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Editorial on the Research Topic

Between Theory and Clinic: The Contribution of Neuroimaging in the Field of Consciousness

Disorders

Patients surviving severe brain injury either recover quickly from coma or go through prolonged
disorders of consciousness (DOC) such as unresponsive wakefulness syndrome (UWS) or
minimally conscious state (MCS). While patients in MCS show signs of consciousness, patients
in UWS only show reflexive behaviors. These patients are unable to communicate and present
vigilance fluctuation, language impairments, and severe sensory-motor deficits. Once patients
recover functional communication or use of objects, they are emerged fromMCS (EMCS).

Even though behavioral assessment remains the gold standard for diagnosis, a number of studies
highlight the difficulty inmaking the distinction between conscious and unconscious patients based
on clinical examinations. Misdiagnosis can have serious consequences on patient’s management,
medically and ethically (i.e., regarding end-of-life decision).

The emergence of neuroimaging and neurophysiological techniques opened new opportunities
to complement bedside assessment by improving diagnosis and prognosis of patients with DOC.
This Research Topic, which includes 15 articles with 100 contributors, aims to give an overview on
how neuroimaging research can improve diagnosis, prognosis and management of patients with
DOC, and how recent applications of neuroimaging can help understand consciousness through
severe brain injuries.

Vanhaudenhuyse et al. report the case of a misdiagnosis in a patient who was considered in
an unresponsive wakefulness syndrome for 20 years. Repeated behavioral examinations (using the
Coma Recovery Scale-Revised, CRS-R) combined with neuroimaging techniques (using positron
emission tomography—PET, and magnetic resonance imaging—MRI) showed that the patient
was in fact conscious and was re-diagnosed as an incomplete locked-in syndrome. Sarà et al.
reported that some locked-in patients present hallucinations, and in a subgroup of 5 patients with
such symptoms, they showed a reduced cortical volume in the right parahippocampal cortex, the
fusiform and lingual regions, suggesting that advanced neuroimaging might help to detect small
cortical changes.

In parallel, Aubinet et al. show how neuroimaging can help develop more sensitive behavioral
tools to assess cognition in DOC patients. They describe the behavioral and cognitive profiles
of 5 patients in MCS/EMCS alongside their neuroimaging results using structural MRI and
PET. They introduce a new language-based neuropsychological tool, the Cognitive Assessment by
Visual Election (CAVE), and showed that the cognitive profiles of the patients were consistent
with the underlying brain impairments. More specifically, the presence of residual visual, motor,
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and language comprehension functions was, respectively,
associated with a relative preservation of occipital, motor, and
temporo-angular cortex metabolism.

Using functional MRI (fMRI) command following tasks,
Bodien et al. compared the rate of covert consciousness detection
by hand squeezing and tennis playing motor imagery paradigms
in 10 patients with traumatic DOC and 10 healthy subjects.
They found that the tennis paradigm performed better in healthy
subjects, but in patients, the hand squeezing paradigm detected
command following with greater accuracy. The hand squeezing
paradigm may therefore be a better classifier of command
following in DOC patients.

Several articles also aimed at exploring new ways to detect
consciousness in DOC patients. To investigate the potential for
internal and external awareness in DOC patients, Haugg et al.
assessed the juxtaposed relationship between the default mode
network (DMN) and the fronto-parietal (dorsal attention and
executive control) networks’ functional time-courses. Patients
who demonstrated fMRI command following showed greater
differentiation between the DMN and dorsal attention network
in response to movie viewing, compared to the resting condition.
This effect was similar to healthy subjects and was driven by
the movie’s narrative. Conversely, this pattern was not present
in DOC patients who showed no fMRI-based evidence of covert
awareness. Naturalistic paradigms could therefore be used to
dissociate between groups of DOC patients with and without
covert awareness.

Dell’Italia et al. present a different framework to estimate fMRI
network properties based on Exponential RandomGraphModels
(ERGM), which overcomes current methodological limitations.
Longitudinal data in one patient who sustained a severe
traumatic brain injury show that throughout recovery from
coma, brain graphs vary in their natural level of connectivity.
Separable temporal ERGM can characterize network dynamics
over time and show the specific pattern of formation and
dissolution of connectivity after coma.

To differentiate DOC patients, Riganello et al. measured the
complexity index of the heart rate variability using non-linear
multi-scale entropies in 16 MCS and 14 UWS patients. Higher
complexity index values were observed in MCS compared to
UWS patients with high discriminative power using machine
learning. The complexity index also correlated with brain
connectivity in the central autonomic networks assessed with
resting state fMRI. These findings suggest that this “heart” index
can provide an indirect way to monitor brain connectivity in
DOC patients.

Naro et al. used functional transcranial doppler to differentiate
between patients in MCS and UWS by assessing cerebral
blood flow velocity (CBFV) during passive movement tasks.
They observed group difference changes in CBFV with the
pulsatility index in 21 patients with DOC and 25 healthy controls.
This rapid and easy tool may allow to identify residual top-
down modulation processes from higher-order cortical areas to
sensory-motor integration networks related to the peripersonal
space. Another potential technique that is at its infancy in the
field of DOC is the functional near-infrared spectroscopy, a non-
invasive optical and portable device. Rupawala et al. review its

potential application to improve the accuracy of diagnoses and to
provide new ways of communication.

A few authors tackled to better understand brain processing
in DOC patients and therefore, in turn, improve diagnostic
and prognostic techniques in such population. Using an
hybrid PET/MR imaging, Cavaliere et al. investigated test-
retest brain connectivity variability in three DOC patients.
Using graph-theory and independent component analyses,
they found differences between test-retest acquisitions affecting
each network and each patient in a different way. Higher
functional/metabolic correlation was measured in the MCS and
EMCS patients compared to the UWS patient. Performing
multiple acquisitions within the same session allow to assess
temporal patterns of resting-state networks and improve
characterization of DOC patients.

Longitudinal assessments using high-density
electroencephalography (EEG) and CRS-R have also been
performed on a longer time scale (with 3-monthly intervals) by
Bareham et al., who showed that measures of EEG networks
correlated with behavioral variations. EEG connectivity captured
both stability and recovery of behavioral trajectories within and
between patients. This highlights the feasibility of bedside EEG
assessments in rehabilitation setting, which can complement
clinical evaluation.

Bai et al. reviewed resting state EEG studies in DOC for
diagnosis, prognosis, and brain interventions. Spectrum power,
coherence, and entropy were the most frequently used features
while power spectrum and functional connectivity had the
best performance differentiating UWS from MCS and healthy
subjects. Permutation entropy in the theta frequency also had
high classification accuracy for differential diagnosis. Regarding
prognosis, in their systematic review and meta-analysis of brain
data and outcome in DOC, Kotchoubey and Pavlov report that
oscillatory EEG responses, sleep spindles, and the somatosensory
cortical response N20 were the best outcome predictors for DOC,
whereas the poorest prognostic effects were fMRI responses to
stimulation and P300. They however conclude that no practical
recommendations on prognosis indicators can be given at this
stage and they suggest several considerations to improve future
(prognosis) studies: each group of patients should include at
least 20 patients, perform blind assessments, use a flow chart to
illustrate the procedure of patient selection, include the full list of
measured variables, report the time since injury and the time of
outcome, and describe all positive and negative results.

The last two articles refer to therapeutic options. Gottshall
et al. evaluated a patient in chronic MCS who received
central thalamic deep brain stimulation (CT-DBS). After 1
year of treatment discontinuation, reduced responsiveness was
observed along with the abolishment of sleep spindles, marked
downregulation of slow wave sleep delta power, and the return
of alpha-delta sleep. The authors discuss the mechanism of sleep
modulation by daytime CT-DBS in severe brain injuries and
suggest a novel mechanistic framework for alpha-delta sleep
generation across pathophysiologies.

Cheng et al. evaluated the effect of a sensory stimulation
program (3 days per week for 4 weeks) using a ABAB design
(for 16 weeks) in 29 patients. Higher CRS-R total scores
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were obtained during the treatment in the MCS group with
increased arousal and oromotor function but not in the UWS
group. Three patients also underwent fMRI and a modulation
of brain activity related to treatment was found in specific
brain regions.

In conclusion, this Research Topic offers some novelties
in the field of severe brain injuries and DOC, including new
techniques, methodology, diagnosis/prognosis improvements,
and therapeutic options. We look forward to translate the
neuroscientific evidence generated from these studies to the
clinical context.
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Despite recent advances in our understanding of consciousness disorders, accurate

diagnosis of severely brain-damaged patients is still a major clinical challenge. We here

present the case of a patient who was considered in an unresponsive wakefulness

syndrome/vegetative state for 20 years. Repeated standardized behavioral examinations

combined to neuroimaging assessments allowed us to show that this patient was

in fact fully conscious and was able to functionally communicate. We thus revised

the diagnosis into an incomplete locked-in syndrome, notably because the main

brain lesion was located in the brainstem. Clinical examinations of severe brain

injured patients suffering from serious motor impairment should systematically include

repeated standardized behavioral assessments and, when possible, neuroimaging

evaluations encompassing magnetic resonance imaging and 18F-fluorodeoxyglucose

positron emission tomography.

Keywords: disorders of consciousness, misdiagnosis, locked-in syndrome, unresponsive wakefulness syndrome,

MRI, PET, EEG, vegetative state

INTRODUCTION

We here present the case of a 41-year-old man who was considered in an unresponsive wakefulness
syndrome (UWS; previously referred to as “vegetative state”) for 20 years. In this section, we first
review his medical history then we report the clinical and neuroimaging evaluations that were
performed in our center 20 years after his brain injury.

Patient’s History
In 1992, the patient sustained a severe traumatic brain injury as a result of a car accident. He had no
previous significant medical history. On admission to a general hospital, the Glasgow Coma Scale
(1) total score was 4/15 and both pupils were in myosis. Babinski reflex was present bilaterally.
The patient was intubated and mechanically ventilated. Brain CT scan revealed left parietal, basal
ganglia, and retro-pontic hemorrhages. The EEG displayed a non-reactive global slowing of basic
rhythms without paroxystic activity. The patient was tracheotomized, received nasogastric feeding
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and left the intensive care unit 24 days later with the diagnosis
of “coma vigil.” Six weeks after the insult, the treating nurse of
the neuropsychiatry department reported that the patient had
moved his right hand to command, but this observation did not
change the clinical diagnosis and it was never reported on later
occasions. Two epileptic seizures were observed 6 months post-
injury. The tracheal tube was removed 8 months after the brain
trauma. Neurological examination performed 9 months post-
onset reported spontaneous eye opening without reproducible
response to command, and concluded to a state of “irreversible
coma vigil” (i.e., permanent vegetative state). One year and 5
months post-injury, he was transferred to a chronic nursing care
home with the diagnosis of “comatose state.” The patient did not
receive physiotherapy, speech therapy or occupational therapy.
No stimulation or rehabilitation treatment was reported by the
medical team in the nursing home.

Twenty years after his brain injury, the patient was
transferred to our neurology department for a diagnostic
evaluation as requested by the general practitioner of his nursing
care home. The request was initiated by the family of the
patient who was staying in the same room who had the
impression that he was conscious. The diagnosis on referral was
“coma vigil.” Pharmacological treatment included diphantoine
(4 × 100 mg/d—antiepileptic), mirtazapine (1 × 30 mg—
antidepressant) and lormetazepam (1 × 2 mg/d—sedative
benzodiazepine). Medication was not modified during the week
of assessment. Hetero-anamnesis was limited given that no family
could be reached.

Clinical Assessments
The patient’s consciousness level was assessed with the Coma
Recovery Scale-Revised [CRS-R, (2)]. This scale is currently
considered the most validated and sensitive method for
identifying behavioral signs of awareness and thus better
diagnose between UWS, minimally conscious state and
emergence of the minimally conscious state (2–5). It consists
of six subscales: auditory, visual, motor, oromotor and verbal
functions, communication, and the level of arousal. The 23 items
are ordered by degree of complexity, ranging from reflexive
to cognitively mediated behaviors. We recently reported that
a minimum of five CRS-R assessments conducted within a
short time interval (e.g., 2 weeks) was necessary to reduce
misdiagnosis (6). Here, the patient underwent seven CRS-R
assessments in a period of 1 week; these were performed by a
team of experimented examiners at different moments of the day,
and in similar environmental conditions. To assess the patient’s
spatio-temporal orientation, we asked on one occasion some
questions of the Mini Mental State Examination [MMSE, (7)].

Pain perception was also assessed once with the Nociception
Coma Scale-Revised [NCS-R, (8)], which consists of three
subscales evaluating motor, verbal, and facial expression
responses; each subscore ranges from 0 to 3 (maximum total
score of 9). Additional physiotherapy and otorhinolaryngology
examinations were performed during the week of hospitalization.

Spontaneously, the patient showed eyes opening, chewing, left
wrist and leg movements as well as visual fixation and visual
pursuit; these two latter are considered as signs of consciousness

(9, 10). The CRS-R examinations straightforwardly showed that
the patient was not in a UWS (Table 2). The CRS-R total score
varied between 12 and 17. During every single assessment,
the patient was able to repeatedly follow simple commands
(e.g., close your eyes, open your mouth, lift your thumb).
On two consecutive assessments, he could also functionally
communicate (i.e., being able to systematically and accurately
answer simple questions using a “YES/NO” codes), which means
that he emerged from the minimally conscious state. The first
time, the patient correctly answered the CRS-R visual questions
using YES and NO cards. The second time, he responded
accurately to self-related questions using a buzzer (i.e., buzz
once to say yes). On three other assessments, the patient
presented an intentional non-functional communication [i.e.,
clearly discernible communicative responses occurred on at
least two out of the six questions, irrespectively of accuracy;
(2)]. During all these assessments, we tried different codes of
communication with the patient, such as point out YES/NO cards
or rise your thumb to say YES/do not move your thumb to
say NO, to finally observe that the best way to communicate
was with visual fixation of YES/NO cards on the vertical
axis.

Furthermore, the patient showed visual pursuits (on vertical
and horizontal planes on all assessments), automatic motor
responses (e.g., touch his mouth), anticipation and grimaces after
nociceptive stimulations, and objects localization.

When assessing his spatio-temporal orientation using
YES/NO cards, the patient was able to correctly indicate his first
and last name, the names of his roommate and the mother’s
roommate. He was, however, not able to give his age, to locate
the hospital, neither the exact date (day, month, year) nor the
season.

NCS-R assessment highlighted withdrawal flexion, groaning
and grimacing in response to nociceptive stimulation (total
score of 5), as well as abnormal stereotyped posture and oral
movements during nursing cares (total score of 2). Physiotherapy
assessment showed spasticity in flexion in the right superior
limb and abnormal extension with internal rotation in the left
superior limb. The feet were fixed in equine varus positions
and the knees flexions were limited. The head suffered from a
vicious position in deviation to the left. Otorhinolaryngology
examination evidenced significant spasticity of the entire cephalic
segment, major spasticity of the whole neck muscles with the
impossibility to reduce left deviation. A left saliva drooling was
observed but the velar reflex and nausea reflex were absent.
A naso-pharyngo-laryngeal fibroscopy showed that the nasal
cavities, the pharynx and the larynx were structurally normal.
The laryngeal sensitivity was reduced and no cough reflex could
be evoked. Food testing was attempted but was impossible to
perform due to a deficient oral phase.

Neuroimaging Assessments
For structural MRI, a high-resolution T2-weighted image
was acquired (25 slices; repetition time = 3,000ms, echo
time= 88ms, voxel size= 0.9× 0.9× 3mm3, field of view= 220
× 220mm²) on a 3 Tesla scanner (Siemens Trio, SiemensMedical
Solutions, Erlangen, Germany). Diffusion tensor images (DTI)
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TABLE 1 | Behavioral responses of the patient assessed with the Coma Recovery Scale-Revised.

Day of assessment 1 2 3 4 5 6 7

Other evaluations performed the same

day

EEG PET

NCS

MMSE MRI

AUDITORY FUNCTION

4—Consistent Movement to Command*

(4/4 responses of 2 different commands)

x x x

3—Reproducible Movement to Command*

(3/4 responses of 1 command)

x x x x

2—Localization to Sound x x x x x x x

1—Auditory Startle x x

0—None

VISUAL FUNCTION

5—Object Recognition* x x x x x x

4—Object Localization: Reaching* x x

3—Visual Pursuit* x x x x x x x

2—Fixation* x x x x x x x

1—Visual Startle x x x x x x x

0—None

MOTOR FUNCTION

6—Functional Object Use#

5—Automatic Motor Response* x

4—Object Manipulation*

3—Localization to Noxious Stimulation*

2—Flexion Withdrawal x x x x x

1—Abnormal Posturing x x x

0—None/Flaccid

OROMOTOR/VERBAL FUNCTION

3—Intelligible Verbalization*

2—Vocalization/Oral Movement x x x x x x

1—Oral Reflexive Movement x x x x x x

0—None x

COMMUNICATION

2—Functional: Accurate# x x

1—Non-Functional: Intentional* x x x

0—None x x

AROUSAL

3—Attention

2—Eye Opening w/o Stimulation x x x x x x

1—Eye Opening with Stimulation x

0—Unarousable

Total score 12* 14* 13* 16# 17# 16* 16*

*Denotes MCS. #Denotes emergence of MCS.

were acquired using an EPI sequence (TR = 5,700ms, TE =

87ms, 45 slices; slice thickness = 3mm, gap = 0.3mm, matrix
size = 128∗128) and sensitized in 64 non-collinear directions
using a b-value = 1,000 s/mm2 and two b = 0 images. Data
were acquired and analyzed similarly to our previous studies (23,
24). Images were processed using the FMRIB Software Library
(FSL; version 4.1.2; http://www.fmrib.ox.ac.uk/fsl). Fractional
anisotropy and mean diffusivity maps were obtained using FSL
diffusion toolbox (25).

Structural MRI showed post-traumatic diffuse axonopathy
lesions in the right middle cerebellum peduncule, right cerebral
peduncule, left lenticular nucleus, corpus callosum, right superior
frontal gyrus, and mesencephalic tegmentum (Figure 1A). There
was no parenchymatic atrophy.

DTI showed a relative preservation of the white matter
structure (Figure 1B). The global fractional anisotropy was
estimated at 0.32 (normal range in healthy control subjects
between 0.35 and 0.59).
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For resting cerebral 18F-fluorodeoxyglucose positron
emission tomography (FDG-PET), data were also acquired
and analyzed as in our previous studies (19, 26). Before and
after injection of 300 MBq of FDG, the patient was kept
awake in the dark for 30min and was then scanned on a
Gemini TF PET-CT scanner (Philips Medical Systems). Data
was preprocessed using spatial normalization, smoothing
(Gaussian kernel of 14mm full width at a half maximum) and
proportional scaling, implemented in Statistical Parametric
Mapping toolbox, SPM 12 (www.fil.ion.ucl.ac.uk/spm). The
design matrix modeled the patient and 34 age-matched
healthy controls’ PET-scans. We used a significance threshold
of p < 0.05 uncorrected in all contrast for single subject
analyses.

Results showed a preservation of 99.6% of the patient’s global
brain metabolism as compared to healthy subjects (Figure 1C).
Preserved brain regions encompassed the whole fronto-temporo-
parietal cortex bilaterally. Hypometabolism was observed in the

mesiofrontal region, the thalamus bilaterally, the brainstem and
the cerebellum (Figure 1D).

Both MRI and PET data show a brainstem lesion, which
is observed in patients with locked-in syndrome [(27),
Figures 1A,D].

A clinical EEG was also performed using 19 electrodes and
interpreted by a certified neurologist. Results showed bilateral
alpha activity and 8–10Hz activities on all derivations without
any paroxysmal activity.

The days of neuroimaging assessments (as well as the NCS and
the MMSE) are reported in Table 1.

BACKGROUND

Despite recent advances in our understanding of disorders of
consciousness and the redefinition of nosological distinctions
between altered states of consciousness, diagnosis of severely

FIGURE 1 | (A) Structural magnetic resonance imaging (MRI) showed the mesencephalic tegmentum lesion (red circle). (B) Diffusion tensor imaging (DTI) showed

white matter structure preservation. (C) 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) demonstrated a global cerebral metabolism preservation.

(D) Areas in which FDG–PET finds significantly impaired (blue) or preserved (red) metabolism compared to controls (p < 0.05, uncorrected).
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brain-damaged patients continues to represent a major
clinical challenge. If neuroimaging techniques support clinical
examinations and help to improve the accuracy of the diagnosis
of altered state of consciousness, behavioral assessment remains
the principal method used to detect awareness in these patients
(28). Nowadays, standardized scales such as the CRS-R (2) are
validated to assess the level of consciousness of these patients.
In addition, series of studies have reported that specific clinical
tools [e.g., using a mirror to assess visual pursuit (9, 10) or the
own name to assess localization to sounds (29)] can increase
the chance of observing behavioral responses. In spite of these
developments, clinical practice shows that disentangling reflexive
from voluntary behaviors can still be very difficult.

Several misdiagnosis studies have been described in patients
at an early stage after severe brain damage, as well as in
the long-term care (Table 2). Some studies reported cases
of patients considered unconscious while they actually
presented behavioral signs of consciousness when assessed
more thoroughly (5, 6, 11–13, 15, 16, 19–22). Other studies
recount cases of patients who were considered unconscious at
the bedside but who were actually found to be conscious with
neuroimaging techniques, and some of these patients could even

communicate with adapted communication code (18, 19, 30–32).
Different factors can explain the high rate of diagnosis errors in
patients with disorders of consciousness: the lack of knowledge
about the diagnosis criteria and terminology, the absence or
misuse of standardized assessment scale, the use of insensitive
tools, the patients’ perceptual and/or motor deficits, the presence
of language impairment, the fluctuating arousal level, and the
presence of pain or sedative drugs (33, 34).

Studies have highlighted the importance to properly diagnose
clinical entities because patients in minimally conscious state
retain some preserved capacities for cognitive processing, which
is not the case in patients with UWS who only show reflex
behaviors (35–37). In addition, outcome and responses to
treatment of minimally conscious patients seem more favorable
than those in a UWS (38–40). Clinical decisions about pain
management and end-of-life are also influenced by the diagnosis
(41–43). A similar yet very different group of patients are those
with a locked-in syndrome [LIS; (27)]. Patients with LIS are
completely conscious but they have no muscle control due to a
disruption of the brainstem’s cortico-spinal pathways. However,
most of these patients recover minimal motor function with
time, and some may even recover almost fully, as it is sometimes

TABLE 2 | Studies reporting misdiagnosis of UWS.

References Method Number of

patients

Number of

patients

misdiagnosed

% of

misdiagnosis

Etiology Initial

diagnosis

Correct

diagnosis

Duration of the

misdiagnosis

Tresch et al. (11) Clinical consensus vs.

Author’s examination

62 11 18% NA UWS MCS Chronic (>1 year)

Childs et al. (12) Clinical consensus vs.

Author’s examination

49 18 37% 14 TBI

4 NTBI

UWS MCS 1–3 days

Andrews et al. (13) Clinical consensus vs. RLA

(14)

40 17 42% 10 TBI

7 NTBI

UWS 15 MCS

2 EMCS

Range 2–175 days

Tavalaro and Tayson

(15)

Clinical consensus vs.

Family and nurses

impression

1 1 NA Stroke UWS LIS 6 years

Gill-Thwaites and

Munday (16)

Clinical consensus vs.

SMART (17)

60 27 45% 21 TBI

39 NTBI

UWS “Higher level

of functioning

than VS”

Within 4 months

Schnakers et al. (5) Clinical consensus vs.

CRS-R

44 18 41% 39 TBI

64 NTBI

UWS MCS NA

Lukowicz et al. (18) Clinical consensus vs.

Family impression

1 1 NA Brain tumor “Unconscious

terminal

stage”

LIS 16 years

Stender et al. (19) Clinical consensus vs.

CRS-R

51 18 35% TBI and NTBI UWS MCS Mean duration of UWS:

2 years and 3 months

Sattin et al. (20) Experience rater CRS-R vs.

CRS-R with person

responsible of patients

92 15 16% 25 TBI

67 NTBI

UWS MCS Mean duration of UWS:

2 years and 6 months

van Erp et al. (21) Clinical consensus vs.

CRS-R

41 17 41% TBI and NTBI UWS MCS Mean duration of UWS:

5 years

Cortese et al. (22) Morning CRS-R vs.

Afternoon CRS-R

7 2 30% 2 TBI

5 NTBI

UWS MCS 1.8–6.2 years

Wannez et al. (6) 1 CRS-R vs. 5 CRS-R 62 22 35% TBI and NTBI UWS MCS Mean time since injury

4 years

UWS, unresponsive wakefulness syndrome (vegetative state—VS); MCS, minimally conscious state; EMCS, emergence of minimally conscious state; LIS, locked-in syndrome; TBI,

traumatic brain injury; NTBI, non-traumatic brain injury; NA, non applicable.
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the case with incomplete LIS (44, 45). On the other hand, some
patients with LIS have other brain lesions outside the brainstem
which might induce cognitive impairments (46, 47).

DISCUSSION

Our standardized-repeated behavioral assessments detected signs
of consciousness and functional communication at the patient’s
bedside, which indicates that the patient emerged from the
minimally conscious state. The neuroimaging results confirmed
that the patient was conscious and that he actually was in a LIS
due to a lesion in the brainstem. Because the patient could move
more than a classical LIS, the diagnosis of incomplete LIS was
finally made.

This patient had a brain injury 20 years before his admission
to our center and he was misdiagnosed as being unconscious
all these years when he was in fact fully conscious. The
lack of knowledge about differential diagnosis of disorders of
consciousness during this time period can explain that the patient
received the diagnosis of “coma vigil” or “vegetative state.” The
LIS was defined in 1966 (48), while criteria of the minimally
conscious state and emergence of this state were defined much
later, in 2002 (49). Moreover, 20 years ago, behavioral assessment
of consciousness were limited to very few scales such as the
Glasgow Coma Scale, which is not sensitive enough to detect
small signs of consciousness (4). Our clinical practice shows that
once stamped with the diagnosis of UWS, it is often difficult to
change the label, and the first signs of recovery of consciousness
can be missed. The negative associations intrinsic to the term
“vegetative state” can result to diagnostic errors and can also lead
to potential effect on the treatment and care (37).

This case report also shows how difficult it can be to
properly assess signs of consciousness and evaluate cognitive
impairment in severely brain-injured patients suffering from
profound physical disabilities. In order to detect consciousness
in these patients, we are limited to make inferences about the
presence or absence of motor responses. Behavioral examination
is very challenging because observed movements may be
small, inconsistent and easily exhausted, potentially leading to
diagnostic errors.

On one hand, the American Congress of Rehabilitation
Medicine (50) defines the following neurobehavioral criteria
of the LIS: eyes opening, evidence of basic cognitive abilities,
quadriparesis or quadriplegia, as well as eyes movements way
of communication, usually escort by lesions of the ventral
pons. In addition, intact intellectual abilities characterize the
classical LIS (46). On the other hand, emergence from the
minimally conscious state is defined by the demonstration of
either functional communication or functional use of objects, on
two consecutive assessments. Our patient showed spontaneous
eyes opening and severe motor impairment that could be related
to quadriparesis. Communication, which was detected and could
be possible via eye movements, was not easily reproducible:
out of seven assessments, the patient was able to functionally
communicate only on two consecutive assessments while a non-
functional intentional communication was detected on three

evaluations. Even if the patient presented an eye-movement-
based communication, the diagnosis of incomplete LIS is
challenging at the behavioral level because his communication
responses fluctuated a lot. In addition, we should consider that
the patient’s deficit in spatio-temporal orientation (such as his
inability to report the exact date or to locate the hospital) could
be related to his 20-years-long impossibility to read a calendar or
to be informed about the world outside his room rather than to a
cognitive impairment. Inconsistency of behavioral responses and
difficulties to correctly answer to orientation questions could also
be the result of a lack of stimulation for the past 20 years.

At the neuroimaging level, structural MRI, DTI, and FDG-
PET results highlighted a preservation of global cerebral
metabolism and cerebral white matter combined with a lesion in
the brainstem. The brain lesions observed with the neuroimaging
tools, specifically in the brainstem, are typically observed in
patients with LIS (51), with additional brain lesions (46).

In 33% of cases, a previous study showed that it was the
relatives of the patient with LIS who were the first to detect
consciousness and ability to communicate (52). In addition,
guidelines emphasize the importance that the diagnosis should
be made by involving information from family members or other
persons who see the patient regularly (53). Other studies have also
insisted on the critical role of the family or of a close relative in
the assessment of patients (54).

The story of the patient we reported here is marked by an
important social isolation. Indeed, since his accident, his family
and friends were disengaged from the care and his general
condition. The only people in daily contact with him were
members of the medical staff. Since 1994, the patient was in
a long care nursing home. Even if nurses knew him very well
after all these years, they always referred to him as a “vegetative
state.” The intrinsic negative connotation of the term “vegetative
state” can lead to situations where the patients’ relatives interpret
this diagnosis as he is no longer a human being (but more
a “vegetable”), and that there is no hope of recovery (55).
The “unresponsive wakefulness syndrome” terminology was thus
adopted to bemore descriptive of the actual state of these patients
and preventing the use of a pejorative term (35). In addition,
even if the medical team usually strive to maintain these people’s
rights as human beings and treat them with respect, it is difficult
to be optimistic and adopt a positive attitude during years when
patients are very low responsive.

Recent advances in technologies have demonstrated the
possibility of establishing binary communication with severe
brain injury patients using solely mental processes. These brain
computer interfaces (BCI) technologies have employed neural
responses detectable with EEG, to provide patients with motor
impairments the ability to control a computer. These interfaces
usually drive software for simple communication, or control
devices that influence some aspect of the patient’s external
environment. In addition, they provide the patient with valuable
real-time feedback on their performance, enabling them to learn
how to use the interface better over time [for a review, see
(56, 57)]. Recently, a novel BCI based on steady-state visually
evoked potential or functional near-infrared spectroscopy were
developed, tested and validated with patients in LIS (58, 59).
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These BCI technologies could benefit to patients who are severely
motor impaired and potentially allow clinicians to detect signs
of consciousness and elaborate communication with these very
challenging patients.

One can point as limitation that neuropsychological testing
is lacking in the evaluation of this patient. Neuropsychological
testing and specifically the ones adapted for non-communicative
patients (46, 60) would have been useful to better determine
the patient’s cognitive abilities. Another limitation is the lack
of assessment during these 20 years. Indeed, the patient may
have recovered slowly over these years with no expert to assess
his progress. One can also argue that the patient was at some
point in a functional locked-in syndrome [i.e., patients with a
dissociation between extreme motor dysfunction and preserved
higher cortical functions identified only by functional imaging
techniques; (36)] but misdiagnosed as being in UWS because
neuroimaging techniques were not available at that time to detect
consciousness (61).

CONCLUDING REMARKS

In conclusion, this report emphasizes both the complex nature
of patients with severe brain injury and the necessity to use
validated sensitive techniques to make an accurate diagnosis.
Accurate diagnosis in the early stages will determine cares and
patients management after their brain injury. If misdiagnosis of
UWS is frequent for patients who actually are in a minimally
conscious state, this misdiagnosis is, even if less frequent, still
observed in patients who are in fact totally conscious like LIS
patients. Since behavioral assessments remain the gold standard
to detect consciousness, clinicians should be cautious in the scales
they use to assess patients, as well as to additional cognitive
impairments as a consequence of specific brain lesions. To date,
the most sensitive and validated scale is the CRS-R (2). The
number of CRS-R assessments has an impact on the clinical
diagnosis of patients since a lack of repeated examinations in
patients with DOC can lead to an underestimation of patients’
level of consciousness (6). It was recently demonstrated that a
minimum of five CRS-R assessments is required for a reliable
clinical diagnosis in DOC (6).

This case report also emphasizes the need for neuroimaging in
the assessment of consciousness to confirm or refute the clinical

diagnosis. In addition, we should notice that the diagnosis of
UWS of this patient was maintained because he was abandoned
early in a chronic setting, where there was no adequate expertise
in the assessment of persons with disorders of consciousness
and in a condition of social isolation. A close collaboration
and involvement of family should be systematic in cares and
assessments of patients with disorders of consciousness.
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Previous evidence suggests that hallucinations and delusions may be detected in 
patients with the most severe forms of motor disability including locked-in syndrome 
(LIS). However, such phenomena are rarely described in LIS and their presence may 
be underestimated as a result of the severe communication impairment experienced 
by the patients. In this study, we retrospectively reviewed the clinical history and the 
neuroimaging data of a cohort of patients with LIS in order to recognize the presence 
of hallucinations and delusions and to correlate it with the pontine damage and the 
presence of any cortical volumetric changes. Ten patients with LIS were included  
(5 men and 5 women, mean age 50.1 ± 14.6). According to the presence of indicators 
of symptoms, these patients were categorized as hallucinators (n = 5) or non-halluci-
nators (n = 5). MRI images of patients were analyzed using Freesurfer 6.0 software to 
evaluate volume differences between the two groups. Hallucinators showed a selec-
tive cortical volume loss involving the fusiform ( p = 0.001) and the parahippocampal 
( p = 0.0008) gyrus and the orbital part of the inferior frontal gyrus ( p = 0.001) in the 
right hemisphere together with the lingual (p = 0.01) and the fusiform gyrus ( p = 0.01) 
in the left hemisphere. Moreover, a volumetric decrease of bilateral anterior portions 
of the precuneus was recognized in the hallucinators (right p = 0.01; left p = 0.001) 
as compared to non-hallucinators. We suggested that the presence of hallucinations 
and delusions in some LIS patients could be accounted for by the combination of a 
damage of the corticopontocerebellar pathways with cortical changes following the 
primary brainstem injury. The above areas are embedded within cortico-cortical and 
cortico-subcortical loops involved in self-monitoring and have been related to the pres-
ence of hallucinations in other diseases. The two main limitations of our study are the 
small sample of included patients and the lack of a control group of healthy individuals. 
Further studies would be of help to expand this field of research in order to integrate 
existing theories about the mechanisms underlying the generation of hallucinations and 
delusions in neurological patients.

Keywords: locked-in syndrome, hallucinations, delusions, previsional, brain injury

17

https://www.frontiersin.org/Neurology/
https://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2018.00354&domain=pdf&date_stamp=2018-05-17
https://www.frontiersin.org/Neurology/archive
https://www.frontiersin.org/Neurology/editorialboard
https://www.frontiersin.org/Neurology/editorialboard
https://doi.org/10.3389/fneur.2018.00354
https://www.frontiersin.org/Neurology/
https://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:marco.sara@sanraffaele.it
https://doi.org/10.3389/fneur.2018.00354
https://www.frontiersin.org/Journal/10.3389/fneur.2018.00354/full
https://www.frontiersin.org/Journal/10.3389/fneur.2018.00354/full
https://www.frontiersin.org/Journal/10.3389/fneur.2018.00354/full
https://www.frontiersin.org/Journal/10.3389/fneur.2018.00354/full
https://loop.frontiersin.org/people/477051
https://loop.frontiersin.org/people/294216
https://loop.frontiersin.org/people/80592
https://loop.frontiersin.org/people/14824
https://loop.frontiersin.org/people/459829
https://loop.frontiersin.org/people/180830


Sarà et al. Hallucinations and Delusions in LIS

Frontiers in Neurology | www.frontiersin.org May 2018 | Volume 9 | Article 354

inTrODUcTiOn

False perceptions (hallucinations) and false beliefs (delusions) are 
mental phenomena representing the core of the symptomatology 
of schizophrenia. However, such symptoms are also frequently 
observed in persons with brain damage (1–3), but only rarely 
detected in patients with severe acquired brain injury, including 
those with locked-in syndrome (LIS) (4, 5). LIS is the result of 
a complete interruption of corticospinal, corticobulbar, and 
corticocerebellar pathways as a consequence of specific pontine 
damage usually resulting from a stenosis of the basilar artery. 
Patients with LIS are fully conscious but show quadriplegia, 
bilateral facial palsy, and anarthria. Vertical gaze and blinking 
are the only preserved movements and patients learn to com-
municate with the environment through eye-coded strategies. In 
the light of the above-reported damage, it might be expected that 
patients with LIS would have only symptoms pertaining to the 
motor domain. In reality, they can show additional symptoms, 
including emotional dysfunctions and motor imagery impair-
ments, the pathophysiology of which is still a matter of debate 
(6–11). Moreover, when investigated using advanced techniques 
for cortical volumetric analyses, some patients show specific pat-
terns of volumetric cortical changes beyond the initial brainstem 
damage (12, 13). Among non-motor symptoms, hallucinations 
and delusions are rarely described in LIS and their presence may 
be underestimated as a result of the extremely limited communi-
cation channel. In addition, patients with LIS, who are completely 
dependent on others for all their needs, may be reticent about 
sharing these experiences with the health-care professionals, even 
if they feel distressed about them.

In this study, we retrospectively reviewed the clinical history 
and the neuroimaging data of a cohort of patients with LIS in 
order to detect whether hallucinations and delusions were cor-
related to specific patterns of brain atrophy.

MaTerials anD MeThODs

Participants
Data came from patients admitted to the Post-Coma Rehabilitative 
Care Unit of the San Raffaele Hospital, Cassino (Italy) in the past 
10 years. Patients were only included in the study if they had a 
diagnosis of LIS, their clinical history had been documented in 
detail through medical records, and if they had been scanned using  
a 1.5 T MRI (Espree, Siemens AG, Erlangen) during their hospital 
stay. Patients with a previous history of severe neurological or 
psychiatric disease were excluded as well as patients treated with 
central nervous system active drugs. For the included patients, all 
clinical and neuroradiological data were retrospectively scanned. 
The research protocol was approved by the Internal Review Board 
of the University of L’Aquila (20/2017) and the study was carried 
out in accordance with its recommendations.

assessment of clinical Data
All the clinical data of the included patients were reviewed in 
order to (1) identify the main biographical data and clinical 
characteristics of the subjects; (2) classify patients according to 

the Bauer classification of LIS (14); (3) categorize them into two 
groups based on the presence or not of hallucinations or delu-
sions recorded in their clinical history following the brainstem 
damage. The Bauer classification distinguishes between a “pure” 
form (where the only remaining voluntary motion is vertical eye 
movements and blinking), an “incomplete” form (where some 
voluntary motor action other than eye movements is preserved) 
or a “total” form (complete loss of any motor output, including 
eye movements) (14). During the stay in the rehabilitation ward, 
clinical information had been collected by asking caregivers 
and by communicating directly with the patients using a coded 
communication system based on blinking and vertical eye move-
ments. Through these movements, patients were asked to reply 
to closed questions (yes/no) about the presence of positive symp-
toms. Hallucinations were defined as the perception of visual, 
auditory, tactile, or olfactory stimuli in the ascertained absence 
of real external stimuli. Motor hallucinations were defined as an 
imaginary perception of a movement (for instance of a limb) in 
the absence of a real body movement. Delusions were defined as 
false beliefs based on erroneous inference about external reality 
that were firmly maintained by the patient despite what almost 
everyone else believed and despite incontestable and obvious 
evidence to the contrary. The presence of hallucinations was 
investigated through standardized screening questions in each 
sensory modality (15). The occurrence of delusions was mainly 
inferred by the reports of caregivers and further investigated 
through standardized screening questions (15).

In the case of positive responses to screening questions, patients 
were asked to better explain their experiences by using a spelling 
system of communication based on the selection of letters on an 
alphabet board through eye blinking. This allowed us to be sure 
about the initial detection of hallucinations and delusions and to 
obtain more details about individual experiences. Patients were 
interviewed once a week during their stay in the rehabilitation 
ward and considered to have had a history of hallucinations or 
delusions when symptoms had occurred at least once a month. 
The cognitive status of the patients was also documented dur-
ing their stay in rehabilitation by means of the Raven’s Colored 
Progressive Matrices (RCPM) (16).

Volumetric analysis of neuroradiological 
Data
As specified above, patients were only included in the study if 
they had undergone a 1.5  T MRI acquisition (Espree, Siemens 
AG, Erlangen) with a standard 8-channel birdcage head coil. 
Two images had been acquired for each participant and each 
time point. The first was a high-resolution T1-weighted image 
(two times), acquired using a magnetization prepared rapid 
acquisition gradient echo sequence (repetition time 1,590  ms; 
echo time 2.4 ms; flip angle 0°; matrix size 192 × 192; number 
of slices 160; voxel size 1 mm × 1 mm × 1 mm). The second was 
a T2-weighted image using a fluid attenuated inversion recovery 
sequence (repetition time 9,000 ms; echo time 88 ms; flip angle 
0°; matrix size 384 × 512; number of slices 44).

Collected MRI images were processed and analyzed using the 
Freesurfer image analysis suite v 6.0 software, which is innovative 
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software freely available online (http://surfer.nmr.mgh.harvard.
edu/). Its functioning is based on an inflation algorithm, which 
allows to inflate the brain in order to minimize the metric dis-
tortions that can occur in structural analyses due to the natural 
presence of depressions and grooves in the brain. Inflation is 
followed by registration to a spherical atlas, parcelation of the 
cerebral cortex, and creation of a variety of surface based data. 
In the present study, for each participant, mean cortical volume 
values of 34 brain regions, according to Desikan parcelation (17), 
were calculated for both the hemispheres as the average of two 
values, the minimal distance from gray/white matter boundary 
and pial surface and vice versa. Each participant’s brain was mor-
phed and registered to an average spherical surface that finely 
aligns sulci and gyri across them. Cortical volume values were 
then mapped onto this average inflated surface, thus avoiding 
interference of cortical folding on the visualization. Statistical 
maps were generated using FreeSurfer’s Query, Design, Estimate, 
Contrast (QDEC) interface. For each hemisphere, a general linear 
model of the effect of age on cortical volumes was evaluated at 
each vertex for male and female groups. Spatial smoothing with 
an isotropic kernel (FWHM = 10 mm) was applied. Data were 
deemed statistically significant if p < 0.05. False discovery rate 
(FDR) was corrected and tables of cluster size and location were 
generated.

additional statistical analysis
To confirm the results of QDEC, the mean volume of selected 
regions of interest was extracted for each participant and data 
were analyzed using the IBM SPSS Statistics 20 Software. An 
independent t-test and an analysis of covariance were used to 
compare the cortical volume of main areas between the two 
clinical groups. Correction for multiple comparisons was car-
ried out using the Benjamin–Hochberg FDR correction in the 
selected areas. ANOVA was applied to evaluate the effects of the 
main biographical and clinical factors. For comparison between 
groups, the level of significance was fixed at p < 0.05.

resUlTs

Ten patients with a diagnosis of LIS were included in the study  
(5 men and 5 women, mean age 50.1 ± 14.6). The ventral pontine 
damage was a consequence of a vascular injury in nine cases and 
of a traumatic injury in one case. All included patients had a 
pure form according to the traditional classification of LIS (14). 
Patients did not have any previous recorded history of psychiatric 
symptoms and cognitive dysfunction or any additional cortical 
or subcortical lesions beyond the pontine damage. At the time of 
the interviews, all RCPM scores were within normal range after 
adjustment for age and education according to Italian normative 
studies [cutoff = 18; (16)]. A recorded history of hallucinations 
or delusions following the pontine damage was found for 5 of 
the 10 patients in the study (4 males and 1 female). Of these, a 
combination of visual and motor phenomena was reported in 
four patients, while in the fifth a history of auditory hallucina-
tions combined with a delusional thought disorder was inferred. 
There were no reports of olfactory or tactile hallucinations. 
The median time to onset of positive symptoms was 1  month 

from the initial injury, with a median duration of symptoms of 
4 months. As regards the content of hallucinations, most of the 
patients reported visual hallucinations consisting of objects or 
individuals, who were moving in the room wards. As regards 
motor hallucinations, patients were asked to describe whether 
they have had any unusual feelings on their own body, and most 
of them reported imaginary perceptions of limbs movement, 
which were out of their control. Finally, the delusional thought 
disorder, which was recognized in one patient only, was classified 
as a jealous delusional disorder.

Anagraphic and clinical data of the two groups are reported 
in Table  1: the two groups were not matched by sex (non-
hallucinators = 4 females; hallucinators = 1 females), but they did 
not differ with respect to age (non-hallucinators: mean = 43.2, 
SD  =  17.1; hallucinators: mean  =  57, SD  =  8.2; t  =  −1.626, 
p > 0.05), education (non-hallucinators: mean = 12.6, SD = 4.5; 
hallucinators: mean = 12.4, SD = 3.2; t = 0.81, p > 0.05), time from 
injury (non-hallucinators: mean =  37, SD =  8.4; hallucinators: 
mean = 44, SD = 1.25; t = −0.904, p > 0.05), and general cognitive 
functioning (non-hallucinators: mean = 24.4, SD = 1.8; halluci-
nators: mean = 23.8, SD = 1.9; t = 0.507, p > 0.05). Moreover, 
the two groups were comparable with respect to their basic MRI 
neuroimaging findings, as none of them showed co-existing 
supratentorial lesions and all had the brainstem injury, which is 
traditionally associated with LIS. On the contrary, the advanced 
volumetric analysis showed the presence of cortical differences 
between the two groups. The Freesurfer cluster values are shown 
in the Table 2. Specifically, patients experiencing hallucinations 
showed a larger atrophy with respect to patients not experiencing 
hallucinations/delusions in the fusiform gyrus (p =  0.001), the 
parahippocampal gyrus (p = 0.0008), and the orbital part of the 
inferior frontal gyrus (p = 0.001) in the right hemisphere together 
with the lingual (p = 0.01) and the fusiform gyrus (p = 0.01) in 
the left hemisphere. On the other hand, patients not experiencing 
hallucinations/delusions showed a larger atrophy in the insula 
and the lateral orbitofrontal cortex bilaterally (p  ≤  0.001 and 
p ≤ 0.0045), in the left medial orbitofrontal cortex (p = 0.01), in 
the right middle frontal and temporal regions (p ≤ 0.002), and 
in the right pars opercularis (p = 0.01). Moreover, the precuneus 
showed a volumetric decrease of bilateral anterior portions in 
hallucinators (right p  =  0.01; left p  =  0.001) and a volumetric 
decrease of bilateral posterior portions in non-hallucinators 
(right p = 0.02; left p = 0.0005).

Finally, a common feature of the recognized positive phenom-
ena was their tendency to improve when the patients were repeat-
edly informed about the illusory nature of their perceptions. 
The symptoms spontaneously improved in all the subjects with 
the exception of the patient experiencing a combination of hal-
lucinations and thought delusions. In this patient, a therapy with 
antipsychotic drugs was required for symptoms improvement.

DiscUssiOn

Our findings demonstrated the presence of hallucinations/delu-
sions in a subgroup of patients with LIS, who showed a larger 
atrophy in a set of brain areas as compared to LIS patients not 
experiencing hallucinations/delusions. Such cortical volumetric 

19

https://www.frontiersin.org/Neurology/
https://www.frontiersin.org
https://www.frontiersin.org/Neurology/archive
http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/


TaBle 2 | Cluster values in FS Query, Design, Estimate, Contrast analysis, FWHM = 10, threshold of 1.31.

cluster Brain region hemisphere Talaraich coordinates size p-Value

X Y Z

1 Insula Left −36.9 1.8 −5.3 864.6 0.0001 No hall < hall
2 Precuneus Left −6.1 −70.7 44.4 140.39 0.0005 No hall < hall
3 Paracentral Left −11.6 −39.3 58 102.07 0.0006 No hall < hall
4 Precentral Left −50.2 2 29.8 106.08 0.0009 No hall < hall
5 Precuneus Left −13.7 −46 49 178.86 0.0011 Hall < no hall
6 Medial orbitofrontal Left −6.2 20.8 20.5 151.12 0.0038 No hall < hall
7 Lateral orbitofrontal Left −23.5 12.5 −19.2 167.84 0.0045 No hall < hall
8 Superior parietal Left −15 −72.1 46.8 138.65 0.0086 No hall < hall
9 Medial orbitofrontal Left −7.3 41.5 −17.7 134.73 0.01 No hall < hall

10 Lateral occipital Left −42.6 −73.7 −9 104.94 0.0104 No hall < hall
11 Lingual Left −15 −66 −3.7 171.59 0.0157 Hall < no hall
12 Fusiform Left −32.6 −34.8 −23.1 104.11 0.017 Hall < no hall
13 Parahippocampal Right 36.5 −38.2 −11.9 330.83 0.0008 Hall < no hall
14 Insula Right 29.7 14.5 −12.3 103.91 0.001 No hall < hall
15 Lateral orbitofrontal Right 18.2 13.6 −21.8 132.32 0.0011 No hall < hall
16 Pars orbitalis Right 41.1 49.6 −7 530.71 0.0011 Hall < no hall
17 Middle-temporal Right 54.7 −9.9 −26.3 109.93 0.0012 No hall < hall
18 Fusiform Right 32.7 64.5 −15 653.95 0.0018 Hall < no hall
19 Caudal middle frontal Right 38.2 7.8 44 154.3 0.0021 No hall < hall
20 Precuneus Right 15.4 −47.2 33.3 107.71 0.0166 Hall < no hall
21 Pars opercularis Right 34.8 15 12.7 175.54 0.0184 No hall < hall
22 Precuneus Right 18.4 −69.9 34.9 174.11 0.0204 No hall < hall

TaBle 1 | Demographic and clinical characteristics of patients.

Patients sex age at 
admission

education 
(years)

cause Time from injury to 
admission (days)

localization of the 
brainstem lesion

rcPM  
(raw score)

Positive symptoms

1 F 31 8 TBI 50 Pons-midbrain 25 Absent
2 F 37 17 Stroke 30 Pons 26 Absent
3 F 26 13 Stroke 40 Pons 26 Absent
4 F 56 8 Stroke 30 Pons 22 Absent
5 M 66 17 Stroke 35 Pons 23 Absent
6 M 43 17 Stroke 60 Pons-midbrain 27 Auditory hallucinations and 

thought delusions
7 M 62 8 Stroke 40 Pons 24 Visual/motor hallucinations
8 F 59 13 Stroke 60 Pons-medulla 

oblongata
22 Visual/motor hallucinations

9 M 57 13 Stroke 30 Pons 23 Visual/motor hallucinations
10 M 64 12 Stroke 30 Pons 23 Visual/motor hallucinations

All scores were within normal range on RCPM after adjustment for age and education according to Italian normative studies [cutoff = 18; (16)].
TBI: traumatic brain injury; RCPM, Raven’s colored progressive matrices.
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changes do not amount to a macroscopic cortical atrophy, which 
is generally not a feature of LIS, but refer to subtle cortical differ-
ences, which are recognizable only by means of advanced brain 
volumetric analysis techniques.

The strength of our study lies with the investigation of a cogni-
tive phenomenon, which seems to be largely underestimated in 
patients with LIS. In our opinion, there are several reasons for the 
lack of consistent descriptions of positive symptoms in LIS. First, 
there is the traditional view that patients with an isolated pontine 
lesion show motor symptoms exclusively, and cannot suffer from 
cognitive dysfunctions unless wide additional cortical damage 
occurs. Second, there are the well-known difficulties experienced 
by caregivers and health-care professionals in establishing a com-
munication channel with the patients. When communication 
is attempted, it is commonly used to investigate the most basic 
needs of the patients, while exploring more complex matters such 

as subjective mental experiences remains challenging. Finally, 
patients may have some reticence about sharing these symptoms 
as a consequence of the severe disability, which makes them 
completely dependent on others.

The main limitation of our study lies with the small number of 
patients included. As LIS is a very rare condition, 10 patients are 
considered a good size of sample to describe symptoms, which 
have not yet been systematically investigated. However, the above 
sample is far too small to shed lights on the existence of a causal 
relationship between subtle cortical changes and the presence of 
hallucinations/delusions in patients with LIS, thus prompting 
caution in drawing conclusions about the possible mechanism 
underlying this phenomenon.

Nevertheless, cortical changes in patients with LIS, expe-
riencing hallucinations and delusions, involved areas, which 
have been previously linked to the presence of these symptoms 
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[e.g., Ref. (1)]. Specifically, our results showed a reduced corti-
cal volume in the fusiform and lingual regions, and in the right 
parahippocampal cortex, of LIS patients with positive signs. 
This fits with many literature findings stressing the role of 
both ventrolateral (fusiform) and ventromedial (lingual and 
parahippocampal) regions of the occipito-temporal cortex in 
both visual hallucinations and delusions. More in detail, the 
fusiform area, which is a key region of the occipito-temporal 
ventral visual stream, plays a pivotal role in visuoperceptual 
processing. Much evidence demonstrated the activation of the 
fusiform and lingual gyri during the recognition of objects and 
faces and highlighted the role of brain lesions involving this 
area (in particular in the right hemisphere) in neuropsycho-
logical disturbances of visual processing, such as visual agnosia 
and prosopagnosia [e.g., Ref. (18)]. Classical evidence on the 
visual processing of faces and objects has also demonstrated 
the involvement of the parahippocampal cortex (19, 20). 
Moreover, ventral visual stream areas, together with the para-
hippocampal region, are implicated in psychotic symptoms, 
both hallucinations and delusions, in patients with Alzheimer’s 
disease (21).

When compared with LIS non-experiencing productive 
phenomena, hallucinators also showed a cortical atrophy in the 
orbital part of the inferior frontal gyrus. Neurocognitive models  
of visual hallucinations have highlighted the role of a pathologi-
cal interaction between defective visual brain areas and altered 
cortical control from prefrontal areas (22, 23). For instance, 
recent findings converged in demonstrating that a pattern of 
gray matter atrophy involving both posterior and frontal areas is 
implied in delusional development in patients with Alzheimer’s 
disease and frontotemporal dementia (24–26). On this basis, we 
could suggest that, in LIS patients experiencing hallucinatons/
delusions, a bottom-up impairment due to alterations in pos-
terior areas would not be effectively modulated by top-down 
processes in prefrontal cortex. The consequence of this would be 
an impaired self-monitoring, leading individuals to experience 
their own internal mental contents as vivid external percepts 
(22, 27, 28).

Patients with LIS also experienced frequent positive motor 
phenomena mainly represented by the perception of a limb 
movement in the absence of a real movement. This is consistent 
with literature findings showing motor awareness abnormalities 
as a result of various forms of brain damage (29). Here, we might 
speculate that the interruption of the corticocerebellar pathways, 
combined with cortical alterations in prefrontal cortex could 
have impaired the capacity to provide the system with up-to-date 
information about actual motor abilities (30). The co-existence of 

these two factors may have led to perceptions of movement where 
no actual movement has occurred.

Finally, alternative explanations may be proposed for the 
patients showing a lesion also involving the midbrain: this kind 
of damage has been previously reported to be associated with the 
development of peduncular hallucinosis and psychosis, whose 
pathogenesis is still debated (31, 32). All these observations sug-
gest that the presence of hallucinations and delusions in some LIS 
patients can be accounted for by the combination of a damage 
of the corticopontocerebellar pathways with cortical changes 
following the primary brainstem injury. This would confirm 
the notion that hallucinations belong to those symptoms which 
arise from the pathological involvement of different structures 
functionally connected each other rather than being the result of 
the dysfunction of a single region (33).

Moreover, it is important to stress here that non-hallucinators, 
as compared to hallucinators, also showed signs of atrophy in a 
large set of anterior and posterior cortical areas. At present, we are 
not able to provide any tentative explanation accounting for this 
finding: future studies, also involving a healthy control group, are 
needed to precisely define the nature of cortical changes in LIS 
patients with and without positive symptoms.

Finally, a specific feature of the recognized hallucinations in 
patients with LIS is their tendency to improve when patients are 
repeatedly informed by health care professionals or caregivers 
about the illusory nature of their experiences. Compared with 
patients who have psychotic illnesses, patients with LIS show a 
greater insight about their experiences, making hallucinations 
and delusions more likely to diminish in response to specific 
management of these symptoms, as the presence of insight 
improves treatment compliance (34).

Further studies would be of help to expand this field of 
research in order to integrate existing theories about the mecha-
nisms underlying the generation of hallucinations and delusions 
in neurological patients.
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Patients with prolonged disorders of consciousness (DoC) after severe brain injury may

present residual behavioral and cognitive functions. Yet the bedside assessment of these

functions is compromised by patients’ multiple impairments. Standardized behavioral

scales such as the Coma Recovery Scale-Revised (CRS-R) have been developed

to diagnose DoC, but there is also a need for neuropsychological measurement in

these patients. The Cognitive Assessment by Visual Election (CAVE) was therefore

recently created. In this study, we describe five patients in minimally conscious

state (MCS) or emerging from the MCS (EMCS). Their cognitive profiles, derived

from the CRS-R and CAVE, are presented alongside their neuroimaging results

using structural magnetic resonance imaging (MRI) and fluorodeoxyglucose positron

emission tomography (FDG-PET). Scores on the CAVE decreased along with the

CRS-R total score, establishing a consistent behavioral/cognitive profile for each

patient. Out of these five cases, the one with highest CRS-R and CAVE performance

had the least extended cerebral hypometabolism. All patients showed structural and

functional brain impairments that were consistent with their behavioral/cognitive profile

as based on previous literature. For instance, the presence of visual and motor residual

functions was respectively associated with a relative preservation of occipital and motor

cortex/cerebellum metabolism. Moreover, residual language comprehension skills were

found in the presence of preserved temporal and angular cortex metabolism. Some

patients also presented structural impairment of hippocampus, suggesting the presence

of memory impairments. Our results suggest that brain-behavior relationships might be

observed even in severely brain-injured patients and they highlight the importance of

developing new tools to assess residual cognition and language in MCS and EMCS

patients. Indeed, a better characterization of their cognitive profile will be helpful in

preparation of rehabilitation programs and daily routines.

Keywords: (emergence from) minimally conscious state, behavior, cognitive functions, neuropsychological

assessment, positron emission tomography, structural magnetic resonance imaging, neural correlates
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INTRODUCTION

After an acquired severe brain injury, patients generally go
through a succession of altered states of consciousness: coma,
unresponsive wakefulness syndrome (i.e., vegetative state—eye
opening without signs of awareness) (1), minimally conscious
state (MCS), and then emergence from the minimally conscious
state (EMCS), when they are able to functionally communicate
or use objects (2). Patients in a MCS have further been
subcategorized in MCS minus, whose most frequent signs of
consciousness are visual fixation and pursuit, automatic oriented
motor reactions and localization to noxious stimulation (3), and
in MCS plus patients who can also follow simple commands,
intelligibly verbalize or intentionally communicate (4).

Previous literature has shown the importance of accurate
diagnosis in DoC patients regarding daily management (i.e., pain
treatment or stimulation protocols), end-of-life decisions and
prognosis (5–7). Nevertheless, accurate diagnosis is challenging
(8–13), with assessment being compromised by patients’ multiple
impairments, in particular motor skills and fluctuating arousal
level (10, 11), as well as aphasia (14, 15) and impaired visual
abilities (8). Several behavioral scales have been developed to
assess patients’ level of consciousness. Among them, the Coma
Recovery Scale-Revised (CRS-R) (16) is currently considered
the most sensitive validated diagnostic tool (17). There is
still, however, a lack of standardized neuropsychological tests
dedicated to the assessment of a wider range of cognitive
functions in DoC patients. Indeed, although the CRS-R allows
to precisely diagnose their levels of consciousness, patients’
cognitive and language deficits cannot be specifically appreciated.
Consequently, a new measure was recently developed on the
grounds of clinical work: the Cognitive Assessment by Visual
Election (CAVE) [(18); Murphy, unpublished thesis]. This
assessment is based on the ability to understand language at a
basic level and to visually fixate objects.

Due to the difficulty to behaviorally objectify signs of

consciousness and cognition in this group of severely brain-
injured patients, diverse neuroimaging techniques have been
developed (19). A negative correlation was found between
structural damage and the level of consciousness using voxel-
basedmorphometry (VBM). The duration of a DoC has also been
associated with larger brain lesions (20). Regarding functional
brain imaging, active paradigms require preserved language
functions and the ability to follow verbal commands, thus passive
and resting state paradigms are more commonly used, either with
positron emission tomography (PET) or magnetic resonance
imaging (MRI) (21). Using fluorodeoxyglucose (FDG) PET,
previous studies showed an association between consciousness
recovery and the restoration of cerebral activity within a
large frontoparietal network, comprised of two (internal and
external) networks (22). The internal default mode network
(DMN) encompasses the precuneus/posterior cingulate cortex,
mesiofrontal/anterior cingulate cortex as well as the temporo-
parietal junction, and is mainly dedicated to internal perception
and self-awareness (23–25). The external lateral frontoparietal
network is involved in executive control, external perception
and environment awareness (22, 26). Finally, recent studies

have shown that diverse neuroimaging and neurophysiology
techniques tend to lead to compatible and consensual brain data
in unresponsive and MCS patients (27–29), suggesting that it
would be of benefit to combine these techniques to diagnose the
DoC.

The presence of residual language and cognitive functions in
DoC patients has been suggested by previous neuroimaging and
electrophysiology studies (30–36). For example, residual cortical
activity related to language processing was shown in two MCS
patients, by comparing functional connectivity after listening to
intelligible and unintelligible speech (37). To remedy the lack of
cognitive behavioral measurement, Sergent and colleagues (38)
used electroencephalography (EEG) and showed the advantages
of a multidimensional cognitive evaluation based on low-level
functions (i.e., own name recognition, temporal attention, spatial
attention, detection of spatial incongruence and motor planning)
and higher-level functions (i.e., modulations of previous effects
by the global context) in detecting residual cognitive abilities in
DoC patients.

In the present paper, we aim to study the behavioral and
cognitive profile of five different patients in MCS and EMCS.
Performance on the CRS-R and the CAVE were compared
with their neuroimaging results using FDG-PET and structural
MRI. By presenting these multiple cases, the importance of
the development of new assessment tools such as the CAVE
to refine the cognitive profile of MCS and EMCS patients,
is emphasized. Specifically, it is hypothesized that there is an
association between patients’ structural and functional brain
damage and their behavioral/cognitive profile, consistent with
previous studies establishing neural correlates of behavior,
language and cognition.

MATERIALS AND METHODS

This prospective study includes five patients who were
consecutively recruited at the University Hospital of Liège.
All patients completed a battery of behavioral tests and
neuroimaging assessments during a one-week hospitalization,
based on clinical demand. Patients with absence of visual pursuit
or visual evoked potentials (as observed by an experimented
ophthalmologist) were excluded, as some functional vision is
required to perform the CAVE. The control group consisted of
58 healthy subjects as controls for FDG-PET (34/58) and MRI
data (36/58). The study was approved by the Ethics Committee
of the Faculty of Medicine of the University of Liege and written
informed consents, including for publication of data, were
obtained from the patients’ legal representatives and from the
healthy control subjects.

Bedside Behavioral Assessments
Coma Recovery Scale-Revised (CRS-R)
The CRS-R was used for clinical diagnosis. This scale includes
23 items divided in 6 sub-scales: auditory, visual, motor,
oro-motor/verbal, communication, and arousal, each assessing
different items of increasing complexity (16). Some of the items
are diagnostic criteria for MCS (e.g., visual pursuit, automatic
oriented motor reactions, or response to command) and EMCS
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(i.e., functional communication and/or use of objects), and the
total score ranges from 0 to 23. Following the most recent
guidelines to reduce misdiagnosis (39), at least five clinical
assessments within a short time interval (i.e., 1 week) were
conducted. The highest CRS-R score and diagnostic category of
the week was retained for final diagnosis.

Cognitive Assessment by Visual Election (CAVE)
The CAVE includes 6 sub-tests to evaluate the recognition
of real objects, numbers, written words, letters, pictures,
and colors (18). Each of these sub-tests contains 10 items
(Supplementary Material I), with a cut-off score of 8/10
based on binomial distribution. A target object is presented
simultaneously with a distractor (e.g., a pen on the left and a
fork on the right visual field) and the patient is asked to look
at the target (e.g., “look at the pen”). As this test requires at
least the preservation of visual fixation, this tool is dedicated
to MCS minus, MCS plus, and EMCS patients. It usually takes
between 10 and 30min to administer, depending on the ability to
objectify patient’s eye fixations and patient’s fatigue. The scoring
sheet is presented in Supplementary Material I. An extended
version of the CAVE proposes additional subtests, including a
visual memory recognition exercise that was attempted with
our patients (except case 4). First, patients were presented five
pictures (one at a time) and asked to memorize them. Afterward,
each target was presented with a distractor and they were asked
to look at the previously shown picture.

Electrophysiological Measurement
A clinical EEG was performed using 19 electrodes and
interpreted by a certified neurologist to assess the severity of the
encephalopathy.

MRI
MRI data was acquired using a 3 Tesla scanner (Siemens Trio,
Siemens Medical Solutions, Erlangen, Germany). Structural MRI
data were obtained with T1-weighted 3D gradient echo images
using 120 slices (repetition time= 2300ms, echo time= 2.47ms,
voxel size= 1× 1× 1.2 mm3, flip angle= 9◦, field of view= 256
× 256 mm²).

Voxel-Based Morphometry (VBM)
A T1 voxel-based morphometry analysis of brain structure
using the VBM8 toolbox (Structural Brain Mapping Group,
Christian Gaser, Department of Psychiatry, University of Jena,
Germany) was carried out. T1 MRI images were segmented
into gray and white matter and cerebrospinal fluid using the
unified segmentation module (40). These segmented gray and
white matter images were used to obtain a more accurate
registration model using DARTEL (41, 42). The images of each
participant were then normalized into the DARTEL template in
MNI space. The gray matter images were modulated to ensure
the preservation of their volumes after the normalization step.
The modulated normalized gray matter images were smoothed
with a Gaussian isotropic kernel of 12mm of full width at half
maximum (FWHM). The differences in gray matter volume were
investigated by comparing each patient with a group of 36 healthy

control subjects (mean age = 46 ± 16 years old, 13 women)
using a parametric two-sample t-test. Both the total intracranial
volume and age, centered to mean and standardized to 1, were
then used as covariates. Results were considered significant at
family-wise error (FWE) corrected p < 0.05 at cluster level and
cluster defining threshold p < 0.001.

FDG-PET
A resting 18F-FDG PET/CT scan was performed after
intravenous injection of ∼150 MBq of FDG using a Gemini
TF PET-CT scanner (Philips Medical Systems) as described
elsewhere (43). The scan started 30min after an intravenous
injection of the tracer and the scan duration was 12min. FDG-
PET images for each patient were manually reoriented using
SPM12. The images were then spatially normalized, smoothed
(with a 14mm FWHMGaussian filter) and analyzed. Patient data
were compared to 34 healthy control subjects (age range 19–70
years, 15 women). SPM analysis identified brain regions with
decreased and relatively preserved metabolism in each patient
compared to healthy control subjects (global normalization was
performed by proportional scaling). The resulting set of voxel
values for each contrast, constituting a statistical parametric map
of the t-statistics (SPM{t}), was transformed to the unit normal
distribution (SPM{Z}) and thresholded at voxel-wise p < 0.05
FWE-corrected and at p < 0.001 uncorrected.

RESULTS

The main results of the five patients (all right-handed; age range:
20–66 years old; one woman) are presented in Figure 1. The
CRS-R and CAVE scores are presented in Table 1. All VBM and
PET statistical results are presented in Table 2 (most significant
data) and S1 (Supplementary Material II). The significant
regions’ names were derived from the AAL2 atlas, using
bspmview tool (http://www.bobspunt.com/bspmview/, doi: 10.
5281/zenodo.168074).

Case 1
This patient was admitted to our hospital 16 months after a
traumatic brain injury. He was diagnosed as EMCS (with a total
CRS-R score of 19/23) because of his ability to functionally
communicate using “yes” and “no” cards. Due to fatigue and
time limitation, only four CAVE sub-tests were administered.
According to the cut-off score, he was able to recognize objects,
numbers, written words and letters, as well as to memorize five
pictures (Table 1). Overall, case 1 correctly responded to 92.5%
of the administered items of the CAVE.

The clinical EEG showed abnormalities regarding the
posterior and temporal derivations of the left hemisphere. As
seen in Table 2 and Figure 1, the VBM shows gray matter
damage in the left hippocampus. PET hypometabolism was
observed in the left thalamus and angular gyrus (p < 0.05
FWE corrected), as well as the left putamen and part of the
left inferior and middle temporal gyrus, the left precentral
cortex and the right superior frontal cortex (p < 0.001
uncorrected). The most preserved metabolism was shown in
the right angular gyrus (p < 0.05 FWE corrected) and in
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FIGURE 1 | Behavioral and cognitive data, loss of gray matter volume (in red) as assessed with MRI voxel-based morphometry and cerebral hypometabolism (in blue)

as assessed with FDG-PET in all five patients. Here the threshold is uncorrected 0.001 for display values (please refer to Table 2 for corrected results).

the right insula, middle frontal cortex, post-central cortex,
rolandic operculum and superior temporal cortex (p < 0.001
uncorrected).

Case 2
Case 2 had a stroke and epilepsy due to post-surgery
complications 30 months before his admission to our hospital.
He was diagnosed as EMCS (with a total CRS-R score of 19/23),
as he was able to functionally use objects but not to functionally
communicate. Using the CAVE, the patient showed a good
performance in recognizing numbers and pictures (Table 1). He
was just below the cut-off score with real objects and colors but
he had more difficulties with discriminating letters and written

words and in memorizing the pictures. Unilateral spatial neglect
was suspected since his performance was better when the target
itemwas presented on his left side. Case 2 performed well for 73%
of administered items.

The clinical EEG suggests significant left hemispheric damage
with a nascent encephalopathy. Neuroimaging results also show
left hemisphere structural and functional damage. Significant
hypotrophy in the left fusiform, left medial orbitofrontal and
right superior temporal cortices was noted, as well as in the
left calcarine sulcus and right cerebellum. Hypometabolism was
also observed in the left inferior parietal cortex (p < 0.05 FWE
corrected) and in the left supplementary motor area, superior
frontal cortex, cingulate cortex, precuneus, fusiform cortex,
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TABLE 1 | Behavioral scores at the CRS-R and the CAVE.

Case 1 Case 2 Case 3 Case 4 Case 5

CRS-R Final diagnosis EMCS EMCS MCS+ MCS- MCS-

Auditory score 4* 4* 3* 2 1

Visual score 5* 4* 3* 3* 3*

Motor score 5* 6# 5* 5* 5*

Oromotor/verbal score 1 2 2 2 1

Communication score 2# 1* 0 0 0

Arousal score 2 2 2 2 2

Total score 19 19 15 14 12

CAVE Real objects 9/10 7/10 10/10 4/10 4/10

Numbers 9/10 9/10 8/10 NA 3/10

Words 9/10 6/10 1/10 2/10 1/10

Letters 10/10 5/10 7/10 NA 1/10

Pictures NA 10/10 9/10 NA 3/10

Colors NA 7/10 5/10 NA 2/10

Percentage of success 92.5% 73% 67% 23% 23%

Memory 5/5 3/5 1/5 NA 1/5

Left/right differences No Yes No No Yes

# indicates emergence of minimally conscious state (EMCS), * indicates MCS.

The CAVE scores in italics are below the cut-off score and thus considered as failed. NA,

not administered.

superior parietal cortex, hippocampus and amygdala, as well as
bilateral rectus gyri and thalami (p < 0.001 uncorrected). The
regions showing the most preserved metabolism were the right
amygdala (p < 0.05 FWE corrected) and the bilateral cerebellum
and right middle frontal cortex, temporal, parietal and occipital
lobules (p < 0.001 uncorrected).

Case 3
This patient came to our hospital 13 months after a traumatic
brain injury. The diagnosis was MCS plus (with a total CRS-
R score of 15/23) since he was able to follow simple verbal
commands (e.g., “Look up,” “Turn your head” and “Close
your eyes”). His cognition was more impaired than case 1
and qualitatively very different from case 2 (Table 1). He
could perform some sub-tests, namely recognizing real objects,
numbers and pictures. The other attempted sub-tests (including
memory) led to performance lower than the cut-off score. This
patient successfully responded to 67% of presented items.

The clinical EEG was biased by abundant movement artifacts.
Structural damage was shown using VBM in the bilateral
hippocampi and in the right precentral cortex. The PET analysis
showed significant hypometabolism in bilateral precentral cortex,
right middle frontal cortex, and left middle occipital cortex
(p < 0.05 FWE corrected), as well as in the left inferior occipital
cortex, middle frontal gyrus and supplementary motor area
and bilateral middle cingulate cortex and thalami (p < 0.001
uncorrected). The most preserved metabolism was observed in
the left supramarginal gyrus (p < 0.05 FWE corrected) and

the right inferior frontal, inferior parietal, angular, and superior
temporal cortex, as well as left inferior frontal, middle and
superior temporal cortex (p < 0.001 uncorrected).

Case 4
Case 4 sustained a hypoxic-ischemic brain injury following an
insulin overdose; she was 3 years post-hypoglycemia. This patient
showed the requested visual functions, as well as automatic
oriented motor reactions, therefore she was considered as being
in a MCS minus with a CRS-R total score of 14/23. Nevertheless,
she was an atypical MCS minus patient due to her ability
to walk when guided by someone else. Using the CAVE, she
failed to recognize real objects, numbers, words and colors. The
remaining subtests (i.e., letters and pictures recognition) were not
administered due to patient fatigue. Case 4 performed well for
23% of the administered items.

Despite the presence of muscular artifacts, the clinical EEG
showed significant encephalopathy with no sign of lateralization.
The neuroimaging data showed hypotrophy of the right
amygdala. Moreover, hypometabolism was mainly found in the
right middle frontal and cingulate cortex and in the left caudate
and middle temporal cortex (p < 0.05 FWE corrected), as
well as in bilateral angular gyrus, caudate, putamen, thalami,
and frontal cortex, in the right middle temporal and inferior
parietal cortex, in the left insula and middle temporal cortex
(p < 0.001 uncorrected). On the contrary, the most preserved
metabolism was shown in the right cerebellum (p < 0.05 FWE
corrected), in the bilateral insula and putamen, and in the
left cerebellum, precuneus, paracentral and postcentral cortex
(p < 0.001 uncorrected).

Case 5
This last patient had a stroke 13 months before his stay in our
hospital. He was diagnosed as MCS minus with a CRS-R total
score of 12/23. He did not show any residual language ability
but he was able to visually fixate and track objects, as well as to
automatically open his mouth when a spoon was moved toward
it (i.e., automatic motor response). Similarly to case 4, this patient
failed to recognize (and memorize) the visual targets, despite his
high arousal enabling us to attempt all CAVE subtests. As for case
4, case 5 visually fixed the target item for 23% of the trials but
left/right differences were observed.

The clinical EEG showed a symmetrical slow dysrythmia with
no paroxysm. Gray matter hypotrophy was shown in the left
inferior temporal cortex and right supplementary motor area.
PET results show the presence of significant hypometabolism in
the left middle temporal cortex (p < 0.05 FWE corrected), the
bilateral superior frontal and cingulate cortex, the left thalamus,
precuneus, and parietal cortex (p < 0.001 uncorrected).
Preserved metabolism in the right amygdala was observed
(p < 0.05 FWE corrected), as well as in the vermis, the bilateral
cerebellum, the left hippocampus and the right parieto-occipito-
temporal regions including the right precuneus and angular
gyrus (p < 0.001 uncorrected).
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TABLE 2 | Regions showing significant gray matter hypotrophy, impaired and preserved metabolism.

Brain regions p(FWE-corr) T x y z

GRAY MATTER

Case 1 < CTR L hippocampus 0 6,4 −30 −15 −17

Case 2 < CTR L fusiform cortex 0 11,5 −29 −15 −24

L medial orbitofrontal cortex 0 8,1 −8 27 −12

R superior temporal cortex 0,002 6,1 68 −9 −9

L calcarine 0,035 4,9 −11 −60 11

R cerebellum 0,038 4,3 23 −77 −30

Case 3 < CTR R hippocampus 0,004 5,9 20 −6 −20

L precentral cortex 0,025 4,7 −27 −4 53

L hippocampus 0,036 4,7 −15 −6 −12

Case 4 < CTR R amygdala 0 6,5 30 −4 −20

Case 5 < CTR L inferior temporal cortex 0 8,0 −53 −69 −9

R supplementary motor area 0,001 5,2 11 −1 65

HYPOMETABOLISM

Case 1 < CTR L angular gyrus 0,016 5,3 −46 −70 38

L thalamus 0,015 5,2 −8 −18 6

Case 2 < CTR L inferior parietal 0 15,6 −54 −26 36

Case 3 < CTR L precentral cortex 0 12,2 −28 −18 68

R middle frontal cortex 0,003 9,2 34 34 38

R precentral cortex 0,012 6,0 26 −28 70

L middle occipital cortex 0,006 5,6 −32 −90 8

Brain stem 0,002 5,5 2 −24 −4

Case 4 < CTR R middle frontal cortex 0 8,5 44 10 50

L caudate 0,013 7,1 −16 12 8

L middle temporal cortex 0 6,5 −50 −68 18

R middle cingulate cortex 0,02 4,7 4 −50 34

Case 5 < CTR L middle temporal cortex 0 15,4 −54 −58 20

PRESERVED METABOLISM

Case 1 > CTR R frontal lobe (white matter) 0 7,2 26 24 24

R angular gyrus 0,041 4,5 48 −48 32

Case 2 > CTR R amygdala 0 13,1 34 2 −24

Case 3 > CTR R frontal lobe (white matter) 0 9,1 46 −2 18

L supramarginal gryus 0 9,1 −50 −28 30

Case 4 > CTR L insula 0 10,0 −30 −8 18

R insula 0,006 9,8 32 −4 18

R cerebellum 0 7,0 20 −56 −20

Case 5 > CTR R amygdala 0 17,3 34 0 −28

L, left; R, right, CTR, healthy control subjects.

