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Mitophagy in Parkinson’s Disease: 
Pathogenic and Therapeutic 
implications
Fei Gao, Jia Yang, Dongdong Wang, Chao Li, Yi Fu, Huaishan Wang, Wei He*  
and Jianmin Zhang*

Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, 
Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory 
of Medical Molecular Biology, Beijing, China

Neurons affected in Parkinson’s disease (PD) experience mitochondrial dysfunction and 
bioenergetic deficits that occur early and promote the disease-related α-synucleinopathy. 
Emerging findings suggest that the autophagy-lysosome pathway, which removes dam-
aged mitochondria (mitophagy), is also compromised in PD and results in the accumu-
lation of dysfunctional mitochondria. Studies using genetic-modulated or toxin-induced 
animal and cellular models as well as postmortem human tissue indicate that impaired 
mitophagy might be a critical factor in the pathogenesis of synaptic dysfunction and 
the aggregation of misfolded proteins, which in turn impairs mitochondrial homeostasis. 
Interventions that stimulate mitophagy to maintain mitochondrial health might, therefore, 
be used as an approach to delay the neurodegenerative processes in PD.

Keywords: mitophagy, Parkinson disease, mitochondria, synuclein, autophagosome

inTRODUCTiOn

Parkinson’s disease (PD) is an incurable chronic progressive disease affecting nearly 2% of the “over 
50” population with an approximately estimate of more than 6 million cases worldwide (1). The cause 
of PD is generally unknown, but it is believed to involve both genetic and environmental factors (2). 
Epidemiological studies have revealed that fewer than 10% of PD cases are inherited from family, 
whereas the majority of cases are sporadic (3). Discoveries of genes linked to rare familial forms of 
PD have confirmed the critical role of genes in the development of PD and made great contributions 
in understanding the molecular pathogenesis behind this common but complex illness. Autophagy 
is a conserved pathway that degrades damaged organelles and misfolded proteins (4). Here, we 
consider the roles of autophagy in neuronal health and the pathological mechanisms leading to 
disease progression to help us seek for potential targets for neuroprotective interventions, which may 
revolutionize the treatment of this incurable disease.

PROTein AGGReGATiOn AnD MiTOCHOnDRiAL  
DYSFUnCTiOn in PD

Parkinson’s disease is a neurodegenerative movement disorder characterized by the preferential 
loss of dopaminergic neurons in the substantia nigra, which results in progressive motor system 
malfunction (5). Primary motor signs that characterize PD include rigidity, bradykinesia, postural 
instability, and tremor (6). The pathology of PD remains unknown, but almost all cases show the 
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presence of intraneuronal misfolded protein aggregates forming 
Lewy bodies, the primary component of which is α-synuclein 
(7). Protein homeostasis is crucial to sustain cellular health and 
viability in neurons (8). The process of α-synuclein accumulation 
resulting in the generation of highly diffusible small oligomers 
and fibrils, which abnormally aggregate and can be visualized as 
eosinophilic cytoplasmic inclusion in neurons (9). Evidence indi-
cates that the accumulation of [α-synuclein, possibly oligomers, 
without insoluble aggregates, may lead to oxidative stress and give 
rise to deleterious effects in dopamine (DA) neurons (10–13)].

Recent evidence suggests that α-synuclein is a lipophilic pro-
tein, localized to mitochondria and connected to endoplasmic 
reticulum (ER) through mitochondrial-associated ER membrane 
(MAM) (14, 15). Overexpression of α-synuclein inhibits the 
normal function of inner-mitochondrial membrane-anchored 
respiratory chain complexes in whole brain of PD patients, but 
mostly in nigrostriatal neurons. Increased levels of reactive 
oxygen species (ROS) might be the cause of neuronal death (16).  
A study has also demonstrated that α-synuclein overexpression in 
mitochondria increases the number of fragmented mitochondria 
in  vitro (17). In addition, intermediate α-synuclein accumula-
tion (pre-fibrillar forms) reduces mitochondrial Ca2+ retention 
(18). Ca2+ is required by mitochondria for the generation of ATP 
via the tricarboxylic acid cycle (19). Perturbed neuronal Ca2+ 
levels caused by soluble pre-fibrillar α-synuclein lead to altered 
mitochondrial membrane potential and NADH oxidation, which 
indicate the dysfunction of complex I (20). The effect of complex I 
inhibitor 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) 
and its active metabolite 1-methyl-4-phenylpyridinium (MPP+) 
on dopaminergic cell death is inhibited in mouse models lacking 
α-synuclein, which is mainly due to the inactivation of nitric oxide 
synthase (NOS) (21). In addition, siRNA-mediated knockdown 
of α-synuclein also protects cells from NOS activation in cellular 
models, rescuing cells from MPP+-induced apoptosis (22).

Posttranslational modification of α-synuclein is also a crucial 
factor in the pathological mechanisms of PD. Many PD-associated 
mutations in α-synuclein also induce mitochondrial dysfunc-
tion. The H50Q mutation is proved to induce aggregation of 
α-synuclein oligomers in SH-SY5Y cells and increase the number 
of fragmented mitochondria in hippocampal neurons in  vivo 
(23, 24). Ser129-induced α-synuclein aggregation is involved 
in the formation of Lewy bodies and plays a critical role in the 
neurodegenerative process (25). SH-SY5Y cells expressing A53T 
α-synuclein exhibit depolarized mitochondrial and increased 
ROS levels when exposed to rotenone (26). Studies in transgenic 
mice overexpressing the A53T-mutant human α-synuclein 
revealed that intracerebral inoculation of aggregated α-synuclein 
or preformed recombinant α-synuclein fibrils induces a pro-
gressive and ultimately lethal α-synucleinopathy in inoculated 
animals (27, 28).

Damaged cellular function and decreased ATP levels induced 
by α-synuclein are detrimental to dopaminergic neurons and 
provide implications for disease pathogenesis in PD. Impaired 
mitochondrial function may lead to a reduction in cellular energy 
levels and excessive ROS production in neurons, which in turn 
exacerbate mitochondrial damage (29). As a result, measures 
to enhance the degradation of abnormally aggregated proteins 

and the clearance of damaged mitochondria seem to be the 
most promising strategies in rescuing neurodegeneration in PD 
patients.

PD-ReLATeD GeneS AnD THeiR ROLeS 
in MiTOPHAGY AnD MiTOCHOnDRiAL 
DYSFUnCTiOn

Autophagy is an evolutionarily conserved process in which cyto-
plasmic substrates are engulfed in autophagic vesicles and fused 
to lysosomes for degradation and recycling (30). The specific 
autophagic elimination of mitochondria is defined as mitophagy 
(31). Autophagy is classified into various subgroups based on 
the mechanism of substrate delivery to the lysosome, including 
macroautophagy, chaperone-mediated autophagy (CMA), and 
microautophagy (4). The process of mitophagy is directed mainly 
by macroautophagy. Genome-wide association studies implicate 
that PD-related genes and their products are responsible for 
mitochondrial homeostasis and mitophagy (32, 33).

PINK1 and Parkin are the most well-known proteins related 
to PD. PINK1, encoded by PARK6 gene, is a mitochondrial-
targeted serine/threonine kinase, while Parkin, encoded by the 
PARK2 gene, is a 465-amino acid E3 ubiquitin ligase (34, 35). 
“Loss-of-function” mutations in either PINK1 or Parkin lead to 
autosomal recessive forms of PD (35, 36). PINK1-dependent acti-
vation of Parkin is recognized as a major pathway of mitophagy 
(37). When mitochondria become depolarized, PINK1 accu-
mulates on the surface of the outer membrane of mitochondria, 
where it phosphorylates both ubiquitin and Parkin and activates 
Parkin’s ubiquitin E3-ligase activity. Moreover, it was recently 
shown that wild-type PINK1 recruits Parkin to damaged 
mitochondria during mitophagy rather than the PD-linked 
PINK1-mutant forms (38). The subsequent recruitment of 
ubiquitin-binding mitophagy receptors lead to the formation 
of LC3-positive phagophores, which sequester damaged mito-
chondria from the cytosol and eventually degrade by lysosomal 
hydrolases (39). PINK1 and Parkin are also important for 
sustaining mitochondrial homeostasis through the regulation 
of mitochondrial fission and fusion. A study has shown that the 
ubiquitination process of mitochondrial fusion protein mitofu-
sin (Mfn) is mediated by both PINK1 and Parkin. Loss of PINK1 
or Parkin causes damaged mitophagy process and elongated 
mitochondria in Drosophila (40). Genetic loss of Mfn1 and Mfn2 
leads to the dissipation of membrane potential in a subset of 
mitochondria, preventing Parkin’s recruitment process through 
the translocase of the inner membrane complex (41). Parkin-
mutant or PINK1-mutant Drosophila display a severe defect in 
flight muscle, leading to behavioral locomotive problems and 
greater susceptibility to oxidative stress (42, 43). Indirect flight 
muscles and DA neurons in this model are filled with swollen 
mitochondria (44, 45). Mutant-Parkin displays degeneration 
of a subset of DA neurons, exhibiting shrinkage in morphol-
ogy and decreased DA level in Drosophila brains (42, 46, 47).  
PINK1 knockout fibroblasts and neurons exhibit reduced 
membrane potential, overloaded Ca2+ levels and increased ROS 
production in mitochondria (48, 49). Meanwhile, mitochondria 
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isolated from the brain of PINK1 knockout mice show defects in 
Ca2+-buffering capacity and increased vulnerability of neurons 
in oxidative stress caused by inflammation (50). DA neuronal 
death is also observed in a conditional Parkin ablation mouse 
model after lentivirus delivers the Cre recombinase to the 
mouse brain, which suggests that Parkin plays an important role 
in neuronal survival (51).

Mutations in the PARK7 gene, which encode DJ-1, cause a rare 
autosomal recessive form of PD (52, 53). DJ-1, a transcriptional 
regulator, is often known as a redox sensor/reductase which influ-
ences mitochondrial homeostasis and mitophagy (54). It is long 
believed that DJ-1 is a neuroprotective factor (55). Mitochondria 
localized DJ-1 is a component of thioredoxin/apoptosis signal-
regulating kinase 1 (Trx/Ask1) complex, which regulates the 
clearance of endogenous ROS through the modulation of scaveng-
ing systems (56). DJ-1 deficiency decreases brain mitochondria 
consumption of H2O2, leading to the increased level of oxidative 
stress, and eventually causes cell death in DA neurons (54, 57). 
In addition, DJ-1 directly interacts with α-synuclein. The mutant 
form of DJ-1 in PD causes misfolded α-synuclein aggregate in DA 
neurons, while the overexpression of DJ-1 reduces the dimeriza-
tion of α-synuclein (55).

LRRK2 is a member of the leucine-rich repeat kinase family 
that is encoded by the PARK8 gene (58). Mutations in LRRK2 
are associated with autosomal-dominant PD (33). Expression 
of mutant LRRK2 may have a variety of negative effects on 
mitochondrial and cellular health (59, 60). Endogenous LRRK2 
directly interacts with the mitochondrial fission and fusion 
regulators dynamin-related protein 1, Mfn, and optic atrophy 1 
(OPA1) to maintain the balance among mitochondrial biogen-
esis, intracellular material trafficking, metabolic demands, and 
mitochondrial morphology (61–63). G2019S mutant LRRK2 in 
sporadic PD patients showed decreased levels of OPA1, indicat-
ing that LRRK2 kinase activity is also an important factor in mito-
chondrial dynamics (64). The overexpression of G2019S mutant 
LRRK2 in mouse brains showed mitochondrial uncoupling 
accompanying with an increased basal oxygen consumption in 
both fibroblast and neuroblastoma cells, resulting in decreased 
ATP level and compromised cellular function (65). Fibroblasts 
with G2019S mutant LRRK2 from PD patients showed increased 
susceptibility to MPP+ induced cell death (66). Meanwhile, the 
depletion of LRRK2 or mutant LRRK2 impair the autophagy/lys-
osomal pathway, leading to the accumulation of autophagosomes  
(67, 68). The degradation of LRRK2 in lysosomes is mediated 
by CMA in nervous system, while the mutant forms of LRRK2 
and also high concentrations of wild-type LRRK2 interfere with 
the CMA translocation complex, resulting in defective CMA  
(67, 69). Inhibition of CMA in neurons induces the accumulation 
of both soluble and insoluble α-synuclein, which in turn could 
compromise the degradation of α-synuclein and initiate protein 
aggregation in PD (70, 71).

Lysosomal defects in the clearance of cytosolic substrates 
also contribute to the progression of PD (72). PARK9 encoded 
lysosomal ATPase ATP13A2 is a P-type transport ATPase which 
protects against cellular dysfunction caused by α-synuclein 
(73). PD-linked mutations in ATP13A2 reduce the activity of 
proteolytic processing enzymes, disturbing the acid environment 

in lysosomes, resulting in the impaired degrading capacity of 
autophagosomes (74).

As we can see, these PD-related genes not only play a role in the 
maintenance of mitochondrial homeostasis but also are important 
for the clearance of aggregated proteins and damaged organelles 
through mitophagy. Mitochondrial deficiency is responsible for 
neurodegeneration in PD, but the specific mechanism between 
mitochondrial deficiency and α-synuclein aggregation remains 
to be discovered.

THeRAPeUTiC iMPLiCATiOnS FOR 
PHARMACOLOGiCAL TARGeTinG  
AnD Gene THeRAPY

Intracellular misfolded proteins contribute to cellular dysfunc-
tion and neuronal death in PD patients. Moreover, compromised 
clearance pathways aggravate the pathological process of this 
neurodegenerative disease. Since autophagy plays an important 
role in selectively degrading misfolded proteins and damaged 
organelles, it could be an interesting target for the development 
of efficient treatment for PD. Nowadays, up-to-date researches 
also give us implications on PD-related genes and their influence 
on mitochondrial homeostasis. The obstacles between this prom-
ising therapeutic targets and mitochondrial dynamic are still a 
major challenge for us to overcome.

Methods identified to enhance autophagy in several preclini-
cal PD models are proven to be effective. The serine/threonine 
protein kinase mTOR is a component of the mTOR complex 1 
and suppresses autophagy under nutrient-rich conditions (75). 
The mTOR inhibitor rapamycin, which stabilizes the association 
of mTOR complex and inhibits the kinase activity, is the most 
widely used small molecule drug which is proved effective in 
enhancing autophagy activity in many disease models (76–81). 
Rapamycin selectively suppresses the activity of mTOR through 
the dephosphorylation of Akt kinase, which is crucial for neu-
ronal survival in PD models (82, 83).

Beclin 1 is encoded by autophagy-related gene 6. This protein 
interacts with either BCL-2 or the class III phosphatidylinositol 
3-kinase (PI3K) VPS34, playing a critical role in the localization of 
other autophagy-regulatory proteins to the preautophagosomal 
structure (84). Beclin 1 is negatively regulated by BCL-2 and 
BCL-XL at ER membranes (85). Mutations in BH3-related domain 
in Beclin 1 disrupt the formation of Beclin 1–BCL-2 complex, 
leading to enhanced autophagy (86). Chronic administration 
of trehalose results in a reduction of the frontal cortex p62/
beclin 1 level, suggesting an elevated state of autophagy (87–90). 
Moreover, ER stress is responsible for the activation of autophagy 
through the unfolded-protein response (UPR) (91). Tunicamycin 
Induced mild ER stress shows a promising treatment potential in 
protecting dopaminergic neurons from death in PD models (92). 
Gene therapy approaches to handle the unfolded protein load 
via the activation of UPR are designed to manipulate autophagy 
in a more specific manner (93). Beclin 1 gene therapy mediated 
by lentivirus exhibits not only positive effects in the clearance of 
intraneuronal α-synuclein proteins but also a proved synaptic 
function in PD models (94). Gene therapy also exhibits great 
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potential in the clearance of abnormally aggregated proteins 
in other neurodegenerative diseases through the activation of 
autophagy (95–97).

Although methods to activate autophagy are promising 
novel therapeutic approaches for PD, a complex scenario 
is emerging in which the alteration of distinct regulatory 
steps in autophagy may perturb the homeostasis of the cell, 
contributing to the disease progression as well (98). Therefore, 
the mere enhancement of autophagy may have detrimental 
consequences by provoking neurodegeneration and exacerbat-
ing disease progression. Thus, it is critical that this biological 
process should be precisely regulated and strictly monitored. 
Moreover, the specific mechanism behind each subtype of 
the disease that may link the defects of autophagy to PD still 
remains to be discovered. Considering the complex nature of 
PD, individualized interventional targets seem to be the most 
promising method for deciding the right timing and appropri-
ate degree of activation of autophagy.

COnCLUDinG ReMARKS

Significant progress has been made in understanding the 
causes of this neurodegenerative disorder. The accumulation of 

dysfunctional mitochondria and compromised mitophagy have 
emerged as common features of affected neurons in patients and 
animal models that may cause the accumulation of misfolded 
protein aggregates. In addition, aggregation of α-synuclein and 
deficiency in PD-related genes can impair neuronal mitophagy 
and mitochondrial homeostasis. It is crucial to find out the key 
factors and their roles involved in the pathogenesis of different 
form of PD. Further studies aiming at modulating the process 
of autophagy accurately and individually may provide novel 
therapeutic strategies for this widespread disease.
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Parkinson’s disease (PD) is a common, progressive neurodegenerative disease, which 
typically presents itself with a range of motor symptoms, like resting tremor, bradykinesia, 
and rigidity, but also non-motor symptoms such as fatigue, constipation, and sleep dis-
turbance. Neuropathologically, PD is characterized by loss of dopaminergic cells in the 
substantia nigra pars compacta (SNpc) and Lewy bodies, neuronal inclusions containing 
α-synuclein (α-syn). Mutations and copy number variations of SNCA, the gene encoding 
α-syn, are linked to familial PD and common SNCA gene variants are associated to 
idiopathic PD. Large-scale genome-wide association studies have identified risk variants 
across another 40 loci associated to idiopathic PD. These risk variants do not, however, 
explain all the genetic contribution to idiopathic PD. The rat Vra1 locus has been linked 
to neuroprotection after nerve- and brain injury in rats. Vra1 includes the glutathione 
S-transferase alpha 4 (Gsta4) gene, which encodes a protein involved in clearing lipid 
peroxidation by-products. The DA.VRA1 congenic rat strain, carrying PVG alleles in Vra1 
on a DA strain background, was recently reported to express higher levels of Gsta4 
transcripts and to display partial neuroprotection of SNpc dopaminergic neurons in a 
6-hydroxydopamine (6-OHDA) induced model for PD. Since α-syn expression increases 
the risk for PD in a dose-dependent manner, we assessed the neuroprotective effects 
of Vra1 in an α-syn-induced PD model. Human wild-type α-syn was overexpressed by 
unilateral injections of the rAAV6-α-syn vector in the SNpc of DA and DA.VRA1 congenic 
rats. Gsta4 gene expression levels were significantly higher in the striatum and mid-
brain of DA.VRA1 compared to DA rats at 3 weeks post surgery, in both the ipsilateral 
and contralateral sides. At 8 weeks post surgery, DA.VRA1 rats suffered significantly 
lower fiber loss in the striatum and lower loss of dopaminergic neurons in the SNpc 
compared to DA. Immunofluorescent stainings showed co-expression of Gsta4 with 
Gfap at 8 weeks suggesting that astrocytic expression of Gsta4 underlies Vra1-mediated 
neuroprotection to α-syn induced pathology. This is the second PD model in which 
Vra1 is linked to protection of the nigrostriatal pathway, solidifying Gsta4 as a potential 
therapeutic target in PD.

Keywords: Parkinson’s disease, α-synuclein, dopaminergic neurons, neuroprotection, glutathione S-transferase 
alpha 4, Vra1
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inTrODUcTiOn

Parkinson’s disease (PD) is a progressive neurodegenerative 
disease characterized by loss of dopaminergic neurons in the 
substantia nigra pars compacta (SNpc) resulting in a range of 
motor and non-motor symptoms. One of the pathological hall-
marks of PD is the accumulation of α-synuclein (α-syn) protein, 
which is abundant in neuronal inclusions termed Lewy bodies 
and Lewy neurites (1). About 10% of PD cases are familial, and so 
far, mutations in seven genes have been linked to PD with a reces-
sive or dominant inheritance pattern (2). The remaining 90% are 
classified as idiopathic PD with a complex etiology, meaning that 
both genetic and environmental factors contribute to the disease 
(3, 4). So far, 41 PD risk loci have been confirmed as associated to 
idiopathic PD (5, 6). There is, however, still a substantial missing 
heritability, i.e., undiscovered genetic risk factors contributing to 
PD etiology.

The Vra1 region on rat chromosome 8 was linked to neu-
roprotection after ventral root avulsion (VRA) was performed 
in an intercross between the inbred Dark Agouti (DA) and 
Piebald Virol Glaxo (PVG.1AV1) rat strains (7). The congenic 
DA.VRA1 strain, carrying PVG.1AV1 alleles in the neuroprotec-
tive Vra1 region on a DA strain background, was used to fine 
map Vra1 and several candidate genes were discovered (8). 
Glutathione S-transferase alpha 4 (Gsta4), a protein involved 
in the elimination of lipid peroxidation by-products, such as 
4-hydroxy-2-nonenal (HNE) (9), was subsequently identified 
as the strongest candidate gene regulating neurodegeneration in 
response to VRA (10) and traumatic brain injury in DA.VRA1 
congenic rats (11).

Glutathione S-transferase alpha 4 belongs to the alpha class 
of glutathione S-transferases (GSTs). GSTs are a family of isoen-
zymes involved in cellular detoxification mechanisms including 
clearance of lipid peroxidation by-products through glutathione 
(GSH) conjugation (9, 12). Not much is known about the expres-
sion patterns of Gsta4 in humans or in rodents, although studies 
suggest that it is expressed ubiquitously (13, 14). Furthermore, 
while rat Gsta4 is only 60% homologous with human GSTA4, the 
two enzymes have similar catalytic affinity to HNE (9), making 
it a valuable experimental target. Genetic associations have been 
made between GSTA4 mutations and risk for certain types of 
cancer (15, 16), but not much is known about the role of GSTA4 
in PD. However, HNE has been shown to be significantly elevated 
in PD brains (17–19), suggesting that GSTA4 is somehow affected 
and could be a key player in the disease. In order to study the 
effects of Gsta4 in a PD model that induces high levels of oxidative 
stress, we recently performed unilateral striatal 6-hydroxydopa-
mine (6-OHDA) lesions in DA and DA.VRA1 rats. At 8 weeks 
post lesion, DA.VRA1 congenic rats suffered less striatal fiber loss 
and were more resistant to SNpc neuronal cell death compared 
to DA rats. In addition, Gsta4 expression was elevated in the 
striatum and midbrain of DA.VRA1 rats at 2  days post lesion 
compared to DA, which is when the first signs of the degenera-
tive process occur after 6-OHDA injections (20), but stabilized 
already after 7 days. This suggests that Gsta4 plays a major role 
in protecting DA.VRA1 rats from a dopaminergic-specific toxin 
and that it exerts its effects early in the degenerative process (21). 

The 6-OHDA lesion, however, does not model the α-syn pathol-
ogy seen in PD.

The genetics linking α-syn to PD is abundant. Mutations 
in SNCA encoding α-syn are linked to monogenic PD (22), 
and copy-number variation of SNCA is linked to PD in a 
dose-dependent manner with several duplications (23–32) and 
triplications (32–34) being reported. In addition, common vari-
ants of SNCA are associated to idiopathic PD (35). Thus α-syn is 
clearly implicated in PD etiology and is, therefore, widely used in 
PD animal models: from transgenic rodent models (36) to viral 
vector-mediated models (37), with the latter being able to deliver 
a more consistent and progressive PD-like phenotype (38).

It has been shown that the overexpression of α-syn in rodents 
through the use of viral vectors leads to a progressive pathology 
with loss of midbrain dopaminergic neurons (39, 40). In fact, 
reports have shown that recombinant adeno-associated viral 
(rAAV) vector-mediated overexpression of α-syn in rats repro-
duces several of the neuropathological aspects seen in patients 
(41–43), making it a relevant research model for studying PD. 
There is also evidence that α-syn activates oxidative stress mecha-
nisms; for example, studies have shown that α-syn overexpres-
sion, like 6-OHDA, leads to mitochondrial impairment, which in 
turn leads to the production of reactive oxygen species (ROS) and 
lipid peroxidation (44–47).

In this study, we investigated if the Vra1 locus encoding 
Gsta4 mediates neuroprotection after overexpression of human 
wildtype (WT) α-syn in the rat SNpc. Compared to DA, DA.VRA1 
congenic rats displayed higher gene expression levels of Gsta4 in 
the striatum and SNpc at 3  weeks after α-syn overexpression. 
Furthermore, at 8 weeks after α-syn overexpression, we observed 
less degeneration of dopaminergic fibers in the striatum and their 
respective cell bodies in the SNpc. Similar to what was previously 
reported from the 6-OHDA model (21), Gsta4 was expressed in 
astrocytes in the SNpc at 8 weeks post rAAV injections. These 
results suggest that the Vra1 locus protects from α-syn-induced 
PD-like neurodegeneration and that astrocytes mediate this 
action through expression of Gsta4.

MaTerials anD MeThODs

research Model
For this study, we used two different inbred strains of rats: Dark 
Agouti (DA) and DA.VRA1, a congenic strain developed by 
transferring Vra1 alleles from the PVGav1 strain to a DA back-
ground strains as previously described (21). 64 male rats were 
used in this study (33 DA and 31 DA.VRA1 congenics), weigh-
ing approximately 220–250 g. Professor Piehl at the Karolinska 
Institutet, Stockholm, Sweden generously provided the founders 
for each strain. 51 (28 DA and 23 DA.VRA1) animals were sub-
jected to unilateral injections of an rAAV6 vector construct to 
overexpress human WT α-syn, while 13 (5 DA and 8 DA.VRA1) 
were injected with the same vector construct to overexpress 
GFP in the midbrain at 12 weeks of age with the following titers: 
α-syn (1.2E + 14 gc/ml) and GFP (3.2E + 14 gc/ml). The expres-
sion of both transgenes is led by the synapsin-1 promoter and 
enhanced with the woodchuck hepatitis virus posttranscriptional 
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regulatory element (WPRE) (42). For quantification of dopamin-
ergic neurodgeneration, the rAAV6-GFP-injected animals of 
both strains were pooled together as one group and abbreviated 
DA (GFP). This was done because no differences were found 
between the two strains after O.D. measurements in the striatum 
and stereological measurements in the SNpc (see Quantification 
of Dopaminergic Fiber Loss in the Striatum and Quantification 
of Dopaminergic Cell Loss in SNpc). The rats were given ad libi-
tum access to food and water during a 12 h light/dark cycle and 
housed 2–3 per cage. 32 animals were sacrificed at 3 weeks post 
surgery for gene expression and immunofluorescence analysis, 
while 32 others were sacrificed at 8 weeks post surgery for histo-
logical analysis. All procedures described were approved by the 
Ethical Committee for the use of laboratory animals in the Lund/
Malmö region.

surgical Procedure
All surgical procedures were performed as described previously 
(21). 3 µl of rAAV6-α-syn or -GFP were unilaterally injected in 
the SNpc, which was targeting using the following coordinates, 
given in millimeters relative to bregma and dural surface (48): 
AP = −5.3, ML = −1.7, DV = −7.2. After the procedure, 0.15 ml 
Metacam (Apoteksbolaget, Sweden) was injected s.c. for postop-
erative analgesia. All animals were then placed in clean cages on 
a heated pad for recovery.

