consumption in the tissue. This model incorporates both dis-
solved and hemoglobin-bound O2 in the capillaries. Transport of
O2 between the blood and tissue is described using a flux bound-
ary condition with mass transfer coefficients calculated previously
using a discrete erythrocyte model (Eggleton et al., 2000). In the
model presented here, for all O2 transport simulations, a cap-
illary network reconstructed from experimental data was used
(Fraser et al., 2012) in conjunction with hemodynamic para-
meters (erythrocyte velocity and hematocrit) determined from
in vivo measurements in the rat extensor digitorum longus (EDL)
muscle. The capillary network was discretized into 208 cylindri-
cal segments and the tissue domain surrounding the capillaries,
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which had dimensions of 84× 169× 342 µm, was discretized into
632,315 computational nodes. Average capillary entrance satura-
tions (63%) and the tissue O2 consumption rate (1.5× 10−4 ml
O2/ml/s) were set based on previous experimental data (Ellis
et al., 2002). The geometric and hemodynamic data used in the
blood-tissue oxygen transport calculations, as well as the result-
ing steady-state values for capillary sO2, are included online as
Supplementary Material.

Numerical simulations of steady-state ATP transport within
the capillary network were performed using a modified form of
our time-dependent finite-difference computational model for
intravascular O2 transport (Goldman and Popel, 2000). Based
on a previously described ATP transport model (Arciero et al.,
2008), the following continuum partial differential equation was
solved for plasma ATP concentration [ATP] using the geometric,
hemodynamic, and sO2 data described above and an initial ATP
concentration of zero:

(1−HT)
∂

∂t
[ATP] = −u (1−HD)

∂

∂z
[ATP]

+HTC0 (1− C1S)−
2

R
kd [ATP] (7)

where u is the averaged cross-sectional blood velocity at any axial
location z, H D is the discharge hematocrit, H T is the tube hema-
tocrit, and R is capillary radius. As previously defined (Arciero
et al., 2008), the constants C0 and C1 are used to produce a linear
approximation to the (steady-state) ATP release rate as a function
of oxyhemoglobin saturation S, while the constant kd approxi-
mates steady-state degradation of ATP by the endothelium (see
Table 1 for parameter values). To model the effect of elevated
plasma insulin on ATP release, we decreased C0 by 50% based on
experimental measurements.

In a previously reported model for microvascular regulation
(Arciero et al., 2008), seven representative unbranched vessel
segments (artery, large arteriole, small arteriole, capillary, small
venule, large venule, vein) were included in the simulation and
the inlet [ATP] in the farthest upstream vessel (artery) was set at
0.5 µM. This led to an inlet [ATP] in the capillary of approximately
0.25 µM. Therefore, we used this value for inlet [ATP] in our cap-
illary network simulations. However, since this value depends on
other modeling assumptions in the work of Arciero et al. (2008),
we also considered the case where [ATP] is zero at the entrance of
our capillary network to more clearly illustrate the contribution
of erythrocyte-derived ATP in the capillary bed to plasma [ATP].

The spatial distribution of steady-state sO2 values was com-
puted for the 3D capillary network based on experimental mea-
surements of entrance sO2 and total erythrocyte supply rate in the
network. The same steady-state sO2 distribution was used for both
normal and impaired ATP release. To solve Eq. 7 for steady-state
[ATP] once steady-state sO2 values had been calculated, an arbi-
trary initial condition ([ATP]= 0) was chosen and simulations
were run until [ATP] became constant in all capillary segments.
Although the present work focuses on steady-state capillary [ATP]
distributions, our computational model is capable of simulating
changes in intravascular [ATP] for time-varying blood flow, O2

consumption rate, or erythrocyte ATP release.

Table 1 | Parameters for ATP release pathway and ATP transport.

Parameter Value

ACbase 0

kcAMPf 49.5

kcAMPi 2.47

v 0 101

K PDE3 1

kPKAf 60.5

kPKAr 10.0

kGPf 25.0

α 1.2

kGPr 3.36

kCFTRf 181

β 6.3

kCFTRr 11.3

kATPflux 2

GPtotal 1

PKAtotal 1

CFTRtotal 1

C0 1.4×10−9 mol/s·cm3

C1 0.891

kd 2.0×10−4 cm/s

As noted above, to have a major impact on oxygen delivery to
meet increased demand, the endothelial signal produced by ATP
released in capillaries or venules must be conducted upstream
and stimulate arteriolar dilation. Therefore, we integrated [ATP]
obtained from Eq. 7 to estimate the total dilatory signal σdilation

produced by ATP released from erythrocytes in the capillary
network:

σdilation =

208∑
i=1

[ATP]i exp

(
−

L − zi

λ

)
(8)

where L is the arterio-venous length of the capillary network, and
zi is the axial location of the segment with ATP concentration
[ATP]i. The parameter λ determines the length scale of attenua-
tion of the conducted signal and is set to 1 cm based on the work
of Arciero et al. (2008) who obtained this approximate value from
highly variable (0.15–1.6 cm) experimental data (Xia and Duling,
1995). Note that in the present work, σdilation is simply used as a
measure of the dilatation signal originating in the capillaries. Since
arterioles are not included in this model, we cannot use σdilation to
change vascular diameters.

RESULTS
O2-DEPENDENT ATP RELEASE PATHWAY
Using Eqs 1–6 and parameters listed in Table 1, we simulated
the response of the O2-dependent ATP release pathway in human
erythrocytes to a 40 ms period of oxyhemoglobin desaturation
starting from an initial condition with all variables equal to zero.
Figure 3 shows the predicted dynamic response of this pathway to
a step change in sO2 from 100 to 15.7% (i.e., increase in [tHb] from
0 to 0.843) with a duration of 40 ms. Figure 3 describes a temporal
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FIGURE 3 | Dynamic behavior of our model of oxygen-dependent
erythrocyte ATP release. Hemoglobin oxygen saturation is decreased from
100 to 15.7% for 40 ms, resulting in activation of the ATP release pathway
with an initial delay in ATP release followed by a peak in ATP flux at
approximately 150 ms. The pulse of hemoglobin desaturation results in a
total release of ATP (area under ATP flux curve) that can be compared to
experimental measurements. The ATP release delay and peak times are
consistent with shear-dependent release dynamics measured by Wan et al.
(2008), and the GP activation time-scale is consistent with the
measurements of Hein et al. (2005).

relationship among the components of the signaling pathway in
which GP is activated first by hemoglobin desaturation with cAMP
peaking at ∼51 ms and the ATP release rate (or flux) peaking at
∼157 ms after this physiological stimulus. Following the return to
full hemoglobin saturation, ATP flux returns to zero in less than
1 s. Time-dependent results using this ATP release model will be
useful when integrated into future dynamic models of microvas-
cular flow regulation based on O2-dependent ATP release from
erythrocytes.

To relate the results shown in Figure 3 to experimental measure-
ments, cAMP and ATP flux are integrated over the time required
for the desaturation step to turn on and off and for the release of
ATP to stop. It is important to recognize that our model computes
relative activation and ATP flux values for an average pathway
without considering the number of these GP-coupled pathways
present in an individual erythrocyte. Therefore, to compare our
results directly to measurements of ATP release, we normalized
our findings to agree with experimental measurements (Hanson
et al., 2009) at 15.7% sO2 ([tHb]= 0.843).

To demonstrate that predictions from our model of the ery-
throcyte ATP release pathway agree with experimental data, in
Figure 4 we plotted total ATP release vs. sO2 where the desatura-
tion magnitude [tHb]= 1−sO2. This comparison confirms that
our model captures the dependence of ATP release on sO2 under
conditions in which PDE3rel= 1. Importantly, when PDE3 activ-
ity is increased by 87% (PDE3rel= 1.87) our model predictions
of amounts of ATP released when erythrocytes are exposed to
reduce O2 closely match ATP levels measured in the presence of

FIGURE 4 | Model predictions for total ATP release vs. hemoglobin
saturation. For baseline levels of PDE3 activity, predicted ATP release
matches experimental measurements (Sprague and Ellsworth, 2012). For
an 87% increase in PDE3 activity, ATP release decreases as seen for
erythrocytes incubated in insulin (Hanson et al., 2009). Here ATP release
has been normalized so that at 15.7% sO2the model matches the ATP
release measurements without insulin.

1 nM insulin (Hanson et al., 2009). The 87% increase in PDE3
activity is based on effects of insulin on the activity of this PDE
in adipocytes (Kitamura et al., 1999). Thus, this model allows
us to predict the inhibitory effect of insulin-induced increases in
PDE3 activity on cAMP levels and ATP release from erythrocytes
in which hemoglobin saturation is reduced to 15.7% (Figure 5A).
As depicted in Figure 5B, the model also allows prediction of the
level of PDE3 activity required to replicate experimental measure-
ments of erythrocyte cAMP initiated by direct activation of Gi
with mastoparin 7 (Mas-7) in the absence and presence of PDE3-
stimulating concentrations of insulin (Hanson, 2009; Hanson
et al., 2010).

COUPLED O2-ATP TRANSPORT IN CAPILLARY NETWORKS
The simulated O2 distribution in our reconstructed capillary net-
work is shown in Figure 6A, and the 3D ATP distributions cal-
culated for O2-dependent erythrocyte ATP release in the absence
and presence of insulin are shown in Figures 6C,E, respectively.
The O2 transport model shows a nearly linear decrease in sO2

(Figure 6B) with little variation among capillaries, except for one
capillary with counter-current flow.

If the capillary inlet [ATP] (ATPin) is set to zero, all capillar-
ies for normal ATP release (blue symbols in Figure 6D) show an
increase in [ATP] although the variation among vessels is much
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FIGURE 5 | [(A), left] Model predictions for ATP release (cyan bars) and cAMP
production (purple bars) at 15.7% hemoglobin saturation vs. PDE3 activity.
[(B), right] Measured erythrocyte cAMP production (green bars) in response

to Mas-7 stimulation vs. insulin concentration (0, 1 mM, 100 nM) and model
predictions of cAMP production (purple bars) at 15.7% sO2 vs. PDE3 activity
(PDE3rel =1, 1.8, 4.1).

greater than the variation in capillary sO2. The variation in [ATP]
is due to the capillary network geometry and convective transport
of ATP combined with the degradation of ATP by ecto-ATPases.
When ATP release from erythrocytes is impaired (blue symbols
in Figure 6F), the rate of increase in [ATP] with distance down
the network is much less. The mean capillary ATP concentrations
in the absence and presence of insulin are 0.076 and 0.038 µM,
respectively, implying a 50% decrease when plasma insulin is
increased to values found in pre-diabetes.

If ATPin= 0.25 µM (Arciero et al., 2008), degradation of ATP
results in a decrease in capillary [ATP] until approximately
half way down the network for normal release (red symbols in
Figure 6D), and slightly further for impaired release (red symbols
in Figure 6F). In the case in which ATP release is impaired, [ATP]
nearly plateaus suggesting that the rate of release is approximately
equal to the rate of degradation. When ATP release is unim-
paired, [ATP] either plateaus or increases substantially toward
the venular end of the network. The mean ATP concentrations
in the absence and presence of insulin are 0.115 and 0.077 µM,
respectively, a 33% decrease in the presence of insulin. Thus,
for either value of ATPin, there is a substantial decrease in cap-
illary ATP when low O2-induced ATP release from erythrocytes is
impaired.

Calculated values of σdilation show behavior similar to that of
mean ATP, since the length scale of signal attenuation (λ= 1 cm)
is much greater than the arterio-venous length (∼350 µm) of
the capillary network. For ATPin= 0, σdilation is 1.6× 10−8 and
0.8× 10−8 for normal and impaired ATP release, respectively
(i.e., a 50% decrease), while for ATPin= 0.25 µM σdilation is
2.4× 10−8 for normal vs. 1.6× 10−8 for impaired release (i.e.,
a 33% decrease).

DISCUSSION
ATP release from erythrocytes in response to both physiological
and pharmacological stimuli has been suggested to contribute to
the regulation of perfusion distribution in skeletal muscle (Ellis
et al., 2010; Sprague et al., 2010). Mechanical deformation (Wan
et al., 2008) and exposure to reduced O2 tension (Ellsworth et al.,
2009), both of which occur in small skeletal muscle microvessels,
stimulate erythrocyte ATP release. Such a mechanism provides
a means by which the distribution of perfusion can be regulated
dynamically (Ellsworth, 2000, 2004; Ellsworth et al., 2009; Pittman,
2010). Extensive experimental evidence has established that ATP
release from erythrocytes varies in response to changes in the
levels of O2 tension to which these cells are exposed (Ellsworth
et al., 1995; Jagger et al., 2001) and that increases in microvas-
cular ATP concentrations result in vasodilation that is conducted
to the feed arterioles, promoting an increase in oxygen supply
to downstream tissues (McCullough et al., 1997; Collins et al.,
1998; Ellsworth, 2000). Importantly, it has been reported that
low O2-induced ATP release and subsequent vascular responses
occur at a sufficiently fast time-scale (between 100 and 500 ms)
to allow physiologically relevant dynamic regulation of O2 sup-
ply (Dietrich et al., 2000; Wan et al., 2008; Ellis et al., 2010). In
addition, defects in O2-dependent ATP release by erythrocytes
are present in both type 2 diabetes and pre-diabetes (Sprague
et al., 2006, 2010, 2011) two disorders which are associated with
peripheral vascular disease. Taken together, these results sup-
port a role for low O2-induced ATP release from erythrocytes
in the microcirculation of skeletal muscle as a means by which
the distribution of microvascular perfusion can be dynamically
regulated (Ellsworth, 2000, 2004; Ellsworth et al., 2009; Pittman,
2010).
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FIGURE 6 | Model of steady-state oxygen-dependent ATP distribution
in capillary networks. Top two panels: calculated capillary sO2 distribution
[(A), left] in 3D network and [(B), right] as a function of distance z from
capillary entrance. Middle two panels: calculated ATP distribution for
normal ATP release [(C), left) in 3D network with ATPin = 0 and [(D), right)
as a function of z for ATPin =0 and ATPin =0.25 µM. Bottom two panels:

calculated ATP distribution for impaired ATP release due to increased
plasma insulin [(E), left] in 3D network with ATPin =0 and [(F), right) as a
function of z for ATPin =0 and ATPin =0.25 µM. The color bar in (A)
indicates the variations in sO2 (17–63%) in the 3D capillary network, while
the color bars in (C,E) indicate the variations in [ATP] [0–1.6 µM in (C) and
0–0.8 µM in (E)] in the network.

Under normal physiological conditions,ATP release would pro-
vide an effective mechanism by which perfusion could be dynami-
cally regulated to meet tissue O2 needs. However, under conditions
in which systemic or local microvascular hematocrit is significantly

reduced, other mechanisms would be required to increase flow to
the tissue to minimize tissue hypoxia (Roy et al., 2012). Such pro-
tective mechanisms would likely be the same as those which would
become important under conditions in which low O2-induced
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ATP release from erythrocytes is defective as occurs in humans
with pre-diabetes (high insulin levels) or type 2 diabetes.

In recent years, a detailed description of microvascular O2

transport has been developed based on a number of multiscale
experimental and theoretical studies (Popel, 1989; Ellsworth et al.,
1994;Pittman, 1995, 2005, 2011; Goldman, 2008). A number of
studies have described convective and diffusive transport of O2

inside individual erythrocytes, in single capillary and arterio-
lar segments, and in arrays or networks of multiple interacting
capillaries, arterioles, and venules. A full understanding of the con-
tribution of erythrocyte-derived ATP to the regulation of blood
flow distribution in the skeletal muscle microcirculation requires
similar theoretical and experimental assessment of the release of
ATP from erythrocytes, the diffusion and binding of ATP to the
purinergic receptors on the vascular endothelium, and the impact
of conducted vasodilation initiated in the microcirculation on flow
in both individual vessels and complex vascular networks.

Here we present two experiment-based modeling components
of our evolving multiscale approach to the characterization of
the regulation of microvascular perfusion in response to low O2-
induced ATP released form erythrocytes. Most importantly, we
have a developed a novel dynamic model of the signaling path-
way within the erythrocyte that is responsible for this ATP release.
The ATP release model is based on previous experimental work
describing the components of this pathway. The predictions of
the model are consistent with reported time-scales for ATP release
(Dietrich et al., 2000; Wan et al., 2008) and agree with measured
ATP release from erythrocytes as a function of hemoglobin sO2

and hydrolysis of cAMP by PDE3. The model also predicts the
time course of ATP release, which is a vital determinant of the
effectiveness of microvascular flow regulation, and allows us to
investigate how defects in that release would compromise optimal
O2 delivery. Finally, the model can be used to predict whether cor-
rections of defects in this pathway may be important therapeutic
targets in the treatment of vascular dysfunction associated with
diseases such as pre-diabetes and type 2 diabetes in humans.

Little is known about the mechanism linking reduced hemo-
globin saturation and G-protein activation in the erythrocyte.
However, the time course used in our model for erythrocyte ATP
release is similar to the time course reported for other G-protein
activated signaling pathways. For example, dopamine activation of
a G-protein coupled potassium current (∼250 ms from activation
to increased potassium current) in the mouse midbrain (Ford et al.,
2009) and α2A adrenergic receptor activation of Gi (<100 ms) in
HEK293 cells stimulated with norepinephrine (Hein et al., 2005)
are within the time-scale modeled here for erythrocyte ATP release.

In addition to developing a model for low O2-induced ATP
release from erythrocytes, we present a model of ATP transport
in skeletal muscle capillary networks. This model incorporates a
reconstructed 3D network and is based on in vivo measurements
of rat skeletal muscle. This new approach permits the simulation
of realistic capillary ATP transport and the consequences for the
vasodilatory signal that is conducted from sites of increased O2

demand (i.e., the capillary bed) to augment blood flow. In addi-
tion, we have employed the model to enhance our understanding
of the consequences of insulin-induced decreases in erythrocyte
ATP release (measured in vitro) on conducted signaling and,

consequently, on the regulation of local O2 delivery in a realis-
tic skeletal muscle capillary network. The computational model
suggests that details of capillary network geometry and hemody-
namics are important in determining the manner in which ATP
signaling from erythrocytes is conducted upstream to regulate
microvascular O2 delivery. Importantly, the information obtained
from this capillary network model will be important for the fur-
ther development of a full multiscale description of the regulation
of microvascular O2 delivery in skeletal muscle, allowing us to
connect local tissue function (oxygen tension and consumption;
Fraser et al., 2012) with mechanisms involved in the regulation of
O2 supply.

MODEL ASSUMPTIONS AND LIMITATIONS
We modeled the O2-dependent ATP release pathway of the ery-
throcyte with a series of five biochemical steps described by four
time-dependent ordinary differential equations. Although this
model can be solved very rapidly using Matlab on a personal com-
puter, it did require inclusion of a number of parameters (∼15
rate constants and half-maximum concentrations) that have not
been directly measured. This model also requires assumptions
about how oxyhemoglobin desaturation activates Gi and how
CFTR activation opens the pannexin 1 channel leading to ATP
release. Although most of the biochemical steps used are under-
stood qualitatively and most of the constants can be estimated
from measurements of ATP release and cAMP production, one
could question the need for such a complex model. If the objective
had been only to describe existing data, then a phenomenological
model might have been adequate. However, since we were seeking
a model that could predict the detailed dynamics of ATP release
and the impact of specific changes in the pathway (e.g., increased
PDE3 activity), the complexity of the present model was necessary.

A primary assumption made in constructing our model of
intravascular ATP transport was that ATP released from erythro-
cytes into the surrounding plasma becomes well-mixed across the
vessel lumen, such that the mean plasma ATP concentration deter-
mines ATP binding to endothelial P2Y receptors. Although this may
be correct, an alternative possibility is that ATP released near the
vessel wall is more important than the mean ATP concentration. If
so, this might alter ATP action within the microvasculature as well
as other characteristics of the flow regulation system. Presently, it
is not known how ATP is radially distributed within the vascular
lumen.

There are several limitations to the present model in terms
of predicting ATP release by erythrocytes under conditions other
than those described here. First, since most parameters have
not been directly measured, their values are approximate and
may need to be revised once more detailed time-dependent data
becomes available. Second, since the relevant details of Gi activa-
tion and pannexin 1 opening are not currently known, these were
treated phenomenologically. Third, our model has ignored other
known mechanisms inducing erythrocyte ATP release including
both shear-dependent release, which appears to occur through the
same pathway, and receptor-mediated release which utilizes a dis-
tinct signaling pathway (Ellsworth and Sprague, 2012). Expansion
of this model to include these components would enhance the
robustness and utility of the current model and should enable one
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to predict the total time-dependent release of ATP by an erythro-
cyte that would occur in vivo under a wide range of physiological
or pathophysiological conditions.

MODEL TESTING
As described previously (Ellsworth et al., 2009), testing our full
multiscale model of blood-tissue oxygen transport and its reg-
ulation based on ATP release by erythrocytes requires in vivo
experiments. However, a large amount of development and test-
ing of individual model components will be required prior to
performing direct comparisons of model predictions to in vivo
behavior. Currently available microfluidic devices, similar to those
of Wan et al. (2008), will allow measurements of the dynamics of
O2-dependent erythrocyte ATP release enabling us to experimen-
tally test the ATP release model’s predictions under a wide range
of conditions (e.g., increased insulin). These results will provide
important dynamic information for the refinement of the model
setting the stage for further experimental testing.

MODEL PREDICTIONS AND NOVEL EXPERIMENTS
The ATP pathway model we have developed allows us to make
predictions about how the various parameters in Eqs 1–6 interact
to determine ATP release, and these predictions can be used as the
basis for novel experiments. For example, in humans with type 2
diabetes it is known that there is an approximate 40% decrease in
expression of Gi protein in the erythrocyte membrane (Sprague
et al., 2006). If we implement this in our model by decreasing
GP total accordingly in Eq. 6, we would predict a decrease in
ATP release of approximately 60% when sO2 is decreased briefly
from 100 to 15.7%. This prediction links a decrease in a known
component of the erythrocyte ATP release pathway with a known
measured outcome, i.e., reduced low O2-dependent ATP release

from erythrocytes of humans with type 2 diabetes. An attempt to
remedy this defect could be simulated in the model by decreas-
ing PDE3 activity as done experimentally with the selective PDE3
inhibitor cilostazol. Under these conditions, a 60% decrease in
PDE3 activity (PDE3rel= 0.6) would return O2-dependent ATP
release back to its normal level. Thus, the model presented here
enables us to predict the effect of a known defect in the release
pathway on ATP release, and then provides us with a mechanism
to evaluate how this defect could be most effectively remedied.
This in turn motivates new in vitro and in vivo experiments to test
these predictions in erythrocytes and in intact muscle, to deter-
mine if this approach has potential for treating humans with type
2 diabetes.

CONCLUSION
The architectural, biophysical, and temporal complexity of
microvascular O2 transport makes complete understanding of its
regulation difficult. However, it is clear that a full understanding
of the regulation of microvascular O2 delivery requires a detailed
multiscale approach. The novel theoretical models described here
for low O2-induced ATP release from erythrocytes at the intra-
erythrocyte and capillary network levels form the basis for our
dynamic systems biology model of microvascular blood flow
regulation.
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Data-driven computational neural network models have been used to study mechanisms
for generating the motor patterns for breathing and breathing related behaviors such as
coughing. These models have commonly been evaluated in open loop conditions or with
feedback of lung volume simply represented as a filtered version of phrenic motor out-
put. Limitations of these approaches preclude assessment of the influence of mechanical
properties of the musculoskeletal system and motivated development of a biomechani-
cal model of the respiratory muscles, airway, and lungs using published measures from
human subjects. Here we describe the model and some aspects of its behavior when
linked to a computational brainstem respiratory network model for breathing and airway
defensive behavior composed of discrete “integrate and fire” populations. The network
incorporated multiple circuit paths and operations for tuning inspiratory drive suggested
by prior work. Results from neuromechanical system simulations included generation of
a eupneic-like breathing pattern and the observation that increased respiratory drive and
operating volume result in higher peak flow rates during cough, even when the expiratory
drive is unchanged, or when the expiratory abdominal pressure is unchanged. Sequential
elimination of the model’s sources of inspiratory drive during cough also suggested a role
for disinhibitory regulation via tonic expiratory neurons, a result that was subsequently sup-
ported by an analysis of in vivo data. Comparisons with antecedent models, discrepancies
with experimental results, and some model limitations are noted.

Keywords: biomechanical model, brainstem, breathing, chest wall dynamics, computational neural network model,
cough, inspiratory drive, neuromechanical model simulation

INTRODUCTION
The neural mechanisms that regulate and coordinate breath-
ing and respiratory-related behaviors such as coughing are not
well understood. This lack of knowledge hampers elucidation
of pathophysiological deficits in airway protection and impedes
development of new therapeutic approaches for dystussia that
occur with neurological disorders (Suárez et al., 2002; McCool,
2006). Computational neural network models for breathing and
the neurogenesis of cough inferred from in vivo experiments have
iteratively aided prediction and refinement of hypotheses for fur-
ther in vivo testing (Shannon et al., 1998, 2000; Baekey et al., 2001;
Rybak et al., 2008; Poliaček et al., 2011). Such data-driven models,
based in part on elements and connectivity inferred from simul-
taneous extracellular recordings of many brainstem neurons (e.g.,
Segers et al., 2008; Ott et al., 2012), have largely been evaluated
in either open loop conditions or with feedback of lung volume
simply represented as a filtered version of the motor output (Lind-
sey et al., 2012). While useful, these approaches have precluded
model-based assessment of the potential influence of mechanical
properties of the musculoskeletal system on respiratory motor pat-
tern generation and cough effectiveness (Smith et al., 2012). More

generally, neuromechanical models can provide a framework for
estimating and predicting the extent to which motor patterns are
constrained and influenced by mechanical properties and muscle
synergies (Chiel et al., 2009).

A model that relates a respiratory neural output to mechani-
cal outputs has been available for some time (Riddle and Younes,
1981; Younes and Riddle, 1981; Younes et al., 1981) and remains
an important element in contemporary models of the respiratory
system (Cheng et al., 2010; Cheng and Khoo, 2012). However,
the Younes–Riddle model with its single inspiratory neural output
and single state variable (lung volume) lacks features essential for
model-based assessment of the respective contributions and inter-
actions of neural and biomechanical mechanisms during cough.
We have developed a respiratory neural network model with
inspiratory (phrenic), expiratory (lumbar), and laryngeal neural
outputs and required a mechanical model with corresponding
inputs to control the abdominal, diaphragm, and laryngeal mus-
cles. Moreover, it is well known that a given lung volume can be
achieved with different configurations of the rib cage and abdomen
(Konno and Mead, 1967; Younes and Riddle, 1981), and with sepa-
rate neural control of the diaphragm and abdominal wall muscles
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O’Connor et al. Neuromechanical model for respiratory behaviors

as in our network model, all of these configurations can potentially
be achieved. Thus, the first aim of the work reported here was to
develop a model of the mechanical respiratory system that includes
separate muscle models for the diaphragm, abdominal wall, and
larynx, and two state variables to represent the thoracoabdominal
configuration.

Our second aim was to link the resulting mechanical subsystem
to an enhanced integrate and fire (IF) neural network model of the
brainstem network for respiratory motor pattern generation and
to assess the integrated system’s behavior with muscle activation
parameters for eupneic conditions. A third related objective was
to extend the simulations to include evoked coughs in order to
evaluate the model’s performance in response to defined pertur-
bations that enhance or reduce inspiratory drive. This latter goal
was motivated in part by evidence that changes in the inspiratory
or “operating” volume can influence airflow during the expulsive
phase of the cough (Smith et al., 2012).

An additional impetus for the third aim came from results of
recent model simulations, which suggested that elevated systemic
arterial blood pressure – such as may occur during coughing
(Sharpey-Schafer, 1953) – attenuates cough inspiratory drive, a
result supported by coordinated in vivo experiments (Poliaček
et al., 2011). The network model used in the present work builds
upon that and other recent prior efforts (Rybak et al., 2008). The
network incorporates multiple circuit paths and operations for
tuning inspiratory drive that have been inferred from spike train
cross-correlation feature sets (Lindsey et al., 1998; Shannon et al.,
2000; Segers et al., 2008; Ott et al., 2012). These circuits include
parallel channels for modulation of inspiratory phase activity
in “tonic” expiratory neurons that inhibit premotor inspiratory
bulbospinal neurons and drive.

In the course of sequentially eliminating sources of inspiratory
drive for cough in the neuromechanical model, we also noted a
contribution of tonic expiratory neuron activity to modulation of
inspiratory phase drive during cough. This disinhibitory regula-
tion predicted from the modeling results was subsequently sup-
ported by an analysis of in vivo data as described in a companion
report (Segers et al., 2012).

MATERIALS AND METHODS
Neural circuit components were derived from previously described
respiratory network models of discrete “IF” populations after
MacGregor (1987) and a “hybrid IF burster” population with
Hodgkin–Huxley style equations after Breen et al. (2003). These
models were developed iteratively with in vivo experiments that
both guided model development and tested model predictions,
as detailed in Rybak et al. (2008) and Poliaček et al. (2011). The
enhanced network model used herein is described further in the
Results.

Biomechanical model elements were developed using para-
meters derived from published work as described in Results. Of
particular importance was the work of Grassino et al. (1978), who
measured transdiaphragmatic pressure and diaphragm activation
while controlling the thoracoabdominal configuration, making it
possible to estimate the effect of rib cage motion on the abdomi-
nal volume. Our abdominal wall model is based on measurements
of the curvature of the abdomen by Song et al. (2006) taken

during insufflation for laparoscopic surgery. The rib cage, lung,
and diaphragm volumes are derived from the measurements of
Cluzel et al. (2000), who measured them from MRI’s. The tho-
racoabdominal configuration at extreme and resting supine lung
volumes are from Konno and Mead (1967).

Models were implemented using a program package written in
the C language for the UNIX environment. Simulations were run
on 64-bit Intel multiprocessor-based computers under the Linux
operating system. The GNU Scientific Library was used to solve
the differential equations of the biomechanical model, to find the
roots of the implicit model equations, to do the abdominal vol-
ume integration, and for a spline approximation of the abdominal
volume function.

For each condition of the linked neural network and biome-
chanical model, four trials were run with different random number
seeds for the stochastic network model. A pairwise two-sided t -test
with non-pooled SD was used for each variable, and the p-values
were adjusted for multiple testing (Holm, 1979). A difference was
considered significant if the adjusted p-value was less than 0.05.

RESULTS
The results are presented in two main parts. Section “Mechani-
cal Model Implementation: Respiratory Muscles, Chest Wall, and
Lungs” details the biomechanical model. Section “Brainstem Net-
work Model Architecture and System Performance When Linked
to the Biomechanical Model” describes the linkage between the
biomechanical and neural network models and neuromechanical
system behavior during various perturbations of the network.

MECHANICAL MODEL IMPLEMENTATION: RESPIRATORY MUSCLES,
CHEST WALL, AND LUNGS
The biomechanical model described below converts respiratory
neural outputs in the form of spike trains representing lumbar,
phrenic, expiratory laryngeal, and inspiratory laryngeal motor
neuron activity generated by a stochastic model of the brainstem
respiratory network deterministically into mechanical outputs
such as lung volume, tracheal flow, and alveolar pressure for a
supine male human. Lung volume is fed back to the network model
to simulate pulmonary stretch receptors. The mechanical model
components include (i) three-element Hill muscle models of the
diaphragm and abdominal muscles (Hill, 1938), (ii) a model of the
larynx based on the results of Tully et al. (1990, 1991) and Rohrer’s
(1915) equation, and (iii) lung/diaphragm/ribcage/abdomen vol-
ume relationships modeled on the data of Grassino et al. (1978)
and the analysis of Mead and Loring (1982).

The first two equations represent the entire mechanical model.
Each term is a function of the motor outputs of the network model
(udi, uab, and ulm), and the diaphragm and abdominal wall vol-
umes (Vdi and Vab) and their time derivatives (V̇di and V̇ab), and is
defined by the subsequent equations. The parameters referenced
in the model equations are listed in Table 1.

Pressure balance on the rib cage
In Eq. 1, Ppl is the pleural pressure seen by the interior surface
of the rib cage, Pab−pl corrects for the fact that the rib cage sees
abdominal pressure in the zone of apposition, F diσdi is the equiv-
alent pressure due to the insertional forces of the diaphragm on
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O’Connor et al. Neuromechanical model for respiratory behaviors

Table 1 | Parameters used in the biomechanical model.

Parameter Definition Value Units Source

FREE PARAMETERS USED INTHE MODEL

C1 Rib cage contribution to abdominal volume 0.369 Dimensionless Derived from Grassino et al. (1978)

Cab Compliance of the abdominal wall 0.108 L/cmH2O Derived from Estenne et al. (1985)

CL Compliance of the lung 0.201 L/cmH2O Derived from Permutt and Martin

(1960)

ct Transverse chord of the abdominal wall 0.32 m Derived from Song et al. (2006)

D Diameter of the trachea 18 mm Derived from Baier et al. (1977) and

Kamel et al. (2009)

fTLC
a Obligatory ring fraction 0.15 Dimensionless Mead and Loring (1982)

F CEmax Maximal force capacity of the external oblique 33 N Ratnovsky et al. (2003)

F di Fraction of the diaphragm pressure expanding the rib cage

via insertional forces

0.15 Dimensionless Derived from Loring and Mead

(1982)

k Conversion factor from force to surface tension in

abdominal muscle

0.68 m cmH2O/N Derived from De Troyer et al. (1990)

and Ratnovsky et al. (2003)

LCEO Length of human transversus abdominis 19.1 cm Gaumann et al. (1999)

PabTLC
ica Maximal expiratory pressure due to intercostal and

accessory muscles at total lung capacity (TLC)

−135 cmH2O Derived from Ratnovsky et al.

(2008)

Rab Passive resistance of the abdominal wall 1.5 cmH2O/(L/s) Derived from Barnas et al. (1989)

Rdi Passive resistance of the diaphragm 6 cmH2O/(L/s) Derived from Barnas et al. (1989)

Rrc Passive resistance of the rib cage 2.7 cmH2O/(L/s) Derived from Barnas et al. (1989)

Vc Mediastinal plus lung blood and tissue volume 1.756 L Derived from Cluzel et al. (2000)

VCEmax Maximal contractile velocity of the external oblique 34.7 cm/s Ratnovsky et al. (2003)

V FRC
di Volume under diaphragm at functional residual capacity

(FRC)

2.967 L Derived from Cluzel et al. (2000)

V̇ max
di Maximal rate of change of volume under diaphragm 2.449 L/s Derived from Goldman et al. (1978)

and Chow and Darling (1999)

FREE PARAMETERS USED IN CALCULATED PARAMETERS

V FRC
L Volume of the lung at FRC 2.29 L Cluzel et al. (2000)

V kmFRC
rc Volume of the rib cage at FRC as a fraction of VC relative

to residual volume (RV)

0.1282 Dimensionless Konno and Mead (1967), Figure 14

V kmFRC
ab Volume of the abdominal wall at FRC as a fraction of VC

relative to RV

0.0400 Dimensionless Konno and Mead (1967), Figure 14

V kmTLC
ab Volume of the abdominal wall at TLC as a fraction of VC

relative to RV

0.3391 Dimensionless Konno and Mead (1967), Figure 14

VC Vital capacity 5.370 L Roca et al. (1998)

σRV
di Passive recoil pressure of the diaphragm at RV 20 cmH2O Derived from Agostoni et al. (1966),

Grassino et al. (1978) and Siafakas

et al. (1979)

V FRC
rc Volume of the rib cage at FRC 7.013 L Derived from Cluzel et al. (2000)

V kmTLC
rc Volume of the rib cage at TLC as a fraction of VC relative

to RV

0.6609 Dimensionless Konno and Mead (1967), Figure 14

f di Ratio of diaphragm length at TLC to RV 0.65 Dimensionless Smith and Bellemare (1987)

C rc Compliance of the rib cage 0.110 L/cmH2O Derived from Gilroy et al. (1985)

(Continued)
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O’Connor et al. Neuromechanical model for respiratory behaviors

Table 1 | Continued

Parameter Definition Value Units Source

CALCULATED PARAMETERS USED IN CALCULATED PARAMETERS

V RV
ab Volume behind abdominal wall at RV L Eqs 32 and 33

V RV
L Volume of the lung at RV L Eq. 34

σRV
L Passive recoil pressure of the lung at RV cmH2O Eq. 35

σRV
ab Passive recoil pressure of the abdominal wall at RV cmH2O Eq. 36

V FRC
ab Volume behind abdominal wall at FRC L Eq. 37

V RV
di Volume under diaphragm at RV L Eq. 38

VTLC
ab Volume behind abdominal wall at TLC L Eq. 39

VTLC
L Volume of the lung at TLC L Eq. 40

σTLC
L Passive recoil pressure of the lung at TLC cmH2O Eq. 41

σTLC
ab Passive recoil pressure of the abdominal wall at TLC cmH2O Eq. 42

σTLC
di Passive recoil pressure of the diaphragm at TLC cmH2O Eq. 43

σTLC
rc Passive recoil pressure of the rib cage at TLC cmH2O Eq. 44

σRV
rc Passive recoil pressure of the rib cage at RV cmH2O Eq. 45

f RV
a Fraction of the rib cage exposed to abdominal pressure at RV Dimensionless Eq. 46

CALCULATED PARAMETERS USED INTHE MODEL

Vsum Sum of diaphragm, rib cage, and abdominal wall volume

contributions

L Eq. 47

Vab0 Volume behind abdominal wall at zero passive tension L Eqs 32 and 33

VL0 Volume of the lung at zero passive tension L Eq. 48

K psv
di Coefficient of passive diaphragm recoil pressure cmH2O/L2 Eq. 49

Lmin
di Ratio of diaphragm length at zero volume to resting length Dimensionless Eq. 50

PabRV
ica Maximal expiratory pressure due to intercostal and

accessory muscles at TLC

cmH2O Eq. 51

PdiTLC
ica Maximal inspiratory pressure due to intercostal and

accessory muscles at TLC

cmH2O Eq. 52

σmax
di Maximum active recoil pressure of the diaphragm cmH2O Eq. 53

σadd
rc Passive rib cage recoil pressure midway between volume

limits

cmH2O Eq. 54

σmul
rc Rib cage sigmoid compliance coefficient cmH2O Eq. 55

Vdi0 Volume under diaphragm at zero tension L Eq. 56

VTLC
di Volume under diaphragm at TLC L Eq. 57

V max
rc Upper limit of rib cage volume L Eq. 58

V min
rc Lower limit of rib cage volume L Eq. 59

V RV
rc Volume of the rib cage at RV L Eq. 60

VTLC
rc Volume of the rib cage at TLC L Eq. 61

Vrc0 Volume of the rib cage at zero tension L Eq. 62

the lower ribs, P ica is the equivalent pressure due to the intercostal
and accessory muscles, and σrc is the recoil pressure of the rib cage
that balances the sum of the other pressures.

Ppl + Pab−pl + Fdiσdi + Pica = σrc (1)

Pressure balance on the diaphragm
In Eq. 2, σab is the abdominal pressure, the excess of which over
the pleural pressure must be balanced by σdi, the recoil pressure of
the diaphragm.

σab − Ppl = σdi (2)
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O’Connor et al. Neuromechanical model for respiratory behaviors

Pleural pressure
In Eq. 3, tracheal flow (V̇L) is the derivative of lung volume. Rrs

is the resistance of the airway, which when multiplied by V̇L gives
the pressure drop, by the hydraulic analog of Ohm’s law. σL is the
recoil pressure of the lung.

Ppl = −RrsV̇L − σL (3)

Lung volume
Lung volume is a function of Vdi and Vab. Diaphragm volume,
Vdi, is the volume above the level of the diaphragm insertions on
the rib cage and below the dome of the diaphragm. Abdominal
wall volume, Vab, is the volume between the abdominal wall and
a frontal plane that coincides with the contracted position of the
abdominal wall.

It has been commonly assumed that the abdominal contents
are incompressible and that the abdominal cavity has only two
movable walls – the diaphragm and the abdominal wall – and
that therefore a displacement in one must be met by an equal
and opposite displacement of the other (Grimby et al., 1976;
Grassino et al., 1978; Macklem et al., 1978; Loring and Mead,
1982; Lichtenstein et al., 1992; Fitz-Clarke, 2007); in other words,
that Vdi+Vab=Vsum (Vsum constant). Under this assumption, the
abdominal volume completely determines the volume under the
diaphragm, Vdi. Following Lichtenstein et al. (1992), Vdi deter-
mines the static contractile pressure generated by the diaphragm
at a given activation. However, experimental data (Grassino et al.,
1978, Figure 4) show that both rib cage volume and abdominal
volume affect this pressure. Therefore, in our model, we added a
term, C1Vrc, to the equation, allowing the rib cage and the abdom-
inal wall to independently alter the volume under the diaphragm,
effectively adding a third movable wall to the abdominal container,
as discussed by Mead and Loring (1982).

The value of C1 was determined by fitting our model to pub-
lished data (Grassino et al., 1978, Figure 4) giving diaphragm
pressure as a function of rib cage and abdominal volume at a fixed
diaphragm activation. Given a value of C1, our model equations
will calculate the diaphragm pressure from the volumes. We then
found the value of C1 that was the best fit of the calculated
pressure values to the measured values. The resulting equation
is Vdi+C1Vrc+Vab=Vsum, which together with Eq. 20, gives us
Eq. 4 for lung volume (VL).

VL =
Vsum − (1+ C1) Vdi − Vab − C1Vc

C1
(4)

Airway resistance
Rohrer’s equation was used to calculate airway resistance
(Rohrer, 1915; Hey and Price, 1982). The equation Pres-
sure=K 1 · Flow+K 2 · Flow2 or, dividing through by flow, Resis-
tance=K 1+K 2 |Flow| was applied twice, once for laryngeal resis-
tance (k1+ k2|V̇L|) and once for the resistance of the oropharynx
and lower airway (0.72+ 0.44|V̇L|), to give Eq. 5. We used a value
of K 2= 0.44 for the oropharynx and lower airway based on the
assumption that K 2 is 0 for the oropharynx (Renotte et al., 1998;
Eq. 8), and 0.44 for the lower airway (Renotte et al., 1998, Table 2).
Assuming K 1 for the larynx is negligible during quiet breathing

(see below), we used 0.34 for the lower airway and 0.38 for the
oropharynx (Renotte et al., 1998, Table 2), for a total of 0.72.

The values of k1 and k2 for the larynx depend on the diameter
of the glottis, as shown in Eqs 6–8. The parameter D is the diameter
of the human trachea. The variable ulm is the net laryngeal muscle
activation, ranging from −1 (closed glottis) to 1 (open glottis).
The variable d is the diameter of the glottis, or more precisely, the
diameter of a circle with the same area as the opening of the glottis.
The resting diameter (when ulm= 0) is taken to be 10.9 mm (Baier
et al., 1977; Brancatisano et al., 1983; D’Urzo et al., 1988), and is
assumed (see Eq. 8) to change in proportion to ulm (Tully et al.,
1990, 1991).

The coefficient k2 given by Eq. 7 is calculated using the equa-
tion for flow through an orifice (Simpson, 1968, Table II). The
value of k2 for the upper airway is different for inspiration and
expiration (Renotte et al., 1998, Table 2), which we assume is due
to changes in d. Assuming equal excursions from the resting diam-
eter, we solved for the coefficient that would give us the reported
values of k2, and got 0.167. This approach resulted in a resting
value for k2 of 0.681.

We calculated the ratio of the mean resting value of k1 to the
mean resting value of k2 (Tully et al., 1990, Table 2), and multi-
plied the ratio by 0.681 to get a resting value of k1 of 0.0035 for
the larynx, which is small relative to K 1 for the rest of the airway,
justifying our assumption above that K 1 for the larynx is negligible
during quiet breathing.

The Darcy–Weisbach equation for pressure loss in a pipe and
the Darcy friction factor for laminar flow tell us that the resistance
is proportional to 1/d4 (Kreith et al., 2004), which we use in Eq.
6 for k1. Plugging in the resting value of k1 determined above and
the resting value of d, we solved for the coefficient, which gives
us 49.6.

Rrs = k1 + 0.72+ (k2 + 0.44) V̇L (5)

k1 =
49.6

d4
(6)

k2 = 0.167

(
D2

d4
+

d2

D2
− 1

)
(7)

d =


D, ulm > 71

109

10.9 (1+ ulm) , −1 ≤ ulm ≤
71

109

0, ulm < −1

(8)

Abdominal pressure on the rib cage
A fraction fa of the rib cage is exposed to abdominal pressure rather
than pleural pressure. The recoil pressure of the diaphragm, σdi,
is the difference between abdominal pressure and pleural pres-
sure, so Pab− pl adjusts the pressure seen by the rib cage for this
difference.

Pab−pl = faσdi (9)

Abdominal fraction of the rib cage
At total lung capacity (TLC), none of the diaphragm is apposed
to the rib cage (Mead and Loring, 1982), so we assumed that at all
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O’Connor et al. Neuromechanical model for respiratory behaviors

lung volumes, a portion of Vdi equal to Vdi at TLC (V TLC
di ) does not

contribute to the zone of apposition. The remainder (Vdi−V TLC
di )

is divided by the remainder plus the lung volume (Vdi−V TLC
di +VL)

to give an estimate of the fraction of the rib cage surface above the
diaphragm insertions that is exposed to abdominal pressure.

The “obligatory ring” below the diaphragm insertions, which
is about 15% of the rib cage surface (Mead and Loring, 1982), is
always exposed to abdominal pressure, and is represented by f TLC

a
in Eq. 10. Our rib cage volume, Vrc, is the volume above a plane
through the diaphragm attachments (Cluzel et al., 2000, Figure
3).The estimate of 15% of the rib cage surface was in the context
of a different definition of rib cage volume in which a change in
rib cage volume is equal to the change in lung volume with the
abdominal wall held still (Konno and Mead, 1967). This alterna-
tive definition implies a larger volume for the rib cage because it
includes parts below the diaphragm insertions. From our volume
equations, this means that rib cage volume is larger than ours by a
factor of (1+C1), so we divided the previously calculated fraction
of the smaller rib cage by (1+C1) to turn it into a fraction of the
larger rib cage before adding it to f TLC

a .

fa =
1

1+ C1

(
Vdi − V TLC

di

Vdi − V TLC
di + VL

)
+ f TLC

a (10)

Recoil pressure of the lung
Equation 11 assumes a linear relationship between lung volume
and recoil pressure. CL is lung compliance. VL0 is the lung volume
at zero recoil pressure, which we took to be equal to the residual
volume (RV) after a maximal exhalation, the small recoil pres-
sure remaining at RV being close enough to zero for our purposes
(Permutt and Martin, 1960; Harris, 2005).

σL =
VL − VL0

CL
(11)

Recoil pressure of the diaphragm
In Eq. 12, the term udiσ

max
di F di

fl F di
fv corresponds to the Hill mus-

cle model (Ratnovsky et al., 2003, Eq. A6), except that σmax
di is a

pressure rather than a force and F di
fl and F di

fv are functions of vol-
ume and its derivative (flow), respectively, rather than length and
velocity.

We substituted pressure for force because, by Laplace’s (1808)
Law, the pressure is proportional to the force when the curvature
is constant, and the curvature of the human diaphragm dome
does not change significantly with volume (Braun et al., 1982).
Moreover, there is a constant ratio between diaphragm force and
pressure in the dog (Kim et al., 1976).

Our substitution of volume for length (with an offset) is
supported by the observation that the relationship between
diaphragm pressure and length is not clearly different from lin-
ear when measured at RV, functional residual capacity (FRC), and
TLC (Cluzel et al., 2000). To the extent that the action of the
diaphragm resembles that of a piston (Kim et al., 1976), this lin-
earity is expected. There is precedent for a Hill-style model in
terms of pressure and flow for the respiratory system (Younes and
Riddle, 1981).