DISCUSSION

In this study, patients in MCS or EMCS have been assessed with
a broad spectrum of (para)clinical tools. Using the CAVE, it
has been possible to evaluate the cognitive profile of severely
brain-injured patients, and the importance of the use of such
new bedside neuropsychological assessments is highlighted.
It was hypothesized that CAVE profiles would correspond
to patients’ cerebral structure and brain activity. Comparing
all patients, the highest scorer on bedside behavioral and
language-based cognitive assessments (i.e., case 1) showed
less extended levels of cerebral hypometabolism. It was also

found that the percentage of success on the CAVE decreased
along with the CRS-R total score (see Table 1), establishing
a consistent behavioral/cognitive profile for each patient.
The cognitive profile obtained from the CRS-R and the
CAVE was mostly found to correspond to structural and
functional results. As shown in Figure 1, both neuroimaging
techniques also seem in agreement: gray matter damages
are generally paralleled with hypometabolism of the same
structures, and this hypometabolism is even more widespread.
Below, we discuss cognitive functions in different domains
and compare the behavioral results with neuroimaging
findings.
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Visual Functions
All patients were able to visually fixate and pursuit objects and
all showed a relative structural and metabolic preservation of
occipital lobule. Regarding case 1, the ability to visually fixate
objects and the use of a visually-based communication code were
consistent with the absence of significant hypometabolism and
gray matter hypotrophy in the occipital cortex. The difficulty
to perform well with letters, words, and colors in case 3 may
be consistent with the apparent hypometabolism within the
left occipital cortex (44–47). In addition, number recognition
appeared intact in this patient. This ability has been shown to
rely on the right lateral occipital area (48), and our patient
showed no significant hypometabolism in this area. Hence, our
findings suggest a dissociation between letters and numbers
recognition which was associated with specific occipital lesions.
Both MCS minus patients were unable to successfully recognize
the CAVE target items. Despite their ability to visually fixate one
object when it was presented alone, none of these two patients
showed responses to command, which suggest that they did not
understand the task instructions (see next section).

Unilateral spatial neglect and/or hemianopia were suspected
in case 2 and case 5 since there was a significant difference in the
performance between left and right CAVE target items. Indeed,
a deviation of their eyes toward their left side was noted in
both patients. Karnath and coworkers have highlighted the role
of a perisylvian network in spatial neglect (49), including the
temporo-parietal junction, the temporal lobules and underlying
insula, as well as the ventro-lateral prefrontal cortex. Accordingly,
these two patients showed hypometabolism and hypotrophy of
gray matter in some of these cerebral regions.

Language and Executive Functions
Case 1 was the only patient who could functionally communicate
using a “yes”/“no” code. This ability requires language and
executive functions such as mental flexibility. Hence recovery of
communication does not seem surprising due to the preserved
metabolism and absence of gray matter damage in frontal lobules
(50, 51). Besides communication, this patient was also able
to follow simple commands and to understand the “look at”
commands during the administration of the CAVE. Nevertheless,
the EEG and PET analysis reported abnormalities regarding the
posterior and temporal derivations of the left hemisphere, shown
to be dedicated to semantics (52). Specifically, we found peaks
of hypometabolism within the left angular gyrus, which was
related to sentence comprehension (52–54). Still, this patient’s
residual language skills may emerge from neural plasticity
using the cerebral areas that are either around the lesion,
or in the contralateral cerebral regions (55–59). Indeed, right
angular gyrus and superior temporal cortex showed preserved
metabolism.

In contrast, case 2 was unable to functionally communicate
and read written letters and words during the CAVE assessment.
This was consistent with the massive left cerebral lesion that
was detected with VBM, PET and clinical EEG (52, 60). More
precisely, this patient showed hypometabolism and gray matter
reduction in the left fusiform cortex, known to be the “visual
word form area” (54, 60, 61). Therefore, these data matched

well with his inability to recognize letters and words. Taken
together, the CAVE results suggested that the more linguistic
were the items, the more difficult it was for this patient to answer.
Thus, it is likely that this patient had severe aphasic difficulties.
Nevertheless, he was systematically able to follow (and thus
understand) commands. This may correspond with the absence
of hypometabolism in areas such as the left superior temporal
cortex (52). In addition, similarly to case 1 it could be argued that
he recovered such abilities by means of neural plasticity.

Case 3 was able to understand and follow commands and
he could recognize objects, pictures and numbers. All these
skills require residual language comprehension and relative
preservation of semantic processing, which is related to left
temporal areas (52). Accordingly, we observed the absence
of gray matter hypotrophy and the presence of preserved
metabolism regarding the left temporal lobule. Again, this patient
showed an inability to recognize letters and written words. If
this patient, contrary to case 2, did not show impairment of
the left fusiform gyrus (i.e., the visual word form area), he still
showed hypometabolism in regions that are very close (i.e., the
left inferior andmiddle occipital cortex). These findings were also
consistent with the patient’s inability to discriminate different
colors (44, 62).

The inability of case 4 and case 5 to show language-based
signs of consciousness (i.e., command-following, intelligible
verbalization and communication) and to recognize CAVE items
corresponded to their hypometabolism, notably regarding the
left angular gyrus (52). These results implied a lack of verbal
comprehension due to accumulated language and cognitive
impairments. Indeed, more impaired language functions in MCS
minus than in MCS plus patients was suggested by previous
studies (63, 64).

Motor Functions
Repeated assessments on the CRS-R did not demonstrate
functional use of objects in case 1 but it was noted that this
patient tended to grab his bed sheets and try to reach objects.
Accordingly, we did not observe hypometabolism within the
motor cerebral areas (Figure 1). Furthermore, case 2’s ability to
functionally use some objects (i.e., a comb) could emerge from
preserved right motor areas. Our third and fifth cases obtained
the same motor subscale score at the CRS-R as case 1 since
they showed automatic oriented movements with their mouth.
The inability to move their limbs could thus be related to case
3’s hypometabolism of the precentral cortex and supplementary
motor area and to case 5’s damage of the right supplementary
motor area. Interestingly, case 4 was an atypical MCS minus
patient because she was able to walk despite her inability to
respond to commands. This capacity was probably possible
because of preserved metabolism of the left paracentral and
postcentral sensorimotor cortex (65–67). In addition, this patient
also showed a preserved cerebellum and previous studies have
highlighted its role in gait and movement coordination (68).

Memory and Consciousness
Case 1 performed perfectly to the memory subtest. Nevertheless,
it is a recognition task and other higher order memory processes
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might still be impaired. Indeed, case 1 (as well as case 3) showed
impaired gray matter structure in the hippocampus, which has
shown to be related to episodic memory in numerous previous
studies [e.g., (69, 70)]. Since memory difficulties were presented
on this subtest by the other cases, one could thus hypothesize the
presence of memory impairment in all five patients.

All patients were no less than minimally conscious, and at
least part of the external frontoparietal network was preserved
in all of them (22). Interestingly, in our atypical case 4 the
metabolism of this external network seemed less preserved than
the other cases. The internal DMN was probably slightly more
affected than external network in our patients. For instance, the
left precuneus was shown to be hypometabolic in case 2 and
case 5, whereas the left temporo-parietal junctions (also involved
in the DMN) seem hypometabolic in four patients. Lastly, the
thalamus, known to play an important role in consciousness
(71), was hypometabolic in all five patients. Since thalamo-
cortical alterations were found in other brain-injured patients
with chronic fatigue problems (72), case 1’s fatigue might also
be at least partially explained by the left thalamus functional
impairment.

Limitations
This multiple case report only provides preliminary findings;
more patients are needed in order to overcome statistical
limitations and confirm the relationships between cognition and
brain structure and function at the group level. The heterogeneity
of DoC patients makes this research very challenging. Moreover,
the performance at the CAVE is multi-determined, requiring
visual functions, language comprehension and other subtest-
specific abilities such as reading. As such, the CAVE might allow
us to detect the presence of aphasia in our patients, but it does
not discriminate or specify which language functions are altered
(e.g., phonology vs. semantics). New material could be included
to evaluate MCS and EMCS patients’ cognitive functions in a
more specific way. Finally, the CAVE seems to be useful only for
patients who are at least MCS plus.

Conclusion
In this study, the performance of all patients using the CRS-
R and the CAVE was consistent, and it mostly corresponded
to their brain structure and metabolism in line with previous
research on patients with focal cerebral lesions. For instance,
the ability to recognize visually presented objects, or items
based on their name was linked to a relative preservation
of visual and language metabolism. In addition, residual
language comprehension skills were found in the presence of

preserved temporal and angular cortex metabolism. These results
suggest that brain-behavior relationships might be observed
even in severely brain-injured patients. This research further
highlights the importance of the development of behavioral
assessment tools, such as the CAVE, both to inform clinical
practice and for scientific interest. Clinically, besides the
CRS-R this new test allows to refine the patient’s cognitive
profile. This knowledge will be helpful in preparation of
rehabilitation programs and daily routines. Such information
may be important also for the investigation of the neural
correlates of behavior and cognition in patients with severe brain
injury.
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Severe traumatic brain injury impairs arousal and awareness, the two components 
of consciousness. Accurate diagnosis of a patient’s level of consciousness is critical 
for determining treatment goals, access to rehabilitative services, and prognosis. 
The bedside behavioral examination, the current clinical standard for diagnosis of 
disorders of consciousness, is prone to misdiagnosis, a finding that has led to the 
development of advanced neuroimaging techniques aimed at detection of conscious 
awareness. Although a variety of paradigms have been used in functional magnetic 
resonance imaging (fMRI) to reveal covert consciousness, the relative accuracy of 
these paradigms in the patient population is unknown. Here, we compare the rate 
of covert consciousness detection by hand squeezing and tennis playing motor 
imagery paradigms in 10 patients with traumatic disorders of consciousness [six 
male, six acute, mean ± SD age = 27.9 ± 9.1 years, one coma, four unresponsive 
wakefulness syndrome, two minimally conscious without language function, and 
three minimally conscious with language function, per bedside examination with the 
Coma Recovery Scale-Revised (CRS-R)]. We also tested the same paradigms in 10 
healthy subjects (nine male, mean ± SD age = 28.5 ± 9.4 years). In healthy subjects, 
the hand squeezing paradigm detected covert command following in 7/10 and the 
tennis playing paradigm in 9/10 subjects. In patients who followed commands on the  
CRS-R, the hand squeezing paradigm detected covert command following in 2/3 and 
the tennis playing paradigm in 0/3 subjects. In patients who did not follow commands 
on the CRS-R, the hand squeezing paradigm detected command following in 1/7 and 
the tennis playing paradigm in 2/7 subjects. The sensitivity, specificity, and accuracy 
(ACC) of detecting covert command following in patients who demonstrated this 
behavior on the CRS-R was 66.7, 85.7, and 80% for the hand squeezing paradigm 
and 0, 71.4, and 50% for the tennis playing paradigm, respectively. Overall, the tennis 
paradigm performed better than the hand squeezing paradigm in healthy subjects, but 
in patients, the hand squeezing paradigm detected command following with greater 
ACC. These findings indicate that current fMRI motor imagery paradigms frequently 
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fail to detect command following and highlight the need for paradigm optimization to 
improve the accuracy of covert consciousness detection.

Keywords: traumatic brain injury, consciousness, awareness, functional magnetic resonance imaging, motor 
imagery

inTrODUcTiOn

Patients with severe traumatic brain injury (TBI) experience a 
period of impaired consciousness characterized by disturbances 
in arousal and awareness. This disorder of consciousness (DoC) 
may resolve acutely [i.e., in the intensive care unit (ICU)] or 
may be prolonged, extending weeks, months, or even years post-
injury (1). The spectrum of behavioral states that comprise DoC 
includes coma, unresponsive wakefulness syndrome (UWS, 
also known as vegetative state) (2, 3), minimally conscious 
state (MCS) (4), and post-traumatic confusional state (5, 6). 
Accurate assessment of a patient’s level of consciousness (LoC) is 
critically important to prognosis, as patients who have recovered 
consciousness (i.e., MCS) and especially language function have 
a higher likelihood of regaining cognitive function than those 
who have not (i.e., coma and UWS) (7–10). Thus, assessment 
of LoC drives early decisions about aggressive treatment and 
access to rehabilitative care. An inaccurate diagnosis may also 
prevent autonomous decision-making in patients who retain the 
capacity to do so.

Despite the critical importance of accurately defining a 
patient’s LoC, the current standard for assessment in this patient 
population is bedside clinical examination, a method that is 
prone to inaccuracies due to patient impairments (e.g., speech 
and motor deficits that prevent verbalization or movement to 
command) and examiner bias. The approximate rate of misdi-
agnosing a conscious patient as unconscious is 40% (11–14). 
Standardized behavioral tools, such as the Coma Recovery 
Scale-Revised (CRS-R) (15), have helped improve the accuracy 
and precision of the bedside assessment, but the behavioral 
diagnosis is potentially susceptible to misinterpretation of subtle 
and inconsistent behaviors. Recently published guidance on the 
optimal frequency of CRS-R assessment may further improve 
the accuracy of behavioral assessment (16), but even frequent 
assessments with the CRS-R may fail to detect consciousness in 
persons whose capacity for volitional brain function is masked by 
limitations in self-expression. Objective markers of conscious-
ness are therefore needed to ensure accurate diagnosis and to 
guide care management.

To circumvent some of the limitations of the bedside 
behavioral examination, recent studies have attempted to elicit 
evidence of consciousness by asking a patient to perform a mental 
imagery task in a magnetic resonance imaging (MRI) scanner 

(17–24). These functional MRI (fMRI) motor imagery tasks are 
not confounded by speech or motor impairment and therefore 
may provide additional information about a patient’s LoC that 
cannot be obtained by a behavioral assessment. Moreover, the 
magnitude, signal characteristics, and neuroanatomic location 
of brain activations detected by fMRI can be analyzed using 
predetermined objective algorithms that are independent of 
observer bias or variations in the administration and scoring of 
standardized behavioral measures. Several fMRI studies have 
identified persons with acute (24) and chronic (21, 25) DoC who 
demonstrate cognitive-motor dissociation (CMD) (26), which is 
defined by fMRI evidence of command following in the absence 
of behavioral evidence of command following.

Currently, there is a lack of consensus regarding which fMRI 
paradigms are best suited to elicit covert command following and 
hence a diagnosis of CMD. Although early studies used covert 
object naming (21), and some have employed covert counting of 
target words (27), most recent fMRI investigations have focused 
on spatial navigation and motor imagery tasks (e.g., imagine play-
ing tennis, swimming, or squeezing the right or left hand) (17). 
For a review of tasks used to elicit command following in patients 
with DoC see Rossetti and Laureys (28) and Laureys and Schiff 
(29). In 2007, Boly and colleagues (30) compared the robustness 
of brain activation to four task-based fMRI imagery paradigms 
in healthy subjects: spatial navigation (imagine walking around 
the rooms of a house), auditory imagery (imagine a familiar 
song), motor imagery (imagine hitting a tennis ball), and visual 
imagery (imagine familiar faces). They found that the spatial 
navigation and tennis imagery tasks provided the most robust 
results in healthy subjects. Consequently, tennis motor imagery 
has been utilized frequently over the past decade to identify CMD 
in patients with DoC.

Although the fMRI tennis imagery task seems to be a viable 
complement to the bedside examination of patients with DoC, 
several studies have found high false-negative rates (FNRs) using 
this task (i.e., patient and healthy subjects who have behavioral 
evidence of command following do not demonstrate the expected 
activations on tennis imagery fMRI tasks) (17, 31). A hand 
squeezing motor imagery task has been used successfully in EEG 
studies (32, 33) and may be a more robust paradigm for use in 
the ICU, as it parallels the clinical bedside examination and may 
be less cognitively burdensome than imagining playing tennis. 
It remains unknown whether tennis playing imagery or hand 
squeezing imagery is a more effective paradigm for detecting 
conscious awareness.

Our aim in the present study was to compare fMRI activation 
in response to a tennis playing and hand squeezing paradigm in 
patients with traumatic DoC. The hand squeezing paradigm was 

Abbreviations: DoC, disorders of consciousness; fMRI, functional magnetic 
resonance imaging; ICU, intensive care unit; LoC, level of consciousness; MCS±, 
minimally conscious state plus/minus; PTCS, post-traumatic confusional state; 
TBI, traumatic brain injury; UWS, unresponsive wakefulness syndrome.
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chosen because it is a simple motor response that closely resem-
bles the bedside behavioral examination, which often includes a 
“squeeze my hand” instruction to elicit command following. In 
addition, hand squeezing is more universal than playing tennis, 
which may be imagined differently and with varying intensity 
depending on an individual’s exposure to the sport. The hand 
squeezing task has been used successfully in other studies in 
acute and chronic DoC (24, 32, 33). We hypothesized that hand 
squeezing motor imagery will be detected with greater frequency 
than tennis playing motor imagery in patients diagnosed with 
acute and chronic traumatic DoC and in healthy controls.

MaTerials anD MeThODs

experimental Design
This study was carried out in accordance with a protocol approved 
by the Partners Institutional Review Board. Patient surrogate 
decision-makers gave written informed consent in accordance 
with the Declaration of Helsinki. The patient cohort was prospec-
tively recruited from an ICU, an outpatient follow-up neurology 
clinic, and an affiliated long-term acute hospital. Inclusion 
criteria were as follows: (1) age 18–65 years; and (2) head trauma 
with Glasgow Coma Scale score of 3–8 with no eye opening for at 
least 24 h after injury. Exclusion criteria were as follows: (1) life 
expectancy less than 6 months, as determined by a treating clini-
cian; (2) prior severe brain injury or neurodegenerative disease; 
(3) penetrating TBI with intracranial metal or other body metal 
precluding MRI; and (4) no fluency in English prior to the injury 
(because the paradigms were administered in English).

Surrogate decision-makers were approached for con-
sent ≥ 24 h after injury. For the ICU cohort, fMRI was performed 
as soon as the patient was clinically stable for transport to the 
MRI scanner, as determined by the treating ICU physicians and 
nurses. Patients with chronic DoC were scanned when they 
returned to the hospital for an outpatient clinic appointment or an 
inpatient hospitalization (e.g., for cranioplasty). Administration 
of sedative, anxiolytic, and/or analgesic medications was permit-
ted for patient safety or comfort, at the discretion of the treating 
clinicians.

Age-matched healthy subjects were enrolled as a comparison 
group. Healthy subjects had no history of neurological, psy-
chiatric, cardiovascular, pulmonary, renal, or endocrinological 
disease. They provided written informed consent and underwent 
the same fMRI protocols as the patients. All patient and healthy 
subject MRI scans were performed on the same scanner.

neurobehavioral assessment
Demographic and clinical data were collected at the time 
of enrollment in accordance with the National Institutes of 
Health Common Data Element Guidelines for TBI.1 LoC 
was characterized via behavioral evaluation with the CRS-R 
or based on criteria derived from the Confusion Assessment 
Protocol immediately prior to the fMRI (6, 34). Based on the 
CRS-R, each patient’s LoC was defined as coma (no arousal or 

1 https://www.commondataelements.ninds.nih.gov.

awareness), UWS (return of arousal but no awareness of self or 
the environment) (2, 3), or MCS (return of arousal and reliable 
but inconsistent evidence of awareness) (4). MCS was further 
subdivided into MCS− and MCS+ with the distinguishing 
feature being the presence of language function (i.e., at least one 
of the following: command following, object-recognition, or 
intelligible verbalization) in patients diagnosed as MCS+ (35, 
36). Emergence from MCS was marked by recovery of either 
functional use of two common objects or basic accurate com-
munication. The neurobehavioral assessment was conducted 
immediately prior to the fMRI scan. All behavioral evaluations 
were conducted by Brian L. Edlow.

Mri Data acquisition
Magnetic resonance imaging data were acquired with a 
32-channel head coil on a 3  T Siemens Skyra MRI scanner 
(Siemens Medical Solutions, Erlangen, Germany) located in the 
Neurosciences ICU. Auditory stimuli were presented via MRI-
compatible earphones (Newmatic Medical, Caledonia, MI, USA) 
connected to the scanner’s sound system. The blood-oxygen level 
dependent (BOLD) fMRI sequence utilized the following param-
eters: echo time (TE) = 30 ms, repetition time (TR) = 4,000 ms, 
in-plane resolution = 2.0 mm × 2.0 mm, slice thickness = 2 mm, 
interslice gap  =  2.5  mm, matrix  =  94  ×  94, field of view 
(FOV) = 192 mm × 192 mm, 49 slices, 2× GRAPPA acceleration. 
Image acquisition parameters differed for one subject (P10) due to 
a change in the fMRI protocol motivated by decreasing scan time. 
For this subject, the fMRI sequence TE was reduced to 25 ms and 
TR to 3,000 ms. High-spatial resolution 3D T1-weighted multi-
echo magnetization prepared gradient echo (MEMPRAGE) 
anatomical images were acquired for registration purposes (37): 
FOV  =  256  mm  ×  256  mm, acquisition matrix  =  256  ×  256, 
176 sagittal slices (thickness 1 mm), 3× GRAPPA acceleration, 
TE  =  1.69, 3.55, 5.41, and 7.27  ms, TR  =  2,530  ms, inversion 
time  =  1,200–1,300  ms, 1.0  mm3 isotropic resolution, and flip 
angle = 7°.

fMri Paradigms
Two fMRI motor imagery paradigms—hand squeezing and ten-
nis playing—were performed as part of a larger fMRI and EEG 
study. fMRI data from the hand squeeze task have been previ-
ously reported for P1-5 and C1-10 (24). Each motor imagery 
fMRI paradigm utilized a block design and was comprised of 
two runs, with each run containing three 24-s rest blocks and 
two 24-s stimulation blocks. In total, 144 s of rest data and 96 s 
of stimulation data were analyzed for each paradigm. Prior to 
the first rest block, 36 s of data (9 s for P10) were acquired to 
obtain a stable baseline BOLD signal. These data were excluded 
from analysis.

The hand squeeze motor imagery task always preceded the 
tennis motor imagery task because the former paradigm was part 
of the primary aim of a larger study (24) and the latter paradigm 
was added as part of a secondary study aim after initiation of 
data collection. Similar to other studies in DoC (32, 33), subjects 
were instructed to imagine squeezing their right hand or to rest. 
During the task, instructions to “keep squeezing” or to “keep 
resting” were repeated at 6-s intervals. The tennis playing task 
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FigUre 2 | Stimulus-based functional magnetic resonance imaging (fMRI) responses to hand squeezing and tennis playing motor imagery paradigms in healthy 
subjects. fMRI data are shown as Z-statistic images to demonstrate stimulus-specific responses. Z-Statistic images are thresholded at cluster-corrected Z scores of 
3.1 (inset color bars) and superimposed upon T1-weighted axial images. In the row-labeled “ID,” a “+” indicates that an fMRI response was detected and a “−” 
indicates that an fMRI response was not detected during the hand squeezing and tennis playing motor imagery paradigms, respectively. Abbreviations: F, female; M, 
male. All images are in radiologic convention.

FigUre 1 | Brodmann area 6 region of interest (superior view) for measuring 
motor imagery functional magnetic resonance imaging (fMRI) activation. This 
region of interest contains the supplementary motor area (SMA), pre-SMA, 
and the four components of the bilateral premotor cortices: premotor dorsal 
rostral (PMDr), premotor dorsal caudal (PMDc), premotor ventral rostral 
(PMVr), and premotor ventral caudal (PMVc). Adapted and reproduced with 
permission from Edlow et al. (24).
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was identical to the hand squeezing task except that subjects were 
instructed to imagine playing tennis or to rest. During the task, 
instructions of “keep playing” or “keep resting” were repeated at 
6-s intervals. Instructions administered before and during the 
fMRI are detailed in Table S1 in Supplementary Material.

fMri Data analysis
In a first-level analysis of the individual runs, fMRI data process-
ing was performed using the FMRI Expert Analysis Tool (FEAT) 
version 6.00 in FSL 5.0.7 (FMRIB’s Software Library2). Motor 
imagery stimuli were contrasted against rest. Z statistic images 

2 www.fmrib.ox.ac.uk/fsl.

were thresholded (Z > 3.1) and a corrected cluster significance 
threshold of P = 0.05 was used. Higher-level analysis was carried 
out using a fixed effects model (FLAME in FSL) (38, 39). The 
statistical threshold for cluster significance (Z > 3.1) and the size 
of the Gaussian kernel (FWHM 10 mm) were both selected to 
decrease false positive cluster activations (40). Additional details 
on analysis have been published elsewhere (24).

We used FEATQuery in FSL to quantify the percentage of 
voxels activated within a prespecified region of interest (ROI). 
For healthy subjects, we defined a positive response by the crite-
rion that >0% of ROI voxels met the aforementioned statistical 
threshold. For patients, we defined a positive response by two 
criteria, consistent with a recently proposed definition (24): (1) 
>0% of ROI voxels met the statistical threshold; and (2) the per-
centage of activated ROI voxels was above the 2.5th percentile of a 
normal range (2.5th–97.5th percentile) derived from the healthy 
subjects’ data for each paradigm. This quantitative approach was 
completely automated and did not require subjective interpreta-
tion by clinical or research staff, thereby reducing potential bias 
that may have been introduced by knowledge of the patient’s 
behavioral diagnosis.

fMri regions of interest
We selected an a priori ROI based upon fMRI studies of motor 
imagery in patients with chronic traumatic DoC and healthy 
subjects, as well as a recently published study of patients with 
acute traumatic DoC that used this same ROI (24). The bilateral 
supplementary motor areas (SMA) from the Harvard-Oxford 
Cortical Structural Atlas and premotor cortices (PMC) from the 
Juelich Histological Atlas (41) were combined as a single ROI 
(Figure 1). This ROI was transformed from standard atlas space 
into patient native fMRI space for analysis, consistent with prior 
fMRI studies of patients with DoC (17, 20, 24, 42, 43).

statistical analysis
Using the CRS-R as the reference standard and the motor 
imagery fMRI responses as the test criteria, we assessed the 
reliability of each paradigm in detecting behavioral evidence of 
command following by calculating the true-positive rate (TPR; 
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FigUre 3 | Stimulus-based functional magnetic resonance imaging (fMRI) responses to hand squeezing and tennis playing motor imagery paradigms in patients. 
fMRI data are shown as Z-statistic images to demonstrate stimulus-specific responses. Z-Statistic images are thresholded at cluster-corrected Z scores of 3.1 (inset 
color bars) and superimposed upon T1-weighted axial images. Level of consciousness (LoC) is assessed via behavioral evaluation with the Coma Recovery 
Scale-Revised as coma, unresponsive wakefulness syndrome (UWS), minimally conscious state without language (MCS−), or minimally conscious state with 
language (MCS+). In the row-labeled “ID,” a “+” indicates that an fMRI response was detected and a “−” indicates that an fMRI response was not detected during 
the hand squeezing and tennis playing motor imagery paradigms, respectively. Abbreviations: F, female; M, male. All images are in radiologic convention.

FigUre 4 | Percentage of healthy subjects, patients without behavioral 
evidence of command following [command following− (coma, UWS, MCS−)] 
and patients with behavioral evidence of command following [command 
following+ (MCS+)] who showed functional MRI responses to hand squeezing 
and tennis playing motor imagery tasks. Behavioral evaluation was performed 
using the Coma Recovery Scale-Revised. Healthy subjects are represented 
by purple bars, patients without behavioral evidence of command following by 
red bars, and patients with behavioral evidence of command following by blue 
bars. Abbreviations: UWS, unresponsive wakefulness syndrome; MCS−, 
minimally conscious state without language; MCS+, minimally conscious 
state with language; MRI, magnetic resonance imaging.
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i.e. sensitivity), true-negative rate (TNR; i.e. specificity), FNR and 
the false-positive rate (FPR) with 95% exact confidence interval 
(CI) in the patient cohort. Notably, the FPR may include both 
false positives (i.e., patients wrongly identified on fMRI as being 
able to follow commands) and cases of dissociation between 
behavioral and fMRI responses (i.e., CMD caused by speech or 
motor impairments or other confounding factors). The accuracy 
(ACC) of each fMRI paradigm for detecting command follow-
ing was calculated as (TP  +  TN)/(TP  +  FP  +  TN  +  FN). We 
also calculated the TP proportions in the healthy subject cohort 
but not the other metrics because all healthy subjects exhibited 
behavioral evidence of command following.

We tested for an association between sedation (dichotomized 
as presence or absence) and fMRI responses, as well as between 
sedation and LoC at the time of fMRI (dichotomized as presence 

or absence of command following), using a 2 × 2 Fisher’s Exact 
Test. Statistical analyses were performed in STATA v14s (44).

resUlTs

Demographics and clinical characteristics
Hand squeeze and tennis playing fMRI data were acquired in 
a convenience sample of 12 patients. One of these subjects was 
excluded due to severe artifact resulting from a ventriculoperi-
toneal shunt that prevented spatial normalization of the data. A 
second subject was excluded due to errors in the data acquisition 
of DICOM images. The final patient cohort included 10 subjects 
(six male, mean ±  age =  27.9 ±  9.1, six acute, one coma, four 
UWS, two MCS−, and three MCS+). Demographic and clinical 
data are presented in Table 1. Ten age-matched healthy subjects 
were recruited (nine male, mean ± SD age = 28.5 ± 9.4, see Table 
S2 in Supplementary Material). There was no statistical difference 
in the proportion of males to females (chi-squared, P > 0.10) or in 
the age of the subjects (t-test, P > 0.88) between the patient and 
healthy subject groups.

hand squeezing
Seven of the 10 healthy subjects demonstrated covert command 
following via the hand squeeze paradigm [70%, 95% exact CI: 
(34.8–93.3%), see Table  2, Figures  2 and 4. Three of the 10 
patients demonstrated command following on the hand squeeze 
paradigm [30% (6.7–65.3), see Table 3, Figures 3 and 4. Of the 
three patients with behavioral evidence of command following 
on bedside examination, two demonstrated command following 
on the hand squeezing fMRI task (TP = 2/3, FN = 1/3). Of the 
seven patients without behavioral evidence of command follow-
ing, one demonstrated command following on the hand squeeze 
paradigm (TN = 6/7, FP = 1/7). Consequently, the sensitivity and 
specificity of the hand squeeze paradigm for detecting behavioral 
evidence of command following were 66.7% (12.5–98.2) and 
85.7% (42.1–99.6), respectively, and ACC = 80%.
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Table 3 | Patient fMRI responses to hand squeeze and tennis motor imagery.

iD loc at 
fMri

hand squeezing Tennis playing

P1a Coma − −
P2a MCS+  + −
P3a UWS + −
P4a MCS− − +
P5a MCS+  + −
P6 MCS+  − −
P7 UWS − +
P8 UWS − −
P9 MCS− − −
P10 UWS − −
Total percent (95%  
exact CI)

30% (6.7–65.3) 20% (2.5–55.6)

Sensitivity (95% exact CI) 66.7% (12.5–98.2) 0% (0–70.8)
Specificity (95% exact CI) 85.7% (42.1–99.6) 71.4% (29.0–96.3)
Accuracy 80% 50%

Sensitivity, specificity, and accuracy of motor imagery paradigm detection of command 
following in patients who demonstrated behavioral evidence of command  
following.
fMRI, functional magnetic resonance imaging; LoC, level of consciousness; MCS−, 
minimally conscious state without language; MCS+, minimally conscious state with 
language; UWS, unresponsive wakefulness syndrome; CI, confidence  
interval.
aThe patient was receiving sedatives at the time of data acquisition (see Table S3 in 
Supplementary Material for details). Image acquisition parameters for P10 differed from 
those of the other subjects (see Materials and Methods for details).

Table 2 | Healthy control subject fMRI responses to hand squeeze and tennis 
motor imagery.

iD hand squeezing Tennis playing

C1 +
C2 + +
C3 + +
C4 + −
C5 + +
C6 − +
C7 − +
C8 + +
C9 − +
C10 + +
Total percent (95% exact CI) 70% (34.8–93.3) 90% (55.5–99.7)

CI, confidence interval; fMRI, functional magnetic resonance imaging.

Table 1 | Patient demographics and clinical characteristics.

iD age (years) sex Tbi mechanism igcs Day of fMri crs-r at fMri crs-r subscale scores at fMri loc at fMri

P1 27 F Fall 3 8 1 A0V0M1O0C0Ar0 Coma
P2 18 M Fall 3–7 4 12 A3V2M5O1C0Ar1 MCS+
P3 51 M Ped vs. car 3 8 3 A0V0M1O1C0Ar1 UWS
P4 29 M Ped vs. car 4–7 7 3 A0V0M3O0C0Ar0 MCS−
P5 33 M Fall 3–4 3 12 A4V2M5O0C0Ar1 MCS+
P6 25 M MVA 3–6 T 183 15 A4V3M3O2C1Ar2 MCS + 
P7 22 F Ped vs. car 3–3 T 162 5 A1V1M1O1C0Ar1 UWS
P8 26 F Ped vs. truck 3–3 T 12 2 A0V0M1O0C0Ar1 UWS
P9 26 M MVA 3 142 8 A1V1M3O2C0Ar1 MCS−
P10 22 F MVA 3 1,900 5 A1V0M2O1C0Ar1 UWS

The initial GCS (iGCS) is a range defined by the best (i.e., highest) and worst (i.e., lowest) post-resuscitation GCS scores assessed by a qualified clinician who performed a reliable 
examination (not confounded by sedation and/or paralytics) prior to ICU admission. LoC is assessed immediately prior to fMRI via behavioral evaluation with the CRS-R as coma, 
UWS, MCS−, or MCS+. The subscales for the CRS-R are auditory function (A), visual function (V), motor function (M), oromotor function (O), communication (C), and arousal (Ar).
CRS-R, Coma Recovery Scale-Revised; F, female; fMRI, functional MRI; GCS, Glasgow Coma Scale; LoC, level of consciousness; M, male; MCS−, minimally conscious state 
without language; MCS+, minimally conscious state with language; MVA, motor vehicle accident; Ped, pedestrian; T, intubated, TBI, traumatic brain injury; UWS, unresponsive 
wakefulness syndrome.

Bodien et al. Motor Imagery in Disorders of Consciousness

Frontiers in Neurology | www.frontiersin.org December 2017 | Volume 8 | Article 688

Tennis Playing
Nine of the 10 healthy subjects demonstrated command following 
via the tennis playing paradigm [90% (55.5–99.7)]. Two of the 10 
patients demonstrated command following on the tennis playing 
paradigm [20% (2.5–55.6)]. Of the three patients with behavioral 
evidence of command following on bedside examination, none 
demonstrated command following on the tennis playing imagery 
paradigm (TP = 0/3, FN = 3/3). Of the seven patients without 
behavioral evidence of command following, two demonstrated 
command following on the tennis playing motor imagery para-
digm (TN = 5/7, FP = 2/7). The sensitivity and specificity for the 
tennis playing paradigm for detecting behavioral evidence of 
command following were 0% (0–70.8) and 71.4% (29.0–96.3), 
respectively, and ACC = 50%.

The agreement between presence or absence of command fol-
lowing via hand squeezing and tennis playing imagery was 60% 
in healthy subjects and 50% in patients. Data on the percentage of 
voxels activated for each subject in each paradigm are presented 
in Tables S2 and S4 in Supplementary Material for healthy subjects 
and patients, respectively. For both the hand squeeze and tennis 
imagery paradigms, at least one healthy subject demonstrated 0% 
activated voxels. Therefore, all patients with >0% activated voxels 
in each paradigm met the predetermined criteria for having a posi-
tive response to the fMRI tasks (i.e., the ROI had >0% activated 
voxels and the percentage of activated voxels in the ROI exceeded 
the 2.5th percentile of the normal range in healthy subjects).

effect of sedation on behavioral Diagnosis 
and fMri responses
Administration of sedation (n = 5) was not associated with LoC 
or fMRI responses at the time of fMRI (Fisher’s Exact Test, df = 1; 
P = 0.17–0.99 for all analyses). The types and doses of sedative, 
anxiolytic, and analgesic medications administered at the time of 
fMRI are reported in Table S3 in Supplementary Material.

DiscUssiOn

Precise assessment of LoC in patients with severe TBI is critical for 
guiding clinical management, providing accurate prognoses, and 

38

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive


Bodien et al. Motor Imagery in Disorders of Consciousness

Frontiers in Neurology | www.frontiersin.org December 2017 | Volume 8 | Article 688

type of command following paradigm should be considered to 
maximize the probability of detecting conscious awareness.

The tennis playing paradigm performed better than the hand 
squeezing task in the healthy control group while the opposite was 
true for patients. Comparison of fMRI activation profiles between 
healthy subjects and brain-injured patients must be performed 
with caution, given the multitude of factors that may influence 
an individual’s fMRI response. For example, in healthy subjects, 
playing tennis, whether on the court or in one’s imagination, may 
be a more cognitively challenging and salient task compared to a 
mundane hand-squeezing task. Conversely, hand squeezing may 
become more salient in a brain-injured patient who is asked to 
perform this task frequently during neurological examinations 
in the ICU. Furthermore, it is likely that imagining playing tennis 
requires multimodal processing and therefore would be expected 
to evoke a more distributed network than the unimodal task of 
imagining squeezing one’s hand. If so, patients, as compared to 
healthy subjects, may have access to less of the distributed net-
work required to mediate tennis imagery due to focal lesions and 
loss of connectivity. For those patients who are able to cognitively 
perform the task, the frequent repetition of the command in the 
clinical environment may be associated with a mental training 
effect and/or an increased effort applied to the task and hence 
a more robust fMRI response (45). It is also possible that the 
patients who followed commands at the bedside were actually 
squeezing their hand in the scanner, rather than imagining the 
movement, leading to more robust SMA/PMC activation. In this 
study, we did not systematically record hand movements during 
the scanning session. Future studies that compare fMRI para-
digms in this patient population should consider incorporating 
visual or electromyographic monitoring into their paradigm.

Several limitations should be considered when interpret-
ing the results of this study. First, although this is one of the 
only studies that compares the ACC of fMRI motor imagery 
paradigms in a patient cohort, the sample size is small and 
includes patients in both acute and chronic phases of recovery. 
Consequently, generalizing our findings to other patient groups 
should be done with caution and future investigations should 
consider larger sample sizes of more homogenous patient groups 
enrolled across multiple sites. Second, the CIs around the fMRI 
command following proportions are very wide, suggesting that 
our sample has high variability and that the findings may lack 
precision when compared to the overall population of patients 
with traumatic DoC. Third, at the time of the fMRI scan, several 
subjects were receiving pharmacological sedation. Sedatives were 
administered at the discretion of the treating clinicians for patient 
safety or comfort and therefore could not be lifted for this study. 
Indeed, even patients who are comatose may require sedation to 
treat bronchospasm caused by an endotracheal tube. Sedation is 
therefore a medical necessity for some critically ill patients, and 
it is therefore unlikely that any fMRI study of critically ill patients 
that aims to be generalizable will be able to exclude patients 
receiving sedation.

Although the effects of sedating agents on cortical responses 
(46) and connectivity (47) are beginning to be elucidated, the 
impact of these pharmacological interventions may vary with 
multiple patient-specific factors, including tolerance, body mass, 

gaining access to rehabilitative services. Assessment of command 
following is a central component of the bedside examination and 
diagnostic impression. However, behavioral bedside assessment 
is susceptible to patient-, environment-, and examiner-related 
biases that contribute to the high misdiagnosis rate in this patient 
population. Multiple fMRI paradigms that probe covert con-
sciousness have been investigated as potential objective markers 
of command following, but few studies have compared the utility 
of these paradigms concurrently in the same patient sample (31). 
Head-to-head comparison of fMRI command following tasks is 
needed to guide paradigm selection in future studies and eventu-
ally clinical practice. In addition, defining intrasubject variability 
would provide an objective basis for the cautious interpretation of 
absent fMRI responses to motor imagery paradigms. In this study, 
we assessed the sensitivity, specificity, and ACC of hand squeez-
ing and tennis playing motor imagery paradigms in a sample of 
patients with severe TBI whose behavioral diagnosis at the time of 
the fMRI was coma, UWS, or MCS.

Although the tennis paradigm had higher ACC for detect-
ing covert command following in healthy subjects, the hand 
squeezing paradigm accurately identified two of three patients 
who demonstrated behavioral evidence of command following 
(MCS+) as well as one patient (UWS) who did not. Conversely, 
responses to the tennis paradigm were absent in all three patients 
who demonstrated behavioral evidence of command following 
and present in two (MCS−, UWS) who did not. The sensitivity 
and sensitivity, specificity, and ACC of these findings suggest that 
the hand squeezing paradigm is a better classifier of command 
following in patients who are known to follow commands at the 
bedside than is the tennis playing paradigm.

One objective of developing fMRI paradigms for detection 
of conscious awareness in DoC is the prospect of identifying 
patients who retain the cognitive capacity for command follow-
ing but do not demonstrate it at the bedside due to confounding 
factors such as impartments in speech or motor function. This 
cohort, described as having CMD (24, 26), is at risk for early 
withdrawal of life-sustaining therapies and denial of access to 
rehabilitative care. Our tennis playing paradigm identified two 
such patients, neither of whom showed fMRI responses to the 
hand squeezing paradigm, while the hand squeezing paradigm 
identified one such patient. For the purpose of this study, which 
focused on identifying the fMRI paradigm that best detects 
command following and therefore tried to maximize the TPR, 
these patients were included in the “false positive” group when 
calculating specificity and ACC. However, rather than the fMRI 
findings being “false positives,” it is possible that these three 
patients retained the cognitive capacity for command following 
but only demonstrated it on one of the two fMRI paradigms 
and not on bedside evaluation. Thus, the rate of detecting 
CMD was higher for the tennis playing paradigm than hand 
squeezing, even though the hand squeezing paradigm identified 
patients with behavioral evidence of command following with a 
higher ACC than did tennis. Future studies should address this 
apparent discrepancy between overall ACC and CMD detec-
tion rate by increasing the sample size, increasing the number 
of experimental runs, and interleaving the presentation of the 
fMRI paradigms. When possible, administering more than one 
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and metabolism. Furthermore, standardized sedation rating 
scales that have been validated in non-brain injured critically ill 
patients (e.g., the Richmond Agitation Sedation Scale) (48) are 
not applicable in severely brain-injured patients, for whom the 
behavioral effects of sedation cannot be quantitatively distin-
guished from the behavioral effects of the brain injury itself. As a 
result, we could not quantitatively measure the effect of sedation 
for each patient prior to scanning. Therefore, despite the lack of 
a statistical association between sedation and fMRI responsive-
ness, it is still possible that sedation affected the fMRI responses, 
though the results of the hand and tennis motor imagery para-
digms would have been affected equally as all data were collected 
during the same scanning session.

Finally, we could not avoid some methodological chal-
lenges such as the hand squeezing motor imagery task always 
preceding the tennis playing motor imagery task. Though 
our findings do not suggest that this fixed order contributed 
to systematically poor arousal and therefore decreased fMRI 
responses to the tennis playing paradigm, future studies 
should consider randomizing the presentation of the tasks. 
In addition, imaging parameters for one patient, who did not 
show responses to either paradigm, did not conform to those 
of the other subjects, potentially adding variability to the data. 
The examiner completing the behavioral assessments for this 
study was not blinded to the previously determined clinical 
diagnosis of the patient (i.e., the diagnosis of LoC rendered by 
the treating physicians and nurses) and the investigator con-
ducting the imaging analysis was not blinded to the behavioral 
assessment. Therefore, it is possible that the clinical diagnosis 
biased the behavioral assessment reported here and that, despite 
the automated nature of the imaging analysis, the behavioral 
assessment influenced the fMRI results. To avoid this potential 
limitation in the future, the behavioral assessment completed 
for study purposes should be conducted by an examiner who is 
not involved in the clinical care of the patient or in screening 
patients for inclusion in the study and the investigator conduct-
ing the imaging analysis should be blinded to the behavioral 
diagnosis. Finally, despite recent evidence supporting the need 
for serial behavioral assessment of LoC to improve diagnostic 
accuracy (16), we were only able to administer one CRS-R prior 
to the fMRI study due to the medical instability of the acutely 
ill patients and the limited time available to examine chronic 
patients returning for clinical follow-up. Future studies should 
aim to administer multiple behavioral assessments to establish 
the diagnostic baseline.

It is important to note that there was poor agreement between 
fMRI responses occurring during the hand squeezing and tennis 
playing fMRI squeezing tasks in both healthy subjects and patients. 
Specifically, all the healthy subjects who failed to demonstrate an 
fMRI response to hand squeezing or tennis imagery did show 
an fMRI response to the other paradigm. All of the patients who 
demonstrated an fMRI response to hand squeezing or tennis 
playing failed to show an fMRI response to the other paradigm. 
Fluctuation in arousal, task characteristics, prior exposure to the 
sport, and intersubject variability may have contributed to the 
inconsistencies in these findings. Future studies could consider 
individualizing the task such that it matches each participant’s 

experiences or interviewing participants and surrogates to ascer-
tain prior exposure.

In choosing the appropriate task for detecting consciousness 
in patients diagnosed with DoC, investigators should carefully 
consider the research aims because a series of decisions (e.g., 
paradigm, analytic pipeline, and interpretation algorithm) related 
to the specific question of interest may alter the study design and 
findings. Furthermore, factors unrelated to cognitive ability, such 
as subject familiarity with the imagined task (e.g., a patient who 
has played tennis may be more responsive than a patient who 
has only watched the game on television) and analytic strategies 
(e.g., objective application of a  priori ROIs versus subjective 
reading of fMRI activation maps) may introduce uncertainty into 
the data. Thus, different fMRI paradigms may lead to variable 
results in the same patient. We found that in patients with severe 
TBI diagnosed with DoC, the hand squeezing motor imagery 
paradigm detected covert command following with greater ACC 
than the tennis playing paradigm. However, the tennis playing 
paradigm was more sensitive in healthy subjects and identified 
more patients with CMD. These findings should be considered 
hypothesis-generating and will require replication in a larger 
sample of patients across multiple clinical and research sites. 
Clinical implementation of fMRI motor imagery paradigms for 
detection of consciousness will require further development, 
validation, and optimization of standardized approaches to fMRI 
data acquisition, analysis and interpretation.
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It is well established that some patients, who are deemed to have disorders of

consciousness, remain entirely behaviorally non-responsive and are diagnosed as being

in a vegetative state, yet can nevertheless demonstrate covert awareness of their external

environment by modulating their brain activity, a phenomenon known as cognitive-motor

dissociation. However, the extent to which these patients retain internal awareness

remains unknown. To investigate the potential for internal and external awareness in

patients with chronic disorders of consciousness (DoC), we asked whether the pattern

of juxtaposition between the functional time-courses of the default mode (DMN) and

fronto-parietal networks, shown in healthy individuals to mediate the naturally occurring

dominance switching between internal and external aspects of consciousness, was

present in these patients. We used a highly engaging movie by Alfred Hitchcock to

drive the recruitment of the fronto-parietal networks, including the dorsal attention (DAN)

and executive control (ECN) networks, and their maximal juxtaposition to the DMN in

response to the complex stimulus, relative to rest and a scrambled, meaningless movie

baseline condition. We tested a control group of healthy participants (N = 13/12) and

two groups of patients with disorders of consciousness, one comprised of patients who

demonstrated independent, neuroimaging-based evidence of covert external awareness

(N = 8), and the other of those who did not (N = 8). Similarly to the healthy controls,

only the group of patients with overt and, critically, covert external awareness showed

significantly heightened differentiation between the DMN and the DAN in response to

movie viewing relative to their resting state time-courses, which was driven by the movie’s

narrative. This result suggested the presence of functional integrity in the DMN and

fronto-parietal networks and their relationship to one another in patients with covert

external awareness. Similar to the effect in healthy controls, these networks becamemore

strongly juxtaposed to one another in response to movie viewing relative to the baseline
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conditions, suggesting the potential for internal and external awareness during complex

stimulus processing. Furthermore, our results suggest that naturalistic paradigms can

dissociate between groups of DoC patients with and without covert awareness based

on the functional integrity of brain networks.

Keywords: functional Magnetic Resonance Imaging (fMRI), functional connectivity, disorders of consciousness,

naturalistic stimulation, movie watching, conscious information processing

INTRODUCTION

In the last decade, a population of patients has been identified
who are demonstrably conscious, but entirely unable to speak
or move willfully in any way, and remain behaviorally non-
responsive for several years (1–8). Following severe brain-injury,
patients maymanifest a spectrum of behavioral non-responsivity,
from a complete absence to minimal and inconsistent willful
behavioral responses (9–11). Patients who do not show anywillful
behavioral responses on repeated behavioral examinations, are
thought to lack awareness of oneself and one’s environment and
are clinically diagnosed to be in a vegetative state (VS) (12), also
known as the “unresponsive wakefulness syndrome” (UWS) (13).
The clinical, behavioral assessment of non-responsive patients
is particularly difficult because of its reliance on the subjective
interpretation of inconsistent behaviors, which are often limited
by motor constraints, and can result in high misdiagnosis rates
(up to 43%) (14). Recent studies have shown that, despite the
complete absence of external signs of awareness, a significant
minority (∼14–19%) of patients thought to be in a VS are able
to demonstrate conscious awareness by modulating their brain
activity (2, 15) in different types of neuroimaging paradigms
[e.g., (1, 3–5, 7, 8)], a phenomenon captured by the recently-
coined term “cognitive motor dissociation” (CMD) (16). Despite
these advances, the mental life of behaviorally non-responsive
patients—particularly their capacity to have similar experiences
as healthy individuals in response to everyday life events that
involve both their awareness of oneself and awareness of one’s
environment—had until recently remained largely unknown and
inaccessible to empirical investigation.

To address this challenge, Naci et al. (7, 17, 18) developed
a movie-viewing paradigm for the investigation of conscious
experiences of behaviorally non-responsive patients who may
retain covert awareness. Movie viewing is highly suited to testing
populations that exhibit large fluctuations in arousal, impaired
motor control and compromised attention span, because, by
creating an immersive experience, it naturally engages attention
and various cognitive processes that lead to reduced movement
in the scanner (19) and recruitment of strong brain activity
that is synchronized across different individuals (7, 18, 20–23).
Naci and colleagues focused on the assessment of executive
function—a high-level cognitive function that requires conscious
awareness—while participants watched a brief (8min) and highly
engaging movie by Alfred Hitchcock. The investigators found
that the movie’s executive demands, assessed quantitatively and
qualitatively in independent control groups, predicted similar
activity across individual participants in the frontal and parietal

cortex, regions that support executive processing (25–29). Thus,
the time-course of the fronto-parietal activation provided a
template for decoding whether behaviorally non-responsive
patients have similar cognitive experiences to healthy individuals
in response to the executive demands of the movie. Using
this approach, Naci and colleagues demonstrated that a patient
who had been behaviorally non-responsive and thought to lack
consciousness for 16 years was consciously aware and could
continuously engage in complex thoughts about real-world
events unfolding over time (7). Thus, they provided strong
evidence that some patients who are entirely behaviorally non-
responsive can retain conscious awareness of their external
environment (17, 24).

However, awareness of oneself, an aspect of consciousness
routinely tested for at the patient’s bedside, is more elusive and
harder to measure, even in patients who demonstrate awareness
of their external environment, such as those thought to be
in a minimally conscious state (30). Traditionally, awareness
of oneself, or internal awareness, has been assessed through
self-report and, as a result, it is challenging to measure in its
complete absence. Therefore, the extent to which some DoC
patients, especially those who remain entirely behaviorally non-
responsive and are diagnosed to be in a VS, are capable of
internal awareness remains unclear. In the healthy brain, the
focus of conscious awareness is thought to switch naturally
over time between its internal and external aspects (31–33),
a relationship mediated by the fluctuating juxtaposition or
anti-correlation of functional time-courses of the default mode
network (DMN) and fronto-parietal networks, as observed in
the resting state (34–36). Although recent studies suggest a
role for the DMN in facilitating goal-oriented behavior (37–
39), this network has been shown to support a variety of
internally-driven processes, including autobiographical memory,
imagination, thinking about the self (40–46), and internal
awareness (31, 33). Furthermore, the DMN decreases in activity
when attention is directed externally (34, 47, 48), but increases in
response to introspectively-oriented cognitive processes (44, 46).
By contrast, the networks extending in the frontal and parietal
cortices, including the dorsal attention (DAN) and executive
control (ECN) networks are thought tomediate externally-driven
cognitive processes, including attention, inhibition and executive
control, that support external awareness (49, 50). The fronto-
parietal networks increase in activity when attention is directed
to external stimuli in cognitive tasks (35, 36, 51, 52).

Thus, although the relationship between the DMN and
DAN/ECN to one another may depend upon the paradigm
employed and the goals of the subject (53, 54), the juxtaposition
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of their functional time-courses is critical for the naturally
ongoing switches between internal and external awareness (31–
33). As the DMN and fronto-parietal networks are juxtaposed to
one another at rest (34–36), and dissociate further when attention
is directed externally, we reasoned that their functional responses
would be maximally juxtaposed to one another during a highly
engaging stimulus.

In this study, we did not investigate internal awareness
directly, but rather investigated the potential for internal as
well as external awareness in DoC patients including patients
in the vegetative and minimally conscious states. To this
end, we asked whether the pattern of juxtaposition between
the DMN and DAN/ECN functional time-courses observed in
healthy controls (31, 55) was present in patients, who had
previously demonstrated evidence of external awareness. To this
end, we used the aforementioned highly engaging short movie
by Alfred Hitchcock to drive the recruitment of the fronto-
parietal networks and its maximal disengagement from the
DMN relative to the resting state baseline, in a control group
of healthy participants and severely brain-injured patients with
disorders of consciousness. To circumvent the limitations of
behavioral testing based on the clinical evaluation and ensure
that patients categorized as unconscious indeed showed no
wilful brain responses, each patient underwent a functional
Magnetic Resonance Imaging (fMRI)-based assessment with
a previously established command-following protocol for
detecting covert awareness (5, 56). Initially, we investigated
the functional connectivity of the DMN and DAN/ECN in the
healthy controls during movie viewing relative to the baseline
conditions. Subsequently, we tested whether DoC patients, who
demonstrated independent covert external awareness, differently
from patients who did not, showed a juxtaposition between
the DMN and fronto-parietal functional time-courses that was
strengthened by the complex stimulus.

METHODS

Participants
Ethical approval was obtained from the Health Sciences Research
Ethics Board and the Psychology Research Ethics Board of
Western University, in London Canada. All healthy participants
were right-handed, native English speakers and had no history
of neurological disorders. They gave informed written consent
and were remunerated for their time. Thirteen and twelve healthy
volunteers participated in experiment 1 and 2, respectively. The
data of healthy volunteers was previously reported in studies
by Naci et al. (7, 18). A convenience sample of 18 DoC
patients participated in experiment 3. The patients’ respective
substitute decision makers provided informed written consent.
Three patients were excluded from final analyses. Of these,
one was excluded because of large structural brain damage
and extremely enlarged ventricles that would have rendered
any further analysis impossible. A second patient was excluded
due to excessive movement in the scanner, which caused the
termination of the scanning session. The third patient was
excluded due to a “locked-in syndrome” diagnosis. Patient 1
appeared twice in the data set, with the corresponding two
different scanning visits 2 years apart. In visit 1, the patient

showed the ability to perform the command following task
in the scanner, whereas in visit 2 there was no evidence of
command following. These differences may have been due to
fluctuations in arousal or a genuine change in the patient’s status
of consciousness. Based on the results of the fMRI analysis,
the patient’s data from the 2 visits were treated as independent
samples for the purpose of subsequence group analysis. Activity-
based analyses on data from a subset of the patient cohort were
previously reported in Naci et al. (7, 18) and Naci and Owen
(5). Prior to commencing the scanning sessions, all patients
were tested behaviorally at their bedside (outside of the scanner)
with the Coma Recovery Scale-Revised (CRS-R) (57), which
assessed each patient’s behavioral responsivity along 6 sub-scales:
auditory, visual, motor, oromotor/verbal, communication, and
arousal (Table 1). All patients were clinically diagnosed as either
VS or minimally conscious state [MCS; (30)] at the time of
the image acquisition based on the CRS-R. Table 2 provides an
overview of the demographic and clinical information, as well
as the results of the fMRI command-following protocol for each
patient.

Stimuli and Design
In experiment 1, a group of healthy participants (N = 13)
were scanned in two different conditions, resting state (8min)
and movie-viewing (8min) in the same session. Participants
were instructed to simply relax in the resting state, and to pay
attention to the movie during the stimulation condition. The
movie consisted of an edited version of Alfred Hitchcock’s black-
and-white movie “Bang! You’re Dead.” It depicted a 5-year-
old boy, who finds his uncle’s revolver, partially loads it with
bullets, and plays with it at home and in public, unaware of
its power and danger. Sound in the scanner was delivered over
scanner-compatible noise canceling headphones.

In experiment 2, healthy participants (N = 12) watched a
visually and auditory scrambled version of the Hitchcock movie
sequence inside the scanner. To create the scrambled condition,
very brief (one second) audio-visual segments of the movie were
pseudo-randomized, retaining the sensory properties (visual and
auditory) while removing the narrative. Written feedback at the
end of the scanning session confirmed that participants were not
able to uncover a storyline in the scrambled movie, or relate it to
stored knowledge of previous movies they had seen.

In experiment 3, DoC patients (N = 15) were scanned in the
resting state and during viewing of the intact movie in the same
session. The condition order was counterbalanced and the same
procedure and scanning parameters were used for the patients
as for healthy controls. To control for patient’s wakefulness,
eye opening was monitored inside the scanner with an infrared
camera. Due to the highly limited time in the scanner, severely
brain-injured patients did not undergo the scrambled movie
baseline condition.

Patient Behavioral Assessment and
Command-Following fMRI Paradigm
Awareness fluctuates greatly in the chronic DoC patient
group, and therefore the behavioral diagnosis based on
the gold-standard measure of CRS-R is likely to fluctuate
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TABLE 1 | Coma Recovery Scale—Revised subscale scores assessed prior to the fMRI session.

Patient ID Diagnosis Auditory Visual Motor Oromotor/verbal Communication Arousal

1 Visit 1

Visit 2

VS

VS

1 - Auditory startle

1 - Auditory startle

0 - None.

1 - Visual startle

2 - Flexion withdrawal

2 - Flexion withdrawal

1 - Oral reflexive

1 - Oral reflexive

0 - None

0 - None

2 - Eye opening

without stimulation

2 - Eye opening

without stimulation

2 MCS 1 - Auditory startle 3 - Visual pursuit 2 - Flexion withdrawal 1 - Oral reflexive 0 - None 2 - Eye opening

without stimulation

3 VS 1 - Auditory startle 1 - Visual startle 1 - Abnormal posturing 1 - Oral reflexive 0 - None 2 - Eye opening

without stimulation

4 MCS 3 - Reproducible

movement to

command

3 - Visual pursuit 2 - Flexion withdrawal 2 -Vocaliza-tion/oral

movement

0 - None 3 - Attention

5 MCS 1 - Auditory startle 3 - Visual pursuit 2 - Flexion withdrawal 1 - Oral reflexive 0 - None 1 - Eye opening

with stimulation

6 VS 1 - Auditory startle 1 - Visual startle 2 - Flexion withdrawal 1 - Oral reflexive 0 - None 1 - Eye opening

with stimulation

7 VS 0 - None 0 - None 2 - Flexion withdrawal 1 - Oral reflexive 0 - None 2 - Eye opening

without stimulation

8 VS 2 - Localization to

sound

1 - Visual startle 1 - Abnormal posturing 0 - None 0 - None 2 - Eye opening

without stimulation

9 VS 0 - None 1 - Visual startle 0 - None 0 - None 0 - None 2 - Eye opening

without stimulation

10 MCS 2 - Localization to

sound

3 - Visual pursuit 1 - Abnormal posturing 1 - Oral reflexive 0 - None 2 - Eye opening

without stimulation

11 MCS 4 - Consistent

movement to

command

4 - Object

localization:

reaching

4 - Automatic motor

response

1 - Oral reflexive 1 - Non-functional:

intentional

1 - Eye opening

with stimulation

12 VS 1 - Auditory startle 0 - None 1 - Abnormal posturing 1 - Oral reflexive 0 - None 1 - Eye opening

with stimulation

13 VS 1 - Auditory startle 0 - None 2 - Flexion withdrawal 1 - Oral reflexive 0 - None 1 - Eye opening

with stimulation

14 VS 1 - Auditory startle 1 - Visual startle 0 - None 1 - Oral reflexive 0 - None 2 - Eye opening

without stimulation

15 MCS 1 - Auditory startle 3 - Visual pursuit 1 - Abnormal posturing 1 - Oral reflexive 0 - None 1 - Eye opening

with stimulation

VS, vegetative state; MCS, minimally conscious state.

(58). Furthermore, in some cases, as for CMD patients (59),
awareness is difficult to spot behaviorally. Therefore, it was a
priority of this manuscript to base evaluation of awareness on
an assessment that would not falsely put covertly responding
“VS patients” in a group of non-responders. Accordingly, to
ensure an objective standard of awareness that was independent
of the behavioral diagnosis, and also relevant but independent to
the movie paradigm, awareness was assessed with a previously
validated fMRI task (5) in the same scanning session as the movie
paradigm.

To account for the variability of the behavioral diagnosis,
we conducted on average 7 CRS-R assessments for each patient
during the week of their research visit at our facility. Given this
well-documented fluctuation, to follow as closely as possible the
level of awareness that might be picked up by the fMRI task, here
we reported the CRS-R score of the scanning day.

Each patient underwent a command following scan in the
same scanning session. Stimuli. The stimuli were eleven single
words (“one,” “two,” “three,” “four,” “five,” “six,” “seven,” “eight,”

“nine,” “yes,” “no”). Design. The fMRI selective auditory attention
paradigm has been previously described in healthy individuals
(56) and patients with DoC (5), and is designed to identify the
ability to follow commands to selectively attending to stimuli, by
recruiting top-down attention. On each trial, participants were
instructed to either count a target word (“yes” or “no”) presented
among pseudorandom distractors (spoken digits one to nine),
or to relax. Each trial had an on/off design: sound (∼22.5 s)
followed by silence (10 s). The scan lasted 5min, including
instructions.

As seen in Table 2, the results of the command following task
were broadly consistent with the MCS patients’ clinical diagnosis
that indicated overt awareness—all but one MCS patient, who
fell asleep in the scanner, were able to perform the selective
attention task in the scanner [see (60, 61) for diverging results
on MCS patients who could not perform a command-following
task in the MRI scanner]. By contrast, 3 out of 10 VS patients
showed positive command following results. This is consistent
with previous findings showing that a proportion of patients
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TABLE 2 | The patients’ demographic and clinical information, fMRI command-following protocol results and functional connectivity results.

Patient ID Age range Diagnosis Interval since

ictus, months

Score on

CRS-R

Etiology Command following

(attention)

Movie DMN-DAN

Connectivity

Resting DMN-DAN

Connectivity

1 Visit 1:

22–25

VS 67 6 TBI + 0.21 0.32

Visit 2:

26–30

VS 89 7 − 0.38 0.32

2 31–35 MCS 445 9 HBI + 0.44 0.48

3 18–21 VS 68 6 HBI − 0.43 0.31

4 26–30 MCS 36 13 HBI + 0.35 0.37

5 46–50 MCS 234 8 HBI + 0.19 0.24

6 56–60 VS 38 6 HBI − 0.37 0.13

7 31–35 VS 25 5 HBI − 0.47 0.35

8 18–21 VS 3 6 HBI + 0.29 0.46

9 41–45 VS 248 3 TBI + 0.33 0.45

10 22–25 MCS 69 9 TBI + 0.62 0.64

11 46–50 MCS 148 15 TBI − 0.60 0.54

12 51–55 VS 11 4 HBI − 0.63 0.64

13 51–55 VS 79 5 HBI − 0.60 0.52

14 18–21 VS 49 5 HBI − 0.66 0.25

15 36–40 MCS 38 7 TBI + 0.13 0.38

VS, vegetative state; MCS, minimally conscious state; TBI, traumatic brain injury; HBI, hypoxic-ischemic brain injury; CRS-R, Coma Recovery Scale—Revised (57). In the “Command

Following (Attention)” column, “+” denotes that the patient demonstrated a positive result, or showed evidence of command-following in the scanner; “–”denotes that the patient showed

no evidence of command-following during this task. The Movie connectivity and Resting connectivity columns describe functional connectivity (as described by z-values) between the

DMN and DAN.

clinically diagnosed as VS are nevertheless able to modulate brain
activity to command (2, 3, 15). The results of this command-
following task were used to split the patient cohort into two
groups: DoC+ patients were able to perform the command-
following task in the scanner, DoC– patients were not able to do
so. Further analyses were then performed independently for these
two groups.

Functional Data Acquisition
All participants were scanned in a 3 Tesla Siemens Tim Trio
MRI scanner at the Robarts Research Institute in London,
Canada. A 32-channel head coil was used for functional and
anatomical scans. We acquired functional images during movie
viewing (246 scans) and resting-state (256 scans) by a T2∗-
weighted echo-planar sequence [33 slices, voxel size = 3 × 3
× 3 mm3, interslice gap = 25%, repetition time = 2,000ms,
echo time (TE) = 30ms, matrix size = 64 × 64, flip angle (FA)
= 75 degrees]. Furthermore, a T1-weighted 3D magnetization
prepared rapid acquisition gradient echo (MPRAGE) sequence
was used for anatomical scans [voxel size = 1 × 1 × 1 mm3,
TE = 4.25ms, matrix size = 240 × 256 × 192, FA = 9 degrees].
The total anatomical scanning time was 5min 38sec. All scanning
parameters were the same for healthy participants and patients.

Preprocessing
For preprocessing and data analysis we used SPM8 (Wellcome
Institute of Cognitive Neurology, http://www.fil.ion.ucl.ac.uk/
spm/software/spm8/) and the AA pipeline software [(62), www.
automaticanalysis.org]. All preprocessing and data analysis steps

were the same for healthy participants and patients.We discarded
the first five volumes of each run to avoid T1-saturation effects.
The preprocessing procedure included slice-time correction,
motion correction, normalization into Montreal Neurological
Institute (MNI) space and spatial smoothing with a Gaussian
kernel of 10mm full width at half maximum. Furthermore, we
applied a temporal high-pass filter with a cut-off of 1/128Hz
to each voxel and regressed out the six motion parameters
(x, y, z, roll, pitch, yaw). To investigate any confounding
effects of movement differences between groups and conditions,
we additionally calculated the mean frame-wise displacement
(63) for each participant and compared them using a mixed
ANOVA, as well as paired t-tests. Healthy participants did
not differ significantly in movement, as assessed by frame-
wise displacement values, between the movie viewing and
resting state condition [t(12) = −1.91, p = 0.08]. Similarly, the
patients’ movement did not differ significantly. A two-factor
mixed ANOVA on motion, with factors group (DoC+, DoC–)
and condition (movie, rest) showed no significant main effects
[group: F(1) = 0.28, p = 0.60; condition: F(1) = 1.01, p = 0.33]
and no significant interaction [F(1,1) = 0.53, p = 0.48].To avoid
the formation of artificial anti-correlations, a confounding effect
previously reported by Murphy et al. (64) and Anderson et al.
(65), we performed no global signal regression.

Functional Network Definition
We analyzed functional connectivity within and between the
three key networks that are involved in higher order processes:
the DMN, DAN and ECN. The functional networks were
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defined based on functionally specific regions of interest (ROIs)
(19 in total, 10mm spheres), from well-established landmark
coordinates published in Raichle (66). MNI coordinates for ROIs
of each network can be found in Table 3. For the analysis of
functional connectivity based on a set of network nodes pre-
defined in the healthy literature (MNI standard neurological
space), each patient’s brain was normalized to the healthy
template. Some of the ROIs may not be optimally located in a
subset of the patients due to the varying location and extent of
damage (see Figure 1 for an overview of structural information
on the patients’ brains). The mechanism of functional re-
organization that follows brain injury and leads to loss of
consciousness in some cases, whereas in others to preservation
of consciousness, remains poorly understood and is the focus
of active research (59, 67) outside of the scope of this
manuscript. Therefore, although it is impossible to ascertain
the structure-to-preserved function mapping for each individual
patient, we expected that any damage within the regions of
interest in each patient’s brain would add noise to the brain
activity measurement and reduce the power to detect an effect.
Therefore, if results in brain-injured patients confirmed a-
priory hypotheses based on the healthy control group, they
would likely present a conservative estimate of the underlying
effect.

Functional Connectivity Analysis
The preprocessed mean BOLD time series of each ROI
was extracted and correlated (Pearson correlation) with the
time courses of all the other ROIs. We note that Pearson

TABLE 3 | Overview of the regions of interests for the DMN, DAN, and ECN.

Network ROI MNI coordinates

Default mode

network

Posterior

cingulate/precuneus

0 −52 27

Medial prefrontal −1 54 27

Left lateral parietal −46 −66 30

Right lateral parietal 49 −63 33

Left inferior temporal −61 −24 −9

Right inferior temporal 58 −24 −9

Dorsal attention

network

Left frontal eye field −29 −9 54

Right frontal eye field 29 −9 54

Left posterior IPS −26 −66 48

Right posterior IPS 26 −66 48

Left anterior IPS −44 −39 45

Right anterior IPS 41 −39 45

Left MT −50 −66 −6

Right MT 53 −63 −6

Executive control

network

Dorsal medial PFC 0 24 46

Left anterior PFC −44 45 0

Right anterior PFC 44 45 0

Left superior parietal −50 −51 45

Right superior parietal 50 −51 45

IPS, Intraparietal sulcus; MT, Middle temporal area; PFC, Prefrontal cortex.

correlation is a basic FC measure that, while it does not
directly imply causal relations between neural regions, is
advantageous for its minimal assumptions regarding the true
nature of brain interactions and breath of its use in the
neuroscientific literature, and thus fitting to the aims of
this investigation. Based on these Pearson’s correlations, we
created a 19 × 19 correlation matrix (Figure 2). We performed
this procedure separately for the movie and resting state
for each participant. The average over all ROIs within a
network was computed and a two-way repeated measures
ANOVA and Bonferroni-corrected pairwise comparisons were
performed to evaluate effects of interest. To account for the
non-normalized distribution of correlation values (68), all
statistical analyses were performed on z-transformed correlation
values, using Fisher’s r-to-z transformation. For visualization
purposes, we re-transformed these z-values in correlation
values.

RESULTS

Healthy Participants
The correlation matrices for the movie viewing and resting
state conditions, including all ROIs for the three networks,
are shown in Figure 2. A two-way repeated measures ANOVA
with factors condition (movie, rest) and connectivity (within-
networks, between-networks) revealed a significant interaction
effect [F(1,1) = 18.52, p < 0.001]. During movie viewing
the connectivity between the DMN and DAN [t(12) = 4.58,
p < 0.001] and DMN and ECN [t(12) = 4.03, p < 0.005]
were significantly down-regulated during the movie relative to
the resting state (Figure 3A). As the measure of connectivity
(Pearson correlation) reflected the degree of similarity between
the networks’ functional time-courses, this result demonstrated
that the functional response of each of the DAN/ECN became
more dissimilar to that of the DMN during the movie relative to
the resting state baseline. By comparison, functional connectivity
between DAN and ECN [t(12) = 0.23, p = 0.82], as well as
functional connectivity within the functional networks [DMN:
t(12) = 2.15, p = 0.052; DAN: t(12) = 1.35, p = 0.20; ECN: t(12)
= 0.75, p = 0.47] did not differ between the movie and resting
state condition.

To further investigate whether this dissociation was indeed
related to the processing of the movie’s higher-order properties,
including its narrative, or merely driven by the presence
of sensory stimulation in the movie relative to the resting
state condition, we investigated the connectivity between these
networks during the intact movie relative to its scrambled
version, which retained the sensory features but was devoid
of the narrative (Figure 3B). Relative to the scrambled movie,
in the intact movie we found significant down-regulation of
the DMN-DAN connectivity [t(11) = −2.289, p < 0.05], but
not the DMN–ECN connectivity (Figure 3B). This suggested
that the modulation of the DMN–DAN, but not DMN–ECN,
connectivity during movie viewing reflected the processing of the
movie’s higher-order features, including its narrative. This result
was consistent with a recent study showing heightened functional
differentiation with increasing stimuli meaningfulness (69).
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FIGURE 1 | Structural brain information for the patient cohort. Columns 4–7 give an overview of structural MRI images that were taken for each patient. On the right,

clinical notes by radiologists on previous computerized tomography (CT) and/or MRI scans are listed. The sign “+” or “–” in the “Imaging Command Following” column

describes whether the patient was able to successfully complete a command-following task in the MRI scanner (+), or not (−).
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FIGURE 2 | Correlation matrices depicting the DMN, DAN, and ECN during movie viewing and resting state conditions in healthy participants. Each cell represents the

color-coded connectivity between an ROI to itself (middle diagonal) or another region. The labels for the ROIs in each network are displayed on the left-hand side.

Warm/cool colors depict high/low correlations as per the heat bar in the middle of the graph. During movie viewing, healthy participants showed decreased functional

connectivity between the DMN and the DAN/ECN as compared to the resting state. Functional connectivity within each network, and between the DAN and ECN did

not differ significantly between the two conditions.

FIGURE 3 | Averaged functional connectivity between the DMN and

DAN/ECN during the movie and baseline conditions in healthy participants. (A)

During movie viewing, the DMN–DAN [t(12) = 4.58, p < 0.001] and the

DMN–ECN [t(12) = 4.03, p < 0.005] connectivity was significantly

down-regulated in healthy participants relative to the resting state. (B) The

DMN–DAN [t(11) = −2.289, p < 0.05], but not the DMN–ECN, connectivity

was significantly down-regulated during the intact movie relative to its

scrambled version, suggesting that the connectivity down-regulation was

driven by the movie’s higher-order properties including its narrative. *p < 0.05,

**p < 0.01, ***p < 0.005.

DoC Patients
The results in the healthy controls suggested that the heightened
differentiation between the DMN and DAN aspect of the
fronto-parietal network was driven by the movie’s high-order
properties including its narrative. Subsequently, we investigated
whether behaviorally non-responsive patients who retained
covert external awareness (labeled here DoC+), and those
who showed no such evidence (labeled here DoC–) [see
command following (attention) in Table 2], showed heightened

differentiation of the functional response of the DMN and DAN
networks in response to movie viewing relative to their resting
state baseline connectivity.

DoC+ patients showed a significant down-regulation of
DMN–DAN connectivity, suggesting heightened differentiation
of the networks’ functional response during the movie viewing
relative to the resting state (Figure 4) [t(7) = −3.31, p < 0.05].
By contrast, DoC- patients showed no down-regulation of the
DMN–DAN connectivity, but rather a significant up-regulation
of this connectivity [t(7) = 2.99, p < 0.05] during the movie
relative to the resting state.

The modulatory effect of movie viewing on the DMN–DAN
connectivity was highly significant different between the two
patient groups [t(15) = 4.23, p = 0.001; Figure 5A]. Moreover,
the down-regulation of DMN–DAN connectivity in the DoC+
group, and the opposite effect in the DoC– group was visible
in individual patient (Figure 5B), although, we caution that
the current analysis is not optimized to investigate statistical
significance at the single-subject level. By contrast, the DMN–
DAN connectivity during resting state did not differentiate the
two patient types (Figures 5C,D).

DISCUSSION

In this study, we asked whether patients with disorders of
consciousness retain the potential for internal as well as external
conscious awareness. To address this question, we investigated
the juxtaposed relationship between the DMN and fronto-
parietal (DAN, ECN) networks’ functional time-courses, which
are thought to support the naturally occurring fluctuations and
dominance switching between internal and external awareness
(31–33) in healthy individuals. We used a highly engaging
external stimulus—a short movie by Alfred Hitchcock to drive
maximal juxtaposition of the DMN and fronto-parietal networks
relative to the resting state and scrambled, meaningless movie
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FIGURE 4 | DMN-DAN connectivity in healthy participants and DoC patients. The schema-balls provide an overview of individual ROI connectivity and depict all

possible between-ROI connections for the DMN and DAN. Warm/cool colors depict high/low correlations as per the heat bar to the right of the graph. Healthy

participants showed a down-regulation of DMN–DAN connectivity during movie viewing relative to the resting state. Similarly, the DoC+ patients showed a

down-regulation of DMN–DAN connectivity during movie viewing [t(7) = −3.31, p < 0.05]. By contrast, DoC-patients did not show this effect. RMT, right middle

temporal visual area; LMT, left middle temporal visual area; RAIPS, right anterior intraparietal sulcus; LAIPS, left anterior intraparietal sulcus; RPIPS, right posterior

intraparietal sulcus; LPIPS, left posterior intraparietal sulcus; RFEF, right frontal eye field; LFEF, left frontal eye field; RIT, right inferior temporal; LIT, left inferior temporal;

RLP, right lateral parietal; LLP, left lateral parietal; MPF, medial prefrontal; PC, posterior cingulate/precuneus.
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FIGURE 5 | DMN–DAN connectivity difference between movie viewing and the resting state and during resting state only in DoC patients. (A) The DoC+ and DoC–

groups differed significantly on their DMN–DAN connectivity modulation during movie viewing relative to resting state [t(15) = 4.23, p < 0.005]. (B) Visual inspection

suggested that individual DoC+ patients displayed a down-regulation of DMN–DAN connectivity during movie viewing, illustrated by a negative value for the difference

between movie and resting DMN–DAN connectivity. (C,D) During the resting state, there was no significant difference in DMN–DAN connectivity between the DoC+

and DoC– groups (C), and no such difference could be observed at the individual patient level (D). ***p < 0.005.

baseline conditions. Initially we investigated the connectivity
between the DMN and fronto-parietal networks in response
to movie viewing and baseline conditions in healthy controls,
and subsequently, in two groups of severely brain-injured
patients with DoC, one comprised of patients who demonstrated
independent neuroimaging-based evidence of covert external
awareness, and the other of those who did not.

Healthy controls showed significantly heightened
differentiation between the DMN and the DAN in response
to movie viewing relative to their resting state and scrambled
movie time-courses. This result suggested that the heightened
differentiation during movie viewing was driven by the movie’s
higher-order features, including its narrative. This finding
was consistent with previous studies showing a heightened
dissociation between the default mode and fronto-parietal
networks on paradigms requiring externally-directed attention
[(48, 52, 55), but see (70) for diverging results]. The connectivity
between the DMN and ECN was not modulated by the movie’s

higher-order features, which may be explained by differential
engagement by the movie paradigm of the DAN and ECN.Movie
viewing required the ability to orient and sustain attention to
the incoming auditory input, and discriminate the saliency and
contextual relevance of the sensory inputs with respect to the
evolving narrative—a function subserved primarily by the DAN
(50), and it did not require behavioral response planning or
monitoring— a function subserved primarily by the ECN (49).

Similar to healthy controls, severely brain-injured patients
who had demonstrated independent evidence of covert external
awareness showed significantly enhanced differentiation between
the DMN and DAN functional time-course in response to
movie viewing relative to the resting state baseline. This result
suggested the presence of functional integrity in the default
mode and fronto-parietal networks and their relationship to one
another. It is worth noting that we did not investigate internal
awareness directly, but rather the potential for internal awareness
in addition to external awareness as indicated by the pattern of
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juxtaposed time-courses of these networks. Similar to the effect
in healthy participants, these networks became more strongly
juxtaposed to one another in response to movie viewing, relative
to their resting baseline, suggesting the potential for internal as
well as external awareness during complex stimulus processing.

