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Classifying breast cancer using
multi-view graph neural network
based on multi-omics data

Yanjiao Ren1, Yimeng Gao1, Wei Du2, Weibo Qiao2, Wei Li1,
Qianqian Yang1, Yanchun Liang2,3* and Gaoyang Li4*
1College of Information Technology, Smart Agriculture Research Institute, Jilin Agricultural University,
Changchun, Jilin, China, 2College of Computer Science and Technology, Jilin University, Changchun,
China, 3School of Computer Science, Zhuhai College of Science and Technology, Zhuhai, China,
4Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai
East Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University,
Shanghai, China

Introduction: As the evaluation indices, cancer grading and subtyping have
diverse clinical, pathological, and molecular characteristics with prognostic
and therapeutic implications. Although researchers have begun to study
cancer differentiation and subtype prediction, most of relevant methods are
based on traditional machine learning and rely on single omics data. It is
necessary to explore a deep learning algorithm that integrates multi-omics
data to achieve classification prediction of cancer differentiation and subtypes.

Methods: This paper proposes a multi-omics data fusion algorithm based on a
multi-view graph neural network (MVGNN) for predicting cancer differentiation
and subtype classification. The model framework consists of a graph
convolutional network (GCN) module for learning features from different
omics data and an attention module for integrating multi-omics data. Three
different types of omics data are used. For each type of omics data, feature
selection is performed using methods such as the chi-square test and minimum
redundancy maximum relevance (mRMR). Weighted patient similarity networks
are constructed based on the selected omics features, and GCN is trained using
omics features and corresponding similarity networks. Finally, an attention
module integrates different types of omics features and performs the final
cancer classification prediction.

Results: To validate the cancer classification predictive performance of the
MVGNN model, we conducted experimental comparisons with traditional
machine learning models and currently popular methods based on integrating
multi-omics data using 5-fold cross-validation. Additionally, we performed
comparative experiments on cancer differentiation and its subtypes based on
single omics data, two omics data, and three omics data.

Discussion: This paper proposed the MVGNN model and it performed well in
cancer classification prediction based on multiple omics data.

KEYWORDS

multi-view graph neural network, multi-omics data, attention mechanism, feature
selection, cancer differentiation, cancer subtypes
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1 Introduction

Cancer is one of the leading causes of death in the world today.
According to the global cancer statistics report in 2020, there were
nearly 19.3 million new cases of cancer and 10million cancer-related
deaths worldwide (Bray et al., 2018). Due to factors such as
globalization and economic growth, the number of new cancer
cases is expected to continue to rise. Cancer is a disease
characterized by the uncontrolled growth and spreading of
specific cells in the body to other parts of the body. These cells
can also transfer to distant body parts, forming new tumors through
metastasis (Hanahan andWeinberg, 2011). Tumors can be classified
into different grades, known as tumor grading, by examining tumor
cells under a microscope. Tumor grading compares the degree of
cellular and tissue morphological changes between cancer cells and
normal cells, indicating the tumor’s differentiation. Generally, based
on the abnormality of tumor cells observed under a microscope,
tumors are classified into grades 1, 2, or 3 (sometimes also 4), called
G1, G2, G3, and G4, respectively (Sobin and Fleming, 1997). These
represent well-differentiated, moderately differentiated, poorly
differentiated, and undifferentiated tumors. Cancer is also a
heterogeneous disease that encompasses various subtypes. The
same type of cancer can be divided into subtypes based on
different mechanisms of occurrence. Different subtypes of the
same cancer reflect distinct molecular carcinogenesis processes
and clinical outcomes. With the advent of precision medicine,
cancer classification has gradually become one of the
fundamental goals of cancer informatics. Heterogeneous cancer
populations are grouped into clinically meaningful subtypes
based on the similarity of molecular spectra.

Breast cancer is a most common cancer worldwide (Loibl et al.,
2021). The number of breast cancer patients is increasing year by
year, and the proportion of women under the age of 40 with breast
cancer has reached 6.6% (Assi et al., 2013). Breast cancer incidence
rates have risen in most of the past four decades; during the most
recent data years (2010–2019), the rate increased by 0.5% annually
(Giaquinto et al., 2022). Breast cancer, as a highly heterogeneous
disease, is composed of different biological subtypes, which possess
distinct clinical, pathological, and molecular characteristics, as well
as prognostic and therapeutic significance (Reis-Filho and Pusztai,
2011).Therefore, studying breast cancer subtypes is of great
significance for precision medicine and prognosis prediction
(Waks and Winer, 2019).In the year 2000, Perou et al. first
proposed the molecular subtyping of breast cancer. They
concluded that breast cancer can be divided into four subtypes:
Luminal A subtype, Basal-like subtype, HER2-enriched subtype, and
Normal-like subtype (Perou et al., 2000). Sorlie et al. subdivided the
luminal subtype into luminal A and B subtypes (Sorlie et al., 2003).
Waks et al. categorized breast cancer into three major subtypes
based on the presence or absence of molecular markers, including
estrogen receptor (ER), progesterone receptor (PR), and human
epidermal growth factor receptor 2 (HER2). These subtypes are
ER+/PR+/HER2- (luminal A), HER2-positive, and triple-negative
breast cancer (TNBC), where all three of these molecular markers
are negative (Yersal and Barutca, 2014). The HER2-positive subtype
can be further divided into ER+/PR+/HER2+ (luminal B) and ER-/
PR-/HER2+. Tao et al. categorized breast cancer into five subtypes
based on immunohistochemistry (IHC) markers, including ER, PR,

and HER2 (Tao et al., 2019). These subtypes include luminal A, B,
HER2-positive, TNBC, and unclassified.

With the advancement of sequencing technologies, various types
of omics data in the biosphere, including transcriptomics data [RNA
expression data (Wang et al., 2009; Ozsolak and Milos, 2011)],
metabolomics (Shulaev, 2006) data, proteomics (Altelaar et al.,
2013) data, methylation patterns (Laird, 2010) data, as well as
genomics data [DNA sequence data (Metzker, 2010)], have
experienced rapid growth and accumulation. Many researchers
have developed corresponding tools to handle this large-scale
omics data. Another issue gradually gaining attention from
researchers is whether there is interaction between complex traits
and omics data. Previous studies mainly focused on the relationship
between individual omics data and biological processes. Due to the
reliance on a single type of omics data in analyzing the causes of
complex traits, there have been few research results in this area until
now. Through many existing experimental studies, it is known that
there is a specific connection between different omics data, and they
can complement each other’s missing information. This is crucial for
researchers to discover the relationship between complex traits and
different omics data (Reif et al., 2004; Sieberts and Schadt, 2007;
Hamid et al., 2009; Hawkins et al., 2010; Holzinger and Ritchie,
2012). Integrating different types of omics data and designing
reasonable and adequate multi-omics data integration methods to
accurately predict cancer differentiation and subtype classification
have become hot topics in cancer research.

Deep learning, as an emerging and efficient method in the field
of machine learning, is more capable of capturing non-linear
complex relationships in complex models. It has been widely
used in the research of multi-omics data fusion methods (Cai
et al., 2022). Mohammed et al. proposed a LASSO based 1D-
CNN method and compared it with SVM, ANN, KNN, and
bagging tree methods, the results indicating that the classification
performance of the deep stacking method was superior to the
traditional machine learning method (Mohammed et al., 2021).
Li et al. proposed the MoGCN method by integrating multi-omics
data based on a graph Convolutional network (GCN). Autoencoders
and similarity network fusion methods are used to reduce and
construct a patient similarity network (PSN) respectively to
capture complex nonlinear relationships among multi-omics data
(Li et al., 2022). Xing et al. Proposed the MLE-GATmethod, namely
multi-layer embedded graph attention method, uses WGCNA
method to format each patient’s omics data into a co-expression
network and uses the full gradient map significance mechanism to
identify disease-related genes (Xing et al., 2021). Blanco et al. points
out the need to maintain a certain balance between biology and
computer technology, and to integrate biological knowledge into
modeling methods (Linares-Blanco et al., 2021). Leng et al. suggests
that the best foundational model for predicting the fusion of
multiple omics data is the GNN model (Leng et al., 2022).

This paper considers the relations between feature nodes in the
aggregation of GCNmodel, which are constructed based onmultiple
sets of omics data to form a similarity network. The correlation
between samples can be captured through this similarity network,
effectively preserving the biological semantic and geometric
structures of the data. While for the GAT model, the relations
between nodes are learned through network training. However,
especially when the sample size is small, the training effect may
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not be satisfactory. Therefore, this paper adopts the GCN model
instead of the GAT model in the design, and subsequent
experiments have also validated this design.

2 Materials and methods

2.1 Data collection

The breast cancer data used in this study were obtained from
The Cancer Genome Atlas (TCGA) database (Weinstein et al.,
2013), which contains various cancer types and their
corresponding omics data. A total of 606 breast cancer cases
were carefully selected, which included gene expression data,
DNA methylation data, copy number variation (CNV) data,
differentiation annotation, and subtype annotation. The specific
statistical information of the mRNA, DNA methylation, and
CNV data for the collected breast cancer cases is shown in
Table 1. Among the breast cancer cases with differentiation
annotation, there were 245 samples labeled as low differentiation
(G3), 286 samples labeled as medium differentiation (G2), and
75 samples labeled as high differentiation (G1). The detailed
information is presented in Table 2.

In this article, Tao et al. classified breast cancer into four subtypes
using immunohistochemistry (IHC) labeling: luminal A, luminal B,
HER2-positive, and triple-negative breast cancer (TNBC). The luminal
A subtype is the most common, accounting for 60% of all breast cancer
subtypes (Malhotra et al., 2010). The majority of patients with the
luminal B subtype are elderly. Approximately 25% of breast cancer
patients are HER2-positive, which is associated with a poorer prognosis.
Most patients with HER2-positive advanced breast cancer are likely to
have lymph node metastasis in the axillary region. The TNBC subtype is
characterized by the absence of estrogen receptor (ER), progesterone
receptor (PR), and HER2 (Tao et al., 2019). Compared to other subtypes
of breast cancer, TNBC tends to rapidly deteriorate and metastasize.

In the breast cancer cases with subtype annotation, there were a
total of 398 cases. Out of these, 277 cases were annotated as Luminal
A, 40 were annotated as Luminal B, 11 were annotated as HER2(+),
and 70 were annotated as TNBC. Table 3 provides detailed
information on these cases. The above three omics data and two
annotation files are provided in the Supplementary Material.

2.2 Data preprocessing

Generally, deep learning models do not require separate
feature selection, as they can achieve this through the neural
network’s weights. However, due to the “large p small n”
dimensionality catastrophe problem in omics data, training the
network weights of omics data using the deep learning model is not
adequate. In deep neural networks, fewer features often mean
better interpretability and higher training speed. In this study, the
collected breast cancer case sample data underwent preprocessing
operations using three feature selection algorithms: chi-square test,
linear normalization, and minimum redundancy maximum
relevance (mRMR) (Yiming, 1997; Peng et al., 2005; Forman,
2008). The specific data preprocessing workflow is shown
in Figure 1.

This paper uses the chi-square test to select features for each
omics type. The features are sorted based on their number in the
hypothesis test using the samples corresponding to each
classification task. Then, the top-k features are selected for each
omics data. In this study, k is set to 5000. Normalization is
performed using linear scaling, transforming the data values to fit
within the range of [0,1]. The paper also employs the minimum
Redundancy Maximum Relevance (mRMR) feature selection
algorithm. The difference between each feature’s maximum
relevance value and the minimum redundancy value is used as
the feature score. The features are then sorted in descending order
based on their scores, and the top 500 features are selected for
further filtering. These selected features are favorable for cancer
differentiation and subtype prediction.

2.3 Graph construction

A graph is a complex data structure consisting of nodes and
edges. Many scenes in real life shown in the form of graphs or
networks. For example, resources and users in recommendation
systems can be considered as nodes in a graph, and the relationships
between users and items can be considered as edges. Complex terms
like chemical molecules can also be abstracted as graphs (Zhou et al.,
2020). Most deep learning algorithms use data such as speech,
images, and text with tidy and regular data structures. However,
conventional deep learning algorithms are difficult to handle for
those irregular and complex network structures. The Graph
Convolutional Network (GCN) (Kipf and Welling, 2016) model
can process such graph structures.

In this paper, patient similarity networks are constructed by
using cosine similarity for three kinds of omics data, namely mRNA,
DNA methylation, and CNV data, respectively (Pai and Bader,
2018). The calculation formula for cosine similarity is as Eq. 1:

similarity � cos θ( ) � A · B
A‖ ‖ B‖ ‖ �

∑n
i�1 Ai × Bi��������∑n

i�1 Ai( )2
√

×
��������∑n

i�1 Bi( )2
√ (1)

where, A and B are two known attribute vectors, Ai and Bi

respectively represent the components of the vector sum.
Each patient sample is a node in the patient similarity network,

and the goal of each GCN in the model is to learn features
aggregation from the graph-structured data by leveraging the

TABLE 1 Statistics of breast cancer data.

Data type Number of samples Number of features

mRNA 606 13195

DNA methylation 606 14285

CNV 606 15186

TABLE 2 Statistical information of breast cancer data differentiation.

Breast cancer differentiation Number of samples

G1 75

G2 286

G3 245
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features of each node and the relationships between nodes.
Therefore, the input of the GCN module consists of two parts:
the feature matrix and the graph structure description. The feature
matrix is represented as X ∈ Rn×d, where n is the number of nodes
and d is the number of input features. The graph structure
description is an adjacency matrix A ∈ Rn×n, constructed by
computing the cosine similarity between node pairs. The
computation equation is as Eq. 2:

Aij � s xi, xj( ), if i ≠ j and s xi, xj( )≥ ϵ
0, otherwise

{ (2)

In the equation, Aij represents the adjacency relationship
between node i and node j, xi and xj are the feature vectors of
node i and node j, and s(xi, xj) is the cosine similarity between node
i and node j. ϵ is a threshold determined by k, where k represents the
average number of edges preserved for each node. The computation
equation for k is as Eq. 3:

k � ∑
i,j
I s xi, xj( )≥ ϵ( )/n (3)

where I(·) represents an indicator function, and n is the number of
nodes. With the similarity network, GCN can be trained using omics
features and the corresponding similarity network to learn
specific omics data.

2.4 Model design

The proposed model in this paper consists mainly of the Graph
Convolutional Neural Network (GCN) module and an attention
(Velikovi et al., 2017) module. The GCN module is designed for
learning the feature aggregation of specific omics data, while the
attention module is designed for the fusion of multi-omics features
corresponding to different omics data obtained from the output of

the GCN module. The attention module can assign different
attention weight to each neighbor of a node, thus identifying
more important neighbors for better classification of breast
cancer differentiation and its subtypes.

This paper presents a detailed architecture of the model for
predicting the differentiation degree and subtypes of breast cancer,
as shown in Figure 2.

In this paper, the GCN is constructed by stacking multiple
convolutional layers. Specifically, each layer is defined as Eq. 4:

H l+1( ) � f H l( ),A( ) � σ AH l( )W l( )( ) (4)

where l is the number of graph convolutional layers,H(l) is the input
of the l th layer, W(l) is the weight matrix of the l th layer. σ(·)
represents a non-linear activation function. H(l+1) is the output of
the l th layer. When the number of graph convolutional layers is too
large, the resulting node feature vectors will become overly smooth,
meaning that the features of each node become very similar. This is
mainly because each layer of the GCN integrates information from
the node and its neighbors. As the layers deepen, each node
incorporates information from more neighbors, including some
unrelated nodes. This ultimately leads to similar feature vectors
for different types of nodes.

This paper’s model observed that when the number of graph
convolutional layers exceeded three, there was no significant
improvement in the experimental results. Instead, it increased the
computational time and led to overfitting on some datasets.
Therefore, the GCN module in this paper’s model consists of
three graph convolutional layers.

To effectively train GCN, this paper extends the approach of
Kipf et al. (Kipf and Welling, 2016) by further modifying the
adjacency matrix A as Eq. 5:

~A � D̂
−1
2 ÂD̂

−1
2 � D̂

−1
2 A + I( )D̂−1

2 (5)

TABLE 3 Classification of cancer subtypes.

Breast cancer subtype Number of samples IHC markers

luminal A 277 ER/PR+, Her2−

luminal B 40 ER/PR+, Her2+

HER2(+) 11 ER/PR−, Her2+

TNBC 70 ER/PR−, Her2−

FIGURE 1
Data preprocessing flowchart.
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where D̂ is the diagonal degree matrix of ~A, and I is the
identity matrix.

The attention model was introduced by Velikovi et al. (2017). The
attention model incorporates a self-attention mechanism during the
propagation process in the network. Unlike GCN, which treats all
neighbors of a node equally, this attention model assigns different
attention scores to all neighbors. A higher score for a neighbor
indicates a higher importance level for that node. The attention
network is implemented by stacking multiple graph attention layers.
The input to a single graph attention layer is a set of node feature vectors
as Eq. 6:

h � �h1, �h2, . . . , �hN{ }, �hi ∈ RF (6)

where N represents the number of nodes in the node-set, and F
represents the corresponding eigenvector dimension.

The output of each layer is a new set of node feature vectors as
Eq. 7:

h′ � �h1
′, �h2

′, . . . , �h
′
N{ }, �h′i ∈ RF′ (7)

where F′ represents the new node eigenvector dimension.
In order to obtain sufficient expressive power to transform input

features into higher-level features, the graph attention layer first
performs self-attention processing according to the set of node
feature vectors of input as Eq. 8:

eij � a W �hi,W �hj( ) (8)

The shared attention mechanism a is a mapping of
RF′ × RF′ �xR, and W ∈ RF′×F is a weight matrix that is shared by
all �h

′
i . eij represents the importance of the features of node j to node i.
In this study, the attention module is used to compute the

attention coefficients for each omics feature matrix. The attention
mechanism is then applied to aggregate different types of omics
features, resulting in the final omics feature matrix. The fused feature

matrix obtained from the attention module is further processed
using SoftMax function for final label prediction.

3 Results

3.1 Performance metrics

Samples are generally divided into positive and negative classes for
binary classification tasks. Therefore, the classifier has four classification
results: TP, TN, FP, and FN. TP refers to correctly classifying positive
samples as positive. TN refers to correctly classifying negative samples as
negative. FP refers to incorrectly classifying negative samples as positive.
FN refers to incorrectly classifying positive samples as negative. To
evaluate the model’s predictive performance, we mainly used three
evaluation metrics: accuracy, F1 score, and area under the receiver
operating characteristic curve (AUC-ROC). The specific calculation
formulas are as as Eqs 9–14:

accuracy � TP + TN

TP + TN + FP + FN
(9)

sensitivity � recall � TP

TP + FN
(10)

specificity � TN

TN + FP
(11)

precision � TP

TP + FP
(12)

F1 score � 2 · precision × recall
precision + recall

(13)

AUC � 1
m+m− ∑x+∈D+ ∑x−∈D− W f x+( )>f x−( )( )(
+1
2
W f x+( ) � f x−( )( )) (14)

In the paper, “accuracy” refers to the proportion of correctly
predicted results among all samples. “F1” is the arithmetic

FIGURE 2
Prediction model of MVGNN.
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average of precision and recall divided by the geometric mean.
F1 has the worst effect when the value is 0 and the best effect
when the value is 1. The receiver operating characteristic curve is
known as ROC, and the area under the curve (AUC) represents
the area under the ROC curve. AUC is calculated through the
integral of the ROC curve, and a higher AUC indicates better
classification results.

We adopt two evaluation indexes for multi-classification tasks,
F1 macro and F1 weighted (Leng et al., 2022). Its calculation
formula are as Eqs 15–17:

Precision macro � 1
n
∑n

i�1 Precisioni (15)

Recall macro � 1
n
∑π

i�1 Recalli (16)

F1 macro � 2 · Precision macro × Recall macro

Precision macro + Recall macro
(17)

F1 macro takes values between 0 and 1 and is unaffected by data
imbalance. On the other hand, F1 weighted is the weighted average
of F1 score for each category, where the weight is the proportion of
each category in the accurate predictions. The difference between
F1 weighted and F1 macro is that F1 macro assigns the same
weight to each category, while F1 weighted assigns different
weights based on the proportion of each category.

The model proposed in this paper and the comparison model are
specifically executed on the workstation based on Ubuntu 18.04.5 LTS
system and Pytorch v1.7.0. The working environment of the
workstation is as follows: CPU is AMD Ryzen 7 3700X 8-Core, 16-
Thread,Memory is 64G, GPU is GeForce GTX 1080 Ti (11G).

3.2 Implementation details

In deep learning, networks with many parameters are very
powerful (Srivastava et al., 2014). However, dealing with the
overfitting problem is a key issue. This paper adopts two
approaches to address the overfitting issue. The first approach is
to add dropout layers to the model. It randomly drops elements in
the neural network during training, preventing overfitting caused by
excessive training. Each sub-network channel consists of three
sequential graph convolution layers and two dropout layers are
used in our model and then weighted each channel using the
attention mechanism. The second approach is to employ early
stopping during the training process of the network model.
Specifically, if the loss function of the validation data does not
show a significant decrease in the first 100 epochs of training, the
model’s training is paused (Prechelt et al., 2012).

This paper computed the cross-entropy between the actual
distribution and the predicted distribution of breast cancer
differentiation and its subtypes (Tabor and Spurek, 2014). The
loss is calculated by minimizing the cross-entropy. The loss
function used in this paper’s model is shown in Eq. 18:

L � −∑
l∈YL

Yl ln C · Zl( ) (18)

where L is the loss function, YL is the set of node indexes with
labels, Yl is the label of the label node, that is, the type of breast
cancer differentiation and its subtypes, C is the parameter of the

classifier, and Zl is the final node embedding of the label node.
This paper optimizes the entire model through end-to-end
backpropagation.

3.3 The performance of binary classification

3.3.1 Analysis of experimental results of binary
classification in differentiation degree

In order to comprehensively evaluate the performance of our
MVGNNmodel compared to traditional machine learning methods
and recent supervised multi-omics data integration methods, this
paper employs 5-fold cross-validation for different models. The
average accuracy, average AUC value, and average F1 value obtained
on the test dataset are used as evaluation metrics. These models
include Support Vector Machine (SVM), Random Forest (RF),
Neural Network (NN), GCN, GAT, and Multi-Omics Graph
Convolutional Networks (MOGONET). MOGONET is the latest
method for multi-omics data integration published by Wang et al.
(2021). The View Correlation Discovery Network (VCDN) are used
to explores cross-omics correlations in the feature space, enabling
effective multi-omics integration. Three pairs of breast cancer
differentiation classifications are considered: well-differentiated
vs. moderately-differentiated (G1 vs. G2), well-differentiated vs.
poorly-differentiated (G1 vs. G3), and moderately-differentiated
vs. poorly-differentiated (G2 vs. G3). The same dataset split is
used, and the average accuracy, average AUC value, and average
F1 value based on 5-fold cross-validation are used as evaluation
metrics. The experimental results of all models in predicting any two
types of breast cancer differentiation are shown in Table 4.

In the experimental process, SVM, RF, NN, GCN, and GAT
were trained using preprocessed multi-omics data directly
concatenated as input. All methods were trained using the same
preprocessed data. According to Table 4, the proposed MVGNN
model for integrating multi-omics data achieved the highest
accuracy, AUC value, and F1 value compared to traditional
machine learning methods, graph convolutional network models,
and the latest methods for integrating multi-omics data in
classifying any two types of breast cancer differentiation. The
values are: accuracy—0.778, AUC—0.745, F1—0.809. It can be

TABLE 4 The prediction results of classification in any two degrees of
differentiation across different models.

Method ACC AUC F1

SVM 0.658 0.645 0.623

RF 0.669 0.649 0.624

NN 0.701 0.674 0.672

NN_NN 0.725 0.708 0.760

NN_VCDN 0.720 0.703 0.752

GCN 0.741 0.704 0.758

GAT 0.749 0.723 0.743

MOGONET 0.744 0.731 0.772

MVGNN 0.778 0.745 0.809

Frontiers in Genetics frontiersin.org06

Ren et al. 10.3389/fgene.2024.1363896

9

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1363896


concluded that the proposed model in this study outperforms
traditional machine learning models and the latest methods for
integrating multi-omics data in classifying any two types of breast
cancer differentiation.

3.3.2 Analysis of experimental results of binary
classification on subtypes

This article adopts a five-fold cross-validation method to train
all models, and all methods use the same training set, validation set,
and test set. The evaluation metrics are average accuracy (ACC),
average area under the curve (AUC), and average F1 score. The
classification results of any two subtypes of breast cancer include (1)
luminal A vs. luminal B, (2) luminal A vs. HER2(+), (3) luminal A
vs. TNBC, (4) luminal B vs. HER2(+), (5) luminal B vs. TNBC, and
(6) HER2(+) vs. TNBC. The experimental results of predicting any
two subtypes of breast cancer by each model are shown in Table 5.

Based on the data in Table 5, this paper’s model achieved the
highest accuracy, AUC value, and F1 score compared to traditional
machine learning methods, graph convolutional network models,
and the latest integrated multi-omics data methods for any two
classification results of breast cancer subtypes. The values are as
follows: accuracy - 0.9180, AUC - 0.9530, and F1 score - 0.7155. It
can be concluded that this paper’s model outperforms traditional
machine learning methods and the latest multi-omics data
integration methods in the overall classification results of any
two subtypes of breast cancer.

3.4 The performance of multi-classification

3.4.1 Analysis of the results of multi-classification
experiments on differentiation degree

To better evaluate the performance of the MVGNN model, this
paper uses the model to predict the differentiation degree and
subtypes of breast cancer based on multi-classification.
Specifically, based on the same data set partitioning, this paper
uses the average accuracy, average F1_weighted value, and average
F1_macro value calculated through 5-fold cross-validation as
evaluation metrics. The multi-classification results of breast
cancer differentiation degree are G1 vs. G2 vs. G3. The specific

experimental results of the MVGNN model and other methods in
the multi-classification of breast cancer differentiation degree are
shown in Table 6.

According to Table 6, it can be observed that the MVGNN model
proposed in this paper achieves the highest ACC value (0.621), the
highest F1_weighted value (0.597), and the highest F1_macro value
(0.541) compared to traditional machine learning methods, graph
convolutional network models, and the latest integrated multi-omics
data methods in the multi-classification results of breast cancer
differentiation degree. It can be concluded that the model proposed
in this paper outperforms traditional machine learning methods and the
latest multi-omics data integration methods in the multi-classification
problem of breast cancer differentiation degree.

3.4.2 Analysis of experimental results of multiple
classifications on subtypes

In the same way, the experimental details in Section 3.4.1 are
utilized in this study. The multi-classification results of breast cancer
subtypes are luminal A vs. luminal B vs. HER2(+) vs. TNBC. The
specific experimental results of the MVGNN model compared with
other methods on multi-classification of breast cancer subtypes are
presented in Table 7.

TABLE 5 Prediction results of each model for any two subtypes of breast
cancer.

Method ACC AUC F1

SVM 0.7853 0.7725 0.5005

RF 0.8085 0.7917 0.5092

NN 0.8310 0.8103 0.5355

NN_NN 0.8505 0.8433 0.5927

NN_VCDN 0.8417 0.8473 0.6002

GCN 0.8627 0.8457 0.6310

GAT 0.8812 0.8702 0.6405

MOGONET 0.8915 0.9160 0.6632

MVGNN 0.9180 0.9530 0.7155

TABLE 6 Experimental results of multiple classifications of different models
in different degrees of differentiation.

Method ACC F1_weighted F1_macro

SVM 0.529 0.5 0.429

RF 0.54 0.532 0.441

NN 0.56 0.547 0.464

NN_NN 0.574 0.549 0.518

NN_VCDN 0.572 0.547 0.506

GCN 0.59 0.575 0.473

GAT 0.608 0.587 0.476

MOGONET 0.6 0.593 0.537

MVGNN 0.621 0.597 0.541

TABLE 7 Experimental results of multiple classifications of different models
in different subtypes.

Method ACC F1_weighted F1_macro

SVM 0.617 0.627 0.535

RF 0.621 0.635 0.543

NN 0.649 0.633 0.584

NN_NN 0.699 0.679 0.611

NN_VCDN 0.687 0.671 0.609

GCN 0.73 0.721 0.525

GAT 0.733 0.725 0.552

MOGONET 0.712 0.717 0.614

MVGNN 0.735 0.725 0.636
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According to Table 7, it can be observed that the MVGNN
model proposed in this paper, as compared to traditional machine
learning methods, graph convolutional network models, and the
latest integrated multi-omics data approaches, achieves the best
performance in the multi-classification of breast cancer subtypes.
The corresponding performance measures are the accuracy (ACC)
value of 0.735, the weighted F1 score (F1_weighted) value of 0.725,
and the macro F1 score (F1_macro) value of 0.636. Hence, these
results are sufficient to demonstrate the effectiveness of the proposed
model in this study.

3.5 Ablation experiments

3.5.1 The performance of different
network module

• Analysis of experimental results on differentiation
classification

To select the module most beneficial for breast cancer
differentiation and subtype classification in the model, this study
employed a five-fold cross-validation approach to assess the
performance of different modules on the same test dataset. For
all models, the same training and validation sets were utilized.

Specifically, this study performed 5-fold cross-validation on the
training dataset, with all modules utilizing the same training,
validation, and test sets. Mean accuracy, AUC value and mean
F1 value were used as measurement metrics. The detailed
experimental results of different modules on two types of breast
cancer differentiations are presented in Table 8; Figure 3.

By comparing the experimental results of GCN + VCDN and
GAT + VCDN, as well as GAT + Attention and GCN + Attention, in
predicting any two types of breast cancer differentiations, it can be
observed that there exists a specific correlation between biological
genomic data. The GAT module did not utilize this correlated
information, while the GCN module was able to fully exploit the
correlations between biological data, resulting in better differentiation
prediction outcomes. Similarly, by comparing the experimental results
of GCN+VCDN andGCN+Attention, as well as GAT+VCDN and
GAT + Attention, it was found that introducing the attention module
improved the performance of predicting breast cancer differentiation.
This is because the attention mechanism in the attention module can
identify more important neighbors, enabling better classification of
breast cancer differentiation. Therefore, this study chose the GCN +
Attention model, the MVGNN model, as the final model for
predicting breast cancer differentiation.

• Analysis of experimental results on subtype classification

Similarly, the experimental setup for predicting breast cancer
differentiation was used. The specific experimental results of
different modules on any two breast cancer subtypes are shown
in Table 9; Figure 4.

By comparing the experimental results of GCN + VCDN and
GAT + VCDN, as well as GAT + Attention and GCN + Attention in
predicting two different subtypes of breast cancer, it can be observed
that the introduction of the GCN module can improve the accuracy
of breast cancer subtype prediction to a certain extent. This is
because GCN can effectively utilize the correlation in the
biological data. Similarly, by comparing the experimental results

TABLE 8 Results of any two classifications of different modules in breast cancer differentiation.

Method GCN + VCDN GAT + VCDN GAT + Attention GCN + Attention

ACC 0.744 0.696 0.726 0.778

AUC 0.731 0.563 0.741 0.745

F1_weight 0.772 0.653 0.682 0.807

FIGURE 3
Results of any two classifications of different modules in breast cancer differentiation.
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of GCN + VCDN and GCN + Attention, as well as GAT + VCDN
and GAT + Attention, it can be concluded that the introduction of
the attention module increases the precision of predicting breast
cancer differentiation. This also indicates that introducing an
attention mechanism can improve the model’s performance.

3.5.2 The performance of multi-omics data fusion
• Analysis of experimental results on differentiation
classification

Specifically, for different types of omics data combinations, the
same data set partitioning was adopted in this study, and the average
accuracy, average AUC value, and average F1 value of 5-fold cross-
validation were used as metrics. Figure 5 shows the average accuracy,
AUC value, and F1 value of the classification results for different
degrees of breast cancer differentiation using different types of omics
data. DNA_methylation, mRNA, and CNV in the figure represent
the single omics data classification experiments using the MvGNN
model with mRNA expression, DNA methylation, and CNV data,
respectively. mRNA + DNA_methylation, mRNA + CNV, and
DNA_methylation + CNV refer to the classification experiments
using two types of omics data simultaneously. mRNA + DNA_
methylation + CNV refers to the classification experiments
simultaneously using all three types of omics data. The specific
experimental results are shown in Table 10; Figure 5.

FromTable 10; Figure 5, it can be observed that compared to using a
single type of omics data or combining two types of omics data, the
model integrating three types of omics data achieved the highest accuracy
AUC, and F1 scores in predicting any two subtypes of breast cancer

differentiation. The scores were 0.778, 0.803, and 0.809, respectively. This
indicates that the model in this study successfully extracted useful
information for classification from different omics data.

• Analysis of experimental results on subtype classification

Similarly, this paper uses the dataset partitioning described in
Section 3.5.1 and utilizes the average accuracy, average AUC, and
average F1 values from 5-fold cross-validation as performance
metrics. Experiments were conducted on the classification of any
two subtypes of breast cancer using different types of omics data. The
integrated model of three omics data achieved the highest accuracy in
classifying any two subtypes of breast cancer, with values of 0.921
(luminal A vs. luminal B), 0.968 (luminal A vs. HER2+), 0.91 (luminal
A vs. TNBC), 0.82 (luminal B vs. HER2+), 0.964 (luminal B vs.
TNBC), and 0.925 (HER2+ vs. TNBC). This indicates that the model
proposed in this paper can extract useful information for classification
from different omics data. Furthermore, regarding AUC, the
integrated model based on three omics data achieved the highest
values in classifying any two subtypes of breast cancer, except for the
luminal A vs. HER2+ and luminal A vs. TNBC classifications. The
respective AUC values were 0.881 (luminal A vs. luminal B), 0.925
(luminal B vs. HER2+), 0.997 (luminal B vs. TNBC), and 0.979
(HER2+ vs. TNBC). Although the model based on three omics
data for the luminal A vs. HER2+ classification was 0.6% lower
and for the luminal A vs. TNBC classification was 1.2% lower
compared to the models integrating mRNA expression data and
CNV data or DNA methylation data, respectively, this still
demonstrates the robustness of the proposed model in handling

TABLE 9 Results of any two classifications of different modules in breast cancer subtypes.

Method GCN + VCDN GAT + VCDN GAT + Attention GCN + Attention

ACC 0.892 0.818 0.888 0.918

AUC 0.916 0.51 0.854 0.953

F1_weight 0.663 0.283 0.438 0.716

FIGURE 4
Results of any two classifications of different modules in breast cancer subtypes.
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imbalanced samples. Similarly, the model based on three omics data
achieved the highest F1 values in classifying two breast cancer
subtypes, except for the luminal A vs. luminal B classification. The
respective F1 values were 0.36 (luminal A vs. HER2+), 0.799 (luminal
A vs. TNBC), 0.58 (luminal B vs. HER2+), 0.973 (luminal B vs.
TNBC), and 0.959 (HER2+ vs. TNBC).

4 Conclusion and discussion

4.1 Conclusion

The grading and subtyping of cancer, as a complex trait with
distinct molecular features, has significant prognostic and therapeutic
implications. Therefore, cancer grading and subtyping research is
essential for precision medicine and prognostic cancer prediction. In
recent years, numerous supervised multi-omics data integration
methods have emerged domestically and internationally. However,
these methods do not consider the interrelationships between
different types of omics data, which may lead to a bias towards a
specific type of omics data in the final prediction results. It is crucial to
explore how to improve the predictive performance of models by
utilizing the interrelationships between different types of omics data.

This study proposes a multi-omics data fusion algorithm based
on a heterogeneous graph neural network. The algorithm combines
graph convolutional networks and graph attention networks to
predict the differentiation and subtypes of cancer. The breast
cancer data from TCGA is used in this study, which includes
gene expression data, DNA methylation data, copy number
variation (CNV) data, differentiation level annotations, and
subtype annotations for each breast cancer sample.

First, preprocessing operations, including chi-square test,
normalization, and minimum Redundancy Maximum Relevance
(mRMR), are performed on the three types of omics data for breast
cancer. Then, we conduct experiments using the MVGNN model,
traditional machine learning algorithms, and popular multi-omics
data integration methods separately for binary and multi-class
classification of breast cancer differentiation and subtypes using 5-
fold cross-validation. According to the experimental results, our
model achieves the best performance in both binary classification of
breast cancer differentiation and subtypes, and multi-class classification.

Furthermore, to select the modules in the model that are more
conducive to predicting breast cancer differentiation and subtypes, we
also perform 5-fold cross-validation to test the performance of different
modules on the test set. Finally, to further test the classification
prediction performance of the model, we compare the differentiation
and subtype experiments using only one type of omics data, two types of
omics data, and all three types of omics data. Based on the experimental
results, the breast cancer classification predictions using the MVGNN
model with all three types of omics data perform better than those using
two or just one type of omics data.

4.2 Discussion

The MVGNN model proposed in this paper has achieved good
results predicting breast cancer differentiation and subtypes, but
some work will be carried out in future. For example:

The overall classification performance of the proposed
MVGNN model is satisfactory. However, from the
experimental results in Section 3.5.2, it can be observed that

FIGURE 5
The classification results of any two types of breast cancer differentiation in MVGNN model with different combination of omics data.

TABLE 10 The classification results of any two types of breast cancer
differentiation in MVGNN model with different combination of omics data.

Omics data ACC AUC F1_weight

mRNA 0.74 0.777 0.752

DNA_methylation 0.744 0.749 0.78

CNV 0.722 0.761 0.743

mRNA + DNA_methylation 0.76 0.782 0.788

mRNA + CNV 0.739 0.789 0.736

DNA_methylation + CNV 0.761 0.771 0.793

mRNA + DNA_methylation + CNV 0.778 0.803 0.809
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our model needs improvement in differentiating between
luminal A and HER2(+) subtypes, as well as between luminal
A and TNBC subtypes in breast cancer. This also indicates that
our gene expression, DNA methylation, and CNV data are
insufficient to distinguish the boundaries between luminal A
and HER2(+) subtypes and luminal A and TNBC subtypes.
Therefore, there may be differences in these subtypes of breast
cancer in other types of omics data. In future work, we aim to
integrate additional omics data, such as metabolomics data and
mutation data, to enhance our breast cancer subtype
classification model.

This paper primarily trains the MVGNN model on the breast
cancer dataset from TCGA. In order to further demonstrate the
performance of the MVGNN model in cancer classification and
diagnosis, future studies can include additional datasets of different
cancers, such as lung cancer, liver cancer, gastric cancer, and colon
cancer, which have high mortality rates.
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School of Computer Science and Technology, Xidian University, Xi’an, China

CTCF-mediated chromatin loops create insulated neighborhoods that constrain
promoter-enhancer interactions, serving as a unit of gene regulation. Disruption
of the CTCF binding sites (CBS) will lead to the destruction of insulated
neighborhoods, which in turn can cause dysregulation of the contained
genes. In a recent study, it is found that CTCF/cohesin binding sites are a
major mutational hotspot in the cancer genome. Mutations can affect CTCF
binding, causing the disruption of insulated neighborhoods. And our analysis
reveals a significant enrichment of well-known proto-oncogenes in insulated
neighborhoods with mutations specifically occurring in anchor regions. It can be
assumed that some mutations disrupt CTCF binding, leading to the disruption of
insulated neighborhoods and subsequent activation of proto-oncogenes within
these insulated neighborhoods. To explore the consequences of suchmutations,
we develop DeepCBS, a computational tool capable of analyzing mutations at
CTCF binding sites, predicting their influence on insulated neighborhoods, and
investigating the potential activation of proto-oncogenes. Futhermore, DeepCBS
is applied to somatic mutation data of liver cancer. As a result, 87 mutations that
disrupt CTCF binding sites are identified, which leads to the identification of
237 disrupted insulated neighborhoods containing a total of 135 genes.
Integrative analysis of gene expression differences in liver cancer further
highlights three genes: ARHGEF39, UBE2C and DQX1. Among them,
ARHGEF39 and UBE2C have been reported in the literature as potential
oncogenes involved in the development of liver cancer. The results indicate
that DQX1 may be a potential oncogene in liver cancer and may contribute to
tumor immune escape. In conclusion, DeepCBS is a promisingmethod to analyze
impacts of mutations occurring at CTCF binding sites on the insulator function of
CTCF, with potential extensions to shed light on the effects of mutations on other
functions of CTCF.

KEYWORDS

CTCF, insulated neighborhoods, liver cancer, proto-oncogene, deep learning

1 Introduction

3D genomics is a rapidly growing field that investigates the complex folding and
organization of chromosomes in eukaryotic cells. Various techniques have been
developed to study the 3D structure of chromosomes, such as 3C (Dekker et al.,
2002), Hi-C (Lieberman-Aiden et al., 2009), ChIA-PET (Fullwood et al., 2009), 4C
(Simonis et al., 2009), and 5C (Dostie et al., 2006). The three-dimensional structure of
chromosomes includes chromosomal domains, chromosome compartments,
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topologically associated domains, insulator regions, and
promoter-enhancer loops. In 3D genomics, insulated
neighborhood is defined as a CTCF-CTCF homodimer that
binds with cohesions and contains at least one gene’s
chromatin loop (Dowen et al., 2014). Miao have observed that
this chromatin loop serves as a unit of gene regulation (Yu and
Ren, 2017). When the CTCF binding site is disrupted, improper
enhancer-promoter interactions can lead to the dysregulation of
local genes (Hnisz et al., 2016b).

Recently, a study has revealed that mutations in CTCF
binding sites occur frequently in cancer (Katainen et al.,
2015). And CTCF/cohesin binding sites are a major
mutational hotspot in the cancer genome. Some of these
mutations can cause a decrease in CTCF binding, leading to
the disappearance of insulated neighborhoods (Hnisz et al.,
2016b; Umer et al., 2016). Non-coding mutations at CTCF
binding sites have the potential to disrupt insulated
neighborhoods, leading to altered gene expression within these
regions. This, in turn, could potentially contribute to the
development of diseases. Previous research has indicated that
there are typically silent proto-oncogenes within insulated
neighborhoods. Additionally, the anchoring regions of
insulated neighborhoods containing proto-oncogenes undergo
frequent somatic mutations in various types of cancer (Hnisz
et al., 2016a). In summary, variations in CTCF binding sites in
cancer may lead to the disappearance of insulated neighborhoods
and the activation of oncogenes, ultimately promoting the
development of cancer. So the identification of variants that
have the potential to disrupt insulated neighborhood is a
critical task.A few studies focous on this task. Zhang et al. has
proposed a method, named CTCF-MP, to predict chromatin
loops. This method utilizes a machine learning model based
on word2vec and boosted trees (Zhang et al., 2018). CTCF-
MP algorithm incorporates sequence variations caused by
mutations and enables prediction of the influence of such
mutations on the formation of chromatin loops. Sequence-
based deep learning methods have shown great potential in
predicting the impact of genetic variants on insulated
neighborhoods. When provided with a pair of DNA sequences
of anchors, this model generates a value ranging from 0 to 1,
which can be used to determine the probability or strength of the
chromatin loop (Zhang et al., 2018). DeepCTCFLoop takes a pair
of DNA sequence containing CTCF motifs with flanking regions
and encodes it into one-hot encoding as input, uses a neural
network to predict whether this pair of sequences can form a
DNA loop (Kuang and Wang, 2021). DeepMILO, a deep learning
framework, utilizes one-hot encoding to represent DNA
sequences, comprises of an anchor model and an anchor
orientation model. It accurately predicts the effects of variants
on CTCF/cohesion mediated insulator loops and reveals a novel
mechanism for oncogene dysregulation in malignant lymphoma
(Trieu et al., 2020).

However, CTCF is a multifunctional protein, associated with a
number of vital cellular processes such as transcriptional
activation, repression, insulation, imprinting and genome
organization (Oh et al., 2017). CTCF not only regulates gene
expression by forming loops but also can independently
regulate gene expression.

While the discussed methods, such as DeepMILO, have certain
limitations as they require paired data, making them effective in
predicting the impact of mutations occurring at CTCF binding sites
on their insulator function. These methods are not capable of
predicting the effects of mutations at CTCF binding sites on
other function.

Both DeepMILO and DeepCTCFLoop utilize the one-hot
encoding method. One-hot encoding treats each position in the
sequence as an independent feature, disregarding the sequential
relationships between adjacent nucleotides. However, biological
sequences often contain important sequence patterns or motifs
that play a critical role in the functionality or structure of the
sequence. In comparison, using only one-hot encoding may not
fully capture the information conveyed by these patterns. In a recent
study, a novel method named dna2vec, has been proposed. This
method leverages the human genome sequences as the learning
corpus and embeds k-mers into a 100-dimensional continuous
vector space (Ng, 2017). By employing this encoding approach,
the model can capture a more comprehensive set of information,
enhancing its ability to capture relevant patterns and features in
the sequences.

Considering the limitations of the discussed methods, we
have developed a method named DeepCBS, which employs a
DNA sequence as input instead of a paired sequence and utilizes
the dna2vec encoding method for representation. Applying
DeepCBS to somatic mutation data of liver cancer patients, we
predicted the impact of these mutations on CTCF binding sites.
Then, through analysis of differential gene expression, we identify
three potential liver cancer oncogenes, providing potential
therapeutic targets for the treatment of liver cancer. In our
study, DeepCBS successfully predicts the impact of mutations
occurring at CTCF binding sites on insulated neighborhoods. In
the future, it can also be utilized to predict the effects of mutations
on other functions of CTCF.

2 Materials and methods

2.1 Data collection and processing

CTCF ChIP-seq data for GM12878, HepG2, K562, MCF-7, and
HMEC cell lines is downloaded from the Encode portal (accession:
ENCFF710VEH, ENCFF237OKO, ENCFF738TKN,
ENCFF738TKN, ENCFF288RFS). We also download
RAD21 CHIP-seq raw data of GM12878 (accession:
ENCFF002CPK) and CTCF CHIA-PET raw data of GM12878
(accession: ENCFF780PGS). We download comprehensive gene
annotation data from GENCODE.

Positive samples are generated by selecting 100 base pairs from
the summit of each ChIP-seq peak. Negative samples are generated
using the R package gkmSVM by matching the repeat fraction,
length, and GC content of the repetitive sequences in positive
samples (Ghandi et al., 2016). Then we get 43,631 positive and
48,753 negative samples for GM12878 cell line, 60,229 positive and
56,099 negative samples for HepG2 cell line, 56,889 positive samples
and 53,875 negative samples for K562 cell line.

We collect simple somatic mutations data of 1706 liver cancer
patients from ICGC database, we also collected RNA-seq data of
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liver cancer from this database, at the same time (see the
Supplementary Material).

2.2 Construction of DeepCBS

The model is illustrated in Figure 1. In this model, the forward
and reverse DNA sequence with CTCF binding are taken as input by
encoding into a matrix using the dna2vec (Ng, 2017) approach.
Then, a three-layer convolutional neural network is used to learn the
sequence motifs and high level features. The Bi-GRU(Bidirectional
Gate Recurrent Unit) layer is used to learn the long-range
dependencies between the high-level features. Next, two fully

connected layer is used to combine the output from the Bi-GRU
layer and make the binary prediction.

2.3 Identification of disrupted insulated
neighborhoods

We obtain insulated neighborhoods by integrating CTCF ChIA-
PET data, CTCF ChIP-seq data, RAD21 CHIP-seq data and
comprehensive gene annotation data. Specifically, we define an
insulated neighborhood as a CTCF loop whose loop anchors
overlap with a CTCF CHIP-seq peak and a RAD21CHIP-seq
peak, and which contains at least one gene.

FIGURE 1
Diagram of DeepCBS.
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We collect somatic mutation data from liver cancer patients,
identify mutated insulated neighborhoods, and utilize the deep
learning model proposed in the previous step to predict whether
these insulated neighborhoods would be disrupted.

2.4 Differential gene expression analysis

We obtain gene expression data from liver cancer patients in
ICGC databases. To analyze gene differential expression, we utilized
3 R packages, namely, limma, edgeR, and DESeq2, independently. In
order to enhance the robustness of our findings, we obtain
differentially expressed genes by taking the intersection of the
results from the three packages.

3 Results

3.1 Workflow of DeepCBS

To elucidate the impact of non-coding mutations occurring at
CTCF binding sites, we develop a method named DeepCBS,
comprising the following main steps. Initially, we generate
positive and negative samples from CTCF ChIP-seq data for
3 cell lines (GM12878, HepG2, K562). Using this data, we train a
deep learning model to predict whether mutations on CTCF
binding sites lead to the loss of CTCF binding at those sites.
Subsequently, we obtain RAD21-mediated loops from
RAD21 CHIA-PET data, defining a loop as an insulated
neighborhood if both anchors of the loop overlap with CTCF
CHIP-seq peaks. And if there are mutations within the CHIP-seq

peak region that overlaps with loop anchors, then the insulated
neighborhood is considered as a mutated insulated
neighborhood. Leveraging the well-trained deep learning
model, we predict whether mutations within the mutated
insulated neighborhoods disrupt the binding of CTCF,
resulting in the disruption of the insulated neighborhooods. In
the next step, we observe a significant enrichment of proto-
oncogenes in mutated insulated neighborhoods, suggesting
that the disruption of these neighborhoods may play a crucial
role in cancer development. Consequently, we identify the genes
within the disrupted insulated neighborhoods and intersect these
genes with the differentially expressed genes in liver cancer. This
process yield three genes that may undergo upregulation due to
the disruption of insulated neighborhoods. Notably, two out of
the three genes have been previously reported as potential
oncogenes in liver cancer. The remaining gene, DQX1, is
identified as a potential liver cancer oncogene through
bioinformatics analysis Figure 2.

FIGURE 2
Performance of models on cell type specific CTCF binding sites. The x-axis represents the cell lines comprising the training set, while the y-axis
represents the performance scores.

TABLE 1 Cross cell performance evaluation.

Train set Test set Auroc

GM12878 HepG2 0.97945

GM12788 K562 0.97364

K562 HepG2 0.97965

K562 GM12878 0.98921

HepG2 K562 0.97507

HepG2 GM12878 0.99106
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3.2 Performance of DeepCBS

To assess the model’s performance across different cell types, we
employe 1 cell type’s samples as the training data and used samples
from other cell types as the testing data, as shown in Table 1. As it
can be seen, the model has achieved AUC values over 0.97,
demonstrating that our method is a powerful tool for identifying
CTCF binding sites.

Since some CTCF binding sites are cell-type specific, we collect
CTCF CHIP-seq data from the MCF-7 cell line (breast cancer cell
line) and HMEC cell line (normal breast epithelial cell line), and get
cell-type specific CTCF binding sites in the MCF-7 cell line. As
shown in Figure 2, our models have demonstrated excellent
performance on cell-type-specific binding sites.

3.3 Identification of potential oncogenes in
disrupted insulated neighborhoods in
liver cancer

We apply a hypergeometric distribution test to our data and find a
significant enrichment of proto-oncogenes in mutated insulated
neighborhoods (p < 0.05). We have also observed this phenomenon
in the data provided by Ji (Ji et al., 2016). This suggests that the
disruption of insulated neighborhoods may be a key driver of cancer
development, as it can lead to the abnormal activation of proto-
oncogene into oncogene. We identify 237 disrupted insulated
neighborhoods, comprising a total of 135 genes. We perform
differential gene expression analysis, then identify 1,218 differentially
expressed genes using 3 R packages. To explore which genes among the
135 affected genes in the disrupted insulated neighborhoods are key
genes related to cancer. Then, we take the intersection of the
differentially expressed genes with the genes located within the

disrupted insulated neighborhoods, which resulted in the
identification of three key genes: ARHGEF39, UBE2C, and DQX1.
And all of them are upregulated genes, potentially activated due to the
disruption of insulated neighborhoods.