In Eq. 12, udi is phrenic activation of the diaphragm; σmax
di is

static diaphragm recoil pressure at optimum length and maximum
activation; RdiV̇di is the pressure due to the passive resistance of
the diaphragm.

σdi = udiσ
max
di F di

fl F di
fv + σ

psv
di + RdiV̇di (12)

Passive recoil pressure of the diaphragm
In Eq. 13, σ

psv
di is the passive transdiaphragmatic pressure as a

function of diaphragm volume. This pressure is taken to be zero at
resting diaphragm volume V FRC

di (Agostoni and Rahn, 1960) and
below, and quadratic above (Reid et al., 1987).

σ
psv
di =

{
K

psv
di .

(
Vdi − V FRC

di

)2
, Vdi > V FRC

di

0, Vdi ≤ V FRC
di

(13)

Volume-pressure relationship of the diaphragm
In Eq. 14, F di

fl is the static pressure-volume relationship of the
diaphragm (corresponding to Ratnovsky et al., 2003, Eq. A7 with
the relative length replaced by a linear function of volume as
described above). The parameter Vdi0 is the volume under the
diaphragm at the resting length. This is taken to be equal to the
diaphragm volume at RV, based on the observation that the “high-
est Pdi twitch amplitude was recorded at RV” (Smith and Belle-
mare, 1987). The parameter Lmin

di is the length of the diaphragm
at zero volume (i.e., when the diaphragm is flat) divided by the
resting length, and is calculated by assuming that the length of the
diaphragm at TLC is 65% of that at RV (Smith and Bellemare,
1987).

F di
fl = exp

−0.5

 1−Lmin
di

Vdi0
Vdi + Lmin

di − 1.05

0.19

2 (14)

Pressure-flow relationship of the diaphragm
In Eq. 15, F di

fv is the pressure-flow relationship of the diaphragm,
with the velocity replaced by flow as discussed above (Hatze, 1981;
Rosen et al., 1999; Artemiadis and Kyriakopoulos, 2005). The vari-
able V̇di is the time derivative of the volume under the diaphragm.
The maximum rate of change of diaphragm volume, V̇ max

di , was
derived from data which gives transdiaphragmatic pressure as a
function of flow at several levels of diaphragm activation up to
45% (Goldman et al., 1978, Figure 6). Because the rib cage was
held still, the flow represents the rate of change of diaphragm
volume. Fitting the curves to a Hill-style relation between pres-
sure and flow (Younes and Riddle, 1981), there is a maximum
flow (where the pressure goes to zero) for each level of diaphragm
activation. Experimental results suggest that the maximum flow
increases somewhat linearly to 80% activation and then levels off
(Chow and Darling, 1999). We used that assumption together with
the results for the maximum flow at lower activations to compute
a maximum flow at 100% activation, which we use for V̇ max

di .

F di
fv =

0.1433

0.1074+ exp

(
−1.409 sinh

(
3.2 V̇di

V̇ max
di
+ 1.6

)) (15)

Frontiers in Physiology | Computational Physiology and Medicine July 2012 | Volume 3 | Article 264 | 83

http://www.frontiersin.org/Computational_Physiology_and_Medicine
http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Computational_Physiology_and_Medicine/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O’Connor et al. Neuromechanical model for respiratory behaviors

Pressure of the intercostal and accessory muscles
In Eq. 16, P ica is the effective pressure generated by the intercostal
and accessory muscles; positive values act to expand the rib cage.

In Eq. 17, Pdi
ica is the pressure due to the action of the inspiratory

intercostals, which are assumed to be inactive when the diaphragm
volume is above V FRC

di (low lung volumes). Below V FRC
di , the

pressure exerted by the inspiratory intercostals is assumed to be
proportional to the activation of the diaphragm (udi), and the
proportionality constant itself is assumed to scale linearly from 0
at V FRC

di to its maximum value of PdiTLC
ica at V TLC

di . The parameter

PdiTLC
ica was calculated as the pressure necessary to complete the

pressure balance on the rib cage at TLC.
In Eq. 18, Pab

ica is the pressure due to the action of the expiratory
intercostals, which is assumed to be proportional to the abdomi-
nal muscle activation (uab); the proportionality constant itself is
assumed to scale linearly with the rib cage volume, changing from
PabRV

ica at RV to PabTLC
ica at TLC. In Eq. 18, PabTLC

ica is the pressure
due to the expiratory intercostals at TLC and maximal abdomi-
nal activation. This parameter’s value was calculated by taking the
mean male maximal mouth pressure at TLC (from Ratnovsky et al.,
2008, Table 1) and subtracting it from the rib cage recoil pressure
at TLC. PabRV

ica is the pressure due to the expiratory intercostals at
RV and maximal abdominal activation. We calculated this para-
meter by solving the model equations for P ica while assuming
RV conditions. This gives us the intercostal pressure necessary to
reach RV.

Pica = Pdi
ica + Pab

ica (16)

Pdi
ica =

udiP
diTLC
ica

Vdi−V FRC
di

V TLC
di −V FRC

di

, Vdi < V FRC
di

0, Vdi ≥ V FRC
di

(17)

Pab
ica = uab

(
PabRV

ica +
Vrc − V RV

rc

V TLC
rc − V RV

rc

(
PabTLC

ica − PabRV
ica

))
(18)

Recoil pressure of the rib cage
The volume of the rib cage is assumed to be a sigmoid function
of the recoil pressure of the rib cage, σrc. With increasing pressure
the volume asymptotically approaches a maximum (V max

rc ), and
with decreasing pressure it asymptotically approaches a minimum
(V min

rc ). A generalized logistic function is used for the sigmoid,
giving Vrc as a function of σrc; that equation is solved for σrc to
give the first part of Eq. 19. The final term of Eq. 19 is the pressure
due to the passive resistance of the rib cage (Rrc) and the rate of
change of its volume (V̇rc) The parameter σmul

rc controls the max-
imum slope of the sigmoid; the slope is the compliance of the rib
cage. It is calculated to make the compliance equal to C rc/(1+C1).
The factor of (1+C1) appears because C rc is for a rib cage volume
defined differently than Vrc. C rc is the compliance of the rib cage,
an average of values for three sitting subjects (Gilroy et al., 1985,
Table 1).

σrc = σmul
rc log

(
V max

rc
− Vrc

Vrc − V min
rc

)
+ σadd

rc + RrcV̇rc (19)

Volume of the rib cage
The rib cage volume (Vrc) is the sum of the lung volume (VL),
the volume under the diaphragm (Vdi), and the volume of the
mediastinum and the lung blood and tissue (Vc).

Vrc = VL + Vdi + Vc (20)

Recoil pressure of the abdominal wall
The abdominal wall is modeled as a surface with a circular seg-
ment cross-section in each transverse plane, all with the same
radius, and a circular segment cross-section in each sagittal plane,
all with another radius. The volume behind the abdominal wall,
Vab, is bounded by this surface and by a frontal plane. The values
for the sagittal (r s) and transverse (r t) radii were derived from
measurements taken during insufflation for laparoscopic surgery
in humans (see Figure 3, Song et al., 2006). We fit exponential
curves to the data points and the resulting relationship between
the fitted sagittal and transverse radii was found to be well approx-
imated by a linear function: r s= 8.00 r t− 1.10. The length of the
longest transverse chord in the bounding frontal plane (c t) was
found which gave the volume change stated in the paper.

In Eq. 21, uabFCEmaxF ab
fl F ab

fv is the Hill muscle model equa-
tion (Ratnovsky et al., 2003, Eq. A6); uab is the activation of the
diaphragm by the lumbar motor neurons; F CEmax is the maximal
force capacity of the contractile element for a 1.5 cm2 cross-section
of canine external oblique muscle (Ratnovsky et al., 2003, Table
1). The constant k converts from a force to a surface tension, and
(1/r s+ 1/r t) converts the surface tension to a pressure, using the
Law of Laplace (Laplace, 1808). The second term on the right,
(Vab−Vab0)/Cab, is the passive recoil pressure of the abdominal
wall. Vab0 is the volume behind the abdominal wall at which the
recoil pressure is 0. This was taken to be equal toV FRC

ab , since we
assume a supine position. Cab is the compliance of the abdominal
wall. The final term is the pressure due to the passive resistance
of the abdominal wall (Rab) and the rate of change of abdominal
volume (V̇ab).

σab = uabFCEmaxF ab
fl F ab

fv .

(
k

rt
+

k

rs

)
+

Vab − Vab0

Cab
+RabV̇ab (21)

In Eq. 22, F ab
fl is the static force-length relationship of the

abdominal wall (Ratnovsky et al., 2003, Eq. A7); LCE is the length
of the transversus abdominis; LCE0 is its resting length.

F ab
fl = exp

−0.5

( LCE
LCE0
− 1.05

0.19

)2
 (22)

In Eq. 23,F ab
fv is the force-velocity relationship of the abdominal

wall muscles (Hatze, 1981; Rosen et al., 1999; Artemiadis and Kyri-
akopoulos, 2005). The variable L̇CE is the velocity of the contractile
element (the time derivative of LCE) and the parameter VCEmax is
the maximal contractile velocity of canine external oblique muscle
(Ratnovsky et al., 2003, Table 1).

F ab
fv =

0.1433

0.1074+ exp
(
−1.409 sinh

(
3.2 L̇CE

VCEmax
+ 1.6

)) (23)
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O’Connor et al. Neuromechanical model for respiratory behaviors

Length-volume relationship of the abdominal wall
Equations 24 through 31 calculate the length of the abdominal
muscle (LCE) from the volume behind the abdominal wall (Vab).
Eqs 26 through 31 calculate Vab as a function of r t (the transverse
radius); Eq. 25 uses the inverse of the resulting function to cal-
culate r t from Vab; Eq. 24 calculates LCE from r t. In practice, the
function Vab(r t) is pre-calculated, and approximated and inverted
with a spline, and the spline is used to evaluate r t(Vab) during
simulation.

LCE = 100rtsin−1
(

ct

2rt

)
(24)

rt (Vab) =

{
V−1 (Vab) , Vab > 0

0.5ct, Vab ≤ 0
(25)

V (rt) =

cs/2∫
−cs/2

A
(
rt, y

)
dy (26)

In Eq. 27, the Pythagorean Theorem is applied in the midsagit-
tal plane to get c s, the length of the chord that connects the ends of
the abdominal wall in the frontal plane that serves as a boundary
of the abdominal wall volume.

cs = 2

√
rs

2 − (h0 − rs)
2 (27)

In Eq. 28, the Pythagorean Theorem is applied in a transverse
plane to get h0, the distance from the peak of the abdominal wall
to the frontal plane that serves as a boundary of the abdominal
wall volume.

h0 = rt −

√
r2

t −

( ct

2

)2
(28)

In Eq. 29, the formula for the area of a circular segment is
applied in the transverse plane at a distance y from the peak of the
abdominal wall to get the area between the abdominal wall and
the boundary frontal plane.

A =
r2

t

2

(
2cos−1

(
1−

h

rt

)
+ sin

(
2cos−1

(
h

rt
− 1

)))
(29)

In Eq. 30, the Pythagorean theorem is applied in the midsagittal
plane to get h, the distance from the abdominal wall to the bound-
ary frontal plane at a distance y in the craniocaudal direction from
the peak of the abdominal wall.

h =
√

r2
s − y2 −

√
r2

s −

( cs

2

)2
(30)

Equation 31 is the relation between the sagittal radius (r s) and
the transverse radius (r t) derived from the results in Song et al.
(2006).

rs = 8.00479rt − 1.10158 (31)

Equations for calculated parameters

σab
(
uab = 1, V RV

ab , V̇ab = 0, Vab0
)
= σRV

ab (32)

Vab0 = V RV
ab + V kmFRC

ab ·VC (33)

V RV
L = V FRC

L −

(
V kmFRC

rc + V kmFRC
ab

)
·VC (34)

σRV
L =

V RV
L − VL0

CL
(35)

σRV
ab = σRV

di − σRV
L (36)

V FRC
ab = V RV

ab + V kmFRC
ab ·VC (37)

Vsum = V FRC
di + C1V FRC

rc + V FRC
ab (38)

V RV
di = Vsum − V RV

ab − C1V RV
rc (39)

V TLC
ab = V FRC

ab +

(
V kmTLC

ab − V kmFRC
ab

)
·VC (40)

V TLC
L = V TLC

rc − V TLC
di − Vc (41)

σTLC
L =

V TLC
L − VL0

CL
(42)

σTLC
ab =

V TLC
ab − Vab0

Cab
(43)

σTLC
di = σTLC

L − σTLC
ab (44)

σTLC
rc = σmul

rc log

(
V max

rc − V TLC
rc

V TLC
rc − V min

rc

)
+ σadd

rc (45)

σRV
rc = σmul

rc log

(
V max

rc − V RV
rc

V RV
rc − V min

rc

)
+ σadd

rc (46)

f RV
a =

1

1+ C1

(
V RV

di − V TLC
di

V RV
di − V TLC

di + V RV
L

)
+ f TLC

a (47)

VL0 = V RV
L (48)

K
psv
di =

σRV
di(

V RV
di − V FRC

di

)2 (49)

Lmin
di =

V TLC
di − fdiV

RV
di

V TLC
di − V RV

di /1.05
(50)

PabRV
ica = σRV

L + σRV
rc −

(
f RV
a + Fdi

)
σRV

di (51)

PdiTLC
ica = σTLC

L + σTLC
rc −

(
f TLC
a + Fdi

)
σTLC

di (52)

σdi

(
udi = 1, V TLC

di , V̇di = 0, σmax
di

)
= σTLC

di (53)
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O’Connor et al. Neuromechanical model for respiratory behaviors

σadd
rc = σmul

rc log

(
Vrc0 − V min

rc

V max
rc − Vrc0

)
(54)

σmul
rc =

(
V max

rc − V min
rc

)
(1+ C1)

4Crc
(55)

Vdi0 = V RV
di (56)

V TLC
di = Vsum − V TLC

ab − C1V TLC
rc (57)

V max
rc = V TLC

rc + 0.05
(

V TLC
rc − V RV

rc

)
(58)

V min
rc = V RV

rc − 0.99
(

V TLC
rc − V RV

rc

)
(59)

V RV
rc = V FRC

rc −
V kmFRC

rc ·VC

1+ C1
(60)

V TLC
rc = V FRC

rc +

(
V kmTLC

rc −VkmFRC
rc

)
·VC

1+ C1
(61)

Vrc0 = V FRC
rc (62)

BRAINSTEM NETWORK MODEL ARCHITECTURE AND SYSTEM
PERFORMANCE WHEN LINKED TO THE BIOMECHANICAL MODEL
The computational model of the pontomedullary respiratory net-
work (Figure 1) instantiated the hypothesis (Shannon et al., 1998;
Rybak et al., 2008) that airway cough receptors affect several neu-
ron populations in the ventral respiratory column (VRC) and
pontine respiratory group (PRG) via cough 2nd order neurons.
Evoked changes reconfigured the respiratory network to produce
the cough motor pattern through the same VRC neurons involved
in providing drive to respiratory muscles during normal breath-
ing. The model incorporated recent enhancements (Poliaček et al.,
2011) and additional neuron populations and other changes as
detailed in Tables 2–4.

Linking the neural network and biomechanical models
The diaphragm received input from two phrenic motor neuron
populations (PHR, PHR-HT) with different threshold ranges to
generate motor unit diversity and facilitate an ordered recruit-
ment during increased inspiratory drive. Diaphragm activation
was based on the mean instantaneous firing rates (P, P1), of the
two populations by the expression (0.3P + 0.7P1)/X where X is
the firing rate for maximum diaphragm activation; values of 50–
200 spikes/s were used (Nail et al., 1972) to approximate the plot
for diaphragm activation in Figure 1 of Mantilla and Sieck (2011).
Similarly, two lumbar motor neuron populations (LUM, LUM-
HT) activated the abdominal muscle with X set to 80. Inspiratory
laryngeal motor (ILM) and expiratory laryngeal motor (ELM)
neuron populations regulated laryngeal resistance over a range
between fully open (+1) and fully closed (−1), inclusively.

Lung afferent populations were regulated by injected currents
defined at each simulation step by evaluation of expressions
that included model lung volume. Pulmonary stretch receptors
(PSRs) became more active with increasing lung volume V (mem-
brane bias= 0.5V mV/%VC) and mediated the Hering–Breuer
reflex. Deflation-sensitive lung receptors were also implemented

(Paintal, 1955; Luck, 1970; Wei and Shen, 1985; Iscoe and Gor-
don, 1992; Bergren and Peterson, 1993; Matsumoto et al., 2002;
Yu et al., 2003). A low threshold population (Def_1, mem-
brane bias=− 0.225(V − 70) mV/%VC) and its afferent pathway
introduced in Poliaček et al. (2011) was used to represent a class of
possible network mechanisms for generating an inhibitory bias on
E-Dec neurons. Simulated “vagotomy” (elimination of the effects
of lung afferents) in the present model removed this inhibition,
contributing to the observed prolongation of the expiratory phase
(Te increased from 2.76 s to 3.15 s (p-value= 0.0004, two-sided
t -test). Vagotomy also removed the influence of the PSRs and
increased inspiratory phase duration (Ti) from 1.94 s to 2.61 s,
(p-value= 4× 10−7; see references and discussion in Dick et al.,
2008). A higher threshold“distortion”(Dis_1) receptor population
(cf. Iscoe and Gordon, 1992) excited the ELM population when
lung volume was below FRC (membrane bias=−1.75(V − 10)
mV/%VC if V < 10, 0 otherwise). We note that the synaptic
strength and firing rates of this speculative Dis_1 population,
added for development purposes in other work (Hutchison and
Lindsey, 2009), resulted in negligible modulation of ELM pop-
ulation activity under the conditions of the present study (see
“Influence of Some Added Network Connections”).

Additional enhancements to the current network model
The “I-Dec_2” population was added to provide a second
inhibitory VRC inspiratory neuron population for tuning inspi-
ratory drive as proposed in Ott et al. (2012) for central chemore-
ceptor modulation of breathing. In some previous models (Rybak
et al., 2008; Poliaček et al., 2011), the “E-Aug-late” population
inhibited numerous target populations, but also served to excite
the VRG bulbospinal E-Aug-BS (+) population that drives expi-
ratory lumbar motor neurons. A new “E-Aug (+)” population was
added to facilitate differential regulation of the lumbar motor neu-
rons and expiratory drive modulation as proposed in the literature
(Iscoe, 1998; Shannon et al., 2004; Molkov et al., 2010). Other
parameters were adjusted and populations added in anticipa-
tion of linking the network model to the biomechanical model
derived from data from human subjects. In the antecedent model
(Poliaček et al., 2011), the I-Aug-BS population output served
both a premotor function and represented the “phrenic” output.
The inhibitory connections from the VRC-IE population to the
I-Aug-BS population were eliminated in the new model; E-Dec-P
inhibition of the I-Aug-BS population was retained. The resulting
eupneic respiratory cycle frequency (12.7 cycles/min) was within
the range for resting breathing in the human adult (A.D.A.M.
Medical Encyclopedia, 2012).

Eupneic motor pattern and “baseline” cough
The joint neuromechanical model generated a eupneic motor
pattern and an evoked cough. Figure 2 shows membrane poten-
tial records from simulated neurons in representative PRG,
raphé, and VRC neuron populations and the six types of motor
neurons. The “IF” neuron populations do not generate action
potential-like spikes; instances of threshold crossings are indi-
cated graphically by corresponding vertical spike-like lines. Addi-
tional traces include integrated population activity of the three
lung afferent populations and biomechanical system metrics,
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FIGURE 1 | Schematic of the raphé-pontomedullary respiratory
network model used in this study. The model extends that used in
Poliaček et al. (2011) and Rybak et al. (2008) and follows labeling
conventions enumerated therein. Parameters for the represented cell
populations (large colored circles) and connections (see Key) are listed in
Tables 2 and 4. Parameters for the I-Driver population with conditional
bursting pacemaker properties were as described previously (Rybak et al.,
2008; Poliaček et al., 2011). Abbreviations of brainstem regions or
“compartments”: pre-BötC, pre-Bötzinger complex; VRC or VRG, ventral
respiratory column or group; PRG, pontine respiratory group.
Abbreviations of most populations were as enumerated in Table 1 of Rybak
et al. (2008): Aug and Dec: neurons with augmenting or decrementing

activity patterns, respectively, during the indicated phase (I-inspiratory;
E-expiratory) of maximum firing rate. BS, bulbo-spinal; ELM, expiratory
laryngeal motoneurons; EI, neurons with a peak firing rate during the E-to-I
phase transition; IE, neurons with a peak firing rate during the I-to-E phase
transition; ILM, inspiratory laryngeal motoneurons; NRM,
non-respiratory-modulated neurons. Two phrenic motor neuron
populations with different threshold ranges innervated the diaphragm
(PHR, PHR-HT: high threshold); two lumbar motor neuron populations
activated the abdominal muscle (LUM, LUM-HT: high threshold). I-Dec_2,
second inhibitory I population in the VRC (e.g., see Ott et al., 2012); Lung
Def_1s, Lung Dis_1s, Deflation 2nd order: lung deflation-sensing neuronal
circuit elements. See text for further discussion.
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O’Connor et al. Neuromechanical model for respiratory behaviors

Table 2 | Population parameters for network model with adjusted (∆) and additional (+) neuronal populations modified from Poliaček et al.

(2011).

Population name Size Resting

threshold

(mV)

THO

variability

(mV)

Membrane

time

constant

Post-spike

increase

in GK+

Post-spike

GK+ time

constant

(ms)

Adaptation

threshold

increase

Adaptation

(ms)

Noise

amplitude

DC (mV)

N THO TMEM B TGK C TTH

I-pons 100 10.0 1.0 9.0 20.0 7.0 0.0 500.0 0.03 2.0

rostral IE-pons 100 10.0 1.0 9.0 20.0 7.0 0.0 500.0 0.3 5.0

caudal IE-pons 100 10.0 1.0 9.0 20.0 7.0 0.0 500.0 0.3 5.0

E-pons 100 10.0 1.0 9.0 20.0 7.0 0.0 500.0 0.3 13.0

EI-pons 100 10.0 1.0 9.0 20.0 7.0 0.0 500.0 0.3 20.0

NRM-pons 100 10.0 1.0 9.0 20.0 7.0 0.0 500.0 0.03 25.0

NRM-BötC 300 10.0 1.0 9.0 20.0 7.0 0.0 500.0 0.03 25.0

∆I-DRIVER 300 See Table A2 in Rybak et al. (2008) for I-Driver neuron properties

∆I-Dec 300 10.0 1.0 6.0 75.0 8.5 0.9 1500.0 0.2 20.0

+I-Dec_2 300 10.0 1.0 6.0 75.0 8.5 0.8 1200.0 0.2 5.0

∆I-Aug 300 12.0 3.0 6.0 75.0 5.0 0.0 5000.0 0.6 18.0

∆VRC IE 99 18.0 2.0 9.0 50.0 5.0 0.0 1000.0 0.075 0.0

∆E-Dec-Phasic 300 9.0 1.0 6.0 75.0 8.5 0.9 1500.0 0.1 4.0

∆E-Dec-Tonic 300 8.0 1.0 9.0 50.0 3.8 0.8 2000.0 0.3 0.0

E-Aug-early 300 10.0 1.0 6.0 27.0 2.5 0.0 500.0 0.3 30.0

E-Aug-late 300 10.0 1.0 9.0 27.0 2.5 0.0 500.0 0.1 27.0

∆E-Aug-Cough 300 12.0 2.0 9.0 75.0 7.5 0.0 500.0 0.2 0.0

+E-Aug (+) 300 10.0 2.0 6.0 75.0 7.5 0.1 1000.0 0.5 20.0

∆E-Aug-BS (+) 300 12.0 3.0 6.0 100.0 6.0 0.1 1000.0 0.5 0.0

∆Pump (+) 300 5.0 0.5 6.0 25.0 3.8 0.08 500.0 0.1 0.0

∆Pump (-) 300 5.0 0.0 6.0 25.0 3.8 0.08 500.0 0.1 0.0

∆I-Aug-BS 300 12.0 3.0 6.0 75.0 5.0 0.0 5000.0 0.5 0.0

+Phrenic 210 10.0 2.0 5.0 200.0 6.0 0.08 500.0 0.5 0.0

+Phrenic-HT 70 16.0 2.0 60.0 200.0 5.0 0.08 500.0 0.5 0.0

∆Lumbar 210 15.0 2.0 6.0 75.0 7.5 0.08 500.0 0.5 0.0

+Lumbar-HT 70 18.0 2.0 30.0 200.0 7.5 0.1 500.0 0.5 0.0

∆ILM 300 20.0 1.0 6.0 25.0 3.8 0.08 500.0 0.1 2.0

∆E-Dec-pre-ELM 300 11.0 0.0 6.0 100.0 6.0 0.8 500.0 0.5 1.0

∆ELM 300 18.0 2.0 6.0 100.0 6.0 0.9 100.0 0.5 0.0

∆LUNG PSRs 300 11.0 1.0 9.0 20.0 7.0 0.0 500.0 0.5 0.0

+Lung deflation

receptors (Def_1)

300 10.0 1.0 9.0 20.0 7.0 0.0 500.0 0.5 0.0

+Lung distortion

receptors (Dis_1)

300 10.0 1.0 9.0 20.0 7.0 0.0 500.0 0.5 0.0

>Cough 2nd order 100 10.0 1.0 9.0 20.0 7.0 0.3 500.0 0.1 0.0

∆Deflation 2nd

order

300 8.0 1.0 9.0 27.0 2.5 0.5 1000.0 0.3 0.0

Raphé 8 100 10.0 1.0 9.0 20.0 7.0 0.0 500.0 0.01 0.0

(Continued)
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O’Connor et al. Neuromechanical model for respiratory behaviors

Table 2 | Continued

Population name Size Resting

threshold

(mV)

THO

variability

(mV)

Membrane

time

constant

Post-spike

increase

in GK+

Post-spike

GK+ time

constant

(ms)

Adaptation

threshold

increase

Adaptation

(ms)

Noise

amplitude

DC (mV)

N THO TMEM B TGK C TTH

Raphé 28 100 10.0 1.0 9.0 20.0 7.0 0.0 500.0 0.1 0.0

Raphé 29 100 10.0 1.0 9.0 20.0 7.0 0.0 500.0 0.5 0.0

Raphé 30 100 10.0 1.0 9.0 20.0 7.0 0.0 500.0 0.5 0.0

Raphé 31 100 10.0 1.0 9.0 20.0 7.0 0.0 500.0 0.1 10.0

Raphé 32 100 10.0 1.0 9.0 20.0 7.0 0.0 500.0 0.1 10.0

Variable names used by MacGregor (1987) are in italics. All values representing voltages are relative to the resting potential, which is considered equal to zero. N is the

number of neurons simulated in each population.THO, the resting threshold, is normally distributed in the population around the value ofTHO with a standard deviation

equal to the “THO variability” value.TMEM is the membrane time constant. B is the amplitude of the post-spike increase in potassium conductance.TGK is the time

constant of the potassium conductance decay following an action potential. C andTTH define the change in threshold associated with spike adaptation. C is the ratio

of the threshold increase to the membrane potential increase; its value is between 0 and 1. TTH is the time constant of the rise in threshold with spike adaptation.

Noise Amplitude: each cell has an internal noise generator that acts like two synapses, one with an equilibrium potential of 70 mV above resting and the other with

−70 mV. Each acts like it has an incoming firing probability of 0.05 per time step, and a synapse time constant of 1.5 ms. This parameter is the conductance that gets

added to the synapse conductance on each (virtual) spike. DC: an injected current will raise the membrane potential by an amount that is inversely proportional to

the membrane conductance. Instead of being specified directly as a current, this parameter is specified in mV, and it is interpreted as the current that is required to

raise the membrane potential by the specified number of mV when the membrane conductance has its resting value. The effect on the membrane potential at other

membrane conductances will be inversely proportional to the conductance. Note also that as in other types of IF neuron models, our neuron models do not actually

generate action potential-like spikes but only identified moments of spikes, so “spiking” shown in all neuron simulations are represented graphically by assigning

vertical spike-like lines at computed times of threshold crossing. The population “E-Aug-Late-HT” in Rybak et al. (2008) has been renamed to “E-Aug-Cough” in the

base model for this simulation. >, neuron populations that relay perturbations of the network model. A fiber population composed of 100 fibers, each with a firing

probability of 0.05 at each simulation time step and 100 type Ex_1 excitatory synaptic terminals (synaptic strength 0.03), represented cough receptor excitation.These

fibers excited the Cough 2nd order neuron population. For abbreviations, see list of abbreviations and legend of Figure 1 in the main text.

Table 3 | Synaptic parameters for the network model.

Synapse name Synapse type Synapse

equilibrium

potential (mV)

Synapse time

constant (ms)

Ex_1 Excitatory 115.0 1.5

Inh_4 Inhibitory −25.0 1.5

Inh_7 Inhibitory −25.0 2.0

Inh_10 Inhibitory −25.0 1.5

Ex_13 Excitatory 115.0 1.5

Pre-ex_13 Inhibitory

(pre-synaptic

to Ex_13)

0.0 1.5

Ex_19 Excitatory 115.0 5.0

Inh_22 Inhibitory −25.0 5.0

Inh_25 Inhibitory −25.0 4.5

Ex_28 Excitatory 115.0 1.5

Pre-ex_28 Inhibitory

(pre-synaptic

to Ex_28)

−25.0 3.5

including lung volume, tracheal flow, and alveolar pressure.
The three phases of the cough cycle (Bolser et al., 2003) are
highlighted.

The inspiratory phase of the cough was characterized by
increased activation of the diaphragm and enlargement of upper
airway via activation of the ILM (abductor) motor neuron popu-
lation, resulting in an increased lung volume (43% VC), inspira-
tory flow, and transdiaphragmatic and transpulmonary pressures.
The subsequent compressive phase included activation of the
ELM (adductor) motor neurons with transient laryngeal closure,
together with activation of lumbar motor neurons and abdominal
expiratory muscles. During this phase, tracheal airflow stopped
and there was an increase in alveolar and abdominal pressure.
In the following expulsive phase, high air flow velocity (72.2%
VC/s) resulted from the opening of the larynx during continued
abdominal muscle activation.

Cough behavior with changes in inspiratory drive
Two series of simulations with complementary perturbations of
cough inspiratory drive were made to assess model behavior
during the phases of cough. Different sets of random number
seeds were used for each simulation to generate variability in
model output by altering the thresholds of individual neurons
in each population and the convergent and divergent connectivity
patterns among populations within ranges defined by the initial
baseline parameter settings.

In the first series, the activation strengths for the connections
between phrenic motor neuron populations and the diaphragm
were increased by factors of 2 and 4. Figure 3 shows the integrated
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O’Connor et al. Neuromechanical model for respiratory behaviors

Table 4 | Connectivity for the network model modified from Poliaček et al. (2011).

Source

population

Target

population

Synaptic

type

Conduction

times

No. of

terminals

Synaptic

strength

Source

pop. N

Target

pop. N

Divergence Mean

no. of

terminals

Convergence

Min Max

I-Driver I-Dec ex_1 2 6 100 0.006 300 300 84.99±3.14 1.18 84.99±7.54

I-Driver I-Aug ex_1 2 6 100 0.01 300 300 84.93±3.00 1.18 84.93±7.73

I-Driver I-Driver ex_1 0 4 50 0.003 300 300 46.34±1.76 1.08 46.34±5.84

E-Dec-Phasic I-Driver inh_22 2 6 50 0.03 300 300 46.16±1.77 1.08 46.16±9.24

E-Dec-Phasic E-Aug-early inh_4 0 2 150 0.012 300 300 118.24±4.01 1.27 118.24±8.86

E-Dec-Phasic E-Aug-late inh_4 2 4 150 0.04 300 300 118.10±3.94 1.27 118.10±9.61

E-Dec-Phasic VRC-IE inh_4 0 2 50 0.1 300 99 39.33±2.31 1.27 119.18±7.22

E-Dec-Phasic I-Dec inh_4 0 2 200 0.2 300 300 146.07±4.42 1.37 146.07±8.71

+E-Dec-Phasic I-Aug-BS inh_4 2 6 100 0.15 300 300 85.21±3.08 1.17 85.21±7.27

E-Dec-Phasic I-Aug inh_4 2 6 50 0.1 300 300 46.19±1.72 1.08 46.19±5.43

E-Dec-Phasic rostral IE-pons ex_13 2 4 100 0.001 300 100 63.13±2.98 1.58 189.39±6.74

E-Dec-Phasic caudal IE-pons ex_13 2 4 100 0.001 300 100 63.23±3.19 1.58 189.70±9.56

+E-Dec-Phasic I-Dec_2 inh_4 2 6 150 0.1 300 300 118.39±4.42 1.27 118.39±8.69

+E-Dec-Phasic E-Aug (+) inh_4 2 6 100 0.03 300 300 85.18±2.99 1.17 85.18±10.46

+E-Dec-Phasic E-Aug-Cough (−) inh_22 2 6 100 0.025 300 300 85.20±3.05 1.17 85.20±9.59

I-Dec E-Aug-early inh_7 2 6 115 0.5 300 300 95.67±3.39 1.20 95.67±7.14

I-Dec E-Dec-Phasic inh_25 2 6 200 0.2 300 300 145.80±5.20 1.37 145.80±9.31

I-Dec I-Aug inh_25 2 6 120 0.025 300 300 99.27±3.48 1.21 99.27±8.70

I-Dec E-Aug-late inh_7 2 6 115 0.5 300 300 95.71±3.51 1.20 95.71±7.84

I-Dec VRC-IE inh_25 0 4 33 0.025 300 99 28.15±1.85 1.17 85.29±6.01

I-Dec E-Dec-Tonic inh_25 2 6 100 0.001 300 300 84.90±2.96 1.18 84.90±9.43

I-Dec ILM ex_1 0 3 50 0.002 300 300 46.35±1.71 1.08 46.35±6.00

I-Dec E-Aug-BS (+) inh_7 0 4 100 0.05 300 300 85.44±3.02 1.17 85.44±9.96

I-Dec EI-pons ex_13 2 4 100 0.001 300 100 63.33±3.16 1.58 190.00±8.78

I-Dec I-pons ex_13 2 4 100 0.0005 300 100 63.50±3.23 1.57 190.51±8.03

I-Dec I-pons inh_7 2 4 100 0.0005 300 100 63.66±3.21 1.57 190.98±8.42

I-Dec rostral IE-pons inh_4 2 4 100 0.0001 300 100 63.55±3.04 1.57 190.65±8.05

I-Dec caudal IE-pons inh_7 2 4 100 0.0001 300 100 63.27±3.06 1.58 189.80±8.43

I-Dec Lumbar inh_7 0 4 100 0.1 300 210 79.70±3.14 1.25 113.86±8.97

I-Dec E-Dec-pre-ELM inh_4 2 6 200 0.06 300 300 146.12±4.70 1.37 146.12±8.41

+I-Dec E-Aug (+) inh_4 0 2 130 1.0 300 300 105.84±3.65 1.23 105.84±7.43

+I-Dec ELM inh_4 0 5 200 0.06 300 300 146.22±4.96 1.37 146.22±9.62

+I-Dec Lumbar-HT inh_7 2 6 100 0.1 300 70 53.32±2.84 1.88 228.53±6.63

+I-Dec I-Dec inh_25 2 6 140 0.0125 300 300 112.11±3.97 1.25 112.11±9.09

+I-Dec E-Aug-Cough (−) inh_7 2 6 115 0.16 300 300 95.71±3.51 1.20 95.71±7.84

I-Aug I-Aug ex_1 0 5 50 0.025 300 300 45.99±1.77 1.09 45.99±5.31

I-Aug caudal IE-pons inh_7 2 4 100 0.0001 300 100 63.43±3.19 1.58 190.28±9.05

I-Aug I-Aug-BS ex_1 2 6 100 0.06 300 300 85.20±3.01 1.17 85.20±7.27

(Continued)
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Table 4 | Continued

Source

population

Target

population

Synaptic

type

Conduction

times

No. of

terminals

Synaptic

strength

Source

pop. N

Target

pop. N

Divergence Mean

no. of

terminals

Convergence

Min Max

I-Aug ILM ex_1 2 6 70 0.035 300 300 62.72±2.32 1.12 62.72±6.93

I-Aug VRC-IE ex_1 2 6 16 0.0015 300 99 14.82±0.97 1.08 44.92±6.80

I-Aug I-pons ex_13 2 4 100 0.0025 300 100 63.59±2.94 1.57 190.76±7.71

I-Aug rostral IE-pons inh_4 2 4 100 0.0001 300 100 63.43±2.95 1.58 190.29±8.57

+I-Aug I-Dec_2 ex_28 2 6 200 0.01 300 300 146.05±4.72 1.37 146.05±9.65

E-Aug-early E-Dec-Phasic inh_4 2 6 110 0.007 300 300 92.32±3.45 1.19 92.32±7.95

E-Aug-early I-Dec inh_4 0 5 100 0.06 300 300 85.13±2.98 1.17 85.13±7.70

E-Aug-early I-Aug inh_4 2 6 100 0.135 300 300 85.44±3.23 1.17 85.44±7.76

E-Aug-early VRC-IE inh_4 0 2 24 0.05 300 99 21.46±1.29 1.12 65.02±6.96

E-Aug-early I-Aug-BS inh_4 0 2 150 0.001 300 300 118.31±4.21 1.27 118.31±7.57

E-Aug-early E-Aug-late inh_10 0 2 50 0.001 300 300 46.01±1.81 1.09 46.01±6.57

E-Aug-early E-pons ex_13 2 4 100 0.002 300 100 63.08±2.85 1.59 189.25±7.68

E-Aug-early I-pons inh_7 2 4 100 0.0005 300 100 63.08±2.85 1.59 189.25±7.68

+E-Aug-early I-Dec_2 inh_4 2 6 150 0.08 300 300 118.31±4.21 1.27 118.31±7.57

+E-Aug-early Phrenic inh_4 0 2 150 0.001 300 210 107.57±4.12 1.39 153.68±8.34

+E-Aug-early Phrenic-HT inh_4 0 2 150 0.001 300 70 61.97±2.40 2.42 265.57±5.37

+E-Aug-early ELM inh_4 2 6 175 0.007 300 300 132.52±4.21 1.32 132.52±9.21

E-Aug-late E-Aug-early inh_10 0 2 200 0.04 300 300 145.91±4.71 1.37 145.91±9.07

E-Aug-late I-Dec inh_4 2 6 55 0.2 300 300 50.33±1.87 1.09 50.33±6.68

E-Aug-late I-Aug inh_4 2 6 100 0.1 300 300 85.27±3.04 1.17 85.27±7.41

E-Aug-late E-Dec-Phasic inh_4 2 6 120 0.015 300 300 98.86±3.48 1.21 98.86±9.67

E-Aug-late I-Aug-BS inh_4 2 6 150 0.06 300 300 118.14±4.18 1.27 118.14±8.44

E-Aug-late VRC-IE inh_4 0 2 24 0.02 300 99 21.32±1.39 1.13 64.62±7.03

E-Aug-late E-Dec-Tonic inh_4 0 2 100 0.05 300 300 85.18±3.01 1.17 85.18±6.53

E-Aug-late E-Dec-pre-ELM inh_22 2 6 115 0.05 300 300 95.69±3.35 1.20 95.69±7.07

E-Aug-late ELM inh_7 2 6 200 0.1 300 300 145.91±4.71 1.37 145.91±9.07

+E-Aug-late I-Dec_2 inh_4 2 6 150 0.075 300 300 118.14±4.18 1.27 118.14±8.44

+E-Aug-late Phrenic inh_4 4 8 150 0.06 300 210 107.09±3.99 1.40 152.98±7.22

+E-Aug-late Phrenic-HT inh_4 0 2 150 0.06 300 70 61.83±2.37 2.43 265.00±5.23

+E-Aug-late ILM inh_4 0 2 115 0.04 300 300 95.59±3.32 1.20 95.59±8.06

VRC-IE I-Dec inh_7 0 4 200 0.035 99 300 146.65±4.99 1.36 48.39±5.40

Raphé 8 Raphé 29 ex_1 0 3 50 0.0125 100 100 39.73±2.28 1.26 39.73±5.01

Raphé 28 Raphé 30 ex_1 0 3 50 0.0125 100 100 39.51±2.47 1.27 39.51±4.93

+I-Aug-BS Phrenic-HT ex_1 3 6 18 0.05 300 70 15.99±1.24 1.13 68.51±7.54

+I-Aug-BS Phrenic ex_1 3 6 50 0.05 300 210 44.95±2.01 1.11 64.21±6.33

NRM-BötC rostral IE-pons inh_7 0 1 100 0.002 300 100 63.41±3.22 1.58 190.23±7.92

NRM-BötC caudal IE-pons inh_7 0 1 100 0.002 300 100 63.37±3.02 1.58 190.12±7.75

NRM-BötC I-pons ex_13 0 1 100 0.002 300 100 63.25±3.00 1.58 189.74±8.31

(Continued)
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Table 4 | Continued

Source

population

Target

population

Synaptic

type

Conduction

times

No. of

terminals

Synaptic

strength

Source

pop. N

Target

pop. N

Divergence Mean

no. of

terminals

Convergence

Min Max

+E-Aug-Cough

(−)

E-Aug (+) inh_22 2 6 100 0.05 300 300 85.39±3.06 1.17 85.39±7.75

E-Aug-Cough

(−)

E-Aug-BS (+) inh_22 2 6 100 0.5 300 300 85.34±3.04 1.17 85.34±7.22

+E-Aug-Cough

(−)

I-Dec_2 inh_22 0 3 200 0.05 300 300 145.65±4.67 1.37 145.65±8.84

E-Aug-Cough

(−)

E-Dec-pre-ELM inh_4 2 6 100 0.1 300 300 85.22±3.02 1.17 85.22±7.02

+E-Aug-Cough

(−)

I-Aug-BS inh_4 0 3 200 0.025 300 300 145.65±4.67 1.37 145.65±8.84

+E-Aug-Cough

(−)

ILM inh_4 0 3 200 0.025 300 300 146.45±4.63 1.37 146.45±8.96

Lung PSRs Pump (+) ex_1 0 3 75 0.015 300 300 66.50±2.43 1.13 66.50±6.72

Lung PSRs Pump (−) ex_1 0 3 50 0.015 300 300 46.23±1.78 1.08 46.23±9.43

caudal IE-pons I-Driver ex_1 0 5 100 0.001 100 300 85.68±2.78 1.17 28.56±4.45

Pump (–) E-pons pre-ex_13 0 4 100 0.99 300 100 63.19±2.88 1.58 189.58±7.28

+Pump (–) I-Dec_2 inh_4 0 2 25 0.0035 300 300 24.04±0.88 1.04 24.04±5.11

Pump (–) I-Dec inh_4 0 2 25 0.0035 300 300 23.98±0.90 1.04 23.98±5.97

Pump (–) I-pons pre-ex_13 0 4 100 0.99 300 100 63.53±2.94 1.57 190.58±7.02

Pump (–) EI-pons pre-ex_13 2 4 100 0.99 300 100 63.55±2.95 1.57 190.64±7.44

Pump (–) Lung Def_1s inh_4 0 4 100 0.02 300 300 85.22±3.09 1.17 85.22±7.46

Pump (–) rostral IE-pons pre-ex_13 0 4 100 0.99 300 100 63.63±3.02 1.57 190.88±9.09

Pump (–) caudal IE-pons pre-ex_13 0 4 100 0.99 300 100 63.63±3.02 1.57 190.88±9.09

Pump (+) E-Dec-Phasic ex_1 0 2 100 0.01 300 300 85.47±2.95 1.17 85.47±8.14

Pump (+) VRC-IE ex_1 2 6 100 0.01 300 99 63.10±2.99 1.58 191.20±11.20

Pump (+) I-Aug ex_1 0 2 25 0.0 300 300 24.07±0.91 1.04 24.07±4.15

Pump (+) E-Dec-T ex_1 0 2 100 0.002 300 300 85.12±3.16 1.17 85.12±6.94

+Pump (+) I-Dec_2 ex_1 2 6 100 0.005 300 300 85.20±3.05 1.17 85.20±9.59

E-Dec-T Raphé 29 inh_4 0 3 100 0.001 300 100 63.59±3.05 1.57 190.76±7.20

E-Dec-T I-Aug-BS inh_4 2 6 100 0.03 300 300 84.99±3.14 1.18 84.99±7.54

E-Dec-T rostral IE-pons ex_13 2 4 100 0.001 300 100 63.26±3.11 1.58 189.77±11.78

E-Dec-T I-pons ex_13 2 4 100 0.0005 300 100 63.33±3.02 1.58 189.98±9.72

E-Dec-T I-pons inh_7 2 4 100 0.0005 300 100 63.20±3.13 1.58 189.60±7.79

E-Dec-T rostral IE-pons inh_4 2 4 100 0.0005 300 100 63.57±3.16 1.57 190.70±7.57

E-Dec-T caudal IE-pons ex_13 2 4 100 0.001 300 100 63.20±3.18 1.58 189.61±7.72

E-Dec-T caudal IE-pons inh_7 2 4 100 0.0005 300 100 63.40±3.17 1.58 190.20±9.74

E-Dec-T ELM inh_4 0 4 100 0.04 300 300 85.04±3.30 1.18 85.04±8.24

E-Dec-T I-Aug inh_4 2 6 100 0.0075 300 300 85.12±3.35 1.17 85.12±8.17

+E-Dec-T I-Dec_2 pre-ex_28 2 6 100 0.2 300 300 84.99±3.14 1.18 84.99±7.54
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Table 4 | Continued

Source

population

Target

population

Synaptic

type

Conduction

times

No. of

terminals

Synaptic

strength

Source

pop. N

Target

pop. N

Divergence Mean

no. of

terminals

Convergence

Min Max

rostral IE-pons EI-pons inh_4 2 4 100 0.03 100 100 63.79±3.24 1.57 63.79±4.98

rostral IE-pons VRC-IE ex_1 0 1 100 0.001 100 99 62.90±3.28 1.59 63.54±4.65

rostral IE-pons E-Dec-Phasic ex_1 0 5 100 0.02 100 300 85.06±2.76 1.18 28.35±4.15

EI-pons rostral IE-pons ex_1 2 4 100 0.002 100 100 63.47±3.20 1.58 63.47±4.78

EI-pons caudal IE-pons ex_1 2 4 100 0.002 100 100 63.36±3.47 1.58 63.36±4.41

EI-pons VRC-IE ex_1 0 4 50 0.0003 100 99 39.46±2.35 1.27 39.86±5.11

EI-pons E-Dec-T ex_1 0 4 100 0.01 100 300 85.16±3.33 1.17 28.39±5.10

E-Dec-pre-ELM ELM ex_19 2 6 250 0.0125 300 300 169.56±5.08 1.47 169.56±7.81

Def 2nd (−) E-Dec-Phasic inh_4 2 6 100 0.04 300 300 85.17±3.11 1.17 85.17±9.16

+E-Aug (+) E-Aug-BS (+) ex_19 2 6 100 0.02 300 300 85.16±2.97 1.17 85.16±7.43

Raphé 8 Raphé 31 inh_4 0 3 50 0.005 100 100 39.38±2.09 1.27 39.38±6.21

Raphé 8 Raphé 32 inh_4 0 3 50 0.005 100 100 39.51±2.47 1.27 39.51±4.93

Raphé 8 E-Aug-BS (+) inh_22 0 3 400 0.0 100 300 221.45±4.77 1.81 73.82±4.47

Raphé 29 Raphé 30 ex_1 0 3 50 0.01 100 100 39.51±2.47 1.27 39.51±4.93

Raphé 29 E-Dec-T ex_19 0 3 100 0.15 100 300 84.74±3.12 1.18 28.25±4.23

Raphé 29 E-Dec-Phasic ex_19 0 3 100 0.2 100 300 84.74±3.12 1.18 28.25±4.23

Raphé 30 Raphé 29 inh_4 0 3 50 0.01 100 100 39.51±2.47 1.27 39.51±4.93

Raphé 32 Raphé 31 inh_4 0 3 50 0.005 100 100 39.51±2.47 1.27 39.51±4.93

Raphé 32 E-Dec-Tonic inh_22 0 3 100 0.01 100 300 85.28±3.13 1.17 28.43±4.65

Raphé 32 E-Dec-Phasic inh_22 0 3 100 0.01 100 300 84.74±3.12 1.18 28.25±4.23

Raphé 32 E-Dec-pre-ELM inh_22 0 3 100 0.01 100 300 84.74±2.97 1.18 28.25±4.67

>+Cough 2nd

order (+)