Tissue Preparation and histology
Most tissue preparation and immunostainings were performed 
as described previously (21) For DAB stainings in this study, the 
following primary antibodies were used: mouse anti-tyrosine 
hydroxylase (TH) (1:1,000, Immunostar, Hudson, WI, USA), rab-
bit anti-vesicular monoamine transporter 2 (VMAT2) (1:4,000, 
Immunostar Hudson, WI USA), mouse anti-human WT α-syn 
(1:2,000, Santa Cruz, CA, USA), and chicken anti-GFP (1:20,000 
Abcam, Cambridge, UK). The SNpc sections were given an initial 
antigen-retrieval incubation in Tris/EDTA (pH 9.0) at 80°C for 
45 min when stained for TH.

Double immunofluorescence stainings were performed as 
described previously (21). The primary antibodies used were 
rabbit anti-GSTA4 (1:100 Antibodies-online GmbH, Aachen, 
Germany), mouse anti-Gfap (1:1,000, Santa Cruz, CA USA), 
chicken anti-IBA1 (1:500 Synaptic Systems, Göttingen, Germany), 
and mouse anti-NeuN (1:1,000 Millipore, Billerica, MA USA) 
and were incubated together at 4°C. To compare immunofluo-
rescent stainings of midbrain and striatum for Gsta4 and Gfap at 
3 and 8 weeks, stainings were performed in parallel and images 
were taken with the same settings. All images were captured at 
high-resolution with the confocal Leica SP8 microscope (Leica 
Microsystems, Wetzlar, Germany).

Quantification of Dopaminergic Fiber loss 
in the striatum
Striatum pictures were acquired as described previously (21). 
Dorsal (D) striatal TH+ fiber density was evaluated as optical 
density (O.D.) by image densitometry at six coronal levels (+1.60, 
+1.15, +0.70, +0.25, −0.20, −0.75  mm from bregma) using 

the ImageJ software (https://imagej.nih.gov NIH, USA). The 
Rodbard calibration function within the software was used to 
normalize the range of gray-scale (0–255) into O.D. values. Each 
image was transformed into 8-bit (gray-scale). The contralateral 
(CL) and ipsilateral (IL) striatum was delineated for each section, 
and the O.D. values representing the strength of the TH+ staining 
from each side were obtained. O.D. values from the corpus cal-
losum were used to correct for non-specific background staining. 
Finally, the dopaminergic fiber loss was expressed as relative to 
the CL side versus the intact side for each animal. Three DA rats 
were excluded from the analysis due to complications during 
surgery or with tissue processing, leaving 7 DA, and 6 DA.VRA1 
for quantification. Striatum divisions between D and ventral (V) 
are shown in Figure 2B.

Quantification of Dopaminergic cell loss 
in snpc
Dopaminergic neurons in the SNpc were quantified by 
stereology of TH+ cells according to the optical fractiona-
tor principle using the Stereo Investigator software (MBF 
Bioscience, USA) as described previously (21). With a Leitz 
DMRBE microscope (Leica, Germany), a 5× objective was 
used to delineate the areas of interest for each section, and a 
100× oil-immersion objective was used for the cell counting. 
A frame ratio of 11% was assigned to each slide, and the aver-
age mounted section thickness (h) was 24.3 µm (±2.1). The 
average number of dopaminergic neurons counted in each 
individual was 286 (±73). A maximal Gundersen coefficient 
of error (C.E.) (49) of 0.08 was accepted. The counting criteria 
used matches the one previously used (21). Three animals 
were excluded from the analysis due to complications dur-
ing surgery or with tissue processing, leaving 7 DA, and 6 
DA.VRA1 for quantification.

gene expression analysis
Animals were sedated and sacrificed at 3 weeks postsurgery as 
described previously (21). Pieces of right and left striatum and 
ventral midbrain weighing approximately 30 mg were dissected 
from the brain and placed in lysing matrix beaded tubes (MP 
Biomedicals, USA) and immediately stored at −80°C. The 
RNeasy Mini kit (Qiagen, Germany) was used to extract RNA 
from these samples, following the supplier’s protocol with 
some variations already mentioned in Jewett et al. (21). Reverse 
Transcription and Quantitative (RT)-PCR followed using the 
SuperScript® III First-Strand Synthesis System (Invitrogen, USA) 
and SSoAdvanced Universal SYBR green Supermix (BioRad, 
USA), respectively. qPCR was performed with this protocol: 5 µl 
Supermix + 0.5 µl of each primer + 4 µl cDNA for each sample. 
Sample amplification followed this 3-step protocol (1. 30 s at 95°C; 
2. 60 s at 62°C for 39 cycles; 3. 5 min at 68°C) with the following 
primers (5′-3′): Gsta4 (fw: GACCGTCCTGAAGTTCTAGTGA, 
rev: TGCCTCTGGAATGCTCTGT), gapdh (fw: CAACTCCC 
TCAAGATTGTCAGCAA, rev: GGCATGGACTGTGGTCATGA)  
and β-actin (fw: AAGTCCCTCACCCTCCCAAAAG, rev: 
AAGCAATGCTGTCACCTTCCC). Levels of Gsta4 gene expres-
sion were calculated using 2−ΔΔCq (50) and normalized relating 
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FigUre 1 | Glutathione S-transferase alpha 4 (Gsta4) gene expression in the striatum and midbrain after recombinant adeno-associated viral (rAAV)-mediated α-syn 
overexpression in the substantia nigra pars compacta. Gsta4 expression was significantly higher in DA.VRA1 compared to DA striatum (a) and midbrain (B) at 
3 weeks post rAAV injection. There was no difference within each strain between ipsilateral (IL) and contralateral (CL) sides. Data were normalized to DA CL mean 
values for the respective brain region. Mean ± SD, *p < 0.05, **p < 0.01.
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each value to CL DA of within the respective brain regions (stria-
tum and SNpc).

statistical analysis
All statistics were performed with GraphPad Prism (version 7, 
La Jolla, CA, USA). Values are expressed as mean ± SD. Due to 
the low number of animals used for each data set, a Shapiro–
Wilk normality test was performed to determine whether to 
proceed with parametric or non-parametric tests. Stereology and 
densitometry differences between groups were analyzed using a 
one-way ANOVA followed by Bonferroni’s multiple comparisons 
post  hoc test; statistical significance was set at p-value  <  0.05. 
Correlation analysis was performed using the Pearson correlation 
coefficient (r), statistical significance was set at p-value <0.05, 
and a 95% confidence interval was used. A one-way ANOVA was 
used to calculate gene expression differences between groups at 
each time point, followed by Bonferroni’s multiple comparisons 
post hoc test.

resUlTs

Da.Vra1 rats Present higher levels  
of gsta4 gene expression
Glutathione S-transferase alpha 4 has been shown to be upregu-
lated in IL and CL sides of both striatum and midbrain of DA 
and DA.VRA1 rats at 2  days post striatal 6-OHDA injections, 
which is when the first signs of neuronal degeneration become 
evident within that model (20, 21). For this study, we wanted to 
investigate Gsta4 expression levels within those same regions at 
a time point relevant to dopaminergic degeneration within the 
model of nigral rAAV-α-syn overexpression. We, therefore, chose 
to assess gene expression of Gsta4 at 3 weeks after rAAV-mediated 
α-syn injections in the SNpc using the CL striatum and midbrain 
regions as internal controls (42). Gsta4 expression is significantly 
higher in the striatum (Figure  1A) (p  <  0.05) and midbrain 
(Figure 1B) (p < 0.01) of DA.VRA1 compared to DA rats. There 
are no differences in Gsta4 expression between the CL and IL side 
within each strain (Figures 1A,B).

Da.Vra1 congenic rats Display less 
Dopaminergic Fiber loss after α-syn 
Overexpression
The rAAV-α-syn model was chosen because it has been shown to 
produce partial and progressive degeneration of dopaminergic 
fibers in the striatum and cell bodies in the SNpc, a hallmark of 
PD (42). In order to evaluate accurate targeting and expression of 
the transgenes, striatum and midbrain sections were stained for 
GFP and human WT α-syn. The histological analysis shows high 
levels of both GFP and α-syn expression with accurate target-
ing of the nigrostriatal pathway (Figure 2A). Furthermore, our 
stainings of dopaminergic (TH+) fibers in the striatum indicate 
that mainly the dorsal striatum was denervated upon α-syn over-
expression. Therefore, the striatum was subdivided into dorsal, 
mainly innervated by the SN, and ventral, mainly innervated by 
the ventral tegmental area (51) (Figure 2B). Optical densitometry 
measuring the density of TH+ fibers of the IL compared to the CL 
striatum points to a higher proportion of remaining TH+ fibers in 
the IL dorsal striatum of DA.VRA1 compared to DA rats [mean 
(SD): 69 (13) vs. 54 (9)%, p  <  0.023], with DA(GFP) animals 
being unaffected (Figure 2C). PVG.1AV1 alleles in the Vra1 locus 
thus protected striatal dopaminergic fibers of DA.VRA1 congenic 
rats from α-syn-induced degeneration.

Da.Vra1 congenic rats are Partially 
Protected From Dopaminergic cell  
loss in snpc
Midbrain dopaminergic neurons were quantified at 8 weeks post 
α-syn overexpression and GFP as a control (Figures  3A–D). 
Stereological cell counting performed with TH+-stained sec-
tions shows a reduction in dopaminergic cells in the IL SNpc of 
both DA and DA.VRA1 congenic rats compared to DA(GFP); 
however, there was no significant difference in the proportion 
of remaining TH+ neurons between DA and DA.VRA1 rats [50 
(9) vs. 40 (8)%, p  =  0.06, Figure  3B]. Due to the possibility 
of TH being downregulated, thus giving an underestima-
tion of dopaminergic neurons, VMAT2 was also used as a 

13

https://www.frontiersin.org/Neurology/
https://www.frontiersin.org
https://www.frontiersin.org/Neurology/archive


FigUre 2 | Striatal dopaminergic fibers are protected from α-syn-induced degeneration by alleles in the Vra1 locus. (a) Sample images showing GFP/α-syn 
transgene expression in the striatum and midbrain 8 weeks post unilateral recombinant adeno-associated viral (rAAV)-GFP/α-syn injections into the substantia nigra 
pars compacta (SNpc). (B) Representative pictures from DA (GFP), DA, and DA.VRA1 rats showing dopaminergic fibers in the striatum stained for tyrosine 
hydroxylase (TH) at 8 weeks after rAAV-α-syn injection. The lesioned striatum is divided in two parts: dorsal (D), the region receiving most afferent projections from 
the cells of the SNpc, and ventral (V). (c) Optical density quantification of TH+ fibers in the lesioned relative to intact dorsal striatum at 8 weeks post surgery. DA.
VRA1 rats display higher levels of remaining TH+ fibers in the lesioned striatum compared to DA. Mean ± SD, p < 0.05 based on a one-way ANOVA followed by a 
Bonferroni post hoc test. O.D., optical density, scale bars = 500 µm.
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dopaminergic marker to stain and count nigral cells. VMAT2 
is a molecule essential for recruiting cytosolic dopamine into 
synaptic vescicles, and is, therefore, considered a reliable 
marker for dopaminergic cells (52, 53). Indeed, when quantify-
ing VMAT2+ neurons, we can see Vra1-mediated protection 
of nigral dopaminergic neurons in the IL SNpc of DA.VRA1 
congenic vs DA rats [54 (7) vs. 44 (7)%, p < 0.004, Figure 3D]. 
In order to verify whether the loss of dopaminergic fibers in the 
striatum reflects the extent of dopaminergic cell death in both 
strains, we performed a correlation analysis between the two 
sets of data. We found a strong positive correlation between 
striatal TH + fiber density and remaining dopaminergic cells 
in the SNpc marked with VMAT2 in both strains (p < 0.002; 
r = 0.8, Figure 3E).

gsta4 is expressed in Midbrain astrocytes
We have previously observed Gsta4 expression in astrocytes but 
not in microglia or neurons at 8  weeks after 6-OHDA lesion 
(21). We made the same evaluation with double fluorescence 
immunostainings on midbrain sections combining Gsta4 with 
astrocytic (Gfap), microglial (Iba1), or neuronal (NeuN) mark-
ers at 8 weeks after α-syn overexpression (Figure 4). The stain-
ings reveal a similar co-localization pattern of Gsta4 with Gfap 
(Figures  4A,D,G,G') and not Iba1 (Figures  4B,E,H) or NeuN 
(Figures  4C,F,I) within this model, thus confirming astrocytic 

expression of Gsta4. This pattern remains constant in DA(GFP), 
DA, and DA.VRA1 animals (Figures 4A–I). Once again, the co-
localization is more clear in the somas of SNpc astrocytes rather 
than the projections (Figure 4G').

Since the gene expression analysis was performed at 3 weeks, 
and in order to check for any visible differences between Gsta4 
gene and protein expression patterns at this time point, we chose 
to look at Gsta4 localization at 3 weeks as well. Immunofluorescent 
stainings for Gsta4 and Gfap were compared between midbrain 
and striatum sections at 3 and 8 weeks post rAAV-α-syn delivery. 
The staining intensity for both Gsta4 and Gfap is visibly lower at 
3 weeks when compared to 8 weeks (Figures 5A–D'). At 3 weeks, 
Gsta4-stained cell bodies do not stand out compared to the back-
ground and less Gfap-positive cells are visible. In addition, no 
co-localization of Gsta4 is detectable with Gfap (Figures 5A,B), 
NeuN, or Iba1 (data not shown). However, at 8 weeks post rAAV-
α-syn delivery, there is clear co-localization of Gsta4 and Gfap in 
both the midbrain and striatum (Figures 5C,D). This suggests 
a delayed increase in astrocytic Gsta4 expression in response to 
α-syn overexpression.

DiscUssiOn

In this study, we show that PVG alleles in the Vra1 locus partially 
protect the nigrostriatal pathway of DA.VRA1 congenic rats 
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FigUre 3 | The Vra1-locus mediates partial protection of nigral dopaminergic neurons in response to α-syn overexpression. (a) Representative images showing 
midbrain TH+ cells in DA(GFP), DA, and DA.VRA1 rats at 8 weeks post unilateral recombinant adeno-associated viral (rAAV)-α-syn injection. Dashed lines represent 
the area used for stereological cell counts. (B) Stereological quantification of TH+ neurons in the SN shows no significant difference in the percentage of remaining 
TH+ neurons in the IL side between DA and DA.VRA1. (c) Representative images showing midbrain vesicular monoamine transporter 2 (VMAT2)+ cells in DA(GFP), 
DA, and DA.VRA1 rats at 8 weeks post unilateral rAAV-α-syn injection. (D) Stereological quantification of VMAT2+ dopaminergic neurons at 8 weeks post injection 
shows a similar pattern as for TH+ cells, but with DA.VRA1 congenic rats displaying partial protection to dopaminergic cell loss in the IL substantia nigra pars 
compacta (SNpc) compared to DA rats. (e) The ratio of dopaminergic cells quantified by VMAT2 in the lesioned vs intact SNpc strongly correlates with the relative 
density of TH+ fibers in the dorsal striatum. Individual data points and mean ± SD are shown. CL, contralateral; IL, ipsilateral; scale bars = 500 µm. *p < 0.05, with 
one-way ANOVA followed by a Bonferroni post hoc test. r = Pearson correlation coefficient.
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from α-syn-induced neurodegeneration. At 3 weeks after uni-
lateral rAAV-α-syn delivery, Gsta4 expression levels were higher 
in both the IL and CL striatum and midbrain of DA.VRA1 rats 
compared to DA. When quantifying dopaminergic neurodegen-
eration at 8  weeks, the density of striatal dopaminergic fibers 
in the lesioned side was significantly higher in the congenic 
rats compared to DA, and similar evidence of Vra1-mediated 

neuroprotection was observed for midbrain dopaminergic cell 
bodies by stereological cell counts of TH+ and VMAT2+ neurons. 
These results are in line with our previous observations where 
DA.VRA1 rats displayed partial dopaminergic neuroprotection 
to striatal 6-OHDA lesion (21). However, while the toxin-based 
model results in dopaminergic loss mediated by the generation 
of ROS and mitochondrial damage, the current study models 
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FigUre 4 | Glutathione S-transferase alpha 4 (Gsta4) is expressed in midbrain astrocytes 8 weeks after rAAV-GFP/α-syn injection. Immunofluorescent staining of 
Gsta4 combined with cell-specific markers for (a,D,g,g') astrocytes; Gfap, (B,e,h) microglia; Iba1 and (c,F,i) neurons; NeuN in DA(GFP), DA, and DA.VRA1 rats. 
Gsta4 staining co-localized with Gfap (a,D,g) but not Iba1 (B,e,h) or NeuN (c,F,i), suggesting astrocytic expression. Pictures taken at 20×; scale bar = 20 µm.  
(g') 60× image showing co-localization, with Gsta4 mainly expressed in the soma; scale bar = 100 µm. All markers were combined with the nuclear marker  
DAPI (blue).
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α-syn-induced pathology, similar to that seen in PD patients. 
In addition, we show that Gsta4 is expressed in the cytoplasm 
of midbrain and striatal astrocytes at 8 weeks after α-syn over-
expression, suggesting that astrocytes play an important role in 
protecting nearby neurons and neurites from α-syn-induced 
toxicity.

Our previous work, detailing the neuroprotective effects 
of Gsta4 after striatal 6-OHDA injections, puts focus on the 
oxidative stress aspects of PD. The neurodegenerative process 
of 6-OHDA is thought to be due to accumulation of ROS 
(20) and high levels of HNE within the affected cells (18, 54). 
Furthermore, 6-OHDA models have been shown to reproduce 
progressive and retrograde degeneration of the nigrostriatal 
pathway, mirroring some aspects of the same degeneration 
seen in PD patients with mild to moderate stages of the disease 
(55, 56). However, the striatal 6-OHDA model does not cover 
other pathogenic mechanisms of PD, such as the production 
of toxic α-syn species or impaired protein degradation (57). 
The functional link between α-syn and PD is very strong, with 
α-syn-containing Lewy bodies being present in both familial 
and idiopathic PD, and the SNCA gene being both linked to 
familial PD and associated to the risk of developing idiopathic 

PD. The rat rAAV-α-syn model employed here is based on the 
clear link between α-syn and PD-like pathology and comple-
ments the 6-OHDA model, which can be considered a model for 
toxin-induced PD. The rAAV vector used in the current study 
includes the WPRE element, which amplifies the expression of 
the transgene and induces unilateral overexpression of α-syn, 
progressive dopaminergic neurodegeneration, and motor 
impairment, which peak at 8  weeks postinjections (42). The 
rAAV-α-syn model also induces more progressive behavioral 
impairments compared to the striatal 6-OHDA model, prob-
ably due to the buildup of toxic α-syn species leading to deficits 
in synaptic function (57, 58).

With the striatal 6-OHDA model, aiming to examine causality 
of the neuroprotection observed in DA.VRA1 rats at 8 weeks, we 
measured Gsta4 expression at 2 and 7 days post lesion, when the 
very early signs of neurodegeneration are seen in the striatum 
(59). In the rAAV-α-syn model, the first signs of dopaminergic 
dysfunction and cell loss occur at 3  weeks postinjection (42). 
Therefore, to keep within the same line of thinking for this study, 
we performed gene expression analysis of Gsta4 at 3  weeks. 
Gsta4 expression was higher in both striatum and midbrain of 
DA.VRA1 rats compared to DA rats. The strain difference was 
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FigUre 5 | Expression of glutathione S-transferase alpha 4 (Gsta4) and 
Gfap is increased at 8 weeks after recombinant adeno-associated viral-α-syn 
injection. Co-immunofluorescent stainings of Gsta4 and Gfap in the midbrain 
(a,c), and striatum (B,D) of a DA.VRA1 congenic rat. Both Gsta4 and Gfap 
display a lower expression at 3 weeks (a,B) compared to 8 weeks  
(c,D). Pictures taken at 20×, scale bar = 20 µm. (D') 60× image showing 
co-localization of Gsta4 with Gfap; scale bar = 100 µm. Stainings were 
combined with the nuclear marker DAPI (blue).
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seen in both the lesioned and the intact sides, suggesting that 
α-syn overexpression does not induce Gsta4 gene expression 
at this time point. Based on the observation that, along with 
increased Gfap staining, Gsta4 immunostaining was enhanced 
at 8 weeks compared to 3 weeks post transgene delivery, there 
might be a delayed increase in Gsta4 gene expression after the 
α-syn transgene overexpression is established. Alternatively, 
a modest and continuous increase in Gsta4 gene expression in 
the DA.VRA1 congenic strain is sufficient to partially protect 
midbrain dopaminergic cell projections and somas from 
degeneration.

There is plenty of evidence suggesting that α-syn overexpres-
sion increases oxidative stress levels, which is a key feature of PD. 
Both in vivo and in vitro models have shown that accumulation of 
α-syn can lead to mitochondrial dysfunction through the inhibi-
tion of Complex 1 (C1), which in turn leads to the production of 
ROS (60–62). Interestingly, it has also been shown that ROS are 
a result of depleted glutathione (GSH) in PD brains (63) and low 
levels of GSH can lead to the decrease of C1 activity (64). Indeed, 
one important aspect of Gsta4 activity is its ability to catalyze 
the conjugation of GSH to lipid peroxidation by-products such as 
HNE (9). Furthermore, a study by Shearn et al. on chronic alcohol 
consumption in a Gsta4 null mouse showed that Gsta4 works 
as a mitochondrial detoxifier (65). This strongly suggests that  
α-syn toxicity is partly mediated by oxidative stress mechanisms, 
mainly acting through the mitochondria in dopaminergic cells 
and involving GSH metabolism. The fact that we see a similar 
neuroprotective phenotype of DA.VRA1 rats in both the α-syn 
overexpression model and the striatal 6-OHDA model strongly 

suggests that the Vra1 locus encoding Gsta4 regulates key pro-
cesses in PD-like dopaminergic neurodegeneration. The human 
ortholog GSTA4 is thus a promising therapeutic target in PD with 
a complex etiology.

In rat, Gsta proteins have been found to be abundant in astro-
cytes, the choroid plexus, as well as in endothelial cells and/or 
astrocytic end feet associated with blood vessels, Purkinje cells, 
and neurons (66). Therefore, regional differences in the cellular 
and subcellular distribution of Gsta4 are not unlikely. In our 
previous work where the Vra1 locus was found to protect from 
striatal 6-OHDA lesions, we aimed to uncover the localization 
of Gsta4 within the affected areas of the rat brain. We found 
Gsta4 co-expression with the astrocytic marker Gfap, but not 
with the microglial (Iba1) or the neuronal (NeuN) markers at 
8  weeks post injection (21). In the current study, we confirm 
the astrocytic localization of Gsta4 at 8 weeks in both DA and 
DA.VRA1 strains. In a nerve injury model, expression of Gsta4 
has been shown in spinal motor neurons and not astrocytes (10). 
Of note, we cannot rule out the possibility that dopaminergic 
neurons express Gsta4 at levels not detected by immunostainings 
in our studies.

The relationship between α-syn and astrocytes is well 
studied. α-syn is found mainly in neurons, but can often 
accumulate in astrocytes as well, usually after spreading from 
neurons (67–69), possibly through cell-to-cell transfer (70). 
A recent study by Lindström et  al. points out the important 
role of astrocytes in α-synucleinopathies. They show that in 
a co-culture system, astrocytes engulf large amounts of α-syn 
oligomers but are subsequently not able to degrade them com-
pletely, which leads to the formation of inclusions. It suggested 
that this is most likely brought on by a dysfunctional lysosomal 
system. Astrocytes also showed signs of mitochondrial dam-
age caused by the accumulation of these α-syn oligomers (71). 
Furthermore, studies have shown that astrocytes can produce 
ROS under stressful conditions (72), thus leaving surround-
ing neurons susceptible to damage (73). This is relevant to the 
results obtained from DA.VRA1 congenic rats by us (21) and 
others (10), since ROS production is increased by 6-OHDA 
(20), α-syn overexpression (61), and in nerve injury models 
(74)—all environments where DA.VRA1 rats have been shown 
to express higher levels of Gsta4. When adding the fact that 
astrocytes also have a very high activity and release of GSH, 
which might be neuroprotective in itself (75), the link between 
Gsta4 activity and α-syn pathology is strengthened. More work 
is necessary to uncover the specific mechanisms by which Gsta4 
protects from PD-like pathology in rat PD models. For exam-
ple, a more in-depth analysis of the role of Gsta4 in astrocytic 
mitochondria might help answer key questions surrounding 
potential neuroprotective mechanisms.

In conclusion, this is the first report suggesting potential 
neuroprotective effects of the Vra1 locus and Gsta4 in an 
α-syn-induced PD model. Moreover, this study emphasizes the 
importance of utilizing animal models with naturally occurring 
allelic differences in order to gain a better understanding of neu-
rodegenerative diseases with complex traits, such as PD. Gsta4 
has now been implicated as a potential neuroprotective agent in 
both the 6-OHDA and α-syn overexpression PD models, making 
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the human ortholog a very attractive candidate for future PD 
therapeutic research.
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inhibition of mTOrc1 signaling 
reverts cognitive and affective 
Deficits in a Mouse Model of 
Parkinson’s Disease
Débora Masini*, Alessandra Bonito-Oliva†, Maëlle Bertho and Gilberto Fisone*

Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden

Non-motor symptoms, including cognitive deficits and affective disorders, are frequently 
diagnosed in Parkinson’s disease (PD) patients and are only partially alleviated by
dopamine replacement therapy. Here, we used a 6-hydroxydopamine (6-OHDA) mouse 
model of PD to examine the effects exerted on non-motor symptoms by inhibition of the 
mammalian target of rapamycin complex 1 (mTORC1), which is involved in the control 
of protein synthesis, cell growth, and metabolism. We show that rapamycin, which 
acts as an allosteric inhibitor of mTORC1, counteracts the impairment of novel object 
recognition. A similar effect is produced by PF-4708671, an inhibitor of the downstream 
target of mTORC1, ribosomal protein S6 kinase (S6K). Rapamycin is also able to reduce 
depression-like behavior in PD mice, as indicated by decreased immobility in the forced 
swim test. Moreover, rapamycin exerts anxiolytic effects, thereby reducing thigmotaxis 
in the open field and increasing exploration of the open arm in the elevated plus maze. 
In contrast to rapamycin, administration of PF-4708671 to PD mice does not counteract 
depression- and anxiety-like behaviors. Altogether, these results identify mTORC1 as a 
target for the development of drugs that, in combination with standard antiparkinsonian 
agents, may widen the efficacy of current therapies for the cognitive and affective symp-
toms of PD.