ARHGEF39 is a novel member of the Dbl-family of guanine
nucleotide exchange factors (Wang et al., 2012). Guanine nucleotide
exchange factors are recognized as crucial activators of Rho GTPases,
which play a significant role in cell migration (Cook et al., 2014;
Goicoechea et al., 2014). Overexpress of ARHGEF39 promotes
gastric cancer cell proliferation and migration through the Akt
signaling pathway (Wang et al., 2018; Zhou et al., 2018). Previous
literature has proposed that ARHGEF39 may act as an oncogene in the
progression of liver cancer, and thus represents a potential prognostic
indicator and therapeutic target for this disease (Gao and Jia, 2019).
Ubiquitin-conjugating enzyme E2C(UBE2C), a member of the
E2family, is encoded by the UbcH10gene situated on human
chromosome20q13.12. Its function involves the degradation of
various target proteins through catalysis. UBE2C has been found to
be upregulated in various types of cancer, including breast cancer, and is
considered a potent proto-oncogene associated with tumor malignancy
(Chou et al., 2014; Han et al., 2015). In liver cancer, UBE2C has been
identified as a potential oncogene that can promote cell proliferation,
migration, invasion, and drug resistance (Xiong et al., 2019).

Based on the above, we speculate that in liver cancer, the
overexpression of ARHGEF39 and UBE2C serves as activated
oncogenes and is involved in liver cancer development due to the
disruption of the insulated neighborhoods containing them.
However, there is currently no literature exploring the role of the
DQX1 in liver cancer.

3.4 Overexpression of DQX1 is oncogenic in
liver cancer

The Kaplan-Meier plotter (https://kmplot.com/analysis/) is a
powerful tool that enables the assessment of the impact of 54k genes
(including mRNA, miRNA, and protein) on survival across 21 types
of cancer (Győrffy, 2023). In this study, we focus on the analysis of
the relationship between DQX1 expression and survival in liver
cancer. The result of survival analysis, as shown in Figure 3, show
that highly expressed DQX1 is linked to poor prognosis of overall
survival (OS) for cancers of liver cancer.

Gene set enrichment analysis (GSEA) is further performed to
explore the signaling pathways and molecular mechanisms that were
differentially affected by DQX1 in liver cancer. In this study, the tumor
samples are grouped based on the mean expression level of DQX1.
Samples with expression levels higher than the mean are assigned to the
high-expression group (DQX1. Hi), while those with expression levels
lower than the mean are assigned to the low-expression group (DQX1.
Low). In our study, the Hallmark database is utilized for performing the
gene set enrichment analysis. As depicted in Figure 4, the analysis reveal
that high expression of DQX1 is significantly associated with the
activation of cell proliferation-related pathways. This finding suggests
that DQX1may play a crucial role in promoting cell proliferation in
liver cancer.

DQX1 is one of the RNA-binding protein genes and RNA-
binding protein can regulate the infiltration degrees of immune cells
(Sun et al., 2021). Therefore, we implement an immunological

FIGURE 3
Correlation between DQX1 gene expression and survival
prognosis of liver cancer.
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FIGURE 4
Signaling pathways associate with DQX1 in liver cancer. The depicted signaling pathways in the figure are all cell proliferation-related pathways.

FIGURE 5
The correlation between DQX1 and immune cell infiltration in liver cancer.
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Analysis of DQX1 in liver cancer. TIMER, a comprehensive online
resource for the systematic analysis of immune infiltrates in various
cancer types, is employed in this study to explore the correlation
between DQX1 expression in liver cancer and different immune
infiltrates (Li et al., 2020). The results are presented in Figure 5.

Also, we perform differential expression analysis of immune
checkpoint genes in relation to DQX1 using the same grouping
approach as in GSEA. The result is depicted in Figure 6.

Overall, the expression of DQX1 shows significant positive
correlations with immune infiltration levels of regulatory T cells
(Tregs), myeloid-derived suppressor cells (MDSCs), and expressions
of co-suppressive immune checkpoints, contributing to immune
escape. This suggests that we can develop immunotherapies
targeting DQX1 for the treatment of liver cancer, in the future.

Based on the bioinformatics analysis, we have been inferred that
DQX1 may potentially act as an oncogene and be involved in the
development of liver cancer.

4 Conclusion

In summary, the CTCF play an crucialrole in maintaining these
insulated neighborhoods. The disruption of CTCF binding sites can
lead to dysregulation of contained genes, potentially resulting in the
activation of oncogenes and promoting cancer development. It is
important to shed light on the impact of mutations occurring at
CTCF binding sites. So we develop a novel method, DeepCBS, to
analyze the impact of mutations occurring at CTCF binding sites.
Our analysis has identified three potential oncogenes,
ARHGEF39, UBE2C, and DQX1 of liver cancer. All three

genes play an oncogenic role in the development of liver
cancer. And overexpression of DQX1 is associated with poor
prognosis and tumor immune escape. Our findings demonstrate
the potential of DeepCBS to analyze the impact of mutations
occurring at CTCF binding sites, as well as providing valuable
insights for the diagnosis and treatment of liver cancer. Over all,
this study emphasizes the importance of understanding the 3D
organization of the human genome and its impact on gene
regulation, as well as highlights the potential of computational
methods to identify new targets for cancer therapy.
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Introduction: CpG island (CGI) methylation is one of the key epigenomic
mechanisms for gene expression regulation and chromosomal integrity.
However, classical CGI prediction methods are neither easy to locate those
short and position-sensitive CGIs (CpG islets), nor investigate genetic and
expression pattern for CGIs under different CpG position- and interval-
sensitive parameters in a genome-wide perspective. Therefore, it is urgent for
us to develop such a bioinformatic algorithm that not only can locate CpG islets,
but also provide CGI methylation site annotation and functional analysis to
investigate the regulatory mechanisms for CGI methylation.

Methods: This study develops Human position-defined CGI prediction method
to locate CpG islets using high performance computing, and then builds up a
novel human genome annotation and analysis method to investigate the
connections among CGI, gene expression and methylation. Finally, we
integrate these functions into PCGIMA to provide relevant online computing
and visualization service.

Results: The main results include: (1) Human position-defined CGI prediction
method is more efficient to predict position-defined CGIs with multiple
consecutive (d) values and locate more potential short CGIs than previous
CGI prediction methods. (2) Our annotation and analysis method not only can
investigate the connections between position-defined CGImethylation and gene
expression specificity from a genome-wide perspective, but also can analysis the
potential association of position-defined CGIs with gene functions. (3) PCGIMA
(http://www.combio-lezhang.online/pcgima/home.html) provides an easy-to-
use analysis and visualization platform for humanCGI prediction andmethylation.

Discussion: This study not only develops Human position-defined CGI prediction
method to locate short and position-sensitive CGIs (CpG islets) using high
performance computing to construct MR-CpGCluster algorithm, but also a
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novel human genome annotation and analysis method to investigate the
connections among CGI, gene expression and methylation. Finally, we integrate
them into PCGIMA for online computing and visualization.

KEYWORDS

position-defined CGIs, DNA methylation, genome annotation, high performance
computing, genome analysis

1 Introduction

CpG island (CGI) methylation is one of the key epigenomic
mechanisms for gene expression regulation and chromosomal
integrity (Dor and Cedar, 2018). Especially, recent studies have
reported that position-sensitive CGI co-methylation mechanism is
essential for such functions that are related to histone modification
(Ming, et al., 2021). However, it is neither easy for current commonly
used classical CGI island prediction methods (Gardinergarden and
Frommer, 1987; Han et al., 2008; Takahashi et al., 2017) to locate those
short and position-sensitive CGIs which called CpG islets (Hackenberg
et al., 2006) due to the length limitation, nor investigate relationship
among CGI density, methylation, and gene expression specificity.
Therefore, it is urgent for us to develop such a bioinformatic
algorithm that not only can locate short and position-sensitive CGIs
(CpG islets), but also provide CGI methylation site annotation and
functional analysis to investigate the regulatory mechanisms for CGI
methylation (http://www.combio-lezhang.online/pcgima/home.html).

For CGI perdition method, we usually employ the unsupervised
clustering methods such as CpGCluster (Hackenberg et al., 2006)
and CPG_MI (Su et al., 2009) to locate CGIs with shorter length
than the supervised (Bock et al., 2007; Ning et al., 2017), since these
unsupervised algorithms do not need consider the constraints of
CGI length and content ratio (Hackenberg et al., 2010). However,
these methods are not only time-consuming for the big dataset, but
also cannot investigate the genetic characteristics of CGIs under
different CpG interval parameters. Therefore, our first scientific
question is how to develop a novel CGI prediction method with CpG
interval parameters selective feature and high-performance
computing, and investigate the differences in genetic
characteristics such as CpG coverage, CGI length, and GC
content of CGIs under various CpG interval parameters.

Several previous studies have interrogated the connections between
methylation and CGI (Reik, 2007; Smith et al., 2012; Liu et al., 2016; El-
Maarri, 2019; Acton et al., 2021). For example, Ziller et al. (2013) have
turned out that not only the hypermethylation of promoter CGI is
related to gene expression, but also CGImethylation in the gene body is
positively correlated with gene expression. However, these studies
usually interrogate the methylation characteristics of CGI from
partial sequence regions rather than genome-wide perspective.
Meanwhile, although our previous studies (Zhang et al., 2018;
Zhang et al., 2021a) have analyzed the relationship between CGI
density and gene expression after annotating genome-wide CGI-
related genes (CGI+) into high-CGI (HCGI), intermediate-CGI
(ICGI), and low-CGI (LCGI) genes based on the classification of
CGI density (Weber et al., 2007; Zhu et al., 2008), we are still
unclear the relationship between CpG methylation and gene
expression. Thus, our second scientific question is how to build up a
human genome-wide CGI-based methylation and gene expression

annotation and analysis method to investigate the relationship
among CGI density, methylation, and gene expression specificity.

Meanwhile, although several CpGmethylation online service are
already available (Raney et al., 2010; Di et al., 2018; Xiong et al.,
2019), most of them only focus on CpG island prediction and data
downloading, but not provide visualization and analysis for the
distribution of CGI in different sequence regions and the
connections between methylation status of CGIs and gene
expression. Therefore, our third scientific question is how to
establish an easy-to-use web service for fast CGIs prediction and
visualization of the connections between CGIs and methylation.

For these reasons, we propose three major innovations to answer
the above scientific questions.

Firstly, we develop an unsupervised clustering-based CGI
prediction method (Human position-defined CGI prediction),
which not only employs high performance computing technology
to accelerate its predictive speed, but also offers a parameter selective
option that can help us to locate short CGIs (position-defined CGIs)
with unique location- or sequence-sensitive features and explore the
differences in the genetic characteristics of CGIs under various CpG
interval parameters.

Secondly, we build up a novel human genome annotation and
analysis function (Human position-defined CGI annotation and
analysis), which not only can study the methylation characteristics
of CGIs from a genome-wide perspective by computing the
methylation level of all CpG sites in the human genome, but
also improve the previous CpG-Island-based human gene
expression annotation and analysis method (Zhang et al.,
2021a) by integrating genome-wide methylation annotation to
further investigate the connections among CGI density, gene
expression and methylation.

Thirdly, we establish an easy-to-use web service “Position-
defined CGI methylation analysis (PCGIMA)” with relevant CGI
prediction, annotation, and data analysis functions, which provides
us an online platform for further study on the regulation mechanism
of CGI and methylation.

In conclusion, we develop a bioinformatic algorithm and web
service to investigate the regulatory mechanism of CGI
methylation. The main results include: 1) Human position-
defined CGI prediction method is more efficient to predict
position-defined CGIs with multiple consecutive (d) values
and locate more potential short CGIs than previous CGI
prediction methods; 2) Our annotation and analysis method
not only can investigate the connections between position-
defined CGI methylation and gene expression specificity from
a genome-wide perspective, but also can analyze the potential
association of position-defined CGIs with gene functions; (3)
PCGIMA provides an easy-to-use analysis and visualization
platform for human CGI prediction and methylation.
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2 Materials and methods

This study downloads human genome data from
GRCh38 assembly (Schneider et al., 2017) at NCBI (Pruitt
et al., 2005). To classify CGIs into density-defined and
position-defined groups, we download human CGIs data and
annotations from UCSC (Casper et al., 2018). Next, we use
human genome annotated data (release 24) in GenBank GBFF
format (Clark et al., 2016) from GENCODE (Wright et al., 2016)
to define different sequence regions. Finally, to study the
methylation level of CpG sites in different sequence regions,
we obtain all CpG methylation data of 29 human tissues
(Supplementary Table S1), including heart, spleen, lung and
esophagus, from ENCODE databases (Harrow et al., 2006). In
order to ensure data consistency, the above-listed annotation and
methylation data are all annotated according to GRCh38
(Schneider et al., 2017). Figure 1 describes the workflow of the
study with three essential steps: Human position-defined CGI
prediction (left side of Figure 1), Data annotation (right side of
Figure 1), and Human position-defined CGI methylation analysis
(Bottom side of Figure 1).

Here, we describe the key equations as follows:

(1) CGI prediction: We employed Eq. 1 to define CpGs clusters
(Hackenberg et al., 2006) at the start. Next, we consider these
CpG clusters with small p-values (Eq. 2) as CGIs (Hackenberg
et al., 2006).

di � xi+1 − xi − 1 (1)

Here, x and I represent the position and index of a CpG,
respectively.

P d( ) � 1 − p( )d−1p (2)

P(d) represents the probability to find a distance d between
neighboring CpGs. p corresponds to the probability of CpGs in the
sequence. Since our previous studies (Zhang et al., 2018; Zhang et al.,
2021a) has led to a conclusion that LAUPs (Lineage-associated
underrepresented permutations) are closely related to CGIs and
the shortest LAUPs of mammals range from 10bp to 14bp in length,
here we use the intermediate value of d = 12bp.

(2) MR-CpGCluster: We develop a MR-CpGCluster algorithm
(Supplementary Figure S1) to speed up CGI predict procedure
based on MapReduce (Dittrich and Quiané-Ruiz, 2012) and
Hadoop Streaming (Dede et al., 2016) techniques detailed by
Supplementary Method S1 for Human position-defined CGI
prediction method. Finally, our method computes the CGI
features of the position-defined CGIs for subsequent analysis.

(3) CGI features computation: To compare the CGIs under
different CpG distance intervals (Eq. 1), we compute CGI
length, CG content, CpG O/E ratio (Gardinergarden and
Frommer, 1987) (Eq. 3) and CpG density (Eq. 4) for each
CGI (Hackenberg et al., 2006).

O/E � CpNum
CNum × GNum

× N (3)

CpGdensity � CpNum
N

(4)

FIGURE 1
Workflow of the study.
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Here, N is the length of the CGI, CpGNum, CNum and GNum
represent the number of CpG, number of C, number of G
respectively.

(4) Methylation level annotation: Eq. 5 classifies methylation
ratio into three levels with respect to the definition (Ziller
et al., 2013).

Methylation level chr, p( )
�

1, highly mehylated methylation ratio chr, p( )> 0.75
2, unmethylated methylation ratio chr, p( )< 0.1
3,moderatemethylated otherwise

⎧⎪⎨⎪⎩
(5)

Here, chr and p represent the chromosome and position of a
CpG site, respectively.

3 Results

3.1 Human position-defined CGI
prediction method

Indicated by previous study (Hackenberg et al., 2006), we
consider CGIs as potentially functionally short islands (CpG
islets) if length of CGIs is less than 200bp. Here, Figure 2A
demonstrates that Human position-defined CGI prediction
method not only can locate the shortest average length (23.7bp)
under CpG interval d = 12bp, but also the percentage of
CGIs <200bp for Human position-defined CGI prediction
method are greater than both CpGCluster method (Hackenberg
et al., 2006) and density-defined CGI prediction method (Weber
et al., 2007; Zhang et al., 2021a).

Also, since proportion distribution of CGI features is closely
related to the regulatory mechanisms for CGI methylation
(Hackenberg et al., 2010), Human position-defined CGI
prediction method can describe the proportional distribution
of the predicted CGIs at different CGI length (Figure 2B), GC
content (Figure 2C), and O/E (Figure 2D). Here, we employ
default setup for CpG interval, d = 12bp (Zhang et al., 2018;
Zhang et al., 2021a).

It should be noted that Human position-defined CGI prediction
method can parallel carry out position-defined CGI prediction and
comparative analysis for multiple CpG intervals (d) byMR-CpGCluster.

3.2 Data annotation

Data annotation is described by the right side of Figure 1. Firstly,
the position-defined CGIs are classified into different densities by
Supplementary Eq. S2. And then, we classify each CpG methylation
site of CGIs into different gene functional regions by Supplementary
Table S2. Lastly, we classify the CpG sites into three methylation
levels by Eq.5.

Data annotation can help us investigate the distribution of all
CpG sites in different structural and functional categories of genome
sequences (Figure 3; Supplementary Table S3). For example, we not
only can compare the distribution of the number of CpG sites in
each region of the predicted CGIs under different CpG interval(d)
(Figure 3A), but also visualize the density of CpG sites in different
functional regions (Figure 3B).

FIGURE 2
Position-defined CGI prediction and analysis. (A) CGIs
comparative analysis. The proportion distribution of CGI at different
(B) CGI length, (C) GC content, and (D) CpG O/E ratios (Eq. 3) under
CpG interval d = 12bp.
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3.3 Human position-defined CGI
methylation analysis

The position-defined CGI methylation analysis is described by
the bottom side of Figure 1 with three functions.

First is “CGI density analysis” (Figure 4A), which is used to analyze
the classification of position-defined CGI under various CGI density
(Weber et al., 2007; Zhu et al., 2008) and CpG interval (d).

Second is “Methylation level analysis,” which not only can
analyze the specificity of methylation level for CpG sites under
different annotation categories and CpG interval (d) (Figure 4B), but
also allows the visualization and comparative analysis of
methylation level of position-defined CGIs at the genome-wide
perspective (Figure 4C).

The third is “GO enrichment analysis,” which employs
clusterProfiler (Yu et al., 2012) to make GO enrichment analysis
(Liu et al., 2020) for the CGI + genes (Coding genes that at least
one of its TSSs is located in the CGI) (Weber et al., 2007; Zhang et al.,
2021a) of position-defined CGIs. Here, Figure 4D shows GO
enrichment analysis for the CGI + genes under CpG interval d = 12bp.

3.4 Algorithm performance comparison

Firstly, As shown in Figure 5; Supplementary Figure S2, we
compare the computing speed for Human position-defined CGI
prediction method with MR-CpGCluster and this method
without MR-CpGCluster with three commonly used

FIGURE 3
Position-defined CGI annotation results. (A) Distribution of all CpG sites in different structural and functional categories of genome sequences. (B)
CpG density (Eq. 4) of different gene and sequence categories.
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standards: Speedup, Scaleup and Sizeup (Schatz, 2009). Figure 5
shows that the Speedup is positively related to the number of
nodes and the size of dataset. For example, when using 8 nodes
for a 3920 MB dataset, the ratio between the actual and ideal
Speedup is 6.00/8 = 75%, while with 6 nodes for a 980 MB
dataset, this ratio is 2.88/6 = 49.17%.

Next, we compare the computing efficiency for Human
position-defined CGI prediction method with commonly used
density-defined CGIs prediction method (Weber et al., 2007;
Zhang et al., 2021a) and another two classical distance-based CGI

prediction methods such as WordCluster (Hackenberg et al.,
2011) and CpGProD (Ponger and Mouchiroud, 2002) by CGI
length, GC content, and O/E ratio (Eq. 3), which are three
broadly used standards (Wang and Leung, 2004; Hackenberg
et al., 2010).

Table 1; Supplementary Figure S5 not only demonstrate
that the average length of CGIs of Human position-defined CGI
prediction method (23.7 ± 11.5bp) is statistically shorter, but
also the average GC content (89.3% ± 7.5%) and O/E value
(1.54 ± 0.27) of Human position-defined CGI prediction
method are statistically greater than other prediction
methods by statistical test (Zhang et al., 2021b; Zhang et al.,
2021d; Gao et al., 2021; Liu et al., 2021; Lai et al., 2022; Song
et al., 2022).

Note: Here, we employ default setup for CpG interval, d = 12bp
(Zhang et al., 2018; Zhang et al., 2021a).

3.5 Web service construction

Figure 6 shows the technical architecture of PCGIMA (http://
www.combio-lezhang.online/pcgima/home.html), which consists of
three modules: “Human position-defined CGI prediction,” “CpG
sites annotation analysis,” and “CGI methylation analysis.”

PCGIMA employs MR-CpGCluster to predict the position-
defined CGI for multiple consecutive (d) values. To compare and
analyze the CpG methylation levels in different genome regions, we
integrate the JavaScript version of IGV (Integrative Genomics
Viewer) (Thorvaldsdottir et al., 2013) into our Web service.
PCGIMA also imports the genome annotation information and
analysis results into the MySQL database (Xia et al., 2010) and use
eCharts (Bond and Goguen, 2002) to visualize CGI-related
analysis results.

“Human position-defined CGI prediction” module provides
two functions (Figure 2). One is “Position-defined CGI
prediction,” which can online predict position-defined CGI
for the human genome or a particular chromosome with
multiple consecutive (d) values. The other is “Position-

FIGURE 4
Human position-defined CGI methylation analysis. (A) The
classification of position-defined CGI under CGI density. (B) CpG
density of different gene and sequence categories. (C) Comparison of
the methylation ratio of position-defined CGIs. The horizontal
and vertical axes represent genomic chromosome position and the
methylation rate of the CpG site at corresponding position,
respectively. (D) GO enrichment analysis.

FIGURE 5
The speedup ratio of MR-CpGCluster.
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defined CGI features analysis,” which can describe the
connection between the proportion distribution of CGI and
CGI features.

“CpG sites annotation analysis” module consists of two functions.
First is “Human CpG sites Distribution analysis,” which can analyze
the distribution of CpG methylation sites in different structural and
functional categories of genomic sequences (Figure 3). Second is
“Human CpG sites permutation analysis” module (Supplementary
Method S4), which can analyze the CpG permutation patterns
(Zhang et al., 2018) of density- and position-defined CGIs.
“CGI methylation analysis” module also provides two functions.
One is “Position-defined CGI methylation analysis,” which can
analyze the specificity of methylation level for CpG sites under
different annotation categories (Figure 4B). The other is “GO
enrichment analysis,” which can make GO enrichment analysis
for the CGI + genes of position-defined CGIs (Figure 4D).
Meanwhile, PCGIMA also provides related source code and
data download services. The function descriptions are detailed
in Supplementary Method S4.

4 Discussion and conclusion

This study not only develops Human position-defined CGI
prediction method to locate short and position-sensitive CGIs (CpG
islets) using high performance computing to constructMR-CpGCluster
algorithm (Figure 1), but also a novel human genome annotation and
analysis method to investigate the connections among CGI, gene
expression and methylation. Finally, we integrate them into
PCGIMA for online computing and visualization.

For Human position-defined CGI prediction method, it not only
can efficiently locate CpG islets (Figure 2A; Table 1), but also it can
parallel predict position-defined CGIs with multiple consecutive (d)
values and investigate the genetic characteristics of position-defined
CGIs under different CpG interval parameters (Figures 2B–D;
Supplementary Datas S1–S3).

For annotation method, it can investigate the connections
between position-defined CGI methylation and gene expression
specificity from a genome-wide perspective by considering
functional regions (core promoters and gene bodies) and the
distribution of methylation sites of genes for different
expression breadth (Figure 3). Our annotation method
(Figure 3A) reveals that the distribution proportion of
methylation sites in TS genes for short positional-defined
CGIs (d = 12) is 9.97%, which is less than that for long
positional-defined CGIs (d = 50, 11.46%).

TABLE 1 CGI prediction methods comparison.

CGI prediction
methods

CGI
number

Average length ±
standard deviation

Average GC ±
standard deviation

Average O/E ±
standard deviation

Average CpG
Density ± standard
deviation

Human position-defined 89,063 23.7 ± 11.5 89.3% ± 7.5% 1.54 ± 0.27 0.294 ± 0.066

CGI prediction method

CpGCluster 198,445 274.7 ± 249.8 63.8% ± 7.6% 0.86 ± 0.27 0.087 ± 0.04

WordCluster 198,703 273.2 ± 246.4 63.8% ± 7.5% 0.86 ± 0.27 0.087 ± 0.04

CpGProD 76,793 1,043.8 ± 761.7 54.6% ± 6.1 0.64 ± 0.1 0.047 ± 0.016

Density-defined CGIs 30,477 774.7 ± 826.9 66.5% ± 4.7% 0.86 ± 0.14 0.094 ± 0.018

FIGURE 6
The technical architecture of PCGIMA.
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For Human position-defined CGI methylation analysis, not only
CGI density analysis (Figure 4A) finds an interesting phenomena
that short position-defined CGIs (CpG islets) are closer to LCGI by
classifying the position-defined CGI under various CGI density
(Weber et al., 2007; Zhu et al., 2008) and CpG interval (d), but
also methylation levels analysis demonstrates that the average
methylation levels are obviously low for CpG islets from overall
scale and genome-wide perspective, respectively (Figures 4B, C) as
well as Go enrichment analysis implies that the position-defined
CGI-related genes could be associated with unique gene regulatory
functions (Figure 4D; Supplementary Figure S4).

For Algorithm performance comparison, Figure 5 turns out that
MR-CpGCluster method is faster than classical CpGCluster for the
big dataset, which implies Human position-defined CGI prediction
method can parallel process the big CGI data.

Moreover, previous studies indicate that CGIs with length less
than 200 bp may be functional CpG islets (Hackenberg et al., 2006)
and high GC content and O/E values represent enrichment of
methylation sites (Gardinergarden and Frommer, 1987; Takai
and Jones, 2002). Since Table 1 demonstrates that the average
CGI length of the Human position-defined CGI prediction
method is much less than 200bp (column 3 of Table 1), and the
average GC content and O/E value are statistically greater than other
prediction methods (column 4 and 5 of Table 1), we can conclude
that Human position-defined CGI prediction method can locate
more potential short CGIs with special functions than previous CGI
prediction methods (Takai and Jones, 2002; Takahashi et al., 2017).

Lastly, Figure 6 shows that since we utilize the MR-CpGCluster
to speed up CGI prediction and incorporate extensive visualization
methods to increase user usability, PCGIMA provides an easy-to-
use analysis and visualization platform for human CGI prediction
and methylation. It should be noted that since the human genome
annotation and analysis results have been computed and imported
into the database in advance, it is fast (about 2–3 min) for PCGIMA
to show the analysis results except the “Human position-defined
CGI prediction.”

Although our study already made great progress in CGI
prediction, annotation, analysis, and visualization, it still needs
further improving. Firstly, we should make detail annotations for
human position-defined CGIs in terms of functional and structural
features. Secondly, we should interrogate the lineage-based and
function-based subsets for CGIs and their regulatory implications
(Blackledge et al., 2013). Finally, we should employ advanced high
performance computing technology (Jiang et al., 2015; Zhang et al.,
2021c; Xiao et al., 2021) to improve PCGIMA in the distant future.
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Introduction: Acupuncture and tuina, acknowledged as ancient and highly

e�cacious therapeutic modalities within the domain of Traditional Chinese

Medicine (TCM), have provided pragmatic treatment pathways for numerous

patients. To address the problems of ambiguity in the concept of Traditional

Chinese Medicine (TCM) acupuncture and tuina treatment protocols, the lack

of accurate quantitative assessment of treatment protocols, and the diversity of

TCM systems, we have established a map-filling technique for modern literature

to achieve personalized medical recommendations.

Methods: (1) Extensive acupuncture and tuina data were collected, analyzed,

and processed to establish a concise TCM domain knowledge base. (2)A

template-free Chinese text NER joint training method (TemplateFC) was

proposed, which enhances the EntLM model with BiLSTM and CRF layers.

Appropriate rules were set for ERE. (3) A comprehensive knowledge graph

comprising 10,346 entities and 40,919 relationships was constructed based on

modern literature.

Results: A robust TCM KG with a wide range of entities and relationships

was created. The template-free joint training approach significantly improved

NER accuracy, especially in Chinese text, addressing issues related to entity

identification and tokenization di�erences. The KG provided valuable insights

into acupuncture and tuina, facilitating e�cient information retrieval and

personalized treatment recommendations.

Discussion: The integration of KGs in TCM research is essential for advancing

diagnostics and interventions. Challenges in NER and ERE were e�ectively

tackled using hybrid approaches and innovative techniques. The comprehensive

TCM KG our built contributes to bridging the gap in TCM knowledge and serves

as a valuable resource for specialists and non-specialists alike.

KEYWORDS

prompt learning, knowledge graph, Traditional Chinese Medicine, Named Entity

Recognition, Entity Relationship Extract

1 Introduction

Acupuncture and Tuina stand as foundational therapies within Traditional Chinese

Medicine (TCM), boasting centuries of esteemed practice and theoretical development.

Their origins trace back to ancient China, where detailed theories and practical

methodologies were documented in medical classics like the Huangdi Neijing over two

millennia ago (Unschuld, 2016). Since the Neolithic era, these practices have gradually

become integrated into human life (Cao, 2008) and are widely employed in clinical

treatments due to their simplicity and rapid effectiveness. In recent years, acupuncture

and tuina have gained increased recognition in various countries, including the
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United States and Europe. In 2020, a research article featured in

the journal Neuron, authored by a team led by Professor Qiufu

Ma from Harvard Medical School, demonstrates that acupuncture,

through targeted stimulation of specific acupoints on the body’s

surface, can activate a range of “somatic-sensory-autonomic-target-

organ” reflex pathways. This activation is capable of effecting

immune-inflammatory modulation (Liu et al., 2020). In 2021, the

team led by Qiufu Ma further affirmed the scientific validity of

acupuncture treatments by shedding light on the neuroanatomy

involved in acupuncture’s activation of specific signaling pathways

(Liu et al., 2021). Moreover, the World Health Organization

(WHO) acknowledges acupuncture’s efficacy in addressing a wide

range of conditions, including but not limited to chronic pain,

nausea, and certain neurological disorders. Such recognition

further underscores the significance and widespread applicability

of acupuncture within contemporary medical practices. In the

era of the Internet’s evolution, deep learning’s pervasive use

in daily life has become evident. Its applications span essay

recommendations to text data analysis, serving as an essential

component (Wang et al., 2018; Guan et al., 2020). The

integration of deep learning into the medical domain is equally

noteworthy, synergizing neural networks and medical technology

to advance science and technology. The surge in regional health

informatization and medical technology has amassed substantial

medical data. Extracting and effectively utilizing this information

is vital for intelligent medical support (Hou et al., 2018).

Knowledge graph (KG) technology, as an emerging technology

for information organization and processing, demonstrates the

ability to efficiently integrate and analyze vast amounts of data

and information. By systematically consolidating both ancient

and modern literature into a knowledge base, knowledge graphs

offer decision-making support for medical practitioners. In the

realm of TCM, this technology presents new opportunities

for development.

The construction of knowledge graphs is a fundamental

concern within the field of knowledge graph research (Liu et al.,

2016). The knowledge graph architecture encompasses both its

logical structure and technical components. In this paper, we

concentrate on two vital aspects of knowledge graph construction:

the technical architecture, specifically entity extraction, and

relationship extraction.

Nevertheless, constructing high-quality medical knowledge

graphs faces significant challenges, particularly due to the distinct

characteristics and requirements of medical terminology compared

to common terms. Such endeavors often demand substantial

human and material resources. In particular, the development

of Traditional Chinese Medicine (TCM) knowledge graphs has

received relatively less research attention compared to general

medical knowledge graphs. Furthermore, detailed research specific

to each branch of TCM remains limited.

In the field of acupuncture and tuina, there are still many

problems.

• Many acupuncture and tuina treatment plans have many

ambiguous concepts, such as the location of acupuncture, the

strength of tuina, etc.

• There is a lack of specific quantitative assessment in the

implementation of treatment protocols.

• The extant TCM systems are heterogeneous. In the case of

acupuncture alone, 26 mainstream schools exist (Zhang and

Xia, 2018).

All of the above problems pose a major obstacle to the

development of personalized treatment plans. In our previous

work, a knowledge graph of acupuncture and tuina was constructed

using ancient Chinese medical literature, but there is still no graph

filling technique for modern literature (Han et al., 2021).

In the context of Prompt Tuning for Few-shot Named

Entity Recognition (NER), the majority of existing methods have

primarily focused on English text, resulting in a relative scarcity of

methods specifically designed for Chinese text. Chinese sentences

tend to be longer compared to English sentences, often spanning

tens or even hundreds of Chinese characters. This increased

sentence length significantly expands the search space for templates

and poses challenges in finding suitable templates for Chinese

text. Moreover, Chinese entities typically consist of at least two

characters, and in domains like Chinese medicine, entities can

even comprise nearly ten words. The diverse meanings of Chinese

characters introduce the possibility of unintended partially nested

entities within longer entities. All this makes the previous methods

do not fit well in Chinese texts.

In order to solve the above problems, in this paper, we hope to

accomplish the structured storage and retrieval of acupuncture and

tuina knowledge in modern literature with the help of knowledge

graphs, and at the same time provide a basis for personalized

medical solution recommendation. To summarize the contribution

of this work:

• We have collected a large amount of knowledge related to the

field of acupuncture and tuina and have built a small domain

knowledge base based on this knowledge. It contributes to the

construction of the KG later, and also facilitates the needs of

other researchers.

• The development of the KG revolves around two primary

facets: NER and ERE. For ERE, we opted for the conventional

rule-based method for relationship extraction. In contrast,

for NER, we devised a hybrid entity extraction model that

combines Trie tree-based techniques with deep learning.

In particular, we proposed the TemplateFC model, which

becomes a more adaptable template-free prompt tuning

method for Chinese text by adding BiLSTM layer and CRF

layer for joint training.

• We built a knowledge graph of acupuncture and tuina based

on modern literature. This graph encompasses 10,346 entities

and 440,919 relationships. Additionally, we have developed

a user-friendly entity query interface and UI, enhancing

accessibility and usability.

The study of this paper is shown in Figure 1.

2 Related work

2.1 Named Entity Recognition (NER)

Entity extraction, also known as Named Entity Recognition

(NER), holds significant importance in the field of natural language
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FIGURE 1

Flow chart of knowledge graph construction. (A) The flow of knowledge graph construction. (B) Entity extraction. (C) Relationship extraction.

processing. Currently, two primary architectural approaches are

prevalent in NER research: Neural Network-Conditional Random

Field (NN-CRF) and sliding windows. In the NN-CRF architecture,

a sequence labeling model, such as CRF, is employed, utilizing

a neural network for text representation and feature extraction.

Dai et al. (2019) utilized the BERT-BiLSTM-CRF architecture

to successfully perform entity extraction for Chinese medical

records. Conversely, the sliding window architecture treats NER

as a classification task, identifying and classifying potential entities

within a sentence. Eberts and Ulges (2019) employed syntactic

features to classify Spans created by splitting the sentence. In

practical industrial applications, NER techniques often employ

hybrid models that combine multiple methods to achieve improved

results. Meituan technicians, for instance, employed a combination

of lexicon and deep learning models for entity recognition, as

documented in the literature. In this paper, we also employ a similar

hybrid model.1

2.2 Prompt tuning for few-shot NER

Prompt learning refers to changing the downstream task to

the text generation task by adding some hints to the input

1 Exploration and Practice of NER Technology in Meituan Search.

https://tech.meituan.com/2020/07/23/ner-in-meituan-nlp.html.

Acessed:2024-01-10.

of the model without significantly changing the structure and

parameters of the pre-trained language model. This approach has

gained popularity, particularly in low-resource scenarios of Named

Entity Recognition (NER). Numerous authors have proposed their

own ideas during this period, leveraging templates tag words,

and other techniques. For instance, Lee et al. (2021) focused

on selecting specific high-quality examples, while Cui et al.

(2021) explored the process of identifying suitable templates.

Additionally, Chen et al. (2023) introduced the concept of weighted

averaging of multiple prompts using mask-reducible prompts.

These advancements have contributed to establishing a strong

correlation between the quality of search results and the output of

prompt learning techniques.

2.3 Entity Relationship Extract (ERE)

Entity Relationship Extraction (ERE) serves as the successor

task to entity extraction. Traditional approaches primarily rely

on rule-based methods, which identify relationship expressions

by detecting specific patterns and using regular expressions.

Conversely, deep learning-based methods for relationship

extraction closely resemble entity extraction and necessitate a

substantial amount of annotated data for supervision. Liu and

Zhao (2020) proposed a neural network architecture namely

BERT-CNN-BiLSTM-CRE, to achieve relationship extraction in
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the medical domain. Their architecture was successfully applied

to extract relationships from a medical corpus. Moscato et al.

(2023) used three biomedical datasets and a multi-task learning

framework for relationship extraction. Milošević and Thielemann

(2023) have developed a new rule-based method for relationship

extraction. The method relies on vocabularies for relationship

trigger words, negation cues, speculation cues, mode of action

(MoA) cues, and grammar pattern rule set.

2.4 Knowledge graph of TCM

The construction of the Traditional Chinese Medicine (TCM)

knowledge graph has attracted the involvement of numerous

domestic and international internet companies. Yu et al. leveraged

the linguistic system of TCM as a foundation and integrated

a series of TCM-related databases to develop a comprehensive

TCM knowledge graph. This knowledge graph was subsequently

embedded and utilized in a TCM knowledge service platform.

Furthermore, Yu et al. (2015) capitalized on the digital resources

accumulated in the field of TCM to construct a knowledge graph

specifically tailored to TCM healthcare. Currently, one of the

most notable TCM knowledge graphs is developed by the Institute

of Traditional Chinese Medicine Information at the Chinese

Academy of Traditional Chinese Medicine. This knowledge graph

encompasses 127 semantic types and 58 semantic relationships,

establishing it as a valuable resource in the field (Cui et al., 2014).

The global acupuncture clinical trial research is booming, and

clinical evidence for acupuncture is emerging. Nenggui Xu’s team

applied artificial intelligence analysis technology to complete the

“linking” of original research and 332 systematic evaluations of

evidence in 20 disease areas, comprehensively improved the clinical

evidence matrix of acupuncture therapy in the Epistemonikos

database, and formulated the world’s first clinical evidence atlas for

acupuncture (Lu et al., 2022).

3 Construction of the knowledge
graph schema layer

Before the knowledge graph is constructed, it’s critical to have

a deep understanding of domain requirements. In the field of

acupuncture and tuina, the core problem faced is disease and

treatment, and the main questions to be addressed are as follows.

• What are the possible symptoms of a disease? What treatment

techniques should be used and which acupoints should be

targeted?

• What are the possible diseases associated with certain

symptoms? What treatment techniques should be used and

which acupoints should be targeted to relieve symptoms?

• What are the common therapies of acupuncture and tuina?

Which acupoints are commonly used for a particular therapy?

What kind of functions will it have?

• What are the common acupoints used for acupuncture

and tuina? What are the effects of stimulating a particular

acupoint?

TABLE 1 Examples of various types of entities.

Entity Abbreviation Example

Disease DIS Hypertension, Heart disease

Symptom SYM Runny nose, Nasal congestion

Acupoint XW Weiling, Sanjiao

Therapy OPE Moxibustion, Push

Function FUN Reduce fever, Hemostasis

TABLE 2 Example of each type of entity relationship.

Category Abbreviation Example

Associations DIS-SYM Symptom

DIS-OPE Common therapies for treatment

Treatment DIS-XW Commonly used acupoints for treatment

OPE-XW Commonly used acupoints for therapy

Function OPE-FUN Therapy has the function

XW-FUN Stimulation of acupoints has the function

After analyzing the aforementioned issues, we have identified

five main categories of entities that are crucial to the field of

acupuncture and tuina. These categories include disease, symptom,

acupoint, therapy, and function. The specific descriptions of

each category are summarized in Table 1. In Section 5 of our

paper, we specifically address the challenge of dealing with

these issues.

The distinction between diseases and symptoms lacks a clear

demarcation. For instance, the entity “headache” can be regarded

both as a disease and as a symptom of a disease. To ensure

consistency and prevent conflicts during the construction of

the knowledge graph, we impose limitations on the scope of

diseases. Specifically, all disease entities are required to align with

either the International Classification of Diseases, 10th Revision

(ICD-10) for [Classification in Health (Australia), 2004] or the

Clinical Terminology for Chinese Medicine, Disease Section (GB/T

16751.1-1997). Consequently, if a suspected entity corresponds to

a disease or symptom and fulfills both of the mentioned criteria,

it is classified as a disease entity; otherwise, it is categorized as a

symptom entity.

Both acupoints and meridians play crucial roles in TCM,

representing significant theoretical relationships. Meridians are

characterized by their linear distribution throughout the body,

while acupoints are specific points or zones along these

meridians. It can be considered that acupoints are attributed

to meridians, including the existence of extra-meridian points.

Given the limited number of meridians, for the purpose of this

paper, we consider meridians and acupoints as entities of the

same type.

Then, this paper also defines six relationships according to the

requirements, as described in Table 2.

After the above definition, the specific framework design of the

acupuncture and tuina knowledge graph schema layer is shown in

Figure 2.
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FIGURE 2

Acupuncture and Tuina knowledge graph entity relationship

diagram.

TABLE 3 Sample from disease data.

Disease Section Site of
disease

Symptom

Measles Infectious diseases

section; pediatrics

Whole body Fever

Rhinitis Otolaryngology Nose Runny nose; Stuffy

nose; Loss of smell;

Liver cysts Hepatobiliary

surgery

Liver Abdominal; masses;

stomachache

4 Construction of the domain
knowledge base

The cold-start problem poses a significant challenge in the

construction of domain knowledge graphs at the current stage.

Both entity extraction and relationship extraction rely heavily

on annotated data, necessitating the creation of comprehensive

datasets. Furthermore, annotators involved in dataset annotation

are required to possess substantial domain-specific knowledge.

Hence, prior to constructing the data layer, this paper advocates

the establishment of a comprehensive domain knowledge base. This

knowledge base encompasses essential components, namely the

domain dictionary, disease information base, acupoint information

base, and acupuncture and tuina literature base. The integration of

these resources aims to address the challenges posed by the limited

domain expertise of personnel and mitigates the complexities

associated with data annotation processes.We also hope to improve

the structure of the graph with the domain knowledge base,

including increasing the types of relationships and supplementing

entity attributes.

4.1 Structured knowledge base

According to the above, we mainly collected data for two

types of entities, disease, and acupoint. For the disease entities,

information on aliases, onset sites, registered departments, and

typical symptoms of common diseases was crawled. A total of 2011

common diseases were crawled, and the sample data (only some

attributes of some records were extracted) are shown in Table 3.

TABLE 4 Sample from acupoint data.

Acupoint Attributed
meridians

Functions Method of
operation

Atrium Conception

vessels

Unblocking of veins;

Tranquility

Flat prick 0.3 0.5

inch

Zuqiaoyin Gallbladder

meridian

Invigorate the

meridians: Migraine,

Tinnitus

Shallow prick 0.1

inch or prick blood

Yangxi Large intestine

channel of

hand

yangming

Clearing heat and

benefiting the throat;

Heartburn; Cataracts

of the eyes

Straight prick

0.3 0.5 inch

For the acupoint entity, we crawled the data related to acupoint

and meridian in the Chinese medicine network.2 A total of 366

common acupoints and meridians were crawled, and the sample

data (only some attributes of some records were extracted) are

shown in Table 4.

In order tomake the knowledge base scalable andmore efficient

for retrieval, the obtained data are stored in database in the form of

tables to establish a structured knowledge base.

After crawling the structured data, we directly populate it

into the knowledge graph as entities or their corresponding

relationships. This approach enables us to include some data

directly in the initial graph, effectively addressing the cold start

problem. As an illustration, consider the second row of data in

Table 3, we discern that the symptoms associated with rhinitis

include runny nose, stuffy nose, and loss of smell. This information

was directly incorporated into the KG, accompanied by the relevant

relationships, resulting in the creation of a node graph representing

the interconnections among entities linked to rhinitis.

4.2 Domain dictionary

Before proceeding with formal entity extraction, it is necessary

to collect a representative sample of each entity type in order

to build a comprehensive entity dictionary. The entities were

primarily sourced from Chinese medicine websites3 and other

relevant sources. An example dataset for the dictionary is presented

in Table 5. To maintain consistency, the length of all entities was

limited to 10 characters. It should be noted that not all entities in the

knowledge base or domain dictionary were added to the knowledge

graph in order to avoid creating a large number of “isolated nodes”

and connected components during entity extraction. If the current

entity appears in the corpus then it is added to the knowledge graph.

Conversely, if it only appeared within the domain dictionary and

not in the corpus, it means that it is likely to have no relational

triples and is isolated, then it will not be added to the knowledge

graph. Finally, only about 48% of the entities were added to the

graph.

2 Acupuncture and Tuina - Acupuncture techniques, acupuncture

treatment, meridians and acupoints, TCM Tuina. http://www.pharmnet.com.

cn/tcm/zjdq/. Acessed:2022-05-09.

3 Complete List of Human Acupuncture Points—Chinese Medicine Search.

http://www.zhongyoo.com/xw/. Acessed:2022-05-04.
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TABLE 5 Example data for the dictionary.

Entity Number Example

Disease 14,691 Enteritis, Pneumoconiosis

Symptom 5,142 Intestinal tinnitus, Dry lips

Acupoint 594 Guanchong, Zhongwan

Therapy 579 Slap, Twist, Push

Function 357 Toning the spleen, stomach,

liver and kidneys

4.3 Unstructured literature base

The corpus data used for information extraction is

mainly obtained from three parts: China National Knowledge

Infrastructure (CNKI),4 Chinese Medicine and Chinese Herbs

Network,5 and Chinese Medicine Network (see text footnote

3). literature for subsequent analysis and knowledge graph

construction.

CNKI is a comprehensive repository of knowledge resources

in China, covering a wide range of subject areas. In this website,

we are able to obtain valuable and authoritative literature related

to acupuncture and tuina. However, due to copyright restrictions,

we can only download a limited number of relevant documents.

To further analyze the literature, we performed optical character

recognition (OCR) on the PDF documents, converting them into

TXT format to obtain editable text. This allowed us to extract and

process the textual content of the literature for subsequent analysis

and knowledge graph construction.

Chinese Medicine and Chinese Herbs Network and Chinese

Medicine Network are similar open websites for Chinese medicine,

with a large number of medical post related to acupuncture and

tuina. These posts serve as valuable sources for extracting entities

and relationships required for constructing the knowledge graph.

To compensate for the limited corpus available on the Knowledge

Network, we collected web texts from these medical websites. In

total, we crawled 3,236 posts relevant to acupuncture and tuina.

The collected literature underwent basic preprocessing,

including the filtering of special symbols. The title, content,

and source information of the literature were then stored in the

database, establishing a comprehensive library of acupuncture and

tuina literature.

5 Construction of the graph data layer

5.1 Entity extraction based on fusion
models

We used the above corpus for entity extraction. It’s a

combination of the Trie tree model and deep learning model, as

4 Search—China Knowledge Network. https://kns.cnki.net/kns/brief/

default_result.aspx. Acessed:2022-05-09.

5 TCM.com_TCM.com_Excellent Chinese Medicine Portal. https://www.

zhzyw.com/. Acessed: 2022-05-09.

depicted in Figure 1B of a diagram. The Trie tree construction

relied on the previously built domain dictionary and primarily

extracted known entities. The extraction results from the Trie

tree served as the dataset for training the deep learning model.

The trained model was then used for a second round of entity

extraction, focusing on identifying potential entities that were

not initially discovered. Finally, the extraction results from both

methods were merged to obtain the final entity set.

5.1.1 Entity extraction based on Trie tree
Trie tree, which is also known as dictionary tree and prefix tree.

Figure 3 shows a Trie tree and the list of words it contains. For this

tree, a query for the entity “rhinitis” would follow the path “1-2-5”.

In this study, the construction of Trie trees was implemented

using a Dictionary built in Python. The key-words of the Trie

tree are strings, and the Trie tree stores each keyword in a path

instead of a node. With different node paths, different keywords

were gotten, i.e. entities. In addition, two keywords with a common

prefix have the same path in the prefix part of the Trie tree. Here,

we modeled a total of five Trie trees, each representing a different

entity type, for entity extraction. The algorithm for constructing the

Trie trees was described in Algorithm 1.

After obtaining the Trie tree, entity extraction and data

annotation were performed for the 819 literature samples. The

data annotation followed the BIO annotation format. For each

literature, it was divided into sentences, and Algorithm 2 was

applied to generate candidate words and match them with the

Trie tree. The entities that matched successfully were annotated

with the corresponding BI tags, while unsuccessful candidates were

annotated with the O tag. Entity extraction was conducted for all

819 samples. The number of entity samples obtained for each entity

type is presented in Table 6, and the annotation samples can be seen

in Figure 4.

5.1.2 TemplateFC based entity extraction
5.1.2.1 Dataset pre-processing

The BERT embedding models have a maximum input sequence

length of 512 tokens. Considering the two special characters [CLS]

and [SEP], the original sequence length should be less than 510

tokens. Since most of the literature in the previous section exceeds

this length, we needed to divide the literature.

We opted to divide the literature into blocks while aiming

to preserve as much information as possible about the headings

at each level. The blocks were created to be as large as possible

but still smaller than 510 tokens. Additionally, we retained the

requirement of dividing the literature by sentence. As a result, a

total of 2505 literature pieces were obtained after the block division.

Subsequently, Trie tree-based entity extraction was conducted on

the divided literature to obtain the initial training dataset for the

deep learning model.

5.1.2.2 TemplateFC model

In the template-free prompt tuning method, NER (Named

Entity Recognition) was reimagined as a language modeling (LM)

task. However, instead of relying on predefined templates, a new

objective called Entity-oriented LM (EntLM) was introduced to

Frontiers in BigData 06 frontiersin.org38

https://doi.org/10.3389/fdata.2024.1346958
https://kns.cnki.net/kns/brief/default_result.aspx
https://kns.cnki.net/kns/brief/default_result.aspx
https://www.zhzyw.com/
https://www.zhzyw.com/
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Li et al. 10.3389/fdata.2024.1346958

FIGURE 3

The example of a Trie Tree.

Input: root :Node,word : String

Output: root :Node

1: curNode ⇐ root

2: for c in word do

3: if cnotincurNode.child then

4: curNode.child[c] ⇐ Node

5: end if

6: curNode ⇐ curNode.child[c]

7: N ⇐ n

8: curNode.end ⇐ True

9: end for

10: return root

Algorithm 1. AddTrieNode.

Input: root :Node, sentence : String

Output: entities : List

1: curNode ⇐ root; index ⇐ 0;maxLength ⇐ 10; entities ⇐ [ ]

2: while index < len(sentence) do

3: j ⇐ maxLength

4: while j 6= 0 do

5: word ⇐ sentence[index : index+ j]

6: if SearchWord(root,word) = True then

7: index ⇐ index+ j− 1; entities.add(word);

8: end if

9: j ⇐ j− 1

10: end while

11: index ⇐ index+ 1

12: end while

13: return entities

Algorithm 2. FindEntity.

fine-tune NER without reusing the LM objective (as done in

previous approaches using templates) (Ma et al., 2021). In this

method, the LM was trained to predict a label word at the position

of the entity when given input text, serving as an indication of the

entity’s label. For non-entity words like “was” the LM continued to

predict the original word.

However, the template-free prompt tuning method also has

some disadvantages when applied to the NER task, particularly

in the context of Chinese text. Chinese entities often exhibit

continuity, leading to situations where a single entity is identified

as multiple entities. For instance, in the case of “gastrointestinal

TABLE 6 Trie tree extraction entity sample statistics.

Entity Total DIS SYM XW OPE FUN

Number 10,346 3,671 3,252 1,491 1,330 602

neurosis”, the term “gastrointestinal” might be identified as an

acupoint entity, while “neurosis” is recognized as a disease

entity.This highlights the challenge of accurately identifying and

disambiguating Chinese entities due to their structural uniqueness.

Another limitation is that the EntLM model is primarily designed

for English text and may not be well-suited for Chinese language

processing. In English, most entities are typically represented

by a single token, whereas Chinese entities often span multiple

tokens. This difference in tokenization and entity representation

increases the likelihood of inaccurate identification when applying

the EntLM model to Chinese text.