I-Aug-BS ex_1 2 6 100 0.02 100 300 85.25±2.83 1.17 28.42±5.15

>Cough 2nd

order (+)

I-Aug ex_1 2 6 100 0.0045 100 300 85.25±2.83 1.17 28.42±5.15

>Cough 2nd

order (+)

I-Dec ex_1 2 6 100 0.0045 100 300 85.27±2.89 1.17 28.42±4.68

>+Cough 2nd

order (+)

I-Dec_2 ex_1 2 6 100 0.05 100 300 85.54±3.07 1.17 28.51±4.72

>Cough 2nd

order (+)

E-Aug-late ex_1 2 6 100 0.005 100 300 85.25±2.83 1.17 28.42±5.15

>Cough 2nd

order (+)

E-Aug-early ex_1 0 3 100 0.01 100 300 85.07±3.05 1.18 28.36±4.19

>Cough 2nd

order (+)

VRC-IE inh_4 0 3 100 0.2 100 99 63.13±3.05 1.58 63.77±5.20

>Cough 2nd

order (+)

caudal IE-pons ex_1 0 3 100 0.001 100 100 63.59±3.21 1.57 63.59±5.84

>Cough 2nd

order (+)

rostral IE-pons ex_1 0 3 100 0.001 100 100 63.59±3.21 1.57 63.59±5.84
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Table 4 | Continued

Source

population

Target

population

Synaptic

type

Conduction

times

No. of

terminals

Synaptic

strength

Source

pop. N

Target

pop. N

Divergence Mean

no. of

terminals

Convergence

Min Max

>Cough 2nd

order (+)

I-pons ex_1 0 3 100 0.001 100 100 63.59±3.21 1.57 63.59±5.84

>Cough 2nd

order (+)

E-pons ex_1 2 6 100 0.001 100 100 63.59±3.21 1.57 63.59±5.84

>Cough 2nd

order (+)

EI-pons ex_1 0 3 100 0.001 100 100 63.59±3.21 1.57 63.59±5.84

>Cough 2nd

order (+)

E-Dec-pre-ELM ex_19 2 6 100 0.004 100 300 85.14±3.06 1.17 28.38±3.97

>+Cough 2nd

order (+)

E-Aug (+) ex_1 2 6 100 0.05 100 300 85.25±2.83 1.17 28.42±5.15

>+Cough 2nd

order (+)

E-Aug-Cough (−) ex_1 2 6 100 0.04 100 300 85.25±2.83 1.17 28.42±5.15

>+Cough 2nd

order (+)

ILM ex_1 2 6 100 0.001 100 300 84.92±3.23 1.18 28.31±4.63

E-pons rostral IE-pons inh_4 2 4 100 0.0001 100 100 63.17±3.15 1.58 63.17±5.22

E-pons caudal IE-pons inh_4 2 4 100 0.0001 100 100 63.47±3.13 1.58 63.47±5.60

E-pons I-Dec inh_4 0 1 100 0.008 100 300 85.14±3.03 1.17 28.38±4.11

NRM-pons I-pons ex_1 0 4 100 0.015 100 100 63.26±3.28 1.58 63.26±4.40

NRM-pons I-pons inh_4 0 4 100 0.05 100 100 63.62±3.11 1.57 63.62±4.61

NRM-pons I-Driver ex_1 2 6 100 0.11 100 300 85.10±3.00 1.18 28.37±4.51

NRM-pons VRC-IE ex_1 0 1 100 0.01 100 99 63.02±2.53 1.59 63.66±4.67

NRM-pons I-Aug ex_1 0 1 100 0.01 100 300 85.21±2.94 1.17 28.40±4.81

NRM-pons E-Aug-early ex_1 0 4 100 0.025 100 300 85.82±3.10 1.17 28.61±4.20

NRM-pons E-Aug-late ex_1 0 4 50 0.003 100 300 45.82±1.89 1.09 15.27±3.67

NRM-pons E-Dec-Phasic ex_1 0 1 100 0.01 100 300 84.87±3.22 1.18 28.29±4.18

NRM-pons E-Dec-Tonic ex_1 0 1 100 0.1 100 300 85.35±3.04 1.17 28.45±4.06

NRM-pons NRM-BötC inh_4 0 1 100 0.001 100 300 85.11±2.96 1.17 28.37±5.07

E-Aug-BS (+) Lumbar ex_1 6 10 25 0.03 300 210 23.59±1.14 1.06 33.70±5.45

+E-Aug-BS (+) Lumbar-HT ex_1 3 6 10 0.05 300 70 9.34±0.75 1.07 40.03±3.18

I-pons rostral IE-pons ex_1 0 4 100 0.005 100 100 62.93±2.89 1.59 62.93±5.56

I-pons VRC-IE ex_1 0 5 100 0.005 100 99 63.61±3.41 1.57 64.25±4.84

I-pons I-Aug ex_1 0 4 50 0.005 100 300 46.17±1.67 1.08 15.39±3.39

I-pons caudal IE-pons ex_1 0 4 100 0.005 100 100 63.67±2.85 1.57 63.67±4.57

+I-Dec_2 E-Dec-Tonic inh_4 2 6 125 0.1 300 300 102.25±3.60 1.22 102.25±7.81

+I-Dec_2 E-Dec-pre-ELM inh_4 2 6 100 0.01 300 300 85.11±3.10 1.17 85.11±7.52

+I-Dec_2 E-Aug-BS (+) inh_4 2 6 50 0.00005 300 300 46.04±1.73 1.09 46.04±8.13

+I-Dec_2 ELM inh_4 2 6 100 0.02 300 300 85.61±3.37 1.17 85.61±7.12

+I-Dec_2 E-Aug (+) inh_4 2 6 100 0.02 300 300 85.19±3.09 1.17 85.19±8.08
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Table 4 | Continued

Source

population

Target

population

Synaptic

type

Conduction

times

No. of

terminals

Synaptic

strength

Source

pop. N

Target

pop. N

Divergence Mean

no. of

terminals

Convergence

Min Max

+Lung Def_1s Def 2nd (−) ex_1 0 3 35 0.03 300 300 33.04±1.38 1.06 33.04±6.68

+Lung DIS_1s ELM ex_1 0 3 100 0.09 300 300 84.97±2.93 1.18 84.97±7.40

+, Connection added to the network in Poliaček et al. (2011). >, Connection relaying a perturbation to the network model. Connections between individual neurons

were made according to a sequence of pseudorandom numbers calculated from a unique seed number for each source-to-target connection. Targets were chosen

with replacement. This table includes the means±SD of the number of neurons in each target population innervated by each source neuron in each population.

Corresponding values are also shown for source neurons that innervated each target neuron in each population.These data indicate the extent of divergence and con-

vergence, respectively. Most neurons in each source population made a single terminal connection with each target neuron. Mean No. ofTerminals, the mean number

of terminals from each source neuron innervating each target neuron. The efficacy of connections between populations of neurons was influenced by the change in

conductance associated with each action potential at a synapse (Synaptic Strength) and the number of terminals for each axon. Synaptic types were distinguished

by their equilibrium potentials and time constants. The time constant of some synapses was slightly longer than others because troughs in cross-correlograms from

which the particular synaptic connections were inferred tended to have longer durations. 11 types of synapses were used in the simulation (seeTable 3). If the value

of the presynaptic modulatory strength parameter (Synaptic Strength) was <1.0, the strength of the connection it modulated was reduced to the product of the

presynaptic Synaptic Strength parameter and target synapse conductance. If the presynaptic Synaptic Strength parameter was >1.0, the amount by which it was

greater than 1 was added to its target synapse’s conductance. Minimum and maximum conduction times are expressed in 0.5 ms simulation clock ticks for each

source-to-target axon population. No. of Terminals, number of terminals from source neuron.

activity of each motor neuron population together with lung vol-
ume, tracheal flow, alveolar pressure, and abdominal pressure for
baseline conditions (left) and a trial with four times the baseline
activation strength (right).

Outputs from four trials for each amplified condition were
compared with each other and with the baseline results. Figure 4
shows the means (±95% confidence limits) of selected biome-
chanical outputs measured during baseline cough (1×) and the
two conditions of increased activation gain (2×, 4×). Pairs of
symbols connected by a line indicate no significant difference. Suc-
cessively larger peak expiratory flow rates and abdominal pressures
were respectively associated with greater lung volumes during
preceding inspiratory phases of the evoked coughs, even though
abdominal drive did not change. This result established that differ-
ences in flow with the generated changes in inspiratory (operating)
volumes were the consequence of the modeled biomechanical
system.

Mean respiratory cycle frequencies measured during pre-cough
eupneic intervals for each condition were also evaluated. The respi-
ratory frequency increased with the highest (4×) inspiratory drive,
a change associated with changes in feedback from lung afferents
under the “closed loop” conditions evaluated.

In the second series of simulations, inspiratory drive was
altered only during the cough cycle by changing synaptic
strengths of Cough 2nd order neuron inputs to selected model
populations. The top panels in Figures 5A1–C1 show schemat-
ics of a subset of the model network and sites where synap-
tic strengths were changed relative to the baseline conditions
represented in and described for Figure 3A. Corresponding
panels in Figures 5A2–C2 show integrated traces of motor
neuron population activities and biomechanical model outputs
for the respective perturbations; arrows highlight significant

changes in the indicated metrics (further enumerated in
Figure 6).

First (Figure 5A), synaptic strengths from the Cough 2nd order
population to the I-Aug and I-Aug-BS populations were dou-
bled. The highlighted segment of the inset (Figure 5A1) shows
integrated traces for the I-Aug-BS, I-Dec_2, and E-Dec-Tonic pop-
ulations during a eupneic cycle and the subsequent evoked cough.
I-Aug-BS activity increased under this condition (asterisk).

Next (Figure 5B), cough inspiratory drive was decreased rel-
ative to baseline by deletion (synaptic strength= 0.0) of the
excitatory connections between the Cough 2nd order population
and both the I-Aug and I-Aug-BS populations. The excitation of
the I-Dec_2 population by 2nd order cough neurons remained,
partially suppressing the recurrent inhibition of the I-Dec_2 and
two I-Aug populations. The highlighted segment of the inset
(Figure 5B1) shows reduced I-Aug-BS activity during the evoked
cough under this condition (asterisk).

The third perturbation further reduced cough inspiratory drive
by also transiently blocking I-Dec_2 neuron inhibition of the E-
Dec-Tonic population during the cough cycle. The elimination
of this influence resulted in increased E-Dec-Tonic inhibition of
the I-Aug and I-Aug-BS populations during the cough (asterisk in
highlighted segment of Figure 5C1).

Figure 6 plots (from the top) the means of peak values (±95%
confidence limits) for lung volume, expiratory tracheal flow, alve-
olar pressure, abdominal drive, and abdominal pressure measured
under conditions of pre-cough eupnea (Eupnea), baseline cough
(Base), and the three conditions represented in Figure 5. The
differences in peak lung volumes during cough under the three
conditions (A–C) confirm functional roles for both the excitatory
and disinhibitory influences on inspiratory drive in the model.
Deletion of the excitatory component of cough inspiratory drive
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FIGURE 2 | Simulated eupneic respiratory cycles and an evoked cough
motor pattern (inspiratory, compressive, and expulsive phases
respectively labeled and highlighted by colored columns). The top 29
traces show membrane potentials and discharge patterns of individual
respiratory neurons from a subset of the simulated populations as indicated

by the labels on the left, arranged by region (PRG, raphé, VRC) or type (Motor
neuron populations). The “integrated” phrenic trace represents the threshold
crossing activity of the “PHR” population summed over 60 ms windows and
indicates the inspiratory and expiratory phases of the respiratory cycle.
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O’Connor et al. Neuromechanical model for respiratory behaviors

FIGURE 2 | Continued
Similarly, integrated traces from three lung afferent populations are plotted
below the motor neuron records. (PSR, pulmonary stretch receptors) The
13 traces below those from the afferents show, in order from top to
bottom: 1: lung volume (%VC, relative to RV); 2: tracheal flow (%VC/s,
expiration positive (up)); 3: alveolar pressure (cmH2O); 4–6: diaphragm
activation, abdominal muscle activation, and net laryngeal muscle
activation (dimensionless ratios to maximums); 7: diaphragm volume (L);
8: abdominal volume (L); 9: derivative of diaphragm volume (L/s); 10:

derivative of abdominal volume (L/s); 11–13: transdiaphragmatic,
abdominal, and transpulmonary pressures (cmH2O). The bottom trace
indicates the duration of a simulated cough stimulus. A fiber population
composed of 100 fibers, each with a firing probability of 0.05 at each
simulation time step and 100 type Ex_1 excitatory synaptic terminals
(synaptic strength 0.03), represented cough receptor excitation. These
fibers excited the Cough 2nd order neuron population (Figure 1); see
Table 2 for properties of this population andTable 4 for details of
connections with other populations. See text for further discussion.

25.8 s 25.8 s

A B

71.8

% VC
8.4

100

-21
% VC/s

100

0

% max.

39.2

0.0 cmH 02
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-15.2

cmH 02
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-6.8

cmH 02

19.2
cmH 02
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Phr

4X
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HT
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Tracheal flow

Lung vol.
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Transpul. pr.
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Phr-HT

ILM

ELM

Lum

Lum-HT

hguCohguoC

FIGURE 3 | Integrated traces of motor neuron population activities
(top 6 traces, population labels on left) and biomechanical model
outputs (labels on left; see legends of Figures 1 and 2 for
definitions) during eupneic and “baseline” cough motor patterns

before (A) and after (B) increasing the gain of diaphragm activation
by a factor of 4 (see center schematic inset); otherwise, cough
stimulus parameters as in Figure 2. Scales on right are for (A,B). See
text for further details.

(B) caused peak expiratory tracheal flow to decrease relative to the
previous baseline and enhanced coughs (Base, A). However, peak
abdominal drive and abdominal pressure did not change. A fur-
ther reduction in peak lung volume to levels below eupneic control
due to transiently increased E-Dec-Tonic inhibition of inspiratory
drive (C) during cough resulted in no further change in expira-
tory flow, although peak abdominal pressure was reduced relative
to baseline cough values.

A third series of simulations was done with the isolated bio-
mechanical model. Figure 7 plots the peak expiratory flow in four
coughs simulated at different operating volumes but equal peak
abdominal pressure of 26.5 cmH2O. In each cough, the diaphragm
and abdominal activations were first controlled to produce the
desired operating volume, then the laryngeal muscles were con-
trolled to close the airway, then the abdominal activation was
controlled to produce an abdominal pressure of 26.5 cmH2O, and
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FIGURE 4 | Means of peak values (±95% confidence limits) of (from
top) lung volume, expiratory tracheal flow, alveolar pressure,
abdominal pressure, and abdominal drive together with respiratory
cycle frequencies during pre-cough eupneic intervals (bottom)
measured during model simulations of baseline cough (1×) and two
conditions of increased phrenic-to-diaphragm activation gain (2×, 4×).
Pairs of symbols connected by a line indicate no significant difference.

finally the laryngeal muscles were controlled to open the airway.
Note that no statistics were done on these runs because the biome-
chanical model is deterministic. As in the first series of simulations,
successively larger peak expiratory flow rates were associated with

greater lung volumes during preceding inspiratory phases of the
simulated cough, but unlike the first series, the peak abdominal
pressure was the same in each cough. This result established that
differences in flow with the generated changes in inspiratory (oper-
ating) volumes were not entirely due to the differences in pressure
seen in the first series.

Comparisons with behaviors of antecedent models
Table 5 shows means of inspiratory and expiratory phase durations
during eupnea and cough and peak firing rates of motor neuron
populations common to the present model and those described in
Rybak et al. (2008) and Poliaček et al. (2011). The current model
has lower firing rates, similar to those observed in vivo (Iscoe, 1998;
Mantilla and Sieck, 2011), and longer respiratory phase durations;
inspiratory phase durations are also more variable (see coefficients
of variation, Table 5).

These antecedent variants of the present neuronal network
model were designed without a linked biomechanical system. The
new joint neuromechanical model aids tuning of phase-timing
relationships and the scaling of model motor outputs. To illus-
trate this model feature, we linked the earlier network models to
the new biomechanical model. We note that the phrenic and lum-
bar motor neuron activities from the Rybak and Poliaček models
are not strictly comparable because the current model has a second
population of each type of motor neuron to model recruitment
with increased drive. Lung stretch receptor inputs to the previ-
ous network models remained filtered versions of the phrenic
motor output (i.e., there was no feedback from the mechanical
models to the network). Figure 8 shows records of lung volume,
alveolar pressure, tracheal flow, and laryngeal muscle activation
from the current neuromechanical model (Figure 8A) and for the
two earlier models when connected to the biomechanical system
(Figures 8B,C). The scaling and activation of the laryngeal muscles
caused airway closure prior to each eupneic expiration when using
the older models’ outputs (lma=−1, flow flattens at 0). During
cough in the previous models, the next inspiration started before
the previous expiration was complete, resulting in a progressive
increase in lung volume from cough to cough.

Influence of some added network connections
As noted in Sections “Linking the Neural Network and Biome-
chanical Models” and “Additional Enhancements to the Current
Network Model,” the current network model includes lung affer-
ents responsive to lung deflation and presynaptic inhibition by
E-Dec-Tonic neurons of excitatory inputs from the I-Aug popula-
tion to I-Dec_2 neurons. The latter feature was added to prolong
I-Dec_2 neuron activity when E-Dec-Tonic neuron I-phase activ-
ity is reduced. Removal of these three speculative model elements
resulted in shorter inspiratory phase durations (Table 5, “No
speculative” and “Current” columns).

DISCUSSION
The new biomechanical model system detailed in the Results incor-
porates several features developed using measures from human
subjects. These include a model of the abdominal volume that
captures the interaction of the diaphragm, rib cage, and abdomi-
nal wall based on Grassino et al. (1978), an abdominal wall model
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FIGURE 5 | Network perturbations that selectively alter cough
inspiratory drive change lung volume and also influence tracheal flow
and abdominal pressure during the subsequent expiratory phase of
cough. Each panel (A1–C1) shows a schematic of a subset of the model
network and changes in synaptic strengths during simulated cough

stimulation relative to the baseline conditions represented in and described
for Figure 3A. Corresponding panels (A2–C2) show integrated traces of motor
neuron population activities and biomechanical model outputs (left labels) for
the respective perturbations of inspiratory drive. Arrows mark changes. See
text for further details.

based on measurements of the curvature of the abdomen by Song
et al. (2006) taken during insufflation for laparoscopic surgery,
and a model of the larynx using results from Tully et al. (1990,
1991). The mechanical model was linked to an enhanced version
of a previously described computational network model (Rybak

et al., 2008; Poliaček et al., 2011) with IF neuron populations, con-
nections, and other properties measured or inferred from in vivo
and in vitro studies of mammalian brainstem circuits for breath-
ing and cough (Shannon et al., 2000; Segers et al., 2008; Lindsey
et al., 2012).
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The joint neuromechanical system is a prototype for study
of the neural control of breathing and airway defensive behav-
iors. To our knowledge, computational neural network models
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FIGURE 7 | Peak expiratory flow in four coughs simulated with the
isolated biomechanical model at different operating volumes but
equal peak abdominal pressure of 26.5 cmH2O. There are no error bars
because these are runs of the deterministic model.

of cough generation have been evaluated previously using mea-
sures of motor neuron burst sequences, phase durations, and
the time varying firing rates of neuron populations that only
indirectly reflect possible muscle activation patterns and their
attendant biomechanical consequences. The new model gener-
ated eupneic breathing and cough motor patterns together with
corresponding alterations in lung volume, tracheal air flow, and
other relevant metrics of cough mechanics. The present results
also show the utility of the model as an aid for tuning the motor
pattern and as a tool to evaluate the efficacy of phase-timing
relationships.

A specific goal of this project was to assess model output dur-
ing cough under conditions of altered inspiratory drive. We were
motivated in part by the recent observation that lung operating
volume at the onset of the compressive phase of cough influ-
ences subsequent air flow velocities during the expulsive phase
(Smith et al., 2012). Inspiratory drive was altered by two dis-
tinct approaches: (i) increased gain of phrenic motor neuron
activation of the diaphragm, and (ii) sequential modulation or
deletion of synaptic inputs to inspiratory premotor populations.
Both perturbations altered cough inspiratory volume. We also
found changes in expulsive phase air flow associated with cor-
responding changes in peak abdominal pressure attributable to
cough mechanics, results that could not have been achieved by
measures of the motor pattern output alone. In the first proto-
col, higher end inspiratory volumes resulted in greater tracheal
air flow during the subsequent expulsive phase under the same
abdominal expiratory motor drives. Under the second proto-
col, the difference in operating volumes between the enhanced
drive and reduced excitatory drive states was associated with cor-
responding reductions in expiratory flow and peak abdominal
pressure.
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Table 5 | Comparison with previous models.

Variable Unit Rybak Poliaček No speculative Current

Mean p CV p Mean p CV p Mean p CV p Mean CV

EUPNEA

ELM spk/s 170 0.00* 0.10 0.00* 231 0.00* 0.08 0.00* 19 1.00 0.23 1.00 19 0.23

ILM spk/s 83 0.00* 0.06 0.00* 49 0.00* 0.07 0.00* 26 0.62 0.29 1.00 19 0.47

LUMBAR spk/s 24 0.00* 0.05 0.07 135 0.00* 0.08 1.00 10 1.00 0.08 1.00 11 0.08

PHRENIC spk/s 109 0.00* 0.10 1.00 129 0.00* 0.11 1.00 62 0.33 0.08 1.00 56 0.13

Ti s 0.663 0.00* 0.04 0.00* 1.506 0.00* 0.07 1.00 1.744 0.03* 0.07 1.00 1.939 0.10

Te s 1.053 0.00* 0.12 1.00 1.396 0.00* 0.10 1.00 2.905 1.00 0.12 1.00 2.760 0.11

COUGH

ELM spk/s 302 0.00* 0.33 0.04* 521 0.00* 0.22 0.86 55 1.00 0.07 1.00 55 0.09

ILM spk/s 238 0.00* 0.11 1.00 154 0.00* 0.14 1.00 37 1.00 0.10 1.00 36 0.10

LUMBAR spk/s 235 0.00* 0.07 1.00 536 0.00* 0.10 1.00 76 1.00 0.11 1.00 76 0.06

PHRENIC spk/s 348 0.00* 0.14 0.16 705 0.00* 0.16 0.07 98 1.00 0.04 1.00 97 0.05

Ti s 0.494 0.00* 0.20 1.00 0.503 0.00* 0.23 1.00 2.471 1.00 0.09 1.00 2.302 0.12

Te s 0.564 0.00* 0.24 1.00 0.476 0.00* 0.19 1.00 3.490 1.00 0.19 1.00 3.242 0.15

The behaviors of the networks in Rybak et al. (2008) and Poliaček et al. (2011) and a model without recently added speculative connections are compared with the

model in this paper. The mean of the peak (in each respiratory cycle) firing rates for four motor populations and the mean inspiratory (Ti) and expiratory (Te) phase

durations are shown. Each mean for each previous model is followed by the p-value from a two-sided t-test with non-pooled SD for the difference in means between

the previous model and the current model. The cycle counts for Rybak, Poliaček, No speculative, and Current, respectively, were 67, 40, 24, and 24 for eupnea and

56, 60, 10, and 10 for cough. The table also shows the coefficient of variation (CV) for each firing rate or phase duration for assessment of differences in variability

between the models. Each CV is followed by the p-value from an F-test for the ratio of variances of the observations divided by their mean between the previous

model and the current model. p-Values have been adjusted for multiple testing (Holm, 1979); significant values (at the 0.05 level) are marked with an asterisk.

DISCREPANCIES WITH EXPERIMENTAL RESULTS AND MODEL
LIMITATIONS
The discrepancy between the present results and those of Smith
et al. (2012) is noteworthy. The latter study found changes in expul-
sive flow rates during voluntary coughs from different operating
volumes in the absence of significant alterations in thoracic or
abdominal pressures, whereas we found changes in flow associated
with changes in abdominal pressure, despite no change in abdom-
inal drive. The change in expiratory pressure in the model is due
to the action of the intercostal and accessory muscles; the expira-
tory pressure increases because the pressure from those muscles
in the model increases with rib cage volume at constant activa-
tion. Our model calculates the expiratory pressure generated by
the intercostal and accessory muscles at TLC and full abdomi-
nal activation necessary to produce maximal expiratory pressure,
and at RV to complete the pressure balance on the rib cage (a
much smaller number; see “Additional Enhancements to the Cur-
rent Network Model”). The model assumes that the expiratory
pressure generated by the intercostal and accessory muscles scales
linearly with rib cage volume between RV and TLC, and lin-
early with abdominal activation, leading to higher pressures at
higher rib cage volumes with equal activation. The experimentally
observed increase in maximal expiratory pressure with rib cage
volume could be due to increased activation of the intercostals or
improved mechanical advantage at larger volumes or a combina-
tion of the two. If improved mechanical advantage is a factor, the
brainstem would have to reduce drive at higher volumes during
cough to avoid higher pressures, suggesting that it may be sens-
ing the generated pressures and adjusting drive accordingly (see

e.g., discussion in “Tonic Expiratory Neurons: Model Results and
Predictions”). A refined configuration to accommodate separate
intercostal muscles, intercostal motor neuron populations, and
muscle afferents (Shannon, 1986) and their control of the chest
wall would be useful in this regard.

When we ran the biomechanical model in isolation with
reduced abdominal drive at higher volumes in order to main-
tain an equal peak pressure (see Figure 7), we saw peak flow rate
changes comparable in magnitude to those seen by Smith et al.
(2012, Figure 3B), due to the increasing recoil pressure of the lung
at higher volumes. The peak flow rates were comparable despite
the fact that the peak abdominal pressure in our simulation was
less than half that observed by Smith et al. This lower resistance is
likely due to the fact that we did not model airway collapse, which
is known to limit peak flow rates (Knudson et al., 1974).

We found that increased flow during cough at higher lung vol-
ume is primarily due to increased lung recoil pressure. The lung
recoil pressure certainly increases with lung volume, but the accu-
racy of the resulting flow in the model may be affected by certain
known limitations of the model: (i) airway collapse during cough
is not modeled, resulting in an underestimate of airway resistance;
(ii) the lung compliance is assumed to be constant in the model,
whereas it is thought to vary with lung volume in vivo; (iii) the
model does not take into account hysteresis in the lung flow-
volume curve; (iv) volume changes due to blood shift out of the
trunk during cough are not modeled; and (v) volume changes
due to gas compression are not modeled (see Smith et al., 2012
for data on volume changes due to blood shift and gas compres-
sion). Nevertheless, our model suggests the hypothesis that the
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FIGURE 8 | Outputs of the mechanical model when linked to the current
network model (A) and the networks in (B) (Rybak et al., 2008) and (C)
(Poliaček et al., 2011). The earlier networks were designed without a
mechanical model, but were connected to the current mechanical model to
generate these plots. The plots are lung volume, alveolar pressure, tracheal

flow, and laryngeal muscle activation (lma). The value of lma is 1 for a
maximally open glottis, 0 for the resting diameter, and −1 for a closed glottis.
The first few cycles are eupneic cycles, and the rest are coughs. The time
scale is different for the current model because it was designed with slower
cycles to match human respiration.
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increased flow during cough is primarily due to increased lung
recoil pressure.

TONIC EXPIRATORY NEURONS: MODEL RESULTS AND PREDICTIONS
The model incorporated multiple target sites for cough drive
modulation, a feature of the network architecture based on corre-
lational linkage maps of functional connectivity and associated
neuronal responses to stimuli that either enhance or suppress
inspiratory drive in vivo (Lindsey et al., 1998; Shannon et al., 2000;
Poliaček et al., 2011; Ott et al., 2012). Deletion of excitatory mech-
anisms for cough inspiratory drive resulted in reductions in peak
lung volume and a subsequently diminished peak air flow rela-
tive to baseline during the expulsive phase (Figure 6B). Although
removal of the disinhibitory component of the drive enhance-
ment mechanism mediated by the E-Dec-Tonic population did
not further reduce expulsive phase air flow velocity, it did lead to
both an additional decrease in inspiratory phase lung operating
volume and a reduced expulsive phase peak abdominal pressure
relative to baseline values, even though peak abdominal drive did
not change.

We have previously proposed the hypothesis that tonic expira-
tory neurons provide a reservoir for inspiratory drive modulation.
Suppression of their inspiratory phase activity during central
chemoreceptor-mediated drive and spike train cross-correlation
analyses both suggest that VRC tonic E neuron inhibition of pre-
motor inspiratory neurons is reduced in high drive states, at least
in part, by increased I-Dec neuron inhibition (Ott et al., 2012).

The present model included a network “module” previously
introduced (Poliaček et al., 2011) for baroreceptor modulation of
breathing. That circuit, inferred from spike train correlational link-
ages and neuron responses to baroreceptor stimulation (Lindsey
et al., 1998), operated via excitatory and disinhibitory raphé neu-
ron influences acting upon VRC E-Dec-Phasic and E-Dec-Tonic
neuron populations. Simulations of baroreceptor activation using

prior models (Poliaček et al., 2011; Lindsey et al., 2012) with cir-
cuits inferred from in vivo observations (see references in Lindsey
et al., 1998; Poliaček et al., 2011; Ott et al., 2012) generated pro-
longation of expiration and reduced inspiratory drive during both
eupneic respiratory cycles and evoked cough.

Collectively, these data support the hypothesis that inhibition
of the E-Dec-Tonic population in the cough network amplifies
inspiratory drive via disinhibition. Experimental data consistent
with this hypothesis is presented in a companion paper (Segers
et al., 2012). Modulation of tonic expiratory neuron activity could
also operate in a push-pull mechanism in which cough drive is
balanced against the potentially suppressive influences of blood
pressure changes caused by cough mechanics.

FUTURE DIRECTIONS
The present model provides a framework for integrating respi-
ratory network model development with respiratory mechanics
and will guide and facilitate scaling and timing of motor neuron
activity patterns and functionally antecedent connectivity for the
generation of breathing, cough, and swallow. The simulations of
cough and breathing suggest that an important area of focus for
future modeling efforts will be reconciliation of known differen-
tial effects of pulmonary volume-related feedback on breathing
and airway defensive behaviors such as coughing and the expira-
tory reflex. Specific components of the model that are proposed to
have the greatest effect on its potential for prediction are the gain
of pulmonary volume-related feedback and the interaction of this
feedback with cough-related sensory information. Future models
should also guide experiments targeting the control of behavior
that must be tightly coordinated with breathing, such as sniffing,
swallowing, and vocalization.
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The local control theory of excitation-contraction (EC) coupling asserts that regulation of
calcium (Ca2+) release occurs at the nanodomain level, where openings of single L-type
Ca2+ channels (LCCs) trigger openings of small clusters of ryanodine receptors (RyRs)
co-localized within the dyad. A consequence of local control is that the whole-cell Ca2+

transient is a smooth continuous function of influx of Ca2+ through LCCs. While this so-
called graded release property has been known for some time, its functional importance
to the integrated behavior of the cardiac ventricular myocyte has not been fully appre-
ciated. We previously formulated a biophysically based model, in which LCCs and RyRs
interact via a coarse-grained representation of the dyadic space. The model captures key
features of local control using a low-dimensional system of ordinary differential equations.
Voltage-dependent gain and graded Ca2+ release are emergent properties of this model
by virtue of the fact that model formulation is closely based on the sub-cellular basis of
local control. In this current work, we have incorporated this graded release model into a
prior model of guinea pig ventricular myocyte electrophysiology, metabolism, and isomet-
ric force production. The resulting integrative model predicts the experimentally observed
causal relationship between action potential (AP) shape and timing of Ca2+ and force tran-
sients, a relationship that is not explained by models lacking the graded release property.
Model results suggest that even relatively subtle changes in AP morphology that may
result, for example, from remodeling of membrane transporter expression in disease or
spatial variation in cell properties, may have major impact on the temporal waveform of
Ca2+ transients, thus influencing tissue level electromechanical function.

Keywords: calcium cycling, calcium-induced calcium-release, cardiac myocyte, computational model, excitation-
contraction coupling, mitochondrial energetics

INTRODUCTION
Since publication of the first computational model of the cardiac
myocyte action potential (AP) in 1960 (Noble, 1960), the range of
biological processes described in models of the cardiac myocyte
has grown continuously. While the integrative nature of today’s
most commonly used models differ, the sub-cellular processes for
which there are quantitative, experimentally based models include:
(a) voltage-gated ion channels and currents; (b) intracellular cal-
cium (Ca2+) dynamics and Ca2+-induced Ca2+-release (CICR);
(c) electrogenic and ATP-dependent membrane transporters; (d)
regulation of intracellular Ca2+, sodium (Na+), potassium (K+),
and hydrogen ion (H+) concentrations; (e) mitochondrial ATP
production and its regulation; (f) coupling of ATP production to
energy requiring membrane transporters and myofilaments; and
(g) ligand gated membrane receptors and intracellular signaling
pathways. However few models combine electrophysiology with
contraction mechanics, mitochondrial energetics, or intracellular
signaling due to the computational difficulty of combining dis-
parate time and/or spatial scales. While the incorporation of more
cellular component models increases the descriptive power of the
combined model, the complexity of whole-cell model behavior

and computational cost increase almost exponentially with the
number of constitutive mechanisms represented.

The close interplay between modeling and experiments has
enabled a remarkably deep understanding of the function of
cardiac myocytes. In some cases, myocyte models not only recon-
struct the experimental data on which they are based, they predict
new emergent behaviors that have been validated subsequently by
experiments. As a result, models now play a central role in under-
standing the relationships between molecular function and the
integrated behavior of the cardiac myocyte in health and disease.

The most fundamental property of cardiac myocytes is that
they are electrically excitable cells (they generate APs). The rapid
increase in membrane depolarization during the early phase of
the AP increases the open probability of sarcolemmal L-Type
Ca2+ channels (LCCs). LCCs are preferentially located in the
t-tubules (see Figure 1A), which are invaginations of the sar-
colemma extending deep into the cell. Further, LCCs within the
t-tubules are preferentially localized in structures known as dyads.
Dyads are regions where t-tubule membrane is in close opposition
to the sarcoplasmic reticulum (SR) membrane. The SR is a luminal
organelle located throughout the interior of the cell. It is involved
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FIGURE 1 | Overview of guinea pig coupled model. (A) Schematic illustration of the model structure. (B) LCC (top) and RyR (bottom) Markov model
structures. (C) The 40-state LCC:RyR model representing each possible pairing of LCC and RyR states.

in uptake, sequestration, and release of Ca2+ in a process known as
intracellular Ca2+ cycling. The junctional SR (JSR) is the portion
of the SR most closely approximating the t-tubules. Ryanodine

receptors (RyRs) are channels located in the JSR membrane in
close opposition to LCCs in the dyad. During the initial phase
of the AP, sarcolemmal membrane depolarization increases LCC
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open probability. The resulting flux of Ca2+ into the dyadic space
(trigger flux) leads to Ca2+ binding to the RyRs. This increases RyR
open probability, and when open, the resulting Ca2+ flux through
RyRs (release flux) is directed into the dyadic space. There are
thousands of dyads within the cardiac myocyte, and the net flux of
Ca2+ from dyads into the cytosol triggers muscle contraction in
a process known as excitation-contraction coupling (ECC). The
ratio of release to trigger flux is typically large, and is referred to
as ECC gain.

Graded release refers to the phenomenon, originally observed
by Fabiato (1985), whereby Ca2+ release from JSR is a graded,
smooth, continuous function of the amount of trigger Ca2+ enter-
ing the cell via LCCs. The majority of cardiac myocyte models
lump all dyadic spaces together into a common pool known as the
subspace, and net trigger flux through LCCs and net release flux
through RyRs is directed into this common pool. In a landmark
1992 paper (Stern, 1992), Stern showed that the strong positive
feedback effect on RyR open probability due to the fact that release
flux is directed into the same pool of Ca2+ that serves as the
trigger for RyRs (i.e., the common pool) results in all-or-none
rather than graded release. More specifically, he showed that com-
mon pool models cannot reproduce both high gain and graded
release. Despite this fact, early common pool models were able
to reproduce a broad range of cardiac myocyte behaviors. How-
ever, Greenstein and Winslow (2002) showed that incorporation
of new experimental data, demonstrating that Ca2+-dependent
inactivation (CDI) of LCCs is stronger than voltage-dependent
inactivation (VDI), into common pool models de-stabilized repo-
larization of the AP due to abnormal Ca2+ handling (here, de-
stabilization means that at normal physiological pacing rates, APs
could exhibit an oscillatory plateau phase, and large, irregular vari-
ation in AP duration, APD). Thus, common pool models not only
fail to capture the graded release property, they cannot capture one
of the most fundamental properties of normal cardiac myocytes
at physiological pacing rates – stable APs.

Stern (1992) showed that graded release is achieved when it is
assumed that LCCs can only trigger Ca2+ release from their adja-
cent RyRs in the dyad. Under this assumption, graded release arises
as the result of statistical recruitment of release clusters, a process
known as local control of Ca2+ release. Guided by this insight,
Greenstein and Winslow (2002) showed that when local control is
incorporated into ventricular myocyte models by simulating the
stochastic gating of LCCs and RyRs in each dyad, AP properties
are stabilized. However, one drawback of models based on systems
of stochastic ordinary differential equations is that solution of
these equations is computationally demanding. Hinch et al. (2004)
resolved this problem by using the fact that the time rate of change
of dyadic Ca2+ concentration is so fast relative to the time evolu-
tion of any other biological process in the models that it can be
assumed to immediately reach its steady-state value. This simple,
reasonable assumption enabled the graded release property to be
modeled using a low-dimensional system of ordinary differential
equations in which LCCs and RyRs behave as a strongly coupled
system. Incorporation of this “coupled LCC-RyR model” into car-
diac ventricular myocyte models enabled these models to achieve
graded release with high gain and stable APs (Greenstein et al.,
2006) in a more computationally efficient manner. The advantage

of such models, as compared to models with phenomenological
formulations of the release mechanism, is that they can be used to
study the functional consequences of altered molecular function
on ECC gain since this property emerges as a result of capturing
fundamental biological detail. This is not true of phenomenologi-
cal models formulated using ECC gain functions that are explicitly
built into the models.

In 2003, Cortassa et al. (2003) formulated a computational
model of cardiac mitochondria including descriptions of the tri-
carboxylic acid (TCA) cycle and its regulation by Ca2+, oxida-
tive phosphorylation, the F1-F0 ATPase, the adenine nucleotide
translocator, the Ca2+ uniporter, the Na+-Ca2+ exchanger, and
mitochondrial Ca2+ dynamics. In 2006, this model was integrated
into a version of the Jafri–Rice–Winslow model of the guinea pig
ventricular myocyte (Jafri et al., 1998) that had been extended to
include a description of isometric force generation (Rice et al.,
2000). This integrative ECC/mitochondrial energetics (ECME)
model (Cortassa et al., 2006) also described coupling between
mitochondrial ATP production and energy requiring membrane
transporters, as well as control of mitochondrial energetics by
cytosolic Ca2+. This model was able to reconstruct steady-state
relationships between force generation and oxygen consumption
at different stimulus frequencies, as well as rapid temporal changes
in mitochondrial NADH and Ca2+ in response to abrupt changes
in workload. Nonetheless, this model is a common pool model
exhibiting non-physiological all-or-none Ca2+ release. Incorpo-
rating the graded release property into this model is important
because mitochondria are bounded at each end by the JSR Ca2+

release sites, a close association that is supported by the observation
that there are electron dense structures linking the mitochondrial
outer membrane to t-tubules (Hayashi et al., 2009). This possible
colocalization of mitochondria and the Ca2+ release sites implies
that mitochondria may sense the local dyadic Ca2+ signal rather
than the bulk cytosolic Ca2+ signal exclusively. In addition, mito-
chondria are “buffers” of Ca2+ by virtue of the presence of the
Ca2+ uniporter in the inner mitochondrial membrane. Therefore,
mitochondria may not only sense and be regulated by the large,
fast, local dyadic Ca2+ signal, they may also act to buffer this signal,
thereby influencing ECC (Maack et al., 2006).

As a first step toward investigating these important questions,
we present an extension to the ECME model incorporating the
coupled LCC-RyR formulation of graded release and descrip-
tion of the local Ca2+ signal. We demonstrate that this model of
the guinea pig ventricular myocyte is able to reconstruct a broad
range of experimental data. The model predicts that interactions
between voltage-dependent properties of ECC gain and AP shape
during the plateau phase have an important role in the timing
of the Ca2+ transient and thus force generation. This predic-
tion, which emerges from the underlying graded release model, is
validated by experimental data. Further, we show that factors influ-
encing AP plateau shape such as magnitude of the fast transient
outward K+ current (in species other than guinea pig) can signif-
icantly affect timing of Ca2+ release. This model prediction is also
validated by experimental data. These behaviors are specific to the
graded release model, and cannot be revealed when using common
pool models with all-or-none release. Finally, we show preliminary
results indicating that the model predicts experimentally measured
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effects of mitochondrial Ca2+ uniporter block on amplitude of the
cytosolic and mitochondrial Ca2+ transients, demonstrating the
important role of beat-to-beat Ca2+ buffering by mitochondria.

MATERIALS AND METHODS
THE COUPLED LCC-RyR Ca2+ RELEASE UNIT
We have incorporated a coupled LCC-RyR model of CICR into
the ECME guinea pig myocyte model of Cortassa et al. (2006;
Figure 1A). The coupled LCC-RyR model of the Ca2+ release unit
(CaRU) is based on that presented previously for canine myocytes
by Greenstein et al. (2006; see Figures 1B,C). The CaRU is rep-
resented by a single LCC in the t-tubule membrane, a single RyR
located in the closely opposed JSR membrane, and a dyadic vol-
ume in the space between them, which functions as a separate
Ca2+ compartment (Figure 1A). The rate of Ca2+ diffusion from
the dyadic space to the cytosol is sufficiently rapid allowing for the
assumption that subspace Ca2+ levels equilibrate instantaneously
and can therefore be expressed algebraically in terms of the fluxes
through the LCC and RyR. Another simplification arises from the
assumption that refilling of the JSR occurs quickly enough that the

Ca2+ levels in the JSR can be assumed to be approximately equal to
network SR (NSR) Ca2+ levels. In this minimal model, the single
model RyR represents the estimated number of release channels
per LCC measured in guinea pig (Bers and Stiffel, 1993), and thus
corresponds to a cluster of five simultaneously gating RyRs. There-
fore, unitary flux is increased to five times that of a single-channel.
The CaRU model is made up of 40 states (Figure 1C), which rep-
resent all possible pairings of the 10 state LCC model and the
four state RyR model. Further details on the coupled LCC-RyR
formulation may be found in Greenstein et al. (2006).

Figure 2 demonstrates kinetic and steady-state properties of the
LCC model. Parameters of the LCC model were constrained using
voltage-clamp data obtained from isolated guinea pig ventricu-
lar myocytes measured at 34–37˚C. Figure 2A shows the L-type
Ca2+ current peak I –V relationship. I Ca,L is non-zero for test
potentials between approximately −40 and +60 mV with a max-
imal peak of −32 µA/µF at +10 mV. The membrane potential at
which the I–V curve peaks is in good agreement with data from
four different guinea pig studies (Rose et al., 1992; Allen, 1996;
Grantham and Cannell, 1996; Linz and Meyer, 1998). Peak current
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FIGURE 2 | Validation of the L-type Ca2+ current. (A) Current-voltage
relation for the model (blue) compared with experimental data from Rose
et al. (1992; green), Linz and Meyer (1998; red), Grantham and Cannell
(1996; teal), and Allen (1996; purple). Recordings from Rose et al. (1992),
Linz and Meyer (1998), and Allen (1996) were adjusted to 37˚C using the
Q10 value from Cavalié et al. (1985). (B) Steady-state availability in the
presence of CDI and VDI (black) and with VDI only (blue) from the model
(lines) is compared to experimental data from Linz and Meyer (1998;

squares) and Hadley and Lederer (1991; triangles). (C) Model traces of ICa,L

vs. time for 400 ms test pulses from a pre-clamp of −40 mV. (D)
Experimental ICa,L traces from Linz and Meyer (1998), also from a
pre-clamp of −40 mV. For the top set of traces in (C,D), the square
represents a test potential of −10 mV and the triangle a test potential of
0 mV. For the bottom set, test potentials are 10, 30, and 50 mV for the
circle, diamond, and triangle, respectively. (D) Was reproduced with
copyright permission of John Wiley and Sons.
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is−32 µA/µF at+10 mV, at the high end of measured values. For
comparison, experiments show −21 µA/µF at 37˚C (Grantham
and Cannell, 1996), −25.68 µA/µF temperature-adjusted from
34 (Allen, 1996) to 37˚C, and −24 µA/µF temperature-adjusted
from 22 (Rose et al., 1992; Allen, 1996; Grantham and Cannell,
1996; Linz and Meyer, 1998) to 37˚C, where adjustments are made
using a Q10 value of 2.96 from Cavalié et al. (1985) Steady-state
CDI (Figure 2B), was constrained using data from double-pulse
voltage-clamp protocols (Hadley and Lederer, 1991; Linz and
Meyer, 1998), with CDI being greater than VDI at all potentials.
VDI properties were constrained using data from Linz and Meyer
(1998), who measured a non-specific current through LCCs in
a Ca2+-free solution, and from Hadley and Lederer (1991), who
determined VDI from measurements of LCC gating current charge
immobilization. Rate of recovery from VDI was constrained using
double-pulse voltage-clamp data from isolated rabbit ventricu-
lar myocytes (Mahajan et al., 2008). Figure 2C shows the time
course of I Ca,L at various test potentials. The current peaks 3 ms
after stimulus before decaying over approximately 100 ms to a
value near zero. The time course of I Ca,L recordings, including
time to peak I Ca,L, are in good agreement with data from Linz
and Meyer (1998; Figure 2D). Different peak magnitudes between
model and experimental results suggest differing channel density,
which is also reflected in Figure 2A. The number of LCCs (and thus
release units) in the model was set to 339,000 in order to match
experimental data on fractional release, as discussed in Section
“CICR During the Action Potential” below. This number of LCCs
is between the estimate of ≈276,000 predicted by binding experi-
ments (Bers and Stiffel, 1993) and the estimate of ≈500,000 from
LCC gating current studies (Hadley and Lederer, 1991).

Ryanodine receptor properties are those from our previous
model (Greenstein et al., 2006). Briefly, the RyR model comes
from a formulation by Rice et al. (1999), which was modified from
a model by Keizer and Smith (1998; Figure 1B). Upon elevation of
subspace Ca2+ levels, RyRs rapidly transition from state 1 through
state 2 into state 3, the open state. Termination of release occurs
as the channel transitions from state 3 to state 4, the inactive state,
where it remains until subspace Ca2+ levels drop and the RyR
returns to state 1. Within the context of the whole-cell model,
this RyR model produces an increasing load-dependent fractional
release relationship. Figure 3 shows the fraction of total SR Ca2+

released by an AP at varying SR loads. The model relationship is
qualitatively similar to experimental data from rabbit (Shannon
et al., 2000) and ferret (Bassani et al., 1995), two species which
have strong Na+-Ca2+ exchanger (NCX) contribution to relax-
ation, resulting in Ca2+-cycling that is more similar to guinea pig
than rat or mouse.