By contrast, this effect was not present in chronic DoC
patients who showed no fMRI-based evidence of covert
awareness. Conversely, these patients showed a diminished
differentiation between the DMN and DAN time-courses during
the movie viewing relative to the resting state baseline. This was
consistent with previous studies showing a loss of functional
differentiation between brain networks in loss of consciousness
(71–73). The loss of functional differentiation in response
to movie viewing relative to the resting state suggests that,
in severely brain-injured patients who likely lack conscious
awareness, the stimulus-evoked feed-forward processing cascade
is echoed undifferentiated throughout the brain leading to similar
functional responses across different networks. In this study,
we had no differential hypotheses for the MCS+ vs. MCS–
patients and, on this basis, we did not differentiate between MCS
patients. Further, the small number of MCS patients (N = 6)
did not facilitate further separation into groups. However, it
would be interesting to investigate in future studies differences
between MCS+ and MCS– patients in this regard, and we would
hypothesize that MCS+ patients would be more likely than
MCS– to show the heighted differentiation between the DMN
and DAN networks during the movie paradigm relative to the
resting state, which the current data suggest is indicative of the
potential for internal awareness during viewing of a naturalistic
narrative.

Visual inspection suggested that this effect was present at the
single-subject level and differentiated patients who had covert
awareness from those who did not, not only at the group
but also at the individual level and thus, may be sufficiently
robust to facilitate detection of covert awareness in individual
patients in the absence of other neuroimaging assessments.
This hypothesis requires formal testing with a large number of
patients in future studies. Notably, this effect was not present
when looking at DMN–DAN connectivity in the resting state
alone, suggesting that richly evocative stimulation is appropriate
for differentiating between behaviorally non-responsive patients
who retain covert awareness and those who don’t, based on
the integrity of consciousness supporting networks. Previous
studies have suggested several benefits of the movie-viewing
paradigm over the resting state for investigating the functional
integrity of brain networks in healthy individuals. Foremost,
movie-viewing creates an immersive experience that naturally

engages attention, rendering participants less likely to fall asleep
and less liable to arousal fluctuations present in the resting
state condition (74), it reduces movement (19, 75), and leads
to strong brain activity (21, 22). Importantly, a complex and
plot-driven naturalistic stimulus engages functionally distinct
brain systems in a stereotypical way across different individuals
(7, 17, 18, 20, 21, 23) that enables comparisons between different
participants with minimized inter-subject variance with respect
to specific perceptual and cognitive processes. Furthermore, the
test-retest reliability of functional connectivity analyses during
movie-viewing has been shown superior relative to the resting
state, on average by 50% (76).

Our results suggest that these benefits extend to patient
populations. To date, a large number of clinical studies
investigating functional connectivity have focused on the
resting state condition, due to its ease of acquisition in
patient populations [e.g., (77–83)] and have provided significant
insights on functional disruption in various populations relative
to neurologically typical individuals. However, this approach
cannot account for an important characteristic of healthy
neural processing, that is, the brain’s ability to re-organize
its connectivity in response to external stimulation. Here, we
show that naturalistic paradigms, which present complex real-
world information evolving over time, can dissociate between
groups of severely brain-injured chronic DoC patients with
and without covert awareness, an approach that may also yield
important insights when extended to other patient populations
(84). Particularly, the ease of patient engagement with reduced
movement and reduced arousal fluctuations is beneficial for
testing a range of patient populations that, similarly to brain-
injured patients, exhibit large fluctuations in arousal, impaired
motor control, and compromised attention span, and thus,
are difficult to test with conventional paradigms that target
cognition.
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In recent years, the study of the neural basis of consciousness, particularly in the

context of patients recovering from severe brain injury, has greatly benefited from the

application of sophisticated network analysis techniques to functional brain data. Yet,

current graph theoretic approaches, as employed in the neuroimaging literature, suffer

from four important shortcomings. First, they require arbitrary fixing of the number of

connections (i.e., density) across networks which are likely to have different “natural”

(i.e., stable) density (e.g., patients vs. controls, vegetative state vs. minimally conscious

state patients). Second, when describing networks, they do not control for the fact

that many characteristics are interrelated, particularly some of the most popular metrics

employed (e.g., nodal degree, clustering coefficient)—which can lead to spurious results.

Third, in the clinical domain of disorders of consciousness, there currently are no

methods for incorporating structural connectivity in the characterization of functional

networks which clouds the interpretation of functional differences across groups with

different underlying pathology as well as in longitudinal approaches where structural

reorganization processes might be operating. Finally, current methods do not allow

assessing the dynamics of network change over time. We present a different framework

for network analysis, based on Exponential Random Graph Models, which overcomes

the above limitations and is thus particularly well suited for clinical populations with

disorders of consciousness. We demonstrate this approach in the context of the

longitudinal study of recovery from coma. First, our data show that throughout recovery

from coma, brain graphs vary in their natural level of connectivity (from 10.4 to 14.5%),

which conflicts with the standard approach of imposing arbitrary and equal density

thresholds across networks (e.g., time-points, subjects, groups). Second, we show that

failure to consider the interrelation between network measures does lead to spurious

characterization of both inter- and intra-regional brain connectivity. Finally, we show that

Separable Temporal ERGM can be employed to describe network dynamics over time

revealing the specific pattern of formation and dissolution of connectivity that accompany

recovery from coma.

Keywords: network analysis, exponential random graph model, functional magnetic resonance imaging, coma,

disorders of consciousness
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1. INTRODUCTION

In the past 15 years, in vivo studies of the healthy and diseased
brain have increasingly focused on approaches aimed at assessing
the spontaneous functional architecture of the brain, conceived
as a network of interacting regions (1). Network analyses have
been successfully employed in many fields, including sociology
(2), computer sciences (3), public health (4), epidemiology
(5), and transportation (6), among others, to capture salient
aspects of each phenomenon. Indeed, while different fields often
employ different approaches to assessing network properties,
they all share the common goal of characterizing important
aspects of complex network function into a limited number
of metrics, which can, jointly, capture both what is unique
and what is shared across systems. Network approaches have
also been extensively employed toward understanding specific
aspects of cognition [e.g., (7)], development (8) and aging
(9), and, perhaps most frequently, the pathological brain [e.g.,
Alzheimer’s disease (10), Parkinson disease; (11), severe brain
injury; (12)]. This approach has also found fruitful application in
the study of human consciousness [e.g., (13–15)]. Indeed, many
of the proposals of how human consciousness arises from neural
function often make reference to aspects of brain activity as a
network of interacting areas, such as the reverberation and spread
of neural activity across fronto-parietal association regions (16,
17), the presence of synchronized long-range activity in specific
frequency bands [e.g., (18, 19)] and specific neural circuits [e.g.,
cortico-thalamic loops; (20)], the dynamic competition between
assemblies of cells (21), or to the degree to which a network
possesses certain topological characteristics [e.g., integration and
differentiation; (22)].

In the context of disorders of consciousness [DOC; (23)],
network approaches to the study of functional connectivity have
given rise to a fertile body of literature (see 24, for a recent
review). Yet, there are a number of important methodological
challenges which might play into the interpretation of such
studies [cf., (25, 26)] and which might explain some of
the contrasting results reported [e.g., the exact role of
thalamo-cortical vs. cortico-cortical connectivity in recovery of
consciousness; see (27–34)]. [See also (35) for further discussion].

In what follows, we propose that it is best to have both seed
based and graph theoretic questions in a single model. In the
neuroimaging literature, there are a number of limitations of
current approaches which have hindered the ability to use a single
model for combining seed based and graph theoretic approaches,
but there are models that have been developed by other fields
(36–40).

1.1. Four Problems in Current Network
Analysis Approaches
Current graph theory methods as employed in neuroimaging
(41, 42) suffer from a number of important shortcomings which
are particularly relevant in the domain of DOC. (We note that
the following discussion is in the context of network analysis as
currently implemented for neuroimaging data, and is not meant
to imply that other fields have not found solutions to them. In
fact, as we will argue below, we are advocating for importing into

the field of neuroimaging methods that have successfully been
applied in other domains).

1.1.1. Problem #1: Arbitrary Enforcing of Network

Density
Conventional graph theoretic approaches in neuroimaging
require sparse networks. That is to say, they require networks
(i.e., connectivity matrices) to have some connections (i.e., edges)
with non-zero values (typically integer, in binary networks, or
fractional, in weighted networks) and some with zero values—
as opposed, for example, to fully connected networks in which
all edges have non-zero values (i.e., each node is connected to
all other nodes with non-zero edges). Yet, since brain networks
are typically derived from pairwise correlations across time-series
of regions of interest, the starting point for network analysis is
typically a fully connected network [in fact, a complex network,
which is both fully connected and has positive and negative edges;
(43)]. It is thus common procedure to make the connectivity
matrices sparse by fixing their density (i.e., the proportion of non-
zero edges to the total number of possible edges), which is done
by retaining the strongest d connections and setting all remaining
ones to zero. The resulting network is thus sparse, with density

d
N(N−1)/2

, whereN is the number of nodes in the network. On the

one hand, this procedure ensures that any uncovered difference
across networks (e.g., patients vs volunteers; time-point A vs
time-point B) reflects some systematic aspect of their topological
characteristics and not, more trivially, the fact that they have
different densities. On the other hand, however, because of the
lack of a principled approach to perform this procedure, it is
currently typical to iteratively re-calculate network characteristics
at several density levels, from a lower boundmeant to ensure that
networks are estimable [such that the average nodal degree is no
smaller than 2 × log(N); (44)] to an upper bound such that the
mean small-world characteristic of networks is no smaller than
1 or 1.5 [e.g., (13)]. While conventional, the idea of enforcing
graphs to have the same density across groups, time-points,
or conditions is in itself problematic, because it is not hard
to imagine that some graphs might be naturally denser than
others [see (45)]. This is particularly relevant in the context of
the typical comparisons of interest in DOC such as patients vs.
healthy volunteers, patients in a Vegetative State vs. patients
in a Minimally Conscious State (vs. patients in a Locked-in
Syndrome), or within-patient changes over time (e.g., acute-to-
chronic designs). Of course, similar problems are encountered in
many other contexts (e.g., adolescents vs. older adults) and might
even apply to normal, within-group, variability in the healthy
brain. Mandating equal density across graphs might obscure
important differences across conditions of interest, bias results,
and lead to spurious findings.

One solution to the problem of network iterative thresholding
is to analyze complex networks [i.e., fully connected and signed
matrices; (43, 46, 47)]. Yet, despite this problem having been
well documented, as shown in a recent review focused on the
use of graph-theoretic approaches in the clinical context, less
than 7% of 106 published papers (up to April 2016) employed
complex matrices (48). All remaining studies only considered
non-negative and/or sparse matrices. In addition, it is important
to note two potentially unwanted limitations of using complex
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matrices. First, the use of complex matrices assumes that the
probability of connectivity between two regions is spatially
stationary, but it is in fact well known to be inversely related to
distance at both the neuronal and region levels [see, (49–51)].
Second, the use of complex matrices affects the formulation
of some metrics [e.g., modularity; (43, 46)] because positive
and negative edges are treated as separate sparse networks, an
issue that is further complicated by the frequent use of mean-
centering preprocessing strategies which are known to shift the
distribution of positive and negative edges (52, 53). Furthermore,
the formulation and interpretation of other metrics [e.g., path
based metrics such as characteristic path length/local efficiency,
betweenness centrality, etc.; (46, 54)], are also affected since
the weights represent both the strength and probability of the
connections (i.e., density). Thus, analyzing fully connected
signed graphs does avoid the thresholding issue but at the cost
of clouding the interpretation of metrics such as density and
path-based graph statistics.

1.1.2. Problem #2: Network Measures Are Not

Independent of Each-Other
A standard network analysis, as currently implemented in
the field, typically assesses a number of different topological
measures in parallel, such as characteristic path length, average
clustering, efficiency, and small-world characteristic, among
others [c.f., (43)]. Many of these characteristics, however, are not
independent of each other. In fact, they are often interrelated
and can greatly influence each other (55–57). Consider two
metrics often employed in graph theoretic analysis of brain data:
clustering coefficient and density. Clustering coefficient can be
described as the level of segregated neural processing within a
network (42). Density, as explained above, is a measure of the
number of existing edges within a network (i.e., connection with
non-zero value), divided by the total number of possible edges.
These two network characteristics are strongly interrelated: It has
been shown that there is a clear relationship between a network’s
density and its clustering coefficient (57). Similarly, dependencies
between many other network measures frequently employed in
the neuroimaging literature (e.g., degree, clustering coefficient,
characteristic path length, and small world index) have also been
reported (55, 56), highlighting the need to control for these
relationships in order to minimize the potential for spurious
findings [see (42, 55)]. Conventionally, this problem is addressed
by arbitrarily fixing network density (see Problem #1). This
approach, however, suffers from two important shortcomings.
First, as explained above, different networks might well have
different levels of natural—or stable—density. Second, it is
a rather weak control. For example, it only addresses the
dependencies of network measures on density, but ignores the
many other known correlations among features of networks
that are often assessed [cf., (55)], which, to date, have gone
unaccounted for in virtually all of the extant literature in the field.

1.1.3. Problem #3: Failure to Account for Structural

Information in Shaping Functional Networks
In the clinical context of DOC, despite the fact that patients
are well known to have heterogeneous underlying pathology,
which introduces many concerns for proper diagnosis (58,

59), functional [e.g., (13, 15, 28, 34, 60–63)] and structural
connectivity (64–69) are typically investigated separately. This
narrow approach is very problematic because it has been shown,
in the rodent model (70) and in healthy humans (71, 72),
that structural data can predict the functional connectivity as
estimated by correlations in the fMRI signal, as well as EEG
phase coupling in healthy volunteers (73). Failing to include
both structural and functional data will have a similar effect on
the analysis of functional networks as omitting any other graph
metric (i.e., problem #2): it will result in improper estimation of
the terms in themodel and potentially spurious results. This issue
is particularly important in the clinical context of DOC given
their highly heterogeneous pathology and the fact that this can
change over time, which affects longitudinal comparison of brain
networks over time.

Diffusion weighted imaging (DWI) and blood oxygenation
level dependent (BOLD) can be used in conjunction to estimate
connectivity matrices using joint independent component
analysis [jICA; (74)], Connectivity Independent Component
Analysis [connICA; (75)] or partial least squares [PLS; (76)]. In
general, all three methods produce multiple group connectivity
matrices based on the covariance of BOLD and DWI data
across all participants. Both jICA and connICA produce multiple
components that are maximally spatially independent [for a
complete explanation of jICA see (77–79) and for a complete
explanation of connICA see (33)]. PLS produce a linear
combination of latent variables that maximally covary with each
other based on weighted structural and functional connections
[for a complete explanation of PLS see (80–83)]. These methods
incorporate both structural and functional connectivity in
the estimation of the connectivity matrices, but they require
researchers to choose the number of components (in jICA and
connICA) or number of latent variables (in PLS). Changing these
parameters influences the results of the connectivity estimation
and the standards for these parameters are still being investigated
for both jICA and connICA (78, 84–86). We thus propose an
alternative to these methods that avoids the necessity to estimate
the functional and structural connectivity jointly. In the approach
we describe below, the structural and functional connectivity
matrices are estimated separately, and the former is used as a
variable in estimating graph statistics for the latter (see section
2.6 for a complete description).

1.1.4. Problem #4: Network Dynamics—Estimating

Network Change Over Time
Finally, contrary to the assumption underlying conventional
network analysis in neuroimaging, connectivity between areas is
unlikely to be stationary processes. Rather, brain activity might
best be viewed as a malleable and variable process over time
(87). Yet, even in the few cases where this limitation has been
addressed [e.g., (88)], these types of approaches do not quantify
dynamic change of connectivity across time (or states). Rather,
they just dissect a time-series into multiple static networks and
compare them over their respective topological properties. In
other words, even these approaches are static in nature and fail
to capture the dynamics of network connectivity over time. In
the context of DOC, for example, this means that longitudinal
analysis of brain data can be employed to reveal differences in

Frontiers in Neurology | www.frontiersin.org June 2018 | Volume 9 | Article 43958

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Dell’Italia et al. Exponential Random Graphs in DOC

topological properties of networks at two different time-points,
but do not allow saying anything of the process of interest, which
is the dynamics of how one network transitioned into another
(e.g., how a network transformed as consciousness was regained
over time).

1.2. Exponential Random Graph Models
In response to these four shortcomings of current network
analysis, we present and demonstrate a novel [in the context
of DOC, for other contexts within neuroimaging, cf.: (89–
91)] approach to graph analysis, referred to as Exponential
Random Graph Models [ERGM; (36)]. The core idea underlying
ERGM is that instead of considering graphs as fixed entities
which can be described in terms of topological properties (e.g.,
clustering, path length, small world property), it attempts to
generate hypotheses about the (unobserved) stochastic processes
that gave rise to an observed network (92). Contrary to the
prevalent approach in neuroimaging, then, the presence/absence
of an edge within a network is not considered to be a fixed
property of a graph, but rather a random variable generated
by a stochastic process. In other words, rather than assuming
the observed network as “given" and fix, and describing
its topological characteristics (e.g., characteristic path length,
clustering coefficient), it tries to characterize the processes that
have generated the observed network. One particularly appealing
aspect of this approach is that, so long as the total number of
nodes (i.e., ROIs) constituting a network remains unchanged,
it allows for comparing across networks with different density
levels, thereby solving problem #1. The ERGM framework uses
the following exponential model:

Pθ (Y = y) =
exp(θTg(y))

c(θ)
(1)

where θ is a parameter vector that is modeled by g(y)
(i.e., any statistic of the graph). The parameter c(θ) is a
normalizing constant representing the parameter estimate for
all possible graphs (38). This normalizing constant is not
able to be analytically solved due to the combinatorics of the
graph structure. We can nonetheless approximate the unknown
population mean using c(θs) (i.e., the sample mean):

c(θ)

c(θs)
= Eθs exp(θ − θs)

Tg(yi)

c(θ)

c(θs)
≈

1

M

M
∑

i=1

exp(θ − θs)
Tg(yi) (2)

for derivations [see (38)]. These equations allows for an
approximation of the population mean using sample mean.
A bootstrapping method using Markov Chain Monte Carlo
(MCMC) methods is used to sample and estimate the
population mean. These methods assume Markovian principles
of independent draws and the ability to reach equilibrium.
Equilibrium is the state in which any edge that is toggled on or
off results in an equally probable graph. The general method is to
take the ratio of the probabilities of Yij = 1 (i.e., adding a single

edge) and Yij = 0 (i.e., no edge) conditioned on YC
ij = yCij (i.e., all

other pair of nodes in the graph).

P(Yij = 1|YC
ij = yCij )

P(Yij = 0|YC
ij = yCij )

= exp θ∗(s(Yij = 1)− s(Yij = 0))

log
P(Yij = 1|YC

ij = yCij )

P(Yij = 0|YC
ij = yCij )

= θ∗1(s(Yij))

LPL(θ) =

∑

log[P(Yij = yij)|(Y
C
ij = yCij )](3)

where the LPL(θ) is the log-pseudolikelihood for θ , which is
maximized by taking the maximum pseudolikelihood for θ

(38). This estimation process is performed for the model with
all the parameters (i.e., θ). The estimates give the mean and
standard error. These estimates were tested for significance in
each functional data set. Due to the MCMC, a t-statistic can
be estimated and is reported in the model output along with a
p-value.

For interpretation purposes, Equation 1 can be represented as
follows [the full derivations can be found in (38)]:

logit(Pθ (Yij = 1|nactors,YC
ij )) =

K
∑

k=1

θkδZk(y) (4)

where k is the number of network statistics in the model and
θk is the parameter estimate for each statistic. The δZk(y) is the
change in network statistic if a edge were added between any
node i and j. Thus, the interpretation of the network statistics
involve the change in probability of an adding a edge with certain
network statistic. The significance of a parameter estimate is one
compared to the expected parameter estimate in a null model
with the probability of all edges equal to 0.5 [i.e., (93)].

In what follows, we first demonstrate the insidiousness
of problem #2 in the context of well characterized, freely-
available, data on the business ties of Florentine families in
the fifteenth century (94), and then we apply the powerful and
flexible ERGM approach to estimating network statistics for
characterizing (brain) networks in the longitudinal context of a
patient recovering after coma after severe traumatic brain injury
(TBI). To anticipate the key points that will follow, ERGM,
which has been successfully employed in other contexts (36–40),
offers a number of substantial advantages which are particularly
important in the clinical context of DOC. First, it does not
require imposing (and assuming) the same level of density across
graphs, thus allowing estimating characteristics of each graph at
its “natural” density level. Second, it allows for controlling the
dependencies between network characteristics. In this sense, in
contrast to the conventional approach, which can be viewed as a
series of univariate regressions (i.e., one per metric) assessing the
topological characteristics across groups of graphs (e.g., patient
groups and controls vs. patients), ERGM is making use of a
multiple regression framework (39), in which all features are
considered together, and thus returns the “unique” contribution
of each network measure. Third, the multiple regression
framework extends to graph theoretic measures characterizing
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the structural connectivity of a network, thus accounting and
“parceling out” the effect of cross-sectional differences [e.g.,
(69)] and longitudinal changes in structural connectivity [e.g.,
(95, 96)] across graphs. Finally, a temporal implementation of
this technique, Separable Temporal ERGM (STERGM), allows
assessing the dynamic changes of network properties occurring
over observations (e.g., time, clinical groups).

2. METHODS

2.1. Florentine Business Ties Data
We demonstrate the importance of problem #2 using freely
available data for social network analysis. The dataset, which
has been extensively characterized in previous work, describes
business connections between Florentine families in the fifteenth
century (94). We use this data analysis to demonstrate the
interrelationship between network measures and how failure to
include them in a single full model (FM) can lead to spurious
results. Specifically, the relationship between network measures
is manipulated by constructing two identical networks with one
unique difference between them—that is, whether the Barbadori
family belongs to the blue group (Figure 1, left) or the green
group (Figure 1, right). As we will discuss further below, this
example focuses on the relationship between node mixing terms
(i.e., a measure of within-group [blue vs. green] connectivity)
and a higher order term called geometrically weighted edge
shared partners (GWESP; a type of triangles term; see section
2.6 for full description of both terms). To demonstrate the
effects of relationships between measures, we estimate three
models per each network: two partial models (PMs) including
an edges term and either the higher order term (PMA) or the
mixing terms (PMB), and the FM containing all terms. As we
will show, for each network, PMs return spurious results with
respect to both significance and magnitude of the parameter
estimates.

2.2. Patient
We demonstrate the use of ERGM models using longitudinal
data from a patient recovering from a severe brain injury.

A 40 to 45 year old person suffered a severe TBI due to
a fall. The patient suffered pulmonary contusion and liver
laceration, and presented with a post-resuscitation Glasgow
Coma Scale [GCS; (97)] of 3. Computerized tomography (CT)
revealed skull fractures, traumatic subarachnoid hemorrhage,
extradural hematoma, subdural hematoma, and bilateral frontal
lobe contusions. At the 3 acute imaging sessions, which occurred
on the 11, 18, and 25th days post-injury, the patient presented
a total GCS of 6 (Eyes opening (E): 1, Verbal response (V): 1,
Motor response (M): 4), 7 (E:1, V:1, M:5), and 10 (E:3, V:1,
M:6), respectively. While DoC diagnoses are typically not made
at such an acute stage, the behavioral profile of the patient was
consistent with a vegetative state [VS; i.e., wakefulness in the
absence of any behavioral sign of awareness of the self or the
environment; (23)] at the first time-point, with a minimally
conscious state minus [MCS-; i.e., wakefulness with intermittent
but reproducible signs of low-level non-reflexive behaviors, such
as orientation to noxious stimuli; (98)] at the second time-point,
and a an minimally conscious state plus [MCS+; i.e., wakefulness
with intermittent but reproducible signs of high-level non-
reflexive behaviors, such as response to command, intelligible
verbalization, or gestural or verbal yes/no responses; (98)] at
the third. At 6-months follow-up the patient was assessed with
a Glasgow Outcome Scale—Extended [GOS-E; (99)] in-person
interview and scored as being in a lower moderate disability (i.e.,
GOS-E = 5).

2.3. Experimental Design
The patient underwent 4 imaging sessions over the span of 6
months. The first 3 sessions occurred within a month post injury
(see above), and the follow-up session took place 181 days post-
injury. At each session the patient underwent (among other
clinical and research sequences) anatomical (T1-weighted) and
functional (T2∗-weighted) data protocols. T1-weighted images
were acquired with a 3D MPRAGE sequence (repetition time
[TR] = 1,900 ms, echo time [TE] = 3.43, 1× 1× 1 mm). BOLD
functional data were acquired with a gradient-echo echo planar
image (TR= 2,000 ms; TE= 25 ms, 3.5×3.5×4 mm). Diffusion
Weighted data were acquired with an echo planar sequence (TR

FIGURE 1 | Florentine business ties networks. Florentine business ties data with additional grouping. Left: Network A. Right: Network B. We note that two networks

are identical except for the Barbadori family being allocated to the blue group in the left graph and to the green group in the right graph.
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= 9,000 ms, TE= 90 ms, 64 directions, 3× 3× 3) using a b-value
of 1,000 and acquiring an additional B0 image. Acute data were
acquired on the in-patient 3 Tesla Siemens TimTrio system at
the Ronald Reagan UniversityMedical Center, while chronic data
were acquired on the out-patient 3 Tesla Siemens Prisma system
also at the Ronald Reagan Medical Center at the University of
California Los Angeles. The study was approved by the UCLA
institutional review board (IRB). Informed consent was obtained
from the legal surrogate, as per state regulations.

2.4. Data Preprocessing
2.4.1. BOLD Data Preprocessing
The functional data underwent a number of conventional
preprocessing steps including brain extraction, slice timing
correction, motion correction, band-pass filtering (0.08 ≤ Hz ≤
0.1), and removal of linear and quadratic trends. A nuisance
regression was employed to parcel out signals of non-interest
including motion parameters, white matter, cerebral spinal fluid,
and full-brain mean signal [which has been shown to alleviate the
consequences of in-scanner motion; (100)]. Affine registration
of the functional data to the standard template (MNI) was
performed using Advanced Normalization Tools [ANTs; (101,
102)].

2.4.2. DWI Data Preprocessing
The diffusion data were preprocessed using the following
pipeline: DWI preprocessing, registrations, probabilistic
tractography with tractography thresholding. All of these
processes were run using a bash script in parallel using the GNU
Parallel package (103).

2.4.2.1. DWI preprocessing
All preprocessing procedures were visually checked for optimal
quality. The T1-weighted data were brain extracted [optiBET;
(104)] and bias field corrected [BrainSuite BFC; (105)]. The
diffusion-weighted data were prepared for tractography with the
following steps: (1) visual quality checking of raw images; (2)
artifact checking/removal and motion correction with vector
rotation [DTIprep; (106)]; (3) eddy current distortion correction
followed by tensor fitting (i.e., linear fitting using weighted least
squares) and estimation of diffusivity metrics [BrainSuite’s BDP;
(107, 108)]; (4) brain extraction of the b0 image [BET; (109)]; and
(5) GPU-enhanced Bayesian estimation of the diffusion profile
with up to two principal directions per voxel (i.e., allowing for
crossing/kissing streamlines) using FSL’s bedpostx (110, 111).

2.4.2.2. Registrations
All registrations were visually checked for optimal quality. The
following steps were conducted: (1) linear registration of the
native diffusion data (b0 image) to the native T1-weighted
data [ANTs IntermodalityIntrasubject; (102)]; (2) nonlinear
registration (ANTs) of the native T1-weighted data to the
Montreal Neurological Institute (MNI) standard space (MNI Avg
152 T1 2 × 2 × 2 mm standard brain); (3) forward or inverse
transform concatenations [ANTs; (102)] to move between native
diffusion, native T1, and the MNI template.

2.4.2.3. Probabilistic tractography
GPU-enhanced probabilistic tractography between all regions of
the whole-brain atlas (i.e., iteratively seeding from each region
to all other regions as targets) was conducted with the “matrix1”
option in FSL’s probtrackx2 (110, 112). A minimum distance
of 4.8 mm (i.e., 2 voxel widths) was set to prevent artificial
streamlines passing through contiguous regions. The output
matrix of streamline counts between all regions was thresholded
to remove spurious streamlines with an optimization procedure
that minimizes asymmetries between the seed/target assignments
for each ROI-ROI pair [MANIA; (113)].

2.5. Brain Network Construction
For each dataset (both the functional and diffusion data), a graph
was constructed to provide a mathematical description of the
brain as a functional network. Brain graphs were constructed
in two steps. First, these data sets were parceled into 148
ROIs spanning the cortex, sub-cortical nuclei, cerebellum and
brainstem (see Figure 2). This parcellation scheme, which was
defined independently of our data, is made freely available by
Craddock and colleagues (114). Additionally, we used the Oxford
thalamic connectivity atlas (115) to further refine the parcellation
of the thalamus from 6 to 14 for a total of 148 ROI (i.e., 134
Craddock ROIs and 14 Thalamic ROIs). While other parcellation
schemes are available (e.g., Harvard-Oxford atlas, AAL atlas),
the present one has two main advantages [cf., (13)]. First, being
functionally defined, it clusters spatially proximal voxels by
the homogeneity of their functional connections as opposed to
clustering voxels by anatomical position which, as exemplified
by the case of the precentral gyrus ROIs in both the AAL and
the Harvard-Oxford atlases, might cluster together functionally
distinct sub-regions. Second, at our chosen level of resolution,
the Craddock ROIs have almost 50% more granularity as either
structural atlas (i.e., 148 ROIs vs., 90 and 112 for the AAL and
Harvard-Oxford atlases, respectively). Following parcellation, the
average time-course of all voxel within each ROI were extracted
and correlated across each pair of regions.

FIGURE 2 | Parcellation for structural and functional connectivity. Cortical and

subcortical parcellation of the brain data (114). The imaging sessions’ data

sets were parcellated into 148 ROIs throughout the cortex, sub-cortical nuclei,

cerebellum and brainstem. Figure from (13).
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Functional connectivity was assessed with a partial correlation
method using the Markov Network Toolbox [MoNeT; (116)]
in MATLAB. This approach, referred to as R3 (as in
resampling, random penalization, and random effects), combines
a penalized maximum likelihood estimation—or graphical
lasso—procedure with a resampling-based (bootstrapped) model
selection procedure, on whitened BOLD timeseries, to infer fully-
data driven stable functional connectivity estimates at the single-
subject (or group) level. Under this approach, each fMRI time
series is repeatedly bootstrapped in order to estimate the within-
subject variability and matrices of penalty parameters which
reduce selection bias and variability. This method thus reduces
the spurious connections from indirect sources arising from the
high dimensionality of fMRI data often seen when using the
conventional Pearson’s r method. Using partial correlations with
regularization parameters, the indirect sources are eliminated
and the sparsity of each matrix is determined by the within
subject variability. Thus, each functional data set returns a
connectivity matrix that represents connectivity from direct
sources, rather than indirect ones, and that is sparse, as
determined on a single-subject basis through bootstrapping and
regulatization. This latter point side-steps entirely the need
for arbitrary and iterative thresholding approaches (42). It is
important to point out, however, another important difference
between the partial correlations approach described above and
the standard correlation approach to estimating brain networks
as performed by most previous work [e.g., (13, 117, 118)].
On the one hand, the conventional correlational approach has
the advantage of allowing straightforward interpretation of the
elements of adjacency matrices as strength of the functional
connectivity between nodes. On the other hand, the matrices
generated are fully connected and thus requiring application
of a non-linear transformation (e.g., thresholding) in order to
render them sparse – a condition necessary for application
of many common graph theory metrics (42). In contrast, the
partial correlation method employed here returns a sparse
matrix. However, it does so at the cost of losing interpretability
of graph weights which can now be seen as the functional
connectivity between two nodes i and j after controlling for
the correlations with other nodes in the neighborhood (i.e.,
connected with) – say – i. For this reason, matrices obtained with
this novel methodology are typically binarized, thus resulting in
a sparse matrix of ones and zeros indexing the presence/absence
of functional connectivity between each pair of nodes (i.e.,
ROIs).

2.6. Graph Statistics
All ERGM models we used to analyze the patient data included
the same graph statistics. The model used for all the data sets was
specified as follows:

Pθ (Y = y) =

exp(θ1edges+ θ2nodecov(degree)+ θ3nodecov(efficency)+ θ4nodecov(cluster)+ θ5nodemix(latent)
+θ6nodemix(resting)+ θ7gwesp(alpha = λ))

c(θ)
(5)

Edges refers to the total number of edges for each functional
connectivity graph. This term allows control for the density of

each graph. In this sense it is thus similar to the intercept in a
linear regression and is thus typically not interpreted or further
analyzed.

There are four nodal covariate terms for the diffusion
data—three nodal covariates (i.e., degree, efficiency and cluster)
and the nodemix (latent) term –and a nodal covariate for the
functional connectivity (i.e., nodemix for resting). Degree is
the number of edges for each structural node. Efficiency is the
local efficiency of each node. Cluster is the clustering coefficient
of each node. The nodecov term estimates the probability of
functional connectivity edge as a function of each distribution of
the structural terms (i.e., degree, local efficiency and clustering
coefficient). A positive coefficient indicates an increase in the
probability of a functional connectivity edge as structural term
increases in magnitude. On the other hand, a negative coefficient
indicates an increase in probability of a functional connectivity
edge as the structural term decreases.

As shown in Equation (5), there are two nodemix terms:
latent and resting. The nodemix (latent) is the within and
between module connectivity of the structural connectivity.
Thus, this mixing term represents the probability of a functional
connectivity edge given the modular membership based on the
structural connectivity. The number of modules and modular
membership of each node is determined by a position latent
cluster ERGM (119, 120). These models have shown to be
able to use a latent space model with an a priori determined
number of dimensions using the parameter d (3 dimensions).
The nodes are arranged in a euclidean system with proximity
equating to probability of an edge. The clusters are determined
by the parameter G (3, 4, 7, and 6 for Acute first, second, third
sessions and Chronic session, respectively). This parameter sets
the number of Gaussian spherical clusters that are introduced in
the latent space. The estimation of position latent cluster ERGM
is a two step Bayesian estimation, but the exact specification is
beyond the scope of this paper [see (119)].

The nodemix (resting) is our mixing term for determining
the inter- and intra-regional connectivity of the resting state
networks and sub-cortical regions of the functional data.
Multiple parameter estimates were produced for this term.
Additionally, these mixing terms used the exogenous node
labels for each node’s membership in the seven resting state
networks (121) and sub-cortical regions. Each node of the brain
network was labeled either: frontoparietal, visual, somato-motor,
limbic, dorsal attention, ventral attention, default, subcortex
and thalamus. Each combination of the inter- and intra-
regional connectivity produced a mixing term and parameter
estimate. For example, one inter-regional mixing term would
be frontoparietal and thalamic connectivity. This parameter
estimate would give the probability of an edge existing between
the frontoparietal network and thalamus. An example of intra-

regional mixing term would be frontoparietal to frontroparietal.
This term would express the probably of an edge within the
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frontoparietal network. These mixing terms were used to assess
the connectivity between the within the resting state networks,
between the resting state networks, within the sub-cortical
regions, between the sub-cortical regions, and between resting
state networks and sub-cortical regions. This term incorporates
questions that would be addressed using seed based connectivity
analyses.

The geometrically weighted edged shared partners (GWESP)
can be expressed by this equation (37):

θt = logλt

v(y; θt) = eθt
n−2
∑

i= 1

[

1− (1− e−θt )i
]

EPi(y) (6)

In this equation, v is the GWESP term and θt is the log of
the decay parameter that was fixed in all the data sets. The
EPi(y) is the edge shared partners term for the entire graph. It
accounts for the number of each type of edge shared partner.
An edged shared partner is triangle that shares a common base.
Edge shared partners is a metric used to quantify the amount of
clustering in the form of transitivity in a network. High positive
parameter estimates indicate that transitivity is present above
and beyond all the other statistics in the model. Transitivity is
a higher order relationship present in most graphs which are
the local and/or global communication and the amount of local
cohesion. Differences in transitivity between patients could be a
key change that occurs from injury. This would be a disruption
of the clustering found within the patient’s brain. This type of
disruption would hamper local and/or global communication
and additionally it would indicate a lack of local cohesion within
a network.

The analysis was performed using the ERGM package (40) in
R. There are two ERGMs used on the patient data. A FM and used
all the terms from Equation (5). The FM was fit multiple times
to get assess the proper λ (the decay parameter) for the GWESP
term. The range of λ began at 0.05 and increase by increments
of 0.05 up to 2.0. Each iteration was checked by inspecting the
diagnostics of the MCMC. The models that have the best fit for
the parameter estimate GWESP were chosen (i.e., λ = 0.45). A
second model, the PM was fit. The structural terms (i.e., the
three nodecov and the nodemix for latent) were omitted from
this model to demonstrate the effects on the rest of the parameter
estimates.

The FM’s graph statistics were chosen based on two reasons:
the type of functional data being analyzed (i.e., resting state
data) and the first three problems outlined above (see sections
1.1.1–1.1.3). The nodemix (resting) terms were chosen because
this patient’s functional connectivity matrices were estimated
from the BOLD correlations during the resting state scans.
Thus, the intra- and inter- regional connectivity would be best
characterized by putative resting state networks. The number of
resting networks were chosen based on a data driven approach
[i.e., (121)] that estimates a number of networks based on stability
of clusters [for details on the clustering algorithm see (122)]
estimated from 1,000 subjects’ functional data. A seven network
parcellation was chosen because it minimized the instability

(121) and matches what has been previously discussed in the
literature [e.g., (123–126)]. Additionally, the thalamus group
was added because of its possible involvement in DOC [e.g.,
(28, 29, 32, 127)] or anesthesia induced loss of consciousness
[e.g., (117, 118, 128, 129)]. Finally, the subcortical and cerebellum
groups were added to ensure every node fit a grouping label.

The edges term allows for networks with varying density
to be modeled and compared (cf., Problem #1, section 1.1.1).
The higher order term (i.e., GWESP) describes the local
and/or global communication which could be an important
aspect in the recovery from brain injury [e.g., (14, 32, 130)],
and because it alleviates the problem of interrelation among
graph theoretic measures (cf., Problem #2, section 1.1.2) by
accounting for the higher order term’s variance and thus
avoiding it being improperly allocated to lower order terms
(i.e., edges, node mixing, and structural terms). As shown
below, failing to include the higher order term can affect the
estimation of parameters in either magnitude or sign. Structural
connectivity is important because, as stated in third problem (cf.,
section 1.1.3), it can be severely affected by TBI, systematically
changing over time and/or patient cohorts, and because it is
interrelated with functional connectivity. Thus, we chose four
terms for the structural connectivity that would capture the
number of connections of each node (i.e., degree), a measure
of integration [i.e., local efficiency (42), and higher order
relationships (i.e., clustering and modularity). The two higher
order terms were chosen because they capture two different
higher order dynamics: local grouping of nodes [i.e., clustering
coefficient (42)] and community structure [i.e., modularity;
(42)].

The models were assessed by using goodness of fit (GOF)
plots (38). After the model was estimated, a thousand simulations
were run from the model statistics. These simulations were
compared to the original graph’s probabilities for each graph
statistic (e.g., the probability of nodes with a specific degree,
probability edge shared partners and the probability minimum
geodesic distances). This is to ensure that the model represents
a graph similar to the original data that it was modeled from.
The metrics chosen for this example is degree distribution, edge
wise shared partner, minimum geodesic distance (another form
of local path length) and the nodal covariates from Equation
5. These are the most commonly used graph metrics because
they capture important characteristics of graphs that capture
the central tendencies and clustering of graphs. The MCMC
diagnostics were assessed for each parameter estimate. The GOF
plots were used to assess the fit of the FM and all four GOF plots
was assessed for goodness of fit.

2.7. Separable Temporal Exponential
Random Graph Model
STERGM (131) is an extension of the original ERGM. It is used
to assess the dynamics of networks as they change over time .
The same underlying methods for estimating ERGM is used in
STERGM. A model with network statistics is used to estimate
the parameter estimates for a network that changes over time. To
achieve this, two separate networks are investigated. A formation
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network is generated conditional on forming edges,

P(Y+

= y+|Y t
; θ+) =

exp(θ+g(y+,X))

c(θ+,X,Y+(Y t))
, y+ ∈ Y+(yt) (7)

where a formation network Y+ is characterized by formation
parameters θ+ (131). The formation network statistics are
g(y+,X) and the normalizing constant is c(θ+,X,Y+(Y t)).
The second network formed is a dissolution network that
is conditional on the edges that dissolve. This network is
represented by the same variables labeled with minus instead of a
plus,

P(Y−

= y−|Y t
; θ−) =

exp(θ−g(y−,X))

c(θ−,X,Y−(Y t))
, y− ∈ Y−(yt) (8)

where a dissolution network Y− is characterized by dissolution
parameters θ− (131). The dissolution network statistics are
g(y−,X) and the normalizing constant is c(θ−,X,Y − (Y t)).
These networks can form a new network at time t+1 by applying
formation and dissolution networks on yt . This can be expressed
as:

Y t+1
= Y t

∪ (Y+

− Y t)− (Y tY−) (9)

The formation and dissolution networks are independent of each
other across the t + 1 time points (131). STERGM has the
unique ability to model networks as they transform over time
enabling research questions about the dynamics of a network.
The same model in Equation 5 was used in both the formation
and dissolution models. The quantifications of these networks
are similar to ERGM, but these two models slightly change
the interpretation of the parameter estimates. In the formation
model, a positive parameter estimate indicates a tendency for
edges for a network statistic form at time point t + 1, and
a negative parameter estimate indicates a lack of formation of
edges for a particular network statistic at time point t + 1. The
dissolution model has two separate interpretations based on the
sign of the parameter estimate. A negative parameter estimates
are interpreted as edges are more likely to dissolve and positive
parameters indicate edges aremore likely to be preserved. Despite
these differences in interpretation, all the same procedures were
used in STERGM as were used in ERGM (PM, FM, quality
control using MCMC diagnostics, and assessing fit using GOF)
for both the formation and dissolution models.

3. RESULTS

3.1. Florentine Business Ties
Network A has both the mixing term and triangles term as
significant model statistics when modeling them separately (i.e.,
PMA and PMB see Table 1). When they are combined together
into the FM, the mixing term remains significant but the triangle
term is no longer significant. Thus, the FM for the Florentine
business ties properly attributes the variance of each graph theory
statistic and the selective mixing term remains significant. The
network B has just the triangles term significant in the PMA

and FM. The mixing term is neither significant in the PMB nor
the FM.

3.2. Patient Recovery
Consistent with the argument we made in the introduction, as
shown in Figure 3 (bottom row), the brain network construction
using MoNeT resulted in four graphs with different estimated
densities. Specifically, the three acute sessions returned graph
densities of 10.4, 13.5, 12.9%, for the first, second, and third time-
points, respectively, while the chronic session presented a graph
density of 14.5% . Overall, then, the density differential between
acute session 1 and chronic session was 4.1%, and the general
acute-to-chronic pattern appeared to be a trend toward greater
density. The structural connectivity (Figure 3, top row), on the
other hand, had less variability in the densities of the graphs over
time (i.e., 6.6, 6, 5.3, and 5.3%; a total difference of 1.3% between
acute session 1 and chronic session).

3.2.1. Integrating Functional and Structural

Connectivity
When we compared the properties of the network as estimated
relying exclusively on functional connectivity (i.e., PM) as
compared to when both functional and structural connectivity
were jointly considered (i.e., FM), the PM included two
significant positive inter-regional connectivity parameters (i.e.,
between thalamus and subcortex and between limbic network
and subcortex; see top of Figure 4) which were no longer
significant once structural connectivity was included (i.e., in the
PM), suggesting their spurious status. More broadly, the positive
parameter estimates became less positive and the negative
parameter estimates became more negative. The only structural
terms that were significant were the nodal covariate mixing term
for connectivity between latent clusters 2 and 3 and within latent
clusters 3 (see Table 2).

At the second acute time-point, the PM and the FM again
differed, with the latter showing an additional significant positive
parameter estimate for connections between dorsal attention
network and subcortex (see bottom Figure 4), three inter-
regional connectivity parameter estimates that became non-
significant (i.e., connections between cerebellum and subcortex,
default network and frontoparietal network and visual network
and dorsal attention; see bottom Figure 4) and two intra-regional
connectivity parameter estimates that became non-significant
(i.e., connections within the subcortex and ventral attention
network; see bottom Figure 4). Overall, the parameter estimates
both increased and decreased in magnitude with or without
changing significance. Similar to the first acute session, the
structural terms were only significant for the nodal covariate
mixing term (i.e., between latent clusters 1 and 3, and within
latent clusters 1, 2, 3, and 4; see Table 2).

In the third acute session, six inter-regional positive parameter
estimates (i.e., connections between cerebellum and dorsal
attention network, frontoparietal network and dorsal attention
network, frontal parietal network and ventral attention network,
dorsal attention network and somatomotor network, limbic
network and visual network and limbic network and subcortex;
see right Figure 5) and three intra-regional positive parameter
estimates (i.e., connections within the dorsal attention network,
somatomotor network and ventral attention network; see
Figure 5) became non-significant once structural connectivity
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TABLE 1 | Florentine business ties models.

ERGM Parameter Estimates

Network A Network B

PMA PMB FM PMA PMB FM

Edges −2.44∗∗∗ −3.42∗∗∗ −3.54∗∗∗ −2.46∗∗∗ −2.27∗∗∗ −2.75∗∗∗

(0.40) (0.72) (0.70) (0.39) (0.43) (0.49)

Nodal Covariate Mixing: Within Group 0 1.63 1.60 0.15 0.31

(0.95) (0.88) (0.75) (0.65)

Nodal Covariate Mixing: Within Group 1 2.60∗∗ 2.16∗∗ 1.17 0.91

(0.80) (0.82) (0.61) (0.48)

GWESP (Fixed 0.8) 0.53∗ 0.32 0.54∗ 0.50∗

(0.23) (0.28) (0.23) (0.23)

Three models are run on each network in Figure 4: PMA, PMB, FM. The PMA has just the edges and triangles term. The PMB has just the edges and mixing term. The FM has all three

terms. Each term has a parameter estimate, a standard error in parenthesis and a p-value indicated by asterisks. The LATEX code to create this table was produced by the R package

called texreg (132). ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.

FIGURE 3 | Patient recovery: network densities. Top Four Graphs are the thresholded [MANIA; (113)] structural connectivity. The first acute imaging session, second

acute imaging session, third acute imaging session and chronic imaging sessions had 6.6, 6, 5.3, and 5.3% densities, respectively. Bottom Four Graphs are the

thresholded functional connectivity using partial correlations [MoNeT; (116)]. The first acute imaging session, second acute imaging session, third acute imaging

session and chronic imaging sessions had 10.4, 13.5, 12.9, and 14.5% densities, respectively.

was included in the model. Similar to the first acute session, the
parameter estimates generally decreased in magnitude. Finally,
consistent with the first two acute sessions, the only significant
structural feature was the nodal covariate mixing term (i.e.,
between latent clusters 2 and 3, latent clusters 1 and 4, latent
clusters 1 and 6, latent clusters 3 and 6 and latent clusters 5 and
7, and within latent clusters 1, 2, 3, 4, 5, 6, and 7; see Table 3).

In the chronic session, two inter-regional positive parameter
estimates became non-significant after inclusion of the
structural connectivity terms (i.e., between default network
and frontoparetial network and default network and visual
network; see right Figure 5). Conversely, unlike in the acute
sessions, we also observed the reverse effect, with the the visual

network and ventral attention network parameter estimate
became significant in the FM. Additionally, the structural terms
were only significant for the nodal covariate mixing term (i.e.,
between latent clusters 1 and 3, latent clusters 2 and 3, latent
clusters 1 and 4, latent clusters 3 and 5, latent clusters 4 and 5,
latent clusters 1 and 6 and latent clusters 2 and 6 and within
latent clusters 4; see Table 3).

Finally, across all imaging sessions the GWESP parameter
estimate was reduced in magnitude (see Tables 2, 3) by the
addition of the structural terms, with the largest difference seen
in third acute session (see Table 3). Additionally, the GOF (see
Figure 6) are fit for every statistic in all of the FM. All the GOF
terms fit well except for a portion of the edge shared partners, but
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FIGURE 4 | Patient recovery ERGM. Comparison of results for the FM and PM for acute sessions 1 and 2. The left figures display the FM mixing term results for the

Acute first and second sessions. The mixing term term accounts for the inter- and intra-regional connectivity. The legend displays tints of red for significant positive

parameter estimates. The right figures display the PM mixing term results for the Acute first and second sessions. The coloring scheme is the same as the FM. These

figures are symmetric within each model because the graphs are undirected.

in the model statistics (the far right in Figure 6) are well fit to the
original data.

As we will discuss below, the differences we are reporting
between the results obtained with the conventional model (i.e.,
PM), estimated form functional connectivity alone, and those
obtained with the (i.e., FM), estimated from both the functional
and structural connectivity, demonstrates the risk of drawing
spurious conclusions when relying on the PM.

3.3. STERGM
The STERGM allowed us to look at the temporal dynamics of
recovery post severe brain injury with two parallel models: a
formation model and a dissolution model. The formation model
produces parameter estimates describing how likely it is that
new connections (i.e., edges) form throughout the recovery from
coma, while the dissolution model produces parameter estimates

describing how likely it is that existing connections dissolve (or
persist) throughout recovery.

In our index patient, the formation model showed a
significant negative edges parameter estimate and a significant
positive GWESP parameter estimate, the latter implying a
tendency to form edges over time that close triangles (see
Table 4). Additionally, none of the structural nodal covariates
were found to be significant (see Table 4). There were,
however, four significantly positive parameter estimates for
intra-regional connectivity (i.e., default network, frontoparietal
network, thalamus, and visual network; see left Figure 7), three
significantly negative parameter estimates for inter-regional
connectivity (i.e., between default network and visual network,
somatomotor network and frontoparietal network, and ventral
attention network and visual network; see left Figure 7), and
two significantly positive parameter estimates for inter-regional
connectivity (i.e., between default network and thalamus,
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TABLE 2 | Patient recovery ERGM.

ERGM Parameter Estimates

First Acute Second Acute

PM FM PM FM

Edges −6.29∗∗∗ −6.34∗∗∗ −7.64∗∗∗ −7.71∗∗∗

(0.28) (0.56) (0.36) (0.59)

Nodal Covariate: Degree (Structural) 0.00 0.00

(0.00) (0.01)

Nodal Covariate: Local Efficiency

(Structural)

0.10 0.35

(0.44) (0.35)

Nodal Covariate: Cluster Coefficient

(Structural)

−0.08 −0.33

(0.34) (0.29)

Nodal Covariate Mixing: Latent

Cluster 1 to 1 (Structural)

0.03 1.01∗∗∗

(0.08) (0.15)

Nodal Covariate Mixing: Latent

Cluster 2 to 2 (Structural)

0.07 0.82∗∗∗

(0.17) (0.11)

Nodal Covariate Mixing: Latent

Cluster 1 to 3 (Structural)

−0.11 0.33∗∗

(0.08) (0.12)

Nodal Covariate Mixing: Latent

Cluster 2 to 3 (Structural)

−0.28∗ 0.16

(0.12) (0.11)

Nodal Covariate Mixing: Latent

Cluster 3 to 3 (Structural)

0.24∗ 0.91∗∗∗

(0.10) (0.12)

Nodal Covariate Mixing: Latent

Cluster 1 to 4 (Structural)

0.23

(0.13)

Nodal Covariate Mixing: Latent

Cluster 2 to 4 (Structural)

0.22

(0.12)

Nodal Covariate Mixing: Latent

Cluster 3 to 4 (Structural)

−0.09

(0.12)

Nodal Covariate Mixing: Latent

Cluster 4 to 4 (Structural)

0.86∗∗∗

(0.13)

GWESP (Fixed 0.45) 2.09∗∗∗ 2.07∗∗∗ 3.11∗∗∗ 2.94∗∗∗

(0.13) (0.13) (0.21) (0.20)

Parameter estimates for the FM and PM of the Acute first and second sessions. Themixing

term for resting state are excluded because they are in Figure 4. All of the structural

parameter estimates are listed in the FM columns. The edges and GWESP parameter

estimates are for the functional connectivity in the PMs and FMs. The LATEX code to

create this table was produced by the R package called texreg (132). ∗p < 0.05; ∗∗p <

0.01; ∗∗∗p < 0.001.

and somatomotor network and ventral attention network;
see left Figure 7). The dissolution model has a significantly
negative edges parameter estimate and significantly positive
GWESP parameter estimate (see Table 4). Also, none of the
structural terms were significant for the dissolution model.
Additionally, all ten parameter estimates for intra-regional
connectivity (i.e., cerebellum, default network, dorsal attention
network, frontoparietal network, limbic network, somatomotor
network, subcortex, thalamus, ventral attention network, and
visual network) significantly positive (see right Figure 7) and
11 significantly positive parameter estimates for inter-regional
connectivity (i.e., between cerebellum and visual network,
default network and frontoparietal network, dorsal attention
network and frontoparietal network, dorsal attention network
and somatomotor network, dorsal attention network and ventral
attention network, dorsal attention network and visual network,

frontoparietal network and thalamus, somatomotor network and
ventral attention network, subcortex and thalamus, and thalamus
and visual network; see right Figure 7). Finally, the GOF (see
Figure 8) were fit well for every statistic in both the formation
and dissolution model. Overall, the model was thus well fit for
both the formation and dissolution models. All the GOF terms fit
well except for a portion of the edge shared partners, but in the
model statistics are well fit to the original data.

4. DISCUSSION

In this work, we have addressed four issues which, while general
to the implementation of network theory in the field of functional
neuroimaging, are particularly relevant to studies in the clinical
context of DOC. In what follows we discuss how the approach
we have demonstrated above in a patient recovering from coma
resolves specifically each of the four problems outlined in the
introduction. The first three problems discussed were solved
using a single model which controls for (i) the density of the
functional connectivity, (ii) the effects of variance/change in
structural connectivity on the functional metrics, while (iii)
modeling the intra- and inter-connectivity of the resting state
networks and the effects of higher order terms (i.e., GWESP). The
final problem was resolved using STERGM to model the network
dynamics in recovering from coma.

4.1. Solution to Problem #1: Use Natural
Density, Not Arbitrarily Fixed Density (i.e.,
Use a Multiple Regression
Framework—Part I)
As our longitudinal data shows, consistent with results from
other domains of neuroscience [see (45, 133)], brain graphs
are susceptible to having different “natural” levels of density at
which they are the most stable and which might thus be ideal to
estimate network properties. In our data, over the progression
of 6 months post injury, as the patient recovered consciousness
and cognitive function, the natural brain graph density went
from 10.4 to 14.5%. These density differences were revealed
thanks to the use of MoNeT (116), a tool which combines a
penalized maximum likelihood estimation with a resampling-
based (bootstrapped) model selection procedure in order to
find the most stable level of sparse brain graph given a set of
time-dependent measurements (e.g., fMRI data). On the one
hand, as we will explain below, these differences might well
reflect important aspects of network dynamics in the recovery
of consciousness post severe brain injury. On the other hand,
regardless of the ultimate interpretation of the finding in of
itself, had we employed the standard approach and enforced
equal density across brain graphs in order to allow comparability
(42, 55), these differences would have been obscured and would
have introduced a bias in the direct comparison of topological
properties across graphs. Ultimately, an accurate estimation of
the connectivity is necessary to correctly model the connectivity.
ERGM and STERGM allow for controlling the density without
having to fix the density for all graphs. This allows for data driven
approaches to allow the density to vary based on the stability
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FIGURE 5 | Patient recovery ERGM. Comparison of results for the FM and PM for acute session 3 and chronic session. The left figures display the FM mixing term

results for the Acute third session and Chronic session. The mixing term term accounts for the inter- and intra-regional connectivity. The legend displays tints of red for

significant positive parameter estimates and the significant negative parameter estimates are colored in tints of blue. The right figures display the PM mixing term

results for the Acute third session and Chronic session. The coloring scheme is the same as the FM. These figures are symmetric within each model because the

graphs are undirected.

of the connectivity estimates. This natural variance could reveal
differences in graph statistics that would otherwise be masked
by fixing density. Overall, this result further demonstrates that,
when arbitrarily enforcing equal density across graphs, we are in
fact biasing our results toward the graphs with natural density
closest to the threshold employed. While we show this in the
context of time, it immediately translates to cross-sectional
analyses that are also typical of the field of DOC (e.g., healthy
controls vs. patients), with the prediction that the more different
the natural density across groups, the greater the bias in the
results.

4.2. Solution to Problem #2: Control for
Interrelations Across Network Metrics (i.e.,
Use a Multiple Regression
Framework—Part II)
As discussed above, ERGM can cope with comparing graphs
with different natural densities because it factors in density as

a variable in the model (in other words, it controls explicitly

for different densities). Similarly, ERGM can also control

for interrelations across the many metrics that are typically

estimated by explicitly including them all in a single model.

As mentioned in the introduction, this approach is akin to

performing a multiple regression model in which each network
feature is evaluated for its unique contribution to the graph, as

opposed to the current graph theoretic approach dominating

in neuroimaging, which is akin to running several single-

variable regressions, one per topological feature investigated.

The Florentine business networks were used to demonstrate the
effect of leaving out significant contributing factors to the model,

something that renders our ERGM vulnerable to correlations
between graph properties similar to the current conventional
approached (42). As shown in Table 1, using PMs can lead
to incorrectly estimating the magnitude or the significance of
network measures. For example, in network A (Figure 1, left),
the failure to include the mixing terms leads to a significant
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TABLE 3 | Patient Recovery ERGM.

ERGM Parameter Estimates

Third Acute Chronic

PM FM PM FM

Edges −7.97∗∗∗ −7.27∗∗∗ −8.05∗∗∗ −8.07∗∗∗

(0.36) (0.63) (0.42) (0.57)

Nodal Covariate: Degree (Structural) −0.01 0.01

(0.01) (0.01)

Nodal Covariate: Local Efficiency

(Structural)

0.02 −0.11

(0.12) (0.16)

Nodal Covariate: Cluster Coefficient

(Structural)

−0.22 0.33

(0.15) (0.17)

Nodal Covariate Mixing: Latent

Cluster 1 to 1 (Structural)

2.33∗∗∗ 0.34

(0.42) (0.24)

Nodal Covariate Mixing: Latent

Cluster 2 to 2 (Structural)

1.17∗∗∗ −0.06

(0.23) (0.24)

Nodal Covariate Mixing: Latent

Cluster 1 to 3 (Structural)

−0.48 −0.34∗

(0.44) (0.17)

Nodal Covariate Mixing: Latent

Cluster 2 to 3 (Structural)

0.47∗ −0.51∗∗

(0.23) (0.17)

Nodal Covariate Mixing: Latent

Cluster 3 to 3 (Structural)

1.24∗∗∗ 0.29

(0.24) (0.15)

Nodal Covariate Mixing: Latent

Cluster 1 to 4 (Structural)

1.25∗∗∗ −0.52∗∗

(0.26) (0.20)

Nodal Covariate Mixing: Latent

Cluster 2 to 4 (Structural)

0.35 −0.55∗∗

(0.24) (0.19)

Nodal Covariate Mixing: Latent

Cluster 3 to 4 (Structural)

0.35 −0.55∗∗∗

(0.23) (0.16)

Nodal Covariate Mixing: Latent

Cluster 4 to 4 (Structural)

1.11∗∗∗ 0.56∗∗

(0.23) (0.18)

Nodal Covariate Mixing: Latent

Cluster 1 to 5 (Structural)

−0.35 −0.20

(0.51) (0.20)

Nodal Covariate Mixing: Latent

Cluster 2 to 5 (Structural)

−0.01 −0.26

(0.26) (0.20)

Nodal Covariate Mixing: Latent

Cluster 3 to 5 (Structural)

0.27 −0.52∗∗

(0.26) (0.17)

Nodal Covariate Mixing: Latent

Cluster 4 to 5 (Structural)

0.16 −0.39∗

(0.26) (0.19)

Nodal Covariate Mixing: Latent

Cluster 5 to 5 (Structural)

2.09∗∗∗ 0.42

(0.31) (0.23)

Nodal Covariate Mixing: Latent

Cluster 1 to 6 (Structural)

1.20∗∗∗ −0.42∗

(0.30) (0.20)

Nodal Covariate Mixing: Latent

Cluster 2 to 6 (Structural)

0.60∗ −0.37∗

(0.24) (0.18)

Nodal Covariate Mixing: Latent

Cluster 3 to 6 (Structural)

−0.95∗ −0.23

(0.40) (0.16)

Nodal Covariate Mixing: Latent

Cluster 4 to 6 (Structural)

0.39 −0.22

(0.24) (0.17)

Nodal Covariate Mixing: Latent

Cluster 5 to 6 (Structural)

0.37 −0.03

(0.29) (0.18)

Nodal Covariate Mixing: Latent

Cluster 6 to 6 (Structural)

1.74∗∗∗ 0.30

(Continued)

TABLE 3 | Continued

ERGM Parameter Estimates

Third Acute Chronic

PM FM PM FM

(0.29) (0.19)

Nodal Covariate Mixing: Latent

Cluster 1 to 7 (Structural)

−0.54

(0.51)

Nodal Covariate Mixing: Latent

Cluster 2 to 7 (Structural)

0.42

(0.24)

Nodal Covariate Mixing: Latent

Cluster 3 to 7 (Structural)

0.28

(0.25)

Nodal Covariate Mixing: Latent

Cluster 4 to 7 (Structural)

−0.15

(0.27)

Nodal Covariate Mixing: Latent

Cluster 5 to 7 (Structural)

0.59∗

(0.26)

Nodal Covariate Mixing: Latent

Cluster 6 to 7 (Structural)

0.30

(0.27)

Nodal Covariate Mixing: Latent

Cluster 7 to 7 (Structural)

1.48∗∗∗

(0.26)

GWESP (Fixed 0.45) 3.23∗∗∗ 2.87∗∗∗ 3.48∗∗∗ 3.28∗∗∗

(0.20) (0.20) (0.24) (0.24)

Parameter estimates for the FM and PM of the Acute third session and Chronic session.

The mixing term for resting state are excluded because they are in Figure 5. All of the

structural parameter estimates are listed in the FM columns. The edges and GWESP

parameter estimates are for the functional connectivity in the PMs and FMs. The LATEX

code to create this table was produced by the R package called texreg (132). ∗p < 0.05;
∗∗p < 0.01; ∗∗∗p < 0.001.

GWESP term, however, it appears to be overestimated as
compared to the FM (where it is not significant). In other
words, on the basis of the PM results, one would be justified in
concluding that triadic closure (i.e., the tendency for edges to
appear where they complete triangles) is a key stochastic process
underlying the network. Yet, the FM shows that this result is
spurious and is in fact due to the mixing term— that is, to the
dynamics of within-group connectivity, and not triadic closure.
As shown in Table 1, changing group membership of one node
alone, preserving all other aspects of the network, affected both
qualitatively and quantitatively the network measures (compare
the FM columns for PMA and PMB in Table 1). Similarly
to Network A, Network B’s PMs returned different parameter
estimates than the FM. As we will discuss below, a similar effect
is at play in the neuroimaging data where, failure to include
structural information, could have lead to incorrectly attributing
to functional connectivity between the fronto-parietal and the
default mode networks a network characteristic that is in fact due
to structural connectivity (i.e., problem #3, cf., Figure 4, 5).

4.3. Solution to Problem #3: Adjust for the
Effects of Structural Connectivity on
Functional Connectivity (i.e., Use a Multiple
Regression Framework—Part III)
As shown in the results, ERGM is capable of addressing
the currently unresolved issue of integrating functional and
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FIGURE 6 | Patient recovery ERGM. Goodness of fit plots for the four FM (i.e., Acute Session 1, Acute Session 2, Acute Session 3 and Chronic Session). The black

line marks the respective networks; the box-and-wiskers indicate the model data obtained from the 1000 simulations of each model (see section 2.6).

structural connectivity in a unique framework (37, 38, 40).
Analogously to the two previous points, the solution employed
by ERGM is to include structural connectivity terms in the
model, thus explicitly adjusting for the relationship between the
structural and functional connectivity. In our data, inclusion
of structural terms in the model affected all other parameter
estimates, empirically demonstrating that, in the context of
recovery of consciousness after severe brain injury, failing to
include structural connectivity is tantamount to mis-specifying
the model [similarly to not including network density (i.e.,
problem #1)] or not modeling all estimated metrics in a single
model [(i.e., problem #2)]. While we recognize that this is likely
to be an issue in any field where structural connectivity might
differ across groups and/or individuals, there is also little doubt
that this is particularly problematic in the context of DOC where
the underlying structural architecture is likely to be substantially
different from healthy volunteers [e.g., (64, 134)], across different
clinical groups [e.g., (69)], and over time [e.g., (96, 135) as well as
in the data presented here].

Specifically, our results show that when structural data
are included (i.e., in the FMs), the probability of inter-
and intra-regional connectivity changes—as compared to the

PMs—including: parameter estimates with a higher magnitude
in the PM (e.g., connections between default network and ventral
attention network, limbic network to thalamus, and within limbic
network in the Acute First session), parameters with a lower
magnitude in PM (e.g., connections between visual network
and cerebellum, visual network and subcortex or visual network
and thalamus in the Acute Second session), and parameters
which went from non-significant in the PM to significant in
the FM (e.g., connections between dorsal attention network and
subcortex in the Acute Second session or connections between
visual network and ventral attention in the Chronic session)
and viceversa (e.g., connections between default network and
frontoparietal network in the Chronic session or connections
between thalamus and subcortex in the Acute First session).
These results have immediate theoretical implications for the
field of DOC in as much as the partial ERGM model in
our patient shows increased likelihood of connectivity between
the default mode and the fronto-parietal networks throughout
recovery from coma (see Figure 4, 5). This could be (mistakenly)
construed as bearing on the issue of the relationship between
the “external awareness” and “internal awareness” networks in
DOC (136, 137). For example, the relationship between these
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TABLE 4 | Patient Recovery STERGM.

STERGM Parameter Estimates

Formation Dissolution

Edges −10.03∗∗∗ −3.56∗

(1.04) (1.79)

Nodal Covariate: Degree (Structural) 0.01 0.03

(0.01) (0.02)

Nodal Covariate: Local Efficiency

(Structural)

−0.14 −1.27

(0.64) (1.64)

Nodal Covariate: Cluster Coefficient

(Structural)

0.34 1.33

(0.49) (1.25)

Nodal Covariate Mixing: Latent

Cluster 1 to 1 (Structural)

−0.04 −0.01

(0.09) (0.21)

Nodal Covariate Mixing: Latent

Cluster 2 to 2 (Structural)

0.04 0.30

(0.17) (0.41)

Nodal Covariate Mixing: Latent

Cluster 1 to 3 (Structural)

−0.12 −0.11

(0.09) (0.24)

Nodal Covariate Mixing: Latent

Cluster 2 to 3 (Structural)

−0.04 0.19

(0.11) (0.32)

Nodal Covariate Mixing: Latent

Cluster 3 to 3 (Structural)

−0.00 −0.13

(0.14) (0.32)

GWESP (Fixed 0.75) 3.26∗∗∗

(0.33)

GWESP (Fixed 0.25) 0.27∗∗∗

(0.08)

Parameter estimates for the formation and dissolution models. The mixing term for resting

state are excluded because they are in Figure 7. All of the structural parameter estimates

are listed in the FM columns. The edges and GWESP parameter estimates are for the

functional connectivity in the formation and dissolution models. The LATEX code to create

this table was produced by the R package called texreg (132). ∗p < 0.05; ∗∗p < 0.01;
∗∗∗p < 0.001.

two networks was no longer observed once structural data was
included in the FM exposing the initial finding as spurious and
likely reflecting improper attribution of variance due to leaving
out the structural terms from the model.

Finally, we note that ERGM has an important advantage
over other techniques in the context of integrating functional
and structural connectivity. Indeed, previous approaches only
made use of the structural connectivity in order to predict the
functional network (71, 72) or in order to jointly estimate the
functional and structural connectivity (74–76). ERGM, however,
allows estimating the influence of structural connectivity on the
properties of the functional networks, something which, even at
the level of one patient alone, has a large enough effect to change
the significance and/or magnitude of the network’s parameter
estimates.

4.4. Solution to Problem #4: Assess
Dynamics of Change Across Time-Points,
Not Static Differences Across Time-Points
Finally, an additional advantage of this new approach is the
ability to directly analyze network dynamics over time—an issue
that is very important in the context of loss and recovery
of consciousness after severe brain injury (28, 34). In our
example data, the two STERGM models uncovered a strong
positive parameter estimates for intra-regional connectivity in
all networks, for the dissolution model, indicating that in the
process of recovery there are strong tendencies to preserve
existing edges across time. Additionally, there are four positive
parameter estimates for the formation of new edges, implying
that as our patient recovered he was more likely to establish
new connectivity within and between networks. Taken together,
the tendency of our patient to maintain existing connections

FIGURE 7 | Patient Recovery STERGM. Results for the formation (left) and dissolution (right) models over 6 months. The mixing term accounts for the inter- and

intra-regional connectivity that form over 6 months. The legend displays tints of red for significant positive parameter estimates and the significant negative parameter

estimates are colored in tints of blue. The right figure displays the dissolution model STERGM mixing term results. The coloring scheme is the same as the formation

model, but the mixing term represents the connectivity that are dissolved or preserved over 6 months. These figures are symmetric within each model because the

graphs are undirected.
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FIGURE 8 | Patient recovery STERGM. Goodness of fit plots for the formation (top) and dissolution (bottom) models. The black line marks the formation and

dissolution networks observed over time in the patient’s graphs between the first Acute session and the Chronic session; the box-and-wiskers indicate the model data

obtained from the 1000 simulations of each model (see section 2.6).

and develop novel ones might well explain why we observed
a tendency over time for the “natural” density of networks to
increase throughout recovery. It should also be pointed out
that while we did not find any negative parameter estimate
in the dissolution model, a significant negative estimate could
be interpreted as evidence for neural reorganization, another
important advantage of ERGM in the context of DOC [e.g., (95)].

4.5. Limitations
It is important to consider two important limitations of the work
above. First, we have presented the use of ERGM in the context
of a single patient. On the one hand, ERGM was specifically
developed to allow meaningful analysis of single graphs. Indeed,
unlike neurosciences and other experimental biological and
behavioral sciences, some fields do not typically have multiple
graphs to compare (e.g., multiple subjects, multiple time-points),
but rather have a single graph from which meaningful inferences
are drawn [e.g., sociology; (2), transportation (6), and public
health (4)]. On the other hand, although—formally—inferences
could be legitimately drawn from a single case, in the context of
DoC and clinical work, brain-derived network analyses reflect

much of the heterogeneity of the underlying conditions, thus
making inferences drawn from individual cases questionable in
their generality and applicability to other patients. Furthermore,
at this initial stage, there are no baseline or control measurements
against which to compare one patients’ parameters derived from
the (ST)ERGM. Second, because of the pragmatics and reality
of clinical work, acute scans, which happened in an in-patient
setting, were performed on a 3 Tesla Siemens TimTrio system
while follow-up MR data were acquired in an out-patient setting,
on a 3 Tesla Siemens Prisma system. The impact of such a variable
on themodel parameters remains to be assessed in larger samples,
including in healthy volunteers. We thus leave it to future cohort
studies to interpret in detail the significance of the specific ERGM
and STERGM parameters with respect to the issue of loss and
recovery of consciousness after severe brain injury.

5. CONCLUSIONS AND FUTURE WORK

Network analyses are an attempt to synthesize complex processes
into a small number of metrics. In this paper we have introduced
a novel [in the context of DOC, for other contexts within
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neuroimaging, cf.: (89–91)] approach to estimating network
properties, ERGMs, which overcome four important challenges
faced by current graph theoretic approaches to brain data and
which are particularly consequential in the context of DOC.
The main advantage of ERGM over current approaches is the
fact that it adopts a multiple regression framework in lieu of
multiple parallel simple regressions (i.e., one per each metric).
Under this multiple regression framework, brain networks can
be compared across densities—since the density of each will be
controlled for within the model. This side-steps the issue of
having to impose the same arbitrary sparsity across networks
which are likely to have very different stable levels of density,
as is the case, for example, between severely brain injured
patients and controls or in longitudinal recovery. Similarly, by
including in a unified model structural and functional data,
it is possible to acknowledge and control for the fact that
patients surviving severe brain injury are likely to have very
heterogeneous brain pathology and thus profound differences
in structural substrate—a fact that is currently ignored in the
extant literature. Even in one patient alone, direct comparison of
the conventional PM with the FM demonstrated how failing to

consider structural information can lead to spurious results and
erroneous conclusions. Furthermore, ERGM can be extended to
assess dynamics of change thus allowing to discover the network
evolution that govern loss and recovery of consciousness over
time, as opposed to comparing static graphs at different time-
points.

Finally, we end this paper by pointing out that the reader
can implement (ST)ERGM as performed here using the freely
distributed ergm package (40) in R and the Markov Network
Toolbox [MoNeT; (116)] in MATLAB.
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A Heartbeat Away From
Consciousness: Heart Rate
Variability Entropy Can Discriminate
Disorders of Consciousness and Is
Correlated With Resting-State fMRI
Brain Connectivity of the Central
Autonomic Network
Francesco Riganello 1,2*†, Stephen Karl Larroque 1*†, Mohamed Ali Bahri 3, Lizette Heine 4,

Charlotte Martial 1, Manon Carrière 1, Vanessa Charland-Verville 1, Charlène Aubinet 1,

Audrey Vanhaudenhuyse 5, Camille Chatelle 1, Steven Laureys 1 and Carol Di Perri 1,6

1Coma Science Group, GIGA-Consciousness, University & Hospital of Liege, Liege, Belgium, 2 Research in Advanced

NeuroRehabilitation, Istituto S. Anna, Crotone, Italy, 3GIGA-Cyclotron Research Center in vivo Imaging, University of Liege,

Liege, Belgium, 4Centre de Recherche en Neurosciences, Inserm U1028 - CNRS UMR5292, University of Lyon 1, Bron,

France, 5 Sensation & Perception Research Group, GIGA-Consciousness, University & Hospital of Liege, Liege, Belgium,
6Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom

Background: Disorders of consciousness are challenging to diagnose, with inconsistent

behavioral responses, motor and cognitive disabilities, leading to approximately 40%

misdiagnoses. Heart rate variability (HRV) reflects the complexity of the heart-brain

two-way dynamic interactions. HRV entropy analysis quantifies the unpredictability and

complexity of the heart rate beats intervals. We here investigate the complexity index

(CI), a score of HRV complexity by aggregating the non-linear multi-scale entropies over

a range of time scales, and its discriminative power in chronic patients with unresponsive

wakefulness syndrome (UWS) and minimally conscious state (MCS), and its relation to

brain functional connectivity.

Methods: We investigated the CI in short (CIs) and long (CIl) time scales in 14 UWS and

16 MCS sedated. CI for MCS and UWS groups were compared using a Mann-Whitney

exact test. Spearman’s correlation tests were conducted between the Coma Recovery

Scale-revised (CRS-R) and both CI. Discriminative power of both CI was assessed with

One-R machine learning model. Correlation between CI and brain connectivity (detected

with functional magnetic resonance imagery using seed-based and hypothesis-free

intrinsic connectivity) was investigated using a linear regression in a subgroup of 10 UWS

and 11 MCS patients with sufficient image quality.

Results: Higher CIs and CIl values were observed in MCS compared to UWS. Positive

correlations were found between CRS-R and both CI. The One-R classifier selected CIl
as the best discriminator between UWS and MCS with 90% accuracy, 7% false positive

and 13% false negative rates after a 10-fold cross-validation test. Positive correlations
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were observed between both CI and the recovery of functional connectivity of brain areas

belonging to the central autonomic networks (CAN).

Conclusion: CI of MCS compared to UWS patients has high discriminative power and

low false negative rate at one third of the estimated human assessors’ misdiagnosis,

providing an easy, inexpensive and non-invasive diagnostic tool. CI reflects functional

connectivity changes in the CAN, suggesting that CI can provide an indirect way to

screen and monitor connectivity changes in this neural system. Future studies should

assess the extent of CI’s predictive power in a larger cohort of patients and prognostic

power in acute patients.

Keywords: heart rate variability entropy (HRV), disorders of consciousness (DOC), unresponsive wakefulness

syndrome/vegetative state (UWS/VS), minimally conscious state, functional connectivity, resting-state fMRI,

machine learning

INTRODUCTION

Disorders of consciousness are a spectrum of
pathologies affecting one’s ability to interact with the external
world. They are increasingly becoming a worldwide health
concern, whether of traumatic (1, 2) or non-traumatic (3–6)
cause, with its share of ethically challenging questions including
life and death decisions (7–9). Indeed, differential diagnosis
of the clinical entities of disorders of consciousness raises
crucial ethical and medical issues, including pain treatment and
end-of-life decisions (8, 10, 11).

Despite the definition of such a unified name, these disorders
are in fact covering a broad population of very heterogeneous
pathologies with diverse etiologies, injuries and outcomes. This
heterogeneity can make them hardly distinguishable in the
clinical practice (9), leading to a reported misdiagnosis rate
between 33 and 41% for the clinical consensus (12, 13). Although
the clinical characterization of disorders of consciousness can
now be more reliably assessed using specifically designed
scales such as the Coma Recovery Scale-Revised (CRS-R) (14),
practicing them requires a specific training of the physicians
and, although lower, might still induce diagnosis errors inherent
to any behavior-based clinical assessment due to the patient’s
possible inability to respond (13). Indeed, these assessments
rely on observing the patient’s motor actions, and their absence

Abbreviations: ACC, anterior cingulate cortex; AC-PC, anterior commissure -

posterior commissure; ANOX, anoxic; ANS, autonomic nervous system; ARCA,

cardiac arrest; BOLD, blood-oxygen-level dependent; CAN, central autonomic

network; CI, complexity index; CIl, complexity index in the long term (average of

multiscale entropies from 6 to 10); CIs, complexity index in the short term (average

of multiscale entropies from 1 to 5); CNS, central nervous system; CRS-R, Coma

Recovery Scale – Revised; CSF, cerebro-spinal fluid; ECG, electrocardiogram; EPI,

echo-planar imaging; FFT, Fast Fourier Transform; fMRI, functional magnetic

resonance imagery; GM, grey matter; HEM, hemorrhagic; HRV, heart rate

variability; ICC, intrinsic connectivity contrast; LOC, Lateral Occipital Cortex;

MCS, minimally conscious state; MFG, middle Frontal Gyrus; MNI, Montreal

Neurological Institute; MPFC,Medial Prefrontal Cortex;MRI, magnetic resonance

imagery; MSE, multiscale entropy; MTG, middle Temporal Gyrus; PCC, posterior

cingulate cortex; PPG, photoplethysmographic; SE, sample entropy; SPL, Superior

Parietal Lobule; STG, Superior Temporal Gyrus; TBI, traumatic brain injury; UWS,

unresponsive wakefulness syndrome, previously persistent vegetative syndrome

(PVS); WM, white matter.

does not necessarily relate to the absence of consciousness, as
there are several other factors that might hamper the patient’s
responsiveness to the assessment (motor disabilities, language
understanding difficulties, fluctuating consciousness because of
natural awareness fluctuations or the influence of drugs side
effects, patient’s willingness to collaborate among other factors)
(13). Neuroimaging has been proposed as a complementary
tool to help in assessment and decision making for these
critical conditions (13, 15, 16). However, these techniques are
usually highly costly, complex, and time consuming. Alternative
methods, such as probing physiological signals of peripheral
organs like the heart, have been proposed to overcome these
issues (17–19).