In this paper, we proposed an NER model that combines

the benefits of template-free prompt learning with enhanced

applicability to Chinese text (TemplateFC). We continued to

employ a template-free entity-level LM fine-tuning process, but

we introduced additional components, namely Bi-directional

Long Short-Term Memory (BiLSTM) and Conditional Random

Field (CRF) layers, to improve the accuracy of Chinese entity

recognition. By incorporating these layers into the training process,

the model can learn useful constraints that facilitate better fine-

tuning of the pre-trained model.

First, we selected the appropriate label words for the NER

model. Due to the limited availability of few-shot data, the

label words were chosen randomly. However, to improve the

generalizability of the model, we selected label words from a pool of

1,060 documents in the literature base. The selection of label words

was performed using the best method from the EntLM model,

which combined both Data and LM search. The process of selecting

label words for the B-DIS label was illustrated in the Figure 5.

Figure 6 is the general structure of the model. This model first

gives the input text X = {x1, . . ., xn}, and its corresponding label

sequence is Y = {y1, . . ., yn}. Here, we set the set of label words to

Vl, and it was connected to the set of task labels with a mapping

function M :Y → Vl. Next, the target sequence we want to obtain

is XEnt = {x1, . . .,M(yi), . . ., xn} ( Here, we assume that the word at

i is the entity label). The loss function is shown in Equation 1.

Lword = −

n∑

i=1

log P(xi = xEnti | X). (1)
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FIGURE 4

BIO labeling example.

In the following, we set the embedding vector W = {w1, . . .,wn}

obtained after the BERT pre-training model. Next, the embedding

vector representationW gets the Emission score matrix Xr,l ∈ Rn×l

(n is the number of tokens, l is the number of label types) of the

current token location about each label through the BiLSTM layer.

Each tokenmay be a different label, so there are n× l possible paths,

and only one true path exists among them. Therefore, after passing

through the CRF layer, a new loss function was obtained as shown

in Equation 2.

Lentity =
Prealpath∑n

i=1 Pi
. (2)

Pi = eSi is the score of the i-th path. The exact calculation of Si is

shown in Equation 3.

Sn = EmissionScore+ TransitionScore. (3)

EmissionScore can be obtained from the Emission score matrix,

and TransitionScore is composed of parameters in the CRF layer.

Finally, we combined the two loss functions to get the new Loss

value and performed joint training, the new Loss value is shown in

Equation 4.

Lall = Lword + Lentity. (4)

After the input text X got the embedding vector W by the pre-

training model, the label corresponding to the current token can be

obtained directly by the argmax function, as shown in Equation 5.

Y = argmax(xi = xEnti | X). (5)

Alternatively, the corresponding label can be obtained by decoding

through the CRF layer.

5.1.3 Fusion of entity extraction results
When the entity extraction based on the Trie tree and

ALBERT-CRF were completed, the results of the two extractions

needed to be fused. Drawing on the literature, and Meituan’s

design of the entity extraction model, we used dictionary

matching to mine discovered entities and deep learning models

to mine potential entities. The following fusion rules were

developed.

• When the Trie tree extraction results agree with

the model extraction results, the results are

fused directly.

• When the Trie tree extraction result is “O” and the model

extraction result is “B-” or “I-”, the fusion result will be based

on the model extraction result.

• When the Trie tree extraction result is “B-” or “I-” and the

model extraction result is “O”, the fusion result will be based

on the Trie tree extraction result.

The specific fusion algorithm is shown in Algorithm 3.

Finally, a total of 10346 entities were extracted from all the

literature for the fusion model. Among them, 3671 are DIS entities,

3252 are SYM entites, 149 are XW entities, 1330 are OPE entities,

602 are FUN entities.

5.2 Rule-based relationship extraction

Acupuncture and tuina constitute an ancient and specialized

medical domain characterized by a stable terminology and

conceptual framework. Given the absence of an initial relational

dataset and the challenge of acquiring extensive labeled data,

opting for a rule-based approach becomes advantageous. This

approach involves extracting relational patterns based on

expert experience and existing literature, thereby enhancing

alignment with the specialized nature of acupuncture and

massage. Additionally, it serves to alleviate the burden associated

with data labeling. To establish an expression paradigm for

the relationships, a substantial amount of text was analyzed

and summarized. Subsequently, we devised a set of coherent

matching rules to facilitate the extraction of relationships. The

formulation of rules primarily encompassed subject word-based

extraction, entity location-based extraction, and keyword-based

extraction strategies. Our rules were built based on a large

amount of text and facts. For example, “Body acupuncture

and massage with acupuncture operation: Quchi, Hegu and

matching acupoints”, our model identified body acupuncture

and massage as OPE entities, identified Quchi and Hegu

as XW entities, and extracted the corresponding OPE-XW

relationships.

This paper combines three common rule-based approaches and

an analysis of literature data to develop rules as shown in Table 7.

A total of 40,919 relationships were extracted from

all the literature. Among them, 5566 are DIS-SYM

relationships, 6705 are DIS-OPE relationships, 6412 are

DIS-XW relationships, 6808 are OPE-XW relationships,

6824 are OPE-FUN relationships, 8604 are XW-FUN

relationships.
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FIGURE 5

Label words selection.

FIGURE 6

TemplateFC model architecture diagram.

6 Experiments and results

6.1 Datasets and implementation details

This paper addressed the limitation of resources in the TCM

domain by conducting two experiments: one in a resource-rich

setting and another in a few-shot setting. To evaluate our approach,

we utilized two datasets from distinct domains, the CoNLL2003

dataset (Sang and De Meulder, 2003) sourced from the newswire

domain, and a self-built database specific to the acupuncture and

tuina domain within TCM. The details of these experiments were

provided below.

Multiple-shot NER Dataset: The dataset used in this study

was primarily derived from the CoNLL2003 dataset. The textual

content of this dataset focused on the People’s Daily, which is one of

the most influential newspaper publications in China. The dataset

comprised three common entity types: Person (PER), Place (LOC),

and Organization (ORG) with 25862 training sets, 4671 test sets,

and 2,385 validation sets.

Fewshot-NER Dataset: This dataset is a 10-shot dataset

extracted manually from the above Multiple-shot NER Dateset.

ZJTA Dateset: This dataset was constructed based on the

previous method for NER and ERE. It comprises five entity types

and six relationship types, resulting in a total of 10,346 entities and
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Input: entity : String, label1 : String, label2 : String

Output: entity : String, label : String

1: curEntity ⇐ entity; curLabel1 ⇐ label1; curLabel2 ⇐ label2

2: if curLlabel1 = curLabel2 then

3: label = curLlabel1

4: else if curLabel1 = \O′′and(curLabel2 = \B −′′ orcurLabel2 ==

\I−′′) then

5: label = curLlabel2

6: else if (curLabel1 = \B−′′ orcurLabel1 = \I−′′)andcurLabel2 = \O′′

then

7: label = curLlabel1

8: else

9: break

10: end if

11: return label

Algorithm 3. Blind.

TABLE 7 Relationship extraction rules.

Category Rule The relationship of
extraction

Subject word Disease therapy literature DIS-SYM, DIS-OPE, DIS-XW

Introduction to therapy

literature

DIS-OPE, OPE-XW,

OPE-FUN

Entity location Proximity of hand

techniques and acupoints

OPE-XW

Keyword “efficacy”, “effect”,

“function”

OPE-FUN, XW-FUN

40,919 relationships. It is important to note that due to limited

availability of public information and restricted access to Chinese

medicine acupuncture and tuina, the dataset may be limited in size.

Consequently, for the few-shot experiment, we selected a subset of

this data. Specifically, the few-shot experiment utilized 10 training

texts and 498 test texts.

Finally, We selected the F1 score as the evaluation metric for

our experiments. The F1 score, which is a balanced measure of

precision and recall, effectively reflects the performance of our

experiments in a fair and comprehensive manner.

6.2 Baselines and proposed models

In our experiments, we have chosen the richer baselines with

the following details.

Bert + HMM: A classical model which combines BERT

and HMM for NER. It learns the representation of the input

text using BERT, which converts each word or subword into

a high-dimensional vector representation capturing its rich

semantic information. And then models the sequence of BERT

representations using the HMMmodel, which can be used for NER.

TemplateNER (Cui et al., 2021): A Prompt Learning approach:

using generative BART models for sequence annotation tasks and

exploring the potential of BART models for few-shot scenarios

using a Template-based approach.

TABLE 8 Comparison of F1 score results for di�erent resources under

two data domains.

Method Multiple-shot Few-shot ZJTA

Bert+HMM 0.8879 0.1862 0.2025

TemplateNER 0.8942 0.2945 0.3193

Two-tower 0.9102 0.2893 0.3107

EntLM 0.9041 0.3373 0.3871

EntLM-CRF 0.9039 0.3543 0.4016

TemplateFC (Ours) 0.9174 0.3746 0.4268

Two-tower (Ma et al., 2022): The Few-shot Named Entity

Recognition (NER) problem was addressed using a two-tower

model. The model comprises two BERT encoders: one encoder is

responsible for encoding the representation of each token, while the

other encoder encodes the natural language form of the BIO label

to obtain the label representation. Subsequently, the model predicts

the similarity between each token and all the label representations

within the text. Finally, the label with the highest similarity is

assigned to the token.

EntLM (Ma et al., 2021): A approach which abandoned the

template and used NER as a language model task. In NER task,

the position of the entity was predicted as label word, and the

non-entity position was predicted as the original.

EntLM-CRF: Add CRF layer decoding on top of the above

model.

TemplateFC: The proposed method.

Table 8 presents the results of the proposed method and the

baseline approaches across different settings. Here, the bold values

represent the highest experimental results in the current dataset.

Based on the findings from the table, the following observations

can be made.

1. Our model demonstrates higher scores on the common dataset,

both in multiple-shot and few-shot conditions. There are

several reasons why the TemplateFC model demonstrates

superiority. Firstly, the incorporation of BiLSTM and CRF

layers guides BERT to learn more nuanced representations

by leveraging sequence label information. This aids BERT in

comprehending the structural and semantic nuances within

input sequences, particularly when data is scarce, thereby

providing supplementary supervisory signals. Secondly, the

BiLSTM and CRF layers enable the back-propagation of

gradients from label prediction errors, facilitating BERT in

adapting its representation learning process based on erroneous

predictions. This joint training methodology expedites

BERT’s convergence to enhanced representations with fewer

samples. Lastly, the BiLSTM and CRF layers contribute to

BERT’s improved understanding of context and sequence

continuity, resulting in more coherent and semantically

enriched representations.

2. In relation to the self-created dataset in this paper, our model

exhibits superior performance, surpassing EntLM-CRF by 2.5%.

This underscores the advantages of integrating the BiLSTM

and CRF layers for joint training, leading to enhanced model
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fitting speed, improved NER accuracy, and heightened model

generalization.

3. Even in scenarios with abundant resources, ourmodel maintains

an advantage of 0.72% compared to the highest-scoring baseline

model. This highlights the versatility of our approach, which is

applicable across both few-shot and multi-shot scenes. Despite

the potential risk of overfitting in multi-shot scenarios, our

experimental findings indicate that our model continues to

enhance model performance and stability.

4. It is important to note that for the last three baselines, we

conducted four training runs to obtain four sets of results.

Subsequently, we selected the highest F1 score among the results

for comparison. Conversely, for the experiments conducted in

this paper, we directly decoded the outputs in the multiple-shot

scenario. In the few-shot resource scenario, we employed CRF

decoding.

6.3 Implementation of the knowledge
graph

After the completion of entity extraction, the obtained set

of entities and relational triples were stored in Neo4j, a graph

database. To facilitate querying and exploration, graph queries were

executed using the Cipher language. Additionally, to cater to the

needs of non-specialists, a Python query interface.and a web-based

query user interface (UI) were developed.

Considering the practical applicability in real-life scenarios,

queries were primarily conducted for four main types of entities:

diseases, symptoms, acupoints, and therapies. The queries were

limited to a step size of 1, which corresponds to single-hop queries.

This approach enabled efficient retrieval of related information

within a single query operation.

After completing the development phase, the website was

deployed locally using a personal computer. Subsequently, local

testing was conducted to ensure its functionality.

During the entity search, we entered the query “coronary artery

disease”, and the results are displayed in Figure 7. The diagram

illustrates that coronary artery disease is associated with symptoms

such as shortness of breath and sweating. Moreover, commonly

employed treatments include pointing, pressing, and kneading.

Lastly, specific acupoints such as Zhimen and Zhiyang can be

targeted for treatment. This effectively addresses question one as

outlined in section two.

To substantiate the credibility of our research, we have opted

to engage a reputable medical platform, Hua Tuo GPT. We have

meticulously designed a set of three targeted inquiries to be posed

and elucidated on this platform:

• What are the main symptoms of coronary heart disease?

Answer: The principal manifestations encompass angina

or discomfort in the chest, sometimes accompanied by

secondary symptoms like dyspnea and diaphoresis. In severe

instances, symptoms can escalate to myocardial infarction.

Urgent medical attention is imperative upon experiencing

any of these signs, ensuring prompt mitigation of health

risks. Furthermore, proactive lifestyle adjustments, such as

smoking cessation, alcohol moderation, weight maintenance,

and increased physical activity, can collectively serve as

preventative measures against disease onset and progression.

• What are the common therapies for the treatment of coronary

heart disease?

Answer: The treatment paradigm encompasses

both pharmacological and non-pharmacological

interventions. Pharmacotherapy predominantly targets

pain alleviation and cardiovascular function regulation

through agents like anticoagulants, lipid-lowering agents,

and vasodilators. Conversely, non-pharmacological

avenues involve dietary restructuring, appropriate

physical exertion, psychological counseling, among

others, which collectively alleviate symptoms and

foster recuperation. Importantly, tailored application

of a multitude of treatment approaches yields optimal

outcomes across diverse coronary heart disease presentations

and severities.

• What acupoints to be targeted and what techniques to be used

to relieve coronary heart disease?

Answer: Acupoints include the Xinshu and Danzhong.

Commonly used acupuncture techniques include tonifying

deficiency, clearing the heart, calming asthma, and warming

yang, while tuina focuses on regulating qi and blood,

promoting blood circulation for removing obstruction

in collaterals, and other aspects. However, due to the

variability of each individual’s body and different disease

states, the choice of acupoints and techniques may

vary. Therefore, it is recommended that you consult

with a professional practitioner and obtain the necessary

assessment and guidance before undergoing acupuncture and

tuina treatment.

After analyzing the three provided questions and their

corresponding answers, several conclusions can be deduced:

• Enhanced Detail and Precision: Our responses exhibit a

notable augmentation in both detail and specificity. For

instance, in elucidating the symptoms of coronary heart

disease, our answers encompass a broader spectrum of

symptoms, encompassing pallor and bruising, which the

website’s responses did not encompass. This augmentation in

symptom coverage enhances the comprehensiveness of our

answers.

• Domain-Specific Focus: Our answers distinctly exhibit a

focused domain expertise, centered around the realm of

acupuncture and tuina. This is reflected in the knowledge

graph that this paper presents, which is intrinsically tailored

to the acupuncture and tuina domain. Conversely, the

website’s responses tend to encompass a more generalized

medical perspective, devoid of the intricate nuances specific

to acupuncture and tuina. This divergence underscores our

paper’s potency in providing in-depth insights within the

acupuncture and tuina domain.

In summation, our website notably excels in the sphere of

acupuncture and tuina, securing a distinct advantage over the

comprehensive medical advice provided by the website. Our work
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FIGURE 7

Coronary heart disease text extraction results.

leverages its domain-specific focus to furnish detailed and precise

counsel, aligning with the depth and expertise inherent in the

acupuncture and tuina field. This renders our website a preeminent

source of tailored advice within the realm of acupuncture and

tuina, underscoring its authority and value within this specialized

domain.

7 Discussion

This paper presents the establishment of a novel knowledge

base in the domain of acupuncture and tuina, utilizing modern

literature as the foundation. Subsequently, the schema layer of the

acupuncture and tuina knowledge graph was designed, considering

the requirements for practical applications in TCM. The NER

task was accomplished through fused Trie extraction and model

extraction techniques, while the ERE task was completed using

rule-based methods. Additionally, in the context of few-shot

learning, we proposed a TemplateFCmodel, which becomes amore

adaptable template-free prompt tuning method for Chinese text by

adding BiLSTM layer and CRF layer for joint training. Lastly, the

work encompassed graph storage and querying, enabling the KG

of acupuncture and tuina to facilitate doctors’ understanding of

relevant knowledge and give diagnostic and therapeutic advice.

The method proposed in this paper aims to organize and

integrate various knowledge and concepts within the acupuncture

and tuina domain, culminating in a structured knowledge graph.

This facilitates knowledge sharing and communication among

experts and researchers from diverse fields, fostering cross-

disciplinary collaboration and discourse. Nonetheless, certain

limitations persist in this study. For instance, within ERE, the

conventional rule-based approach struggles to encompass all

text features adequately, posing challenges for migration. In

future work, we intend to explore deep learning-based methods

for relationship extraction, tailored to the nuances of Chinese

text, thereby advancing TCM development. Concurrently, we

aim to delve into the capabilities of Large Language Models

(LLMs), aspiring to enhance the precision in the extraction

of entities and their interrelationships within textual datasets.

The ultimate objective of this exploration is to attain zero-shot

learning capabilities, thereby significantly advancing the efficacy

and adaptability of our models in understanding and processing

complex textual information.
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Milovsević, N., and Thielemann, W. (2023). Comparison of biomedical
relationship extraction methods and models for knowledge graph
creation. J. Web Semant. 75, 100756. doi: 10.1016/j.websem.2022.
100756

Moscato, V., Napolano, G., Postiglione, M., and Sperlì, G.
(2023). Multi-task learning for few-shot biomedical relation
extraction. Artif. Intellig. Rev. 6, 1–21. doi: 10.1007/s10462-023-1
0484-6

Sang, E. F., and De Meulder, F. (2003). “Introduction to the conll-2003
shared task: Language-independent named entity recognition,” in in arXiv.
doi: 10.3115/1119176.1119195

Unschuld, P. U. (2016). Huang Di Nei Jing Ling Shu: The Ancient Classic on Needle
Therapy. California: Univ of California Press.

Wang, D., Liang, Y., Xu, D., Feng, X., and Guan, R. (2018).
A content-based recommender system for computer science
publications. Knowl.-Based Syst. 157, 1–9. doi: 10.1016/j.knosys.2018.
05.001

Yu, T., Liu, J., Jia, L., Zhang, Z., Yang, S., Liu, L., et al. (2015). Research on the
construction of big knowledge graph for traditional chinese medicine. China Digital
Med. 10, 80–82. doi: 10.3969/j.issn.1673-7571.2015.3.027

Zhang, L., and Xia, Y. (2018). Study of Formation Process and Influences of
Contemporary Acupuncture Schools (Master’s thesis). Nanjing: Nanjing University of
Chinese Medicine.

Frontiers in BigData 13 frontiersin.org45

https://doi.org/10.3389/fdata.2024.1346958
https://doi.org/10.1109/TKDE.2020.3028943
https://doi.org/10.7544/issn1000-1239.2018.20180623
https://doi.org/10.18653/v1/2022.acl-long.192
https://doi.org/10.7544/issn1000-1239.2016.20148228
https://doi.org/10.1038/s41586-021-04001-4
https://doi.org/10.1016/j.neuron.2020.07.015
https://doi.org/10.1136/bmj-2021-067475
https://doi.org/10.1016/j.websem.2022.100756
https://doi.org/10.1007/s10462-023-10484-6
https://doi.org/10.3115/1119176.1119195
https://doi.org/10.1016/j.knosys.2018.05.001
https://doi.org/10.3969/j.issn.1673-7571.2015.3.027
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


CD-Loop: a chromatin loop
detection method based on the
diffusion model

Jiquan Shen, Yang Wang and Junwei Luo*

School of Software, Henan Polytechnic University, Jiaozuo, China

Motivation: In recent years, there have been significant advances in various
chromatin conformation capture techniques, and annotating the topological
structure from Hi-C contact maps has become crucial for studying the three-
dimensional structure of chromosomes. However, the structure and function of
chromatin loops are highly dynamic and diverse, influenced by multiple factors.
Therefore, obtaining the three-dimensional structure of the genome remains a
challenging task. Among many chromatin loop prediction methods, it is difficult
to fully extract features from the contact map and make accurate predictions at
low sequencing depths.

Results: In this study, we put forward a deep learning framework based on the
diffusionmodel called CD-Loop for predicting accurate chromatin loops. First, by
pre-training the input data, we obtain prior probabilities for predicting the
classification of the Hi-C contact map. Then, by combining the denoising
process based on the diffusion model and the prior probability obtained by
pre-training, candidate loops were predicted from the input Hi-C contact
map. Finally, CD-Loop uses a density-based clustering algorithm to cluster the
candidate chromatin loops and predict the final chromatin loops. We compared
CD-Loop with the currently popular methods, such as Peakachu, Chromosight,
and Mustache, and found that in different cell types, species, and sequencing
depths, CD-Loop outperforms other methods in loop annotation. We conclude
that CD-Loop can accurately predict chromatin loops and reveal cell-type
specificity. The code is available at https://github.com/wangyang199897/
CD-Loop.

KEYWORDS

chromatin loop, diffusion model, Hi-C contact map, three-dimensional structure,
deep learning

1 Introduction

The genome of eukaryotic organisms exists in the form of nuclear chromatin, and the
function of chromatin is closely related to its three-dimensional structure. For example,
biological functions such as genome replication, transcription, regulation, DNA mutation,
the spread of long non-coding RNA, and embryonic development all are completed in the
three-dimensional space of the cell nucleus (Bonev and Cavali, 2016). In recent years, with
the development of high-throughput chromosome conformation capture (Hi-C)
(Lieberman-Aiden et al., 2009) and chromatin interaction analysis by paired-end tag
sequencing (ChIA-PET) technologies (Fullwood et al., 2009), researchers have
discovered that chromosomes can be categorized into chromatin compartments (A/B
compartments), topologically associated domains (TADs), and chromatin loops.
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Chromatin loops, such as enhancer-promoter loops, explain the
regulatory mechanism of enhancers on target genes. Despite the
enhancer being far away from the target gene in linear distance, the
enhancers and target gene promoters are located on the same
chromatin loop in close spatial proximity, regulating the target
gene by binding to the promoter (Dekker et al., 2013; Dixon
et al., 2015; Gorkin et al., 2014; Rao et al., 2014; Dixon et al., 2012).

The chromatin loop is an advanced structural form of chromatin
in eukaryotic organisms. In previous studies, chromatin loops could
not be observed, but with the emergence of three-dimensional
structures, it is now possible to clearly observe various
organizations of genes. Experiments have shown that the
chromatin loops are linked to proteins such as CTCF and
cohesin. Two genes may be linearly distant from each other, but
their spatial arrangement is not linear, and their spatial distance may
be very close. Therefore, the two genes may interact with each other.
They may be close in spatial proximity, potentially allowing for
interactions between the two genes. We call the loop-like structure
formed by two genes that are close together and the chromatin
segment between them a chromatin loop. During the formation of
cancer, the structure of chromatin loops may also undergo changes,
leading to alterations in cancer-related genes (Wang et al., 2022). In
genome-wide association studies (GWAS), it has been discovered
that certain immune-related genetic variations are concentrated in
chromatin loops specific to blood cells rather than embryonic cells,
indicating that these chromatin loops can help us further
understand certain disease variations (Buenrostro et al., 2013;
Tang et al., 2015; Szabo et al., 2019; Grubert et al., 2020;
Kloetgen et al., 2020).

Although some important progress has been made in the study
of chromatin loops, the structure and function of chromatin loops
are highly dynamic and diverse and are influenced by various
factors. Currently, our comprehension of the structure and role
of chromatin loops in the three-dimensional space of the cell nucleus
remains limited, rendering it challenging to anticipate the
consequences of alterations in the chromatin loop structure on
gene mutations. Therefore, it remains a challenging problem to
acquire the correlation between the three-dimensional architecture
and functionality of the genome and use experimental techniques to
detect chromatin loops in cell types or species with unknown 3D
structures. At low coverage, due to the limited amount of data and
the presence of random noise and biases, the detection of loops will
be more challenging. Therefore, more accurate and efficient
computational models and methods are needed to address these
issues. This will help us better understand the organization,
function, and gene regulation mechanisms of chromatin loops.

The methods for predicting chromatin loops are diverse, mainly
encompassing the following aspects: (1) prediction of chromatin
loops based on statistical methods. For high-throughput
chromosome conformation capture (Hi-C), it focuses on the
entire cell nucleus, studies the spatial relationships of the entire
chromatin across the whole genome, and achieves the capture of
interactions between chromatin segments across the entire genome.
The corresponding tools are as follows: HiCCUPS (Rao et al., 2014;
Durand et al., 2016) integrates nearby background information into
its framework and employs a Poisson test in conjunction with an
adapted Benjamini–Hochberg procedure to assess the significance of
chromatin interactions. The HiCExplorer method (Wolff et al.,

2022) uses ongoing negative binomial distribution and the
Wilcoxon rank-sum test to ascertain the enrichment of Hi-C
interactions by considering the neighborhood of candidate
elements and distinguishing significant peaks from background
noise. For ChIA-PET technology, using PET sequencing
technology to study DNA fragments with nearby connections
after immunoprecipitation allows researchers to obtain chromatin
interactions; this fundamentally investigates the interactions
between DNA fragments. The difference between Hi-C and
ChIA-PET lies in the fact that data generated by Hi-C reflect
chromatin interactions, including all proteins, while the ChIA-
PET technology enrichment of specific protein factors results in
data that represent chromatin interactions of a particular protein.
Using ChIA-PET technology to develop tools includes the ChIA-
PET tool (Li et al., 2010), which employs the hypergeometric
distribution to filter noise. Mango software (Phanstiel et al.,
2015) establishes a null model by merging the genomic distances
and read depths for each anchor point. For the capture Hi-C
technique (Mifsud et al., 2015), an additional capture step is
introduced on top of the traditional Hi-C library preparation
process to capture target fragments for subsequent sequencing.
CHiCAGO (Cairns et al., 2016) employs an innovative
background correction technique and a two-component
convolution background model while addressing multiple testing
through a p-value weighting approach. The ChiCMaxima method
(Ben Zouari et al., 2019) applies loess smoothing to the captured Hi-
C reads and transforms the detection of chromatin loops into the
search for peaks from the loess-smoothed profiles. HiChIP
(Mumbach et al., 2016) is a protein-centric approach for
studying chromatin conformation, which synergistically combines
Hi-C technology and ChIA-PET technology to extract more detailed
three-dimensional chromatin structure information using a reduced
dataset. Related tools include HiChIP-Peaks (Shi et al., 2020), which
models the background signal as a negative binomial to simulate
excessive dispersion and identify enriched signal regions. It also
corrects HiChIP specific biases caused by the uneven distribution of
restriction enzyme sites. (2) Prediction of chromatin loops based on
traditional methods. Lollipop (Kai et al., 2018) is a machine learning
framework based on the random forest classifier, which uses
genomic and epigenomic features to predict CTCF-mediated
interactions. CTCF-MP (Zhang et al., 2018), based on word2vec
and boosted trees, accurately predicts loops formed by convergent
CTCF motifs using sequence features, CTCF ChIP-seq and DNase-
seq. C-Loops (Cao et al., 2020) relies on the clustering algorithm
cDBSCAN, which directly examines paired-end tags (PET) to detect
potential loops and employs permuted local backgrounds to
estimate their significance. However, one of the recent trends in
research is to apply computer vision and machine learning
techniques to the annotation of topological structures. For
example, the SIP method (Rowley et al., 2020) applies Gaussian
smoothing, contrast adjustment, morphological white top-hat
transformation, and a maximum–minimum filter to an image.
After these steps, the corrected image of the interaction is
provided, which is used in conjunction with the regional maxima
detection algorithm to detect loops. Peakachu (Salameh et al., 2020)
uses a classification framework to forecast chromatin loops based on
the Hi-C contact map, capable of identifying a unique set of short-
range interactions. Chromosight (Matthey-Doret et al., 2020) is a
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computer vision-based algorithm that takes whole-genome contact
matrices as the input and uses a balancing normalization procedure
to mitigate experimental biases. The Mustache method (Roayaei
Ardakany et al., 2020) represents the interaction matrix using scale-
space theory, and we consider the identification of chromatin loops
as a problem of detecting spot-like objects. Both of these pattern-
based general methods work well with a sufficient number of contact
pairs but perform poorly at low sequencing depths. Due to the swift
advancement and widespread utilization of deep learning
technology, significant progress has been made in bioinformatics.
It is not surprising that some work has been achieved in the field of
genomics. For example, DeepLUCIA (Yang et al., 2022), a deep
learning-based chromatin interaction model, utilizes epigenomic
information to forecast chromatin loops in various tissues. The
predicted chromatin loops can help enhance our understanding of
the genomic structure of human tissues. DeepMILO (Trieu et al.,
2020) uses a deep learning framework to anticipate the impacts of
mutations on CTCF-mediated insulator loops. DeepLoop (Zhang
et al., 2022) discovers noteworthy interactions from Hi-C contact
maps using neural networks to denoise and enhance loop signals.
RefHiC (Zhang and Blanchette, 2022) is a deep learning method that
uses high-quality Hi-C datasets with different cell types to study the
topological structure annotation of samples. GILoop (Wang et al.,
2022) is a twin-branch neural network that utilizes the image view
and graph view to identify interactions in the entire genome. Be-
1DCNN (Wu et al., 2023) utilizes a bagging ensemble learning
strategy and one-dimensional convolutional neural network
(1DCNN) to improve the accuracy and reliability of predictions
by integrating multiple 1DCNN models.

Although some progress has beenmade with the abovemethods,
it remains a significant challenge to fully extract features from Hi-C
contact maps and identify chromatin loops in different sequencing
depths and cell lines. Recently, the denoising diffusion probabilistic
model (DDPM) (Ho et al., 2020) has had good performance in
image generation and synthesis tasks by progressively enhancing the
quality of the provided image. Furthermore, the diffusion model is
able to simulate the propagation and influence of features in an
image, which helps better capture local and global features, thus
improving classification accuracy (Han et al., 2022). Here, we
propose a method, named CD-Loop, based on the diffusion
model, which combines CTCF ChIA-PET and H3K27ac HiChIP
(Mumbach, 2017) data derived from biologically diverse
experiments to label samples. This approach aims to cover a
wider range of chromatin loops. Using a conditional generative
model based on noise addition and noise reduction, along with a
pre-trained conditional mean estimator, we convert the task of
identifying chromatin loops into a binary classification task. The
results indicate that training the data only on the original sequencing
depth is effective for different cell types, sequencing depths, and
species with high precision and recall. In comparison to existing
methods, our approach successfully identifies a set of distinct
chromatin loops.

2 Materials and methods

CD-Loop takes a Hi-C contact map as the input and predicts
highly reliable chromatin loops. The model can be roughly divided

into two parts, as shown in Figure 1. (1) First, CD-Loop pre-trains
the input data using the LeNet5 model to obtain the prior probability
of predicted classification for the input Hi-C contact map. (2) Then,
by combining the denoising process based on the diffusion model
and the prior probability obtained by pre-training to predict the
candidate chromatin loop, the output includes the probability score,
CI confidence, and two-tailed t-test evaluation metrics for each
candidate chromatin loop. (3) Finally, the low-scoring candidate
chromatin loop is filtered out, and then clustering is performed
based on the density algorithm to select representative
chromatin loops.

2.1 Pretraining phase

The CD-Loop network first applies a pre-trained conditional
mean estimator, utilizing the LeNet5 network, with an input of
dimension of 2w × 2w, where w is the window size (w = 14). This
module consists of two convolutional blocks, three fully connected
layers, and two ReLU layers. Each block includes a convolution
operation, batch normalization, a ReLU activation function, and an
average pooling operation. The input and output of this process are
class labels, which we refer to as prior probabilities.

2.2 Diffusion model

The second part of the model applies the forward and backward
processes of the diffusion model, assuming that the endpoint of our
forward process is

p yT

∣∣∣∣x( ) � N f∅ x( ), I( ),
where f∅(x) is the prior probability with respect to x and y0. The
conditional distribution of the forward process can be defined as
follows for all timesteps including t � 1:

q yt

∣∣∣∣yt−1, f∅ x( )( ) � N yt;
�����
1 − βt

√
yt−1 + 1 −

�����
1 − βt

√( )f∅ x( ), βtI( ),
which enables a closed sampling distribution with arbitrary
timesteps t:

q yt

∣∣∣∣y0, f∅ x( )( ) � N yt;
��
�αt

√
y0 + 1 − ��

�αt
√( )f∅ x( ), 1 − �αt( )I( ),

where αt: � 1 − βt and �αt: � Πtαt. The backward process can be
defined as follows:

p yt−1
∣∣∣∣yt, y0, x( ) � p yt−1

∣∣∣∣yt, y0, f∅ x( )( )
� N yt−1; ~μ yt, y0, f∅ x( )( ), ~βtI( ),

where

~μ: � βt
����
�αt−1

√
1 − �αt︸���︷︷���︸

γ0

y0 + 1 − �αt−1( ) ��
αt

√
1 − �αt︸�����︷︷�����︸

γ1

yt

+ 1 +
��
�αt

√ − 1( ) ��
αt

√ + ����
�αt−1

√( )
1 − �αt

( )︸��������������︷︷��������������︸
γ2

f∅ x( ),

~βt: � 1 − �αt−1
1 − �αt

βt.
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FIGURE 1
CD-Loop architecture. Overview of the CD-Loop neural network for loop.
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After organizing the process, the optimization objective is the
maximization of the likelihood function:

log pθ y0

∣∣∣∣x( ) � log ∫pθ y0: T

∣∣∣∣x( )dy1;T ≥Eq y1: T|y0 ,x( )

log
pθ y0: T

∣∣∣∣x( )
q y1: T

∣∣∣∣y0, x( )⎡⎢⎣ ⎤⎥⎦.
We chose the diffusion model as the second part of our

model because through the iterative process of the diffusion
model, the noise in the Hi-C interaction matrix can be corrected,
and the quality is improved. In addition, the diffusion model can
simulate the spread and influence of features in the image,
helping better capture the local and global features in the Hi-
C interaction matrix, thereby improving the accuracy of the
classification.

This part of the model framework applies an encoder to a
flattened input image to obtain a 2048-dimensional
representation. The encoder consists of three fully connected
layers, with an output size of 2048. Meanwhile, we concatenate yt
and the output f∅(x) from the first part, applying a fully-connected
layer to generate an output vector of 2048 dimensions. To
incorporate the timestep information, we apply a Hadamard
product between the vector and timestep embedding, generating
a response embedding specific to the timestep. Next, we integrate
this response embedding with the image embedding through
another Hadamard product. The resulting vector is then passed
through two additional fully-connected layers. Each layer has
2048 dimensions. Before each layer, a Hadamard product is
performed with timestep embedding. At last, a fully-connected
layer is employed to predict. It is worth noting that, in addition
to the output layer, there is also a batch normalization layer and
Softplus non-linearity after each fully connected layer. The
architecture is shown in Table 1.

The model framework outputs a noise prediction and then
utilizes a denoising process, combined with pre-trained prior
probabilities, to obtain the posterior mean and posterior variance.
Based on the obtained posterior mean and posterior variance, the
predicted label at time T-1 is calculated from time T, and this process
is repeated until time 1.

2.3 Detect loops by density-based clustering

For the window centered around each bin pair (i, j) after model
prediction, CD-Loop generates a probability score s (i, j) for each bin
pair. A higher score value indicates a higher likelihood of the bin pair
being a loop. Therefore, we retain bin pairs that are predicted as
loops and have a score greater than 0.5, and these bin pairs (i, j) are
referred to as candidate loops. If there are fewer than 15 candidate
loops within a 5-bin by 5-bin square centered around (i, j), it is
referred to as an isolated prediction. These isolated predictions are
likely to be false positives and are therefore excluded. Then, we use a
density-based clustering algorithm to cluster the remaining
candidate loops. First, we use the nearest neighbors
(Abeywickrama et al., 2016) method to compute the local density
of each candidate (i , j). To achieve a fast nearest neighbor search, we
use the K-D tree data structure, and the distance metric used is
Chebyshev distance. We then calculated and recorded the indices
and distances of the nearest neighbors for each candidate (i, j). By
iterating over the nearest neighbors of each candidate (i, j), find the
nearest neighbor with a higher density than itself. If the nearest
neighbor with a higher density than the current point is found, we
record its index and distance as the delta value. If no such point is
found, meaning that the candidate (i, j) has the highest local density
within the current range, we set the delta value to a distance greater
than that of the neighboring nodes. We repeat this process,
increasing the query radius until the nearest neighbors of all
candidate (i, j) pairs are found. Finally, we discard candidate
loops with delta values less than 5, as they may represent
redundant predictions. The remaining candidate loops after
filtering constitute our final predicted loops. The same
parameters are used in different datasets and different coverages,
and these parameters perform well in the final prediction.

2.4 Composition of training samples

Selection of positive samples: CD-Loop selects the combination
of CTCF ChIA-PET data and H3K27ac HiChIP data and then
removes all interaction pairs outside the range of 30 kb to 3 Mb as
positive sample data. Because in loop annotation, CTCF ChIA-PET
data contain long-range interactions, while H3K27ac HiChIP data
contain shorter-range interactions, combining the two can cover a
wider range of loop types.

Selection of negative samples: Due to a large unbalance in the
number of positive and negative samples, we selected different types
of negative samples three times based on the genomic distance
characteristics of the positive samples, ensuring that the genomic
distance of each negative sample falls within the range of 30 kb to
3 Mb. This can reduce the number of negative samples and consider
all the characteristics of negative samples as much as possible. (1)
For each positive interaction pair, two negative interaction pairs
with the same genomic distance are randomly selected from the
entire genome. (2) For all possible genomic distances of positive
samples, randomly select a genomic distance each time, and then a
negative interaction pair with the same genomic distance is
randomly selected from the entire genome until the number of
generated negative samples equals that of positive samples. (3) For
the largest genomic distance among positive samples, a value greater

TABLE 1 Diffusion model network architecture.

input: x, yt , fφ(x), t

l1,x � σ(BN(g1,x(x)))

l2,x � σ(BN(g2,x(x)))

l3,x � BN(g1,x(x))

l1,y � σ(BN(g1,y(yt ⊕ f∅(x)) ⊙ g1,b(t)))

l1 � l3,x ⊙ l1,y

l2 � σ(BN(g2,a(l1) ⊙ g2,b(t)))

l3 � σ(BN(g3,a(l2) ⊙ g3,b(t)))

output: g4(l3)
⊕: concatenation; ⊙: Hadamard product; σ: Softplus non-linearity; g: a fully-connected layer;
and l: a hidden layer output.
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than that distance is randomly chosen as the genomic distance for
negative samples, and a negative interaction pair is randomly
selected from the entire genome until the number of generated
negative samples equals that of positive samples.

We selected positive and negative samples within the gene
distance range of 30 kb to 3 Mb for the following two reasons:
first, interactions that are far apart in the genome are more likely to
have sequencing errors, resulting in chromatin loops that are
detected in distant genomes having high error rates. Interactions
that are relatively close together are generally caused by physical
interactions rather than true chromatin loops. Second, in other
chromatin loop prediction methods, most of the predicted
chromatin loops are in the range of 30 kb to 3 Mb. So,
considering these two factors, we chose the range of 30 kb to
3 Mb to filter other samples.

Data preprocessing: The input Hi-C contact map is divided into
bins at a resolution of 5 kb. Due to the existing sampling bias and
technical noise, Knight–Ruiz (KR) normalization (Knight and Ruiz,
2013) is used for correction. If a positive sample is represented by two or
more pixels in the contact map, each pixel represents a positive
interaction pair. After obtaining the positive and negative interaction
pairs, in the Hi-C contact map, with each interaction pair as the center,
13 bins are selected upward and to the right, and 14 bins are selected to
the right and downward, forming a 28*28matrix. Thematrices from the
negative sample matrix that consist entirely of zero elements are
removed. The reasons why we delete matrices with all 0 elements in
the negative samplematrix are as follows: first, consider that in theHi-C
interaction matrix, all elements are 0, which means that there is no
interaction between one region of the chromosome and another region.
Such a matrix does not contain any meaningful information. Second,
the model cannot extract effective features from these matrices with all
0 elements. There are too many such matrices in the training set, which
will only increase the training time.

2.5 Model training and prediction

During the model training and testing process, Hi-C contact
maps from the GM12878 dataset are adopted. For validation, we
used chr11 and chr12, while chr15, chr16, and chr17 were used for
testing and prediction. The remaining chromosomes were used for
training. During the model training process, data augmentation was
performed by flipping the 28*28 matrices generated from the
positive samples horizontally and vertically. In the model
prediction process, since it involves taking every bin pair of an
entire chromosome as the input, the amount of data is very large.
Therefore, we performed the following three preprocessing steps on
the chromosome to be predicted. (1) The genomic distance
threshold between bin pairs: since the distribution of chromatin
loops in the genome ranges from approximately 30 kb to 3 Mb, we
remove the predicted bin pairs with a genomic distance greater than
3 Mb or less than 30 kb. (2) Interaction frequency threshold of bin
pairs: by observing the interaction frequency of each bin pair in the
positive samples, we found that 99% of the positive samples have an
interaction frequency greater than 1. Therefore, we remove the bins
with an interaction frequency less than 1. (3) Threshold of the
number of zero elements in matrices: after counting the number of
zero elements in the 28*28 matrices of positive samples, it was found
that 90% of the positive sample matrices have less than 200 zero
elements. When making predictions for downsampling data, the
same processing is applied.

3 Results

CD-Loop is trained on the original sequencing depth of
GM12878, which is not specific to this sequencing depth or cell
type. Next, we will demonstrate the superiority of this model by

TABLE 2 Different sources of datasets.

Deposited data Source Identifier Link

GM12878 Hi-C GEO GSE63525 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63525

K562 Hi-C GEO GSE63525 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63525

IMR90 Hi-C GEO GSE63525 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63525

mESC Hi-C 4D Nucleome 4DNFIU8AF5ZY https://data.4dnucleome.org/experiment-set-replicates/4DNESUCLJAZ8

GM12878 CTCF ChIP-Seq ENCODE ENCFF963PJY https://www.encodeproject.org/files/ENCFF963PJY

K562 CTCF ChIP-Seq ENCODE ENCFF085HTY https://www.encodeproject.org/files/ENCFF085HTY

IMR-90 CTCF ChIP-Seq ENCODE ENCFF453XKM https://www.encodeproject.org/files/ENCFF453XKM

mESC CTCF ChIP-Seq ENCODE ENCFF508CKL https://www.encodeproject.org/files/ENCFF508CKL

K562 CTCF ChIA-PET ENCODE ENCFF001THV https://www.encodeproject.org/files/ENCFF001THV

K562 RAD21 ChIA-PET ENCODE ENCFF002ENT https://www.encodeproject.org/files/ENCFF002ENT

mESC CTCF ChIA-PET ENCODE ENCFF550QMW https://www.encodeproject.org/files/ENCFF550QMW

GM12878 CTCF ChIA-PET Reference (Tang et al., 2015) Tang, Z. et al. (2015) https://doi.org/10.1016/j.cell.2015.11.024

GM12878 RAD21 ChIA-PET Reference (Heidari et al., 2014) Heidari et al. (2014) https://doi.org/10.1101/gr.176586.114

GM12878 H3k27ac HiChIP Reference (Mumbach et al., 2017) Mumbach et al. (2017) https://doi.org/10.1038/ng.3963

GM12878 SMC1 HiCHIP Reference (Mumbach et al., 2016) Mumbach et al. (2016) https://doi.org/10.1038/nmeth.3999
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FIGURE 2
Comparison based on theGM12878 dataset: (A) Venn diagram, (B) aggregated peak analysis, and (C) cumulative distance distribution. The chromatin
loop genome distance distribution predicted by CD-Loop is highly similar to that predicted by Chromosight. (D–G) Supporting loops validated by CTCF
ChIA-PET (D), RAD21 ChIA-PET (E), SMC1 HiChIP (F), and H3k27ac HiChIP (G) enrichment experiments for loops predicted by CD-Loop and other tools.
The loop predictions by CD-Loop align better with these experimental data compared to other tools on the testing chromosomes. (H) Function
depicting the distance from predicted loop anchors to CTCF-binding sites identified by ChIP-seq signals. (I) Visualization example of loop identification.
The upper half of the three diamond plots display green dots, which represent CD-Loop. On the other hand, the lower half of the plots consists of blue
dots, which represent Chromosight, Mustache, and Peakachu, respectively.
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demonstrating the ability of the same model weights to annotate
loops in the same cell type at different sequencing depths.
Meanwhile, we will highlight that the model can accurately
annotate loops in numerous other cell types without requiring
retraining. Furthermore, the same trained model can also be used
to annotate loops in mouse Hi-C contact maps. This demonstrates
that the CD-Loop model has good generalization and adaptability
and is applicable to annotation tasks of different sequencing depths
and cell types. In our experiment, chromosomes 11 and 12 are used
for validation, chromosomes 15–17 are used for testing, and the
remaining chromosomes are used for training. The reported human
gene results only apply to the three test chromosomes, while the
results for mice apply to all chromosomes.

This method is trained and predicted on RTX4090 GPU and
requires at least 15 GB of space to load samples during prediction.

The runtime of chromatin loop identification depends on the
sequencing depth of Hi-C data. For example, prediction can be
completed within 325 min on Hi-C data containing 500 M valid
read pairs. The data used in the experiments of this paper are shown
in Table 2.

3.1 GM12878 experimental results

We first evaluated the prediction accuracy of chromatin loops by
CD-Loop on the original sequencing depth Hi-C dataset (2600 M
valid read pairs) from the human GM12878 cell line.
Simultaneously, we compared it with several popular methods,
including Chromosight, Peakachu, and Mustache. To ensure a
fair comparison, we evaluated the chromatin loops at a 5 kb

FIGURE 3
Comparison based on Hi-C data from human K562, IMR90, and mouse ESC. (A) The number of loops present. (B–C) Overlap between the
chromatin loops predicted by CD-Loop and other tools on the K562 Hi-C contact map with CTCF ChIA-PET (B) and RAD21 ChIA-PET (C) enrichment
experiments on testing chromosomes chr15-17. (D) Function depicting the distance from predicted loop anchors to CTCF-binding sites in K562 cells
identified by ChIP-seq signals. (E) Function depicting the distance from predicted loop anchors to CTCF-binding sites in IMR90 cells identified by
ChIP-seq signals. (F) Venn diagram showing the chromatin loops identified by CD-Loop across three cell lines: GM12878, IMR90, and K562. (G)Overlap
between the chromatin loops predicted by CD-Loop and other tools on the mESC with CTCF ChIA-PET. (H) Function depicting the distance from
predicted loop anchors to CTCF-binding sites in mESC cells identified by ChIP-seq signals.
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resolution and annotated them from the same dataset using default
parameters. Additionally, we applied a consistent 5% FDR cutoff for
all tools.

3.1.1 Quantitative analysis
Loops predicted by different tools vary significantly. First,

among the four methods, we controlled the genomic distance of
all predicted chromatin loops between 30 kb and 3 Mb. To compare
the performance with all methods, we ensured that the anchoring
points of two chromatin loops fully matched and overlapped. As
shown in Figure 2A, we found that CD-Loop identified almost as
many chromatin loops as Chromosight and Peakachu. For the
results, 89% of CD-Loop, 87% of Chromosight, 85% of Peakachu,
and 54% of Mustache were unique.

3.1.2 Aggregation peak analysis
The aggregation peak analysis of the four methods in the

GM12878 cell line is shown in Figure 2B. The APA score quantifies
the loop pattern of detected peaks by comparing the number of reads in
the center point bin to the average number of reads in the lower left
corner of the matrix. We only consider the top 2,000 loops with high
scores. Compared with Peakachu, the loops detected by Chromosight,
CD-Loop, and Mustache have more dispersed loop centers, and the
three methods have a similar APA score. Since we split the chromatin
loop spanningmultiple pixel points intomultiple chromatin loops, each
pixel is regarded as a single chromatin loop, and themost representative
pixel among them is not selected as a positive sample. So, the boundary
range of chromatin loops is expanded, and the detected chromatin
loops have dispersed loop centers. Next, we compared the genomic
distances of loop anchors predicted by the four methods. As shown in
Figure 2C, the distance distributions between chromatin loop anchors
predicted by CD-Loop and Chromosight are similar and have larger
genetic distances, while Peakachu and Mustache predict more short-
range interactions.

3.1.3 Enrichment experimental analysis
Then, we compared the chromatin loops predicted by

different methods on different datasets. Different enrichment
experimental data include CTCF ChIA-PET, RAD21 ChIA-PET,
SMC1 HiChIP, and H3k27ac HiChIP. We make predictions for
the three chromosomes chr15, chr16, and chr17 of the test set and
compare them with three other methods to evaluate these loops
(allowing an error of 5 kb). As shown in Figures 2D–G, among
the four methods, Mustache predicts the smallest number of
loops and the least number of overlaps with enrichment
experiments. The remaining three methods predict almost the
same number of loops, but CD-Loop has the largest number of
correct predictions across different enrichment experiments and
has the highest recall rates. CD-Loop predicted a total of
7,980 loops, with 3,821 correctly predicted loops in the CTCF
dataset, yielding an accuracy of 48%. Peakachu predicted
6,978 loops, with 2,351 correctly predicted loops in the CTCF
dataset, resulting in an accuracy of 33%. Chromosight predicted
8,993 loops, with 1,676 correctly predicted loops in the CTCF
dataset, giving an accuracy of 20%. Mustache predicted
2,158 loops, with 1,293 correctly predicted loops in the CTCF
dataset, achieving the highest accuracy of 59%. CD-Loop had the
highest number of successfully predicted loops, ranking second

in accuracy, while Mustache, with the highest accuracy, had the
fewest successfully predicted loops, only one-third of CD-Loop’s
count. The specific data for RAD21, SMC1, and H3K27ac can be
found in Figures 2E–G, where CD-Loop demonstrates good
performance in both accuracy and recall.

3.1.4 CTCF-binding site analysis
We next performed this by visualizing the CTCF ChIP-Seq and

H3k27ac HiChIP-binding signals on the flanking regions around the
loop anchors. As shown in Figure 2H, the predicted loop anchors
detected by CD-Loop showed a clear enrichment effect in CTCF,
and the H3k27ac-binding motif proves that CD-Loop can not only
identify loops related to CTCF but also loops related to H3k27ac.

3.1.5 Hi-C heat map analysis
The genome-wide analysis described above demonstrates the

good ability of CD-Loop to identify loops in Hi-C contact maps.
We used the Juicebox tool (Durand et al., 2016) to visualize
chromatin loops for the purpose of visual representation,
demonstrating that CD-Loop can detect more chromatin loops
and unique chromatin loops undetectable by other methods. As
shown in Figure 2I, the upper part is the visual representation of
chromatin loops detected by CD-Loop in the Hi-C interaction
matrix, and the lower part is the detection of the remaining three
methods (Peakachu, Chromosight, and Mustache) for the visual
representation of chromatin loops in the Hi-C interaction matrix.
The green dots represent the position of the chromatin loop
detected by CD-Loop in the Hi-C interaction matrix, and the blue
dots represent the position of the chromatin loop detected by
Peakachu, Chromosight, and Mustache in the Hi-C interaction
matrix. We can find that the results of CD-Loop mostly overlap
with the results of other methods, but some are unique.

Taken together, these results show that CD-Loop has better
overall prediction accuracy for GM12878 data (2600 M read pairs)
than other methods.