 

Keywords: Parkinson’s disease, mammalian target of rapamycin, rapamycin, ribosomal protein s6 kinase,  
PF-4708671, depression, anxiety, cognition

inTrODUcTiOn

Cognitive impairment and affective disorders are frequently diagnosed in patients with Parkinson’s 
disease (PD) and represent a major clinical challenge, in addition to the classic motor symptoms 
(1–5). Dementia develops in about 40% of PD patients and is often preceded by mild cognitive 
impairments, which compromise attentional, executive, and visuospatial functions. These latter ail-
ments often develop before the onset of cardinal motor symptoms and are present in about 20% of 
PD patients at the time of diagnosis (4, 5). A significant proportion of PD patients are also affected 
by anxiety and depression, which appear in the early stages of the disease and are often refractory to 
dopamine replacement therapies (1, 3). Non-motor symptoms represent a serious challenge to the 
quality of life for both patients and their families, prompting the search for more effective therapies.

The mammalian target of rapamycin (mTOR) signaling pathway is involved in multiple aspects 
of cognitive processes. mTOR is the key catalytic component of two large multimeric complexes: 
mTOR complex 1 (mTORC1) and 2 (mTORC2) (6, 7). mTORC1 regulates a variety of cellular func-
tions, including cell growth and proliferation, autophagy and protein synthesis, whereas mTORC2 
participates in the control of cytoskeletal dynamics and cell size.
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Two of the main downstream targets of mTORC1, the riboso-
mal protein S6 kinase (S6K) and the eukaryotic initiation factor 
4E-binding protein (4E-BP), promote mRNA translation via acti-
vation of downstream initiation and elongation factors (8–10). 
Activation of these signaling components modulates synaptic 
plasticity and affects cognition through spatial and temporal 
coordination of protein synthesis. Thus, mTORC1 signaling is 
required for long-term potentiation in the hippocampus, and for 
memory formation and consolidation (11, 12).

Excessive activation of mTORC1 is linked to intellectual dis-
abilities, including tuberous sclerosis (13, 14), fragile X syndrome 
[(15) but see also (16)] and Down syndrome (17). Notably, the 
cognitive impairment observed in animal models of tuberous 
sclerosis and Down syndrome is counteracted by rapamycin, a 
selective inhibitor of mTORC1 (13, 14, 18).

Dysregulated mTOR transmission is also implicated in affec-
tive disorders. The current prevailing hypothesis is that decreased 
mTORC1 activity in different cortical regions is associated with 
depression whereas augmented mTORC1 activity, such as that 
produced by the NMDA receptor agonist ketamine, reverts these 
conditions (19–22). However, studies in animal models have 
shown that subchronic administration of rapamycin reduces 
depressive-like behaviors (23), prompting further analysis of the 
actions of this drug on emotional deficits.

In this study, we used a mouse model to examine the effects 
of rapamycin and PF-4708671, a selective S6K inhibitor (24), to 
counteract memory impairment, depressive- and anxiety-like 
behaviors associated with PD. Our results indicate that inhibition 
of mTORC1 with rapamycin may represent a potential approach 
to the combined treatment of these disorders.

MaTerials anD MeThODs

animals
Male C57BL/6J mice (3 months old; 25–30 g; Jackson Laboratory, 
ME, USA) were housed under a 12 light-dark cycle with food and 
water ad libitum. All experiments were carried out in accordance 
with the guidelines of Research Ethics Committee of Karolinska 
Institutet and Swedish Animal Welfare Agency. All efforts were 
made to minimize animal suffering and to reduce the number of 
animals used.

Drugs
6-hydroxydopamine hydrochloride (6-OHDA; Sigma-Aldrich, 
Stockholm, Sweden) was dissolved in 0.02% ascorbic acid in saline 
at a concentration of 4 µg/µL and injected directly into the dorsal 
striatum. Rapamycin (LC Laboratories, Woburn, MA, USA) was 
dissolved in 5% dimethyl sulfoxide (DMSO), 5% Tween20, 15% 
polyethylene glycol (PEG), and distilled water to a final concen-
tration of 5 mg/kg, and administered intraperitoneally (i.p.) in a 
volume of 2 mL/kg for three consecutive days, and then 30 min 
preceding the open field (OF), the elevated plus maze (EPM), and 
the forced swim test (FST). Rapamycin was also injected 30 min 
prior to all phases of the novel object recognition (NOR) test. 
PF-4708671 (MedChem Express, Monmouth Junction, USA) was 
dissolved in 17% DMSO, 10% Tween80, in saline and injected 

(50 mg/kg in 5 mL/kg volume, i.p.) 1 h prior to each experiment 
(OF, EPM, FST, familiarization and test phases of NOR).

6-OhDa lesion
Mice were anesthetized with 4% isofluorane and positioned in a 
stereotaxic frame (David Kopf Instruments, Tujunga, CA, USA) 
equipped with a heating pad to maintain normothermia. All 
animals were injected subcutaneously with 0.1 mg/kg of Temgesic 
before surgery. Partial dopamine depletion was induced by inject-
ing each striatum with 1 µL of 6-OHDA according to the follow-
ing coordinates (mm): anteroposterior + 0.6; mediolateral ± 2.2; 
and dorsoventral −3.2 (25). Control mice received a sham lesion, 
consisting of bilateral injections (1 µL of vehicle). After surgery, 
the animals were allowed to recover for 3 weeks.

Behavioral Tests
Each mouse was subjected to sequential tests performed accord-
ing to their increasing averseness (i.e., OF, NOR, EPM, and FST). 
Each test was separated by 4–7 days, during which animals were 
left undisturbed.

Open Field (OF) and Thigmotaxis
In this test, the preferential exploration of the peripheral 
zone of the OF, referred to as thigmotaxis, is considered an 
index of anxiety (26–28). Thigmotaxis was evaluated in a box 
(38 cm × 38 cm × 28 cm) divided into peripheral and central zones 
(defined as body center beyond 10 cm from wall). Each mouse 
was allowed to explore the apparatus for 15 min and its behavior 
was recorded by a video camera connected to an automated 
tracking system (Ethovision XT-10, Noldus, The Netherlands). 
The percentage of time spent by the animals exploring the center 
zone of the apparatus was measured and represented as a time 
course scatter plot (30 s time sampling intervals, one-zero sam-
pling method). Curve fitting with nonlinear regression was used 
to generate trend lines. The cumulative time in the center zone 
was calculated as percentage of the total experimental time.

Novel Object Recognition (NOR)
The NOR test is based on the natural preference of rodents for 
novel objects and is commonly employed to assess memory 
function (27, 28). Mice were first habituated for 3 days (20 min/
day) to the experimental cage (38 cm × 38 cm plastic chamber). 
On the familiarization phase (day 4), two identical objects (white 
plastic cylinders 3 cm high and 1 cm radius) were placed in the 
back left and right corners of the cage, 10 cm from the walls. Mice 
were placed near the wall opposite to the objects and allowed 
to explore for 15  min. During the test (day 5), one of the two 
(familiar) objects was replaced with a novel object (plastic orange 
object of comparable size). Mice were placed in the apparatus and 
left free to explore for 5 min. The experiment was video-recorded 
and object exploration (time during which the mouse nose was in 
contact with the object or directed toward it at a distance ≤ 2 cm) 
was measured by an observer blind to groups and treatments. 
Two measures were considered: (1) the total exploration time 
(s) spent by the animal interacting with the two objects during 
the test and (2) the exploration time (%) spent by the animal 
interacting with the novel object over the total exploration time 
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FigUre 1 | Inhibition of mammalian target of rapamycin complex 1, or its downstream target S6 kinase, rescues novel object recognition (NOR) memory in a 
mouse model of Parkinson’s disease. NOR test performance in control (Sham) mice treated with vehicle (n = 16), and Lesion mice treated with vehicle (n = 12), 
rapamycin (Lesion Rapa, n = 16), or PF-4708671 (Lesion PF, n = 8). (a) Representative traces of mice performing the NOR test. Triangles indicate the head position 
during the test (in black) and during exploratory behavior (in red). (B) Time spent exploring the familiar (Fam) or novel (Nov) object over a 5 min test. Data are 
expressed as percent of total exploration time and represented as mean ± SEM. **** p = 0.0001, *** p = 0.0003, and ** p = 0.003 vs. Fam within groups (two-way 
ANOVA followed by Fisher’s post hoc comparison).
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(e.g., [novel/(familiar + novel)] × 100) during the test. Example 
tracings shown in the NOR test were generated by plotting the x,y 
positions of the nose-point, detected every 0.2 s and color coded 
according to the behavior being assessed.

Elevated Plus Maze (EPM)
The EPM test is commonly used to evaluate anxiety-like behavior 
in mice. The test is based on the natural preference of rodents for 
closed spaces, and the propensity to avoid the open arms is consid-
ered an index of anxiety (29). The apparatus is composed of four 
gray plastic arms, arranged as a cross and located 40 cm above the 
plane of a laboratory bench. Two arms, opposite to each other, are 
enclosed by lateral walls (70 cm × 6 cm × 40 cm) and the other 
arms are without walls (70 cm × 6 cm × 0.75 cm); the closed and 
open arms delimit a small square area (6 cm × 6 cm) named center. 
Each mouse was placed in the center of the maze facing one of the 
open arms away from the experimenter, and its behavior was video-
recorded for 5 min. The time spent by the mice in each of the three 
compartments (open, close, center zones) and the distance covered 
were measured with Ethovision XT-10. Head dips, defined as events 
in which the mouse nose-point was beyond the borders of the maze, 
were scored. Position heat maps were generated by averaging the 
proportion of track found in each location per animal. Range of 
colors was calculated by comparing the location frequencies of all 
subjects, with images representing the group averages.

Forced Swim Test (FST)
The FST is a standard paradigm to evaluate depression-like 
behavior in rodents (30). In this test, each mouse was placed in a 
glass cylinder (25 cm in height and 17 cm in diameter), filled up to 
16 cm with water at a temperature of 23°C and let swim for 10 min. 
At the end of the test, the mouse was removed from the cylinder, 
gently dried, and placed in a new cage on a warm pad for at least 

20 min. The test was video-recorded and analyzed both manually, 
by an observer blind to groups, and automatically (Ethovision 
XT-10). The immobility time (defined as the time spent by the 
mouse floating, with only minimal movements to keep the head 
above the water surface) was measured and considered as an 
index of depression. Climbing was defined by forceful thrash 
movements of the forelimbs against the walls of the cylinder and 
concomitant displacement of body center <1.6 cm below water 
surface (calibrated to animal body size).

statistical analyses
Behavioral data were analyzed with one-way ANOVA (multiple 
groups) or two-way repeated measures ANOVA (multiple groups 
with two measures per subject), and post hoc comparisons between 
groups were made with Fisher’s LSD test or Holm–Sidak’s test, 
respectively. Data that did not comply with normality assumptions 
(Brown–Forsythe test for SD) were analyzed with Kruskal–Wallis 
test, followed by Dunn’s multiple comparison test. p ≤ 0.05 were 
considered significant and all data are presented as mean ± SEM.

resUlTs

Previous work showed that mice with a partial 6-OHDA lesion 
of the dopaminergic system display memory deficit and affective 
disturbances reminiscent of early stage PD (31–33). In the first 
series of experiments, this model was employed to examine the 
effects of rapamycin and PF-4708671 on the disruption of long-
term memory. Four groups of animals were used: sham-lesion 
(Sham) mice treated with vehicle, 6-OHDA lesion (Lesion) mice 
treated with vehicle, Lesion mice treated with rapamycin (Lesion 
Rapa), and Lesion mice treated with PF-4708671 (Lesion PF).

As shown in Figure 1, the 6-OHDA lesion abolished the ability 
of the mice to distinguish between a familiar and a novel object. 
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FigUre 2 | Rapamycin reverts depression-like behavior in a mouse model of Parkinson’s disease. Immobility time in the forced swim test (FST) was measured in 
Sham (n = 12), and Lesion mice treated with vehicle (n = 12), rapamycin (Lesion Rapa, n = 12), or PF-4708671 (Lesion PF, n = 12). (a) Time course (2 min bins) 
over the 10 min FST test. Repeated measures two-way ANOVA followed by Holm–Sidak’s post hoc indicated a significant difference p = 0.02 for Lesion vs. Sham 
and p = 0.0006 for Lesion PF vs. Sham. (B) Total immobility time (s) during the 10-min FST test. * p = 0.01 and *** p = 0.0002 vs. Sham (one-way ANOVA followed 
by Fisher’s post hoc comparison). (c) Total time (s) spent climbing. * p = 0.03 and 0.01, ** p = 0.007 vs. Sham (one-way ANOVA followed by Fisher’s post hoc test). 
(D) Total time (s) spent swimming. * p = 0.01, ** p = 0.006 vs. Sham (one-way ANOVA followed by Fisher’s post hoc comparison). (e) Latency (s) to first immobility 
event. * p = 0.04 Lesion vs. Lesion PF (one-way ANOVA followed by Fisher’s post hoc comparison). Data are presented as mean ± SEM. Groups and treatments 
are as indicated in (B).
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Subchronic administration of rapamycin, starting 4 days preced-
ing the test, reverted the impairment of NOR produced by partial 
dopamine depletion.

mTORC1 regulates two major downstream effector targets 
involved in the modulation of protein synthesis: 4E-BP and 
S6K (6, 7). In order to determine the contribution of these two 
signaling components, we compared the effect of rapamycin, 
which prevents mTORC1-mediated regulation of both 4E-BP and 
S6K, with that of the selective S6K inhibitor PF-4708671 (24). 
Similar to rapamycin, PF-4708671 reverted the impairment of 
NOR observed in the Lesion group. Two-way ANOVA indicated 
significant group × object interaction (F3,48 =  5.10, p =  0.004), 
Fisher’s post hoc comparison (Figure 1B).

It should be noted that, under these experimental conditions, 
Lesion mice treated with PF-4708671 showed a 60% reduction in 
the overall object exploration, as compared with the other groups. 
However, this reduction was not accompanied by reduced motor 

activity and, importantly, did not affect their ability to perform 
the task (data not shown).

We next examined the effect of rapamycin and PF-4708671 
on the depression-like behavior produced by partial dopamine 
depletion. As previously reported (31), Lesion mice displayed 
increased immobility in the FST (Figures  2A,B). Time course 
analysis (2 min bins) indicated that the highest immobility time 
of Lesion mice occurred in the second half of the test (significant 
group × time interaction two-way repeated measures ANOVA, 
F3,44 = 13.02, p < 0.0001, followed by Holm–Sidak’s post hoc com-
parison: bin 8 p = 0.007, bin 10 p = 0.02) (Figure 2A). Cumulative 
analysis showed that the increase in immobility time produced 
by the 6-OHDA lesion was reverted by rapamycin, but not by 
PF-4708671 (one-way ANOVA, F3,44 = 13.01, p < 0.0001, followed 
by Fisher’s post hoc comparison) (Figure 2B).

The depression-like response in the FST was further analyzed 
by measuring climbing (Figure 2C), swimming time (Figure 2D), 
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FigUre 3 | Rapamycin counteracts thigmotaxis in a mouse model of Parkinson’s disease. Open field (OF) performance of Sham (n = 12), and Lesion mice treated 
with vehicle (n = 12), rapamycin (Lesion Rapa, n = 12), or PF-4708671 (Lesion PF, n = 12) during the 15-min test. (a) Left panel shows the percentage of animals 
that visited the center of the OF, expressed as time course. The performance is graphed as 30-s time points (circles) and best-fitting curves. Triangles on the x-axis 
indicate the latency (min) for 50% of the animals in each group to explore the center zone of the OF. Right panel shows the time spent in the center zone, expressed 
as percent over the total duration of the test. Data are presented as mean ± SEM. * p = 0.05, ** p = 0.007 vs. Sham (one-way ANOVA followed by Fisher’s post hoc 
comparison). (B) Tukey whiskers plots with the median, 10th, 25th, 70th, and 90th percentiles showing total distance moved in the OF (m) and average speed 
(cm/s). One-way ANOVA showed no differences between groups. Groups and treatments are as indicated in (A).

Masini et al. Rapamycin Reduces Non-Motor Symptoms in PD

Frontiers in Neurology | www.frontiersin.org April 2018 | Volume 9 | Article 208

and latency to the first immobility event (Figure 2E). We found 
that climbing activity was reduced in 6-OHDA lesion mice (one-
way ANOVA, F3,44 = 3.29, p = 0.03, followed by Fisher’s post hoc 
comparison), with no effect on swimming time (one-way ANOVA, 
F3,44  =  10.52, p  <  0.0001, followed by Fisher’s post  hoc com-
parison), or latency to immobility (one-way ANOVA, F3,44 = 3.43, 
p =  0.02 followed by Fisher’s post  hoc comparison). Treatment 
with rapamycin increased swimming time (Figure 2D) without 
affecting climbing activity (Figure 2C) or latency to immobility 
(Figure  2E). PF-4708671 did not modify the performance of 
6-OHDA lesion mice with regard to climbing and swimming 
(Figures 2C,D), and reduced latency to immobility (Figure 2E).

The mouse model of PD utilized in this study displays anxiety-
like behavior in multiple paradigms (31, 33). In this study, we used 
the OF test to evaluate thigmotaxis as an index of anxiety in Sham 
and Lesion mice treated with vehicle, rapamycin or PF-4708671. 
The number of visits to the center zone of the OF (measured as 
visits/30 s, during a period of 15 min) is increased in all groups 
over time (two-way repeated measures ANOVA indicates a 
significant effect of time F28,1232 = 16.14, p < 0.0001) (Figure 3A, 
left panel). We also observed a significant effect of treatment dur-
ing the course of the experiment (two-way repeated measures 
ANOVA, group × time interaction, F84,1232 = 1.41, p = 0.0098). 
Best-fitting curves showed that Sham mice began exploring the 
center zone of the OF earlier than Lesion mice (Figure 3A, left 
panel). In line with this measurement, thigmotaxis was increased 
in Lesion mice, as indicated by reduced time spent in the center 
zone (one-way ANOVA, F3,44 = 3.59, p = 0.02 followed by Fisher’s 
post hoc comparison) (Figure 3A, right panel). The increase in 
thigmotaxis observed in Lesion mice was reverted by rapamycin, 
but not by PF-4708671. Neither lesion nor drug treatments 
affected the distance (m) covered by the animals or their average 
speed (cm/s) (Figure 3B).

Mice were further tested for anxiety-like behavior in the 
EPM apparatus. Heat maps with group average were generated 

to allow visualization of exploration patterns in response to the 
different treatments (Figure  4A). In line with previous work, 
Lesion mice spent significantly less time in the open arms of the 
EPM compared with Sham mice (31, 33). We observed that this 
effect was reversed when Lesion mice were treated with rapa-
mycin (Kruskal–Wallis, p = 0.006, followed by Dunn’s post hoc 
comparison). A partial reduction of the effect of the 6-OHDA 
lesion was also observed in response to PF-4708671 (Dunn’s 
post hoc comparison, Lesion vs. Lesion PF, p = 0.03) (Figure 4B, 
left panel).

The similarity of the heat maps generated from Lesion and 
Lesion PF mice prompted a further analysis of the activity 
of each experimental group in the open arm of the EPM, to 
better understand the effects of rapamycin and PF-4708671. 
Analysis of the distance moved (cm) in the open arms showed 
no difference in motor activity, which should be regarded as a 
marker of exploratory behavior, between Lesion, and Lesion PF 
mice (Kruskal–Wallis, p < 0.0001, followed by Dunn’s post hoc 
comparison) (Figure  4B, right panel). Notably, the reduced 
exploration of the open arm observed in these mice cannot be 
explained by a decrease in overall mobility since this parameter 
was comparable in all groups, during the 5-min test (Figure 4C). 
In line with these observations, Lesion PF mice spent more 
time in the center of the apparatus in comparison to the other 
groups (Kruskal–Wallis, p = 0.01, followed by Dunn’s post hoc) 
(Figure 4A, cf. red color).

In the EPM test, head dip events are regarded as an additional 
indication of reduced anxiety (34). Therefore, we measured 
this behavior with automated tracking of nose-point position 
(Figure 4D). The total duration of head dip events (s) and their 
number were reduced in Lesion mice and these effects were 
reverted by rapamycin, but not by PF-4708671 (for head dip dura-
tion: one-way ANOVA, F3,44 = 3.63, p = 0.02 followed by Fisher’s 
post  hoc comparison; for head dip number: one-way ANOVA, 
F3,44 = 5.51, p = 0.002, followed by Fisher’s post hoc comparison) 
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FigUre 4 | Rapamycin abolishes anxiety-like behavior in a mouse model of Parkinson’s disease. Elevated plus maze (EPM) test performance in Sham mice treated 
with vehicle (n = 12), and Lesion mice treated with vehicle (n = 12), rapamycin (Lesion Rapa, n = 12), or PF-4708671 (Lesion PF, n = 12). (a) Group average heat 
map locations where range of colors was calculated comparing location frequencies over all subjects. (B) Time spent in the EPM open arm expressed as percent of 
total time (left panel) and total distance moved (cm) (right panel) during the 5-min test. ** p = 0.005, * p = 0.03 vs. Sham for time, and *** p = 0.0005, * p = 0.048 
vs. Sham for distance (Kruskal–Wallis test followed by Dunn’s post hoc comparison). (c) Tukey whiskers plots with the median, 10th, 25th, 70th, and 90th 
percentiles showing total distance (m) covered in the EPM. One-way ANOVA showed no differences between groups. Groups and treatments are as indicated in (B). 
(D) Head dip analysis carried out by tracking nose-point position, as an additional marker of anxiety. Triangles indicate the head position during the test with head 
dip events in red. (e) Total duration (s) of head dips (left panel) and number of events (right panel). Data are presented as mean ± SEM. * p = 0.03 and ** p = 0.002 
vs. Sham group (one-way ANOVA followed by Fisher’s post hoc comparison).
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(Figure 4E). No effect was found in the average duration of indi-
vidual head dip events. Altogether, the analyses of anxiety-like 
behaviors indicate that rapamycin, but not PF-4708671, abolishes 
anxiety-like behaviors in experimental parkinsonism.

DiscUssiOn

This study shows that inhibition of mTORC1, or its downstream 
target S6K, counteracts the memory deficit observed in a mouse 
model of early stage PD. It also shows that depression- and anxi-
ety-like behaviors are eliminated by mTORC1 inhibition, but not 
by selective blockade of the mTORC1 downstream target, S6K.

The mouse model used in this study is based on a partial 
bilateral lesion with 6-OHDA, leading to 65–75% loss of 
dopaminergic nigrostriatal innervation and striatal dopamine 
levels (31, 32). These reductions reproduce an early stage of PD, 
characterized by mild changes in gate dynamics (31), which are 

unlikely to interfere with the assessment of cognitive and affective 
parameters.

We found that subchronic administration of rapamycin, which 
effectively reduces mTORC1 activity in the brain (35), abolishes 
the impairment of long-term NOR produced by a partial lesion 
of the dopamine system. Rapamycin acts by preventing the 
phosphorylation of S6K and 4E-BP, which in turn regulate two 
parallel signaling branches implicated in the control of protein 
synthesis, and in multiple aspects of synaptic plasticity and 
memory (11, 12). Our results indicate that selective inhibition 
of S6K with PF-4708671 is sufficient to rescue memory perfor-
mance. Interestingly, PF-4708671 has also been shown to rescue 
hippocampal long-term potentiation and counteract behavioral 
abnormalities in mouse models of Angelman and fragile X syn-
dromes (36, 37).

Rapamycin and PF-4708671 have been previously reported 
to re-establish cognitive performance in pathological models 
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characterized by abnormal mTORC1 signaling and protein trans-
lation (38, 39). Such dysregulation has not been demonstrated in 
the model of PD utilized in this study; thus, mTORC1, or S6K 
inhibition, is likely to correct memory deficits independently of 
a preexisting condition of mTORC1 hyperactivation. In line with 
this possibility, a clinical study showed that administration of 
the rapamycin analog everolimus, following cardiac transplant, 
a condition which is not associated with abnormal mTORC1 
regulation, results in a significant improvement of memory and 
affective performance (40). Interestingly, this effect was proposed 
to occur, at least in part, through reduction of brain inflammation, 
which is commonly associated with neurodegenerative disorders 
including PD (41).

In addition to cognitive impairment, the mouse model utilized 
in this study reproduces affective symptoms typically observed 
in PD patients, such as depression and anxiety. We found that 
rapamycin counteracts the depression-like behavior manifested 
by PD mice as increased immobility in the FST. Notably, we 
observed that the anti-depressant effect of rapamycin is exerted 
by promoting swimming, but not climbing, which is regarded as 
a behavioral component related to motor stimulation rather than 
anti-depressant properties (42).

The finding that rapamycin reduces depression-like behavior 
contrasts with previous studies indicating that reduced mTOR 
signaling is associated with depression (19–22). In this regard, 
our results are more in line with the observation that subchronic 
administration of rapamycin, albeit at higher doses than those 
used in the present study, exerts anti-depressant effects in the FST 
and tail suspension tests (23).

In contrast to the results obtained with rapamycin, we did 
not observe any decrease in immobility time in the FST when 
PD mice were treated with PF-4708671. This suggests that the 
anti-depressant action of rapamycin depends on concomitant 
inhibition of the 4E-BP and S6K signaling cascades or that 
additional alternative mechanisms downstream of mTORC1 
are required. For instance, rapamycin may reduce depression 
by promoting autophagy, which is negatively regulated by 
mTORC1 through inhibition of the mammalian autophagy-
initiating kinase Ulk1 (43). In support of this possibility, 
several agents exerting anti-depressant actions, including 
lithium, citalopram, and trehalose, have been shown to induce 
autophagy (44–46).