Heart rate is defined as the numbers of heartbeats per
minute; the Heart Rate Variability (HRV) is the fluctuation
in the time intervals between adjacent heartbeats. These
fluctuations represent the output of a complex brain-heart two-
way interaction system (20–22). Indeed, HRV analysis provides
a window into the brain’s function. HRV has been observed to
rapidly and flexibly modulate response to environmental changes
and can be disrupted by neurological and non-neurological
diseases usually involving the autonomic nervous system (23–

29). The HRV recording technique is non-invasive, inexpensive

to acquire and has an excellent signal-to-noise ratio compared to

signals investigated in neuroimaging or clinical neurophysiology
(30).

HRV is analyzed in time and frequency domains and by non-

linear methods (31). In the time domain, this is quantified by
the amount of heartbeats variability observed during monitoring

periods in the range of 1min to more than 24 h. In the frequency

domain, HRV is calculated as the absolute or relative amount
of signal energy within the component bands. Fast Fourier

Transformation (FFT), Auto-regression orWavelet modeling are
used to separate the HRV into its main components: Ultra Low

Frequency (ULF), Very Low Frequency (VLF), Low Frequency

(LF), and High Frequency (HF) (31).
As the sequence of heart beats is not regular and exhibit

complex fluctuation patterns over a wide range of time scales,
HRV is better described by the mathematical chaos (32, 33),
therefore non-linear analyses are appropriate to model this type
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of time series. These analyses quantify the unpredictability and
complexity of the interbeat intervals (IBI) series. Poincare plot
(34), detrended fluctuation analysis (35), approximate entropy
(36), sample entropy (SE) (37), and multiscale entropy (MSE)
(38) are among the most commonly applied methods of non-
linear analysis used in the HRV analysis.

MSE was developed to investigate the information content in
non-linear signals at different temporal scales (coarse-graining),
using generally the SE in order to quantify the degree of
unpredictability of time series. In other words, applying MSE
on top of the HRV allows to measure the diversity of the heart
beat intervals: higher entropy indicates a more unpredictable
and diverse heart beats sequence, and conversely lower entropy
indicates a more regular and predictable heart beats. Considering
the complex brain-heart interactions system mentioned above, it
is conceivable that the HRV entropy might be a way to measure
the health status of this system, with a low value being indicative
of low reactivity to the external/internal stimulus. Indeed, MSE
on HRV was shown to be a marker of health status of biological
systems (39–41). The Complexity Index (CI) is calculated from
the MSE measures and is defined as the sum of the entropies
computed for different scales (i.e., at different levels of resolution
of the signal). The CI thus provides a scalar score, which is the
aggregation of MSE over multiple time scales, and it allows to get
insights into the integrated complexity of the measured system
(41).

Heart rate, as well as respiration rate, glands, smooth
muscles functions and biological sensors are under the control
of the Autonomic Nervous System (ANS), which is in
charge of maintaining the homeostasis without any conscious
control (42). The sympathetic (“fight or flight system”) and
parasympathetic (“rest and digest” system) branches of the
ANS have an antagonistic role and are connected to the brain
by the spinal nerves (43). By doing so, they modulate the
ANS functional status through inputs from thermoregulation,
baroreceptors, chemoreceptors, renin-angiotensin-aldosterone
balance and atrial and ventricular receptors (18, 44–46).

The Central Autonomic Network (CAN) has been proposed
as an integrative model where neural structures and heart
function are involved and functionally linked in the affective,
cognitive and autonomic regulation (47, 48). The CAN is defined
as covering the structures of the brainstem (periaqueductal
gray matter, nucleus ambiguous, and ventromedial medulla),
limbic structure (amygdala and hypothalamus), prefrontal cortex
(anterior cingulate, insula, orbitofrontal, and ventromedial
cortex) and cerebellum (22, 49, 50). Some brain regions of
the CAN (dorsolateral prefrontal cortex, mediodorsal thalamus,
hippocampus, caudate, septal nucleus and middle Temporal
Gyrus) seem to be unique to humans (51–53). The interplay
between Central Nervous System (CNS) and ANS is functionally
modeled as a setup involving the above-cited structures
connecting to the brainstem solitary tract (NTS) via feed-
forward and feedback loops. These coupled structures and their
oscillatory signals, integrated in the NTS by the efferent parts of
the vagus nerve, are coupled with organs outside the brain in a
bidirectional way. Through this two-way interaction, peripheral
oscillations, such as those in the heart, lung, immunological

system and kidney, can lead to changes in the CAN, as well as be
influenced by the CAN (54–57). HRVmeasurements are thought
to reflect heart rate interaction and ANS dynamics and, to some
extent and indirectly, higher brain functions (58–61), and thus
might be relevant for diagnostic purposes (62, 63).

In the present study, we aimed to characterize and investigate
the discriminative power of the CI in sedated patients suffering
from disorders of consciousness, more specifically diagnosed as
either unresponsive wakefulness syndrome (UWS, i.e., vegetative
state—eye opening without signs of awareness) or minimally
conscious (MCS—displaying non-reflexive behaviors) according
to the CRS-R clinical assessment. In the light of the above
mentioned studies, we hypothesized an impaired two-way brain
heart connection (due to the loss of the biological complexity
linked to physiologic mechanism) (14, 58), and consequently
lower values of CI in UWS patients on average compared toMCS.
We further expected CI values to be correlated with each patient’s
behavioral assessment as measured with the Coma Recovery
Scale Revised (CRS-R) (14). In addition, we expected the CI
measures to possess some discriminative power on the diagnosis
when used in a machine learning model such as One-R classifier,
an algorithm deriving a single association rule between the most
discriminating feature and the diagnosis classification (64).

With the aim of investigating brain regions’ involvement
in the HRV entropy, we further investigated the relationship
between the CI measures and the brain connectivity patterns,
and whether there are different patterns for UWS and MCS
that are correlated with changes in the CI values. In this
optic, we correlated, using a linear parametric regression, the
per-subject CI values with brain regions connectivity patterns
as detected by whole-brain resting-state functional magnetic
resonance imagery (fMRI). fMRI is a non-invasive technique
used to investigate the spontaneous temporal coherence in blood-
oxygen-level dependent (BOLD) signal fluctuations related to
the amount of synchronized neural activity (i.e., functional
connectivity) existing between distinct brain locations (65).
Combined with a regression of the physiological noise by
principal components analysis via aCompCor, this approach,
novel in its application to HRV studies, allows to investigate
whole brain connectivity patterns without any task and with
minimal assumptions compared to other approaches such as
cardiac gating (52, 66). Given the findings of previous studies
suggesting that CI is involved with autonomic nervous system
structures (67–69), we hypothesized that the CI values would be
correlated with brain regions belonging to the CAN, with higher
CI values being predictive of greater positive correlations in this
network.

METHODS

Participants
This study included patients diagnosed as either UWS or MCS
according to the Coma Recovery Scale - Revised (CRS-R) (14,
70) and diagnosed as either UWS or MCS who underwent
an MRI examination under Propofol sedation together with
electrocardiography (ECG) recordings. Exclusion criteria were
(i) artifacts in ECG recording (ii) ECG acquisition and
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neuroimaging examination in patients less than 2 weeks from
brain insult, (iii) large focal brain damage, i.e., >2/3 of
one hemisphere, as stated by a certified neuroradiologist, (iv)
motion parameters >3mm in translation and 3 degrees in
rotation. Additional exclusion criteria were applied for patients
included in the MRI analysis: (v) suboptimal segmentation and
normalization due to movement or metallic artifacts as stated by
a certified neuroradiologist, (vi) non gaussian-like fMRI signal
shape after denoising.

From an initial dataset of 67 sedated patients with ECG
and imaging acquisition, 37 patients were discarded because of
too many artifacts in the ECG recording. The 30 remaining
patients formed the subgroup S1 with 14 patients (7 males,
mean age 51 ± 14; 7 females, age 46 ± 18; 7 ARCA [cardiac
arrest], 2 ANOX [anoxic], 1 TBI [traumatic brain injury], 2 HEM
[hemorrhagic], 1 ANOX+TBI [anoxic and traumatic], 1 other
[metabolic, epilepsy, etc.]) being diagnosed as UWS and 16
patients (10malesmean age 44± 17; 7 females, mean age 41± 17;
all patients mean age 42± 17; 2 ARCA, 2 ANOX, 10 TBI, 1 HEM,
1 ANOX+TBI) as MCS (Table 1). For the correlation analysis
between the CI values and brain regions connectivity differences
as detected by resting-state fMRI, nine additional patients were
discarded because of movement or metallic artifact in the fMRI
data, or because of suboptimal segmentation or signal shape
during the preprocessing as stated above (additional details are
in the Supplementary Materials, Appendix B). The subgroup S2
for fMRI analysis therefore included 21 patients with 10 UWS
patients (5 males, mean age 54 ± 11; 5 females, mean age 50
± 18; 5 ARCA, 2 ANOX, 2 HEM, 1 ANOX+TBI) and 11 MCS
patients (5 males, mean age 37 ± 17; 6 females, mean age 40
± 16; all patients mean age 38 ± 16; 1 ARCA, 2 ANOX, 7 TBI,
1 HEM) (Table 1). The evolution time since the brain injury up
to the ECG/MRI assessment is described in Table 1. The patients
were matched between MCS and UWS for diagnosis, age, gender,
etiology and onset, for both subgroups.

The study was approved by the Ethics Committee of the
Faculty of Medicine of the University of Liège and written
informed consents, including for publication of data, were
obtained from the patients’ legal representatives and from the
healthy control subjects in accordance with the Declaration of
Helsinki.

Sedation Protocol
Patients were sedated to reduce the severity of movement
artifact during the fMRI data acquisition. The sedation was
obtained by Propofol infusion keeping the concentration to
a minimum [average: 1.7µg/mL, range: [1, 2.5] µg/mL]
(71). The sedation was administered through intravenous
infusion by a target-controlled infusion system [Diprifusor,
pharmacokinetic model of Marsh et al. (72), Alaris TM,
Alaris Medical Belgium B.V., Strombeek-Bever, Belgium] in
order to obtain constant plasma concentration. Propofol was
chosen for immobilization purpose for its short induction
and recovery times, and because generally it does not need
additional sedatives (73). Moreover is one of the most available
anesthetic agent with common clinical application and well-
established safety as well as being well-studied (74). There

is also preliminary evidence that Propofol has also might
not significantly reduce the residual resting-state functional
connectivity observed in UWS and MCS patients (71). During
data acquisition, the patients wore headphone and earplug. The
stability of their vital parameters was controlled by continuous
monitoring of blood pressure, ECG, respiration and pulse-
oximetry.

ECG Procedure
ECG Data Acquisition
Electrocardiographic activity was recorded during the 10min of
fMRI data acquisition using the scanner’s built-in equipment.
The cardiac cycle was monitored by a photoplethysmographic
sensor (PPG) placed on the right index finger and ECG’s
three leads positioned on the chest of the patients (leads I,
II, and III are used and acquired in parallel via the ECG
channels to display a prominent peak of the QRS ECG
complex).

ECG Data Preprocessing
The ECG signal and PPG was cleaned of noise using a
FFT filter without detrending (SigView software; http://www.
sigview.com/). The series of consecutive intervals between
heartbeats (tachogram) were extracted from ECG and PPG.
After a visual analysis for ectopic beat or missing data, the
MSE was calculated and analyzed to measure the complexity
of the nonlinearity and non-stationary properties of the
signal using the HRV Advanced Analysis software version
2.2 (75). Studies demonstrated that PPG and ECG measures
have superimposable results in the temporal and frequency
domains and in nonlinear dynamic analyses (76). The results
between ECG and PPG signals were manually compared as an
additional sanity check about the correct acquisition of the signal
(Figure 1).

ECG Data Analysis
The MSE approach (38, 41) was applied to quantify the
degree of irregularity over a range of time scales (τ ).
The method involves the construction of coarse-grained
IBI time series and the quantification of the degree of
irregularity of each of these. We then extracted 10min
from the tachogram. The time series from τ = 1–10 were
constructed by averaging the IBI/tachogram’s data points
within non-overlapping windows of increasing length, τ

(Figure 2).
Finally, the SE was applied for each coarse-grained

constructed (37, 77) (Equation 1). The purpose of SE is to
look for patterns in a time series and quantify its degree of
predictability or regularity (77). The parameters involved in the
calculation of the SE are the dimensional phase space m and the
tolerance for accepting matches of two patterns r and were set to
m= 2 and r = 0.15 (41, 78).

SE(m, r,N) = − ln
φm+1(r)

φm(r)

Equation (1): SE: Sample Entropy; m: distance between time
series points to be compared; r: radius of similarity; N: length of
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TABLE 1 | Demographic information of patients.

ID CRS-R

diagnosis

CRS-R

total score

CRS-R

subscore

Etiology Age Days

since onset

1 UWS 3 S101100 OTHER 15–24 18

2 UWS 3 S001101 ANOX 55–64 21

3 UWS 3 S001101 ARCA 65–74 31

4 UWS 4 S002101 ARCA 55–64 24

5 UWS 4 S001201 ANOX+TBI 45–54 46

6 MCS 5 S102101 TBI 15–24 38

7 MCS 5 S030101 HEM 45–54 30

8 UWS 5 S201101 ARCA 35–44 733

9 UWS 5 S102101 ARCA 65–74 18

10 UWS 5 S002102 ARCA 65–74 43

11 MCS 6 S012102 TBI 15–24 31

12 UWS 6 S111102 ARCA 45–54 37

13 UWS 6 S102102 HEM 55–64 248

14 UWS 6 S101202 ARCA 45–54 101

15 UWS 6 S111201 TBI 25–34 1017

16 MCS 7 S302101 ARCA 45–54 209

17 MCS 7 S230101 TBI 25-34 534

18 UWS 7 S102202 HEM 45-54 353

19 UWS 8 S112202 ANOX 15-24 462

20 MCS 9 S311211 TBI 15–24 432

21 MCS 10 S232201 TBI 35–44 1294

22 MCS 10 S331102 ANOX 25–34 2407

23 MCS 10 S115201 TBI 45–54 220

24 MCS 11 S305201 TBI 25–34 561

25 MCS 11 S305102 ANOX 15–24 624

26 MCS 12 S305202 TBI 15–24 660

27 MCS 13 S335101 TBI 35–44 319

28 MCS 15 S345102 ANOX+TBI 45–54 2086

29 MCS 16 S345202 ARCA 45–54 290

30 MCS 16 S335212 TBI 55–64 4322

In bold: patients included in fMRI analysis (S2 group). Days since onset: evolution time since the brain injury up to the ECG/MRI acquisition. CRS–R subscore represent the subitems

scores of the best CRS–R during the period of assessment (in order: “S” prefix for subscore then auditory, visual, motor, oromotor/verbal, communication and arousal scores). The

rejection details for the patients discarded from the fMRI analysis are available in the Supplementary materials (Appendix B).

ARCA, cardiac arrest; TBI, traumatic brain injury; HEM, hemorrhagic; ANOX, anoxic.

the time series; φ: probability that points m distance apart would
be within the distance r.

The CI of the MSE is calculated as the area under the SE time
scale curve (Equation 2).

CI =

N
∑

i=1

SE(i)

Equation 2: CI summations of quantitative values of the Sample
Entropy of N coarse-grained time scale.

The CI provides insights into the integrated complexity of a
system, over a range of time scales of interest. The summations of
quantitative SE values over time scales 1–5 and over time scales
6–10 represent the complexity index calculated in short (CIs) and
long time scales (CIl), respectively (41), corresponding to high
frequency (0.15–0.4Hz) and low frequency band (0.04–0.15Hz)
respectively.

MRI Procedure
MRI Data Acquisition
All structural and functional images of the MCS and UWS
patients were acquired on a 3 Tesla Siemens Magnetom TrioTim
magnetic resonance image machine at the University Hospital of
Liège.

Structural Imaging
A high-resolution T1-weighted image was acquired for each
patient (T1-weighted 3D gradient echo images using 120 slices,
repetition time= 2,300ms, echo time= 2.47ms, voxel size= 1×
1× 1mm3, flip angle= 9 degrees, field of view= 256× 256mm²)
in order to allow for precise segmentation and coregistration as
well as denoising.

Resting-state fMRI
Multislices T2∗-weighted fMRI images were obtained during
10min for each patient by using Echo Planar Imaging (EPI)
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FIGURE 1 | ECG/PPG data extraction and data analysis. First, the signal’s QRS complex peaks are detected from ECG and PPG signals, from which the interbeat

intervals are extracted. These intervals are used to produce an interbeat (IBI) series, showing in x axis the interval counter since the start, and as y-axis the duration of

this interval. From this IBI series, the Sample Entropy is calculated over multiple time windows: first the standard Sample Entropy on each interval, then the Sample

Entropy on the average of n intervals, allowing to compare the entropy of blocks of intervals instead of only the sudden change in between two consecutive intervals.

Finally, these multiscale entropy values are averaged five by five into the Complexity Indices, one for the short time scale and one for the long time scale.

FIGURE 2 | Coarse graining procedure. (A) scale 2, (B) scale 3, where the “x” series is the original IBI and the “y” is the new time series constructed through an

averaging of the data points. For τ = 1 the course-grained scale is the original IBI sequence; A corresponds to the time series τ = 2, B corresponds to the time series

τ = 3.

sequence with axial slice orientation (300 volumes, 32 slices,
voxel size = 3.0 × 3.0 × 3.75 mm3, repetition time =

2,000ms, echo time = 30ms, flip angle = 78◦, field of
view = 192mm, matrix size = 64 × 64 × 32, delay = 0,
slice order = sequential descending). As a standard protocol,
all subjects were instructed to keep their eyes closed and
not to think of anything in particular. Head motion was
restricted by placement of a comfortable padding around each
participant’s head, and earplugs and headphones were placed
on the patient’s ears. The first three initial volumes were
automatically discarded by the MRI scanner (dummy scans)

to allow for longitudinal magnetization to reach steady-state
(79).

MRI Data Pre-processing

Structural imaging
Structural (T1∗-weighted) MRI images were manually reoriented
to the anterior commissure/posterior commissure (AC-
PC) scheme and then normalized and segmented into
gray matter, white matter, cerebrospinal fluid, skull, and
soft tissue outside the brain, using the “old segmentation”
module and standard tissue probability map of Statistical
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Parametric Mapping 12 (SPM12) (www.fil.ion.ucl.ac.uk/
spm).

Resting-state fMRI
Functional volumes were first manually reoriented and
coregistered to the structural images, and then preprocessed by
using SPM12 (SPM, RRID:SCR_007037). First, the EPI volumes
were corrected for the temporal difference in acquisition
among different slices using the slice timing correction module
with the reference slice set to the first temporal slice, and
then the images were realigned for head motion correction
using a two-steps procedure: (1) realignment to the first
volume and creation of the mean image, (2) then all images
were realigned to the mean EPI image. The mean EPI image
across all realigned volumes was then auto-coregistered to the
structural image. Then the structural image was segmented
into three tissues: gray matter (GM), white matter (WM), and
cerebro-spinal fluid (CSF) in the subject’s space, producing as a
by-product of the segmentation the parameters of the transform
from the subject’s space to Montreal Neurological Institute
(MNI) space. This transform was then used to normalize
the structural image, the co-registered EPI images and the
segmented tissues. Finally, all the coregistered and normalized
EPI images were smoothed with an isotropic Gaussian kernel
(8mm full-width-at-half-maximum). A manual inspection of
the whole BOLD timeseries motion was conducted from the
SPM motion file to exclude any subject where the translational
head displacement was greater than 1mm, or if the rotational
displacement was greater than 0.1 radians. With the aim of
reducing loss of signal or whole subjects exclusion due to motion
artifacts (80), we used the “scrubbing” technique from the ART
toolbox (Artifact Detection Tools, RRID:SCR_005994)1 for
artifactual volume detection and rejection using a composite
motion measure (largest voxel movement) with a “liberal”
threshold (global threshold 9.0, motion threshold 2.0, use
scan-to-scan motion and global signal). With this approach,
a volume was defined as an outlier (artifact) if the largest
voxel movement detected was above the specified thresholds.
We subsequently included outliers in the global mean signal
intensity and motion as nuisance regressors (i.e., one regressor
per outlier in the first-level general linear model). Thus, the
temporal structure of the data was not disrupted. Several
parameters were included in a linear regression using CONN
v17F (Connectivity Toolbox, RRID:SCR_009550) and SPM12 to
remove possible spurious variances from the data. These were
(i) six head motion parameters obtained in the realigning step,
(ii) scrubbing the outlier scans detected by ART’s composite
motion measure, (iii) non-neuronal sources of noise estimated
using the anatomical component-based noise correction method
[aCompCor; (81, 82)], which consists in regressing out the
representative signals of no interest from subject-specific white
matter and cerebro-spinal fluid, which were the top five principal
components (PCA) from the white matter and the top five from
cerebrospinal fluid per-subject mask (81). Then the residual time

1NITRC: Artifact Detection Tools (ART): Tool/Resource Info. Available at: https://

www.nitrc.org/projects/artifact_detect/ (Accessed March 1, 2018).

series were linearly detrended (no despiking) and temporally
band-pass filtered (0.008–0.09Hz) using CONN’s denoising
procedure.

Statistical Analyses
ECG Statistical Analyses
In both the entire patient group S1 and the subgroup undergoing
fMRI analysis S2, the CIs and CIl measures average per MCS
and UWS groups were compared using a Mann-Whitney exact
test. Correlation between the CRS-R total score—the sum of all
CRS-R items of the best assessment over a week—with the CIs
on one hand, and between the CRS-R total score and CIl on the
other hand was analyzed using the Spearman’s correlation test.
Significance of tests was set to p<0.05.

Machine Learning Model
WEKA (Waikato Environment for Knowledge Analysis,
RRID:SCR_001214), an open source toolbox for machine
learning analysis (64) 2 was used to assess the discriminative
power of the CI measures by a machine-learning model called
the One-R classifier (83), with the objective of predicting the
CRS-R diagnosis of UWS or MCS given a patient’s CI measures.
The retained CRS-R diagnosis was the final best diagnosis over
a week of CRS-R assessments. One-R (83) is a fast and very
simple algorithm deriving a one level decision tree. It operates
by generating a separate rule for each individual attribute of
the dataset (CIs and CIl) based on error rate. To generate
the rule, each attribute is discretized into bins calculating the
percentage that each class (MCS and UWS) appears within
each bin. Finally, the rule for the final decision tree is chosen
by selecting the attribute with minimum error to perform
the diagnostic classification. This algorithm was chosen as it
reported the best results in our case while being the most simple
and thus robust model after running multiple simulations with
various machine learning algorithms known to derive efficient
models for diagnosis (84), the results of these simulations are
available in the supplementary materials (Appendix A). The
dataset used to generate the model consisted of the CIs and
CIl values of the S1 group, and the objective was to predict the
patient’s diagnosis (UWS or MCS). To assess the performance
of this model in generalization, a 10-fold cross-validation test
(85) was conducted, thus the S1 group was split into 10 parts of
equal number of patients, and the model was learnt on 9 parts
and tested on the 10th part. This process was performed 10
times in total to use each part as the test set at some point, and
metrics were calculated as the average over all 10 tests. Several
metrics were calculated on both the 10-fold cross-validation test
results, the S1 subgroup results and the S2 subgroup results such
as the sensitivity (rate of MCS correctly classified), specificity
(rate of UWS correctly classified), false positive and negative
rates of MCS and UWS classification, accuracy (MCS and
UWS predicted conditions), F1-score (86) [a measure of the
test’s accuracy that takes in consideration the harmonic mean

2Weka 3 - Data Mining With Open Source Machine Learning Software in Java.

Available online at: https://www.cs.waikato.ac.nz/ml/weka/ (Accessed April 27,

2018).
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of sensitivity and its precision also called the Dice similarity
coefficient, ranging values between 0 [worst precision and
sensitivity] and 1 [perfect precision and sensitivity]]and the
Matthews Correlation Coefficient (87) [a correlation coefficient
between the observed and predicted binary classifications,
ranging values between 1 [perfect prediction], 0 [random
prediction], and −1 [total disagreement between prediction and
observation]].

Resting-state fMRI Analyses
Functional magnetic resonance imaging is a non-invasive
technique used to investigate the spontaneous temporal
coherence in blood-oxygen-level dependent (BOLD) signal
fluctuations related to the amount of synchronized neural
activity (i.e., functional connectivity) existing between distinct
brain locations (65)

With the aim of investigating the possible brain connectivity
changes associated with a change of the CI values, we conducted
a whole-brain resting-state fMRI functional connectivity analysis
using a seed-to-voxel correlation analysis to observe changes in
correlation of the BOLD signal in the whole brain with respect
to the specified seed regions. Using CONN, we extracted from
fMRI BOLD time series from a region of interest (the seed) and
measured the temporal correlation between this signal and the
time series of all other brain voxels. We have also conducted
a voxel-to-voxel analysis by correlating the activity of all fMRI
BOLD voxels to all other voxels via the Intrinsic Connectivity
Contrast [ICC; in Conn toolbox; (88, 89)] as a quantification
measure of global brain connectivity. In short, ICC quantifies the
degree, including positive and negative correlations, of each voxel
with all other brain voxels, which is then standardized against
the average voxel degree as the mean and variance 1 to derive a
Z-score. In other words, a positive ICCmeans that a brain region
is significantly more connected to the rest of the brain compared
to the average voxel connectivity.

The seeds were defined as spheres of 5mm radius around the
peak coordinates of main structures of the ANS/CAN (90): the
Superior Temporal Gyrus (STG) [−44, −6, 11] & [44, −6, 11],
the Dorso-Lateral PreFrontal Cortex (DLPFC) [−43, 22, 34] &
(22, 34, 42), the Fronto-Insular cortex (FI) [−40, 18,−12] & [42,
10, −12], the Paracingulate cortex (PC) [0, 44, 28], the anterior
cingulate cortex/mesioprefrontal cortex (ACC/MPFC) [−1, 54,
27], the posterior cingulate cortex/precuneus (PCC/precuneus)
[0, −52, 27], cerebellum [−4, −56, −40], thalamus [−4, −12,
0],[4, −12, 0]. Their coordinates have been taken from previous
studies in order to avoid circularity (16). We used the averaged
time series to estimate whole brain positive correlation r maps,
and the t-test contrasts. In the design matrix, we applied a
contrast to regress out the average connectivity of MCS and
UWS patients and to highlight any connectivity difference that is
correlated only with the complexity index. We did two different
correlation tests for CIs and CIl.

Finally, we examined global brain connectivity patterns
(without a priori seed) between each voxel and the rest of the
brain using the ICC measure. We used the same design matrix
to highlight only the connectivity differences correlated only with
CIs and then CIl.

Age standardized to unitary standard deviation and centered
to the mean was used a regressor of nuisance in the design
matrices for both the seed-based and the hypothesis-free
analyses.

Statistical results were generated with CONN and considered
significant with multiple comparison correction at the
topological level with non-parametric permutation test cluster-
mass p-FWE < 0.1 and with primary voxel-wise threshold
p-uncorrected < 0.001 with 1000 iterations. CONN 17f was
patched with a permutation test patch to allow for generalized
permutation of residuals (https://www.nitrc.org/forum/message.
php?msg_id=23131). The significant regions names were
derived from the Harvard-Oxford atlas (Harvard - Oxford
Cortical Structural Atlas, RRID:SCR_001476), using bspmview
tool 3 Visualizations were generated using CONN, MRIcron
(RRID:SCR_002403), NiLearn (RRID:SCR_001362) (91), Python
(Python Programming Language, RRID:SCR_008394) and an
in-house python script (https://github.com/lrq3000/neuro-
python-plotting).

RESULTS

In the S1 group, when comparing the CI values of MCS and
UWS patients, higher values of CIs (z = −3.346, p < 0.001) and
of CIl (z = −4.095, p < 0.0001) were observed for the MCS
group compared to the UWS group (Figures 2, 3). A stronger
correlation was found between the CRS-R total score and CIl
(Spearman’s rho= 0.671, p < 0.0001) compared to the moderate
correlation between CRS-R total score and CIs (Spearman’s rho
= 0.579, p < 0.001) (Figure 5). The results of the S1 group
are superimposable to the subgroup S2 who underwent fMRI
analysis. In the S2 subgroup, higher values of CIs (z = −3.063,
p = 0.002) and of CIl (z = −3.556, p < 0.001) were observed
in the MCS group compared to the UWS group (Figure 3). A
stronger correlation was found between the CRS-R total score
and CIl (Spearman’s rho = 0.676, p < 0.001) compared to
the moderate correlation between CRS-R total score and CIs
(Spearman’s rho= 0.619, p= 0.003) (Figure 5).

Using the machine learning One-R classifier, the CIl was
selected as the most discriminating feature for the diagnostic
classification of MCS and UWS patients. The model’s accuracy
in the classification of MCS and UWS patients was 93%, with
a correct classification of MCS and UWS of 94 and 93%
respectively (Table 2). The false positive (UWS as MCS) and
false negative (MCS as UWS) rates were 7 and 6% respectively.
F1-score and Matthews Correlation Coefficient were 94 and 0.87
respectively, evidencing a high performance of the model in the
diagnostic classification. Superimposable results were obtained in
the 10-fold cross-validation test (Table 2), with an accuracy of
90% and a correct MCS and UWS classification of 88 and 93%
respectively. The false positive and false negative rates were 7 and
13% respectively.

These results showed that most MCS patients displayed more
complex HRV patterns compared to UWS patients. In addition,

3BSPMVIEW|bspmview. Available online at: http://www.bobspunt.com/

bspmview/DOI 10.5281/zenodo.168074 (Accessed March 1, 2018).
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FIGURE 3 | Complexity Index statistical analysis comparing UWS and MCS patients summarized as a box plot. Higher values of CIs (z = −3.346, p < 0.001) and of

CIl (z = −4.095, p < 0.0001) were observed for MCS group compared to UWS using Mann–Whitney’s test. The 1st row compares the entire group of patients S1

(n = 30), while the 2nd row compares the subgroup of patients S2 (n = 21) who underwent fMRI analysis. The 1st column represents the complexity index (CI) in short

time scale, while the 2nd column is for the long time scale. White boxes represent MCS patients; gray boxes the UWS patients. The boxes range from Q1 to Q3, while

the whiskers are defined at the 1.5 interquartile range, and the black lines are the medians, points are outliers.

the CI measures showed strong discriminative power when used
to predict the diagnosis of a patient. Under the frame of the brain-
heart two-way interaction and with the aim to observe how this
complexity is linked to the brain activity, we investigated the
resting state fMRI of a subset of 24 patients who had sufficient
image quality to ensure successful analysis. We chose to focus
on only positive correlations, using one-sided statistical test and
multiple comparison correction at the cluster level with non-
parametric permutation test (Figure 6). Both CI were positively
correlated with an increase of the brain’s functional connectivity
in CAN regions. Increased values of CIs were associated with
increased connectivity between the Fronto-Insular cortex with
the Superior Frontal Gyrus and between the Paracingulate cortex
with two clusters covering the inferior and middle Temporal
Gyrus, the Frontal Operculum and the Insular cortex. CIl values
positively correlated with an increase of connectivity between
the Paracingulate cortex with the right Frontal Pole, between
the Superior Temporal Gyrus (STG) with the Superior Parietal
Lobule (SPL) and finally between the Dorso-Lateral PreFrontal
Cortex (DLPFC) located in theMiddle Frontal Gyrus (MFG)with
the left and right Frontal Pole. The Anterior Cingulate Cortex, the

Medial Prefrontal Cortex, the Thalamus and the Cerebellum did
not show significant results. Statistical tables are available in the
Supplementary materials (Appendix B).

The ICC showed a positive correlation between the CIs and
the intrinsic connectivity (i.e., an overall connectivity with the
rest of the brain) in a cluster covering the Middle Temporal
Gyrus (MTG) and the STG and between the CIl and the intrinsic
connectivity of the MFG. Of interesting note, both the seed-
based and the hypothesis-free analyses found an increase of
connectivity in the STG and MFG correlated with an increase
of CI. By comparing only the functional connectivity of MCS
to UWS patients, without CI measures, no significant results
were found except for the ICC analysis (see the Supplementary
materials, Appendix B).

DISCUSSION

We investigated the HRV and more specifically the CI of
the MSE in MCS and UWS sedated patients, tested its
discriminative power for diagnosis and investigated the possible
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TABLE 2 | One–R classifier results and confusion matrix.

Confusion Matrix Classifier: One-R

MCS (true) MCS as UWS

(false negative)

15 1

1 13

UWS as MCS

(false positive)

UWS

(true)

Rule:

CIl < 4.876 →UWS

CIl ≥ 4.876→ MCS

Test dataset results

Full training test

(S1 group)

10-fold

cross-validation

fMRI test

(S2 subgroup)

True positive (MCS) rate (%) 94 88 92

True negative (UWS) rate (%) 93 93 100

False negative rate (%) 6 13 8

False positive rate (%) 7 7 0

Precision MCS classification (%) 94 94 100

Precision UWS classification (%) 93 87 91

accuracy (%) 93 90 95

F1-score (%) 94 90 96

Matthews Correlation Coefficient[−1:1] 0.87 0.80 0.91

The confusion matrix is based on the S1 group. The One-R classifier is a simple machine learning decision tree model that derives a single rule from the single most contributing

parameter to predict the patient’s diagnosis. This model deduced that the long term complexity index (CIl ) is the best predictor of patient’s diagnosis, with a threshold of ∼4.9, below

which the patient should be diagnosed as unresponsive (UWS) and above as minimally conscious (MCS). The 10-fold cross-validation test shows that this model is quite robust and

reliable, with 90% accuracy, 7% false positive rate, 13% false negative rate and a F1-score, combining both accuracy and recall, of 90%. For comparison, a baseline Zero-R rule always

predicting MCS as the diagnosis would have an accuracy of 53% on the S1 group dataset. Additional machine learning models and results can be found in the Supplementary materials

(Appendix A).

neural correlates sources of CI modulation via a resting-state
fMRI analysis. The present study is the first to show that
baseline HRV entropy, more specifically the CI, can be a reliable
predictor of the clinical level of consciousness, and furthermore
the first to estimate the direct relationship between CI and CRS-R
and between CI and the brain functional connectivity using
simultaneously acquired resting-state fMRI.

Group-wise, we found higher values of CI in MCS patients
compared to UWS patients (Figure 3). This difference was
observed for both the CIs (linked to the parasympathetic
modulation) with moderate significance and the CIl (linked to
the sympathetic modulation) with strong significance. Moreover,
the values of CI were correlated to the CRS-R total score
(Figure 5), with MCS patients generally displaying a higher-end
CI value compared to UWS patients, with only UWS patients
having CI values in the lower-end (Figures 4, 5).

To assess the discriminative power of CI for disorders of
consciousness, we built a machine learning model based on
the One-R rule association algorithm, using both CI as input
features, with the objective to predict whether a patient is
MCS (positive condition) or UWS (negative condition). The
One-R algorithm derives a single rule from the single most
contributing parameter to predict the patient’s diagnosis. This
classifier deduced that CIl was the best predictor of patient’s
diagnosis, with a threshold of ∼4.9, below which the patient
should be diagnosed as UWS and above as MCS. According
to the best standards in machine learning for neuroimagery,
we conducted a 10-fold cross-validation test to evaluate the
generalizable performance of this model (85) (Table 2), which
showed that this model is quite robust and reliable, with 90%

accuracy, 7% false positive rate, 13% false negative rate and
a F1-score, combining both accuracy and recall, of 90%. For
comparison, a baseline Zero-R rule always predicting MCS as
the diagnosis would have an accuracy of 53% on the S1 group
dataset. Thus, the model reported a high accuracy performance,
while having low false positive and negative rates compared to
the CRS-R gold standard. Since the One-R model is a very simple
classifier with a linear decision frontier based on only one feature,
this suggests that CIl is a highly discriminative measure for UWS
and MCS. Considering the much higher misdiagnosis rate of
about 40% by human assessors not using the CRS-R, even after
nation-wide efforts to reduce it (12, 13), and considering the
very simple machine learning model used here, these results
strongly suggest that heart rate CI might have an application as a
complementary assessment tool andmight help physician in their
decision process by providing a supplementary hypothesis-free
evaluation of the patient’s state of consciousness.

Finally, the fMRI analysis reported a positive correlation
between the CI and the connectivity in several brain areas
belonging to the CAN/ANS (Figure 6), using both seed-based,
thus guided, approach and voxel-based, thus hypothesis-free,
approach. Indeed, the voxel-based ICC results showed that, even
without any a priori about the spatial location of connectivity
changes associated with higher CI values, we could observe that
higher CI values were associated with brain regions belonging to
the CAN/ANS.

Many studies have reported the potential usefulness of
HRV analysis (in both time and frequency domains, as well
as non-linear analysis) in consciousness studies (18, 19, 92).
They observed better autonomic response to specific stimuli
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(i.e., music, visual, acoustic), higher sympathetic activation,
modulation in peak of the low frequency band or ratio between
low and high frequency power in MCS than in UWS (93–101).

FIGURE 4 | Dispersion graph of CIl and CIs. This shows that the repartition of

patients relatively to the CI is defined by the diagnosis, with UWS patients

usually on the lower-end and MCS patients on the higher-end, showing some

degree of linear separability. White circles and diamonds represent MCS

patients; black circles and diamonds the UWS patients. Diamonds represent

the patients discharged for the fMRI analysis (i.e., only included in S1, n = 30)

while the circles are the patients included in the fMRI analysis (S2 group,

n = 21). Outlined in red are patients in subacute state (i.e., with MRI

acquisition between 2 and 4 weeks from brain insult).

A greater HRV responsiveness in time and frequency domains
to emotional stimuli than to non-emotional stimuli has been
observed in MCS patients compared to UWS (97) and similarly
for nociceptive stimuli (92) and auditory oddball tasks (102).

In the frequency domain, modulation of sympathetic response
(observed by the normalized unit of low frequency) has been
associated to musical stimuli (selected to elicit specific emotional
response) in UWS patients (95), MCS patients and healthy
subjects (93), allowing the experimenters to classify the subjects’
emotional responses as positive or negative. For acute traumatic
patients, pre-hospital low entropy has been associated with
mortality, independently of GCS score or Injury Severity Score
(103). MSE measured within the first 24 h can identify trauma
patients at increased risk of subsequent hospital death (69)
and predict robustly within 3 h of admission the death of the
patients occurring days later (104). SE has proved useful for
rapid identification of trauma patients with potentially lethal
injuries (105). In pediatric patients, the reduction of heart rate
dynamics was shown to correlate negatively with disease severity
and outcome (106).

However, few studies have reported results in the non-
linear domain (i.e., approximate entropy, sample entropy,
multiscale entropy, etc.) in chronic patients with disorders of
consciousness. In these few studies, lower values of approximate
and sample entropy have been reported in UWS than MCS
patients compared to healthy subjects following musical stimuli
with increasing structural complexity (107, 108). Studies with
anesthetized healthy subjects have reported decreased entropy
during anesthesia (109, 110). Decreased sample entropy and
approximate entropy values have also been reported in UWS and
MCS compared to healthy subjects (103, 105).

We here investigated the HRV of mostly chronic
patients with disorders of consciousness by using the
MSE, which is a non-linear analysis that can capture

FIGURE 5 | Dispersion graphs of the correlation between CRS-R total score and CI. This shows the per-subject CI value relatively to the patient’s CRS-R total score.

Both CIl (Spearman’s rho = 0.671, p < 0.0001) and CIs (Spearman’s rho = 0.579, p < 0.001) were correlated with the CRS-R total score. S1 (diamond and circle

markers, n = 30) and S2 (circle markers, n = 21) groups were compared for CIs (left) and CIl (right). White circles represent MCS patients; black circles the UWS

patients. Diamonds represent the patients discharged for the fMRI analysis while the circle markers represent the patients included in the fMRI analysis (S2 group).
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FIGURE 6 | Resting-state fMRI analysis results of the parametric regression between CI and UWS/MCS patients’ connectivity changes in the S2 group (n = 21). Top

row shows the seeds: Fronto-Insular (FI, red), Paracingulate cortex (PC, blue), Superior Temporal Gyrus (STG, magenta), Dorso-lateral prefrontal cortex (DLPFC,

green). Middle rows show the seed-based analysis results, with same colors as the seeds, and effect size as box plots (range Q1-Q3, whiskers interquartile 1.5, black

line as median, black triangle as mean, points as outliers), first with the CI in short time scale (CIs) and then long time scale (CIl). We can see a positive correlation of

the CIs with the connectivity between FI with Superior Frontal Gyrus (red) and between PC with two clusters covering the Temporal Gyrus (inferior and middle), the

Frontal Operculum and the Insular Cortex (blue). The CIl is positively correlated with the connectivity between PC and the right Frontal Pole (blue), between STG with

the Superior Parietal Lobule (magenta) and between DLPFC and the left and right Frontal Poles (green). Bottom rows show the hypothesis-free intrinsic connectivity

correlation (ICC) results, with a positive correlation between values of CIs and an increase of intrinsic connectivity of the posterior Middle Temporal Gyrus (pMTG) and

posterior STG (orange); and a correlation between CIl and an increase of intrinsic connectivity in the Middle Frontal Gyrus (MFG) (yellow). Statistical significance was

considered at permutation of residuals test cluster-mass p-FWE< 0.1 and primary threshold p-uncorrected < 0.001.
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a wider dynamic range of interaction between heart
and brain than simple entropy or variability in the
linear (time) or spectral (frequency) domains, and
therefore potentially bear more diagnostic and prognostic
information.

Indeed, cardiovascular signals are largely analyzed using
traditional time and frequency domain measures, however these
measures are not capable of measuring dynamic changes in the
autonomic control of the heart rate, thus failing to account
for important properties related to multiscale organization and
brain-heart non-equilibrium dynamics (111–113).

The brain-heart dynamic processes, that characterize the
cardiac signal output, can be described as non-linear, non-
stationary, asymmetric and with multiscale variability (i.e.
small perturbation can cause large effects, the system’s output
has dynamical properties that can change over time, the
system dissipates energy as it operates far-from-equilibrium,
and exhibits spatio-temporal patterns over a range of scales)
(114).

In contrast, these dynamic processes in healthy conditions
exhibit complex fluctuations that are reduced or absent in
pathological conditions, where we can observe less complex
outputs (115) expressed by an increased randomness (e.g., in a
subject with atrial fibrillation) or augmented periodicity (e.g., in
UWS patients).

Our results in the non-linear domain showing higher
CI in MCS than UWS are in line with the above-cited
literature and further characterize the complexity of brain-
heart interactions. Our findings are also highly significant
compared to previous studies using other types of analysis
(100, 107, 108, 116). This confirms that the extra information
extracted using non-linear analyses can lead to better differential
diagnosis with high discriminative power, even higher than
that of the clinical consensus without CRS-R (13), which
can potentially be applied to clinical practice in a near
future.

Several fMRI studies on healthy subjects have shown
the complexity of interaction of the heart with the Central
Autonomic Network (22, 52, 53, 117, 118). Valenza and
colleagues have shown that the insular cortex, frontal gyrus,
lateral occipital cortex, paracingulate and cingulate gyrus and
precuneus cortices, as well as subcortical structures including
the thalamus are involved in the modulation of the CAN/ANS
network-mediated cardiovascular control (119). The causal,
directed interactions between brain regions at rest (brain-
brain networks) and between resting-state brain activity and
the ANS outflow (brain-heart links) have been studied by
Duggento et al. (120) showing that the amygdala, hypothalamus,
brainstem and, among others, medial, middle and superior
frontal gyri, superior temporal pole, paracentral lobule and
cerebellar regions are involved in modulating the CAN. Previous
studies reported that CIs is probably linked to the vagal control
of HRV, while CIl seems to be more related (although not
exclusively) to the sympathetic control of HRV (41, 78, 121,
122).

While most of these studies used active tasks paradigms or
cardiac gating to investigate HRV (52, 66), the fMRI results

of our study extend the previous findings by offering a new
approach with two innovations: (1) by studying the resting-state
connectivity changes, after the regression of physiological noise
by principal components analysis via aCompCor, rather than
by using an active paradigm or cardiac gating, which allows to
estimate how the CI relates to the baseline cognitive abilities of
the patient; (2) by investigating the direct correlation between the
heart rate’s complexity modulation (as measured by the CI) with
the brain areas connectivity in regions involving the autonomic
system, in order to identify some of the cerebral sources
of HRV modulation. We found that both CIs and CIl are
linked to the brain’s functional connectivity of the CAN/ANS,
with higher CI values being correlated with a recovery of
CAN/ANS faculties. Indeed, by looking at the effect sizes,
we can observe that the correlation is positive in MCS and
usually close to null for UWS, suggesting a recovery of
real positive connectivity in MCS as compared to UWS. Of
note, we observed that the DLPFC, which seem to be a
component of the CAN unique to humans (52, 53, 123), had
a greater connectivity with the Frontal Poles correlatively with
the CIl.

This highlights that (impaired) complex brain-heart
interactions characterize chronic patients with disorders or
consciousness, and that the CI can reflect these connectivity
changes at resting state, in the form of a scalar value summarizing
the connectivity changes of multiple regions of the CAN/ANS.
This further suggests that the CI could potentially be used as a
fast, inexpensive and entirely non-invasive method of screening
andmonitoring connectivity changes in the CAN/ANS networks.
Combined with the observation of a high discriminative power
using a model as simple as the one rule association of the
One-R machine learning model, CI could represent a very
interesting alternative for medical centers that cannot afford
expensive MRI machines as well as for highly busy medical
centers as a preliminary screening method. Furthermore,
this method can work even for patients with extensive brain
damages that might prevent neuroimagery methods from
functioning.

Although less practical and affordable than ECG, future
studies should investigate whether screening directly the
functional connectivity change patterns in the CAN might
also yield predictive value for the diagnosis, although we
expect with less sensitivity than the CI. Indeed, our fMRI
results suggest that the CI measures reflect an aggregation of
various functional connectivity changes in the CAN, which
allows for increased sensitivity compared to any single seed
analysis.

Interestingly, one of the three UWS patients with a high CI
evolved into a MCS state one year later after the assessment
considered here. The CI measures might prove clinically relevant
not only for diagnosis but also as outcome predictors. Future
studies to assess the prediction power the CI measures are
warranted.

This study is however not free of limitations. As patients
suffering from disorders of consciousness notably move a
lot (e.g., spasms, spasticity) and since fMRI data are very
sensitive to movement, Propofol was here used in low doses

Frontiers in Neurology | www.frontiersin.org September 2018 | Volume 9 | Article 76989

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Riganello et al. HRV Entropy, Consciousness and CAN

in order to avoid movement artifacts during the fMRI scan
acquisition, as required by clinical practice. HRV entropy
is known to be profoundly affected by general anesthesia
and it can play more roles in the monitoring of anesthetic
depth (124). SE decreases after induction of anesthesia (110)
and decrease of HRV entropy following Sevoflurane and
Propofol anesthesia (109) has been observed. However, there
is preliminary evidence that sedation might not exert a
significant influence on the resting-state functional connectivity
of UWS and MCS patients, since the impairment following
the brain injury somehow overshadows the sedation effect (71,
125).

The ECG used in this study was acquired simultaneously
to MRI, as was the standard procedure at the time at
the Hospital of Liège. It would however be interesting for
future studies to additionally acquire ECG outside of MRI
acquisitions, which would be useful to derive additional metrics
and assess the possible influence of MRI auditory noise on
resting-state ECG. Indeed, a previous work observed that MCS
patients show a phase shift of their cardiac cycle to global
regularities in auditory signal (102), thus it is conceivable that
the auditory noise induced by a MRI machine might impact
the ECG.

Recently, there were a few findings about the circadian
rhythm and body temperature fluctuations in disorders of
consciousness, finding that several parameters such as the
HRV, the body temperature and the circadian rhythm are
correlated with the prognosis (126, 127). Furthermore, the
preliminary results from an ongoing work investigating the
day-to-night variations of the HRV in disorders of consciousness
seem to indicate that the circadian cycle impacts directly
the HRV, with more difference between groups being
highlighted during the day. If this is confirmed on a bigger
sample, this would indicate that ECG acquisition should be
preferentially done during the day, as was done in our study
(128).

Although the difficulty to recruit and analyze such a
challenging population of patients should be noted, the relatively
limited number of patients, heterogeneity of their etiology and
time of disease onset can represent a limit for this study.
For instance, outcome studies have highlighted that there is
a correlation between the etiology and the final diagnosis
(129). Due to the heterogeneity of our cohort of patients, a
characterization of etiology is not possible. Future studies with a
larger cohort of patients are needed to evaluate the relationship
between the heart rate CI measures and the etiologies. The
CIl threshold found by the OneR classifier seems to be quite
stable according to the 10-fold cross-validation test, but this
threshold should be confirmed in practice on a larger population
and on multiple centers in order to account for inter-scanners
variability. Furthermore, we used the CRS-R diagnosis as the gold
standard for most analyses and notably machine learning, which,
like other behavior-based clinical assessment methods, might
produce false negative errors as explained in the introduction,
as previous studies observed UWS patients retaining covert
consciousness (13, 130, 131). Finally, for the fMRI analysis,
the CI, being based on the HRV, correlation with brain

regions connectivity results might be partly influenced by blood
irrigation variation.

CONCLUSION

Our findings show that the MSE analysis of HRV and in
particular the CI could be a useful tool to measure the
degree of complexity in the brain-heart interaction and the
response of the CAN/ANS systems to external stimulations.
With the CI being correlated and even predictive of the clinical
level of consciousness as assessed by the CRS-R, this could
represent a fast, effective, inexpensive, and particularly easy to
use tool to evaluate the level of consciousness in patients with
disorders of consciousness. In particular, our findings show
that CI has potential to be a useful supporting metric in the
differential diagnosis between UWS and MCS, as well as a
way to monitor patients’ consciousness and brain connectivity
evolution, in particular with patients that cannot be assessed with
neuroimagery because of artifacts or extensive brain damage.
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The assessment of behavioral responsiveness in patients suffering from chronic disorders 
of consciousness (DoC), including Unresponsive Wakefulness Syndrome (UWS) and 
Minimally Conscious State (MCS), is challenging. Even if a patient is unresponsive, he/she 
may be covertly aware in reason of a cognitive-motor dissociation, i.e., a preservation of 
cognitive functions despite a solely reflexive behavioral responsiveness. The approach of 
an external stimulus to the peripersonal space (PPS) modifies some biological measures 
(e.g., hand-blink reflex amplitude) to the purpose of defensive responses from threats. 
Such modulation depends on a top-down control of subcortical neural circuits, which 
can be explored through changes in cerebral blood flow velocity (CBFV), using func-
tional transcranial Doppler (fTCD) and, thus, gaining useful, indirect information on brain 
connectivity. These data may be used for the DoC differential diagnosis. We evaluated 
the changes in CBFV by measuring the pulsatility index (PI) in 21 patients with DoC  
(10 patients with MCS and 11 with UWS) and 25 healthy controls (HC) during a passive 
movement and motor imagery (MI) task in which the hand of the subject approached 
and, then, moved away from the subject’s face. In the passive movement task, the PI 
increased progressively in the HCs when the hand was moved toward the face and, 
then, it decreased when the hand was removed from the face. The PI increased when 
the hand was moved toward the face in patients with DoC, but then, it remained high 
when the hand was removed from the face and up to 30 s after the end of the movement 
in the patients with MCS (both MCS+ and MCS−) and 1 min in those with UWS, thus 
differentiating between patients with MCS and UWS. In the MI task, all the HCs, three out 
of four patients with MCS+, and one out of six patients with MCS− showed an increase–
decrease PI change, whereas the remaining patients with MCS and all the patients with 
UWS showed no PI changes. Even though there is the possibility that our findings will 
not be replicated in all patients with DoC, we propose fTCD as a rapid and very easy tool 
to differentiate between patients with MCS and UWS, by identifying residual top-down 
modulation processes from higher-order cortical areas to sensory-motor integration 
networks related to the PPS, when using passive movement tasks.

Keywords: peripersonal space, chronic disorders of consciousness, transcranial ultrasound, motor imagery, 
cerebral blood flow
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inTrODUcTiOn

Patients with chronic disorders of consciousness (DoC), includ-
ing unresponsive wakefulness syndrome (UWS) and minimally 
conscious state (MCS), show a deterioration of the awareness 
of self and the environment despite a preserved wakefulness 
(1, 2). The differential diagnosis between these two entities is 
essentially based on clinical scales [including the JFK Coma 
Recovery Scale-Revised (CRS-R)] (3) that focus on the level of 
behavioral responsiveness to different types of stimuli (4). While 
patients with UWS disclose no voluntary behavioral responses, 
individuals with MCS show variable signs of consciousness and 
are subcategorized into MCS+ and MCS− based on the level of 
complexity of observed behavioral responses. Specifically, the 
former shows command following, intelligible verbalization or 
gestural or “intentional communication,” while the latter only 
shows minimal levels of behavioral interaction (i.e., non-reflex 
movements) (5).

Nonetheless, making the distinction between MCS and 
UWS patients is challenging, as reflected by the high misdi-
agnosis rate (6). Indeed, the clinical presentations of these two 
entities can be relatively similar in many cases, although hav-
ing different levels of awareness, and discriminating between 
reflexive and willful behavior can be difficult (7). In fact, the 
clinical assessment can be biased by several sources of false 
negative results, including abnormalities in brain arousal and 
attention, sensory and motor output impairment, language 
comprehension, restraining and immobilizing techniques, and 
pain (8–10). These aspects can determine clinical conditions 
that have been labeled as MCS*, cognitive-motor dissociation, 
Functional Locked-In Syndrome, Vegetative State with hid-
den consciousness or with preserved islands of consciousness  
(5, 11–16), in which a behaviorally unresponsive patient is 
covertly aware, i.e., aware but unable to manifest it (owing to, 
e.g., a severe motor impairment, with particular regard to the 
motor cortico-thalamocortical circuits) (17).

Therefore, advanced paraclinical approaches complementing 
the clinical assessment, including functional neuroimaging and 
neurophysiology, aimed at demonstrating covert willful behavior 
(e.g., by looking at task-dependent and task-independent brain 
activation as compared to that observed in conscious healthy 
controls) could help in DoC differential diagnosis. About that, 
the evaluation of the peripersonal space (PPS) may be useful. 
PPS defines the region of space immediately surrounding the 
body in which objects can be grasped and manipulated. It has 
been observed that a stimulus approaching the PPS provokes a 
more vigorous defensive reaction than a homologous stimulus 
outside the PPS (18–23). This modulation depends on a cortico-
thalamo-brainstem top-down control of the bottom-up informa-
tion (arousing, in turn, the top-down control) (20, 21). Thus, any 
difference in behavioral response should be the result of some 
stimulus becoming salient through a voluntary top-down pro-
cess (24). At the same time, the assessment of behavior-related 
brain responses may disclose useful information, albeit indirect, 
on the degree of deterioration of the cortical-thalamocortical 
connectivity in patients with DoC and, thus, on the level of 
awareness.

An easy and quick way to study PPS and the related top-down 
control may consist of the assessment of its neurovascular func-
tion by using functional transcranial doppler (fTCD) sonography. 
fTCD represents an extension of the standard TCD, allowing to 
assess the modulation of cerebral hemodynamics during brain 
activation paradigms, e.g., the execution of motor tasks, motor 
imagery (MI), and sensory stimulation (25–27). In fact, mental 
and motor activities augment regional metabolism and modify 
auto-regulatory mechanisms that, in turn, influence cerebrovas-
cular resistance, thus resulting in an increase in cerebral blood 
flow velocity (CBFV) (28–32). By measuring CBFV, it is possible 
to estimate functional connectivity subserving the execution of 
a motor task, given that cerebral blood flow indirectly assesses 
the functional connectivity among the hubs constituting brain 
networks while transferring information across brain regions 
(33). In fact, cerebral blood flow is proportionate to the func-
tional connectivity strength in a connection–distance dependent 
fashion and to the level of behavioral performance (33). fTCD 
has a low spatial resolution and is an easy tool in comparison 
to more sophisticated devices [including functional magnetic 
resonance imaging (fMRI) and electroencephalography (EEG)], 
it is non-invasive, readily available, easily repeatable, and has an 
excellent temporal resolution (5 ms) to document hemodynamic 
changes (34).

To the best of our knowledge, no study has yet investigated 
hemodynamic changes related to PPS perturbation by using 
fTCD. This study aims to measure the modulation of CBFV 
related to stimuli approaching the PPS-face; these hemodynamic 
changes should reflect the level of integrity of the top-down 
cortical-thalamo-brainstem pathways and, indirectly, the level of 
awareness.

MaTerials anD MeThODs

Participants
Twenty-two patients with DoC attending our neurorehabilitation 
units (12 males and 10 females, mean age 52 ± 17 years, range 
19–73; MCS: 53 ± 16 years; UWS: 54 ± 18 years; 11 patients were 
in a UWS—disease duration 9 ± 6 months and 10 in an MCS—
disease duration 8 ± 4 months) were consecutively included in 
the study. The DoC diagnosis was based on the neurobehavioral 
assessments (performed twice a day for 1 month before the assess-
ment for study eligibility, using the CRS-R) (35) and the available 
functional studies (neuroimaging and EEG). Only five patients 
previously underwent advanced analyses, which furnished results 
in keeping with the clinical diagnosis. Moreover, patients with 
MCS were categorized into MCS+ and MCS− based on the level 
of complexity of observed behavioral responses (response to the 
command, intelligibly verbalization, and intentional communi-
cation) (5).

Persons with hemodynamic stenosis of neck vessels (as 
measured by cervical and TCD ultrasound to exclude hemo-
dynamically significant stenosis in the target territory), cardio-
vascular/hemodynamic instability, severe spasticity that limits 
upper limb movements, hypo/hypercapnia, and vasodilatory 
or vasoconstrictor drug treatment, were excluded from the 
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Table 1 | Clinical–demographic characteristics.

age (years) gender bi DD (months) crs-r rF Treatment

MCS+ (n = 4) 63 M V 6 18 1.7 B, A

25 M V 12 17 5.7 B

65 F T 16 16 2 AED

63 M T 7 16 1.7 B, LD

MCS− (n = 6) 53 F V 6 14 4.7 B, LD

56 F T 6 12 None B, LD, A

64 M T 8 14 1.6 LD

54 M T 5 11 3.8 AED, A

62 F V 7 9 None LD, A

20 M V 7 9 2 B

Mean ± SD 53± 6M 5T 8± 14±
16 4F 5V 4 3

UWS (n = 11) 67 M T 8 6 1 B, LD, AED, A

60 M T 6 6 2 LD, A

19 M V 5 6 4 B, AED

65 M T 7 6 2.6 LD, AED

53 F T 18 5 3.7 LD, AED, A

73 M V 24 5 4.7 B, LD, AED, A

20 M V 4 5 2.4 AED

65 F T 7 4 4.7 LD, AED, A

55 F T 6 4 5.7 AED

57 M T 6 4 None B, LD

59 F V 6 3 2.6 B, A

Mean ± SD 54± 7M 7T 9± 5±
18 4F 4V 6 1

Mean ± SD 54± 7M 7T 9± 5±
18 4F 4V 6 1

BI, etiology of brain injury; CRS-R, Coma Recovery Scale-Revised; DD, disease duration; F, female; M, male; MCS, Minimally Conscious State; T, traumatic; UWS, Unresponsive 
Wakefulness Syndrome; V, vascular; RF, risk factors (1. physical inactivity, 2. tobacco, 3. blood lipids, 4. hypertension, 5. obesity, 6. family history, 7. diabetes, 8. coagulopathies);  
LD, l-DOPA; AED, antiepileptic drugs; A, analgesics; B, baclofen; (+), patients with MCS+.
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study. fTCD measurements were compared with 25 healthy 
control subjects (HC) (11 males and 14 females, mean age 
55 ± 15 years, range 25–75), who did not show hemodynamic 
stenosis of neck vessels and did not take vasodilatory or vaso-
constrictor drugs. The clinical and demographic characteristics 
are shown in Table 1. The level of behavioral responsiveness 
was assessed using the CRS-R (which was performed twice 
a day for 1 month before study inclusion by two trained and 
experienced neurologists). The best CRS-R score observed was 
used for the analyses. The research followed the principles of 
the Declaration of Helsinki and was approved by the Ethics 
Committee of the Institute. HC and the legal surrogates of 
patients with DoC gave their written informed consent to 
participate in the study.

experimental Procedure
The participant was lying supine on a bed, in a quiet and mild-
lighted room, with the eyes open (CRS-R arousal protocol 
guaranteed this in patients with DoC). The right upper limb 
was lying along the trunk with the palm facing up, the right 
arm in a position that allowed the forearm to move toward the 

eyes (without touching the face) (Figure  1). Blood pressure 
(from left upper limb) and heart rate (HR) were continuously 
monitored. The subjects were provided with two motor tasks in 
random order. In the “passive movement” task, an experimenter 
mobilized the right upper limb across five different positions, so 
as to move the hand toward and backward the face, i.e., forearm 
extended on the arm (p0 = 180°), forearm flexed on the arm at 
90° (p1), forearm flexed on the arm at 10° (p2), and then going 
back to 90° (p3), and 180° (p4) (Figure 1A). The speed of passive 
movements was kept as constant as possible. Each movement 
occurred every 15 heartbeats. During each stationary period,  
the examiner kept hold of the participant’s forearm. This experi-
ment was performed to verify the role of the two afferent path-
ways (optic and proprioceptive) in the modulation of cerebral 
hemodynamic responses.

In the “motor imagery” task, all participants were instructed 
to mentally perform an upper limb flexion movement toward the 
face (i.e., from p0 to p2) and an extension movement backward the 
face (i.e., from p2 to p4) (Figure 1B). Each movement occurred 
every 15 heartbeats. This experiment was conducted to evaluate 
whether and how MI affects cerebral hemodynamics.

97

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive


FigUre 1 | Summarizes the experimental paradigm. Concerning passive 
movement task (a), the subject was verbally instructed to keep the eyes 
open, to relax, and to be prepared to be moved the right upper limb from 
trunk toward the face and vice versa. The speed of passive movement was 
kept as constant as possible. When the hand reached a predetermined 
position (p), the examiner kept hold of the participant’s forearm up to the next 
movement onset, which occurred every 15 heartbeats. Concerning motor 
imagery task (b), the subject was provided with two sequential instructions, 
provided every 15 heartbeats: (i) move your right hand toward the face and 
keep hold of it, and (ii) came back where you started. All instructions were 2 s 
in length and presented by loudspeakers.
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As a control experiment, we performed a condition in which 
the experimenter’s hand entered the PPS-face, without actual 
movement of the subject of his or her own body in 10 out of 25 
HCs. fTCD was recorded during this task with the same modali-
ties of the “passive movement” task.

By using fTCD, we measured the pulsatility index (PI) from 
the middle (MCA), anterior (ACA), and posterior (PCA) cerebral 
artery at rest (p0rest) and during the entire motor task. The resting 
condition (p0rest) allowed the establishment of the regulatory 
parameters for subsequent sessions. We also measured PI from 
MCA 30 (p5) and 60 s (p6) after the end of the passive movement 
(p5 and p6 being identical to p0). The main experiments were 
repeated twice, to control for any variation within the subjects, 
averaging the results obtained from the two trials. The fTCD 

recording was performed twice for each intracranial vessel. The 
head was held in place by a headrest to minimize head move-
ments. All HCs were asked to avoid caffeine, alcohol, and nicotine 
for 24 h before the measurement, due to these substances well-
known effects on vascular reactivity (36).

Functional Transcranial Doppler
Functional transcranial Doppler was performed by using a 
conventional color-coded ultrasound system equipped with 
a 2–5  MHz phased array transducer (iU22 Philips, Healthcare 
Solutions, Bothell, WA, USA). The examination was performed 
through the left temporal acoustic bone window and with  
the transducer placed anteriorly to the tragus and upwards of the 
zygomatic arch. The fTCD probe was fixed on the head of the 
participant by using a hard hat to guarantee the same displace-
ment over the measures and conditions. The peak systolic velocity 
(PSV), end-diastolic velocity, mean velocity (Vm), and PI were 
measured for each intracranial vessel and were averaged. Age- 
and gender-corrected PI was calculated, according to the formula 
(PSV − EVD)/Vm.

statistical analysis
Pulsatility index and HR modulation were analyzed by using an 
ANOVA with the factors: hand-position (six levels for passive 
movement: p0 → p1, p1 → p2, p2 → p3, p3 → p4, p4 → p5, and 
p5 → p6; two levels for MI: p0 → p2 and p2 → p4), task (two levels: 
passive movement and MI), and group (three levels: HC, MCS, 
and UWS). We did not aim at assessing the differences between 
the fTCD of the three main brain vessels as no between-vessel 
differences have been reported (25, 26). A p-value  <  0.05 was 
considered significant. Conditional on a significant F-value for 
the hand-position factor, post hoc t-tests were performed for each 
group and motor task (with Bonferroni correction, α = 0.0125). 
The Greenhouse–Geisser method was applied to compensate for 
the possible effects of non-sphericity in the compared measure-
ments. All data are presented as mean ± SD or as percent changes, 
where appropriate.

Given that the patients with vascular brain damage frequently 
have long-lasting vascular risk factors (such as arterial hyperten-
sion), which may affect cerebral hemodynamics and modify the 
mechanisms of cerebral vascular autoregulation (including the 
limits within the standard window of autoregulation), brain injury 
etiology and cardiovascular risk factors were included as covari-
ates in the multivariate analysis. β values [standardized regression 
coefficients (SRCs)], which is a measure of how strongly each 
predictor variable influences the criterion (dependent) variable, 
are provided. The higher the β value, the greater the impact of the 
predictor variable on the criterion variable. If the β coefficient 
is equal or nearly to 0, then there is no relationship between the 
variables.

Clinical-electrophysiological correlations (among CRS-R, PI, 
and HR) were assessed by using the Spearman correlation test.

In the context of single-subject sensitivity analysis, we 
employed a linear regression model; SRCs were considered as 
direct measures of sensitivity. The sensitivity and specificity of 
the electrophysiological measures employed to distinguish accu-
rately between MCS and UWS were calculated by measuring the 
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FigUre 2 | Shows mean (±SD; vertical error bar) pulsatility index (PI) values during passive movement (PM) and motor imagery (MI) tasks for each group [healthy 
controls (HC), minimally conscious state (MCS), and unresponsive wakefulness syndrome (UWS)] across the hand positions (p) explored. There was a significant 
difference at p0 (baseline) between the PI values of HCs and patients with disorders of consciousness (p < 0.001), and between patients with MCS and UWS 
(p = 0.01). PM induced a significantly different PI modulation at each p among the groups (p < 0.001). On the contrary, MI induced a significant increase of PI at p2 
and decrease at p4 only in the HCs. *Refer to the significance of intragroup PI change at each p as compared to the previous one (Bonferroni corrected p-value, 
***p < 0.001, **p = 0.001, *p < 0.0125).
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area under the curve (AUC) of receiver operating characteristic 
(ROC). Finally, intraindividual variability between the trials was 
also calculated in terms of SD of the individual’s scores over the 
trials, thus reflecting the degree of within-person fluctuation over 
time. Higher scores reflected greater variability.

resUlTs

All the participants completed the experimental study without 
any side effect. Clinical, neurobehavioral, and functional study 
data were all concordant in the same patient for the diagnosis of 
either MCS or UWS. At baseline (p0rest), all the patients showed 
higher PI and HR values than HC individuals did (p < 0.001). 
Moreover, PI and HR values at rest were higher in patients with 
UWS than with MCS (p  =  0.01), with no differences between 
MCS+ and MCS− (p  >  0.1) (Figures  2 and 3; Table S1 in 
Supplementary Material). Nonetheless, some patients with MCS 
and UWS diverged from this trend, showing lower/higher PI and 
HR values (Table S1 in Supplementary Material). An example of 
CBF from the left anterior, middle, and posterior cerebral arteries 
at rest in one HC, one patient with MCS, and one patient with 
UWS is provided in Figure 4.

Motor imagery and passive movement tasks yielded sig-
nificantly different effects on PI [task × group × hand-position 
F(12,516)  =  17, p  <  0.001]. In detail, passive movement task 
determined significantly different changes of PI across the 
hand positions between the groups [group  ×  hand-position 
F(10,430)  =  26, p  <  0.001; group F(2,86)  =  24, p  <  0.001; hand-
position F(5,215)  =  21, p  <  0.001]. In fact, all the HCs showed 
significant changes of PI values across the hand positions 
[hand-position effect F(5,120) = 138, p < 0.001], according to the 
following schema: p0  <  p1  <  p2  >  p3  >  p4  ≈  p5  ≈  p6, with 
p3 ≈ p1 and p0 ≈ p4 ≈ p5 ≈ p6 (Figures 2 and 5; Table S1 in 
Supplementary Material; Table  2). All the patients with MCS 

showed significant changes of PI values across hand positions 
[hand-position effect F(5,45) = 6.9, p < 0.001], with a pattern that 
differed from that observed in the HC: p0 < p1 < p2 > p3 ≈ p4 
≈ p5 > p6 (where p6 ≈ p0). There were no significant differences 
between patients with MCS+ and MCS− (group effect p = 0.2). 
Instead, all the patients with UWS showed a global increase of 
PI during the passive motor (PM) task, without the significant PI 
modulation according to the following pattern: p0 < p1 < p2 ≈ 
p3 ≈ p4 ≈ p5 ≈ p6 (hand-position effect p = 0.7). Therefore, the PI 
increased when the hand was moved toward the face in patients 
with DoC, as observed in the HCs. However, PI remained high 
when the hand was removed from the face, differently from what 
observed in the HCs. Further, the high levels of PI lasted up to 
30 s after the end of the movement in patients with MCS (both 
MCS+ and MCS−) and 1 min in those with UWS. An example 
of CBF changes from the left middle cerebral artery across the 
positions (p) explored during the PM task in one HC, one patient 
with MCS, and one patient with UWS is provided in Figure 5. 
Intraindividual variability between the two trials was very low in 
all the participants (p < 0.005).

Motor imagery task significantly influenced the PI across hand 
positions between the groups [group × hand-position F(10,430) = 10, 
p < 0.001; group F(2,86) = 11, p < 0.001; hand-position F(1,43) = 19, 
p  <  0.001]. Indeed, all the HCs showed significant changes of 
PI values across the hand positions (p) according to the follow-
ing schema: p0 <  p2 >  p4, with p0 ≈  p4 [hand-position effect 
F(1,43) = 48, p < 0.001] (Figures 2 and 6; Table S1 in Supplementary 
Material; Table  2). Such a pattern was barely appreciable in 
the MCS group (hand-position effect p =  0.06), in which three 
patients out of four with MCS+ and one patient out of six with 
MCS− showed such pattern. Thus, we found no significant intra-
MCS difference (p = 0.1), although the PI modulation in the three 
patients with MCS+ was greater than that observed in the patient 
with MCS−. On the other hand, PI modulation was absent in all 
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FigUre 3 | Shows mean (±SD; vertical error bar) heart rate values [in beats per 
minute (bpm)] during passive movement (PM) and motor imagery (MI) tasks for 
each group [healthy controls (HC), minimally conscious state (MCS), and 
unresponsive wakefulness syndrome (UWS)] across the hand positions (p) 
explored. There was a significant difference at p0 (baseline) between the bpm 
values of HCs and patients with disorders of consciousness (p < 0.001), and 
between patients with MCS and UWS (p = 0.01). PM induced a significantly 
different bpm modulation at each p among the groups (p < 0.001). On the 
contrary, MI did not induce any significant bpm change. *Refer to the significance 
of intragroup pulsatility index change at each p as compared to the previous one 
(Bonferroni corrected p-value, ***p < 0.001, **p = 0.001, *p < 0.0125).

FigUre 4 | Shows the transcranial Doppler waveforms (on the right) from left middle (MCA), anterior (ACA), and posterior (PCA) cerebral arteries at rest in a 
representative subject for each group (HC, MCS, and UWS). Flow velocity (in centimeter per second, right vertical bar) are provided.
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the patients with UWS (hand-position effect p = 0.7). An example 
of CBF changes from the left middle cerebral artery across the 
positions (p) explored during the MI task in one HC, one patient 
with MCS, and one patient with UWS is provided in Figure 6. 
Intraindividual variability between the two trials was very low in 
all the participants (p < 0.005).

Heart rate during passive movement showed a pattern of 
increase from p0 to p2 and a decrease from p2 to p6 in each group 
[hand-position F(5,215) = 9, p < 0.001; group × hand-position p = 0.1; 
group p = 0.9] as suggested by the significant hand-position effect 
in HC [F(5,120) = 54, p < 0.001], patients with MCS [F(5,45) = 4.9, 
p  =  0.001] and with UWS [F(5,50)  =  6.6, p  <  0.001] (Figure  3; 
Table 3). On the contrary, HR did not significantly change during 
MI in any group (all interactions and effects p > 0.1) (Figure 3).

In the control experiment (10 subjects), in which the experi-
menter’s hand entered the PPS-face while the subject remained 
still, we did not document any significant PI changes across the 
entire range of movement.

We found a significant correlation between the best CRS-R 
score and the PI modulation during passive movement (r = 0.623, 
p  =  0.002). There were no significant effects of clinical-demo-
graphic characteristics (age, β = 0.01, p = 0.5; gender, β = 0.01, 
p  =  0.4; disease duration, β  =  0.26, p  =  0.5; and treatment, 
β = 0.13, p = 0.6) on PI changes across motor tasks, as well as an 
effect of blood pressure and HR on PI (all p > 0.1). Also, brain 
etiology (β = 0.01, p = 0.4) and risk factors (β = 0.01, p = 0.7) did 
not influence the dependent variable PI.

Concerning the sensitivity analysis, we employed a linear 
regression model; SRCs were considered as direct measures of 
sensitivity. We found that the PI changes from p0 to p2 and 
from p2 to p4 (which were the most significant intervals), were 
the most predictive values for DOC diagnosis during the pas-
sive movement task (SRC = 0.05, p = 0.01). Finally, the ROC 
analysis with PI value and CRS-R score as factors showed that 
the diagnostic accuracy of the overall PI magnitude modula-
tion during passive movement was good (AUC = 0.6), with a 
sensitivity and specificity concerning DoC category of 100%. 
In contrast, MI task-induced PI magnitude modulation was 
poorly associated with CRS-R score (AUC =  0.3) (Figure  7), 
with a sensitivity of 40% and a specificity of 100% concerning 
DoC category.
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FigUre 5 | Shows the transcranial Doppler waveforms (on the right) with color Doppler (on the left) from left middle cerebral artery during passive mobilization 
across the six hand positions (p) explored in a representative subject for each group [healthy controls, minimally conscious state (MCS), and unresponsive 
wakefulness syndrome (UWS)]. Both insonation depth (left vertical bar) and flow velocity (centimeter per second, right vertical bar) are provided.

Table 2 | Post hoc t-test concerning pulsatility index modulation at each 
hand position (p) as compared to the previous one (significant when p-value 
<0.0125), during the passive motor (PM) and motor imagery (MI) task in patients 
with minimally conscious state (MCS) and unresponsive wakefulness syndrome 
(UWS), and in healthy controls (HC). MI data of patients with UWS were not 
significant.

group PM t-Value p-Value

hand position

HC p0–p1 −8 <0.001
p1–p2 −3.9 0.001
p2–p3 2.8 0.01
p3–p4 6.6 <0.001
p4–p5 >0.1
p5–p6 >0.1

MCS p0–p1 −2.9 0.01
p1–p2 −6.5 <0.001
p2–p3 6.5 <0.001
p3–p4 >0.1
p4–p5 >0.1
p5–p6 5.1 0.001

UWS p0–p1 −7.2 <0.001
p1–p2 −3.3 0.01
p2–p3 >0.1
p3–p4 >0.1
p4–p5 >0.1
p5–p6 >0.1

group Mi t-Value p-Value

hand position

HC p0–p2 −8.2 <0.001
p2–p4 6.5 <0.001

MCS p0–p2 −2.1 0.07
p2–p4 2.3 0.04

FigUre 6 | Shows the transcranial Doppler waveforms (on the right) with 
color Doppler (on the left) from left middle cerebral artery during motor 
imagery across the two hand positions (p) explored in a representative 
subject for each group [HC, minimally conscious state (MCS), and 
unresponsive wakefulness syndrome (UWS)]. Both insonation depth  
(left vertical bar) and flow velocity (cm/s, right vertical bar) are provided.
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DiscUssiOn

To the best of our knowledge, this is the first attempt to characterize 
PPS in patients with DoC. Our data suggest that fTCD evaluation 

of PPS functions may be useful to corroborate the differential 
diagnosis of patients with DoC. In fact, all the patients with DoC 
showed an increased baseline vascular reactivity (i.e., higher PI 
and HR values) as compared to HC individuals, in keeping with 
the uncoupling of CBF and cerebral metabolic rate arising from 
reduced cerebral glucose consumption and oxygen uptake after 
extensive brain injury (37–39). Even though the patients with 
UWS showed higher PI and HR values at baseline than those with 
MCS, some patients diverged from their group trend, in that they 
had lower/higher PI and HR values. Moreover, CRS-R scores did 
not correlate with baseline PI and HR values. On the other hand, 
the assessment of CBFV during the PM task targeting the PPS 
allowed differentiating between patients with MCS and UWS. 
Even though the PI increased when the hand was moved toward 
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FigUre 7 | The power of motor task-induced cerebral blood flow velocity modulation across the hand-position employed in differentiating patients with disorders of 
consciousness is shown by the area under the receiver operating characteristic curve (AUC) for motor imagery (MI) and passive mobilization tasks.