3.2 Experimental results on other cells
and species

Our method was trained on the original test depth data of the
human GM12878 cell line, but our findings reveal that the trained
model demonstrates better performance across various cell types. To
further verify the performance of CD-Loop, we compared CD-Loop
and other methods using K562 and IMR90 cell lines from humans
(only chromosomes 15–17 test) and mouse embryonic stem cells
(mESCs) (all chromosomes).

3.2.1 Number analysis
As shown in Figure 3A, in different cell lines of both humans and

mice, CD-Loop and Peakachu predicted the most loops, indicating
that the CD-Loop method is more reliable for predicting chromatin
loops, regardless of sequencing coverage. When applied to the
complete set of autosomes with 124 M read pairs from mESC
data, the CD-Loop model trained with the GM12878 original
sequencing depth was used to predict mouse cell lines. CD-Loop
identified a higher number of loops compared to other tools in low-
coverage data.

Frontiers in Genetics frontiersin.org09

Shen et al. 10.3389/fgene.2024.1393406

54

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1393406


3.2.2 K562 and IMR90 cell line enrichment
experiments and CTCF-binding site analysis

Different enrichment experiments were used to reveal loops and
evaluate the accuracy of these tools. Like GM12878 before, we
controlled the FDR of other methods to 5%. For K562 data, as
shown in Figure 3B, CD-Loop predicted a total of 3,704 loops in
the K562 cell line, with 1,169 correctly predicted loops in the CTCF
dataset, yielding an accuracy of 32%. Peakachu predicted 3,785 loops,
with 830 correctly predicted loops in the CTCF dataset, resulting in an
accuracy of 22%. Chromosight predicted 3,089 loops, with 665 correctly
predicted loops in the CTCF dataset, achieving an accuracy of 22%.
Mustache predicted 939 loops, with 543 correctly predicted loops in the
CTCF dataset, attaining the highest accuracy of 58%. CD-Loop had the
highest number of successfully predicted loops and ranked second in
accuracy, while Mustache, with the highest accuracy, had the fewest
successfully predicted loops, only half of CD-Loop’s count. Specific data
for RAD21 can be found in Figure 3C. CD-Loop has advantages over
other tools, being able to identify more loops supported by CTCF and
RAD21, demonstrating good performance in both precision and recall.

Stacking analysis of surrounding CTCF-binding sites at predicted
chromatin loop anchor locations is shown in Figure 3D, indicating that
the chromatin loops predicted by these four methods are rich in CTCF-
binding motifs and have little difference, indicating that the same
training model can not only identify CTCF motifs in GM12878 cell
lines but also be applicable in K562 cell lines. Similar results were
obtained on IMR90 data (Figure 3E). Whether it is the K562 cell line or
IMR90 cell line, the number of CTCF-binding sites at the left and right
anchor points of the chromatin loop detected by CD-Loop is less than
that of the other three methods. However, the number of CTCF-
binding sites present was higher than other methods, within a 50-Kb
range of the left and right anchor points of the chromatin loop. The
reason may be that we represent a chromatin loop connected by
multiple pixels as a single pixel as a single chromatin loop. Due to
the expansion of the range of the anchor point of the chromatin loop,
the CTCF-binding sites present on the anchor point are also within a
certain range float.

3.2.3 Specificity analysis
In addition, to further illustrate the differences between cell

lines, we conducted a comparison of chromatin loop overlap among
three cell lines; to enhance fault tolerance, we allowed partial
matches (±5 kb) between any anchors in two bins. As shown in
Figure 3F, even when the overlap range was increased, the extent of
the chromatin loop overlap was relatively low among the three cell
lines, suggesting that the chromatin loops are specific to
each cell type.

3.2.4 mESC cell line enrichment experiments and
CTCF-binding site analysis

Enrichment experiments and CTCF ChIP-Seq signal analysis for
mESC data are shown in Figure 3G, H. In the CTCF ChIA-PET
enrichment experiment, CD-Loop predicted the most loops among
the four methods, and the number of overlaps increased linearly
with the increasing number of predicted loops. The number of
perfectly matched CTCF-binding sites is slightly lower compared
with the other three methods, but the number of CTCF-binding sites
around the anchor fluctuation range was higher than the other
three methods.

In conclusion, the research results show that CD-Loop has
achieved superior performance in human K562 and IMR90 cell
lines and mouse cell types.

3.3 Experimental results at different
sequencing depths

3.3.1 Quantity, F1-score, and enrichment
experimental analysis

To evaluate the ability of CD-Loop at different sequencing depths,
we conducted downsampling experiments using the FAN-C method
(Kruse et al., 2020)on the original sequencing depth of 2,600 M valid
read pairs. We performed downsampling at various percentages,
including 90%, 70%, 50%, 20%, and 10%. The corresponding
effective read pairs for each downsampling were 2,300M, 1,800M,
1,200M, 500M, and 250M.Using default parameters for different loop
prediction tools, we observed a decrease in predicted chromatin loops as
the sequencing depth decreased, as shown in Figure 4A. CD-Loop and
Peakachu predicted the highest number of chromatin loops. However,
in enrichment experiments (Figures 4C–F), CD-Loop consistently
achieved the highest F1-score among the four methods. The F1-
score decreased with decreasing sequencing depth but remained at
its highest level. The enrichment experiments for different methods at
different sequencing depths are shown in Supplementary Figure S1 in
Supplementary Material.

3.3.2 Robustness analysis
We assessed the overlap between the loops predicted by CD-Loop

at different sequencing depths and the loops present in the original
sequencing depth matrix. As depicted in Figure 4B, the overlap rates
were 76%, 68%, 66%, 54%, and 51% for downsampling matrices with
2,300M, 1,800 M, 1,200M, 500M, and 250M valid read pairs,
respectively. This high overlap rate indicates that CD-Loop not only
predicts a significant number of chromatin loops but also detects more
loops at low sequencing depth. Moreover, it will not cause more false
positives, highlighting the robustness of CD-Loop.

3.3.3 Sensitivity analysis
CD-Loop efficiently identifies a significant quantity of loop

structures within sparse data without increasing the number of
false positives. As shown in Figures 4G–J, when evaluating loops
mediated by CTCF, RAD21, SMC1, and H3K27ac in low-depth
datasets, CD-Loop maintains a high level of accuracy. This
implies that the predictions made for low-sequencing depth
data are almost as accurate as predictions on complete data,
with lower sensitivity.

Overall, CD-Loop outperforms other tools in terms of accuracy
at all sequencing depths. These results highlight the superior
robustness, accuracy, and reliability of CD-Loop.

3.4 Hyperparameters and resolution analysis

In order to prove the generalization ability of CD-Loop, we
conducted different experiments on the three hyperparameters of
the optimizer, batch size and epoch, and used chromosome 15 as the
test set to verify the optimal hyperparameters of the model. The
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experimental results are shown in Supplementary Tables S1–S3 in
Supplementary Material.

In addition, we used chr15 as the test set and conducted experiments
at three resolutions: 5 KB, 10 KB, and 25 KB. The experimental results
are shown in Supplementary Table S4 in Supplementary Material.

4 Discussion

Here, we propose CD-Loop, a deep learning-based method that
uses diffusion models to predict the chromatin loops from a given
Hi-C contact map. Our extensive evaluations indicate that CD-Loop

FIGURE 4
Evaluation at different sequencing depths. (A) The number of chromatin loops predicted by different methods decreases as the number of effective
chromosome read pairs decreases. (B) Venn diagrams at different sequencing depths. (C–F) F1-scores of different enrichment experiments, including
CTCF ChIA-PET (C), H3k27ac HiChIP (D), RAD21 ChIA-PET (E), and SMC1 HiChIP (F), in GM12878 cells at different sequencing depths. (G–J) Number of
supports on different enrichment data [RAD21 ChIA-PET (G), CTCF ChIA-PET (H), SMC1 HiChIP (I), and H3k27ac HiChIP (J)] for predicted chromatin
loops at different sequencing depths.
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outperforms existing tools in loop annotation for datasets with
various sequencing coverages.

The main contributions of CD-Loop are as follows:
1) the development of a deep learning framework that first
conducts pre-training to obtain prior probabilities and then
utilizes the denoising process of the diffusion model and a
pre-trained estimative model for forecasting chromosomal
loops in Hi-C contact matrices, resulting in
improved accuracy for genome-wide chromatin loop
recognition; 2) the use of data augmentation by flipping the
interested parts of the Hi-C matrices in all four directions, which
increases the diversity of training data and improves the
generalization ability of the model, allowing for the training
of a unified framework designed for processing Hi-C datasets
from different sequencing depths, cell types, and species. A
series of experimental results demonstrate that CD-Loop can
effectively improve chromatin loop recognition accuracy
compared to other methods and identify a range of unique
chromatin loops. The overlap rate between different
sequencing depths within the same cell line is relatively high,
while the overlap rate between different cell lines is relatively
low. Finally, equally important is that CD-Loop exhibits good
robustness and stability on different biological cells and
sequencing depths.

Although CD-Loop has superior performance compared to other
methods, there are still areas that need optimization and improvement:
1) when predicting the entire Hi-Cmatrix, the prediction time is long. It
can be improved by processing the data to reduce the waiting time. 2)
CD-Loop can also be extended to analyze data at a higher resolution,
but this would require optimizing the data processing procedure to
reduce memory usage and IO time.

CD-Loop is a method that implements three-dimensional
genome data analysis based on diffusion model classification. It
enables accurate prediction of Hi-C contact maps at medium
sequencing depth and improves the accuracy of its analysis even
at low sequencing depth. With the continuous increase in high-
quality Hi-C datasets, we expect that the capabilities of CD-Loop will
be further improved and developed.
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LcDel: deletion variation
detection based on clustering and
long reads

Yanan Yu, Runtian Gao and Junwei Luo*

School of Software, Henan Polytechnic University, Jiaozuo, China

Motivation: Genomic structural variation refers to chromosomal level variations
such as genome rearrangement or insertion/deletion, which typically involve larger
DNA fragments compared to single nucleotide variations. Deletion is a common
type of structural variants in the genome,whichmay lead tomangy diseases, so the
detection of deletions can help to gain insights into the pathogenesis of diseases
and provide accurate information for disease diagnosis, treatment, and prevention.
Many tools exist for deletion variant detection, but they are still inadequate in some
aspects, and most of them ignore the presence of chimeric variants in clustering,
resulting in less precise clustering results.

Results: In this paper, we present LcDel, which can detect deletion variation based
on clustering and long reads. LcDel first finds the candidate deletion sites and then
performs the first clustering step using two clustering methods (sliding window-
based and coverage-based, respectively) based on the length of the deletion. After
that, LcDel immediately uses the second clustering by hierarchical clustering to
determine the location and length of the deletion. LcDel is benchmarked against
someother structural variation detection tools onmultiple datasets, and the results
show that LcDel has better detection performance for deletion. The source code is
available in https://github.com/cyq1314woaini/LcDel.

KEYWORDS

deletion, structural variation, long read, clustering, hierarchical-clustering

1 Introduction

Genome sequences are very different between species, even within the same species.
Genome variation refers to heritable changes in the composition or arrangement of base pairs
at the molecular level of a gene, including single nucleotide variants, indels, structural variants
(He et al., 2009), and copy number variants. A single nucleotide variation refers to the
variation of one nucleotide base to another under the influence of certain factors; indels refers
to the addition or subtraction of a small fragment to the genome that occurs within 50 bp of
the length of the small fragment; Copy Number Variation refers to a rearrangement of the
genome that has occurred and generally refers to an increase or decrease in the copy number
of a genomic segment that is 1 kb or more in length; Structural Variations refer to mutations
that occur on chromosomes in segments larger than 50 bp, including forms such as insertions,
deletions, duplications, and inversions (Figure 1 below). Deletions account for a certain
proportion of structural variants and have a large impact on the human body. Deletions in
some genomes may lead to disease (Beyter et al., 2021), for example, deletions of genes related
to the nervous systemmay lead toHuntington’s chorea, and deletions of key genesmay lead to
cystic fibrosis and autism (Aganezov et al., 2020). Therefore, the detection of deletion variants
can provide more precise information for the diagnosis, treatment and prevention of diseases.
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Genome sequencing technology has a significant impact on the
detection of structural variants, and sequencing technology has gone
through the first generation of sequencing technology, the second
generation of sequencing technology, and the third generation of
sequencing technology. The first-generation sequencing technology
is known as Sanger sequencing technology (Sanger et al., 1977) and
is widely used for genome sequencing. The read length of the first-
generation sequencing technology can reach 1,000 bp with an
accuracy of 99.99%, but the shortcomings of high sequencing
cost and low throughput restrict its further application. Second-
generation sequencing technology is also known as high-throughput
sequencing (Maxam and Gilbert, 1992), which has the advantages of
low cost, low sequencing error rate and high throughput, but the
sequencing reads are shorter in length, which is more suitable for the
detection of shorter structural variations, and the detection of
structural variations in repetitive regions and regions with a high
GC content has some difficulties. Third-generation sequencing
technology, also known as single-molecule real-time technology
(Korlach et al., 2010), is capable of directly sequencing longer
DNA fragments and providing more comprehensive genomic
information, but the sequencing error rate is high and therefore
structural variants are not detected in sufficiently accurate locations.
Cycle-consistent sequencing technology (Wenger et al., 2019) can
sequence highly accurate long reads that cover repetitive and GC-
rich regions of the genome, and can therefore be well suited for
detecting structural variants.

Hi-C sequencing (de Wit and de Laat, 2012) is a high-
throughput sequencing technology used to study the three-
dimensional structure of chromosomes and genome interactions,
which joins DNA fragments from different chromosomal regions by
enzymatic cleavage and ligation techniques to form a DNA
molecular library, which is then subjected to high-throughput
sequencing to obtain sequences of multiple DNA reads. A
number of methods for structural variation detection based on
Hi-C reads have emerged, such as HiNT (Wang et al., 2020),
HiCNV (Chakraborty and Ay, 2018), HiSV (Li et al., 2023),
EagleC (Wang et al., 2022), etc. HiNT is a method for detecting
interchromosomal translocations using Hi-C read. It utilizes a 1 Mb

bin chromosome contact matrix as input. HiNT first calculates the
Gini coefficient and maximum contact frequency of the
interchromosomal contact matrix to identify potential
translocated chromosome pairs. Then, it employs the breakpoint
function from the R package ‘struchanger’ to approximate the
breakpoints of the translocation. Finally, it utilizes an algorithm
based on soft-clipped read counts to achieve precise breakpoint
detection at single base pair resolution. HiCNV is a method for
detecting copy number variations (CNVs) based on Hi-C read. It
first processes the contact counts at the level of individual restriction
enzyme fragments to utilize Hi-C data with as high resolution as
possible. HiCNV calculates one-dimensional read coverage for each
restriction enzyme, normalizes for GC content, mappability, and
fragment length, smoothes using kernel density estimation, and
finally identifies potential CNV segments using a hidden Markov
model. HiSV is a structural variation detection method based on a
significance detection model, capable of identifying large-scale
structural variations from Hi-C read. Firstly, HiSV calculates a
distance-normalized Hi-C contact matrix to avoid interference
from strong interactions on the diagonal. Then, HiSV computes
the local spatially weighted dissimilarity for each pixel to measure
significance, thus separating significant regions from complex
backgrounds. Finally, HiSV uses a global variation segmentation
approach to partition sparse significant subsets into segments,
considering a segment as a structural variation event if the
interaction frequency after segmentation exceeds a predefined
threshold. EagleC transforms the problem of identifying
structural variations from Hi-C maps into a multi-label image
classification problem. It is an ensemble learning framework
based on 50 different models and utilizes convolutional neural
networks as individual models for prediction. Additionally,
EagleC proposes a data augmentation algorithm to ensure a
balanced distribution of samples across different types of
structural variations and genomic regions. These methods
compare the interaction levels between normal and variant
regions; large variant regions exhibit clear interaction patterns,
while small variant regions exhibit less distinct interaction
patterns. Therefore, these methods perform well in detecting

FIGURE 1
(A) insertion; (B) deletion; (C) duplication; (D) inversion (deletion is the loss of a portion of a chromosome; an insertion is the insertion of a portion of
a chromosome; a duplication is the repetition of a portion of a chromosome; and an inversion is the reverse complementation operation of a portion of a
chromosome.).
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large variant regions but less effectively for small ones. Moreover,
since cancer cell lines often contain a higher proportion of large
variant regions, these methods are effective in identifying variant
regions in cancer cell lines and can be used for disease prediction.

The recently emerged Pore-C technology (Zhong et al., 2023),
on the other hand, refers to a new technology that combines
chromatin conformation capture technology with Nanopore
sequencing technology to capture the information of chromatin
multiregional interactions, and is able to form a single long read
frommultiple sequence fragments that are in close proximity to each
other in three-dimensional space. This technique is capable of
generating long reads on a genome-wide scale; however, these
techniques generate less information about interactions in regions
larger than three. Because of the complexity and diversity of
structural variants, methods for detecting structural variants
based on Pore-C reads are not yet available.

Most of the deletion variant detection tools (Mahmoud et al.,
2019) that currently exist are based on short or long read, and
although short read have a low sequencing error rate, they are short
in length and do not completely find the deletion site. Although the
sequencing error rate of long reads is high, the length is relatively
long and it can span the deletion breakpoints well, so most of the
tools nowadays detect the deletion by long reads, mainly by utilizing
two methods, which are traditional method or deep learning.

The traditional method mainly involves first extracting
candidate loci by characterizing various variants, and then
clustering the candidate loci to determine the exact variant loci
and length. CuteSV (Jiang et al., 2022) analyzes the characteristics
of each type of structural variation and uses them to find potential
loci for each variation separately, and clusters and further refines
the clustering of read from heterozygous ratios in localized regions
to accurately distinguish between pure and heterozygous variants.
Finally, a few specific rules are used for structural variant detection
and genotyping. Svim (Heller and Vingron, 2019) also collects
structural variant features from the alignment files of the input
sequences, then clusters the detected features using a clustering
method based on graph and structural variant feature distance
metrics, and finally outputs the final result by merging multiple
structural variant events. Sniffles (Sedlazeck et al., 2018) uses the
results from the NGMLR alignment as input and utilizes features
from the segmented reads alignment, high mismatch regions, and
coverage to identify structural variants. To overcome the high
error rate in the reads, sniffles also evaluates candidate structural
variants based on features such as length, location, and consistency
of breakpoints. SKSV(Liu et al., 2021) is a skeleton-based structural
variation detection analysis toolkit that performs pseudo
alignment from reads and generates a alignment skeleton
through sparse dynamic programming. The generated
alignment skeleton supports rapid read finding and non-
collinear segments in the alignment skeleton indicate potential
structural variant events. Compared to other methods, SKSV is
extremely fast and achieves high sensitivity and accuracy in both
structural variant detection and genotyping. Svsearcher (Zheng
et al., 2023) differs from previous methods in that it first finds
candidate structural variant regions by variant characterization,
then clusters read within the candidate regions to find candidate
structural variants, and sets a stricter criterion to filter out
erroneous structural variants.

Structural variation detection based on deep learning is mainly
based on first extracting various features according to the type of
structural variation, and then through the continuous training of the
neural network, and then through the neural network to make
predictions. INSnet (Gao et al., 2023) is a deep learning-based
insertion variant detection method that firstly divides the
reference genome into contiguous sub-regions and acquires five
features for each locus. INSnet uses a convolutional neural network
to extract variant features and a gated recurrent unit to analyze
connections between subregions. MAMnet (Ding and Luo, 2022), a
structural variation detection method based on the combination of
convolutional neural networks and long and short-term memory
networks, achieved a better F1-score compared to other comparison
tools. SVcnn is a deep learning method that can accurately detect
deletion, insertion, duplication and inversion variants. SVcnn
(Zheng and Shang, 2023) first identifies candidate structural
variant regions from the BAM file, then converts the candidate
structural variant regions into images and constructs a LetNet
model, which filters out the erroneous structural variants and
outputs the final structural variants. cnnLSV (Ma et al., 2023) is
also a deep learning based structural variation detection method that
utilizes alignment information of long reads and convolutional
neural networks to achieve overall higher performance and
utilizes principal component analysis and k-means clustering
algorithms to efficiently eliminate mislabeled samples during the
training model phase. The results show that cnnLSV outperforms
existing methods in detecting insertions, deletions, inversions and
duplicate variants.

The traditional method ignores the occurrence of two different
lengths of deletion variants at the same locus and directly clusters the
candidate deletion sites, which may affect the final results of the
detection of deletion variants. And deep learning can take a lot of
time when extracting features and training. Therefore, this paper
proposes an effective deletion variant detection algorithm LcDel.
LcDel firstly merges the deletion variants that are closer when
finding candidate deletion sites, then uses two clustering
algorithms to perform the first level of clustering according to
the length of deletion and uses hierarchical clustering to perform
the second level of clustering, respectively, and finally filters out the
candidate clusters that do not match to identify the location and
length of deletion.

2 Methods

LcDel is a long reads-based deletion variant detection method
where the input is a sorted bam file including the alignments
between long reads and genome reference. There are four main
steps in LcDel: 1) Identification of candidate deletion sites by intra-
read alignment and inter-read alignment; 2) Multiple large clusters
are generated by performing the first layer of clustering based on
deletion lengths using sliding window-based and coverage-based
methods, respectively; 3) Generate candidate clusters based on the
differences between deletion lengths for large clusters using
hierarchical clustering; 4) Set the support read threshold to filter
out non-compliant candidate clusters and determine the location
and length of the deletion. LcDel workflow is shown in
Figure 2 below.
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FIGURE 2
Workflow diagram of LcDel, step1 denotes identification of deletion sites, step2 denotes the first level of clustering to generate large clusters,
step3 denotes the second level of clustering to generate candidate clusters, and step4 denotes the determination of the location and length of
the deletion.
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2.1 Identify candidate deletion site

Since small deletion variants are aligned to the reference
genome, the alignment tool will directly display the deletion
information in the cigar string, while large deletions are not
directly displayed in the cigar string, but will be aligned to two
non-contiguous regions of the same chromosome by splitting the
reads, LcDel identifies candidate deletion loci by intra-read
alignment and inter-read alignment, respectively.

LcDel first filters out alignments with mapping quality scores
lower than 20 and unaligned ones, and then finds the ‘D’ identifiers
with lengths greater than 30 in the cigar string, records the position
and length of the deletion event on the reference genome, considers
it as a deletion site and represents it as a quaternion Dt=(chr, start,
svlen, end), where chr denotes the chromosome that the reads are
aligned, start, and end denote the start and end positions of the
deletion on the chromosome, respectively, and svlen denotes the
length of the deletion on the chromosome. Due to the high
sequencing error rate of long reads, which may result in a single
deletion region being split into multiple smaller deletion regions
during sequencing and alignment, it is necessary to determine
whether merging can be performed if there are two deletion sites
on the same read. For two quaternions Dt1= (chr1, start1, svlen1,
end1) and Dt2= (chr2, start2, svlen2, end2) for the same read, where
Dt1 is assumed to be located in front of Dt2, calculate the gap by
using gap = start2-end1, and if 0<gap≤ 30, then Dt1 and Dt2 are
combined into a quaternion Dt= (chr1, start1, svlen1+svlen2, end2),
the new quaternion represents a large deletion variant.

For an alignment containing segmented reads, each matched
read is represented as a hexadecimal Sig=(chr, Refs, Refe, Reads,
Reade, orient), respectively, where chr denotes the chromosome to
which the read is aligned, Refs and Refe denote the start and end
points of the read alignment to the reference genome, respectively,
Reads and Reade denote the start and end points of the segment of
reads that are matched to the reference genome in the reads,
respectively, and orient denotes the direction in which the read is
aligned to the reference genome. As shown in Figure 3, the read is
aligned to the reference genome due to the presence of variants
resulting in splitting the read into two segments to be aligned to the
reference genome separately, denoting the two alignments as the
hexameric group Sig1= (chr1, Ref1s, Ref1e, Read1s, Read1e, orient1)
and Sig2= (chr2, Ref2s, Ref2e, Read2s, Read2e, orient2), respectively.
For two read segments of a split read comparison, which are aligned

to the same chromosome in the same direction, i.e., chr1 = chr2 and
orient1 = orient2, the spacing Distance_ref on the chromosome, the
spacing Distance_read on the read, and the difference in their
spacing Distance are computed, respectively. The setting of the
upper limit of the distance threshold is described in detail in the
results section 3.5.

Distance ref � Ref2s − Ref1e

Distance read � Read2s − Read1e

Distance � Distance ref −Distance read

⎧⎪⎨⎪⎩
If Distance lies between the interval [50, 100,000], it indicates

that this splitting read contains a deletion event, which is considered
as a candidate deletion site and represented as a quaternion
Deletion= (chr, Ref1e, Distance, Ref2s).

2.2 Generate large cluster

Clustering is commonly used for grouping data points in a dataset
with similar characteristics into one category to help us better
understand and utilize the information in the dataset, discover
patterns and regularities in the data, and provide useful tasks for
subsequent prediction and classification. The traditional methods for
structural variant detection are generally to first find potential
candidate variant sites through coverage, split reads and other
features, and then filter the clusters with higher confidence as
candidate clusters through clustering, and find the appropriate
variant sites from the candidate clusters as the final result. In
structural variation detection, a sliding window-based clustering
method is usually used, which can effectively cluster candidate loci
representing the same variant site together to facilitate structural
variation detection. Clustering methods based on sliding windows
need to set the window size in advance, and since the window size is
fixed, when the window is set too large or too small it will result in the
final finding of structural variants that are not complete. Since the
coverage of the deletion region is lower than that of the normal region,
the deletion region can be found by observing the coverage, so LcDel
clusters in the first layer of clustering according to the length of
deletion variation based on the two clustering methods of the sliding
window and coverage, respectively, which can effectively cluster the
deletion events that are mutated at the same locus together.

LcDel first sets a length threshold of 2000 and then refers to
deletion lengths less than this threshold as small candidate deletion

FIGURE 3
Split alignment of long read.
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sites and deletion lengths greater than this threshold as large
candidate deletion sites. The small candidate deletion sites are
then clustered using a coverage-based clustering method, while
the large candidate deletion sites are clustered using a sliding
window-based clustering method.

When clustering large candidate deletion sites, LcDel first sorts
the large candidate deletion sites in ascending order according to
their position on the reference genome, and then sets up a window of
length 1,500, as shown in Figure 4 below. The starting position of the
sliding window is the position of the first large candidate deletion
site on the reference genome, and then keep sliding the window, if
there is no large candidate deletion site in the sliding window at a
certain moment, the next large candidate deletion site will be taken
as the new starting point of the sliding window directly, and if the
sliding window contains a large candidate deletion site, the next
sliding window will need to take the end position of the window as
the new starting point. In the process of continuously sliding the
window, the large candidate deletion sites contained within the
sliding window are clustered together to form a cluster, which is
considered as a large cluster.

Since the coverage of the deletion region is significantly lower
than that of the normal region, analyzing the feature of coverage can
detect the deletion region, so the small candidate deletion sites are
clustered using the coverage-based clustering method. LcDel sets up
a list of chromosomes in the reference genome of length
corresponding to the length of the corresponding chromosome,
respectively, and the initial values of the list are all 0. Each position in
the list corresponds to the corresponding base site on the reference
genome. Then LcDel traverses each small candidate deletion site,
looks at the region where each small candidate deletion site is
located, takes out the list corresponding to the reference genome
where the small candidate deletion site is located, and then adds 1 to
the value of the list corresponding to the deletion region, and

continually continues this process until all the small candidate
deletion sites have been traversed. LcDel uses each locus of the
reference genome as a horizontal coordinate and the list value
corresponding to that locus as a vertical coordinate to build a
planar graph.

As shown in Figure 1, step 2, the deletion region will form a
shape similar to a mountain peak. Find the interval corresponding to
that peak and cluster the small candidate deletion sites within that
interval together to form a large cluster. In the first layer of clustering
process, based on the sliding window and coverage clustering is
carried out for different candidate deletion sites, the two clustering
methods are independent of each other, so the two clustering
methods are carried out at the same time, and the clustering for
each chromosome is also processed in parallel by multi-threading,
which makes LcDel extremely fast in the first layer of clustering. At
the end of the first layer of clustering, all candidate deletion sites are
clustered into multiple large clusters.

2.3 Generate candidate cluster

Since one human chromosome is composed of two homologous
chromosomes, however, deletion variants of different lengths may
have occurred on the two homologous chromosomes, such as
deletion events of lengths 108 and 216 at locus 1,120,034 on
chromosome 1, respectively. If the large clusters from the first
level of clustering are used directly as final candidate clusters, the
deletion length at that location may be determined incorrectly when
determining the deletion length, affecting the final detection results.
In order to separate these deletion variations, LcDel uses a
hierarchical clustering method for a second clustering, which
makes the clustering results more accurate and helps to
determine the subsequent deletion length.

FIGURE 4
Clustering of large candidate deletion sites based on sliding windows.
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LcDel treats each candidate deletion site in a large cluster as a
small cluster, and the average of the lengths of all the deletions in the
small cluster is considered as the deletion length of the small cluster.
LcDel calculates the length difference between any two small clusters
contained in the large cluster each time, and then LcDel merges the
two small clusters with the smallest length difference, and keeps
iterating this merging process until the final large cluster contains only
two small clusters. For two small clusters with deletion lengths of len1
and len2, respectively, the length difference rate between them can be
calculated by the following formula. At this point, candidate deletion
sites that support different deletion length variants can be clustered
together to form small clusters. Finally, it is necessary to determine
whether two small clusters represent the same deletion variant based
on the difference in length between them, and to determine whether
two small clusters in a large cluster can be merged into a single cluster.
If the difference in the length of two clusters is less than 20%, the two
clusters are merged into one candidate cluster, otherwise both clusters
are considered as candidate clusters.

rate � abs len1, len2( )
max len1, len2( )

2.4 Determine location and length
of deletion

Candidate clusters have been identified through the previous
two layers of clustering. LcDel then sets a support read threshold
that filters out the following two types of candidate clusters: 1) The
large cluster contains only one candidate cluster and the number of
candidate deletion sites in the candidate cluster is less than the
supported read threshold; 2) The large cluster contains two
candidate clusters, and the number of candidate deletion sites in

the candidate clusters is less than half of the threshold of supported
reads. To better illustrate the benefits of splitting our filtering of
candidate clusters into two cases, we also benchmarked the
HG002 CLR dataset in one case (filtering out candidate clusters
smaller than the threshold of supported reads), and the results are
shown in Table 1 below. By analyzing LcDel on CLR datasets with
different coverage, it can be seen that LcDel can effectively improve
the detection of deletion variants when filtered in two cases.

For the candidate clusters that are left behind, the average of the
deletion positions and lengths in that candidate cluster is calculated,
and the candidate deletion site with the deletion position and length
closest to the average in that candidate cluster is taken as the
final result.

3 Results

In order to objectively evaluate the detection performance of
LcDel for deletion variants, this paper compares LcDel with four of
the more frequently used current structural variant detection tools.
The four structural variant detection tools, all of which perform
variant detection based on long reads, are cuteSV, sniffles, svim, and
pbsv. High-confidence deletion variant regions collected by the
Genome in a Bottle program were used as the reference standard
dataset for this experiment, and Truvari was used to evaluate and
record precision, recall, and F1-scores for all experimental results. In
order to fully evaluate the deletion detection performance of LcDel,
three human sample datasets that are currently more commonly
used were selected: HG002 CLR (average length: 7938bp),
HG002 CCS (average length: 13,478bp), and detailed information
of the datasets is shown in Table 2 below. Additionally, this paper
sets appropriate support read thresholds for each detection tool
separately, with specific settings for detection performance on each
dataset presented in the Detection Performance section.

In the following experiments, we detected deletion variation on
chromosomes 1–22. The structural variation detectionmethods based
on deep learning commonly selects a portion of chromosomes as the
training set and a portion of chromosomes as the validation set. These
models are continuously trained through the training and validation
sets, and finally the remaining chromosomes are predicted in the test
set. Therefore, it is not appropriate to compare LcDel with the
methods using deep learning.

3.1 Detection performance of the structural
variation detection tools on the CLR dataset

First, we benchmark LcDel, cuteSV, svim, sniffles and pbsv
detection tools on the HG002 CLR dataset, and the experimental

TABLE 1 Detection performance of LcDel in different situations.

Coverage one_situation two_situation

69X precision 0.9535 0.9611

recall 0.9725 0.9832

F1 0.962 0.9721

35X precision 0.9387 0.9485

recall 0.9561 0.9764

F1 0.9473 0.9623

20X precision 0.9293 0.9369

recall 0.9341 0.9446

F1 0.9316 0.9407

10X precision 0.9186 0.9273

recall 0.8563 0.8671

F1 0.8861 0.8962

5X precision 0.9412 0.9573

recall 0.6765 0.6866

F1 0.7871 0.7997

TABLE 2 Description of the dataset.

HG002 CLR HG002 CCS

Read Count 2,915,733 6,596,012

Average Length 7,938 13,478

Coverage 69X 28X
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results are shown in Table 3 below. In order to fully evaluate the
deletion detection performance of LcDel on datasets with different
coverage, we also randomly downsampled the HG002 CLR dataset
to 35X, 20X, 10X and 5X and benchmarked it. For datasets with 69X,
35X, 20X, 10X and 5X coverage, the support read thresholds were set
to 10, 5, 3, 2 and 2, respectively.

Compared to the other four popular structural variation
detection tools, as shown in Table 3, LcDel achieves the
highest recall and F1-score on all coverage CLR datasets. For
the 69X dataset, the precision of LcDel detection is not the
highest, but it is only 0.3% less than the first place, while the
recall and F1-score are the highest, with the recall being 3.6%
higher than the second place and the F1-score being 1.77% higher
than the second place, which indicates that LcDel has a better
performance of deletion detection on the high coverage dataset.
For the CLR dataset with 35X coverage, LcDel detection had the
lowest precision, 1.5% lower than the first place, but the recall was
0.9% higher than the second place and the F1-score was 1.2%
higher than the second place. For the 20X CLR dataset, the
precision of LcDel detection was also the lowest, 2.5% lower
than the first place, but the recall was 3.5% higher than the second
place, achieving the highest F1-score. The performance of
structural variant detection tools for deletion variant detection
decreases with decreasing sequencing depth. For the 10X dataset,
the precision of LcDel detection was 3.9% lower than the first
place, but the recall was 2.8% higher than the second place,
achieving the highest F1-score. For the dataset of 5X, the
precision of LcDel detection is 1.5% lower than that of pbsv,
but the recall is 28.24% higher than that of pbsv, achieving the
highest recall and F1-score, which indicates that LcDel has a
better performance of deletion detection on CLR datasets of
different coverage.

3.2 Performance of structural variation
detection tools on different deletion lengths

In order to evaluate the performance of structural variant
detection tools for different deletion lengths, in this paper, the
variant lengths are categorized into five intervals of [50, 200],
[200, 500], [500, 1,000], [1,000, 2000], and [2000+] for
benchmarking respectively. The structural variation detection tool
was benchmarked on the 69X、10X and 5X datasets of the
HG002 CLR and the results are shown in Table 4 and 5 below,
respectively.

Compared with the other four commonly used structural
variation detection tools, as shown in Table 4, LcDel achieved
the highest F1-scores at different deletion lengths, which
indicates that LcDel has a better detection effect for different
deletion lengths on the 69X dataset of HG002 CLR. On the [50,
200] interval, the precision of LcDel detection was 1.2% lower than
the first place, but the recall was 3.5% higher than the second place,
and the F1-score was 1.34% higher than the second place, which
indicates that LcDel has a better detection effect on small deletion
variants. On the [200, 500] interval, although the LcDel detection
had the second highest recall, only 0.15% lower than the first place, it
achieved the highest precision and F1-score. On the [500,1000]
interval, although LcDel did not detect the highest precision, it
achieved the highest recall and F1-score. On the [1,000,2000]
interval, LcDel achieved the highest precision, recall, and F1-
score, which were 1.06%, 1.05%, and 1.29% higher than the
second place, respectively. By analyzing in the intervals [200,
500], [500, 1,000] and [1,000, 2000], it was found that LcDel has
better performance for large deletion variant detection. On the
[2000+] interval, LcDel also achieved the highest precision, recall,
and F1-score, which were 2.7%, 1.8%, and 2.6% higher than the

TABLE 3 Performance comparison of SV detection tools on CLR Dataset.

Coverage LcDel cuteSV Sniffles Svim pbsv

69X Precision 0.9611 0.9557 0.964 0.9595 0.9617

Recall 0.9832 0.9436 0.9438 0.9461 0.9472

F1 0.9721 0.9496 0.9538 0.9527 0.9544

35X Precision 0.9485 0.9527 0.9641 0.957 0.9634

Recall 0.9764 0.9361 0.9261 0.9368 0.9368

F1 0.9623 0.9443 0.9447 0.9468 0.9499

20X Precision 0.9369 0.9504 0.9622 0.958 0.9609

Recall 0.9446 0.9091 0.8794 0.9052 0.8736

F1 0.9407 0.9293 0.919 0.9309 0.9152

10X Precision 0.9273 0.9434 0.9559 0.9396 0.967

Recall 0.8671 0.8377 0.7918 0.8389 0.6496

F1 0.8962 0.8874 0.8662 0.8864 0.7772

5X Precision 0.9573 0.9656 0.9649 0.9647 0.973

Recall 0.6866 0.6632 0.6285 0.6586 0.4042

F1 0.7997 0.7864 0.7612 0.7828 0.5712
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second place, respectively, which demonstrated LcDel’s better
detection performance even for larger deletion variants.

As shown in Table 5, LcDel achieved the highest recall and F1-
score on different intervals, which indicates that LcDel has a better
detection effect for different deletion lengths on the 10X dataset of
HG002 CLR. On the [50, 200] interval, although the pbsv detection
had the highest precision, the LcDel detection had 20.58% higher
recall and achieved the highest F1-score. On the [200, 500] interval,
LcDel achieved the second highest precision, only 0.59% lower than
the first place, but the recall and F1-score were 0.7% and 0.76%
higher than the second place, respectively. On the [500, 1,000]
interval, although the precision of LcDel detection was 1.97%
lower than sniffles, the recall was 5.59% higher, achieving the
highest F1-score. LcDel achieved the highest precision, recall, and
F1-score on both the [1,000, 2000] and [2000+] intervals.

Although LcDel, cuteSV, sniffles, svim, and pbsv were all
detected poorly on the 5X of the HG002 CLR dataset, LcDel still
achieved the highest F1 scores on each interval, which suggests that
LcDel has a better detection performance for deletion variants of
different lengths even at low coverage.

3.3 Performance of LcDel on different
support read parameters

Too large or too small support reads can affect the performance
of detection of deletion variants, in order to evaluate the
performance of LcDel in detecting deletion variants under
different support reads thresholds, so this paper sets the support
read support to 2, 3, 5 and 10 on 69X, 35X and 10X datasets of
HG002 CLR to benchmark LcDel, respectively. The test results are
shown in Table 6, which shows that on the 69X HG002 CLR dataset,
as the number of supported reads continues to increase, the

precision continues to increase and the recall continues to
decrease, but the F1 score generally increases until a better
detection result is achieved at a number of supported reads of 10.
On the HG002 CLR dataset of 35X, it was found that LcDel achieves
better deletion detection performance when the number of
supported reads is set to 5. On the 20X dataset, better deletion
detection results are achieved when the number of supported reads
is set to 3. From the above analysis, it is found that the larger the
support read are set, the greater the precision of LcDel detection and
the smaller the recall.

3.4 Detection performance of the structural
variation detection tool on the CCS dataset

In order to fully evaluate the performance of LcDel on different
datasets for deletion variant detection, in addition to the CLR dataset
of HG002, this paper also benchmarked LcDel, cuteSV, sniffles, svim,
and pbsv on the CCS dataset of HG002, respectively. In addition to
that, in this paper, the CCS dataset is randomly downsampled to 10X
and 5X, and the support reads are set to 3, 2, and 1 for benchmarking,
respectively, and the results are shown in Table 7. On CCS datasets
with different coverage, although none of LcDel’s precision is the
highest, its recall is the highest and it achieves a good F1 score, which
shows that LcDel can achieve similar deletion detection performance
on CCS datasets as other detection tools.

3.5 Deletion detection performance of LcDel
at different distance thresholds

Since reads spanning small deletion regions are compared with
the reference genome, the deletion information is displayed directly

TABLE 4 Comparison of detection performance for different deletion lengths.

Coverage Interval LcDel cuteSV Sniffles Svim pbsv

69X Precision 0.9394 0.936 0.9514 0.9446 0.947

50–200 Recall 0.9768 0.9018 0.9208 0.9217 0.9416

F1 0.9577 0.9186 0.9359 0.933 0.9443

Precision 0.9846 0.9718 0.9778 0.9754 0.9744

200–500 Recall 0.9831 0.9831 0.9846 0.9792 0.9669

F1 0.9838 0.9774 0.9812 0.9774 0.9706

Precision 0.9692 0.9447 0.9741 0.9489 0.9659

500–1,000 Recall 0.9594 0.9543 0.9543 0.9441 0.8629

F1 0.9643 0.9494 0.9641 0.9465 0.9115

Precision 0.9793 0.9687 0.9639 0.9585 0.9502

1,000–2000 Recall 0.9844 0.9687 0.9739 0.9635 0.8958

F1 0.9818 0.9687 0.9689 0.961 0.9222

Precision 0.9719 0.9386 0.9419 0.9444 0.9354

2000+ Recall 0.9811 0.9622 0.8679 0.9088 0.9119

F1 0.9765 0.9503 0.9034 0.9262 0.9235
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in the cigar string, e.g., the presence of 100D in the cigar string
indicates that the region to which the read is compared on the
reference genome contains a deletion region of 100 bp in length.
And for some reads containing large deletion regions do not display
the deletion information directly in the cigar string when compared
with the reference genome, they will be compared to two non-
adjacent regions of the same chromosome by clipping the reads.
Therefore, for the alignment with clipped reads, we need to set
certain conditions to determine whether the alignment contains a
deletion variant or not. If two segments of a read are aligned to the
same chromosome in the same direction, the distance between the

two segments on the read, Distance_read, is computed separately,
and the distance between the two segments on the read, Distance_
ref, is further computed for the two segments on the read aligned to
the reference genome. Normally Distance_read should be 0, but due
to sequencing errors and alignment tools, Distance_read may not be
0. In order to determine whether the alignment contains a deletion
variant, it is necessary to determine whether the difference between
them, Distance, is greater than 50; if Distance is greater than 50, then
the alignment contains a deletion variant, but an upper threshold
needs to be set for Distance. In order to explore a suitable upper
threshold, we set different upper thresholds (Dt) to test the

TABLE 5 Comparison of detection performance for different deletion lengths.

Interval LcDel cuteSV Sniffles Svim pbsv

Precision 0.886 0.9221 0.9383 0.9169 0.9566

50–200 Recall 0.844 0.7975 0.7568 0.8113 0.6382

F1 0.8645 0.8553 0.8378 0.8609 0.7656

Precision 0.9709 0.9626 0.9709 0.9609 0.9768

200–500 Recall 0.8985 0.8915 0.8754 0.8907 0.7154

F1 0.9333 0.9257 0.9207 0.9246 0.8259

Precision 0.95 0.9389 0.9697 0.9389 0.952

10X 500–1,000 Recall 0.868 0.8578 0.8121 0.8579 0.6041

F1 0.9072 0.8965 0.8839 0.8966 0.7391

Precision 0.9583 0.9464 0.9491 0.9509 0.9357

1,000–2000 Recall 0.8385 0.8281 0.776 0.8073 0.5313

F1 0.8944 0.8833 0.8539 0.8732 0.6778

Precision 0.9446 0.9283 0.9346 0.9387 0.9302

2000+ Recall 0.8585 0.8144 0.6289 0.7705 0.5031

F1 0.8995 0.8677 0.7519 0.8463 0.6531

Precision 0.886 0.9221 0.9383 0.9169 0.9566

50–200 Recall 0.844 0.7975 0.7568 0.8113 0.6382

F1 0.8645 0.8553 0.8378 0.8609 0.7656

Precision 0.9709 0.9626 0.9709 0.9609 0.9768

200–500 Recall 0.8985 0.8915 0.8754 0.8907 0.7154

F1 0.9333 0.9257 0.9207 0.9246 0.8259

Precision 0.95 0.9389 0.9697 0.9389 0.952

5X 500–1,000 Recall 0.868 0.8578 0.8121 0.8579 0.6041

F1 0.9072 0.8965 0.8839 0.8966 0.7391

Precision 0.9583 0.9464 0.9491 0.9509 0.9357

1,000–2000 Recall 0.8385 0.8281 0.776 0.8073 0.5313

F1 0.8944 0.8833 0.8539 0.8732 0.6778

Precision 0.9446 0.9283 0.9346 0.9387 0.9302

2000+ Recall 0.8585 0.8144 0.6289 0.7705 0.5031

F1 0.8995 0.8677 0.7519 0.8463 0.6531

The above analysis reveals that LcDel has good detection performance for different deletion variant lengths on both high coverage (69X) and low coverage (10X and 5X) datasets of HG002 CLR.
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HG002 CLR dataset respectively, and the test results are shown in
Table 8 below.

The above table shows that when the upper limit of the Distance
threshold is set too small, LcDel has higher precision but lower recall
in the detection results. As the upper limit of the Distance threshold
continues to increase, the precision of the LcDel detection results
gradually decreases, but the recall gradually increases. The reason for
this analysis is that the upper limit of the Distance threshold is set
too high causing many false positive events to be treated as missing
events. If the upper Distance threshold is not set, LcDel will regard
many false-positive events as deletion events, so it will ultimately
lead to lower accuracy and higher recall of LcDel’s detection results.
Therefore, setting an appropriate upper Distance threshold is
especially important for the detection of missing variants, and
the upper Distance threshold is set to 100,000 by the above table.

3.6 Comparison of deletion performance of
LcDel at the first level of clustering using
different methods

Since the length of large candidate deletion variant sites is
generally longer, the effect may not be so obvious if the clustering

is done using the coverage-based method, while the use of the
sliding window-based clustering of deletion variants with larger
lengths can have good results. Due to the short length of small
candidate deletion sites, the deletion detection performance of
LcDel may be reduced if a sliding window-based approach is
directly used to cluster all deletion sites at the first level. In order
to assess the impact of using the sliding window clustering
method on small candidate deletion sites, we performed
benchmarking on the first layer of clustering on the
HG002 CLR dataset using sliding window based one method
alone (SW) and using sliding window, coverage based two
methods (SW + CG), the benchmarking results are shown in
Table 9 below.

From Table 9, it can be seen that if all candidate deletion sites are
clustered using the sliding window-based method, it does not have a
better detection performance than clustering using both sliding
window-based and coverage-based methods. Consequently,
clustering of small candidate deletion sites using the sliding
window-based method decreases the detection performance of
LcDel, which may be due to the relatively large window setting,
resulting in some small candidate deletion sites that are relatively
close to each other being clustered together, affecting the accuracy
of LcDel.

TABLE 6 LcDel deletion detection performance at different supported read.

Coverage Support>=2 Support>=3 Support>=5 Support>=10

69X 0.6094 0.7419 0.8755 0.9611

0.9965 0.9942 0.9922 0.9832

0.7563 0.8498 0.9302 0.9721

35X 0.7602 0.8721 0.9488 0.9818

0.9934 0.9908 0.9764 0.8503

0.8612 0.9277 0.9624 0.9113

20X 0.8708 0.9393 0.9774 0.9924

0.9796 0.9444 0.8188 0.4103

0.922 0.9418 0.8911 0.5806

TABLE 7 Comparison of the performance of SV detection tools on the CCS dataset of HG002.

Coverage LcDel cuteSV Sniffles Svim pbsv

28X Precision 0.9378 0.9366 0.9487 0.9443 0.9459

Recall 0.9504 0.9414 0.9399 0.9446 0.9346

F1 0.9441 0.939 0.9433 0.9444 0.9402

10X Precision 0.9346 0.9447 0.9525 0.9382 0.9567

Recall 0.9113 0.9016 0.8787 0.9040 0.8214

F1 0.9228 0.9226 0.9141 0.9208 0.8839

5X Precision 0.9109 0.9217 0.9581 0.9164 0.9722

Recall 0.8818 0.8731 0.6994 0.8743 0.5017

F1 0.8962 0.8968 0.8085 0.8949 0.6618
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3.7 Comparison of detection performance of
LcDel on HG002 CLR dataset for different
window sizes

The use of sliding window based method in clustering large
candidate deletion sites will achieve good results, but the setting of

the window size may affect the detection performance of LcDel on
deletion variants to a certain extent, so this paper attempted to set
the sliding window (ws) to 500, 1,500, 2,500, 4,000 and 5,000 on the
CLR dataset of HG002 for benchmarking, and the results are as
follows in Table 10.

Through Table 10, it can be found that when the window setting
is small it will reduce the detection performance of LcDel, and when
the window size is 1,500, no matter how to increase the window, it
has little effect on the detection effect of LcDel, which is largely due
to the hierarchical clustering in the second layer. If the setting of the
window is very large, it will cluster many close deletion variants
together to form a cluster, if the exact deletion site is determined
directly at this time it will lead to misidentification or miss
identification of the deletion variants, but the hierarchical
clustering can separate them very well, so the effect of LcDel
does not decrease with the increase of the window. Through
analysis, LcDel sets the window size to 1,500.

4 Discussion

In this paper, we propose a long read based deletion variant
detection method LcDel using two-layer clustering. LcDel first finds
candidate deletion sites from the sorted bam file by intra-read
alignment and inter-read alignment. A method of heuristics was
used to merge relatively close deletion sites. Use sliding window and
coverage methods based on deletion length to perform the first layer
clustering and generate multiple large clusters. Then, hierarchical
clustering is used to further cluster the large clusters and generate
candidate clusters, in order to improve the accuracy of clustering
and facilitate the determination of deletion positions and lengths in
the future. Finally, the candidate clusters containing candidate

TABLE 8 LcDel results for different upper Distance thresholds on the CLR dataset.

Coverage Dt ≤ 1,000 Dt ≤ 5,000 Dt ≤ 10,000 Dt ≤ 50,000 Dt ≤ 100,000 Dt ≤ 200,000

69X precision 0.9627 0.9638 0.9642 0.9635 0.9611 0.9605

recall 0.9239 0.9521 0.9761 0.9791 0.9832 0.9832

F1 0.9429 0.9579 0.9701 0.9712 0.9721 0.9717

35X precision 0.9495 0.9488 0.9495 0.9487 0.9485 0.9487

recall 0.9195 0.9455 0.9696 0.9764 0.9764 0.9764

F1 0.9343 0.9471 0.9594 0.9624 0.9623 0.9624

20X precision 0.9381 0.9393 0.9403 0.9393 0.9369 0.9314

recall 0.8877 0.9144 0.9378 0.9443 0.9446 0.9446

F1 0.9122 0.9267 0.939 0.9406 0.9407 0.9379

10X precision 0.9281 0.9287 0.9289 0.9286 0.9273 0.9286

recall 0.8092 0.8386 0.8605 0.8663 0.8671 0.8671

F1 0.8646 0.8813 0.8934 0.8961 0.8962 0.8964

5X precision 0.9611 0.9614 0.9613 0.9612 0.9573 0.9505

recall 0.637 0.6666 0.6819 0.6845 0.6866 0.6865

F1 0.7662 0.7873 0.7978 0.7995 0.7997 0.7972

TABLE 9 Performance comparison of LcDel on different clustering
methods.

Coverage SW SW + CG

69X precision 0.9596 0.9611

recall 0.9691 0.9832

F1 0.9643 0.9721

35X precision 0.9483 0.9485

recall 0.9616 0.9764

F1 0.9549 0.9623

20X precision 0.9443 0.9369

recall 0.9322 0.9446

F1 0.9382 0.9407

10X precision 0.8633 0.9273

recall 0.8566 0.8671

F1 0.86 0.8962

5X precision 0.9062 0.9573

recall 0.6766 0.6866

F1 0.7747 0.7997
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deletion sites are filtered out, and the position and length of the
deletion are determined from the remaining candidate clusters. To
evaluate the detection performance of LcDel for deletion variants,
we compared it with four currently popular structural variant
detection tools on multiple datasets. The experimental results
show that LcDel has better detection performance for deletions.