ION CHANNELS AND Ca2+ CYCLING
Models for the remaining (non-dyadic) channels, pumps, and
exchangers are based on those of the 2006 ECME model (Cortassa
et al., 2006) with the following changes. The previous formula-
tion of the delayed rectifier potassium current I K is replaced with
the formulation of Zeng et al. (1995) that separates this current
into two components, the rapid and slow (I Kr and I Ks) delayed
outward rectifier currents. I Kr and I Ks current amplitudes were
adjusted to match model APD to experimental data (see Results).
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FIGURE 3 | Sarcoplasmic reticulum load-dependence of fractional
release. Model SR load vs. fractional release (solid line) compared to
experimental data from Shannon et al. (2000) in rabbit (dots) and Bassani
et al. (1995) in ferret (triangles).

The equation for I Kp was modified to better fit experimental data
(Yue and Marban, 1988). The NCX model was updated with the
model of Weber et al. (2001), which incorporates allosteric reg-
ulation by cytosolic Ca2+. NCX affinity constants for allosteric
Ca2+ regulation and for intracellular Na+ were modified slightly
to fit guinea pig NCX voltage dependant behavior (Maack et al.,
2005) and diastolic Ca2+ levels under voltage-clamp (Han et al.,
1994; Isenberg and Han, 1994). This allowed the model to main-
tain appropriate diastolic Ca2+ levels while still achieving a time
constant of SR load rest decay of approximately 80 s (not shown),
in qualitative agreement when compared with experimental data
exhibiting a tau of 36 s (Terracciano et al., 1995). A mitochondrial
Na+-H+ exchanger (Wei et al., 2011) was also added, which helps
to ensure conservation of Na+ between the cytosolic and mito-
chondrial compartments. Ca2+ cycling was modified by adjusting
NCX magnitude to achieve the approximately 60:40 balance of
Ca2+ resequestration vs. Ca2+ export fluxes during diastole at a
pacing frequency of 1 Hz (Bers, 2001). The ATP-dependent K+

current (I K(ATP)) was also added using a model by Ferrero et al.
(1996) to incorporate the effects of ATP on APD. The conduc-
tance of I K(ATP) was modified to take into account the range of
experimental data (Nichols and Lederer, 1990; Weiss et al., 1992).
Minor changes were made to rate-limiting mitochondrial parame-
ters in the TCA cycle, respiratory chain, and adenine nucleotide
transporter to increase ATP supply at higher pacing frequencies.
Ca2+-regulation of the mitochondria remains unchanged. Ca2+

uptake fluxes during 1 Hz pacing were numerically integrated at
1 ms resolution from the peak of the Ca2+ transient to the end of
diastole (see Figure 4A) to simulate experimental relaxation pro-
tocols (Bers, 2001). Comparing the total moles of Ca2+ removed
from the cytosol, the SR Ca2+-ATPase (SERCa) takes up 65.9%
of the transported cytosolic Ca2+, NCX removes 28.9%, and the
sarcolemmal (SL) Ca-pump removes 5.1%, close to estimates of
67% SERCa, 30% NCX, and 3% slow processes (Bers, 2001). The
mitochondrial uniporter removes Ca2+ from the cytosol most
effectively during the upstroke of the Ca2+ transient, while Ca2+
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extrusion by the mitochondrial Na+/Ca2+ exchanger dominates
during relaxation (see Figure 4B). The result is that a bolus of Ca2+

12.7% of the size of the net integrated Ca2+ flux is directed back
into the cytosol during relaxation. This illustrates the buffering
role that mitochondria in this model play during Ca2+ cycling.
Recirculation fraction, calculated as the amount of Ca2+ con-
tributing to the Ca2+ transient that is derived from the SR stores
at steady-state, is 69%. This is close to estimates between 63 and
67% (Bers, 2001). At steady-state, the amount of Ca2+ released
from the SR must equal the amount resequestered during a given
beat (see Figure 4B). Analogously the amount of Ca2+ entering
the cell across the cell membrane must be extruded during relax-
ation. Thus the ratio of cytosolic Ca2+ extruded during relaxation
to the amount resequestered into the SR is a good approximation
of the ratio of Ca2+ flux into the cell across the sarcolemma to SR
Ca2+ release. Here we have approximately 31% of cytosolic Ca2+

due to transsarcolemmal influx and 69% due to SR release. As
expected at steady-state, total and mitochondrial integrated fluxes
start and end at zero (see Figure 4B). Due to conservation of Ca2+,
at steady-state the integrals of inbound and outbound fluxes across
the sarcolemma also sum to zero.

COMPUTATIONAL METHODS
Model code was written in C++ using the SUNDIALS CVODE
integration library and run using an IBM PC workstation with a
2.80-GHz processor and 2.5 GB of RAM. On such a workstation,
this 75-state model takes approximately 15 s to compute 10 1 Hz
APs with no output written to files. This is comparable to the per-
formance of current models for which code is available (Shannon
et al., 2004; Faber et al., 2007). Code and additional information
are available online (http://www.icm.jhu.edu/models/). Equations
and parameters for the model are also available in the online
supplement.

RESULTS
CICR DURING THE ACTION POTENTIAL
Figure 5A shows the model AP, which has a steady-state dura-
tion of 189 ms at 1 Hz pacing. This is consistent with experimental
recordings obtained near the physiological temperature of 37˚C
with a 1-Hz APD range of approximately 130–180 ms (Arreola
et al., 1991; Sicouri et al., 1996; Chen et al., 2000). AP shape, includ-
ing resting membrane potential, peak voltage, and phase 2 and 3
AP slope, are in good correspondence with these experimental
data.

The model Ca2+ transient begins to increase as soon as I Ca,L is
triggered, but the peak is delayed 119 ms with respect to the peak
voltage of the AP (Figures 5A,D). A delay of 144–190 ms is sup-
ported by experimental recordings (Sipido et al., 1995b; Grantham
and Cannell, 1996; see also Figures 5B,E) and by the prediction of
local control theory that local fidelity of ECC decreases at highly
depolarized potentials, such as those that occur early in the guinea
pig AP. At highly depolarized potentials, the driving force for Ca2+

current through LCCs is reduced, even though whole-cell LCC
flux may be large (Figure 5C). The resulting smaller unitary cur-
rents are less likely to trigger release via RyRs, and hence ECC gain
is reduced. This counteracts the increase in gain resulting from
increased LCC open probability at more depolarized potentials.
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FIGURE 4 | Integrated cytosolic Ca2+ fluxes. Cytosolic Ca2+ uptake is
given as the sum of SERCa, NCX, and sarcolemmal Ca2+-pump fluxes (A).
SERCa contributes 65.9% of uptake, NCX 28.9%, and SL Ca-pump 5.1%.
In this model mitochondria contribute significant beat-to-beat buffering. The
mitochondrial uniporter predominates during the first 300 ms of the cycle,
resulting in a net uptake of Ca2+ from the cytosol (B). For the remainder of
the cycle, mitochondrial Na+-Ca2+ exchanger predominates, resulting in
Ca2+ being transferred back out of the mitochondria to the cytosol. The
mitochondria release an amount of Ca2+ equal to 12.7% of the net
integrated Ca2+ uptake flux into the cytosol during relaxation. Integrating
over the entire 1000 ms period (B), fluxes into the cytosol are given as
positive and fluxes removing Ca2+ from the cytosol are negative. Fluxes
shown represent SERCa (blue), NCX (red), SL Ca-pump (green),
mitochondria (teal), background Ca2+ current (magenta), L-type Ca2+ current
(yellow), SR release (gray), and total (black).

The model predicts that triggering of SR Ca2+ release is lowest
during the early phases of the AP, and increases slowly as the AP
evolves (Figure 5F) because of this initial low gain. This leads
to a relative delay in the peak of the Ca2+ transient waveform
as compared to other species. In contrast, the Greenstein et al.
(2006) canine model, which also features the coupled LCC-RyR
formulation of CICR, exhibits a cytosolic Ca2+ transient that
peaks approximately 80 ms earlier. The difference can be attrib-
uted to the presence of an early repolarization phase in the canine
AP, which quickly hyperpolarizes the membrane potential into the
range where ECC gain is maximal. The guinea pig models of Faber
et al. (2007) and Gaur and Rudy (2011), which represent the same
species as the present model, but use different release formula-
tions, also demonstrate earlier cytosolic Ca2+ peaks than shown
in this model (see Discussion for a full analysis).
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FIGURE 5 | Action potential and Ca2+ transient. Steady-state AP at
1 Hz pacing from the model (A) and experiment (Sipido et al., 1995b)
(B) along with the corresponding Ca2+ transients (D,E). Note that the
peak of the model transient is aligned with the middle of the AP
plateau phase (dashed line), approximately 127 ms after stimulus.
Experimental data in (E) show a similar delay in the Ca2+ transient peak
of approximately 190 ms. L-type Ca2+ flux (JLCC) (C) shows a large, but

brief peak aligned with the initial AP depolarization followed by a slow
peak during the AP plateau. RyR flux (F) increases slowly and reaches
its maximum in parallel with the JLCC slow peak and AP plateau. Dashed
lines in (C,F) correspond to the time of Ca2+ transient peak from (D).
Flux measurements are given with respect to subspace volume. (B,E)
Were reproduced with copyright permission from The Physiological
Society.

Figure 6 shows the characteristic fast peak, early decay, and late
peak shape of the guinea pig model I Ca,L, which is in good cor-
respondence with experimental recordings (Arreola et al., 1991;
Grantham and Cannell, 1996). Following the early decay, the cur-
rent magnitude recovers partially in response to the increased
driving force as the AP voltage drops, but the extent of this recov-
ery is limited by increased Ca2+ release from the SR causing CDI.
As the membrane potential repolarizes, the L-type current under-
goes both VDI, as well as CDI resulting from SR Ca2+ release (see
Figure 2B). LCC availability during the AP is shown in Figure 7.
This quantity represents the occupancy of non-inactivated states
in the channel model. The relation of LCC availability calculated
from the model to membrane potential follows closely that of Linz
and Meyer (1998). The kinetics vary between model and experi-
ment due to the long APD in the experimental data. The APD90

from the experimental data is 380 ms, which more closely resem-
bles the APD of a midmyocardial cell (Szigligeti et al., 1996), while
the model is more representative of an epicardial cell. Simula-
tions were also performed using the AP recording from the Linz
and Meyer (1998) data as a voltage-clamp (Figures 7C,F). These
simulations also show a rapid loss of availability, decreasing to a
minimum of approximately 5% during the AP and a slow recovery
of availability during the end of the repolarization phase.

The purpose of introducing the local control CaRU model is
to incorporate a biophysically realistic representation of graded
release in the myocyte model. As shown in Figure 8A, the RyR
release and LCC trigger fluxes are smooth, continuous functions
of membrane potential. The RyR release flux exhibits a peak that
is displaced in the hyperpolarizing direction from that of the LCC
trigger flux, a key feature of experimental measurements of Ca2+

FIGURE 6 | I Ca,L during the AP. Simulated ICa,L trace during steady-state AP
at 1 Hz pacing (black) and experimental ICa,L trace from a guinea pig
ventricular myocyte undergoing 1 Hz pacing at 35–37˚C (blue). Blue trace is
reproduced from Grantham and Cannell (1996) by copyright permission of
the American Heart Association.

release. This is again seen in the normalized RyR release flux
(Figure 8B), better illustrating the representative leftward shift
with relation to the LCC flux, as seen in the experimental data
from Wier et al. (1994). Here, the LCC flux peaks at+10 mV while
the RyR flux peaks at+5 mV. It is this shift that results in the char-
acteristic monotonically decreasing gain function (Figure 8C).
Voltage-dependent gain has not been measured in guinea pig, but
the gain at 0 mV is close to experimental estimates in guinea pig
(Sipido and Wier, 1991; Rocchetti et al., 2005).
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FIGURE 7 | Inactivation of the L-type Ca2+ current during the AP.
(A) Model 1 Hz AP. (D) Simulated LCC availability during the AP shown in (A).
Experimental data from Linz and Meyer (1998) showing the AP clamp
waveform (B) and LCC availability during the AP clamp (E) for guinea pig

myocytes at 35˚C. (C) Shows model membrane potential output using the
trace from (B) as an AP clamp. The LCC availability during the AP clamp is
given in (F). (B,E) Were reproduced by copyright permission of John Wiley
and Sons.

At 1 Hz pacing, the fractional release of total Ca2+ from the SR
is approximately 33% (not shown). This quantity was calculated
as unity minus the ratio of total systolic SR Ca2+ to total dias-
tolic SR Ca2+. The 33% measurement given by the model agrees
with 35% estimated in ferret (Bassani et al., 1995), a species with
a similar recirculation fractional as the guinea pig (Bers, 2001).
The peak RyR open probability is 2.9% at 1 Hz. As described by
Bers (2001), given an experimentally measured peak release flux
of 3 mM/s (Wier et al., 1994) and a unitary RyR flux near 0.4 pA
(Mejía-Alvarez et al., 1999), only 40,000 RyRs need to be open at
the time of maximal release. This is only 2% of the number of total
RyRs calculated by Bers and Stiffel (1993).

Incorporation of the local control model of the CaRU into
the myocyte model allows for the prediction of localized sub-
space Ca2+ levels (Figure 9). The model calculates subspace Ca2+

for four different dyad macrostates: with LCC and RyRs closed,
with only the LCC open, with only the RyRs open, and with
both the LCC and RyRs open. Average subspace Ca2+ can be
estimated by summing over the predicted Ca2+ concentrations
for these four scenarios, weighted by their respective probability
of occurrence. During 1 Hz pacing, the predicted average sub-
space Ca2+ level peaks near 2 µM, four times higher than the peak
of the cytosolic transient. Subspace Ca2+ for dyads with open
LCCs and RyRs reaches a maximum of 45 µM during the AP
plateau.

APD RESTITUTION
Action potential duration restitution describes the electrical
response of the myocyte to a premature stimulus. When a myocyte
is paced to steady-state at a constant basic cycle length (BCL), APD
becomes constant from beat to beat. The time between the end of
the AP and the onset of the next stimulus is the diastolic interval

(DI). Immediately following an AP the cell will be in an inex-
citable refractory state. As the DI increases beyond this refractory
period toward the steady-state DI, an AP can be triggered, but its
duration is less than that of the steady-state AP due to incomplete
recovery from inactivation of I Ca,L and I Na. At the tissue level,
slow APD restitution and high pacing frequency can lead to the
formation of a functional conduction block as the wave of depo-
larization catches up with refractory tissue from the previous beat.
This block fails to excite and changes the direction of wavefront
propagation. Additionally, the relationship between DI and APD
has been shown to influence whether such aberrant conduction
patterns damp out or devolve into arrhythmias (Qu et al., 1999;
Garfinkel et al., 2000).

An electrical restitution curve was generated for the model by
pacing to steady-state at 2000 ms BCL and then saving the state
of the model at the end of an AP. Using the state values from
this time as initial conditions, premature stimuli at increasing DIs
were applied and the resulting APD90 was measured. The results
are compared to recordings under the same protocol from (mid-
myocardial) strips of guinea pig ventricle at 37˚C (Figure 10A).
A single exponential fit to the model results (yellow curve in
Figure 10A) yields a time constant of 165 ms. This differs from
measurements by Sicouri et al. (1996) and Davey et al. (2001)
which are 26.7 and 78.4± 12.1 ms respectively for single guinea pig
myocytes at 32˚C. Possible causes of this discrepancy are presented
in Section “Critique of the Model” below.

FREQUENCY-DEPENDENCE OF APD AND ECC
To determine the frequency-dependence of APD and accumulated
force, the pacing protocol of Szigligeti et al. (1996) was followed.
Briefly, the model was first paced to steady-state at 3000 ms BCL.
Pacing frequency was then increased in a stepwise manner. APD,
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FIGURE 8 | Voltage-dependence of flux through LCCs and RyRs and
ECC gain. (A) Voltage-dependence of maximal Ca2+ flux through LCCs
(blue) and RyRs (green). (B) Normalized fluxes from (A). (C) ECC gain, as
formulated by the ratio of maximal LCC flux to maximal RyR flux.

peak cytosolic Ca2+ and accumulated force were recorded after
3 min at 3000, 2000, 1500, 1000, 700, 500, and 300 ms BCL.

The model results presented in Figure 11A (blue line) show
a decrease in APD with increasing pacing frequency, from an
APD90 of 261 ms at 3000 ms BCL to an APD90 of 114 ms at 300 ms
BCL. The rate of decrease of APD with increasing frequency fol-
lows closely the data of Szigligeti et al. (1996; Figure 11A; green
line). Experimental studies have shown that intracellular sodium
([Na+]i) varies as a function of pacing frequency (Cohen et al.,
1982; Wang et al., 1988; Maier et al., 1997). The model exhibits
similar frequency-dependence of Na+ levels with average [Na+]i

near 5.5 mM at 3000 ms BCL increasing to 8 mM by the end of the
Szigligeti protocol. This Na+ accumulation is mediated through a
frequency-dependent change in the balance of the Na+ entry via
the fast sodium current (I Na) that initiates the AP and the export
of Na+ by the Na+-K+ pump during diastole. In this model, NCX
plays a large role in early repolarization of the plateau at slow fre-
quencies. As [Na+]i continues to decrease with an increase in BCL,
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FIGURE 9 | Predicted subspace Ca2+ levels. Model cytosolic Ca2+

transient during a steady-state 1 Hz AP (blue) and subspace Ca2+ transient
averaged across all dyads (green). While the average subspace Ca2+ is
approximately four times higher than that of the cytosol, the maximum
subspace Ca2+ for a single dyad may reach 45 µM, measured as the
maximum subspace Ca2+ for the open-open LCC-RyR configuration during
a release event.

outward NCX current is reduced, allowing prolongation of the AP
plateau phase.

The force model used here is the same as that implemented pre-
viously in the ECME model (Cortassa et al., 2006). The frequency-
dependence of peak force follows closely the data from Szigligeti
et al. (1996) in guinea pig papillary muscle (Figure 11B). As BCL
decreases, isometric force increases exponentially as a result of the
underlying increase in peak cytosolic Ca2+ concentration associ-
ated with increased SR load and gain. To compare the normalized
force output of the model with those data the cross-sectional area
used is 0.013 mm2, which is equivalent to a fiber with an elliptical
profile of width 0.24 mm and thickness 0.069 mm, the minimum
of the range of measurements for the Cortassa et al. (2006) right
ventricular trabecula samples. The frequency-dependence of both
cytosolic Ca2+ and isometric force play an important part in
the ability of the model to reproduce experimental results on
energy supply during work transitions (see below). Both cytoso-
lic Ca2+ and force transients show faster peaks at higher pacing
frequencies, as has been shown experimentally (Layland and Ken-
tish, 1999; Bluhm et al., 2000; Davey et al., 2001; Raman et al.,
2006; not shown). Cytosolic Ca2+ transients also show frequency-
dependent acceleration of relaxation (not shown), such that the
time of decay to half peak amplitude is decreased with increas-
ing frequency. Force transients have been shown to have a similar
property (Bers, 2001; Davey et al., 2001), but the rate of force tran-
sient relaxation in the model does not vary significantly across
pacing frequencies.

MITOCHONDRIAL ENERGETICS
Control of mitochondrial energy production is mediated via the
Ca2+ sensitivity of key enzymes in the tri-carboxylic acid (TCA)
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FIGURE 10 | Restitution of APD. (A) APD restitution curves from guinea
pig experimental data and models. Blue dots show 2000 ms BCL data from
Bjornstad et al. (1993) connected by the biexponential fit reported by those
authors. Green, red, and teal respectively show epicardial, midmyocardial,
and endocardial experimental data from Sicouri et al. (1996). The purple line
depicts output from the LRd07 model (Faber et al., 2007) and yellow is
from the present model. A standard S1–S2 protocol was used to simulate
APD restitution, starting from 0.5 Hz steady-state as in the protocol used by
Sicouri et al. (1996). The single exponential time constant for restitution of
the present model is 165 ms, compared with approximately 40 ms for
Bjornstad et al. (1993) and approximately 46, 27, and 31 ms for Sicouri et al.
(1996) epicardial, midmyocardial, and endocardial, respectively. (B)
Alteration of the model restitution curve by reverting to the unmodified IKs
formulation from Zeng et al. (1995). Blue is LRd07 model, green is the
present model. Solid lines are simulations using the latest IKs formulation
(one fast gate, one slow), dashed lines are for simulations with 1995 IKs
formulation (two fast gates). Curves are normalized to the 2000-ms
steady-state APD90 for each model, respectively.

cycle, and through regulation of the F1-F0 ATPase by ADP. As pac-
ing frequency increases, a higher ADP:ATP ratio results from the
increased ATP consumption at rapid contraction rates. Increased
mitochondrial ADP levels stimulate the F1-F0 ATPase to generate
ATP by utilizing the proton-motive force as an energy source. Flux
of electrons through the electron transport chain would in and
of itself deplete the NADH pool. However, the amplitude of the
cytosolic Ca2+ transient also increases with pacing frequency, and
this Ca2+ signal is communicated to the mitochondria via Ca2+

uptake by the mitochondrial Ca2+ uniporter. Elevated mitochon-
drial Ca2+ levels stimulate the TCA cycle to increase production
of NADH to sustain a higher rate of respiration. As in the original
ECME model (Cortassa et al., 2006), the rate of respiration for the
model presented here increases with increasing pacing frequency.
Respiration rate increases 3.3× between 4000 ms BCL pacing and
300 ms pacing, similar to Cortassa et al. (2006; their Figure 4A).
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FIGURE 11 | Frequency-dependence of APD and Force. (A) Comparison
of model (blue) dependence of APD on frequency to that of Szigligeti et al.
(1996; green). (B) Comparison of model (blue) dependence of force on
frequency to that of Szigligeti et al. (1996; green). See Section
“Frequency-Dependence of APD and ECC” of the text for conversion of
normalized model output to force units.

During abrupt changes in pacing frequency, the mechanism
described above results in NADH transients with complex kinet-
ics. While increased mitochondrial Ca2+ levels stimulate NADH
supply, this occurs with slower kinetics than the increase in
demand. The result is an abrupt decrease in NADH before restora-
tion to a new steady-state at the higher pacing frequency. For
decreases in pacing frequency, ATP demand drops causing an
overshoot in NADH levels, since production is still stimulated
by high mitochondrial Ca2+. Cytosolic Ca2+ transient amplitudes
drop and mitochondrial Ca2+ levels eventually follow as Ca2+ is
pumped out of the mitochondria by the mitochondrial Na+-Ca2+

exchanger. After tens or hundreds of seconds NADH levels reach
a steady-state corresponding to the slower pacing frequency.

Figures 12A–C shows the response of the model to changes in
workload. To simulate changes in heart rate, the model is paced
at 0.25 Hz for 100 s, then pacing frequency is increased to a high
workload frequency for 200 s before being allowed to recover at
0.25 Hz for another 200 s. This protocol is repeated for high work-
load frequencies of 0.5, 1, 1.5, and 2 Hz. Simulated NADH levels
(Figure 12A) show an undershoot upon initiation of the high fre-
quency stimulation, followed by a recovery to higher levels. Upon
return to 0.25 Hz pacing, NADH levels exhibit an overshoot before
beginning recovery to the steady-state 0.25 Hz level. In the model,
NADH recovery to a steady-state is slow, taking approximately

Frontiers in Physiology | Computational Physiology and Medicine July 2012 | Volume 3 | Article 244 | 115

http://www.frontiersin.org/Computational_Physiology_and_Medicine
http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Computational_Physiology_and_Medicine/archive


Gauthier et al. Integrative cardiac ventricular myocyte model

600 s. The simulation results in Figure 12A were performed using
the same experimental protocol. As a result,model NADH levels do
not reach a steady-state within 200 s. While the kinetics and wave-
form of the NADH transients in the model are qualitatively similar
to experimental data (Figure 12D), the lack of quantitative cor-
respondence between the magnitudes of under- and over-shoots
in our model, and the data of Brandes and Bers (1999), also seen
in the original ECME model (Cortassa et al., 2006), may arise
from the effects of ADP compartmentation. The smaller transient
effects seen in the model indicate that the changes in workload
in the cytosol are not inducing sufficiently large changes in the
mitochondrial ADP pool. Averaged force (Figure 12B) shows an
increase during high workload frequencies, up to 16.4 mN/mm2

at the end of 2 Hz pacing. These increases are indicative of larger
cytosolic Ca2+ transients (not shown) and are followed by a recov-
ery to rest levels at approximately 0.9 mN/mm2 during 0.25 Hz
pacing. Mitochondrial Ca2+ levels (Figure 12C) show minimal
beat-to-beat variation with significant increases in Ca2+ occurring
gradually during periods of high pacing frequency. This prop-
erty of mitochondrial Ca2+ loading is analogous to mitochondria
acting as a low-pass filter of cytosolic Ca2+ changes. While the
amplitude of cytosolic Ca2+ transients increases gradually after
an increase in pacing frequency, Ca2+ levels always return to a
diastolic value between beats. In contrast, mitochondrial Ca2+

accumulates almost monotonically during periods of high pacing
frequency with only minor beat-to-beat variation.

To further illustrate the role of the Ca2+ uniporter in convey-
ing cytosolic Ca2+ signals to the mitochondria, Figure 13 shows
a comparison of model results with experimental data for uni-
porter block at 1 Hz pacing. After 75% of mitochondrial Ca2+

uniporters are blocked in the model, the cytosolic Ca2+ transient
peak increases 51%, similar to the data shown from Maack et al.
(2006). Conversely, uniporter block results in a decrease of the
mitochondrial Ca2+ transient of about 60%. These effects also
demonstrate the significance of beat-to-beat buffering of cytoso-
lic Ca2+ by the mitochondria, since enough Ca2+ is taken up to
reduce the amplitude of the cytosolic Ca2+ transient by approx-
imately one-third. This also supports the results shown earlier
(Figure 4) of Ca2+ fluxes during Ca2+ transient relaxation, where
mitochondria exported an amount of Ca2+ into the cytosol 12.7%
the size of the net cytosolic Ca2+ export flux. However, it is impor-
tant to note that while the model mitochondria exchange large
quantities of Ca2+ with the cytosol, strong buffering of Ca2+ in the
mitochondrial matrix limits beat-to-beat variation of mitochon-
dria Ca2+ transients to approximately 2% of peak mitochondrial
Ca2+ at 1 Hz.

In this model, the influence of the mitochondria on force pro-
duction and vice versa is mediated largely through changes in the
concentrations of cytosolic species. As described above, the Ca2+

buffering properties of the mitochondria affect the amplitude of
the cytosolic Ca2+ transient. This in turn modulates the amplitude
of the force transient. The myofibrils influence the mitochondria
via their influence on ADP levels. Isometric contraction is linked
to ADP:ATP levels via the acto-myosin ATPase, which is respon-
sible for the bulk of ATP hydrolysis in the contracting myocyte.
Increases in workload lead to a greater consumption of ATP, which
results in a rise in ADP levels. This signal is conveyed from the
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FIGURE 12 | Frequency-dependence of NADH levels. (A) Simulation of
NADH concentration for a pacing protocol consisting of 100 s at 0.25 Hz
[see labels above (A)], 200 s at higher pacing frequencies of 0.5, 1.0, 1.5,
and 2.0 Hz then 200 s recovery at 0.25 Hz. Each 500 s protocol is started
from 0.25 Hz steady-state initial conditions. (B) Moving average of model
force output using a 4000-ms window. Force ranges from approximately
0.9 mN/mm2 at 0.25 Hz to 16.4 mN/mm2 at the end of the 2-Hz pacing
period. (C) Model mitochondrial Ca2+ concentration. (D) Experimental data
from Brandes and Bers (1999) follow a similar protocol. NADH signal is
normalized to 0.25 Hz level. (D) Was reproduced from Brandes and Bers
(1999) by copyright permission of the Biophysical Society.

cytosol to the mitochondria via creatine kinase acting on the dif-
fusible creatine phosphate pool. It is the time delay imposed by
this lengthy signaling cascade that leads to the disconnect between
NADH supply and subsequent complex NADH transients.

DISCUSSION
The work presented here describes a mathematical model which
represents the electrophysiology, Ca2+ cycling, isometric force
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FIGURE 13 | Effect of mitochondrial uniporter block. (A) Model results
show the effect of 75% block of the mitochondrial uniporter (simulated by
reducing the parameter Vmuni to 25% of its control value). Cytosolic Ca2+

transient magnitude is increased and (B) mitochondrial Ca2+ transient
magnitude is decreased. Experimental data (Maack et al., 2006) for
cytosolic Ca2+ levels (C) and mitochondrial Ca2+ levels (D) with addition of
10 nM Ru, a blocker of the mitochondrial uniporter.

development and mitochondrial energetics of the guinea pig
cardiac myocyte. The novel feature of this model is the incor-
poration of a previously developed (Hinch et al., 2004; Greenstein
et al., 2006) biophysically based model of local control of SR Ca2+

release. An advantage of this model is that it captures the key
features of CICR (gradedness of Ca2+ release, voltage-dependent
ECC gain) and does not require computationally expensive sto-
chastic simulations of large numbers of individual ion channels
(Greenstein and Winslow, 2002; Gaur and Rudy, 2011). We have
previously shown that the inclusion of such a local control mech-
anism, which exhibits graded SR Ca2+ release, is crucial for the
stability of the AP (Greenstein and Winslow, 2002), given that
CDI of the LCC is much stronger than VDI (Hadley and Hume,
1987; Hadley and Lederer, 1991; Sipido et al., 1995a; Linz and
Meyer, 1998;Peterson et al., 1999, 2000). Without a mechanistic

description of this mechanism, common pool models are unstable
because the strong negative feedback on I Ca,L via CDI result-
ing from regenerative RyR Ca2+ release into the common pool
essentially switches LCC trigger flux off prematurely. While other
models (Viswanathan et al., 1999; Faber and Rudy, 2000; ten Tuss-
cher et al., 2004; Mahajan et al., 2008) have been able to reproduce
experimental features of ECC by incorporating phenomenological
descriptions of graded release, use of phenomenological models
always presents the risk that model predictions may be less reliable.
Therefore the key question is: what do we gain from the formula-
tion of a model that incorporates a biophysically based description
of local control of Ca2+ release? This and other issues are discussed
in the following sections.

LOCAL CONTROL MODEL PREDICTS EFFECTS OF AP SHAPE ON
CALCIUM-RELEASE
The results of this study demonstrate an important functional
relationship between early phase AP morphology and the kinetic
properties of the cytosolic Ca2+ and force transients. The guinea
pig ventricular myocyte model presented here, which includes an
implementation of the new local control CaRU model (Greenstein
et al., 2006), predicts that as a consequence of the shape of the
guinea pig ventricular myocyte AP during the plateau phase, the
Ca2+ transient peaks during the late phase of the AP (127 ms after
the stimulus current; see Figure 14). This correlation of delayed
Ca2+ transient peak with slowly repolarizing AP plateau voltage
is seen in the experimental data (Arreola et al., 1991; Sah et al.,
2003; Nishizawa et al., 2009). Consequently, the force transient is
also delayed, having a peak that occurs after the AP is repolarized
(Figure 14). This crucially important feature of the relative timing
of the Ca2+ transient cannot be reconstructed using a common
pool model, such as the prior version of the guinea pig ECME
model (Cortassa et al., 2006). The delay in release timing exhib-
ited by the present model is caused by a relatively low driving
force for I Ca,L early in the AP. While many LCCs open in the first
few millisecond following the upstroke of the AP, unitary currents
are small and the amount of Ca2+ entering any particular dyad
via an open LCC is usually insufficient to trigger regenerative RyR
opening. As the AP repolarizes, the driving force for I Ca,L increases,
LCC openings provide larger unitary currents, and hence are more
effective at promoting the opening of RyRs, and release is more
effectively triggered. This behavior, which was not built into the
model, emerges as a result of incorporating the deterministic local
control model which captures graded release and variable ECC
gain. This model result emphasizes the role of the plateau potential
in the nature of SR release triggering.

As a consequence, it is important to note that differences in
AP morphology (Figure 15A) can result in very different trigger
L-Type Ca2+ currents (Figure 15B), and therefore Ca2+ transients
with very different timing (Figure 15C). For example, the previ-
ously published canine myocyte model incorporating this same
CaRU formulation (Greenstein et al., 2006) produced a cytosolic
Ca2+ transient that peaked in the early phase of the AP (44 ms
after the stimulus current; see Figures 15A,C). While the canine
AP has a strong phase 1 repolarization due to the presence of
the I to current, guinea pig ventricular myocytes lack I to (Find-
lay, 2003; Zhabyeyev et al., 2004) and their APs repolarize more
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FIGURE 14 | Action potential shape causes delayed Ca2+ transient and
force. Normalized output from the guinea pig model is used to compare the
kinetics of the AP, [Ca]i transient, and force transient. As seen above, the
[Ca]i transient peaks near the end of the AP plateau. The force transient
peak is further delayed and occurs after almost full repolarization of the cell.

slowly during the time period following the upstroke. When the
guinea pig AP is at voltages near+40 mV, the canine AP has already
repolarized to approximately +10 mV. As evident from the ECC
gain curve (see Figure 8C), the canine AP will repolarize to a
voltage at which gain is large very rapidly and trigger a relatively
strong and synchronized release forming the early Ca2+ transient.
In contrast, the slow repolarization of the guinea pig AP leads to a
very slow increase in gain such that Ca2+ release is triggered in a
more gradual manner, leading to a delay in the peak of the Ca2+

transient.
Many aspects of the canine and guinea pig local control mod-

els differ, including resting SR load, Ca2+ cycling parameters, and
L-type Ca2+ channel parameters. To further test the hypothesis
that AP shape is responsible for release timing, the control version
of the guinea pig model was compared to a version with an AP
which more closely resembles that of the canine model. The com-
parison version of the model incorporates a model of the I to,fast

current developed in the Shannon–Bers rabbit model (Shannon
et al., 2004) representing the Ca2+-independent component of I to

(I to,1) and consisting of one Hodgkin and Huxley (1952) acti-
vation gate and a second, slower Hodgkin–Huxley inactivation
gate (Figures 15D–F). Both versions of the model were started
from the control model’s 1 Hz initial conditions. The added I to,fast

model introduces a brief outward current upon depolarization
to positive potentials. With this current included, the AP features
rapid phase 1 repolarization and a Ca2+ transient that triggers
with much less of a delay, similar to that of the canine model
(Figures 15D–F). Addition of I to,fast hyperpolarizes the initial
membrane potential of the plateau to a voltage associated with
high ECC gain. After LCCs open in response to the AP upstroke
to approximately+50 mV, the I to-induced repolarization reduces
membrane potential and increases the driving force for I Ca,L. This
larger single-channel influx of Ca2+ triggers a larger Ca2+ flux

from the RyRs by way of triggering release at a larger population
of release sites than for the control AP at the same time. The result
is that a larger release occurs earlier in the AP with I to,fast, yielding
a Ca2+ transient peak that occurs earlier in the AP than in control.
Results were similar using an AP clamp recorded from the canine
model, which yielded a Ca2+ transient peak of 1.05 µM occurring
approximately 10 ms after the peak of the AP (not shown).

Use of a local control model such as this one featuring AP
shape-dependent release will have important implications regard-
ing behavior of tissue level model electro-mechanics. For example,
in many species there are significant transmural differences in the
expression levels of many key ion channels. The result is that APs
from different tissue sites take on different morphologies (Ner-
bonne and Kass, 2005). This model predicts that these changes
in AP shape will lead to changes in the timing of Ca2+ release,
shape of the Ca2+ transient, and timing of force generation. AP
clamp waveforms from guinea pig epicardial, midmyocardial, and
endocardial cells as recorded by Sicouri et al. (1996) were input
to the model to simulate the corresponding SR Ca2+ release and
Ca2+ transient in each cell type (not shown). A 36% gradient of
SERCa expression, measured with high resolution and accuracy by
Anderson et al. (2011) was also applied. Epicardial cells were taken
to have the control level of SERCa while SERCa expression was
decreased by 18 and 36% in midmyocardial and endocardial cells,
respectively. The resulting simulations show that release occurs
earliest in midmyocardial cells due to the relatively hyperpolar-
ized potential at the start of the AP plateau. Times to peak change
by less than 10% without the application of a SERCa expression
gradient, and rankings of times to peak remain the same between
tissue types.

Given that this model predicts changes in release timing with AP
morphology, the AP shape of the experimental species used may
impact the strength of the conclusions that can be inferred about
human electrophysiology. Among rabbit, canine, and human, all
of which express I to, the AP notch is more prominent in record-
ings from epicardial than endocardial myocytes (Fedida and Giles,
1991; Liu et al., 1993; Liu and Antzelevitch, 1995; Nabauer et al.,
1996). For epicardial cells, canine APs exhibit a more pronounced
notch than human, while rabbit APs have a noticeable early repo-
larization characteristic of I to, but no strict spike-notch-dome
morphology. Following phase 1 early repolarization, human AP
plateau values peak below 25 mV for epicardial cells (Drouin
et al., 1998; Piacentino et al., 2003). In comparison, canine plateau
values for epicardial recordings at 1 Hz peak in the range of 10–
15 mV (Liu et al., 1993; Liu and Antzelevitch, 1995) and rabbit
plateau maxima take on values from 25 to 40 mV (Fedida and
Giles, 1991; Puglisi et al., 1999). Guinea pig epicardial APs do not
have a phase 1 repolarization and may take 50 ms for the plateau
to decrease to 25 mV from the peak value near 50 mV (Sicouri
et al., 1996). The current model predicts that these differences
in notch depth and initial plateau height may significantly influ-
ence the timing of Ca2+ release and force generation in these
different species. These results emphasize the importance of the
inclusion of graded release in electromechanical models. Com-
mon pool electromechanical models without graded release are
limited in their predictive scope. The all-or-none release pro-
duced by such common pool models fails to capture the sensitivity
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FIGURE 15 | Impact of guinea pig and canine AP morphology on I Ca,L

and [Ca]i transients. In all panels blue traces are guinea pig model
output and green traces are canine model output. (A) Comparison of APs
from guinea pig and canine models (Greenstein et al., 2006). The canine
AP has a significant early repolarization notch and a significantly longer
APD. (B) L-type current traces peak near the same value, but guinea pig
shows a much larger amount of late current. (C) Canine [Ca]i transient
peak is approximately aligned with the AP notch, while the guinea pig

[Ca]i transient peak occurs during the late plateau phase. (D) On the first
beat after adding I to,fast as in the Shannon et al. (2004) model with
conductance of 0.2 mS/µF, the guinea pig AP exhibits a rapid initial
repolarization and APD approaches that of canine. (E) With addition of
I to,fast, the guinea pig ICa,L trace exhibits a relation between fast peak and
late current more similar to canine. The fast peak amplitude also
increases substantially. (F) The peak of the guinea pig [Ca]i transient is
now aligned with that of the canine model.

of the intracellular Ca2+ transient, and thus force transient, to
changes in AP shape, as may occur with the reduction in I to,1

in heart failure (Greenstein et al., 2006). Some of the earliest
models incorporating electrophysiology with mechanical compo-
nents were limited in their predictive scope because they modeled
electrophysiology without any description SR release (Li et al.,
2004) or with a description resulting in all-or-none release (Li
et al., 2006). However as newer release descriptions succeeded in
representing graded release (Chudin et al., 1999; Shannon et al.,
2004; Mahajan et al., 2008), electromechanical models incorporat-
ing those advances gained the ability to predict mechanoelectrical
feedback in arrhythmia (Jie et al., 2010; Keldermann et al., 2010)
and patient-specific changes in electrical activation during heart
failure (Aguado-Sierra et al., 2011).

In addition to AP morphology differences between species, dis-
eases such as heart failure can produce significant alteration of AP
morphology. In human heart failure I to density has been shown to
be downregulated (Beuckelmann et al., 1993; Nabauer et al., 1996).
This is the major factor in the reduction of the AP notch in record-
ings from isolated failing cardiac myocytes. Another consequence

to AP morphology is that the initial value of the plateau is ele-
vated in heart failure. As discussed above, the membrane potential
immediately following the AP peak plays a large role in the timing
and magnitude of the Ca2+ transient. These findings corroborate
those from Greenstein and Winslow (2002), which show that dif-
ferent I to current densities have a significant impact on the efficacy
of ECC, making AP morphology an important factor in predicting
ECC properties during heart failure.

CRITIQUE OF THE MODEL
As with any computational model, compromises must be made
in order to fit the range of experimental data for different pro-
tocols. The model restitution curves for 0.5 Hz pacing shown in
Figure 10A gradually reach a plateau at which APD90 is approxi-
mately 219 ms. The time constant for this restitution (165 ms) is
much slower than that observed in experiments (Bjornstad et al.,
1993; Sicouri et al., 1996). This feature of the restitution curve in
the model can be attributed to the time constant of I Ks near the
resting potential. Due to the slow deactivation time constants of
I Ks, there is a significant accumulation of active channels at DIs
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less than 1000 ms. The amount of current remains small because
voltage is near the K+ reversal potential. If a premature stimulus
shortens the DI, an even larger fraction of channels remain active,
leading to larger I Ks during the prematurely triggered AP. This
results in a larger outward current that shortens the AP. Shorter
DIs provide less time for I Ks to deactivate, resulting in a larger I Ks

and shorter AP following the next stimulus. Thus the time con-
stant of AP restitution is closely related to the time constant of I Ks

deactivation at negative potentials.
The model of I Ks used here was formulated in the LRd99

model (Viswanathan et al., 1999) and was well fit to the two
time constants of deactivation shown in experimental data (Mat-
suura et al., 1987). However, the Rudy group’s previous I Ks model
(Zeng et al., 1995), which shows a faster overall rate of deactiva-
tion, leads to faster restitution behavior that is a closer match to
experimental data (Figures 10A,B), though still not as fast. Due
to the dependence of I Ks on the duration of diastole, this current’s
kinetics affect both AP restitution and frequency-dependence
behavior. The frequency-dependence of cytosolic Ca2+, force, and
energy supply by mitochondria exhibited by the model is a good
match to the experimental data (Szigligeti et al., 1996; Brandes
and Bers, 1999). This model is unable to simultaneously achieve
this frequency-dependent behavior and match the experimentally
measured rate of AP restitution. Incorporation of a more detailed
Markov model of I Ks behavior (Silva and Rudy, 2005) may help
reconcile these two cellular properties.

In addition, this model is not able to reproduce the Ca2+

restitution and related short-term interval-force relationships as
described by Wier and Yue (1986). In other models (Rice et al.,
2000; Faber et al., 2007) this behavior is mediated by a slow recov-
ery of RyRs from inactivation. For short DIs, many RyRs remain
inactivated so the maximal open probability is reduced, leading to
smaller release and smaller Ca2+ transients. However, consistent
with estimates by Bers (2001), this model has a much lower peak
RyR open probability of 2.9% at 1 Hz pacing (compare to 100% for
Faber et al., 2007 and 60% for Rice et al., 2000) and the proportion
of channels that are closed and not inactivated does not drop below
70% at 1 Hz. The majority of RyRs are still available for activation
in the event of a premature stimulus. As a result, the maximal
RyR open probability triggered by a premature stimulus is not sig-
nificantly reduced from control. This, coupled with the residual
cytosolic Ca2+ stemming from the delayed Ca2+ transient exhib-
ited by this model, limits the degree of Ca2+ restitution. A stimulus
following a 1-Hz steady-state AP by a DI of 50 ms results in a pre-
mature AP with 26.5% shorter APD, but only a 7.7% smaller Ca2+

transient (not shown). In the coupled LCC-RyR formulation of
Ca2+ release used in this model, JSR depletion cannot be tracked
locally at individual release sites because the JSR and NSR are
assumed to be in rapid equilibrium. Recent evidence suggests that
the primary determinant of SR release termination and restitution
of Ca2+ of sparks is the dynamics of local JSR refilling (Terentyev
et al., 2002; Sobie et al., 2005; Zima et al., 2008b). Incorporation of
a mechanistic formulation of this feature in future versions of this
model should provide the ability to better reconstruct properties
of Ca2+ restitution.

Computational models must weigh the advantages of physi-
ological and mechanistic detail with computational efficiency in

order to make useful predictions while still remaining tractable.
Due to diffusion and compartmentation effects, the cardiac
myocyte is subject to dynamic spatial gradients of a wide variety
of ions and second messengers. In order to avoid the complex-
ity of partial differential equations, the majority of models define
compartments of uniform concentration. However the simple sce-
nario of cytosolic, SR, mitochondrial, and dyadic compartments
may not be sufficient to reproduce some experimental results.
Experimental evidence (Weber et al., 2002, 2003) suggests that the
concentrations of ions in close proximity to the sarcolemma may
vary from those of the bulk cytosol. To account for this, several
models feature a subsarcolemmal compartment (Shannon et al.,
2004; Mahajan et al., 2008; Gaur and Rudy, 2011). While the model
presented here was able to reproduce many critical ECC experi-
ments without a submembrane volume, the addition of such a
compartment may better account for the activity of sarcolemmal
proteins that sense Na+ and Ca2+, such as NCX.

Greenstein and Winslow (2002) and Gaur and Rudy (2011)
have previously published canine and guinea pig myocyte mod-
els, respectively, featuring a stochastic description of local control
of SR Ca2+ release, a property that strongly motivated the work
presented here. The ECC gain function of the low-dimensional
ordinary differential equation model presented here is similar
to that of the stochastic canine model. However, the ECC gain
function of the Gaur and Rudy (2011) guinea pig model dif-
fers significantly from that shown here. Specifically, the gain in
the model presented here decreases monotonically as membrane
potential increases (Figure 8C) while the ECC gain of Gaur and
Rudy (2011) decreases rapidly at hyperpolarized potentials and
plateaus at a relatively high value at positive voltages. The gain
for their model at +40 mV, which is the approximate peak of the
AP, is roughly 10 times higher than that of the present model. As
a result, Ca2+ release in their model (their Figure 3) is triggered
fully at the start of the AP and terminates within 30 ms. In con-
trast, the lower gain in the present model at membrane potentials
near the peak of the AP leads to incomplete, but persistent release
that inactivates gradually during phase 3 repolarization. While,
to the authors’ knowledge, voltage-dependent ECC gain has not
been measured in guinea pig, the relative displacement of voltage-
dependent LCC and RyR fluxes in this model closely resemble the
shifted bell-shaped curves that give rise to the monotonic decreas-
ing voltage-dependent ECC gain function measured in rat (Wier
et al., 1994; Santana et al., 1996; Song et al., 2001).

An alternative approach to modeling graded release in deter-
ministic myocyte models is to utilize more abstracted release
descriptions. For example, the Rudy group (Faber et al., 2007; Gaur
and Rudy, 2011) modeled the rate of Ca2+ flux through open RyRs
as a function of the voltage-dependent Ca2+ trigger flux. Mahajan
et al. (2008) utilized a simpler formulation lacking any descrip-
tion of RyR gating. Instead, the rate of Ca2+ release events was
modeled as being proportional to the product of LCC open prob-
ability and a voltage-dependent gain function. One advantage of
such models formulations is that they “break” the strong posi-
tive feedback loop that is well known to lead to all-or-none Ca2+

release in common pool models (Stern, 1992). These formulations
can also reduce the number of model state variables, facilitating
large-scale simulations at the tissue and whole-heart levels. In fact
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the Mahajan model (2008) is able to reproduce the late peak of
the Ca2+ transient observed in this work through its phenom-
enological incorporation of voltage-dependent gain. However, a
disadvantage of these more abstract models is that they cannot be
used to predict the effects of events such as fundamental changes
in RyR gating on ECC gain properties (Hashambhoy et al., 2010)
without additional assumptions, because the gain function itself
is built directly into the models.