Table 3 | Post hoc t-test concerning heart rate (HR) modulation at each hand 
position (p) as compared to the previous one (significant when p-value < 0.0125), 
during the passive motor task in patients with minimally conscious state (MCS) 
and unresponsive wakefulness syndrome (UWS), and in healthy controls (HC). 
HR data of motor imagery were not significant.

group hand position t-Value p-Value

HC p0–p1 −7.4 <0.001
p1–p2 −5.5 <0.001
p2–p3 8.2 <0.001
p3–p4 14 <0.001
p4–p5 >0.1
p5–p6 >0.1

MCS p0–p1 −3.3 0.008
p1–p2 −2.9 0.02
p2–p3 2.4 0.04
p3–p4 >0.1
p4–p5 >0.1
p5–p6 4.2 0.001

UWS p0–p1 −3.5 0.006
p1–p2 −5.1 <0.001
p2–p3 >0.1
p3–p4 >0.1
p4–p5 >0.1
p5–p6 >0.1
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the face in patients with DoC, it remained high when the hand 
was removed from the face and up to 30 s after the end of the 
movement in the patients with MCS (both MCS+ and MCS−) and 
1 min in those with UWS, thus differentiating between patients 
with MCS and UWS. This pattern of CBFV changes is in keeping 
with the protective role played by PPS toward the potential threats 
approaching body parts. This role is reflected by a more vigor-
ous defensive reactions elicited when stimuli are located inside 
rather than outside the PPS (18, 19, 21, 22). The lack of an early 
normalization of CBFV in patients with DoC may be related to 
a dysfunction in the regulation of temporized brain activity or 
in the replenishing of the metabolite levels after increased brain 
activity (40, 41). The strong impairment of brain metabolism and 

the tonic cortical and subcortical dis-excitability may account 
for the delay in CBFV normalization observed in patients with 
DoC (42–44). Additionally, a dysfunctional neurovascular cou-
pling, i.e., the close spatial and temporal relationships between 
the neural activity and CBF, also accounts for the lack of CBFV 
normalization following a task (39, 45).

Noteworthy, our findings may agree with the reported corre-
lation between the behavioral responsiveness of patients with  
DoC and the degree of cortico-subcortical connectivity break-
down and subcortical hyper-connectivity (46). In fact, the mag-
nitude and extent of PI modulation during PM task (but not the 
baseline values) were correlated with the CRS-R scoring, i.e., the 
lower and more reflex the behavioral responsiveness, the higher 
and longer the PI increase. Therefore, CBFV regulation may 
reflect the partial preservation of top-down modulation processes 
from higher-order cortical areas to sensory-motor integration 
networks related to the PPS (16, 20, 21, 24, 47, 48), in patients 
with MCS but not in those with UWS.

Interestingly, four patients with MCS (three with MCS+ and 
one with MCS−) showed a barely appreciable PI modulation dur-
ing the MI task. Studies testing MI in patients with MCS disclosed a 
high rate of false negative, i.e., a patient can have some motor 
function but does not demonstrate brain activity when asked to 
imagine a task (49–51). According to these issues, PI modulation 
during MI does not seem a very reliable method for differentiat-
ing the MCS status, but it may only furnish information about 
the differential diagnosis between MCS and UWS. The lack of 
sensitivity of PI modulation during MI task may depend on the 
nature of the brain processes related to stimuli approaching PPS, 
i.e., protective response, which is not the case of MI. Moreover, it 
is likely that that passive movement induces a neurovascular acti-
vation that is not detectable during MI, which instead represents 
an internally triggered event (52). Finally, the simplicity of the 
movement required, in comparison to the more complex MI tasks 
formerly employed (i.e., playing tennis or in-house navigation), 
could have yielded non-specific cerebral blood flow responses 
that are independent of the motor task.
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Heart rate showed a common pattern of modulation during 
passive movement task without any correlation to PI and CRS-R, 
whereas it did not change during MI. Thus, hemodynamic factors 
like HR seem to not bias PI while performing such motor tasks.

limitations
The small sample enrolled represents a main limitation of our 
study. Moreover, none of the patients with MCS had borderline 
CRS-R scores between MCS and UWS (i.e., in the range of 6–8), 
and only 2 patients with MCS had a score of 9. This issue might have 
magnified the observed fTCD differences between patients with 
MCS and UWS. Also, we did not find fTCD differences between 
MCS+ and MCS−, which may depend on the CRS-R scores the 
patients with MCS− reported (up to 14, which makes them in 
the higher boundaries of MCS−). If we had available patients 
with MCS− with CRS-R score in the range of 6–8, we could have 
differentiated patients with MCS+ and MCS−. Therefore, future 
studies with a larger number of patients, a more varied CRS-R 
score range, and long-term outcomes, should be undertaken to 
confirm the possible use of fTCD as a complementary diagnostic 
tool. Also, fMRI or PET-scans should be used to confirm our 
findings, as fTCD could represent an approach that indicates 
the subject candidates to undergo advanced and sophisticated 
neuroimaging paradigms.

Functional transcranial doppler measures CBFV rather than 
absolute cerebral blood flow. An estimation of the latter can be 
made if the diameter of the insonated vessel remains constant  
(25, 26), but there is not sufficient data to demonstrate this issue 
in our work. fTCD has an interesting temporal resolution, but 
the spatial resolution is unfortunately low so that we cannot be 
precise on spatialized cerebral hemodynamics.

We did not measure right arm electromyography to exclude 
possible voluntary muscular activity during the passive move-
ment, even though previous studies have ruled out significant 
biasing effects on CBFV of muscle activation during a passive 
movement task (25, 26).

A possible contribution from peripheral covariates (including 
beat-to-beat arterial blood pressure, HR, PaCO2, breath-by-breath 
end-tidal CO2, and the neural activation stimulus represented by 
the go-signal) could lead to the inaccurate assessment of CBFV, 
particularly during MI (25, 26). About that, blood pressure and 
HR were monitored and did not significantly correlate with PI 
values. However, a larger assessment of such peripheral covariates 
will be necessary. In fact, it would be important to specifically 
identify the presence of a dysautonomic syndrome and of other 
alteration of the mechanisms of cerebral vascular autoregulation. 
However, the blood pressure and HR (which were monitored 
during the experimental session) changed according to a com-
mon waxing–waning pattern. Moreover, brain etiology and the 
presence of risk factors (both added to the multivariate analysis) 
did not significantly influence the PI changes. Nonetheless, larger 
samples should be investigated to define these issues better.

Finally, one could be concerned that PI modification may 
be simply related to hand movement protocol rather than to 
PPS violation response. However, the condition, in which the 
experimenter’s hand entered the PPS while the upper limb of the 
participant was not moved, showed no significant PI changes. 

Therefore, it is reasonable that PI changes are related to PPS 
violation rather than to the hand movement.

conclusions
Functional transcranial Doppler could be a promising, quick, and 
easy tool for the bedside differential diagnosis between patients 
with MCS and UWS. Indeed, fTCD helps to identify CBF changes 
that are related to top-down modulation processes from higher-
order cortical areas to sensory-motor integration networks 
related to the PPS, when using passive movement tasks. Despite 
the small sample size and the simplicity of the methodology as 
compared to those more advanced (53, 54) our approach may 
also allow the clinician to identify the candidates for carrying out 
advanced and sophisticated neuroimaging tools when they are 
not readily available.
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full#supplementary-material.
Table s1 | Shows individual pulsatility index (PI) values during passive 
mobilization and motor imagery (MI) for each group [healthy controls (HC), 
minimally conscious state (MCS)±, and unresponsive wakefulness syndrome 
(UWS), with their coma recovery scale-revised score in parentheses] across the 
six positions explored and the two imagined movements (p). The patients with 
MCS whose pulsatility index values differed from those of the other individuals 
belonging to the same subgroup (MCS+ or MCS−) are highlighted in red.
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Qualitative clinical assessments of the recovery of awareness after severe brain injury 
require an assessor to differentiate purposeful behavior from spontaneous behavior. 
As many such behaviors are minimal and inconsistent, behavioral assessments are 
susceptible to diagnostic errors. Advanced neuroimaging tools can bypass behavioral 
responsiveness and reveal evidence of covert awareness and cognition within the brains 
of some patients, thus providing a means for more accurate diagnoses, more accurate 
prognoses, and, in some instances, facilitated communication. The majority of reports 
to date have employed the neuroimaging methods of functional magnetic resonance 
imaging, positron emission tomography, and electroencephalography (EEG). However, 
each neuroimaging method has its own advantages and disadvantages (e.g., signal 
resolution, accessibility, etc.). Here, we describe a burgeoning technique of non-invasive 
optical neuroimaging—functional near-infrared spectroscopy (fNIRS)—and review its 
potential to address the clinical challenges of prolonged disorders of consciousness. 
We also outline the potential for simultaneous EEG to complement the fNIRS signal and 
suggest the future directions of research that are required in order to realize its clinical 
potential.

Keywords: disorders of consciousness, functional near-infrared spectroscopy, electroencephalography, motor 
imagery, data fusion, brain–computer interface

iNTRODUCTiON

In the UK, every 3 minutes an individual is hospitalized due to a traumatic (e.g., fall, assault, motor 
vehicle accident) or non-traumatic (e.g., stroke, brain hemorrhage, anoxia) brain injury, equating 
to approximately 300,000 admissions per year.1 While many patients experience little or no long-
term effects, a significant number of patients will develop a prolonged disorder of consciousness 
(PDOC), such as a vegetative state or minimally conscious state. Patients in a vegetative state 
[also known as unresponsive wakefulness syndrome (1)] are clinically awake, with eyes open and 
preserved reflexes, yet appear to be unaware of their surroundings or of themselves [for a detailed 

1 https://www.headway.org.uk/about-brain-injury/further-information/statistics/.
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review of the PDOC states, please refer to Ref. (2)]. Patients in 
a minimally conscious state exhibit inconsistent but purpose-
ful evidence of awareness, such as visual pursuit and following 
verbal commands (3).

Partial or full recovery following severe brain injury can in 
many cases involve transitioning between each of these states 
(4). The progression is generally smooth (4) and therefore the 
difficulty lies in accurately determining and diagnosing a patient 
in a single state using qualitative clinical assessment methods. 
The need to accurately detect awareness remains a thorough 
subject of research as misdiagnoses can lead to inappropriate 
healthcare decisions (5). Standardized behavioral assessments 
are the current “gold standard” for detecting signs of awareness 
(6, 7). However, as clinicians must rely on observable behaviors 
to determine a patient’s level of awareness, it is possible that a 
significant proportion of patients can be misdiagnosed if they are 
unable to produce purposeful behaviors due to a motor impair-
ment. Indeed it has been estimated that 15% of patients (8) who 
meet the behavioral gold standard for vegetative state have a 
cognitive-motor dissociation (9) or covert awareness (10) that 
can only be detected with brain imaging.

In the first demonstration of covert command-following, 
Owen et al. asked a patient who fulfilled all clinical criteria for 
a diagnosis of vegetative state to undertake two motor imagery 
tasks in the functional magnetic resonance imaging (fMRI) scan-
ner; the first involved playing a game of tennis and the second, a 
spatial navigation task, involved imagining visiting the rooms of 
her house (11). As is seen in healthy individuals when completing 
the same tasks, significant activity was observed in the patient’s 
supplementary motor area (SMA) while imagining playing ten-
nis, and in the parahippocampal gyrus, the posterior parietal 
cortex, and the lateral premotor cortex (PMC) when imagining 
moving around her house. This brain imaging evidence of the 
patient following the commands indicated that she was aware, 
despite the fact that she was unable to demonstrate it with her 
behavior. Subsequently, by assigning each imagery task to a “yes” 
or “no” communication output, several patients have been able 
to answer a series of questions about themselves and their lives 
(12–15), hinting at the potential for brain–computer interfaces 
(BCIs) and assistive devices for this patient group. Here, a BCI is 
defined using the definition proposed by Wolpaw et al.: a device 
that “provides the brain with a new, non-muscular communica-
tion and control channel” [(16), p. 768]. In this context, a BCI 
serves to directly measure neural activity associated with the 
users’ intent and translate the recorded signals into correspond-
ing control signals for BCI applications.

Despite the success of fMRI in the field of PDOC, the technol-
ogy is limited because many patients’ reduced mobility requires 
them to be transported to advanced facilities that feature such 
equipment. Furthermore, fMRI systems are unsuitable for those 
with metallic implants, are highly sensitive to motion artifacts, 
and require patients to lay supine. A portable, inexpensive, and 
non-magnetic method for measuring the same hemodynamic 
response as measured by fMRI could be used to translate the 
successes of fMRI to the bedside.

The hemodynamic response is a collective term for the 
set of physiological responses that take place during the onset 

of neuronal activations. For example, the blood oxygenation 
level-dependent (BOLD) signal detected in fMRI systems are 
sensitive to changes in cerebral blood flow, cerebral metabolic 
rate of oxygen and cerebral blood volume (17). Increases in these 
elements during neural activation result in slight increases in the 
local magnetic resonance signal and thus small changes in the 
BOLD signal that can be detected by fMRI.

Functional near-infrared spectroscopy (fNIRS) is an alter-
native method to fMRI that similarly measures BOLD-like 
hemodynamic responses (18, 19). Furthermore, this method is 
portable, inexpensive, fast, non-invasive and has limited con-
traindications (18, 20, 21). Nevertheless, without sophisticated 
hardware and signal processing techniques, the technology offers 
significantly reduced spatial resolution, due to the diffuse nature 
of light propagation in tissue. fNIRS devices detect changes in 
the concentration of oxygenated ([HbO]) and deoxygenated 
([HbR]) hemoglobin molecules in the blood. fNIRS, like fMRI, 
is an “indirect” neuroimaging tool in the sense that it monitors 
hemodynamic responses to neural activations on the basis that 
neural activations are tightly coupled to vascular processes; 
a process known as neurovascular coupling. Based on these 
properties, fNIRS has been shown to have a broad spectrum of 
uses including studies of vision (20), hearing (22), speech (23), 
learning (24), emotion (25), and pain (26), and as such, recently 
has also begun demonstrating its use within the field of PDOC 
(27–29). Furthermore, as a component of neurovascular coupling 
relies on end to end asynchronous electrical signaling to drive 
neural activations, there is growing interest in simultaneous 
electroencephalography (EEG)-fNIRS—both of which share 
similar advantageous properties (e.g., portability, inexpensive, 
and non-invasive) (27).

In this review, we provide a basic overview of fNIRS and its 
instrumentation [for an in-depth review, please refer to Ref. (30)], 
followed by discussions of its use within the field of PDOC. We 
explore the current paradigms used to detect awareness and 
demonstrate how fNIRS both independently and when simulta-
neously combined with EEG can accurately monitor changes in 
neural activity. Next, we explore recent advances to improve the 
spatial resolution of the signal and methods to advance analysis 
of the hemodynamic response. Finally, we discuss the potential of 
fNIRS as a BCI to aid in communication and to improve accuracy 
of clinical diagnoses.

PRiNCiPLeS AND fNiRS 
iNSTRUMeNTATiON

Spectroscopy is based on the study of light signals. In the near-
infrared (NIR) range of light, with wavelengths between ~600 
and 900  nm, biological tissues are effectively transparent. The 
low molar absorptivity of lipids and water in this region enables 
light to effectively penetrate and be maximally absorbed by oxy-
genated (HbO) and deoxygenated (HbR) hemoglobin (31, 32). 
These primary light-absorbing compounds in tissue in the NIR 
range are called chromophores (31). Optical neuroimaging using 
fNIRS typically requires the use of a set of light-emitting diodes 
(light sources) on the scalp, and an equal or larger set of detectors, 
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FigURe 1 | Banana shape profiles of the sampled functional near-infrared spectroscopy signal at multiple source-detector distances. A single source and detector 
constitute the simplest NIRS channel. Depending on the source-detector separation distance, and the subjects’ skull and scalp thicknesses, the light may or may 
not sufficiently penetrate the superficial layers to sample the deeper layers. A separation of 3 cm is commonly used, however, increasing this to 4 cm can increase 
the penetration depth of the light sampled tissues. Short separation channels are located within 1 cm of the source and can provide physiological (noise) data within 
the superficial layers. This activity can then be regressed from the long separation channel, resulting in a signal corresponding to activity solely within deep brain 
tissues. Figure adapted from Ref. (34). No permissions were required.

FigURe 2 | Light propagation paths through a medium. Depending on the 
wavelength of the emitted light, photons may either be absorbed by the 
medium, scatter to the extent that they are no longer detectable, scatter and 
yet be detected, or travel through the scattering medium in a straight-line 
(ballistic photon). For functional near-infrared spectroscopy devices, ballistic 
photon paths are highly unlikely to occur due to source and detectors being 
positioned on the surface of the head, and the light propagating directly into 
the brain. Figure adapted from Ref. (35). No permissions were required.
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depending on the number of source-detector channels required. 
NIR light of wavelengths specific to each biological chromophore 
will be absorbed primarily by that chromophore (HbO, HbR, and 
cytochrome c-oxidase). Scattered light then follows a trajectory 
back toward the surface of the scalp, in a characteristic “banana” 
shape, where it is captured and recorded by, for example, photo-
detectors (Figure 1) (33).

Absorption and scattering are the two main attenuating interac-
tions that take place between light and tissue (Figure 2). As light 
from a source penetrates through the layers of the head, specific 
wavelengths will be absorbed by the absorbing (chromophore) 
components within the different media. The photons that reach 
the detector on the scalp are primarily those that have scattered 
within the medium, and therefore have traveled a greater distance 
than the geometrical (straight-line) distance between the light 
source and detector. The measured intensity at multiple wave-
lengths is then used to separate the absorption due to different 
chromophores. Due to the scattering properties of light on route 
to the detector, the fNIRS signal has limited spatial resolution 
of the underlying chromophore concentrations with respect to 
its location in the head, but contains rich contrast (i.e., a small 
change in attenuation change will result in a large measured 
intensity change).

The depth within the skull that can be studied using fNIRS is 
largely dependent on the inter-optode distance or source-detector 
separation distance as it is also referred. As a general approxima-
tion, the penetration depth achievable is approximately a third to 
half the source-detector separation distance (21, 36). At greater 
source-detector separation distances, deeper penetration of 
light is achieved at the cost of poorly resolved images due to less 
light being captured by the detector (Figure 1). Diffuse optical 
tomography can improve this resolution by employing a large 

number of over-lapping measurements, each generating their 
own banana-like trajectory. Combining these signals allows a 
deeper three-dimensional reconstruction of the hemodynamic 
signals from the brain (37).

Hemodynamic signal integrity can be readily compromised 
by the effect of superficial layers on the detected signal. These 
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layers of tissue are assumed to have a constant attenuation effect 
on the light signal; however, there is a slight effect due to extrac-
erebral signal components (38). The attenuating layers in the head 
include the skin, scalp, skull, cerebrospinal fluid, gray matter and 
white matter, in addition to the chromophores within the blood. 
Of these however, the scalp and skull have been shown to be most 
significant (39). Traditionally, it was assumed that hemodynamic 
changes in the overlying tissue layers were uncorrelated with the 
changes in brain function. However, research has shown that the 
systemic physiological signals from superficial layers can expo-
nentially decay the light from the emitter (40); that is to say that 
NIRS measurements are inherently most sensitive (have largest 
magnitude) to tissue nearest the source and detector (40). Major 
contributors of physiological interference include heartbeat 
(1–1.5  Hz) (41), respiration (0.2–0.5  Hz) (42), low-frequency 
oscillations including Mayer waves (~0.1  Hz) (43), and task-
related changes in systemic physiology (44).

The mean scalp plus skull thickness in an adult human is typi-
cally 10–18 mm [average modeled values of ~7 mm for scalp and 
~6 mm for skull as reported by Ref. (39)]. Okada and Delpy showed 
that increasing the skull thickness from 4 to 10 mm would result 
in an 80% loss in NIR signal intensity (45). In contrast, Strangman 
et al. argued that the scalp consistently had a greater influence on 
NIRS brain sensitivity than skull (39). In addition, they looked at 
how source-detector separations could overcome this and found 
that as separations increased above 20 mm (mean sensitivity of 
0.06), the effect of the superficial layers became less influential, 
with near-maximal sensitivity to brain tissue being achieved at 
or above 45 mm (mean sensitivity of 0.19) (39). Other methods 
of effectively detecting absorption changes from deep brain tis-
sues while keeping a normal source-detector separation distance 
(e.g., 45 mm) include the use of independent component analysis 
(ICA) (46), principle component analysis (47), and model-based 
analysis such as the general linear model (GLM) (48).

With multiple-distance optodes (i.e., a short separation chan-
nel and long separation channel), some groups have shown this 
method to advance a GLM approach in eliminating superficial 
effects (49–51). In this approach, short separation detectors that 
are located in the activation area but have shorter source-detector 
separation distances (<10 mm) are more sensitive to activity in 
the superficial layers, whereas the signal received at the long 
separation detectors are sensitive to both the brain and superficial 
layers (Figure 1). Regressing out the short separation signal from 
the long separation signal effectively filters out the superficial 
component [see (44) for more information about how the data 
from the short separation channel is regressed from that of the 
long separation channel]. Other approaches to improve deep 
tissue spatial resolution with multiple-distance probes include 
the use of multi-distance probes along with ICA (52), and diffuse 
optical tomography (53). Alternatively, low processing options to 
eliminate physiological signals include low-pass filtering (only to 
eliminate cardiac oscillations) (54) and wavelet filtering (55).

According to a recent investigation by Pfeifer et al., the lack of 
a standardized signal processing method or guideline for fNIRS 
data is likely to cause novice users to employ data analysis tools 
provided by commercial companies (i.e., a “black box”) which are 
unlikely to take into account the parameters of the study (56) and 

may increase false positives or false negatives in the final published 
results (57). Indeed, Pfeifer et al. demonstrated statistical discrep-
ancies between a “black box” signal processing stream, and that of  
a relatively simple self-implemented signal processing stream that 
involved motion artifact removal and band-pass filtering of [HbO] 
and [HbR] data (56). With increasingly widespread use of NIRS 
devices across biomedical research, the field will clearly ben-
efit from standardization, as adopted in much of fMRI research  
(e.g., FMRIB Software Library and Statistical Parametric Mapping) 
(58–63). Furthermore, when using signal processing methods as 
provided by manufactures, it is paramount that the research team 
have an advanced understanding of every step to ensure that the 
data and conclusions are reliable and interpretable.

The three types of systems that are primarily used for NIR 
imaging are continuous wave (Figure  3A), frequency domain 
(Figure  3B) and time domain/resolved (Figure  3C). Of these, 
continuous wave devices are the most common instruments for 
measuring the fNIRS signal. These devices emit light at a constant 
intensity and measure changes in the intensity of the re-emerging 
(i.e., diffusely reflected) light, having passed through the tissues. 
To quantify chromophore concentrations from the recorded light 
intensities requires modeling of the medium through which the 
light has propagated. The earliest model is the Beer–Lambert law, 
proposed following work by the French mathematician Bouguer 
in the 1700s (please refer to discussions and citations in (64)). 
This type of spectroscopy represents a linear relationship between 
absorbance and concentration of an absorbing species, and as 
such has been widely used in colorimetric analysis, with similar 
principles applied to biological tissue. Biological tissue, such as the 
brain, is a highly scattering environment. To account for such scat-
tering of light, Delpy et al. developed the modified Beer–Lambert 
law (65, 66). This has been used widely in continuous wave devices 
as a means to derive concentration changes of each chromophore 
(HbO, HbR, and total hemoglobin, HbT). In order to gain absolute 
concentration values, as opposed to the changes in concentration 
of each chromophore, other methods of chromophore estimation 
include spatially resolved spectroscopy (67, 68), time-resolved 
spectroscopy (69), and phase-resolved spectroscopy (70) systems. 
The output values of these systems can be seen as approximations 
as several assumptions are used to determine the optical proper-
ties of the tissues (i.e., light scattering and absorption coefficients).

In addition to continuous wave measurements, two other 
diffuse optical measurements that have been developed include 
frequency domain and time domain fNIRS. In the former, light 
sources emit light continuously, like continuous wave-fNIRS; 
however, the amplitude is modulated at frequencies in the MHz 
range. The absorption and scattering properties of tissues are then 
obtained by recording the amplitude decay and phase shift (delay) 
of the detected signal with respect to the incident beam (43). In 
time-resolved fNIRS, short (picosecond) incident light pulses are 
introduced into tissues and as they penetrate through the various 
layers (i.e., skin, skull, cerebrospinal fluid, and brain) the signal 
is broadened and attenuated. As the photons leave the tissue, the 
recorded temporal distribution by the time domain system, and 
the shape of this distribution, provides information about tissue 
absorption and scattering. Advantages and disadvantages of these 
three systems are summarized in Table 1. From Table 1, we can 
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FigURe 3 | Illustration of three different functional near-infrared spectroscopy techniques. The simplest and most commonly used method is continuous wave 
near-infrared imaging (top) (A), which measures changes in light intensity having passed through the tissue. Two other methods—frequency domain (bottom left)  
(B) and time domain (bottom right) (C)—are variations of this and provide increased information content (see text for further details). I0: incident light signal, I: 
detected light signal and ∅: phase shift. Figure adapted from Ref. (71). No permissions were required.

TABLe 1 | Advantages and disadvantages of the three commonly used functional near-infrared spectroscopy techniques.

Measurement type Advantages Disadvantages Reference

Continuous wave  ▪ High sampling rate
 ▪ Can be miniaturized—ease in portability
 ▪ Simple to use
 ▪ Low cost

 ▪ Low penetration depth—increased sensitivity to superficial layers
 ▪ Difficult to separate absorption and scattering

(71, 72)

Frequency domain  ▪ High sampling rate
 ▪ Relatively accurate separation of absorption and scattering

 ▪ Moderate penetration depth—sensitive to superficial layers (73, 74)

Time domain  ▪ High spatial resolution
 ▪ High penetration depth—mean time-of-flight and variance 
values can separate brain tissue from superficial layers

 ▪ Most accurate separation of absorption and scattering

 ▪ Low sampling rate—greater loss of photons
 ▪ Instrument size/weight is larger
 ▪ Stabilization/cooling required
 ▪ Costlier system as most advanced
 ▪ Can be more susceptible to noise—can impact the usefulness of 
studying variance values

(75, 76)

Table adapted from Ref. (21).
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see that while continuous wave fNIRS devices offer a cheap and 
portable method of rapidly capturing brain hemodynamic activity, 
their simplicity limits the spatial resolution and the penetration 
depth that can be achieved in comparison with frequency- and 
time-domain fNIRS systems.

MOTOR iMAgeRY PARADigMS  
wiTH fNiRS

Motor imagery is the imagined movement of the body while 
keeping the muscles still. Motor imagery tasks can provide prox-
ies of command-following for those patients who may be aware 
but unable to produce purposeful overt behaviors. However, 
motor imagery-BOLD activation is not always detectable in all 
participants; indeed, Fernández-Espejo et al. found no appropri-
ate activation in 20% of healthy participants in one study (77).

A variety of motor imagery paradigms have been examined for  
use with fNIRS (Table 2), the majority of which require activation 
of the hand and foot areas of the cortical homunculus. Motor 
imagery tasks can be divided into visual and kinesthetic tasks. In 
the former, the participant visualizes the movement while in the 
latter the participant imagines the feelings and sensations pro-
duced by the movement. Kinesthetic motor imagery is more often 
used as it has been shown to recruit more of the cortical motor 
system (78). Coyle et al. used a continuous wave-fNIRS system 
to demonstrate that when three healthy participants imagined 
squeezing a ball, their [HbO] increased reliably above that from 
rest in the C3 and C4 regions of the motor cortex (based on the 
EEG international 10-20 system), regions predominantly associ-
ated with hand movements (79). Interestingly, after averaging 
each participants’ data over 20 trials, hemodynamics following 
motor imagery activation could be prominently distinguished by 
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TABLe 2 | Comprehensive list of functional near-infrared spectroscopy motor 
imagery studies, including those that have also been applied within a brain–
computer interface (BCI) setting.

Measurement type Channel 
density

wavelengths 
(nm)

Reference

Motor 
imagery

Time domain 4 760, 830 (80, 82)
Continuous wave 18 760, 850 (83)
Continuous wave 24 695, 830 (84)
Continuous wave 24 695, 830 (85)
Continuous wave 48 695, 830 (86)

Motor 
imagery-BCI

Time domain 4 760, 830 (87)a

Frequency domain 8 690, 830 (88)
Continuous wave 2 760, 880 (79)
Continuous wave 4 760, 870 (89, 90)
Continuous wave 16 760, 850 (27)a

Continuous wave 20 780, 805, 830 (91)
Continuous wave 24 695, 830 (92)
Continuous wave 24 695, 830 (93)
Continuous wave 24 695, 830 (92)
Continuous wave 24 695, 830 (94)
Continuous wave 24 695, 830 (95, 96)
Continuous wave 24 760, 830 (97)
Continuous wave 24 760, 850 (98)
Continuous wave 24 780, 805, 830 (99)
Continuous wave 31, 14 780, 805, 830 (100)
Continuous wave 34 760, 830 (101)
Continuous wave 40 760, 830 (102)
Continuous wave 45 780, 805, 830 (103)
Continuous wave 48 780, 805, 830 (104)
Continuous wave 50 780, 805, 830 (105)
Continuous wave 50 780, 805, 830 (106, 107)
Continuous wave 52 695, 830 (108)
Continuous wave 52 780, 830 (109)
Unknown 1 700, 880 (110)
Unknown 24 740, 808, 850 (111)

Included are the types of measurements being recorded, channel density, and the 
types of wavelengths being operated.
aIndicates studies that have been conducted on patients with prolonged disorder of 
consciousness or locked-in-syndrome (please refer to Table 3).
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by others (87% accuracy achieved when distinguishing between 
imagined right-wrist and left-wrist flexion) (91, 101).

To add to the hand tapping motor imagery paradigm, recently 
there has been significant interest in separating left and right foot 
tapping’s using fNIRS. When using a four-class motor imagery 
paradigm (left/right foot/hand) in a BCI setting, Batula et  al. 
achieved an average classification accuracy of approximately 
46% over three participants (chance  =  25%; two participants 
had a classification accuracy over 50%) (93). Nevertheless, the 
authors suggested that improved performance could be achieved 
by utilizing more informative features or classifiers through a 
more detailed inspection of the activation patterns, or a better 
selection of motor tasks. However, from their confusion matrix, 
it can be seen that right foot was most frequently misclassified. 
This is not surprising as distinguishing between left and right foot 
using fNIRS is challenging as the foot motor areas are near or 
within the longitudinal fissure between brain hemispheres (112). 
Nevertheless, improvements to classification accuracies could be 
achieved by using a single “feet” or leg motor imagery task (113), 
or by providing feedback training to strengthen the participants 
motor imagery abilities (114).

Many of the NIRS systems currently employed in motor 
imagery research are continuous wave (Table 2), and so require 
extensive montage (source and detector layout) development and 
data processing. However, time domain-NIRS devices have the 
potential to enhance depth sensitivity as they record the arrival 
times of individual photons to build a distribution of times of 
flight (115, 116). Early work by Abdalmalak et  al. assessed the 
feasibility of time domain fNIRS to detect brain activity during 
motor imagery (80). Seven participants performed tennis-playing 
imagery of which four showed prominent activity in either the 
PMC alone or PMC and SMA, as detected by fMRI. During the 
task, increases in blood flow and volume in the PMC and/or 
SMA led to an increase in light absorption, and thus a decrease 
in the number of photons, N, reaching the detector and their 
mean time-of-flight, <t>. These changes in N and <t> precisely 
occurred during the onset of motor imagery and not during rest 
for the four participants that likewise showed fMRI activity. On 
a small scale, this study demonstrated good agreement between 
both imaging modalities, strengthening the argument for the use 
of fNIRS in motor imagery. However, in three of the seven healthy 
participants, who were demonstrably aware, no activity was 
detected by either imaging modality. While no method will be 
perfectly sensitive (77), it is clear that considerably greater levels 
of sensitivity are required before this method may be used clini-
cally. Therefore, the same authors tested 15 healthy participants 
with the same tennis-playing imagery task and instead evaluated 
the mean and variance, which have greater depth sensitivity, and 
report sensitivity values between 86 and 93% in the SMA and 
PMC, the highest being for <t> as the data are less influenced 
by noise (82). Furthermore, of the 15 participants that took 
part in the study, 93% generated responses that were detectable 
by fMRI and 87% by fNIRS, a considerable improvement over 
their earlier work (80) and a clear demonstration of the power 
of advances in physical and computational methods to improve 
detection of clinically meaningful information from fNIRS 
signals. These promising results also confirm that time domain 

eye from that of baseline prior to signal processing. Although 
this may indicate that such experimental paradigms can generate 
profound neuroactivational changes, it is important to note that 
their findings were based off a small cohort of three participants. 
Nevertheless, the authors were further able to show that, by solely 
studying HbO changes, motor imagery could be used to correctly 
classify a user’s intent ~80% of the time. Other types of motor 
imagery paradigms that have established significant hemody-
namic signal changes with fNIRS include tennis arm-swinging 
motion (80) and a finger tapping sequence (81).

Aside from these, of popular interest with fNIRS is the ability 
to differentiate activations from left- and right-hand movements 
whether that be tapping, gripping or flexing of the wrist. Sitaram 
et al. reported that fNIRS recordings of motor imagery for left- and 
right-hand tapping were similar to motor execution recordings, 
but smaller in magnitude (91). Nevertheless, from the data it was 
clear that the hemodynamic responses for left-hand and right-
hand motor imagery had distinct patterns that could be used by 
a classifier to discriminate between the two classes. As such, the 
researchers of this study were able to achieve approximately 89% 
accuracy using their classifier, with similar results being achieved 
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fNIRS is an alternative means of reducing scalp contamination 
and for enhancing the sensitivity to brain activity, and thus may 
be a well-suited tool for use on patients with PDOC. To the best 
of our knowledge, time domain fNIRS data have not yet been 
reported in patients with PDOC.

Research in patients with PDOC has, however, been accom-
plished using other fNIRS devices. Molteni et al. detected residual 
functional activity in two minimally conscious state patients 
using a commercially available NIRS device (although undefined 
in the manuscript) and a protocol that involved somatosensory, 
passive movement, and active movement stimulations (28). While 
somatosensory stimulation (using a vibrating pillow) elicited a 
weak response over the somatosensory cortex, passive movement 
stimulation (hand movement with the assistance of the experi-
menter) generated clearer hemodynamic responses (increase in 
HbO, decrease in HbR). Active movement tasks (self-performed 
hand opening and closing) generated the weakest hemodynamic 
response in the hand region of M1 in both patients; however, this 
was expected as the patients were unable to move their hands 
autonomously and showed no signs of engagement with the task. 
Furthermore, their T1-weighted MRI brain scans indicated the 
presence of severe atrophy that could have allowed for fluid accu-
mulation. An excess in cerebrospinal fluid would have increased 
the attenuation of the NIRS signal (see earlier discussions) thereby 
reducing the chance of a measurable response to the task. Overall, 
as a primary study, the authors were able to show that residual 
brain activity can be detected in patients with PDOC using fNIRS 
and favors the use of motor imagery as a means of overcoming the 
need for patients to execute movements, which may not always 
be possible.

In a study by Kempny et al., 16 patients (11 in a minimally con-
scious state and 5 in a vegetative state) performed a kinesthetic 
motor imagery task of squeezing a ball with their right-hand 
whilst being evaluated with continuous wave-fNIRS (27). In 
addition, healthy participants were asked to physically perform 
and kinesthetically imagine the same task in order to obtain 
patterns that could be used to validate responses in patients 
with PDOC. A typical fNIRS response to movement and motor 
imagery is an increase in the [HbO] accompanied by a less 
pronounced decrease in the [HbR] (117, 118). However, the 
groups in this study exhibited two types of responses during 
motor imagery; the typical responses and an inverted response 
(decrease in [HbO] and an increase in [HbR]). Furthermore, 
minimally conscious patients, in comparison with those in a 
vegetative state, more often exhibited a hemodynamic response 
that was similar to that of healthy participants. Fluctuations in 
hemodynamic patterns have been shown to depend on the loca-
tion of the probe and the difficulty of the task (106), highlight-
ing the importance of normative data from healthy individuals 
against which to compare a given patient’s response. Kempny 
et al. further identified that the greatest reduction in [HbO] was 
found on the right hemisphere of the head across all three groups 
during motor imagery (27). Regions of hemodynamic activation 
were in line with previous studies (118, 119), with greater activa-
tion observed on the ipsilateral side [see (95) for similar results]. 
While this may seem unusual as one would expect primarily 
activation of the contralateral areas during hand motor imagery, 

Batula et  al. demonstrated that this is not always the case, in 
particular when the left-hand is involved, which generated a 
more bilateral activational pattern during motor imagery (95), 
a pattern confirmed by fMRI (120, 121).

The above studies demonstrate the feasibility of fNIRS in the 
field of PDOC. However, there is much to do to ensure that the 
signals measured are sufficiently reliable and interpretable for 
use in clinical contexts. Below we suggest one potential means of 
achieving that goal.

SiMULTANeOUS eeg-fNiRS

One means of improving the sensitivity of fNIRS, while maintain-
ing portability, is to combine it with simultaneously acquired EEG. 
During neural activity, glucose and oxygen are rapidly consumed 
from the local capillary bed. This reduction in metabolites stimu-
lates the brain to increase local cerebral blood flow and cerebral 
blood volume. A number of models have been proposed that both 
physiologically and mathematically demonstrate the association 
between electrical and hemodynamic responses (122, 123), 
strengthening the existence of neurovascular coupling. This has 
led some to even study the phenomenon at the bedside, highlight-
ing the delay in the vascular response in comparison to neural 
activation during stimulus onset (124). As such, this reinforces 
the argument for the simultaneous use of fNIRS along with an 
electrophysiological method to better understand the underlying 
brain activity in patients with PDOC.

During neural activity, summation of ionic fluxes across 
large numbers of synchronously activated neurons (dipoles) 
can cause changes in electric fields that can be measured 
directly using EEG with high temporal resolution (millisecond 
timeframe). EEG passively measures scalp surface potentials 
and has been widely explored for identifying covertly aware 
patients (125) and monitoring rehabilitation success (126) 
within the field of PDOC [for a detailed overview of EEG, see 
Ref. (127)]. EEG shares many advantageous properties with 
fNIRS including its portability, low cost and non-invasiveness. 
Nevertheless, EEG is prone to blink artifacts, which can be 
readily eliminated with the use of computational tools such as 
ICA (128). Alternatively, and depending on the outcomes of the 
study, participants could close their eyes; however, this can cor-
rupt task-related signatures with physiological noise (129, 130). 
For example, Verleger reported that refraining from blinking 
lowered the amplitude of the characteristic P3 peak (a positive-
going component of an EEG signal) during an auditory task 
(130). In addition to ocular movements, the spatial resolution 
of EEG can be relatively poor. This is due to the spatial smearing 
of the EEG signal, through a process known as volume conduc-
tion (131), as each dipole exerts influence in nearly all direc-
tions and not just on the scalp immediately above the dipole. 
Computational tools, such as the use of spatial filters [e.g., the 
surface Laplacian (132)], offer a solution to improve the spatial 
resolution of the dataset. However, this can be further enhanced 
when EEG is used simultaneously with fNIRS, because the 
improved spatial resolution offered by fNIRS can provide some 
degree of information regarding the active source’s location, 
thus complementing EEG findings.
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FigURe 4 | Schematic representation of a combined optode-electrode head 
probe. The electroencephalography (EEG) international 10-20 positioning 
system is used to form the base for 64 EEG electrodes. NIRS sources and 
detectors are then placed in close proximity to these electrodes to form 
corresponding channels of different lengths. An increase in the number of 
sources and detectors used results in an increase in channel complexity and 
an overall improvement in the resolution of the sampled tissue. Figure 
adapted from Ref. (100). No permissions were required.
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Demonstrating the link between brain hemodynamics and 
electrophysiology, Zama and Shimada reported a strong correla-
tion in healthy individuals between the magnitudes of the change 
in HbO in contralateral PMC and the EEG-detected readiness 
potential approximately 1,000 ms before movement onset (133). 
As both electrical and optical tools measure different aspects of 
brain activity and do not interfere with one another, there is also 
potential that simultaneously acquired EEG and NIRS data will 
contain complementary information about brain activity and/
or neurovascular function that cannot be observed when using 
these systems independently.

While EEG electrode positioning is commonly based on 
the International 10-20 and 10-10 positioning systems, there is 
no accepted standard for NIRS optode placement on the scalp, 
although attempts have been made to match the International 
10-20 system used in EEG (134). Low electrical impedance is 
desired for high-quality EEG because neural signals are small 
(microvolts) relative to background noise (135). This is achieved 
by using electrode pastes and gels. Improving optical coupling 
for fNIRS devices is achieved by increasing the efficiency of light 
transmission between the optode and the head. Light can be lost 
both at the source and the detector if air gaps are introduced (136); 
however, this loss can be minimized if optodes are positioned 
in direct contact with the scalp surface. During simultaneous 
use, electrode gels and pastes on the scalp for EEG recording 
can negatively impact the transmission of light for fNIRS. 
Giacometti and Diamond designed an EEG-fNIRS head probe 
that linked NIRS channels through EEG electrodes (137). Their 
head probe can stretch to fit a wide range of head sizes and 
account for head shape variability while maintaining contact 
pressure on the scalp. Furthermore, relative to other commercial 
products, their head probe was found to have improved accuracy 
(i.e., the sensor is placed on the location where it corresponds 
with the EEG 10-10 standardized system, 83.2%) and precision  
(i.e., the sensor is placed on the same location on a particular head 
every time, 39.5%). This design is, however, limited by the number 
of combined optode-electrodes that can be positioned on the scalp 
(Figure 4). Cooper et al. designed an integrated opto-electrode 
probe that housed both an EEG electrode and an optical fiber 
bundle (138). With this device, they observed a hemodynamic 
response during a finger-to-thumb opposition task alongside an 
EEG readiness potential. Open-source and commercial hardware 
is therefore available to promote research into simultaneous EEG-
fNIRS for detection of covert consciousness and cognition.

Simultaneous eeg-fNiRS in BCi 
Applications
The majority of EEG-fNIRS studies have been within the field 
of BCIs. BCIs are used for several applications including spell-
ing devices, environmental control, navigation in virtual reality, 
simple computer games, cursor control applications, and control 
of prostheses and robotic arms (139–142). The most commonly 
studied signals in BCI are those of EEG. Neuronal oscillations 
observed in EEG are categorized into five specific frequency 
bands: delta, <4 Hz; theta, 4–7 Hz; alpha, 8–12 Hz [also known 
as mu activity when recorded from sensorimotor areas (143)]; 
beta, 12–30 Hz, and gamma >30 Hz. A decrease in oscillatory 

activity in a specific frequency band is known as an event-related 
desynchronization, whereas a corresponding increase is called an 
event-related synchronization. Event-related desynchronization/
synchronization patterns are produced in motor imagery as a 
result of mu and beta frequency band activity within the EEG 
signal (144). There have been several applications of EEG-based 
BCI in the field of PDOC, rehabilitation, and for other condi-
tions resulting from a traumatic brain injury or motor impairing 
disease [for a detailed list of references, please refer to Ref. (145)].

In fNIRS BCI, features for classification are mostly extracted 
from hemodynamic signals (HbO, HbR, and HbT), such as 
peak amplitude, mean value, variance, slope, skewness, kurtosis, 
wavelet transform, and those from genetic algorithms (146).  
A combination of these then makes a training set that are used 
to train a classifier (supervised learning) before applying a test 
data set for it to detect brain-signal patterns (147). For a two-
class problem (i.e., left- and right-hand imagery) support vector 
machines (SVM) are greatly favored, as they attempt to maximize 
the distance between the separating hyperplane and the near-
est training points—or so-called support vectors (146). Other 
classifiers include linear discriminant analysis (LDA), artificial 
neural networks, and hidden Markov models (148). The classified 
signals are then sent to an external device to generate the desired 
response. In neurofeedback tasks, the response is a display of the 
accuracy of the users’ intent, based on their brain activity allow-
ing self-regulation of brain functions.

There has been a growing interest for the use of fNIRS BCI 
as a communications device for patients in a locked-in state. 
Locked-in-syndrome (LIS) is a condition in which patients are 
aware but have limited or no means to move or communicate 
(149). As a result, they share similar challenges as those diag-
nosed with PDOC (i.e., patients in an early minimally conscious 
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state are clinically aware but can lack the mobility to respond to 
commands). Naito et al. examined the ability of patients with 
LIS to communicate “yes” or “no” answers to several questions 
through either performing a mental calculation or by men-
tally singing (assigned “yes”), or by staying mentally relaxed 
(assigned “no”) (150). Frontal lobe activity was measured using 
a self-devised continuous wave-NIRS device, and the extracted 
amplitude and phase data were used in a discriminant analysis 
to classify the patients’ response. Of the 17 patients with LIS 
participating in the study, only 40% (i.e., n = 7) had significantly 
differentiating responses. From these seven patients, the aver-
age rate of correct detection of their intention was 80%. The 
limited applicability of this BCI in patients with LIS can be 
accounted for by the lack of specificity of optode placement, 
as well as the partial filtering applied to the dataset. A low pass 
filter with a cutoff frequency of 0.1 Hz was applied, and hence 
this may not have completely eliminated Mayer waves, which 
are known to readily corrupt the NIRS signal when sampled 
from the superficial layers (110).

Functional near-infrared spectroscopy is a relatively novel 
technique in the field of motor imagery-based BCIs, with EEG 
still viewed by many as the gold standard. Table 2 displays a list 
of several fNIRS motor imagery studies, with the majority being 
extended for use in BCI research. On the whole, there is wide-
spread use of continuous wave-fNIRS devices as these low-cost 
instruments are relatively easy to set up and use. The number of 
channels used for a study ranges between 1 and 52; however, this is  
dependent on the number of sources and detectors available for a 
particular device and the region of the head it is required to cover. 
Furthermore, those studies using less than 24 channels have gen-
erally been experimental for example to test novel probe or sensor 
designs. With respect to the type of wavelengths used, these range 
between 695 and 850 nm, all of which are within the acceptable 
limits to measure changes in the biological chromophores. More 
complex and costlier instruments such as time domain (see sec-
tion 3) and frequency domain fNIRS have had far less use within 
this research community. Koo et al. demonstrated the reliability 
of a hybrid (fNIRS and EEG) self-paced motor imagery-based 
BCI using a frequency domain NIRS system (88). Here, self-
paced motor imagery is where the onset of motor imagery is not 
known, and neither are the brain signals corresponding to the 
detected motor imagery (in cue-based motor imagery, the start 
or cue of the motor imagery is known, hence a BCI system can 
recognize the motor imagery from the participants brain signals). 
While a frequency domain system was used for the study, which 
aided in the hybrid BCI achieving true positive rates of 88%  
(i.e., the BCI well recognized the intentions of the participants), it 
was clear that no phase data was extracted and analyzed, and thus 
the instrument was analyzed as if it were a continuous wave sys-
tem. The majority of work using frequency domain systems has 
not yet extended beyond motor execution studies (i.e., tapping 
tasks), with those using the device either evaluating both time-
domain and frequency domain (phase) parameters (151), or fast 
optical signals (152, 153) [see Ref. (73, 154) for more information 
regarding fast optical signals and event-related optical signals].

Several research groups have opted for a hybrid BCI approach 
whereby NIRS features are used to support and complement 

EEG-based BCI. Fazli et  al. conducted motor execution and 
EEG-based, visual feedback controlled motor imagery tasks on 
14 healthy right-handed volunteers, requiring them to perform 
left- and right-hand gripping (98). Twenty-four fNIRS channels 
(8 sources and 16 detectors) and 37 EEG electrodes were used 
for data acquisition. The NIRS data were then low pass filtered 
(0.2 Hz) and baseline corrected before using the modified Beer–
Lambert law to calculate concentration changes of hemoglobin. 
Time-averaged concentration changes (HbO and HbR), using a 
sliding window, were then used as features for LDA classifica-
tion. EEG band-pass filtered coefficients in the alpha and beta 
bands were spatially filtered using a method known as common 
spatial patterns (155) before the LDA classifier was computed. 
The LDA results from EEG, [HbO], [HbR], and combinations 
of all three were fed into a meta-classifier before testing. On 
average for motor imagery, combining EEG with either [HbO], 
[HbR], or both, had a classification accuracy of approximately 
82%, statistically significant than the accuracies of the individual 
methods (EEG: ~78%, HbO: ~72%, HbR: 65%). However, it 
has recently been shown that both age and feedback can affect 
motor imagery patterns during simultaneous EEG-fNIRS data 
acquisition (83).

Use of a large number of fNIRS channels and/or EEG 
electrodes during simultaneous EEG-fNIRS acquisition can in 
some cases be suboptimal due to the high dimensionality of the 
data and the associated computational costs during classifica-
tion. One approach to dimensionality reduction is the widely 
used EEG spatial filtering method of common spatial patterns. 
Importantly, applying this method to fNIRS data will align the 
EEG and fNIRS processing streams, allowing for more meaning-
ful comparisons across modalities while improving classification 
accuracies when used simultaneously in BCI applications. The 
common spatial patterns method in multichannel EEG (155) 
efficiently reduces the number of features for classification to 
those that have highly discriminative properties between tasks. 
Conversely, in fNIRS, the majority of published studies have 
employed channel-wise HbO and HbR as features for classifica-
tion (89, 102). This high feature dimension space requires more 
trials and a longer training time to train the classifier—first 
introduced by Bellman as the “curse of dimensionality” (156). 
Furthermore, a high feature dimension may increase the com-
plexity and instability of the classifier. Zhang et al. evaluated a 
common spatial patterns algorithm on multichannel fNIRS data 
and found significant improvement in classification accuracy in 
both motor execution and motor imagery tasks relative to a con-
ventional high dimension feature space (average accuracy with 
180 feature dimensions—54%, average accuracy with 18 feature 
dimensions derived from common spatial patterns—74%) (111). 
A benefit of high density EEG is that the whole head coverage 
allows the researcher to confirm the physiological plausibility of 
the spatial pattern maps associated with each task—i.e., is the 
activity restricted to electrodes over contralateral sensorimotor 
cortices for hand imagery? The fNIRS probes used in the work 
by Zhang et  al. were positioned over the motor cortex as this 
region is primarily activated during a hand tapping task (111). 
While focusing on a small area of the scalp is beneficial from 
the perspective of statistical multiple-comparisons and data 
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dimensionality, it is not possible to ensure that the recorded 
hemodynamic changes are physiologically plausible, or whether 
they reflect a general amplification in blood flow across the 
entire brain. Therefore, future fNIRS research could extend 
toward greater scalp coverage so as to minimize the research gap 
and align the common spatial patterns methods of fNIRS with 
those of EEG, while aiming to balance the benefits against the 
increased preparation time and reduced portability and comfort 
of whole-head systems.

Recently, there has been interest into the use of a “few-
channel” approach for BCIs, based on previous research 
demonstrating focal neural activation in specific motor tasks. 
Ge et  al. demonstrated the accuracy of a few-channel BCI 
using EEG-fNIRS on participants conducting a left- and right-
hand gripping motor imagery task (100). To validate which 
few-channels to use for the BCI (i.e., feature extraction and 
classification steps), the initial paradigm was performed simul-
taneously using a 64-channel EEG electrode set and 52-chan-
nel fNIRS set. Of these 52-channels however, 31 (11 detectors 
and 11 sources) were placed over the sensorimotor cortices 
(C3-Cz-C4 in 10-20 nomenclature). From the 64 EEG and 31 
fNIRS channels, electrodes at positions C3, Cz, and C4 and 14 
fNIRS channels (6 sources and 6 detectors) centered around C3 
and C4, were used for the few-channel EEG-fNIRS BCI, as these 
showed distinct neural activity during both left and right motor 
imagery tasks [see Figure 3 in Ref. (100) for further information 
on the montage layout]. Following feature extraction, fusion of 
both EEG and fNIRS datasets, and classification using SVM, the 
researchers were able to demonstrate that few-channel EEG-
fNIRS had a significantly higher classification accuracy for 11 
out of 12 participants than either of the individual modalities 
(average classification accuracies: EEG—75%, fNIRS—57%, 
EEG-fNIRS—81%) (100).

In the validation step, source analysis for both the 64 EEG 
and 31 fNIRS channels was performed to localize the neural sig-
nals during the motor imagery task. Source analysis effectively 
attempts to solve the question of what brain tissues/areas are 
being probed by a given measurement. In EEG, source analysis 
involves estimating solutions to the ill-posed inverse problem. 
Due to the effects of volume conduction, sources (i.e., dipoles) 
all over the brain may contribute to a measured signal at the 
scalp. However, an infinite number of source configurations  
(i.e., radial and tangential) may generate a particular pattern 
of voltage at the scalp (127). Source analysis thus requires 
estimating the final surface voltage pattern and then working 
backward to determine which neural sources generated that 
voltage pattern. As a result of this, the inverse problem can be 
seen as a NP-hard (non-deterministic polynomial-time hard) 
problem, where no absolute answer is available. Nevertheless, 
several methods are available, based on certain assumptions, 
to obtain approximate solutions (157, 158). In fNIRS, the 
question for source analysis becomes more specific as we 
aim to understand the depth penetration of the instrument. 
Light propagation through scattering media, such as the head 
(heterogeneous structure) is inherently complex and as such 
mathematical models of this process (radiative transport equa-
tion and its diffusion equation) are difficult to solve analytically 

(74). Estimations can however be made by solving the diffusion 
equation for optically homogenous tissues with infinite, semi-
infinite, or slab boundary conditions (159, 160). Two types of 
numerical approaches can also be used to gain information 
about sensitivity and penetration depth in complex tissue: (1) 
approaches based on finite element and finite difference analysis 
or (2) Monte Carlo simulations of photon propagation through 
the tissue. The latter was used by Strangman et al. to highlight 
that an increase in source-detector separation increased sensi-
tives of higher level gray matter samples, however at the cost of 
exponentially decaying sensitivity in-depth penetration (161). 
Returning to the study of Ge et al., standardized low-resolution 
electrical tomographic analysis (158) was used to compute 
an inverse solution for the EEG motor imagery data, whereas 
digitized points and topographical maps of the changes in HbO, 
superimposed onto the surface of a standard three-dimensional 
head model, were used for the fNIRS data (100).

These methodological advances have ultimately aided efforts 
to improve BCI communication in patients with LIS at the bed-
side (162, 163). Most recently, Chaudhary et al. demonstrated that 
patients with LIS could be trained (using feedback) to directly 
communicate through their hemodynamic signatures “yes” 
and “no” answers to a number of individually tailored personal 
questions (163). Patients were specifically asked to think (not 
imagine) “yes” or “no” when answering the auditorily presented 
questions while data were recorded from frontocentral brain 
regions. In the training period, questions with known “yes” or 
“no” answers were presented. However, to add to the complex-
ity, the trained classifier was then tested using open questions  
(e.g., quality of life questions: “You have back pain”) to which 
only the patient could answer. Findings demonstrated that 
when most patients were instructed to answer “yes” there was 
an increase in oxygenation that was not followed by a decrease 
when providing a negative response. As such, the mean rela-
tive change in [HbO] across each of the channels was used as 
a feature to train the SVM classifier through a fivefold cross-
validation procedure. Overall, in three quarters of patients it 
was found that the correct response rate for feedback and open 
question sessions exceeded 75%. This study marks a huge leap in 
the capabilities of fNIRS BCI, especially when compared to the 
study a decade ago by Naito et al. (150). Furthermore, in many 
cases, it sets the stage for the use of simultaneous EEG-fNIRS 
BCI in patients with PDOC. Nevertheless, caution should be 
taken since these results were based off a small cohort of four 
patients. Additionally, the underlying neurocognitive mecha-
nism is unclear, as responses were not detected via a proxy men-
tal action (i.e., in motor imagery) but by apparent processing of 
the “correctness” of the statements—i.e., that they were indeed 
experiencing back pain, rather than that they were performing a 
mental behavior to signal that they were experiencing back pain. 
The lack of a clear neurocognitive model may impede its utility 
in a wider patient group.

This school of thought is opposed to the more widely used 
method of using proxy behaviors for communication—e.g., 
imagining playing tennis to answer “yes.” This approach 
importantly does not rely on unclear models of neurocogni-
tive processing but makes use of a clear signal of volitional 
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command-following. However, command-following places 
higher cognitive demands on the communicator as they must 
map the appropriate response onto an arbitrary behavior and 
produce that behavior. Conversely, the approach of Chaudhary 
et  al. (163) assumes that the communicator’s passive experi-
ence of the correctness of the statement is sufficient to provide 
the communicative output and is therefore a potentially more 
functional method for patients with limited cognitive resources 
as a result of brain injury.

In a recent comparison to the continuous wave device used 
by Chaudhary et  al. (163), which is prone to be increasingly 
sensitive to light absorption in superficial layers and thus 
less reliable at detecting brain activity, Abdalmalak et  al. (87) 
tested their previously designed four-channel time-resolved 
fNIRS system (80, 82), which enhances depth sensitivity by 
discriminating between early and late arriving photons (see pre-
vious discussions between continuous wave and time domain 
systems). With this technique, they detected motor imagery 
(imagining playing tennis) from a patient who was diagnosed 
with an acute form of locked-in-state. Furthermore, by using 
motor imagery as a proxy for communication and by analyzing 
the mean time-of-flight signals (converted to HbO and HbR and 
classified using SVM), they detected yes/no responses to a series  
of questions addressed to the same patient. The accuracy of the 
answers was confirmed by the patient’s residual eye-movement 
communication channel. While this method has the potential 
to be translated to patients with PDOC, postinjury functional 
reorganization of the brain may affect the choice of probe 
placement, and ischemia or hematoma can impede scattering 
and absorption of light. As such, structural imaging data would 
contribute significantly to increasing the accuracy of fNIRS BCI 
methods. Furthermore, it is necessary to take into account any 
medications or sedatives used by the patient, as some are known 

to cause hemodynamic fluctuations that could be misinterpreted  
as being task-related (164).

FROM COMMUNiCATiON TO ADvANCeS 
iN ReHABiLiTATiON

Improving diagnostic accuracy and establishing a means of 
communication between clinicians and patients has been a 
significant goal of the field of PDOC over the last two decades. 
However, there has also been significant research into potential 
therapies and treatments via pharmacological interventions and 
neuromodulation techniques, such as deep brain stimulation and 
spinal cord stimulation (165–167). fNIRS provides a non-invasive 
means of quantifying the neurophysiological and neurocognitive 
impact of these approaches.

Unlike deep brain stimulation where an electrode is 
implanted directly within the brain rupturing the safety of 
the blood–brain barrier to external pathogens, in spinal cord 
stimulation the electrode is implanted in the epidural space to 
stimulate the ascending transmission pathways and regulate the 
awareness circuit (e.g., the mesocircuit) (168, 169). This method 
has been applied to PDOC with some promising effects. Kanno 
et al. reported that 54% of patients (109 out of 201) in a veg-
etative state began demonstrating purposeful behaviors (170), 
whereas Yamamoto et  al. reported 70% of patients (7 out of 
10) recovered from the minimally conscious state (i.e., demon-
strated functional interactive communication and/or functional 
use of two different objects) following spinal cord stimula-
tion use (166). Spinal cord stimulation is known to enhance 
cerebral blood flow and increase cerebral glucose metabolism  
(166, 168, 171), stimulate neurotransmitter and neuromodulator 
release (171, 172), and excite nerve conduction and electrical 
activity within regions of the brain (168, 171). This multitude 

TABLe 3 | Summary of the current literature using functional near-infrared spectroscopy (fNIRS) in patients with prolonged disorder of consciousness (PDOC) or locked-
in-syndrome (LIS).

Diagnosis Number of patients Overview of main results Reference

PDOC 2—MCS  ▪ Functional activation (i.e., [HbO] and [HbR]) during passive and somatosensory stimulation
 ▪ Weak brain activations during active hand opening and closing

Molteni et al., 2013 (28)

PDOC 5—UWS/VS
11—MCS

 ▪ Hemispheric differences during motor imagery of squeezing a ball with the right hand
 ▪ Patients in a minimally conscious state shared fNIRS profiles similar to healthy participants

Kempny et al., 2016 (27)

PDOC 7—UWS/VS
2—MCS

 ▪ In eight of the nine patients, spinal cord stimulation for 30 s induced sustained cerebral blood 
volume changes in the prefrontal cortex (an area important in the consciousness system; 
measured through an increase in [HbT])

 ▪ An inter-stimulus interval of 2 min significantly improved amplitudes of the HbT across blocks

Zhang et al., 2018 (29)

LIS 40  ▪ The intentions of 23 patients were successfully detected (80% correctly identified) by 
assigning different mental tasks to “yes” and “no” responses

Naito et al., 2007 (150)

LIS 1  ▪ The responses to open sentences were detected by instructing the patient to think “yes” and 
“no” to several questions

 ▪ 72% of responses were correctly identified at the bedside

Gallegos-Ayala et al., 2014 (162)

LIS 4  ▪ Communication using open sentences was established by instructing the patient to think 
“yes” and “no” to several questions

 ▪ For three out of the four patients, classification accuracies exceeded 75%

Chaudhary et al., 2017 (163)

LIS 1  ▪ Without any prior training, tennis-playing motor imagery was used successfully by a patient 
as a proxy to communicate responses to three questions

 ▪ Results were confirmed by the patient’s residual eye-movement communication channel
 ▪ Responses were similar to that of healthy participants performing the same task

Abdalmalak et al., 2017 (87)

MCS, minimally conscious state; UWS, unresponsive wakefulness syndrome; VS, vegetative state.
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of effects may ultimately come together to enhance the recovery 
process of such patients.

Assessing brain responses during spinal cord stimulation 
in patients in a minimally conscious state has previously been 
achieved using EEG. Previous studies have shown significantly 
altered relative power and synchronization in the delta (1–4 Hz) 
and gamma (30–45  Hz) bands in the frontal areas following 
spinal cord stimulation (173), with gamma activity in the frontal 
cortex causing transient global effects (widespread connectivity 
and network alterations) and long-lasting local effects (local 
connectivity alternations that persist beyond stimulation) (174). 
The drawback with EEG, however, is that brain responses during 
spinal cord stimulation cannot be measured in real-time due to 
interference from the stimulator’s electrical field. fNIRS on the 
other hand is not limited by this issue.

Using an eight-channel fNIRS device (device type not speci-
fied in the manuscript), Zhang et al. provided insights into the 
mechanisms of spinal cord stimulation for PDOC, in addition 
to quantifying the neuromodulation effects of different stimula-
tion parameters (29). In the prefrontal cortices of eight patients 
with PDOC, the researchers found a characteristic profile of an 
increase in [HbT] when stimulation was switched on, followed 
by a gradual return to baseline after stimulation was switched 
off. No such meaningful profile was observed in the occipital 
cortex. Furthermore, in the prefrontal cortex, both patients in 
the minimally conscious state showed significant increases in 
HbT across blocks, while such a profile was only present in two 
out of the six patients in the vegetative state. These results hint 
that it may be possible to partially increase cerebral blood flow 
in patients with PDOC via spinal cord stimulation, and that 
fNIRS can be used as a real-time monitor of these physiological 
consequences. Continued use of fNIRS alongside explorative 
therapies for PDOC has potential to guide clinicians in tailor-
ing stimulation protocols to optimize desired physiological 
responses and ultimately increase the success of rehabilitation 
efforts.

CONCLUSiONS AND FUTURe 
PeRSPeCTiveS

Functional near-infrared spectroscopy is in its infancy relative to 
fMRI and EEG, which have an already substantial literature in the 
study of PDOC. However, fNIRS is attracting interest in PDOC 
research as it can provide moderate spatial and temporal resolu-
tion of brain data via a portable and non-invasive device (please 
refer to Table 3 for an overall summary of the literature using 
fNIRS in patients with PDOC or LIS). Therefore, it has potential 
to improve the accuracy of diagnoses and even provide access to 
communication devices for more patients than could be achieved 
with, for example, fMRI alone.

Following in the footsteps of fMRI and EEG research in PDOC, 
the majority of fNIRS research has focused on detecting covert 
command-following via sensorimotor activity during imagined 
actions. However, for clinical applications, fNIRS is so far insuf-
ficiently sensitive to detect task-relevant activation in single-
subject data. Furthermore, no fNIRS study has yet differentiated 
between vegetative and minimally conscious states, suggesting 
limited diagnostic utility so far. However, as the sensorimotor 
cortex is easily probed by scalp-based sensors, and often a target 
for other hemodynamic markers of covert command-following 
(i.e., fMRI), the PDOC field should commit to developing sensi-
tive fNIRS markers of motor imagery.

Due to the relative infancy of fNIRS, there remains significant 
work to do in terms of hardware, signal processing, and analyses, 
especially for those researchers and clinicians who are not experts  
in optical imaging. For example, the vast majority of fNIRS work 
in motor imagery has been conducted with less sensitive but sim-
pler continuous wave devices. Further research into the opera-
tions of more advanced fNIRS systems (e.g., high channel density 
frequency domain and time domain devices) and subsequent 
knowledge transfer to clinical and biomedical science users will 
enable greater resolution of clinically meaningful brain responses. 
Indeed, across the broad physical and computational sciences of 
optical imaging, there has been significant work in improving the 
sensitivity of the brain tissue sampled, the depth of the measure, 
and the tools and models used to examine light propagation 
and detection. Recent successes in combining fNIRS and EEG 
analyses for BCIs also indicate that the technology is reaching the 
standards required for clinical applicability in PDOC.

It is clear that for fNIRS to realize its potential in PDOC 
assessment, research teams must incorporate multidisciplinary 
expertise in cognition, clinical practice, physical sciences, and 
computational sciences. With principled paradigms for diagnos-
ing covert awareness in combination with state-of-the-art devices 
and algorithms for data modeling, and feature extraction/clas-
sification, fNIRS, and perhaps more so EEG-fNIRS, has great 
potential to improve diagnostic accuracy in PDOC and enable 
patients to communicate their true mental state to the outside 
world.
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Behavioral assessments could not suffice to provide accurate diagnostic information in

individuals with disorders of consciousness (DoC). Multimodal neuroimaging markers

have been developed to support clinical assessments of these patients. Here we

present findings obtained by hybrid fludeoxyglucose (FDG-)PET/MR imaging in three

severely brain-injured patients, one in an unresponsive wakefulness syndrome (UWS),

one in a minimally conscious state (MCS), and one patient emerged from MCS

(EMCS). Repeated behavioral assessment by means of Coma Recovery Scale-Revised

and neurophysiological evaluation were performed in the two weeks before and after

neuroimaging acquisition, to ascertain that clinical diagnosis was stable. The three

patients underwent one imaging session, during which two resting-state fMRI (rs-fMRI)

blocks were run with a temporal gap of about 30min. rs-fMRI data were analyzed

with a graph theory approach applied to nine independent networks. We also analyzed

the benefits of concatenating the two acquisitions for each patient or to select for

each network the graph strength map with a higher ratio of fitness. Finally, as for

clinical assessment, we considered the best functional connectivity pattern for each

network and correlated graph strength maps to FDG uptake. Functional connectivity

analysis showed several differences between the two rs-fMRI acquisitions, affecting in

a different way each network and with a different variability for the three patients, as

assessed by ratio of fitness. Moreover, combined PET/fMRI analysis demonstrated a

higher functional/metabolic correlation for patients in EMCS andMCS compared to UWS.
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In conclusion, we observed for the first time, through a test-retest approach, a

variability in the appearance and temporal/spatial patterns of resting-state networks in

severely brain-injured patients, proposing a new method to select the most informative

connectivity pattern.

Keywords: PET/MRI, unresponsive wakefulness syndrome, minimally conscious state, diagnosis, brain

connectivity, resting-state fMRI, graph theory, glucose metabolism

INTRODUCTION

The improvements of medical interventions in the acute
and post-acute phase of severe acquired brain injury and
the failure of treatments to restore brain functions keep
increasing the number of patients with prolonged disorders
of consciousness (DoC) (1). These severe clinical conditions
entail heavy ethical and social implications, impact health
care policies and determine strong psychological distress in
patients’ families (2–4). Distinguishing patients in unresponsive
wakefulness syndrome, UWS [i.e. patients showing eyes opening
but no behavioral evidence of consciousness (5)] from patients in
minimally conscious state, MCS [i.e., patients showing minimal,
inconsistent but clearly discernible intentional behaviors (6)]
is pivotal for decision making in the entire care pathway of
patients with DoC. Indeed, patients in MCS are more likely
to have a better outcome (7, 8) and a higher probability of
clinical response to therapeutic interventions than patients in
UWS (9–11). However, in spite of the evolution of neuroscientific
and medical understanding on DoC, the clinical recognition of
volitional behavior still remains a very difficult task (8, 12).

Patients’ clinical signs of consciousness are frequently variable
across days and even within the same day (13). These
inconsistencies have been often linked to temporal fluctuations
of vigilance/awareness. For this reason, at least five repeated
behavioral assessments by means of validated assessment tools,
such as Coma Recovery Scale-Revised (CRS-R) (14), are strongly
recommended for improving diagnostic accuracy (15).

However, behavioral assessment might be complicated by
possible co-existing severe visuo-perceptual, motor or language
disabilities that limit clinical expression of consciousness (7, 16).
In this context, a multimodal diagnostic approach, combining
clinical and instrumental evaluations, could help detecting
signs of consciousness and making a correct diagnosis (17–
19). Neuroimaging methods, particularly those not requiring
patients’ active response, such as resting-state functional MRI
(rs fMRI) or 18F FDG-PET, can recognize residual neural
activity and functional connectivity into resting state networks
(RSNs), such as the default-mode network (DMN), specifically
associated with awareness level in such patients, independently
from their abilities to produce overt purposeful behaviors (20–
22). Moreover, multimodal imaging integration allows collecting
a plethora of information undetectable at patients’ bedside, but

Abbreviations: DoC, disorder of consciousness; UWS, unresponsive wakefulness

syndrome; MCS, minimally conscious state; CRS-R, Coma Recovery Scale-

Revised; PET, positron emission tomography; FDG, fludeoxyglucose; fMRI,

functional magnetic resonance imaging.

only simultaneous acquisition of neuroimaging data can assure
inter-modality comparability of the findings extracted within
the same temporal framework, thus reducing the influence of
clinically fluctuations typical of patients with DoC. Additionally,
the simultaneous acquisition of structural and functional data
by hybrid imaging techniques like PET/MR can improve
the patient’s compliance, by shortening imaging sessions and
reducing logistic issues (23).

The present clinical and neuroimaging pilot study aimed
at: (1) investigating possible variability in brain functional
connectivity in two distinct fMRI acquisitions within one
neuroimaging exam through a test-retest approach; (2)
evaluating the relationships of spontaneous functional
brain activity with metabolic activity in different levels of
consciousness.

For these purposes we combined simultaneous neuroimaging
methods (fMRI and PET) and repeated rs-fMRI acquisition in
a sample of three severely brain-injured patients with different
level of consciousness in stabilized clinical diagnosis of UWS,
MCS and emergence from MCS [EMCS, i.e., patient who
recovered functional communication or/and functional object
use; (5, 6)].

MATERIALS AND METHODS

Participants
We screened for the study severely brain-injured patients
consecutively admitted to the neurorehabilitation Unit at
Maugeri Clinical and Scientific Institutes, in Telese Terme (Italy)
from February 2017 to July 2017, fulfilling the following inclusion
criteria: (i) clinical diagnosis of UWS, MCS or EMCS according
to standard diagnostic criteria (5, 6); (ii) time from onset
longer than 1 month; (iii) traumatic, vascular or anoxic brain
injury. We excluded from the study patients with: (i) severe
pathologies independent from the brain injury (e.g., premorbid
history of psychiatric or neurodegenerative diseases); (ii) mixed
etiology (e.g., both traumatic and anoxic); (iii) not stabilized and
severe general clinical conditions; (iv) contra-indication for MRI
(e.g., ferromagnetic aneurysm clips, pacemaker); (v) large brain
damage (>50% of total brain volume), as stated by a certified
neuroradiologist, and motion parameters >3mm in translation
and 3◦ in rotation. Patients were also excluded if their clinical
diagnosis had changed in the week before the neuroimaging
acquisition.

The study was approved by the local Ethics Committee
of IRCCS Pascale (Protocol number: 3/15), and performed
according to the ethical standards laid down in the 1964 Helsinki
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Declaration and its later amendments. Written informed consent
was obtained from the legal guardian of patient.

Experimental Procedures
Clinical Assessment
One week before and one week after neuroimaging recording,
all enrolled patients underwent at least five clinical evaluations,
using the Italian version of the CRS-R (24), in order to confirm
stabilized clinical diagnosis of UWS, MCS or EMCS and to
gather the best CRS-R total score. Patients’ consciousness level
(measured by CRS-R total and sub-scores) was also assessed
in the “neuroimaging” day by one skilled psychologist (OM)
(Table S1).

Neurophysiological Evaluation
Standard EEG and event related potentials (ERP) were recorded
to complement behavioral assessment and to reduce risk of
misdiagnosis. For this purpose we acquired neurophysiological
exams at patients’ bed in 2 days in the week before PET/MRI
session and in 2 days in the week after neuroimaging exam, and
the best organization of EEG background activity and reactivity
was considered for classification of neurophysiological patterns,
complementing patients’ clinical diagnosis. In the presence
of artifacts in more than 50% of EEG recording time, EEG
acquisition was repeated in the day after. Two skilled clinical
neurophysiologists (VL and SF, blinded to patients’ etiology,
clinical diagnosis and CRS-R score) reviewed neurophysiological
exams.

Standard EEG was recorded by 19 electrodes placed on the
scalp, according to international 10–20 system (O1, O2, Pz, P3,
P4, T5, T6, C3, C4, Cz, T3, T4, Fz, F3, F4, F7, F8, Fp1, and Fp2).
We recorded EEG for (at least) 35min, according to standard
procedure of eye-closed waking rest, with filter settings 0.53–
70Hz, and notch filter on. For the analysis of predominant
activity, forced eye closing was obtained by cotton wool in awake
patient (spontaneous eye opening). To analyse EEG reactivity,
eye opening and (forced) eye closing were alternated three times
during EEG recording. We classified EEG background activity
on the basis of frequency and amplitude of predominant cortical
activity present in >50% of recordings, into one of five severity
categories, according to criteria recently proposed for patients
with prolonged DoC [(25), Appendix 1].

ERP were obtained by means of a simple “oddball” paradigm
using auditory stimulation and classified as “present” when P300
cortical response was recorded; in presence of N100 component
the exam ERP was considered “absent,” whereas lack of N100 was
considered as a not reliable exam (26).

PET/MRI Acquisition Protocol
PET/MRI data were simultaneously acquired in the resting
state using a Biograph mMR tomograph (Siemens Healthcare,
Erlangen, Germany) designed with a multi-ring LSO detector
block embedded into a 3 T magnetic resonance scanner.
Vacuumed pillows were used to minimize head movements
within the scanner. The PET/MRI was acquired in the
morning after customary nursing procedures. Moreover, we used
some strategies to ensure patients’ best vigilance state by: (i)

stopping possible sedative drugs (such as benzodiazepine) 15 h
before scanning; (ii) administering CRS-R vigilance protocol
(14) before PET/MRI acquisition and during neuroimaging
exam at the end of first resting state MRI acquisition; (iii)
monitoring eyes opening by means of a video camera located
into MRI scanner. In case of appearance of clinical signs
of possible drowsiness (i.e., persistence of eye closing), MRI
acquisition was stopped and CRS-R vigilance protocol was
administered.

Nominal axial and transverse resolution of the PET system
was 4.4 and 4.1mm FWHM, respectively, at 1 cm from the
isocenter. Additional technical details on the scanner are
reported elsewhere (27).

A dynamic brain PET study was performed after the
intravenous bolus administration of 18F-fluorodeoxyglucose
(18F-FDG) tracer. PET and rs-fMRI data acquisition started
simultaneously following the i.v.injection of 5 MBq/Kg of 18F-
FDG.

No food or sugar were administered to the subjects for at
least 6 h prior to FDG injection. Blood glucose was measured at
arrival at the PET center in all cases, and FDG was injected only
if glycaemia was below 120 mg/dl.

The PET data were acquired in list mode for 60min; matrix
size was 256 × 256. PET emission data were reconstructed
with ordered subset-expectation maximization (OSEM)
algorithm (21 subsets, 4 iterations) and post-filtered with a
three-dimensional isotropic gaussian of 4mm at FWHM.
Attenuation correction was performed using MR-based
attenuation maps derived from a dual echo (TE = 1.23–2.46ms)
Dixon-based sequence (repetition time 3.60ms), allowing for
reconstruction of fat-only, water-only and of fat–water images
(28).

During PET acquisition, the following MRI sequences were
sequentially run:

(i) First rs-fMRI acquisition (named “T1”) by a T2∗-weighted
single-shot EPI sequence (voxel-size 4 × 4 × 4 mm3, TR/TE
= 1000/21.4ms, flip angle = 82◦, 480 time points, FOV read
= 256mm, multiband factor = 2, distance factor = 0, TA =

8′06′′);
(ii) Three-dimensional T1-weighted magnetization-prepared

rapid acquisition gradient-echo sequence (MPRAGE, 240
sagittal planes, 256 × 214mm field of view, voxel size 0.8 ×

0.8 × 0.8 mm3, TR/TE/TI 2400/2.25/1000ms, flip angle 8◦,
TA= 6′18′′);

(iii) Three-dimensional T2-weighted sequence (240 sagittal planes,
256 × 214mm field of view, voxel size 0.8 × 0.8 × 0.8 mm3,
TR/TE 3370/563ms, TA= 6′46′′);

(iv) Three-dimensional fluid attenuation inversion recovery
(FLAIR, 160 sagittal planes, 192× 192mm field of view, voxel
size 1 × 1 × 1 mm3, TR/TE/TI 5000/334/1800ms, TA =

6′42′′);
(v) Second rs-fMRI acquisition (named “T2”) by a T2∗-weighted

single-shot EPI sequence (voxel-size 4 × 4 × 4 mm3, TR/TE
= 1000/21.4ms, flip angle = 82◦, 480 time points, FOV read
= 256mm, multiband factor = 2, distance factor = 0, TA =

8′06′′).
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In addition, during the same scanning session, axial diffusion
weighted images were also acquired for clinical purpose. The two
rs-fMRI acquisitions (T1 and T2) were separated by a 30min
interval.

fMRI and FDG-PET Processing
Resting state fMRI analysis was performed based on a
methodology fully described by Ribeiro and colleagues (29).
Independent component analysis (ICA) (30) followed by
template matching to identify RSNs and machine learning
classification to automatically recognize a neuronal source was
used. We extracted the weighted graphs for each of the nine
networks of interest as described in the paper (29) and calculated
the graph strength (GS) for each of the 1015 nodes. Finally, for
each network we calculated the correlation between the GS and
the metabolic values.