Rapamycin counteracts the anxiety-like behavior observed 
in the mouse model of PD. In particular, this drug normalizes 
the time spent by PD mice in the center zone of the OF, thereby 
reducing thigmotaxis. A similar normalization was also observed 

in the EPM test, in which rapamycin increased the propensity 
of PD mice to explore the open arm of the apparatus. Selective 
inhibition of S6K with PF-4708671 did not produce a reduction 
of anxiety-like behaviors comparable to that observed with rapa-
mycin. Thus, PF-4708671 did not reduce thigmotaxis in the OF 
and only partially reverted anxiety-like behavior in the EPM test. 
Although PF-4708671 increased the time spent by PD mice in the 
exposed area of the apparatus, it failed to induce a full explora-
tion of the open arm. Moreover, and in contrast with rapamycin, 
administration of PF-4708671 did not counteract the reduction 
in head dip behavior, which is regarded as another indicator 
of anxiety. Altogether, these results indicate that rapamycin is 
capable of fully rescuing affective behavior in a mouse model 
of PD, and that this effect likely requires blockade of multiple 
downstream targets of mTORC1.

In conclusion, we show that inhibition of mTORC1 with 
rapamycin effectively counteracts memory deficit and mood 
disorders in a model of PD. We also show that inhibition of S6K, 
a well-characterized target of mTORC1, partially reproduces 
these effects by rescuing memory performance. Further studies 
will be necessary to fully characterize the action of rapamycin 
and identify additional components of the mTORC1 signaling 
machinery that may represent additional targets for the treatment 
of psychiatric symptoms associated with PD.

eThics sTaTeMenT

All experiments were carried out in accordance with the guide-
lines of Research Ethics Committee of Karolinska Institutet and 
Swedish Animal Welfare Agency.

aUThOr cOnTriBUTiOns

GF conceived the project. DM and ABO designed experiments 
with contributions from all authors. DM and MB performed 
experiments and statistical analysis. GF and DM wrote the 
manuscript with contributions from all authors. GF supervised 
all aspects of the work.

FUnDing

This study was supported by the Swedish Research Council (grant 
number 2015-02886) and Karolinska Institutet Doctoral (KID) 
program (to GF). DM was supported by the Coordination for the 
Improvement of Higher Education Personnel (CAPES), Ministry 
of Education in Brazil.

reFerences

1. Barone P. Neurotransmission in Parkinson’s disease: beyond dopamine. Eur 
J Neurol (2010) 17:364–76. doi:10.1111/j.1468-1331.2009.02900.x 

2. Chaudhuri KR, Odin P. The challenge of non-motor symptoms in Parkinson’s 
disease. Prog Brain Res (2010) 184:325–41. doi:10.1016/S0079-6123(10)84017-8 

3. Barone P. Treatment of depressive symptoms in Parkinson’s disease. Eur 
J Neurol (2011) 18(Suppl 1):11–5. doi:10.1111/j.1468-1331.2010.03325.x 

4. Svenningsson P, Westman E, Ballard C, Aarsland D. Cognitive impairment 
in patients with Parkinson’s disease: diagnosis, biomarkers, and treatment. 
Lancet Neurol (2012) 11:697–707. doi:10.1016/S1474-4422(12)70152-7 

5. Yang Y, Tang BS, Guo JF. Parkinson’s disease and cognitive impairment. 
Parkinsons Dis (2016) 2016:6734678. doi:10.1155/2016/6734678 

6. Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev (2004) 
18:1926–45. doi:10.1101/gad.1212704 

7. Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell 
(2012) 149:274–93. doi:10.1016/j.cell.2012.03.017 

8. Gingras AC, Raught B, Gygi SP, Niedzwiecka A, Miron M, Burley SK, et al. 
Hierarchical phosphorylation of the translation inhibitor 4E-BP1. Genes Dev 
(2001) 15:2852–64. doi:10.1101/gad.912401 

9. Raught B, Peiretti F, Gingras AC, Livingstone M, Shahbazian D, Mayeur GL,  
et  al. Phosphorylation of eucaryotic translation initiation factor 4B Ser422 

27

https://www.frontiersin.org/Neurology/
https://www.frontiersin.org
https://www.frontiersin.org/Neurology/archive
https://doi.org/10.1111/j.1468-1331.2009.02900.x
https://doi.org/10.1016/S0079-6123(10)84017-8
https://doi.org/10.1111/j.1468-1331.2010.03325.x
https://doi.org/10.1016/S1474-4422(12)70152-7
https://doi.org/10.1155/2016/6734678
https://doi.org/10.1101/gad.1212704
https://doi.org/10.1016/j.cell.2012.03.017
https://doi.org/10.1101/gad.912401


Masini et al. Rapamycin Reduces Non-Motor Symptoms in PD

Frontiers in Neurology | www.frontiersin.org April 2018 | Volume 9 | Article 208

is modulated by S6 kinases. EMBO J (2004) 23:1761–9. doi:10.1038/
sj.emboj.7600193 

10. Holz MK, Ballif BA, Gygi SP, Blenis J. mTOR and S6K1 mediate assembly of 
the translation preinitiation complex through dynamic protein interchange 
and ordered phosphorylation events. Cell (2005) 123:569–80. doi:10.1016/j.
cell.2005.10.024 

11. Costa-Mattioli M, Sossin WS, Klann E, Sonenberg N. Translational control 
of long-lasting synaptic plasticity and memory. Neuron (2009) 61:10–26. 
doi:10.1016/j.neuron.2008.10.055 

12. Santini E, Huynh TN, Klann E. Mechanisms of translation control 
underlying long-lasting synaptic plasticity and the consolidation of long-
term memory. Prog Mol Biol Transl Sci (2014) 122:131–67. doi:10.1016/
B978-0-12-420170-5.00005-2 

13. Ehninger D, Han S, Shilyansky C, Zhou Y, Li W, Kwiatkowski DJ, et al. Reversal 
of learning deficits in a Tsc2± mouse model of tuberous sclerosis. Nat Med 
(2008) 14:843–8. doi:10.1038/nm1788 

14. Ehninger D. From genes to cognition in tuberous sclerosis: implications for 
mTOR inhibitor-based treatment approaches. Neuropharmacology (2013) 
68:97–105. doi:10.1016/j.neuropharm.2012.05.015 

15. Sharma A, Hoeffer CA, Takayasu Y, Miyawaki T, Mcbride SM, Klann E, et al. 
Dysregulation of mTOR signaling in fragile X syndrome. J Neurosci (2010) 
30:694–702. doi:10.1523/JNEUROSCI.3696-09.2010 

16. Ronesi JA, Huber KM. Homer interactions are necessary for metabotropic 
glutamate receptor-induced long-term depression and translational activa-
tion. J Neurosci (2008) 28:543–7. doi:10.1523/JNEUROSCI.5019-07.2008 

17. Troca-Marin JA, Alves-Sampaio A, Montesinos ML. An increase in basal 
BDNF provokes hyperactivation of the Akt-mammalian target of rapa-
mycin pathway and deregulation of local dendritic translation in a mouse 
model of Down’s syndrome. J Neurosci (2011) 31:9445–55. doi:10.1523/
JNEUROSCI.0011-11.2011 

18. Andrade-Talavera Y, Benito I, Casanas JJ, Rodriguez-Moreno A, Montesinos 
ML. Rapamycin restores BDNF-LTP and the persistence of long-term memory 
in a model of down’s syndrome. Neurobiol Dis (2015) 82:516–25. doi:10.1016/j.
nbd.2015.09.005 

19. Howell KR, Kutiyanawalla A, Pillai A. Long-term continuous corticosterone 
treatment decreases VEGF receptor-2 expression in frontal cortex. PLoS One 
(2011) 6:e20198. doi:10.1371/journal.pone.0020198 

20. Jernigan CS, Goswami DB, Austin MC, Iyo AH, Chandran A, Stockmeier CA, 
et al. The mTOR signaling pathway in the prefrontal cortex is compromised in 
major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry (2011) 
35:1774–9. doi:10.1016/j.pnpbp.2011.05.010 

21. Duman RS, Li N, Liu RJ, Duric V, Aghajanian G. Signaling pathways underly-
ing the rapid antidepressant actions of ketamine. Neuropharmacology (2012) 
62:35–41. doi:10.1016/j.neuropharm.2011.08.044 

22. Yu JJ, Zhang Y, Wang Y, Wen ZY, Liu XH, Qin J, et al. Inhibition of calcineurin 
in the prefrontal cortex induced depressive-like behavior through mTOR sig-
naling pathway. Psychopharmacology (Berl) (2013) 225:361–72. doi:10.1007/
s00213-012-2823-9 

23. Cleary C, Linde JA, Hiscock KM, Hadas I, Belmaker RH, Agam G, et  al. 
Antidepressive-like effects of rapamycin in animal models: implications for 
mTOR inhibition as a new target for treatment of affective disorders. Brain Res 
Bull (2008) 76:469–73. doi:10.1016/j.brainresbull.2008.03.005 

24. Pearce LR, Alton GR, Richter DT, Kath JC, Lingardo L, Chapman J, et  al. 
Characterization of PF-4708671, a novel and highly specific inhibitor of 
p70 ribosomal S6 kinase (S6K1). Biochem J (2010) 431:245–55. doi:10.1042/
BJ20101024 

25. Franklin KBJ, Paxinos G. The Mouse Brain in Stereotaxic Coordinates. San 
Diego: Academic Press (1997).

26. Simon P, Dupuis R, Costentin J. Thigmotaxis as an index of anxiety in mice. 
Influence of dopaminergic transmissions. Behav Brain Res (1994) 61:59–64. 
doi:10.1016/0166-4328(94)90008-6 

27. Antunes M, Biala G. The novel object recognition memory: neurobiology, test 
procedure, and its modifications. Cogn Process (2012) 13:93–110. doi:10.1007/
s10339-011-0430-z 

28. Grayson B, Leger M, Piercy C, Adamson L, Harte M, Neill JC. Assessment 
of disease-related cognitive impairments using the novel object recognition 
(NOR) task in rodents. Behav Brain Res (2015) 285:176–93. doi:10.1016/j.
bbr.2014.10.025 

29. Lister RG. The use of a plus-maze to measure anxiety in the mouse. 
Psychopharmacology (Berl) (1987) 92:180–5. doi:10.1007/BF00177912 

30. Castagne V, Moser PC, Porsolt RD. Preclinical behavioral models for predict-
ing antipsychotic activity. Adv Pharmacol (2009) 57:381–418. doi:10.1016/
S1054-3589(08)57010-4 

31. Bonito-Oliva A, Masini D, Fisone G. A mouse model of non-motor symptoms in 
Parkinson’s disease: focus on pharmacological interventions targeting affective 
dysfunctions. Front Behav Neurosci (2014) 8:290. doi:10.3389/fnbeh.2014.00290 

32. Bonito-Oliva A, Pignatelli M, Spigolon G, Yoshitake T, Seiler S, Longo F, 
et  al. Cognitive impairment and dentate gyrus synaptic dysfunction in 
experimental parkinsonism. Biol Psychiatry (2014) 75:701–10. doi:10.1016/j.
biopsych.2013.02.015 

33. Masini D, Lopes-Aguiar C, Bonito-Oliva A, Papadia D, Andersson R, Fisahn A,  
et al. The histamine H3 receptor antagonist thioperamide rescues circadian 
rhythm and memory function in experimental parkinsonism. Transl 
Psychiatry (2017) 7:e1088. doi:10.1038/tp.2017.58 

34. Walf AA, Frye CA. The use of the elevated plus maze as an assay of anxi-
ety-related behavior in rodents. Nat Protoc (2007) 2:322–8. doi:10.1038/
nprot.2007.44 

35. Santini E, Heiman M, Greengard P, Valjent E, Fisone G. Inhibition of mTOR 
signaling in Parkinson’s disease prevents L-DOPA-induced dyskinesia. Sci 
Signal (2009) 2:ra36. doi:10.1126/scisignal.2000308 

36. Bhattacharya A, Mamcarz M, Mullins C, Choudhury A, Boyle RG, Smith DG, 
et al. Targeting translation control with p70 S6 kinase 1 inhibitors to reverse 
phenotypes in fragile X syndrome mice. Neuropsychopharmacology (2016) 
41:1991–2000. doi:10.1038/npp.2015.369 

37. Sun J, Liu Y, Tran J, O’neal P, Baudry M, Bi X. mTORC1-S6K1 inhibition or 
mTORC2 activation improves hippocampal synaptic plasticity and learning in 
Angelman syndrome mice. Cell Mol Life Sci (2016) 73:4303–14. doi:10.1007/
s00018-016-2269-z 

38. Troca-Marin JA, Alves-Sampaio A, Montesinos ML. Deregulated mTOR-me-
diated translation in intellectual disability. Prog Neurobiol (2012) 96:268–82. 
doi:10.1016/j.pneurobio.2012.01.005 

39. Costa-Mattioli M, Monteggia LM. mTOR complexes in neurodevelopmental 
and neuropsychiatric disorders. Nat Neurosci (2013) 16:1537–43. doi:10.1038/
nn.3546 

40. Lang UE, Heger J, Willbring M, Domula M, Matschke K, Tugtekin SM. 
Immunosuppression using the mammalian target of rapamycin (mTOR) 
inhibitor everolimus: pilot study shows significant cognitive and affective 
improvement. Transplant Proc (2009) 41:4285–8. doi:10.1016/j.transproceed. 
2009.08.050 

41. Phani S, Loike JD, Przedborski S. Neurodegeneration and inflammation in 
Parkinson’s disease. Parkinsonism Relat Disord (2012) 18(Suppl 1):S207–9. 
doi:10.1016/S1353-8020(11)70064-5 

42. Costa AP, Vieira C, Bohner LO, Silva CF, Santos EC, De Lima TC, et al. A proposal 
for refining the forced swim test in Swiss mice. Prog Neuropsychopharmacol 
Biol Psychiatry (2013) 45:150–5. doi:10.1016/j.pnpbp.2013.05.002 

43. Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy 
through direct phosphorylation of Ulk1. Nat Cell Biol (2011) 13:132–41. 
doi:10.1038/ncb2152 

44. Sarkar S, Floto RA, Berger Z, Imarisio S, Cordenier A, Pasco M, et al. Lithium 
induces autophagy by inhibiting inositol monophosphatase. J Cell Biol (2005) 
170:1101–11. doi:10.1083/jcb.200504035 

45. Zschocke J, Zimmermann N, Berning B, Ganal V, Holsboer F, Rein T. 
Antidepressant drugs diversely affect autophagy pathways in astrocytes and neu-
rons – dissociation from cholesterol homeostasis. Neuropsychopharmacology 
(2011) 36:1754–68. doi:10.1038/npp.2011.57 

46. Kara NZ, Toker L, Agam G, Anderson GW, Belmaker RH, Einat H. 
Trehalose induced antidepressant-like effects and autophagy enhancement 
in mice. Psychopharmacology (Berl) (2013) 229:367–75. doi:10.1007/
s00213-013-3119-4 

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Copyright © 2018 Masini, Bonito-Oliva, Bertho and Fisone. This is an open-access 
article distributed under the terms of the Creative Commons Attribution License (CC 
BY). The use, distribution or reproduction in other forums is permitted, provided 
the original author(s) and the copyright owner are credited and that the original 
publication in this journal is cited, in accordance with accepted academic practice. No 
use, distribution or reproduction is permitted which does not comply with these terms.

28

https://www.frontiersin.org/Neurology/
https://www.frontiersin.org
https://www.frontiersin.org/Neurology/archive
https://doi.org/10.1038/sj.emboj.7600193
https://doi.org/10.1038/sj.emboj.7600193
https://doi.org/10.1016/j.cell.2005.10.024
https://doi.org/10.1016/j.cell.2005.10.024
https://doi.org/10.1016/j.neuron.2008.10.055
https://doi.org/10.1016/B978-0-12-420170-5.00005-2
https://doi.org/10.1016/B978-0-12-420170-5.00005-2
https://doi.org/10.1038/nm1788
https://doi.org/10.1016/j.neuropharm.2012.05.015
https://doi.org/10.1523/JNEUROSCI.3696-09.2010
https://doi.org/10.1523/JNEUROSCI.5019-07.2008
https://doi.org/10.1523/JNEUROSCI.0011-11.2011
https://doi.org/10.1523/JNEUROSCI.0011-11.2011
https://doi.org/10.1016/j.nbd.2015.09.005
https://doi.org/10.1016/j.nbd.2015.09.005
https://doi.org/10.1371/journal.pone.0020198
https://doi.org/10.1016/j.pnpbp.2011.05.010
https://doi.org/10.1016/j.neuropharm.2011.08.044
https://doi.org/10.1007/s00213-012-2823-9
https://doi.org/10.1007/s00213-012-2823-9
https://doi.org/10.1016/j.brainresbull.2008.03.005
https://doi.org/10.1042/BJ20101024
https://doi.org/10.1042/BJ20101024
https://doi.org/10.1016/0166-4328(94)90008-6
https://doi.org/10.1007/s10339-011-0430-z
https://doi.org/10.1007/s10339-011-0430-z
https://doi.org/10.1016/j.bbr.2014.10.025
https://doi.org/10.1016/j.bbr.2014.10.025
https://doi.org/10.1007/BF00177912
https://doi.org/10.1016/S1054-3589(08)57010-4
https://doi.org/10.1016/S1054-3589(08)57010-4
https://doi.org/10.3389/fnbeh.2014.00290
https://doi.org/10.1016/j.biopsych.2013.02.015
https://doi.org/10.1016/j.biopsych.2013.02.015
https://doi.org/10.1038/tp.2017.58
https://doi.org/10.1038/nprot.2007.44
https://doi.org/10.1038/nprot.2007.44
https://doi.org/10.1126/scisignal.2000308
https://doi.org/10.1038/npp.2015.369
https://doi.org/10.1007/s00018-016-2269-z
https://doi.org/10.1007/s00018-016-2269-z
https://doi.org/10.1016/j.pneurobio.2012.01.005
https://doi.org/10.1038/nn.3546
https://doi.org/10.1038/nn.3546
https://doi.org/10.1016/j.transproceed.
2009.08.050
https://doi.org/10.1016/j.transproceed.
2009.08.050
https://doi.org/10.1016/S1353-8020(11)70064-5
https://doi.org/10.1016/j.pnpbp.2013.05.002
https://doi.org/10.1038/ncb2152
https://doi.org/10.1083/jcb.200504035
https://doi.org/10.1038/npp.2011.57
https://doi.org/10.1007/s00213-013-3119-4
https://doi.org/10.1007/s00213-013-3119-4
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


April 2018 | Volume 9 | Article 228

Review
published: 09 April 2018

doi: 10.3389/fneur.2018.00228

Frontiers in Neurology | www.frontiersin.org

Edited by: 
Graziella Madeo,  

National Institutes of Health  
(NIH), United States

Reviewed by: 
Matteo Bologna,  

Sapienza Università di Roma, Italy  
Paolo Calabresi,  

University of Perugia, Italy

*Correspondence:
Yulan Xiong 

yulanxiong@ksu.edu; 
Jianzhong Yu 

jianzhongyu@ksu.edu

Specialty section: 
This article was submitted to 

Movement Disorders,  
a section of the journal  
Frontiers in Neurology

Received: 09 January 2018
Accepted: 23 March 2018

Published: 09 April 2018

Citation: 
Xiong Y and Yu J (2018) Modeling 

Parkinson’s Disease  
in Drosophila: What Have We 
Learned for Dominant Traits? 

Front. Neurol. 9:228. 
doi: 10.3389/fneur.2018.00228

Modeling Parkinson’s Disease  
in Drosophila: what Have we 
Learned for Dominant Traits?
Yulan Xiong* and Jianzhong Yu*

Department of Anatomy and Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS,  
United States

Parkinson’s disease (PD) is recognized as the second most common neurodegenerative 
disorder after Alzheimer’s disease. Unfortunately, there is no cure or proven disease 
modifying therapy for PD. The recent discovery of a number of genes involved in both 
sporadic and familial forms of PD has enabled disease modeling in easily manipulable 
model systems. Various model systems have been developed to study the pathobiology 
of PD and provided tremendous insights into the molecular mechanisms underlying dopa
minergic neurodegeneration. Among all the model systems, the power of Drosophila has 
revealed many genetic factors involved in the various pathways, and provided potential 
therapeutic targets. This review focuses on Drosophila models of PD, with emphasis 
on how Drosophila models have provided new insights into the mutations of dominant 
genes causing PD and what are the convergent mechanisms.

Keywords: Parkinson’s disease, Drosophila, modeling, leucine-rich repeat kinase 2, α-synuclein, glucocerebrosidase, 
vacuolar protein sorting 35

iNTRODUCTiON

Parkinson’s disease (PD) is recognized as the most common movement disorder and the second 
most common neurodegenerative disorder after Alzheimer’s disease (1). The classical motor features 
including akinesia, resting tremor, muscle rigidity, and postural imbalance are clinical symptoms 
in PD patients, and the none-motor features including cognitive impairment, psychiatric symp-
toms, sleep disorders, autonomic dysfunction, pain, and fatigue also frequently occur (1). The 
progressive degeneration of dopaminergic (DA) neurons in the substantia nigra pars compacta 
is the cause for the cardinal symptoms (2). Although the majority of PD cases appear to be spo-
radic, the identification of causative genes that cause familial forms of PD has led to important 
insights into the pathogenesis of this progressive neurodegenerative disease (3). To date, genes 
encoding α-synuclein (α-Syn), leucine-rich repeat kinase 2 (LRRK2), Parkin, phosphatase and 
tensin homolog deleted on chromosome 10-induced putative kinase 1 (PINK1), DJ-1, vacuolar 
protein sorting 35 (VPS35), and glucocerebrosidase (GBA), among others are associated with 
genetic forms of PD that closely resemble idiopathic PD (3–8). Among these genes, LRRK2,  
α-synuclein, GBA, and VPS35 are the dominant traits, and parkin, DJ-1, and PINK1 are the recessive 
genes. Various model systems have been developed to study the function of PD-causing genes 

Abbreviations: PD, Parkinson’s disease; LRRK2, leucine-rich repeat kinase 2; PINK1, phosphatase and tensin homolog 
deleted on chromosome 10-induced putative kinase 1; VPS35, vacuolar protein sorting 35; GBA, glucocerebrosidase; DA, 
dopaminergic; SNpc, substantia nigra pars compacta; EMS, ethyl methanesulfonate; SJ1, synaptojanin 1; EndoA, endophilin 
A; GSK3β, glycogen synthase kinase 3β; GWASs, genome-wide association studies; LBs, Lewy bodies; α-Syn, α-synuclein; UPS, 
ubiquitin-protease system; HDAC6, histone deacetylase 6; TRAP1, tumor necrosis factor receptor associated protein-1; ER, 
endoplasmic reticulum; GlcSph, glucosylceramide (GlcCer) and glucosylsphingosine; GD, Gaucher’s disease; UPR, unfolded 
protein response.
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and provided tremendous insights into the molecular mecha-
nisms underlying DA neurodegeneration. While few of genetic 
models in rodents recapitulate the cardinal features of PD, the 
power of Drosophila has revealed many genetic factors involved 
in the various pathways, and provided potential therapeutic 
targets. Here, we focus on the dominant genes causing PD.  
We discuss how Drosophila models have provided new insights 
into the mutations of dominant genes causing PD and what are 
the convergent mechanisms.

Drosophila AS A MODeL  
iN THe STUDY OF PD

Drosophila melanogaster, as a non-mammalian animal, provides a 
simple, yet powerful, in vivo system to model PD pathobiology. 
Drosophila has well-defined nerve system. Particularly, in adult 
brain, Drosophila has distinct DA neuronal clusters including 
about 200 DA neurons and displays complicated behaviors 
mimicking some human behaviors which are DA dependent. 
Both transgenic and knockout approaches have been utilized 
to develop Drosophila models of PD. The Drosophila Gal4/UAS 
system is a powerful tool for targeted transgene expression and 
has been used to direct selective expression of mutant PD genes. 
As a simple organism, Drosophila provides great advantages 
in conducting genome-wide modifier screenings and high-
throughput drug screenings. Modifier screenings allow analyses 
of genome-wide genetic interactions based on the modification 
of given phenotypes and further identify components of diverse 
signaling pathways involved in PD pathogenesis.

Several steps can be taken to establish and utilize Drosophila 
models to study PD:

 (1) Develop Drosophila lines carrying mutant PD genes,
 (2) Characterize the phenotypes of the Drosophila models and 

determine whether they recapitulate the pathogenesis of the 
disease,

 (3) Explore the molecular mechanisms underlying the pheno types,
 (4) Identify genetic modifiers that suppress or enhance the 

disease phenotypes through genetic screenings, and dissect 
the signaling pathways and pathogenic mechanisms involved 
in pathogenesis,

 (5) Screen for drug candidates,
 (6) Study the impact of environmental (e.g., toxin) or aging  

influence in combination with genetic factors on the patho-
genesis of PD.

MODeLiNG LRRK2-ASSOCiATeD  
PD iN Drosophila

Mutations in the LRRK2 gene (PARK8, dardarin) is the most 
common known genetic cause of PD and cause late-onset, 
autosomal dominant PD with age-related penetrance and clini-
cal features identical to late-onset sporadic PD (9, 10). LRRK2 
is a large multifunctional protein about 280 kD. It includes two 
important enzymatic domains, which are a GTPase domain and 
a kinase domain, and several protein interaction domains including 
a LRRK2-specific repeat domain, a leucine-rich repeat, and 

a WD40 repeat (11–13). Disease causing mutations are found 
in both enzymatic domains, indicating their importance in 
disease pathogenesis (11, 12). The most prevalent LRRK2 
mutation, G2019S, within the kinase domain, accounts for ~1% 
of sporadic late-onset PD and 5–6% of familial PD worldwide 
(14). In North African Arabs and Ashkenazi Jews, the frequency 
of LRRK2–G2019S mutation can be as high as 30–40% in PD 
patients (15, 16). Patients with the G2019S mutation exhibit 
Lewy bodies (LBs) in most cases and incomplete penetrance even  
at advanced ages (1). However, mutations in the GTPase domain 
such as R1441 C/G often vary on LB pathology and exhibit nearly 
complete penetrance (9, 10). This suggests that these pathogenic 
mutations may cause disease via distinct pathogenic pathways/
mechanisms. Tremendous work suggests LRRK2 GTPase and 
kinase enzyme activities may reciprocally regulate each other to 
direct LRRK2 functions in diverse cellular signaling pathways  
(17, 18). LRRK2 is demonstrated to be involved in protein trans-
lation, vesicle trafficking, mitochondrial function, lysosomal–
autophagy, and cytoskeletal dynamics (13, 18–22). However, how 
LRRK2 mutations cause neurodegeneration in PD still need to be 
defined. To this end, various animal models of LRRK2-associated 
PD have been generated (23–25). Among these models, LRRK2 
Drosophila models have provided unique and critical insights on 
LRRK2 functions (Table 1).