The approach of approximating cellular function using more
abstract (i.e., less mechanistic) descriptions to reduce the num-
ber of state variables could also be applied to the mitochondria.
In a scenario where abnormal ATP supply does not need to be
addressed, the Ca2+ buffering role of the mitochondria could be
approximated by a slow buffer. Such an approximation would con-
tinue to influence the cytosolic Ca2+ transients on a beat-to-beat
basis and over longer periods of stimulation by accumulating or
releasing Ca2+ slowly as cytosolic Ca2+ peaks change. However,
the slow buffer approximation would begin to break down under
conditions where a large mitochondrial to cytosolic Ca2+ gradi-
ent is present, such as upon commencement of beta adrenergic
stimulation.

The model presented here lacks a JSR compartment, which
was combined with the network SR in developing the determin-
istic formulation of the CaRU model (Hinch et al., 2004). As
a result, the model does not reproduce local SR depletion dur-
ing release. Instead, this CaRU model relies on RyR inactivation
for termination of release. While some experimental data sup-
ports inactivation as a possible mechanism of release termination
(Sham et al., 1998), more recent work suggest that local JSR Ca2+

depletion may be the major mechanism for release termination
(Terentyev et al., 2002; Zima et al., 2008a,b; Domeier et al., 2009;
Stevens et al., 2009). The RyR model presented here precludes the
possibility of incorporating local JSR depletion. In addition, other
groups (Shannon et al., 2004; Mahajan et al., 2008; Gaur and Rudy,
2011) have incorporated SR load-dependence into RyR behavior,
a feature not included in this model. Its inclusion may help recon-
struct the steep SR load-dependent increase in fractional release
seen in some datasets (Shannon et al., 2000).

Other models that incorporate both ECC and mitochondr-
ial energetics exist. Magnus and Keizer (1998) developed one of
the first comprehensive models of cytosolic and mitochondrial

Ca2+ handling in pancreatic β-cells. Their Ca2+-regulation of the
TCA cycle was the basis on which the energetics model used here
was developed (Cortassa et al., 2003, 2006). Subsequently, Mat-
suoka et al. (2004) formulated a cardiac myocyte model describing
electrophysiology and Ca2+ handling between mitochondria and
cytosol. However, this model is not able to capture the biphasic
response of NADH levels to changes in pacing frequency. Another
recent model (Hatano et al., 2011) is novel in that it describes
electrophysiology, mitochondrial energetics, and spatiotemporal
changes in Ca2+ and many metabolites. While this model sup-
ports the existence of subsarcolemmal Ca2+ gradients as predicted
by NCX calculations (Weber et al., 2002), and predicts the cellular
distribution of ADP, the coarse resolution of the 3D mesh required
for computational tractability precludes the ability to make predic-
tions regarding subspace Ca2+ levels. The advantage of the model
presented here is that its mechanistic description of ECC and Ca2+

cycling in the cell will provide a platform for future investigations
in Ca2+-regulation of mitochondrial energy production.

CONCLUSION
We have developed a mechanistically detailed description of ECC
in the guinea pig cardiac myocyte combined with modules describ-
ing energetics and isometric force. This model successfully repro-
duces key ECC properties of graded SR Ca2+ release and voltage-
dependent gain. Additionally, the incorporation of mitochondrial
energetics allows the model to qualitatively reproduce changes in
NADH in response to changes in cardiac workload. Using this
model we can improve our understanding of how changes in AP
shape and Ca2+ transients affect energy supply and developed
force in normal and failing myocytes.
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This study investigated the stability of the discharge identity of inspiratory decrementing
(I-Dec) and augmenting (I-Aug) neurons in the caudal (cVRC) and rostral (rVRC) ventral res-
piratory column during repetitive fictive cough in the cat. Inspiratory neurons in the cVRC
(n=23) and rVRC (n=17) were recorded with microelectrodes. Fictive cough was elicited
by mechanical stimulation of the intrathoracic trachea. Approximately 43% (10 of 23) of
I-Dec neurons shifted to an augmenting discharge pattern during the first cough cycle (C1).
By the second cough cycle (C2), half of these returned to a decrementing pattern. Approx-
imately 94% (16 of 17) of I-Aug neurons retained an augmenting pattern during C1 of a
multi-cough response episode. Phrenic burst amplitude and inspiratory duration increased
during C1, but decreased with each subsequent cough in a series of repetitive coughs.
As a step in evaluating the model-driven hypothesis that VRC I-Dec neurons contribute to
the augmentation of inspiratory drive during cough via inhibition of VRC tonic expiratory
neurons that inhibit premotor inspiratory neurons, cross-correlation analysis was used to
assess relationships of tonic expiratory cells with simultaneously recorded inspiratory neu-
rons. Our results suggest that reconfiguration of inspiratory-related sub-networks of the
respiratory pattern generator occurs on a cycle-by-cycle basis during repetitive coughing.

Keywords: respiratory pattern generator, cough, breathing, inspiratory, expiratory, medulla

INTRODUCTION
Airway stimulation can elicit repetitive coughs which may out-
last the duration of the stimulus in animal models (Bongianni
et al., 1998; Shannon et al., 1998, 2000; Bolser and Davenport,
2000). In humans, bouts of repetitive coughing, called paroxysms,
can induce significant morbidity due to ballistic motor activa-
tion of respiratory muscles and large intrathoracic and abdominal
pressure changes (Morice et al., 2004). The specific physiological
mechanisms that are responsible for the production of paroxysmal
coughing are unknown. The lack of this knowledge is an imped-
iment to the development of more effective cough suppressant
therapies. Significant advancements have been made in under-
standing specific central mechanisms in the neurogenesis of single
coughs from animal models (Shannon et al., 1998, 2000; Baekey
et al., 2001, 2003). Preliminary evidence from this laboratory has
suggested the presence of unique behavior of previously identified
central elements during repetitive coughing. Elucidation of these
mechanisms, and their role in governing the pattern of coughing,
may lead to new avenues for the pharmacological suppression of
cough.

In recent models for cough motor pattern generation, brain-
stem neurons that generate and shape breathing patterns are
reconfigured to produce a cough; their responses and interac-
tions during cough have been previously described (Shannon
et al., 1996, 1998; Baekey et al., 2001, 2003; Bolser et al., 2003,
2006). Briefly, respiratory neurons that exhibit an augmenting or
decrementing discharge pattern during the inspiratory phase of

eupnea (I-Aug and I-Dec, respectively) are excited by peripheral
sensory airway afferents via second order neurons in the nucleus
tractus solitarius, resulting in inhibition of expiratory neuronal
activity and an increase in the ramp, duration, and amplitude of
phrenic activity. A decrease in inspiratory (I-Aug and I-Dec) and
an increase in expiratory augmenting and decrementing (E-Aug
and E-Dec, respectively) neural activity terminate the inspiratory
phase and initiate the compressive and expulsive phases of cough.

Most inspiratory neurons in defined regions within the medulla
are proposed to have specific roles in cough motor pattern genera-
tion. Premotor I-Aug neurons in the caudal ventrolateral respira-
tory column (cVRC) excite inspiratory motoneurons, such as those
in the phrenic motor nucleus, that innervate inspiratory pump
muscles, including the diaphragm. Propriobulbar I-Dec neurons
shape the discharge pattern of I-Aug neurons (via inhibition),
inhibit E-Aug and E-Dec neurons and help regulate inspiratory
duration along with I-Driver neurons (for review refer to Shan-
non et al., 1996). Previous studies have shown that a group of
I-Dec neurons in the cVRC and E-Aug neurons in the rostral
ventrolateral respiratory column (rVRC) change their pattern of
discharge, or discharge identity, during single fictive coughs: 82%
of the caudal I-Dec neurons switched to an augmenting discharge
identity (Shannon et al., 1998) and 50% of the rostral E-Aug neu-
rons switched to a decrementing discharge identity (Oku et al.,
1994; Shannon et al., 1998, 2000). In the current model, alterations
of discharge identity of the rostral E-Aug population during fic-
tive cough have been represented by separating the E-Aug neurons
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into two functional subpopulations: E-Aug early (decrementing
during cough) and E-Aug late (augmenting or continuous during
cough). This process highlighted heterogeneity within this pop-
ulation of neurons and allowed specific modeling of the unique
synaptic effects that each subpopulation had on the rest of the
respiratory network. For inspiratory neurons during single fictive
coughs, Shannon et al. (1998) reported little change in discharge
identity for both rostral and caudal I-Aug neurons, but hetero-
geneity among rostral I-Dec neurons, approximately half of which
converted to an augmenting discharge pattern during single fictive
coughs.

The results described above were from measurements of single-
cough episodes and the first coughs of repetitive series. During
repetitive cough episodes, phrenic amplitude can decrease with
each subsequent cough (Bongianni et al., 1998), suggesting a
decrease in inspiratory motor drive. Given that I-Dec neurons
help shape phrenic nerve activity and hence inspiratory motor
drive, it is unknown whether the shift in I-Dec discharge pattern
observed during single fictive coughs is preserved during repet-
itive coughing. The purpose of this study was to examine the
discharge pattern of I-Dec neurons in the cVRC and rVRC dur-
ing eupnea, single and repetitive coughs, and recovery breaths.
We speculated that the discharge identity of the I-Dec popula-
tion would be labile during repetitive coughing. Furthermore, we
investigated whether the stable discharge identity of I-Aug neurons
during single coughs would be preserved throughout repetitive
cough episodes.

Simulations of a new computational neuromechanical model
(see companion manuscript in this issue – O’Connor et al., 2012)
suggest that inhibitory VRC I-Dec neurons contribute to the aug-
mentation of cough inspiratory drive, which can – via operating
volume-dependent cough mechanics – increase tracheal air flow
during the subsequent expulsive phase (Smith et al., 2012). The
proposed circuit mechanism includes I-Dec neuron inhibition of
the inspiratory phase activity of VRC tonic E-Dec neurons that,
in turn, inhibit premotor inspiratory neurons. As a step in eval-
uating this model-driven hypothesis, we also assessed responses
and short-time scale correlations of tonic expiratory neuron spike
trains that were recorded simultaneously with the inspiratory
neurons.

MATERIALS AND METHODS
SURGICAL PROCEDURE AND INSTRUMENTATION
All experimental protocols were approved by the Institutional Ani-
mal Care and Use Committee at the University of South Florida
and were conducted in accordance with the American Physiologi-
cal Society’s Guiding Principles in the Care and Use of Vertebrate
Animals in Research and Training. Other results from some of
these experiments were included in a previous report of single-
cough responses to tracheal stimulation (Shannon et al., 1998).
Ten cats (2.4–5.7 kg) were initially anesthetized with 22 mg/kg (iv)
thiopental sodium. To reduce mucous secretion from the airways
during the cough trials, 0.5 mg/kg (im) of atropine was admin-
istered. To help prevent hypotension and minimize brain stem
swelling during the craniotomy, 2.0 mg/kg (iv) of dexamethasone
was given. The femoral artery and vein were catheterized to mon-
itor blood pressure, acquire blood samples and administer fluids.

Animals were placed in a stereotaxic frame and decerebrated at the
midcollicular level. Anesthesia with thiopental sodium was main-
tained throughout the decerebration process and discontinued
when this surgery was complete. After decerebration, animals were
paralyzed by continuous intravenous infusion of gallamine tri-
ethiodide (4 mg/kg/h) and artificially ventilated through a tracheal
cannula with a phrenic-driven ventilator. A bilateral thoracotomy
was performed to minimize brainstem movement.

Throughout the surgery and cough protocol, end-tidal CO2

was maintained at 4–5% and the fraction of inspired O2 was
increased when necessary to prevent hypoxemia. Arterial blood
samples were periodically analyzed for arterial PCO2, PO2, pH,
and HCO3

− and maintained within normal parameters. Blood
pressure was maintained ≥100 mmHg by intravenously adminis-
tering solutions of 5% dextrose in 0.45% NaCl, 5% dextran, or
lactated Ringer’s solution when needed. Body temperature was
maintained at 38± 0.5˚C using a rectal temperature probe and a
servo-controlled heating pad.

PERIPHERAL NERVE PREPARATION AND RECORDING
The right cranial iliohypogastric (or lumbar; L1) and left phrenic
(C5) nerves were desheathed and cut. Efferent activity was
recorded with bipolar silver electrodes that were immersed in
pools of mineral oil. The right recurrent laryngeal nerve close to
the larynx was desheathed and cut. Efferent activity was recorded
with bipolar silver electrodes covered with cotton saturated with
mineral oil. Nerve signals were amplified and bandpass filtered
(10 Hz – 10 kHz). Nerve activity at rest and during the cough
protocol were recorded and monitored on a polygraph.

BRAINSTEM NEURON PREPARATION AND CHARACTERIZATION
Microelectrode neural recording and analysis has been previ-
ously described (Shannon et al., 1998, 2000; Baekey et al., 2001,
2004). Following occipital craniotomy, portions of the caudal
cerebellum were suctioned to expose the medulla. The surface
of the medulla was covered with warm mineral oil. Inspiratory
neurons in the rostral and caudal VRC were monitored simul-
taneously with two independently controlled planar arrays of
tungsten microelectrodes (10–12 MΩ). Each array consisted of six
to eight microelectrodes 150–200 µm apart to allow for record-
ing from separate single neurons. The depth of each electrode was
adjusted using micromotor controllers. Signals were amplified and
bandpass filtered (0.1–5 kHz).

Positive collision tests were used to identify bulbospinal neu-
rons. Briefly, 0.1 ms single pulses (1–10 V) were delivered through
bipolar stainless steel electrodes in the ventral spinal cord at the
T1 level contralateral to the medullary recording sites. Spike-
triggered averaging of contralateral phrenic and ipsilateral recur-
rent laryngeal nerve efferent activities was also used to aid in the
identification of phrenic premotoneurons and laryngeal pre- and
motoneurons (for details of feature interpretations, see Figure 3,
Shannon et al., 1998).

DATA ACQUISITION AND PREPROCESSING
Neuron signals from the microelectrodes, nerve data from the
bipolar electrodes, and arterial blood and tracheal pressures
were monitored during the experiment using oscilloscopes, audio
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monitors, and a polygraph and recorded on magnetic tape for
subsequent offline analysis. Activities of phrenic, lumbar, and
recurrent laryngeal nerves were integrated (full-wave-rectified sig-
nal to a resistor-capacitor integrator, τ= 0.2 s) to obtain moving
time averages. Analog signals of the moving time averages, arter-
ial blood and tracheal pressures, cough stimulus timing marks,
and signals from each microelectrode were digitized via a 16-
channel analog-to-digital converter and stored on a computer for
preprocessing and analysis.

Action potentials from individual respiratory neurons were
converted to times of occurrence using spike-sorting software
(Datawave Technology). These spike times and the analog sig-
nals described above were viewed and analyzed using the program
Scope and other methods (Shannon et al., 2000).

FICTIVE COUGH PROTOCOL
Fictive cough was elicited by mechanically stimulating the midcer-
vical to carinal regions of the intrathoracic trachea with a device
constructed of two 1 cm loops of polyethylene tubing attached to
a thin wire inserted through a port in the tracheal cannula. In
eight animals, this device was deployed manually. In the remain-
ing two animals, the device was advanced into the trachea using
a custom-built controller and rotated with a frequency of 1.0 Hz;
in these cases, stimulus durations ranged from 1.5 to 4 s. Cough
was defined as an increase in the maximum amplitude of inte-
grated phrenic nerve activity (≥2 SD above the mean maximum
phrenic amplitude for the five eupneic breaths preceding the cough
stimulus) that was coincident with or immediately followed by
an increase in integrated lumbar nerve activity (≥2 SD above the
mean of the maximum eupneic lumbar amplitude). Between tri-
als, the polyethylene tubing was retracted into the tracheal cannula
to prevent further stimulation of the trachea. The protocol con-
sisted of at least five cough stimuli separated by ≥40 s to allow
for eupneic breathing to return to baseline levels. Cough response
episodes consisting of two or more consecutive cough cycles were
considered for analysis; single coughs were also included if the
recording contained at least one instance of a multiple-cough
response.

DATA ANALYSIS
Cough responses were grouped according to the number of con-
secutive cough cycles produced in reaction to the intra-tracheal
stimulus. Individual cough cycles within a response were num-
bered; for example, a triple-cough response consisted of three
cough cycles labeled C1, C2, and C3.

A neuron’s discharge ratio during one cycle was calculated
by dividing the number of spikes occurring in the first half
of inspiration by the spike count in the second half; one was
added to the total number of spikes in each half of the phase
to avoid the presence of zero in the numerator or denominator.
In some recordings, a cough response type was elicited more than
once (e.g., recording four in animal D contained two instances
of a double-cough response; Table 1). To insure that the neu-
rons in these recordings were not over-represented within the
data set, average neuronal discharge ratios were calculated for
each cough cycle of the response by dividing the sum of the
spikes (plus one) in the first halves by the sum of the spikes

(plus one) in the second halves of the inspiratory phases of,
for example, the C1 cycles of all the double-cough responses in
that recording. In addition, average discharge ratios for all C1
and C2 cycles of multiple-cough responses were calculated for
each cell. Average discharge ratios were obtained for each cell
during a control period of at least 5 min before any stimulus
protocols were presented and during the five eupneic breaths
preceding and the five recovery breaths following the cough
cycles.

All discharge ratios were normalized by calculating the log of
the ratio. Neurons with log ratios >0 or ≤0 were defined as hav-
ing decrementing or augmenting discharge identities, respectively,
during the time period for which the ratio was calculated. A neu-
ron’s control discharge identity was characterized by its average
ratio during the control period.

Inspiratory neurons in the rostral and caudal areas of the
ventral respiratory column were grouped based on stereotaxic
coordinates; Fisher exact tests were used to investigate regional
differences in discharge identity changes in response to cough
stimuli.

Paired t -tests were used to identify differences among neu-
ronal log discharge ratios, phrenic amplitudes, and inspiratory
durations during eupneic, cough, and recovery breaths. Two-
sample t -tests assuming unequal variances were used to assess
differences among specific cough cycles in single-, double-,
and triple-cough episodes. Results were corrected for multiple
testing by controlling the false discovery rate to 0.05 (Ben-
jamini and Hochberg, 1995); p≤ 0.02 indicate significant differ-
ences.

Cross-correlation histograms (CCHs) were calculated for pairs
of simultaneously recorded neurons using the entire recording;
peak or trough features were identified as departures ≥3 SD from
the either the mean of the shift-predictor control correlogram cal-
culated using 20 respiratory cycles at a time with all possible shifts
of these cycles or the mean of a range of CCH bins that did not
include the feature.

RESULTS
DETERMINATION OF DISCHARGE IDENTITY
The top portion of Figure 1A shows sorted neuron spike times
coincident with and adjacent to the first cough (C1) in a cough
response episode and the eupneic breath immediately preceding
it (E5) for an I-Dec (more spikes in the first half of the inspi-
ratory phase) and an I-Aug neuron (more spikes in the second
half). The inspiratory phases of the E5 and C1 cycles are indi-
cated by a vertical gray bar; the difference in shade delineates
the first half of inspiration from the second. Integrated phrenic
and lumbar nerve activities are also shown in this inset; note the
increases in amplitude of nerve activities and duration of inspi-
ration during C1. The bottom panel of Figure 1A expands the
time frame of the inset, depicting firing rate histograms of spike
events (such plots of firing rate vs. time allow better visualiza-
tion of neuronal discharge identity) for the same two neurons
during a triple-cough response episode; the five breaths preced-
ing (eupneic period) and following (recovery period) the cough
response are also shown. The discharge patterns of these cells did
not change during the cough episode. Figure 1B shows firing rate
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Table 1 | Detailed recording and response information.

Animal Recording Location:

rVRC (R)

cVRC (C)

Results of AA

and STA

analysis

Control

discharge

identity

Averaged Number of times neuron was evaluated

during these cough response instances

C1 C2 Single cough Double-cough Triple-cough ≥4 coughs

A 2 R – DEC 1* – 1 –

R – DEC ‡ 1* – 1* –

B 1 C BS AUG – – – 1

C 1 C – DEC ‡ ‡ 1* 1* 1* –

C – AUG 1 1 1 –

C BS AUG 1 1 1 –

D 4 C PILM DEC 1 2 – 1

C PPHR/PILM DEC ‡ ‡ 1* 2* – 1*

R ILM DEC ‡ ‡ 1* 2* – 1*

E 1 C ILM AUG – – – 3

R – DEC – – – 3

R PPHR DEC – – – 3

F 4 C BS AUG 1 – 2 1

C BS AUG 1 – 2 1

G 1 R PPHR DEC 1 1 3 1

C BS AUG 1 1 3 1

C PILM DEC 1 1 3 1*

C – AUG 1 1 3 1

C PILM/BS DEC ‡ ‡ 1* 1* 3* 1*

2 R – DEC ‡ – 1 3* 1*

C – DEC ‡ – 1 3* 1*

H 1 C – DEC ‡ 1* – – 1*

2 R PPHR DEC ‡ 1* 1* 1* 3*

C PILM/BS DEC ‡ 1* 1* 1* 3*

C BS AUG 1 1* 1 3*

C PPHR/PILM AUG 1 1* 1 3*

3 R – DEC 1 4 – 1

R – DEC 1* 4 – 1

C BS DEC ‡ ‡ 1* 4* – 1*

I 1 R – DEC 1 3 – –

R – DEC 1 3 – –

2 R – DEC 1* – 2 –

R – AUG ‡ ‡ 1* – 2* –

C BS AUG ‡ 1 – 2* –

C – AUG 1 – 2 –

R – DEC 1 – 2 –

C – AUG 1 – 2 –

J 2 C BS AUG 1 7 1 1

R PPHR AUG 1 7 1 1

R – AUG 1 7 1 1

*Response episodes during which, on average, the neuron changed its discharge identity during at least one cough cycle; ‡
= neurons that changed their discharge

identity during C1 and/or C2 when log ratios for those cough cycles were averaged across multiple-cough response types.Twenty-one cells were identified as motor

or premotor neurons based upon the results of STA of nerve activity and AA from the spinal cord.Test results for four caudal VRC cells suggested multiple projections.

PPHR – STA suggests premotor phrenic; BS – Bulbospinal, antidromically activated from T1 spinal cord stimulation; PILM – STA suggests inspiratory premotor to

recurrent laryngeal nerve; ILM – unrectified STA suggests inspiratory recurrent laryngeal nerve motoneuron.

histograms for two I-Dec cells whose discharge identities changed
from decrementing to augmenting during C1 (i.e., their log dis-
charge ratios changed from≤0 to >0). By the second cough cycle,

I-Deca returned to a decrementing pattern, whereas I-Decb main-
tained an augmenting discharge throughout the repetitive cough
episode.
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E2 E3 E4 E5 R1 R2 R3 R4 R5C2 C3
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53.3

213.3

126.3

168.4

FIGURE 1 | (A) Neuronal spike times (top) and firing rate histograms (firing
rate vs. time; binwidth=75.0 ms; bottom) of two VRC cells recorded
during a triple-cough response episode; the discharge identities of these
cells did not change during this cough episode. (B) Firing rate histograms
(binwidth=47.5 ms) of two I-Dec neurons illustrating their change to an
augmenting discharge pattern during C1 of the cough response; cell I-Deca

returned to a decrementing pattern by cycle C2, but cell I-Decb maintained

an augmenting pattern throughout the cough episode before returning to a
decrementing discharge during the recovery period. Gray vertical bars
indicate inspiratory phases; the difference in shade delineates the first half
of inspiration from the second. E, eupneic respiratory cycles; C, cough
cycles; R, recovery cycles; *, amplitude of integrated phrenic (lumbar)
nerve activity is ≥2 SD above the mean maximum amplitude during
eupneic period.
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RECORDING LOCATIONS AND AXONAL PROJECTIONS OF NEURONS
The stereotaxic coordinates of the recording locations of cells
within the rostral VRC (n= 17) ranged from 2.4 to 5.0 mm rostral
to the obex, 2.7–3.6 mm lateral to the midline, and 3.4–5.2 mm
below the dorsal surface of the medulla. Caudal VRC neurons
(n= 23) were located 2.0 mm caudal to 0.9 mm rostral to the
obex, 3.3–3.9 mm lateral to the midline, and 2.5–4.2 mm below
the dorsal surface.

Ten I-Dec neurons were identified as motoneurons or premotor
neurons based on STA and/or antidromic activation (AA) from the
T1 level of the ventral spinal cord (Table 1). The discharge identi-
ties of four of the six I-Dec cells identified as inspiratory recurrent
laryngeal pre- or motoneurons changed with cough (i.e., became
I-Aug) when all C1 and C2 cycles of multiple-cough episodes
were averaged (see ‡marking the third cell in animal D, record-
ing 1 in Table 1); only one of the six was within the rVRC. The
average discharge patterns of two of the four I-Dec neurons iden-
tified as phrenic premotor neurons became augmenting during
C1. The three I-Dec bulbospinal neurons, all in the caudal region,
changed identity with cough. Eleven I-Aug neurons were identi-
fied as motoneurons or premotor neurons. Only one of the eight
I-Aug neurons found to be bulbospinal by AA, all of which were
within the caudal VRC, changed to a decrementing pattern during
cough. None of the I-Aug phrenic premotor (n= 2) or inspiratory
laryngeal pre- or motoneurons (n= 2) exhibited a change in dis-
charge identity. For 19 neurons, the results of AA testing and STA
yielded no evidence of axonal projections to the regions tested;
most of them (13 of 19) did not exhibit changed identities.

DISCHARGE PATTERNS DURING SINGLE AND REPETITIVE COUGH
EPISODES
Table 1 contains detailed information about the 14 recordings and
40 neurons in the data set. Eleven single-cough and 48 multiple-
cough response episodes were analyzed; two or more neurons were
recorded during the cough responses in all but two episodes. Note
that the instances of cough response types varied from recording
to recording; most neurons were evaluated for more than one type
of cough response. The majority of the response episodes con-
tained three or fewer coughs; these are examined in greater detail
in later figures and paragraphs. Fourteen response episodes were
comprised of four or more cough cycles (nine 4-cough and one
each of 5-, 7-, 8-, 10-, and 11-cough episodes).

When log discharge ratios were considered separately for each
type of multiple-cough response episode, 16 of the 40 inspiratory
neurons (40%) changed identity during at least one cycle. A greater
proportion of I-Dec cells temporarily adopted an augmenting dis-
charge pattern (12 of 23; 52%) than the reverse condition: 24%
of I-Aug neurons (4 of 17) switched to a decrementing pattern
during a cough cycle (Table 1).

The average log discharge ratios for I-Dec and I-Aug neurons
during eupnea (E), cough (C), and recovery breaths (R) were plot-
ted for cough episodes consisting of one-, two-, and three-cough
cycles (Figures 2,3). Figure 2 illustrates the log ratios for 21 I-
Dec neurons recorded during a single-, double-, or triple-cough
episode (left column); these data are further divided into the 14
cells that changed their discharge identity during any cycle of that
cough response type (67%; middle column) and the seven that

maintained their decrementing discharge pattern throughout the
cough response (33%; right column). The average log ratio for all
I-Dec neurons during C1 for single-, double-, and triple-cough
episodes was significantly less than the ratios for the correspond-
ing eupneic (each p < 0.001) and recovery periods (p < 0.001,
p= 0.002, and p= 0.005), indicating that, on average, the differ-
ence between neuronal spike counts in the first and second halves
of inspiration was reduced during C1, resulting in a discharge pat-
tern that was less decrementing. There was no difference in the log
ratios calculated for all I-Dec cells during C1 among one-, two-,
and three cough episodes. The log ratio during C2 for all I-Dec
cells was significantly greater than the C1 log ratio (p= 0.001 and
p= 0.009), but was not different than the eupneic log ratio during
double- and triple-cough episodes indicating that, on the whole,
I-Dec cells returned to their eupneic discharge patterns by the sec-
ond cough of the series. The log ratio during C3 was not different
than that during eupnea, but it was greater than the C1 log ratio
(p= 0.003).

Figure 3 illustrates the log ratios for 15 I-Aug neurons recorded
during a response episode of fewer than four coughs. As a whole,
the discharge patterns of the I-Aug neurons remained augment-
ing in each cycle of the cough response types shown; there was
no significant difference between the log discharge ratios for any
cough cycle and its corresponding eupneic period. Similar to the
results for I-Dec cells, there was no difference in the log ratios
calculated for all I-Aug cells during C1 among one-, two-, and
three cough episodes. However, the log ratio for C1 was lower
than that of C2 or C3 during triple-cough episodes (p= 0.002
and p= 0.003). In contrast to the findings for I-Dec neurons, only
four of these 15 I-Aug cells exhibited a changed discharge iden-
tity during a cough response. One neuron changed its discharge
identity during C1 of a single-cough episode; it also changed dur-
ing all cough cycles of a triple-cough response. Another neuron
from the same recording had a decrementing pattern only during
C2 of a triple-cough episode. Two cells from a different recording
changed their discharge identities during C2 of a double-cough
episode.

C1 VS. C2 COMPARISON
The average log discharge ratios during C1 and C2 of multiple-
cough responses for I-Dec neurons in the cVRC and rVRC were
compared to investigate regional differences in response to cough
stimuli (Figure 4). I-Aug neurons were not included in this analy-
sis because our population only included three rostral neurons
of this type. The average log ratio during C1 of the nine I-Dec
cells in the cVRC was negative, indicating a change to an aug-
menting discharge pattern, and was significantly different from
the ratios during eupnea (p < 0.001) and C2 (p= 0.004). The
overall discharge pattern of caudal I-Dec neurons during C2 was
decrementing and significantly different from eupnea (p < 0.001).
I-Dec neurons in the rVRC (n= 14) maintained a decrement-
ing discharge pattern during C1 and C2; however, the average log
ratio for these cells was less during C1 compared to that during
eupnea (p= 0.002) and C2 (p= 0.005). The average log ratios for
C1 and C2 were significantly less in the cVRC compared to the
rVRC (p= 0.004 and p= 0.007, respectively), suggesting that the
I-Dec neurons that shifted to an augmenting discharge pattern
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FIGURE 2 | Average log ratios of I-Dec neurons during (A) single-, (B)
double-, and (C) triple-cough episodes. E represents the log ratio of the
total spike counts in the five eupneic breaths immediately prior to cough
onset; similarly, R depicts the log ratio of the counts in the five recovery
breaths immediately following the cough episode. *, Significantly different

from E; #, significantly different from R; 1, significantly different from C1.
P -values are indicated by one (p < 0.02) or two (p < 0.001) symbols. Number
of neurons (n) analyzed for each cough episode type is indicated on the plots.
Some neurons were evaluated for more than one type of cough response.
Error bars indicate the standard error of the mean.

were mostly located within the cVRC and, indeed, a significantly
greater percentage of caudal I-Dec neurons changed their dis-
charge pattern during C1 (7 of 9; 78%) than did I-Dec cells within
the rVRC (three of 14; 21%) (p < 0.014; Table 2).

INSPIRATORY DRIVE
PHRENIC NERVE ACTIVITY
On average, the maximum integrated phrenic nerve ampli-
tude increased during the first cycle of a cough episode and
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FIGURE 3 | Average log ratios of I-Aug neurons during (A) single-, (B)
double-, and (C) triple-cough episodes. 1, Significantly different from C1
(p < 0.02). Number of neurons (n) analyzed for each cough episode type is
indicated on the plots. Some neurons were evaluated for more than one
type of cough response. Error bars indicate the standard error of the mean.

then gradually declined during subsequent cycles (Figure 5).
Phrenic amplitude was significantly greater during C1 (p < 0.001,
p < 0.001, and p < 0.001, respectively) as well as during C2
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FIGURE 4 | Average log ratios of I-Dec neurons in the cVRC and rVRC.
The first (C1) and second (C2) cough cycles from all repetitive cough
episodes were analyzed. *, Significantly different from E; 1, significantly
different from C1. P -values are indicated by one (p < 0.02) or two (p < 0.001)
symbols. Error bars indicate the standard error of the mean.

(p < 0.001 and p= 0.002) of single-, double-, and triple-cough
response episodes when compared to maximum amplitudes dur-
ing eupnea. Furthermore, maximum phrenic amplitude during
C1 was significantly greater than the amplitude during C2 for
double-cough episodes (p < 0.001), and greater than amplitudes
during C2 and C3 for triple-cough responses (p= 0.008 and
p= 0.012, respectively). There was no difference in integrated
phrenic amplitudes during C2 and C3 in triple-cough episodes.

Inspiratory Duration
As illustrated in Figure 6, cough inspiratory time (CTI) was signif-
icantly longer during C1 cycles in averaged single-, double-, and
triple-cough responses when compared with eupneic (p < 0.001,
p < 0.001, and p= 0.001, respectively) and recovery breaths
(p < 0.001, 0.001, 0.001). CTI during C1 and C2 were significantly
different for double- and triple-cough responses (p < 0.001 and
0.001), but there was no difference in CTI between C2 and C3 in
triple-cough episodes. There were also no differences in CTI dur-
ing C1 for single-, double-, and triple-cough episodes or during
C2 for double- and triple-cough responses.

EVIDENCE FOR INSPIRATORY PHASE MODULATION OF TONIC
EXPIRATORY NEURON INHIBITION OF INSPIRATORY DRIVE DURING
MULTIPLE COUGHS
The firing rate histograms of six cells (four VRC augmenting inspi-
ratory neurons and two tonic expiratory neurons) recorded during
a double-cough response to tracheal stimulation are shown in
Figure 7A; these cells were recorded simultaneously with 10 other
neurons and integrated phrenic and lumbar nerve activities. Neu-
rons 51, 57, and 62 were recorded from animal J and are included
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Table 2 | Average discharge identities of I-Dec and I-Aug VRC neurons during the control period and the first two cough cycles in a

multiple-cough response to intra-tracheal stimulation.

Discharge identity Total VRC cVRC rVRC

Control During cough C1 C2 C1 C2 C1 C2

I-Dec (n=23) Changed to I-Aug 10 6 7 4 3 2

Unchanged 13 17 2 5 11 12

I-Aug (n=17) Changed to I-Dec 1 2 0 1 1 1

Unchanged 16 15 14 13 2 2

in Table 1; I cell 66 could not be evaluated for a change in dis-
charge identity during a cough response because it was recruited
by the tracheal stimulus and so is not included in the table. The
activity of each I cell increased during the cough cycles, whereas
the activity of the E-Tonic neurons decreased. Cross-correlograms
from pairs of represented neurons are shown in Figure 7B. The
central peak (Figure 7B1) in the correlogram for the tonic E neu-
rons (cells 49 and 55) is consistent with a shared coordinating
influence. Correlograms triggered by both tonic expiratory neu-
rons for each respective target inspiratory neuron (cells 62 and
57) had an offset trough feature indicative of putative inhibitory
actions (Figures 7B2,3). The offset peak in the correlogram for the
inspiratory neuron pair (Figure 7B4) is consistent with an excita-
tory action of cell 62 upon neuron 57. The correlation linkage map
(Figure 7D) summarizes all pair-wise correlation features involv-
ing the four cells of Figure 7B. Each large “sphere” corresponds
to a neuron and is color-coded to reflect respiratory modulation;
arrows indicate the direction of the firing rate change during the
inspiratory phase of each cough response.

Spike-triggered averages of the full-wave-rectified contralateral
phrenic nerve signal were consistent with relationships represented
in the linkage map. The average triggered by inspiratory neuron 57
had an offset peak (arrow, Figure 7Ca). The offset trough (arrow,
Figure 7Cb) in the average triggered by tonic expiratory neuron 55
provides further evidence for functional inhibition of antecedent
elements of the excitatory inspiratory neuron chain contributing
to inspiratory drive.

DISCUSSION
We report that a group of I-Dec neurons in the cVRC, and to a
lesser extent the rVRC, change their discharge identity from decre-
menting to augmenting during repetitive fictive cough. By the
second cough cycle (C2), half of these I-Dec neurons returned to
their eupneic decrementing firing pattern. I-Aug neurons, on the
other hand, maintained their augmenting discharge identity dur-
ing repetitive cough. Inspiratory phase duration was longer and
phrenic burst amplitude was greater within the first cough cycle
(C1) compared to eupnea. However, phase duration shortened and
phrenic amplitude decreased in subsequent coughs. These results
highlight a unique property of a subset of inspiratory neurons that
reconfigure their discharge identity during repetitive cough.

Cough was elicited in these studies in paralyzed animals. Also
known as fictive cough, the motor patterns of this behavior bear
significant similarities and differences to the same behavior pro-
duced in unparalyzed animals. Abdominal motor patterns during

fictive and unparalyzed cough are very similar in rise times and rel-
ative increases in magnitudes (Bolser, 1991; Bolser and Davenport,
2000; Wang et al., 2009). Inspiratory motor patterns during cough
do differ somewhat, with the magnitude of inspiratory motor drive
during fictive cough being less than that produced in animals that
are unparalyzed (Bolser, 1991; Bolser and DeGennaro, 1994; Bolser
and Davenport, 2000). The specific mechanism(s) that underlie
this difference in motor drive are unknown. However, as shown
in this report, the duration of the inspiratory phase of the first
cough of a series is prolonged in the fictive model, just as it is
in unparalyzed animals (Tatar et al., 1994; Bolser and Davenport,
2000). Our findings are very relevant to the mechanism of this
inspiratory prolongation and likely apply to both paralyzed and
unparalyzed animals. Furthermore, a series of investigators (Jakuš
et al., 1985, 1987; Bongianni et al., 1998) have recorded the behav-
ior of medullary respiratory neurons during cough in unparalyzed
animals and their findings are very similar to observations made
during fictive cough on the same populations of cells (Shannon
et al., 1996, 1998, 2000).

LOG DISCHARGE RATIO
We applied a straight-forward metric of discharge pattern to the
population of inspiratory neurons that we recorded. The log ratio
of spike counts in the first and second halves of the inspira-
tory phase provided both quantitative and qualitative information
regarding the discharge patterns of the neurons on a cycle-by-cycle
basis. Other analyses of discharge pattern and breathing modu-
lation (e.g., eta-squared, cycle-triggered histograms, see Cohen,
1968; Orem and Dick, 1983) are based on averaging or accumu-
lating spike data over many breathing cycles. These metrics are
most useful when applied to relatively stationary motor patterns
or between prolonged changes in state/excitability of the respira-
tory motor system. Airway protective behaviors, such as cough,
represent transient changes in motor drive to respiratory muscles
that often span less than five cycles. Furthermore, phase durations
can be widely variant on a cycle-by-cycle basis during cough; this
can lead to “smearing” of cycle-triggered histograms, which can
limit their utility when applied to this behavior.

DISCHARGE IDENTITY DURING SINGLE COUGHS
Many of the same neural elements that generate breathing also
contribute to the production of cough. Shannon and coworkers
(Shannon et al., 1998, 2000; Baekey et al., 2001) proposed that
this network is reconfigured to produce protective airway defense

www.frontiersin.org June 2012 | Volume 3 | Article 223 | 133

http://www.frontiersin.org
http://www.frontiersin.org/Computational_Physiology_and_Medicine/archive


Segers et al. Cough alters neuron activity patterns

E RC1 C2 C3

2000

1000

0

1500

a
rb

it
ra

ry
 u

n
it
s

500

E RC1 C2

2000

1000

0

1500

a
rb

it
ra

ry
 u

n
it
s

500

RC1E

2000

1000

0

1500

a
rb

it
ra

ry
 u

n
it
s

500

Phrenic Amplitude

Single-cough response
(n =11)

Double-cough response
(n = 20)

Triple-cough response
(n = 12)

##

1

##

11
##

##

1
##

FIGURE 5 | Average phrenic burst amplitude (in arbitrary units, au)
during single-, double-, and triple-cough episodes (top, middle, and
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were not different among these three cough response types. *Significantly
different from E; #, significantly different from R; 1, significantly different
from C1. P -values are indicated by one (p < 0.02) or two (p < 0.001)
symbols. Error bars indicate the standard error of the mean.

reflexes (such as cough, expiration reflex, sigh, gasp, sneeze, aspi-
ration, and swallow) that have motor patterns distinctly different
from breathing (Jakuš et al., 1985; Oku et al., 1994; Gestreau et al.,
1996, 2000; Lieske et al., 2000; Saito et al., 2003; Baekey et al., 2004).
Reconfiguration is a process by which a network of neurons is
reorganized through changes in their neuronal discharge patterns
and functional interactions to modify motor output (Getting and
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FIGURE 6 | Average inspiratory duration (s) during single-, double-, and
triple-cough episodes (top, middle, and bottom panels, respectively).
Values for a given cough cycle (e.g., C1) were not different among these
three cough response types. *, significantly different from E; #, significantly
different from R; 1, significantly different from C1. P -values are indicated by
one (p < 0.02) or two (p < 0.001) symbols. Error bars indicate the standard
error of the mean.

Dekin, 1985). Changes in neural discharge are typically quanti-
fied in terms of burst frequency and duration. During cough, the
majority of inspiratory and expiratory neurons increase their dis-
charge firing rate, while a smaller proportion maintain their firing
rate or even decrease it (Jakuš et al., 1985, 1987; Oku et al., 1994;
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Bongianni et al., 1998; Shannon et al., 1998, 2000; Gestreau et al.,
2000; Baekey et al., 2001). Previous in vivo studies have shown that
some populations of inspiratory and expiratory neurons change
their discharge identity during cough (Orem and Trotter, 1993;
Oku et al., 1994; Shannon et al., 1998, 2000), although pub-
lished models describing reconfiguration of the respiratory neural
network during cough have primarily highlighted expiratory neu-
ron subpopulations as having labile discharge identities (Shannon
et al., 1998, 2000; Bolser et al., 2006).

Reconfiguration of the central pattern generator during the
inspiratory phase of cough included a switch in the discharge iden-
tity of approximately one-half of the I-Dec neurons: 43% of I-Dec
neurons changed their discharge identity during C1. This result
extends the observation of Shannon et al. (1998) who reported
that 55% of I-Dec neurons recorded had a predominately aug-
menting discharge during single coughs or C1 of a multi-cough
response episode. The paucity of I-Aug neurons (6%) that changed
their discharge identity during C1 is in agreement with previous
studies (Shannon et al., 1998, 2000).

Changes in discharge identity during cough have been reported
for expiratory respiratory neurons (Oku et al., 1994; Shannon et al.,
1998, 2000). Many E-Aug neurons in the rVRC and cVRC shift to
a decrementing discharge pattern during single coughs or the first
in a series of coughs (Shannon et al., 1998). The switch of cVRC
E-Aug premotor neurons to a discharge pattern that matches the
motor activity pattern in expiratory muscles may be a means to
generate the muscle force and abdominal pressure required to pro-
pel air through the airways during the expulsive phase of cough
(Bongianni et al., 1998; Shannon et al., 1998, 2000). Similarly,
shifting I-Dec premotor and motoneurons to an augmenting pat-
tern that mirrors the motor activity of inspiratory pump muscles
(Grelot and Milano, 1991; Iscoe and Grelot, 1992; Milano et al.,
1992) would allow for large increases in lung volume necessary
to generate the expiratory airflow rates that will move material
from the airway by increasing inspiratory muscle activation and
enlarging the larynx.

Inspiratory neurons have been observed to switch their dis-
charge identity during other airway protective behaviors. For
instance, I-Dec neurons can shift to an augmenting discharge pat-
tern during augmented breaths (Orem and Trotter, 1993). Thus, a
change in discharge identity is not unique to cough and may be an
important property of the mechanism by which the central pat-
tern generator reconfigures to produce different airway protective
behaviors.

The firing rate modulation of tonic expiratory neurons dur-
ing cough and their functional interactions with VRC inspiratory
neurons and phrenic motor neurons suggest that disinhibition
contributes to the inspiratory drive of cough. These results are
consistent with predictions based on recent computational models
for cough motor pattern generation that include multiple circuit
paths for cough receptor-mediated inspiratory drive modulation
(Rybak et al., 2008; Poliacek et al., 2011; O’Connor et al., 2012). The
transient switch of propriobulbar I-Dec neurons to an augment-
ing pattern during cough may be a component of mechanisms for
enhanced suppression of tonic E neuron activity during coughs. In
this context, we also note that evidence for inspiratory phase sup-
pression of tonic E neurons by I-Dec neurons has been reported

in a study on central chemoreceptor-mediated enhancement of
inspiratory drive (Ott et al., 2012). A similar suppression of
tonic expiratory neuron activity and the attendant inspiratory
drive enhancement during cough could operate to balance the
inspiratory-suppressive influence of increased blood pressure and
excitation of tonic expiratory neurons caused by cough mechanics
(Poliacek et al., 2011).

DISCHARGE IDENTITY DURING REPETITIVE COUGHS
To our knowledge, this is the first study to describe the discharge
identity of inspiratory neurons during repetitive coughing behav-
iors. Approximately half of the I-Dec neurons included in this
study changed to an augmenting discharge patterns during C1
and/or C2, whereas only a small portion of I-Aug neurons changed
their discharge identity during C1 or C2. The neural mechanisms
and synaptic or afferent effects that occur during the second half
of a cough inspiratory phase to produce an augmenting pattern in
some I-Dec neurons are unknown, but several possibilities can be
considered.

1. Input from recruited neurons. Inspiratory neurons that are
recruited or evoked by the cough stimulus (such as neuron
66 in Figure 7) may have an excitatory effect on some I-Dec
neurons, transiently converting their discharge identities.

2. Enhanced input from I-Aug neurons. A second possible mecha-
nism was incorporated into a model developed by O’Connor
et al. (2012) to produce prolonged inhibition of tonic E neurons
by I-Dec cells. This approach involves a separate population
of inhibitory I-Dec neurons whose excitation by I-Aug cells
is presynaptically inhibited by tonic decrementing expiratory
neurons (tonic E-Dec cells). In this mechanism, enhanced
activity of I-Aug and I-Dec cells during cough produces an
increased inhibition of the tonic E-Dec neurons; the ensuing
lessening of the presynaptic inhibition provided by the tonic
E-Dec cells leads to a greater excitatory influence of the I-Aug
neurons upon the I-Dec cells, possibly imparting on them an
augmenting discharge pattern.

3. Influences of cells in other brainstem areas. The activities of raphé
and pontine neurons are also affected by cough (e.g., see Jakuš
et al., 1998; Baekey et al., 2003; Poliacek et al., 2004; Shannon
et al., 2004) and could provide a network modulatory influence
that briefly causes the discharge identity of an I-Dec neuron to
assume an augmenting pattern.

4. Input from vagal afferents – slowly adapting pulmonary stretch
receptors (SARs). Vagotomy in decerebrate cats changes the
discharge identity of most pontine and raphé respiratory neu-
rons (Dick et al., 2008; Morris et al., 2010), suggesting that
alterations in vagal afferent activity can modify the discharge
properties of respiratory neurons. During eupneic breathing
in animals, lung inflation can terminate the inspiratory phase
and enhance E-Dec activity (Hayashi et al., 1996). Cough-
ing induces large changes in tidal volume, which would be
expected to stimulate SARs. Given that I-Dec neurons are
suppressed by inflation during eupnea, SARs are unlikely to
mediate the alteration in discharge identity of I-Dec neurons
during coughing.
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FIGURE 7 | Correlations among pairs of VRC I and E neurons responsive
to cough-eliciting tracheal stimulation. (A) Firing rate histograms
(binwidths=375.0 ms) for 6 of 16 simultaneously recorded neuron spike
trains during a double-cough response to tracheal stimulation. For each trace,
the respiratory-modulated pattern, cell identification number, and maximum
firing rate are shown. *, Amplitude of integrated phrenic (lumbar) nerve
activity is ≥2 SD above the mean maximum amplitude during eupneic period.