Nine RSNs of interest are recognized: auditory, default
mode network (DMN), extrinsic-control network left (ECNL),
extrinsic-control network right (ECNR), salience, sensorimotor,
visual lateral (VL), visual medial (VM) and visual occipital
(VO). The RSNs are assigned as the components with
maxima goodness-of-fit (similarity test) when compared to a
binary predefined template while considering all the RSNs
simultaneously. The templates for each RSN were selected by
an expert after visual inspection from a set of spatial maps
resulting from a Group ICA decomposition performed on 12
independently assessed controls and were confirmed by another

expert for accuracy of structural labeling (31). Subsequently a
classifier trained on an 11-dimensional space called “fingerprint,”
that provides both spatial (i.e., degree of clustering, skewness,
kurtosis, spatial entropy) and temporal information (i.e., one-
lag autocorrelation, temporal entropy, power of five frequency
bands: 0–008Hz, 0.008–0.02Hz, 0.02–0.05Hz, 0.05–0.1Hz, and
0.1–0.25Hz) of the ICs, is used to select only the neuronal
components from the extracted networks (31). Signals arising
from changes in local hemodynamics which result solely from
alterations in neuronal activity represented by low-frequency
(0.01–0.05Hz) are called neuronal signals. Non-neuronal signals
for fMRI data represents cardiovascular signal dominated by
higher frequency and head movement.

Once the neuronal components are identified, a graph
theoretical approach was applied on the ICs (GraphICAr,
BraiNet-Brain Imaging Solution Inc.-Sarnia, ON, Canada) to
visualize and calculate the graph properties of each network
(30, 32, 33). GraphICAr is a software in which single-subject ICA
with 30 components was ordered using the infomax algorithm
as implemented in the Group-ICA of fMRI toolbox (RRID:
SCR-001953; http://mialab.mrn.org/software/gift/). Instead of
working at the voxel level (around 100,000 voxels) for the
analysis, the cortex was parcellated into 1015 regions of interests
(ROIs) with anatomical meaning, using the Lausanne 2008 Atlas
with functions from the ConnectomeMapping Toolkit (34). Each

ROI is considered as a node of a graph; the edges connecting
the nodes typically carry weights describing the correlation, or
the degree of connectivity between each pair of nodes. After
decomposing the whole brain to components using ICA, the
weighted matrices (wij) for each of the nine components are
obtained by calculating the edge weights using the Equation (1):

wij = |zi| +
∣

∣zj
∣

∣

−

∣

∣zi − zj
∣

∣ (1)

where wij represents the edge weight between nodes “i” and “j,”
and zi, zj are the z-values which are obtained from the scalar map
of the independent component of interest for the nodes “i” and
“j,” respectively.

Furthermore, the two fMRI acquisitions which were obtained
for all three patients within a time interval of 30min and the
FDG-PET data, were manually co-registered with their structural
images. These data, along with the concatenated data (combined
T1 and T2), underwent an automated pipeline in GraphICAr,
which includes further minute realignment and adjustment for
movement-related effects, fine co-registration, segmentation of
the structural and FDG-PET image, and spatial normalization
into standard stereotactic Montreal Neurological Institute (MNI)
space as performed in SPM8. Considering the relevance of
motion for these dataset, as already reported in Soddu et al.
(32), motion parameters such as the mean displacement (1)
and the displacement speed (6) during the full acquisition were
calculated using the equations explicitly given by Equations 2,
and 3,

1 =

〈
√

TraX2
+ TraY2

+ TraZ2
+ RotX2

+ RotY2
+ RotZ2

〉

(2)

6 =

〈

√

1TRTraX2
+ 1TRTraY2

+ 1TRTraZ2
+ 1TRRotX2

+ 1TRRotY2
+ 1TRRotZ2

〉

(3)

Where 1TR represents the variation of a parameter over a TR.
Motion curves were regressed out from the fMRI data

when performing the preprocessing using Art repair
(RRID:SCR-005990; http://cibsr.stanford.edu/tools/human-
brain-project/artrepair-software.html), but not the motion
parameters. Instead these parameters were just calculated to
estimate how much the patients have moved in the scanner
during each acquisition.

Segmentation of the images in GraphICAr was performed at
the subject level to create its own segmentation (35). Following
these preprocessing steps, ICA was applied and wij matrices for
each of the nine networks were obtained. Simultaneously the
scalar maps of the FDG-PET for the 1015 parcellated regions of
the cortex were obtained.

The wij matrices which have the dimensions of 1015 × 1015
were thresholded such that the wij values that are less than the
threshold were set to zero while the values greater than the
threshold were kept as it is. Thresholds were selected from 0 to 1
in steps of 0.01 and the mean over the thresholded wij matrices
were obtained. The graph strengths (Si) for each of the 1015
regions for all three subjects and for the nine networks were
calculated from the thresholded wij, using the Equation (4):

Si =

N
∑

j=1

Wij (4)
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where “N” is the total number of regions.
Graph strength (GS) was tested at the network level for

proportionality with metabolic activity. In particular, only
regions with GS values greater than the thresholded GS (values
greater than half of the maximum GS value for the network of
interest) were visualized and selected for subsequent calculations.

Non-neuronal networks were removed and the networks
classified as neuronal were chosen for the analysis. Using the GS
values, the regions belonging to each network (mask), regions
outside the network and regions missing in the network for
patients in EMCS, MCS and UWS were plotted in different
colors for T1, T2 and concatenated data. In the case where the
networks from both acquisitions were neuronal, the ratio of fit
(ROF) (Equation 5), a measure assessing accuracy of network
representation in the analysis, was calculated (Table 1).

ROF =

(regions inside the mask− regions outside the mask)

(total number of regionswhich should belong to the mask)
(5)

Positive value of ROF indicates a high resemblance of the
network (higher the value, better the resemblance), while a
negative valuemeans a distorted network. The difference between
ROF (1ROF) values for T1 and T2 acquisitions of each RSN was
used to assess IC variability.

Scalar maps representing the GS for each network were
presented by choosing the acquisition with the highest ROF value
(best finding) between the two acquisitions and was used for
further analysis.

As recalled above, DMN includes several cortical regions
whose metabolic activity is thought to be related to level of
consciousness (20–22).We believe that presenting the GS directly
on the normalized structural images, especially for the DMN
has relevance, because it shows the anatomical pattern of the
network and permits to visualize the level of disruption or
completeness. However, we believe it would be too redundant to
present the GS for all networks in the samemodality. To ascertain
whether the concatenated data or the data corresponding to the
acquisition with the best network between T1 and T2 provided
the best representation of the network, both concatenated and
best acquisition data were plotted.

Statistical Analysis
Correlation between FDG-PET and GS was performed to
measure the similarity between the FDG-PET metabolic maps
and the GS activity maps for the whole brain. In order to get the
most representative value of the GS for each region from all the
networks, the maximum value out of all the neuronal networks
for that region was chosen. The z-scores of the GS and PET
for each region were calculated and the scatter plots of FDG-
PET versus GS were presented for the best and concatenated
data for the three patients. “Corrcoeff” function as implemented
in MATLAB, which returns the Pearson correlation value (r)
between the FDG-PET and GS of the 1015 parcellated ROI
was calculated and presented along with the statistical p value
for testing the null-hypothesis of no correlation. The p-value
is computed by transforming the correlation into a t-statistical

variable having N−2 degrees of freedom, with N the number of
data points. Furthermore, the distribution of the GS for the best
and concatenated data and FDG-PET were estimated.

RESULTS

Clinical Features
From a sample of nine severely brain-injured patients, we could
consider for PET/fMRI analysis two representative patients with
prolonged DoC and one patient emerged from MCS (Figure 1).
Detailed descriptions of patients’ clinical features are provided in
Appendix and the CRS-R total and subscores in Supplemental
Material (Table S1). In synthesis, one anoxic patient was in UWS
(F, 43 year old; time since injury: 8 months; best CRS-R total
score: 6; CRS-R total score at neuroimaging study: 6), 1 traumatic
patient in MCS (M, 18 year old; time since injury: 3 months;
best CRS-R total score: 11; CRS-R total score at neuroimaging
study: 11), and 1 anoxic patient emerged from MCS 25 days
before the neuroimaging study (M, 57 year old; time since injury:
10 months; best CRS-R total score: 22; CRS-R total score at
neuroimaging study: 22). The best CRS-R total scores collected
in each patient in the weeks before and after the neuroimaging
session and in the PET/MRI day are described in Figure 2.

Neurophysiological Findings
The best neurophysiological findings out of 4 EEGs and 4 ERPs
recorded in each patient are summarized in Figure 2. In the
patient in UWS we observed a poor organization of cortical
activity with predominant EEG delta activity with amplitude
less than 20 µV over most brain regions, not reactive to eye
closing (i.e., Low Voltage, LV category) and lack of P300. In
the patient in MCS we observed predominant reactive posterior
theta EEG activity (amplitude >20 µV), with frequent posterior
alpha rhythm (i.e., mildly abnormal, MiA category) in 3 out of 4
EEG recordings. A P300 cortical response was recorded at least
following “oddball” paradigm in 3 out of 4 exams. In the patient
in EMCS, a predominant reactive posterior theta EEG activity
(amplitude≥20 µV), with frequent posterior alpha rhythms (i.e.,
mildly abnormal, MiA EEG category) was recorded in 2 out of 4
EEG recordings. In all EEG acquisitions, the background activity
showed reactivity to eye opening and closing. The “oddball”
paradigm evoked a positive cortical component (i.e., P300) in 3
out of 4 exams.

Within-Session fMRI Variability
In the patient in EMCS, the DMN appeared spatially preserved
during the first (T1) rs-fMRI acquisition (ROF= 0.19 vs. ROF=

0.01 at T2), with a main neuronal component (Figure 3, Table 1).
The ECN was well preserved in both acquisitions on the left,
although in the T2 rs-fMRI there was some superposition due
to other regions, as shown by the negative value of ROF (−0.08
vs. ROF = 0.12 atT1), while it appeared inconsistent on the
right, and not neuronal in T1 acquisition. Auditory and salience
networks were partially preserved and evident only in the T2
scan. Moreover, the auditory appeared more lateralized to the
left (Figure 3, Table 1). Sensorimotor was spatially preserved in
T1, where it appeared wider for the co-activation of many nodes
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TABLE 1 | ROF values calculated from regions belonging to the GS values, separated into the regions belonging to the network itself and outside the network.

Networks EMCS MCS UWS

T1 T2 T1 T2 T1 T2

In Out ROF In Out ROF 1ROF In Out ROF In Out ROF 1ROF In Out ROF In Out ROF 1ROF

Auditory 85 87 −0.01 0.01 41 26 0.06 36 9 0.10 −0.04 108 162 −0.20 0.20

DMN 81 13 0.19 78 76 0.01 0.18 82 8 0.21 107 44 0.18 0.03 53 123 −0.20 −0.20

ECNL 46 27 0.12 57 70 −0.08 0.20 20 142 −0.80 48 88 −0.26 −0.54 29 158 −0.84 −0.84

ECNR 11 0 0.08 −0.08 30 49 −0.15 46 125 −0.60 0.45

Salience 30 108 −0.67 0.67 58 303 −2.11 46 228 −1.57 −0.54 16 52 −0.31 37 235 −1.71 1.40

Sensorimotor 39 213 −1.71 2 27 −0.25 −1.46 42 30 0.12 41 13 0.27 −0.15 36 69 −0.32 −0.32

VL 35 179 4 79 −0.56 10 75 −0.49 −0.07 42 108 −0.50 0.50

VM 125 37 0.32 37 22 0.05 0.27 93 21 0.26 48 53 −0.02 0.28

VO 41 54 −0.07 93 57 0.20 −0.27 6 14 −0.04 0.04

“In” and “Out” represent the total number of regions belonging to and outside of the network. Values of the non-neuronal networks are not presented.

FIGURE 1 | Flow chart of patient selection in each step of the study.

outside the network (ROF=−1.71). VL andVOwere recognized
as not neuronal in both scans, while VM appeared well preserved
with a better spatial pattern in T1 acquisition (ROF = 0.32 vs.
0.05 at T2) (Figure 3, Table 1).

In the patient in MCS, the preservation of DMN was clear
in both acquisitions (T1 and T2), with ROF values of 0.21 and
0.18, respectively. The ECN was partially recognized for both
hemispheres in both acquisitions although the number of nodes
outside the network was high as highlighted by the negative
values of ROF (Figure 3, Table 1). Auditory and sensorimotor
networks appeared well preserved in both acquisitions, with
a complementary mirrored visualization for the auditory one
between T1 and T2. On the other hand, the salience network

was evident in both acquisitions, but with a spread co-activation
of nodes outside the network (ROF = −2.11 and −1.57 at T1
and T2, respectively) (Figure 3, Table 1). As for the three visual
networks, while the VL was recognized as neuronal in both T1
and T2, but with a poor spatial representation, both VM and
VO appeared temporal and spatially preserved with a better
visualization of VM at T1 (ROF = 0.26 vs. −0.02 at T2), and of
VO at T2 (ROF= 0.20 vs.−0.07 at T1) (Figure 3, Table 1).

In the patient in UWS, ECNR was not found in both
acquisitions, while the DMN and ECNL were partially detected
in T1, although with high number of regions outside the
networks revealed by negative values of ROF (−0.20 and
−0.84 respectively) (Figure 3, Table 1). In the same manner,
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FIGURE 2 | Coma Recovery Scale-Revised total score and neurophysiological (EEG and evoked related potential) evaluations recorded in the 3rd and 5th day before

PET/fMRI exam and in the 7th and 9th day after the PET/fMRI exam. The green arrow marks the day of neuroimaging acquisition. The blue diamond and line denote

the patient in unresponsive wakefulness syndrome (UWS). The orange square and line denote the patient in minimally conscious state (MCS). The gray triangle and

line denote the patient emerged from MCS (EMCS). CRS-R, Coma Recovery Scale-Revised; P, presence of P300 on evoked related potential; A, absence of P300 on

evoked related potential; +, presence of EEG reactivity to eye opening and closing; – , absence of EEG reactivity to eye opening and closing; MiA, mildly abnormal EEG

background activity; MoA, moderately abnormal EEG background activity; DS, Diffuse slowing EEG background activity; LV, Low voltage EEG background activity.

the salience network was detected in both acquisitions along
with more regions outside the network (ROF = −0.31 and
−1.71 respectively). Auditory and sensorimotor networks were
identified only in one acquisition, with a higher number of
regions belonging outside of the network (ROF = −0.20, −0.32)
(Figure 3, Table 1). Finally, out of the three visual networks,
contrary to the other two patients, VM was not identified in
either acquisition. VL and few regions of VO were detected in
the second acquisition (Figure 3, Table 1).

Summarizing, a wider variability was found for ICs
representation in the patient in EMCS (mean |1ROF| =

0.32) and in UWS (mean |1ROF| = 0.39) than in MCS case
(mean |1ROF|= 0.26).

Mutual fMRI Findings
When considering the best finding between the two rs-fMRI
acquisitions (T1 and T2) for each network, ICA components
classified as neuronal networks were 61, 100, and 44% for patients
in EMCS,MCS, andUWS (Figure S1), respectively. In the patient
in EMCS, the DMN and VM networks were fully preserved, and
most regions of ECN and sensorimotor were detected as well
(Figure S1). Regions belonging to the spatial pattern and extra
regions were identified in the auditory network, while mainly
regions that did not belong to the salience network were detected.
Out of the three visuals, only the VM was identified as neuronal
with a good spatial representation of the network. In the patient
in MCS (Figure S1), almost all the networks except the salience
network seem to be well preserved, despite ECNR being spread

out to both hemispheres and VL being lateralized. In the patient
in UWS, the spatial patterns of most of the networks (except the
sensorimotor and VM) were not well defined (Figure S1).

The head displacement of the patient in EMCS in the scanner
during both T1 and T2 acquisitions was 0.09, whereas for the
patient in MCS they were 0.03 and 0.06, respectively. Overall the
lowest displacement was observed for the patient in UWS with
the values of 0.02 and 0.04 respectively (Figure S2). The speed
of the patients in the scanner for the T1 and T2 acquisitions of
patient in EMCS were 2.0 × 10−4 and 3.7 × 10−4, for patient in
MCS: 2.9 × 10−5 and 1.9 × 10−4, and for patient in UWS: 6.3 ×
10−4 and 5.6× 10−5 respectively (Figure S2).

Looking at the spatial distribution of the three most
representative axial slices of the GS implemented on the
normalized structure of the DMNnetwork, in the best acquisition
of both EMCS and MCS, this network was preserved throughout
the brain, while in the patient in UWS, the GS seems to be
highlighted mostly in the areas outside the network (Figure S3).
In the concatenated case, the network was present only in the
patient in MCS, but in the patient in EMCS, only the frontal
part was found while in the patient in UWS, the network was not
even recognized. In this figure, the GS values from 0.5 to 1 were
represented in the jet color notation.

Functional-Metabolic Correlation
Considering the functional-metabolic correlation in these
patients, a significant positive correlation (p < 0.05) existed
between the FDG-PET and GS for all three patients when
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FIGURE 3 | A visual representation of the regions highlighted by the thresholded GS (values greater than half of the maximum GS value for the network), separated by

the regions within and outside the network for patients in EMCS, MCS and UWS for nine RSNs. Regions belonging to the network and having GS values greater than

the thresholded GS are represented by green, regions which should be in the network but do not have GS values greater than the thresholded GS are represented by

blue, regions outside the network but have GS values greater than the thresholded GS are represented by red color. NN represents non-neuronal networks. Here the

size of the circle doesn’t represent the value of the GS, all the regions with a GS value are plotted evenly.
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considering the whole brain (Figure S4). In the best ICs pattern,
EMCS had the highest correlation (r = 0.19, p < 0.01), whereas
in the concatenated case, the MCS had the highest correlation
(r = 0.21, p < 0.01). This implies that, when both results
are reasonably good, concatenated data seems to give a better
representation. It’s evident that overall the patient in UWS had
the lowest correlation out of all three patients with correlation
values of 0.08 (p = 0.02) and 0.10 (p < 0.01) for the best and
concatenated data respectively. The positive skewness value of
0.31 for the FDG-PET distribution (Figure S5) of the patient
in EMCS indicated that there were many regions metabolically
more active than themean PET value. In theUWS instance, many
regions were lower or similar in activity to the mean value, as
confirmed by the negative skewness value of−0.01.

DISCUSSION

In the present pilot study, we investigated variability within
a period of about 30min in brain functional connectivity in
three severely brain-injured patients (two patients still with
DoC and one patient emerged from DoC). Moreover, we
employed a methodological approach based on the graph theory
and independent component analysis, to decompose brain
connectivity maps in different networks and to correlate it to
glucose metabolic activity simultaneously acquired through a
PET/MRI scanner. We could demonstrate several differences
between the two rs-fMRI acquisitions affecting in a different way
each network and with a different variability in the three patients.

Functional connectivity assessed among the nodes belonging
to different resting-state networks is sensitive to normal aging
(36) and levels of consciousness (37–40), representing a potential
biomarker of disease in longitudinal studies (41). Although being
quite variable during pathological conditions, RSNs examined
with a test-retest approach are thought to be highly reproducible
within the same sample (42, 43). In a recent paper (44), co-
activation patterns approach has been used in DoC patients,
demonstrating heterogeneous spatial reconfiguration of DMN
but also similar fluctuations of the BOLD signal in patients
compared to control individuals. While these authors referred
to BOLD signal oscillations during a single resting-state fMRI
session, we scheduled two resting-state acquisitions with a
30-min interval, to investigate through a test-retest approach
possible variability in functional connectivity within RSNs.
Several differences were found between T1 and T2 session,
with higher variability for the EMCS and the UWS case,
compared to the patient in MCS. These findings apparently
did not fit the substantial stability in the clinical diagnosis
demonstrated by repeated behavioral assessments in the present
brain-injured patients. However, we could speculate that this
novel methodological approach is suitable to detect minimal
fluctuations in brain connectivity not sufficient to determine
relevant behavioral changes (i.e., by changes in clinical diagnosis),
but nonetheless likely related to the variations detected by
multiple CRS-R total scores and neurophysiological assessments.
However, the nature and clinical significance of the fluctuations
of the functional connectivity observed here remain to be

established. Furthermore, multimodal investigations, possibly
combining neuroimaging and neurophysiological assessment,
are necessary to ascertain if variability in brain connectivity is
associated to temporal variability of EEG activity characterizing
patients with high probability of vigilance fluctuations (45).

On the basis of these considerations, we suggest that
this innovative approach for neuroimaging analysis could
permit clinicians to better identify the best functional brain
performance, needed for the diagnostic classification of patients
with high likelihood of clinical misdiagnosis. These findings
could be extremely interesting, mainly for patients who are
clinically diagnosed as UWS, where possible minimal and
inconsistent signs of consciousness may not be recognized by
behavioral assessments, leading to possible misdiagnosis (12, 46–
48), and for detecting subtle signs of recovery of consciousness
(8, 49, 50).

The same methodology should be applied to larger patient
samples, also including a high number of patients without
fluctuations of CRS-R total score, to comprehend which
variations of functional connectivity might be related to
substantial clinical fluctuations or to a basic variability of
neuronal network.

The differences in spatial patterns observed in the two
acquisitions within the same patient might be due to motion
and artifacts. These artifacts affect the nine networks in different
manner (32). However, the present findings suggest that not
necessarily one acquisition is capable of detecting spared or
impaired networks reliably. This observation suggests acquiring
more than one acquisition during the scanning interval and to
develop a gold standard for choosing the best one.

The GS scalar maps of most networks were more similar to the
standard template of the networks in the patients in EMCS and
MCS than in the patient in UWS. Specifically, all the networks
of the patient in MCS and the important networks (but VL
and VO) of the patient in EMCS were recognized. This implies
that the brain functional organization was relatively preserved
for the patients in EMCS and MCS. However, the auditory and
salience networks had higher GS in regions outside the network
likely in relation to the brain lesion. In the patient in MCS,
although the salience network behaved as neuronal, the spatial
pattern was not well-defined, suggesting that this network was
distorted and metabolically impaired. Although seven out of the
nine networks could be recognized in the patient in UWS, they
had hyper-connectivity (confirmed by the negative ROF values),
resembling non-normal condition. This might be related to the
severe pathological condition of the patient in UWS affecting the
spatial patterns of most networks (32).

A significant positive correlation was observed between the
FDG-PET and GS for all three patients, although the r values
were small. Overall, a higher correlation was observed for the
patient in EMCS and MCS compared to the UWS case while
using the concatenated data. The negative skewness value for
the FDG-PET of the patient in UWS (FDG-PET values region
by region were normalized by the global signal or mean all over
the 1015 regions), is explained by the fact that there are only
few regions with metabolic activity above the mean value. In
the patient in EMCS, the distribution of the FDG-PET is tailed
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toward the left with a positive skewness value showing that there
are several regions more metabolically active than the average,
favoring conscious behavior.

Limitations of the Study
The present study had several limitations. First, we acknowledge
that the low number of patients was a major limitation. We
selected three patients with different clinical diagnosis (i.e.,
UWS, MCS and EMCS), to preliminarily investigate possible
variability in fMRI connectivity in patients with different level
of consciousness. The small sample size did not allow any
generalization, but we hope that our preliminary study could
serve as a starting point for devising multicenter studies on
larger samples, comparing data of patients with different levels
of consciousness, different etiologies and in different disease
phases. Second, we could not calculate rigorous associations
between patients’ behavioral profiles (measured by repeated CRS-
R assessments) and their possible brain connectivity variability,
since the two features could not be measured in the same
time window. Also, we did not perform clinical assessments
immediately before and at the end of MRI acquisition since it
could not ensure a strictly closed evaluation of possible patients’
fluctuation in the two fMRI acquisitions.

May be the best tool to quantitatively assess even sub-
clinical variations of cortical activity that could be correlated
with repeated resting state fMRI seems to be prolonged EEG
monitoring (45). However, we would underline that we enrolled
patients in stabilized clinical diagnosis (even though in slightly
fluctuated CRS-R scores), as demonstrated by repeated clinical
assessments in the weeks before and after neuroimaging day,
and with time from brain injury more than 1 month in order
to minimize possible biases related to spontaneous clinical
changes in the two different resting MRI acquisitions. Third,
a lack of specific alertness level monitoring (such as EEG
recording) during scanning acquisition could be a limit for the
analysis within and between subjects, since we could not exclude
variations in wakefulness as confounders for intrinsic functional
connectivity analysis (51). However, we used some strategies to
ensure patients’ best vigilance state as described above.

Finally, the lack of a control group was a limitation
of the present study, although the choice of the best
reference group for patients with DoC is still debated (healthy
subjects vs. injured patients that recovered consciousness,
like for EMCS). Nevertheless, rs-fMRI functional connectivity
metrics, mainly extracted by ICA, have demonstrated a high
test-retest reproducibility (42). Moreover, other studies have
demonstrated the potential of rs-fMRI functional-metabolic
correlation assessed by simultaneous PET/MRI in healthy
subjects (52), and in other neurological conditions, like
Alzheimer disease (53).

CONCLUSIONS

Since repeated acquisitions within 30min showed relevant
variability through a test-retest fMRI approach, we suggest
performing multiple acquisitions within the same session to
pick the best findings and possibly to compare these findings

in longitudinal acquisitions. This procedure, together with the
combined simultaneous acquisition of fMRI and PET, could
provide useful information for improving characterization of
patients with DoC. In a not well-defined number of patients
with clinical diagnosis of unresponsive wakefulness syndrome,
paraclinical testing (such as fMRI by active task or acquisition in
resting state) could reveal cortically mediated cognitive functions
(the so-called covert cognition). In this context our approach (i.e.,
double resting fMRI acquisitions combined with PET scanner)
could help clinicians to increase the probability of detecting
(spared) functional connectivity, which might provide diagnostic
and prognostic information.
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Figure S1 | GS scalar maps of the nine RSNs of patients in EMCS, MCS, and

UWS. From the two acquisitions, only the networks classified as neuronal are

shown. When both acquisitions had neuronal components, the highest ROF value

was used to choose the best spatial pattern of the network. The size of the circle

represents the strength of the GS. The darker the circle, the higher the GS. Only

the GS values greater than 0.5 of the maximum GS value of that network are

plotted.

Figure S2 | Motion curves illustrate translation (in mm) for x (blue), y (red), and z

(orange) and rotation (in ◦) for pitch (blue), roll (red), and yaw (orange) parameters,

and the time courses of each the nine RSNs (auditory, DMN, ECNL, ECNR,

salience, sensorimotor, VL, VM, and VO) over 480 s.
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Figure S3 | Three most representative axial slices of the GS implemented on the

normalized structure of the DMN network are presented for the three patients for

the best functional pattern and concatenated data.

Figure S4 | Scatter plots for the EMCS, MCS and patients in UWS showing the

correlation between the FDG-PET and GS of the 1015 parcellated ROI. Solid line

indicates the best linear fit to the data and on the northeast corner of each scatter

plot the linear correlation value is reported along with its statistical p-value.

Figure S5 | Distribution plots of GS for the best acquisition, concatenated data

and FDG-PET for patients in EMCS, MCS and UWS.

Table S1 | Coma Recovery Scale-Revised total and subscores in the three

patients collected in the day of neuroimaging and 5 days in 1 week before and

after.

Appendix 1 | Classification criteria for visual analysis of EEG background activity.
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Clinicians are regularly faced with the difficult challenge of diagnosing consciousness

after severe brain injury. As such, as many as 40% of minimally conscious patients

who demonstrate fluctuations in arousal and awareness are known to be misdiagnosed

as unresponsive/vegetative based on clinical consensus. Further, a significant minority

of patients show evidence of hidden awareness not evident in their behavior. Despite

this, clinical assessments of behavior are commonly used as bedside indicators of

consciousness. Recent advances in functional high-density electroencephalography

(hdEEG) have indicated that specific patterns of resting brain connectivity measured at

the bedside are strongly correlated with the re-emergence of consciousness after brain

injury. We report case studies of four patients with traumatic brain injury who underwent

regular assessments of hdEEG connectivity and Coma Recovery Scale-Revised (CRS-R)

at the bedside, as part of an ongoing longitudinal study. The first, a patient in an

unresponsive wakefulness state (UWS), progressed to a minimally-conscious state

several years after injury. HdEEG measures of alpha network centrality in this patient

tracked this behavioral improvement. The second patient, contrasted with patient 1,

presented with a persistent UWS diagnosis that paralleled with stability on the same alpha

network centrality measure. Patient 3, diagnosed as minimally conscious minus (MCS–),

demonstrated a significant late increase in behavioral awareness to minimally conscious

plus (MCS+). This patient’s hdEEG connectivity across the previous 18 months showed

a trajectory consistent with this increase alongside a decrease in delta power. Patient 4

contrasted with patient 3, with a persistent MCS- diagnosis that was similarly tracked

by consistently high delta power over time. Across these contrasting cases, hdEEG

connectivity captures both stability and recovery of behavioral trajectories both within

and between patients. Our preliminary findings highlight the feasibility of bedside hdEEG
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assessments in the rehabilitation context and suggest that they can complement clinical

evaluation with portable, accurate and timely generation of brain-based patient profiles.

Further, such hdEEG assessments could be used to estimate the potential utility of

complementary neuroimaging assessments, and to evaluate the efficacy of interventions.

Keywords: consciousness, electroencephalography, brain networks, longitudinal assessment, disorders of

consciousness, minimally conscious state, unresponsive wakefulness state

INTRODUCTION

Recent years have seen substantial advances in the research and
development of both behavioral tools and imaging methods to
detect the level of awareness in patients with prolonged disorders
of consciousness (pDOC), defined as those persisting 4 weeks or
more after injury (1). Nonetheless, making an accurate clinical
diagnosis remains challenging with the most recent figures
indicating a misdiagnosis rate of almost 40%, when based on
clinical consensus (2).

One of the factors contributing to this rate of misdiagnosis
is the lack of a standardized diagnostic tool, or a gold standard
for establishing the state of consciousness of a patient. The Coma
Recovery Scale-Revised (CRS-R) (3) is considered the most valid
scale for the systematic assessment of behavioral awareness in
these patients (4) and has helped to identify those patients that
have been misdiagnosed based on clinical examination (1). The
CRS-R has subscales of assessment along different dimensions
of behavioral responsiveness, which aim to distinguish those
patients that show reflexive responses only (Unresponsive
Wakefulness State/Vegetative State; UWS/VS), to those who
show a degree of awareness with/without command following
(Minimally Conscious State; MCS-/MCS+ respectively), to
those who have emerged from minimal consciousness, as
evidenced by functional object use and/or functional and
accurate communication (Emerged from Minimally Conscious
State; EMCS). Unfortunately, the 40% misdiagnosis rate comes
from a large proportion of the MCS patients misdiagnosed as
UWS in the absence of systematic behavioral assessment with
methods like the CRS-R (2, 5).

Cases of some misdiagnosed patients have been found to
demonstrate covert awareness using imaging techniques such
as functional magnetic resonance imaging [fMRI (6, 7)] and
electroencephalography [EEG (8)]. This highlights the potential
utility of imaging techniques to assist with diagnosis in pDOC,
especially considering that patients have typically sustained
extremely severe brain injury that can lead to deficits to language,
motor or general attention and arousal functioning that could

lead to a failure to detect consciousness using a behavioral scale

(9). Advances in neuroimaging, particularly fMRI, have found
specific paradigms to measure cognition and have identified

neural correlates, including prominently the Default Mode
Network, which are associated with consciousness state in pDOC

(10–13). Prominently, fMRI has been used to detect covert

awareness and conscious experience in a significant minority of
patients (6, 14).

The potential application of fMRI to develop a clinical
diagnostic tool is problematic though, as it is not always

readily available, feasible, or affordable, making it unsuitable
for widespread application. While MRI assessments could be
employed where suitable and feasible to build a detailed picture
of brain structure and function, its use for regular patient follow-
up is unlikely to be viable in the typical clinical context. Once
patients leave the acute clinical care setting, they are often
relocated to a rehabilitation center or nursing home for long-
term care and rehabilitation. Typically, they are not followed
up with regular fMRI assessments. Without regular follow-up of
patients who might present variable and delayed improvements
in behavior, it is difficult to determine the prognostic value of
fMRI-based measures.

One promising avenue of neuroimaging research is the use
of high-density EEG (hdEEG). Research has indicated that
functional networks in the brain at rest, captured using various
measures, are associated with the state of consciousness in
pDOC (15–18). In particular, topologically structured networks
of spectral connectivity in the alpha band have been shown
to reflect consciousness levels in both patients (16, 18) and
in healthy participants as they lose and regain consciousness
during sedation (19). This research has repeatedly demonstrated
that resting frontoparietal network connectivity might be an
important EEG-based indicator of the state of consciousness.
Most recently, Chennu et al. (18) showed that such network
metrics estimated from resting state hdEEG could predict CRS-
R diagnosis, 12-month outcomes and the presence/absence of
frontoparietal metabolism [as measured by Positron Emission
Tomography (20, 21)] in a large group of pDOC patients.
Moreover,MCS patients whoweremisdiagnosed as UWS showed
no differences in any of the measured hdEEG network metrics
to the patients correctly diagnosed as MCS. This suggests that
assessment of hdEEG networks could have both diagnostic and
prognostic clinical value. One major benefit is that hdEEG
assessments can be administered at the bedside, allowing for
regular and repeated assessment to track the patient’s trajectory
of recovery. However, despite this potential, there is a substantial
translational gap to viable clinical applications. The current
national clinical guidelines for pDOC in the United Kingdom
(UK) state that resting EEG cannot discriminate between UWS
and MCS patients (1) and is not currently used routinely in a
clinical setting for diagnostic purposes. This is primarily because,
as it stands, there is no EEG-based clinical tool that has been
developed, standardized or trialed in a large cohort of pDOC
patients.

A related hurdle to the establishment of clinical utility
is the fact that the vast majority of neuroimaging research
in pDOC to date has taken a cross-sectional approach to
compare patient diagnostic groups, using convenience sampling
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conducted at a particular point in time. This has generated
valuable scientific insights about the nature of neural dysfunction
in these states. However, inconsistencies between patients
in regard to assessment methods can lead to poor validity
or replicability, particularly if data collected is combined
from multiple sites. Moreover, information from more fine-
grained measures at the individual patient level can get lost
using a cross-sectional approach. If the aim is to translate
neuroimaging assessments from the bench to the clinic, we
need to demonstrate that longitudinal monitoring in individual
patients can produce consistent estimates of brain activity at the
bedside. To address this translational gap, here we describe our
prospective BETADOC (BEdside Test of Awareness for Disorders
Of Consciousness) research study, which is amongst the first
to apply a consistent method to collect hdEEG assessments
and CRS-R assessments longitudinally in a group of pDOC
patients, by systematically assessing them every 3 months over
a period of 2 years. By conducting repeated and standardized
brain network analyses of the data using a previously published
pipeline (18), we track how fine-grained measures of resting
state brain networks vary and progress alongside the behavioral
trajectory of individual patients. This approach is enabling
us to conduct longitudinal validation of hdEEG network
metrics that we have previously shown to be associated with
diagnosis and prognosis of consciousness in a cross-sectional
study (18).

The overarching aim of the BETADOC study is to validate
EEG-based metrics that accurately describe changes in the
structure of hdEEG networks as individual patients recover
over time. Using a longitudinal design, we can assess both the
diagnostic and prognostic utility of hdEEG network metrics with
multiple data points collected from each patient. In this original
research report, we show preliminary results from four traumatic
brain injury (TBI) patients in pDOC from the BETADOCproject.
The first patient progressed from UWS to MCS-, in contrast
with the second patient who remained in UWS. The third
patient transitioned from MCS– to MCS+, while the fourth
patient remained in MCS–. We juxtapose the trajectories of
individual patient’s CRS-R scores with hdEEG visualizations
and metrics identified a priori, based on prior research in an
independent sample of patients (18). By demonstrating the
robust relationship between these brain network metrics and
CRS-R scores as patients progress through their individual
trajectories, we provide a first sample of the evidence base
required for viable clinical applications of resting state hdEEG
assessments in pDOC.

MATERIALS AND METHODS

Ethics
This study was carried out in accordance with the
recommendations of the UK National Health Service Research
Ethics Committee for Cambridgeshire. The study protocol was
approved by the committee (reference: 16/EE/0006). Patients’
next-of-kin gave written informed consent prior to enrolment in
the study, in accordance with the UK Mental Capacity Act 2005
and Declaration of Helsinki.

Participants
We included two pDOC patients whose CRS-R scores reflected
a transition to a progressively higher consciousness state across
assessments, one from UWS to MCS- and one from MCS–
to MCS+. These two patients were contrasted with two other
patients whose CRS-R scores remained unchanged and reflected
a stable UWS and MCS– state. All four patients had an etiology
of traumatic brain injury following a road traffic accident (584–
3,251 days since injury). As described further below, they were
assessed using the CRS-R to ascertain behavioral diagnosis,
and with high-density resting EEG to examine their brain
activity. The same researcher (CAB) assessed each patient at their
bedside every 3 months in the neurological center where they
resided.

Coma Recovery Scale-Revised
The Coma Recovery Scale - Revised (CRS-R) is a behavioral
assessment of awareness for pDOC (3). The 23-item scale
is split into subscales that measure the auditory, visual,
motor, oromotor/verbal, communication, and arousal levels
of the patient. Some items are considered to be signs of
consciousness, with the most complex items indicating EMCS.
Formal comparison of available behavioral scales to assess
awareness in this patient group indicated the CRS-R as one of
the most reliable (22). The CRS-R was administered by the same
trained neuropsychologist (CAB) with each patient at each time
point. Time of day, and patient postural position was also noted
although it was requested that patients were sitting upright in
chair if possible.

High-Density EEG Resting State
Fifteen minutes of resting state data was collected using a 128-
channel saline electrode net [Electrical Geodesics (EGI)]. Data
was collected at a sampling rate of 500Hz and was later down-
sampled to 250Hz offline. Prior to EEG collection, the CRS-Rwas
administered to assist with ensuring patients were awake with
their eyes open. Patients’ behaviors and EEG data weremonitored
online to ensure recordings were free from seizure activity.

The pre-processing and artifact rejectionmethodwas identical
to that in Chennu et al. (18), as visualized in Figure 1. Briefly,
data from electrodes near the eyes, face and neck was removed,
leaving 91 electrodes for further analysis. Data was filtered
at 0.5–45Hz and then epoched to 10-second epochs. Each
epoch thus generated was baseline-corrected relative to the
mean voltage over the entire epoch. Data containing excessive
eye movement or muscular artifact was rejected by a quasi-
automated procedure: abnormally noisy channels and epochs
were identified by calculating their normalized variance and then
manually rejected or retained by visual inspection. After artifact
rejection, there was on average 10.74min of data (SD = 2.50)
from each assessment for estimation of power and connectivity.
This involved rejection of an average of 17% of the data in
each assessment (SD= 19%). Independent Components Analysis
(ICA) based on the Infomax ICA algorithm (23) was used to
visually identify and reject noisy components (Mean = 41%,
SD = 17%). Finally, previously rejected channels (Mean = 18%,
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FIGURE 1 | Data Processing Pipeline for Connectivity Analysis - Methodology was identical to (18). Cross-spectral density between pairs of channels was estimated

using dwPLI. Resulting connectivity matrices were proportionally thresholded. Thresholded connectivity matrices were visualized as topographs, which combined

information about the topography of connectivity with the modular topology of the network (see Figure 2 legend for details). Graph-theoretic metrics were then

calculated after binarising the thresholded connectivity matrices.

SD= 10%) were interpolated using spherical spline interpolation,
and data were re-referenced to the average of all channels.

Using a multitaper method with five Slepian tapers (24),
spectral and cross-spectral decompositions within the canonical
delta (0.5–4Hz), theta (4–8Hz) and alpha (8–13Hz) frequency
bands were computed at bins of 0.1Hz. Spectral power values
were normalized by dividing the power at each bin by the
total power over all three bands and multiplying by 100
(17). Alongside, the cross-spectral decomposition was used
to estimate the debiased weighted phase lag index (dwPLI)
(25) metric of connectivity between every pair of electrodes.
dwPLI minimizes the effects of volume conduction on the
estimation of brain connectivity, and is further minimally biased
at small sample sizes (25). Within each frequency band, dwPLI
values at the peak frequency of the oscillatory signal across
all channels were used to represent the connectivity between
channel pairs. From each subject’s dataset, the dwPLI values
across all channel pairs were used to construct symmetric 91 ×

91 dwPLI connectivity matrices for the delta, theta and alpha
bands.

The dwPLI matrices thus constructed were thresholded
proportionally to preserve 90–10% of the largest dwPLI values in
steps of 2.5%. Specifically, at the 90% threshold, only the 10% of
the weakest network edges were discarded. At the 10% threshold,
90% of the weakest edges were discarded. This lowest threshold
of 10% ensured that the average degree was not smaller than 2
log(N), where N is the number of nodes in the network (i.e.,
N = 91). This in turn guaranteed that the resulting networks
could be estimated (26). Further, graph connection densities

within this range of thresholds have been shown to be sensitive
to the estimation of “true” topological structure therein (27, 28).

After applying each of these thresholds, matrices were
binarised, i.e., non-zero values were set to 1. These matrices were
then modeled as networks with channels as nodes and binarised
dwPLI values as connections between them. These networks
were analyzed using graph theory algorithms to calculate a
pre-defined set of summary metrics previously evaluated in
an independent dataset (18)–clustering coefficient, characteristic
path length, modularity, participation coefficient and modular
span–at each value of the proportional threshold. The clustering
coefficient of a network captures its local efficiency (26), while
the characteristic path length measures the average topological
distance between pairs of nodes in a graph, providing a measure
of global efficiency (26). Modularity, calculated here using the
Louvain algorithm (29), is a network metric that captures the
degree to which the nodes of a network can be parcellated into
densely connected, topologically distinct modules (30). Given a
modular decomposition, the participation coefficient of a node
is an inter-modular measure of its centrality (31). A larger
standard deviation in participation coefficient of network nodes
indicates a diversity of connectivity, and hence the presence
of hub nodes that link many modules together in an efficient
network. Here, we used the standard deviation of participation
coefficients to measure network centrality as the presence of
diversely connected nodes with central hubs (32, 33). Finally,
modular span is average weighted topographical distance (over
the scalp) spanned by a module identified in a network (16).
Network metrics were averaged over all connection densities
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considered, to reduce them down to scalar values when plotting
them alongside CRS-R scores.

For each patient, the measures were normalized for plotting
to show the percentage of change relative to the first assessment
in that patient. Further, to estimate the stability of each brain-
based metric estimated at each assessment, we repeated the above
power, connectivity and network analyses 25 times, each time
randomly sampling 80% of the retained epochs. The minimum
and maximum values obtained over the 25 repetitions were
represented as error bars during plotting.

The above data analysis pipeline was implemented using
EEGLAB (34), FieldTrip (35), the Brain Connectivity Toolbox
(36), and custom MATLAB scripts. The pipeline was automated
except for manual checks for and removal of artifactual channels,
trials and independent components.

RESULTS

Patient 1: UWS to MCS–
Patient 1 (age range: 45–50) was first admitted to hospital
nearly 9 years previous to the first hdEEG assessment (3,251
days since injury). Glasgow Coma Scale (GCS) at time of
incident was unavailable. At the time of the first assessment,
the patient had been in a prolonged UWS with no means
of communication, tetraparesis and cognitive difficulties since
their injury. There was a noted history of seizures and also
some hospital admissions for chest infections. The patient
was being treated using Sodium Valproate for management of
seizures.

Figure 2A shows this patient’s trajectory of CRS-R scores from
UWS toMCS–, evidenced by visual pursuit on the visual subscale
of the CRS-R. The cross-sectional study in an independent group
of patients conducted by Chennu et al. (18) showed that the
measure of EEG networks that distinguished UWS from MCS–
patients was alpha network centrality, measured as the standard
deviation of participation coefficients across the nodes in the
network [see Figure 1C in Chennu et al. (18)]. Further, they
showed that these hubs were located along a frontoparietal axis
of nodes with high connectivity in both locked-in patients and
healthy controls [see Figure 1A in Chennu et al. (18)].

Here, within a single patient over a longitudinal period, we
observed a visually evident association between their CRS-R
score (Figure 2A) and this measure, the normalized alpha band
participation coefficient (Figure 2B), as the patient progressed
from a UWS to an MCS- diagnosis. Figure 2C plots 3D network
topographs visualizing alpha connectivity measured at each
assessment. We recorded the highest CRS-R score of 8 at the 6th
assessment, when frontoparietal connectivity wasmost evident in
the patient’s alpha band network (Figure 2C, far right).

Patient 2: Stable UWS
Patient 2 (age range: 20–25) was admitted to hospital more
than 19 months previous to the first hdEEG assessment (584
days since injury). The GCS at time of incident was unavailable.
The patient was noted to have widespread intraparenchymal
contusions, subarachnoid and subdural hemorrhages as well as
base of skull fractures. The patient underwent decompressive
craniectomy for raised intercranial pressure and since then, had

a cranioplasty. The patient had hydrocephalus and underwent
ventriculoperitoneal shunt insertion. The patient’s clinical course
was complicated with autonomic storming which was managed
with Propranolol and Clonodine. At the time of assessment, the
patient showed only reflexive behaviors with tetraparesis and no
effective means of communication.

Figure 3A shows this patient’s trajectory of CRS-R scores,
indicating a diagnosis of UWS throughout. Only three
assessments were obtained from this patient, Over these
assessments, there was no change observed in CRS-R diagnosis
and behavior remained reflexive, with either presence/absence
of reflexive responses noted at each assessment in the CRS-R
sub-scales. Alongside, there was relatively little variation in alpha
network centrality (Figure 3B) across assessments. We observed
elevated connectivity during the last assessment (Figure 3C),
corresponding with the highest CRS-R score recorded in this
patient.

Patient 3: MCS– to MCS+

Patient 3 (age range: 20–25) was admitted to hospital almost 2
years previous to the first assessment (633 days since injury). This
patient was noted to have grade 3 diffuse axonal injury, diffuse
subarachnoid hemorrhage and intraventricular hemorrhage as
well as bilateral frontotemporal contusions. Their clinical course
was complicated by delayed onset rhabdomyolysis, multi-organ
failure including acute renal failure for which they had renal
replacement therapy. They also suffered a cardiac arrest resulting
in hypoxic brain injury.

Approximately 9 months following injury the patient
was noted to have a Glasgow Coma Scale (GCS) score
of 6/15 and an EEG analysis of event-related potentials
completed during their stay in a rehabilitation center showed
positive in response to visual stimuli, but auditory ERPs were
only positive for stimuli on the right. The patient’s clinical
course was complicated by seizures and recurrent aspiration
pneumonia, supraventricular tachycardia and autonomic
storming. They are currently treated with Phenytoin for seizure
management.

Figure 4A shows this patient’s trajectory of CRS-R scores
from an MCS- to an MCS+ state across time, evidenced by
reproducible movement to command on the auditory function
scale and inconsistent but intentional attempts to communicate
using eye-blinks. Chennu et al. (18) showed that the best hdEEG
discriminator of MCS– vs MCS+ patients was delta power [see
Figure 1C in Chennu et al. (18)]. In this individual patient, the
change in mean normalized delta power validated this finding,
inversely mirroring changes in CRS-R over the transition from
MCS– to MCS+ (Figure 4B).

Further detail is provided by the delta power topography
in Figure 4C. At assessment 3, we recorded a low CRS-R
score of 4 and a diagnosis of UWS, as the patient was less
responsive (despite the application of deep pressure stimulation
recommended by CRS-R guidelines). Consistent with this,
delta power was relatively high at almost all channels, and
dominated over 90% of total spectral power (Figure 4B). This
proportion then dropped to just over 50% at assessments
5 and 6, when we recorded improved CRS-R scores of 8
and 15.
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FIGURE 2 | Patient 1 (UWS to MCS-) - CRS-R scores, subscores and diagnosis at each assessment (A) are juxtaposed with the normalized standard deviation of

participation coefficients estimated from the patient’s hdEEG alpha band network at each assessment (B). Consecutive assessments were separated by 3 months.

Error bars indicate range of values obtained over 25 repetitions over random subsamples of the original data. (C) visualizes alpha band network topographs at each

assessment. In each topograph, the color map over the scalp depicts degrees of nodes in the network (left color scale). Arcs connect pairs of nodes, and their

normalized heights indicate the strength of connectivity between them. The color of an arc identifies the module to which it belongs, with groups of arcs in the same

color highlighting connectivity within a module (right color scale). Topological modules within the network were identified by the Louvain algorithm (16, 18). For visual

clarity, of the strongest 30% of connections, only intramodular connections are plotted.

FIGURE 3 | Patient 2 (Stable UWS)– (A) shows this patient’s trajectory of CRS-R scores and stable diagnosis. Correspondingly, (B) demonstrates the relatively

consistent standard deviations of the alpha band participation coefficients. (C) presents alpha band network topographs at each assessment.
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FIGURE 4 | Patient 3 (MCS- to MCS+) - The trajectory of CRS-R scores (A) is juxtaposed with normalized delta power, averaged over all channels (B). The

relationship between these measures indicates that changes in CRS-R scores were inversely associated with delta power. (C) plots normalized delta power

topography at each assessment.

Patient 4: Stable MCS–
Patient 4 (age range 30–35) was admitted to hospital nearly 4
years previous to the first assessment (1,406 days since injury).
Their GCS score was 3/15 at the scene. The patient sustained a
right acute subdural hemorrhage as well as multiple skull vault
fractures. The patient underwent decompressive craniectomy
and later developed hydrocephalus that was managed with an
external ventricular drain (since removed). The patient’s clinical
course was complicated with autonomic storming which required
treatment with Bisoprolol and Clonodine. The patient also
developed sepsis that was treated with intravenous antibiotics.
It was noted that further imaging showed a left middle cerebral
artery territory infarct.

Figure 5A shows this patient’s very stable trajectory of CRS-R
scores. The patient’s diagnoses on the CRS-R remained at MCS–
throughout the assessments, evidenced by consistent visual
pursuit. All other behaviors remained reflexive. In contrast to
Patient 3, who showed a progression in normalized delta power
alongside a progression in CRS-R scores, Figure 5B shows this
patient’s stable plateau in delta power that did not change
from the first to subsequent assessments. Figure 5C shows
that normalized delta power remained high across assessments
consistent with a diagnosis of persistent MCS–.

For completeness, Supplementary Figure 1 depicts trajec-
tories of alpha network centrality in Patients 3 and 4, and
conversely, normalized delta power in Patients 1 and 2.

DISCUSSION

We have demonstrated a longitudinal approach to the systematic
assessment of pDOC patients using a combination of behavioral
and brain-based methods at their bedside in a residential
neurological center. This is a novel framework that goes beyond

most existing research in pDOC, which has typically conducted
cross-sectional assessments by transporting patients to specialist
hospital centers with advanced neuroimaging facilities. The
BETADOC study aims to translate the wealth of neuroscientific
evidence generated from these previous studies to the clinical
context. This study, to our knowledge, is the first to do so in
the UK. Our preliminary findings show that measures of hdEEG
networks were correlated with behavioral variations in individual
pDOC patients assessed repeatedly at 3-monthly intervals.

hdEEG Assessments in pDOC
We have explored the reliability and stability of hdEEG measures
in the contrasting cases considered. Patients 1 and 3 show
a progressive transition in CRS-R diagnoses, whilst patients
2 and 4 showed a stable level of behavioral responsiveness
over time. Evidence from behaviorally stable patients 2 and 4
lends to the specificity and validity of the hdEEG measures
previously identified with cross-sectional analysis (18). Here, the
same measures identified as important to detect corresponding
within-subject transitions in consciousness were similarly able
to demonstrate stability in patients with a persistent and
unchanging diagnosis.

In patient 1, whose behavioral scores progressed from UWS
to MCS–, we found that the centrality of the patient’s alpha band
network, as measured by participation coefficients, tracked this
improvement longitudinally. This finding was consistent with
and extends beyond the cross-sectional analysis in Chennu et al.
(18) indicating that standard deviation of alpha participation
coefficients was the best discriminator of UWS vs MCS– patients
at the group level. The weak alpha connectivity evident in Patient
1’s hdEEG network during initial assessments was congruent with
a CRS-R diagnosis of UWS. Nevertheless, the patient’s hdEEG
network evolved over many months of repeated assessments, and
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FIGURE 5 | Patient 4 (Stable MCS-)–CRS-R scores (A) are presented alongside normalized delta power (B). This patient’s stable CRS-R diagnosis is mirrored by

stable normalized delta power. (C) shows this patient’s consistently high delta power topography at each assessment.

we observed the presence of increased frontoparietal connectivity
at the 6th assessment, in keeping with an increased CRS-R score
and behavioral evidence of consciousness. Broadly speaking,
there is considerable evidence linking the presence of robust
frontoparietal alpha networks with conscious awareness, from
research into other altered states, including sleep (37) and
sedation (19, 38) in particular. That hdEEGmetrics derived from
alpha connectivity can track fine-grained longitudinal changes
in behavioral state of an individual pDOC patient, even after a
long intervening period since the original brain injury (7 years
in case of Patient 1), is valuable new knowledge that speaks to
the clinical utility of repeated hdEEG network assessments of
consciousness.

Diverse Metrics Contribute to

Discriminative Utility
However, this is not to suggest that graph-theoretic metrics are
uniquely useful in this context. A relatively simpler estimation
of delta band power best discriminated MCS– from MCS+
patients in Chennu et al. (18). Here too, we found that in
Patient 3, who progressed from MCS- to MCS+, decrease in
delta power was associated with this improvement. In contrast to
Patient 3, Patient 4 showed relatively little change in their MCS–
state, consistent with a stable level of delta power over multiple
assessments. This is in congruence with another independent
report of large-scale screening of hdEEG-derived measures by
Sitt et al. which showed that different measures were best able
to discriminate different states of consciousness (17), and could
be beneficially combined. Further, Sitt et al. too reported both
positive and negative correlations between hdEEG measures
and states of consciousness. More generally, increased power
and connectivity in low frequency bands has been reported in
pDOC (39), and attributed to partial cortical deafferentation and

the consequent intrinsic tendency of such weakly interacting
neuronal oscillators to synchronize (40).

From Theory to Practice
Taken together, our preliminary findings from the BETADOC
project highlight the potential for clinical utility of hdEEG
assessments to provide detailed and valuable information about
brain activity in individual pDOC patients, across a range of
behavioral and clinically relevant stratifications of consciousness.
As highlighted earlier, one of the strengths of this project is the
longitudinal approach to patient assessment.

Though we have focused on the correspondence between
longitudinal changes hdEEG metrics and CRS-R scores here to
demonstrate their face validity, the aim of these metrics is not
solely to track the CRS-R. Indeed, there are specific data points
where there are apparent mismatches between the hdEEG metric
and the CRS-R. For example, Patient 3 had similar CRS-R scores
at assessments 2 and 4 but different levels of normalized delta
power. The magnitude of change in a hdEEG metric, which is
unbounded, is not expected to exactly match the magnitude of
change in CRS-R, which is by definition bounded between 0
and 23. Rather, we expect that the availability of hdEEG metrics
at the bedside could complement the CRS-R by providing brain-
based information that cannot be ascertained exclusively via
behavioral examination. In doing so, hdEEG assessments could
be valuable in reducing the rate of misdiagnosis in practice. As an
example, in patients diagnosed with aphasia or with language-
related deficits, the behavioral communication necessary for
administering the CRS-R might not be possible. In such cases
where behavioral assessment is difficult to administer reliably,
the entirely passive assessment of conscious state estimated
by hdEEG activity could be useful. More generally, having
multiple assays of consciousness in individual patients should
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eventually lead to more accurate estimation, as is known to be the
case with repeated CRS-R assessments (41). Indeed, combining
diagnostic information frommultiple complementary modalities
of assessment would promote a rational, consilience-based
approach. This is because the ground truth about the patient’s
subjective conscious state is fundamentally uncertain (42). In
the absence of a gold standard for consciousness, convergent
information from multiple modalities would increase clinical
confidence in the estimation of conscious state. Conversely,
divergence, for example where hdEEG indicates a higher
conscious state than the CRS-R, can prognosticate the eventual
recovery of behavioral consciousness (18).

Another distinct context in which hdEEG assessments add
value beyond complementing behavioral assessments is in
the identification of patients with the potential for hidden
consciousness not expressed in their behavior. This possibility,
demonstrated prominently with command following using
tennis imagery in seemingly UWS patients (6, 7), has led to
the realization that such patients present with a dissociation
between cognitive and motor function, rather than unresponsive
unconsciousness (43). In these patients, a CRS-R assessment
would fail to identify any signs of consciousness due to its
absence in behavior. In this context, previous cross-sectional
research has highlighted that assessment of hdEEG networks can
identify robust alpha connectivity networks in UWS patients
who demonstrate evidence of command following with tennis
imagery (16). This points to the particular utility of hdEEG
assessments in this significant minority of patients who would be
misdiagnosed even with systematic behavioral assessment at the
bedside.

Finally, the repeatability of hdEEG assessments at the bedside
serves as the basis for future work toward demonstrating its
utility in the clinical context. Indeed, while the diagnostic and
prognostic value of EEG has been highlighted in previous
cross-sectional studies of pDOC (8, 16–18, 44, 45), our early
evidence speaks to its value within the context of the individual.
This is important for advancing beyond the state of the art,
from research to clinical practice. Should regular and repeated
hdEEG assessments be incorporated into a clinical framework,
they could assist with informing clinical decision making on
behalf of the patient, addressing an unmet need highlighted in
clinical guidelines (1). In particular, as these assessments can
be reliably conducted at the bedside, they could be used to
identify patients who might benefit from further examination, be
it with clinical or neuroimaging methods. Further, we advance
the case for exploiting the repeatability of these assessments to
evaluate therapeutic and pharmacological interventions. As these
often have mixed results in clinical populations (46), hdEEG
could be used to better understand the underlying causes of this
variable response to treatment. Ultimately, this will contribute
to a more evidence-based application of precision medicine
tailored to the specific needs and individual histories of pDOC
patients.

Limitations
The findings reported here are preliminary, due to the
limited number of patients we were able to include from an
ongoing longitudinal study, and hence caution is warranted in

their interpretation. In particular, equal numbers of repeated
assessments in a large cohort of patients would be ideal for
characterizing the trajectory of change in behavior and hdEEG
measures. This would enable us to not only arrive at a more
accurate behavioral diagnosis, but also identify patients with
clear evidence of sustained recovery, in contrast to patients with
ongoing fluctuations in behavior. Future research will aim to
discover and describe the range of trajectories observed at the
cohort level.

Another limitation worth noting is that the patients presented
here all had traumatic etiology, hence generalization to other
etiologies needs to be the focus of further investigation.
Nevertheless, the results presented here are promising as, in this
small sample, they suggest that regular and repeated assessment
of patients can track variation in CRS-R and brain networks over
time. In doing so, our findings point to the potential utility of
hdEEG for complementing systematic behavioral assessments at
the bedside.
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Recently, neuroimaging technologies have been developed as important methods 
for assessing the brain condition of patients with disorders of consciousness (DOC). 
Among these technologies, resting-state electroencephalography (EEG) recording and 
analysis has been widely applied by clinicians due to its relatively low cost and con-
venience. EEG reflects the electrical activity of the underlying neurons, and it contains 
information regarding neuronal population oscillations, the information flow pathway, and 
neural activity networks. Some features derived from EEG signal processing methods 
have been proposed to describe the electrical features of the brain with DOC. The 
computation of these features is challenging for clinicians working to comprehend the 
corresponding physiological meanings and then to put them into clinical applications. 
This paper reviews studies that analyze spontaneous EEG of DOC, with the purpose of 
diagnosis, prognosis, and evaluation of brain interventions. It is expected that this review 
will promote our understanding of the EEG characteristics in DOC.

Keywords:  electroencephalography, disorder of consciousness, vegetative state, minimally conscious state, 
unresponsive wakefulness syndrome

inTRODUCTiOn

Following severe damage to the brain, caused by trauma, stroke, or anoxia, patients may fall into 
a coma (1, 2). When they move out of a coma, they may evolve into a vegetative state (VS) or a 
minimally conscious state (MCS) according to observable behavioral features (3). Among them, VS 
(4), or unresponsive wakefulness syndrome (5), is defined by periods of preserved behavioral arousal 
(6), but unresponsiveness to external stimuli and an absence of awareness (7). MCS shows signs of 
fluctuating yet reproducible remnants of non-reflex behaviors (8). The disorders of consciousness 
(DOC) including coma, VS, and MCS pose challenges to clinicians and neuroscientists for diagnosis, 
treatment, and daily care (3, 9, 10). A correct diagnosis of MCS and VS is of decisive importance 
for therapeutic strategy making, as patients with MCS generally show greater responses to some 
treatments (11).

In clinical practice, electroencephalography (EEG) recordings are often used as a tool to help 
clinicians with diagnoses and prognoses (10, 12). Analyses of resting-state EEG and event-related 
potential (ERP) are commonly employed (9). An ERP analysis objectively examines sensory and 
cognitive functions by averaging repeated stimulus-evoked EEG activity (2, 13). Several passive and 
active paradigms have been used in patients with DOC (13–17). However, the passive paradigms, 
such as mismatch negativity and somatosensory-evoked potentials, are overly dependent on the basic 
perceptional function and cortical sensors, which are commonly less preserved in DOC patients 
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following severe brain injuries (2, 18). The active paradigms, such 
as motor imagery, require the active participation of patients. This 
poses several problems when working with DOC patients, such as 
their impaired cognitive function, fluctuations of arousal levels, 
fatigue, and subclinical seizure activity. EEG recordings taken in a 
resting state denote spontaneous neural activity, which is relevant 
to the fundamental brain state (3, 19). Therefore, appropriate  
features derived from resting-sate EEG may be helpful in monitor-
ing the brain condition of DOC and contribute to decision-making 
related to these patients’ care. In this paper, we present a review 
of studies on resting-state EEG in DOC and attempt to improve 
our knowledge of EEG features in the diagnosis, prognosis, and 
evaluation of brain interventions in cases of DOC.

THe eeG AnALYSiS FOR DiAGnOSiS

Since MCS patients are considered to benefit relatively easily 
from some specific treatments, compared to VS (11, 20), the 
ability to differentiate an MCS from a VS would offer great value 
in making decisions about treatment. In clinical practice, many 
standardized behavioral scales are used in the assessment of con-
sciousness of brain-injured patients, such as the Glasgow Coma 
Scale (GCS) (21) and the Coma Recovery Scale-Revised (CRS-R) 
(22). Among them, the GCS is widely used in the early hours 
of a patient’s admission, and the CRS-R is used throughout the 
recovery (1). However, a high ratio of misdiagnoses can be caused 
by clinicians’ subjective judgments, motor function injuries, and 
patients’ fluctuating levels of awareness (10, 16, 23). Therefore, 
one of the primary applications of EEG studies in DOC patients is 
auxiliary diagnosis. Table 1 summarizes the studies we reviewed 
in this paper.

Spectrum powers have demonstrated the ability to discrimi-
nate between MCS and VS. VS patients have shown increased 
delta power but decreased alpha power, compared to those with 
MCS (35, 44). In comparison with healthy subjects, VS patients 
have shown higher delta and theta frequency powers, and both 
MCS and VS patients have shown decreased alpha power (39). 
Moreover, the ratios between higher frequencies (alpha + beta) 
and lower frequencies (delta + theta) have shown a positive cor-
relation with patients’ CRS-R scores (24, 39) and a correlation with 
regional glucose metabolism in MCS (n = 4) (24). Considering 
the spatial distribution, cortical EEG sources showed that the 
MCS and VS have significant variations of delta in the frontal 
region, theta in the frontal and parietal regions, alpha and beta in 
the central region, and gamma in the parietal region (43).

Spectral entropy analysis has found that the MCS has higher 
entropy value than the VS (18, 31), and the entropy values were 
correlated with CRS-R (31). The spectral entropy of the MCS 
changes over time, and periodicities closely resemble being 
awake in healthy subjects (44). Therefore, the spectral entropy 
value and its periodic characteristic have been suggested as 
potential indices for differentiating the MCS from VS. Some 
other spectrum-derived indices have been introduced in DOC 
research, such as BIS. BIS was demonstrated to discriminate 
between an unconscious state and a conscious one (with a value 
of 50) in one study (25). It could effectively distinguish the VS 
from the MCS (26).

Entropy theory has also been applied in the time domain 
of EEG. Approximate entropy (28–30), Lempel–Ziv complex-
ity (30), permutation entropy (18), and Kolmogorov–Chaitin 
complexity (18) indices have been proposed to investigate the 
association of EEG complexity with the consciousness levels of 
DOC patients. Generally, the VS had lower EEG complexity than 
the MCS, and the control had the highest (30). Among the indi-
ces, Kolmogorov–Chaitin complexity and permutation entropy 
have been indicated as capable of discriminating the MCS from 
the VS (18, 45).

Functional connectivity is a crucial method for examining 
consciousness (40, 67). Among the connectivity methods, coher-
ence was the earliest connectivity measurement used in DOC 
research (62). The results of one study showed that the frontal 
regions and their connections with the left temporal and parieto-
occipital areas could differentiate the MCS and severe neuro-
cognitive disorders, and this difference was consistent with the 
results of a Granger causality (27). Similarly, a study of coherence 
performed by Leon-Carrion et al. showed significant differences 
in full bandwidth (delta, theta, alpha, and beta) in MCS patients 
with severe neurocognitive disorders (34). However, the coher-
ence methodology has inherent defects that prevent it from being 
considered as an ideal method for describing global networks  
(68, 69). Lehembre et al. compared three connectivity methods 
(coherence, the imaginary part of coherence, and the phase lag 
index) and found that significantly lower connectivity of the 
VS than the MCS could be detected by the imaginary part of 
coherence and the phase lag index, but failed with coherence 
(35). Another study addressed 44 indices and proved that partial 
coherence, directed transfer function, and generalized partial 
directed coherence were methods with above-chance accuracy 
for the distinction of an MCS from a VS (with accuracy levels of 
0.88, 0.80, and 0.78, respectively) (40).

Furthermore, some other connectivity approaches have been  
employed, such as weighted symbolic mutual information (wSMI),  
cross-approximate entropy (32), debiased weighted phase lag 
index (dwPLI) (46), symbolic transfer entropy, and multivariate 
Granger causality (41). Among them, wSMI has demonstrated 
a dissociation with consciousness levels in DOC patients (36), 
and it was significantly lower in VS in theta and alpha bands 
(18). Similarly, connectivity and network parameters measured 
by dwPLI in delta and alpha bands also provided valuable 
approaches to discriminate different consciousness levels in DOC 
patients (46).

New approaches using non-strict resting-state EEG might pro-
vide new perspectives for finding physiological features that may 
contribute to diagnoses. Standard EEG patterns in DOC patients 
showed a difference between the MCS and VS in sleeping states 
(33). The occurrence of EEG patterns, including sleep spindles, 
slow wave activity, and the variability of brain rhythms (theta, 
alpha, and beta), were demonstrated to have significant cor-
relations with the patients’ behavioral diagnoses (37). Bonfiglio 
et  al. proposed that the detection of blink-rated oscillations 
contributed to the differential diagnoses between the MCS and 
VS (38, 42). Blink-related delta oscillations linked with awareness 
of the surrounding environment, which was a criterion for assess-
ing consciousness. The detection of blink-related activity differs 
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TAbLe 1 | Summary of studies using resting-state EEG for diagnosis, prognosis, and evaluation of intervention and basic researches.

Objectives Literatures Methods Subjects Accuracy/sensitivity/specificity (%) Main results

Diagnosis Coleman et al. (24) Spectrum power ratio MCS 4, VS 6 –/–/– VS showed significantly higher EEG power ratio than MCS

Schnakers et al. (25) BIS VS 32, Coma 11 –/75/75 BIS could differentiate unconscious from conscious

Schnakers et al. (26) EMCS 13, MCS 30,  
VS 13, Coma 16

–/–/–

Pollonini et al. (27) Coherence, Granger causality MCS 7, SND 9 100/–/– Number of connections within and between brain regions 
could differentiate MCS from SND

Sara and Pistoia (28) ApEn VS 10, control 10 –/–/– ApEn was lower in VS than in controls

Sarà et al. (29) VS 38, control 40 –/100/97.5

Wu et al. (30) Lempel–Ziv complexity, ApEn, cross-
approximate entropy

MCS 16, VS 21, control 30 –/–/– VS had lowest non-linear indices than MCS and control had 
highest indices

Gosseries et al. (31) State entropy, response entropy MCS 26, VS 24, Coma 6 –/89/90 EEG entropy of MCS was higher than VS

Wu et al. (32) Cross-approximate entropy MCS 20, VS 30, control 30 –/–/– Interconnection of local and distant cortical networks in MCS 
was superior to that of VS

Landsness et al. (33) Slow wave activity MCS 6, VS 5 –/–/– MCS showed an alternating sleep pattern;
VS preserved behavioral sleep but no sleep EEG patterns;

Leon-Carrion et al. (34) Coherence, Granger causality MCS 7, SND 9 –/–/– MCS showed frontal cortex disconnection from other cortical 
regions

Significant difference in full bandwidth coherence between 
SND and MCS

Lehembre et al. (35) Spectrum power, coherence, imaginary 
part of coherence, phase lag index

MCS 18, VS 10,  
Acute/subacute 15

–/–/– VS showed increased delta, decreased alpha power, and 
lower connectivity than MCS

King et al. (36) wSMI MCS 68, VS 75, CS 24, 
control 14

–/–/– wSMI increases as a function separate VS from MCS

Malinowska et al. (37) Matching pursuit decomposition, Slow 
wave activity, K-complexes

LIS 1, MCS 20, VS 11 87/–/– Sleep EEG patterns correlated with patients’ diagnosis

Bonfiglio et al. (38) Blink-related delta oscillations MCS 5, VS 4, control 12 –/–/– Patients showed abnormal blink-related delta oscillations

Lechinger et al. (39) Spectrum power MCS 9, VS 8, control 14 –/–/– Ratios between frequencies (above 8 Hz) and (below 8 Hz) 
correlated with CRS-R

Höller et al. (40) A total of 44 indices MCS 22, VS 27, control 23 Partial coherence: MCS vs. VS (88), control 
vs. MCS (96), control vs. VS (98)

Connectivity was crucial for determining the level of 
consciousness

Transfer function: MCS vs. VS (80), control 
vs. MCS (87), control vs. VS (84)

Partial coherence: MCS vs. VS (78), control 
vs. MCS (93), control vs. VS (96)

Sitt et al. (18) Spectrum power, spectral entropy, 
Kolmogorov–Chaitin complexity, phase 
locking index, wSMI, permutation entropy

MCS 68, VS 75, CS 24, 
control 14

Best cross-validated single measure: MCS vs. VS (AUC = 71 ± 4)

Whole set of measures: MCS vs. VS (AUC = 78 ± 4)

The most discriminative measure was wSMI, which separated VS from MCS

Marinazzo et al. (41) Multivariate Granger causality, transfer 
entropy

MCS 10, EMCS 5, VS11, 
control 10

–/–/– In VS, the central, temporal, and occipital electrodes showed 
asymmetry between incoming and outgoing information

Bonfiglio et al. (42) Blink-related synchronization/
desynchronization

MCS 4, VS 5, control 12 –/–/– Blink-related synchronization/desynchronization could 
differentiate MCS from VS
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Objectives Literatures Methods Subjects Accuracy/sensitivity/specificity (%) Main results

Naro et al. (43) Spectrum power, LORETA MCS 7, VS 6, control 10 –/–/– Alpha was the most significant LORETA data correlating with 
the consciousness level

Piarulli et al. (44) Spectrum power, spectral entropy MCS 6, VS 6 –/–/– MCS showed higher theta and alpha, lower delta, higher 
spectral entropy, and higher time variability than VS

Thul et al. (45) Permutation entropy, symbolic transfer 
entropy

MCS 7, VS 8, control 24 Permutation entropy: Control vs. MCS (Max AUC = 0.74), control vs. VS (Max AUC = 0.91), MCS vs. VS 
(Max AUC = 0.74)

Symbolic transfer entropy: Control vs. MCS (Max AUC = 0.80), control vs. VS (Max AUC = 0.80), MCS vs. 
VS (Max AUC = 0.71)

Chennu et al. (46) dwPLI, brain network MCS 66, VS 23, control 26 VS vs. MCS: Alpha participation coefficient (AUC = 0.83, accuracy = 79%), alpha median connectivity 
(AUC = 0.82), alpha modular span (AUC = 0.78)

MCS− vs. MCS+: delta power averaged over all channels (AUC = 0.79)

Prognosis Babiloni et al. (47) Cortical sources estimated by LORETA VS 50, control 30 Power of alpha source predicted the follow-up recovery

Wu et al. (30) Lempel–Ziv complexity, ApEn, cross-
approximate entropy

MCS 16, VS 21, control 30 Non-linear indices of patients who recovered increased than those in non-recovery

Fingelkurts et al. (48) EEG oscillatory microstates MCS 11, VS 14 Diversity and variability of EEG for non-survivors were significantly lower than for survivors

Sarà et al. (29) ApEn VS 38, control 40 Patients with lowest ApEn either died or remained in VS, patients with highest ApEn became MCS or 
partial or full recovery

Cologan et al. (49) Sleep spindles MCS 10, VS 10 Patients who clinically improved within 6 months have more sleep spindles

Arnaldi et al. (50) Sleep patterns MCS 6, VS 20 Sleep patterns were valuable predictors of a positive clinical outcome in sub-acute patients

Schorr et al. (51) Spectrum power, coherence MCS 15, VS 58, control 24 Short- and long-range coherence had a diagnostic value in the prognosis of recovery from VS

Wislowska et al. (52) Spectral power, sleep patterns, 
permutation entropy

MCS 17, VS 18, control 26 Sleep patterns did not systematically vary between day and night in patients

Day–night changes in EEG power spectra and signal complexity were revealed in MCS, but not VS

Sleep patterns were linearly related to outcome

Chennu et al. (46) dwPLI, brain network MCS 66, VS 23, control 26 Delta band connectivity and network had a clear relationship with outcomes

Treatment 
evaluation

Williams et al. (53) Spectrum power, coherence, zolpidem Patients response in 
zolpidem 3

Spectral peak of 6–10 Hz with high spatial coherence was a predictor of zolpidem responsiveness

Manganotti et al. (54) Spectrum power, 20 Hz rTMS MCS 3, VS 3 rTMS over M1 induced long-lasting behavioral and neurophysiological modifications in one MCS patient

Carboncini et al. (55) Spectrum power, phase synchronization, 
midazolam

MCS 1 Change in the power spectrum was observed after midazolam

Midazolam induced significant connectivity changes

Cavinato et al. (56) Coherence, simple sensory stimuli MCS 11, VS 15 Increase in short-range parietal and long-range fronto-parietal coherences in gamma frequencies was seen 
in the controls and MCS

VS showed no modifications in EEG patterns after stimulation

Pisani et al. (57) Slow wave activity, 5 Hz rTMS MCS 4, VS 6 Following the real rTMS, a preserved sleep–wake cycle, a standard temporal progression of sleep stages 
appeared in all MCS but none of VS

Naro et al. (58) Spectrum power, coherence, tACS MCS 12, VS 14, control 15 TACS entrained theta and gamma oscillations and strengthened the connectivity patterns within 
frontoparietal networks in all the control, partial MCS, and some VS

Naro et al. (59) Spectrum power, coherence, otDCS MCS 10, VS 10, control 10 Fronto-parietal networks modulation, theta and gamma power modulation, and coherence increase were 
paralleled by a transient CRS-R improvement, only in MCS individuals

Naro et al. (60) Lagged-phase synchronization, network 
parameters, rTMS

MCS 9, VS 11, control 10 Two VS patients showed a residual rTMS-induced modulation of the functional correlations between the 
default mode network and the external awareness networks, as observed in MCS
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from the classical resting-state measurement. However, although 
it included an event input, the resting-state blinking used in the 
studies was also a type of spontaneous activity which differed 
from external stimulus used in ERP.

THe eeG AnALYSiS FOR PROGnOSiS

The prognosis for survival and recovery of DOC is still difficult 
under present clinical conditions (70, 71). Generally, the outcomes 
at 3 and 6 months following the first assessment were selected 
to observe the predictive performance of the measures. After 
3  months of observation, the spectrum power of EEG record-
ings showed potentially positive performance in predicting the 
outcomes of a persistent VS (a patient stays in a VS over 1 month 
after brain injury) (47). Measured by the level of the cognitive 
functioning scale (LCF), 12 of 50 patients recovered (from LCF I–
II to LCF V–VIII). All the patients stayed in a chronic DOC state 
at the first evaluation. Compared to healthy subjects, the power 
of alpha in the occipital region showed progressive decay from 
healthy subjects to recovered patients and then to non-recovered 
patients. Therefore, the alpha oscillation was implied as a predic-
tor of the possibility of consciousness recovery (47).