However, LcDel still has some limitations in some aspects. First,
LcDel only detects deletion variants but not other types of structural
variants such as insertions, translocations and inversions. Second,
LcDel does not genotype the detected deletions. We will gradually
improve the above problems in our future work.
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TABLE 10 Comparison of LcDel’s detection performance on different window sizes.

Coverage ws = 500 ws = 1,500 ws = 2,500 ws = 4,000 ws = 5,000

69X precision 0.9512 0.9611 0.9541 0.9635 0.9635

recall 0.9627 0.9832 0.9811 0.9832 0.9832

F1 0.9569 0.9721 0.9674 0.9733 0.9733

35X precision 0.941 0.9485 0.9435 0.9485 0.9483

recall 0.9657 0.9764 0.9744 0.9764 0.9764

F1 0.9531 0.9623 0.9587 0.9622 0.9621

20X precision 0.9315 0.9369 0.9393 0.9393 0.9393

recall 0.9343 0.9446 0.9444 0.9443 0.9443

F1 0.9328 0.9407 0.9418 0.9418 0.9418

10X precision 0.9181 0.9273 0.9286 0.9286 0.9286

recall 0.8556 0.8671 0.8663 0.8663 0.8663

F1 0.8857 0.8962 0.8964 0.8961 0.8964

5X precision 0.9518 0.9573 0.9608 0.9608 0.9601

recall 0.6761 0.6866 0.6765 0.6763 0.6765

F1 0.7906 0.7997 0.7937 0.7938 0.7937

Frontiers in Genetics frontiersin.org13

Yu et al. 10.3389/fgene.2024.1404415

71

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1404415


References

Aganezov, S., Goodwin, S., Sherman, R. M., Sedlazeck, F. J., Arun, G., Bhatia, S., et al.
(2020). Comprehensive analysis of structural variants in breast cancer genomes using
single-molecule sequencing. Genome Res. 30 (9), 1258–1273. doi:10.1101/gr.260497.119

Beyter, D., Ingimundardottir, H., Oddsson, A., Eggertsson, H. P., Bjornsson, E.,
Jonsson, H., et al. (2021). Long-read sequencing of 3,622 Icelanders provides insight into
the role of structural variants in human diseases and other traits. Nat. Genet. 53 (6),
779–786. doi:10.1038/s41588-021-00865-4

Chakraborty, A., and Ay, F. (2018). Identification of copy number variations and
translocations in cancer cells from Hi-C data. Bioinformatics 34 (2), 338–345. doi:10.
1093/bioinformatics/btx664

DeWit, E., and De Laat, W. (2012). A decade of 3C technologies: insights into nuclear
organization. Genes Dev. 26 (1), 11–24. doi:10.1101/gad.179804.111

Ding, H., and Luo, J. (2022). MAMnet: detecting and genotyping deletions and
insertions based on long reads and a deep learning approach. Brief. Bioinform 23 (5),
bbac195. doi:10.1093/bib/bbac195

Gao, R., Luo, J., Ding, H., and Zhai, H. (2023). INSnet: a method for detecting
insertions based on deep learning network. BMC Bioinforma. 24 (1), 80. doi:10.1186/
s12859-023-05216-0

He, Y.-S., Zhang, W., and Yang, Z.-Q. (2009). Structural variation in the human
genome. Yi Chuan 31 (8), 771–778. doi:10.3724/sp.j.1005.2009.00771

Heller, D., and Vingron, M. (2019). SVIM: structural variant identification using
mapped long reads. Bioinformatics 35 (17), 2907–2915. doi:10.1093/bioinformatics/btz041

Jiang, T., Liu, S., Cao, S., andWang, Y. (2022). Structural variant detection from long-
read sequencing data with cuteSV.Methods Mol. Biol. 2493, 137–151. doi:10.1007/978-
1-0716-2293-3_9

Korlach, J., Bjornson, K. P., Chaudhuri, B. P., Cicero, R. L., Flusberg, B. A., Gray, J. J.,
et al. (2010). Real-time DNA sequencing from single polymerase molecules. Methods
Enzymol. 472, 431–455. doi:10.1016/s0076-6879(10)72001-2

Li, J., Gao, L., and Ye, Y. (2023). HiSV: a control-free method for structural variation
detection from Hi-C data. PLoS Comput. Biol. 19 (1), e1010760. doi:10.1371/journal.
pcbi.1010760

Liu, Y., Jiang, T., Su, J., Liu, B., Zang, T., and Wang, Y. (2021). SKSV: ultrafast
structural variation detection from circular consensus sequencing reads. Bioinformatics
37 (20), 3647–3649. doi:10.1093/bioinformatics/btab341

Ma, H., Zhong, C., Chen, D., He, H., and Yang, F. (2023). cnnLSV: detecting structural
variants by encoding long-read alignment information and convolutional neural
network. BMC Bioinforma. 24 (1), 119. doi:10.1186/s12859-023-05243-x

Mahmoud, M., Gobet, N., Cruz-Dávalos, D. I., Mounier, N., Dessimoz, C., and
Sedlazeck, F. J. (2019). Structural variant calling: the long and the short of it. Genome
Biol. 20 (1), 246. doi:10.1186/s13059-019-1828-7

Maxam, A. M., and Gilbert, W. (1992). A new method for sequencing DNA.
Biotechnol. (Read. Mass) 24 (2), 99–103. doi:10.1073/pnas.74.2.560

Sanger, F., Nicklen, S., and Coulson, A. R. (1977). DNA sequencing with chain-
terminating inhibitors. Proc. Natl. Acad. Sci. U. S. A. 74 (12), 5463–5467. doi:10.1073/
pnas.74.12.5463

Sedlazeck, F. J., Rescheneder, P., Smolka, M., Fang, H., Nattestad, M., von
Haeseler, A., et al. (2018). Accurate detection of complex structural variations
using single-molecule sequencing. Nat. Methods 15 (6), 461–468. doi:10.1038/
s41592-018-0001-7

Wang, S., Lee, S., Chu, C., Jain, D., Kerpedjiev, P., Nelson, G. M., et al. (2020). HiNT: a
computational method for detecting copy number variations and translocations from
Hi-C data. Genome Biol. 21, 73. doi:10.1186/s13059-020-01986-5

Wang, X., Luan, Y., and Yue, F. (2022). EagleC: a deep-learning framework for
detecting a full range of structural variations from bulk and single-cell contact maps. Sci.
Adv. 8 (24), eabn9215. doi:10.1126/sciadv.abn9215

Wenger, A. M., Peluso, P., Rowell, W. J., Chang, P. C., Hall, R. J., Concepcion, G. T.,
et al. (2019). Accurate circular consensus long-read sequencing improves variant
detection and assembly of a human genome. Nat. Biotechnol. 37 (10), 1155–1162.
doi:10.1038/s41587-019-0217-9

Zheng, Y., and Shang, X. (2023). SVcnn: an accurate deep learning-based method for
detecting structural variation based on long-read data. BMC Bioinforma. 24 (1), 213.
doi:10.1186/s12859-023-05324-x

Zheng, Y., Shang, X., and Sung, W.-K. (2023). SVsearcher: a more accurate structural
variation detection method in long read data. Comput. Biol. Med. 158, 106843. doi:10.
1016/j.compbiomed.2023.106843

Zhong, J. Y., Niu, L., Lin, Z. B., Bai, X., Chen, Y., Luo, F., et al. (2023). High-
throughput Pore-C reveals the single-allele topology and cell type-specificity of 3D
genome folding. Nat. Commun. 14 (1), 1250. doi:10.1038/s41467-023-36899-x

Frontiers in Genetics frontiersin.org14

Yu et al. 10.3389/fgene.2024.1404415

72

https://doi.org/10.1101/gr.260497.119
https://doi.org/10.1038/s41588-021-00865-4
https://doi.org/10.1093/bioinformatics/btx664
https://doi.org/10.1093/bioinformatics/btx664
https://doi.org/10.1101/gad.179804.111
https://doi.org/10.1093/bib/bbac195
https://doi.org/10.1186/s12859-023-05216-0
https://doi.org/10.1186/s12859-023-05216-0
https://doi.org/10.3724/sp.j.1005.2009.00771
https://doi.org/10.1093/bioinformatics/btz041
https://doi.org/10.1007/978-1-0716-2293-3_9
https://doi.org/10.1007/978-1-0716-2293-3_9
https://doi.org/10.1016/s0076-6879(10)72001-2
https://doi.org/10.1371/journal.pcbi.1010760
https://doi.org/10.1371/journal.pcbi.1010760
https://doi.org/10.1093/bioinformatics/btab341
https://doi.org/10.1186/s12859-023-05243-x
https://doi.org/10.1186/s13059-019-1828-7
https://doi.org/10.1073/pnas.74.2.560
https://doi.org/10.1073/pnas.74.12.5463
https://doi.org/10.1073/pnas.74.12.5463
https://doi.org/10.1038/s41592-018-0001-7
https://doi.org/10.1038/s41592-018-0001-7
https://doi.org/10.1186/s13059-020-01986-5
https://doi.org/10.1126/sciadv.abn9215
https://doi.org/10.1038/s41587-019-0217-9
https://doi.org/10.1186/s12859-023-05324-x
https://doi.org/10.1016/j.compbiomed.2023.106843
https://doi.org/10.1016/j.compbiomed.2023.106843
https://doi.org/10.1038/s41467-023-36899-x
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1404415


Specific feature recognition on
group specific networks
(SFR-GSN): a biomarker
identification model for
cancer stages

Bolin Chen1,2*, Yuxin Wang1, Jinlei Zhang1, Yourui Han1,
Hamza Benhammouda1, Jun Bian3*, Ruiming Kang4 and
Xuequn Shang1,2

1School of Computer Science, Northwestern Polytechnical University, Xi’an, Shaanxi, China, 2Key
Laboratory of Big Data Storage and Management, Northwestern Polytechnical University, Ministry of
Industry and Information Technology, Xi’an, Shaanxi, China, 3Department of General Surgery, Xi’an
Children’s Hosptial, Xi’an Jiaotong University Affiliated Children’s Hosptial, Xi’an, China, 4Rewise
(Hangzhou) Information Technology Co., Ltd, Hangzhou, China

Background and Objective: Accurate identification of cancer stages is
challenging due to the complexity and heterogeneity of the disease. Current
clinical diagnosis methods primarily rely on phenotypic observations, which may
not capture early molecular-level changes accurately.

Methods: In this study, a novel biomarker recognition method was proposed
tailored for cancer stages by considering the change of gene expression
relationships. Utilizing the sample-specific information and protein-protein
interaction networks, the group specific networks were constructed to
address the limited specificity of potential biomarkers. Then, a specific feature
recognition method was proposed based on these group specific networks,
which employed the random forest algorithm for initial screening followed by a
recursive feature elimination process to identify the optimal biomarker subset.
During exploring optimal results, a strategy termed the Cost-Benefit Ratio, was
devised to facilitate the identification of stage-specific biomarkers.

Results: Comparative experiments were conducted on lung adenocarcinoma
and breast cancer datasets to validate the method’s efficacy and generalizability.
The results showed that the identified biomarkers were highly stage-specific, and
the F1 scores for predicting cancer stages were significantly improved. For the
lung adenocarcinoma dataset, the F1 score reached 97.68%, and for the breast
cancer dataset, it achieved 96.87%. These results significantly surpassed those of
three conventional methods in terms of F1 scores. Moreover, from the
perspective of biological functions, the biomarkers were proved playing an
important role in cancer stage-evolution.

Conclusion: The proposed method demonstrated its effectiveness in identifying
stage-related biomarkers. By using these biomarkers as features, accurate
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prediction of cancer stages was achieved. Furthermore, the method exhibited
potential for biomarker identification in subtype analyses, offering novel
perspectives for cancer prognosis.

KEYWORDS

biomarker, cancer stages, group specific network, multi classification tasks, edge feature

1 Introduction

Cancer is a disease characterized by uncontrolled cell
proliferation, posing a serious threat to human health. According
to the World Health Organization, in 2020 alone, nearly 10 million
people (about one-sixth of all deaths worldwide) died from cancer
(Sung et al., 2021). Understanding cancer begins with an important
dimension: its stages, which could describe the size and extent of
tumor spread. Due to the high heterogeneity and complexity of
cancer, it poses significant challenges for the identification of cancer
stages (Burrell et al., 2013). Hence, investigating an intelligent model
for the identification of stage-related biomarkers is very important.
It helps in understanding the characteristics and changes during the
development process of cancer. This research endeavor proves
valuable in enhancing cancer treatment strategies and prognostic
assessments.

As far as the biomarkers are concerned, encompass a range of
molecules, cellular structures, or biological processes that can be
objectively detected and quantified within or outside an organism
(Moein et al., 2020). They play a crucial role in revealing an
individual’s health status, physiological functions, pathological
conditions, and biological responses to treatment. This makes
them integral players in the development of precision medicine
and personalized treatment strategies (Holland, 2016). Specifically,
stage-related biomarkers provide crucial information about tumor
progression, metastasis, and treatment response (Amin et al., 2010;
Van der Kloet et al., 2012). By analyzing the expression patterns and
changes of stage-related biomarkers, healthcare professionals and
researchers can gain a better understanding of the cancer’s
progression status, choose appropriate treatment strategies, and
monitor treatment effectiveness.

However, molecular distinctions between different cancer stages
are often subtle (Ye et al., 2020). For example, in early-stage cancer,
molecular changes may be influenced by minor alterations in the
activity of a few key genes or subtle modulation of signaling
pathways. The boundaries between cancer stages, as defined
clinically, are often indistinct at the molecular level. For instance,
the molecular changes between stage I of a late-stage and stage II of
an early-stage cancer could be very similar. Therefore, the
identification of stage-related biomarkers at the molecular level
has been a long-standing challenge.

Currently, two mainstream approaches primarily guide the
identification of stage-related biomarkers. The first category is based
on differential expression analysis. Deva Magendhra Rao et al. (2019)
compared non-coding RNAs (lncRNAs) between invasive ductal
carcinoma (IDC) breast cancer tissues and normal breast tissues.
There were 375 differentially expressed lncRNAs identifying closely
associated with the early-stage development of breast cancer. Shi et al.
(2018) analyzed gene expression data from four stages of colorectal
cancer, identifying stage-specific differentially expressed genes and

exploring their shared biological functions. Wang et al. (2017)
studied gene expression data in non-small cell lung cancer and
found that differentially expressed genes at different stages
significantly impacted biological functions and signaling pathways.
However, these methods often overlook molecular interactions and
typically validate their findings through functional or pathway
enrichment analysis but few focus on the identification of stage-
related biomarkers.

On the other hand, the second category, focuses on machine
learning techeques. Patil and Bellary (2022) achieved good
performance in stage identification of melanoma based on features
from dermoscopic images and tumor thickness usingmachine learning.
Ubaldi et al. (2021) performed a binary classification task to identify
stage I and stage II non-small cell lung cancer using radiometric data
and machine learning, achieving a high AUC value at 0.84. Jin et al.
(2021) developed an interpretable machine learning model that could
identify gene expression biomarkers for early-stage LUAD. However,
these methods typically focus on building accurate prediction models
similar to a “black box” with limited biological and clinical
interpretability. Some researchers strive to construct interpretable
machine learning models for identifying stage-related biomarkers,
but this often leads to compromises in the predictive performance
of themodel to some extent for the samples are imbalanced, and there is
minimal molecular-level difference between different stages. In
summary, existent methods have weaker specificity in identifying
stage-related molecular-level biomarkers.

In this paper, an efficient method was proposed to identify stage-
related biomarkers through specific feature recognition on group
specific networks (SFR-GSN), which could sensitively capture the
differences between different stages and identify features that exhibit
significant specificity between stages. Two mainly high-risk cancers,
lung adenocarcinoma (LUAD) and breast carcinoma (BRCA), were
used to evaluate the proposed method. Firstly, the clinical data,
RNA-Seq data and protein-protein interactions (PPI) of LUAD and
BRCA were first collected from public database. Then, based on the
tumor samples and normal samples, the sample-specific networks
(SSN) were constructed, which further intersected with PPI to
construct the group-specific network (GSN). Through clinical
data, GSNs were combined into one GSN corresponding to one
cancer stage, which could address the weak specificity of existing
biomarkers. Subsequently, a specific feature recognition (SFR)
method based on these GSNs was proposed. SFR was designed in
two-round, the first round was pre-screening by utilizing the
random forest algorithm with Gini impurity quantifying the
purity improvement. The second round was optimal subset
screening of biomarkers by using the recursive feature
elimination with cross-validation. Notably, during exploring the
optimal results, the Cost-Benefit Ratio (CBR) was introduced as an
important indicator for identifying the stage-related biomarkers.
Eventually, comparative experiments among SFR-GSN and three
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state-of-the-art methods were conducted on LUAD and BRCA
datasets to validate the effectiveness and generalization ability of
the proposed method. The results showed that the identified
biomarkers significantly improved F1 scores for predicting cancer
stages. Also from the perspective of biological functions, the
biomarkers were proved playing an important role in cancer
stage-evolution.

2 Methods

2.1 Data collection

In the study, we focused on two kinds of cancer, lung
adenocarcinoma (LUAD) and breast cancer (BRCA). On one hand,
LUAD and BRCA are both cancer types associated with high levels of

TABLE 1 The number of samples of LUAD and BRCA in experiments.

Cancer types Normal Stage I Stage II Stage III Stage IV Sum

LUAD 59 273 122 83 26 563

BRCA 114 182 621 250 20 1,187

FIGURE 1
The flowchart of constructing GSN. The red dotted line section is the construction of SSN, while the blue dotted line section is the following part,
using SSN and PPI to construct the GSN.
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severity. LUAD is one of the most common subtypes of lung cancer,
while BRCA is one of the most prevalent cancers among women. These
two cancer types significantly impact patients’ quality of life and survival
rates. On the other hand, since LUADandBRCA are two common types
of cancer with relatively high incidence rates worldwide, as a result, these
cancer types have ample sample data available. The richness of data helps
improve the accuracy and reliability of the models. Therefore, studying
and analyzing datasets related to LUAD and BRCA can enhance our
understanding of the disease mechanisms, risk factors, and treatment
strategies, providing valuable insights for cancer diagnosis and treatment.

We separately collected the clinical data and RNA-Seq data of
LUAD and BRCA from Xena Tomczak et al. (2015); Wang et al. (2022)
and separated the RNA-Seq data into different pathological stages.

Then, the counts per million (CPM) (Law et al., 2016) were applied to
filter the low-expression genes, and genes with a value higher than
2 CPM in at least half of the samples were retained. Additionally, the
protein-protein interactions were compiled from STRING (Szklarczyk
et al., 2023). PPI was widely used in identifying biomolecules, including
biomarkers, and driver genes in many studies. The RNA-Seq datasets
used in the experiments is shown in Table 1.

2.2 Construction of group specific networks

The group specific networks were constructed based on the two
main kinds of networks: Sample-Specific Networks (SSN) and PPI

TABLE 2 F1 score and CBR for multi-class classification in stages of LUAD and BRCA at different feature quantity thresholds.

LUAD BRCA

Number of features F1 score (%) CBR Number of features F1 score(%) CBR

1 48.7420 - 1 71.9124 -

2 86.2510 37.5090 2 93.4443 21.5318

3 91.2557 5.0047 3 95.3618 1.9174

4 92.5050 1.2492 4 96.2117 0.8499

5 93.3089 0.8039 5 97.2808 1.0691

6 96.1537 2.8448 6 97.4655 0.1846

7 96.8517 0.6979 7 98.2629 0.7974

8 96.9067 0.0550 8 99.1047 0.8417

9 97.4935 0.5868 9 98.3727 −0.7319

10 97.8804 0.3868 10 99.0001 0.6273

The bold values represent the best results among the column.

FIGURE 2
The relationship between CBR and number of features in LUAD datasets. The red dotted line represents CBR = 0.5 for parameter setting. From the
figure, the best number of features in LUAD datasets is 7.
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FIGURE 3
Venn graph of the obtained stage-related biomarkers for LUAD and BRCA.

FIGURE 4
KEGG pathway enrichment result of LUAD stage-related biomarker.
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FIGURE 5
GO enrichment results of stage biomarkers for LUAD and BRCA.

TABLE 3 The comparison of identification in stage-related biomarkers among SFR-GSN, three conventional methods, and all genes on LUAD and BRCA
datasets.

LUAD BRCA

Methods Number of features F1 score(%) Number of features F1 score(%)

All Genes 1,3326 38.90 1,3168 42.77

DEGs 225 42.42 318 42.51

WGCNA 151 40.35 396 43.89

Relife 100 42.29 100 43.49

SFR-GSN 7 96.85 5 97.28

The bold values represent the best results among the column.

TABLE 4 F1 score and CBR for multi-class classification in stages of LUAD and BRCA at different feature quantity thresholds.

LUAD BRCA

Number of features F1 score(%) CBR Number of features F1 score(%) CBR

1 73.2800 - 1 51.2668 -

2 91.3155 18.0354 2 81.9457 30.6788

3 95.9758 4.1303 3 89.6415 7.6958

4 96.8973 0.5300 4 93.2176 3.5760

5 97.3499 0.9214 5 94.4989 1.2813

6 97.7847 0.4526 6 96.4546 1.9557

7 97.7847 0.4347 7 96.9095 0.4549

8 97.7847 0 8 97.3826 0.4731

9 97.7847 0 9 97.3919 0.0093

10 98.2410 0.4563 10 97.7572 0.3652

The bold values represent the best results among the column.

Frontiers in Genetics frontiersin.org06

Chen et al. 10.3389/fgene.2024.1407072

78

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1407072


networks. Proposed by Liu et al. (2016), SSN could assist in
identifying driver genes from the perspective of the personalized
network. GSN, combined SSN, and the existing PPI could increase
the robustness of the interactions. The flow of the construction of
GSN was summarized in Figure 1.

SSN was initially constructed based on RNA-Seq data. For all
normal samples, a reference network was constructed by calculating the
pairwise gene-gene Pearson correlation coefficients (PCC, represented
in the reference network as PCCn). Meanwhile, for each disease sample,
a perturbation network was generated by incorporating the normal
sample set and reconstructing the network, resulting in PCCn+1.
Subsequently, the differential network was obtained by subtracting

the perturbation network from the reference network, and the
difference was derived as Formula (1).

△PCC � PCCn+1 − PCCn (1)
Edges with a statistical p-value < 0.05 were considered significant
and retained. In the constructed SSN, nodes represent genes, while
the connections between nodes indicate significant differences in the
correlation between the two genes in the disease sample compared to
the normal sample set. This dissimilarity is quantified by △PCC.

Then, on the basis of the SSN, intersections were combined with
the PPI.We retained the experimentally validated edges presented in
PPI, with the edge weight calculated from SSN. Due to the samples

FIGURE 6
KEGG pathway enrichment results of subtype biomarkers for LUAD and BRCA.

FIGURE 7
GO enrichment results of subtype biomarkers for LUAD and BRCA.
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could be divided into different pathological stages, the PPI-SSN for
all samples was classified according to different stages (groups) of
cancer. For instance, within one specific cancer group Gi responding
to one GSN, consisting of N cancer samples, the N PPI-SSNs were
integrated. Also, the edge weight was calculated by taking an average
on the △PCC of same edge in N different samples. As for the edges
not appearing in the samples, their △PCC was set to 0. Finally, the
edge weight of GSN was derived as Formula (2).

w � ∑N
i�1△PCCi

N
(2)

Considering the generalization of GSN, a ten-fold cross-
validation approach was employed during the experimental
process. A GSN was constructed for each training fold, resulting
in ten GSNs, and the edge weight from these ten GSNs was also
averaged. Ultimately for every cancer group Gi, only one
corresponding GSN was constructed, which is stage-specific.

2.3 Specific feature recognition

Based on the constructed GSN, we aimed to identify the most
representative and minimal set of features as biomarkers. These
features in the selected set contain a high degree of complementary
information, resembling a minimal control network. Feature
recognition consists of two main parts: pre-screening and
optimal subset screening of biomarkers.

2.3.1 Pre-screening of biomarkers
The edge set of each GSN corresponding to each group is

sorted in descending order based on the edge weights and
subjected to pre-screening to obtain the top 50 edges. Among
the top 50 edges, the features at both ends of these selected edges
are obtained, and their union forms the candidate feature set.
Then the candidate feature set is further filtered using the feature
importance calculation algorithm embedded in random forest
(Acharjee et al., 2020), narrowing it down to a new candidate
feature set, which containing only the top 50 features based on
their importance rankings. During the feature pre-screening, the
Gini impurity was introduced to quantify the purity
improvement achieved through branching. The Gini impurity,
presented as Gini, could be derived as Formula (3).

Gini � 1 −∑n
i�1

p2
i (3)

where pi represents the relative frequency of the i-th class in the
dataset, which is the probability of that class occurring in the dataset,
and n is the total number of categories.

In random forest, the calculation of feature importance is based
on the Gini impurity of each feature at each node in every tree.
Specifically, for each feature, at each node of each tree, the algorithm
splits the dataset into two subsets based on that feature. Then, the
difference between the Gini impurity of the subsets after the split
and the Gini impurity of the original node was calculated. Finally, by
aggregating the feature importance scores from all nodes, the overall
feature importance for each feature in the random forest was
obtained. The built-in feature importance evaluation capability of

the random forest makes it a powerful tool for understanding data
and extracting key biomarkers in multi-class classification tasks. The
whole pre-screening procession was described in Algorithm 1.

Require: Random forest model RF, training data set D;

Ensure: A list of feature importances importance;

1: for each tree in RF do

2: for each node in tree do

3: for each feature f in node do

4: Split the dataset at node into two subsets Dleft
and Dright based on feature f;

5: Calculate the Gini impurity of the original

node, denoted as Gini;

6: Calculate the Gini impurity of Dleft, denoted

as Ginileft;

7: Calculate the Gini impurity of Dright, denoted

as Giniright;

8: Calculate the gain in impurity after splitting

on feature f:

9: impurityGain � |Dleft |
|D| × (Gini − Ginileft) + |D

right|
|D| × (Gini−Giniright);

10: Update the importance of feature f based on the

impurity gain:

11: importance [f] ← importance [f] +

impurityGain;

12: end for

13: end for

14: end for

15: Sort the features based on the values in

importance using a suitable sorting algorithm.

Algorithm 1. Pre-screening of biomarkers by random forest feature

importance calculation.

2.3.2 Optimal subset screening of biomarkers
After the pre-screening, the top 50 candidate feature sets were

further filtered by Recursive Feature Elimination with Cross-Validation
(RFECV). The RFECV algorithm finds the optimal feature subset by
iteratively removing features, involving model training and cross-
validation for each reduced feature set. In each iteration, the
algorithm removes the least important feature (the one contributing
the least to the model’s performance improvement), retrains the model
on the remaining feature set, and performs cross-validation. This
process continues until a specific number of features is reached or
further removal of features significantly degrades model performance.

Notably, to select the minimum number of features that achieve
the best predictive performance, the Cost-Benefit Ratio (CBR) was
introduced to assist in screening the optimal feature set (De Picker
and Haarman, 2021). The CBR could be defined as Formula (4).

CBR � 100 × PR

INF × UFC
(4)

in this formula, the symbols represent the following:

• PR: Performance Gain, which refers to the improvement of the
F1 score in the model.

• INF: Increased Number of Features.
• UFC: Unit Feature Cost.
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Through CBR, we can quantitatively evaluate whether the
performance improvement gained from adding specific features is
worth the additional cost required. It is particularly important
in situations where there is a need to balance decisions between
performance improvement and cost.

During the model training, multiple thresholds (thresh) were set
for the number of features and obtained their corresponding model
performance evaluation metric, F1 score. Then, according to the
CBR model, the optimal feature subset was screened in a recursive
way. The optimal subset screening of biomarkers using RFECV was
presented as Algorithm 2.

Require: candidate feature set, threshold for the number

of features thresh;

Ensure: feature set S, model performance evaluation

metric F1 score;

1: Initialize the feature set S and set it as the

candidate feature set;

2: Define the model performance evaluation

metric F1 score;

3: Define the threshold for the number of

features thresh;

4: while S is not ∅ do

5: Train the model using the feature set as the

training set;

6: Introduce cross-validation to evaluate the

model performance;

7: if the number of features = = thresh then

8: Save the current feature set as S;

9: Save the current model performance metric as

F1 score;

10: break;

11: end if

12: Reove the least contributing features from S;

13: end while

Algorithm 2. Recursive Feature Elimination with Cross-Validation

(RFECV) algorithm.

3 Results

The experimental results were obtained using ten-fold cross-
validation to ensure reliability. In each round, nine folds of the
datasets were treated as a train set and the other one fold acted as a
test set. The train set was used to construct theGSN and select the feature.
The test set was utilized to evaluate the model performance. In addition,
specific feature experiments and comparative analyses were conducted to
validate the effectiveness of the model. Moreover, the proposed method
was expanded to identify cancer subtypes related biomarkers as well.

3.1 Specific feature experiments

Specific feature experiments were conducted in the following
two steps. Firstly, the important parameters were introduced
including the CBR and number of features. Secondly, the stage-
specific biomarkers in LUAD and BRCA datasets were identified.

The effectiveness of the identified biomarker were performed
through enrichment analysis.

3.1.1 Setting of the important parameter
CBR was designed as a key parameter to assist in screening the

optimal feature set, which is directly related to the number of
features. The proposed methods were conducted on LUAD and
BRCA datasets to determine a series of feature counts, and the
F1 scores and CBRs were calculated through the experiments which
was summarized in Table 2.

From the table, it is shown that in LUAD datasets, as the number of
features increases, the F1 score generally improves, but the CBR shows
non-monotonic variations. Therefore, to further illustrate the relationship
between CBR and the number of features, their relationship in LUAD
datasets was plotted in Figure 2. In the figure, the CBR values were
compared with 0.5, as this threshold is often used as a balancing point.
When the CBR is greater than 0.5, it indicates a profitable decision, while
a CBR lower than 0.5 suggests a cost-effective decision.

Therefore, the CBRmetric was utilized to determine the optimal
number of features.

Starting with a small number of features and gradually increasing,
the point was identified where the first CBR value fell below 0.5.

The CBR indicates the overall benefit of adding a new feature to
the model. Therefore, the feature count just before this point was
identified as the optimal number of features.

3.1.2 Stage-specific biomarkers
Based on the parameter setting, features with CBR values greater

than 0.5 were selected to maximize the F1 score. The obtained
biomarkers were in the form of gene pairs or edges.

Compared with the node features, the edge biomarkers could
better capture the interaction relationships between genes, aiding in
understanding the structure and functionality of gene networks.

The edge features could reflect the interplay and coordinated
regulation among genes, revealing more details about biological
processes and disease development.

As for the LUAD dataset, seven features were eventually identified
that meet this criterion, achieving an impressive F1 score at 96.8517%
and a CBR at 0.6979. These features include: (ABI2, ARPC1B),
(CDK12, POLR2I), (FRS2, FRS3), (PABPC4, ZC3H14), (SNAP29,
TSNARE1), (SEC24C, TRAPPC6B), and (CUL4A, RPA1). Similarly,
for the BRCA dataset, five features were selected that yielded a
remarkable F1 score at 97.2808% and a CBR at 1.0691. These
features are: (EXOSC3, SKIV2L2), (BYSL, UTP14C), (EXOSC8,
UTP14C), (PPP3CB, WDR82), and (CD59, SEC24C). The Venn
graph of the obtained biomarkers is shown in Figure 3, which
demonstrates the biomarkers were highly stage-specific.

3.2 Enrichment analysis

Moreover, the Kyoto Encyclopedia of Genes andGenomes (KEGG)
Pathway analysis and Gene Ontology (GO) enrichment analysis were
performed to validate the effectiveness of identified biomarkers.

KEGG pathway enrichment analysis is a frequently employed
method in bioinformatics to interpret gene expression or protein
expression data (Ogata et al., 1999). After performing a significance
test on 14 genes in the biomarkers of LUAD stages, a total of seven
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genes were found to be enriched in 10 pathways. Among them, the
gene RPA1 was found to be involved in five pathway processes, as
shown in Figure 4. In the figure, the red dots represent genes, and the
different colored curves represent different pathways. One end of the
curve represents a gene, while the other end represents the hub of
that pathway, and the size of the hub is proportional to the number
of genes enriched in that pathway. As for stage-related biomarkers of
BRCA, a total of three genes were found to be enriched in two
pathways. Specifically, genes EXOSC8 and EXOSC3 were enriched
in hsa03018: RNA degradation, while gene PPP3CB was enriched in
hsa04370: VEGF signaling pathway. Due to the small number of
genes, they were not visualized.

GO (Gene Ontology) enrichment analysis was carried out to help
understand the roles of a set of genes in biological processes Harris et al.
(2004). GO enrichment analysis was carried out on the 14 genes in the
stage-related biomarkers of LUAD, and the results are shown in
Figure 5 LUAD, which indicates these 14 genes are involved in a
total of 240 biological processes. In the figure, the x-axis represents the
enrichment score, which indicates the degree of influence of the target
genes on the corresponding GO term, while y-axis represents the
different GO terms. The different colors represent the three main
categories of GO. Each category includes only the top 10 terms
based on their enrichment score. Similarly, GO enrichment analysis
was performed on the nine genes in the stage-related biomarkers of
BRCA, and the results are shown in Figure 5 BRCA. These nine genes
were found to participate in a total of 205 biological processes.

The enrichment results demonstrate significant specificity of the
features constructed using our proposed method across different
stages within the two major cancer types, LUAD and BRCA. The
evidence further validates the effectiveness of the proposed method.

3.3 Comparative experiments

Comparative experiments were conducted mainly in view of
stage-related biomarker prediction. The proposed method was
compared with the three conventional methods on biomarker
identification: differentially expression genes (DEGs) Love et al.
(2014), WGCNA Horvath (2011) and RelifF Robnik-Šikonja and
Kononenko (2003). DEGs were mainly obtained using R package
DESeq2 to conduct differential expression analysis, and the DEGs
were treated as biomarkers. Based on differential expression data,
WGCNA (Weighted Gene Co-expression Network Analysis) is a
method used to construct co-expression networks from gene

expression data, which is currently widely applied in the
identification of biomarkers for complex diseases and drug
targets. RelifF is a machine learning method on binary
classification, which could identify the biomarkers.

Moreover, to ensure an equivalent comparison, the four methods
were compared based on their best performance. Also, the features in all
genes were performed as a control group. The F1 score was employed for
evaluation since it is not influenced by the varying number of features
across different methods. The results of the comparative experiments on
LUAD datasets and BRCA datasets are shown in Table 3.

From the table, it is shown that the proposed method
significantly outperforms other methods in terms of F1 scores.
Additionally, the proposed method provides fewer features than
other methods, which indicates the proposed method could identify
the biomarker more accurately.

3.4 SFR-GSN on cancer subtype-related
biomarkers

Besides the evolutionary characteristics in different stages,
cancer also exhibits various subtypes. As for LUAD, three types
often occur in the evolution, which are Papillary Predominant (PP),
Acinar Predominant (PI), and Trabecular (TRU). By studying
subtype-related biomarkers, a better understanding of the
differences in disease progression, treatment response, and
prognosis among different subtypes could be obtained (Perou
et al., 2000; Muller et al., 2022). Therefore, in order to enhance
the generalization of our model, experiments on subtype-related
data were conducted to identify the subtype-related biomarkers.

Firstly, the datasets were separated into the three subtypes and
accordingly, three corresponding GSNs were constructed. Then, SFR
was trained on the GSNs, features with CBR> 0.5 were obtained, and
the F1 score and CBR were shown in Table 4. Finally, five features
were identified as subtype-related biomarkers of LUAD, these are
(HDAC6, SIRT2), (AKT2, RICTOR), (DHX33, PINX1), (SNAP29,
TSNARE1) and (ASPSCR1, VCPIP1). Similarly, the BRCA datasets
were divided into five groups due to the five subtypes of BRCA.
Eventually, the results were shown in Table 4, where six features were
screened as subtype-related biomarkers, these are (SRC, USP8),
(IRAK4, TOLLIP), (SRC, TRAF6), (F8, SEC24C), (CDK12,
SUPT5H) and (CDC40, SF3B2).

Further, the enrichment analysis was conducted on the
identified features. In the subtype-related biomarkers of LUAD,

TABLE 5 The comparison of identification in subtype-related biomarkers among SFR-GSN, three conventional methods, and all genes on LUAD and BRCA
datasets.

LUAD BRCA

Methods Number of features F1 score(%) Number of features F1 score(%)

All Genes 1,3326 72.73 1,3168 85.9674

DEGs 2,478 82.38 3,922 87.77

WGCNA 426 78.00 632 86.32

Relife 100 81.16 100 83.45

SFR-GSN 5 96.89 6 96.45

The bold values represent the best results among the column.
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five genes were enriched in 10 pathway pathways, with the gene
AKT2 was found in eight pathway pathways. In that of BRCA, eight
genes were enriched in 24 pathways, with the gene TRAF6 being
enriched in 21 pathways and the gene IRAK4 was found in
20 pathways. KEGG pathway enrichment results are shown in
Figure 6. Subsequently, the results of the GO enrichment analysis
are shown in Figure 7. The 10 genes in the LUAD subtypes are
involved in 360 biological processes, while 11 genes in the BRCA
subtypes are involved in 407 biological processes.

After providing the results of SFR-GSN on the identification, the
proposed method was also compared with three conventional
methods and all genes. The results are shown in Table 5. SFR-
GSN gains the best performance and the least features, which
suggests SFR-GSN exhibits superior capability in identifying
subtype-related biomarkers.

4 Conclusion

In this work, a novel method called SFR-GSN has been proposed
to identify the stage-related biomarkers, which gained remarkable
results on LUAD and BRCA datasets. First, the clinical data, RNA-
Seq data, and PPI were collected. Second, according to the
pathological stage, the GSNs were constructed by combining the
SSN and PPI. Third, based on GSNs, a two-round SFR was
conducted, which firstly used random forest to pre-screen and
later used RFECV to obtain the optimal feature sets. The CBR
was introduced to assist in identifying stage-related biomarkers.

Finally, the results of the proposed method showed that the
identified biomarkers were highly stage-specific and significantly
improved the F1 scores for cancer stage prediction. For the lung
adenocarcinoma dataset, the F1 score reached 97.68%, and for the
breast cancer dataset, it achieved 96.87%. The results outperform the
other conventional methods on both accuracy and F1 scores. Moreover,
the enrichment analysis of biomarkers was conducted to validate the
effectiveness of the proposed method in view of biological functions.
The proposed method exhibits superior performance in identifying
subtype-related biomarkers. The proposed method could be applied to
other cancers to offer new insight into cancer treatment prognosis.
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Introduction: Multiple sclerosis (MS) and neuromyelitis optic spectrum disorder 
(NMOSD) are mimic autoimmune diseases of the central nervous system 
with a very high disability rate. Their clinical symptoms and imaging findings 
are similar, making it difficult to diagnose and differentiate. Existing research 
typically employs the T2-weighted fluid-attenuated inversion recovery (T2-
FLAIR) MRI imaging technique to focus on a single task in MS and NMOSD 
lesion segmentation or disease classification, while ignoring the collaboration 
between the tasks.

Methods: To make full use of the correlation between lesion segmentation and 
disease classification tasks of MS and NMOSD, so as to improve the accuracy 
and speed of the recognition and diagnosis of MS and NMOSD, a joint model is 
proposed in this study. The joint model primarily comprises three components: 
an information-sharing subnetwork, a lesion segmentation subnetwork, and 
a disease classification subnetwork. Among them, the information-sharing 
subnetwork adopts a dualbranch structure composed of a convolution module 
and a Swin Transformer module to extract local and global features, respectively. 
These features are then input into the lesion segmentation subnetwork and 
disease classification subnetwork to obtain results for both tasks simultaneously. 
In addition, to further enhance the mutual guidance between the tasks, this 
study proposes two information interaction methods: a lesion guidance module 
and a crosstask loss function. Furthermore, the lesion location maps provide 
interpretability for the diagnosis process of the deep learning model.

Results: The joint model achieved a Dice similarity coefficient (DSC) of 74.87% on the 
lesion segmentation task and accuracy (ACC) of 92.36% on the disease classification 
task, demonstrating its superior performance. By setting up ablation experiments, 
the effectiveness of information sharing and interaction between tasks is verified.

Discussion: The results show that the joint model can effectively improve the 
performance of the two tasks.

KEYWORDS

MS, NMOSD, joint model, MRI, disease classification, lesion segmentation

1 Introduction

The demyelinating disease of the central nervous system is an autoimmune disease 
characterized by multifocal and inflammatory demyelination of the central nervous system. Both 
Multiple sclerosis (MS) and Neuromyelitis optic spectrum disorder (NMOSD) are demyelinating 
diseases of the central nervous system (Bruscolini et al., 2018; McGinley et al., 2021). MS and 
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NMOSD may be  easily confused clinically due to their overlapping 
features (Yokote and Mizusawa, 2016).

Magnetic Resonance Imaging (MRI) is a commonly used medical 
imaging technology in clinical practice (Bauer et  al., 2013) for 
prognosis and treatment response evaluation of MS and NMOSD 
(Filippi et al., 2016; Rotstein and Montalban, 2019). Furthermore, the 
T2-weighted fluid-attenuated inversion recovery (T2-FLAIR) 
sequence can inhibit a certain range of fluid signals, thereby reducing 
the cerebrospinal fluid signal intensity and enhancing the visibility of 
small brain lesions and periventricular lesions. Therefore, T2-FLAIR 
sequence imaging plays a crucial role in the diagnosis of cerebral 
nervous system diseases (Wattjes et al., 2021).

In order to accurately diagnose MS and NMOSD clinically, it is usually 
necessary for radiologists to manually segment the white matter high 
signal presented on MRI images, and then diagnose MS according to the 
McDonald diagnostic criteria (Wattjes et al., 2021) and NMO diagnostic 
criteria (Griggs et al., 2016) according to the distribution and morphology 
of lesions and the clinical manifestations of patients. However, the entire 
diagnostic process is a time-consuming and onerous task for doctors.

Deep learning has achieved advanced performance in image 
processing due to a large amount of labeled data, enabling accurate 
diagnosis of MS and NMOSD (Lee et  al., 2017; Lundervold and 
Lundervold, 2019). The MS and NMOSD auxiliary diagnosis based on 
deep learning mainly includes two tasks: lesion segmentation and 
disease classification. The task of lesion segmentation involves 
identifying and segmenting the lesions according to the high white 
matter signal observed by the patient’s MRI, judging the severity of the 
patient, and monitoring the course of the disease through quantitative 
measurement. The task of disease classification aims to accurately 
diagnose patients, distinguishing between MS and NMOSD according 
to the shape and distribution characteristics of the lesions.

In most research, the segmentation and classification of MS and 
NMOSD are studied independently. In order to improve the efficiency 
and accuracy of the auxiliary diagnosis model, this study analyzes the 
correlation between lesion segmentation and disease classification 
tasks and combines the existing deep learning technology to carry out 
the following research work:

 (1) We proposed a joint model of lesion segmentation and disease 
classification of MS and NMOSD, which is based on the 

intrinsic correlation between the two tasks and used to segment 
and classify MS and NMOSD simultaneously. The structure of 
the joint model (Figure 1) mainly includes three components: 
an information-sharing subnetwork, a lesion segmentation 
subnetwork, and a disease classification subnetwork.

 (2) We proposed two information interaction methods to improve 
the performance of lesion segmentation and disease 
classification tasks in a mutually guided manner, one is a lesion 
guidance module and the other is a cross-task loss function. 
Moreover, the lesion location maps provide interpretability for 
the diagnosis of MS and NMOSD.

The subsequent work consists of four sections, each briefly 
described as follows: in Section 2 we  provide an overview of the 
relevant research on lesion segmentation and disease classification in 
MS and NMOSD. In Section 3 we offer a detailed presentation of the 
joint model for MS and NMOSD in this study. In Section 4 we involve 
experimental validation of the performance of the joint models 
proposed in this study. In Section 5 we present the conclusions drawn 
from this study and provide prospects.

2 Related works

Deep learning-based auxiliary diagnosis of MS and NMOSD 
mainly includes two tasks: lesion segmentation and disease 
classification. The lesion segmentation task involves identifying and 
segmenting lesions based on high signal white matter in a patient’s 
MRI, enabling quantitative measurement to assess the severity of the 
patient’s condition and monitor disease progression. The disease 
classification task aims to diagnose the specific condition a patient has, 
distinguishing whether the patient has MS or NMOSD based on the 
morphology and distribution characteristics of the lesions.

Traditional segmentation methods include threshold segmentation 
algorithms, region-growing algorithms, edge detection algorithms, and 
watershed algorithms. Among these, threshold segmentation algorithms 
enhance images based on the differences in signal intensity between 
healthy brain tissue and lesion regions. These methods involve setting one 
or more thresholds manually or using algorithms after preprocessing the 
images to segment them into different parts based on intensity values. For 

FIGURE 1

The main work content of this study.
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instance, Wicks et al. (1992) proposed an intensity-based global threshold 
segmentation method for MS lesion segmentation. Hence, Wang et al. 
(1998) addressed the impact of scanner sensitivity on thresholds by 
proposing histogram matching algorithms. Their study demonstrated that 
histogram matching significantly reduces dependence on threshold 
selection for lesion segmentation.

In recent years, deep learning methods have exhibited superior 
performance in the field of image segmentation (Wang et al., 2022). 
Particularly, since the introduction of Fully Convolutional Networks 
(FCN) (Shelhamer et al., 2017), which can produce probability prediction 
maps of the same size as the original images without restricting input 
image size, there has been significant progress in the image segmentation 
task. One of the most classical models in medical image segmentation task 
is UNet (Ronneberger et al., 2015). UNet combines lower-level detailed 
information with higher-level semantic information through its encoder-
decoder structure and skip connections. Building upon UNet, Bauer et al. 
(2013) replaced the convolutional blocks in UNet with dense blocks 
Huang et al. (2017), enabling features reuse across channel dimensions, 
and leading to a more accurate and easily trainable network. Zhou et al. 
(2020) proposed the UNet++, which enhances the skip connection 
structure to aggregate features from various scales in the decoder 
sub-network, thereby improving model flexibility.

As medical images like MRI are often three-dimensional, one 
approach involves slicing the images into 2D slices along specific 
dimensions, training 2D models, and then reassembling the 
segmentation results into a 3D format (Tseng et al., 2017). Aslani et al. 
(2019) designed an end-to-end encoder-decoder network. They divided 
MRI images of MS patients into 2D slices along three dimensions, 
inputting them into multiple 2D segmentation models, and reassembled 
the resulting 2D segmentations into a 3D format using a majority voting 
approach. Zhang et al. (2019) proposed a method using 3D stacked 
slices that combine information from adjacent slices in multiple 
channels, increasing inter-slice information. To better extract inter-slice 
information, Çiçek et al. (2016) replaced 2D convolutional operations 
with 3D convolutions, fully utilizing information within and between 
image slices. Building upon this, La Rosa et al. (2020) proposed 3D 
UNet-, segmenting cortical and white matter lesions based on FLAIR 
and MP2RAGE sequences of MS patients. Hu et al. (2020) introduced 
a three-dimensional context-guided module in the encoding and 
decoding stages of 3D UNet, expanding the perceptual field, guiding 
contextual information, and enriching feature representations of MS 
lesion segmentation using a three-dimensional spatial attention block. 
Gessert et al. (2020) proposed a dual-path 3D convolutional structure 
with attention-guided interaction, separately processing MS data from 
two-time points and effectively exchanging information.

Due to the similarities between MS and NMOSD, classifying MS 
and NMOSD is also a critical step in auxiliary diagnosis.

Imaging-based classification methods using handcrafted features 
involve constructing a feature set from digital medical images and 
subsequently employing machine learning models for analysis. These 
methods typically require experienced radiologists to manually extract 
high-dimensional image data into low-dimensional handcrafted 
features. These features, along with relevant clinical variables, are used 
to create a feature set. Feature selection is then performed, and an 
optimal subset of features is utilized to build a predictive model. Huang 
(2019) extracted 273 radiomic features from the lesion area of patients’ 
brain T2-weighted images, including semantic, intensity, and texture 
features. They incorporated 11 radiomic features using the LASSO 

method, combined with 5 clinical features, to construct a diagnostic 
radiomic signature, achieving an AUC result of 0.93 on the test set. 
Kister et al. (2013) conducted quantitative analysis on the shape and 
distribution of localized T2 white matter lesions based on clinical brain 
MRI sequences of 44 AQP4-IgG antibody-positive NMOSD patients 
and 50 MS patients, creating a diagnostic procedure for classifying MS 
and NMOSD. Liu et al. (2019) extracted 9 features, including lesion 
heterogeneity and lesion volume, from patient imaging data, combined 
with clinical information, to build a logistic regression model to 
differentiate MS and NMOSD. However, these imaging-based methods 
rely heavily on radiologists manually extracting imaging features, 
limiting the repeatability and generalizability of these methods.

Deep learning-based classification methods efficiently capture 
classification features automatically without requiring manual 
extraction and selection. For instance, Hagiwara et  al. (2021) 
developed an automatic classification model based on Convolutional 
Neural Networks (CNN). Due to limited available data, they primarily 
utilized SqueezeNet to prevent overfitting, achieving an accuracy of 
0.81, sensitivity of 0.80, and specificity of 0.83 using common features 
to classify MS and NMOSD. Wang et al. (2020) compressed 3D MS 
and NMOSD MRI images into multi-channel 2D images and used a 
2D ResNet model for classification. By leveraging transfer learning 
subsequent to pre-training the model on ImageNet, they attained an 
accuracy of 0.75. Kim et al. (2020) developed a 3D CNN model based 
on the ResNeXt concept to differentiate MS and NMOSD, which 
effectively utilized MRI spatial features and achieved improved 
performance with an accuracy of 0.71, sensitivity of 0.87, and 
specificity of 0.61 when integrating clinical information.

From existing research, it is evident that deep learning-based 
methods generally exhibit promising results in the task of classifying 
MS and NMOSD, often without extensive involvement from 
radiologists, thus possessing considerable practical value.

3 Materials and methods

3.1 Datasets and evaluation metrics

3.1.1 Datasets
The datasets used in this study are MS and NMOSD MRI datasets. 

The MS datasets come from the Multiple Sclerosis Lesion 
Segmentation Challenge organized by the 2015 IEEE International 
Symposium on Biomedical Imaging (ISBI) (referred to as the ISBI 
dataset) and The First Hospital of Jilin University. The NMOSD 
dataset comes from the First Hospital of Jilin University.

Table 1 outlines the composition of the MS and NMOSD datasets 
utilized in this study. The ISBI dataset contains brain MRI images of 5 

TABLE 1 MS and NMOSD datasets.

Disease 
classification

Data sources
Number of 

samples
Sequence 

type

MS

ISBI 2015 21 T2-Flair

The First Hospital 

of Jilin University
48 T2-Flair

NMOSD
The First Hospital 

of Jilin University
62 T2-Flair
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MS patients scanned at different time points, among which 4 patients 
scanned 4 groups of images and 1 patient scanned 5 groups of images, 
a total of 21 groups of image data, each group of images can utilize as 
a separate sample. Each group of images includes MRI images of four 
modalities: T1WI, T2WI, PD, and T2-FLAIR. This study only utilized 
the data of the T2-FLAIR modality. All the MRI images were scanned 
using a 3.0 Tesla MRI scanner and were registered to standard space, 
with the image size normalized to 181 × 217 × 181. At the same time, 
the ISBI dataset provides a lesion segmentation map manually 
annotated by experts corresponding to each image.