(B) Features in the CCHs are included in the correlation linkage map shown in
(D). Bin width for all CCHs=0.5 ms. The minimum and maximum bin values,
normalized to spikes per second per trigger event, are shown for each
correlogram. Feature description, detectability index (equal to the ratio of the
maximum amplitude of feature departure from background activity divided by
the SD of the correlogram noise), half-width, and numbers of trigger neuron
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FIGURE 7 | Continued
and target neuron spikes for each CCH are as follows: 1: central peak,
15.0, 4.0 ms, 55,253, and 92,800; 2: offset trough, 4.1, 1.0 ms,
92,800, and 51,671; 3: offset trough, 5.0, 2.5 ms, 92,800, and 57,087;
4: offset peak, 4.3, 0.5 ms, 51,671, and 57,087. (C) STAs of
contralateral phrenic nerve activity. Bin width for both STAs=0.5 ms.
a: Neuron 57, peak (lag to peak=7.5 ms). b: Neuron 55, dip (lag to
nadir=6.0 ms). (D) Correlation linkage map summarizing features

found in all CCHs calculated for the group of four neurons in (B). Each
large “sphere” represents a neuron and contains that neuron’s ID
code and direction of change in firing rate when tracheal stimulation
elicited a cough; the cell’s respiratory-modulated firing pattern is
indicated by the color of the sphere (see Key). White, black, and gray
circles at the ends of the lines between spheres represent central or
offset peaks or troughs (see Key). Circled numbers indicate
corresponding CCHs shown in (B).

Peripheral chemosensory afferents are not likely to influence the
activity patterns of inspiratory neurons nor modulate phase dura-
tions during a bout of cough: Hypocapnia [a consequence of
repetitive coughing (unpublished observation)] blunts carotid
chemoreceptor activity (Dejours, 1963) but does not inhibit cough
(Suzuki et al., 1991).

Half of the 10 I-Dec cells that changed their discharge identity
during the first cough of a response returned to their pre-cough
I-Dec pattern during C2. This trend continued for C3 and sub-
sequent cough cycles. The neural processes that account for the
return of eupneic discharge identity before the cough episode has
ended are unknown. Canning et al. (2004, 2006) have proposed
the existence of specific cough receptors that are activated by stim-
ulants similar to those that generate cough, including mechanical
stimulation of the intrathoracic trachea used in the present study.
We and others (Bongianni et al., 1998; Bolser and Davenport,
2000) have reported that repetitive cough behaviors occurred after
mechanical stimulation of the airway was terminated. A reduction
in afferent input from specific cough receptors following tracheal
stimulation may account for the return of some I-Dec neurons to
their eupneic discharge identity by the second cough cycle.

Another mechanism that could explain the transitory nature
of changes in discharge identity during repetitive cough involves
SARs and their permissive effect on cough. Blocking SAR activity
with SO2 in rabbits decreases the strength and frequency of cough
induced by mechanical stimulation of the trachea (Hanácek et al.,
1981). It has been proposed that the excitability of a cough gate
mechanism modulated by SAR afferent feedback accounts for the
permissive effect of SARs on the cough reflex (Hanácek et al.,
1981; Sant’Ambrogio et al., 1984; Romaniuk et al., 1997; Bolser
et al., 2006). It is unknown whether the effects of SARs on cough
generation are the same on a cycle-by-cycle basis during repetitive
cough. A decrease in the excitability of a threshold gating mecha-
nism due to changes in SAR input during an episode of repetitive
coughing could reduce the probability that a cough will be gener-
ated. This may be responsible for the return of some I-Dec neurons
to their eupneic discharge identity.

REGIONAL DIFFERENCES IN NEURON DISCHARGE IDENTITY DURING
REPETITIVE COUGHS
In the present study, a larger proportion of I-Dec neurons in the
cVRC changed their discharge identity during repetitive cough
compared to the rVRC. This is consistent with the results from
Shannon et al. (1998) during single coughs. Regional differences
in I-Dec discharge identities during cough may be an important
component of the reconfiguration process. Shannon et al. (1998,
2000) proposed that early E-Aug neurons in the rVRC that
switch to a decrementing discharge identity during cough pro-
vide excitatory input to cVRC bulbospinal E-Aug neurons (i.e.,

premotor expiratory neurons). The decrementing pattern of activ-
ity of the early and premotor E-Aug neurons matches the discharge
pattern of expiratory motoneurons (Shannon et al., 1998, 2000).
Furthermore, the activity duration of these neurons is limited by
inhibitory input from rVRC late E-Aug neurons that do not change
their discharge identity during cough. Thus, the discharge iden-
tity of E-Aug neurons and their location within the VRC may
help characterize their role in the reconfiguration process dur-
ing the expiratory phase of cough. An analogous relationship
might exist for I-Dec neurons during the inspiratory phase of
cough reported in the present study. For instance, I-Dec neu-
rons in the cVRC may help augment phrenic discharge during
cough by switching to an augmenting pattern that matches inspi-
ratory pump muscle activity. In support of this view, we report
that three of the cVRC I-Dec neurons that changed their discharge
identity were bulbospinal and one was premotor to the phrenic
motoneuron pool. I-Dec neurons in the rVRC that retain their
discharge identity may help lengthen the inspiratory phase dura-
tion by inhibiting expiratory neurons (Shannon et al., 1998, 2000;
Bolser et al., 2003). Axonal projections from I-Dec neurons with
somas in the retrofacial nucleus near the rVRC to the nucleus
ambiguus and reticular formation have been shown histologi-
cally with HRP labeling (Otake et al., 1990), suggesting extensive
anatomical connections between the rVRC I-Dec neurons and the
respiratory network.

Peripheral sensory afferent input has been shown to induce
regional differences in the inspiratory neural reconfiguration
process. For instance, activation of carotid chemoreceptors
decreases I-Driver neural activity in the rVRC which in turn
decreases inspiratory duration, but increases premotor I-Aug
activity in the cVRC which augments phrenic burst amplitude
(Morris et al., 1996). Other peripheral afferents such as the “cough
receptors” may also demonstrate similar region-specific effects on
the respiratory neural network.

CONCLUSIONS AND PERSPECTIVES
The results from this study highlight an important property of the
reconfiguration process that has not been previously described for
medullary inspiratory neurons during repetitive coughs as it has
been for single coughs (Shannon et al., 1996, 1998). I-Dec neu-
rons in the cVRC change their discharge identity during cough.
Furthermore, as some I-Dec neurons returned to a decrementing
discharge identity by the second and subsequent cough cycles,
phrenic activity, and inspiratory duration also returned to its
pre-cough stimulus eupneic patterns, suggesting that changes in
discharge identity of I-Dec neurons within the respiratory neural
network may play an important role in modifying inspiratory
motor pattern during repetitive cough. Given the connectivity of
I-Dec neurons and their integral role in shaping neural activity
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within the respiratory network, a cough model that incorporates
changing discharge identities of inspiratory neurons during sus-
tained airway protective behaviors, such as repetitive cough, may
be important to accurately predict the resulting respiratory motor
patterns. A possible modification of the cough neural network
proposed by Shannon et al. (1998, 2000) may include a subset of
I-Dec neurons in the cVRC that send excitatory inputs to phrenic
motoneurons in the form of an augmenting activity pattern either

through monosynaptic or polysynaptic connections via excitatory
premotor I-Aug neurons.
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Originally discovered as regulators of developmental timing in C. elegans, microRNAs
(miRNAs) have emerged as modulators of nearly every cellular process, from normal
development to pathogenesis. With the advent of whole genome libraries of miRNA
mimics suitable for high throughput screening, it is possible to comprehensively evaluate
the function of each member of the miRNAome in cell-based assays. Since the relatively
few microRNAs in the genome are thought to directly regulate a large portion of the
proteome, miRNAome screening, coupled with the identification of the regulated proteins,
might be a powerful new approach to gaining insight into complex biological processes.
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INTRODUCTION
Transcriptomics, proteomics and other ‘omics data describing
biological phenomena are amassing at an astounding rate that
was unimaginable even a few years ago. In principle, researchers
will be able to utilize these data to formulate and answer
complex biological questions—including important questions in
cardiovascular medicine. The amount of primary data is grow-
ing exponentially with the availability of disease-specific assays
and powerful new technologies, such as Next-Gen Sequencing
(NGS aka RNA-Seq) (Marioni et al., 2008; Wang et al., 2009),
ChiP-SEQ (Johnson et al., 2007), protein microarrays (Melton,
2004; Mattoon and Schweitzer, 2009), and mass-spectroscopy-
based proteomics (Hernandez et al., 2006). As of November
2012, the Gene Expression Omnibus (http://www.ncbi.nlm.nih.

gov/geo/) lists 2720 datasets covering over 800,000 assays while
ArrayExpress at European Bioinformatics Institute contains data
from 33,868 datasets covering nearly a million assays (http://
www.ebi.ac.uk/arrayexpress/). Moreover, advances in computa-
tional algorithms to identify putative connections among nodes
have magnified the effect, making the sum total of ‘omics infor-
mation seemingly intractable. For example, the Human Protein
Reference Database (http://www.hprd.org) (Keshava Prasad et al.,
2009) contains information on a daunting 41,327 protein-protein
interactions (PPIs), and this is probably a lower estimate. Making
sense of the primary and derived information is arguably one of
the largest challenges in systems biology.

One approach is to use high throughput biological screening
technology to probe the nodes and networks, providing exper-
imental validation of the computationally determined networks.
Nearly five decades ago, the pharmaceutical industry refocused its
efforts on screening and has since developed advanced technol-
ogy, expertise, and chemical libraries, accelerating the production
of new drugs that have had an enormous impact on longevity
and quality of life (Kaye and Krum, 2007). A recent byproduct

of this activity has been the adoption of high throughput screen-
ing approaches in academia. Although the original screening
applications were target-centric, essentially designed to discover
molecules that interact with a known target, the last decade has
seen the development of assays designed to explore complex bio-
logical mechanisms including assays based on human induced
pluripotent stem cells (hiPSCs) to model cardiovascular disease
(Nsair and MacLellan, 2011; Mercola et al., 2013). Such assays
are typically phenotypic, meaning that they read out morphol-
ogy, behavior or physiology of cells in culture or even in whole
organisms such as zebrafish or Drosophila. The advantage of phe-
notypic screening as a discovery tool is that it probes a plethora of
biomolecules involved in a given phenotype. Phenotypic screen-
ing coupled to the identification of cellular proteins or genes
targeted in the screens is termed “chemical” or “functional”
genomics, depending on whether the library is a chemical or
a nucleic acid, respectively, by analogy to the unbiased evalua-
tion of the genome by classical “forward” genetic screening by
mutagenesis (Stockwell, 2000).

In this review, we discuss functional genomics technologies for
identifying cellular proteins and genes of interest, and applica-
tion of these approaches to sift through and validate the vastness
of information to gain meaningful insight into mechanisms of
complex phenotypes and diseases. Key among the technologies
is RNA interference (siRNA or shRNA) technology, which has
proven to be a powerful method to evaluate the function of can-
didate genes, and even screen entire genomes to reveal pathway
components that govern complex processes, including stem cell
identity (Chia et al., 2010) and sensitization of tumor cells to
chemotherapeutics (Whitehurst et al., 2007). By probing all genes,
whole-genome RNAi strategies offers a comprehensive alternative
to chemical screening to interrogate the vastness of the proteome,
estimated at over 1,000,000 total human proteins, including splice
variants, post-translational modifications and somatic mutations
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(Jensen, 2004). This number greatly overshadows the calculated
3000–10,0000 so-called “druggable” proteins, that have topologi-
cally defined drug-binding pockets that are considered desirable,
which includes enzymes, GPCRs, kinases, nuclear receptors and
ion channels (Overington et al., 2006). Targeting only these
classes, however, ignores many biologically interesting proteins
that play important roles in disease, such as transcription factors
and scaffold proteins (Stockwell, 2000; Crews, 2010).

In addition to unbiased siRNA or shRNA screens, we explore
the concept that miRNA screening might be a particularly
promising means of identifying critical proteins in biological con-
trol networks. miRNAs are endogenous, ∼22-nucleotide single-
stranded RNAs that selectively bind and suppress multiple mRNA
targets in the context of the RNA-Induced Silencing Complex
(miRISC). There are only about 2000 known miRNAs in the
human genome (http://www.mirbase.org), yet they are estimated
to regulate 60% of the total proteome (Friedman et al., 2009).
By governing translation and mRNA stability, miRNAs fine-
tune nearly every normal and pathological process examined
(Filipowicz et al., 2008; Bartel, 2009). In cardiovascular biology,
miRNAs control early embryonic development and adult disease,
exemplified by the essential roles of miR-1 and miR-133 in heart
development (Zhao et al., 2007; Liu et al., 2008) and miR-21 and
miR-208a in cardiac remodeling after myocardial infarction (Van
Rooij et al., 2007; Thum et al., 2008) and metabolism (Grueter
et al., 2012). Given their evolutionarily conserved, and arguably
optimized, role in regulating proteins that occupy critical nodes
in networks controlling complex biology (Shreenivasaiah et al.,
2010), we postulate that screening with miRNA libraries could
be used to elucidate disease-modifying mechanisms (Figure 1).
At least conceptually, the outcome of a miRNA screen can be
informative regardless of whether or not a particular miRNA is
normally involved in the process being probed. On the one hand
these screens may identify miRNAs that normally modulate bio-
logical phenomena, adding new dimensions to the miRNAome.
On the other hand, miRNAs, when ectopically expressed, will
downregulate proteins they do not normally regulate in a native
biological context. Thus, miRNA screening, like chemical library
screening, can reveal key regulatory proteins that elicit a given
phenotype. One major roadblock is the limited ability to identify

high confidence targets of miRNAs. If emerging technologies can
overcome this issue, miRNA screening might become a tremen-
dously powerful approach to elucidating systems-level control
networks and identifying critical node proteins that might be ide-
ally poised as drug targets. In this review we discuss the current
technologies for functional miRNA screening and target identifi-
cation, and consider the challenges that must be resolved in order
to achieve the potential offered by the approach.

FUNCTIONAL GENOMICS TECHNOLOGY
Oligonucleotide libraries offer an alternative to chemical libraries
for probing cardiovascular or other disease phenotypes. RNA
interference (siRNA or shRNA) technology functions by intro-
ducing a double stranded small interfering (siRNA) or short
hairpin (shRNA) RNA into the cell that basepairs with cognate
mRNAs in the RNA-induced Silencing Complex (RISC), targeting
the mRNAs for degradation.

Advances in oligonucleotide chemistry have improved siRNA
technologies. For instance, modifying the second position of siR-
NAs with 2’-O-methyl linkage significantly reduces off-target
effects that result when siRNAs act like miRNAs (i.e. tar-
get imprecisely base-paired mRNAs for downregulation by the
RISC) (Jackson et al., 2006). Other chemical or sequence mod-
ifications made to the ends of the oligonucleotide strands
dictate which strand of the oligonucleotide duplex become
packaged into RISC, reducing off-target effects caused by the
complementary strand (Schwarz et al., 2003). Furthermore,
it has become common to screen pools of multiple siRNAs
against a single mRNA target to increase the likelihood of
eliciting a phenotypic effect (Parsons et al., 2009). Modern
commercial siRNA libraries use these technologies to pro-
vide specific and potent knockdown of target genes. Examples
of genome-wide siRNA screening libraries include Stealth
RNAi™ and Silencer Select (Life Technologies), ON-TARGETplus
and siGENOME (ThermoScientific), AccuTarget (Bioneer), and
MISSION® siRNA (Sigma-Aldrich).

Compared to standard siRNAs, short hairpin RNA (shRNA)
offers multiple advantages. This technology uses lessons learned
from miRNA research, harnessing the cell’s miRNA biogenesis
machinery to process the hairpin into specific siRNA duplexes.

FIGURE 1 | Moderate throughput screening of miRNAs in cell-based

assays. Cells are transfected with individual miRNAs from a miRNAome
library in 384-well or other multiwell format (1). Following culture, either

image-based (shown) or plate-reader acquisition of data, and subsequent
analysis (2), profiles miRNAs by activity shown in a volcano plot (3), providing
a dataset for network analysis (4) and Figure 2.
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And, unlike many miRNAs, the shRNA sequences are typi-
cally optimized to ensure only one strand becomes packaged
into RISC. shRNA is most commonly delivered to cells by
transfection or infection using plasmid or viral vectors capa-
ble of providing long-lasting downregulation of target genes.
The first shRNA libraries used RNA Polymerase III to transcribe
the hairpin sequence (Berns et al., 2004; Moffat et al., 2006).
Subsequent studies, however, showed that design based on pri-
mary miRNA transcripts (pri-miRNA) gave improved efficiency
of siRNA packaging into RISC (Chang et al., 2006). Additionally,
primary miRNA transcript-based shRNAs are expressed via RNA
Polymerase II, allowing co-expression of fluorescent or drug-
selectable transgene markers from a single promoter. Another
powerful advance in shRNA technology is the use of pooled
barcoded shRNAs combined with high throughput sequencing
deconvolution, circumventing the need for multi-well plates, liq-
uid handling robots, and large amounts of reagents (Sims et al.,
2011). A variety of libraries are available commercially, each
utilizing slightly different design strategies and delivery vectors.
Examples include MISSION® (Sigma-Aldrich), BLOCK-iT™
(Life Technologies) DECIPHER (Cellecta – Free to academia),
and Decode Pooled Lentiviral shRNAs (Thermo Scientific).

LOGIC OF miRNAs AS SCREENING TOOLS
miRNAs make an intriguing starting point for phenotypic screen-
ing, as they have many desirable qualities that may allow identifi-
cation of pathways or networks involved in a particular process
that might not be found using single gene screening methods.
miRNAs co-evolved to regulate expression of the transcriptome
and proteome, and therefore have selective relationships with
their targets and the processes they regulate. Indeed, it is thought
that entire genomes have adjusted to the pool of miRNAs in each
organism by selectively removing potential target sites that, if
present in transcripts, would cause undesirable downregulation
that would be detrimental to the organism (Stark et al., 2005).
Perhaps the most useful aspect of miRNA-genome co-evolution
is that each miRNA typically targets numerous genes. Varying
estimates have been suggested using computational target pre-
dictions as guidelines, but most telling is that expression profiles
after miRNA overexpression or removal indicates that a large
portion of the transcriptome/proteome is under the control of
miRNAs, with each miRNA potentially regulating on the order
of hundreds of proteins (Filipowicz et al., 2008; Selbach et al.,
2008; Bartel, 2009; Friedman et al., 2009; Shirdel et al., 2011).
For instance, miR-223 is estimated by proteomics to affect the
expression of more than 200 genes in neutrophils alone (Baek
et al., 2008). On the other hand, deletion of certain miRNAs cause
no discernible developmental phenotypes (Miska et al., 2007;
Alvarez-Saavedra and Horvitz, 2010), indicating that they affect
only a small number of targets which are relatively specialized
or that their effect on their targets is only a small percentage of
the total expression level. These miRNAs, especially those that
are evolutionary ‘newborns’ (i.e. found only in one species or
genus), may function mainly to buffer expression of their tar-
gets against fluctuation due to intrinsic and extrinsic factors, and
have for this reason been termed “canalizing” miRNAs (Wu et al.,
2009).

From a systems biology and drug target identification perspec-
tive, the most remarkable feature of miRNAs is that they often
target proteins at the nodes of important regulatory pathways
(Shreenivasaiah et al., 2010; Ichimura et al., 2011). Moreover,
many miRNAs, especially those conserved within vertebrates,
govern multiple proteins within a single pathway (Cui et al.,
2006; Ichimura et al., 2011; Sass et al., 2011; Shirdel et al., 2011).
Consequently, these miRNAs function as physiological or devel-
opmental switches that fine-tune the proteome of a given cell
or tissue. Specific cases include the regulation of Wnt signal-
ing components by miR-34 (Kim et al., 2011), regulation of
alternative splicing by miR-23 (Kalsotra et al., 2010), regulation
of the p53 network by miR-125b (Le et al., 2011), regulation
of phosphatidylinositol- 3-OH kinase (PI(3)K)–AKT signaling
(Small et al., 2010), and suppression of smooth muscle specific
proteins in cardiomyocytes (Liu et al., 2008). miR-21 targets
PPAR alpha pathway in modulating flow-induced endothelial
inflammation (Zhou et al., 2011) and miR-23b is involved in
endothelial cell growth (Wang et al., 2010).

Since miRNAs govern such large-scale changes in translation,
it is perhaps not surprising that they have been found to be
involved in nearly every normal and pathological process exam-
ined so far (Filipowicz et al., 2008; Bartel, 2009). Given the
evolutionarily strategic position of miRNAs and their ability to
directly control expression of a large portion of the proteome
through simultaneous targeting of multiple genes, they poten-
tially offer an efficient means to interrogate critical processes and
the potential to identify genes of interest for phenotypes which
may not be affected by the single gene mutation or knockdown
approaches typical of most classical genetic or even chemical
biology and si/shRNA screening methods. As an example, recent
whole genome miRNA screens have led to the discovery of miR-
NAs and target genes that allocate mesoderm and ectoderm as
distinct from endoderm in the early embryo (Colas et al., 2012),
modulate cardiomyocyte hypertrophy (Jentzsch et al., 2012), and
regulate cell cycle re-entry of adult cardiomyocytes (Eulalio et al.,
2012).

Cancer is another area where microRNA screening might
reveal unanticipated therapeutic targets. For instance, recent
whole-genome miRNA screen identified miR-16, miR-96, miR-
182, and miR-497 as potent inhibitors of melanoma cell prolif-
eration and viability (Poell et al., 2012), suggesting that mimics
of these miRNAs optimized for use in human patients could be
important therapeutic molecules. In addition to understanding
the transformed state, an important aspect of cancer research
where miRNA screening could be useful might be in deciphering
the cellular pathways and proteins that mediate drug resistance,
which could suggest combinatorial drug action, such as been
recently addressed through proteomics (Erler and Linding, 2012).
We expect that, in the near future, miRNA screens will discover
many phenotype-modifying genes that would not and have not
been identified through siRNA and chemical screens, as well as
identify numerous miRNAs whose involvement in disease phe-
notype, progression or drug-responsiveness will provide new
therapeutic targets.

Many libraries are available commercially that allow screen-
ing using miRNA mimics either in hairpin or duplex format for
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the majority of known miRNAs of variety of model organisms.
The oligonucleotide mimics are typically chemically modified
in a manner similar to the siRNA products described above
so that one strand is preferentially packaged into the RISC.
Examples include Ambion® Pre-miR Precursors and miRvana™
miRNA mimics (Life Technologies), MISSION® (Sigma-Aldrich),
miRIDIAN (Thermo Scientific). Unlike siRNA/shRNA screen-
ing, in which the gene affecting the phenotype is known a priori
(although the mRNA target must be confirmed) the degeneracy
of miRNA:mRNA interactions means that screening campaigns
must include steps to identify the mRNA target(s) responsible for
the phenotype. Below we discuss computational and biochemi-
cal methods currently used for target identification, their efficacy,
and possible ways to improve the pipeline from screen dataset to
target knowledge (Figure 2).

COMPUTATIONAL APPROACHES TO TARGET
IDENTIFICATION
The development of computational tools for miRNA target
prediction began in the early 2000’s shortly after the discov-
ery that miRNAs are pervasive members of animal genomes
(Lagos-Quintana et al., 2001). Currently, many different tools
are available, most utilizing a common set of concepts to inform
their prediction algorithms, such as seed-match (complementar-
ity between the 5′ of the miRNA—typically bases 2–8—and the
bases in 3′ untranslated region (3′UTR) of an mRNA), evolution-
ary conservation of target sites and thermodynamic (free-energy)
considerations for the interaction [Table1; for in depth reviews
see (Alexiou et al., 2009; Xia et al., 2009; Witkos et al., 2011)].

The initial algorithms turned out to provide high sensitivity
but low specificity (high rate of false-positives). One approach

FIGURE 2 | Computational and experimental strategies to identify

miRNA targets. miRNAs target multiple proteins, and in certain instances
a single family of miRNAs target multiple proteins involved in a common
biological process, through imprecise basepairing with recognition
sequences in mRNA (see text). Commonly used computational and
biochemical approaches to identify targets are summarized along with
focused strategies for confirming direct interaction of a miRNA with
particular mRNA targets.

to solve this problem has been to prioritize targets predicted
by multiple algorithms; however, taking the intersection (rather
than union) leads to a corresponding loss of sensitivity (Alexiou
et al., 2009). Developing advanced algorithms to take contex-
tual cues into account would be a major advance. Some new
algorithms strive to incorporate more comprehensive feature
sets from experimental data and/or machine learning to try to
improve the ratio of sensitivity to specificity. An improved ver-
sion of TargetScan (Lewis et al., 2005), called TargetScanS, uses 6
instead of 7 nucleotide seed match followed by an A-anchor and
incorporates information on the surrounding mRNA sequence
to compute a context score which models the relative contri-
butions of previously identified targeting features, including site
type, site number, site location, local A+U content and 3′-
supplementary pairing (Grimson et al., 2007; Garcia et al., 2011).
An improved context-score called context+ score also consid-
ers target-site abundance and seed-pairing stability (Garcia et al.,
2011). A multiple linear regression model was trained using 11
microarray data sets, and the context+ scores performed bet-
ter than previous models. miRTarget2 is an improvement of the
original miRTarget algorithm and uses a support-vector machine
learning (SVM) algorithm to build prediction models based on
a set of 131 features including seed conservation, other seed
types, base composition, and secondary structure (Wang and
El Naqa, 2008). SVMicrO is an SVM-based recent algorithm
for miRNA target prediction in animals which tries to improve
both sensitivity and specificity of prediction by using positive
and negative target data for training the classifier (Liu et al.,
2010). The algorithm increases sensitivity by only requiring a
5 basepair seed-match, and is trained using about 1000 posi-
tive miRNA-target pairs and microarray data-based 3500 negative
miRNA-target pairs. The authors have shown a better true posi-
tive rate for SVMicrO as compared to many other popular algo-
rithms on both the training data as well as a separate proteomic
test data.

BIOCHEMICAL AND PROTEOMIC APPROACHES TO TARGET
IDENTIFICATION
Despite these advances, computational prediction of miRNA tar-
get sites in mammals are generally considered too error-prone
to be used as the sole means of target identification, reviewed
in Alexiou et al. (2009). We ascribe the problem to the fact that
miRNA-mRNA pairing “rules” of most computational prediction
algorithms were determined based on a small number of known
targets discovered through genetic mutations and by observing
changes in target regulation after abrogation of the interaction by
site-directed mutation of the recognition sequence. As discussed
above, contextual cues that influence site accessibility include
sequences surrounding the recognition site and RNA-binding
cofactors present in the cell. It is too soon to tell whether the inno-
vations in algorithm design described in the preceding section will
remedy this situation, but given that they are unlikely to model
the influences of the cellular context, we expect that the problem
of false positives and negatives will remain a serious issue. Thus,
while many true targets have been discovered using various target
prediction algorithms, they probably comprise a small percentage
of the total regulatory network of the miRNA pathway.
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Table 1 | Commonly used computational tools and algorithms for identification of miRNA targets.

Software/tools Evolutionary

conservation

Base-pairing/seed-

match

criteria

Surrounding

sequence

Energy

consideration

Additional

filters/rules/learning

using microarray

data

TargetScan Across vertebrates:
human, mouse and
rat

7-nt (W-C
complementarity for
bases 2-8 of miRNA)

Seed-match extended
on both sides

Yes, z-score to energy
of miR-target
interaction

No

TargetScanS Similar; dog and
chicken as well

6-nt and A-anchor
G-W wobble pair
allowed

Yes Yes Latest version can use
context information.

miRanda D. melanogaster, D.
pseudoobscura and
A. gambiae; now
extended to mouse,
human and fish

7-nt and weighted
seed-match

Yes No

Diana-microT 5- to 7-nt, conditional
G-W wobble pair and
bulge allowed

Uses a 38-nt sliding
window

Yes, uses as a filter to
find miRNA3′-UTR
pairs

Specialized for target
mRNAs with single
miRNA recognition
element

PicTar vertebrates, flies and
nematodes

7-nt Yes Finds common targets
of several miRNAs
using combinations of
transcription factor
binding sites.

miRTarget,
miRTarget2 and
miRDB

Yes 7-nt Yes, duplex stability Uses microarray data
for positive and
negative targets. SVM
is used in miRTarget2
to incorporate features
such as other seed
types, base
composition, and
secondary structure.

SVMicrO Yes 5-nt to increase
sensitivity

Yes Yes Similar to miRTaget2.
Bayesian approach is
also used.

Abbreviation: W-C, Watson-Crick; SVM, support-vector machine.

TRANSCRIPTOMICS AND PROTEOMICS TECHNIQUES
The first attempt at biochemically boot-strapping the identifi-
cation of miRNA targets at a transcriptome scale assayed the
total change in mRNA expression profile by microarray analy-
sis caused by transfection of single miRNAs into human cells
(Lim et al., 2005). In this case, transfection of either miR-1
or miR-124 shifted mRNA expression such that there was a
greater resemblance to the natural profile of seen muscle or
brain, the organs that normally express these miRNAs during
development. Subsequent microarray studies looked at global
changes in mRNA expression resulting from single miRNA over-
expression, depletion, genetic mutants, and depletion of all
miRNAs through mutations in the miRNA biogenesis pathway

(Giraldez et al., 2006; Linsley et al., 2007). These early analyses
proved that microarray profiling can provide a first approxi-
mation of the genes regulated by single or multiple miRNAs,
consistent with the observation that the majority of changes
in protein levels induced by miRNA regulation are attributable
to changes in mRNA expression (Guo et al., 2010). However,
as with microarray transcriptome analysis of transcription fac-
tor mutants, these analyses alone cannot reveal whether genes
are the direct targets of the miRNAs, or are affected indi-
rectly by factors downstream of the primary effector molecules.
Although upregulated genes are unlikely to be directly affected
by miRNA activity and can be excluded as direct targets, down-
regulated genes must be analyzed in greater detail to determine
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whether or not they are targeted directly by the miRNA(s) in
question.

The simple comparison of downregulated transcript sets with
the computationally predicted mRNA target sets has yielded
poor correlations (Alexiou et al., 2009). While sequences of
downregulated mRNAs are often enriched for “seed” comple-
mentary sequences, this is not always observed. For instance,
downregulated genes lacking “seed” matches may be secon-
darily affected by changes in direct target genes, but they
can also be direct targets which harbor less common types
of miRNA target sites, such as 3′ compensatory (Brennecke
et al., 2005) centered sites (Shin et al., 2010), or other non-
canonical binding structures (Helwak et al., 2013). Whether
a transcript is a direct target of a particular miRNA may
or may not be relevant to the goals of an individual screen
experiment. However, if this knowledge is required, subsequent
experiments will be needed to confirm a direct miRNA:mRNA
interaction. Typically, confirmation is based on abolishing reg-
ulation by mutation of the miRNA recognition site within the
mRNA, and an alternative is to mask the binding site with a
complementary oligoribonucleotide, preventing miRNA bind-
ing and mRNA degradation (for example, see Colas et al.,
2012).

Quantitative proteomics is an analogous target discovery strat-
egy that has gained traction in recent years, as it provides a
direct readout of the ultimate effect of miRNA activity (Vinther
et al., 2006; Baek et al., 2008; Yang et al., 2009, 2010; Chen
et al., 2011; Yan et al., 2011). This method provides an advantage
over microarray analysis, since it can detect changes in expres-
sion levels of a protein even when its cognate mRNA is not
downregulated at an appreciable level. Early instances include
an analysis of miR-1 in HeLa cells (Vinther et al., 2006), an
analysis of miR-1, 124, and 181 in HeLa cells and miR-223
in mouse knockout neutrophils (Baek et al., 2008), and subse-
quent studies have examined miR-21 and miR-143 (Yang et al.,
2009, 2010). An example of an advanced proteomics analysis
is a recent study that used Stable Isotope Labeling by Amino
acids in Cell culture (SILAC) to detect differences in protein
expression induced by the overexpression of miR-34a and miR-
29 (Bargaje et al., 2012). Although a number of proteins related
to the biological function of the miRNAs in apoptosis were
found to change, the study discusses several limitations. Chief
among these is that miRNAs often only reduce target protein
levels by 30–60% (Hendrickson et al., 2009) meaning that com-
monly applied thresholds (e.g., 2-fold) are inappropriate and a
more robust statistical analysis is needed. In addition, variation
in protein stability might require analyses at multiple timepoints.
Finally, only about 10% of the proteins detected as downregu-
lated by Bargaje et al. for miR-34a and miR-29 were also predicted
by the consensus of 5 computational algorithms (Bargaje et al.,
2012), highlighting the need for evaluating potential indirect
effects (in addition to validating potential targets). Finally, as for
microarray analyses, many interesting targets might be missed
due to low abundance. Nevertheless, even at current depths, the
recent studies suggest that proteomics analysis can yield a num-
ber of targets that could feed a validation and systems analysis
pipeline.

IMMUNOPRECIPITATION-BASED TARGET IDENTIFICATION
TECHNIQUES
Biochemistry-based experiments have been developed to directly
identify the target sequences bound by miRNAs. The first
attempts of this type of assay immunoprecipitated the RISC com-
ponents, and then performed microarrays or RNA sequencing
to identify the captured mRNAs (Beitzinger et al., 2007; Easow
et al., 2007; Zhang et al., 2007; Hendrickson et al., 2008). Such
methods are promising since they should be able to identify
the direct targets of mRNAs. A number of procedural modifica-
tions have improved the initial process to reduce false positive
rates and increase the depth and specificity of targets discov-
ered. These methods, referred to as Argonaute CLIP-Seq (Zisoulis
et al., 2010) or Argonaute HITS-CLIP (Chi et al., 2009), utilize
cross-linking prior to immunoprecipitation to firmly associate
target mRNAs with miRISC. After immunoprecipitation, exposed
RNA ends not covered by RISC protein are enzymatically cleaved
before linkers are ligated to the bound RNA and then processed
using deep sequencing. After sequencing, high tag count segments
are deemed to be bonafide miRNA target sites, which are then
matched computationally to individual transcripts.

Analysis of the putative recognition sites discovered by these
methods indicated that not every enriched sequence has a good
“seed” match to known miRNAs. This may be in part due to
unknown miRNAs being present in the genome, but recent mass
sequencing efforts suggest that the vast majority of miRNAs
have been discovered in the major model organisms. The most
likely explanation, therefore, is that the contextual cues and non-
canonical pairing indeed play important roles in determining
miRNA-mRNA recognition, and the data from these experiments
are helping to re-define the miRNA-mRNA binding rules (Elefant
et al., 2011; Wen et al., 2011).

Additional refinements to the immunoprecipitation approach
have improved specificity and sensitivity. PAR-CLIP (Hafner
et al., 2010) and miR-TRAP (Baigude et al., 2012) both include
photoactivatable ribonucleosides in transfected miRNA mimics
to allow specific cross-linking sites and higher wavelength cross-
linking, which is less harmful to cells and improves RNA recovery.
The PAR-CLIP method has been used to achieve single nucleotide
resolution of the binding site due to the specificity of the cross-
linking. Modifications to denaturing conditions and the nuclease
digestion of extraneous RNA can improve data by reducing biases
resulting from conditions used in previous methods (Kishore
et al., 2011).

These approaches often rely on overexpression of a particular
miRNA to load the RISC. The over-representation of a specific
miRNA in active RISC can cause off-target interactions, pos-
sibly influenced by dosage and elevated contribution of seed
sequence similarity to miRNA:mRNA association (Birmingham
et al., 2006; Arvey et al., 2010). This phenomenon, however,
might recapitulate the function of the overexpressed miRNA in
the screen assay itself, and thus may be relevant to the identifi-
cation of targets. Conversely, endogenous miRNA programmed
RISC will always comprise some percentage of the total data.
Both errors will introduce false positives. The miR-TRAP method
seeks to avoid this issue by inclusion of a biotin tag on trans-
fected miRNA in an effort to select only for complexes containing
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specific miRNAs (Baigude et al., 2012). Perhaps most promising
of new technologies, crosslinking, ligation, and sequencing of
hybrids (CLASH) of RNA pulled down with AGO complexes,
may provide the ability to simultaneously discover mRNAs being
downregulated by RISC and the specific miRNA(s) which tar-
get them, as a miRNA sequence and a fragment of its targeted
RNA sequence will be ligated together and sequenced as a single
chimeric sequence (Helwak et al., 2013).

Although these immunoprecipitation-based methods can pro-
vide quantitative data about miRNA-target binding, their main
drawback is that they do not quantify the extent of mRNA
or protein downregulation. For this reason, a combination of
proteomic/transcriptomic profiing with the direct immunopre-
cipitation methods might offer the best quality datasets for
constructing miRNA-target interaction networks. A meta anal-
ysis of microarray data from miRNA transfection experiments
compared to Argonaute CLIP-Seq data not surprisingly showed
only partial overlap (Wen et al., 2011), presumably reflecting
the inherent biases of each method. Such discrepancies might
be predictive of direct versus indirect effects of miRNAs against
target mRNAs or proteins. Furthermore, investigation of the
dose-dependent effects of miRNAs against targets will likely be
important for appreciating how a miRNA or anti-miRNA thera-
peutic will behave in vivo, in particular whether or not there are
potentially beneficial or harmful dosage effects.

BUILDING AND VALIDATING NETWORKS
Functional screening of miRNA mimics generates a list of miR-
NAs that, when overexpressed, affect the desired phenotype to
varying degrees. In our experience, screening about 900 miRNAs
in a commercial mRNA mimic collection against a phenotypic
assay results in between 30 and 200 statistically significant hits,
(e.g., Colas et al., 2012), consistent with results from other com-
plex biological assays such as (Eulalio et al., 2012; Jentzsch et al.,
2012). The hits can be prioritized according to experimental goals
(e.g. filtered by expression within a target tissue). Once the targets
are identified through the strategies described above, they can be
mapped to the human PPI network. From the human PPI, a sub-
network is obtained by retaining the edges in which one of the
nodes is in the target list (Figure 3). This amounts to retaining all
the nodes in the PPI that directly interact with at least one target
gene. One can define rules about which nodes and edges from the
PPI should be included. For example, one may retain only those
edges in which both nodes are in the target list or those that are
functionally associated. This may result in a much more sparse
network.

How well do predicted networks reflect reality? A recent study
Becker et al. (2012) shows that miRs are encoded in the genome
as individual miRNA genes or as gene clusters and transcribed
as polycistronic units. These authors estimated that about 50%
of all miRNAs are co-expressed with neighboring miRNAs and,
most importantly, that these clusters coordinately regulate mul-
tiple members of protein-protein interaction network clusters.
Another study (Alshalalfa et al., 2012) showed that combin-
ing protein functional interaction networks with miR detection
revealed several miR-regulated interaction modules that were
indeed enriched in focal adhesion and prostate cancer pathways,

and yet another used screen data to reveal miRNA control of p53
(Becker et al., 2012). Illustrative of such recent efforts to deduce
high quality PPIs from miRNA screen datasets is the control of
epithelial to mesenchymal transition by miR-200 family (Sass
et al., 2011). The study first used an in silico approach compar-
ing miRNA target sites from published PAR-CLIP dataset (Hafner
et al., 2010) to proteomics datasets (Baek et al., 2008; Selbach
et al., 2008) to conclude that miRNAs have a propensity to target
proteins involved in multi-protein complexes. Furthermore, they
showed that protein complexes are coordinately regulated by clus-
ters of miRNAs, a conclusion supported by an analysis of miRNAs
that regulate transcription factor response elements in cell culture
(Becker et al., 2012). To probe the notion that miRNA clus-
ters coordinately control biological processes, Sass et al. (2011)
went on to show that additional members of the transcriptional
complex controlling E-cadherin, in addition to previously iden-
tified members, are under coordinate control by miRNAs that
reside within the miR141-200c cluster. Although these pioneering
studies support the idea that combining proteomics-based target
identification with a network-based strategy can be used to con-
struct reliable miRNA:protein interaction networks, it should be
emphasized that the validation has been sparse, and that large-
scale approaches, such as by siRNA screening, are needed to
evaluate the veracity of the regulatory networks.

SUMMARY AND PROSPECTS
Several features of miRNAs make functional, whole miRNAome
screening attractive as a platform to generate systems-level
descriptions of complex biological regulatory networks and help
interpret the massive transcriptome datasets emerging in all areas
of biology. First, the total number of miRNAs is relatively few
compared to siRNA or chemical libraries; yet, because of target
recognition degeneracy, the miRNAome regulates a large propor-
tion of the proteome. Second, since miRNA recognition of mRNA
transcripts is sequence based, the identification of mRNA tar-
gets poses fewer problems than associated with identification of
relevant targets of small molecules from chemical screens (Rix
and Superti-Furga, 2009), although methods for high through-
put identification of miRNA targets remain costly and far from
robust. Third, based on co-evolution of miRNAs and the net-
works they control, it is tempting to speculate that the nodes
targeted by the miRNAs might be selective for particular biolog-
ical processes, and hence comprise good points for therapeutic
intervention.

Currently, screening technology combined with the availabil-
ity of miRNA and si/shRNA libraries make it straightforward to
design and implement a moderate throughput whole genome
miRNAome or si/shRNA transcriptome screen (Figure 1). This
includes iPSC-based disease models, which offer an unprece-
dented ability to interrogate disease relevant processes and reveal
potential new drug targets. The bottleneck today is target identifi-
cation. Ideally, proteomics datasets should provide clear and con-
sistent results from over-expression of miRNAs. Unfortunately,
there is considerable variation between datasets obtained from
proteomics analysis of the same miRNA assayed by overexpres-
sion in the same cells. For instance, comparison of the pro-
teins downregulated by miR-34a (by Bargaje et al.) revealed
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only 5 proteins in common out of 3365 (Bargaje et al., 2012)
and 1495 (Chen et al., 2011). Similarly, Shirdel et al. (Shirdel
et al., 2011) compared the results of miR-124 overexpression
and found only 10 common targets from 3 experiments, com-
prising only 3.7% of the smallest dataset. Similarly, the gen-
eral conclusion about computational prediction resources is that
none alone can perfectly identify mRNA targets, even when
mRNAs are filtered by analysis (e.g. microarray type) and cell
type (Baek et al., 2008; Selbach et al., 2008; Shirdel et al.,

2011). Nonetheless, our experience is consistent with the con-
clusion of Shirdel et al. that the current methods are suitable
to provide an initial prediction, and this is aided by recent
resources such as mirGator and mirDIP that integrate sev-
eral up-to-date miRNA target prediction databases. In practice,
PPI networks are often constructed from targets from multiple
prediction algorithms, see discussion in (Alexiou et al., 2009;
Shirdel et al., 2011). Furthermore, we use moderate through-
put siRNA screening against individual pathway components

FIGURE 3 | Pipeline for iterative process of network construction and

confirmatory screening of key nodes. The screen dataset (as in
Figure 1) is filtered and used for construction of the preliminary network.
We propose that it is beneficial to evaluate individual protein nodes by
screening specific si/shRNAs, pharmacological inhibitors or by protein
overexpression. Similarly, miR:protein interactions can be validated by
monitoring protein levels and direct interaction confirmed by site-directed
mutagenesis of the recognition elements in the mRNAs (see text). The

confirmatory cycles lead to a refined dataset and network. Statistical
significance of screen hits can be relaxed because of the confirmatory
process. The interactome shown contains miRNAs (yellow) found in a
screen to result in SERCA2 (ATP2A2) (green) inhibition >30%, p < 0.05,
are evolutionarily conserved, and are upregulated in human heart failure.
Inset: SERCA2 (node enlarged) centric network showing interaction with
miR92b and miR-142-3b that were determined by confirmatory screening
to target SERCA2 (unpublished data).
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to confirm the validity of predicted PPIs (Figure 3) (Colas et al.,
2012).

Finally, functional miRNA screening is a potentially powerful
method of identifying miRNAs and PPIs that control complex
biological processes. Although miRNA screening is mainly con-
sidered as a strategy to reveal miRNAs that naturally control
biological processes, we propose a more expanded view, and sug-
gest that miRNA screening also has the potential to interrogate
biological networks even if the active miRNAs are not natural reg-
ulators. Like chemical and si/shRNA functional genomics screens,
miRNAs screening, coupled to target identification and iterations

of PPI network construction, validation and refinement, might
offer an attractive pipeline to interrogate complex biology.
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Blood systems biology seeks to quantify outside-in signaling as platelets respond to
numerous external stimuli, typically under flow conditions. Platelets can activate via GPVI
collagen receptor and numerous G-protein coupled receptors (GPCRs) responsive to ADP,
thromboxane, thrombin, and prostacyclin. A bottom-up ODE approach allowed prediction
of platelet calcium and phosphoinositides following P2Y1 activation with ADP, either for a
population average or single cell stochastic behavior. The homeostasis assumption (i.e., a
resting platelet stays resting until activated) was particularly useful in finding global steady
states for these large metabolic networks. Alternatively, a top-down approach involving
Pairwise Agonist Scanning (PAS) allowed large data sets of measured calcium mobilization
to predict an individual’s platelet responses. The data was used to train neural network
(NN) models of signaling to predict patient-specific responses to combinatorial stimulation.
A kinetic description of platelet signaling then allows prediction of inside-out activation of
platelets as they experience the complex biochemical milieu at the site of thrombosis.
Multiscale lattice kinetic Monte Carlo (LKMC) utilizes these detailed descriptions of
platelet signaling under flow conditions where released soluble species are solved by
finite element method and the flow field around the growing thrombus is updated
using computational fluid dynamics or lattice Boltzmann method. Since hemodynamic
effects are included in a multiscale approach, thrombosis can then be predicted under
arterial and venous thrombotic conditions for various anatomical geometries. Such
systems biology approaches accommodate the effect of anti-platelet pharmacological
intervention where COX1 pathways or ADP signaling are modulated in a patient-specific
manner.

Keywords: platelet, thrombosis, hemodynamic, ADP, thromboxane

INTRODUCTION
A systems biology approach for platelets seeks to predict
kinetic processes during clotting or bleeding episodes. A mul-
tiscale modeling framework should facilitate the bridging of
genomics/proteomics studies with platelet phenotype and vessel
pathophysiology under hemodynamic conditions. Such a frame-
work should quantify risks and severity of such episodes for a
given phenotype/genotype as well as the safety and efficacy of
pharmacological intervention.

PLATELET GENOMICS
Genome-wide association studies (GWAS) have found rather
modest associations of SNPs (single nucleotide polymorphisms)
with thrombosis or vascular disease (Wellcome Trust Case
Control Consortium, 2007; Ouwehand, 2007). A GWAS focused
specifically on coronary artery disease (CAD) identified 4 loci
linked to CAD (Samani et al., 2007), but mechanistic understand-
ing of these SNPs awaits exploration and may not necessarily be
platelet-linked. Jones et al. (2007) measured platelet response,
calcium mobilization, aggregometry, and FACS determination of
response to ADP or GPVI activation with collagen-related peptide
(CRP) in 506 healthy volunteers to define inter-individual vari-
ability. Importantly, SNPs in the GP6 locus were linked to about
35% of the variation in response to CRP. Variability in response
to ADP was associated with polymorphisms in the platelet P2Y12

receptor (Fontana et al., 2003). However, it currently remains dif-
ficult to use GWAS or genotyping information to predict risk
for a specific patient. Greliche et al. (2013) conclude from their
genome-wide SNP interaction analysis that common SNPs were
unlikely to have strong interactive impact on the risk of venous
thrombosis. Few if any genomic studies quantitatively predict an
individual’s blood function during clotting or bleeding disease
scenarios under hemodynamic conditions.