Studies using 6 months of observation have shown an associa-
tion of non-linear analysis indices with the follow-up recovery. 
Lempel–Ziv complexity, ApEn, and cross-approximate entropy 
have been suggested as being capable of predicting outcomes of 
DOC patients (10 of 37 recovered, with Glasgow Outcome Scale 
scores decreasing to 3). The first evaluation was conducted on 
patients who stayed in a chronic DOC state after the onset of 
brain injury for less than 6 months; the patients with increasing 
indices under painful stimuli had a higher probability of recovery 
(30). Coincidentally, another study also found that the highest 
ApEn might correspond to partial or full consciousness improve-
ment at 6 months after the first assessment (29). The prognostic 
value of resting-state EEG in predicting survival or non-survival 
6 months after brain injury was also proven by EEG oscillatory 
microstate analyses (48). The first EEG recording of the patients 
was obtained between 14  days and 3  months after acute brain 
events. The diversity and variability of EEG oscillations and the 
probability of the appearance of delta, theta (slow and fast), and 
alpha oscillations were shown to be potential prognostic features 
in predicting the outcomes of DOC at the group level. In a recent 
study, 39 of 61 patients had positive outcomes (assessed by 
Glasgow Outcome Scale-Extended) at 1 year following the first 
assessment (46). EEG analysis of the patients found that the con-
nectivity and brain network parameters in delta band had a clear 
relationship with their outcomes. Meanwhile, EEG sleep patterns 
were also demonstrated valuable predictors of patients’ clinical 
outcomes (49, 50, 52). Especially, the density of sleep spindles 
provided significantly predictive and valuable information about 
the clinical outcomes of DOC patients.

THe eeG AnALYSiS FOR THe 
evALUATiOn OF bRAin inTeRvenTiOn

Due to a variety of etiological, brain injury, and cortical condi-
tions, DOC patients have shown various responses to treatment 
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therapies (20, 72). A precise evaluation of the cerebral responses 
in the treatment would be helpful for understanding the mecha-
nism of the intervention and facilitate the creation of individual 
therapeutic strategies. In practice, behavioral changes induced by 
treatment might be long-lasting accumulated effects that could 
not be observed immediately. Recently, indices based on EEG 
analyses were applied to monitor the instantaneous cerebral 
responses in pharmacological and non-pharmacological brain 
interventions (16).

Spectrum power, connectivity of coherence, and phase syn-
chronization have been used to assess the cerebral changes of  
patients in pharmacological treatment (53, 55). For MCS patients 
who respond to midazolam, spectrum power changes and con-
nectivity changes were found after taking the medication (55). 
While under zolpidem treatment, all patients showed a distinct 
low-frequency oscillatory peak at approximately 6–10  Hz over 
the fronto-central regions (53). Resting-state EEG in non- 
pharmacological interventions have been investigated in DOC 
treatment, such as spinal cord stimulation (61), repetitive 
transcranial magnetic stimulation (rTMS) (54, 57, 60), sensory 
stimuli (56), transcranial alternating current stimulation (58), 
and oscillatory transcranial direct current stimulation (59). The 
fronto-parietal networks of the MCS in the theta and gamma 
bands have been demonstrated as being responsive to transcranial 

current stimulation, with little reactivity found in the VS (58, 59). 
This modulation of a consciousness-related network may suggest 
more benefits to the MCS than the VS from transcranial current 
stimulation, and the differential cortical responses between the 
MCS and VS might provide a stimulus-response approach for 
diagnoses. Similarly, the different EEG responses between the 
MCS and VS have also been demonstrated in rTMS, proven by 
spectrum power (54), complex network parameters (60), and slow 
wave activity in sleeping (57). In addition, we have attempted to 
use resting-state EEG as an assistive method for parameter selec-
tion in spinal cord stimulations of patients with DOC (61).

SUMMARY AnD COnCLUSiOn

The characteristics that have been applied in DOC-related studies 
could be generally classified into five categories: the spectrum, 
entropy, connectivity, the network, and the sleeping pattern. We 
summarize the primary features that are frequently used in DOC 
studies (Figure 1). We found that spectrum power, coherence, and 
entropy were the most frequently used features in differentiating 
consciousness levels, predicting follow-up outcome or measuring 
patients’ cortical response to brain intervention. Comparisons of 
various methods with multiple indices were performed in two 
studies (18, 40). Indices derived from spectrum, non-linear 
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analysis, information theory, and functional connectivity were 
investigated. A discrimination performance of the measures 
supports power spectrum and functional connectivity as having 
the best performance in separating the VS from the MCS and 
healthy subjects (18). In addition, permutation entropy in the 
theta frequency also has relatively higher classification accuracy 
in distinguishing the MCS and VS.

Spectral power measures the strength of neuronal oscillations, 
which depend on the spontaneously activity of underlying oscilla-
tors (neurons) (73). Spectral power at some specific frequency can 
reveal relationships between the activity of groups of neurons and 
consciousness levels (24, 39). Reviewing the studies, increases of 
low power (delta and theta), and decreases of high power (alpha) 
were common spectrum characteristics of patients with DOC. 
In comparing the MCS and VS, the latter has increased delta 
and decreased alpha power than the former. Therefore, a power 
ratio index may be first considered to help us qualitatively assess 
the consciousness state of patients. In predicting the follow-up 
outcomes, alpha power should always receive attention. In addi-
tion, theta and alpha bands are also critical frequency bands in 
assessing cortical responses to brain interventions.

Since the neuronal oscillations and synchronization are two 
essential features of the conscious brain (74), synchronization 
should be a critical feature in understanding the consciousness 
of patients with DOC. Synchronization analysis could reveal 
direct structural connections or indirect information flows, and 
it could concurrently provide temporal causality and spatial links 
(2, 75). Non-directed (coherence, the phase locking index, partial 
directed coherence, the imaginary part of coherence, the dwPLI, 
cross-approximate entropy, and wSMI) and directed (transfer 
entropy, symbolic transfer entropy, mutual information, and 
Granger causality) connectivity measurements were used to reveal 
the “disconnection” characteristics of patients with DOC (32, 64).  
Among the measurements, coherence is the most commonly 
used method. In addition, disconnection between the frontal and 
other regions, especially the fronto-parietal, was shown to be a 

significant biomarker, whether assessing the consciousness level 
or evaluating the brain response to intervention. However, when 
taking the synchronization feature into actual clinical operation, 
the reference location, artifact robustness, volume conduction, 
interesting regions, and cautious physiological explanations 
should be taken into account.

Similar to EEG complexity in a sleep or anesthesia state 
(76–78), the complexity measures in DOC were based on the 
hypothesis that neural activities would be suppressed in a brain of 
a low consciousness level, and thus fewer components would be 
included in the EEG signals. EEG complexity, whether measured 
in the time domain (such as approximate entropy, Lempel–Ziv 
complexity, Kolmogorov–Chaitin complexity, and permutation 
entropy) or the frequency domain (BIS and spectral entropy), 
provided relatively effective and readily comprehensible indices 
(range of 0–1 or 0–100, with higher value corresponding to 
higher consciousness level) to describe brain electrical activities 
under different consciousness states. Therefore, complexity char-
acteristics may have potential value in quantitatively describing 
the consciousness level of patients with DOC and finally are 
implanted into monitors for daily caring.
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A systematic search revealed 68 empirical studies of neurophysiological [EEG, event- 
related brain potential (ERP), fMRI, PET] variables as potential outcome predictors in 
patients with Disorders of Consciousness (diagnoses Unresponsive Wakefulness 
Syndrome [UWS] and Minimally Conscious State [MCS]). Data of 47 publications could 
be presented in a quantitative manner and systematically reviewed. Insufficient power 
and the lack of an appropriate description of patient selection each characterized about 
a half of all publications. In more than 80% studies, neurologists who evaluated the 
patients’ outcomes were familiar with the results of neurophysiological tests conducted 
before, and may, therefore, have been influenced by this knowledge. In most subsa-
mples of datasets, effect size significantly correlated with its standard error, indicating 
publication bias toward positive results. Neurophysiological data predicted the transition 
from UWS to MCS substantially better than they predicted the recovery of conscious-
ness (i.e., the transition from UWS or MCS to exit-MCS). A meta-analysis was carried 
out for predictor groups including at least three independent studies with N > 10 per 
predictor per improvement criterion (i.e., transition to MCS versus recovery). Oscillatory 
EEG responses were the only predictor group whose effect attained significance for both 
improvement criteria. Other perspective variables, whose true prognostic value should 
be explored in future studies, are sleep spindles in the EEG and the somatosensory 
cortical response N20. Contrary to what could be expected on the basis of neuroscience 
theory, the poorest prognostic effects were shown for fMRI responses to stimulation 
and for the ERP component P300. The meta-analytic results should be regarded as 
preliminary given the presence of numerous biases in the data.

Keywords: consciousness, improvement criteria, meta-analysis, minimally conscious state, neurophysiological 
markers, prognosis, publication bias, unresponsive wakefulness syndrome

…the quality of methodological reporting in the social and behavioral science research 
literature is poor. Reports are often silent or ambiguous on important methodological and 
procedural matters making it difficult for the analyst to determine what was done. The 
metaanalyst who develops elaborate and detailed methodological criteria for study selec-
tion, therefore, will most likely find that study reports do not provide sufficient information 
for those criteria to be confidently applied. [Lipsey and Wilson (1) (p. 22)]
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A systematic analysis of several published datasets can yield 
substantial new knowledge as compared with the data of each 
single experiment (2). This insight, increasingly admitted during 
the last decades, underlies the use of meta-analyses and other 
kinds of quantitative reviews that can largely overcome the sub-
jectivity and deliberateness of the “good old” narrative reviews. 
The domain of the severe Disorders of Consciousness (DoC) is, 
however, still dominated by the latter genre. Thus a brief overview 
of journal publications about brain imaging data in DoC for the 
last 5 years reveals that almost every fourth paper (exactly, 33 of 
the 137 papers) is a narrative review. Book publications further 
increase this number.

The notion DoC most usually includes two diagnostic enti-
ties: the vegetative state, or unresponsive wakefulness syndrome 
(UWS), and the minimally conscious state (MCS) (3, 4). To the 
best of our knowledge, the first systematic analysis of neurophysi-
ological data in DoC was devoted to the question whether these 
data confirm the reality of the distinction between UWS and MCS 
(5). The authors came to the conclusion that there were no reliable 
differences in terms of neurophysiological variables (mainly EEG, 
PET, and fMRI) between the two diagnoses.

Hannawi et  al. (6) concentrated on brain imaging studies 
and performed a voxel-based meta-analysis of 13 PET and fMRI 
studies in DoC patients, in which the corresponding data were 
reported. The authors identified a number of structures whose 
resting state activity was significantly decreased in patients as 
compared with healthy controls. On the other hand, they did not 
find convincing differences between UWS and MCS, which was 
in line with Liberati et al. (5). Kondziella et al. (7) came, however, 
to a different conclusion that brain connectivity data in rest and 
under passive stimulation (but not in active instruction condi-
tions) reliably differ between UWS and MCS. Unfortunately, 
inclusion criteria in this study were not completely clear; thus 
the question still remains open whether late event-related brain 
potential (ERP) components (P300, N400) can be regarded as 
indicators of cortical connectivity, and therefore, the authors 
should either include all P300 and N400 studies in their analysis 
(if they answer this question positively), or exclude all of them (if 
they answer it negatively), but instead, they included only some of 
them. The data were not checked for publication bias, that is, the 
tendency for positive results or stronger effects to get published 
more readily than negative results or weaker effects (8). The 
simplest index of this bias is a negative correlation between the 
size of the obtained effect and its reliability (9). On the other hand, 
Kondziella et al. (7) indicated a bias in patient selection. The risk 
of this bias was estimated as “high” in 81.4% of the analyzed stud-
ies and as “uncertain” in further 11.6%.

Also, Bender et  al. (10) were interested in the abilities of 
neurophysiological techniques to distinguish between UWS and 
MCS. Their meta-analysis aimed not at the presence and size of 
the effects, but at the parameters of sensitivity and specificity. 
The authors concluded “… that modern diagnostic techniques 
can already make a major contribution to the diagnostic assess-
ment of MCS.” The inspection of their empirical findings yields 
a modest support for this conclusion, because good sensitivity 
and specificity values were found only for the measures of quan-
titative EEG; ERP and fMRI measures revealed, to the contrary, 

only moderate specificity and rather low sensitivity that did not 
significantly differ from chance.

Kotchoubey (11) carried out a quantitative analysis of 61 
reports on ERPs in DoC. ERPs are the most frequently used 
neurophysiological technique in DoC, which, however, does not 
mean that they are also most useful. In general, the results of the 
analysis were rather disappointing. Most studies possessed such a 
low statistical power that their findings can at best be regarded as 
“preliminary results.” In addition, there was strong evidence for a 
publication bias toward positive findings.

However, there were good news. The above-mentioned deficits 
mainly concerned the studies where ERPs were compared between 
UWS and MCS, which largely concurs with the conclusions of 
Liberati et al. (5). The negative tendencies were substantially less 
expressed in the literature about the relationship between ERP 
and the prognosis of DoC outcome. Furthermore, the power of 
the prognostic studies correlated positively, and the effect sizes 
(ESs) correlated negatively, with the rank of journals where the 
data were reported. This indicated that weaker but more reliable 
effects could be published more successfully in top-ranking jour-
nals than strong but less reliable ones.

Like all areas in which there is no golden diagnostic standard, 
meta-analyses of novel diagnostic tests in the domain of DoC 
have a strong circular component. The expensive neurophysi-
ological techniques are developed to complement imperfect 
clinical methods and to increase the diagnostic precision; but 
in a meta-analysis, these novel techniques are evaluated on the 
basis of the same (presumably imprecise) diagnostic criteria 
that these methods should improve! The lack of the golden diag-
nostic standard makes another strategy more preferable, i.e., a 
search for the measurements most reliably related to prognosis. 
The above-cited findings, that prognostic studies in DoC appear 
to have a higher quality than diagnostic studies, are in line with 
this view.

The aim of the present study was a systematic analysis of all 
publications relating any functional brain data recorded in UWS 
and MCS patients to their outcome several weeks or months after 
the measurement. Data using only anatomical brain measure-
ments were not included in the present analysis. Each of the 
analyzed publications will hereafter be designated as “record.” The 
term “dataset” will, in contrast, refer to any individual comparison 
between a neurophysiological variable (e.g., fMRI activation in a 
specific task) and an outcome variable (e.g., Glasgow Outcome 
Scale—Extended, or GOSE (12)). One record can, therefore, 
contain many datasets.

metHODS

Literature Search and eS calculation
A search in MEDLINE and SCOPUS was conducted on the 23 
November 2017 by using search terms ((prognos* OR predict* 
OR outcome) AND (vegetative state OR minimally conscious 
state OR unresponsive wakefulness syndrome)) AND (eeg OR 
fmri OR event related potentials OR erp OR positron emission). 
No time limits were set for the search. In addition, the system-
atic reviews cited above in the Introduction as well as recent 

156

https://www.frontiersin.org/Neurology/
https://www.frontiersin.org
https://www.frontiersin.org/Neurology/archive


FiguRe 1 | Flow chart of the selection of records.
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informal reviews on neurophysiology of DoC, were consulted. 
Eight hundred ninety-seven peer-reviewed records published 
in English, German, or Russian, were identified. After reading 
abstracts and removing duplicates, 822 of them were rejected as 
irrelevant. Full test was sought for the other 76 records. Seven of 
them were rejected because they did not contain any outcome 
data on DoC patients, or contained outcome data already 
published elsewhere. Further exclusion criteria were (a) case 
studies or series of cases; (b) using patients’ survival, and not 
the clinical improvement, as the only prognostic criterion; (c) 
presentation of the results in such a general form that the size 
of the observed effects cannot be calculated; and (d) report-
ing the data of UWS and MCS patients together with other 
diagnoses such as coma, exit-MCS, or locked-in syndrome: on 
the basis of these criteria 22 records were rejected. Regarding 
(d), we accepted studies in which UWS and MCS data were 
reported together, but not those in which the sample included 
more than these two diagnoses and the reported data did not 
give the reader a possibility to distinguish between the differ-
ent diagnostic groups. The process of the selection of relevant 
records is shown in Figure 1.

The search resulted in 47 records containing a total of 381 
datasets. These records are summarized in Table 1. Effect size 
was calculated for each dataset (i.e., for each predictor–out-
come pair) on the basis of primary data on each individual 
patient presented in the tables of most studies, or chi-squared 
based on the same patient data, or the t-statistics. Only in one 
record, ES was calculated from a coefficient of correlation. 
All these parameters were converted into Cohen’s d following 
the methods summarized by Lenhard and Lenhard (13). If 
a resulting 2 × 2 table contained a zero cell (e.g., all patients 
having a positive neurophysiological sign recovered), the blind 

application of the corresponding formulas results in d = infi-
nite; to avoid this, we added 0.5 to all cells, as recommended by 
Nakagawa and Cuthill (14). When d-values were included in 
further operations (added, averaged, etc.), they were weighted 
by inverse standard error (SE).

A big and still underestimated problem of all quantitative 
reviews is the plenty of non-reported data. Several authors 
(63–65) indicated that measured but unreported variables 
constitute one of the main sources of false positive findings 
ubiquitous in biology and psychology and thus an important 
cause of the contemporary “replication crisis” (66). When, 
and only when, it was evident for both present authors from 
the text of a paper that a neurophysiological variable was 
measured but not reported in relation to the outcome (or, 
rarely, reported as “non-significant”), the ES of this variable 
was assumed to be 0, and the SE of ES was assumed to be equal 
to the median SE calculated for the reported variables in the 
same record.

When the results presented several strongly correlated predic-
tor variables (e.g., the same EEG variable in several adjacent 
regions), they were regarded as representing the same “construct” 
(1), and the mean and standard deviation (SD) for the construct 
were calculated according to the formulas

 Mean=(M M N1 2+ ) / ;  

 
SD

SD SD
=

−( ) +( ) + + −( )
−

N N M M M M
N

1 0 5 2
2 1

1
2

2
2

1 2 1 2.

 

where M1 and M2, SD1 and SD2 are mean and SD values for two 
to-be-combined variables, respectively. (Note that the formulas 
are so simple because both variables have the same N.)

157

https://www.frontiersin.org/Neurology/
https://www.frontiersin.org
https://www.frontiersin.org/Neurology/archive


taBLe 1 | A summary of the 47 records included in the systematic review.

Reference N (uwS/
mcS)

Follow 
up, 
months

methods Relevant measures improvement criteriaa

(15) 64/0 2 EEG, 24-h 
polysomnography

General sleep patterns
Dominant EEG rhythm: beta, theta or delta

Diagnosis MCS, or 
GOS > 2

(16) 14/4 6–38 24-h 
polysomnography

Sleep complexity, presence of different sleep stages CRS-R

(17) 10/0 36 ~14-h 
polysomnography

Sleep complexity, number of sleep spindles, presence of different sleep stages GOS

(18) 42/0 3 EEG Spectral power of resting state EEG in delta, theta, alpha1, alpha2, beta1 and 
beta2 frequency bands

LCF > 5

(19) 59/47 3 EEG EEG amplitude normality (>20 μV), dominant frequency, reactivity to forced eyes 
opening
EEG combined AFR index

CRS-R; change from 
UWS to MCS or from 
MCS to EMCS

(20) 28/0 6 EEG The same as in Ref. (19) CRS-R; change from 
UWS to MCS or from 
MCS to EMCS

(21) 12/1 3 EEG EEG normality according to Synek scale LCF
(22) 4/5 6 Auditory ERP MMN, N2 and/or P300 in control and after listening to music condition CRS-R ≥ MCS
(23) 34/0 24 Short-latency EP, 

somatosensory EP, 
EEG

BAEPs grade, EEG reactivity to passive eyes opening, pain and acoustic stimuli, 
EEG Synek index, N20 SEP grade, P300 to a patient’s own name

DRS < 22

(24) 17 12 PET FDG-PET in the resting state GOSE > 2
(25) 7/0 2–9 fMRI BOLD response to speech and noise stimulation CRS-R ≥ MCS
(26) 22/16 6 fMRI fMRI BOLD response to speech and sound stimulation CRS-R
(27) 7/4 3 fMRI fMRI BOLD response to subject’s own name CRS = MCS
(28) 3/7 6 EEG, fMRI EEG, BOLD response to language, music, active motor imagery instruction GOSE > 2
(29) 43/0 24 EEG, 

somatosensory EP
EEG classified according to Synek scale
N20 SEP grade

CRS-R ≥ MCS 

(30) 14/0 3 EEG Resting state EEG Index of Structural Synchrony (amplitude, length, instability, 
number of functional connections in Alpha, Beta1, Beta2 bands)

LCF = MCS

(31) 8/0 24 Auditory ERP N2, P300 Recovery of awareness 
but no standardized 
assessment

(32) 20/0 NA Auditory and visual 
ERP, SPECT

Auditory MMN, N100, N200, P300; visual EP present/absent; resting state brain 
metabolism assessed by SPECT

GOS > 2

(33) 75/38 4 Somatosensory EP N20 CRS scores of ≥ 23
(34) 56/0 12 EEG, 

somatosensory 
EP, 24-h 
polysomnography

EEG reactivity to noxious stimulation, N20, sleep spindles in 24-h EEG
All predictors scored as absent or present

GOS > 2 or transition 
UWS to MCS

(35) 10/0 3 Somatosensory EP N20 grade and latency Recovery of awareness 
but no standardized 
assessment

(36) 1/4 3 fMRI fMRI default mode network normality Level of consciousness 
according to the Multi-
Society Task Force on 
PVS

(37, 38) 24/19 6 Auditory ERP, EEG MMN, N400, EEG dominant background activity DRS ≥ MCS
(39) 6/5 12 EEG, fMRI EEG reactivity to warm water stimulation, fMRI activation to thermal stimulation GOS > 2 or transition 

from UWS to MCS
(40) 12/10 1, 2, 3, 

6, 9, 12
Auditory ERP P300 CRS-R ≥ MCS

(41) 50/0 5 EEG EEG normality according to Synek scale, EEG reactivity to pain stimulation Regaining consciousness 
according to GOS, LCF

(42) 23/0 6 fMRI fMRI BOLD response to speech (adapted affective speech) GOS > 2 or transition 
from UWS to MCS

(43) 11/0 6 Polysomnography REM sleep characteristics Recovery of awareness 
but no standardized 
assessment

(44) 6/2 3 Auditory ERP MMN to subject’s own name stimuli, N100 CRS-R
(45) 6/5 3 PET PET global GABA A receptor binding CRS-R
(46) 52/0 3 fMRI fMRI resting state connectivity GOS > 2
(47) 5/0 0.5–2 EEG-TMS TMS-evoked cortical responses CRS-R

(Continued)
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Reference N (uwS/
mcS)

Follow 
up, 
months

methods Relevant measures improvement criteriaa

(48) 38/0 6 EEG Resting state EEG Approximate Entropy, EEG reactivity (stimulation protocol is not 
described)

GOSE > 2

(49) 56/0 12 EEG Spectral power in Delta, Alpha, Theta, Beta, Gamma frequency bands CRS-R = MCS
(50) 71/0 1.5 EEG, auditory ERP 92 measures including: CNV, MMN, P1, P3a, P3b; normalized and absolute 

spectral power of delta, theta, alpha, beta, gamma rhythms; permutation entropy, 
Komolgorov–Chaitin Complexity; phase lag index (PLI), spectral entropy, imaginary 
coherence and weighted symbolic mutual information (wSMI) in different frequency 
bands

CRS-R

(51) 18/51 12 PET, fMRI Resting state FDG-PET, BOLD response to active motor and visuospatial imagery 
tasks

GOSE > 2

(52) 53/39 24 Auditory ERP N400, P300 CRS-R = EMCS
(53) 9/0 2–54 PET Resting state FDG-PET Recovery of awareness 

but no standardized 
assessment

(54) 10/12 1–6 fMRI BOLD response to active motor and visuospatial imagery tasks CRS-R; change from 
UWS to MCS, or MCS 
to EMCS

(55) 39/25 12 fMRI fMRI BOLD response to subject’s own name CRS-R
(56) 6/5 6 Auditory ERP MMN, P300 to subject’s own name CRS-R
(57) 10/0 24 Auditory ERP MMN LoC > 6
(58) 10/0 24 Auditory ERP N200, N350, P300 in active and passive paradigms LoC > 6
(59) 11/0 26–36 Visual ERP N2, N3, P2 amplitude and latency, P2–P3 peak to peak magnitudes of VEP LoC > 6
(60) 10/8 1–150 EEG, 24-h 

polysomnography
Permutation entropy, alpha-to-theta ratio, density of slow waves, high-to-low 
frequencies ratio, density of sleep spindles

GOSE > 2 or CRS-R

(61) 21/0 6 Short-latency 
EP, EEG, 
somatosensory EP

BAEP, N20 SEP grade, EEG normality, approximate entropy (ApEn), cross-
approximate entropy, Lempel–Ziv complexity to pain, auditory and music 
stimulation in comparison with eyes-closed condition

GOS > 2

(62) 36/0 12 (after 
injury)

Somatosensory 
ERP

N20, P25, N20–N25 SEP grade and amplitude GCS ≥ MCS

N (UWS/MCS) means the number of UWS and MCS patients whose outcome and neurophysiological data were available. In the case of different number of patients available for 
different neurophysiological measurements, only the largest number is reported; it may be less than the total number of patients in the study.
aIf GOS(E), CRS-R, LCF mentioned with no additional description, it was possible to calculate improvement criteria either way.
NA, not available, AFR index, Amplitude/Frequency/Reactivity index; UWS, unresponsive wakefulness syndrome; MCS, minimally conscious state; EMCS, Exit form MCS; GOS(E), 
Glasgow Outcome Scale (Extended), GCS, Glasgow Coma Scale; DRS, Disability Rating Scale; LCF, levels of cognitive functioning scale; LoC, Level of Consciousness Scale; SEP, 
somatosensory evoked potentials; BAEP, brain stem auditory evoked potentials; dwPLI, debiased weighted phase lag index; SPECT, single-photon emission computed tomography; 
CRS-R, Coma Recovery Scale-Revised.

taBLe 1 | Continued
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Outcome criteria
The category “bad outcome” for UWS and MCS patients pre-
sumed remaining in the same condition. Deaths were included 
in this category only if it was clear that a patient died as a direct 
consequence of the brain lesion, otherwise excluded from the 
analysis. The category “good outcome” has, on the other hand, 
two different definitions: minimal clinical improvement or 
regaining full consciousness.1 For MCS, both criteria are the 
same, because their minimal improvement implies the transition 
to Exit-MCS. But this is not true for UWS, because their minimal 
improvement means only the transition to MCS. As shown in 
Section “Results,” the two different improvement criteria of UWS 
yield different results.

Avantaggiato et al. (17) analyzed a group of DoC patients con-
taining children and adolescents; because the authors presented 

1 Practically, “full consciousness” is defined as reliable communication or functional 
use of objects. In the following, when we speak about “regaining of consciousness” 
we shall mean these two abilities (at least one of them) and not just minimal signs 
of consciousness presented also in the MCS.

individual data of each patient, we selected the results for patients 
>13 years only. The category “good prognosis” for MCS implied 
the recovery of consciousness. For UWS, however, it might 
include either the recovery of consciousness or the transition into 
MCS. All 381 datasets were included in the systematic review.

Quality assessment
Quality of the records was estimated on the basis of the QUADAS 
criteria (67) that have been tailored, as recommended in the 
original publication, for the specific research field. Because 
Kondziella et  al. (7) expressed concerns about possible bias in 
patient selection, we recorded whether a publication included 
a patient flow chart, and whether it described explicit exclusion 
criteria for UWS and MCS patients or simply mentioned that all 
patients admitted in the clinics for a particular time period were 
investigated. We also marked the records in which obviously 
more neurophysiological data were collected than reported in 
the analysis of outcome prediction. Another quality index was 
the use of the Coma Recovery Scale-Revised (CRS-R (68)) for 
DoC diagnostics, because this scale, though not being golden 
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standard, possesses substantially better psychometric qualities 
than all other instruments for the assessment of DoC (69). In 
addition, the impact factor (IF) of the publishing journal was 
included as an indirect quality criterion, because the data indicate 
high correlation between the IF and the informal reputation of 
the corresponding journal among neurologists (70).

meta-analysis
Two additional inclusion criteria for meta-analyses were (1) at 
least three independent records reporting the same predictor 
variable or variables related to the same construct and (2) each 
of these records includes at least 10 patients. The criteria can be 
regarded as very liberal because, first, only three records and 
only 10 patients (who further should be subdivided into at least 
two groups) are rather low numbers, and second, the notion of 
construct is rather vague and permits to include into one group, 
for example, studies of P300 to simple tones and to patients’ own 
names, thus increasing heterogeneity. On the basis of these crite-
ria, 319 datasets were excluded (of course, this number would be 
larger if the criteria were more conservative). The remaining 62 
datasets finally entered the meta-analysis.

We used a random-effects meta-analysis with restricted 
maximum-likelihood (REML) estimator for pooling ESs. We 
assessed the level of heterogeneity between studies with a standard 
Q-test statistic as well as by I2 calculation (71). Heterogeneity was 
regarded as significant when p < 0.05 or I2 > 50%. Potential pub-
lication bias for individual predictors was assessed with the Egger 
test for Funnel plot asymmetry and represented graphically with 
Begg’s funnel plots of the ES versus its SE. Additionally, Rosenthal 
fail-safe test was also applied. All meta-analyses were performed 
using R package “metafor” (72) using inverted standard errors as 
weighting parameter.

ReSuLtS

Quality of Reporting
None of the 47 records presented a flow chart depicting patient 
selection. The authors of 20 records (42.6%) explicitly state that 
they included all patients within some exactly described time 
period. Nine reports (19.1%) depicted at least some inclusion 
and/or exclusion criteria. In the remaining 18 records, patient 
selection was not described.

Most selected records present their data either for each indi-
vidual patient or as mean ± SD (or SE) for each relevant group 
(e.g., recovered versus non-recovered). Three records present 
data only in a general form (e.g., as correlations). Five records 
(10.6%) mention the size of some effects.

CRS-R was used for the diagnosis of UWS and MCS in 29 
records (61.7%); other studies employed Disability Rating Scale, 
Glasgow Coma Scale, or other less powerful instruments.

Quite surprisingly, only two records explicitly state that the 
neurologists who assessed the outcome were blinded to the neu-
rophysiological data collected before. In six records, blindness 
of the outcome might be assumed because neurophysiological 
examination and outcome diagnostics were performed in dif-
ferent institutions. These eight records (17%) were combined 

into one “blind” group. In the majority of the records (83%), the 
outcome was diagnosed with knowledge of the neurophysiologi-
cal findings.

The median time between the measurement and the outcome 
assessment was 6  months, mean minimal time per record was 
9 months (range 1–36 months), and the mean maximal time per 
record 16 months (range 1.5–150 months). In 42 records (89%), 
this interval was same for all the examined patients. Seven records 
used broad variable intervals for different patients (1–6, 1–30, 
2–9, 6–38, 10–150, 26–36, and 24–144 months). One publication 
does not report the measurement–outcome interval.

The mean total sample was 31.11  ±  3.66 patients, with a 
median of 21 patients and a range of 5–123 patients. Eight 
records included <10 patients, 14 records had between 10 and 
19 patients. Adding the case studies filtered out at the previous 
stage, we come to the result that about a half of all prognostic 
studies included <20 patients. The records that did not describe 
patient selection included significantly less patients (means 14.1 
versus 43.0, t  =  5.11, p  <  0.001) than records describing their 
selection process.

The median IF of the publishing journals was 3.87, range 
from 0 to 44. IF did not differ between the records with correctly 
versus incorrectly described patient selection. We hypothesized 
that studies with more patients (thus having higher power) are 
published in more prestigious journals, but the corresponding 
correlation was not significant (Spearman’s ρ = 0.26, p = 0.078). 
However, studies employing CRS-R were published in journals 
with higher IF than studies that did not use this scale: p < 0.001, 
Mann–Whitney test. A few studies with blind outcome assess-
ment included larger sample sizes than studies without outcome 
blindness (t = 2.35, p = 0.023) and were also published in more 
prestigious journals (p = 0.046, Mann–Whitney test).

Notably, we did not find a significant relationship between 
any of the variables and the time elapsed from the neuro-
physiological measurement till the assessment of the outcome. 
Non-weighted ES correlated with the mean time between 
neurophysiological measurement and outcome assessment with 
Spearman’s ρ = −0.09, with minimal time per study ρ = −0.18, 
with maximal time per study ρ = −0.07 (all nonsignificant). For 
weighted ES, the corresponding correlations were 0.03, −0.06, 
and −0.11, respectively (all nonsignificant). Likewise, correla-
tions of the time interval with the SD of ES (as a measure of its 
reliability) were all between 0.00 and 0.03, and correlations of 
the time interval with sample size were between 0.00 and 0.06, 
all non-significant.

Also, the year of publication did not correlate with any other 
measures. The bibliographic literature gives a reason to expect 
that later publications might have large samples or smaller ESs 
than earlier (73). Although the corresponding correlations 
were in the expected direction, they did not reach significance 
(year/N: Spearman’s ρ  =  0.12; year/ES: ρ  =  −0.08). Also, the 
correlation between publication year and IF was close to 0 
(ρ = 0.03).

Publication Bias
The inverted SE (1/SE) was taken as a measure of the reli-
ability of an ES. Across all datasets, the rank-order correlation 
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FiguRe 2 | Negative correlations between effect size (ES) and its reliability, 
estimated by the inverted standard error (1/SE), for all individual datasets [(a): 
Spearman’s ρ = −0.22, p < 0.001], datasets included in the meta-analysis 
[(B): ρ = −0.47, p < 0.001], and for mean ESs per record [(c): ρ = −0.41, 
p = 0.004]. The regression lines are presented for illustration only, not for 
quantitative analysis.
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between ES and its 1/SE was weak but significant (ρ = −0.22, 
k =  381, p <  0.001). The result might be biased because dif-
ferent records contribute disproportionally to the whole mass 
of data. However, the positive correlation between the ES and 
its SE became even stronger when calculated for the selected 
subset of datasets included in the meta-analysis (ρ  =  −0.47, 
k  =  62, p  <  0.001), as well as for the ESs averaged for each 
record (ρ = −0.41, k = 47, p = 0.004). The results are shown 
in Figure 2.

Note that the first analysis (across all datasets) overestimates 
the contribution of the records reporting many datasets. The last 
analysis (across averaged ES), to the contrary, may overestimate 
the contribution of the records presenting few or only one dataset. 
Despite this contrary bias, very similar results were obtained. To 
sum up, these data show a trend to selective publication of strong 
but unreliable effects. How serious the bias is in respect of each 
particular predictor variable will be discussed below.

uwS and mcS
Thirteen of the 381 datasets included only MCS samples, 248 
datasets included only UWS patients, and the remaining datasets 
included both diagnostic groups of DoC patients.

While the main issue of the present study was outcome 
prediction on the basis of neurophysiological data, we also 
asked the question whether the outcome can be predicted sim-
ply from the diagnosis. Many authors of the reviewed articles 
also asked this question and answered it negatively. However, 
a meta-analysis of the combined data from the records where 
both diagnosis and prognosis could be followed revealed that 
MCS patients recovered consciousness significantly more fre-
quently than UWS patients (Figure 3): mean ES = 0.84, 95% CI 
from 0.61 to 1.06. On the other hand, if the positive outcome of 
UWS patients is defined as any minimal improvement, i.e., the 
transition to the MCS, the diagnosis loses its predictory value 
(Figure 4).

Because we found that the improvement criterion for UWS 
(transition to the MCS versus recovery of full consciousness, 
that is, exit-MCS) can play a role in the calculation of predic-
tion effects, we compared weighted mean ES for the neuro-
physiological variables in three conditions: (i) prediction of 
the recovery of consciousness for MCS patients; (ii) prediction 
of the recovery of consciousness for UWS patients; and (iii) 
prediction of the transition to MCS for UWS patients. A one-
way ANOVA across these three groups resulted in a highly sig-
nificant effect: F(2,294) = 23.11, p < 0.001. The result does not 
change when we limit the analysis by only those datasets that 
will later enter the meta-analysis [F(2,60) = 19.88, p < 0.001], 
or when we exclude all mixed datasets [F(2,86)  =  12.08, 
p  <  0.001]. Independently of the method of calculation, the 
mean weighted ES for the groups (i) and (ii) (i.e., different 
diagnoses, the same improvement criterion) were very similar 
and varied—dependent on the selected data—between 0.41 
and 0.48. The mean weighted ES for the group (iii) was about 
three times larger (between 1.40 and 1.68) and differed sig-
nificantly from both of them, although the groups (iii) and (ii) 
included patients with the same diagnosis and some datasets 
involved in these two groups might even include some of the 
same patients. To sum up, neurophysiological methods are 
significantly more successful in prediction of the transition 
from UWS to MCS than in prediction of the recovery of full 
consciousness.

meta-analysis of Predictory constructs
According to the above results, we performed the meta-analysis 
separately for (a) prediction of any clinical improvement (for 
which UWS patients means at least transition to the MCS), and 
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FiguRe 4 | The results of the meta-analysis for prediction of the outcome from the diagnosis. The criterion of improvement was “minimal improvement,” that is for 
UWS patients, it was the transition to MCS, and for MCS patients, at least the transition to Exit-MCS. As can be seen, with this improvement criterion the diagnosis 
does not predict outcome. The rest is the same as in Figure 3.

FiguRe 3 | The results of the meta-analysis for prediction of the outcome from the diagnosis. The criterion of improvement for all patients was recovery of full 
consciousness. Q, the corresponding p-value and I2 are estimates of between-study heterogeneity; symbols ■ stay for the estimates of effect size (ES) in each 
single study, with the size of the symbol being proportional to the precision of the estimate. Error bars indicate the 95% confidence intervals of ES. The diamond ♦ is 
the estimate of the overall effect, the edges of the diamond represent the 95% confidence interval limits; CI, confidence interval; UWS and MCS, sample size of 
UWS and MCS patients in individual studies; N_UWS and N_MCS, overall sample size of the two patient groups. The resulting ES was tested for significance using 
z-criterion; the values of z and the corresponding p are given at the end of the lower left line.
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(b) prediction of the recovery of full consciousness. Sixty-two 
datasets comprising a total of 1,919 patients were analyzed. They 
involved the following potential predictors:

 1. EEG reactivity to “passive” stimulation (i.e., without an 
active instruction). Hypothesis: stronger EEG oscillatory 
responses = > better prognosis.

 2. EEG entropy indices. Hypothesis: higher EEG entropy = > bet-
ter prognosis.

 3. EEG dominant oscillatory activity. Hypothesis: back-
ground activity closer to the alpha frequency = > better 
prognosis.

 4. EEG Synek score (74) is frequently used in the intensive care 
medicine for the prognosis of the outcome of acute coma. 
Hypothesis: higher score = > better prognosis.

 5. fMRI BOLD response to passive (auditory or nociceptive) 
stimulation. Hypothesis: stronger response  =  >  better 
prognosis.

 6. Resting state PET or SPECT metabolism. Hypothesis: closer 
to normal brain metabolism = > better prognosis.

 7. N20 component of somatosensory evoked potentials (SSEP). 
Hypothesis: normal N20 = > better prognosis.

 8. Auditory Mismatch Negativity (MMN) to a change in ongo-
ing acoustic stimulation. Hypothesis: larger MMN = > better 
prognosis.

 9. Auditory P300 as an index of complex processing in cortico-
subcortical networks. Hypothesis: larger amplitude or shorter 
latency = > better prognosis.

 10. Spindle activity as an index of information processing in 
sleep (75). Hypothesis: presence of sleep spindles = > better 
prognosis.

The findings are summarized in Figures 5 and 6 and presented 
in more detail in Figures S1 and S2 and Tables S2 and S3 in 
Supplementary Material.

Only oscillatory EEG responses to passive stimulation appear 
to be reliably related to both prognostic criteria (i.e., minimal 
clinical improvement and the recovery of full consciousness). 
The included datasets are highly homogenous and yield a highly 
significant mean ES of 1.45 on a sample of 99 patients. Another 
prediction variable that significantly predicted the recovery of 
consciousness was brain metabolism assessed by PET/SPECT. 
It attained a mean ES of 1.40 on a sample of 106 patients. The 
prognostic value of the MMN, P300, EEG entropy variables, and 
fMRI responses to passive stimulation was not significant and 
characterized by strong heterogeneity of the primary datasets.2

More promising results have been obtained in relation to the 
minimal improvement criterion. In addition to the EEG reactiv-
ity, significant effects are found for the MMN and sleep spindles. 
Formally positive results are obtained for the SSEP component 
N20 and the background EEG frequency, but the data are too 
heterogeneous to make a conclusion.

2 The ES in Wijnen et al. (57) strongly differs from all other effects in the MMN 
group. After removing this result, the MMN data become completely homogenous 
(I2 = 0).

DiScuSSiON

Although the Section “Limitation” is frequently placed at the 
end of Discussion, we believe that particularly the discussion 
of meta-analytic data is useful to begin with limitations. One 
important limitation is that of the present work as such. As 
the manuscript was prepared for a special issue, we did not 
systematically address the authors of the original publications 
but relied solely on the published data including supplementary 
information. Although we believe that personal contact with the 
authors may have enhanced our knowledge, at the first step we 
did not use this strategy because it might have caused consider-
able delays.

Other limitations of the meta-analysis are rather related to 
the limitations of the primary literature. A quantitative review 
can overcome some limitations of the reviewed studies, e.g., their 
small size (thus, it can reveal a consistent and significant effect on 
the basis of several inconsistent and non-significant ones), but it 
cannot remove the biases implied in its empirical basis.

To begin with the least, the quality of data reporting is far 
from the present-day standard. While Fritz et  al. (76) bristled 
that only 42% of empirical psychological studies report the size 
of their effects, in the present sample ES was mentioned only in 
five records (10.6%). Presenting a patient flow chart is already a 
standard in many fields of clinical research but fully unknown in 
the domain of DoC. About a half of the reviewed records neither 
describe inclusion and exclusion criteria nor even make a simple 
statement that all patients admitted to the hospital during some 
period were included. Thus, the concern of Kondziella et al. (7) 
about possible bias in patient selection seems to be justified.

The majority of the reviewed studies employed a univariate 
approach, i.e., each predictor was separately compared with the 
target variable. Of course, this is a serious limitation because we 
know that the values of a regression strongly depend on the other 
predictor variables included or excluded in/from the equation. 
Thus, a neurophysiological variable (e.g., P300), which appears 
useless as a single predictor, might reveal its effect in a particular 
combination with other predictors. A few groups have recently 
attempted to overcome this limitation and employed a multivari-
ate approach to outcome prediction in DoC (24, 50). This seems 
to be a perspective line of research, but now the number of such 
records is still too low to undertake a separate meta-analysis of 
these data.

The negative correlation between the description of patient 
selection and the number of patients suggests that selection bias 
might be particularly strong in small-size studies. Although the 
sample size in prognostic studies is on average larger than in 
studies comparing UWS and MCS, we found, together with 
single case studies, 33 records with less than 20 patients, which 
implies that even in the case of the equal distribution at least one 
of the outcome groups (recovered or non-recovered) includes 
<10 patients. Particularly, the studies with the total N  <  10 
result in huge confidence intervals making any reliable conclu-
sion impossible. Of course, small or even single case studies 
may have sense at the very beginning of the research process, 
when nothing is known about an investigated phenomenon 
whatsoever. However, in such a case, one can expect an increase 
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FiguRe 5 | The results of the meta-analysis for prediction of the outcome from neurophysiological variables. The criterion of improvement for all patients was the 
recovery of consciousness. RE, random effects. The rest is the same as in Figure 3.
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of sample sizes with the year of publication, but this correlation 
was not significant.

Strong negative effects of underpowered studies on the qual-
ity of the reported data have thoroughly been discussed in the 
literature in general (63, 77, 78) and specifically in neuroscience 
(79, 80). Positive findings of tiny studies can only result from 

chance or selective data report. Our data show a consistent and 
significant correlation between the size of a prognostic effect and 
its standard error, indicating that stronger effects are less reliable. 
The correlation even withstood the removal of all datasets with 
<10 patients. As these small samples yield particularly large 
SE, the variability of SE was severely restricted, which might be 

164

https://www.frontiersin.org/Neurology/
https://www.frontiersin.org
https://www.frontiersin.org/Neurology/archive


FiguRe 6 | The results of the meta-analysis for prediction of the outcome from neurophysiological variables. The criterion of improvement for UWS patients was the 
transition to MCS, and for MCS patients, the recovery of consciousness. The rest is the same as in Figure 3.
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expected to reduce the correlation coefficient. This was, however, 
not the case (Figure 2).

Another important limitation of nearly all studies was the lack 
of outcome blindness. Only two groups of authors clearly indi-
cated that the diagnosis of the outcome was performed by neu-
rologists without the knowledge of predictor values. One might 
argue that the diagnosis of recovery of consciousness (based on 
the criteria of consistent communication and functional use of 
objects) is quite easy and can hardly be biased by neurophysi-
ological data. Even if this argument is true for exit-MCS, it is obvi-
ously false for the other broadly used improvement criterion of 
UWS patients, namely the transition to MCS. As the differential 
diagnostics between UWS and MCS is notoriously difficult (81), 
any information about positive or negative neurophysiological 
findings could influence the diagnostic decision. If this influence 
really takes place, we can expect much stronger correlation of 
neurophysiological indices with the transition to MCS than with 
the transition to exit-MCS, because the latter diagnosis is easier 
and thus less affected by additional information.

Exactly this was true. When the improvement criterion for 
both diagnostic groups (UWS and MCS) was the transition to 
exit-MCS, the weighted average ES (in terms of Cohen’s d) was 
rather moderate, in any case slightly smaller than 0.5. But the 
transition of UWS patients to MCS (which is quite difficult from 
the diagnostic point of view) was strongly related to the neuro-
physiological findings, with the weighted average ES being >1.4.

A potentially strong but still underestimated bias is related to 
unreported predictor variables. In most of the reviewed records, 
outcome prediction was not the main aim of the study, but rather 
a by-product of other analyses. Particularly, in such studies 
(though not only in these), many variables could be measured 
but not really reported. Sometimes, many variables are used in 
a UWS/MCS comparison but not even mentioned in relation to 
prognosis, although one may suppose that they were also com-
pared with the follow-up data. Less frequently prognostic effects 
are referred to as “lacking” or “non-significant” without further 
quantification. Simmons et al. (65) suggest a very simple solution 
of the problem: whenever authors list their variables, they should 
add a short word “only.” We tried to counteract this false positive 
effect by assigning the value of 0 to the effects of obviously omit-
ted variables (with its SE being assumed as the median SE of the 
reported variables). However, this method is not only imprecise 
but can also be biased, first, because the real number of such omit-
ted variables may be much larger than a reader can guess, and 
second, because negative effects (i.e., those which run against the 
starting hypothesis, such as better neurophysiological responses 
in non-recovered patients) can be omitted more frequently than 
positive effects.

With this in mind, we understand that the data of meta-
analyses should be taken with great caution. Nevertheless, 
we believe that a glance on the meta-analytic results can be 
of interest. First, the analysis was strongly complicated by the 
high variability of the primary records. Very small number of 
studies using exactly the same predictor and the same improve-
ment criterion enforced us to combine similar methods, which 
resulted in high heterogeneity indices such as I2. Poor prognostic 
features of the characteristics of fMRI reactivity might partially 

be attributed to this group of studies including fMRI responses 
to very different stimulations from pain to music. For the same 
reason, we excluded some possible predictors (e.g., responses to 
active behavioral instructions; ERP N400 component) that were 
employed in two records only.

Second, the empirical contribution of predictors does not 
necessarily follow their general theoretical value defined by basic 
neuroscience. This is quite demonstrative in the case of P300, one 
of the most useful and most widely employed indices in neurosci-
ence whose effect in the prediction of the outcome turned out to 
be virtually 0. One might speculate that P300 is not immediately 
related to consciousness (37), but, rather, to a more specific func-
tion such as working memory. Another possible reason may be 
the extreme difficulty of the separation between different P300 
subcomponents (P3a and P3b) in the target population (38). 
The subcomponents are usually distinguished by topography 
and responses to active instruction, but most DoC patients 
have changed ERP topography and do not respond to instruc-
tion. If the results of this preliminary analysis should be used to 
determine which lines of research should not be recommended 
for future studies, P300 is the first candidate for such a negative 
recommendation. Also, the importance of the (highly expensive) 
fMRI predictors might similarly be overestimated on the basis of 
their theoretical importance.

Oscillatory EEG responses to stimulation showed, to the con-
trary, most promising effects, which agree well with the results of 
Bender et al. (10) obtained on the basis of different data.

Although EEG reactivity was measured to very different stimuli 
[e.g., to passive (23) or forced eyes opening (19, 20), to pain (34, 
41), to warm water (39), and no description was given by Sarà 
et al. (48)] and the definition of reactivity substantially varied, the 
results are very homogenous across the reports. Moreover, this 
was the only group of predictor variables whose predictive value 
was significant for both improvement criteria (transition from 
UWS to MCS and the recovery of consciousness). Publication 
bias was also presented in these data, but it was less strong than 
for many other predictors (see Tables S2 and S3 in Supplementary 
Material).

Other perspective variables are brain metabolism (estimated 
by means of PET or SPECT) and the presence of sleep spindles 
in the EEG. Recent sleep data indicate a vital importance of 
spindles in information processing during sleep, which affects 
numerous cognitive processes in the subsequent wakefulness (75, 
82, 83). DoC belongs to rare medical conditions characterized by 
severe deficits, or even complete absence, of sleep spindles, also 
in patients with relatively preserved sleep structure (84, 85). We 
believe that the role of sleep spindles in the outcome prediction 
in DoC should be explored in future work.

Both MMN and SSEP are proven outcome predictors for 
acute coma (86, 87). However, their value for the chronic DoC 
remains unclear. The present findings indicate their prognostic 
effects for the transition from UWS to MCS but not for recovery 
of consciousness.

The data further show that the predictive value of the auxiliary 
(e.g., neurophysiological) variables should be compared with 
the values of clinical variables. In the currently reviewed data, 
MCS patients had about 4.5 times better chances (if we take the 

166

https://www.frontiersin.org/Neurology/
https://www.frontiersin.org
https://www.frontiersin.org/Neurology/archive


Kotchoubey and Pavlov Neurophysiology and DOC Outcome

Frontiers in Neurology | www.frontiersin.org May 2018 | Volume 9 | Article 315

lower limit of the 95% CI, three times better chances) to regain 
consciousness than UWS patients. It is true that we analyzed 
only records implementing the neurophysiological approach and 
missed similar data in the other publications not using neuro-
physiological variables. Nevertheless, the effect is very strong and, 
as far as we can judge, not strongly biased (as it was not a desired 
effect). This indicates the necessity to integrate neurophysiologi-
cal and clinical predictors within a multivariate approach in fur-
ther studies. This integration could be more productive in both 
diagnostic and prognostic respects than the attempts to oppose 
different classes of variables to each other.

These considerations can only be conceived of as preliminary. 
It should be stressed that all biasing factors discussed above act 
in the same direction, potentially increasing the number of false 
positive results. The general critique of Brok et al. (64) remains 
valid also for the current study: as long as the original studies 
do not present all information, meta-analyses can only try to 
diminish, but not abolish the positive bias. If we want to eliminate 
the bias, (i) small-size studies should be avoided (for prediction 
studies, groups of recovered/non-recovered should include at 
least 20 patients each); (ii) a flow chart should make evident the 
procedure of patient selection; (iii) neurologists assessing the 
target variable (i.e., change of the diagnosis) should be completely 
blinded regardless the values of neurophysiological predictors; 
(iv) the full list of measured variables including all potential 
predictors should be presented from the beginning of a report 
(in a Methods section); (v) the intervals (a) between the accident 
and the neurophysiological measurement, and (b) between this 
measurement and the follow-up assessment should be specified; 

finally, (vi) all positive and negative (e.g., non-significant rela-
tionships) results should be described in the same quantitative 
manner, either including the size of all effects, or permitting to 
calculate this size (e.g., mean and SD for the recovered and non-
recovered groups).

Therefore, the numbers presented in Figures 5 and 6 and in the 
Supplementary Materials can now be regarded, not as estimates of 
real effects, but rather, as upper limits of these effects. The current 
state of affairs is yet far away from the level at which any practical 
recommendation can be given except the recommendation to be 
highly careful with interpretations.
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Loss of organized sleep electrophysiology is a characteristic finding following severe

brain injury. The return of structured elements of sleep architecture has been associated

with positive prognosis across injury etiologies, suggesting a role for sleep dynamics

as biomarkers of wakeful neuronal circuit function. In a continuing study of one

minimally conscious state patient studied over the course of ∼8½ years, we sought to

investigate whether changes in daytime brain activation induced by central thalamic deep

brain stimulation (CT-DBS) influenced sleep electrophysiology. In this patient subject,

we previously reported significant improvements in sleep electrophysiology during 5½

years of CT-DBS treatment, including increased sleep spindle frequency and SWS

delta power. We now present novel findings that many of these improvements in

sleep electrophysiology regress following CT-DBS discontinuation; these regressions

in sleep features correlate with a significant decrease in behavioral responsiveness.

We also observe the re-emergence of alpha-delta sleep, which had been previously

suppressed by daytime CT-DBS in this patient subject. Importantly, CT-DBS was only

active during the daytime and has been proposed to mediate recovery of consciousness

by driving synaptic activity across frontostriatal systems through the enhancement of

thalamocortical output. Accordingly, the improvement of sleep dynamics during daytime

CT-DBS and their subsequent regression following CT-DBS discontinuation implicates

wakeful synaptic activity as a robust modulator of sleep electrophysiology. We interpret

these findings in the context of the “synaptic homeostasis hypothesis,” whereby we

propose that daytime upregulation of thalamocortical output in the severely injured brain

may facilitate organized frontocortical circuit activation and yield net synaptic potentiation

during wakefulness, providing a homeostatic drive that reconstitutes sleep dynamics

over time. Furthermore, we consider common large-scale network dynamics across

several neuropsychiatric disorders in which alpha-delta sleep has been documented,

allowing us to formulate a novel mechanistic framework for alpha-delta sleep generation.

We conclude that the bi-directional modulation of sleep electrophysiology by daytime
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thalamocortical activity in the severely injured brain: (1) emphasizes the cyclical carry-over

effects of state-dependent circuit activation on large-scale brain dynamics, and (2) further

implicates sleep electrophysiology as a sensitive indicator of wakeful brain activation and

covert functional recovery in the severely injured brain.

Keywords: traumatic brain injury, minimally conscious state, deep brain stimulation, synaptic homeostasis

hypothesis, alpha-delta sleep, sleep spindles, slow wave sleep

INTRODUCTION

Increasing evidence suggests that many patients with disorders of
consciousness experience neuronal re-organization and recovery
of large-scale brain function over prolonged time periods (1–
5). The presence of sleep architecture, particularly sleep spindles
and slow wave sleep (SWS), has been found to correlate
with prognosis following injury and therefore may be an
important dimension for understanding and tracking functional
improvements (6–14). In the present study we tracked long-
term sleep changes in a single patient remaining in minimally
conscious state over ∼8.5 years. Adams et al. (15) first reported
on the EEG sleep characteristics of this patient before and during
∼5 years of daytime central thalamic deep brain stimulation
(CT-DBS), which was initiated for the promotion of arousal
regulation. Initial findings by Adams et al. showed an increase
in sleep spindle frequency and SWS duration following the
onset of CT-DBS treatment (15). An irregular intrusion of
alpha activity during SWS was also reported prior to CT-
DBS, which seemed to attenuate during CT-DBS treatment.
Importantly, these results implicated daytime brain activation
as modulator of sleep architecture in the severely injured
brain.

Here we report on distinct changes observed ∼1 year after
the discontinuation of CT-DBS treatment. We find ongoing
plasticity in multiple physiological aspects of sleep, providing
important insight into the network-level dynamics that can be
induced by daytime arousal regulation in the severely injured
brain. Most notably, in the present study we identify a regression
of the previously noted improvements in sleep dynamics seen
over course of CT-DBS treatment. A return of the atypical
SWS alpha intrusion initially reported by Adams et al. as
“mixed state” is evaluated here in the context of the previously
documented phenomenon “alpha-delta sleep” (16). We discuss
our findings in the context of neuronal circuit mechanisms that
may organize the improvement of sleep dynamics during daytime
CT-DBS in the severely injured brain, as well as those that may
underlie functional regression with the withdrawal of CT-DBS
treatment. Finally, we explore the role of alpha-delta sleep across
pathophysiologies of neuropsychiatric disorders and propose a
mechanistic explanation for alpha-delta sleep generation.

METHODS

Patient History
Patient subject is a 48-year-old man who suffered a severe brain
injury as the result of a motor vehicle accident at the age of
17. The injury pattern is characterized by a small left thalamic

hemorrhage, as well as diffuse axonal injury with extensive
atrophy of the left hemisphere (Supplementary Figure 1).
Behavioral presentation has remained consistent with a
diagnosis of minimally conscious state since the time of
injury.

Data Collection and Timeline
The patient subject was studied longitudinally at five time points
(TP1-TP5) over the course of 8.5 years (Figure 1). Each study
consisted of a 24–72 h inpatient admission (TP1 at New York
Presbyterian Hospital, New York, USA; TP2-TP5 at Rockefeller
University Hospital, New York, USA) under IRB approvals from
Weill Cornell Medicine and Rockefeller University. Written
informed consent was obtained from the patient’s surrogate
for study participation, data collection and publication. During
each inpatient study, behavioral responsiveness was quantified
according to the Coma Recovery Scale-Revised (CRS-R) (17)
at least once per day. Overnight video-EEG was collected with
collodion-pasted electrodes (30 electrodes at TP1; 37 electrodes
at TP2-TP5) placed according to the international 10–20 system.
Signals were recorded using the Natus XLTEK system (San
Carlos, CA) at impedances ≤5 k�. Time point one occurred at
21 years 5 months post injury. The patient subject subsequently
underwent surgery for the implantation of bilateral central
thalamic deep brain stimulation electrodes [clinical trial methods
are described briefly below, as well as in detail in Schiff et
al. (18)]. Study time points two through four were concurrent
with daytime central thalamic deep brain stimulation (CT-
DBS) (TP2: 23 years 5 months, TP3: 24 years 11 months,
and TP4: 26 years 3 months post injury, respectively). Time
point five occurred ∼1 year following CT-DBS discontinuation
secondary to battery depletion (TP5: 30 years 0 months post
injury).

Implantation of deep brain stimulation electrode leads was
aided by microelectrode recordings from the sensory relay
nucleus of the thalamus on both the right and left hemispheres.
Using electrophysiological localization of the sensory nucleus
as known, the lateral wing of the central lateral nucleus was
targeted using the Morel atlas (19) by dead reckoning. Following
implantation, CT-DBS was administered on a blocked 12 h
ON/OFF cycle (ON: 6AM-6PM/OFF: 6PM-6AM) over the
course of∼7 ½ years. During this time, a wide range of electrode
contact geometries, stimulation intensities, and frequencies of
stimulation were employed. Briefly, following extensive titration
testing of stimulation frequency and intensity, an optimal
geometry was identified for each electrode contact based on
apparent arousal effects and limitations of visible side effects. The
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FIGURE 1 | Representative EEG and summary timeline. (A) Representative segments of patient subject EEG tracings during non-REM sleep show the presence of

stage two (left) and SWS (middle, right) epochs. A mixed frequency signature consistent with alpha-delta sleep was also observed (middle), classified here as a subset

of SWS for consistency with combined “SWS-like” states reported in Adams et al. (15). (B) The patient subject was studied at five time points over the course of 8.5

years, consisting of one time point before, three during, and one after CT-DBS treatment. Qualitative summaries of individual EEG states are shown for each time point.

left electrode was stimulated in bipolar mode with the lowest
contact chosen as cathode and highest contact chosen as anode;
the right electrode was stimulated in monopolar mode with
two cathodes, placed at the lowest two contacts. During a 6
month crossover phase, stimulation at these contacts occurred
for 12 h each day using a 90ms pulse width, 130Hz stimulation
frequency, and 4V intensity for each electrode. Following the
crossover phase, a range of varying frequencies and intensities
were used including a 1 year period of stimulation at each of
175Hz and 100Hz. For the majority of the 7½ years of CT-DBS
exposure stimulation occurred at 100Hz with other parameters
held constant.

Data Analysis
EEG Processing
For estimates of wakeful brain dynamics, periods of resting
eyes open awake states were identified by video record and

corresponding EEG was manually cleaned for the removal of eye
blink and movement artifacts.

Sleep analyses included nighttime sleep EEG collected
between the hours of 8 p.m. and 6 a.m., manually cleaned
for movement artifacts and verified eyes-closed according to
synchronous video record. Standard sleep scoring criteria were
used to classify segments as stage two or SWS (20). Briefly,
the patient subject was considered to be in stage two sleep
if the EEG record displayed k-complexes and/or 9–16Hz
spindle-like formations across frontocentral channels. Slow wave
sleep was classified by large polymorphic delta (<4Hz) waves
present over at least 20% of a 30 s epoch. The observation
of an additional and constant 8–14Hz oscillation overriding
classic SWS characteristics was considered alpha-delta sleep. To
maintain consistency with the previous report by Adams et al.
(15), alpha-delta sleep was scored under the categorization of
SWS.
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Power Spectral Estimation
Raw EEG was segmented into 30–35 representative epochs for
awake, stage two sleep, and SWS states, respectively. Multitaper
power spectral estimates were calculated separately for each state
(21) with implementation of Hjorth Laplacian montaging from
the MATLAB chronux toolbox (22). After spectral calculation,
six frontocentral channels (F3, F4, FC5, FC6, C3, C4) were used
for longitudinal comparison tomaintain consistency with Adams
et al. (15).

For longitudinal comparisons of spectral peak sizes during
stage two and SWS stages, calculated spectra were normalized
according to methods outlined in Gottselig et al. (23). Briefly,
a power law function was fit to each spectrum in the 5–6Hz
and 17–18Hz frequency ranges for stage two sleep, or 4–6Hz
and 23–24Hz frequency ranges for SWS. Frequency ranges for
normalization were chosen based on optimal fitting of the power
law function to the underlying shape of the power spectrum
across channels, excluding frequency bins of interest to avoid
flattening of relevant spectral features. Absolute power of the
fitted spectrum was subtracted from the calculated spectrum
and resulting values were integrated across frequency bins of
interest. By subtracting the best-fit underlying spectral shape,
arbitrary differences in background power bias between visits
were removed, allowing for estimation of magnitude change in
relevant spectral features.

Dominant spindle frequency was determined from
normalized stage two power spectra using a handcrafted
manual click program to determine the center frequency of the
largest spectral peak in the 9–16Hz spindle range. Briefly, the
spindle peak for each channel was visually identified from the
normalized power spectrum and a quadratic polynomial was fit
to the identified peak to determine the local power maxima and
corresponding dominant spindle frequency. If no spindle peak
was present no value was recorded.

Statistics
Analyzed variables were CRS-R total score, stage two sleep
spindle power (9–16Hz) and peak spindle frequency, SWS delta
power (0.5–4Hz), and SWS alpha power (8–14Hz). Time periods
for comparison were grouped into three conditions reflecting
initial pre-stimulation baseline, the active period of CT-DBS, and
the post-withdrawal of stimulation phase (Pre:TP1/Active:TP2-
TP4/Post:TP5). An analysis of variance (ANOVA)was performed
for each variable to identify changes across CT-DBS conditions.
For stage two and SWS variables, ANOVA factors included CT-
DBS condition and hemisphere. To identify any changes within
the active CT-DBS condition, a separate ANOVA was conducted
for TP2-TP4 within each variable. Post-hoc comparisons were
conducted using Tukey’s HSD at a significance level of p < 0.05.

RESULTS

Visual EEG Features
Figure 1 provides a qualitative summary of changes in EEG
architecture over the course of study. Most notable was the
observation at TP1 of an additional sleep signature consisting
of high voltage, low frequency (<2Hz) activity exhibiting an

overriding mid-frequency (8–14Hz) component (Figure 1A,
middle panel). This signature closely resembles alpha-delta
sleep, characterized by Hauri and Hawkins (16) as “a mixture
of 5–20% delta waves (>75 µV, 0.5–2 c/sec) combined with
relatively large amplitude, alpha-like rhythms (7–10 c/s).” Alpha-
delta sleep was prominent before CT-DBS treatment (TP1),
waned during active CT-DBS (TP2-TP4), and re-emerged
following discontinuation of CT-DBS (TP5). Inversely, changes
in healthy sleep architecture during CT-DBS treatment included
the normalization of stage two sleep spindles, SWS, and awake
alpha rhythms, as well as the emergence of REM sleep. Each of
these healthy features demonstrated qualitative decline following
CT-DBS discontinuation (Figure 1B).

Behavioral Examination
The CRS-R was administered at least once daily during each time
point. A one-way ANOVA showed a significant effect of CT-DBS
condition (pre, active, post) [F(2,21) = 5.55, p = 0.0116], such
that total CRS-R scores were significantly lower after CT-DBS
cessation (M = 9.0, SD = 1.0) than either before CT-DBS (M =

11.8, SD= 1.6, p= 0.011) or during active CT-DBS (M= 11.8, SD
= 1.1, p = 0.016) (Figure 2A). Although this reduction in CRS-
R score was statistically significant, the patient subject remained
within the diagnostic classification of minimally conscious state
throughout the course of study. There was no change in CRS-R
scores between active CT-DBS time points.

CRS-R subscale scores were also compared for a detailed
view of composite CRS-R score changes. Analysis of variance
was not performed due to the categorical nature of subscale
classifications. Subscale scores varied slightly across time points,
with the exception of the communication subscale, for which
the patient subject received a score of 0 at each examination
(Figure 2B). Altogether, although CT-DBS did not produce an
increase in CRS-R scores, the withdrawal of CT-DBS correlated
with a significant reduction in responsiveness at TP5.

Power Spectra During Wake, Stage 2, and

SWS
Power spectra from TP1, TP4, and TP5 were overlaid for a
qualitative analysis of spectral shape before, during, and after
CT-DBS, respectively. Awake power spectra showed small local
changes but few global changes over time (Figure 3A). In the
alpha range, FC6 initially demonstrated a spectral peak at ∼8–
9Hz which reduced in power but increased in frequency to
∼9–10Hz by TP4 (Figure 3A, FC6 inset arrow). Following
discontinuation of CT-DBS at TP5, the FC6 power spectrum
largely flattened and showed no clear peak within the alpha
range (Figure 3A, FC6 inset). A similar awake alpha modulation
was present in C4 with a less prominent increase in alpha
frequency from ∼8Hz at TP1 to ∼9Hz at TP4 (Figure 3A,
C4 inset arrow) and a complete flattening at TP5 (Figure 3A,
C4 inset). Additional examination of parietal and occipital
channels during wakeful periods also revealed increases in alpha
frequency at TP4 with slight reductions at TP5 (data not shown).
Channel C3 uniquely showed prominent electrophysiological
change after CT-DBS was discontinued with the emergence of a

Frontiers in Neurology | www.frontiersin.org February 2019 | Volume 10 | Article 20173

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Gottshall et al. Deep Brain Stimulation and Sleep Dynamics

FIGURE 2 | Behavioral examination scores. (A) Coma Recovery Scale-Revised (CRS-R) total scores at each time point. Each data point represents a single CRS-R

administration. *p < 0.05. (B) Corresponding CRS-R subscale scores display slight variations in composition of total CRS-R scores between time points. Each data

point represents a single subscale administration. Gray rectangles indicate maximum subscale score range. Data points from pre-CT-DBS are shown in gray, active

CT-DBS in blue, and post-CT-DBS in black.

clear spectral peak in the beta frequency range at ∼12Hz during
TP5 (Figure 3A, C3, asterisk).

In contrast to the variable results observed in the patient
subject’s awake EEG, spectral analysis of stage two sleep
showed robust global changes over time. Power spectra were
characterized by an increased peak frequency in the sleep spindle
range fromTP1 to TP4 across all channels (Figure 3B). Following
CT-DBS discontinuation at TP5, power in the spindle range
disappeared entirely in all channels except C3. At TP5, C3
showed a continued increase in peak spindle frequency, albeit
displaying a smaller and less defined spectral peak (Figure 3B, C3
inset arrow). These findings are consistent with the observation
of sleep spindle fragmentation across the majority of EEG
channels following CT-DBS discontinuation.

SWS power spectra also demonstrated global changes over
time, most notably characterized by an intrusion of 8–14Hz
power across channels prior to CT-DBS treatment at TP1,
corresponding to the presence of alpha-delta sleep (Figure 3C).
The 8–14Hz alpha-delta sleep frequency signature was absent in
all channels during active CT-DBS treatment at TP4, only to re-
emerge following CT-DBS discontinuation at TP5. Re-emergence
of alpha-delta sleep at TP5 showed increased peak frequency in
the alpha range across all except for the two frontal channels (F3
and F4).

Relationship Between Sleep Dynamics and

CT-DBS
For statistical comparison, data were collapsed into three groups:
“Pre CT-DBS” (TP1), “Active CT-DBS” (TP2-TP4), and “Post
CT-DBS” (TP5). Global feature measurements were compared
across and within CT-DBS conditions for a quantitative analysis

of the effects of CT-DBS treatment and subsequent cessation on
EEG sleep dynamics.

Stage Two Sleep Spindles
Normalized stage two power spectral calculations were used
to quantify changes in spindle (9–16Hz) power over time. A
two-way ANOVA with factors CT-DBS (pre, active, post) and
hemisphere (left, right) showed greater spindle power in the
left hemisphere [F(1) = 6.483, p = 0.0177], as well as a highly
significant main effect of CT-DBS condition [F(2) = 20.411, p <

0.0001] (Figure 4A, Table 1). Post-hoc tests identified a reduction
in spindle power post CT-DBS compared to both pre and active
CT-DBS conditions, p < 0.001 and p < 0.0001, respectively.
Spindle power remained consistent across the active CT-DBS
condition, with the exception of a slight increase in the left
hemisphere at TP4 compared to TP2, p= 0.0438.

To quantify changes in spindle frequency, we first removed
the post CT-DBS condition (TP5) from analyses due to lack of
spectral peak in the spindle range in five of the six channels
(see Figure 3B). A two-way ANOVA with factors CT-DBS (pre,
active) and hemisphere (left, right) demonstrated significantly
faster spindle frequency in both hemispheres during active CT-
DBS than before CT-DBS treatment [F(1) = 26.920, p < 0.0001]
(Figure 4B, Table 1). Spindle frequency varied within active CT-
DBS time points [F(2) = 4.158, p= 0.0425], such that there was a
significant slowing from TP3 to TP4, p = 0.0347, with frequency
at TP4 consistent with peak spindle frequency at TP2.

SWS Delta Power
Delta (0.5–4Hz) power was quantified from normalized SWS
power spectra as an indicator of healthy SWS electrophysiology.
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FIGURE 3 | EEG power spectra from time points 1, 4, and 5, corresponding to pre-, active, and post-CT-DBS conditions. (A) Power spectra calculated from resting

awake EEG. * Indicates emergence of a “wicket rhythm” (∼8–13Hz) over the left motor cortex. FC6 and C4 inset arrows denote increases in peak alpha frequency at

time point 4. (B,C) Power spectra calculated from non-REM stage two sleep (B) and SWS (C). Spectral tracings from time point 1 (TP1) are represented by gray lines,

time point 4 (TP4) by blue lines, and time point 5 (TP5) by black lines.

A two-way ANOVA with factors CT-DBS (pre, active, post) and

hemisphere (left, right) showed a global effect of CT-DBS [F(2) =

3.932, p= 0.033] but not hemisphere, such that SWS delta power

significantly increased from pre to active CT-DBS conditions, p=

0.0472 (Figure 5A, Table 1). During active CT-DBS, delta power

was significantly greater at TP4 than TP2 and TP3, p < 0.001 and

p = 0.001, respectively. Despite an empirical reduction in delta

power from TP4 to TP5, statistical analyses yielded no difference
between active and post CT-DBS conditions, p= 0.186.

SWS Alpha Power
Alpha (8–14Hz) power during SWS was quantified as a marker
of alpha-delta sleep expression. A two-way ANOVA with factors
CT-DBS (pre, active, post) and hemisphere (left, right) yielded
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a highly significant CT-DBS by hemisphere interaction [F(2) =
5.657, p= 0.00971] (Figure 5B, Table 1). Post hoc testing showed

FIGURE 4 | Stage two sleep spindle dynamics. Power spectra were

calculated for representative stage two sleep EEG segments and values

normalized for comparison across time points. (A) Power in the 9–16Hz

spindle range, plotted according to channel and time point. (B) Peak spectral

frequency in the 9–16Hz spindle range. If no spectral peak was present,

spindles were considered absent and no frequency value was recorded.

Dotted lines represent left hemisphere channels and solid lines represent right

hemisphere channels. Individual channels are plotted by color. Gray shading

indicates active CT-DBS time points.

that global alpha power was reduced from pre to active CT-
DBS conditions, p < 0.001, followed by a significant rebound
from active to post CT-DBS conditions, p < 0.001. This rebound

FIGURE 5 | Slow wave sleep dynamics. Power spectra were calculated for

representative SWS segments (including alpha-delta sleep) and values

normalized for comparison across time points. (A) SWS power in the 0.5–4Hz

delta frequency range, plotted according to channel and time point. (B) SWS

power in the 8–14Hz alpha frequency range, plotted according to channel and

time point. Dotted lines represent left hemisphere channels and solid lines

represent right hemisphere channels. Individual channels are plotted by color.

Gray shading indicates active CT-DBS time points.

TABLE 1 | Average sleep variables calculated from EEG power spectral estimates.

CT-DBS

condition

Stage two

spindle power

(dB)

Stage two

spindle

frequency (Hz)

SWS delta power (dB) SWS alpha power

(dB)

Left Hemisphere Pre 302.62 ± 108.32 9.80 ± 0.35 23.26 ± 2.08 232.04 ± 17.08

Active 313.61 ± 90.04 10.89 ± 0.48 104.22 ± 83.29 100.82 ± 18.17

Post 106.76 ± 39.86 11.70* 45.30 ± 23.35 293.66 ± 45.37

Right Hemisphere Pre 203.35 ± 10.64 9.20 ± 0.17 27.30 ± 3.75 184.90 ± 7.74

Active 256.80 ± 31.20 10.66 ± 0.64 91.39 ± 63.70 98.10 ± 28.03

Post 76.91 ± 8.20 NA 46.10 ± 23.35 216.06 ± 25.62

*Channel C3 only.
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was larger in the left than the right hemisphere, such that SWS
alpha power did not differ between hemispheres during pre or
active CT-DBS conditions, but was greater in the left hemisphere
following CT-DBS withdrawal, p = 0.010. SWS alpha power also
differed within active CT-DBS time points [F(2) = 13.329, p <

0.001], such that it was significantly reduced from TP2 to TP3, p
= 0.001, and remained suppressed at TP4 compared to TP2, p =
0.003.

DISCUSSION

In this longitudinal study of a single patient subject in chronic
minimally conscious state, we report marked regression of
sleep dynamics following the discontinuation of CT-DBS. In
this patient subject, Adams et al. (15) previously demonstrated
that daytime CT-DBS (6 a.m.−6 p.m.) over a 5 year period
was associated with the normalization of sleep architecture and
dynamics; specific changes included increased spindle frequency
during stage two sleep, increased sustained SWS, and the re-
emergence of REM sleep. Presently, we show regression of
each of these improvements observed at 1 year after CT-DBS
discontinuation (see Figure 1 for a schematic summary) and in
temporal correlation with a significant reduction in behavioral
responsiveness (Figure 2). During stage two sleep we identify a
loss of sleep spindles alongside a reduction in spectral power
in the spindle range (Figures 3B, 4). We also find a reversion
of SWS delta power to pre-CT-DBS levels (Figures 3C, 5A),
and no instances of REM sleep. Importantly, we observe the re-
emergence of a SWS-like frequency signature that had previously
been suppressed by daytime CT-DBS (Figure 5B). This frequency
signature closely resembles the “alpha-delta sleep” pattern that
has been identified across several neuropsychiatric conditions
(16, 24–29), leading us to re-characterize this phenomenon as
alpha-delta sleep arising within the severely injured brain.

In summary, reduced behavioral responsiveness after CT-DBS
discontinuation was associated with the abolishment of stage
two sleep spindles, marked downregulation of SWS delta power,
and the return of alpha-delta sleep. In the following sections
we discuss: (1) the proposed mechanism of sleep modulation by
daytime CT-DBS in the severely injured brain and implications
for sleep dynamics as an indicator of wakeful engagement,
(2) altered network dynamics that may underlie alpha-delta
sleep expression in the severely injured brain, and (3) a novel
mechanistic framework for alpha-delta sleep generation across
pathophysiologies.

Restoration of Frontostriatal Activation by

CT-DBS May Drive Sleep Changes in the

Severely Injured Brain
The rationale for using CT-DBS in minimally conscious state
patients is two-fold: (1) the central thalamus has widespread
innervation of frontal cortical and basal ganglia regions and plays
a crucial role in maintaining arousal regulation during wakeful
states, (2) multi-focal deafferentation is a characteristic injury
pattern in severe brain injuries and is known to functionally and
structurally disfacilitate central thalamic neuronal populations

(30–32). The upregulation of central thalamic neurons via CT-
DBS is therefore expected to re-establish frontostriatal neuronal
firing rates, thereby restoring the frontocortical regulation
of sustained waking arousal needed to support organized
behavior (33). Studies of CT-DBS in another post-traumatic
minimally conscious state patient provided proof-of-concept that
restoration of sustained frontocortical activity correlates with
improvements in organized behavior. In these studies, increased
neuronal activity in the frontal cortices produced by CT-DBS was
associated with heightened arousal, recovery of speech, restored
executive motor control over one limb, and improved feeding
behaviors (18, 34). While CT-DBS in our patient subject failed
to produce clinically measurable behavioral improvement, it
did produce robust improvements in sleep electrophysiology.
Adams et al. (15) proposed that these sustained changes in
network dynamics visible during sleep were the result of
daytime activation of frontostriatal systems by CT-DBS, which
allowed for organized neuronal activity in intact but functionally
downregulated frontostriatal networks (30, 33, 35–37).

Here we show that CT-DBS cessation temporally correlated
with significant regressions in sleep electrophysiology and
behavioral responsiveness, providing strong support for the
hypothesis that CT-DBS modulates sleep electrophysiology via
upregulation of daytime frontostriatal activation and system-
level engagement. Modulation of sleep dynamics in response to
diurnal neuronal activity has been well described in both animal
and human studies. Across species, progressive wakefulness is
associated with increased cortical excitability (38–42), increased
neuronal firing rates (43, 44), and increased extrasynaptic
glutamate levels (45). Subsequent non-REM sleep episodes
are characterized by an initial maintenance of high neuronal
firing rates, increased cortical synchrony, and upregulated
slow wave activity in regions corresponding to increased
neuronal activation during wakefulness (46–48). Successive non-
REM sleep episodes show a progressive decline in each of
these features (43). Accounting for these sleep-wake dynamics,
growing evidence indicates that wakefulness creates a net
increase in synaptic strengths that requires sleep processes for
renormalization; a concept known as the “synaptic homeostasis
hypothesis” (SHY) (49–51). Importantly, sustained high firing
rates alone, such as those produced by CT-DBS, are insufficient to
produce the changes in SWS observed here. Rather, SWS changes
are more likely to result from system-level wakeful engagement
with the environment that results in synaptic potentiation (38, 47,
52). The SHY therefore predicts that the marked improvements
in sleep electrophysiology seen in our patient subject during
CT-DBS reflect fundamental changes in synaptic potentiation
occurring during wakefulness.