The brain MRI images of T2-FLAIR sequences obtained from the 
First Hospital of Jilin University comprised 48 MS samples and 62 
NMOSD samples. Among them, all MS samples met the McDonald 
diagnostic criteria revised in 2017, and all NMOSD patients met the 
NMO diagnostic criteria revised in 2015. Due to the long collection 
time of the datasets, there are some differences in the collection 
parameters among images, as shown in Table 2.

At the same time, the First Hospital of Jilin University provided 
lesion annotation maps for all images that were manually annotated 
by two radiologists with 5 and 10 years of experience in diagnosing 
brain diseases respectively, and were finally combined with the 
annotations of the two doctors. The intersection of the results is 
utilized as the annotation map of this study. Therefore, the datasets 
utilized in this study are a total of 69 MS samples and 62 NMOSD 
samples, all of which are T2-FLAIR modality.

3.1.2 Data preprocessing
The ISBI dataset provides preprocessed images, which have 

been skull-stripped and registered to the MNI template. Therefore, 
we preprocessed the datasets provided by the First Hospital of Jilin 
University. The specific preprocessing steps are divided into the 
following four stages: Firstly, skull stripping was performed on the 
brain MRI images using the Brain Extraction Tool (BET) (Smith, 
2002). Secondly, the images were corrected for bias field using the 
N4 bias field correction method (Tustison et al., 2010). Thirdly, the 
black background area of the images was removed. Finally, the size 
of the images is normalized to (160, 160, 160), while the voxel 
values of the images are normalized to a standard data distribution 
with a mean of 0 and a standard deviation of 1 using the 
Z-Score method.

3.1.3 Data augmentation
Due to the challenges in collecting and annotating MS and 

NMOSD datasets, there is a limited amount of data available, making 
it difficult to train models. Therefore, this study utilizes data 
augmentation to expand the datasets and improve the generalization 
ability of the models. When training the deep learning models, the 

preprocessing images are flipped randomly (randomly selecting one 
of the three axes to flip) and rotated randomly with a fixed 
probability p = 0.5 each time (Figure 2).

3.2 Joint model

3.2.1 Model overall architecture
The joint model comprises three primary components: an 

information-sharing subnetwork, a lesion segmentation subnetwork, 
and a disease classification subnetwork. It leverages two types of 
information interaction methods to enhance the performance of both 
tasks. The overall architecture of this joint model is illustrated in 
Figure 3.

Initially, the MRI datasets are fed into the model and processed 
through the information-sharing subnetwork. Subsequently, the 
obtained segmentation feature maps fseg  and classification feature 
maps fcls  are inputted into the lesion segmentation subnetwork and 
the disease classification subnetwork, respectively. The outputs of the 
lesion segmentation subnetwork comprise binarized lesion 
segmentation maps, while the disease classification subnetwork 
provides classified predictions for MS or NMOSD.

Moreover, to bolster the interaction between these two tasks 
during the model training, we have introduced a Lesion Guidance 
Module (LGM) and a cross-task loss function. These additions 
aim to mutually guide and enhance the model’s performance.

3.2.2 Information-sharing subnetwork
MS and NMOSD manifest characteristics of dispersion and 

multifocality, with lesions varying in shape, size, and discrete 
distribution. In the tasks involving segmentation and disease 
classification, it becomes imperative to consider not only the local 
details such as lesion shape and contour but also their global 
distribution within the brain. While convolutional operations 
primarily capture local information, they fail to establish long-distance 
dependencies across the entire image (He et al., 2016).

To concurrently capture both local and global information, the 
information-sharing subnetwork in the joint model is structured as a 
two-branch architecture. The local branch employs convolutional 
operations to extract detailed information about specific lesions, while 
the global branch utilizes Swin Transformer (Vaswani et al., 2017; Liu 
et al., 2021) coding modules to model long-range dependencies among 
image contexts. This specific architectural design is depicted in Figure 4.

To achieve the integration of local and global information, the 
segmentation feature maps for input into the segmentation 
subnetwork and classification feature maps for input into the 
classification subnetwork are obtained by combining them with cross-
elements in a linear weighted manner.

In the global branch, to reduce computational complexity, image 
blocks of size 16 × 16 × 16 within the input images are treated as 
computational units for self-attention in the Transformer. A 
convolutional layer with a kernel size of 8 × 8 × 8 and a stride of 8 is 
utilized to extract features from the image I H W D∈ × × . This 
extraction process is followed by an average pooling operation, 
reducing the scale of the extracted features by half. The resulting 
feature maps 

16 16 16E
H W D
× ×

∈
 serve as the input to the Transformer. 

The output of the global branch can be computed as follows 
(Equations 1,2):

TABLE 2 MRI parameters were collected from the First Hospital of Jilin 
University.

Parameter type Parameter values

Slice number 160–192

Slice thickness (mm) 1

Repeat time (ms) 4,800

Echo time (ms) 279–324

Reverse time (ms) 1,650

Flip angle (°) 40
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 GTX UP ST LN Eglobal = ( )( )( ) (1)

 E PE I= ( ) (2)

Where PE ⋅( ) denotes patch embedding, which involves two 
operations: a convolution operation with a kernel size of 8 × 8 × 8 and 
a stride of 8, followed by an average pooling operation with a kernel 
size of 2 × 2 × 2 and a stride of 2. LN ⋅( ) represents layer normalization. 
ST ⋅( ) refers to two layers of Swin Transformer, with a window size of 
5 × 5 × 5 and a switch between different window modes across these 
two layers (shift window mechanism). UP ⋅( )  denotes the output of 
the global branch achieved through interpolation. Through these 
operations, applied to the original images of size 160 × 160 × 160, 
we capture sufficient global information within this context.

In the local branch, three convolutional layers with 3 × 3 kernels 
are utilized as context extractors to capture local features. The first 
convolutional layer has a stride of 2, while the other two layers have 
a stride of 1. The output of the local branch can be computed as 
follows (Equation 3):

 CTX Conv LN Ilocal = ( )( ) (3)

Where CTXlocaldenotes the output of the local branch.
To enhance the information interaction between the classification 

and segmentation tasks, the local feature CTXlocal and global features 
CTXglobal are linearly combined by the crossover unit to obtain the 
segmentation feature maps fseg  for the classification subnetwork and 
the classification feature maps fcls  for the classification subnetwork 
respectively, which are calculated as Equation 4:

FIGURE 2

Effect of data augmentation.

FIGURE 3

Structure of the joint model.
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Where wseg ,1, wseg ,2 , wcls,1, and wcls,2  are learnable parameters. 
The size of fseg  and fcls  is both (32, 80, 80, 80).

3.2.3 Lesion segmentation subnetwork
The lesion segmentation subnetwork is utilized to segment brain 

white matter lesions in MS and NMOSD. Figure 5 shows the schematic 
structure of the lesion segmentation subnetwork, which mainly 
consists of three parts: the contraction path, the expansion path, and 
the multiscale binding module.

In the lesion segmentation subnetwork, the contraction path 
comprises three encoding modules and two downsampling modules 
aimed at capturing contextual information within the segmented 
feature maps 

fseg
D H W

∈
× ×

 2 2 2
 and extracting lesion-related features. 

Meanwhile, the expansion path involves three decoding blocks and 
three upsampling modules for restoring the feature maps to the 
dimensions of the input images. Between the contraction path and 
the expansion path, the low-level feature maps obtained from the 
contraction path and the high-level feature maps obtained from the 
expansion path are merged in the channel dimension through skip 
connections. This process aids in integrating detailed image 
information into the high-level semantic features, thereby enhancing 
segmentation performance. Additionally, the channel established by 
the skip connections between high and low levels facilitates gradient 
backpropagation (Zhang et al., 2018).

Given the substantial disparity in lesion sizes between MS and 
NMOSD, a strategy is employed to combine richer multi-scale 
features. Feature maps obtained at multiple levels are weighted and 
fused to generate the final lesion probability maps Mlesion  as 
follows (Equation 5):

 
M sigmoid Up f flession

i
i seg

i= ⋅ ( )( )( )









=
×∑

1

4

1 1α
 

(5)

Where f1 1× ⋅( ) denotes the convolution operation with a kernel 
size of 1 × 1 × 1 acting on the feature maps of size 20 × 20 × 20, 
40 × 40 × 40, 80 × 80 × 80, 160 × 160 × 160 for adjusting the number of 
output channels to 1. Up ⋅( ) denotes the upsampling operation using 
nearest neighbor interpolation to resize the multi-scale feature maps 
to match the original image dimensions. Subsequently, the four-layer 
feature maps undergo a weighted combination with respective weights 
of 0.25, 0.25, 0.5, and 1. Finally, the feature maps are mapped to the (0, 
1) interval using the sigmoid activation function, resulting in the final 
lesion probability maps.

3.2.4 Disease classification subnetwork
The disease classification subnetwork is dedicated to the 

classification and diagnosis of two diseases, MS and NMOSD. The 
outputs y yi i

i

NL( ) ( )
=

= ∈{ }{ }01
1

,
 provide classified predictions for MS 

or NMOSD. For the ith sample, y i( ) = 0 denotes classification as MS, 
while y i( ) =1 denotes classification as NMOSD. Considering the 
relatively limited number of samples, an excessively complex or deeply 
layered model can lead to overfitting. In this study, the classification 
model is composed of three 3D coding blocks with residual 
connections, as depicted in the structure outlined in Figure 6.

The traditional approach in image classification involves 
unwinding the feature maps generated by the convolutional layer to 
form feature vectors for inputting into the fully connected layer. 
However, this method escalates the model’s parameter count, raising 
the risk of overfitting (Szegedy et al., 2015). In this study, we adopt a 
global average pooling of feature maps as an alternative to feature 
maps unwinding. There are several reasons for this approach: Firstly, 
global average pooling integrates spatial information from the feature 
maps, thereby enhancing the model’s generalization while preserving 

FIGURE 4

Structure of information-sharing subnetwork.
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classification performance. Secondly, global average pooling requires 
fewer training parameters, mitigating the risk of overfitting associated 
with a fully connected layer.

Inspired by the concept of skip connections in the segmentation 
subnetwork, our model dynamically extracts classification features. 
The initial layers in the network capture low-level features like texture 
and color, while deeper layers extract high-level semantic features. To 
enhance the model’s performance, we combine the low-level feature 
maps with the high-level ones. Consequently, the final category 
prediction probability is computed as follows (Equation 6):

 
p soft f f f w fcls FC

k
k w

k
k

k n

k

k n= + ⋅ +
=

⋅
= =

∑ ∑ ∑max , ,
,
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3
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(6)

Where f k k1 1

64
,{ } =

, f k k2 2

128
,{ } =

, and f k k3 3

256
,{ } =

 denotes the feature 
vectors obtained after global average pooling of the feature maps of 
the three layers with different scales. These feature vectors were 

connected as the input of the fully connected layer fFC ⋅( )  and then 
the softmax activation function was applied to obtain the classification 
prediction probabilities of MS and NMOSD.

3.3 Information interaction module

3.3.1 Lesion guidance module
Since the lesion regions only occupy a small portion of the brain 

MRI, the majority of the image consists of normal brain tissues or 
blood vessels. This can present challenges for the model when 
attempting to accurately classify based solely on the presence of 
lesions. To address this, the lesion segmentation feature maps are 
utilized as prior information for lesion location and morphology by 
sharing the lesion probability maps obtained from the segmentation 
subnetwork into the classification subnetwork. By doing so, the 
influence of other parts of the MRI image on classification is mitigated, 
thereby facilitating disease classification and diagnosis.

FIGURE 5

Structure of the lesion segmentation subnetwork.

FIGURE 6

Structure of disease classification subnetwork.
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To enhance the effectiveness of the segmented prior information, 
a Lesion Guidance Module (LGM) is proposed. The structure of the 
LGM, depicted in Figure  7, consists of two main components: 
computation of attention maps and fusion of raw features, 
corresponding to (a) and (b) in Figure 7, respectively.

Firstly, the lesion probability map, which is the output of the last 
layer of the segmentation subnetwork, undergoes feature 
transformation and normalization to generate the lesion attention 
map. Next, the lesion attention map is element-wise multiplied by the 
classification feature map, emphasizing the presence of lesions. The 
specific calculation process is as follows:

First, we utilize a 3 × 3 convolution with a stride of 2 to make the 
lesion segmentation probability map P D W H{ }∈ × ×  output from the 
last layer of the segmentation subnetwork to downsample to the same 
size as the categorized feature map 

D P
D H W

, ′{ }∈
× ×

 2 2 2
. Then the 

features are decoupled by a linear transformation of the Sigmoid 
function to generate the lesion attention map αi  (Equations 7,8):

 αi P iSoft f P= ( )( )max  (7)

 ′ = ⋅D Diα  (8)

Where P D W H{ }∈ × ×  denotes the lesion segmentation 
probability map, fP ⋅( ) denotes a convolution operation with a kernel 
size of 3 × 3 × 3 and a stride of 2, 

αi
D H W

∈
× ×

 2 2 2
 denotes the lesion 

attention map, D
D H W

∈
× ×

 2 2 2  denotes classification feature map 
output from the information-sharing subnetwork, ′D  denotes 
segmentation feature map after emphasizing the lesions.

In order to further utilize the prior knowledge of lesion 
segmentation, the segmentation probability map is directly fused with 
the classification feature map after emphasizing the lesion in the 
channel dimension as a form of auxiliary information in the original 
feature fusion part. The joint features 

J
C D H W

{ }∈
× × ×

 2 2 2
 are obtained 

by downscaling (Equation 9):

 
J f concat f P f Di i i= ( ) ( )( )( )× × ×1 1 3 3 3 3

' '
,

 
(9)

Where f1 1× ⋅( ) denotes a convolution operation with a kernel size 
of 1 × 1 × 1, f3 3× ⋅( ) denotes a convolution operation with a kernel size 
of 3 × 3 × 3 and a stride of 2, Pi′ denotes lesion segmentation probability 
map after downsampling, and concat ⋅( )  denotes channel 
dimension splicing.

3.3.2 Cross-task loss function
For the classification task of MS and NMOSD, the basis for 

classification lies in the morphological and positional features of the 
lesions. Thus, the lesion point of the classification subnetwork during 
the classification process should be the lesion regions. Based on this 
analysis, this study utilizes the idea of CAM (Zhou et al., 2016) to 
achieve lesion localization in MRI images and generate lesion 
localization maps. To effectively assist the segmentation task, a cross-
task loss function is proposed, which supervises the lesion localization 
map created in the classification subnetwork and the corresponding 
lesion segmentation maps in the segmentation subnetwork through a 
loss function. This helps enhance the lesion localization ability in each 
task. According to the theory of CAM, the lesion localization maps are 
obtained by global average pooling the feature maps, multiplying the 
resulting scalar with the class weights corresponding to the output 
layer, and accumulating it with the feature maps. To incorporate 
multi-scale features, this study generates lesion localization maps at 
three different layers. The specific calculation formula is as follows  
(Equation 10):

 
V F wi

k

N
i k i k

c= ⋅
=
∑
1

, ,

 
(10)

Where Vi represents the lesion localization map formed in the ith 
layer (i = 1,2,3), N  represents the total number of feature maps in the 
ith layer, Fj k,  represents the kth feature map in the ith layer, and wi k

c
,  

represents the weight corresponding to class c. Then, the lesion 
localization maps are weighted and computed with the lesion 

FIGURE 7

Structure of lesion guidance module.
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segmentation maps of the same size from the segmentation 
subnetwork using the Mean Square Error (MSE) loss. This results in a 
cross-task loss function, with the specific formula as follows  
(Equation 11):

 
L S Vcross

i
i i i= ⋅ −

=
∑
1

3

2
2η

 
(11)

Where Si represents the intermediate multi-size segmentation 
maps obtained from the lesion segmentation subnetwork. ηi  are set to 
0.25, 0.25, and 0.5, respectively.

Furthermore, the generation of lesion localization maps achieves 
the interpretability of deep learning black-box models in the process 
of classification diagnosis, which is of significant importance for 
research related to medically auxiliary diagnosis.

3.4 Overall loss function

For the disease classification task, the difference between the 
predicted categories and the true labels was evaluated using the binary 
cross entropy loss with the formula Equation 12:

 ( ) ( )ˆ ˆlog 1 log 1= −∑ + − −clsL y y y y
 

(12)

Where ŷ  represents the categories of model predictions, y 
represents the real categories.

For the lesion segmentation task, the Dice Similarity Coefficient 
(DSC) is utilized to measure the degree of similarity between the 
segmentation results and the real segmentation maps, which can 
measure the accuracy of the segmentation results and take the value 
in the range of [0,1]. Therefore, the segmentation model can 
be supervised by using 1-Dice as a loss function, called Dice loss, the 
specific formula is Equation 13:

 
L Dice

X Y
X Yseg = − = −

∩
+

1 1
2

 
(13)

Where X  represents the segmentation result of the lesion 
segmentation task, Y  represents the real segmentation result, and ⋅  
represents the number of voxels that satisfy the condition.

Therefore, to optimize the learnable parameters wt t= ( )θ  of the 
joint model, where θt is the model parameter, an overall loss function 
for the joint model is designed in conjunction with the single-task loss 
described above. Since single tasks may have different levels of 
contribution in optimizing the parameters of the model, the single 
task loss function is weighted by setting a weighting factor βt , and the 
joint loss function constituted is Equation 14:

 L L L Lseg cls cross= + +β β β1 2 3  (14)

The variable βi i, , ,=1 2 3 represents a hyperparameter. Considering 
that the segmentation task involves pixel-level classification of images, 
while the classification task involves categorizing individual samples, 

segmentation tasks are comparatively more complex and challenging to 
learn. Therefore, in the training process, the contribution of parameter 
optimization for the segmentation task should be  relatively higher. 
Hence, in this study, β1, β2, and β3 are set to 1, 0.8, and 1, respectively.

4 Experiment and results

4.1 Experiment settings

The hardware platform for the experiments in this study is the 
NAVIDA GTX 3090 graphics card and the network models are all 
built by the PyTorch framework. During model training, the batch size 
was set to 2, the number of iterations was set to 200, the optimization 
algorithm utilized Adam optimizer with default parameters (Kingma 
and Ba, 2014), and the learning rate was initially set to 0.0001. If the 
loss of the model did not decrease after surpassing 10 training 
iterations, the learning rate was then reduced to half of its 
original value.

To reduce experimental variability and provide a more 
accurate and objective reflection of model performance, 
we  utilized a five-fold cross-validation strategy during the 
experiment. Initially, the entire dataset is randomly divided into 
five subsets. During each training iteration, four of these subsets 
are used as the training set, while the remaining subset serves as 
the test set. Upon completion of each training iteration, 
evaluation results are obtained on the corresponding test set. The 
final experimental outcome is determined by averaging the 
evaluation results obtained from the five training iterations.

The images used in the experiments are obtained from the dataset 
after undergoing the data preprocessing and data augmentation 
described in Section 3.1. The original size of each input is (160, 160, 
160). After being processed by the information-sharing subnetwork, 
the inputs for the lesion segmentation subnetwork and disease 
classification subnetwork are resized to (80, 80, 80).

4.2 Evaluation metrics

The joint model proposed in this study mainly consists of two 
tasks, the lesion segmentation task and the disease classification task. 
Multiple evaluation metrics were employed to assess the performance 
of each model.

The evaluation metrics utilized for the segmentation task are Dice 
Similarity Coefficient (DSC), Positive Predict Value (PPV), True 
Positive Rate (TPR), and Volume Difference (VD) (Equations 15–18).

 

ˆ2
ˆ

× ∩
=

+

Y Y
DSC

Y Y
 

(15)

Where Y  represents the ground truth, Ŷ  represents the 
output of the model, ∩  represents the intersection operation of 
two matrices, and .  represents the number of elements in the 
matrix. The higher the DSC, the closer the prediction to the 
manually segmented label.

93

https://doi.org/10.3389/fnins.2024.1351387
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Huang et al. 10.3389/fnins.2024.1351387

Frontiers in Neuroscience 10 frontiersin.org

 

ˆ

ˆ
∩

=
Y Y

PPV
Y

 

(16)

PPV represents the proportion of true positive voxels among all 
voxels predicted as positive. In this context, positive refers to the lesion 
voxels. A higher PPV indicates that the impact of the noise caused by 
them on the model is smaller.

 

ˆ∩
=

Y Y
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Y
 

(17)

TPR represents the proportion of true positive voxels among all 
actual positive voxels. The higher the TPR, the stronger the model’s 
ability to identify lesions.

 
VD

TP TP
TP
P gt

gt
=

−

 
(18)

Where TPp represents the number of predicted TP voxels and TPgt 
represents the number of lesion voxels in the ground truth. A lower 
VD indicates a better agreement between the predicted and true 
lesion volumes.

The metrics utilized in the classification task are Accuracy (ACC), 
Sensitivity (SN), Specificity (SP) (Equations 19–21), and Area Under 
the ROC Curve (AUC).

 
ACC TP TN

TP FP FN FN
=

+
+ + +  

(19)

 
SN TP

TP FN
=

+  
(20)

 
SP TN

TN FP
=

+  
(21)

Where TP represents true positive, TN represents true negative, 
FP represents false positive, and FN represents false negative. These 
metrics can be used to assess the performance of classification models.

4.3 Comparison and analysis of 
experimental results

To validate the superiority of the proposed joint model for 
lesion segmentation and disease classification in MS and 
NMOSD, this section conducts comparative analyses between the 
joint model and three advanced segmentation methods: 3D UNet, 
VNet, and AttentionUNet, as well as three advanced classification 
methods: 3D ResNet34, 3D ResNet50, and 3D DenseNet. 
Throughout the experiments, efforts are made to ensure that the 
primary parameters of all methods remain consistent with those 
introduced in Section 4.1.

4.3.1 Comparison of the segmentation methods
Table 3 shows the comparison of the results of the joint model on 

lesion segmentation. It can be seen that the joint model performs the 
best on the lesion segmentation task and achieves the highest DSC, 
TPR, and VD, which are 74.87, 72.21, and 22.34%, respectively, and 
PPV achieves the sub-optimal results, which is second only to the 3D 
UNet. Where AttentionUNet achieves sub-optimal results on DSC, 
TPR, and VD which differed from the joint model by 2.8, 0.89, and 
4.33%, respectively. The results prove that the lesion segmentation 
results obtained by the joint model have higher similarity with the real 
lesion segmentation results and higher check-accuracy for lesion pixel 
points. The result of PPV is lower than that of 3D UNet by 0.17%, 
proving that checking accuracy for lesion pixel points of the 
segmentation model is slightly lower than 3D UNet. Overall, the joint 
model has the optimal segmentation effect, and AttentionUNet is the 
second best.

Figure 8 shows the lesion segmentation visualization results 
of the four segmentation models acting on a MS case and a 
NMOSD case, respectively. In order to clearly demonstrate the 
segmentation effect, the lesion segmentation results are 
superimposed on the original MRI image in red. From left to 
right, it shows the ground truth segmentation annotated manually 
by the doctors, the joint model segmentation results, the UNet 
segmentation results, the VNet segmentation results, and the 
AttentionUNet segmentation results. As can be seen from the 
visualization results, the models can achieve localization for 
lesion regions with relatively large volumes. However, the discrete 
point lesions in the brains of MS and NMOSD patients are 
difficult to recognize, as well as some regions in the brain MRI 
with similar imaging features to the white matter high signals are 
very easy to confuse during segmentation. The blue boxed part 
in the figure shows the under-segmentation or over-segmentation 
problem of the model during segmentation. In contrast, the joint 
model greatly avoids the above problems due to the combination 
of the lesion location information provided by the classification 
network, and the segmentation results are closer to the ground 
truth segmentation.

Overall, based on evaluations of various metrics and visualized 
results, it can be observed that the segmentation performance of the joint 
model is superior. Particularly for some challenging pinpoint lesions and 
locations with similar imaging characteristics, the segmentation results 
achieved by the joint model is more refined. Given the highly irregular 
morphology of MS and NMOSD lesions, even expert radiologists find it 
challenging to completely delineate their contours during annotation. 
However, the model proposed in our study ensures the ability to 
accurately locate the majority of lesions.

TABLE 3 Comparative experimental results of the lesion segmentation 
method.

Method DSC (%) PPV (%) TPR (%) VD (%)

3D UNet 70.64 74.11 65.25 36.38

VNet 71.93 72.24 69.71 43.43

AttentionUNet 72.07 70.22 71.32 26.67

Joint Model 74.87 73.94 72.21 22.34

Bold values indicate the best results in evaluation metrics. Underlined values indicate the 
second best results in evaluation metrics.
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4.3.2 Comparison of the classification methods
Table 4 demonstrates the disease classification results of the joint 

model and the other five advanced classification models for MS and 
NMOSD. From the results in the table, it can be seen that the joint 
model achieved a classification accuracy of 92.16%, which is the best 
performance among several methods and 2.36% higher than SENet50 
with the second-best accuracy. In addition, the ROC curves for the 
classification results of the five methods are shown in Figure  9. 
Compared with the other models, the joint model has the largest area 
under the line of the ROC curve, which is 96.33%, indicating that the 
joint model has a better effect.

4.4 Results and analysis of ablation 
experiments

The joint model proposed in this study focuses on the mutual 
guidance of the lesion segmentation and disease classification 
tasks through an information-sharing subnetwork and two 
information interaction methods which include the lesion 
guidance module and the cross-task loss function. In this section, 
we will first validate the effectiveness of the joint learning strategy, 
and then conduct ablation experiments on the information 
sharing subnetwork and the two information interaction methods, 
respectively, to verify the influence of each component in 
improving the performance of the two tasks.

4.4.1 Influence of the joint learning strategy
To demonstrate the impact of joint learning strategy on 

model performance, this section will compare the results of the 
joint model and two fundamental models: the lesion segmentation 
model (corresponding to the lesion segmentation subnetwork in 
Section 3.2.3) and the disease classification model (corresponding 
to the disease classification subnetwork in section 3.2.4). This 
comparison aims to establish the effectiveness of the joint 
learning strategy. The joint model will be abbreviated as the Joint 
Model, the lesion segmentation model will be  abbreviated as 
Only Seg Model and the disease classification model will 
be abbreviated as Only Cls Model.

 (1) Influence on the lesion segmentation task
Table 5 compares the performance of the Only Seg Model and 

Joint Model in lesion segmentation tasks. The Joint Model 
demonstrated improvement across all metrics compared to the Only 
Seg Model, with an increase of 3.63% in DSC, 3.80% in PPV, 2.34% in 
TPR, and 2.63% in VD. This demonstrates that incorporating 
information from the classification task effectively enhances the 
performance of lesion segmentation.

Figure 10 displays the lesion segmentation results using the Only 
Seg Model and Joint Model for three different cases. From left to right: 
original T2-FLAIR images, manually segmented images, visualizations 
of results from the Only Seg Model, and visualizations of results from 
the Joint Model. In the visualizations, red indicates true positives—
pixels classified correctly as lesions; green represents false positives—
pixels classified as lesions but normal tissues; yellow denotes false 
negatives—pixels classified as normal tissues but lesions. In the 
segmentation results of Case One, the Only Seg Model misclassifies 
some normal tissue as lesions (shown in green) due to its similarity to 
high-intensity white matter, leading to misjudgments. However, the 
Joint Model correctly identifies this portion. For Case Two, the Only 
Seg Model struggles to delineate the contours of patchy lesions 
(depicted in yellow), indicating segmentation inadequacies. Similar 
issues of segmentation insufficiency are observed for Case Three with 
the Only Seg Model (yellow portion). Because lesions in MS and 
NMOSD often exhibit highly irregular shapes, segmenting lesion 
edges presents a challenge. The visual results show that both the Only 
Seg Model and Joint Model have some false positives and negatives 

FIGURE 8

Comparison of experimental visualization results.

TABLE 4 Comparative experimental results of lesion classification 
method.

Method ACC (%) SN (%) SP (%) AUC (%)

ResNet50 87.24 87.14 88.33 94.84

ResNet101 86.63 80.28 92.38 87.66

ResNet152 86.40 85.52 85.47 85.43

DenseNet121 88.36 90.85 83.57 92.47

SENet50 89.80 86.00 93.57 93.33

Joint Model 92.16 95.60 92.60 96.33

Bold values indicate the best results in evaluation metrics.
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along the lesion edges. Nevertheless, overall, the Joint Model 
demonstrates significantly better segmentation performance 
compared to the Only Seg Model.

The visual results demonstrate that the segmentation performance 
of the Joint Model surpasses that of the Only Seg Model across all four 
samples. This outcome suggests that the lesion features extracted from 
the classification task, especially positional characteristics, effectively 
assist the segmentation task in capturing the varied locations and sizes 
of MS and NMOSD lesions.

 (2) Influence on the Disease Classification task
Table 6 is the comparison between the Only Cls Model and the 

Joint model on the results of the MS and NMOSD classification task. 
Compared to the Only Cls Model, the joint model demonstrated 
improvement across all metrics, with ACC increasing by 4.36%, SN by 
8.36%, and SP by 3.14%.

Figure 11 displays the ROC curves for the Only Cls Model 
and Joint Model in the classification task. The AUC for the Joint 
Model is 96.33%, while the AUC for the Only Cls Model is 
87.59%. When combined with the table, this demonstrates that 
leveraging the information extracted from the segmentation task 
and utilizing the segmented lesion results effectively guides the 
classification task, thereby enhancing the overall performance of 
the classification task.

Based on the comprehensive analysis, the Joint Model based on 
the joint learning strategy demonstrated performance improvements 
in both lesion segmentation and disease classification tasks. It 
exhibited superior results across various metrics and visualization 
outputs compared to single-task models. This validates that the joint 
learning strategy effectively leverages the features, harnesses hidden 
information learned from shared classification and segmentation 
tasks, and enhances the model’s fitting capability. Consequently, it 
elevates the performance in both tasks.

4.4.2 Influence of the information sharing module
To investigate the effectiveness of the dual-branch structure 

within the information-sharing subnetwork, the following 
experiments were conducted in this section: Removing the 
information-sharing subnetwork, denoted as ‘w/o share’; Using only 
the local branch to share underlying information through hard 
parameter sharing, denoted as ‘only local’; Using only the global 
branch to share underlying information through hard parameter 
sharing, denoted as ‘only global.’

Table  7 presents the ablation experiment results for the 
information-sharing subnetwork. The experimental findings indicate 
that the information-sharing subnet significantly enhances the 
performance of both lesion segmentation and disease classification 
tasks. Performance is notably poorest when the information-sharing 
subnet is entirely removed, while the Joint Model demonstrates the 
optimal performance. When utilizing only the local branch for hard 
parameter sharing of the underlying information, the performance in 
the lesion segmentation task ranks second, following closely behind 
the Joint Model. This demonstrates that local lesion information, such 
as morphology and edges, holds greater significance for the lesion 
segmentation task. When employing local sharing, the model 

FIGURE 9

ROC curve of the classification methods.

TABLE 5 The influence of the joint learning strategy on segmentation 
task.

Method DSC (%) PPV (%) TPR (%) VD (%)

Only Seg Model 71.24 70.14 69.87 24.97

Joint Model 74.87 73.94 72.21 22.34

Bold values indicate the best results in evaluation metrics.
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prioritizes aspects related to the segmentation task. In the case of 
using only the global branch for hard parameter sharing of the 
underlying information, the performance in the disease classification 
task ranks second, closely following the Joint Model. This highlights 
that global image information, such as lesion distribution, plays a 
more advantageous role in the disease classification task.

4.4.3 Influence of the lesion guidance module
As mentioned in section 3.3, the information interaction consists 

of two parts, one is the LGM for combining the results of lesion 
segmentation, and the other is the cross-task loss function. In this 
section, the effectiveness of the lesion guidance module is verified 
through ablation experiments.

The LGM serves to utilize the segmentation probability maps as 
prior information about lesion distribution and morphology to 
guide the classification subnet. Its structure involves emphasizing 
lesions by first applying an attention mechanism through the dot 
product operation between the segmentation probability maps and 
the classification feature maps. Subsequently, the segmentation 
probability maps are concatenated with the classification feature 
maps along the channel dimension to further integrate lesion 
information. In this section, we investigate the effectiveness of LGM 
for the classification task, as well as the efficacy of the LGM 
structure. We  conduct ablation experiments as follows: (1) 

Removing the LGM, denoted as ‘w/o LGM’. (2) Using only the dot 
product operation to combine the segmentation probability maps 
and the classification feature maps, denoted as ‘dot product’. (3) 
Using only the concatenation along the channel dimension to 
combine the segmentation probability maps and the classification 
feature maps, denoted as ‘concat.’ (4) Given the common approach 
of fusing information by pixel-wise addition, such as in, we compare 
using the addition operation to combine the segmentation 
probability maps and the classification feature maps, denoted as ‘dot 
add.’ Table 8 presents the performance of different forms of LGM 
on the classification task.

Table  8 highlights that removing the LGM notably worsens 
classification performance, underlining the importance of merging 
lesion segmentation into disease classification. Using attention on 
lesion segmentation probability maps, like with dot product, notably 
boosts classification, although it’s not the best method.

Combining the segmentation maps with classification features 
through channel dimension concatenation and dot product both 
improve the classification. However, channel concatenation works 
better, likely because the segmentation maps may be  inaccurate, 
causing problems with direct addition or summation.

The proposed LGM, using both dot product and channel 
concatenation, significantly enhanced classification performance, 
offered the most improvement.

4.4.4 Influence of cross-task loss function
We set up ablation experiments for the cross-task loss function of 

the information interaction approach in this section. According to 
Equation (14), the overall loss function of the model consists of three 
parts: segmentation loss function, categorization loss function, and 
cross-task loss function, which is verified in this section by removing 
the cross-task loss function, called w/o cross loss.

FIGURE 10

Visual display of lesion segmentation results.

TABLE 6 The influence of the joint learning strategy on classification 
task.

Method ACC (%) SN (%) SP (%) AUC (%)

Only Cls Model 87.80 87.24 89.46 87.59

Joint Model 92.16 95.60 92.60 96.33

Bold values indicate the best results in evaluation metrics.
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Table 9 demonstrates the impact of cross-task loss functions on 
lesion segmentation and disease classification tasks. The results indicate 
that cross-task loss functions effectively enhance the performance of both 
tasks, particularly in the case of lesion segmentation. The average metrics 
show an improvement of 1.23%, validating that the lesion localization 
maps constructed by the classification subnetwork effectively aid the 
segmentation subnetwork in  localizing lesions, thereby enhancing 
segmentation performance. For the disease classification task, there are 
improvements across metrics such as ACC, SP, and AUC. This 
demonstrates that the feature maps obtained by the segmentation 
subnetwork effectively guide the classification subnet in capturing  
lesions.

In addition, Figure 12 illustrates the comparison between lesion 
localization maps generated by the joint model and the annotated lesion 
gold standard for four test samples. The lesion localization maps 
visualize the model’s focus areas during classification using Grad-CAM 
(Wagner et al., 2019) technology, where deeper colors indicate higher 
model attention. Comparing the visualized results with manually 
annotated segmentation gold standards reveals a substantial alignment 
between the areas the model emphasizes during classification and the 
actual lesion locations. Particularly noteworthy is the accurate 
localization of minute dot-like lesions present in Sample 3, which 
represent lesions challenging for the segmentation model to distinguish. 
However, the lesion localization maps manage to accurately pinpoint 

these lesions. This further validates the reliability of guiding the 
segmentation model through cross-task losses.

Simultaneously, these lesion localization maps offer interpretability for 
the joint model in diagnosing MS and NMOSD. They can serve as a basis 
for deriving diagnostic conclusions for MS and NMOSD in clinical practice.

5 Conclusion

This study proposes a joint model for lesion segmentation and 
disease classification of MS and NMOSD. Leveraging the correlation 

TABLE 8 The effect of the LGM on classification performance.

Interactive 
mode

ACC (%) SN (%) SP (%) AUC (%)

w/o LGM 89.44 89.30 86.24 89.38

dot product 91.20 93.42 89.28 94.36

concat 90.66 93.34 91.60 92.24

dot add 89.48 89.36 85.24 89.90

Joint Model 92.16 95.60 92.60 96.33

Bold values indicate the best results in evaluation metrics. Underlined values indicate the 
second best results in evaluation metrics.

FIGURE 11

ROC curve corresponding to Joint Model and Only Cls Model.

TABLE 7 The influence of the information-sharing module.

Method DSC (%) PPV (%) TPR (%) VD (%) ACC (%) SN (%) SP (%) AUC (%)

w/o share 71.98 72.11 67.47 26.35 88.20 86.24 89.24 88.56

Only local 73.80 73.95 71.34 24.12 86.14 86.00 88.26 89.32

Only global 72.04 70.18 70.44 24.92 90.22 91.46 89.60 92.68

Joint Model 74.87 73.94 72.21 22.34 92.16 95.60 92.60 96.33

Bold values indicate the best results in evaluation metrics. Underlined values indicate the second best results in evaluation metrics.
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between lesion segmentation and disease classification tasks, the 
model facilitates mutual guidance between the two tasks through 
information sharing and interaction. This approach allows for the 
effective utilization of the information from limited datasets. 
Furthermore, comparative experiments confirm the joint model’s 
ability to significantly enhance the performance of both tasks. 
Ablation experiments validate the effectiveness of information 
sharing and interaction mechanisms within the joint model. While 
the joint model exhibits strong performance in lesion segmentation 
and disease classification tasks for MS and NMOSD, its 
generalization capability to other diseases remains limited and 
somewhat unstable. Therefore, we plan to gather more extensive 
datasets to enhance the model’s generalizability. Additionally, 
utilizing multimodal data as input to the model aims to augment its 
practical applicability.
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Identification of DNA motif pairs
on paired sequences based on
composite heterogeneous graph
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Motivation: The interaction between DNA motifs (DNA motif pairs) influences
gene expression through partnership or competition in the process of gene
regulation. Potential chromatin interactions between different DNA motifs have
been implicated in various diseases. However, current methods for identifying
DNA motif pairs rely on the recognition of single DNA motifs or probabilities,
which may result in local optimal solutions and can be sensitive to the choice of
initial values. A method for precisely identifying DNA motif pairs is still lacking.

Results: Here, we propose a novel computational method for predicting DNA
Motif Pairs based on Composite Heterogeneous Graph (MPCHG). This approach
leverages a composite heterogeneous graph model to identify DNA motif pairs
on paired sequences. Compared with the existing methods, MPCHG has greatly
improved the accuracy of motifs prediction. Furthermore, the predicted DNA
motifs demonstrate heightened DNase accessibility than the background
sequences. Notably, the two DNA motifs forming a pair exhibit functional
consistency. Importantly, the interacting TF pairs obtained by predicted DNA
motif pairs were significantly enriched with known interacting TF pairs,
suggesting their potential contribution to chromatin interactions. Collectively,
we believe that these identified DNA motif pairs held substantial implications for
revealing gene transcriptional regulation under long-range chromatin
interactions.

KEYWORDS

DNA motifs, DNA motif pairs, chromatin interactions, TF pairs, gene transcriptional
regulation

1 Introduction

The identification and recognition of DNAmotifs binding to transcription factors (TFs)
are pivotal for comprehending the regulatory mechanisms governing gene expression and
cellular processes (Wong et al., 2013). A DNA motif denotes to a short, similarly repeated
pattern of nucleotides that holds biological significance (Hashim et al., 2019). Deciphering
these binding DNAmotifs provides researchers with insights into the regulation and control
of genes, fostering a deeper understanding of diverse biological phenomena (Liu et al., 2018;
Yang et al., 2019; Li et al., 2024; Wang et al., 2024). With the development of high-
throughput technology, several experimental techniques are available for determining TF
binding DNA motifs, such as Chromatin Immunoprecipitation (ChIP) (Park, 2009),
Electrophoretic Mobility Shift Assay (EMSA) (Hellman and Fried, 2007), DNA Affinity
Purification Sequencing (DAP-seq) (Bartlett et al., 2017), and Systematic Evolution of
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Ligands by Exponential Enrichment (SELEX) (Gold, 2015).
Moreover, researchers can access relevant databases to query for
associated DNA motifs. For instance, JASPAR (Castro-Mondragon
et al., 2022) is a widely utilized DNA motif database for storing and
analyzing transcription factor binding site. TRANSFAC (Wingender
et al., 2000) is a classic database containing DNA motifs of
transcription factors and regulatory elements, offering a wealth of
DNA motif data and associated biological information. Other
databases include UniProbe, Cis-BP, motifMap, ScerTF, TFcat,
and FlyTF (Fulton et al., 2009; Pfreundt et al., 2010; Daily et al.,
2011; Robasky and Bulyk, 2011; Spivak and Stormo, 2012; Weirauch
et al., 2014). However, the action of a single DNA motif is limited,
and actual gene regulation often involves intricate interactions
among multiple DNA motifs, giving rise to DNA motif pairs
(Pilpel et al., 2001). These pairs of DNA motifs play a pivotal
role in maintaining the accuracy and flexibility of gene
expression (Clauss and Lu, 2023).

When two DNA motifs coexist and interact in a specific
manner during gene regulation, they can either cooperate or
compete to influence gene expression. This is pivotal for
unraveling the intricate mechanisms of gene regulation
networks, cell signaling, and biological processes (Kim and
Wysocka, 2023). Moreover, these predictions of the interaction
between DNA motifs find broad applications in bioinformatics,
facilitating genome annotation and the anticipation of protein-
nucleic acid interactions, thereby equipping researchers with
potent tools to decipher biological data (Khodabandelou et al.,
2020; Wang et al., 2022). Lastly, the underlying chromatin
interactions between different DNA motifs are associated with
various diseases (Bhatia and Kleinjan, 2014). Consequently,
predictions based on DNA motif pairs hold promise for
discovering new drug targets and innovations in the field of
biotechnology, deepening our understanding of gene regulation
networks (Makolo and Suberu, 2016).

The essence of DNA motif pairs lies in discerning pattern pairs,
specifically identifying statistically significant pattern pairs within
two correlated sequences, derived from different sequences. Current
methods for identifying DNA motif pairs can be broadly classified
into two types. The first approach is direct, involving the
independent identification of statistically significant DNA motifs
from two correlated sequences. Subsequently, the threshold is
calculated to combine the DNA motifs on both sides of
sequences to select statistically significant DNA motif pairs. This
method may result in the exclusion of DNA motifs capable of
forming pairs but are underrepresented. The second approach is
based on statistical significance and involves predicting DNA motif
pairs through a global optimization model. This method requires
constructing a well-designed model for predicting DNAmotif pairs.
The algorithm developed by Ka-Chun Wong’s research group in
2016, referred to as Wong’s 2016 (Wong et al., 2016), and
EPmotifPair (Wang et al., 2022) both belong to the first category
of methods in existing approaches onHI-C (van Berkum et al., 2010)
data for predicting DNA motif pairs. Wong’s 2016 is presently the
first method for identifying DNA motif pairs on HI-C data. It can
more flexibly learn sequence features in different directions, such
that disturbances in predictions on one side may not affect
predictions on the other side. EPmotifPair (Wang et al., 2022)
predicts DNA motif pairs in a set of sequences integrated from

enhancer sequences and promoter sequences. By comprehensively
considering multiple co-occurring sequence patterns, it reduces the
error rate compared to the separate prediction of DNA motifs.
MotifHyades (Wong, 2017) belongs to the second category of
methods for predicting DNA motif pairs. It adopts the
probability model and utilizes two derived optimization
algorithms to find DNA motif pairs with linear complexities.
However, Wong’s 2016 (Wong et al., 2016) not only overlooks
underrepresented DNA motifs that could have formed pairs but is
also time-consuming. EPmotifPair (Wang et al., 2022) not only fails
to account for potential interactions between DNA motifs but also
requires the specification of numerous parameters, such as the
predetermined number of DNA motifs. MotifHyades (Wong,
2017) improves the computational speed and accuracy compared
withWong’s 2016 (Wong et al., 2016), but it is sensitive to the choice
of the initial value. Additionally, the probability model adopted by
MotifHyades (Wong, 2017) assumes conditional independence
within each sequence pair, disregarding potential interactions
among DNA motifs.

To address the aforementioned challenges, we propose a
graph theory-based approach named MPCHG. The
methodology is elucidated in Figure 1 (This paper takes
Enhancer-Promoter as an example). It helps capture multiple
relationships between different k-mers, including both within-
sequence and between-sequence relationships. Subsequently, a
community detection algorithm is employed to obtain a dense
subgraph, considering not only the topology of the network but
also the practical significance of node connections. Importantly,
we refrain from predefining the length of DNA motifs and the
number of DNA motif pairs, avoiding the loss of some important
DNA motifs or the presence of high noise. We apply MPCHG to
analyze seven sets of HI-C data. The results reveal a higher
proportion of DNA motifs matching existing databases for
predicted DNA motif pairs. The identified paired DNA motifs
demonstrate higher DNase accessibility than the background
sequences, and the functional consistency of DNA motifs
within pairs is evident. Particularly noteworthy is the
acquisition of predicted TF pairs from the predicted DNA
motif pairs, and we discover that the predicted TF pairs are
enriched with the interacting TFs in the STRING database. It can
be seen that predicting DNAmotif pairs on HI-C data can help us
understand the regulatory mechanisms of genes.

2 Methods

2.1 Data collection

The input data comprises of Hi-C data from seven sets derived
from six distinct cell lines, namely,: K562, GM12878, HeLa-S3,
HUVEC, IMR90, and NHEK. Two sets of Hi-C data (referred to
as K562_1 and K562_2, respectively) are obtained from the K562 cell
line, featuring variations in data preprocessing and annotation
approaches. A set of protein-protein interaction data retrieved
from the STRING database (Mering et al., 2003) serves as
benchmark data to assess the performance of predicted DNA
motif pairs. The first set of processed Hi-C data from the
K562 cell line (K562_1) is acquired from the article published by
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Ka-Chun Wong in 2016 (Wong et al., 2016). In this study,
chromatin fragments are classified into four categories: E
(Enhancer), TSS (Promoter), WE (Weak Enhancer), and PF
(Promoter-Flanking Region). These categories collectively form
10 interacting pairs, resulting in a total of 74,552 long-range
regulatory region pairs. The number of each interaction type is
detailed in Supplementary Figure S1A. The remaining six sets of
processed HI-C data are sourced from the article published byWang
in 2022 (Wang et al., 2022). Which are normalized using the Knight
and Ruiz normalization vectors (Lyu et al., 2020) by Rao et al. (Wang
et al., 2022). Notably, their chromatin interaction type is exclusively
Promoter-Enhancer, in contrast to the first set of data. The long-
range regulatory region pairs are summarized in Supplementary
Figure S1B. In pursuit of elucidating the mechanism of DNA motif
interactions, protein-protein interaction data are obtained from the
STRING database, resulting in the extraction of 4,950,896 pairs of
experimentally validated data. By comparing the protein names in
the STRING database with transcription factors (TFs) in the
JASPAR database, experimentally verified TF-TF interactions are
identified, encompassing a total of 65,290 TF-TF interactions,
involving 583 TFs.

2.2 Generation of background sequences

We utilize a third-order Markov model (Eddy, 2004) to create
background sequences corresponding to each sequence (referred to
as the real sequence) within the input sequence pairs. The generated
background sequences are designed to align with the number and
length of the given chromatin sequences, and their composition is
determined by the nucleotide frequencies observed in the dataset.

2.3 Identification of significant k-mers

We enumerate all possible k-mers (with k � 6 by default)
employing a sliding window approach in both the real and
background sequence sets concurrently. Let nF(ki) and nB(ki)
represent the counts of occurrences of a k-mer ki in the real and
background sequence sets, respectively. Similarly, let pF(ki) and
pB(ki) denote the frequency of each k-mer ki in the real and
background sequence sets, respectively. Recognizing the reverse
complementary nature of DNA, we define the frequency of a
k-mer as the sum of the frequencies of the k-mer and its reverse

FIGURE 1
Overview of MPCHG. Enhancer (red)—Promoter (blue) interaction is used as an example for DNA motif pairs identification. p1 denotes the
frequencies of k-mers in the real sequence sets and p2 denotes the frequencies of k-mers in the background sequence sets. z denotes z-score, which is
used to measure the significance of k-mers. The k-mers are arranged in descending order by the size of the z-score. The k-mers framed by the blue
square indicates core k-mers. In section Graph modeling, the black lines represent the heterogeneous edges, which connect different types of k-
mers, and the thickness of the lines indicates the weight of the connected edges, the greater the weight, the thicker the lines. The blue line represents the
homogeneous edge, and theywill connect the overlapping k-mers, and the thickness of the lines indicates theweight of the connected edges, the thicker
the line, the greater the weight of the connected edge. The green arrow is called extension edge, indicating the overlap between the two k-mers, which
can be used to merge and extend the two k-mers in subsequent steps.
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complementary counterpart. Additionally, we exclude k-mers such
as AAAAAA due to insufficient variation and discriminative power.
Including them in the statistics could introduce noise and
compromise the performance of the model. Assuming that the
frequency distribution of k-mers follows a normal distribution,
we retain k-mers with frequencies exceeding one standard
deviation in the real sequences, deeming these k-mers as
significant. Subsequently, we maintain the same selection k-mers
in the background sequences. Following this, we use a two-
proportion z-test with the null hypothesis that the frequencies
pF(ki) in the real sequence sets and pB(ki) in the background
sequence sets are the same to evaluate the significance of k-mers
occurrences (Eqs 1-4):

H0: pF ki( ) � pB ki( ), (1)
H1: pF ki( )>pB ki( ), (2)

zi � pF ki( ) − pB ki( )�����������������������
pi 1 − pi( ) 1∑nF ki( ) + 1∑nB ki( )( )√ , (3)

where,

pF ki( ) � nF ki( )∑jnF ki( ), pB ki( ) � nB ki( )∑jnB ki( ), pi � nF ki( ) + nB ki( )∑nF ki( ) +∑nB ki( ).

(4)
Where the k-mer ki is considered a core k-mer if it corresponds

to a z-score greater than 1.96.

2.4 Construction of composite
heterogeneous graph

We treat each k-mer as a node and construct a composite
heterogeneous graph by establishing edges between them. Based
on the positional information of each type of k-mer in the real
sequence pairs, if two distinct types of k-mers are situated in
different sequences within a sequence pair, we establish a
connection between these two k-mers, referring to this
connection as pair edges. The weights for pair edges are
computed using Eq. 5. The first term in Eq. 5 assesses the
practical significance of the edge connection between nodes vi
and uj based on the number of sequence pairs they co-occur in.
If they appear frequently together, the edge weight will be higher.
The second and third terms in Eq. 5 consider the topological
structure of the graph. They incorporate the number of
neighborhoods for nodes vi and uj, respectively, relative to the
total number of k-mers belonging to enhancers and promoters. This
helps balance the importance of the nodes in the graph. Next, we
introduce the concept of a neighborhood: for k-mers of the same
type (promoter or enhancer), if one k-mer differs from another
k-mer by only one mismatched base or has at least four consecutive
identical bases, we consider the two k-mers as neighbors and
establish a connection between them, denotes as neighborhood
edges. The weights for neighborhood edges are determined using
Eq. 6. It considers the proportion of common k-mers between nodes
vp and vq relative to the total number of k-mers in each node. Higher
weights indicate a higher similarity or overlap between the k-mers,
which signifies a stronger relationship in the graph. Finally, we

normalize the weights for the edges of the graph G using Eq. 7 for
ensuring that the weights are scaled appropriately relative to each
other. In this framework, k-mers, treated as nodes, and the
interconnected edges between k-mers collectively form the
weighted heterogeneous graph G.