PLATELET TRANSCRIPTOME AND PROTEOMICS
Platelets contain a microRNA (miR) pool and a translatable
mRNA pool that declines with a platelet’s age in the circula-
tion. McRedmond et al. (2004) identified 2928 mRNA species
using Affymetrix arrays. Many of the top 50 most abundant
platelet mRNAs correlated with secreted or membrane proteins
such as β2-microglobulin, platelet factor 4, factor XIII, GPIb,
αIIb, etc. Similarly, Gnatenko et al. (2003) found 2147 mRNA
species and Bugert et al. (2003) found 1526 mRNA species in
purified platelets. More recent direct sequencing methods iden-
tified ∼9000 mRNA species in platelets (Bray et al., 2010),
more comparable in size to the transcriptome of megakaryocytes.
Also, platelets contain a functional spliceosome. For example,
the processing of tissue factor (TF) mRNA and translation of
TF upon platelet activation was found in activated platelets
(Schwertz et al., 2006), although TF activity was only detectable
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in sonicated platelet membranes. The human platelet proteome
has been examined and an important web-based resource is now
available to explore protein-protein interactions within platelets
(Boyanova et al., 2011).

Inter-individual variation in platelet reactivity, even in a nor-
mal population, has been associated with a number of factors
including: female gender, fibrinogen level, ethnicity, inherited
variations, and polymorphisms (Hetherington et al., 2005; Bray,
2007). Unfortunately, no single genomic or proteomic factor
is a strong predictor of hyper-reactivity in typical subjects and
the need for advanced functional phenotyping motivates the
development of systems biology tools to quantify blood function.

CLOTTING UNDER FLOW CONDITIONS
Collagen is sufficient to capture and activate platelets under
venous wall shear rates (γw ∼100–200 s−1). In the arte-
rial circulation (γw ∼1000–2000 s−1), collagen adsorbed von
Willebrand factor (vWF) facilitates platelet capture, allowing col-
lagen induced GPVI signaling and subsequent α2β1 and α2bβ3

activation. Under flow conditions, red blood cells help enrich the
platelet concentration by ∼3–8× in the plasma layer near the wall.
At pathological high shear exposures (>5000 s−1) encountered in
severe stenosis, mechanical heart valves, and continuous LVAD
pumps, the plasma vWF may undergo structural changes such as

a transition from a globular to an extended state (Schneider et al.,
2007), likely increasing the availability of A1 domains in the vWF
polymer for multivalent contacting with platelet GPIb receptors.
Interestingly, severe stenosis and LVAD pumps can lead to an
acquired von Willebrand disease, demonstrating the importance
of local hemodynamics on the systemic circulation.

GROWTH OF THE PLATELET AGGREGATE VIA AUTOCATALYTIC
SIGNALING
Collagen triggers GPVI clustering, leading to rapid phosphory-
lation of the GPVI-associated Fc receptor by Src family tyrosine
kinases. Such phosphotyrosine residues are recognized by Syk,
and the binding and activation of Syk activates PLCγ2. PLCγ2

converts phosphatidylinositol (PI)-4,5-P2 (PIP2) to inositol 1,4,5-
trisphosphate (1,4,5-IP3 or IP3) and diacyclglycerol (DAG). IP3

opens Ca2+ channels in the platelet dense tubular system (DTS).
Depletion of DTS Ca2+ results in STIM1 activation and bind-
ing to Orai1, leading to store operated calcium entry (SOCE).
DAG/Ca2+ activates protein kinase C (PKC) in platelets, which
in turn governs several serine/threonine phosphorylation events.

Beyond the first monolayer of platelets adherent to colla-
gen/VWF, the addition of subsequent layers of platelets to the
growing thrombus is strongly potentiated by locally released ADP
and thromboxane (TXA2) as well as locally generated thrombin.

FIGURE 1 | Detailed reaction schemes for platelet signaling modules.

Four interconnected models were defined: (A) Ca2+ module: cytosolic
and DTS compartments are separated by the DTS membrane, which
contains the IP3R and SERCA. (B) Phosphoinositide (PI) module:
Membrane-bound PIs are cleaved by PLC-β to form diffusible inositol
phosphates and DAG, which are substrates for resynthesis of PIs. (C)

PKC module: Ca2+
i and DAG activate PKC, which migrates to the

plasmamembrane where it phosphorylates PLC-β. (D) P2Y1 module:
extracellular ADP binds to and activates P2Y1. Active P2Y1 accelerates
guanine nucleotide exchange on bound Gq. The Gq·GTP binds and
activates PLC-β, which increases the GTPase activity of Gq·GTP.

Molecular kinetic descriptions are embedded in the signaling modules
for: (E) SERCA catalytic cycle (Dode et al., 2002): Subscripts: E1, facing
cytosol; E2, facing DTS; P, phosphorylated. (F) IP3R dynamics (Sneyd
and Dufour, 2002): Subscripts: n, native; i1, inhibited; o, open; a, active;
s, shut, i2, inhibited. (G) PKC activation: Active kinase is bound to
Ca2+

i and DAG and located at the PM. Subscripts: M, located at the
PM; C, Ca2+-bound; D, DAG-bound. (H) P2Y1 activation module: Rate
equations describing the interactions among ADP, P2Y1, and Gq were
modeled according to the ternary complex model described in
Kinzer-Ursem and Linderman (2007). Abbreviations: A, ADP; P, P2Y1; G,
Gq. ∗Ca2+ both activates and inhibits IP3R.
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ADP activates P2Y1 and P2Y12 while TXA2 activates the TP
receptor and thrombin cleaves PAR1 and PAR4. Activation of a
GPCR causes an exchange of GTP for GDP on the α subunit of
the G protein and dissociation of the α and βγ subunits. Both
these units in turn interact with secondary effectors such as PLCβ

and adenylate cyclase. Human platelets express at least 10 forms
of Gα (including members of the Gq, Gi, G12, and Gs fami-
lies) (Brass et al., 2006; Offermanns, 2006). Thrombin, ADP, and
TXA2 activate PLCβ via Gq. PLCβ generates IP3 from membrane
PIP2. Rising Ca2+ levels activate the Ras family member, Rap1B
via Cal-DAG GEF. Rap1B activation is a precursor to αIIbβ3 acti-
vation and allows the platelets to form aggregates with other
platelets through fibrinogen cross-bridging. Ca2+-dependent sig-
naling drives myosin light chain kinase and activation of GTP

binding proteins of the Rho family (Klages et al., 1999). Rho acti-
vation in turn activates kinases like p160ROCK and 5 LIM-kinase
that can phosphorylate myosin light chain kinase and cofilin
to regulate actin-dependent cytoskeletal shape changes (Pandey
et al., 2006).

Endothelial derived prostacyclin (PGI2) binds the IP recep-
tor and causes Gs mediated increase in adenyl cyclase activity.
Also, NO from the endothelium and platelets can activate guany-
late cyclase resulting in elevated cGMP levels that subsequently
inhibit the hydrolysis of cAMP by intracellular phosphodi-
esterases. Taken together these mechanisms elevate intracellular
cAMP levels, which strongly downregulate platelet signaling.
Agonists coupled to Gi family members inhibit cAMP production
in platelets, thus allowing activation to proceed unhindered (Yang

FIGURE 2 | Homeostasis requirement: Assembly of full model from

steady-state modules using principle component analysis (PCA). The
full model is assembled by combining PCA-reduced, steady-state solution
spaces from each module into a combined steady state solution space.
This global space is searched for full-length, steady-state solution vectors
that satisfy both the steady state requirements of each module and the
desired time-dependent properties when the steady-state is perturbed. A
simple linear constraint is imposed for every pair of modules that share
a common molecule ci to ensure that steady state solutions are

consistent. To assemble the platelet signaling model, a set of 16 PC
vectors representing all 72 unknown variables in the model were used as
search directions in a global optimization routine. The global solution
space was searched for models with accurate dynamic behavior using
experimental time-series data for ADP-stimulated Ca2+ release. Species
are grouped according to compartment. Color values correspond to molar
concentrations (mol/L or mol/m2) or as indicated: ∗DTS species (mol
L−1). †Extracellular species (mol L−1). ‡DTS volume (L). §PM leak
conductance/area (S m−2).
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et al., 2002). Additionally the βγ subunits of these receptors can
activate PLCβ and the γ isoform of PI3K. The effectors for PI3K
include Rap1b and Akt (Woulfe et al., 2002).

ADP is stored in platelet dense granules and is released upon
activation. P2Y1 and P2Y12 are the primary receptors for this
agonist. P2Y1 is Gq coupled and signaling through this receptor
causes Ca2+ mobilization, shape change, and thromboxane gen-
eration. P2Y12 is the target of the commonly used anti-platelet
drug Plavix, and is a Gi2 coupled receptor that inhibits cAMP
production in platelets.

Thrombin is a potent platelet agonist that causes fast mobi-
lization of intracellular Ca2+, and activation of phospholipase
A2 and subsequent thromboxane generation (Offermanns et al.,
1997). Also, thrombin can trigger Rho dependent signaling
pathways in platelets (Moers et al., 2003), that contribute to
actin modeling and shape change. Thrombin signals through
the protease-activated receptor (PAR) family of GPCRs. PAR1
and PAR4 are expressed on human platelets, while PAR3 and
PAR4 are expressed on mouse platelets. Thrombin cleaves the
N-terminus of these receptors, exposing a new N-terminus that
serves as a tethered ligand for these receptors. Synthetic pep-
tides are able to selectively activate these receptors and mimic
the actions of thrombin (for example, SFLLRN for PAR1, and
AYPGKF for PAR4). Kinetic studies have shown that the human
platelet response to thrombin is biphasic and involves first signal-
ing through PAR1 and subsequent signaling through PAR4 (Covic
et al., 2000). In mouse platelets signaling occurs primarily via
PAR4, and is facilitated by PAR3. In addition to the PAR recep-
tors, GP1bα has high affinity for thrombin. Absence of GP1bα

reduces responses to low doses of thrombin and diminishes
PAR1 signaling, suggesting that this receptor facilitates signaling
through the PARs (Dormann et al., 2000). Ca2+ mobilization also
activates phospholipase A2 (PLA2), which in turn converts mem-
brane phospholipids to arachidonic Acid. TXA2 is produced from
membrane arachidonate by the aspirin sensitive cyclooxygenase
(COX-1) enzyme. TXA2 causes Ca2+ mobilization, aggregation,
secretion, phosphoinositide hydrolysis, and protein phosphoryla-
tion. TXA2 can diffuse across the membrane and activate nearby
platelets, but its activity is limited by the molecule’s short half life
(∼30 s).

SYSTEMS BIOLOGY MODELS OF PLATELET-VESSEL WALL
INTERACTIONS
BOTTOM-UP MODEL OF ADP ACTIVATION OF P2Y1 RECEPTOR
In our representation of P2Y1 activation (Figure 1) (Purvis et al.,
2008), binding of extracellular ADP to P2Y1 leads to activation of
Gq through GDP/GTP exchange reactions. Gq·GTP is a substrate
for GTPase activating proteins (GAPs) such as PLC-β and RGS4,
which can accelerate Gq·GTP hydrolysis over 1000-fold. Although
other ADP receptors are involved in platelet Ca2+ signaling
(e.g., P2X1 and P2Y12), the P2Y1 receptor (∼150 copies/platelet)
contributes 90% of the Ca2+ signal.

Because of the inherent complexity in a model of this size,
we constructed four signaling “modules”: (1) Ca2+ release
and uptake (Figure 1A), (2) phosphoinositide (PI) metabolism
(Figure 1B), (3) PKC regulation of phospholipase C-β (PLC-
β) (Figure 1C), and (4) P2Y1 G-protein signaling (Figure 1D).

These modules use previously validated or data-consistent kinetic
networks for SERCA, IP3-Receptor, PKC translocation, and
GPCR signaling (Figures 1E–H).

Assembling the four modules together results in a global ODE
model that has 77 reactions, 132 fixed kinetic rate constants, and
70 species. Since the reaction network (Figure 1) and the kinetic
parameters are fixed, the reaction topology of the model is also
fixed. Such a model takes the general form: dc/dt = F(c) and c(t
= 0) = co where c is a vector of all species concentrations and co

is a specified initial condition vector at t = 0.
To determine appropriate sets of co that are suitable for use in

modeling platelets, a challenge exists that the copy number of each
species in a resting platelet is not known. Imposing a homeostasis
assumption results in powerful tool to define a set of acceptable co

vectors. The homeostasis assumption states that a resting platelet
remains resting until activated. This means that an acceptable ini-
tial condition co also represents a steady state for the system and
will satisfy the equation dc/dt = 0. Finding a global co involves
assembling the steady state solutions of each module (Figure 2).

The first phase of the method involves generating a com-
pact representation of the steady-state solutions for each module.
First, conservative bounds are chosen for c based on physiological
and practical considerations. Also, because molecular concentra-
tions can span several orders of magnitude, it is most efficient
to delineate this range of values on a logarithmic scale rather

FIGURE 3 | Tests of P2Y1 signaling model. ADP dose response for
the full platelet model from 100 nM to 10 μM ADP for calcium
mobilization (A) or IP3 generation (B). Stochastic simulation of a
single platelet (C). A single, fura-2-loaded platelet was immobilized on
a fibrinogen-coated coverslip and activated with 40 μM ADP at t = 90
[Ca2+ trace from Heemskerk et al. (2001)]. After 90 s of simulated
rest, the platelet model was activated by setting extracellular [ADP] to
40 μM. Simulated interval times were binned in 2 s increments for
direct comparison with experiment (inset).
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than a linear scale. Once the sampling distribution for c has been
defined, steady-state solutions (co = css) for each module are cal-
culated using fixed kinetic parameters for each reaction in the
module. For non-oscillating systems, steady-state solutions may
be obtained by simulating the system until equilibrium is reached
(i.e., until dc/dt = 0). In the third step, a large collection of
steady-state solutions for each module is subjected to principal
component analysis (PCA) (Purvis et al., 2009). PCA is then used
to transform these points to a new coordinate set that optimally
covers the space of steady-state solutions using the fewest num-
ber of dimensions. For example, if two molecule concentrations
in the steady-state space are highly correlated due to participation

in the same reaction, PCA will locate a single dimension to rep-
resent each pair of points in the transformed space. Ultimately,
these new dimensions will be combined across all modules to
search for global solutions that lie in the steady-state space for the
fully combined network. Since PCA is a linear method, a steady-
state solution space that is highly nonlinear may require more
principal component vectors to accurately estimate the solutions.
The reduction procedure is shown for the human platelet model
comprising 4 interlinked signaling modules (Figure 2). For this
step, we generated more than 109 sets of initial guesses (co) for
each module, computed the initial value problem for each co

until a steady state was reached (dc/dt ≈ 0), and selected only

FIGURE 4 | Shifts in steady-state profiles caused by kinetic

perturbations. The steady-state platelet model was perturbed by changing
selected kinetic parameters (±10-fold) and simulating for 1 h. After
approaching a new steady state, the model concentrations and fluxes were
determined relative to their original steady-state values and colored according
to fold-change. Green indicates no change (NC) relative to initial

flux/concentration. Red indicates a relative increase and blue indicates a
relative decrease. Note that the color scale in each panel is normalized
separately to maximize distinctions in fold change. New steady states were
achieved after (top) 10-fold decrease in PKC-mediated inhibition of PLC-β, and
(bottom) 10-fold increase in PIP2 hydrolysis (10-fold increase in kcat of
hydrolysis). ∗, active state.
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those steady states (css) that were consistent with known con-
centrations (i.e., [Ca2+]o ∼100 nM). Interestingly, only a small
fraction of initial guesses produce steady-state solutions that are
also consistent with known concentration values. For example,
it was shown that only 50,000 of 109 initial guesses (0.005%) in
the Ca2+ balance module (Figure 1A) met both requirements and
were suitable for further analysis. This observation shows that the
kinetic topology of these molecular networks places very strong
constraints on the range of concentrations that can exist at steady
state. In biological terms, this suggests that fixed kinetic proper-
ties at the molecular level (e.g., IP3R and SERCA kinetics) can
affect not only the dynamical features of a biochemical system
but can also determine the abundance of chemical species and
the compartmental structures that contain them. A fully assem-
bled initial condition vector results (bottom, Figure 2) results in
new hypotheses about allowable concentrations and ratios of con-
centrations (i.e., IP3/SERCA ratio is very small). The allowed co

= css is consistent with the known resting levels of Ca2+, IP3,
P2Y1, DAG, PA, PI, PIP2, and PIP (bottom, Figure 2) as well as
the stimulated response of platelets to increasing amounts of ADP
(right, Figure 2). With a global simulation of P2Y1 signaling, it is
possible to simulate the ADP dose-response of calcium mobiliza-
tion and IP3 generation in platelets as well as the mobilization

of intracellular calcium in a single platelet due to stochastic
fluctuations (Figure 3).

Since many initial condition vectors can be found to allow a
resting platelet to remain resting and then respond appropriately
to stimulation, investigation of these multiple steady states and
associated cell responses can allow an ad-hoc sensitivity analysis.
Some species (flexible nodes) may vary widely in the allowed ini-
tial condition vectors but have little effect on system response. In
contrast, other species (rigid nodes) may be forced to take on val-
ues in a very narrow range due to the kinetic constraints of the
problem.

To examine the changes in steady-state properties caused by
kinetic perturbations in the P2Y1 model, we altered the rates of
important regulatory reactions and observed the system response
to each perturbation. Each perturbation cause a brief adjustment
phase lasting ∼200 s followed by a more gradual phase char-
acterized by a new steady-state profile. After 1 h of simulated
time, steady-state concentrations and reaction fluxes were quan-
tified relative to their original steady-state levels (Figure 4). In a
computational perturbation, the inhibition of phospholipase C-
β (PLC-β) activity by PKC was reduced 10-fold. Since PKC has
a negative-feedback role in suppressing the platelet-stimulating
activity of PLC-β, this perturbation caused a 2-fold increase

FIGURE 5 | Pairwise agonist scanning to predict global calcium

response in human platelets. (A) Simplified schematic of signaling
pathways examined in this study that converge on intracellular calcium
release in human platelets. (B) Dynamic NN model used to train
platelet response to combinatorial agonist activation. A sequence of
input signals representing agonist concentrations is introduced to the

network at each time point. Processing layers integrate input values
with feedback signals to predict the next time point. (C) A total of
154 calcium traces were measured for single and pairwise activation
using 6 different agonists (“Experiment”) and used for neural network
training. The NN training accurately predicted (“NN Prediction”) the
training data.
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FIGURE 6 | Multiscale modeling. The multiscale model has four main
components (A) fluid flow, transport of soluble species, motion and binding
of platelets, and the activation state of each platelet. The fluid flow is
perturbed by the growing clot and is determined using the lattice
Boltzmann method. The released soluble agonists form a boundary layer in
the flow, and this process is determined using the finite element method.
Platelet motion and bonding are simulated with lattice kinetic Monte Carlo.
Platelet activation state is estimated from the history of intracellular
calcium concentration, which is determined by a neural network model.
(B) Multiscale simulation of patient-specific platelet deposition under flow
for a specific donor and PAS-trained neural network of calcium signaling.
Platelet activation (black, unactivated; white, activated) and deposition at
500 s (inlet wall shear rate, 200 s−1) showing released ADP (top) and TXA2

(middle) and perturbation of the flow field (bottom). Flow: left to right
(streamlines, black lines); surface collagen (250 μm long): red bar.

in steady-state PIP2 hydrolysis, elevated IP3 concentration, and
accelerated Ca2+ release. This was a compensatory effect caused
by the negative feedback loop involving Ca2+-regulated activity
of PKC, a resulting new hypothesis that can be probed experi-
mentally. In another example, increasing the hydrolytic activity
of PLC-β for the substrate PIP2 by 10-fold caused an expected
stimulatory effect, raising intracellular calcium and steady-state
levels of cytosolic inositol phosphates (IP3, IP2, and IP) between
2- and 3-fold. Interestingly, reaction fluxes for phosphoinositide
hydrolysis were diminished, possibly due to substrate depletion.
Taken together, these examples illustrate the system-wide effects
of perturbations in the kinetic rate processes. The procedure
could easily be extended to examine multiple simultaneous per-
turbations in both reaction rates and steady-state concentrations.
In future applications of this approach, genomic or proteomic
information of multiple perturbations could be used to help
predict platelet signaling phenotypes.

TOP-DOWN SIGNALING APPROACHES
The prior example required about 200 parameters to describe
P2Y1 signaling. In contrast, top-down approaches in systems biol-
ogy allow the construction of large data sets to predict system
response without precise knowledge of intracellular pathways.
During thrombosis, platelets respond simultaneously to collagen
activation of GPVI and α2β1, ADP activation of P2Y1, P2Y12, and
P2X1, thromboxane activation of TP, and thrombin activation
of PAR1 and PAR4, while NO and PGI2 dampen responsiveness
(Figure 5A). We have developed a 384-well plate assay to measure
platelet calcium mobilization in response to single and pairwise
agonist stimulation at 0.1, 1, and 10XEC50, a method termed
PAS (Chatterjee et al., 2010). We developed a six agonist probe
set for activation of P2Y1/P2Y12, PAR1, PAR4, TP, IP, and GPVI
pathways and measured the EC50 for each agonist (ADP, EC50 =
1.17 μM; SFLLRN, 15.2 μM; AYPGKF, 112 μM; U46619, 1.2 μM;
PGE2, 25 μM; and convulxin, 0.005 μM). To capture how the 6
molecular signals are processed by activated platelet, we trained
a 2-layer neural network (NN) model (Figure 5B) that predicted
time-course behavior of the training set of pairwise combinations
of the six agonists (Figure 5C). We used a nonlinear autoregres-
sive network with exogenous inputs (NARX) model to predict
successive time points from all 154 Ca2+ release curves gathered
by experiment. The NN model, which was trained on pairwise
agonist stimulation with both agonists added simultaneously, was
successful in predicting response to sequential addition of ago-
nists and ternary agonist stimulation (Chatterjee et al., 2010).
With 4077 NN simulations fully spanning the 6 dimensional ago-
nist space, 45 combinations of 4, 5, and 6 agonists (predicted to
range from strong synergism to strong antagonism) were selected
and confirmed experimentally (R = 0.88), revealing a highly syn-
ergistic condition of high U46619/PGE2 ratio, consistent with the
known thrombotic risk of COX-2 therapy.

Furthermore, PAS provided 135 pairwise synergy values that
allowed a unique phenotypic scoring and differentiation of indi-
viduals. We measured synergy vectors for 10 healthy donors in
replicate. From clustering analysis, 7 of 10 donors self-clustered
when tested twice in a 2-week period, revealing at least two major
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phenotype classes. Thus, PAS offers a sensitive, patient-specific
experimental and computational platform for understanding how
a cell integrates many inputs. The trained NN is ideal for use in a
multiscale model of clotting under flow conditions.

PLATELET INTERACTIONS WITH THE VESSEL WALL
The multiscale systems biology model accommodates platelet sig-
naling, platelet adhesion to collagen and other activated platelets,
release of soluble agonists, thrombus growth, and distortion
of the prevailing flow field (Figure 6A). The lattice Boltzmann
(LB) method is used to solve for the velocity field of the fluid.
Platelets in the growing aggregate release ADP and TXA2 into
the fluid, and a boundary layer is formed with the flow. The
dynamics of this process are determined with a finite element
method solution of the convection-diffusion-reaction equation
for each of the soluble species, ADP and TXA2. Platelets move
in the fluid by convection and RBC-augmented dispersion. They
also bind to the collagen surface as well as previously bound
platelets. The motion and binding of platelets is simulated using
the convective lattice kinetic Monte Carlo (LKMC) algorithm
validated for stochastic convective-diffusive particle transport
(Flamm et al., 2009, 2011, 2012). The level of integrin activation
and associated adhesiveness for each platelet is related to the
cumulative intracellular calcium concentration. The intracellu-
lar calcium concentration is determined using a NN trained on
a specifc patient’s platelet PAS phenotyping experiment. Using
this multiscale approach, Multiscale simulations predicted the
density of platelets adherent to the surface, platelet activation
states, as well as the spatiotemporal dynamics of ADP and TXA2

release, morphology of the growing aggregate, and the distribu-
tion of shear along the solid-fluid boundary (Figure 6B). Platelets
stick to the collagen surface and release ADP and TXA2 which
forms a boundary layer extending up to 10 μm from the throm-
bus. Boundary layer concentrations of up to 10 μM ADP and
0.1 μM TXA2 were found by simulation. TXA2 concentrations
were found to be sub-physiological (<0.0067 μM or <0.1 xEC50)
until a sufficient platelet mass accumulated at the surface after
∼250 s. Boundary layer ADP concentrations were within the
effective dynamic range (0.1–10 μM) throughout the simulation.
The strong temporal and spatial fluctuations in the concentration
of ADP were predominately driven by the short release time (5 s),
whereas the longer release time of TXA2 (100 s) smoothed fluc-
tuations. The shear rate along the solid-fluid boundary became
nonuniform during the simulation (5–10-fold increase above
200 s−1) due to surface roughness. At 500 s, the platelet deposit
was characterized by platelet clusters 20–30 μm in length, fully
consistent with microfluidic measurements of platelet cluster
size on collagen at this shear rate (Colace et al., 2011). Platelet

accumulation rates on collagen as detected using microfluidic
chambers (Maloney et al., 2010) and were highly consistent with
simulation predictions for 3 separate donors (each with a trained
NN model) in the presence of TXA2 antagonism (indomethacin
or aspirin), ADP antagonism with a P2Y1 inhibitor, or IP activa-
tion (with iloprost).

CONCLUSION
For multi-scale modeling of platelet-vessel wall interactions, a
given modeling route at each scale has advantages and disad-
vantages. Top-down models (like NNs) are most easily obtained
in a patient-specific manner to describe platelet function, how-
ever they typically fail to identify specific intracellular regulators.
Bottom-up models (like ODE models) of platelet signaling pro-
vide molecular precision but face three challenges: (1) difficulty
in parameterization, (2) difficulty in fitting to high dimensional
data, and (3) incomplete knowledge. Both NN and ODE mod-
els are both relatively fast in terms of computational speed.
Lattice kinetic Monte Carlo (LKMC) methods provide a balance
of speed and sub-micron spatial precision, particularly for dis-
crete cellular systems over millimeter-scale phenomenon and 100
or 1000s of cells. LKMC methods are also relatively easy to pro-
gram and facilitate the passing of information with other lattice
based methods (like Lattice Boltzman or finite elements). LKMC
methods become exceedingly slow for molecular simulations of
large ensembles when time steps become impossibly small. For
solving 2D flow problems, Lattice Boltzman is relatively fast and
easy to implement and has no issues of numerical stability. One
of the biggest numerical challenges is solving multi-component,
reaction-diffusion problems with spatial gradients. Wall-derived
TF triggers coagulation and ∼10–100 PDEs must be solved to cal-
culate thrombin and fibrin levels in a growing thrombus. Solving
large PDE systems is especially computationally intensive (days or
weeks) and resists parallel processing.

A central goal in blood systems biology is to elucidate the
regulatory complexity of cellular signaling across a large ensem-
ble of interacting cells responding to numerous spatiotemporal
stimuli in the presence of pharmacological mediators, ideally in
a patient-specific and disease-relevant context (i.e., containing
hemodynamics). Developing tools to define platelet variations
between patients and the relationship of platelet phenotype to
prothrombotic or bleeding traits will have significant impact in
stratifying patients according to risk. This multiscale approach
also makes feasible patient-specific prediction of platelet deposi-
tion and drug response in more complex in vivo geometries such
as stenosis, aneurysms, stented vessels, valves, bifurcations, or ves-
sel rupture (for prediction of bleeding risks) or in geometries
encountered in mechanical biomedical devices.
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Adenosine triphosphate (ATP) is known to be released from the erythrocyte in an oxygen
(O2) dependent manner. Since ATP is a potent vasodilator, it is proposed to be a key
regulator in the pathway that mediates micro-vascular response to varying tissue O2
demand. We propose that ATP signaling mainly originates in the capillaries due to the
relatively long erythrocyte transit times in the capillary and the short ATP diffusion distance
to the electrically coupled endothelium. We have developed a computational model to
investigate the effect of delivering or removing O2 to limited areas at the surface of a
tissue with an idealized parallel capillary array on total ATP concentration. Simulations
were conducted when exposing full surface to perturbations in tissue O2 tension (PO2)
or locally using a circular micro-outlet (∼100 μm in diameter), a square micro-slit (200 ×
200μm), or a rectangular micro-slit (1000 μm wide × 200 μm long). Results indicated
the rectangular micro-slit has the optimal dimensions for altering hemoglobin saturations
(SO2) in sufficient number capillaries to generate effective changes in total [ATP]. This
suggests a threshold for the minimum number of capillaries that need to be stimulated
in vivo by imposed tissue hypoxia to induce a conducted micro-vascular response. SO2 and
corresponding [ATP] changes were also modeled in a terminal arteriole (9 μm in diameter)
that replaces 4 surface capillaries in the idealized network geometry. Based on the results,
the contribution of terminal arterioles to the net change in [ATP] in the micro-vascular
network is minimal although they would participate as O2 sources thus influencing the O2
distribution. The modeling data presented here provide important insights into designing
a novel micro-delivery device for studying micro-vascular O2 regulation in the capillaries
in vivo.

Keywords: adenosine triphosphate (ATP), microcirculation, capillaries, computational model, simulation, local PO2

perturbation, O2 regulation, micro-delivery device

INTRODUCTION
The microcirculation plays the important role of delivering and
regulating the exchange of oxygen (O2) and nutrients to sur-
rounding live metabolic tissue. The transport processes in the
microcirculation are tightly controlled and highly integrated.
Since proper O2 supply to tissue is critical for cellular function
and survival, the mechanisms underlying O2 transport and dis-
tribution have been under thorough investigation. The microvas-
culature has to continuously adjust erythrocyte distribution and
hence O2 supply to meet the varying demand of metabolic tissue.
During exercise, erythrocyte supply rate increases delivering more
O2 carrying erythrocytes to the microvasculature. The highly
regulated system implies the presence of signaling components
that link tissue O2 demand with blood flow and microvascular
function.

A great amount of evidence suggests the involvement of the
erythrocyte as a sensor and a key player in this regulation mech-
anism (Stein and Ellsworth, 1993; Ellsworth et al., 1995, 2008).
Erythrocytes are the carriers of O2, bound to hemoglobin, in
the microcirculation. Erythrocytes also contain large amounts

of adenosine triphosphate (ATP) (Miseta et al., 1993), a potent
vasodilator, and are known to release it under hypoxic conditions
(Bergfeld and Forrester, 1992; Jagger et al., 2001; González-
Alonso et al., 2002). Once ATP is released, it binds to purinergic
receptors (P2Y) on the vascular endothelium eliciting a vaso-
dilatory signal which is conducted upstream in the arteriolar tree
(Ellsworth et al., 2008). The resulting vaso-relaxation of smooth
muscle cells (SMCs) surrounding upstream arterioles increases
erythrocyte supply rate to meet the metabolic demand of the
hypoxic region downstream that initiated the release of ATP from
erythrocytes.

For a long time, arterioles have been investigated as a major
site of microvascular signaling (Duling and Berne, 1970; Duling,
1974; Jackson, 1987). This has been assumed, mainly, due to the
large longitudinal PO2 gradients that exist at the arteriolar level.
In terms of ATP mediated signaling, the presence of SMCs implies
that the released ATP will act locally and instantaneously elicit a
signal. However, the relatively short erythrocyte transit times in
arterioles are anticipated to largely compromise the localization
of this ATP signal, while the parabolic flow profile in the arteriole

www.frontiersin.org September 2013 | Volume 4 | Article 260 | 160

http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/about
http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Computational_Physiology_and_Medicine/10.3389/fphys.2013.00260/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=NourGhonaim&UID=98667
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=GrahamFraser&UID=49586
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=JunYang_6&UID=100994
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=DanielGoldman&UID=27999
mailto:nghonaim@uwo.ca
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Physiology_and_Medicine/archive
http://community.frontiersin.org/people/ChristopherEllis/24228


Ghonaim et al. Modeling SO2-dependent capillary [ATP] changes

means only those cells closest to the wall experience the largest
change in O2 saturation (SO2) and hence contribute to the signal.
Cells flowing in the centerline will be experiencing a lesser drop in
SO2 and any released ATP will be carried downstream (Ellis et al.,
2012).

Venules may also be involved in the regulation of O2 supply
since they act as the collectors of large populations of deoxy-
genated ATP-releasing erythrocytes. However, the diversity in the
erythrocyte SO2 levels as they drain from various upstream cap-
illaries indicates that venules may only contribute to the overall
vaso-dilatory signal (Ellis et al., 2012). Fine-tune regulation of
O2 distribution to specific capillaries or microvascular units in
the microcirculation demands the signal be highly localized. This
may only be achieved at the capillary level. Erythrocytes tra-
verse capillaries with long transit times and are in almost direct
contact with the capillary endothelium. Hence, released ATP,
mediated by erythrocyte deoxygenation, will be effectively trans-
ferred to purinergic receptors on the endothelium. Many studies
have shown that the capillary endothelium is conductive when
locally stimulated by vasodilators (Dietrich, 1989; Dietrich and
Tyml, 1992a,b; Song and Tyml, 1993; Collins et al., 1998; Bagher
and Segal, 2011). Therefore, we hypothesize that the capillary bed
is the major site for O2 regulation in the microcirculation (Ellis
et al., 2012).

To test this hypothesis, we have been examining the micro-
vascular response to local perturbations in tissue O2 tension
(PO2) using a novel O2 micro-delivery tool (Ghonaim et al.,
2011). We have created an O2 micro-delivery (and removal) sys-
tem that allows for altering local tissue PO2 and hence erythrocyte
SO2 in a few selected capillaries at the surface of the Extensor
Digitorum Longus (EDL) muscle of the rat (Figure 1). This sys-
tem replaces the gas exchange chamber originally used in our
group to alter surface tissue PO2 of the entire bottom surface
of the muscle (Ghonaim et al., 2011; Ellis et al., 2012). The
chamber is positioned in the platform of an inverted microscope
and is connected to computer controlled gas flow meters which
allows for capturing video images of the microvascular response
to PO2 perturbations while simultaneously controlling chamber
PO2 levels. Erythrocyte SO2 values are calculated based on a
dual-wavelength image capture system and video sequences are
post-processed to extract functional images and hemodynamic
information as previously described (Ellis et al., 1990, 1992; Japee
et al., 2004, 2005a,b).

In our novel O2 micro-delivery setup, ultrathin plas-
tic/glass sheet patterned with an O2 delivery micro-outlet
replaces the gas permeable membrane in the original chamber
(Ghonaim et al., 2011; Ellis et al., 2012). Data presented ear-
lier (Ghonaim et al., 2011) show that circular micro-delivery
outlets (100 μm in diameter) can alter SO2 in single capil-
laries flowing directly over the outlet. However, in order to
elicit microvascular responses, the optimal outlet dimensions
should allow for a sufficient number of capillaries within a net-
work to be stimulated to produce a large enough ATP signal.
This should be accomplished while ensuring the high local-
ization of the stimulus to affect only the desired capillaries.
This requires testing with various O2 outlet sizes and dimen-
sions. Combining the possible technical challenges involved

FIGURE 1 | (A) The novel O2 micro-delivery approach. Extensor Digitorum
Longus (EDL) rat muscle is surgically exposed and positioned on the
viewing platform of an inverted microscope. O2 is delivered to the surface
of the muscle through a micro-outlet patterned in ultrathin glass/plastic
sheet (Ghonaim et al., 2011). O2 levels in the gas exchange chamber near
the muscle surface are oscillated using computer controlled flow meters.
Real-time videos of the trans-illuminated tissue are monitored and recorded
using a dual-wavelength video microscopy system (Ellis et al., 1990, 1992;
Japee et al., 2004, 2005a,b) (B) Three designs of the oxygen micro-delivery
outlet are tested: circular micro-outlet (∼100 μm in diameter) (Ghonaim
et al., 2011), a square micro-slit (200 × 200 μm), and a rectangular micro-slit
(1000 μm wide × 200 μm long).

in creating multiple designs of the O2 micro-delivery device
with the inherent complexities of the O2 regulation system led
us to develop a computational model for the system under
investigation.

Recently, Goldman et al. (2012) presented a theoretical math-
ematical model based on previous work by Goldman and Popel
(1999) and Arciero et al. (2008) to describe O2 and ATP trans-
port in the rat EDL microcirculation when using the original O2

exchange chamber. In this study we employ the same approach
to calculate SO2 and ATP changes in selected capillaries flow-
ing over an O2 delivery outlet of specific dimensions. Three
designs of the O2 delivery micro-outlet were tested: circular outlet
(100 μm in diameter), square outlet (200 × 200μm), and rect-
angular slit (200 μm long × 1000 μm wide). Average capillary
SO2 and ATP level at steady-state were calculated at various
chamber PO2 levels (15, 40, and 150 mmHg) relative to a zero
flux boundary condition. In order to simplify the system under
investigation, an idealized three dimensional (3D) parallel array
capillary geometry has been used. Simulations were also run
on a 3D idealized array geometry in which a terminal arteri-
ole (9 μm in diameter) replaced 4 capillaries and was positioned
30 μm from the bottom tissue surface. These simulations allowed
for investigating the potential role of the terminal arteriole in
O2 regulation. Confirming previous findings (Ghonaim et al.,
2011), the results indicated that radial O2 diffusion from an O2

delivery micro-outlet regardless of its dimensions is limited to
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∼50 μm, while axial diffusion affects ∼100 μm of tissue. The
rectangular slit has the important property of ensuring that cap-
illaries surrounding the network of interest are all experiencing
the same PO2 drop, which minimizes re-oxygenation and empha-
sizes the ATP signal. This design also produces sufficient ATP
release in multiple capillaries that it should be able to consis-
tently elicit micro-vascular responses, although this remains to
be confirmed experimentally. The results presented here also
predict minimal contribution of terminal arterioles to the net
magnitude of ATP emerging from capillary network although
they would participate as O2 sources and hence influence the O2

distribution. In the future, 3D capillary networks reconstructed
from experimental data can be modeled which will provide more
realistic data and help more closely predict changes in various
parameters.

MATERIALS AND METHODS
OXYGEN TRANSPORT MODEL
In this work, O2 transport and ATP transport were mod-
eled in an idealized 3D capillary network consisting of an
array of parallel capillaries (oriented in the y direction).
The computational model of O2 transport was based on
a finite-difference model described by Goldman and Popel
(1999, 2000, 2001). In the model, the reaction-diffusion equa-
tion below was used to describe time-dependent tissue PO2

P(x,y,z,t):

∂P

∂t
=

[
1 + cMb

α

dSMb

dP

]−1 {
D∇2P − 1

α
M (P) + 1

α
DMbcMb∇·

(
dSMb

dP
∇P

)}
(1)

where D is the tissue O2 diffusion coefficient, α is the tissue
O2 solubility, and M(P) is consumption rate of O2 in tissue
(Table 1). O2 transport in tissue was facilitated by the presence
of myoglobin where cMb is myoglobin concentration, DMb is the
myoglobin diffusion coefficient, and SMb(P) = P/(P + P50,Mb) is
the myoglobin SO2. Convective transport of O2 in the micro-
vessels at each axial location y was described using the follow-
ing time-dependent mass balance equation for capillary SO2,
S(y,t):

∂S

∂t
= −

[
C + αb

dPb

dS

]−1 {
−u

[
C̃+α̃b

dPb

dS

]
∂S

∂y
− 1

πR

∮
j · dθ

}
(2)

where u is the mean blood velocity, R is the capillary radius,
j is the O2 flux at (y,θ) out of the capillary, C and C̃ are
blood O2-binding capacities, respectively, directly related to
hematocrit:

C = HTCHb

C̃ = HDCHb

where HT is tube (volume-weighted) hematocrit, HD is discharge
(flow-averaged) hematocrit, and CHb is the binding capacity of
hemoglobin (Table 1) (Goldman and Popel, 2001). Pb is the

Table 1 | Parameter values used in oxygen and ATP transport

simulations.

Parameter Value

α 3.89 × 10−5 ml O2 ml−1 mmHg−1

D 2.41 × 10−5 cm2 s−1

Pcr 0.5 mmHg

cMb 1.02 × 10−2 ml O2 ml−1

DMb 3 × 10−7 cm2 s−1

P50 37 mmHg

n(Hill exponent) 2.7

P50, Mb 5.3 mmHg

CHb 0.52 ml O2 ml−1

vrbc 1.45 × 10−2 cm s−1

HT 0.19

HD 0.2

C0 1.4 × 10−9 mol s−1· cm−3

C1 0.891

kd 2.0 × 10−4 cm s−1

blood PO2, and αb and α̃b are volume- and flow-weighted blood
O2 solubilities, respectively (Goldman and Popel, 2001), where,

αb = HTαcell + (1 − HT) αpl

α̃ = HDαcell + (1 − HD) αpl

where αcell and αpl are the O2 solubilities inside the erythrocyte
and in the plasma (Goldman and Popel, 2001). The O2 flux at the
capillary-tissue interface was given by:

j = κ(Pb − Pw) (3)

where κ is the mass transfer coefficient and Pw is the tissue PO2 at
the capillary surface. κ is a function of hematocrit as it describes
the effect of RBC spacing on O2 diffusion and exchange between
capillary and tissue (Eggleton et al., 2000). At the capillary surface,
the boundary condition was specified as:

− Dα
∂Pw

∂n
= j (4)

where n is the unit vector normal to the capillary surface and j
is given by equation (3). In the model presented here, zero O2

flux conditions (no O2 exchange across tissue boundary) were
specified at the tissue boundaries, except where PO2 was fixed
on part or all of the bottom surface to represent the effect of
the O2 exchange chamber (see below). As in the model described
by Goldman and Popel (1999), Michaelis–Menten consumption
kinetics, M = M0P/(P + Pcr), and the Hill equation for the oxy-
hemoglobin saturation curve, S(P) = Pn/(Pn + Pn

50), were used
along with the above O2 transport equations to calculate tissue
O2 transport.

Hemodynamic parameters (erythrocyte mean velocity, vrbc,
and hematocrit, HT) were determined from in vivo experimen-
tal measurements in the EDL muscle of the rat. The capillary
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network consisted of 72 parallel capillaries, each of which was dis-
cretized into 50 cylindrical segments, and the tissue domain sur-
rounding the capillaries had dimensions of 216 × 532× 500 μm
and was discretized into 7,304,853 computational nodes using
a grid spacing of approximately 2 μm (Figure 2A). Capillary
entrance SO2 (65%) and the tissue O2 consumption rate (1.5 ×
10−4 ml O2/ml/s) were set based on previous experimental data
(Fraser et al., 2012).

For simulations that included a terminal arteriole in the 3D
network geometry, the arteriole (9 μm in diameter) was posi-
tioned ∼30 μm from the bottom tissue surface and replaced
4 capillaries in the original parallel array capillary geometry
(Figure 2B). Simulations including the arteriole were run at both
65 and 80% arteriolar entrance SO2.

ATP TRANSPORT MODEL
ATP transport in the idealized 3D capillary network was modeled
as described by Goldman et al. (2012), based on the O2 trans-
port mathematical model described above (Goldman and Popel,
2000). Using a capillary entrance ATP concentration of zero,
plasma [ATP] was calculated by using a finite-difference method
to solve the following continuum partial differential equation
(Goldman et al., 2012):

(1 − HT) ∂
∂t [ATP] = −u (1 − HD) ∂

∂y [ATP]

+HTC0 (1 − C1S) − 2
R kd [ATP]

(5)

where u is the mean blood velocity at axial location y, HD,
and HT are the discharge and tube hematocrit, respectively,
and R is capillary radius. C0 and C1 (Table 1) are constants
used to linearly approximate the ATP release rate as a function

FIGURE 2 | (A) A cross sectional view of the idealized capillary parallel array
geometry showing the positioning and numbering of the 72 hexagonally
arranged capillaries in the modeled network. (B) A cross sectional view of
the idealized capillary parallel array geometry with a terminal arteriole
(vessel 69, 9 μm in diameter) replacing 4 capillaries within 30 μm from
bottom tissue surface.

of SO2, while kd provides an approximation of ATP degrada-
tion by the endothelium as previously described (Arciero et al.,
2008).

To calculate the steady-state distributions of tissue PO2

and capillary SO2 and [ATP], time-dependent O2 trans-
port and ATP transport simulations were run, using zero
initial conditions for all variables, until there were mini-
mal changes in tissue O2 consumption and PO2, and cap-
illary O2 flux, SO2 and [ATP] between consecutive time
steps.

TISSUE PO2 BOUNDARY CONDITIONS USED TO MODEL OXYGEN
EXCHANGE CHAMBER
For the idealized capillary geometry, 3D tissue PO2 distribu-
tion and capillary [ATP] at steady state were calculated for O2

delivery using full gas exchange chamber, circular micro-outlet
(100 μm in diameter), square micro-outlet (200 × 200 μm), or
a rectangular micro-slit (1000 μm wide × 200 μm long). For
each chamber type, simulations were run at 3 PO2 boundary
conditions either over full surface (with full gas exchange cham-
ber) or only at the micro-slit opening: 15, 40, and 150 mmHg.
For the cases in which the PO2 boundary condition is altered
only at the microslit opening, the rest of the tissue surround-
ing the micro-slit is set to zero O2 flux boundary condition.
The results from all simulations were compared to a fourth con-
trol case in which full surface is set to zero O2 flux boundary
condition.

For the idealized capillary geometry that includes the terminal
arteriole, O2 diffusion was modeled for full chamber or a rect-
angular micro-slit (1000 μm wide × 200 μm long) at the 4 PO2

boundary conditions discussed above. Each set of simulations was
run with arteriolar entrance SO2 of 65% or to 80%. Table 2 lists

Table 2 | List of boundary conditions used in oxygen and ATP

transport simulations.∗∗

Network

specifications

Chamber type

tested

Corresponding

figure in

manuscript

PO2 condition at

chamber outlet

(in each chamber

type tested)

Capillary array Full chamber 3 • Zero O2 flux
(Control)

Circle 4 • 40 mmHg

Square 5 • 15 mmHg

Rectangle 6 • 150 mmHg

Capillary array with
arteriole (entrance
SO2 = 65%)

Full chamber 8 • Zero O2 flux
(Control)

• 40 mmHg

Rectangle 10 • 15 mmHg

• 150 mmHg

Capillary array with
arteriole (entrance
SO2 = 80%)

Full chamber 9 • Zero O2 flux
(Control)

• 40 mmHg

Rectangle 11 • 15 mmHg

• 150 mmHg

**Summary of transport simulations, chamber types, and boundary conditions.
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the summary of simulations and boundary conditions used in this
study.

RESULTS
MATHEMATICAL MODELING OF SO2-DEPENDENT ATP RELEASE IN
CAPILLARY NETWORKS IN RESPONSE TO LOCALIZED TISSUE PO2

PERTURBATIONS
In this study, the release of ATP in capillaries mediated by tis-
sue hypoxia and the de-saturation of hemoglobin was modeled
in a 3D idealized parallel capillary network. The dependence
of the magnitude of total ATP release on the number of de-
oxygenated capillaries was also examined. Based on our pre-
viously described experimental work (Ghonaim et al., 2011),
we mathematically simulated O2 delivery to and removal from
selected capillaries on the surface of skeletal muscle tissue (rat
EDL) using three designs of O2 exchange micro-outlets used in
our in vivo experiments (Figure 1). In order to compare local
O2 perturbations using the micro-outlets to global perturba-
tions using the full gas exchange chamber (Ghonaim et al.,
2011; Ellis et al., 2012), O2 delivery to and removal from the
entire bottom tissue surface was also modeled. For each set
of simulations, 3D tissue PO2 distribution profiles and corre-
sponding 3D capillary [ATP] maps were generated. Plots of
calculated SO2 and [ATP] along the length of selected cap-
illaries (21, 18, 17, 54) at steady state were also created. All
simulations were run using software written in Fortran, and
the results were analyzed and the plots were produced using
MATLAB.