LRRK2 Drosophila Models
LRRK2 Knockout Drosophila Models
Drosophila has a single human LRRK2 homolog, dLRRK. Resi-
dues changed by PD-causing mutations in human LRRK2 are 
highly conserved in dLRRK (Table 1). To study the physiological 
function of endogenous LRRK2, dLRRK loss-of-function mutant  
fly lines have been generated. One major line used in the stud-
ies is LRRKe03680 from the Exelixis Collection at the Harvard 
Medical School. It was generated with piggyBac element inser-
tion in the intron between exon 5 and exon 6 of dLRRK gene.  
In characterization of dLRRK knockout Drosophila model on 
PD related pathogenesis, one study reported knockout of dLRRK 
exhibited a decrease in tyrosine hydroxylase (TH) immunostain-
ing, shrunken DA neurons, and locomotor activity deficits (26), 
while three studies reported that the homozygous mutant flies 
developed unchanged number and pattern of DA neurons as 
well as a normal life span (27–29). Furthermore, the sensitivity 
of those dLRRK2 knockout flies response to oxidative stress have 
been examined. Wang et al. showed that dLRRK mutant flies are 
selectively sensitive to H2O2 (27). By contrast, a report by Imai 
et  al. demonstrated that dLRRK knockout flies are relatively 
resistant to paraquat and H2O2 treatment (28). Thus, the exact 
role of dLRRK in PD-related pathogenesis remains elusive.  
As the majority of studies supported that dLRRK is not required 
for DA neurons survival and this is consistent with the results from 
LRRK2 knockout rodents (mice or rats), the general agreement is 
that LRRK2-induced neuronal toxicity is from a gain-of-function 
but not a loss-of-function mechanism.

LRRK2 Transgenic Drosophila Models
Patients carrying heterozygou s or homozygous LRRK2 pathogenic 
mutations have similar disease risk and progression, supporting 
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TAbLe 1 | Drosophila models for leucinerich repeat kinase 2 (LRRK2)associated Parkinson’s disease.

Genetic 
manipulations

References LRRK2 variants Neurodegeneration Motor activities/life span Other functions

Knockout (26) dLRRK Tyrosine hydroxylase (TH) 
neurons: no changes
TH neurons shrunken  
TH staining ↓

Locomotor activity ↓ ND

(27) dLRRK No changes Life span ↓ Sensitive to hydrogen peroxide, 
not to paraquat, rotenone,  
and βmercaptoethanol

(28) dLRRK TH neurons: no  
changes; DA content ↑

Life span ↓
Fertility ↓  
Malformed abdomen

Hydrogen peroxide ↓  
Paraquat ↓

(29) dLRRK ND Locomotor activity ↓ ND

Transgenic (26) dLRRK No changes No changes ND

(30) hLRRK2 TH neurons ↓
No response to lDOPA
Retinal degeneration

Locomotor activity ↓
Life span ↓
Response to lDOPA

ND

hG2019S TH neurons ↓↓
No response to lDOPA
Retinal degeneration

Locomotor activity ↓
Life span ↓
Response to lDOPA

ND

(28) dLRRK No changes ND No changes

dY1383C
dI1915T

TH neurons: no changes
TH staining ↓
DA content ↓

ND Hydrogen peroxide ↑
Paraquat ↑

(31) hLRRK2 (at 29°C) TH neurons ↓
Retinal degeneration

Locomotor activity: 10 days ↓
20 days ↑
Life span ↑
Fertility ↑

Rotenone ↑

hI1122V (at 29°C)
hY1699C (at 29°C)
hI2020T (at 29°C)

TH neurons ↓ the most  
with I2020T
Retinal degeneration

Locomotor activity: 10 days ↓
20 days ↑
Life span ↑ in hY1699C, hI2020T
Fertility ↑ in hI1122V, hI2020T

Rotenone ↑

(32) hLRRK2 No changes No changes No changes

hG2019S
hY1699C
hG2385R

TH neurons ↓ Locomotor activity ↓
Life span ↓

hG2019S, hG2385R ↑
hY1699C no change

(33) hLRRK2 ND Locomotor activity:  
no changes
Life span ↓

Dendritic ends ↓

hG2019S TH neurons ↓ Locomotor activity ↓↓
Life span ↓↓

Dendritic ends ↓↓
Axon degeneration ↑

hR1441C ND Locomotor activity ↓ Dendritic ends ↓

hG2385R Life span ↓

(34) hLRRK2 ND ND Visual function: no changes

hG2019S ND ND Visual function ↓

hI1122V
hR1441C
hY1383C
hI1915T
hI2020T
hG2385R
hG2019/K
1906M

ND ND Visual function: no changes

(Continued )
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Genetic 
manipulations

References LRRK2 variants Neurodegeneration Motor activities/life span Other functions

(35) hLRRK2
hG2019S

ND Locomotor activity: no changes Axon transport: no changes

hR1441C
hY1699C

ND Locomotor activity ↓ Axon transport ↓

dR1069C
dY1383C

ND Locomotor activity ↓ Axon transport ↓

(36) hG2019S
hI2020T

ND Bradykinesia, akinesia, hypokinesia,  
and increased tremor

Proboscis extension response ↓

hR1441C
hG2019/K  
1906M

ND No changes No changes

ND, not determined; O/E, overexpression; ↑, increased; ↓, decreased.

TAbLe 1 | Continued
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LRRK2 dominant nature (1) (Table  1). Indeed, in contrast to 
dLRRK loss-of-function mutant, overexpression of either human 
LRRK2 (hLRRK2) or dLRRK pathogenic mutations in flies 
leads to an age-dependent DA neuronal loss and DA-responsive 
locomotor deficits (28, 30–33, 36, 37). Notably, different LRRK2 
mutations cause different phenotypes of the degeneration. One 
study demonstrated that dopaminergic expression of LRRK2 
G2019S led to non-autonomous neurodegeneration in visual 
system (34). This degeneration is specific to G2019S mutation 
and dependent on kinase activity. Another report showed that 
GTPase-COR domain mutations R1441C or Y1699C, but not 
G2019S, preferentially inhibits axonal transport in Drosophila 
and causes locomotor deficits (35). This suggests that the defects 
depend on LRRK2 GTPase activity (35). Recently, Cording et al. 
reported that expressing either the G2019S or I2020T but not 
R1441C, or kinase dead LRRK2 in DA neurons reduces proboscis 
extension response, with bradykinesia, akinesia, and tremor (36). 
These studies support the possibility that different LRRK2 patho-
genic mutations act at distinct pathways and cause disease via 
distinct pathogenic mechanisms. The LRRK2 transgenic fly mod-
els support the gain-of-function of LRRK2 in PD pathogenesis.

LRRK2 Drosophila Models Reveal  
LRRK2 Functions in PD
LRRK2 Functions in Vesicular Trafficking
Vesicular trafficking has been implicated to play crucial roles 
in neurodegeneration (38). LRRK2 Drosophila models have 
provided extensive evidence of potential roles for LRRK2 in vari-
ous vesicle trafficking processes including endocytosis, ER-Golgi 
and retromer trafficking, and autophagy–lysosomal pathways 
(39). dLRRK was reported to localize to the membranes of late 
endosomes and lysosomes, physically and functionally interacts 
with Rab7, a key mediator of late endosomal transport and 
lysosome biogenesis (40). Nonsense alleles in dLRRK induced by 
ethyl methanesulfonate  causes striking defects in the autophagy–
lysosomal pathways (41). Furthermore, LRRK2 has been shown 
to interact with clathrin-light chains to limit Rac1 activation on 
endosomes (42). Importantly, studies in Drosophila show that 
LRRK2 phosphorylates endophilin A (EndoA), a central compo-
nent of synaptic endocytosis, and synaptojanin 1 (SJ1), a synaptic 

vesicle protein which was recently linked to recessive PD (37, 
43–45). LRRK2 regulates EndoA and SJ1 by phosphorylation at 
synapses, which facilitates synaptic endocytosis through clathrin 
uncoating at the synaptic terminals. In addition, LRRK2’s role 
in retromer and ER–Golgi trafficking was highlighted by genetic 
interactions between LRRK2 and VPS35, Rab7L1, ArfGAP1 in 
Drosophila (46–49). Moreover, dLRRK has been demonstrated 
to regulate axonal transport and Golgi outpost dynamics in 
dendrites through the golgin Lava lamp (35, 50). Taken together, 
these studies strongly support the roles of LRRK2 in vesicular 
trafficking processes, which may provide potential mechanisms 
for α-Syn accumulation in LRRK2-associated PD.

LRRK2 Functions in Protein Translation Machinery
The first evidence of LRRK2 function in protein translation was 
demonstrated in Drosophila (28). In this study, both dLRRK 
and human LRRK2 can phosphorylate eukaryotic initiation 
factor 4E-binding protein (4E-BP), a negative regulator of 
eukaryotic initiation factor 4E-mediated protein translation and 
a key mediator downstream of mTOR signaling to various stress 
responses (28). The notion that LRRK2 functions in protein 
translation was further strengthened by the study from the same 
group that LRRK2 interacts with the microRNA pathway to 
regulate protein synthesis (51). However, these studies were done 
in Drosophila system and need to be extended to mammalian 
systems. Subsequently, Martin and colleagues, using LRRK2 
Drosophila model and human DA neurons, demonstrated that 
LRRK2 phosphorylates ribosome protein s15 to regulate protein 
translation and mediate LRRK2-induced neurodegeneration 
(52). Recently, Penney et al. showed that LRRK2 targets Furin1 to 
promote cap-dependent translation, which is required for LRRK2 
synaptic function (53). Taken together, these findings support 
convergent evidence that LRRK2 regulates protein translation 
machinery directly or indirectly, which could be a potential 
therapeutic avenue for LRRK2-associated PD.

LRRK2 Functions in Dendritic Degeneration  
and Synaptic Dysfunction
Mutant LRRK2 functions in dendritic degeneration were 
first revealed by the evidence that LRRK2 G2019S induces 
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mislocalization of the axonal protein tau in dendrites and in 
turn causes dendrite degeneration (33). This may act through 
tau phosphorylation by the glycogen synthase kinase 3β, which is 
promoted by LRRK2 G2019S (33). In addition, LRRK2 regulates 
synaptic morphology through phosphorylation of Futsch at the 
presynaptic compartments and interaction with 4E-BP at the 
postsynaptic site of the Drosophila neuromuscular junctions 
(NMJs) (54). Furthermore, a recent finding indicates that loss 
of dLRRK disrupts the retrograde synaptic compensation while 
overexpression of either dLRRK or hLRRK2 can induce a retro-
grade enhancement of presynaptic release (53). This regulation 
of synaptic homeostasis might act through a mechanism that 
LRRK2 promotes cap-dependent translation (53). These studies 
suggest that LRRK2 might regulate synaptic function in neural 
circuits.

LRRK2 Drosophila Models as Platforms  
to identify Potential Therapeutic 
Compounds
The genetic LRRK2 Drosophila models provide promising 
in vivo platforms for inhibitor identification and validation, and 
drug development. It has shown that sorafenib, curcumin, or 
GW5074 significantly suppressed LRRK2 PD-like phenotypes 
in Drosophila (55, 56). Melatonin attenuates hLRRK2-induced 
synaptic dysfunction and sleep disorders (57). Although candi-
date compounds have been used in these studies, they open the 
possibility of performing compound screens. Recently, Lin et al. 
identified compounds from the FDA-approved licensed drug 
library that could rescue LRRK2-induced neurite degeneration, 
motor disability, and DA neuron loss (58). Of 640 compounds, 
lovastatin had the highest lipophilicity, which facilitates crossing 
the blood–brain barrier (58). These studies provide significant 
steps toward the development of new drugs for treatment of 
LRRK2-associated PD.

MODeLiNG α-Syn-ASSOCiATeD  
PD iN Drosophila

The discovery of the first missense mutation A53T in the SNCA 
gene in 1997 (59) and the insoluble aggregated α-Syn forms as 
the major component of LBs, a pathological hallmark of PD 
(60), heralded a new era in PD research. Since then, more SNCA 
pathogenic mutations as well as multiplications of SNCA have 
been identified as genetic causes of PD [review in Ref (61).]. 
In addition, multiple genome-wide association studies have 
identified SNCA as a risk factor for sporadic PD (62, 63). These 
findings revealed a central role of SNCA in PD. SNCA encodes 
α-Syn protein, a small protein with 140 amino acid residues.  
It is highly soluble and enriched at presynaptic terminals, where 
it binds lipids and regulates synaptic vesicle release and it has 
a propensity of self-aggregate to form oligomeric species and 
LB-like fibrils (64, 65). Multiple evidence suggest that oligomeric 
species of α-Syn, which are precursors for higher-order fibrillar 
aggregates in LBs, are pathogenically toxic and the culprits for 
neuronal degeneration (66). Recently, prion-like behavior of  
α-Syn has attracted a lot of attention and been debated in playing 

an important role in the pathogenesis of PD (67, 68). Although 
Drosophila have no homolog of SNCA, pathogenic mutations  
and multiplication of SNCA causing PD with dominant inherit-
ance pattern implicates a toxic gain-of-function mechanism, 
which led to suitable transgenic modeling in fly by overexpressing 
wild-type or mutant α-Syn (69) (Table 2).

α-Syn Transgenic Drosophila Models
Feany and Bender first developed α-Syn transgenic Drosophila 
models by overexpressing either wild-type or familial mutants 
A53T and A30P of human α-Syn using the conventional Gal4/
USA expression system (70). These models recapitulate the essen-
tial features of PD: adult-onset loss of DA neurons, filamentous 
intraneuronal inclusions containing α-Syn and locomotor dys-
function (70). In an independent study, Auluck et al. confirmed 
the phenotypes reported by Feany and Bender (71). In addition to 
these phenotypes, Chen et al. demonstrated olfactory deficits and 
elevated anxiety in a α-Syn transgenic Drosophila model expressing 
A30P (79, 80). There are deficits in two out of three olfactory 
modalities, odor discrimination and tested-olfactory acuity. A30P 
expression in dopamine neurons is necessary for both acuity and 
discrimination deficits. Gajula Balija et al. showed the non-motor 
symptoms such as an abnormal sleep-like behavior, locomotor 
deficits, and abnormal circadian periodicity when targeted 
expression of pre-fibrillar α-Syn mutants in a subset of seroton-
ergic and DA neurons (78). In 2017, the Feany group expended 
the scope of their previous α-Syn transgenic Drosophila models 
using a binary expression system, the Q system, which relies on 
the transcriptional activation by the Neurospora protein QF2 to 
activate transgene expression (81). This new α-Syn Drosophila 
model shows robust neurodegeneration, early-onset locomo-
tor deficits, and abundant α-Syn aggregation (81). Although 
there is some discrepancy over the strength of the phenotypes  
(73, 82), the α-Syn transgenic Drosophila models are widely used 
to delineate underlying pathogenic mechanisms and identify 
novel proteins mediating α-Syn toxicity.

α-Syn Drosophila Models Reveal α-Syn 
Functions in PD
α-Syn Aggregation and Misfolding  
in α-Syn-Induced Neurotoxicity
Accumulating evidence revealed α-Syn aggregation and mis-
folding plays a central role in the pathogenesis of PD and synu-
cleinopathies. Wild type or mutant α-Syn has been demonstrated 
to be aggregated as inclusions when overexpressing in flies  
(70, 71, 81). Structurally engineered α-Syn mutants with an 
increased oligomerization propensity increase neurotoxicity in 
Drosophila (76). Truncation of α-Syn contributes to aggregation 
and LB formation. Expression of α-Syn with a deletion of NAC 
domain (α-Syn Δ71–82) did not show evidence of α-Syn aggre-
gation and any DA neurodegeneration, suggesting the essential 
role of NAC domain of α-Syn in aggregation and toxicity (75). 
By contrast, a C-terminal truncated α-Syn has ability to promote 
aggregation and enhance neurotoxicity (75). Interestingly, 
calpain-cleaved α-Syn fragments with similar molecular weight 
to truncated α-Syn have been identified in the PD/DLB patient 
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TAbLe 2 | Transgenic Drosophila models of αSynassociated Parkinson’s disease.

Transgenic 
systems

References α-Syn variants Neurodegeneration Motor/non-motor  
activities and life span

Cellular  
functions

(70) αSynWT
A30P
A53T

Tyrosine hydroxylase (TH)  
neurons ↓
Retinal degeneration ↑

Locomotor activity ↓ Filamentous intraneuronal inclusions 
containing αSyn

(71) αSynWT
A30P
A53T

TH neurons ↓ ND Lewy body and LNlike inclusions, 
Hsp70 protected against αSyn–induced 
dopaminergic neuronal degeneration

(72) αSynWT ND ND Phosphorylation of αSyn at S129 ↑

A30P Phosphorylation of αSyn at S129 ↑↑ 

A53T Phosphorylation of αSyn at S129 ↑↑↑

(73) αSynWT
A30P
A53T

TH neurons: no changes
No retinal degeneration

Locomotor activity:  
no changes

ND

(74) αSynW TH neurons ↓
Retinal degeneration ↑

ND ND

S129A TH neuron: no changes
No retinal degeneration

S129D TH neurons ↓↓
Retinal degeneration ↑↑

Gal4/UAS system (75) αSynWT TH neurons ↓ ND αSyn aggregation ↑

αSynΔ71–82aa TH neurons: no changes No αSyn aggregation 

Syn 1–120aa TH neurons ↓↓ αSyn aggregation ↑↑

(76) αSynWT TH neurons: no changes Locomotor activity: no changes Soluble oligomers of αSyn in vitro

A30P
A53T
A56P

TH neurons ↓ Locomotor activity ↓ Soluble oligomers of αSyn in vitro ↑

A30P/A56P/A76P (TP) TH neurons ↓↓ Locomotor activity ↓↓ Soluble oligomers of αSyn in vitro ↑↑

(77) αSynWT TH neurons ↓
Retinal degeneration ↑

ND Soluble oligomers of αSyn ↑

Y125F/Y133F/ 
Y136 F (YF)

TH neurons ↓↓
Retinal degeneration ↑↑

Soluble oligomers of αSyn ↑↑

S129D TH neurons ↓↓
Retinal degeneration ↑↑

Soluble oligomers of αSyn ↑↑

(78) αSynWT ND Sleep behavior normal
Circadian locomotor  
activity defects ↑

ND

A53T Sleep behavior abnormal ↑ 
Circadian locomotor activity  
defects ↑

A30P/A56P/ 
A76P (TP)

ND Sleep behavior abnormal ↑↑
Circadian locomotor activity  
defects ↑↑

ND

(79) A30P ND Olfactory deficits ND

(80) A30P TH neurons ↓ Locomotor activity ↓ Anxiety ↑ ND

Q system (81) αSynWT TH neurons ↓↓ Locomotor activity ↓↓ αSyn aggregation ↑↑

ND, not determined; ↑, increased; ↓, decreased.

Xiong and Yu Drosophila as a Model to Study PD
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brains and α-Syn-expressing flies (83). This suggests the physi-
ological and pathological importance of the truncated α-Syn.

Protein quality control systems including molecular chaper-
ones and protein degradation function as a defense mechanism 
against protein misfolding and aggregation. Identification of 

suppressors in these systems further supports a critical role 
of toxic oligomers and aggregation in α-Syn-induced neu-
rotoxicity. Histone deacetylase 6 suppresses α-Syn-induced 
DA neurodegeneration and promotes the formation of α-Syn 
inclusions by reducing α-Syn oligomers (84). Auluck et  al. 
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demonstrated that increasing the level of chaperone Hsp70 
ameliorated the toxicity of α-Syn to DA neurons while a 
reduc tion in chaperone activity enhanced α-Syn-induced DA 
neuronal loss in Drosophila system (71). In addition, decreased 
level of the mitochondrial chaperone protein tumor necrosis 
factor receptor associated protein-1 enhanced A53T-α-Syn-
induced age-dependent DA neuron loss in fly (85). Molecular 
chaperones assist proper protein folding and thus protect 
against α-Syn misfolding and aggregation. If proteins have been 
misfolded and aggregated, they are cleared by degradation. 
The ubiquitin-protease system and the autophagy-lysosome 
systems are two major protein degradation systems. Using 
Drosophila and cell culture systems, Lee et al. demonstrated 
that co-expression of ubiquitin can rescue α-Syn-induced 
neurotoxicity. This neuroprotection is dependent on the 
formation of lysine 48 polyubiquitin linkage, which is known  
to target protein degradation (86). This observation is further 
strengthened by evidence that overexpression of the ubiq-
uitin ligase Nedd4 can rescue α-Syn-induced degenerative 
phenotype in fly (87). Furthermore, the deubiquitinase Usp8 
interacted and partly colocalized with α-Syn, and deubiqui-
tinated K63-linked chains on α-Syn. Knockdown of Usp8 in 
fly reduced α-Syn levels and α-Syn-induced toxicity (88). In 
addition, Cullen et al. showed that the defect of cathepsin D, 
a major lysosomal aspartyl protease, enhanced α-Syn-induced 
neurodegeneration in vivo in Drosophila (89). Taken together, 
these results confirmed that protein quality control systems 
function as a protection mechanism against α-Syn aggrega-
tion and misfolding.

α-Syn Phosphorylation Controls Neurotoxicity 
Inclusion Formation
Phosphorylation of α-Syn plays a key role in the PD patho-
genesis. Phosphorylation at Ser129 is the one extensively 
phosphorylated in brain tissues from PD patients and related 
disorders, suggesting a role for Ser129 phosphorylation in 
disease pathogenesis (90, 91). In transgenic flies, it has been 
demonstrated that human α-Syn is phosphorylated at Ser129, 
and phosphorylation increases with age as DA neurons degener-
ate, mimicking the pathogenic phenomena in PD patient (72). 
Later on, Chen and Feany generated transgenic flies carrying 
the mutations at S129 of α-Syn (S129A to block phosphoryla-
tion and S129D to mimic phosphorylation) (74). Using these 
transgenic lines, they demonstrated phosphorylation of S129 
is critical for α-Syn-induced DA neuron degeneration, and 
blocking S129 phosphorylation increases inclusion formation 
(74). As increased number of inclusion bodies correlates with 
reduced toxicity, this study suggested inclusion bodies might 
have protective function. Recently, the Feany group reported 
that tyrosine and serine phosphorylation of α-Syn have oppos-
ing effects: levels of soluble oligomeric species of α-Syn were 
increased by serine 129 phosphorylation and decreased by 
tyrosine 125 phosphorylation, suggesting detrimental effects 
of S129 phosphorylation and a neuroprotective action of T125 
phosphorylation (77). These studies reveal that phosphorylation 
of α-Syn plays an important role in α-Syn-induced inclusion 
body formation and DA neurodegeneration.

α-Syn Functions in Vesicular Trafficking
The first evidence of α-Syn functions in trafficking in animal 
models has been reported by Cooper et al. using a combination 
of a genetic screening in yeast and validation in α-Syn transgenic 
Drosophila models (92). In this study, Rab1 rescues the neuron loss in 
the flies (92). Recently, using Drosophila models of α-Syn toxicity, 
several reports have implicated α-Syn functions in vesicular traf-
ficking particularly through the small GTPase Rab proteins. The 
endosomal recycling factor Rab11 was demonstrated to modulate 
synaptic vesicle size, decrease α-Syn aggregation and ameliorate 
several α-Syn-dependent phenotypes (93). Rab7, regulating 
trafficking of late endosomes and autophagosomes, and Rab8, 
modulating post-Golgi vesicle trafficking, rescue the locomotor 
deficit in α-Syn flies (94, 95). Notably, other PD genes such as 
LRRK2 and PINK1 have also recently been linked to Rab proteins 
(48, 96–98). Thus, determination of the precise mechanisms of 
Rabs-mediated functions in PD pathogenesis is warranted.

α-Syn Functions in Mitochondrial Dysfunction  
and Oxidative Stress
Oxidative stress and mitochondrial dysfunction have been pro-
posed as important causative factors for the progression of PD. 
Botella et al. found that DA neurons are specifically sensitive to 
an environmental oxidative insult (hyperoxia) induced oxida-
tive stress. The mutant forms of α-Syn enhanced the toxicity 
under this stress in the Drosophila model (99). In addition, the 
co-expression of Cu/Zn superoxide dismutase protects against 
mutant α-Syn-induced DA neuronal loss (99). The same group 
also demonstrated that dopamine, which produces reactive oxy-
gen species, might be involved in the α-Syn-induced neurotoxic-
ity through oxidative stress (100). Furthermore, α-Syn-induced 
neuronal death in Drosophila is enhanced by the mutants that 
promote glutathione synthesis and conjugation (101). Natural 
antioxidants attenuate locomotor deficits of α-Syn transgenic 
flies (102). GPI, an enzyme in glucose metabolism, acts as neu-
roprotection from α-Syn proteotoxicity in flies (103). Recently, 
Feany group provided evidence that the interaction of α-Syn with 
spectrin initiates pathological alteration of the actin cytoskeleton 
and downstream neurotoxicity, and consequent mitochondrial 
dysfunction through altered Drp1 localization (81). These results 
suggest that oxidative stress and mitochondrial dysfunction are 
features of α-Syn toxicity.

α-Syn Drosophila Models as Platforms  
to identify Potential Therapeutic 
Compounds
Based on the functions and mechanisms revealed by α-Syn 
Drosophila models, several pharmacological interventions 
have been developed in Drosophila to ameliorate α-Syn 
toxicity. Geldamamycin, an Hsp90 inhibitor and chaperone 
inductor, was able to protect α-Syn-expressing neurons in 
Drosophila (104). Nicotinamide, the principal form of 
niacin (vitamin B3), has been demonstrated to improve 
the motor dysfunction in α-Syn transgenic flies through 
improvement of oxidative mitochondrial dysfunction (105). 
The dopamine agonists pergolide, bromocriptine, and 
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TAbLe 3 | Drosophila models of glucocerebrosidase (GBA)associated Parkinson’s disease.