ω vi, uj( ) � N vi, uj( ) −Nmin vi, uj( )
Nmax vi, uj( ) −Nmin vi, uj( ) + L vi( )

n E( ) +
L uj( )
m TSS( ), (5)

ω vp, vq( ) � L vp ∩ vq( )
L vp( ) + L vp ∩ vq( )

L vq( ) , (6)

ω′ � ω − ωmin

ωmax − ωmin
, (7)

where, vi is a k-mer belonging to enhancer sequences, uj is a k-mer
belonging to promoter sequences, N(vi, uj) represents the number
of sequence pairs in which vi and uj belong, L(vi) and L(uj)
represent the number of neighborhoods for vi and uj separately,
n(E) and m(TSS) represent the num of k-mers belonging to
enhancers and promoters, respectively. L(vp ∩ vq) represents the
num of union of vp and vq, L(vp) and L(vq) represent the num of vp
and vq, separately. ω denotes the weights of edges in graph G, ωmax

and ωmin represent the maximum and minimum weights of edges in
graph G, respectively.

2.5 The acquisition of dense subgraphs

We apply a community discover detection algorithm to identify
dense subgraphs. Firstly, we define the fitness function for evaluating
the density of a subgraph. Let S be a connected subgraph of graph G,
where V represents the vertex set of subgraphs S, and ES represents
the edge set of S. Let nS� |VS| andmS� |ES|. By adding nS(nS−1)

2 −mS

edges to S, we form a complete graph S′, with the newly added
weights are set to the average weight of graph G. The density of
subgraph S is assessed by considering the difference in weights
between the existing edges in S and the newly added edges. Eq. 8
outlines the community evaluation function f(S) for subgraph S:

f S( ) � ∑
viuj ∈ E S( )

ω viuj( ) − 1
2 E G( )| | nS nS − 1( ) − 2mS( )

·∑
viuj∈E G( )ω viuj( ). (8)

Obviously, the larger f(S), the denser the subgraph S in the
given sense. For a node v ∉ VS, the fitness function δS(v) �
f(S ∪ v{ }) − f(S) for v in S is defined, and the node that the
maximizes fitness function, i.e., δS(v)> 0, is added to the existing
subgraph S.

It is worth noting that when identifying dense subgraphs, we
select the point with the highest number of neighborhoods in the
core pairs, possessing the highest weight, as the initial point. An
iterative process ensues, continuing until no node is found that
satisfies the condition, resulting in the formation of the current
dense subgraph. Subsequently, we select the two nodes from the pair
with the highest weight among the remaining core pairs as the initial
nodes for the iterative process. Nodes that do not belong to any
dense subgraph are considered isolated points and are excluded
from the analysis. For the resulting dense subgraph
C � C1, C2,/, Ct{ }, where t denotes the number of obtained
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dense subgraphs, we define the overlap degree of nodes of subgraph Ci

and subgraph Cj(1≤ i, j≤ t) as |Ci ∩ Cj|/min (|Ci|, |Cj | ). Simply
put, it is the count of shared nodes between both Ci and Cj divided by
the smaller of the two sets’ node counts. If the overlap degree of nodes is
greater than 0.5, we merge the two subgraphs Ci and Cj. Additionally,
during the process of obtaining a dense subgraph, we record the type to
which each k-mer belongs in the subgraph, as well as the weight of a
k-mer pair formed from two types of k-mer.

2.6 Merger and extension of k-mers

We extend the k-mers identified in the dense subgraphs
obtained in the previous step. First, considering that we have
recorded the type to which each k-mer belongs in the subgraph,
we categorize all k-mers in each dense subgraph into two groups:
enhancer k-mers and promoter k-mers. The two k-mers
corresponding to the most weighted k-mer pair in each dense
subgraph serve as the centers for the two types of k-mers. Next,
we compare each k-mer in each type to the central k-mer,
determining the position of each k-mer by assessing whether
the relationship is a mismatch or an overlap. During the
construction the position weight matrix (PWM), the frequency
of each base corresponds to the frequency of its k-mer in the
sequence. The two PWMs obtained from the dense subgraph
constitute the initial DNA motif pairs. Subsequently, we use
FIMO to scan the positions of the two PWMs in the real
sequences. If the two PWMs appear in the sequence pair
respectively, we consider them to be the final DNA motif pairs.

2.7 Evaluation methods for predicted DNA
motif pairs

Three evaluation methods are introduced to assess the
performance of the predicted DNA motif pairs. Two of these
methods are utilized to evaluate the accuracy of the predicted
DNA motif pairs, while the third method is employed to assess
the enrichment of the predicted DNA motif pairs.

The first evaluation method is DNAmotif pair distance (MPD),
which is defined by MotifHyades and computed using Eq. 9 (Wong,
2017). The metric MPD is employed to assess how well the
predicted DNA motif pairs M � (Mi

P,M
i
E) | i ∈ N, i≤K{ } can be

matched to the known DNA motif pairs m �
(mi

P,m
i
E) | i ∈ N, i≤K{ } inserted into simulated sequence pairs:

MPD � 1
K
∑K
i�1
min x D mi

P,M
x
P( ) +D mi

E,M
x
E( )( ), (9)

where D(H1, H2) denoted the standard DNA motif distance
between DNA motif H1 and H2 (Wong et al., 2013).

The second evaluation metric is DNA motif pair found ratio
(MPFR), which is computed by Eq. 10 and used to estimate how
many statistically significant DNAmotif pairs are found correctly. A
DNAmotifH1 is deemed a statistically significant (p< 0.005) match
to another DNA motif H2 when the standard DNA motif distance
D(H1, H2) is less than 0.5 according to the empirical distribution of
random DNA motif patterns (Wong et al., 2013).

MPFR � 1
K
∑K
i�1
I D mi

P,M
x′
P( )< 0.5 ∧ mi

E,M
x′
E( )< 0.5[ ], (10)

where x′ � argmin x(D(mi
P,M

x
P) +D(mi

E,M
x
E)) and I[condition]

is the Iverson bracket used in mathematical notation and represents
logical true-or-false conditions.

The third evaluation metric involves assessing the statistical
significance of the enrichment of the predicted TF pairs with known
TF pairs through hypergeometric testing, as computed using Eqs 11, 12:

pvalue � phyper m,
n n − 1( )

2
,M,

N N − 1( )
2

( ), (11)

where,

phyper x1, y1, x2, y2( ) � ∑min y1 ,x2( )
k�x1

y1! y2 − y1( )!x2! y2 − x2( )!
y2!k! y1 − k( )! y2 − x2 − y1 + k( )!,

(12)

x1, y1, x2 and y2 are any non-negative integers. N corresponds to
the number of TFs in the STRING database, whileM represents the
number of TF pairs. Similarly, n andm denote the number of TFs in
the predicted TF pairs and the number of predicted TF pairs,
respectively.

3 Results

3.1 Benchmarking MPCHG on simulation
datasets and real datasets

To assess the accuracy of predicted motif pairs, we generated a
total of 9000 sets of simulated data for different parameters and
computed both the DNA motif pair distance and DNA motif pair
found ratio for these 9000 sets of simulated data. Additionally, to
explore the biological significance of predicted motif pairs, we
identified that they may contribute to chromatin interactions
based on the transcription factors they bind. Finally, we
compared the accuracy of predicted motifs with existing software
and found MPCHG to exhibit higher accuracy.

3.1.1 The DNA motif pairs predicted by MPCHG
obtained high quality DNA motif pair distance and
DNA motif pair found ratio on different
simulation data

We generate 9000 sets of simulation data to evaluate the
performance of MPCHG. The simulated sequences follow a
Gaussian distribution with a mean of 500 nucleotides and
standard deviation of 20 nucleotides for basic benchmarking. The
number of DNA sequence pairs T) is varied from 100 to 1000.
Subsequently, we randomly select H DNA motif profile matrices
from the JASPAR database, and the number of DNA motif pairs is
varied from 3 to 100 through random combinations. We select the
base-generating string corresponding to the number with the
highest probability based on the distribution of bases at each
position within each profile matrix. Afterward, we randomly
replace the selected strings in the sequence pairs with the
generated string pairs. The complete performance spectrum is
visualized in Figure 2A and Figure 2B. The DNA motif pairs
identified by MPCHG consistently exhibited high-quality DNA
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FIGURE 2
Performance of MPCHG on simulation datasets and real datasets. (A) Line chart for Motif Pair Distances (i.e., MPD). on known DNA motifs from
JASPAR. (B) Line chart for Motif Pair Found Ratio (i.e., MPFR). on known DNA motifs from JASPAR. (C,D) Histogram on the predicted DNA motif pairs
enriched with known interacting TF pairs. The red columns indicate the predicted log10 (TF pairs num) and the blue columns indicate the predicted log10
(TF pairs num supported by STRING database, which is experimentally proven). (E) The TF pair Hic1-SP1 in the network of the TFs corresponding to
the predicted DNA motifs in K562_1 cell line. The green line represents the TFs interacting with TF Hic1 and the blue line represents the TFs interacting
with TF SP1. The red line indicates the interaction betweenHic1 and SP1, leaving out some of the lines between the interacting TFs. (F) The TF pair SOX10-

(Continued )
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motif pair distances and DNA motif pair found ratios across diverse
simulation datasets. In addition, we can see from Figure 2A and
Figure 2B that with more sequence pairs, MPD decreases while
MPFR increases, suggesting MPCHG’s better generalization on
larger datasets and its potential for enhanced robustness, leading
to more reliable and accurate predictions.

3.1.2 The interacting TF pairs obtained by predicted
DNA motif pairs were significantly enriched with
known interacting TF pairs and the TF pairs
obtained by predicted DNA motif pairs may
contribute to chromatin interactions

It is widely recognized that the interaction between DNA motifs
is facilitated by transcription factors (TFs). Thus, we predict TF
interactions based on the interactions between DNA motifs (Yu
et al., 2006). Utilizing the JASPAR database, we can retrieve
information about which TFs bind to each DNA motif.
Subsequently, we compare the predicted DNA motifs with DNA
motifs in the JASPAR (NON-REDUNDANT) DNA-JASPARCORE
(2022) vertebrates database to identify the TFs associated with the
predicted DNA motifs. Based on the interactions between DNA
motifs and the TFs bound by each DNA motif, we derive TF pairs.
During the process of obtaining TF pairs from DNAmotif pairs, it is
noteworthy that a DNA motif may bind to multiple TFs. Therefore,
we consider two approaches for the TFs associated with a predicted
DNA motif: one involves including all TFs for the predicted DNA
motif, while the other involves considering only 1 TF. For a given
DNA motif, we first identify the most similar DNA motif in the
database, i.e., the DNA motif corresponding to the lowest p value.
Subsequently, we designate the TF of this most similar DNAmotif as
the TF of our predicted DNAmotif. This yields two types of TF pairs
corresponding to predicted DNA motif pairs.

To assess whether the predicted TF pairs are enriched with
known TF pairs, we collect experimentally validated interacting TFs
in STRING database (Szklarczyk et al., 2023). Then, we use
hypergeometric testing to calculate the pvalue, evaluating the
statistical significance of the enrichment of the predicted TF pairs
with known TF pairs. The findings for the K562_1 cell line are
illustrated in Figure 2C and Figure 2D, while the results for the
remaining 6 cell lines are presented in Supplementary Figures S2A,
S2B. These figures unveil a notable and statistically significant
enrichment of the predicted interacting transcription factor (TF)
pairs with the established TF interactions in the STRING database.

The TF pairs we have predicted are likely to play a role in
chromatin interactions. To illustrate, by comparing our predicted
TF pairs with experimentally validated TF pairs in the STRING
database, we identify a novel predicted TF pair, HIC1-SP1, as
depicted in Figure 2E. HIC1 is a transcription factor (TF)
classified as a member of the BTB/POZ (Broad complex,
Tramtrack, Bric à brac or poxvirus and zinc finger) zinc finger

family. These TFs are characterized by the presence of an N-terminal
POZ domain involved in protein-protein interactions and a
C-terminal zinc-finger binding domain for direct DNA
interaction. A recent report reveals that HIC1 can act as both a
transcriptional repressor and an activator during induction of
human regulatory T cells (Ray and Chang, 2020). SP1, also
known as specificity protein 1*, is a protein that in humans is
encoded by the SP1 gene. The protein encoded by this gene is a zinc
finger transcription factor that binds to GC-rich DNA motifs of
many promoters (Al-Sarraj et al., 2005). Notably, Hypoxia repressed
SIRT1 transcription through promoting the competition between
Sp1 and HIC1 on the SIRT1 proximal promoter in a SUMOylation-
dependent manner (Sun et al., 2013). Based on this, the competitive
relationship between SP1 and HIC1 may regulate gene transcription
by influencing chromatin structure and status. Furthermore,
another novel DNA motif pair, SOX10-SP5, as illustrated in
Figure 2F, is predicted in HUVEC cell line. Sox10 is present in
all neural crest cells and plays a particularly vital role in determining
the fate, viability, and maturation of Schwann cells originating from
neural crest stem cells (Mao et al., 2014). SP5 binds to the GC box, a
DNA motif present in the promoter of a very large number of genes
(Harrison et al., 2000), and is an essential early regulator of neural
crest specification in xenopus (Park et al., 2013). Furthermore,
experimentally validated by Choi et al. demonstrated that
knocking down Sp5 on the initial steps of neural crest
development could result in complete loss or reduction of the
expression of NC markers Sox10 (Park et al., 2013). Thus, it is
likely that the interaction of SOX10-SP5 contributes to chromatin
interactions, allowing their transcripts to co-localize in the neural
crest region (Park et al., 2013).

3.1.3 MPCHG achieved a higher accuracy than
existing methods in identifying DNA motifs

We finally assess the accuracy of the DNAmotifs obtained in the
intermediate process to understand the degree of overlap with
existing DNA motifs. We conduct a comparative analysis of
MPCHG against six state-of-the-art DNA motif-finding tools,
namely, DREME (Bailey, 2011), HOMER (Heinz et al., 2010),
MEME (Bailey et al., 2006), ProSampler (Li et al., 2019),
XSTREME (Grant and Bailey, 2021), and XXmotif (Hartmann
et al., 2013). All these tools utilize the JASPAR database as a
reference and employed the TomTom software (Gupta et al.,
2007) with default parameters for assessment. In particular,
MEME requires user to specify the number of DNA motifs, and
after systematic testing at output settings of 50, 100, 150, and
200 DNA motifs, the optimal parameter of 50 is determined
(yielding the highest accuracy in comparison with the JASPAR
database). The remaining parameters of the above-mentioned
algorithm are set to their default values, the accuracy of each
method can be observed in Figure 2G. The results show that the

FIGURE 2 (Continued)

SP5 in the network of the TFs corresponding to the predicted DNA motifs in HUVEC cell line. The green line represents the TFs interacting with TF
SOX10 and the blue line represents the TFs interactingwith TF SP5. The red line indicates the interaction between SOX10 and SP5, leaving out some of the
lines between the interacting TFs. (G) Histogram of the accuracy comparison between MPCHG and other six methods on seven datasets. The horizontal
axis represents different methods, while the vertical axis indicates the accuracy of predicted DNA motifs.
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FIGURE 3
Functional and Spatial-level analysis of identified motif pairs. (A). Box plots on the DNase hypersensitivity peak fraction of the DNA motifs found on
different region types (i.e., WE (Weak Enhancer), E (Enhancer), TSS (Promoter), PF (Promoter-Flanking Region), R (Regulatory Region Background), BG
(Background)) on different chromosomes. The horizontal axis represents different type of DNA motifs, while the vertical axis, DNase Peak Fraction,
represents the ratio of the number of DNA motifs that overlap with DNase hypersensitive sites to the total DNA motifs. (B). Box plots on the DNase
hypersensitivity peak fraction of the DNAmotifs found on different region (i.e., E (Enhancer) and TSS (Promoter)) with varying numbers of enriched Gene
Ontology (GO) terms. (C). Histogram of GOMO gene ontology enrichment results, with DNAmotifs identified and sorted by type (horizontal axis), and the
vertical axis is converted to 7+log(probability the proportion of DNA motifs with at least one GO term in each type). For each DNA motif, the term “GO
Enriched” indicates that it has at least one statistically significant GO term identified by GOMO, while the term “Silent” indicates that there is no statistically
significant GO term identified by GOMO. (D). Boxplot on the overlap coefficients (Szymkiewicz-Simpson coefficients) between the enriched GO terms of

(Continued )
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accuracy of motifs predicted by MPCHG on 7 sets of data ranges
from 75.0% to 88.7%. In contrast, the accuracy of the other six
methods range from 28.0% to 66.7%. Where, MotifHyades exhibits
the lowest accuracy at 28.0% on K562_1 cell line. Overall, MPCHG
demonstrates an improvement of around 60% in accuracy compared
to the other six methods. Notably, the accuracy of MPCHG averaged
around 80% across various cell lines, indicating its high robustness.

3.2 DNA motif spatial accessibility and
functional correlations provide insights into
predicted DNA motif pairs

Exploring the spatial accessibility of motif pairs can unveil their
mechanisms of action in gene regulation. By assessing the spatial
accessibility of these motif pairs, we can determine which gene regions
are more prone to transcription factor binding, thus gaining deeper
insights into key nodes within the gene regulatory network.
Furthermore, investigating the functional correlations between
motif pairs can reveal their synergistic roles and functional
regulations in biological processes, thereby understanding their
functions and regulatory mechanisms in specific biological processes.

3.2.1 DNA motifs predicted by MPCHG are spatial
accessible and DNase peak fractions of different
type of DNAmotifs have different correlation to the
number of enriched GO terms

Exploring the accessibility of DNA motifs is instrumental in
identifying gene regions prone to transcription factor binding,
offering insights into the underlying mechanisms of gene
regulation. To investigate DNA motifs accessibility, we download
the DNase Chip-seq peak-calling data (Supplementary Table S1)
from the ENCODE consortium (Dunham et al., 2012) across 6 cell
lines. We calculate how many DNA motifs overlap with DNase
hypersensitive sites on the reference hg19 human genome. To
measure the significance of DNase Peak Fraction, we adopt the
approach used by Wong in 2016 (Wong et al., 2016). For each DNA
motif instance, we randomly sample 100 sites of the same width
from both the regulatory region and the entire region of the same
chromosome. This process yields regulatory region background
DNase peak fractions (denoted as R) and overall background
DNase peak fractions (denoted as BG) for each chromosome,
respectively. The result (Figure 3A) for K562_1 cell line and the
result (Supplementary Figures S3–S8) for other 6 cell line illustrate
the DNase Peak Fraction for different types of DNA motifs on each
chromosome individually. As depicted in the Figure 3A, the DNase
Peak Fraction consistently follows a pattern across various DNA
motif types: WE motifs exhibit the highest DNase Peak Fraction,
followed by TSS motifs, and the lowest PF, except for the 22nd
chromosome. E motifs and TSS motifs have relatively almost the
same size DNase Peak Fraction, but both are higher than R and BG

motifs. This suggests that WE motifs are more inclined to be open,
followed by TSS motifs, and this overlapping fraction is statistically
significant. We conduct t-tests and Mann-Whitney tests to measure
the statistical significance of the difference between the identified
DNA motifs and those in the background region. The result
indicates that all p − values are less than 0.01, signifying a
significant overlap between DNA motifs predicted by our method
and DNase hypersensitive sites.

Furthermore, DNase peak fractions exhibit distinct correlations
with the number of enriched GO terms for different type of DNA
motifs. As illustrated in Figure 3B, for enhancer motifs, the DNase
peak fraction displays a positively correlation with the number of
enriched GO terms, while for TSS motifs, it remains almost
unchanged. This observation may be attributed to the fact that
enhancers, responsible for gene expression regulation, are typically
located in open chromatin regions known as DNase hypersensitive
sites. These sites, susceptible to nucleases like DNase I, represent
chromatin regions that are not tightly bound in the nucleus, allowing
easier access to DNA structures by regulatory elements such as
transcription factors. Consequently, the increase in the number of
GO terms associated with enhancer motif enrichment and their
overlap ratio with DNase hypersensitive sites may be attributed to
the likelihood of these enhancers being situated in open chromatin
regions. This accessibility facilitates interactions with regulators,
influencing the enrichment of GO terms. On the other hand, TSS
motifs are commonly found in the promoter region of a gene,
associated with the transcription start site. While these motifs play a
crucial role in gene initiation, an increase in their number does not
lead to a significant change in the overlap ratio with TSS. This is
because the location of TSS motifs in the promoter region is
relatively fixed, and there is no direct correlation with an
increase in the number of GO terms. Despite the increase in
enriched GO terms for enhancer motifs, these terms do not
directly impact the distribution of TSS motifs. Therefore, the
overlap ratio with TSS remains largely unchanged. This
phenomenon underscores the importance of distinguishing
between various regulatory elements and factors in the study of
gene regulation. It emphasizes the necessity of considering their
intricate interactions within the gene expression regulatory network.

3.2.2 DNA motifs predicted by MPCHG are
enriched with GO terms and the two DNA motifs
coupled within one DNA motif pair are functional
consistency

Ontology enrichment analysis serves as a crucial bioinformatics
tool, facilitating the identification of significant enrichment in a
group of genes or gene-associated entities in biological functions and
processes (Peng et al., 2019). This analysis provides comprehensive
insights into the functional characteristics of the study subject,
shedding light on its significant roles in biology. To conduct this
analysis, we use GOMO software for Gene Ontology enrichment on

FIGURE 3 (Continued)

the first DNA motif and those of the second DNA motif within each DNA motif pair. The arrangement is sorted by type on the horizontal axis. A
horizontal red dashed line serves as a reference for the expected overlap coefficient under the null hypothesis. This assumption posits that the overlap is
entirely random, featuring a uniform hit distribution for all identified GO terms in this study conducted by GOMO.
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each DNA motif obtained (Buske et al., 2010). In short, GOMO
scans all promoters using the provided DNA motifs to determine if
any DNAmotif is significantly associated with genes linked to one or
more Gene Ontology (GO) terms. This process is significant for
understanding the biological roles of the DNA motifs. The results
are depicted in Figure 3C and Supplementary Figures S9–S14.
Notably, on average, more than 97% of DNA motifs exhibit
enrichment for at least one GO term. This observation suggests

that the predicted DNA motifs play a discernible role in gene
regulation, cellular processes, or other biological functions, and
their functions may be relatively extensive and universal. Among
the top frequent terms, we observe the DNA motifs-related GO
terms such as (GO:0048731 system development) (GO:
0048513 animal organ development), (GO:0030154 cell
differentiation), and (GO:0003700 DNA-binding transcription
factor activity).

FIGURE 4
The num and spatial distribution relationship of identified DNA motif pairs. (A). Histogram on the number of predicted motif pairs annotated to
different types by ChromHMM and Segway (i.e., E (Enhancer), WE (Weak Enhancer), TSS (Promoter), and PF (Promoter-Flanking Region)). (B). Histogram
on the number of predicted motif pairs annotated by six cell lines. Their chromatin interaction type is exclusively Promoter-Enhancer. (C). Boxplot on the
average genomic distance between themotif instances of the first DNAmotif and those of the second DNAmotif within each DNAmotif pair, sorted
by type (horizontal axis).
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Furthermore, our interest extends to the functional roles
between the two DNA motifs within each DNA motif pair. To
explore this, we calculate the overlap coefficient (Szymkiewicz-
Simpson coefficient) between the enriched GO terms of the first
DNA motif and those of the second DNA motif within each DNA
motif pair. The results of the overlap coefficient are illustrated in
Figure 3D and Supplementary Figure S15. The observed overlap
coefficients are higher than expected, indicating a substantial
overlap between the two DNA motif-related GO term set. This
suggests a potential functional or biological correlation between the
two motifs. Notably, the overlap coefficient for TSS-TSS interaction
is the highest, implying that interactions between promoters may be
functionally more closely related, involved in more common
biological processes, and exhibit stronger functional correlations.
These findings provide valuable insights for a deeper understanding
of promoter interaction in gene regulatory network and biological
processes. Additionally, they offer guidance for further functional
annotation and research into regulatory mechanisms.

3.3 DNA motif pairs predicted by MPCHG
unveiled genomic distance characteristics in
human cell lines

To analyze genomic distance signatures within chromatin
structures, we first counted the motif pairs predicted by MPCHG
on seven cell lines. Through genomic distance analysis of the
predicted motif pairs, MPCHG reveals the spatial relationships
and interactions between the regulatory elements. Notably, these
findings highlight the universality of long-distance regulatory
mechanisms, and in particular enhancers play a key role in
facilitating precise gene regulation.

3.3.1 DNA motif pairs were discovered by MPCHG
on seven human cell lines

MPCHG has run on the seven cell lines (K562_1, GM12878,
HeLa-S3, HUVEC, IMR90, K562_2, NHEK) to obtain ten thousand
of DNA motif pairs. We counted the number of DNA motif pairs of
10 chromatin interaction types on the K562_1 cell line and the
number of promoter-enhancer-pairs on the remaining six cell lines.
The discovered DNA motif pairs are visualized Figure 4A
and Figure 4B.

3.3.2 The genomic distance between DNA motifs
pairs predicted by MPCHG revealed the interaction
and relative position between the
regulatory elements

Analyzing the distances between DNA motifs provides insights
into the relative positioning and interactions of gene regulatory
elements, indicating whether they are in close proximity or distantly
located within the three-dimensional chromatin structure (Dekker
and Misteli, 2015). This analysis enhances our understanding of the
organization and spatial regulation of gene expression at the
chromatin level. Therefore, Accordingly, we have computed the
distance between DNA motifs of different interaction types. As
depicted in Figure 4C, the interaction distance between E-E is the
greatest, followed by E-WE, E-TSS, and E-PF and Supplementary
Figure S16 also indicate that enhancers are far away from Promoters.

This observation aligns with the widely accepted notion that
enhancers are typically situated in regions far away from the
genes they regulate, sometimes spanning millions of base pairs
(bp). This long-distance regulatory action is facilitated through
the establishment of chromatin loops, enabling effective and
precise regulatory interactions.

4 Discussion

Identifying DNA motifs is of paramount importance in biology
and computational biology. DNAmotifs are short sequence patterns
in protein or nucleic acid sequences that are functionally relevant.
They are crucial for functional annotation, structure prediction,
evolutionary relationships, and regulatory element recognition.
Furthermore, the identification of DNA motif pairs in interacting
sequences is also significant as it aids in predicting protein-protein
interactions, drug design, and disease research. In conclusion, DNA
motifs and their pairs play pivotal roles in biological research and
medical applications.

Hence, we propose the MPCHG algorithm to identify tens of
thousands of DNA motif pairs in the long-range chromatin
interaction sequences. First, we use a 3-order Markov model to
generate background sequences that matches the length and
composition of the original sequence, ensuring statistical
significance and rationality for k-mer seeds. In contrast to many
algorithms that exhaustively determine DNA motif length within a
specific range, our method extends the core DNAmotif to both ends
using a double-sample z-test. This approach aligns the predicted
DNA motif more closely with real scenarios. At the same time,
algorithms that set the DNAmotif length in advance may miss some
important DNA motifs or introduce high noise. Furthermore, we
construct a composite heterogeneous graph for different types of
k-mers (enhancer k-mers from enhancer sequences and promoter
k-mers from promoter sequences). This graph connects k-mers of
different types present in the same sequence pair. Simultaneously, it
captures complex relationships among k-mers of the same type with
mismatched or overlapping connections. To obtain a dense
subgraph related to k-mers, we define the fitness function of the
subgraph to assess its density. Nodes meeting specific conditions are
extended to the current seed. Finally, we merge and extend the
obtained subgraph to extract DNA motifs. Subsequently DNA
motifs scanning enables the identification of DNA motif pairs.

Regarding the predicted DNA motif pairs, we conducted a
thorough analysis covering various aspects. The accuracy rate,
measured by comparing predicted DNA motifs with the JASPAR
database using TOMTOM software, the accuracy of predicted DNA
motifs ranged from 75.0% to 88.7%. Additionally, we employed
GOMO software to explore the gene ontology enrichment of these
predicted DNA motifs. The findings revealed that, on average, over
97% of DNA motifs are enriched for at least one GO term. This
indicated that the predicted DNA motif play essential roles in gene
regulation, cellular processes, or other biological functions, and their
functions may be relatively extensive and universal. To further
validate our predictions, we compare the predicted DNA motifs
with DNase Chip-seq peak-calling data. The analysis demonstrated
a significant overlap between DNA motifs predicted by our model
and DNase hypersensitive sites. Notably, DNAmotif pairs involving
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enhancer or weak enhancer regions exhibited greater distance,
aligning with the common understanding that regulatory
components in enhancer regions are typically located far from
their interacting partners, often spanning a large genomic distance.
We extended our analysis to predict TF interactions based on the
predicted DNA motif pairs. The result indicated that the predicted
interacting TF pairs are significantly enriched with the known
interacting TF pairs in STRING, as determined by hypergeometric
testing. Moreover, we unveiled new TF interaction information, such
as the interaction between HIC1 and SP1, suggesting a potential role
in facilitating chromatin interactions and promoting gene
transcription. Finally, to evaluate the generalization performance of
our model, we tested it on six additional E-TSS datasets representing
different cell lines (GM12878, HeLa-S3, HUVEC, IMR90, K562, and
NHEK). The results demonstrated consistently good performance
across these diverse datasets.

The prediction of DNA motif pairs stands as a critical
challenge in bioinformatics, offering valuable insights into
various biological processes, including gene regulation, protein-
protein interactions, and RNA structures. While significant strides
have beenmade in this field, the future holds immense potential for
further advancements. Firstly, the continuous evolution of deep
learning and artificial intelligence techniques, including innovative
algorithms and graph neural networks, is expected to elevate the
accuracy and reliability of DNA motif pair predictions. Secondly,
the exploration of cross-species DNA motif pair prediction
presents an intriguing challenge, offering opportunities to
uncover conserved sequence patterns and explore evolutionary
variations. Thirdly, the integration of diverse data sources, such as
epigenetic data and protein interaction information, will
contribute to more comprehensive annotations for predicted
results, enhancing our understanding of the intricacies of
biological systems. Additionally, applying DNA motif pair
predictions in disease research and precision medicine holds
promise for identifying potential disease markers or
therapeutic targets. Lastly, the combination of DNA motif pair
predictions with network interactions and systems biology
approaches will enable the construction of comprehensive
biological regulatory network models. This integrative
approach has the potential to deepen our understanding of the
fundamental principles of biology. In conclusion, ongoing
research in predicting DNA motif pairs has significant
potential to drive breakthroughs in biotechnology and medical
advancements, fostering progress in the fields of biology
and medicine.
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GIHP: Graph convolutional neural
network based interpretable
pan-specific HLA-peptide binding
affinity prediction

Lingtao Su1, Yan Yan2, Bo Ma3, Shiwei Zhao1 and Zhenyu Cui1*
1Shandong University of Science and Technology, Qingdao, China, 2Shandong Guohe Industrial
Technology Research Institute Co. Ltd., Jinan, China, 3Qingdao UNIC Information Technology Co. Ltd.,
Qingdao, China

Accurately predicting the binding affinities between Human Leukocyte Antigen
(HLA) molecules and peptides is a crucial step in understanding the adaptive
immune response. This knowledge can have important implications for the
development of effective vaccines and the design of targeted
immunotherapies. Existing sequence-based methods are insufficient to
capture the structure information. Besides, the current methods lack model
interpretability, which hinder revealing the key binding amino acids between
the two molecules. To address these limitations, we proposed an interpretable
graph convolutional neural network (GCNN) based prediction method named
GIHP. Considering the size differences between HLA and short peptides, GIHP
represent HLA structure as amino acid-level graph while represent peptide SMILE
string as atom-level graph. For interpretation, we design a novel visual
explanation method, gradient weighted activation mapping (Grad-WAM), for
identifying key binding residues. GIHP achieved better prediction accuracy
than state-of-the-art methods across various datasets. According to current
research findings, key HLA-peptide binding residues mutations directly impact
immunotherapy efficacy. Therefore, we verified those highlighted key residues to
see whether they can significantly distinguish immunotherapy patient groups. We
have verified that the identified functional residues can successfully separate
patient survival groups across breast, bladder, and pan-cancer datasets. Results
demonstrate that GIHP improves the accuracy and interpretation capabilities of
HLA-peptide prediction, and the findings of this study can be used to guide
personalized cancer immunotherapy treatment. Codes and datasets are publicly
accessible at: https://github.com/sdustSu/GIHP.

KEYWORDS

HLA-peptide binding, model interpretation, GCNN, immunotherapy, affinity prediction

1 Introduction

HLA also known as MHC (major histocompatibility complex) molecules, are
responsible for presenting peptides derived from intracellular or extracellular proteins
to T cells. It is a crucial step in understanding and predicting immune responses, such as
antigen presentation and T-cell activation (Kallingal et al., 2023). HLA molecules are
classified into two major classes: class I and class II. Each class has different subtypes, and
their binding abilities vary depending on the specific HLA subtype. For HLA class I, the
open binding groove close to both ends restrict the size of the bounded peptides between
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8–12 residues, whereas HLA class II incorporates peptides of length
13–25 residues (Wang and Claesson, 2014). As a results, existing
methods can be classified into allele-specific and pan-specific
methods. Allele-specific methods focus on predicting the binding
affinity between a specific HLA allele. Pan-specific methods aim to
predict HLA-peptide binding in a more general way, without the
need for allele-specific training data. (Gizinski et al., 2024).

Allele-specific methods train separate models for each MHC allele
and make predictions for individual alleles. NetMHC (Lundegaard
et al., 2008) is a widely used allele-specific method, which utilize
machine learning algorithm to learn the relationship between
peptide sequences and their binding affinities to specific MHC
alleles. NetMHC 4.0 (Andreatta and Nielsen, 2016) is also a
sequence-based allele-specific method, which uses both
BLOSUM62 and sparse encoding schemes to encode the peptide
sequences into nine amino acid-binding cores. In comparison with
the HLA (around 360aa in length), peptides length are much shorter,
and such methods must take insertion methods to reconcile or extend
the original sequence. In addition, deep learning-based methods have
also been developed forMHC-peptide binding prediction. DeepMHCII
(You et al., 2022), which utilizes deep convolutional neural networks
(CNNs) to capture complex sequence patterns and interactions between
peptide and MHC class II molecules. It takes the peptide and MHC
protein sequences as input and uses multiple layers of convolutional
filters to extract features from the sequences. These filters scan the input
sequences at different lengths, capturing both local and global patterns.
The extracted features are then fed into fully connected layers to make
predictions of the binding affinity. MHCAttnNet (Venkatesh et al.,
2020) utilizes a combination of bidirectional long short-term memory
(Bi-LSTM) and attention mechanisms to capture important features
and dependencies in MHC- peptide interactions. The Bi-LSTM
processes the sequences in both forward and backward directions,
capturing the dependencies and context in the data. The attention
mechanism allows the model weight different parts of the input
sequences based on their relative importance. This enables the
model to focus on the most relevant regions of the peptide and
MHC sequences during the prediction process. SMM-align (Nielsen
et al., 2007) utilizes structural and sequence-based features to predict
binding affinities for MHC class I alleles. It employs a PSSM alignment
algorithm to align target peptide sequences with known binders and
derive binding predictions. MHC-NP (Giguere et al., 2013) also
incorporate structure with sequence-based features and employs a
random forest regression model to make predictions. Allele-specific
methods are particularly useful when the focus is on specific alleles of
interest, allowing formore accurate predictions tailored to those specific
alleles. However, developing and maintaining separate models for each
allele requires a significant amount of experimental binding data and
computational resources.

On the other hand, pan-specific methods have the advantage of
predicting binding affinities not only for alleles present in the training
data but also for new, unseen alleles. NetMHCpan and NetMHCIIpan
(Reynisson et al., 2020) are widely used pan-specificmethods. They take
sequence feature as input, utilizes artificial neural networks (ANNs) to
learn the relationship between peptide sequences and their binding
affinities to MHCs. They consider various sequence-based features,
including amino acid composition, physicochemical properties, and
binding motifs. In comparison with these two methods, another pan-
specific method MHCflurry (O’Donnell et al., 2018; O’Donnell et al.,

2020) integrates additional information, such as peptide processing
predictions and binding affinity measurements from mass
spectrometry-based experiments, to enhance its predictions. Some
sequence-based methods, such as BERTMHC (Cheng et al., 2021),
leverage the power of the BERT language model to improve their
performance. The BERT languagemodel is pre-trained on a vast corpus
of text data, which enables it to capture intricate patterns and
dependencies within input sequences effectively. One of the
advantages of using BERT for encoding peptide sequences is its
ability to capture long-range dependencies and contextual
information. This is particularly important in MHC binding
prediction, where specific amino acid positions within a peptide can
significantly affect the binding affinity. Because structure determines the
function of proteins, therefore, somemethods also incorporate structure
information into their predictions. MixMHCpred-2.0.1 (Gfeller et al.,
2018) employs a deep learning architecture capable of learning complex
patterns and relationships between peptide sequences and MHC
binding affinities. The model is trained on a diverse set of MHC
alleles and covers a wide range of peptide lengths. This allows it to make
accurate predictions for a broad range of MHC-peptide combinations.
NetMHCpan-4.0 (Jurtz et al., 2017) utilizes a combination of structural
and sequence-based features. It incorporates information from MHC-
peptide complex structures and uses a machine learning approach to
make pan-specific predictions. RPEMHC (Wang et al., 2024) is a deep
learning approach that aims to improve the prediction ofMHC-peptide
binding affinity by utilizing a residue-residue pair encoding scheme. In
RPEMHC, the peptide sequence andMHC binding groove are encoded
as one-hot vectors, representing each amino acid residue and its
position. AutoDock is a widely used molecular docking software
that can be employed for MHC-peptide binding prediction. It uses a
Lamarckian genetic algorithm to explore the conformational space and
predict the binding modes and affinities of peptides within the MHC
binding groove. By modelling the docking between the HLA protein
and peptide ligands these methods have achieved accurate binding
prediction performance. However, docking methods rely on sampling
different conformations of the peptide and MHC molecule to find the
best binding pose. However, the conformational space of peptides and
MHC molecules can be vast, and exhaustively sampling all possible
conformations is computationally infeasible.

In fact, no matter allele-specific or pan-specific methods, they all
can be broadly categorized into twomain categories: sequence-based
and structure-based methods. Sequence-based methods utilize
machine learning techniques to capture the sequence motifs and
physicochemical properties important for HLA-peptide binding.
These methods employ various algorithms, such as support
vector machines (SVMs), random forests, or ANNs, to learn the
relationships between peptide sequences and binding affinities from
large datasets. Sequence-based methods have the advantage of being
computationally efficient and applicable to a wide range of HLA
alleles and peptides. Structure-based methods leverage the three-
dimensional structures of HLA molecules and peptides to predict
binding affinities. Molecular docking algorithms, such as AutoDock,
are commonly used to explore the conformational space and
calculate binding energies. These methods require knowledge of
the 3D structures of the HLA molecule and peptide, limiting their
applicability to cases where experimental structures are unavailable.
Recent advancements in deep learning, such as CNNs and recurrent
neural networks (RNNs), have shown promise in HLA-peptide
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binding affinity prediction. Deep learning-based methods can
effectively capture complex sequence patterns and structural
features, leading to improved prediction accuracy (Wang et al.,
2023). These models often incorporate encoding schemes to
represent peptide sequences or structural features and are trained
on large datasets to learn the relationships between sequences and
binding affinities. Despite notable progress, HLA-peptide binding
affinity prediction still faces challenges and have some limitations.
First, deep learning models are often considered as black boxes,
meaning they lack interpretability. It can be challenging to
understand the specific features or patterns that contribute to the
model’s predictions. Interpretability is crucial in immunology
research to gain insights into the molecular mechanisms
underlying MHC-peptide interactions and to guide experimental
studies; Second, existing methods often rely on sequence-based
encoding schemes due to the limited availability of
experimentally determined 3D structures for HLA-peptide
complexes. While sequence information is informative, the
exclusion of structural details may limit the accuracy and
coverage of predictions, particularly for cases where structural
features play a crucial role. Even some tools consider structure
information, they seldom consider the structure features at the
amino acids level. Besides, the length difference between the
peptides that HLA can bind (typically around 8–15 amino acids)
and the length of HLA molecules (which can be over 360 amino
acids) poses a challenge in HLA-peptide binding affinity prediction.
Furthermore, unlike HLAs, peptides are too short to form stable
structures. All these drawbacks are not well solved by
existing methods.

Considering all these limitations, we proposed GIHP, which is
an interpretable GCNN-based algorithm for the prediction of
peptides binding to pan HLA molecules. By representing
peptide SMILE strings (Quiros et al., 2018; Meng et al., 2024)
and HLA structures as attributed graphs, GCNNs can effectively
model the pairwise interactions between amino acids and capture
both local and global structural features. Furthermore, GIHP has a
novel visual explanation method called Grad-WAM for HLA-
peptide binding affinity prediction and interpretation. By
analyzing the learned representations and interactions within
the graph structure, the Grad-WAM technique can identify the
key residues that contribute most significantly to the HLA-peptide
binding process. Comprehensive comparative evaluation results
demonstrate that the GIHP achieves good performance across
diverse benchmark datasets. By applying the GIHP framework to
several cancer immunotherapy datasets, we have identified
numerous promising biomarkers that can effectively distinguish
patients with and without treatment response. Moving forward,
the insights gained from the GIHP analysis can be leveraged to
guide the development of more personalized cancer
immunotherapy strategies.

2 Materials and methods

2.1 Data collection and processing

We collected human HLA-peptide interaction datasets from
published papers or publicly available databases. (Table 1).

Wang-2008 Dataset (Wang et al., 2008): Experimentally
measured peptide binding affinities for HLA class II molecules.
The processed data set had 24,295 interaction entries in total with
ligand length ranging from 16 to 37 and have 26 unique HLA
molecules. HLA DP and DQ molecules are covered.

Wang-2010 Dataset (Wang et al., 2010): Experimentally
measured peptide binding affinities for MHC class II molecules.
After preprocessing, the dataset contains 9,478 measured affinities
and covers 14 MHC class II alleles with peptides length ranging
from 9 to 37.

Kim-2014 Dataset (Kim et al., 2014): this dataset was obtained
from the Immune Epitope Database (IEDB) (Vita et al., 2019),
including binding affinity data compiled in 2009 (BD 2009), 2013
(BD 2013) and also include a blind datasets. Blind datasets refer to
data resulting after subtracting BD2009 from BD 2013. For all these
three datasets, only human datasets were kept for training. After
preprocessing the dataset contains 268,189 interactions in total, with
peptides length ranging from 8 to 30.

Jurtz-2017 Dataset (Jurtz et al., 2017): this dataset is originally
designed for training of NetMHCPan-4.0. The final processed
dataset has 3,618,591 entries in total with ligand length ranging
from 8 to 18.

Jensen-2018 Dataset (Jensen et al., 2018): this dataset is used for
training of NetMHCIIpan-3.2 (Karosiene et al., 2013), which
contains HLA class II binding affinities retrieved from the IEDB
in 2016. The 2016 data set contains 131,008 data points, covering
36 HLA-DR, 27 HLA-DQ, 9 HLA-DP molecules and 15,965 unique
peptides. The peptides length range from 9 to 33.

Zhao-2018 Dataset (Zhao and Sher, 2018): this dataset is
compiled for training IEDB tools as well as the MHCflurry
(O’Donnell et al., 2018). The dataset contains 21,092 binding
relations, covering 18 HLA-DR, 19 HLA-DQ, 16 HLA-DP
molecules and 2,168 unique peptides. The peptides length is 15.

Reynisson-2020 dataset (Reynisson et al., 2020): this dataset is
originally collected for training NetMHCpan-4.1 and
NetMHCIIpan-4.0 methods. The dataset covering 161 distinct
HLA class I molecules, 4,523,148 distinct peptides, with peptides
length ranging from 8 to 15.

For all the collected training datasets, only binding affinity
values in IC50nM format are kept, which are log-transformed to
fall in the range between 0 and 1 by applying 1−log (IC50 nM)/log
(50k) as explained by Nielsen et al. (2003). When classifying the

TABLE 1 Summary of the collected datasets after preprocessing.

Name HLAs Peptides HLA-peptide
interactions

Wang-2008 26 4,421 24,295

Wang-2010 14 3,902 9,478

Kim-2014 183 28,428 268,189

Jurtz-2017 124 3,307,868 3,618,591

Jensen-2018 72 15,965 131,008

Zhao-2018 53 2,168 21,092

Reynisson-
2020

161 4,523,148 4,795,633
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peptides into binders or non-binders a threshold of 500 nM is used.
This means that peptides with log50k transformed binding affinity
values greater than 0.426 are classified as binders. We consolidated
all the collected datasets, removing any duplicate entries, to arrive at
a final integrated dataset comprising 160,253 unique HLA-peptide
interactions, covering 223 distinct HLA alleles and 35,481 peptide
sequences. To further verify the generality of our method, we
collected protein-peptide binding data from pepBDB (Wen et al.,
2019) database, after deleting peptides short than 8aa, we got
12,655 interactions between 11,055 proteins and 7,811 peptides.
Because our method takes HLA and protein structure as input, all
the structure data are downloaded from the PDB (Berman et al.,
2000) and AlphaFold database (Varadi et al., 2022) and some are
predicted by alphafold2 (Jumper et al., 2021) and Rosettafold (Baek
et al., 2021). Only high-resolution experimental structures (e.g.,
X-ray crystallography or cryo-EM data with resolution better
than 3.0 Å) were included. All structural models, whether
experimental or predicted, were subjected to validation using
atomic contact evaluation, and overall model quality assessment.
Only structures that passed these validation checks were retained for
further analyses.

To evaluate whether the key binding residues identified by our
method can effectively differentiate patients who benefit from
immunotherapy, we collected relevant breast, bladder, and pan-
cancer treatment datasets from the cBioPortal resource (Cerami
et al., 2012), as shown in Table 2. Key binding residues mutation
could lead to binding affinity change between HLA and peptides.
Binding affinity change has been demonstrated as a biomarker of
immunotherapy efficiency (Kim et al., 2020; Seidel et al., 2021;
Murata et al., 2022). For each patient, only SNP mutations are kept,
if the SNP locates on the key binding site of HLA or peptide, then we
separate them in one group, otherwise in the other group. Then we
conduct survival analysis for the two groups.

Samstein-2019 dataset (Samstein et al., 2019): The cohort
consisted of 1,662 patients, received at least one dose of immune
checkpoint inhibitor (ICI) therapy. The cohort encompassed a
variety of cancer types with an adequate number of patients for
analysis. In detail, 146 patients received anti-CTLA4, 1,447 received
anti-PD1 or PD-L1, and 189 received both. This is a pan-cancer
dataset, including 350 cases of non-small cell lung cancer (NSCLC),
321 cases of melanoma, 151 cases of renal cell carcinoma (RCC),
214 cases of bladder cancer, and 138 cases of head and neck
squamous cell cancer.

Miao-2018 dataset (Miao et al., 2018): this dataset consists of
249 patient tumors from six different cancer types: melanoma (N =
151), non-small cell lung cancer (N = 57), bladder cancer (N = 27),

head and neck squamous cell carcinoma (N = 12), anal cancer (N =
1), and sarcoma (N = 1). These patients were treated with anti-PD-
1 therapy (N = 74), anti-PD-L1 therapy (N = 20), anti-CTLA-
4 therapy (N = 145), or a combination of anti-CTLA-4 and anti-PD-
1/L1 therapies (N = 10). A small proportion of patients (N = 7)
received a combination of anti-PD-1, anti-PD-L1, or anti-CTLA-
4 therapy with another immunotherapy, targeted therapy, or
cytotoxic chemotherapy.

Razavi-2018 dataset (Razavi et al., 2018): This dataset is
downloaded from cBioPortal: https://cbioportal-datahub.s3.
amazonaws.com/breast_msk_2018.tar.gz.

Clinton-2022 dataset (Clinton et al., 2022): This dataset is
downloaded from cBioPortal: https://cbioportal-datahub.s3.
amazonaws.com/paired_bladder_2022.tar.gz.

Aaltonen-2020 dataset (Consortium et al., 2020): This dataset is
downloaded from cBioPortal: https://cbioportal-datahub.s3.
amazonaws.com/pancan_pcawg_2020.tar.gz.

2.2 Methods

The overall framework of GIHP is illustrated in Figure 1. GIHP
takes HLA structure and peptide SMILE string as input. In the input
representation module, HLA is represented as an attributed residue-
level graph, while the peptide is represented as an attributed atom-
level graph. Then a multi-layer GCNNs is used to learn the high-
level features, and the learned features are contacted and fed into the
MLP layer for final binding affinity prediction. To enhance the
results interpretability, we introduced a novel visual interpretation
method called Grad-WAM. Grad-WAM leverages gradient
information from the last GCN layer to assess the significance of
each neuron in determining affinity.

2.2.1 Input representation
Graph-based protein structure representation has inherent

advantages over traditional sequence-based approaches in
capturing true binding events. For each HLA molecular, we take
both structure and sequence information into consideration. Given
one of our key objectives is to identify the critical binding amino acid
residues, we have represented the HLA proteins as residue-level
relational graphs GH � (v, ε), where v is the set of amino acids, ε is
the set of edges. As shown in Table 3, we describe the node attributes
by integrating sequence and structural property, including amino
acid type, chemical properties, charges, etc., while the edge attributes
encompass connection types, distances, and structural information.
We consider four types of bond edges including Peptide Bonds,
Hydrogen Bonds, Ionic Bonds and Disulfide Bridges.

Considering that the length of peptides binding to MHC class II
is between 13–25 residues, and the length is around nine for peptides
binding to MHC class I. Therefore, the peptide length is relatively
short compared to HLAs (over 360aa). In this study, we represent
peptides as SMILES-like sequences and then transform them into
graphs using a molecular graph representation method inspired by
RDKit (https://www.rdkit.org). The attributes of each node vi are
shown in Table 4. eij ∈ ε is covalent bonds between the ith and the
jth atoms. The edge attributes depending on the electrons shared
between atoms, resulting in single, double, or triple bonds,
respectively.

TABLE 2 Immunotherapy related dataset and three cancer datasets.

Name Type Patients SNP mutations

Samstein-2019 Pan-cancer 1,662 14,876

Miao-2018 Pan-cancer 249 102,207

Razavi-2018 Breast cancer 1,756 7,420

Clinton-2022 bladder Cancers 1,245 24,277

Aaltonen-2020 Pan-cancer 2,583 347,994
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2.2.2 Graph convolutional neural network module
LetA be the adjacency matrix, andX be the feature matrix of the

given graph. Each GCN layer takesA and node embeddings as input
and outputs the final embeddings. As shown in Eqs 1, 2.

H l+1( ) � GCN H l( ), A( ) (1)
H l+1( ) � ReLU D̂

−0.5
ÂD̂

−0.5
H l( )W l+1( )( ) (2)

Where, H is the embeddings, and H(0) � X, W(l+1) are trainable
weight matrix, D̂ is the diagonal node degree matrix of A.

After obtaining the vector representations of HLA and peptide,
they are concatenated and fed into a Multi-Layer Perceptron (MLP)
to predict the binding affinity score. TheMLP consists of three linear
transformation layers, each followed by a Rectified Linear Unit
(ReLU) activation function and a dropout layer with a dropout
rate of 0.1, as in (Öztürk et al., 2019). The Mean Squared Error
(MSE) is employed as the loss function to measure the discrepancy
between predicted and actual affinity scores. MSE is defined in Eq. 3.

MSE � 1
n
∑n

i�1 Pi − Yi( )2 (3)

Where, n is the sample size, Pi and Yi are the predictive and true
values of the ith interaction pair, respectively.

2.2.3 Gradient-weighted activation mapping
While Grad-CAM has been successfully applied to various

computer vision tasks, it is not directly applicable to graph-
structured data. Therefore, in this paper we proposed a novel
results interpretation methods called Grad-WAM, which can be
used for identifying key binding related residues. Grad-WAM

FIGURE 1
The overall framework of GIHP.

TABLE 3 The node features of HLA graph.