Full surface gas exchange chamber
In this set of simulations, the 3D PO2 distribution in the tis-
sue and corresponding SO2 and [ATP] distribution along cap-
illary length were modeled for the control scenario in which
the full bottom tissue surface is exposed to PO2 perturbations.
This would experimentally simulate using the full gas exchange
chamber. As shown in Figure 3, at 40 mmHg, steady-state tis-
sue PO2 and capillary [ATP] distributions are comparable to
the no-flux control condition. At the venular end of the cap-
illaries, SO2 values ranged from ∼50% for surface capillaries
(21, 18, and 17) to ∼40% for capillaries deeper than 100 μm
into the tissue (capillary 54), and the corresponding capillary
[ATP] values were within 15% of those at zero O2 flux boundary
condition. However, under imposed tissue hypoxia (15 mmHg),
the surface capillaries dropped their SO2 by ∼70% which cor-
responded to ∼40% higher steady state capillary [ATP] relative
to zero flux condition (Figure 3C). This was clearly depicted
in the corresponding vessel map (Figure 3B). The deeper cap-
illary (54) was less affected with ∼30% lower hemoglobin SO2

and ∼12% increase in ATP release relative to zero flux. Exposing
the full tissue surface to relatively high chamber PO2 (150 mmHg)
had the most significant impact on [ATP] in the capillary net-
work. At 150 mmHg, hemoglobin SO2 in both surface and deep
tissue capillaries converged to ∼100% with ∼70% decrease in
steady state [ATP] relative to no-flux (Figure 3C). The depth of
the PO2 perturbation into the tissue when using the full gas
exchange chamber was ∼100 μm as shown in the 3D PO2 profiles
(Figure 3A).

Circular O2 delivery micro-outlet
To investigate the effect of limiting the number of capillar-
ies stimulated by local tissue PO2 perturbations, we started by
modeling capillary SO2 and [ATP] changes when using a circu-
lar O2 micro-outlet (100 μm in diameter, see Figure 1). Similar
to previously discussed data (Ghonaim et al., 2011), substan-
tive changes in local tissue PO2 due to diffusion outwards from
the circular outlet is limited to less than ∼50 μm, as shown in
the 3D tissue PO2 profiles (Figure 4A). Also, the hypoxic and
hyperoxic stimuli were highly localized to only those capillar-
ies directly over the micro-outlet (17, 18, 21) as shown in the
vessel maps (Figure 4B). At 40 mmHg chamber PO2 level, cal-
culated capillary SO2 and [ATP] were in close agreement with
the no-flux control for both surface and deep tissue capillaries
with values being within ∼1 and ∼3%, respectively (Figure 4C).
Under imposed hypoxia, the capillary SO2 dropped as cap-
illaries crossed the micro-outlet region reaching a minimum
value ∼40 μm downstream of the outlet after which SO2 levels
increased slightly due to re-oxygenation by surrounding capillar-
ies. At the venular end, steady state SO2 levels in surface capillaries
were 15% lower relative to zero flux while capillary 54 experi-
enced only a 6% drop in SO2. This corresponded to only 10%
increase in [ATP] in surface capillaries while [ATP] in capil-
lary 54 remained unchanged relative to zero flux. At 150 mmHg,
the increase in capillary SO2 level is observed directly over the
micro-outlet region reaching a maximum at the outlet exit. The
capillary SO2 levels dropped sharply downstream of the outlet
due to O2 diffusion into adjacent capillaries and tissue. Surface
capillary SO2 decreased to ∼63 and deep tissue capillaries to
51% ∼200 μm downstream of the outlet. This corresponded
to ∼40% decrease in [ATP] in surface capillaries and ∼20%
decrease in [ATP] of deeper tissue capillaries relative to zero flux
condition.

Square O2 delivery micro-outlet
Next, we simulated the effect of increasing the area of O2

exchange, and hence perturbing a greater number of capillar-
ies, by simulating an O2 delivery micro-outlet 200 × 200 μm
square. Similar to the circular micro-outlet design and as pre-
viously described (Ghonaim et al., 2011), the change of local
tissue PO2 surrounding the square outlet is limited to less
than ∼50 μm, as shown in the 3D tissue PO2 profiles (Figure 5A).
In the case of the square micro-outlet, a larger number of sur-
face capillaries experience the PO2 perturbations, 7 of which
were directly over the micro-outlet (Figure 5B). Also, capillar-
ies at both sides of those directly over the outlet seemed to be
slightly affected by the PO2 perturbations. At 40 mmHg, cal-
culated SO2 and capillary [ATP] distributions were similar to
the no-flux control with surface capillaries having 15% higher
SO2 and 10% lower [ATP] values relative to zero flux condi-
tion (Figure 5C). As observed with the circular micro-outlet, re-
oxygenation of stimulated capillaries following imposed hypoxia
(15 mmHg) was at ∼40 μm downstream of the square micro-
outlet (Figure 5C). At the capillary venular end, SO2 level of
surface capillaries dropped by ∼51% while capillary 54 expe-
rienced only a 15% drop in SO2 relative to zero flux. This
corresponded to ∼32% increase in [ATP] in surface capillaries
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FIGURE 3 | Simulations of 3D PO2 and capillary [ATP] distribution in

a tissue with idealized parallel capillary arrangement (72 hexagonally

packed capillaries). In these simulations, we are modeling O2 delivery to
bottom tissue surface using the full gas exchange chamber (Ghonaim
et al., 2011; Ellis et al., 2012). Full bottom tissue surface is exposed to
15, 40, or 150 mmHg chamber PO2 level relative to a zero flux control
boundary condition (A) Spatial 3D tissue PO2 distribution (mmHg) at
capillary entrance perspective (B) a capillary exit perspective showing
combined X–Z plane slice at Y = 150 μm and Y–Z plane slice at

X = 277 μm (C) bottom perspective of a vessel map depicting distribution
of [ATP] (mol/L = M) along the capillaries. Bolded arrow marks capillary
entrance (D) Plots of SO2 (%) and [ATP] changes along capillary length in
selected capillaries (21, 18, 17, 54) marked by arrows on the vessel map.
Capillaries 21 and 17 are 16 μm from tissue surface, capillary 18 is 33 μm
from tissue surface, and capillary 54 is deeper in the tissue, at 133 μm,
and hence it is not shown in the current perspective of the vessel map.
Note change in PO2 scale from 0 to 50 mmHg in first three cases to
0–150 mmHg when surface is exposed to 150 mmHg.

while only 7% increase in [ATP] in capillary 54 relative to zero
flux. At 150 mmHg, capillary SO2 levels increased across the
micro-delivery outlet reaching maximum values at the venular
end of the outlet region. Similar to the results observed with
the circular micro-outlet, SO2 values sharply dropped down-
stream of the square micro-outlet bringing surface capillary SO2

to ∼83% and deeper capillaries to ∼70% ∼200 μm downstream
of the outlet. This corresponded to ∼66% decrease in [ATP] in

surface capillaries and ∼42% decrease in [ATP] of deeper tissue
capillaries.

Rectangular O2 delivery micro-slit
The largest dimensions for an O2 delivery micro-outlet cur-
rently being tested in our in vivo studies are for a rectangular
micro-slit (1000 μm wide × 200 μm long). Since the 3D tis-
sue dimensions in our computational model are less than the
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FIGURE 4 | Simulations of 3D PO2 and capillary [ATP] distribution in

a tissue with idealized parallel capillary arrangement (72

hexagonally packed capillaries). In these simulations, we are modeling
O2 delivery through a circular oxygen micro-delivery outlet (100 μm in
diameter) to bottom tissue surface using novel micro-delivery approach
(see Figure 1). Tissue surface directly on top of the micro-delivery
outlet is exposed to 15, 40, or 150 mmHg chamber PO2 level relative
to a zero flux control boundary condition (A) Spatial 3D tissue PO2

distribution (mmHg) at capillary entrance perspective (B) a capillary exit

perspective showing combined X–Z plane slice at Y = 150 μm and Y–Z
plane slice at X = 277 μm (C) bottom perspective of a vessel map
depicting distribution of [ATP] (mol/L = M) along the capillaries. Bolded
arrow marks capillary entrance (D) Plots of SO2 (%) and [ATP] changes
along capillary length in selected capillaries (21, 18, 17, 54) marked by
arrows on the vessel map. Capillaries 21 and 17 are 16 μm from tissue
surface, capillary 18 is 33 μm from tissue surface, and capillary 54 is
deeper in the tissue, at 133 μm, and hence it is not shown in the
current perspective of the vessel map.

width of the experimental micro-slit, the effect of the slit extends
to both edges of the tissue allowing us to visualize the depth
of the PO2 distribution into the tissue. As shown in the 3D
PO2 plots (Figure 6A), the PO2 perturbations extended ∼100 μm
into the tissue with local tissue PO2 changes similar to what
was observed with other outlet designs. All surface capillaries
shown on the vessel map are affected by the PO2 perturba-
tion as the outlet covers the entire surface width (Figure 6B).

At 40 mmHg, calculated SO2 and capillary [ATP] distributions
were similar to the no-flux control with surface capillaries having
17% higher SO2 and 10.3% lower [ATP] values relative to
zero flux O2 boundary condition (Figure 6C). Under imposed
hypoxia (15 mmHg), re-oxygenation of de-saturated surface cap-
illaries was not observed within 200 μm downstream of the
micro-slit. However, capillary SO2 seemed to plateau approxi-
mately 100 μm downstream of the micro-slit. At the capillary
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FIGURE 5 | Simulations of 3D PO2 and capillary [ATP]

distribution in a tissue with idealized parallel capillary

arrangement (72 hexagonally packed capillaries). In these
simulations, we are modeling O2 delivery through a square
oxygen micro-delivery outlet (200 × 200μm) to bottom tissue
surface using our previously described novel micro-delivery
approach (see Figure 1). Tissue surface directly on top of the
micro-delivery outlet is exposed to 15, 40, or 150 mmHg chamber
PO2 level relative to a zero flux control boundary condition (A)

Spatial 3D tissue PO2 distribution (mmHg) at capillary entrance

perspective (B) a capillary exit perspective showing combined X–Z
plane slice at Y = 150 μm and Y–Z plane slice at X = 277 μm (C)

bottom perspective of a vessel map depicting distribution of [ATP]
(mol/L = M) along the capillaries. Bolded arrow marks capillary
entrance (D) Plots of SO2 (%) and [ATP] changes along capillary
length in selected capillaries (21, 18, 17, 54) marked by arrows
on the vessel map. Capillaries 21 and 17 are 16 μm from tissue
surface, capillary 18 is 33 μm from tissue surface, and capillary
54 is deeper in the tissue, at 133 μm, and hence it is not
shown in the current perspective of the vessel map.

venular end, SO2 level of surface capillaries dropped by ∼56%
while capillary 54 experienced a ∼20% drop in SO2 relative
to zero flux condition. This corresponded to ∼35% increase in
[ATP] in surface capillaries and only 8% increase in [ATP] in
capillary 54 relative to zero flux. At 150 mmHg, capillary SO2

levels increased across the micro-delivery outlet reaching max-
imum values at the venular end of the outlet region. Similar

to the results observed with the previously discussed micro-
outlet designs, SO2 values instantly dropped downstream of the
rectangular micro-slit bringing surface capillary SO2 to ∼90%
and deep capillaries to ∼80% ∼200 μm downstream of the
outlet. This corresponded to ∼69% decrease in [ATP] in sur-
face capillaries and ∼55% decrease in [ATP] of deeper tissue
capillaries.
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FIGURE 6 | Simulations of 3D PO2 and capillary [ATP] distribution in a

tissue with idealized parallel capillary arrangement (72 hexagonally

packed capillaries). In these simulations, we are modeling O2 delivery
through a rectangular oxygen micro-delivery outlet (1000 μm wide ×
200 μm long) to bottom tissue surface using our previously described
novel micro-delivery approach (see Figure 1). Tissue surface directly on
top of the micro-delivery outlet is exposed to 15, 40, or 150 mmHg
chamber PO2 level relative to a zero flux control boundary condition (A)

Spatial 3D tissue PO2 distribution (mmHg) at capillary entrance perspective

(B) a capillary exit perspective showing combined X–Z plane slice at
Y = 150 μm and Y–Z plane slice at X = 277 μm (C) bottom perspective of
a vessel map depicting distribution of [ATP] (mol/L = M) along the
capillaries. Bolded arrow marks capillary entrance (D) Plots of SO2 (%) and
[ATP] changes along capillary length in selected capillaries (21, 18, 17, 54)
marked by arrows on the vessel map. Capillaries 21 and 17 are 16 μm
from tissue surface, capillary 18 is 33 μm from tissue surface, and capillary
54 is deeper in the tissue, at 133 μm, and hence it is not shown in the
current perspective of the vessel map.

Comparing change in relative ATP magnitude in response to varying
the area of imposed tissue hypoxia
The change in the total magnitude of ATP (ATPtot) in the
modeled network relative when imposing a hypoxic chal-
lenge (15 mmHg boundary condition) was calculated as percent
increase above ATPtot at zero flux (Figure 7). Percent increase in
ATP magnitude in the network was compared when exposing all

of the bottom tissue surface to hypoxia (full chamber) or locally
using the three micro-outlet designs discussed above. As shown
in Figure 7, the total ATP magnitude increased with increase in
micro-outlet dimensions and essentially the number of capillar-
ies experiencing the PO2 drop. The percent increase in ATPtot
was more than doubled when locally perturbing tissue PO2 using
the rectangular micro-slit compared to the other micro-outlet
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FIGURE 7 | Percent increase in the total magnitude of ATP (ATPtot)

relative to zero flux control boundary condition calculated for idealized

parallel capillary network with no arteriole at 15 mmHg chamber PO2

level. Percent increase in ATP magnitude in the network were calculated
when entire bottom tissue surface is exposed to the PO2 perturbation
using full gas exchange chamber or locally using a circular (100 μm in
diameter), square (200 × 200 μm) or rectangular O2 delivery micro-slit
(1000 μm wide × 200 μm long).

designs. The total ATP magnitude calculated when limiting the
area of tissue hypoxia using the rectangular micro-slit was only
38% lower relative to full exposed surface (Figure 7). The increase
in the total ATP magnitude in a network exposed to local hypoxia
was minimal (∼2%) when using the circular micro-outlet or and
only 6% above that zero flux when using the square micro-outlet.

MATHEMATICAL MODELING OF ARTERIOLAR SO2 AND ATP
CONCENTRATION IN RESPONSE TO LOCALIZED TISSUE PO2

PERTURBATIONS
In order to investigate the role terminal arterioles play in reg-
ulating SO2-mediated ATP signaling in capillary networks, par-
ticularly in the EDL muscle where larger arterioles are located
much deeper in the tissue, the 3D idealized capillary geometry
was modified to include a terminal arteriole, 9 μm in diameter,
positioned 30 μm away from bottom tissue surface. The 3D tissue
PO2 distribution as well as SO2 and [ATP] in the arteriole (ves-
sel 69) and in the surrounding surface (capillaries 14 and 17) and
deep tissue capillaries (represented by capillary 50) were modeled.
Simulations were run for the case in which the full tissue surface
is exposed to PO2 perturbations (original gas exchange chamber)
and for the case of spatially limited O2 delivery using the rectan-
gular O2 delivery micro-slit. Also, the effect of varying arteriolar
entrance SO2 on the overall magnitude of ATP in response to
altered tissue PO2 was examined.

Full surface gas exchange chamber at 65 and 80% arteriolar
entrance SO2

In the 3D tissue PO2 profiles and [ATP] vessel maps generated for
these simulations, the PO2 perturbations were shown to affect the
terminal arteriole to a much lesser extent than the surface capil-
laries (Figures 8A,B, 9A,B). Also, these simulations showed the

influence of the arteriole as an O2 source on the SO2 levels of
nearby surface capillaries. For instance, the steady state SO2 level
in capillary 14, positioned right next to the arteriole, was ∼25%
higher than the zero flux control condition when exposed to
40 mmHg chamber PO2 and identical to the SO2 level of the
terminal arteriole (Figures 8, 9). However, the SO2 level of the
deeper tissue capillary (50), which was located at the same depth
as capillary 54, was unchanged relative to zero flux. In general, the
different arteriolar entrance SO2 has no effect on the surface or
deep tissue capillaries and had minimal influence on the arterio-
lar SO2 at steady state. At 15 mmHg, the SO2 level of the terminal
arteriole entering at 65% dropped by 60% relative to zero flux
condition corresponding to 44% increases in [ATP]. A smaller
drop in SO2 was calculated (52% decrease) for the arteriole enter-
ing at 80% corresponding to 40% increase in [ATP]. The SO2

level in the surrounding surface capillaries as well as deeper tissue
capillaries dropped by ∼70 and 35%, respectively, corresponding
to ∼45 and 16% higher steady state capillary [ATP] relative to
zero flux (Figures 8C, 9C). At 150 mmHg, hemoglobin SO2 lev-
els in surface and deep tissue capillaries as well as in the arteriole
converged to ∼100% with ∼77% decrease in steady state [ATP] in
the capillaries and 75% decrease in [ATP] in the arteriole relative
to zero flux control (Figures 8C, 9C).

Rectangular oxygen delivery micro-slit at 65 and 80% arteriolar
entrance SO2

In these simulations, the capillary array that includes the terminal
arteriole is exposed to local perturbations in tissue PO2 through
the rectangular micro-slit. At 40 mmHg chamber PO2, the cal-
culated steady state SO2 and [ATP] levels at the venular end of
surface and deep tissue capillaries as well as in the arteriole are
within 5% of those at zero flux condition and uninfluenced by the
arteriolar entrance SO2 (Figures 10, 11). Under imposed hypoxia
(15 mmHg), the calculated arteriolar SO2 values at steady state
were 50% higher than the case in which the full surface is exposed
to the PO2 perturbations and identical to those of deeper tissue
capillaries. Hence, a minimal drop in SO2 (38% decrease) was
calculated in the arteriole relative to zero flux. These arteriolar
steady state SO2 values were uninfluenced by the different arteri-
olar entrance SO2. The influence of the arteriole as an O2 source
to nearby capillaries downstream of the micro-slit can be clearly
observed in the 3D PO2 profiles at 15 mmHg (Figures 10A, 11A).
However, the surface capillaries (14, 17) experienced a sharper
drop in SO2 in response to the imposed hypoxia with 53% drop
in SO2 and a corresponding 39% increase in [ATP]. As observed
when locally stimulating surface capillaries in the absence of the
arteriole, capillaries were re-oxygenated ∼40 μm downstream of
the hypoxic micro-slit region. At 150 mmHg, the steady state
SO2 levels in surface capillaries and in the arteriole converged
to ∼88% while the SO2 level of capillary 50 was slightly lower
at 83% which corresponded to 65% and 57% decrease in [ATP],
respectively, relative to zero flux (Figures 10C, 11C).

Estimating relative arteriolar ATP magnitude in response to tissue
PO2 perturbations
In order to estimate the contribution of the terminal arte-
riole to ATP mediated signaling in capillary networks, the
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FIGURE 8 | Simulations of 3D PO2 and capillary [ATP] distribution in a

tissue with idealized parallel capillary arrangement (68 hexagonally

packed capillaries), which includes a traversing terminal arteriole (vessel

69) at an entrance SO2 of 65%. In these simulations, we are modeling O2

delivery to bottom tissue surface using the full gas exchange chamber
(Ghonaim et al., 2011; Ellis et al., 2012). Full bottom tissue surface is exposed
to 15, 40, or 150 mmHg chamber PO2 level relative to a zero flux control
boundary condition (A) Spatial 3D tissue PO2 distribution (mmHg) at capillary
entrance perspective (B) a capillary exit perspective showing combined X–Z

plane slice at Y = 150 μm and Y–Z plane slice at X = 266 μm (C) bottom
perspective of a vessel map depicting distribution of [ATP] (mol/L = M) along
the arteriole and surrounding capillaries. Bolded arrow marks arteriolar and
capillary entrance (D) Plots of SO2 (%) and [ATP] changes along vessel length
in selected vessels (14, 17, 69-arteriole, 50) marked by arrows on the vessel
map. Capillary 17 is 16 μm from tissue surface, the arteriole and capillary 14
are 33 μm from tissue surface, and capillary 50 is deeper in the tissue, at
133 μm, yet is shown adjacent to the arteriole in the current perspective of
the vessel map.

steady state magnitude of ATP in the arteriole (ATPart) at
various tissue PO2 conditions was calculated and normal-
ized against total ATP magnitude in the network (ATPtot)
under zero flux condition (Figure 12). The relative arterio-
lar ATP magnitudes were calculated when full tissue sur-
face is exposed to the PO2 perturbations (full gas exchange
chamber) or to local perturbations using the rectangular

O2 delivery micro-slit. As shown in Figure 12, the arterio-
lar ATP magnitude decreased with increase in chamber PO2

level. However, the model suggested that under hypoxic con-
ditions (15 mmHg), the terminal arteriole would contribute
less than 3% of the total ATP signal originating from a
capillary network. Also, although the percent decrease in
ATP magnitude in the arteriole is similar to that calculated
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FIGURE 9 | Simulations of 3D PO2 and capillary [ATP] distribution

in a tissue with idealized parallel capillary arrangement (68

hexagonally packed capillaries), which includes a traversing

terminal arteriole (vessel 69) at an entrance SO2 of 80%. In
these simulations, we are modeling O2 delivery to bottom tissue
surface using the full gas exchange chamber (Ghonaim et al., 2011;
Ellis et al., 2012). Full bottom tissue surface is exposed to 15, 40,
or 150 mmHg chamber PO2 level relative to a zero flux control
boundary condition (A) Spatial 3D tissue PO2 distribution (mmHg) at
capillary entrance perspective (B) a capillary exit perspective showing

combined X–Z plane slice at Y = 150 μm and Y–Z plane slice at
X = 266 μm (C) bottom perspective of a vessel map depicting
distribution of [ATP] (mol/L = M) along the arteriole and surrounding
capillaries. Bolded arrow marks arteriolar and capillary entrance (D)

Plots of SO2 (%) and [ATP] changes along vessel length in selected
vessels (14, 17, 69-arteriole, 50) marked by arrows on the vessel
map. Capillary 17 is 16 μm from tissue surface, the arteriole and
capillary 14 are 33 μm from tissue surface, and capillary 50 is
deeper in the tissue, at 133 μm, yet is shown adjacent to the
arteriole in the current perspective of the vessel map.

for the total network when increasing chamber PO2 from
15 to 150 mmHg, the absolute change in ATP magnitude
(moles) in the arteriole is ∼95% less. Finally, it should
be noted that [ATP] in the arteriole is ∼20% lower when
limiting area of PO2 perturbations using the rectangular
micro-slit.

DISCUSSION
In the microcirculation, ATP is released from the erythrocytes
in an SO2 dependent manner. Released ATP would bind to
purinergic receptors on the vascular endothelium which acti-
vates a signaling pathway leading to the opening of Ca2+ gated
K+ channels and the hyperpolarization of the endothelial cell
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FIGURE 10 | Simulations of 3D PO2 and capillary [ATP] distribution in a

tissue with idealized parallel capillary arrangement (68 hexagonally

packed capillaries), which includes a traversing terminal arteriole

(vessel 69) at an entrance SO2 of 65%. In these simulations, we are
modeling O2 delivery through a rectangular oxygen micro-delivery outlet
(1000 μm wide × 200 μm long) to bottom tissue surface using our
previously described novel micro-delivery approach (see Figure 1). Tissue
surface directly on top of the micro-delivery outlet is exposed to 15, 40, or
150 mmHg chamber PO2 level relative to a zero flux control boundary
condition (A) Spatial 3D tissue PO2 distribution (mmHg) at capillary

entrance perspective (B) a capillary exit perspective showing combined
X–Z plane slice at Y = 150 μm and Y–Z plane slice at X = 266 μm (C)

bottom perspective of a vessel map depicting distribution of [ATP]
(mol/L = M) along the arteriole and surrounding capillaries. Bolded arrow
marks arteriolar and capillary entrance (D) Plots of SO2 (%) and [ATP]
changes along vessel length in selected vessels (14, 17, 69-arteriole, 50)
marked by arrows on the vessel map. Capillary 17 is 16 μm from tissue
surface, the arteriole and capillary 14 are 33 μm from tissue surface, and
capillary 50 is deeper in the tissue, at 133 μm, yet is shown adjacent to
the arteriole in the current perspective of the vessel map.

(Ellsworth et al., 2008; Tran et al., 2012). The hyperpolariza-
tion signal is then conducted upstream through gap junctions. At
the arteriolar wall, the incoming hyperpolarization signal is con-
ducted to the SMC layer through myo-endothelial gap junctions
resulting in vaso-relaxation and increase in erythrocyte supply
rate (Ellsworth et al., 2008; Tran et al., 2012). The magnitude
of the hyperpolarization signal would depend on the number of

endothelial cells activated along the capillary and on the total
number of capillaries stimulated within a network under hypoxic
conditions. This understanding of how erythrocyte-released ATP
controls micro-vascular O2 delivery is consistent with the model-
ing results presented in this paper. The net increase in total ATP
magnitude in the network with increase in the area exposed to
hypoxia is the summative contribution of additional stimulated
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FIGURE 11 | Simulations of 3D PO2 and capillary [ATP] distribution in a

tissue with idealized parallel capillary arrangement (68 hexagonally

packed capillaries), which includes a traversing terminal arteriole

(vessel 69) at an entrance SO2 of 80%. In these simulations, we are
modeling O2 delivery through a rectangular oxygen micro-delivery outlet
(1000 μm wide × 200 μm long) to bottom tissue surface using our
previously described novel micro-delivery approach (see Figure 1). Tissue
surface directly on top of the micro-delivery outlet is exposed to 15, 40, or
150 mmHg chamber PO2 level relative to a zero flux control boundary
condition (A) Spatial 3D tissue PO2 distribution (mmHg) at capillary

entrance perspective (B) a capillary exit perspective showing combined
X–Z plane slice at Y = 150 μm and Y–Z plane slice at X = 266 μm (C)

bottom perspective of a vessel map depicting distribution of [ATP]
(mol/L = M) along the arteriole and surrounding capillaries. Bolded arrow
marks arteriolar and capillary entrance (D) Plots of SO2 (%) and [ATP]
changes along vessel length in selected vessels (14, 17, 69-arteriole, 50)
marked by arrows on the vessel map. Capillary 17 is 16 μm from tissue
surface, the arteriole and capillary 14 are 33 μm from tissue surface, and
capillary 50 is deeper in the tissue, at 133 μm, yet is shown adjacent to
the arteriole in the current perspective of the vessel map.

capillaries (Figures 3–7). Also, these results help explain our
observations of no vascular response when experimentally test-
ing the effect of O2 delivery through a circular micro-outlet
(100 μm in diameter) in vivo (Ghonaim et al., 2011). Although
this design maybe optimal for locally altering SO2 in single cap-
illaries, the stimulus would probably not be sufficient to elicit a

micro-vascular response. Increasing the dimensions of the micro-
outlet would be necessary to stimulate a large enough number
of capillaries, thus amplifying total magnitude of ATP release
and signal.

Also, as our modeling data suggest, increasing the micro-
outlet dimensions minimizes the effect of stimulated capillary
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FIGURE 12 | Total ATP magnitude (moles) at steady state calculated for

entire network (ATPtot from all 68 capillaries) or in the terminal

arteriole only (ATPart) normalized against ATPtot calculated at no-flux

condition. Relative ATP magnitudes are calculated for an idealized 3D
parallel capillary array network with a terminal arteriole (9 μm in diameter)
positioned 30 μm from tissue surface. Simulations were run with entire
bottom tissue surface being exposed to PO2 perturbations using full gas
exchange chamber or locally using a rectangular O2 delivery micro-slit
(1000 μm wide × 200 μm long). For both conditions, relative ATP
magnitudes are calculated for the case in which the terminal arteriole has
an entrance SO2 of (A) 65% or (B) 80%.

re-oxygenation downstream of the micro-outlet. This is because
the capillaries of interest would be surrounded by capillaries expe-
riencing the same drop in PO2. This is more representative of
the situation in vivo as the outlet physiologically simulates an
arteriole crossing the capillary bed acting as an O2 source or
a venule withdrawing O2, which would affect multiple capillar-
ies. In terms of the signaling response, delayed re-oxygenation
following hypoxic stimulation ensures the ATP signal persists
longer distances downstream thus stimulating a larger number
of endothelial cells. Since each endothelial cell in skeletal mus-
cle is ∼100 μm long, using the rectangular slit is estimated to
activate at least 3.5 endothelial cells in each stimulated capil-
lary. In comparison with the square micro-outlet, which has the
same length (200 μm) as the rectangular micro-slit, ∼1 more
endothelial cell is activated per capillary with the latter design.
It should be noted that in the modeled geometry, which lacks
realistic capillary branching and has an idealized, uniform cap-
illary density, we are examining relative changes in the total
magnitude of ATP when using various outlet designs. During
in vivo experiments, a maximum of two micro-vascular units ∼10
capillaries may be positioned along the entire width of the rect-
angular micro-slit, while only one or two capillaries with a
branching point could be positioned over the circular micro-
outlet (Ghonaim et al., 2011). Hence a 1000 μm wide × 200 μm
long outlet might cover the threshold number of capillaries

needed to elicit a micro-vascular response. This indicates the
rectangular micro-slit would be optimal for stimulating enough
capillaries by imposed hypoxia to generate high enough ATP
signal.

The limited amount of change in tissue PO2 due to dif-
fusion (∼50 μm), as measured from the 3D tissue PO2 pro-
files, beyond the edge of the micro-outlets (Figures 4A–6A and
4B–6B) was consistent with our previous observations (Ghonaim
et al., 2011). The simulations indicated that the PO2 pertur-
bations are highly localized to only those capillaries directly
over the micro-outlet region. Experimentally, the results sug-
gest that the micro-outlet should be positioned at least 50 μm
downstream of the terminal feeding arteriole to ensure that
micro-vascular responses are only elicited from the capillaries
positioned directly over the outlet. The extent of axial O2 dif-
fusion in the tissue when using the rectangular micro-slit was
50% deeper than that previously modeled for the circular micro-
outlet (Figures 6B, 10B, 11B) (Ghonaim et al., 2011) and similar
to that of the full surface model (Ghonaim et al., 2011; Ellis
et al., 2012). Due to the shape of the PO2 profile, the maximal
axial diffusion distance is estimated from the center of the outlet.
The increase in the axial diffusion distance might be a com-
promise when using larger O2 micro-outlets. With our current
microscopic techniques we are unable to resolve vessels deeper
than 60 μm.

Since in our experiments, we examine micro-vascular signal-
ing from selected capillaries, it was critical that we assess the
possible contribution of arterioles beyond our ability to focus.
Since arterioles have relatively higher erythrocyte velocities than
in the capillaries, they are anticipated to experience a much lesser
change in SO2 in response to PO2 perturbations. This was sup-
ported by our simulation data (Figures 8–11). The main effect
of a nearby terminal arteriole on a capillary within 50 μm is
that it would act as an O2 source. As shown in our modeling
data (Figures 8D–11D), higher measured SO2 in a capillary rel-
ative to other capillaries with comparable flow rates in the same
preparation might imply the presence of a nearby arteriole. Since
arterioles in the EDL muscle preparation are deeper in the tis-
sue, their contribution to the total magnitude of ATP in a locally
stimulated capillary network is probably negligible. The contribu-
tion of a terminal arteriole positioned directly over the micro-slit
∼30 μm from bottom surface was calculated to be less than 3%
of the total magnitude of the ATP (Figure 12). Hence, when
locally stimulating capillaries, even in the presence of an under-
lying arteriole, the observed micro-vascular responses mediated
by intra-luminal ATP would be primarily due to ATP released in
the stimulated capillaries.

In conclusion, we have modeled SO2-dependant changes
in [ATP] at steady state in 3D idealized parallel capil-
lary networks in response to local PO2 perturbations. As
the number of affected capillaries increases, the total mag-
nitude ATP in the network increases. The results indicated
that O2 delivery or removal to overlaying tissue through
a rectangular micro-slit (1000 μm wide × 200 μm long)
would be optimal relative to other micro-outlet designs of
smaller dimensions or a full surface classical exchange type
chamber. Using the rectangular micro-slit it is anticipated
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that a sufficient number of capillaries will be stimulated to pro-
duce a large enough magnitude of ATP to elicit micro-vascular
responses. This would be accomplished while maintaining the
stimulus localized to the selected capillaries. The results also
indicated that terminal arterioles have minimal influence on the
total magnitude of ATP in the network under hypoxic condition.
Hence, when locally stimulating the capillary bed, the majority
of the signal elicited by ATP release would originate in the cap-
illaries. The computational model presented provides valuable
insights into how to study the ATP release mechanism and signal-
ing in capillary networks in vivo. The modeling data help guide
us in the design of an optimal tool for studying SO2-dependent
ATP release in capillaries in vivo. In the future, we aim to model
time-dependent ATP release to local PO2 perturbations in a real-
istic capillary network geometry reconstructed from experimental

data. Combining our in vivo experimental observations with
computational modeling of the dynamics of SO2-dependent ATP
release will help provide a more comprehensive understanding
of O2 mediated blood flow regulation in micro-vascular
networks.
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The National Heart, Lung, and Blood Institute (NHLBI) has recognized the importance
of the systems biology approach for understanding normal physiology and perturbations
associated with heart, lung, blood, and sleep diseases and disorders. In 2006, NHLBI
announced the Exploratory Program in Systems Biology program, followed in 2010 by the
NHLBI Systems Biology Collaborations program. The goal of these programs is to support
collaborative teams of investigators in using experimental and computational strategies
to integrate the component parts of biological networks and pathways into computational
models that are based firmly on and validated using experimental data. These validated
models are then applied to gain insights into the mechanisms of altered system function
in disease, to generate novel hypotheses regarding these mechanisms that can be tested
experimentally, and to then use the results of experiments to refine the models. This
perspective reviews the history of dedicated systems biology programs at NHLBI and
reviews some promising directions for future research in this area.

Keywords: NHLBI, NIH, funding opportunity, systems biology research, portfolio analysis

Systems biology aims to help us understand and predict the
behavior of complex systems through a combination of exper-
imental and computational approaches with each approach
informing the other. Although high-throughput omic technolo-
gies may help inform a systems approach, such approaches alone
do not constitute a systems biology research program. Similarly,
while systems biology research requires computational modeling,
neither does simply doing modeling encompass a systems biology
program. Indeed, systems biology research requires both compu-
tational and experimental (often high-throughput) approaches
in research program that complement and inform each other.
Experiments measure the system and its key properties and
responses, while computational models integrate the informa-
tion and generate new testable hypotheses. This combination of
experimental and computational approaches have been helping to
improve the understanding of complex systems in heart, lung, and
blood research for decades, and is particularly useful in under-
standing and even predicting the emergent properties of these
systems, whose responses and characteristics may be greater than
the sum of their parts. A critical early exemplar of the usefulness
and impact of such approaches is Denis Noble’s computational
modeling of the cardiac action potential (Noble, 1962), which
demonstrated that cardiac action potential results from interac-
tions between multiple ion channels. His model helped form the
basis of an active and growing cardiac simulation research com-
munity that continues to improve upon the models to refine their
predictive ability and usefulness (Trayanova et al., 2012). These
and other exemplars demonstrate the promise that the systems
biology approach may hold to better understand complex sys-
tems, their dysfunction in disease, and support development of
new therapies.

SYNOPSIS OF NHLBI ACTIVITIES TO DATE
Over the past 8 years, the National Heart, Lung, and Blood
Institute (NHLBI) has invested in targeted programs to foster
such integrated experimental and computational approaches in
promising areas throughout the heart, lung, blood, and sleep
research portfolio. Guided by input from a working group in
2004, “A Systems Biology Approach to Regulatory Networks in
Heart, Lung, Blood and Sleep Research” that was chaired by Drs.
Leroy Hood and Joseph Nadeau, NHLBI targeted its investment
in systems biology to support research collaborations between
computational and experimental researchers focused on specific
research challenges.

The Request for Application (RFA) “NHLBI Exploratory
Program in Systems Biology (R33),” HL06-004 and HL07-005,
was designed to foster these multi-disciplinary collaborations
that required integration of different types of expertise (pre-
dictive computational models, informatics, and experimental
systems). To emphasize the importance of the balance and inte-
gration of these different approaches to the overall project,
this program supported independent, linked R33 awards to
the different collaborating investigators in the project. This
multiple linked award approach was necessary as this pro-
gram pre-dated the National Institutes of Health Multiple
Principle Investigator policy (http://grants.nih.gov/grants/guide/
notice-files/NOT-OD-07-017.html).

These linked R33 awards independently supported both the
computational and experimental investigators while requiring
them to work closely together to produce a single coherent, inte-
grated project. The R33 mechanism was used to emphasize the
high risk, innovative science this program intended to support.
These R33 awards were not renewable, and successful projects
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were expected to be competitive for subsequent investigator-
initiated research proposals. To allow research communities in
different stages of readiness to respond, the RFA was designed
with multiple receipt dates and funded projects starting in 2006,
2007, and 2008. In the past, others have provided excellent reviews
of the systems biology (Chuang et al., 2010; MacIlwain, 2011;
Hood and Tian, 2012), here we provide an overview of the NHLBI
support and development of the systems biology field as it applies
to heart, lung, and blood research.

The “NHLBI Exploratory Program in Systems Biology” pro-
gram was successful in developing this field across NHLBI
research areas. Although NHLBI originally set aside $24.3 mil-
lion to support nine awards, a total of twelve projects were funded
for the RFA, given the number of high-quality applications. Some
examples of the diversity of research supported through this
program included “Blood Systems Biology,” “Systems Biology
of Sudden Cardiac Death,” to the “Neurogenesis of Cough.”
Modeling approaches in these projects ranged from physics-based
models, to agent-based models, to analysis of signaling networks.
As this program encouraged multi-scale modeling, many of the
proposals included multiple modeling approaches to address
challenges at the different scales within the system. Following this
successful RFAs -program, NHLBI continues to support this area
by transitioning this program from RFA with a set-aside budget
to an ongoing Program Announcement (PA), “NHLBI Systems
Biology Collaborations (R01)”- PAR09-214. This PA was released
in 2009 and had two receipt dates per year but retained a spe-
cial emphasis panel for review. Between these targeted funding
opportunities (RFA-HL-06-004, RFA-HL-07-005, and PAR09-
214), NHLBI has committed $45.6 M between 2006 and 2012 to
support systems biology research. NHLBI continues to support
this PA through the renewal PAR12-138 that is active till 2015.

The purpose of this program was to build a community of
researchers interested in developing, applying, and sharing sys-
tems biology approaches to the wide variety of research challenges
represented across NHLBI research. This has been successful
through both the original RFA program and through the vari-
ous other programs supported from NHLBI. The success of this
has also been shown through the large and vibrant group of
HLBS researchers funded through the Interagency Modeling and
Analysis Group’s Multi-Scale Modeling program (IMAG/MSM).
Indeed, the NHLBI systems biology program and the MSM pro-
grams have held joint meetings for the last 3 years, because
of the shared research interests between the programs. These
interactive meetings allow cross-cutting discussions across diverse
research areas that help keep researchers informed about innova-
tive new computational approaches of potential interest to their
own research area.

An analysis of research funding of systems biology research
using the NIH Reporter system (http://projectreporter.nih.gov/
reporter.cfm) showed a marked growth in NHLBI systems biol-
ogy research over the last 8 years (2006–2012). NHLBI support
of research in this area through targeted announcements was
assessed by searching the NIH Reporter database for grants
funded through targeted funding opportunities RFA-HL-06-004,
RFA-HL-07-005, or PAR-09-214. We determined number of
awards, total costs, and number of publications in each year for

each award. To determine the overall investment in the systems
biology field, the same measures were taken for a search of grants
that included the term “systems biology” in the title, abstract,
or specific aims. This general search included only R21, R13,
R33, and R01-equivalent grant mechanisms, excluding Program
Projects (P01) and cooperative agreements. This analysis showed
that the targeted funding announcements were responsible for the
vast majority of systems biology projects supported by NHLBI
from 2006 to 2009 (See Figure 1). However, starting in 2009,
funding from these targeted announcements leveled off to about
$5 M–$7 M per year, while the overall systems biology portfolio
increased dramatically starting in 2009. Analysis of the output
of the three targeted programs through publications shows an
expected lag, with publications increasing from 2006 to 2009 then
remaining steady, as it takes several years for the fruits of research
to result in publications.

A visualization of the key terms from the grants identified from
the overall “systems biology” analysis from NIH Reporter identi-
fies overall themes across the portfolio (See Figure 2). The most
common terms were “mathematical model,” “gene expression,”
“candidate gene,” “stem cells,” and “heart failure.” This analysis
shows the diversity of scientific areas across the NHLBI portfolio
using the systems biology approach: from heart failure, airway,
and epithelial cell biology, to blood cell and stem cell regulation
and infection. Approaches such as gene expression cut across dis-
ease areas, from pulmonary fibrosis, blood cells, to cardiovascular
disease. This visualization gives a snapshot of the current NHLBI
systems biology portfolio and highlights areas of strength and its
diversity.

GOING FORWARD
Going forward we hope to see continued growth of systems
biology approaches to diverse research challenges, where they
are useful and appropriate, as the integration of computa-
tional and biological/experimental methodologies can provide
greater insight to complex biology. One area of particular
interest is the potential of systems biology to help guide and
accelerate translational research. For instance, an integrated
systems level approach may prove useful in accelerating tar-
geted drug development and reduced off-target drug effects
(Sorger and Allerheiligen, 2011). Systems approaches may also
help quantify behavioral influences on disease propensity. Such
integration across physiological, genetic, and behavioral mod-
els is identified as a challenge in the current Interagency
Multi-Scale Modeling Initiative, “Predictive Multiscale Models
for Biomedical, Biological, Behavioral, Environmental and
Clinical Research (Interagency U01)” (http://grants.nih.gov/
grants/guide/pa-files/PAR-11-203.html).

Another developing area of interest is personalized precision
medicine that promises individualized modeling to refine and
target treatments to each person. While earlier examples of per-
sonalized medicine were seen in the field of pharmacogenomics
(Jiayi et al., 2009), precision medicine includes a variety of differ-
ent research areas, explicitly including mathematical modeling.
For example in the cardiovascular arena, personalized models
of the cardiovascular system are being developed that incorpo-
rate image-based information about the heart or major vessels

Frontiers in Physiology | Computational Physiology and Medicine November 2013 | Volume 4 | Article 299 | 178

http://projectreporter.nih.gov/reporter.cfm
http://projectreporter.nih.gov/reporter.cfm
http://grants.nih.gov/grants/guide/pa-files/PAR-11-203.html
http://grants.nih.gov/grants/guide/pa-files/PAR-11-203.html
http://www.frontiersin.org/Computational_Physiology_and_Medicine
http://www.frontiersin.org/Computational_Physiology_and_Medicine
http://www.frontiersin.org/Computational_Physiology_and_Medicine/archive


Qasba and Larkin NHLBI support of systems biology

FIGURE 1 | (A) NHLBI investment-Legend-NHLBI invested over $45 M in
systems biology targeted FOAs through between 2006 and 2012. (B) # of
projects-Legend-For the first three years, the targeted systems biology
FOAs make up most of the awards in the NHLBI portfolio. But as RFA
funding ends, the number of awards self-identifying as systems biology
projects increases (2011 and beyond). (C) # of

publications-Legend-Publications from the targeted FOAs gain impact in
1–3 year lag following funding, continuing to increase through 2011,
although funding peaked for targeted FAOs in 2008. (D) Amount of $ on
grants/year-Legend- Through 2008, virtually all funding goes to the RFA
awards. However other (non-FOA) systems biology grants accelerate
rapidly from 2009 to 2012.

FIGURE 2 | NIH Reporter visualization of themes across the NHLBI

systems biology portfolio (2006–2012).

from individual patients to generate predictive models tailored
to that individual. Examples range from patient-specific models
of cardiovascular mechanics (Krishnamurthy et al., 2013), to pre-
surgical patient-specific aneurism models that help surgeons plan
the surgery for each patient (Xiao et al., 2013), to application of
individualized mathematical predictive models of blood flow in
coronary arteries (Pijls and Sels, 2012), which has become a gold
standard for invasive assessment of physiologic stenosis and an
indispensable tool for decision making in coronary revasculariza-
tion. Additionally, evidence that systems biology approaches have
the potential to improve translation is the FDA approval of infu-
sion pumps based on comprehensive models for diabetes. Models
accurately recreated the precise and dynamic glucose-regulating
function of a healthy pancreas (Kovatchev et al., 2009; Zhang
et al., 2010).

Another area of interest is network-based approaches that seek
to provide new insights into health and disease, by understand-
ing complex interactions at the scale of individuals, tissues, or
cells and the impact of disease state or therapeutics on disturb-
ing these networks. One example is the Common Fund Library of
Integrated Network based Cellular Signals (LINCS, http://www.

lincsproject.org/) managed jointly by NHLBI and the National
Human Genome Institute (NHGRI). LINCS aims to create a
network-based understanding of biology by cataloging changes
in gene expression and other cellular processes that occur when
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cells are exposed to a variety of perturbing agents and by using
computational tools to integrate this diverse information into
a comprehensive view of normal and disease states that can
be applied for the development of new biomarkers and thera-
peutics. Another NHLBI program designed to utilize evolving
knowledge of cellular and molecular networks to define com-
mon mechanism-associated traits across organ systems is Cross
Organ Mechanism-Associated Phenotypes for Genetic Analyses
of Heart, Lung, Blood, and Sleep Diseases (MAPGen, http://
mapgenprogram.com/). The program identifies and character-
izes common pathobiologic traits and/or mechanisms that cross
organ systems and diseases with the ultimate goal of redefin-
ing heart, lung, blood, and sleep disorders based on newfound
knowledge of the underlying molecular and/or cellular pathobi-
ology. More recently, research in the MapGen program is mak-
ing important strides to highlight our understanding of cellular
networks and their relation to human diseasome, which may
help foster network medicine (Barabasi et al., 2011; Chan and
Loscalzo, 2012). Given the functional interdependencies between
the molecular components in a human cell, a disease is rarely a
consequence of an abnormality in a single gene but reflects the
perturbations of the complex intracellular network (Loscalzo and
Barabasi, 2011). The hope is that network medicine will provide
a platform to methodically dissect molecular complexity of a par-
ticular disease. This may allow both identification of common
molecular underpinnings of differing phenotypes, as well as iden-
tification of divergent molecular mechanisms that may underlie
clinically similar phenotypes. Such molecular phenotypes will
allow more precise diagnosis and more targeted therapies and
treatments.

Similarly, another tool -genomic DNA footprinting- enables
mapping of millions of in vivo binding sites for hundreds of
transcription factors simultaneously in primary human cells
(Lazarovici et al., 2013). The tools target a key bottleneck lim-
iting construction of comprehensive regulatory networks for
human cells typically requiring one-by-one or few-by-few dis-
covery of connections between transcriptional regulators. The
resulting maps enable the construction of accurate, comprehen-
sive transcriptional regulatory networks that can, identify key
regulatory factors for biological processes, help map networks
associated with specific disease states and pinpoint specific reg-
ulatory factors that play a pathogenic role in disease (Maurano
et al., 2012).

Finally, these emerging areas show the promise that systems
biology approaches hold to help address key biomedical research
challenges. The NHLBI programs have proven effective in foster-
ing the development and application of these approaches across
a wide range of areas, and we look forward to the day when
researchers readily/keenly accept such quantitative approaches as
part of a robust research strategy, just as DNA sequencing or RNA
expression has become a common activity in biomedical research
and not the sole domain of a few experts.

The views expressed by PQ and JL in this commentary
are personal and do not necessarily represent those of the US
Government.
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