Genetic 
manipulations

References GbA variants Neurodegeneration Motor activities/ 
life span

Cellular  
functions

Knockout/
knockdown

(118) dGBA1a−/− ND Locomotor activity:  
no changes
Life span ↑

ND

dGBA1b−/−

dGBA1a,b−/−

Tyrosine hydroxylase (TH) 
neurons ↓

Locomotor activity ↓↓
Life span ↓↓

Changes in lipid metabolism,  
accumulation of substrate GlcCer,  
deficits in lysosomal–autophagy pathway, 
and abnormality of mitochondria

(119) dGBA1a,b−/−(ΔTT) TH neurons: no changes
Other neurodegeneration

Locomotor activity ↓
Life span ↓
Memory deficits

Ubiquitinated proteins ↑
αSyn aggregates ↑
αSyn expression does not  
enhance the phenotypes

(120, 121) dGBA1a,b−/− TH neurons ↓ Life span ↓ GCase activity ↓

(122) dGBA1aRNAi TH neurons ↓
Retinal degeneration

Locomotor activity ↓ Proteinase Kresistant αSyn accumulation 
when crossed with αSyn flies

Transgenic (120, 121) hGBAWT No changes No changes No changes

hN370S
hL444P

TH level ↓ Locomotor activity ↓
Life span ↓

GCase activity ↓
ER stress ↑

(123) hGBAWT ND ND Neurodevelopment in fly eyes: no changes
ER stress: no changes

hR120W Neurodevelopment in fly eyes: no changes
ER stress ↓

HRecNcil 
(L444P + A456V + V460V)

Neurodevelopmental defects in fly eyes ↑
ER stress ↓

(124) hGBAWT TH neurons: no changes Locomotor activity:  
no changes

ER stress ↑

hN370S
hL444P

TH neurons ↓ Locomotor activity ↓ GCase activity ↓ compared  
with WT
ER stress ↑

ND, not determined; ↑, increased; ↓, decreased.
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2,3,4,5-tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine 
(SK&F 38393), D-519, and D-520 were substantially effective 
on improvement of locomotor function of α-Syn flies (106, 
107). Atropine, the prototypical muscarinic cholinergic recep-
tor antagonist, was effective (106). A potent dopamine D2/D3 
receptor agonist D-607 exhibited significant neuroprotection 
in a Drosophila model of synucleinopathy (108). In addition, 
HDAC inhibitors such as sodium butyrate or SAHA, and SIRT2 
inhibitors have been identified to protect against α-Syn-induced 
neurotoxicity in flies (109, 110). Taken together, these studies 
suggest that protein quality control systems, oxidative stress, 
mitochondrial function, and DA biosynthesis pathways are 
potential targets for developing therapeutic agents for α-Syn 
toxicity.

MODeLiNG GbA-ASSOCiATeD PD  
iN Drosophila

Heterozygous mutations in glucocerebrosidase (GCase, encoded 
by GBA1 gene) are recently emerging to be the most common 
known genetic risk factor for PD (111). GCase is a lysosomal 
protein and homozygous mutations cause Gaucher’s disease, 

a lysosomal storage disorder (112). As a lysosomal enzyme, 
GCase is synthesized in the endoplasmic reticulum (ER).  
At ER, it undergoes N-linked glycosylation on four asparagines. 
After correctly folded, it processes to the Golgi for further 
modifications on its N-linked glycans, and finally it traffics to 
the lysosomes (113). GCase cleaves the β-glucosyl linkage of 
glucosylceramide (GlcCer) and glucosylsphingosine (GlcSph). 
Mutations in GBA cause accumulation of lipid substrates 
of GCase such as GlcCer and GlcSph (114). Recent reports 
demonstrated that mutations in GBA not only contribute to the 
occurrence of PD but also lead to more significant and rapid 
cognitive decline in PD (115). Most disease causing mutations 
of GBA are thought to be dominant-negative mutations that 
lead to the GBA deficiency, compromised GlcCer metabolism 
and the subsequent failure of lysosomal mediated degradation 
of GBA substrates and α-Syn. A severe heterozygous mutation 
L444P and a mild heterozygous mutation N370S are the most 
common mutations of GBA in PD. Mutations L444P and N370S 
cause ER stress, decreased lysosomal GCase, and accumulation 
of α-Syn aggregates (116, 117). Drosophila as one of the major 
model systems so far for studying GBA-associated PD has 
revealed significant insights (Table 3).
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GbA Drosophila Models
GBA Knockout/Knockdown Drosophila Models
Drosophila has two homologs of the human GBA1 gene, CG31148 
and CG31414, which are referred to dGBA1a and dGBA1b, 
respectively, and shares 32% amino acid identity. These two genes 
are found on the same chromosome with the CG31413 gene in 
between and show differential tissue expression. dGBA1b is 
expressed in the adult brain at low levels as well as in the adult fat 
body, whereas dGBA1a is predominantly expressed in the adult fly 
gut but not in the adult brain (FlyAtlas) (125). As GBA mutations 
in PD show a dominant-negative function, the loss-of-function 
of GBA was investigated in Drosophila by either knockdown or 
knockout dGBA1.

Kinghorn et  al. generated dGBA1a, dGBA1b single knock-
outs (dGBA1a−/−, dGBA1b−/−) or dGBA1a/b double knockouts 
(dGBA1a,b−/−) using ends-out homologous recombination (118). 
dGBA1b−/− and dGBA1a,b−/− showed a significantly decreased 
survival and age-dependent locomotor deficits compared with 
control flies while dGBA1a−/− showed opposite phenotype with 
increased survival and without significant effect on climbing 
ability over time. As dGBA1b is expressed in the adult brain, 
the study was focusing on dGBA1b−/− and dGBA1a,b−/−, both 
of which showed similar phenotypes (118). Knockout of dGBA 
resulted in changes in lipid metabolism, accumulation of substrate 
GlcCer, deficits in lysosomal–autophagy pathway, neurodegen-
eration, and abnormality of mitochondria. Importantly, mTOR 
inhibitor rapamycin partially ameliorated the lifespan, locomo-
tor, and starvation phenotypes in dGBA deficient flies (118). 
Another group used publicly available transposon insertions in 
dGBA1a and dGBA1b to create deletion of dGBA1 (GBA1ΔTT) 
(119). Using this approach, they removed the majority (first 
433aa) of dGBA1b, small potion (33 codons) of c-terminal of 
dGBA1a, and the whole CG31413 gene in between. Consistent 
with the study by Kinghorn et al. GBA1ΔTT homozygotes exhibit 
shortened lifespan, behavioral phenotypes, memory deficits and 
neurodegeneration but no DA neuronal loss (119). GBA1ΔTT 
homozygotes increased accumulation of ubiquitinated proteins 
and α-Syn aggregates. However, α-Syn expression does not 
enhance GBA1ΔTT fly phenotypes (119). In addition to these 
two knockout dGBA1 fly lines, Maor et al. took advantage of two 
other fly lines, each of which has a minos insertion in dGBA1a 
and dGBA1b, respectively, to cause premature termination 
of dGBA1a and dGBA1b. By crossing these two lines, double 
heterozygous flies have been generated. This fly model exhibited 
about 30% decrease in GCase activity and has decreased TH 
immunoreactivity, shortened lifespan, and an age-dependent 
DA neurodegeneration (120, 121). Besides the knockouts of 
dGBA1, Suzuki et al. used transgenic RNAi flies to knock down 
dGBA1a and dGBA1b (122). dGBA1a-RNAi flies exhibited a 
bout 80–90% decrease in GCase activity while dGBA1b-RNAi 
flies only showed about 20% decrease. Thus, the study focused on 
dGBA1a-RNAi flies, which exacerbated the locomotor dysfunc-
tion, loss of DA neurons, retinal degeneration, and accumulation 
of proteinase K-resistant α-Syn in α-Syn-expressing flies (122).

Both knockdown and knockout of dGBA1 in fly have been 
consistently shown shortened lifespan, behavioral phenotypes 
and accumulation of α-Syn aggregates, despite of different 

phenotypes in DA neurodegeneration. These GBA fly models 
provide useful platforms for further study of GBA function in PD.

GBA Transgenic Drosophila Models
Heterozygous mutations L444P and N370S are the most com-
mon and thought to be dominant-negative mutations of GBA in 
PD. To investigate GBA functions in PD, transgenic Drosophila 
expressing human WT, N370S and L444P were generated  
(120, 121, 124). N370S and L444P transgenic flies exhibited 
significant decreased GCase activity by 82 and 75%, respectively, 
compared with GBA WT transgenic flies despite equivalent 
expression levels of GBA protein (124). N370S and L444P trans-
genic flies consistently showed shortened life span, a progressive 
climbing defect, increased level of ER stress and DA neurodegen-
eration (121, 123, 124). This suggests that those transgenic flies 
can recapitulate some PD signs.

GbA Drosophila Models Reveal  
GbA Functions in PD
Two major functions of GBA have been implicated in GBA 
Drosophila models. One is the function in ER stress and 
unfolded protein response (UPR) in the ER. Mutant GCase are 
recognized as misfolded proteins and undergo various degrees 
of ER associated degradation. The accumulation of midfolded 
molecules in the ER activate signaling events known as UPR 
(120). Immunostaining in GBA transgenic flies revealed that a 
significant amount of GCase colocalized with ER and N370S 
and L444P caused abnormal aggregates and swelling within 
the ER (124). To measure UPR activation, an ER stress reporter 
transgene Xbp1 was used. N370S and L444P GBA mutations 
induced significant higher Xbp1 level compared to WT GBA 
flies, suggesting of an increased level of ER stress (120, 124). 
Another function revealed by GBA fly models is in lysosomal-
autophagic pathway. Using LysoTracker and LC3 as markers 
to monitor lysosomal and autophagic pathology, Kinghorn 
et al. demonstrated that enlarged and abnormal lysosomes and 
accumulated Atg8, the fly LC3 homolog, were present in dGBA 
knockout fly brains (118). The probable downstream effects of 
lysosomal-autophagic dysfunction could be the accumulation 
of p62, a marker for lysosomal-autophagic degradation, and 
polyubiquitinated proteins (118). While these studies provide 
significant phenotyping investigation on GBA functions, the 
detailed molecular mechanisms are still largely unknown. 
Using these GBA Drosophila models, further dissection of the 
molecules involved in these pathways is warranted.

GbA Drosophila Models as Platforms  
to identify Potential Therapeutic 
Compounds
The clear evidence showed that mutant GCase causes increased 
ER stress and activated UPR in fly, therefore removal of mutant 
misfolded GCase by pharmacological chaperones from the ER 
should at least partially rescue the phenotype. Two chaperones, 
ambroxol and isofagomine, were previously used to increase 
amount and lysosomal activity of mutant GCase (126–129). 
Indeed, ambroxol and isofagomine reduced ER stress, and 

37

https://www.frontiersin.org/Neurology/
https://www.frontiersin.org
https://www.frontiersin.org/Neurology/archive


TAbLe 4 | Drosophila models of vacuolar protein sorting 35 (VPS35)associated Parkinson’s disease.

Genetic 
manipulations

References vPS35 variants Neurodegeneration Motor activities/ 
life span

Cellular  
functions

Knockdown (135) dVPS35 siRNA in 
αSyn transgenic fly

ND Locomotor activity ↓ Accumulation of the detergentinsoluble αSyn,  
cathepsin D activity
↓ Mild eye disorganization

Knockout (46) dVPS35−/− Tyrosine hydroxylase (TH) 
neurons: no changes

ND Defects on synaptic vesicle recycling, dopaminergic  
synaptic release and sleep behavior associated with 
dopaminergic activity; genetic interaction with  
leucinerich repeat kinase 2 and Rab5, Rab

(136) dVPS35−/− ND Locomotor activity ↓ Synaptic overgrowth ↓

Transgenic (137) hVPS35WT
hL774M

TH neurons: no changes No changes Sensitive to rotenone: no changes

hD620N
hP316S

TH neurons ↓ Locomotor activity ↓
Life span ↓

Sensitive to rotenone ↑

(136) dVPS35WT
dD650N
dR550W
dL800M
hVPS35WT
hD620N
hR524W
hL774M

No retinal degeneration Locomotor activity: 
no changes
Life span: no changes

D620N mutation confers a partial loss of  
function; VPS35 genetically interacts with Parkin

ND, not determined; ↑, increased; ↓, decreased.
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reversed locomotor deficits in GBA mutant flies in vivo (121, 124). 
This suggests that removal of mutant misfolded GCase from the 
ER may alleviate PD symptoms. Small chaperones can cross the 
blood–brain barrier, bind to GCase and stabilize proper folding 
and ensure delivery to lysosomes. Thus, small chaperones may be 
applicable for GBA-associated PD.

MODeLiNG vPS35-ASSOCiATeD  
PD iN Drosophila

Mutations in the VPS35 gene encoding a core subunit of a het-
eropentameric complex referred to the retromer have recently 
emerged as a new cause of late-onset, autosomal dominant familial 
PD (7, 8). The mutation, D620N, has so far been unambiguously 
identified to cause PD. The VPS35 protein functions as a core 
component of the retromer, a protein complex that associates with 
the endosome to facilitate recycling of transmembrane protein 
cargoes from both endosome-to-Golgi and endosome-to-plasma 
membrane transport (130). The retromer is a highly conserved 
multi-protein complex, the core of which consists of the subunits 
VPS35, VPS29, and VPS26. The only identifiable VPS35 homolog 
in Drosophila is encoded by CG5625.

vPS35 Drosophila Models
VPS35 Knockout/Knockdown Drosophila Models
Two lines of null mutation in VPS35 were generated by either 
imprecise excision of a P-element inserted at the 5′ end of CG5625 
(P[EPgy2]CG5625EY14200), or by a deletion of nearly 2 kb, which 
removes the first three exons including the translation start site 
(VPS35MH20) (Table 4). Both mutants die at late larval or pupal 

stages, indicating the essential function of VPS35. VPS35-null 
mutants and RNAi lines (the Vienna Drosophila RNAi Center) 
were consistently demonstrated to reduce Wingless secretion 
but not Hedgehog signaling by reducing the recycle of Wntless 
from endosomes to the trans-Golgi network (131–133). Loss of 
VPS35 inhibits scavenger receptor ligand endocytosis, causes 
signaling defects at the NMJ, and leads to over proliferation of 
blood cells in larvae, which suggests VPS35 has tumor suppres-
sor properties (134). Mechanistically, the endocytic and signal-
ing defects of VPS35 mutants maybe due to VPS35 negatively 
regulation of actin polymerization (134). As these studies were 
at early stages before mutations of VPS35 has been identi-
fied to associate with PD, the PD pathological phenotypes in 
VPS35 knockout or knockdown mutants were not investigated.  
In recent studies, knockdown of VPS35 in Drosophila induced the 
accumulation of the detergent-insoluble α-Syn in the brain and 
exacerbated locomotor deficits, compound eye disorganization, 
and interommatidial bristle loss in α-Syn transgenic flies (135). 
These findings indicate that the retromer may play a crucial role 
in α-Syn degradation. The loss of Drosophila VPS35 (dVPS35) 
affects synaptic vesicle recycling, DA synaptic release and sleep 
behavior (46). The manipulation of Drosophila LRRK2 dLRRK 
together with Rab5 and Rab11 improves the VPS35 synaptic 
phenotypes (46). Taken together, VPS35 knockout/knockdown 
Drosophila models mimic some pathogenesis of PD, indicating 
that these fly models could be useful platforms to study VPS35-
associated PD.

VPS35 Transgenic Drosophila Models
Vacuolar protein sorting 35-linked PD is inherited as a domi-
nant trait, which may imply that the mutation of VPS35 has a 
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gain-of-function toxicity (Table  4). One study demonstrated 
that VPS35 D620N transgenic flies led to late-onset loss of DA 
neurons, locomotor deficits, shortened lifespans, and increa-
sed sensitivity to a PD-linked environmental toxin, rotenone 
(137). However, Malik and colleagues did not find evidence of 
dominant toxicity from any variants including the pathogenic 
D620N mutation, even with aging. By a definitive test to deter-
mine whether transgene expression can rescue endogenous 
VPS35 mutant phenotypes, they concluded that the D620N 
mutation confers a partial loss of function (136). This notion is 
further supported by other studies in fly or mouse systems that  
VPS35 DN mutation acts as a dominant-negative function  
(47, 48, 138, 139).

vPS35 Drosophila Models Reveal vPS35 
Functions in PD
To date, VPS35 Drosophila models have revealed three major 
functions of VPS35 in trafficking pathways in neuronal system. 
First, VPS35 regulates synaptic vesicle endocytosis through the 
endosomal pathway. Loss of VPS35 increases the number of 
synaptic boutons of the NMJ in larval motor neurons (46, 134). 
It has been demonstrated that VPS35 cooperates with LRRK2 
to regulate synaptogenesis, synaptic dynamics and endocytosis, 
and synaptic vesicles regeneration through the Rab-mediated 
endocytic pathway (46). Importantly, it in turn regulates DA 
activity and survival, a key element of PD etiology (46). Second, 
VPS35 mediates endolysosomal and Golgi apparatus sorting. 
Wild-type VPS35, but not a familial PD-associated mutant form, 
can rescue LRRK2 led to endolysosomal and Golgi apparatus 
sorting defects (48). In addition, it has been reported by several 
groups that VPS35 functions in endosome-to-Golgi retrieval are 
required for Wingless secretion (131–133). However, whether 
this function is related to DA neurodegeneration is unknown. 
Third, VPS35 functions in lysosomal degradation pathway. 
VPS35 dysfunction impairs the maturation of a lysosome 
protease cathepsin D in regulating the proteolytic pathway that 
is important for α-Syn metabolism, and in turn exacerbates 
neurotoxicity and causes eye degeneration and motor disability 
(135). These findings indicate that VPS35 may play a crucial 
role in α-Syn degradation and might thereby contribute to the 
pathogenesis of the disease. While it remains unclear if these 
functions are causally for DA neurodegeneration caused by 
VPS35 PD mutant, these studies have provided important 
insights into cellular pathways that are perturbed by VPS35 
mutations in neurons.

CONveRGeNT MeCHANiSMS

Dissecting genetic interaction among PD genes will be crucial to 
establish convergent functional pathways of these genes or risk 
factors. Drosophila as a classic genetic model provides power-
ful tools to study genetic interactions between different genes. 
Genetic dissection revealed that LRRK2 interacts with other 
PD genes or risk factors such as Parkin, DJ-1, PINK1, VPS35, 
and RAB7L (31, 46–48) and implicated several potential func-
tions. Genetic interaction between LRRK2 and VPS35 or Rab7L 

indicates LRRK2 function in retromer and lysosomal pathways 
(46–48). Genetic interaction between LRRK2 and Parkin or 
PINK1 indicates LRRK2 function in mitochondria dysfunction 
and also suggests that dominant PD genes may act via common 
pathways with the recessive PD genes (31). Furthermore, VPS35 
genetically interacts with Parkin but interestingly not with 
PINK1(136). Notably, α-Syn, LRRK2, and PINK1 have recently 
been linked to Rab proteins (48, 92–98), and the manipulation 
of Drosophila LRRK2 dLRRK together with Rab5 and Rab11 
improves the VPS35 synaptic phenotypes (46). All the studies 
are convergent to implicate an important emerging role for 
defects in trafficking pathways. The accumulation of altered 
proteins including α-Syn and damaged mitochondria ultimately 
might overwhelm the disposal mechanisms, in turn cause DA 
neurodegeneration.

CONCLUDiNG ReMARKS

While the rodent models generally attack more attention and 
efforts on studying human disorders because of their high con-
servation of basal ganglia circuit with human, modeling PD in 
rodents using genetics has been viewed as difficult (23, 140). The 
rodent models of PD could not fulfill all the key features of PD 
(140). The reason that the rodents are “imperfect” for modeling 
PD might be compensatory mechanisms in the rodents, and/
or incomplete penetrance of some PD gene mutations such as 
LRRK2 disease causing mutations in human, and/or the com-
bination effects of non-cell-autonomous and cell-autonomous 
processes (23, 140).

To this caveat, Drosophila models have provided significant 
contributions to our understanding of the mechanisms of PD 
pathogenesis in a comparatively short time frame and cost 
effective mode. Overexpression of PD dominant traits (LRRK2 
and α-Syn) or knockout of dominant-negative genes (GBA and 
VPS35) in fly has been consistently demonstrated to mimic the 
essential PD signs such as DA neurodegeneration and beha-
vioral deficits. Based on these fly models, genetic modifiers 
and small molecular compounds have been rapidly identified. 
Moreover, the combination roles of the genetic and environ-
mental factors such as oxidative stress have been explored 
in PD. The important functions of LRRK2 in trafficking and 
protein translation, the critical contribution of α-Syn aggrega-
tion and phosphorylation, were initially discovered in fly. The 
Drosophila models so far are one of the major model systems 
to study GBA function in PD. Thus, the use of Drosophila 
models opened tremendous opportunities to explore the basic 
function of disease causing genes and to model the disease 
pathogenesis.

However, Drosophila is a relatively simple model organism, far 
less complex brain circuit than humans. For example, Drosophila 
does not have α-Syn homolog and a true human LRRK2 homolog. 
α-Syn neuropathology in the form of LBs is the hallmark of PD 
pathogenesis. Whether α-Syn is required for developing PD mod-
els has been raised. In addition, Drosophila has limited cell death 
effectors. Some aspects of human diseases may not be evident in 
fly. Thus, validation of findings from Drosophila to mammalian 
systems, including rodent models, human postmortem tissue, 
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Over the last two decades, many experimental and clinical studies have provided solid 
evidence that alpha-synuclein (α-syn), a small, natively unfolded protein, is closely related 
to Parkinson’s disease (PD) pathology. To provide an overview on the different roles of 
this protein, here we propose a synopsis of seminal and recent studies that explored the 
many aspects of α-syn. Ranging from the physiological functions to its neurodegener-
ative potential, the relationship with the possible pathogenesis of PD will be discussed. 
Close attention will be paid on early cellular and molecular alterations associated with the 
presence of α-syn aggregates.

Keywords: synucleinopathy, experimental parkinsonism, neurodegeneration, synaptic plasticity, protein 
aggregation

THe MANY ROLeS OF ALPHA-SYNUCLeiN (α-syn)

Alpha-synuclein is a 140 aminoacid protein, encoded by the SNCA gene on human chromosome 4. 
This protein is mainly expressed in presynaptic sites at several neurotransmitter systems in the 
central nervous system (CNS) (1). Despite its ubiquitous distribution through many areas involved 
in complex behaviors, α-syn pathology does not impact on all brain sites of expression, but rather 
shows a prevalent effect in selective vulnerable sites (1, 2). Moreover, α-syn is highly present in red 
blood cells (3) and in other extra CNS tissues (4, 5), indicating a wide range of actions of this protein 
throughout the body.

Although α-syn is gaining increasing consideration as a critical factor in Parkinson’s disease (PD) 
pathophysiology and 20 years of research have been spent in the attempt to unravel the physiological 
roles of this protein, its mechanisms of action are still unclear and so are the complex dynamics that 
characterize its flexibility to adapt and the tendency to become toxic.

α-syn exists in a dynamic balance between monomeric and oligomeric states, which are not 
easily prone to form fibrils in physiological conditions. Interestingly, its structure predicts the 
multifunctional properties that have been attributed to this protein (6). As a result, this structural 
flexibility allows α-syn to adopt a wide range of conformations depending on the environment and 
binding partners (7, 8). In fact, α-syn can either relate to intracellular and membrane proteins with 
its enzymatic activity or interact with lipid surfaces and organize membrane activities through steric 
mechanisms.

Given its prevalent localization at presynaptic sites, the first function described for α-syn was 
its chaperone function and in particular its ability in controlling exocytosis through management 
of synaptic vesicle pool and trafficking. Accordingly, mutations of the SNCA gene coding for α-syn  
leads to functional alterations of SNAP REceptor (SNARE) proteins, a family of receptors that binds 
the soluble N-ethylmaleimide sensitive fusion attachment proteins (SNAP) receptor (SNARE) 
proteins and regulates their assembly (9). Another presynaptic target for α-syn is the DA active 
trasporter (DAT) (10, 11).
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Upon interaction with lipidic surfaces α-syn binding causes 
the formation of an amphipathic alpha-helix that in physiologic 
conditions does not cross the bilayer. Under specific stimulations, 
oligomers of α-syn may form membrane pores that may dissipate 
the transmembrane potential, dysregulating ion gradients (12, 13).

Several strategies exist to ensure the prevention of α-syn 
oligo merization (14–17), including complex hydrophobic 
interactions between C- and N-tails of the protein (16, 18, 19). 
Interestingly, α-syn possesses a polar C terminal tail able to 
interact with the hydrophobic region of a separate denatured 
protein, sharing structural and functional homology with 
other molecular chaperones. Thus, the extreme flexibility of 
this protein also relies on the ability of α-syn to auto assemble 
and act as an intramolecular chaperone (20). In agreement, 
α-syn truncated at the C-terminus lacks this auto-chaperone 
property (21) and aggregates at an increased rate compared with 
the full-length counterpart (14, 15, 21, 22). Despite its crucial 
contribution to ensure a good orchestration of processes at the 
active zones, α-syn translocates late to the terminals during 
development (23) and its absence seems to be not detrimental 
for synaptogenesis, indicating that its function is rather essential 
for stressful and sustained activity over time during the long life 
of a neuron (24, 25). All these characteristics strongly argue for 
a critical role in neurotransmitter release and synaptic plasticity. 
A feature that makes multifunctional α-syn as much enigmatic as 
difficult to counteract in pathological settings is that, like many 
other disease-associated misfolding proteins, its absence is less 
detrimental than its accumulation (26, 27). In physiological 
conditions, during proteins translation, polypeptides fold under 
control of chaperones. Errors in assembly are frequent and 
become more common with aging but they are usually limited 
by several quality control mechanisms that target denatured and 
misfolded proteins to degradation (28–30). Given the complex 
management of this protein expression and the high versatility 
of its functions, failures in these homeostatic steps do not simply 
bring to an abnormal gain of function but rather to a potent trig-
ger for a series of neurodegenerative cascades in the intracellular 
environment. The possibility that residual physiological functions 
and compensative mechanisms are in act during degeneration, 
complicates therapeutic approaches and adds unpredictability to 
possible manipulation of α-syn functions.

α-syn OLiGOMeRS AND FiBRiLLARY 
AGGReGATeS: PATHOLOGiCAL 
iMPLiCATiONS

An increasing body of evidence from studies carried out in 
animal models and in patients support the hypothesis that the 
processes underlying α-syn proteostasis have central roles in 
the pathogenesis of PD. This concept dates back to 20 years ago 
when two discoveries provided support for a role of possible link 
between α-syn mutations and PD. The first report was the iden-
tification of a missense mutation of this gene (31) causing a form 
of early-onset familial PD by Polymeropoulos and his research 
team. In the same year, Spillantini’s group provided experimental 
evidence that α-syn is the primary structural component of Lewy 

bodies (LB), intracytoplasmatic inclusions of α-syn aggregates, 
which are considered the main pathological hallmark of PD (32). 
Shortly after, also sporadic idiopathic forms of PD were found 
associated with the presence of LB in the brain parenchyma (33).

In the last years, physiological and pathological functions of 
α-syn and other misfolding proteins have been investigated in 
relation with other known aspects of the disease, to explore pos-
sible causal relationships. For PD, many risk factors have been 
identified that include both environmental and genetic causes. 
Oxidative stress, mitochondrial dysfunctions, neuroinflamma-
tion, point mutations, multiplications, and specific polymor-
phisms are genetic determinants that may cooperate to create 
ideal conditions for developing PD.

Interestingly, these factors are also determinants that impact 
on the predisposition of α-syn to exert toxicity.