Name Description Dim

Residue type We utilize Blosum62, 20 types of amino acids plus 1 unknown 21

Structure mapping Included α-helix (H), residue in isolated β-bridge (B), extended strand, participates in β ladder (E), hydrogen bonded turn (T),310
helix (G), π-helix (I), bend (S) and coil (C)

8

AA position the position of α-carbon in each residue to record their 3D position 3

Hydrogen donor or acceptor Donor: R, K, W. Acceptor: D, E. Donor and acceptor: N, Q, H, S, T, Y 4

Physicochemical properties We utilize a set of 7 physicochemical properties for amino acid types (AAPHY7). These features include steric parameters,
hydrophobicity, volume, polarizability, isoelectric point, helix probability, and sheet probability

7

TABLE 4 Node features of peptide graph.

Name Description Dim

Atom type [H, C, N, O, F, Cl, S, Br, I] (one-hot) 9

Atomic Num The atomic number (integer) 1

Acceptor Accepts electrons [0/1] (binary) 1

Donor Donates electrons [0/1] (binary) 1

Aromatic In an aromatic system [0/1] (binary) 1

Hybridization [sp, sp2, sp3] (one hot) 3

Hydrogens Number of connected hydrogens (integer) 1

Formal charge Formal charge of the atom (integer) 1

Explicit valence Explicit valence of the atom (integer) 1

Implicit valence Implicit valence of the atom (integer) 1

Explicit Hs Number of implicit Hs the atom is bound to (integer) 1

Radical electrons Number of radical electrons for the atom (integer) 1
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measure the contribution of each residue for the decision of
binding by taking use of the gradient information in the last
GCN layer. Grad-WAM utilizes a weighted combination of the
positive partial derivatives of the feature maps with respect to the
interaction values to generate the corresponding visual
explanations. Considering the contribution of each residue is
not equal, different from the explanation method proposed in
MGraphDTA (Yang et al., 2022), we introduce an additional
weight ω (Eq. 4) gradient values.

ω � ∑
i
αi[ ] · ReLU ∂P

∂Ti
( ),∀ i | iϵT{ } (4)

Where, ReLU is the activation function, P is the predictive value as
in Eq. 5.Ti is the feature value of the ith node on the feature mapT of
the last GCN layer. αi is the gradient value of the ith node defined in
Eq. 6. ∂P

∂Ti
is the partial derivative as in Eq. 7.

P � ∑
i
αi · ReLU ∂P

∂Ti
( ) · Ti (5)

αi �
∂P
∂Ti

∂P
∂Ti

+ Ti · ∂2P
∂Ti( )2

(6)

∂P
∂Ti

� αi · ∂P∂Ti
+ Ti · αi · ∂2P

∂Ti( )2 (7)

In this way, the contribution of residues to the prediction of
binding affinity is calculated. For visual explanation, residues are
display utilizes colors, ranging from blue to red. A higher gradient
value corresponds to a redder color, indicating the key role of that
amino acid in the interaction.

3 Results

3.1 Performance comparisons with
other methods

Four widely used performance metrics were employed to measure
methods’ performance. Including accuracy (Acc),MatthewsCorrelation
Coefficient (MCC), sensitivity (Sn), and the specificity (Sp). The
definitions of these four metrics are as follows: Eqs 8–11.

Acc � TP + TN

TP + TN + FP + FN
(8)

Sn � TP

TP + FN
(9)

Sp � TN

TN + FP
(10)

MCC � TN × TP − FN × FP																																					
TP + FP( ) TP + FN( ) TN + FP( ) TN + FN( )√ (11)

Where, TP is True Positives, TN is True Negatives, FP is False
Positives, and FN is False Negatives. In addition, by comparing the
predicted and true values, predictions were assessed to be true or
false. The receiver operating characteristic curves (ROC) were
generated for all the methods, and the performance of each
algorithm to discriminate between binders and nonbinders was
analyzed by calculating the area under the ROC curve (AUC) as
an estimate of prediction performance.

We compare GIHP with state-of-the-art allele and pan-specific
baselines including NetMHC-4.0 (Andreatta and Nielsen, 2016),
NetMHCpan-4.0 (Jurtz et al., 2017), PickPocket-1.1 (Zhang et al.,
2009), SMMPMBEC (Kim et al., 2009), MHCFlurry (O’Donnell
et al., 2018), MixMHCpred-2.0 (Bassani-Sternberg et al., 2017) and
NetMHCcons-1.1 (Karosiene et al., 2012). To eliminate the impact
of data variations, all models were retrained and tested using our
new collected and processed dataset. 10-fold cross-validation (CV)
was applied. The data set is divided into 10 folds. During each
iteration, one of the 10 partitions is designated as the validation
dataset, while the remaining nine partitions are utilized to train the
model. The final performance is determined by calculating the
average performance across all 10 individual iterations. As shown
in Figure 2, on average, GIHP outperform all the compared
prediction methods. It is worth noting that not every method is
suitable for every HLA and peptide length. To make the
performance comparison fairer and more reasonable, we train
allele-specific models with their required HLAs and peptide
length, which included in our datasets.

To make comparisons more comparable and test methods
performance on other protein-peptide binding datasets, a
separate independent test is conducted using the data collected
from pepBDB, which have no overlap with the above training
data. This independent test data set serves as an unbiased
validation source to assess the performance of different tools,
which is relatively more objective, and can test models’
generalization ability. 10-fold cross validation is applied, after
each epoch average results are calculated. Results on the pepBDB
independent test data is shown in Figure 3.

On average, GIHP achieved highest AUC value. In this
independent test data, GIHP achieved the highest AUC of
0.88 and the highest Sp score of 0.98. In contrast, NetMHCPan-
4.0 and Pickpocket-1.1 attained AUC values of 0.76 or lower, and
Acc scores of 0.71 or lower when evaluated on this new dataset.
Difference from the results on the above part, MHCflurry got AUC
up to 0.8. Similar with our method, MHCflurry harness the power of
deep learning and a comprehensive dataset to improve the
prediction of HLA-peptide binding affinities. Our model
outperforms both allele and pan-specific methods, demonstrate
its ability to achieve higher prediction accuracy and robustness
generality for all kinds of training data.

For evaluating the performance our method under different
peptide length. We collected independent test set and external test
set fromTransPHLA, which can be downloaded from https://github.
com/a96123155/TransPHLA-AOMP/tree/master/Dataset. In the
collected datasets, 9-mer peptides comprising the largest
proportion, while the number of 13-mer and 14-mer peptides is
very small. Our model’s performance on the independent test set
and external test set for different peptide lengths are shown in
Figures 4A, B respectively. As shown in Figure 4, our methods can
achieve good performance on all kinds of peptide length.

3.2 Key binding residues on HLAs

The binding of peptides to HLA molecules occurs within
specialized regions called binding pockets. HLA class I molecules
have a peptide-binding groove formed by two alpha helices (α1 and
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α2) and a beta sheet platform. Within this groove, there are seven
pockets (numbered from A to F, shown in Figure 5A) that interact
with specific amino acid residues of the bound peptide. HLA class II
molecules are involved in presenting peptides derived from
extracellular proteins to helper T cells. HLA class II binding
pockets are formed by two chains: the alpha chain (α) and the
beta chain (β). Each chain consists of two domains: the α1 and
β1 domains form the peptide-binding groove, while the α2 and

β2 domains provide structural support. The binding groove of HLA
class II molecules is open at both ends, allowing longer peptides to
bind compared to HLA class I molecules. The binding pockets in
HLA class II molecules are referred to as P1, P4, P6, P7, P9
(Figure 5B). With our GIHP results interpret module, many key
binding residues on both HLA class molecules and the
corresponding peptides are identified. Although some residues
with high activity scores locates outside of binding pockets, most

FIGURE 2
Performance comparison results.

FIGURE 3
Independent test results on pepBDB datasets.
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of them locates on one of the binding pockets. As shown in Figures
5C,D, 45 residues with highest activity scores onHLAs are identified,
among them 26 locates on HLA class I pockets, and 19 locates on
HLA class II pockets.

Position 159 has the highest activity score on pockets A. Other
positions including 59, 171, 167, seven and 66. According to current
research, position seven is a pocket A’s floor residue. This residue
creates a hydrophobic environment within the pocket A and interact
with the side chain of the anchor residue. Although residue on
position 159 has no evidence of directly involved in peptide binding
interactions, it has structural and functional implications for the
overall stability and conformation of the pocket A region (Ma et al.,
2020). It potentially contributes to the shape and electrostatic
properties of the pocket, indirectly affecting the binding
preferences and stability of the peptides presented by the HLA
class I molecule. However, the specific role and impact of residue
159 on the pocket A’s function vary among different HLA alleles and
need further study for a comprehensive understanding. On pockets
B, substitutions at positions 70 was found to yield a significantly
distinct peptide-binding repertoire in HLA-A molecules when
compared to HLA-B molecules. Positions 167 and position 67 on
pocket B has been demonstrated as key peptide-binding residues.
Besides, substitutions at positions 67 and nine exert a significant
influence on the peptide-binding repertoire (van Deutekom and
Keşmir, 2015). Position 97 has the highest activity score on pockets
C. Position 97 is known to be a critical residue for peptide binding
and presentation. This residue locates near the C-terminal anchor
residue of the bound peptide and contributes to the formation of the
peptide-binding groove. The amino acid at position 97 can
significantly influence the peptide-binding specificity and affinity
of the HLA molecule. Substitutions or variations at this position can
alter the size, shape, or electrostatic properties of the pocket C,
thereby affecting the recognition and binding of specific peptides.
Several studies have investigated the impact of position 97 on
peptide binding and immunological responses (Moutaftsi
et al., 2006).

Considering the residues with high activity scores on HLA class
II pockets, position nine is crucial for determining the peptide-
binding specificity of the HLA class II molecule. The amino acid at

position nine of the bound peptide interacts with residues in the
P1 pocket, influencing the peptide-binding preferences. Position
86 plays a critical role in peptide binding and presentation (Brown
et al., 1993). The amino acid at position 86 interacts with the peptide
residue and contributes to the stability and specificity of the HLA-
peptide class II complex (Stern et al., 1994). Among our identified
important positions, positions 13 and 74 are critical for determining
the peptide-binding specificity and stability of HLA class II
molecules. The interactions between peptide residues and the
residues in these pockets are essential for the recognition and
presentation of antigenic peptides to CD4+ T cells. Except these
positions, we also prioritized many other residues, such as positions
63 and 57. These positions within the peptide-binding grooves of
HLA class II molecules is crucial for understanding the molecular
basis of antigen presentation and immune responses. Researchers
can gain valuable information about the molecular interactions
governing antigen presentation and T cell recognition.
Furthermore, these results can help designing personalized
immunotherapies (Boukouaci et al., 2024).

Figures 5E, F show the motif analysis results. In the two figures,
the Y-axis describes the amount of information in bits. The X-axis
shows the position in the alignment. At each position there is a stack
of symbols representing the amino acid. Large symbols represent
frequently observed amino acids, big stacks represent conserved
positions and small stacks represents variable positions. Therefore,
positions 2, 4 and nine have frequently observed amino acids in HLA
class I and class II respectively.

3.3 Key binding residues on peptides and
their corresponding genes

In this paper, we focus on finding immunotherapy efficiency
related key residues and their corresponding genes. With the
identified residue positions and the corresponding gene mutation,
we try to verify whether they can be biomarkers to separate patients
into different survival groups. We applied GIHP to immunotherapy
related datasets (Samstein-2019 andMiao-2018 in Table 2). For each
SNP mutation site, we extract the corresponding 9-mer peptide

FIGURE 4
The performance of our model on the independent test set and external test set for the different peptide lengths. (A) Performance on the
independent test set. (B) Performance on the external tet set.
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around it and predict the binding affinities with all the 223 HLAs. By
paired t-test statistical comparing the binding affinity change before
and after residue substitution, along with GIHP returned activity
scores of each residue, significant key binding residues are identified.
To get the functions of these mutation related genes, we conducted
GO enrichment analysis by ShinyGO-0.80 (Ge et al., 2020). As
shown in Figure 6, most of key residues locate on genes related to
pathways in cancer and cancer related signaling pathways.

Since we interest in findingmutations related to immunotherapy
response, therefore, we further analyzed key residues enriched in
T cell receptor signaling pathway (Figure 6). The enriched genes
include RHOA, HLA-B, HRAS, IL10, NRAS and KRAS. RHOA has
been implicated in T cell activation and migration, which are critical
for effective anti-tumor immune responses (Bros et al., 2019).
Altered RHOA signaling could potentially impact T cell function
and infiltration into the tumor microenvironment, influencing
immunotherapy response. HLA-B plays a crucial role in immune

recognition, as it presents peptide antigens derived from
intracellular proteins to cytotoxic T cells. HRAS, NRAS, and
KRAS are genes that belong to the RAS family of oncogenes.
These genes encode proteins involved in intracellular signaling
pathways regulating cell growth, survival, and proliferation. The
presence of RASmutations has been associated with poorer response
rates to certain immunotherapies, including immune checkpoint
inhibitors (East et al., 2022). IL10 can suppress the activity of
cytotoxic T cells and natural killer (NK) cells, which are critical
for tumor surveillance and elimination. High levels of IL10 in the
tumor microenvironment have been associated with
immunosuppression and reduced response to immunotherapy
(Salkeni and Naing, 2023).

Next, we investigated the impact of biomarker gene mutations
on patient survival outcomes using a cohort of individuals
(Samstein-2019 dataset in Table 2) with immunotherapy
treatment. The patients were categorized into two groups based

FIGURE 5
The key binding residues on HLA pockets and HLA binding peptides motif. (A) Binding pockets on HLA class I molecules. (B) Binding pockets on HLA
class II molecules. (C) The identified key binding residue locations and activity scores on each pocket of HLA class I molecules, where R represent residue
location analyzed HLA molecules. (D) The identified key binding residue locations and activity scores on each pocket of HLA class II molecules. (E)
Distribution of preferred peptide residues of HLA class I molecules using Seq2logo2.0. (F) Distribution of preferred peptide residues of HLA class I
molecules using Seq2logo2.0.
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on the presence or absence of the biomarker gene mutation. Kaplan-
Meier survival curves were generated, and a log-rank test was
performed to compare the survival between the two groups. The
results revealed a significant difference in survival between the two
groups, with patients harboring the biomarker gene mutation
exhibiting a higher risk of adverse events compared to those
without the mutation. These findings highlight the potential
prognostic significance of the biomarker gene mutation and
underscore its relevance in patient stratification and personalized

treatment approaches. Furthermore, we compared our results with
TMB score provided in (Samstein et al., 2019). As shown in Figure 7,
patients with biomarker mutations tend to have poor survival status.

As shown in Figure 7, our methods can separate patients more
significantly. Although TMB can separate patients, TMB is an
overall measure, its hard to know which gene mutations play key
roles in differentiating patients’ response. Our methods not only can
separate patients significantly, moreover, we also know which
residue substitutions play key roles. To further test the

FIGURE 6
GO enrichment results of key residues related genes.

FIGURE 7
Results on immunotherapy data. (A) patient groups separated by GIHP identified biomarker mutations. (B) TMB separated patient groups.
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performance of these biomarker genes, we analyzed Miao-2018
datasets (Table 2), results is show in Figure 8.

As illustrated in Figure 8, the identified biomarker mutations are
also able to effectively separate patient groups with statistical
significance. Our findings provide compelling evidence that the
identified biomarker genes may possess valuable predictive power
for immunotherapy response and patient survival outcomes. This
highlights their potential as clinically relevant targets for the
development of personalized treatment approaches. The results of
this study advance the understanding of the underlying molecular
mechanisms governing immunotherapy efficacy, and offer

promising directions for future research and therapeutic
interventions.

3.4 Performance on other cancer datasets

In this section, we test whether these key residue mutations and their
corresponding genes can separate other cancer patients. Results are shown
in Figures 9A–C. Detail information of these three cancer datasets are
shown in Table 2. We can see that our biomarker genes can differentiate
the three-cancer type significantly. Especially for the pan cancer datasets.

FIGURE 8
Results on Miao-2018 datasets.

FIGURE 9
Survival curves on breast, bladder and pan cancer datasets.
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4 Conclusion

In summary, we proposed a newGCNN-based framework called
GIHP for pan-specific HLA-peptide binding affinity prediction.
GIHP harness both structure and sequence information and
utilized Grad-WAM for visual interpretation. Extensive
comparison with state-of-the-art methods verified the better
performance of our methods. Collectively, the findings provide
evidence that the GIHP framework has improved the
generalization and interpretability capabilities of HLA-peptide
binding prediction models. Furthermore, we have identified
numerous key binding-related amino acid residues that can serve
as potential biomarkers for differentiating patient groups based on
immunotherapy response. When applying these identified
biomarkers on datasets from other cancer types, they were also
able to effectively differentiate patient groups with statistical
significance. These findings highlight the potential prognostic
significance of the biomarker gene mutation and underscore its
relevance in patient stratification and personalized immunotherapy
treatment approaches.
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College of Computer Science and Engineering, Shandong University of Science and Technology,
Qingdao, China

Protein-Protein Interactions (PPIs) involves in various biological processes, which
are of significant importance in cancer diagnosis and drug development.
Computational based PPI prediction methods are more preferred due to their
low cost and high accuracy. However, existing protein structure based methods
are insufficient in the extraction of protein structural information. Furthermore,
most methods are less interpretable, which hinder their practical application in
the biomedical field. In this paper, we propose MGPPI, which is a Multiscale graph
convolutional neural network model for PPI prediction. By incorporating
multiscale module into the Graph Neural Network (GNN) and constructing
multi convolutional layers, MGPPI can effectively capture both local and
global protein structure information. For model interpretability, we introduce a
novel visual explanationmethod namedGradient Weighted interaction Activation
Mapping (Grad-WAM), which can highlight key binding residue sites. We evaluate
the performance of MGPPI by comparing with state-of-the-arts methods on
various datasets. Results shows that MGPPI outperforms other methods
significantly and exhibits strong generalization capabilities on the multi-
species dataset. As a practical case study, we predicted the binding affinity
between the spike (S) protein of SARS-COV-2 and the human ACE2 receptor
protein, and successfully identified key binding sites with known binding
functions. Key binding sites mutation in PPIs can affect cancer patient survival
statues. Therefore, we further verified Grad-WAM highlighted residue sites in
separating patients survival groups in several different cancer type datasets.
According to our results, some of the highlighted residues can be used as
biomarkers in predicting patients survival probability. All these results together
demonstrate the high accuracy and practical application value of MGPPI. Our
method not only addresses the limitations of existing approaches but also can
assists researchers in identifying crucial drug targets and help guide personalized
cancer treatment.
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1 Introduction

PPIs are the basic components of protein complexes, which play
crucial roles in cellular components and biological processes (Chen
and Zacharias, 2023; Wu et al., 2023; Reed et al., 2024). Dysfunction
interactions can lead to various chronic diseases and even cancer.
Moreover, PPI contains a wealth of information, such as receptor
binding and immune response, and can providing key insights of
protein functionality and potential therapeutic targets for human
cancer (Kjer-Hansen andWeatheritt, 2023; Rodina et al., 2023). As a
results, numerous computational methods have been developed for
PPI prediction, which are more efficient and low cost in comparison
with traditional experimental based methods.

Early computational methods primarily use protein sequence as
input (Ding and Kihara, 2018; Wang et al., 2021; Boldridge et al.,
2023; Gainza et al., 2023; Shen et al., 2023). Such methods based on
the hypothesis that proteins with similar sequences tend to have
similar binding tendencies. With the increasing availability of
protein structure data, especially with the emergence of
Alphafold2 (Bryant et al., 2022), structure-based PPI prediction
algorithms (Dong et al., 2019; Tang et al., 2023) have been growing
year by year. In comparison with sequence-based methods,
structure-based methods can capture more detailed binding
structure information, therefore, the prediction accuracy are often
more higher. PPI prediction methods can be categorized into two
groups: machine learning and deep learning based methods. Among
them, Support Vector Machines (SVM) (Guo et al., 2008; Wong
et al., 2015; Bandyopadhyay and Mallick, 2016; Zhou et al., 2017)
based methods aim to find an optimal hyperplane using protein
sequence information (Chen and Jeong, 2009; Xia et al., 2010; Zahiri
et al., 2013; You et al., 2015), 3D structure (Li et al., 2012), and
domain information (Chen and Liu, 2005) to maximize the margin
between different proteins for classification. Decision tree-based
methods, on the other hand, utilize features such as protein 3D
structure, primary sequence, and domain composition for PPI
prediction. Compared to traditional machine learning-based
methods, deep learning has the ability to automatically learn
higher-level feature representations. Among them, DeepFE-PPI
(Yao et al., 2019) proposes a novel residue representation method
and deep learning network for protein-protein interaction
prediction. Deep-Trio (Hu et al., 2022) introduces a sequence-
based approach for PPI prediction, utilizing multiple parallel
convolutional neural networks. GNN-PPI (Jha et al., 2022)
leverages graph neural networks and language models (LM) to
extract high-quality features from proteins for predicting protein
interactions. HIGH-PPI (Gao et al., 2023) consists of bottom-level
protein graph neural network (BGNN) representation learning and
top-level PPI graph neural network (TGNN) representation
learning. The vector representations obtained from both
networks are concatenated to obtain the final prediction result.

While existing methods have achieved promising results on
datasets from various species, most of them lack sufficient protein
feature extraction and interpretability. Sequence-based models
primarily focus on the one-dimensional sequence characteristics
of proteins, while neglecting the higher-order structural properties.
This can lead to incomplete accuracy in predicting PPIs since
structural information plays a crucial role. Even when some
models take into account the structural information of proteins,

they often fail to adequately address how to extract both global and
local structural information from proteins to contribute to PPI
prediction. Additionally, some models incorporating interpretable
modules solely rely on spatial biological arrangements of residues,
introducing uncertainties and challenges to scientific validity and
reliability. These limitations hinder their practical applications in
PPI prediction. To address the issue of insufficient protein feature
extraction, we choose to utilize graph convolutional layers to capture
as much global structural information of protein graphs as possible.
However, we need to find a suitable trade-off due to challenges such
as over smoothing and gradient vanishing, which may arise when
using multiple graph convolutional layers. Secondly, given the
uniqueness of proteins, GNN should preserve the local structural
information of proteins. Certain amino acid residues are crucial for
protein interactions, and even the presence of specific residues
determines protein functionality. Therefore, GNN should
effectively distinguish between important residues and less
relevant ones, enabling reasonable judgments in subsequent site
prediction experiments. Secondly, the current interpretability of PPI
models based on graph neural networks falls short in translating
interactions into an understanding of function and mechanism.
Moreover, explanations based solely on spatial biological
arrangement information of residues are insufficient. Sequence
information provides only static insights, disregarding the
importance of protein structure and dynamic characteristics in
determining the occurrence and stability of interactions.

To address the limitations in protein feature extraction and
interpretability, we propose a novel framework called MGPPI, our
main contributions are as follows.

• We represent both interacting proteins as amino acid level
graphs, with amino acids as nodes and various relationships
between them as edges, which allows MGPPI to capture the
internal structure of proteins and their interactions more
accurately.

• To address the issue of black-box features in existing deep
learning models, we propose a novel interpretability module
called Grad-WAM. Grad-WAM utilizes the gradient
magnitudes generated by the final Graph Convolutional
Network (GCN) layer of the model to calculate the
contributions of each amino acid position in the PPI
prediction. This information is then used to visualize the
crucial amino acid residues that play a key role in the
interaction between the two proteins.

• To address the issue of insufficient protein structure feature
extraction in existing models, we propose a Multiscale Graph
Convolutional Neural Networkk (MGCN) to learn both local
and global protein structural representations. These
representations are mapped into feature vectors for each
protein, and the are combined for PPI prediction.

2 Methods

2.1 Input representation

The workflow of MGPPI is shown in Figure 1. The input to the
model is paired protein structures, which are represented as amino
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acid level graphs G = (N, E). Where nodes (N) are amino acid
residues (i.e., amino acid-level graph representation) and the
relationships between amino acids as edges (E). Node attributes
including solvent-accessible surface area, ϕ angle,ψ angle, secondary
structure (alpha helix, isolated beta-bridge residue, strand,
3–10 helix, turn, bend), AAPHY7 and BLOSUM62 descriptors,
hydrogen bond acceptor and donor information. Edge attributes
including information about the existence of covalent bond,
hydrophobic contact, ionic bond, disulfide bond, hydrogen bond,
and aromatic bond relationships between amino acids as edge
attributes. The details are shown in Table 1 below.

2.2 Graph neural network

We extract protein features using Graph Neural Networks and
combine the feature vectors of two proteins to predict Protein-
Protein Interactions. We map the protein graph representation to
feature vectors through two stages: message passing and readout. In
the message passing stage, as shown in Eq. 1, corresponding to
Figure 2A, we update the feature vector of each node by
incorporating the feature information from its neighboring nodes.

x T( )
i � σ Φ1x

T−1( )
i +Φ2 ∑

j∈N i( )
x T−1( )
j

⎛⎝ ⎞⎠ (1)

FIGURE 1
The model takes protein structures as input and employs graph representation learning to feed them into MGCN for extracting multi-scale features
of proteins, resulting in the final protein representation vectors. The two protein representation vectors are then fused to obtain a combined
representation of the protein pair. Subsequently, the combined representation is fed into fully connected layers to output predicted interaction scores.
GradWAM utilizes the gradient information from the last graph convolutional layer of MGCN and the final predicted scores to analyze the
importance of each amino acid for protein-protein interactions.

TABLE 1 Protein graph representation at the amino acid level.

Name Size

Node features

BLOSUM62 descriptors 23

AAPHY7 descriptors 7

One-hot encoded belonging to secondary structure 6

Solvent-accessible surface area 1

ϕ angle (divided by 180) 1

ψ angle (divided by 180) 1

Hydrogen bond acceptor 1

Hydrogen bond donor 1

Edge features

Covalent bond 1

Hydrophobic contact 1

Hydrogen bond 1

Aromatic bond 1

Ionic bond 1

Disulfide bond 1
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x(T)
i represents the feature vector of the ith node at a time step T;

Φ1,Φ2 symbolize learnable weight matrices shared by all nodes,
initialized with small random values pre-training, and continuously
optimized during training; σ encompasses two operations: node-
level batch normalization (Li et al., 2021) and the ReLU activation
function;N(i) refers to the set of neighboring nodes for the ith node.
By utilizing Eq. 1, nodes can gradually capture more global
information from the protein graph representation.

yG � 1
|M| ∑

i∈M
xi

T( ) (2)

M represents the set of all amino acids in the protein. During
the readout stage, as shown in Eq. 2, corresponding to Figure 2B, we
obtain the representation vector, denoted as yG, for the entire
protein graph G.

2.3 Multiscale graph convolutional neural
network for protein encoding

Graph neural network extract features of target proteins through
a layer-wise sampling approach. The layer-wise sampling approach
allows the model to extract the node features after each
convolutional layer, enabling the model to capture as much of
the protein’s global and local features as possible. A small
receptive field allows nodes to observe only local protein
structures, failing to capture global structural features. As a
result, nodes fail to establish connections with the overall protein
structure. On the contrary, when the receptive field is too large,
nodes may absorb more irrelevant features that are unrelated to
protein interactions. Additionally, it can lead to the homogenization
of node features within a particular region, giving rise to the problem
of oversmoothing. To effectively learn and integrate features from

protein graph data at different receptive fields and granularities, we
propose a Multiscale graph convolutional neural network (MGCN).
MGCN consists of three multiscale blocks and three transition
layers, the multiscale blocks as shown in Figure 3, the transition
layer transfers the multiscale information of nodes to the next stage.
At time step n + 1, the transition layer as shown in Eq. 3.

x n+1( )
i � σ Φ1 x 0( )

i ‖x 1( )
i ‖/‖x n( )

i( )(
+Φ2 ∑

j∈N i( )
x 0( )
j ‖x 1( )

j ‖/‖x n( )
j( )) (3)

The purpose of the transition layers is to connect adjacent
multiscale blocks, facilitating an increase in the depth of MGCN.
The multiscale blocks allow gradients to propagate through skip
connections, alleviating the issue of gradient vanishing.
Additionally, MGCN enhances the representation capability of
nodes by concatenating combinations of features from different
receptive fields. After passing through the final transition layer, the
feature vectors of amino acids are propagated to the readout stage. In
the information readout stage, the feature vectors of all amino acids in
a protein are integrated and transformed into a single feature vector
representing that protein. This protein feature vector is then utilized
for subsequent stages of protein-protein interaction prediction.

2.4 MGPPI network architecture

After obtaining the vector representations of proteins, we
concatenate the vector representations of both proteins and feed
them into fully connected layers to predict interaction scores. Since
the predicted interaction scores fall within the range of 0–1, we need
to set a threshold for classification. As we are going to predict key
sites of protein interaction later, we need to minimize the false
positive rate as much as possible to enhance the credibility of

FIGURE 2
Protein graph representation learning. (A) message passing phase, (B) message readout phase.
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prediction results, and hence, we have set the classification threshold
to 0.7. If the score is greater than this threshold, it is assigned a value
of 1, indicating that the two proteins are likely to interact with each
other. Conversely, if the score is below the threshold, it is assigned a
value of 0, suggesting that the two proteins are less likely to interact
or are unable to interact. Each fully connected layer is followed by a
ReLU activation function and a dropout layer with a dropout rate of
0.1, consistent with previous studies. There are a total of three fully
connected layers. Our loss function uses cross-entropy loss (Yang
et al., 2021), defined as follows Eq. 4:

Cross Entropy Loss � −∑n
i�1

Yi logPi (4)

Pi represents the predicted interaction score for the ith protein
pair, Yi represents the correct interaction score for the ith protein
pair, and n represents the total number of protein pairs.

2.5 Gradient weighted interaction
activation mapping

To enhance the interpretability of the model, we propose an
interpretable module called Gradient weighted interaction
activation mapping (Grad-WAM) and visualize the results. Grad-
WAM improves the identification of key interacting amino acid
residues and explains the mechanism of protein-protein
interactions, effectively addressing the issue of lack of
interpretability in neural network predictions. Grad-WAM
utilizes the gradient magnitudes generated by the last layer of
graph convolutions and the final predicted scores to calculate the
contributions of different amino acid positions in the protein
structure to protein-protein interaction predictions.

Specifically, Grad-WAM uses a weighted combination of the
positive partial derivatives of the feature maps with respect to the

interaction values to generate the corresponding visual explanations.
Since the contributions of each element are not equal, an additional
weight is introduced to weight the gradient values. The calculation
formula is as follows:

ω � ∑
i

αi · ReLU ∂P

∂Ti
( ), ∀ i | iϵT{ } (5)

Where ω represents the weight, and positive gradient values
indicate a positive influence on the predicted values, ensuring that ω
is a weighted average rather than a global average. αi corresponds to
the gradient weight of the ith node. ReLU() denotes the ReLU
activation function. Ti is the feature value of the ith node in the
feature map T of the last graph convolutional layer. P represents the
predicted protein-protein interaction value, and the calculation
formula is as follows:

P � ∑
i

αi · ReLU ∂P

∂Ti
( ) · Ti (6)

The derivative of Eq. 6 with respect to the variable yields the
following Eq. 7:

∂P

∂Ti
� αi · ∂P∂Ti

+ Ti · αi · ∂2P

∂Ti( )2 (7)

Rearranging the terms in Eq. 7 yields the following Eq. 8:

αi �
∂P
∂Ti

∂P
∂Ti

+ Ti · ∂2P
∂Ti( )2

(8)

Substituting the weight αi from Eq. 8 into Eq. 5, yields the final
weight as shown in Eq. 9:

ω � ∑
i

∂P
∂Ti

∂P
∂Ti

+ Ti · ∂2P
∂Ti( )2

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ · ReLU
∂P

∂Ti
( ), ∀ i | iϵT{ } (9)

FIGURE 3
The upper part of the figure illustrates the workflow of MGCN, which consists of three multi-scale blocks and three transition layers. The lower part
of the figure provides a detailed description of the multiscale blocks.
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The contribution of different amino acids at various positions in
the protein structure to the prediction of protein-protein
interactions can be calculated using Eq. 9. A key amino acid that
plays a crucial role in protein-protein interactions is annotated and
displayed in the protein structure. The color gradient from blue to
green to red represents the contribution values of the amino acids,
with higher contribution values indicated by a redder color,
indicating their significant role in protein interactions. This
method enhances the interpretability of the model. Grad-WAM
calculates the contribution of different amino acid positions in
protein-protein interaction prediction within protein structures
by utilizing the gradient magnitude generated by the final graph
convolutional layer and the predicted values propagated through
backpropagation. Due to the local connectivity and weight sharing
structure employed by the graph convolutional layer, it preserves
spatial information lost in the fully connected layers. The last graph
convolutional layer strikes a balance between high-order semantics
and detailed spatial information (Selvaraju et al., 2017), considering
both global and local features. Finally, the minimum-maximum
normalization method is used to map the impact probabilities of
each amino acid on protein interactions, ranging from 0 to 1.

2.6 Data

The datasets used in this study include the Human Protein
Reference Database (HPRD) (Peri et al., 2003), the Online
Predicted Human Interaction Database (OPHID) (Brown and
Jurisica, 2005), the H. sapiens dataset from the Biological
General Repository for Interaction Datasets (BioGRID)
(Oughtred et al., 2019), and the STRING database (Szklarczyk
et al., 2019). Additionally, the negative samples in the HPRD
dataset are sourced from curated negative protein-protein
interaction datasets. The negative protein-protein interaction
datasets collected data on human protein pairs that did not
exhibit interactions in large-scale yeast two-hybrid screening.
The quantities of positive and negative samples after processing
for each dataset are shown in Table 2.

For the aforementioned datasets, protein names were converted
to UniProt (Bateman, 2019) ID, and the corresponding PDB
(Berman et al., 2000) files were collected for training, testing, and
validation purposes. We randomly sampled 25,000 positive
examples and 25,000 negative examples from each human
protein dataset, resulting in a final training set of
200,000 samples. The training set is independent of the
subsequent test set.

2.7 Experimental environment configuration

The experimental environment consisted of Ubuntu 20.04.6LTS,
an Intel (R) Core (TM) i5-10400 CPU, and an NVIDIA Corporation
GP102G (Tesla P40) GPU. A batch size of 512 was set, and the Adam
optimizer with a learning rate of 0.0005 was used to update the
model parameters. The MGCN architecture comprised 15 graph
convolutional layers, including three multiscale blocks. Each
multiscale block consisted of N (N = 4) graph convolutional
layers and three transition layers.

3 Result and discussion

3.1 Compare on human proteins datasets

We selected the HPRD as the benchmark dataset and compared
MGPPI with several state-of-the-art PPI prediction methods for
analysis. These methods include High-PPI, a hierarchical graph
neural network-based PPI prediction method; GNN-PPI, a method
that utilizes graph neural networks to learn PPI network topological
structures; Deep-Trio, a deep learning framework based on a
masked multiscale CNN architecture that learns multiscale
contextual information from protein sequences; PIPR (Chen
et al., 2019), an end-to-end framework based on recursive neural
networks (RNNs) that incorporates pre-trained residue embeddings
for protein representation; and DeepFE-PPI, a method that employs
residue representation using the Res2vec [based on Word2vec
(Mikolov et al., 2013)] approach. In Figure 4A, the precision-
recall curves are provided, while Figure 4B presents the ROC
curves. Across both evaluation metrics, MGPPI consistently
achieved the best performance among all the compared methods,
this also highlights the significance of protein structural information
in PPI prediction. Furthermore, we conducted testing on the
BioGRID dataset for MGPPI and five other methods, resulting in
the confusion matrix shown in Figure 4C. The conclusions remain
consistent with the previous findings.

To further validate the predictive capability of MGPPI for
protein-protein interactions, we conducted performance
comparisons between MGPPI and the five different PPI
prediction methods on three other human protein datasets. The
results as shown in Figure 5.

From Figure 4 and Figure 5, it can be observed that our proposed
method, MGPPI, demonstrates favorable performance across
various commonly used evaluation metrics. MGPPI aims to
comprehensively consider the impact of oversmoothing and
gradient vanishing while extracting as much global information
as possible from protein graph structures. It simultaneously takes
into account the preservation of local information within protein
graph structures to enhance the prediction performance of PPI. On
the other hand, High-PPI effectively utilizes a layered modeling
approach. In this approach, the inner layer of the protein view
consists of residues as nodes, with their physical adjacency forming
the edges. The outer layer of the protein view considers proteins and
their interactions as nodes and edges, respectively, in the PPI
network structure. High-PPI, ranking second, highlights the
significance of protein structural information in PPI prediction.
In comparison to other sequence-based prediction methods such as

TABLE 2 The quantity of positive and negative samples in each dataset.

Dataset Positive Negative

HPRD 35944 763115

OPHID 39412 63932

BioGRID 72367 82731

STRING 11810480 167224

Multi-species 25640 30332
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DeepFE-PPI, PIPR, and Deep-Trio, MGPPI exhibits significant
advantages, further highlighting the importance of protein
structure information in PPI prediction.

3.2 Compare on multi-species
proteins datasets

The multi-species dataset consists of three species:
Caenorhabditis elegans (Celegan), Drosophila melanogaster
(Drosophila), and Escherichia coli (Ecoli). The utilization of
multi-species datasets enables further exploration of the practical
and generalization capabilities of MGPPI. Experimental evaluations
conducted on these datasets assess the model’s ability to generalize,
as all previous models were trained and tested solely on human
datasets. For MGPPI, protein network construction necessitates
corresponding PDB files, obviating the necessity to establish
distinct thresholds based on sequence similarity for data
categorization. We standardized the dataset into a comprehensive
multi-species dataset to assess the performance of each model
effectively. The results as shown in Table 3.

Based on Table 3, it can be observed that MGPPI exhibits
remarkable generalization ability. This can be attributed to its
capability of performing graph representation learning on
proteins from different species. MGPPI effectively extracts
valuable structural information, enabling accurate prediction of
protein-protein interactions. On one hand, sequence-based
methods can accurately predict some PPI by identifying
similarities between amino acid sequences of non-human species
and those of human proteins, inferring similar functionalities and
interaction tendencies. However, it should be noted that not all
proteins from other species can be matched with similar sequences
to human proteins. On the other hand, GNN-PPI might not have
encountered multi-species data and thus struggles to accurately
construct the PPI network structure, this leads to a performance
deviation of the model from the anticipated expectations.

3.3 Ablation study

As the depth of GNN models increases, we have observed the
issue of over-smoothing in certain cases. Over-smoothing refers to a

FIGURE 4
Here are the precision-recall curves (A), ROC curves (B), and AUC for the six methods on the HPRD dataset.(C) represents the 20% test set selected
from the BioGRID dataset for evaluatingMGPPI and five othermethods. The confusionmatrix was obtained by applying a threshold of 0.7 to the predicted
values (as the predictions are continuous values between 0 and 1).
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situation where nodes incorporate an increasing amount of
information from their neighboring nodes, causing the
representation vectors of some nodes to converge towards the
same value. When most or all nodes have representation vectors
that converge to the same or a few values, it hinders the normal
learning process of themodel and renders the neural network’s output
insensitive to the input information. Therefore, in this paper, we
propose MGCN to address this problem by integrating representation
vectors from different temporal nodes, preserving a combination of
receptive fields at different scales. This approach enhances themodel’s
ability to represent nodes and alleviates the issue of over-smoothing.

In MGPPI, we alleviate the issues of over-smoothing and
gradient vanishing by leveraging a multiscale module and batch
normalization techniques to improve model performance. To
demonstrate the individual contributions of the multiscale
module and batch normalization, We conducted ablation study
on the HPRD dataset. The study consisted of three
experimental scenarios:

(1) The first scenario involved removing batch normalization
while retaining the multi-scale module.

(2) The second scenario involved removing the multiscale
module and utilizing the four graph convolution
layers without it.

(3) The third scenario retained both the multiscale module and
batch normalization for experimental analysis.

The results presented in Table 4 indicate that both the multi-
scale module and batch normalization are essential components
of MGCN. Furthermore, experiments conducted on the HPRD
dataset aimed to investigate the impact of receptive field on the
model’s performance. Specifically, we progressively increased
the number of graph convolutional layers (i.e., 2, 3, 4, 5, 6)
within the multi-scale module to enlarge the network’s
receptive field.

From the results shown in Table 5, it can be observed that,
overall, increasing the number of convolutional layers improves
the overall performance of the model. However, when using six
convolutional layers, some metrics are not as good as those
achieved with four or five layers. This discrepancy may arise due
to the inclusion of noise information from residues that do not
participate in protein-protein interactions when increasing the
number of convolutional layers. Considering that each
additional convolutional layer introduces more
computational operations, which could result in longer
training and inference times, we aimed to strike a balance
between the model’s overall performance and its time
complexity. Furthermore, we aimed to mitigate the impact of
over-smoothing issues and gradient vanishing issues. Therefore,
after comprehensive consideration, we opted for a compromise
solution, retaining four convolutional layers for subsequent
experiments.

FIGURE 5
The overall performance of MGPPI compared to five other PPI predictionmethods was evaluated on theOPHID dataset, theH. sapiens dataset from
BioGRID, and STRING.

TABLE 3 Comparison of MGPPI with other methods on a multi-species
dataset (%).

Method Accuracy Precision Recall F1

DeepFE-PPI 68.70 63.97 66.53 65.22

PIPR 73.92 65.98 73.15 68.69

Deep-Trio 71.29 69.57 70.67 68.54

GNN-PPI 67.15 61.53 64.82 62.10

High-PPI 75.18 73.26 75.21 73.52

MGPPI 82.53 81.77 83.68 82.17
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TABLE 4 Investigating the individual contributions of the multiscale module and batch normalization (%).

Model Loss Accuracy Precision Recall F1 MCC

Without multiscale module 1.50 98.16 99.31 95.86 97.53 95.07

Without batch normalization 1.34 98.28 99.29 95.61 97.45 95.15

MGPPI 1.16 98.74 99.52 96.11 97.78 95.41

TABLE 5 Investigating the impact of different numbers of convolutional layers within the multiscale module on the model (%).

Convolutional layer Loss Accuracy Precision Recall F1 MCC

2 1.97 97.87 98.86 95.33 96.86 94.78

3 1.54 98.04 99.14 95.72 97.18 95.09

4 1.16 98.74 99.52 96.11 97.78 95.41

5 1.12 98.63 99.56 96.11 97.64 95.35

6 1.29 98.40 99.39 95.93 97.43 95.46

FIGURE 6
The key binding sites and amino acid contributions of the Spike protein and the human receptor ACE2. (A) represents the visualization results and
predicted binding sites for the human receptor protein ACE2. (B) Represents the visualization results and predicted binding sites for the Spike protein. (C)
Displays the contribution values of all amino acids in ACE2, represented by a single amino acid chain. (D) Displays the contribution values of all amino
acids in the Spike protein, which consists of three amino acid chains: (A, B, and C). Furthermore, the receptor binding domains on chains A and C are
oriented downward, while the receptor binding domain on chain B is oriented upward. In the visualization, the region to the left of position 1,500 with
higher scores corresponds precisely to the amino acids 435Ala, 436Trp, 512Val, and 465Glu in the B chain. Since the calculated contribution values are
relatively small, we have proportionally magnified them for better color distinction during the visualization stage.
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3.4 Predict and validate binding sites

To validate the interpretability and binding site prediction
capability of MGPPI, we conducted an experiment using the
interaction between the spike protein of SARS-COV-2 and the
human ACE2 receptor protein as a case study. After feature
extraction, graph convolution operations, and visualization, we
discovered a high interaction score between the two proteins,
indicating their ability to interact, which aligns with existing
research findings. Additionally, using Grad-WAM visualization,
we identified key amino acid residues that play a crucial role in
their binding, elucidating the specific binding sites between Spike
protein and Ace2. As show in Figure 6. We uniformly amplified the
contribution values of all amino acids by a factor of 100 to facilitate
color differentiation of the amino acids during the visualization
process, ultimately resulting in the contribution value plots shown in
Figures 6C,D.

As shown in Figure 6B, the residues 435Ala, 436Trp, 512Val,
and 465Glu located in the receptor binding domain of the Spike
protein’s B chain exhibit the highest contribution values,
indicating their significant impact in the interaction with the
human receptor protein ACE2 (Chi et al., 2020). Have revealed
that the receptor binding domains of the other two chains in the
Spike protein are oriented downward, while the receptor binding
domain on the B chain is oriented upward. This orientation
suggests that the receptor binding domain on the B chain,
which is typically the first to come into contact with the human
receptor protein, further supports the reliability of the predicted
binding sites. To further validate our findings, we mapped these
predicted binding sites to functional domains and identified their
corresponding functional annotations. The identified sites are
located within the IPR018548 and IPR042578 functional
domains, and the respective functional annotations of these
domains are as follows:

The IPR018548 domain functions as the spike protein
S1 subunit, receptor binding domain, and β-coronavirus. The
IPR042578 domain functions as the spike protein S1, S2, and S2′,
where S1 is responsible for binding to host cells and initiating

infection, S2 is involved in cell membrane fusion, and S2’
facilitates viral fusion.

The GO annotation (GO:0039654) indicates involvement in the
fusion of viral membrane with the host endosomal membrane. The
GO annotation (GO:0019064) suggests involvement in the fusion of
viral membrane with the host ER membrane. The GO annotation
(GO:0016020) indicates participation in the entry of the virus into
host cells through endocytosis.

The functional domain and Gene Ontology annotations
associated with these predicted binding sites provide additional
evidence to substantiate the reliability and scientific validity of
our predictions. These functional domains, such as
IPR018548 and IPR042578, along with the corresponding GO
annotations, further support the significance of the predicted
binding sites in terms of their functional relevance and their
involvement in critical viral-host interactions.

As shown in Figure 6A, The predicted binding sites, 28Phe,
29Leu, 84Pro, and 88Ile, are located on the edges of ACE2 and are
prone to interact with other proteins. These sites can be mapped to
specific functional domains, with corresponding Gene Ontology
(GO) annotations. However, upon reviewing published literature,
the actual binding sites are on the frontward-facing region of the
protein, specifically the residues 28Phe, 29Leu, 84Pro, and 88Ile,
with the following corresponding Gene Ontology (GO) annotations:

GO:0006508 (Protein catabolic process by peptide bond
hydrolysis): This annotation suggests that these binding sites may
be involved in the hydrolysis of peptide bonds, leading to the
breakdown of larger polypeptides into smaller ones or amino
acids. GO:0008237 (Metalloendopeptidase activity): This
annotation indicates that the binding sites may possess the
enzymatic activity of a metalloendopeptidase, which involves the
cleavage of peptide bonds within a protein. GO:0008241 (Peptidyl-
dipeptidase activity): This annotation suggests that these sites may
catalyze the release of C-terminal dipeptides from peptide chains.
GO:0016020 (Membrane and protein complex-associated within
lipid bilayer): This annotation implies that the proteins containing
these binding sites are embedded within the lipid bilayer and
associated with protein complexes.

FIGURE 7
The patients with the three types of cancer were divided into two groups each, based on the occurrence of mutations in the key sites (mutated
group) or the absence of mutations (non-mutated group). Survival probability differences over time were analyzed for the two patient groups of each
cancer type, as depicted in the figures. The shaded regions around the curves represent the confidence intervals. The p-valueswere found to be 1.57e-03,
5.19e-04, and 8.27e-03, indicating statistically significant differences in survival probabilities between the two patient groups for all three types of
cancer. This suggests that the presence of mutations has an impact on patient survival. In the case of breast cancer, the non-mutated group exhibited
higher survival probabilities over time compared to the mutated group. Conversely, for the other two types of cancer, the mutated group showed higher
survival probabilities as time progressed.
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The functional domain allocation andGO annotation of predicted
binding sites provide scientific evidence for the potential roles of these
sites in the interaction between ACE2 and spike protein. This further
strengthens the reliability of the predicted binding sites. Additionally,
the use of Grad-WAM allows for intuitive visualization of the
prediction results, enabling researchers to perform more targeted
experimental validations based on the obtained amino acid
contribution values. Furthermore, through MGPPI and Grad-
WAM, we elucidated the roles of the two protein interactions in
cellular processes and the functional significance of the predicted sites
in the interaction process, thus enhancing the practicality and
scientific rigor of MGPPI.

3.5 The impact of the predicted mutation
site on cancer patients

To further validate the scientific significance of MGPPI, we
collected three cancer patient datasets (breast cancer, bladder cancer,
and colorectal cancer) and analyzed them individually. We selected
protein-protein interaction samples related to cancer from the
HPRD dataset based on proteins present in the patients’ bodies.
We successfully predicted the critical binding sites of these proteins
using the MGPPI model. Subsequently, based on the incidence of
mutations at these protein binding sites within the cancer patient
dataset, we categorized each individual into one of two groups:
patients with mutated binding sites and patients with non-mutated
binding sites. We then analyzed the impact of these mutation sites
on the survival time of patients in each cancer group. Finally,
Kaplan-Meier curves were generated by analyzing the survival
time and status of patients with each type of cancer,
incorporating patient grouping information. As show in Figure 7:

From Figure 7, it is evident that there are significant differences
in survival probabilities between the two patient groups for each type
of disease, indicating the importance of these key sites for human
survival. For example, in breast cancer patients, the occurrence of
specific mutations at critical amino acid residues of certain proteins
may suggest the presence of abnormalities or functional alterations
in their bodies. As a result, their resistance against cancer could be
weakened, rendering themmore vulnerable to its effects and leading
to a rapid decline in survival rates over time. Conversely, non-
mutated patients at key sites demonstrate higher survival
probabilities, indicating a potential survival advantage associated
with those specific protein sites. However, in the case of bladder
cancer and colorectal cancer patients, the Kaplan-Meier curve
results are opposite to those of breast cancer patients, with the
mutated groups showing higher survival probabilities over time.
This indicates that mutations at certain amino acid residues may not
necessarily be harmful to patients, and in some cases, they can even
have a positive impact on the treatment of certain cancers, thereby
increasing patients’ survival probabilities.

In conclusion, MGPPI accurately predicts crucial amino acid
sites in cancer patients that play a significant role in disease
resistance, further validating the reliability and scientific
soundness of the MGPPI model.

3.6 Limitations and future direction

Although MGPPI has demonstrated advantages in protein-
protein interaction prediction and binding site prediction, there
are still limitations in this study. Firstly, the output of the MGPPI
model is a probability value that requires setting a threshold to
convert probabilities into classifications. Choosing an
inappropriate threshold may result in the model missing some
true positive samples, leading to lower evaluation metrics than the
actual values.

In future work, we will incorporate the 3D coordinate
information of amino acids to predict binding sites during
protein-protein interactions. In real-world scenarios, proteins
exhibit diverse shapes, and certain amino acids may be located
inside the protein due to protein folding or distortion. The
likelihood of these amino acids interacting with other proteins is
low. Therefore, when discussing PPI and predicting binding sites, it
is essential to consider the actual coordinate information of
amino acids.

4 Conclusion

This paper presents a novel PPI prediction framework called
MGPPI based on chemical intuition. MGPPI utilizes MGCN,
which consists of 15 graph convolutional layers, to capture the
multiscale structure of proteins. It also employs Grad-WAM for
visual interpretation. Extensive experiments validate the
superiority of this method, demonstrating significant
improvements over existing approaches on four human
protein datasets and one multi-species dataset. The ability of
MGPPI to represent proteins from various species as graph data
greatly enhances the model’s generalization capability.
Furthermore, MGPPI successfully predicts the interaction
between the spike protein of SARS-COV-2 and the human
ACE2 receptor protein. By utilizing Grad-WAM, the
importance of amino acids is visualized as labels, and the
rationality of predicted binding sites is validated based on
functional domain and Gene Ontology annotation. Finally, we
screened for relevant proteins from samples of three cancer
patients and used the MGPPI model to predict the binding
sites of these proteins. Based on whether these sites undergo
mutations, we divided each type of cancer patient into two groups
and investigated the impact of these sites on the survival status of
patients with the three types of diseases. The research results
indicate that MGPPI enhances the overall generalization and
interpretability of PPI prediction models, making it a highly
practical tool.
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