Further supporting this inference, daytime CT-DBS is
known to upregulate the long-term potentiation (LTP)-related
immediate early gene zif268 within neocortex (53). Similar gene
expression patterns are expressed during periods of REM sleep
following wakeful LTP (54); rodent studies have implicated these
REM periods as instrumental in the consolidation of CT-DBS-
induced learning (53). Accordingly, the selective appearance of
REM sleep with CT-DBS in our patient subject likely reflects
changes in LTP-related gene expression induced by the daily
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12 h CT-DBS periods. Taken together, our findings suggest that
the restoration of both non-REM sleep architecture and REM
sleep episodes during CT-DBS may provide an indirect marker
of meaningful daytime engagement across a range of sensory and
associative processing systems within the forebrain.

Our finding that improvements in sleep electrophysiology
are lost following withdrawal of CT-DBS suggests further
that this process can be reversed. Specifically, sub-threshold
wakeful activation may insufficiently engage organized neuronal
dynamics needed for synaptic potentiation. Under-activated
networks would therefore fail to produce the homeostatic sleep
pressure necessary for large-scale neuronal synchronization
and synaptic scaling during sleep. This general mechanism
has precedence in the healthy brain. Following periods of
arm immobilization, healthy individuals demonstrate localized
wakeful synaptic depression and reductions in sleep slow
wave activity over contralateral sensorimotor cortex (55).
In the deafferented brain, the reduction of thalamocortical
outflow associated with CT-DBS discontinuation would be
expected to result in decreased cortical activation and synaptic
depression, culminating in a progressive loss of wakeful
frontocortical excitability and diminished homeostatic sleep-
wake processes over time. The reduced behavioral responsiveness
and degradation of organized sleep architecture after CT-DBS
withdrawal at TP5 supports this inference. Collectively, these
observations raise the possibility that restoration of synaptic
homeostasis during sleep may be a process that is re-engaged
in the severely injured brain only after sufficient increases in
large-scale organized neuronal firing patterns emerge across the
cerebral cortex to produce a net increase in synaptic strength
during wakefulness. Such reinstatement of large-scale network
engagement, including both glutamatergic synaptic potentiation
and GABAergic firing rates (56), provides a testable mechanism
for the observed changes in sleep architecture with CT-DBS.

As an exception to the observed global regressions following
CT-DBS discontinuation, channel C3 displayed retained sleep
spindles and improvements in SWS delta power at TP5
(Figures 3B,C), as well as the emergence of high frequency
beta and healthy “Mu” or “wicket” rhythms (∼8–13Hz) during
wake (57, 58) (Figure 3A). Of note, although this patient
subject was unable to communicate, he retained a high-level of
emotional responsiveness consistent with his sense of humor
prior to the injury. These unique dynamics underscore the
structural preservation of the patient subject’s left temporal
cortex (Supplementary Figure 1) as well as verify the functional
preservation of his left temporal language processing capabilities.
Mechanistically, continued improvements in cortical regions
underlying C3 may have resulted from local restructuring
as the result of restored neuronal activation across relatively
preserved cortical substrate during CT-DBS. Such changes
would not be unprecedented; Thengone et al. (1) recently
demonstrated prominent changes in structural connectivity
emanating from Broca’s area following implementation of
assistive communication technology in a minimally conscious
state patient. This independent EEG pattern exhibited by a
localized brain region in our patient subject underscores the
impact that upregulated neuronal activation can have on the

recovery of functional circuitry in structurally intact brain
regions.

An Underactive Prefrontal Cortex may

Permit Ventral Limbic Over-activation,

Resulting in Alpha-Delta Sleep
Perhaps the most novel and interesting finding observed here is
the mixing of alpha and delta rhythms during sleep, originally
reported by Adams et al. (15) and identified here as alpha-delta
sleep (16). Although the functional role and underlying circuit
mechanisms of alpha-delta sleep have remained elusive (59, 60),
the phenomenon has been reported in a variety of conditions
including fibromyalgia/chronic fatigue (25, 26), rheumatoid
arthritis (24), schizophrenia (16), major depressive disorder (29)
with implications for suicidality (61), anxiety (28), and in healthy
individuals with induced pain and/or arousal during sleep (62).
To our knowledge, this is the first report of alpha-delta sleep in
the severely injured brain. The persistence of the alpha-delta sleep
phenotype across a range of neurological conditions, and now
severe brain injury, invites us to consider a common underlying
mechanism.

We observe that the conditions in which alpha-delta sleep
is reported fall into two mechanistic categories: (1) those
characterized by a primary pathology of cerebral hypofrontality
or (2) those characterized by a primary upregulation of ventral
limbic activation. Both mechanisms result in an increase
in limbic system activity during sleep, either via under-
activation of the descending corticothalamic pathway needed
to drive homeostatic sleep pressure or an overactivation of the
ascending pathways that maintain wakefulness. Accordingly,
we hypothesize that the appearance of alpha-delta sleep is
indicative of a failure of the prefrontal cortex to sufficiently
inhibit excitatory output from ventral structures to the thalamus
during the shift into synchronized cortical activity for SWS
(Figure 6). Specifically, we identify the basal forebrain as
a likely generator of thalamic depolarization in alpha-delta
sleep due to its cholinergic projections to the thalamus (63–
65). Support for this mechanism is provided by simulation
and in vitro studies of both alpha oscillations (66–69) and
alpha-delta sleep expression (70). Regarding alpha production
by basal forebrain cholinergic projections, the activation
of muscarinic acetylcholine receptors on reticular nuclei,
thalamocortical, and high-threshold thalamocortical cells, as
well as on somatosensory and visual thalamic nuclei, has been
evidenced to produce alpha oscillations in thalamic models (69)
and cat in vitro slice recordings (67), respectively. Conversely,
follow-up in vitro studies show that direct thalamic application
of a muscarinic acetylcholine receptor antagonist reduces high-
threshold thalamocortical cell bursting, and in turn thalamic
and cortical alpha power (68). Additional simulation studies
demonstrate that alpha-delta sleep generation may originate
in aberrant thalamic depolarization during SWS, specifically of
“high-threshold” thalamocortical cells that serve as the putative
generators of awake alpha (70).

Critically, the novel finding that alpha-delta sleep is
modulated by CT-DBS lends strong support to the validity
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FIGURE 6 | Proposed mechanism linking the observed effects of CT-DBS in our patient subject with anterior forebrain mesocircuit function and the generation of

alpha-delta sleep. (A) Anterior forebrain mesocircuit dysfunction in disorders of consciousness. In severe brain injury, widespread deafferentation results in functional

downregulation of the prefrontal cortex (PFC) via functional disfacilitation and structural deafferentation of central thalamic neuronal populations (30). Under these

conditions, medium spiny neurons of the striatum fail to reach firing threshold, resulting in released inhibition of the globus pallidus interna (GPi). Excess firing of the

GPi is proposed to result in additional inhibition of central thalamic components, preventing sufficient thalamocortical output, and tilting the excitatory/inhibitory

balance needed for the consistent maintenance of consciousness [see Schiff (30)]. Such reduced activation of the PFC during wake may result in insufficient

accumulation of homeostatic sleep pressure and correspondingly under-activated prefrontal GABAergic networks during sleep. Failure to inhibit ventral limbic

structures such as the basal forebrain would result in excess activation of thalamocortical cells and the intrusion of alpha oscillations during SWS. (B) Restoration of

mesocircuit function and alpha-delta sleep alleviation during CT-DBS. CT-DBS drives thalamocortical output, resulting in restored wakeful excitation of the PFC.

Increased PFC engagement during wakefulness produces an accumulation of homeostatic sleep pressure, facilitating the inhibition of ventral limbic structures during

sleep via upregulation of SWS-producing GABAergic interneurons. Without excess thalamic activation by ventral structures during SWS, depolarization necessary for

alpha-producing high threshold thalamocortical bursting is not achieved and alpha-delta sleep does not occur. Image adapted from The Allen Human Brain Atlas.

©2010 Allen Institute for Brain Science. Allen Human Brain Atlas. Available from: human.brain-map.org.

of this prefrontal-ventral dysfunction model of alpha-delta
sleep generation. In our patient subject, CT-DBS restored bulk
activation of the frontal cortices during the day, likely facilitating
the reinstatement of top-down limbic inhibition (56) and driving
activity-dependent increases in homeostatic sleep pressure. This
increase in frontocortical GABAergic tone would be expected
to carry over into sleep via sustained alterations of GABAergic
firing rates (43) and the mutual reinstatement of synchronous
cortical slow wave activity needed for synaptic scaling [see Allada
et al. (71) for a detailed review]. With proper inhibition of
ventral limbic structures by the frontal cortex during SWS,
there would be minimal excess corticothalamic excitation and
therefore attenuation of the alpha-delta sleep phenotype (69). In
our patient subject, when CT-DBS was eventually discontinued,
daytime frontocortical network activation was reduced, likely
resulting in a gradual lifting of frontal inhibition over limbic
structures during SWS and the observed re-emergence of alpha-
delta sleep.

Restoring Frontocortical GABAergic Tone

Reduces Alpha-Delta Sleep
The prefrontal-ventral dysfunction model of alpha-delta sleep
provides a consistent mechanism across several conditions in

which alpha-delta sleep has been documented. Patients with
fibromyalgia demonstrate reduced gray matter volume of the
frontal cortex alongside increased structural connectivity of the
amygdala (72, 73). Schizophrenia is associated with prefrontal
GABAergic deficits and thalamocortical hypoconnectivity
(74–76). Major depression is characterized by prefrontal gray
matter reductions (77) and GABAergic interneuron deficits
(78, 79), as well as ventral hypermetabolism that persists
from wakefulness into non-REM sleep (80). Individuals
with anxiety and PTSD demonstrate reduced prefrontal
regulation of the amygdala (81–83), which is present in
both fear conditions and resting states (84, 85); The high
prevalence of sleep disturbances in PTSD suggests that
prefrontal-amygdala dysfunction persists into sleep states as
well. Together, these commonalities suggest that alpha-delta
sleep dynamics may be indicative of the presence and/or
severity of prefrontal-ventral dysregulation across behavioral
diagnoses.

In support of the generalizability of this model, the alleviation
of frontal GABAergic deficits by gamma hydroxybutyrate
(GHB/sodium oxybate) has been found to suppress alpha-delta
sleep in several conditions (86–90). GHB is an activity-dependent
neurotransmitter synthesized within GABAergic interneurons
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[reviewed in detail by Maitre et al. (91)]. Importantly,
these GHB-containing interneurons play a critical role in
the endogenous regulation of sleep-wake cycles by inhibiting
cholinergic structures such as the basal forebrain (92). At
increased doses used for exogenous administration, GHB exerts
inhibitory effects by directly binding GABA-B receptors (93, 94);
a necessary step for the homeostatic modulation of firing rates
(95). Accordingly, the demonstrated suppression of alpha-delta
sleep and dose-dependent upregulation of SWS by GHB likely
occurs through a GABA-B receptor-mediated process analogous
to both the endogenous production of homeostatic sleep pressure
through normal wakeful activity and the exogenous driving of
organized frontocortical networks with CT-DBS. Kothare et al.
(96) reported a case of sodium oxybate use in an 8-year-old boy
with a prior disorder of consciousness produced by encephalitis
at age four, providing strong support for this mechanism.
The boy presented with disseminated encephalomyelitis with
thalamic lesions, poor sleep efficacy, and alpha-delta sleep
alongside severe cognitive and attentional regulation problems
indicating prefrontal downregulation characteristic of anterior
forebrain mesocircuit dysfunction (30). Following 6 months
of sodium oxybate treatment beginning 4 years after the
initial event, he showed improvements in all measures of
sleep including increased SWS and the disappearance of alpha-
delta sleep, as well as improvements in measures of attention,
executive function, and impulse control. We suggest that
these findings, in concert with those of our patient subject,
complimentarily underscore the bi-directional carry-over effects
of GABAergic upregulation between sleep and wakeful states. In
our patient subject, upregulation of frontocortical GABAergic
circuits during wakefulness resulted in the recovery of sleep
architecture; In Kothare et al.’s patient subject, upregulation
of GABAergic circuits during sleep resulted in the recovery
of wakeful frontocortical function. Accordingly, we emphasize
the notion that state-dependent activation of GABAergic
circuits exerts a 24 h cyclical influence over organized neuronal
function.

Limitations and Future Directions
The present study has important limitations to consider.
Due to the single-patient, observational nature of this study,
interpretations of causality must be made with caution.
Nevertheless, our primary findings of regression in both
behavioral responsiveness and sleep features are temporally
correlated with the discontinuation of CT-DBS ∼12 months
prior. As there had been no changes in medication or
rehabilitation that could account for the sudden shift in these
features, we feel it is reasonable to attribute these changes to
a shift in neuronal dynamics resulting from the withdrawal of
CT-DBS.

Furthermore, it is possible that our findings and proposed
model will not generalize to the larger population of individuals
with disorders of consciousness. However, evidence indicates
that the prevailing network dynamics observed in this patient
subject are not unique, but instead mechanistically characteristic

of the severely deafferented brain (97). Larger studies of
sleep dynamics in patients with disorders of consciousness
are needed to further clarify the potential value of sleep
electrophysiology as a meaningful indicator of wakeful brain
function. Additionally, although this is the first case in which
alpha-delta sleep has been characterized in a patient with
severe traumatic brain injury, we have previously described
this phenomenon in a small number of minimally conscious
state patients (98). Accordingly, we suggest that alpha-
delta sleep and the implicated network dynamics may be
present across many more patient subjects. Future studies
should seek to identify the prevalence of alpha-delta sleep
in individuals with disorders of consciousness, as well as
to experimentally investigate the described prefrontal-ventral
dysfunction model as a mechanism of alpha-delta sleep
generation across populations. We suggest that our proposed
model provides several possible experimental evaluations to
determine its predictive validity in populations with alpha-delta
sleep.

AUTHOR CONTRIBUTIONS

JG: Study concept and design, data acquisition, data analysis
and interpretation, manuscript preparation and revision; ZA:
Data acquisition, data analysis, manuscript revision; PF: Clinical
assessment, manuscript revision; NS: Study concept and
design, data acquisition, clinical assessment, data interpretation,
manuscript preparation and revision.

FUNDING

This work was supported by NIH grants #HD51912 &
#HL135465, the James S. McDonnell Foundation, and the Jerold
B. Katz Foundation. PF is supported by NIH NINDS K23
NS096222, Leon Levy Neuroscience Fellowship Award, NIHUL1
TR000043 NCATS Rockefeller CTSA Program, and The Stavros
Niarchos Foundation.

ACKNOWLEDGMENTS

The authors thank Dr. Jonathan Victor for guidance regarding
data analysis, as well as Dr. Mary Conte for the critical
reading of this manuscript. We would like to acknowledge
the clinical staff at New York Presbyterian Hospital as well as
Rockefeller University Hospital for providing care to the patient
during inpatient visits. We are grateful to the patient and his
family for their continued participation in and support of this
research.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fneur.
2019.00020/full#supplementary-material

Frontiers in Neurology | www.frontiersin.org February 2019 | Volume 10 | Article 20180

https://www.frontiersin.org/articles/10.3389/fneur.2019.00020/full#supplementary-material
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Gottshall et al. Deep Brain Stimulation and Sleep Dynamics

REFERENCES

1. Thengone DJ, Voss HU, Fridman EA, Schiff ND. Local changes in network

structure contribute to late communication recovery after severe brain injury.

Sci Transl Med. (2016) 8:368re5. doi: 10.1126/scitranslmed.aaf6113

2. Voss HU, Ulug AM, Dyke JP, Watts R, Kobylarz EJ, Mccandliss BD, et al.

Possible axonal regrowth in late recovery from the minimally conscious state.

J Clin Invest. (2006) 116: 2005-11. doi: 10.1172/JCI27021

3. Nakase-Richardson R, Whyte J, Giacino JT, Pavawalla S, Barnett SD, Yablon

SA, et al. Longitudinal outcome of patients with disordered consciousness in

the NIDRR TBI model systems programs. J Neurotrauma (2012) 29:59–65.

doi: 10.1089/neu.2011.1829

4. De Tanti A, Saviola D, Basagni B, Cavatorta S, Chiari M, Casalino

S, et al. Recovery of consciousness after 7 years in vegetative state of

non-traumatic origin: a single case study. Brain Inj. (2016) 30:1029–34.

doi: 10.3109/02699052.2016.1147078

5. Estraneo A, Moretta P, Loreto V, Lanzillo B, Santoro L, Trojano L. Late

recovery after traumatic, anoxic, or hemorrhagic long-lasting vegetative state.

Neurology (2010) 75:239–45. doi: 10.1212/WNL.0b013e3181e8e8cc

6. Rossi Sebastiano D, Visani E, Panzica F, Sattin D, Bersano A, Nigri A, et al.

Sleep patterns associated with the severity of impairment in a large cohort of

patients with chronic disorders of consciousness. Clin Neurophysiol. (2018)

129:687–93. doi: 10.1016/j.clinph.2017.12.012

7. Sandsmark DK, Kumar MA, Woodward CS, Schmitt SE, Park S, Lim MM.

Sleep features on continuous electroencephalography predict rehabilitation

outcomes after severe traumatic brain injury. J Head Trauma Rehabil. (2016)

31:101–7. doi: 10.1097/HTR.0000000000000217

8. Forgacs PB, Conte MM, Fridman EA, Voss HU, Victor JD, Schiff ND.

Preservation of electroencephalographic organization in patients with

impaired consciousness and imaging-based evidence of command-following.

Ann Neurol. (2014) 76:869–79. doi: 10.1002/ana.24283

9. Ducharme-Crevier L, Press CA, Kurz JE, Mills MG, Goldstein JL, Wainwright

MS. Early presence of sleep spindles on electroencephalography is associated

with good outcome after pediatric cardiac arrest. Pediatr Crit Care Med.

(2017) 18:452–60. doi: 10.1097/PCC.0000000000001137

10. Urakami Y. Relationship between sleep spindles and clinical recovery in

patients with traumatic brain injury: a simultaneous EEG and MEG study.

Clin EEG Neurosci. (2012) 43:39–47. doi: 10.1177/1550059411428718

11. Valente M, Placidi F, Oliveira AJ, Bigagli A, Morghen I, Proietti R,

et al. Sleep organization pattern as a prognostic marker at the subacute

stage of post-traumatic coma. Clin Neurophysiol. (2002) 113:1798–805.

doi: 10.1016/S1388-2457(02)00218-3

12. Mouthon A-L, van Hedel HJA, Meyer-Heim A, Kurth S, Ringli M, Pugin

F, et al. High-density electroencephalographic recordings during sleep in

children with disorders of consciousness.NeuroImage Clin. (2016) 11:468–75.

doi: 10.1016/j.nicl.2016.03.012

13. Arnaldi D, Terzaghi M, Cremascoli R, De Carli F, Maggioni G,

Pistarini C, et al. The prognostic value of sleep patterns in disorders of

consciousness in the sub-acute phase. Clin Neurophysiol. (2016) 127:1445–51.

doi: 10.1016/j.clinph.2015.10.042

14. Avantaggiato P, Molteni E, Formica F, Gigli GL, Valente M, Lorenzut

S, et al. Polysomnographic sleep patterns in children and adolescents in

unresponsive wakefulness syndrome. J Head Trauma Rehabil. (2015) 30:334–

46. doi: 10.1097/HTR.0000000000000122

15. Adams ZM, Forgacs PB, Conte MM, Schiff ND. Late and progressive

alterations of sleep dynamics following central thalamic deep brain

stimulation (CT-DBS) in chronic minimally conscious state. Clin

Neurophysiol. (2016) 127:3086–92. doi: 10.1016/j.clinph.2016.06.028

16. Hauri P, Hawkins DR. Alpha-delta sleep. Electroencephalogr Clin

Neurophysiol. (1973) 34:233–7. doi: 10.1016/0013-4694(73)90250-2

17. Giacino JT, Kalmar K, Whyte J. The JFK coma recovery scale-revised:

measurement characteristics and diagnostic utility. Arch Phys Med Rehabil.

(2004) 85:2020–9. doi: 10.1016/j.apmr.2004.02.033

18. Schiff ND, Giacino JT, Kalmar K, Victor JD, Baker K, Gerber M, et al.

Behavioural improvements with thalamic stimulation after severe traumatic

brain injury. Nature (2007) 448:600–3. doi: 10.1038/nature06041

19. Morel A, Magnin M, Jeanmonod D. Multiarchitectonic and stereotactic atlas

of the human thalamus. J Comp Neurol. (1997) 387:588–630.

20. Tatum WO, Selioutski O, Ochoa JG, Clary HM, Cheek J, Drislane

FW, et al. American clinical neurophysiology society guideline

7: guidelines for EEG reporting. Neurodiagn J. (2016) 56:285–93.

doi: 10.1080/21646821.2016.1245576

21. Thomson DJ. Spectrum estimation and harmonic analysis. Proc IEEE (1982)

70:1055–96.

22. Bokil H, Andrews P, Kulkarni JE, Mehta S, Mitra PP. Chronux: a

platform for analyzing neural signals. J Neurosci Methods (2010) 192:146–51.

doi: 10.1016/j.jneumeth.2010.06.020

23. Gottselig JM, Bassetti CL, Achermann P. Power and coherence of sleep spindle

frequency activity following hemispheric stroke. Brain (2002) 125:373–83.

doi: 10.1093/brain/awf021

24. Drewes AM, Svendsen L, Taagholt SJ, Bjerregård K, Nielsen KD, Hansen B.

Sleep in rheumatoid arthritis: a comparison with healthy subjects and studies

of sleep/wake interactions. Br J Rheumatol. (1998) 37:71–81.

25. Manu P, Lane TJ, Matthews DA, Castriotta RJ, Watson RK, Abeles M. Alpha-

delta sleep in patients with a chief complaint of chronic fatigue. South Med J.

(1994) 87:465–70.

26. Roizenblatt S, Moldofsky H, Benedito-Silva AA, Tufik S. Alpha sleep

characteristics in fibromyalgia. Arthritis Rheum. (2001) 44:222–30.

doi: 10.1002/1529-0131(200101)44:1<222::AID-ANR29>3.0.CO;2-K

27. Roehrs JD. Alpha delta sleep in younger veterans and active duty military

personnel: an unrecognized epidemic? J Clin Sleep Med. (2015) 11:277.

doi: 10.5664/jcsm.4546

28. Sloan EP, Maunder RG, Hunter JJ, Moldofsky H. Insecure attachment is

associated with the α-EEG anomaly during sleep. Biopsychosoc Med. (2007)

1:20. doi: 10.1186/1751-0759-1-20

29. Jaimchariyatam N, Rodriguez CL, Budur K. Prevalence and correlates of

alpha-delta sleep in major depressive disorders. Innov Clin Neurosci. (2011)

8:35–49.

30. Schiff ND. Recovery of consciousness after brain injury: a mesocircuit

hypothesis. Trends Neurosci. (2010) 33:1–9. doi: 10.1016/j.tins.2009.

11.002

31. Maxwell WL, MacKinnon MA, Smith DH, McIntosh TK, Graham

DI. Thalamic nuclei after human blunt head injury. J Neuropathol

Exp Neurol. (2006) 65:478–88. doi: 10.1097/01.jnen.0000229241.28

619.75

32. Kawai N, Maeda Y, Kudomi N, Yamamoto Y, Nishiyama Y, Tamiya T.

Focal neuronal damage in patients with neuropsychological impairment after

diffuse traumatic brain injury: evaluation using 11 C-flumazenil positron

emission tomography with statistical image analysis. J Neurotrauma (2010)

27:2131–8. doi: 10.1089/neu.2010.1464

33. Schiff ND. Central thalamic contributions to arousal regulation and

neurological disorders of consciousness. Ann N Y Acad Sci. (2008) 1129:105–

18. doi: 10.1196/annals.1417.029

34. Giacino J, Fins JJ, Machado A, Schiff ND. Central thalamic deep brain

stimulation to promote recovery from chronic posttraumatic minimally

conscious state: challenges and opportunities. Neuromodulation (2012)

15:339–49. doi: 10.1111/j.1525-1403.2012.00458.x

35. Fridman EA, Beattie BJ, Broft A, Laureys S, Schiff ND. Regional cerebral

metabolic patterns demonstrate the role of anterior forebrain mesocircuit

dysfunction in the severely injured brain. Proc Natl Acad Sci USA. (2014)

111:6473–8. doi: 10.1073/pnas.1320969111

36. Chatelle C, Thibaut A, Gosseries O, Bruno M-A, Demertzi A, Bernard

C, et al. Changes in cerebral metabolism in patients with a minimally

conscious state responding to zolpidem. Front Hum Neurosci. (2014) 8:917.

doi: 10.3389/fnhum.2014.00917

37. Williams ST, Conte MM, Goldfine AM, Noirhomme Q, Gosseries O,

Thonnard M, et al. Common resting brain dynamics indicate a possible

mechanism underlying zolpidem response in severe brain injury. Elife (2013)

2:e01157. doi: 10.7554/eLife.01157

38. Vyazovskiy VV, Cirelli C, Pfister-Genskow M, Faraguna U, Tononi G.

Molecular and electrophysiological evidence for net synaptic potentiation

in wake and depression in sleep. Nat Neurosci. (2008) 11:200–8.

doi: 10.1038/nn2035

39. Huber R, Mäki H, RosanovaM, Casarotto S, Canali P, Casali AG, et al. Human

cortical excitability increases with time awake. Cereb Cortex (2013) 23:332–8.

doi: 10.1093/cercor/bhs014

Frontiers in Neurology | www.frontiersin.org February 2019 | Volume 10 | Article 20181

https://doi.org/10.1126/scitranslmed.aaf6113
https://doi.org/10.1172/JCI27021
https://doi.org/10.1089/neu.2011.1829
https://doi.org/10.3109/02699052.2016.1147078
https://doi.org/10.1212/WNL.0b013e3181e8e8cc
https://doi.org/10.1016/j.clinph.2017.12.012
https://doi.org/10.1097/HTR.0000000000000217
https://doi.org/10.1002/ana.24283
https://doi.org/10.1097/PCC.0000000000001137
https://doi.org/10.1177/1550059411428718
https://doi.org/10.1016/S1388-2457(02)00218-3
https://doi.org/10.1016/j.nicl.2016.03.012
https://doi.org/10.1016/j.clinph.2015.10.042
https://doi.org/10.1097/HTR.0000000000000122
https://doi.org/10.1016/j.clinph.2016.06.028
https://doi.org/10.1016/0013-4694(73)90250-2
https://doi.org/10.1016/j.apmr.2004.02.033
https://doi.org/10.1038/nature06041
https://doi.org/10.1080/21646821.2016.1245576
https://doi.org/10.1016/j.jneumeth.2010.06.020
https://doi.org/10.1093/brain/awf021
https://doi.org/10.1002/1529-0131(200101)44:1<222::AID-ANR29>3.0.CO;2-K
https://doi.org/10.5664/jcsm.4546
https://doi.org/10.1186/1751-0759-1-20
https://doi.org/10.1016/j.tins.2009.11.002
https://doi.org/10.1097/01.jnen.0000229241.28619.75
https://doi.org/10.1089/neu.2010.1464
https://doi.org/10.1196/annals.1417.029
https://doi.org/10.1111/j.1525-1403.2012.00458.x
https://doi.org/10.1073/pnas.1320969111
https://doi.org/10.3389/fnhum.2014.00917
https://doi.org/10.7554/eLife.01157
https://doi.org/10.1038/nn2035
https://doi.org/10.1093/cercor/bhs014
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Gottshall et al. Deep Brain Stimulation and Sleep Dynamics

40. Kuhn M, Wolf E, Maier JG, Mainberger F, Feige B, Schmid H, et al. Sleep

recalibrates homeostatic and associative synaptic plasticity in the human

cortex. Nat Commun. (2016) 7:12455. doi: 10.1038/ncomms12455

41. Ly JQM, Gaggioni G, Chellappa SL, Papachilleos S, Brzozowski A, Borsu C,

et al. Circadian regulation of human cortical excitability.Nat Commun. (2016)

7:11828. doi: 10.1038/ncomms11828

42. Meisel C, Schulze-Bonhage A, Freestone D, Cook MJ, Achermann P, Plenz

D. Intrinsic excitability measures track antiepileptic drug action and uncover

increasing/decreasing excitability over the wake/sleep cycle. Proc Natl Acad

Sci USA. (2015) 112:14694–9. doi: 10.1073/pnas.1513716112

43. Vyazovskiy VV, Olcese U, Lazimy YM, Faraguna U, Esser SK, Williams

JC, et al. Cortical firing and sleep homeostasis. Neuron (2009) 63:865–78.

doi: 10.1016/j.neuron.2009.08.024

44. Miyawaki H, Diba K. Regulation of hippocampal firing by network oscillations

during sleep. Curr Biol. (2016) 26:893–902. doi: 10.1016/j.cub.2016.02.024

45. Dash MB, Douglas CL, Vyazovskiy VV, Cirelli C, Tononi G. Long-

term homeostasis of extracellular glutamate in the rat cerebral

cortex across sleep and waking states. J Neurosci. (2009) 29:620–9.

doi: 10.1523/JNEUROSCI.5486-08.2009

46. Hanlon EC, Faraguna U, Vyazovskiy VV, Tononi G, Cirelli C. Effects of skilled

training on sleep slow wave activity and cortical gene expression in the rat.

Sleep (2009) 32:719–29. doi: 10.1093/sleep/32.6.719

47. Rodriguez AV, Funk CM, Vyazovskiy VV, Nir Y, Tononi G, Cirelli C. Why

does sleep slow-wave activity increase after extended wake? assessing the

effects of increased cortical firing during wake and sleep. J Neurosci. (2016)

36:12436–47. doi: 10.1523/JNEUROSCI.1614-16.2016

48. Huber R, Esser SK, Ferrarelli F, Massimini M, Peterson MJ, Tononi

G. TMS-induced cortical potentiation during wakefulness locally

increases slow wave activity during sleep. PLoS ONE (2007) 2:e276.

doi: 10.1371/journal.pone.0000276

49. Tononi G, Cirelli C. Sleep function and synaptic homeostasis. Sleep Med Rev.

(2006) 10:49–62. doi: 10.1016/j.smrv.2005.05.002

50. Tononi G, Cirelli C. Sleep and synaptic homeostasis: a hypothesis. Brain Res

Bull. (2003) 62:143–50. doi: 10.1016/j.brainresbull.2003.09.004

51. Tononi G, Cirelli C. Sleep and the price of plasticity: from synaptic and

cellular homeostasis to memory consolidation and integration.Neuron (2014)

81:12–34. doi: 10.1016/j.neuron.2013.12.025

52. Cirelli C. Sleep, synaptic homeostasis and neuronal firing rates. Curr Opin

Neurobiol. (2017) 44:72–9. doi: 10.1016/j.conb.2017.03.016

53. Shirvalkar P, Seth M, Schiff ND, Herrera DG. Cognitive enhancement with

central thalamic electrical stimulation. Proc Natl Acad Sci USA. (2006)

103:17007–12. doi: 10.1073/pnas.0604811103

54. Ribeiro S, Mello CV, Velho T, Gardner TJ, Jarvis ED, Pavlides C.

Induction of hippocampal long-term potentiation during waking

leads to increased extrahippocampal zif-268 expression during

ensuing rapid-eye-movement sleep. J Neurosci. (2002) 22:10914–23.

doi: 10.1523/JNEUROSCI.22-24-10914.2002

55. Huber R, Ghilardi MF, Massimini M, Ferrarelli F, Riedner BA, Peterson MJ,

et al. Arm immobilization causes cortical plastic changes and locally decreases

sleep slow wave activity. Nat Neurosci. (2006) 9:1169–76. doi: 10.1038/nn1758

56. Rudolph M, Pelletier JG, Paré D, Destexhe A. Characterization of synaptic

conductances and integrative properties during electrically induced EEG-

activated states in neocortical neurons in vivo. J Neurophysiol. (2005) 94:2805–

21. doi: 10.1152/jn.01313.2004

57. Reiher J, Lebel M. Wicket spikes: clinical correlates of a previously

undescribed EEG pattern. Can J Neurol Sci. (1977) 4:39–47.

doi: 10.1017/S0317167100120396

58. Kuhlman WN. Functional topography of the human mu

rhythm. Electroencephalogr Clin Neurophysiol. (1978) 44:83–93.

doi: 10.1016/0013-4694(78)90107-4

59. Rains JC, Penzien DB. Sleep and chronic pain: challenges to the alpha-

EEG sleep pattern as a pain specific sleep anomaly. J Psychosom Res. (2003)

54:77–83. doi: 10.1016/S0022-3999(02)00545-7

60. Mahowald M, Mahowald M. Nighttime sleep and daytime functioning

(sleepiness and fatigue) in less well-defined chronic rheumatic diseases with

particular reference to the “alpha-delta NREM sleep anomaly.” Sleep Med.

(2000) 1:195–207. doi: 10.1016/S1389-9457(00)00029-0

61. Dolsen MR, Cheng P, Arnedt JT, Swanson L, Casement MD, Kim HS,

et al. Neurophysiological correlates of suicidal ideation in major depressive

disorder: hyperarousal during sleep. J Affect Disord. (2017) 212:160–6.

doi: 10.1016/j.jad.2017.01.025

62. Drewes AM, Nielsen KD, Arendt-Nielsen L, Birket-Smith L, Hansen LM.

The effect of cutaneous and deep pain on the electroencephalogram during

sleep an experimental study. Sleep (1997) 20:632–40. doi: 10.1093/sleep/20.

8.632

63. Steriade M, Parent A, Paré D, Smith Y. Cholinergic and non-cholinergic

neurons of cat basal forebrain project to reticular and mediodorsal thalamic

nuclei. Brain Res. (1987) 408:372–6. doi: 10.1016/0006-8993(87)90408-2

64. Markello RD, Spreng RN, Luh WM, Anderson AK, De Rosa E. Segregation

of the human basal forebrain using resting state functional MRI. Neuroimage

(2018) 173:287–97. doi: 10.1016/j.neuroimage.2018.02.042

65. Parent A, Paré D, Smith Y, Steriade M. Basal forebrain cholinergic and

noncholinergic projections to the thalamus and brainstem in cats and

monkeys. J Comp Neurol. (1988) 277:281–301. doi: 10.1002/cne.902770209

66. Blumenfeld H, McCormick DA. Corticothalamic inputs control the pattern of

activity generated in thalamocortical networks. J Neurosci. (2000) 20:5153–62.

doi: 10.1523/JNEUROSCI.20-13-05153.2000

67. Lorincz ML, Crunelli V, Hughes SW. Cellular dynamics of cholinergically

induced alpha (8 - 13Hz) rhythms in sensory thalamic nuclei in vitro. J

Neurosci. (2008) 28:660–71. doi: 10.1523/JNEUROSCI.4468-07.2008

68. Lorincz ML, Kékesi KA, Juhász G, Crunelli V, Hughes SW. Temporal framing

of thalamic relay-mode firing by phasic inhibition during the alpha rhythm.

Neuron (2009) 63:683–96. doi: 10.1016/j.neuron.2009.08.012

69. Vijayan S, Kopell NJ. Thalamic model of awake alpha oscillations and

implications for stimulus processing. Proc Natl Acad Sci USA. (2012)

109:18553–8. doi: 10.1073/pnas.1215385109

70. Vijayan S, Klerman EB, Adler GK, Kopell NJ. Thalamic mechanisms

underlying alpha-delta sleep with implications for fibromyalgia. J

Neurophysiol. (2015) 114:1923–30. doi: 10.1152/jn.00280.2015

71. Allada R, Cirelli C, Sehgal A. Molecular mechanisms of sleep homeostasis

in flies and mammals. Cold Spring Harb Perspect Biol. (2017) 9:a027730.

doi: 10.1101/cshperspect.a027730

72. Ceko M, Bushnell MC, Gracely RH. Neurobiology underlying fibromyalgia

symptoms. Pain Res Treat (2012) 2012:585419. doi: 10.1155/2012/585419

73. Lutz J, Jäger L, De Quervain D, Krauseneck T, Padberg F, Wichnalek M,

et al. White and gray matter abnormalities in the brain of patients with

fibromyalgia: a diffusion-tensor and volumetric imaging study. Arthritis

Rheum. (2008) 58:3960–9. doi: 10.1002/art.24070

74. Ferrarelli F, Tononi G. Reduced sleep spindle activity point to a TRN-MD

thalamus-PFC circuit dysfunction in schizophrenia. Schizophr Res. (2016)

180:36–43. doi: 10.1016/j.schres.2016.05.023

75. Kantrowitz J, Citrome L, Javitt D. GABAB Receptors,

schizophrenia and sleep dysfunction. CNS Drugs (2009) 23:681–91.

doi: 10.2165/00023210-200923080-00005

76. Giraldo-Chica M, Woodward ND. Review of thalamocortical resting-

state fMRI studies in schizophrenia. Schizophr Res. (2017) 180:58–63.

doi: 10.1016/j.schres.2016.08.005

77. Bora E, Fornito A, Pantelis C, Yücel M. Gray matter abnormalities in major

depressive disorder: a meta-analysis of voxel based morphometry studies. J

Affect Disord. (2012) 138:9–18. doi: 10.1016/j.jad.2011.03.049

78. Rajkowska G, O’Dwyer G, Teleki Z, Stockmeier CA, Miguel-

Hidalgo JJ. GABAergic neurons immunoreactive for calcium binding

proteins are reduced in the prefrontal cortex in major depression.

Neuropsychopharmacology (2007) 32:471–82. doi: 10.1038/sj.npp.1301234

79. Hasler G, van der Veen J, Tumonis T, Meyers N, Shen J, Drevets WC.

Reduced prefrontal glutamate/glutamine and γ-aminobutyric acid levels in

major depression determined using proton magnetic resonance spectroscopy.

Arch Gen Psychiatry (2007) 64:193–200. doi: 10.1001/archpsyc.64.2.193.PDF

80. Nofzinger EA, Buysse DJ, Germain A, Price JC, Meltzer CC, Miewald JM,

et al. Alterations in regional cerebral glucose metabolism across waking and

non-rapid eye movement sleep in depression. Arch Gen Psychiatry (2005)

62:387–96. doi: 10.1001/archpsyc.62.4.387

81. Stevens JS, Jovanovic T, Fani N, Ely TD, Glover EM, Bradley B, et al.

Disrupted amygdala-prefrontal functional connectivity in civilian women

Frontiers in Neurology | www.frontiersin.org February 2019 | Volume 10 | Article 20182

https://doi.org/10.1038/ncomms12455
https://doi.org/10.1038/ncomms11828
https://doi.org/10.1073/pnas.1513716112
https://doi.org/10.1016/j.neuron.2009.08.024
https://doi.org/10.1016/j.cub.2016.02.024
https://doi.org/10.1523/JNEUROSCI.5486-08.2009
https://doi.org/10.1093/sleep/32.6.719
https://doi.org/10.1523/JNEUROSCI.1614-16.2016
https://doi.org/10.1371/journal.pone.0000276
https://doi.org/10.1016/j.smrv.2005.05.002
https://doi.org/10.1016/j.brainresbull.2003.09.004
https://doi.org/10.1016/j.neuron.2013.12.025
https://doi.org/10.1016/j.conb.2017.03.016
https://doi.org/10.1073/pnas.0604811103
https://doi.org/10.1523/JNEUROSCI.22-24-10914.2002
https://doi.org/10.1038/nn1758
https://doi.org/10.1152/jn.01313.2004
https://doi.org/10.1017/S0317167100120396
https://doi.org/10.1016/0013-4694(78)90107-4
https://doi.org/10.1016/S0022-3999(02)00545-7
https://doi.org/10.1016/S1389-9457(00)00029-0
https://doi.org/10.1016/j.jad.2017.01.025
https://doi.org/10.1093/sleep/20.8.632
https://doi.org/10.1016/0006-8993(87)90408-2
https://doi.org/10.1016/j.neuroimage.2018.02.042
https://doi.org/10.1002/cne.902770209
https://doi.org/10.1523/JNEUROSCI.20-13-05153.2000
https://doi.org/10.1523/JNEUROSCI.4468-07.2008
https://doi.org/10.1016/j.neuron.2009.08.012
https://doi.org/10.1073/pnas.1215385109
https://doi.org/10.1152/jn.00280.2015
https://doi.org/10.1101/cshperspect.a027730
https://doi.org/10.1155/2012/585419
https://doi.org/10.1002/art.24070
https://doi.org/10.1016/j.schres.2016.05.023
https://doi.org/10.2165/00023210-200923080-00005
https://doi.org/10.1016/j.schres.2016.08.005
https://doi.org/10.1016/j.jad.2011.03.049
https://doi.org/10.1038/sj.npp.1301234
https://doi.org/10.1001/archpsyc.64.2.193.PDF
https://doi.org/10.1001/archpsyc.62.4.387
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Gottshall et al. Deep Brain Stimulation and Sleep Dynamics

with posttraumatic stress disorder. J Psychiatr Res. (2013) 47:1469–78.

doi: 10.1016/j.jpsychires.2013.05.031

82. Brown VM, Labar KS, Haswell CC, Gold AL, Beall SK, Van Voorhees

E, et al. Altered resting-state functional connectivity of basolateral

and centromedial amygdala complexes in posttraumatic stress disorder.

Neuropsychopharmacology (2014) 39:351–9. doi: 10.1038/npp.2013.197

83. Liao W, Qiu C, Gentili C, Walter M, Pan Z, Ding J, et al. Altered effective

connectivity network of the amygdala in social anxiety disorder: a resting-

state fMRI study. PLoS ONE (2010) 5:e15238. doi: 10.1371/journal.pone.

0015238

84. Kim MJ, Gee DG, Loucks RA, Davis FC, Whalen PJ. Anxiety dissociates

dorsal and ventral medial prefrontal cortex functional connectivity with

the amygdala at rest. Cereb Cortex (2011) 21:1667–73. doi: 10.1093/cercor/

bhq237

85. Prater KE, Hosanagar A, Klumpp H, Angstadt M, Phan KL. Aberrant

amygdala-frontal cortex connectivity during perception of fearful faces and at

rest in generalized social anxiety disorder. Depress Anxiety (2013) 30:234–41.

doi: 10.1002/da.22014

86. Moldofsky H, Inhaber NH, Guinta DR, Alvarez-Horine SB. Effects of

sodium oxybate on sleep physiology and sleep/wake-related symptoms in

patients with fibromyalgia syndrome: a double-blind, randomized, placebo-

controlled study. J Rheumatol. (2010) 37:2156–66. doi: 10.3899/jrheum.

091041

87. Scharf M, Baumann M, Berkowitz D. The effects of sodium oxybate

on clinical symptoms and sleep patterns in patients with fibromyalgia. J

Rheumatol. (2003) 30:1070–4.

88. Tanaka Z, Mukai A, Takayanagi Y, Muto A, Mikami Y, Miyakoshi T,

et al. Clinical application of 4-hydroxybutyrate sodium and 4-butyrolactone

in neuropsychiatric patients. Psychiatry Clin Neurosci. (1966) 20:9–17.

doi: 10.1111/j.1440-1819.1966.tb00055.x

89. Maremmani AGI, Bacciardi S, Rovai L, Rugani F, Dell’Osso L,

Maremmani I. Sodium oxybate as off-label treatment for anxiety disorder:

successful outcome in a low-energy anxious resistant patient. Addict

Disord their Treat. (2015) 14:198–202. doi: 10.1097/ADT.00000000000

00055

90. Schwartz TL. Gamma hydroxy butyric acid and sodium oxybate used

to treat posttraumatic stress disorder. CNS Spectr. (2007) 12:884–6.

doi: 10.1017/S1092852900015649

91. Maitre M, Klein C, Mensah-Nyagan AG. Mechanisms for the specific

properties of γ-hydroxybutyrate in brain. Med Res Rev. (2016) 36:363–88.

doi: 10.1002/med.21382

92. Anaclet C, Pedersen NP, Ferrari LL, Venner A, Bass CE, Arrigoni E, et al. Basal

forebrain control of wakefulness and cortical rhythms. Nat Commun. (2015)

6:8744. doi: 10.1038/ncomms9744

93. Nava F, Carta G, Bortolato M, Gessa GL. γ-Hydroxybutyric acid

and baclofen decrease extracellular acetylcholine levels in the

hippocampus via GABAB receptors. Eur J Pharmacol. (2001) 430:261–3.

doi: 10.1016/S0014-2999(01)01163-3

94. Kaupmann K, Cryan JF, Wellendorph P, Mombereau C, Sansig

G, Klebs K, et al. Specific gamma-hydroxybutyrate-binding sites

but loss of pharmacological effects of gamma-hydroxybutyrate

in GABAB(1)-deficient mice. Eur J Neurosci. (2003) 18:2722–30.

doi: 10.1111/j.1460-9568.2003.03013.x

95. Vertkin I, Styr B, Slomowitz E, Ofir N, Shapira I, Berner D, et al.

GABA B receptor deficiency causes failure of neuronal homeostasis in

hippocampal networks. Proc Natl Acad Sci USA. (2015) 112:E3291–9.

doi: 10.1073/pnas.1424810112

96. Kothare SV, Adams R, Valencia I, Faerber EC, Grant ML. Improved sleep

and neurocognitive functions in a child with thalamic lesions on sodium

oxybate. Neurology (2007) 68:1157–8. doi: 10.1212/01.wnl.0000258658.00

692.36

97. Schiff ND. Mesocircuit mechanisms underlying recovery of consciousness

following severe brain injuries: model and predictions. In: Monti M, Sannita

W, editors. Brain Function and Responsiveness in Disorders of Consciousness.

Cham: Springer International Publishing. (2016) p. 195–204.

98. Gottshall JL, Adams ZM, Forgacs PB, Nauvel TJ, Schiff ND.

Novel characterization of an architecturally distinct sleep stage

and its implications for recovery from the minimally conscious

state. In: Cognitive Neuroscience Society 24th Annual Meeting. San

Francisco, CA (2017).

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Gottshall, Adams, Forgacs and Schiff. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neurology | www.frontiersin.org February 2019 | Volume 10 | Article 20183

https://doi.org/10.1016/j.jpsychires.2013.05.031
https://doi.org/10.1038/npp.2013.197
https://doi.org/10.1371/journal.pone.0015238
https://doi.org/10.1093/cercor/bhq237
https://doi.org/10.1002/da.22014
https://doi.org/10.3899/jrheum.091041
https://doi.org/10.1111/j.1440-1819.1966.tb00055.x
https://doi.org/10.1097/ADT.0000000000000055
https://doi.org/10.1017/S1092852900015649
https://doi.org/10.1002/med.21382
https://doi.org/10.1038/ncomms9744
https://doi.org/10.1016/S0014-2999(01)01163-3
https://doi.org/10.1111/j.1460-9568.2003.03013.x
https://doi.org/10.1073/pnas.1424810112
https://doi.org/10.1212/01.wnl.0000258658.00692.36
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


ORIGINAL RESEARCH
published: 02 October 2018

doi: 10.3389/fneur.2018.00826

Frontiers in Neurology | www.frontiersin.org October 2018 | Volume 9 | Article 826

Edited by:

Roland Beisteiner,

Medizinische Universität Wien, Austria

Reviewed by:

Martin Kronbichler,

University of Salzburg, Austria

Friedemann Mueller,

Schön Klinik, Germany

Ingrid Brands,

Libra Rehabilitation & Audiology,

Netherlands

*Correspondence:

Caroline Schnakers

cschnakers@casacolina.org

Haibo Di

dihaibo19@aliyun.com

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Applied Neuroimaging,

a section of the journal

Frontiers in Neurology

Received: 29 March 2018

Accepted: 13 September 2018

Published: 02 October 2018

Citation:

Cheng L, Cortese D, Monti MM,

Wang F, Riganello F, Arcuri F, Di H and

Schnakers C (2018) Do Sensory

Stimulation Programs Have an Impact

on Consciousness Recovery?

Front. Neurol. 9:826.

doi: 10.3389/fneur.2018.00826

Do Sensory Stimulation Programs
Have an Impact on Consciousness
Recovery?

Lijuan Cheng 1†, Daniela Cortese 2†, Martin M. Monti 3,4, Fuyan Wang 1,

Francesco Riganello 2, Francesco Arcuri 2, Haibo Di 1* and Caroline Schnakers 5*

1 International Vegetative State and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China,
2 Research in Advanced Neurorehabilitation, S. Anna Institute, Crotone, Italy, 3Department of Psychology, University of

California, Los Angeles, Los Angeles, CA, United States, 4Department of Neurosurgery, David Geffen School of Medicine at

UCLA, Los Angeles, CA, United States, 5 Research Institute, Casa Colina Hospital and Centers for Healthcare, Pomona, CA,

United States

Objectives: Considering sensory stimulation programs (SSP) as a treatment for

disorders of consciousness is still debated today. Previous studies investigating

its efficacy were affected by various biases among which small sample size and

spontaneous recovery. In this study, treatment-related changes were assessed using

time-series design in patients with disorders of consciousness (i.e., vegetative state—VS

and minimally conscious state—MCS).

Methods: A withdrawal design (ABAB) was used. During B phases, patients

underwent a SSP (3 days a week, including auditory, visual, tactile, olfactory, and

gustatory stimulation). The program was not applied during A phases. To assess

behavioral changes, the Coma Recovery Scale-Revised (CRS-R) was administered by

an independent rater on a weekly basis, across all phases. Each phase lasted 4 weeks.

In a subset of patients, resting state functional magnetic resonance imaging (fMRI) data

were collected at the end of each phase.

Results: Twenty nine patients (48 ± 19 years old; 15 traumatic; 21 > a year post-injury;

11 VS and 18 MCS) were included in our study. Higher CRS-R total scores (medium

effect size) as well as higher arousal and oromotor subscores were observed in the B

phases (treatment) as compared to A phases (no treatment), in the MCS group but not

in the VS group. In the three patients who underwent fMRI analyses, a modulation of

metabolic activity related to treatment was observed in middle frontal gyrus, superior

temporal gyrus as well as ventro-anterior thalamic nucleus.

Conclusion: Our results suggest that SSP may not be sufficient to restore

consciousness. SSP might nevertheless lead to improved behavioral responsiveness in

MCS patients. Our results show higher CRS-R total scores when treatment is applied,

and more exactly, increased arousal and oromotor functions.

Keywords: brain injuries, consciousness, persistent vegetative state, minimally conscious state, sensory

stimulation
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INTRODUCTION

Amantadine is till now the only treatment that has shown its
efficacy in patients with severe brain injury (1). Finding new
ways to treat patients recovering from disorders of consciousness
is therefore one of the biggest challenge facing clinicians (2).
Patients can stay during months to years in disorders of
consciousness such as vegetative state (which is characterized
by the presence of arousal but the absence of awareness) or
minimally conscious state (which is characterized by the presence
of fluctuating but reproducible signs of consciousness but an
absence of reliable communication), leading to a financial and
ethical conundrum for the families (3, 4). Sensory stimulation
programs (SSP) have been the most studied treatment in the
neurorehabilitation field (5). These programs are based on the
idea that an enriched environment benefits brain plasticity and
improves the recovery of injured brains (6).

Rosenzweig and coworkers who were the first to introduce
“environmental enrichment” in the field of animal research four
decades ago showed that the morphology and physiology of
the brain can be altered by modifying the quality and intensity
of environmental stimulation (7, 8). Enriched environment has
been associated with changes in cortical thickness (9, 10), changes
in neurons size, number and connections (11–16). Exposure
to such environment has shown to be beneficial following
experimental brain lesions (17–19), particularly, in terms of
recovery of cognitive (e.g., learning and memory) and motor
functions (20–22). Enriched environment following brain injury
has also shown additional beneficial effects such as decreasing
lesion size or enhancing dendritic branching (6, 23–25).

Based on animal research, the Institutes for the Achievement
of Human Potential (IAHP) have introduced SSP in the field
of neurorehabilitation. Despite the lack of scientific evidence
in human subjects, these programs were supported on the
principle that they could enhance the rehabilitative process by
avoiding environmental deprivation and promoting synaptic
reinnervation, thus accelerating the recovery from disorders of
consciousness in severely brain injured patients (26). Numerous
studies have investigated SSP in patients with disorders of
consciousness [for a review see: (5, 27, 28)]. While Padilla (5)
concluded that the current literature provided strong evidence
that multimodal sensory stimulation improves arousal and
enhances clinical outcomes for patients in a coma or persistent
vegetative state, both Meyer (28) and Cossu (27) reported that
there was conflicting evidence regarding the clinical relevance
and the benefit of sensory stimulation in patients recovering
from coma. Most studies are, indeed, affected by various
methodological biases such as, among others, poor description of
the disorders of consciousness, poor validity, and/or sensitivity of
the outcome measure, small sample size as well as spontaneous
recovery. Indeed, these studies were mostly performed in the
acute stage, a period during which spontaneous recovery has
the highest probability to occur. Interestingly, several recent
studies investigated whether the improvements observed after
SSP exceeded spontaneous recovery using a time-series design.
However, they all included a small number of patients (n < 15)
(29–31). Finally, neuroimaging data was collected in a subset

of patients. Only one study recently investigated the changes in
brain activity related to treatment. Pape and coworkers examined
the effects of a unimodal stimulation program in 15 patients
using familiar auditory stimulation and found higher activation
in the language network in the treated group as compared to
the control group, suggesting that coupling behavioral measures
with neuroimaging may help to understand what impact sensory
stimulation has on the recovering brain (32).

Therefore, the aim of this study was to assess the impact
of SSP on the recovery of consciousness (as measured by the
Coma Recovery Scale-Revised) and to determine treatment-
related changes using a time-series design in a group of patients
with disorders of consciousness (i.e., VS and MCS).

METHODS

Inclusion/Exclusion Criteria
Severely brain injured patients diagnosed as being in a vegetative
state (VS) (3) or in a minimally conscious state (MCS) (4)
were recruited from the Rehabilitation Center for Brain Damage
of Wujing Hospital (Hangzhou, China) and the Research in
Advanced Neurorehabilitation of S. Anna Institute (Crotone,
Italy). Patients were only followed during their stay in the
inpatient rehabilitation unit. Patients were included in the study
if they (a) were at least 18 years old, (b) were at least a
month post-injury, and (c) presented periods of spontaneous
eye opening. Traumatic and non-traumatic etiologies were
included in this study. Patients were excluded if they had (a) a
documented history of prior brain injury, (b) premorbid history
of uncorrected visual or hearing impairments, (c) premorbid
history of developmental, psychiatric, or neurologic illness
resulting in documented functional disability up to the time
of the injury, (d) acute illness, (e) emerged from MCS during
the first A phase as assessed by the Coma Recovery Scale—
Revised (33), and (f) medical complications during the study.
Information regarding patients’ comorbidities and education
were not collected. This study was carried out in accordance with
the recommendations of the ethics committee of the Hangzhou
Normal University (Hangzhou, China) and the S. Anna Institute
(Crotone, Italy). The study was approved by the ethics committee
of each participating center. Written informed consent was
obtained from the patients’ legal surrogate in accordance with the
Declaration of Helsinki.

Behavioral Data Acquisition and Analyses
Procedure
Time series design was chosen to address previous criticisms on
spontaneous recovery (34). Indeed, one advantage of this design
is to compare baselines to treatment and, therefore, to measure
how the presence/absence of the target treatment modulates the
outcome measure within each participant. An ABAB withdrawal
design (where A = baseline and B = treatment) was preferred
to an AB or ABA design since it provided an opportunity to
repeatedly collect data on the relationship between the treatment
and the outcomes of interest. Each phase of this ABAB design
lasted 4 weeks, as previously used (27, 29). During A phases,
no SSP was administered, the patients only received until 3 h a
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day for 5 days a week of comprehensive rehabilitation including
nursing care as well as physical therapy, respiratory therapy and
speech therapy. During B phases, a SSP (described below) was
also administered 3 times a week (i.e., Monday, Wednesday, and
Friday; twice a day), as agreed with the medical staff.

The Coma Recovery Scale—Revised (CRS-R) (33) was chosen
as our outcome measure and was administered once weekly (i.e.,
Saturday) for the full length of the study (i.e., across all phases)
to assess changes in behavioral responsiveness. The Chinese and
Italian translations of the scale were used in this study (35, 36).
The CRS-R was designed to differentiate VS from MCS patients
and is recommended by the American Congress of Rehabilitation
Medicine to assess patients with disorders of consciousness
(37). It consists of 23 hierarchically-arranged items divided
into six subscales assessing auditory, visual, motor, oromotor,
communication, and arousal functions. The rater performing the
CRS-R assessments was not involved in the administration of the
SSP and was not aware of the study design (i.e., ABAB). In each
center, the same rater assessed the patients every week.

SSP
The administration of SSP corresponds to the B phases of our
procedure. Based on the literature, we opted for a multi-sensory
stimulation program including auditory, visual, tactile, olfactory,
and gustatory stimuli (5, 28). Familiar stimulations were used
since it has been shown that there is a higher probability
to observe an improved behavioral response when emotional
stimuli are presented (5, 38). Each stimulation was administered
three times, on the patient’s right and left side alternatively
(inter-stimulus interval of 20 s). The order in which sensory
stimulations were applied was randomized for each session. The
program lasted around 20min per session.

The program included the following stimulation: (a) Visual
stimulation. A picture of the family member with whom the
patient had the closest relationship before the injury was
presented to the patient. If not possible to obtain, a picture with a
high positive valence (valence of 8 according to the International
Affective Picture System) was used (39). The picture was slowly
moved 45 degrees to the right and left of the vertical midline
and 45 degrees above and below the horizontal midline. (b)
Auditory stimulation. The patient’s favorite music before the
injury was chosen. If not possible to obtain, classical music
was used. (c) Tactile stimulation. Fingertips were used to apply
firm pressure down the patient’s arm, from the shoulder to
the wrist. Areas with fractures as well as skin or muscular
lesions were not stimulated. (d) Olfactory stimulation. The smell
the patient preferred before the injury (or, by default, vanilla
concentrate) was presented underneath the patient’s nose. In case
of tracheotomy, the entrance of the cannula was covered. (e)
Gustatory stimulation. The flavor the patient preferred before the
injury (or, by default, vanilla concentrate) was chosen. A stick
soaked of this flavor was introduced into the patient’s mouth.

Several recommendations had to be followed such as: applying
the treatment while the patients were in a wakeful state with eyes
open in a setting with minimal ambient noise and respecting a
30min rest before each session (i.e., absence of nursing care).

Statistical Analyses
A mixed-design ANCOVA was performed on the CRS-R total
scores with phase (ABAB) and week (1-2-3-4) as within-subject
factors, diagnosis (VS vs. MCS) and etiology (traumatic vs. non-
traumatic) as between-subjects factors, and time since injury as
a covariate. The effect size was estimated, for each significant
result, using a partial-η2 statistic (small: ηp

2
≥ 0.01; medium:

ηp
2
≥ 0.06; large: ηp

2
≥ 0.14) (40). Planned comparisons were

intended to be used to compare CRS-R total scores during B
phases (treatment) vs. A phases (no treatment) for both VS and
MCS groups but also within each group, separately. Wilcoxon
tests were performed to compare CRS-R mean subscores during
A phases and B phases for both VS and MCS groups but also
within each group, separately.

fMRI Data Acquisition and Analyses
Neuroimaging data were acquired at one of the two centers which
had Magnetic Resonance Imaging (MRI), the Rehabilitation
Center for BrainDamage ofWujingHospital (Hangzhou, China).
Using a 1.5 Tesla Siemens Magnetom Essenza MRI system
(Siemens AG, Munich, Germany). Resting state functional MRI
(fMRI) data were collected in a subset of patients at the end
of each phase (on the fourth week) to assess the effects of the
treatment on brain activity. Inclusion criteria were: stability of
vital parameters and absence of contra-indications for entering
the MRI environment. The preprocessed data was used to
calculate, on a single-subject basis, the Amplitude of Low
Frequency Fluctuations (ALFF) across the whole brain (band
frequency of interest: 0.01–0.1Hz). Results were Z-scored across
the full brain. Group data was analyzed using a repeatedmeasures
ABAB design, to assess the effect of phase on the ALFF maps. For
more information regarding the fMRI acquisition and analyses,
see Supplementary Material.

RESULTS

Participants
Twenty nine patients (48 ± 19 years old; 19 men; age range:
20–79 years) were included in this study. The etiology of brain
injury was traumatic (n = 15), anoxic (n = 5), ischemic stroke
(n = 5), hemorrhagic (n = 3), or metabolic (n = 1). The time
since injury was more than a year for 21 patients (1.04–10.7
years) and less than a year for eight patients (41–348 days).
According to CRS-R scores (Table 1), 11 patients presented
a stable diagnosis of VS and 18 patients presented a stable
diagnosis of MCS during the first A phase. Eighteen patients
were recruited at the Rehabilitation Center for Brain Damage
of Wujing Hospital (Hangzhou, China) and 11 at Research in
AdvancedNeurorehabilitation, S. Anna Institute (Crotone, Italy).
To test differences in patients’ population among both centers,
T-tests and Chi-squares were used to compare variables that
are known to impact patients’ outcome (2): time since injury,
etiology (i.e., traumatic vs. non-traumatic) and diagnosis (i.e.,
VS vs. MCS). We did not find any difference between centers
(t(27) = 1.53, p = 0.14; χ2

(1)
= 0.96, p = 0.33; and, χ2

(1)
=

1.65, p = 0.2, respectively). The medications most frequently
administered included; antispastics, anticonvulsants, anti-acid,
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TABLE 1 | Demographic data for minimally conscious (MCS) and vegetative (VS)

patients.

Patient Etiology TSI CRS-R AF VF MF OF C Ar

MCS 1 Traumatic 4.8 y 13 2 3 5 1 0 2

MCS 2 Traumatic 3.2 y 10 2 3 2 1 0 2

MCS 3 Traumatic 4.48 y 10 0 3 5 0 0 2

MCS 4 Stroke 2.87 y 13 2 3 4 2 0 2

MCS 5 Stroke 2.93 y 10 2 3 2 1 0 2

MCS 6 Traumatic 2.93 y 9 2 3 2 1 0 1

MCS 7 Stroke 2.91 y 15 4 5 2 1 1 2

MCS 8 Anoxic 1.04 y 19 4 5 5 2 1 2

MCS 9 Traumatic 2.4 y 10 2 3 2 1 0 2

MCS 10 Traumatic 5.52 y 13 2 3 5 1 0 2

MCS 11 Hemorrhage 10.07m 9 1 3 2 1 0 2

MCS 12 Stroke 3.53m 13 3 1 5 2 0 2

MCS 13 Traumatic 1.27y 9 2 1 2 2 0 2

MCS 14 Traumatic 5.47m 8 2 2 2 0 0 2

MCS 15 Traumatic 11.6m 14 3 4 4 1 0 2

MCS 16 Traumatic 6.9m 5 0 0 4 1 0 0

MCS 17 Traumatic 2.19 y 11 2 3 2 2 0 2

MCS 18 Anoxic 2.42 y 12 1 3 5 1 0 2

VS 1 Traumatic 3.95 y 8 1 1 2 2 0 2

VS 2 Traumatic 1.45 y 7 1 1 2 1 0 2

VS 3 Hemorrhage 1.09 y 6 2 0 2 1 0 1

VS 4 Hemorrhage 1.81 y 7 2 0 2 1 0 2

VS 5 Traumatic 7.23m 6 0 0 2 2 0 2

VS 6 Metabolic 5.36 y 7 2 0 2 1 0 2

VS 7 Anoxic 3.77m 7 1 1 2 2 0 1

VS 8 Stroke 1.28 y 7 1 0 2 2 0 2

VS 9 Traumatic 1.33 y 7 1 1 2 1 0 2

VS 10 Anoxic 1.37m 8 2 1 2 1 0 2

VS 11 Anoxic 10.7 y 7 1 0 2 2 0 2

TSI, Time Since Injury (y = years/m = months); CRS-R, total scores for the Coma

Recovery Scale-Revised (AF, Auditory Function; VF, Visual Function; MF, Motor Function;

OF, Oromotor Function; C, communication; Ar, Arousal). The highest CRS-R total scores

(and its subscores) on the first A phase (baseline) are mentioned.

laxatives, analgesics, mucolytics, vitamins, and supplements.
None of our patients received Amantadine (or Zolpidem), which
could have an impact on the patient’s consciousness recovery
(1, 2).

Behavioral Results
Using a mixed-design ANCOVA, a main effect of phase (ABAB)
[F(3) = 3.17, p = 0.03] was found. The effect size was found
to be medium (ηp

2
= 0.12). We did not find any interaction

with the time since injury [F(3) = 0.65, p = 0.58], the etiology
(i.e., traumatic vs. non traumatic) [F(3) = 0.36, p = 0.78], or
the diagnosis [F(3) = 1.35, p = 0.26]. We have to note that we
also found a main effect of the diagnosis [F(1) = 39.78, p <

0.001], which is not surprising since this variable (particularly,
being conscious/MCS) is known to impact patients’ general
outcome (41) (Supplementary Material and Figure 1). Using
planned comparisons, we found a significant difference [F(1) =

FIGURE 1 | Changes in CRS-R total scores. This figure illustrates the mean

(bars = 95% confidence intervals) of the CRS-R total scores on treatment

(dark gray) vs. off treatment (light gray) for both vegetative (VS) and minimally

conscious (MCS) groups (A) but also within each group, separately (B).

Asterisks indicate significant results (p < 0.05).

6.98, p = 0.01] between B phases (treatment) and A phases (no
treatment); CRS-R total scores being higher during treatment.
However, when considering the diagnosis, CRS-R total scores
were found to be higher during treatment in MCS patients [F(1)
= 7.18, p = 0.01] but not in VS patients [F(1) = 1.28, p = 0.27]
(Figure 1).

Regarding subscores, higher scores during treatment (B
phases vs. A phases) were only found for the oromotor subscale
(T = 2.73, p = 0.006) and the arousal subscale (T = 2.8, p =

0.005). Such difference was confirmed inMCS patients (T = 2.07,
p = 0.04 and T = 2.22, p = 0.03, respectively) but not in VS
patients (Table 2).

fMRI Results
fMRI scans were performed across each phase on seven patients.
Patients who exhibitedmotion greater than one voxel (i.e., 3mm)
were excluded from the analysis. Therefore, data of only three
patients (i.e., MCS 7, MCS 8, and VS 11) were considered for
analyses. Because of the small number of patients, group analyses
were performed using a fixed-effects model (42), and significance
was assessed using a non-parametric permutation test (available
in FSL) at a significance level of p < 0.005 uncorrected. Regions
exhibiting significant activations were identified using the MNI
structural atlas, and further specified with the Harvard-Oxford
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TABLE 2 | Results for the Wilcoxon tests performed to compare CRS-R

subscores (average ± standard deviation) during A phases and B phases for both

VS and MCS groups but also within each group, separately.

MCS/VS A phases B phases p

Auditory 1.33 ± 0.71 1.35 ± 0.80 0.95

Visual 1.82 ± 1.39 1.84 ± 1.35 0.64

Motor 2.51 ± 1.11 2.56 ± 1.19 0.57

Oromotor 1.20 ± 0.38 1.34 ± 0.41 0.006*

Communication 0.04 ± 0.16 0.08 ± 0.32 0.18

Arousal 1.74 ± 0.26 1.83 ± 0.19 0.005*

MCS

Auditory 1.49 ± 0.83 1.60 ± 0.88 0.30

Visual 2.63 ± 1.12 2.60 ± 1.08 0.97

Motor 2.94 ± 1.23 3.03 ± 1.28 0.36

Oromotor 1.18 ± 0.45 1.33 ± 0.47 0.04*

Communication 0.07 ± 0.20 0.13 ± 0.40 0.18

Arousal 1.82 ± 0.26 1.91 ± 0.17 0.03*

VS

Auditory 1.07 ± 0.36 0.95 ± 0.43 0.08

Visual 0.49 ± 0.37 0.60 ± 0.62 0.39

Motor 1.82 ± 0.17 1.78 ± 0.35 0.68

Oromotor 1.21 ± 0.24 1.36 ± 0.33 0.07

Communication 0 ± 0 0 ± 0 1

Arousal 1.62 ± 0.21 1.7 ± 0.14 0.08

Significant results are indicated by an asterisk (p < 0.05).

atlas and the ICBM Deep Nuclei Probabilistic atlas (43, 44). The
group ALFF analyses revealed higher activation during treatment
in the right middle frontal gyrus (t = 1.71, p = 0.001; peak
voxel: x = 21, y = 70, z = 54) and right superior temporal
gyrus (t = 1.88, p = 0.001; peak voxel: x = 20, y = 62, z
= 31) as well as the bilateral ventro-anterior thalamic nucleus
(t = 1.26/1.23, p = 0.002/0.003; peak voxels: x = 49/40, y =

59/59, z= 38/35, for the left and right hemispheres, respectively)
(Figure 2).

DISCUSSION

The aim of this study was to assess the impact of SSP on
the recovery of consciousness and to determine treatment-
related changes using a time-series design in patients with
disorders of consciousness (i.e., VS and MCS). Our results
suggest that SSP may not be sufficient to restore consciousness.
However, SSP might lead to improved behavioral responsiveness
in MCS patients. Our results show higher CRS-R total scores
when treatment is applied with increased arousal and oromotor
function but no changes for the other subscales (i.e., visual,
motor, or communication).

Our results showed higher CRS-R total scores when treatment
was applied (B phases) as compared to when treatment
was not applied (A phases) (with a medium effect size).
The time since injury or the etiology did not seem to
have an impact on our dataset. However, patients who were
diagnosed as being in a MCS obtained higher CRS-R total

scores during treatment than off treatment while patients
who were diagnosed as being in a VS did not show such
changes. We should however, nuance our findings since we
did not find an interaction between CRS-R changes through
each phases and diagnosis (VS/MCS) which indicates that the
significant changes that we found for our planned comparison
(when compiling both A phases versus both B phases) are
in fact smaller when each phase is considered separately.
Higher CRS-R subscores were also found during treatment
for the oromotor and arousal subscales but not for the
other subscales (i.e., visual, motor, or communication). These
findings were mainly present in MCS patients (i.e., higher
oromotor and arousal subscores during treatment) but not
in VS patients. We have to mention that even though we
found significant results in two subscales of the CRS-R, we
could not show, because of statistical limitation, that these
changes were significantly higher as compared to the other
subscales. Therefore, specific treatment related improvements in
arousal and verbal functions should be further investigated and
confirmed in the future.

Previous studies using time series and performed in smaller
samples (n < 15) have reported a modulation of behavioral
responses related to treatment based on standardized scales
assessing the level of consciousness (29, 30). Using emotionally
relevant multi-modal stimulation, Di Stefano and coworkers
have found an increased responsiveness in terms of the number
of behaviors but also in terms of complexity, based on the
Wessex Head Injury Matrix (45). Additionally, even though it
did not reach significance, MCS tend to show more behavioral
responsiveness than VS patients similarly to our findings.
The authors also suggested that the use of emotional stimuli
(as used in this study) might have optimized arousal and
facilitates behavioral responsiveness (30). Improved arousal
has also been shown in studies using a controlled design
based on the Glasgow Coma Scale (28, 46, 47). Finally,
recent studies have shown that SSP using emotional stimuli
have a higher likelihood to lead to increased responsiveness
while studies using neuroimaging showed higher metabolic
brain activity in response to self-relevant stimuli (5, 38,
48).

The behavioral changes observed (increased arousal
and oromotor function) also seem to be in line with our
neuroimaging data. Indeed, treatment-related metabolic changes
were observed in the superior temporal gyrus, the middle frontal
gyrus, and the ventral anterior thalamic nucleus. The superior
temporal and middle prefrontal gyri are typically recruited by
a number of cognitive processes including language (49) while
the ventral anterior thalamic nucleus is known to be a major
source of projection to the premotor sections of the frontal
cortex, and is involved in motor planning and speech (50). The
thalamus also plays a key role in arousal and consciousness.
According to the mesocircuit theory, projections from thalamus
to associative cortical areas (including temporal and frontal)
are crucial for sustaining organized behaviors and integrating
information across different regions of cortex (51). Moreover,
the ventral anterior nucleus receives neuronal inputs from
the basal ganglia which seems to serve a critical role in the
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FIGURE 2 | Brain areas with treatment-related metabolic changes. The left side of (A) illustrates, at the group level, areas with treatment-related metabolic changes

which include the right middle frontal gyrus, the right superior temporal gyrus as well as the bilateral ventro-anterior thalamic nucleus (L = left, R = right) (p < 0.005

voxel-wise uncorrected). On the right side of (A), z-scores for each activated area are also reported at each phase (ABAB) for patients MCS 7, MCS 8, and VS 11.

(B) Shows the CRS-R total scores on the last week of each phase (ABAB) for patients MCS 7, MCS 8, and VS 11.

maintenance of behavioral and electrocortical arousal, as well
as wakefulness (52–54). Finally, Pape and coworkers found
higher activation in the superior temporal and prefrontal gyri in
the treated group as compared to the control group, following
an unimodal (familiar auditory) stimulation. Anecdotally, the
authors also observed higher arousal and more vocalizations in
the treated group (32). Besides the neuroimaging modulation
observed, the behavioral results obtained in the patients who
underwent fMRI, particularly, MCS7 and MCS8 (who were

chronic non-traumatic patients; respectively, 2.91 and 1.04
y post injury), also seem to show fluctuations according to
the presence/absence of treatment. VS 11 (who was chronic
non-traumatic patient; 10.7 y post injury) did not show such
fluctuations (but a constant increase which is difficult to interpret
as related to our treatment). This observation is parallel to what
we found at the group level since changes in CRS-R scores
were mainly observed in the MCS group. Nevertheless, we have
to nuance this interpretation since VS 11 had a significantly
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longer time post injury (10 y), which might also explain why we
don’t see changes related to treatment. We also have to stress
that our neuroimaging findings were based on an extremely
small subsample (n = 3), which makes it difficult to formulate
firm conclusions. Nonetheless, except Pape et al. (32), no
studies have reported neuroimaging findings. Such findings
are important since they allow us to start better understanding
the mechanisms of action of a particular treatment, here,
the SSP. We nevertheless do realize that the generalization
of these results is quite limited and that these data are very
preliminary.

Our study aimed to address various methodological biases
existing in previous studies such as poor description of disorders
of consciousness, poor validity, and/or sensitivity of the outcome
measure, small sample size as well as spontaneous recovery.
Patients recruited in this study were assessed and diagnosed
either in a VS or in a MCS based on the CRS-R. The
CRS-R is currently the most validated and sensitive scale
available to perform behavioral assessment in patients with severe
brain injury and to stratify with high accuracy the level of
consciousness (37). On the other hand, time series withdrawal
design was also chosen not only to address the sample size but
also the spontaneous recovery issue. Indeed, withdrawal designs
(here, ABAB) provided a high degree of experimental control
while being relatively straightforward to plan and implement.
Such design allows to repeatedly compare baseline to treatment in
order to measure the outcome with and without the intervention,
and therefore offers a better control for the impact of natural
recovery. Another advantage is that, as compared to controlled
designs, within-subject measures requests no matching processes
and a smaller sample size (since the sample is not divided
between an intervention and a control group). Our study is
the first one to include a large sample (n = 29) using time-
series design, confirming previous preliminary findings (29–31).
Only one recent study using a controlled design included 30
patients per group. Indeed, Salmani et al. (48) evaluated the
effects of SSP including emotional stimulation on the level of
consciousness and showed higher GCS and CRS-R total scores
in the end of the intervention in patients receiving emotional
SSP as compared to neutral SSP, suggesting that family-centered
affective stimulation is more effective in improving the level of
consciousness.

This study has several limitations. First, even though the
time since injury did not seem to influence the behavioral
changes observed during treatment, the majority of our patients
were chronic (21 of 29 patients were more than a year post
injury), decreasing our chances to see spontaneous recovery
but most likely also reducing our chances to see consciousness
improvement. Also, the size of VS (n = 11) and MCS (n =

18) groups did not allow us to explore further the difference of
outcome observed. Our neuroimaging data was collected in a
very small sample limiting the interpretation of our findings. A
double-blinded design was not used in this study. The CRS-R

rater was blinded regarding the ABAB design but knew that the
study was about applying treatment to patients with disorders of
consciousness. The therapist applying the SSP and the patients’
family were not blinded. The aim of the study was not to
determine the time, the frequency, the duration and type of
program (multi-modal, unimodal, or sensory regulation) (47)
requested to optimize the recovery of patients with severe brain
injury. One could argue that the effects observed might be
due to changes in therapy independent from our treatment.
Nevertheless, changes might likely have happened at random
in our sample (n = 29); i.e., it is most likely that not all our
patients stopped or started a therapy at the same time but
rather stopped or started a therapy at different time through
the study. The withdrawal design we used allowed us to look
at behavioral changes that are time locked to treatment as
opposed to random changes in treatment. Besides, the statistics
we used (mixed design ANCOVA) also controls for such bias and
ensures that the effects observed represent a global tendency of
the group (that is time locked to treatment). Our data cannot
speak on whether the presently applied SSP also leads to lasting
changes in level of consciousness and therefore really leads to
lasting rehabilitation benefits (in contrast to short-lived changes
in responsiveness that might vanish as soon as the SSP is
discontinued). Future studies will have to include long term
follow-up in order to answer this important issue. Finally, since a
controlled design was not used, one cannot clearly determine, in
this study, whether improvements are due to specific aspects of
our SSP (such as emotional stimulation) or non-specific aspects
(such as more time devoted to patients, or non-specific arousal
effect).

In conclusion, our study showed a modulation of behavioral
responses in a larger sample using time series design. Our
results suggest that, even if it may not be sufficient to restore
consciousness, SSP might lead to improved behavioral
responsiveness in MCS patients. Combined with other
validated therapeutics (such as Amantadine) (1), SSP might
optimize patients’ recovery. Further investigation is nevertheless
warranted to test this hypothesis.
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