Despite the existence of redundant quality control systems to 
ensure a correct assembly of α-syn and the ability of other synu-
cleins to inhibit and control oligomerization of α-syn, this protein 
may express its neurotoxic potential when soluble monomers ini-
tially form oligomers, then progressively combine to form small 
protofibrils and further aggregate in large, insoluble α-syn fibrils 
forming LB (34, 35). Although its natural propensity to balance 
between a soluble and membrane-bound state and its plasticity of 
conformation, acute triggers of accumulation and aggregation of 
α-syn can be manifold like overproduction of the protein, failure 
in the molecular system that cleave misfolded forms, exposure to 
pH changes, oxidative stress, and mitochondrial overwork.

More chance for aggregation is offered by a variety of post-
translational covalent modifications (8) potentially promoting 
conformational changes that make α-syn more prone to aggrega-
tion. For example, tyrosine nitration (Tyr125) and truncation of 
α-syn at the C-terminus are frequently found in α-syn patho-
logical aggregates and have been shown to promote fibrillation 
in vitro (36, 37).

Finally, a progressive, age-related decline of efficiency in the in 
proteolytic mechanisms might play a synergistic role in the accu-
mulation of α-syn (38, 39). These observations are consistent with 
data showing increased levels of α-syn in nigral dopaminergic 
neurons during normal aging (40).

In the healthy brain, intracellular homeostasis of α-syn is 
ensured by the combined actions of the ubiquitin–proteasome 
(UP) system and the lysosomal autophagy system (LAS) with 
the latter more involved in the clearance of oligomeric assem-
blies (38). Any failure in these systems is a potential trigger to 
overproduction and accumulation of α-syn forms, although 
compensatory mechanisms and additional proteases can take 
control over the protein maturation (38, 41). An aspect that 
complicates the scenario is that accumulation of α-syn may itself 
inhibit these homeostatic systems (42, 43) and reduce chaperon-
ing of misfolded forms, enrolling the whole compartment into 
a vicious cycle that rapidly and uncontrollably triggers multiple 
neurodegeneration pathways. Accordingly, several mutations 
associated with genetic forms of PD are associated with reduced 
LAS function.

Analysis of LB has been indicative of the post-translational 
modifications mostly associated with pathogenic forms of α-syn 
(44). Among them, phosphorylation is probably the most studied 
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modification since Ser129 phosphorylated α-syn is thought to be 
the dominant form of α-syn in LB (45). In support of this preva-
lence, a recent proteomics study quantified cortical expression 
levels of various α-syn forms from PD cases and controls (46).

It remains unclear, however, whether phosphorylation of α-syn 
impacts the fibrillation process (47). The role of nitration and 
oxidation in favoring toxic species is more clearly demonstrated 
in decreasing the tendency of α-syn to form fibrils and stabilizing 
oligomers, leading to enhanced toxicity (48, 49). Nitration of α-syn 
at specific residues has been characterized in brains from patients 
with synucleinopathies (50). Oxidized α-syn may result by way of 
oxidized derivatives of DA leading to a decrease in fibril formation 
and a subsequent increase in protofibril accumulation (51).

Truncated α-syn species have been found in LB associated with 
an increased tendency to form fibrils in vitro and with increased 
toxicity in overexpressing laboratory animals (52, 53) even if 
evidence of correlation with human disease are scarce (46).

The pathological relevance of α-syn species is extensively 
debated (44) and stabilization of the amyloid pathway is a main 
focus of research. It has been proposed that toxic species could 
be either amyloid-like insoluble fibrils, as the ones found in LB, 
although more evidence would support a key role for soluble oli-
gomers or protofibrils (35). Several groups have investigated the 
different states of α-syn aggregation and thoroughly examined 
the functional consequences of aggregate-associated toxicity pro-
ducing conflicting results (35, 44). However, the general concept 
is that α-syn exists under various conformational shapes and oli-
gomeric states in a dynamic balance, modulated by factors either 
accelerating or inhibiting fibril formation. Genetic mutations 
related to PD have a role in determining the pattern of expression 
of the various aggregates (54–56), although the identification and 
characterization of the toxic α-syn species remain incomplete.

Strategies to counteract α-syn toxicity range from increasing 
protein clearance, which might be enhanced by stimulating 
autophagy, to act on α-syn post-translational modifications (44). 
Also, approaches targeting α-syn aggregation with inhibitors 
(57–59) or by inducing either passive or active immunization 
against α-syn species have shown promises in several transgenic 
mouse models of PD (60–62).

However, limits of this approach have been recently discussed 
(44). Given the incomplete knowledge of possible cellular roles 
of oligomers and the many functions covered by this protein, the 
precise α-syn species to target remains unclear. It is possible to 
hypothesize that modest presence of specific α-syn aggregates 
can be useful for the cell as part of compensative mechanism that 
is still unclear, and that their elimination could be harmful and 
accelerate instead of counteracting the disease process.

DA NeURONS vULNeRABiLiTY TO α-syn

Relevant to the impact of protein misfolding in brain functions, 
an aspect that still puzzles researchers in the field of neurodegen-
erative diseases is the selective vulnerability of certain population 
of neurons to a wide range of insults.

In PD, dopaminergic neurons of the substantia nigra pars 
compacta (SNc) show selective neurodegeneration and cell death 
with reduction of dopamine (DA) levels in the striatum and 

impairment of several basal ganglia functions. The mechanism 
by which α-syn injures dopaminergic neurons remains to be fully 
established.

Alpha-synuclein is related to DA neurons for its ability to 
modulate DA homeostasis in synapses and to bind and influence 
the activity of DAT (63–65), although the implicated mechanisms 
are still debated (66–68). This protein is also an important modu-
lator of DA metabolism as it controls DA synthesis by reducing 
the phosphorylation state of tyrosine hydroxylase and stabilizing 
it in its inactive state (69). Accordingly, absence of α-syn exerts 
considerable impact on the dopaminergic system because it 
causes decreased striatal DA levels and reduced DAT function 
(70). Lack of α-syn is also associated with decreased DA striatal 
uptake (71), reduced number of TH-positive terminals as well as 
of nigral DA cells (72).

However, the sensitivity of DA neurons to α-syn toxicity does 
not only depend on the possible lack of support to DA metabolism, 
but on the intrinsic and selective vulnerability of these neurons to 
excitotoxic challenge.

A recent review discusses the common traits of neurons of 
SNc neurons and other nuclei most vulnerable to PD pathology, 
offering an interesting point of view (73). The authors posit that 
SNc neurons share particular vulnerability to oxidative stress 
with cells of other brain nuclei involved in arousal responses and 
in the control of sensorimotor networks, needed for surviving 
behaviors such as vigilance, escape, and attack. SNc DA neurons 
possess at least two characteristics that make them particularly 
vulnerable to excitotoxic insult.

First, these neurons display an extensive length of branched 
axons that offer a high number of transmitter release sites. This 
diffuse axonal arbor might be functional to the coordination of 
the activity in spatially distributed networks, such as the basal 
ganglia. However, mitochondrial stress is elevated in the axons of 
SNc DA neurons and this is one reason why these neurons show 
increased vulnerability.

Second, DA neurons also have spontaneous activity and act as 
autonomous pacemakers. Their activity is characterized by large 
oscillations in intracellular calcium (Ca2+) concentration that are 
driven by the opening of voltage-dependent Cav1 Ca2+ chan-
nels (also known as L-type Ca2+ channels) to ensure a rhythmic 
(2–10 Hz) spiking (74–76). This ability is associated to low intrin-
sic Ca2+ buffering and requires a strict control of Ca-mediated 
processes from intracellular stores, promoting Ca2+ entry into 
the mitochondria (77, 78) as well as oxidative phosphorylation 
and production of ATP (79). All these events are needed to fulfill 
bioenergetic needs (79, 80) and to avoid undesired compensative 
activation of ATP-sensitive potassium channels, which would 
silence ongoing neuronal activity.

Substantia nigra pars compacta cells and other neurons of 
brain nuclei involved in sensorimotor integration are endowed 
with this complex set of feedforward control mechanisms that 
ensure to rapidly implement a correct strategy in response to 
environmental challenge. A price for this adaptive ability is the 
vulnerability of the system to age, genetic mutations, or environ-
mental toxins that may increase production of reactive oxygen 
species that can impair proteostasis, cause accumulation DNA 
damages, particularly in mitochondria. When mitochondrial 

46

https://www.frontiersin.org/Neurology/
https://www.frontiersin.org
https://www.frontiersin.org/Neurology/archive


Ghiglieri et al. Roles of α-syn in PD

Frontiers in Neurology | www.frontiersin.org May 2018 | Volume 9 | Article 295

dysfunction reaches a level in which mitophagy is impaired, 
also cellular autophagic processes are affected and UP and LAS 
systems are compromised. Accordingly, in rodents, SNc, locus 
coeruleus, and dorsal motor nucleus of the vagus neurons (which 
are the only ones that have been studied at this level) manifest a 
basal mitochondrial oxidant stress in the somatodendritic region 
that is attributable to the feedforward control of oxidative phos-
phorylation of ATP (78, 81–83). On this line, a recent paper by 
Burbulla and colleagues (84) analyzed the synergistic detrimental 
effect of increased levels of α-syn, dopaminergic receptor stimula-
tion, and mitochondrial dysfunction in mice showing functional 
inactivation of DJ-1, modeling an early-onset genetic form of PD. 
Interestingly, mice with both DA neuron-specific overexpression 
of human α-syn A53T (85) and constitutive DJ-1 deficiency show 
increased levels of oxidized DA in nigral neurons and decreased 
lysosomal activity compared with mice bearing the single DJ-1 
mutation.

All these data support the concept that α-syn induces exacerba-
tion of a Ca2+ dyshomeostasis in DA neurons. The paper by Luo 
and coworkers provided experimental evidence for this link by 
studying the potential effects of increased α-syn levels on processes 
downstream of the Ca2+-signaling pathway, demonstrating the 
contribution of a new calcium-dependent pathway in the dopa-
minergic neuronal loss (86). A possible explanation resides in the 
combination of the α-syn oligomers property to trigger Ca2+ influx 
and the intrinsic physiological characteristics of DA neurons. This 
neuronal population is in fact characterized by pacemaker activ-
ity that, as described above, depends on a complex homeostatic 
regulation, which involves the activity of L-type calcium channels 
(87), bringing the DA neuron on the edge of triggering neurode-
generative pathways. Another study that has been instrumental in 
deciphering the link between DA neurons and α-syn is the paper 
by Feng et  al. (88) demonstrating that in particular conditions, 
like overexpression of wild-type (WT) α-syn, oligomers causes 
the formation of pore-like structures throughout the membrane 
acting as non-selective channels. This was associated with increase 
in membrane conductance and with cell death (88).

BeYOND THe BRAAK HYPOTHeSiS

The prevalent belief on the progression of PD neurodegeneration 
is based on the observation of an ascending pattern of its clinical 
manifestations that identifies the disease phase. The idea is that 
toxic species of α-syn progressively reach more brain regions over 
the course of the disease, as suggested by Braak and coworkers 
(89), starting from peripheral body dysfunctions and olfactory 
impairment through central brainstem functions to end with 
alterations of higher functions over years or decades following 
the first exposure to stressors.

In this theoretical framework, the speculation that prodromal 
symptoms of PD (hyposmia, constipation, and autonomic dys-
functions) might be due to peripheral seeding of α-syn aggregates 
gained a broad consideration in the field. Indeed, in prodromal 
phases, inflammation in the gastrointestinal tract or in the 
olfactory system may trigger the formation of α-syn aggregates 
(90). This concept is supported by recent evidence obtained in 
Snca-overexpressing mice suggesting a role of gut microbiota 

in hosting immune and inflammation response linked to α-syn 
pathology, associated with motor deficits (91).

Thus, α-syn would be released into the synaptic cleft, 
endocytosed by neighboring neurons, and seed aggregation of 
endogenous α-syn once inside their new cellular host (92–94). 
However, this is a much-debated issue and, although many 
studies support the notion of a spreading of α-syn pathology 
through a prion-like activity, recent analyses have challenged 
this theory demonstrating that the distribution of pathology in 
the brains of PD patients is not consistent with this model. The 
prion-like nature of α-syn was postulated around a decade ago 
after the observation of the development of LB-like intracellular 
inclusions in grafted DA neurons of PD patients who received a 
transplantation of embryonic mesencephalic grafts 11, 14, and 
16 years earlier (95–97). The hypothesis of a “host-to-the-graft” 
transmission of LB led to the concept that α-syn oligomers may 
spread from cell to cell through axonal transport and exocytosis, 
aggregate into LB, and then transferred to other neurons.

A recent study by Peelaerts and colleagues investigated whether 
different forms of α-syn aggregates are genuine protein strains 
with a given role and a specific impact on animal physiology (98), 
based on the hypothesis that different strains could account for 
the different clinicopathological traits within synucleinopathies 
(99, 100). The authors propose that α-syn exists and exerts its det-
rimental effects, in different strains leading to different aggregates 
that cause as many distinct synucleinopathies (PD, dementia with 
LB, multiple system atrophy) (98, 101). The most relevant insights 
from this study are that (1) the dynamic nature of α-syn species 
is reflected into distinct competencies in the various species that 
could account for different phenotypes; (2) α-syn strains amplify 
in vivo; and (3) α-syn assemblies cross the blood–brain barrier 
after intravenous injection.

Although findings in support of the prion-like hypothesis are 
numerous, an increasing number of studies have recently challenged 
this vision. Two interesting reviews thoroughly discuss limits of the 
data collected in support of the ascending theory of α-syn pathology 
rather supporting a threshold theory to explain controversial data. 
One of the most important point of the “threshold theory” (102) 
stems from the simple consideration of PD as a global systemic 
disease supported by many genetic, cellular, and functional data. 
The fact that invalidates the ascending theory regards the evidence 
that brainstem and peripheral neurons are more resistant to insults 
and less prone to neurodegeneration compared to DA neurons 
(103–105) and capable of regeneration (106, 107). One explana-
tion of the early dysfunction of brainstem and enteric neurons is 
due to their low threshold of functional reserve in contrast with 
the resilience of central neurons as part of widespread intercon-
nected networks that ensure a good degree of compensation and 
redundancy to conserve higher functions (108, 109). Indeed, 
central networks have a great ability to compensate for an impaired 
function of a given central brain area, resulting in a late appearance 
of motor and cognitive symptoms. The authors propose that parallel 
pathological events in PD occur at similar rates resulting in the first 
symptoms pertaining to a peripheral nervous system alteration, due 
to an earlier functional threshold in the autonomic nervous system 
compared with midbrain dopaminergic circuitry. This threshold 
function explains the progression of early symptoms in PD.
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iNFLAMMATiON AND iMMUNe 
ReSPONSe iN PD

In many disorders of the CNS, a key aspect of neurodegeneration 
is neuroinflammation. In PD, abnormal functions of astrocytes 
and increase in soluble inflammatory cytokines from microglia 
and immune cells have been proposed as a critical player that 
together with glutamate-mediated excitotoxicity becomes major 
determinants for pathophysiology. In nigrostriatal degeneration, 
inflammatory response is invariably associated with α-syn-
mediated events. Glial cells, which cover a wide range of functions 
in support of neuron development, maintenance, and survival, 
seem to be critically involved at many levels in the neurode-
generative spreading of the disease pathology. These studies 
have provided evidence supporting CNS immune resident cells 
role in PD (110). Activation of some glial components, such as 
astrocytes, however, is not limited to final phases of the inflamma-
tion process but it has been recently supposed to play a relevant 
part in initiating the pathology (111). Conversely, although it 
is well known that microglia plays a role in abnormal plasticity 
by its ability to produce inflammation mediators (112), it is less 
clear if microgliosis is instrumental to disease pathogenesis or a 
secondary event following the ongoing neurodegeneration and a 
primary role remains to be defined (113).

Functionally, all neuronal activities require an intact glial func-
tion provided by both astrocytes and microglia, which become 
essential for neurons enrolled into intense synaptic activity, such 
as DA SNc neurons. Astrocytes, besides their role as structural, 
metabolic, and trophic support, are directly involved in synaptic 
transmission, ensuring a proper communication, and avoiding 
abnormal stimulation of extrasynaptic receptors. While astrocytes 
can be considered an essential component of an operational synap-
tic surveillance, microglia is in charge of the immune surveillance 
in the brain. Abnormal microglia activation was found in autopsy 
brain tissues from PD patients and in experimental parkinsonism 
(110, 114–117) and many recent papers have focused on the roles 
of microglia in PD pathology [reviewed in Ref. (113)] bringing 
support to the notion that neurodegenerative processes and 
inflammation coexist and cooperate at the same time to respond 
to brain insults, and that these events do not just occur in series as 
the disease progresses. For example, when an immune response 
is initiated by microglia, astrocytes surround the area, creating a 
barrier to prevent the spread of toxic signals into the surrounding 
tissue (118). Neuroinflammation and immune response, includ-
ing autoimmune activity, share molecular pathways initiated by 
cellular elements during degeneration.

A recent review paper by Booth and colleagues (111) has 
provided an extensive overview of the studies that link astrocytes 
alterations and PD, with particular attention to the monogenic 
forms of disease in which genetic mutations affect the functions 
of both principal neurons and astrocytes. A recent transcriptome 
study demonstrated that of 17 genes that have been implicated in 
PD, 8 are also expressed in astrocytes and are essential for their 
homeostasis (119). Although SNCA gene shows a low astrocytic 
expression, it has been suggested that even a modest presence of  
α-syn might be challenging for their function. In fact, α-syn initi-
ates and regulates astrocyte activation in response to inflammatory 

stimuli. Also, astrocytes have been reported to take up aggregated 
alpha syn. The most fascinating aspect of astrocyte involvement 
in neuronal degeneration, relevant to PD, is that astrocytes 
change in shape and function to provide support to DA neurons 
under intense stressful conditions (120–122). Astrocytes are also 
able to take up circulating DA precursor l-DOPA to release DA 
(123), as they express enzymes and the complete machinery for its 
metabolism, suggesting a close relationship to DA systems.

It has been recently shown that in 6-hydroxydopamine-
lesioned rats, modeling late stage PD, marked astrocytosis and 
microglial activation accompany neurodegeneration over time as 
the damage progresses, being strikingly visible in striatal samples 
2  months after the lesion. Interestingly, following a repetitive 
transcranial magnetic stimulation (TMS) treatment, reduction 
of intense astrogliosis and microgliosis was associated with, 
and may underlie, recovery of corticostriatal plasticity. Such 
TMS-mediated recovery of glial morphology and function was 
associated with selective increase of DA in dorsolateral striatum 
of treated parkinsonian animals (124).

These data are in agreement with studies showing that 
microglia is implicated in the production of neurotrophins, 
interleukins, proinflammatory, and antiinflammatory cytokines 
(114–117) and with studies linking TMS beneficial effects with 
stabilization of microglia, reduction of neuroinflammation bio-
markers (110, 125). Midbrain DA neurons, α-syn, and immune 
response are also linked together by their involvement in altered 
Ca2+ homeostasis. The paper by Luo et al. (86) demonstrated that 
in DA neurons of A53T α-syn transgenic mice dysregulation of 
intracellular Ca2+ activates the calcineurin pathway that, in turn, 
increases the translocation rate of the nuclear factor of activated 
T  cells (NFAT) from cytosolic to nuclear compartments. This 
is associated with the expression of cytokine genes, in human 
T cells and enhanced cell death in SNc. Inhibition of calcineurin 
renormalizes the mitochondrial Ca2+ fluxes rescuing the α-syn-
induced loss of primary mesencephalic DA neuron cultures.

In support of the relationships between immune system and α-
syn pathology, an interesting study reported significantly higher 
service levels of antibodies against monomeric α-syn in patients at 
early phases of disease. This paper postulates that autoimmunity 
responses take part in a compensative attempt of neuroprotection 
(126). A recent paper by Shalash and collaborators has shown 
that α-syn autoantibodies (AIAs) can be a promising avenue in 
the field of peripheral biomarkers compared patients with PD, to 
patients with AD along with controls (127). These molecules are 
also produced in gender-dependent fashion, across the lifespan 
during the development and can be detected in healthy young 
subjects, with titers similar to healthy adults (128). This might 
suggest that autoantibodies production might be optimized over 
time in response to environmental stimuli.

A series of studies by Sulzer and coworkers further supports 
the existence of a link between α-syn and immune response. 
During PD neuroinflammation, the blood–brain barrier becomes 
permeable to immune cells recruited into the CNS by massive 
proinflammatory cytokine production from microglia (129, 130). 
A recent paper by this group shows that this process triggers an 
immune response against identified α-syn epitopes in PD patients 
who presents specific major histocompatibility complex alleles. 
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In particular, two antigenic regions have been identified: the first 
near the N terminus (called Y39 region) and the second near the 
C terminus, the well-known S129 region, containing the amino 
acid residue S129, whose phosphorylation has been associated 
with α-syn pathology (131).

eARLY SYNAPTiC ALTeRATiONS 
PReCeDiNG NeURODeGeNeRATiON

Although many advances have been made in deciphering the 
mechanisms by which α-syn triggers neurodegenerative path-
ways, the ability of mammalian brain to compensate for loss of 
functions still constitutes a main obstacle in a readily identifica-
tion of the disease’s traits. As a consequence, a still unmet medical 
need is to find increasingly reliable functional biomarkers of 
disease that may bring to an earlier diagnosis and, possibly, pre-
dict disease trajectory. To this aim, current research is focusing 
on cerebrospinal fluid biomarkers and early synaptic alterations. 
While advances in the research of peripheral biomarkers have 
been extensively reviewed elsewhere (132), we will focus on the 
other front with a main question to address: which measurable 
synaptic changes can be predictive of PD neurodegeneration?

An ideal condition to explore subtle alteration of synaptic 
activity before neuronal degeneration is offered by animal models 
of disease in which expression of α-syn is genetically altered. In 
these models, it is possible to follow the synapse development at 
different time points along the disease progression and simulta-
neously study associated motor deficits to find increasingly more 
sensitive behavioral tests. Both presynaptic and postsynaptic 
modifications, recently reviewed by Burre, have been associated 
with α-syn pathology (20). However, given their specific localiza-
tion at nerve terminals, presynaptic alterations were soon pre-
dicted and investigated, leading to seminal papers demonstrating 
that altered α-syn interferes with SNARE protein assembly, with 
an associated reduction in exocytosis and DA release (9) thus 
affecting the activity of the release machinery, although the extent 
by which α-syn affects neurotransmitter release is debated (20). 
Relevant to its presynaptic effects, it is noteworthy that α-syn 
also interacts with other synaptic proteins, such as Synapsin 
III, a protein that, similar to other members of the synapsin 
family, plays essential roles in neurotransmitter release, but has 
an extrasynaptic localization. Interestingly, it has been reported 
that synapsin III interacts with α-syn in both physiological and 
pathological conditions, further increasing the complex pattern 
of presynaptic actions of α-syn pathology (20, 133–136). It seems 
to be clear, in fact, that due to its ability to mobilize among differ-
ent sectors of the active zone upon stimulation (137, 138), α-syn 
dynamic interactions with SNARE, lipidic raft and DAT are highly 
dependent on the neural activity. Any alteration in this well-tuned 
machinery is therefore associated with neurotransmission altera-
tions, which may have less impact in basal neurotransmission, 
but become critical during intense neuronal activity and over 
their long lifetime. α-syn can also permeabilize lipid membranes 
through the formation of cations permeable transmembrane 
pores, thus altering membrane conductances, and increase the 
risk for altered calcium homeostasis (12, 139).

This effect of α-syn was also studied in cell systems overex-
pressing the protein (140, 141). Using whole-cell patch-clamp 
recordings, Feng and coworkers (88) measured ion leakage upon 
the application of an electrical potential in a dopaminergic cell 
line. These effects were associated with a modest but significant 
time-dependent increase in cell death, demonstrating a link 
between α-syn pathology and conductance changes.

However, while DA release machinery alterations were a 
primary expected effect of α-syn toxicity, more recent papers 
have focused on the postsynaptic counterpart of this pathological 
scenario. Altered activity and distribution of postsynaptic density 
components have only recently been explored but may be promis-
ing tools to detect subtle but measurable changes at the core of 
this synaptopathy.

Since cognitive alterations have been observed as prodromal 
PD symptoms early plastic alterations have been first explored 
in the hippocampus. In 2012, Costa and colleagues studied CA1 
hippocampal plasticity in a transgenic mouse model for α-syn 
aggregation obtained by the expression of human α-syn 120 
under the control of the tyrosine hydroxylase promoter (α-syn 
120 mice) and leading to the formation of pathological inclusions 
in the SNc and olfactory bulb and to a reduction in striatal DA 
levels (142, 143). In a presymptomatic motor stage characterized 
by spatial memory alterations, CA1 hippocampal pyramidal 
neurons of α-syn 120 mice show a reduced ability to respond to 
a high-frequency stimulation with a form of long-lasting plastic-
ity expressed in this area and dependent on DA D1 and NMDA 
receptors stimulation, called long-term potentiation (LTP). 
Postsynaptic density modifications were associated with plastic 
changes as NMDA receptor subunit composition was found 
changed with a significant decrease of GluN2A/GluN2B subunit 
ratio. This effect was due to decreased DA release as l-DOPA 
was able to rescue synaptic functions. Overall, these results first 
demonstrated that, similar to human condition, cognitive deficit 
precede motor symptoms with postsynaptic mechanisms (143). 
In support of this notion, other studies have shown that α-syn 
plays a role in NMDA receptor trafficking in other brain areas 
(144–147), suggesting that postsynaptic actions of α-syn impact 
on intracellular events relevant for synaptic plasticity.

Given the possibility that in pathological conditions α-syn 
species (monomer, oligomers, and fibrils) may also act extra-
cellularly thus possibly inducing postsynaptic effects, in  vitro 
models have been developed to clarify the role of extracellular 
α-syn in hippocampal plasticity alterations. On this line, the 
group of Outeiro conducted a series of studies to demonstrate 
the effects of extracellular α-syn oligomers. The study carried out 
by Diogenes and colleagues shows that different species of α-syn 
have distinct effects on synaptic activity. In particular, among 
oligomers, monomers, and fibrils, only prolonged incubation 
with oligomers in healthy rodent brain slices were able to increase 
basal synaptic transmission through a mechanism dependent on 
NMDA receptor activation, accompanied by an increase in the 
expression of GluR2-lacking AMPA receptors. In these slices, 
stimulation with a theta-burst pattern was not able to induce 
LTP without a previous application of a low-frequency stimula-
tion indicating a saturation effect underlying impairment of LTP 
(148). Interestingly, these detrimental effects were counteracted 

49

https://www.frontiersin.org/Neurology/
https://www.frontiersin.org
https://www.frontiersin.org/Neurology/archive


FiGURe 1 | Schematic representation of the cellular and synaptic detrimental actions mediated by different forms of the protein alpha-synuclein (α-syn). In nigral 
neurons, endoplasmic reticulum (rough ER), SNCA transcripts are translated into native α-syn proteins, which are assembled in the Golgi apparatus and released in 
different conformations. Due to its auto-chaperone activity, α-syn exists in a dynamic balance between monomeric unfolded and amphipathic alpha-helix (membrane 
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be also produced (misfolded) and escape detection and clearance by intracellular quality control systems. After synapse maturation, α-syn migrates to nerve 
terminals and interacts with intracellular proteins [SNAP REceptor (SNARE) complex] and the dopamine (DA) active trasporter to ensure a correct control of 
neurotransmission. Misfolded α-syn may combine into oligomers that, under specific stimulations, form transmembrane pore-like structures able to alter membrane 
conductances. Overexpression of α-syn exacerbates pathological events and culminates with the formation of fibrillar aggregates (fibrils), a major component of 
Lewy bodies. Extracellular α-syn oligomers interfere with the expression of long-term potentiation, a form of synaptic plasticity mediated by N-methyl-d-aspartate 
receptors (NMDAR) in striatal cholinergic interneurons. A direct interaction between α-syn and the GluN2D subunit has been demonstrated in three different models 
of experimental parkinsonism.
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by adenosine A2a receptor antagonists, known for their neuro-
protective role in PD therapy, and were not observed in animals 
lacking A2aR. Moreover, blockade of these receptors was able to 
reduce α-syn aggregates (149).

Another evidence of the link between α-syn overexpression 
and NMDA receptor dysfunction comes from a recent study of 
the same group as a further support to the concept that many 
elements in the postsynaptic compartment play important roles 
in predisposing the synapse to NMDA-dependent excitotoxicity 
mediated by its interaction with α-syn aggregates. Using an in vitro 
approach, the authors demonstrated that LTP alterations are 
caused by the abnormal activity of cellular prion protein, known 
to act as a cell surface-binding partner for soluble oligomeric 
protein and to interact with NMDA receptors at postsynaptic 
density. This protein, when engaged in pathological interactions 
with α-syn, mediates Ca2+ dyshomeostasis and synaptic dysfunc-
tion through a mechanism involving Fyn kinase phosphoryla-
tion, which is tightly regulated by mGluR5 via adenosine A2A 
receptors. In turn, activated Fyn phosphorylates Y1472 residue 

of GluN2B-expressing NMDA receptors with consequent exci-
totoxic effects (150).

Although these studies greatly contributed to the understand-
ing of α-syn synaptic effects, the effects of α-syn oligomers on 
the functional activity of the striatum have been explored only 
recently. In fact, the striatum represents the most interesting tar-
get for PD therapy since it is the main recipient of dopaminergic 
nigral neurons, whose activity is impaired by α-syn-mediated 
toxicity (151). For this reason, transgenic animals overexpressing 
altered forms of α-syn, such as the truncated human α-syn 1–120 
or the WT human α-syn, may be valuable models to assess specific 
aspects of the pathogenesis of synucleinopathies and to analyze 
the cell type-specific alterations of striatal synaptic plasticity in 
the initial phase of the disease.

The first report to show alterations in corticostriatal plastic-
ity associated with α-syn overexpression was provided by an 
ex vivo study performed in slices from mice overexpressing a 
truncated form of α-syn at a late symptomatic stage of disease 
(152). But, it was few years later that, taking advantage of the 
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TABLe 1 | Summary of the findings on the role of α-syn in the distinct aspects contributing to pathogenesis of Parkinson’s disease (PD).

Reference Findings experimental conditions

Neurodegeneration (22) C-terminally truncated alpha-synuclein (α-syn), particularly  
α-syn (1–120), assembles into filaments morphologically  
very similar to those seen in neurodegenerative conditions

Ala30Pro α-syn, Ala53Thr α-syn, α-syn (1–110),  
α-syn (1–120), and α-syn (1–130) subcloned into  
the bacterial expression vector pRK172 and  
expressed in Escherichia coli BL21(DE3)

(52) α-syn lacking residues 71–82 (α-synΔ71–82) are unable  
to aggregate and show no dopaminergic neurotoxicity,  
whereas truncated C-terminal α-syn (α-synΔ120) has a  
moderate role in influencing both aggregation and toxicity

Transgenic Drosophila modified to obtain  
α-synΔ71–82 or α-synΔ120

(40) Nigrostriatal α-syn levels increase with age causing  
inclusion bodies to form in nigral neurons and drive  
dopamine (DA) levels over a symptomatic threshold

Human and non-human primate models

(41) A53T α-syn, but not ΔDQ/A53T, causes toxicity in  
primary cortical neurons through chaperone activity  
dysfunction and aberrant macroautophagy activation

Stable rat PC12 and human SH-SY5Y cells inducibly 
expressing human wild-type (WT) α-syn, ΔDQ/WT 
α-syn, A53T α-syn, and ΔDQ/A53T α-syn

(53) Co-expression of human full-length α-syn (αsynFL)  
and C-terminally truncated human α-syn (αsynΔ110)  
can augment the accumulation of pathological αsynFL  
protein and lead to dopaminergic cell death

Adult Sprague-Dawley rats injected in the SN  
with viral vector rAAV5-asynFL + rAAV5-asynD110

(42) WT α-syn overexpression causes a decrease in LC3-II levels  
impairing autophagy which increases accumulation of aggregate- 
prone proteins and sensitizes the cell to proapoptotic assaults

Human neuroblastoma cells (SKNSH),  
human cervical carcinoma cells (HeLa), and  
human embryonic kidney cells (HEK293)

(43) The introduction of small amounts of pre-formed α-syn fibrils  
into α-syn-expressing cells results in aggregation of endogenously  
expressed α-syn and the formation of insoluble aggregates which  
persist even when soluble α-syn levels are substantially reduced,  
indicating their refractoriness to clearance

Mammalian and primary neuronal cell  
cultures—HEK293 cells stably  
expressing WT or A53T α-syn

(88) α-syn overexpression results in increased oligomer production and  
formation of membrane-bound α-syn-containing pores that induce  
increase in membrane conductance, determining cell death

MN9DwtsynIR-Esgfp (MN9Dsyn) cells  
were derived and engineered from mouse  
embryonic mesencephalon

(13) Penetration of α-syn into membranes gives rise to the formation  
of annular pore-like oligomer structures with the ability to increase  
cell permeability and calcium influx

Cell culture of neuronal cells  
expressing WT or mutant A53T α-syn

(86) α-syn activates calcineurin (CN), mediating the translocation  
of NFATc3, which contributes to the loss of neurons. 
 Administration of CN inhibitor cyclosporine A rescues  
the α-syn-induced loss of primary mDA neuron cultures

HEK293 cells transfected with WT  
and A53T α-syn cDNAs

(98) Exogenous α-syn strains seed the assembly of endogenous  
α-syn. Differently from α-syn oligomers, α-syn fibrils and ribbons  
remain in place after crossing the blood–brain barrier. Distinct α-syn  
assemblies can affect neurotransmission after acute exposure,  
but only fibrillar α-syn exhibits perpetual behavioral and aggravated  
neurotoxic phenotypes in vivo

Intracerebral injections of exogenous  
α-syn in Wistar rats

Oxidative stress (48) Nitration of Tyr residues appears to prevent fibrillogenesis  
from soluble α-syn proteins. Oxidative stress causes soluble  
α-syn to form covalently linked dimers and higher oligomers  
and allows for fibril formation and stabilization

WT and Tyr to Phe mutant recombinant  
human α-syn proteins expressed in  
E. coli BL21(DE3) RIL cells

(49) Nitration effectively inhibits fibrillation of α-syn. The addition  
of low concentration of nitrated α-syn inhibits the fibrillation  
of non-modified α-syn

Human WT α-syn was expressed using  
E. coli BL21

Immune response (126) Autoimmune response to α-syn can serve as a valid biomarker,  
reflecting the progressive brain neurodegeneration and impaired  
α-syn homeostasis occurring in PD

Analysis of human PD patients’ serum

(91) Changes in human microbiota are correlated to the motor  
and gastrointestinal parkinsonian dysfunctions by impacting  
neuroinflammation and α-syn aggregation. Gut bacteria from  
PD patients promote enhanced motor impairment when  
transplanted into α-syn overexpressing mice

Germ free male α-syn overexpressing  
and WT colonized with fecal microbes 
 from PD patients and healthy controls

(Continued)
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gradual progression of the disease offered by genetic models, 
Tozzi and coworkers investigated α-syn-mediated alterations in 
plasticity by studying both spiny projection neurons (SPNs) and 
cholinergic interneurons (ChIs) in two different models of early 
PD: the mice transgenic for truncated human α-syn (1–120) and 
the rat injected with the adeno-associated viral vector carrying 
WT human α-syn in the SNc (153). In a presymptomatic stage, 
before any neuronal degeneration, procedural learning deficit 
was associated in both rodent models with selective impairment 
of LTP in ChIs but not in SPNs. Similar to what observed in the 
hippocampus, also here a direct interaction between α-syn and 

NMDA receptors is suggested, as the loss of LTP in striatal ChIs 
was dependent on a direct interaction of α-syn with GluN2D-
expressing NMDA receptors, which are selectively expressed 
in this class of interneurons. This link has also been studied in 
an in  vitro model. Bath incubation of corticostriatal slices of 
healthy animals with α-syn oligomers caused the same synaptic 
alterations that were not rescued by exogenous DA or a D1-like 
receptor agonist, suggesting that the blockade on synaptic plastic-
ity is not mediated by an α-syn-mediated interference with DA 
release. These alterations correlate with the behavioral pattern 
observed, mimicking the early phase of PD, and are in line with 

Reference Findings experimental conditions

(131) Peptides derived from two regions of α-syn (Y39 and S129)  
produce immune responses in patients with PD which are  
enacted mostly by IL-5-secreting CD4+ T cells, as well as  
IFNγ -secreting CD8+ cytotoxic T cells. The Y39 antigenic  
region is strikingly close to the α-syn mutations that cause PD

Genome sequencing of PD patients

Synaptic alterations (23) The double α/β synuclein deletion, but not single ones, 
 decreases DA levels, and impairs synaptic parameters (structure  
of synapse, neurotransmitters release, mobilization of synaptic  
vesicles, or forms of short- and long-term synaptic plasticity)

α+/+ β+/+, α−/− β+/+, α+/+ β−/−, α−/− β−/−-syn mice

(25) In aged α-syn null mice a dramatic effect on synapse structure,  
a decrease conduction velocity and a lower neuronal excitability  
are observed. Modest overexpression of human α-syn in  
young mice causes a decrement in neurotransmission  
similar to aged α-syn null mice

αβγ-syn triple KO mice

(63) In dopaminergic neurons, intracellular α-syn induces a DA  
active trasporter (DAT)-mediated inward current extracellular  
Na+ independent but transmembrane Cl− gradient sensitive,  
which is eliminated by DAT antagonist GBR12935 and is absent  
with intracellular heat-inactivated α-syn. These changes are  
paralleled by an α-syn-dependent decrease in rate of DAT-mediated  
substrate uptake. The membrane potential of cells overexpressing  
α-syn rest at more depolarized state, disrupting cell homeostasis

Primary neuronal culture of acutely  
dissociated TH:RFP mouse  
midbrain DA neurons

(64) DA uptake and DAT distribution in striatal membranes are  
dysregulated in young mice overexpressing A53T α-syn.  
Uptake of DA through DAT is normalized in older animals  
where bioavailability of A53T α-syn is reduced and expression  
of β-syn and γ-syn increased. The normalization of DA uptake  
with aging may relate to a shift in modulation of DAT from  
α-syn to other synucleins

Transgenic mice expressing mutant A53T α-syn

(153) Overexpression of either truncated or full-length human  
α-syn affects plasticity of cholinergic interneurons (ChIs),  
but not of spiny projection neurons, resulting in mild cognitive  
and motor deficits, mimicking early PD. Acute application of  
exogenous human α-syn oligomers to striatal slices of control  
animals impairs long-term potentiation of ChIs by targeting GluN2D- 
expressing N-methyl-d-aspartate receptors (NMDARs). Subchronic  
l-DOPA restores synaptic plasticity in ChIs, suggesting that a  
long-term dopaminergic activation is required to compensate  
for the complex molecular effects induced by DA denervation  
on NMDAR subunits

Transgenic mice expressing truncated  
human α-syn (1–120) and Sprague-Dawley  
rats injected with the adeno-associated  
viral vector (AAV) carrying WT human  
α-syn (AAV-α-syn)

(154) Early versus optimal motor learning changes striatal DAT levels.  
DAT-regulated activation of the D1 pathway in the dorsolateral  
striatum, during early-stage of incremental motor learning,  
cooperates with D1 pathway activation to prevent premature  
shifting to habit learning. Overexpression of α-syn impairs  
motor learning by altering DAT expression, before leading  
to DA neuronal loss and bradykinesia

CD1 mice model of PD by performing  
bilateral injections of recombinant  
adeno-associated viral vector  
(rAAV)-hu-α-syn and rAAVGFP in  
the SNpc/VTA (ventral tegmental area)

TABLe 1 | Continued
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what observed in PD patients, in which mild cognitive alterations 
associated with cholinergic dysfunction, frequently precede overt 
motor symptoms.

It is noteworthy that micromolar concentration of α-syn oligo-
mers were found effective in determining hippocampal pathology, 
while nanomolar concentration were sufficient to induce striatal 
alterations. Taken together, these data suggest that increasing 
concentrations of α-syn may progressively affect NMDA receptor-
mediated functions on distinct neuronal populations, indicating 
that the vulnerability to this protein may be cell type specific and 
region specific. On this view, early dysfunction of the striatal cho-
linergic system, occurring at very low concentrations, represents 
a possible functional marker of the disease. On the same line of 
research, a recent study by Giordano and coworkers provided an 
important link between presynaptic and postsynaptic actions of 
α-syn and contribute to the reconstruction of a comprehensive 
view of the many faces of α-syn pathology (154).

Using an animal model of PD, in which animals overexpress 
human WT α-syn in the midbrain neurons, the authors demon-
strate that very early stages are associated with reduced striatal 
DAT and impaired acquisition of performance plateau in the 
rotarod task. Interestingly, behavioral impairment has a unique 
electrophysiological correlate that depends on DAT alteration. In 
fact, while a form of plasticity, the long-term depression (LTD) 
is equally expressed at corticostriatal synapses of both WT and 
α-syn mice before and after exposure to exercise through acceler-
ated rotarod test, healthy animals show an interesting switch from 
LTD to LTP during the acquisition phase of motor learning. Mice 
overexpressing human α-syn do not show this shift in plasticity 
that is instrumental to acquire motor habits and perform cor-
rectly. This early training-induced shift from LTD to LTP, and 
the achievement of a good performance, is impaired in control 
animals pretreated with DAT inhibitor GBR-12909. These find-
ings, in line with previous studies (155–159), further suggest that 
early signs of synucleinopathy do not necessarily correlate with 
DA neuronal loss and support the notion that a reorganization of 
cellular plasticity within the dorsal striatum is necessary for the 

acquisition of a motor skill, and it depends on an intact dopamin-
ergic transmission, controlled by DAT, which is impaired early by 
nigral overexpression of human α-syn.

CONCLUSiON

Taken together, all these findings return a complex but increas-
ingly clear scenario designed by the many roles of α-syn (Figure 1; 
Table 1).

Future studies will be needed to further investigate how endo-
genous molecules interact with different α-syn conformations. In 
particular, based on the majority of data reviewed here, we expect 
that more effort will be aimed at explaining the mechanisms 
underlying distinct cell-type and region-specific α-syn-mediated 
NMDA receptor alterations. Moreover, in light of the latter 
study and of many reports supporting the neuroprotective effect 
of intense exercise in newly designed rehabilitation programs 
(160,  161), a promising link to explore will be the interaction 
between α-syn aggregation and experience.
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Movement disorders can be primarily divided into hypokinetic and hyperkinetic. Most 
of the hypokinetic syndromes are associated with the neurodegenerative disorder 
Parkinson’s disease (PD). By contrast, hyperkinetic syndromes encompass a broader 
array of diseases, including dystonia, essential tremor, or Huntington’s disease. The 
discovery of effective therapies for these disorders has been challenging and has also 
involved the development and characterization of accurate animal models for the 
screening of new drugs. Zebrafish constitutes an alternative vertebrate model for the 
study of movement disorders. The neuronal circuitries involved in movement in zebrafish 
are well characterized, and most of the associated molecular mechanisms are highly 
conserved. Particularly, zebrafish models of PD have contributed to a better under-
standing of the role of several genes implicated in the disease. Furthermore, zebrafish 
is a vertebrate model particularly suited for large-scale drug screenings. The relatively 
small size of zebrafish, optical transparency, and lifecycle, are key characteristics that 
facilitate the study of multiple compounds at the same time. Several transgenic, knock-
down, and mutant zebrafish lines have been generated and characterized. Therefore, 
it is central to critically analyze these zebrafish lines and understand their suitability 
as models of movement disorders. Here, we revise the pathogenic mechanisms, 
phenotypes, and responsiveness to pharmacotherapies of zebrafish lines of the most 
common movement disorders. A systematic review of the literature was conducted by 
including all studies reporting the characterization of zebrafish models of the move-
ment disorders selected from five bibliographic databases. A total of 63 studies were 
analyzed, and the most relevant data within the scope of this review were gathered. 
The majority (62%) of the studies were focused in the characterization of zebrafish 
models of PD. Overall, the zebrafish models included display conserved biochemical 
and neurobehavioral features of the phenomenology in humans. Nevertheless, in light 
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FiguRe 1 | Representative images of zebrafish at embryonic  
(a), larval (B), and adult (c) stage.
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of what is known for all animal models available, the use of zebrafish as a model for drug 
discovery requires further optimization. Future technological developments alongside 
with a deeper understanding of the molecular bases of these disorders should enable 
the development of novel zebrafish lines that can prove useful for drug discovery for 
movement disorders.

Keywords: drug discovery, hyperkinesia, hypokinesia, movement disorders, zebrafish models

iNtRODuctiON

Movement disorders are a heterogeneous group of neurological 
conditions characterized by the inability to produce or control 
movement. The typical clinical features include either paucity of 
voluntary movements, referred to as hypokinesia, bradykinesia 
and akinesia, or excess of movement, commonly denoted as 
hyperkinesia, dyskinesia, and abnormal involuntary movements 
(1). These two major groups have been dynamic, including 
different categories over time. Most movement disorders lack 
effective pharmacological therapies, because their complex 
etiology and pathological mechanisms remain largely unknown. 
This complicates the development of adequate animal models 
and, ultimately, of therapeutic compounds. In this context, 
zebrafish (Danio rerio) (Figure 1) has become an attractive tool 
for drug discovery. Zebrafish presents a compromise between 
the scalability of invertebrate models and overall homology 
to vertebrates. In the last 20 years, several zebrafish models of 
brain disorders have been generated (2). Many discoveries were 
reported, but an overall analysis of zebrafish as an alternative 
model of movement disorders is lacking. Therefore, the scope 
of this review was to systematically analyze the latest develop-
ments in the generation and characterization of zebrafish models 
of the most common movement disorders. This highlights the 
translational value of zebrafish to model these diseases and, ulti-
mately, for drug discovery. The pathogenic mechanisms, disease 
hallmarks, phenotypic effects of mutations or neurotoxins, and 
responsiveness to pharmacological interventions are covered 
for zebrafish models of two hypokinetic and five hyperkinetic 
disorders (Table 1).

Zebrafish as a model for translational 
Research
The utilization of zebrafish for drug discovery increased in the 
beginning of the twenty-first century (Figure  2) (3, 4). Due 
to its small size and fast reproduction, zebrafish is suitable for 
large-scale in  vivo assays. Drug administration is facilitated 
through the aqueous environment, and the efficacy, bioavail-
ability and toxicity can be readily determined. Importantly, 
zebrafish is a vertebrate, in contrast to other commonly used 
organisms, such as Drosophila melanogaster or Caenorhabditis 
elegans, in which the anatomical similarity with humans is 
much lower (5). The optical transparency is another advantage 
of this teleost, as it enables the direct observation of cellular 
and physiological processes in vivo and in real time. These and 
other practical features rendered zebrafish the mainstream 
model for investigation in developmental biology. In addi-
tion, it is now also widely used as a disease model and, more 

recently, it became an important tool for the screening of drugs 
(Figure 3) (6).

Despite the evident differences between fish and mammals, 
zebrafish hold genomic and physiological homology to humans 
(7). Moreover, the genome of zebrafish is sequenced and available 
for annotation in databases. The genome of zebrafish includes 
orthologs of 71% of human genes, and a high degree of conserva-
tion in the functional properties of many of the encoded proteins 
(8). Physiological and anatomical homology is also evidenced in 
most of the organs, including the nervous system (7). The basic 
anatomical structure, the cellular populations, and the chemistry 
of the zebrafish and human nervous system are evolutionarily 
conserved. The nervous system of zebrafish is anatomically 
divided into the fore-, mid-, and hindbrain, including the 
diencephalon, telencephalon, cerebellum, and spinal cord (2, 6). 
The blood–brain barrier (BBB) is structurally and functionally 
similar to that of higher vertebrates and developed by 3 days post 
fertilization (dpf) (9, 10).
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Dissection of the monoaminergic  
System in Zebrafish
Specifically, the monoaminergic system is involved in the adjust-
ment of movement and is predominantly conserved in vertebrates 
(Figure 4) (11). The tyrosine hydroxylase (TH) is an important 
marker of catecholaminergic neurons. Two genes, th1 and th2, 
encode the TH enzyme in zebrafish, and both proteins are highly 
similar to the mammalian TH (12). The neuronal populations that 
express TH1 can be found in the olfactory bulb, telencephalon, 
diencephalon, locus coeruleus, and caudal lobe (13). The neu-
rons that express TH2 are found in the ventral preoptic region, 
hypothalamus and colocalize with TH1-positive neurons in the 
diencephalic dopaminergic cluster. The dopamine transporter 
(DAT) is also detected in this neuronal population (14). The 
major difference of the zebrafish catecholaminergic system is the 
absence of dopaminergic neuronal populations in the midbrain. 
The diencephalic dopaminergic cluster located in the posterior 
tuberculum of zebrafish has been suggested to be the functional 
homolog of substantia nigra in mammals (15). Like in mammals, 
the noradrenergic population is predominantly located in the 
locus coeruleus of zebrafish. In turn, the catecholamines, dopa-
mine and noradrenaline, are detectable in zebrafish larvae with 
5 dpf (16). Zebrafish encode one monoamine oxidase (MAO) 
with homology to the human MAO-A and MAO-B, and two 
putative catechol-o-methyl transferases (17, 18). The catechola-
minergic receptors and transporters are also conserved among 
vertebrates. Eight subtypes of the dopamine receptor (17), five 
alpha-2-adrenergic receptors, and one noradrenaline transporter 
(19) have been identified in zebrafish so far.

The serotonergic and histaminergic systems of zebrafish also 
present homologies with the corresponding circuits in mammals. 
The zebrafish serotonergic neuronal groups can be found in the 
raphe nuclei, pretectum, posterior paraventricular organ, vagal 
lobe, and reticular formation (20). Particularly, the serotonergic 
pretectal and paraventricular neuronal populations are not found 
in higher vertebrates. Three orthologs of the mammalian sero-
tonin receptors have been identified in the genome of zebrafish, 
along with two genes, slc6a4a and slc6a4b, that encode serotonin 
transporters (21, 22). The zebrafish histaminergic system consists 
of a posterior hypothalamic neuronal cluster, from which all his-
taminergic projections derive (11). Histamine can be detected at 
100 hpf (23), and three histamine receptors have been identified 
in zebrafish (24).

Overall, the expression of monoaminergic proteins and the 
spatial distribution of monoaminergic neuronal populations are 
well characterized. Although zebrafish suffered genome duplica-
tion, it seems that the distribution of the duplicated proteins 
is complementary to that observed in mammals. This helps to 
explain why, despite the consistent differences, the drugs that 
target transporters, receptors or enzymes involved in the modula-
tion of neurotransmitters have rather conserved effects (25, 26).

metHODS

The aim of this review was to analyze the studies reported to 
date on the use of zebrafish models for movement disorders, 
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FiguRe 3 | Schematic representation of the drug screening process in zebrafish. The zebrafish line is generated with genetic or chemical tools (a), is incubated 
with compounds from the library of small molecules (B), and is then phenotypically characterized (c).

FiguRe 2 | Timeline of the use of zebrafish as a model for the study of movement disorders and drug discovery. The publication year of the first study  
describing a zebrafish model of the movement disorder is highlighted. (#) Number of studies published to date.
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and assess their potential for modeling the human patholo-
gies. To achieve this, we conducted a systematic search of the 
literature using BiomedCentral, EBSCO host, PubMed/Medline, 
ScienceDirect, and Web of knowledge, in August and September 

2017. The following search strategy was used for each of the 
five bibliographic databases: Title, abstract, keywords, or topic: 
(“Parkinson’s disease” OR “Parkinsons disease” OR “parkinson-
ism”) AND (“zebrafish”); (“progressive supranuclear palsy” 
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FiguRe 4 | Neuronal clusters that modulate movement in vertebrates. The approximate anatomical location of the dopaminergic (orange), histaminergic  
(purple), noradrenergic (blue), and serotonergic (green) regions are represented for human (a), rodent (B), and zebrafish (c) brains.
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OR “supranuclear palsy”) AND (“zebrafish”); (“dystonia” OR 
“dystonic”) AND (“zebrafish”); (“Tremor” OR “Tremors”) AND 
(“zebrafish”); (“Tourette’s syndrome” OR “Tourettes syndrome”) 
AND (“zebrafish”); (“Huntington’s disease” OR “Huntingtons 
disease”) AND (“zebrafish”); (“Rett syndrome” OR “Rett” 
OR “RTT”) AND (“zebrafish”). All dates were included in the 
search criteria. Only published, peer-reviewed studies written in 
English were considered. The studies with the description of the 
phenomenology of zebrafish models of movement disorders were 
included in the review, through scrutiny of the title and abstract 
of the papers identified during the systematic search. Studies 
with no description of the pathological mechanisms AND/OR 
phenotypes of the diseases were excluded from analysis.

For Parkinson’s disease (PD), a total of 39 studies (Figure 2) 
met the inclusion criteria, from 110 returned by BiomedCentral, 
111 by EBSCO host, 221 by PubMed/Medline, 4,015 by Science-
Direct, and 181 by Web of knowledge. For progressive supranu-
clear palsy (PSP), 1 study fulfilled the inclusion criteria, from 8 
returned by BiomedCentral, 2 by EBSCO host, 1 by PubMed/
Medline, 207 by ScienceDirect, and 2 by Web of knowledge. 
For dystonia, 8 studies were in agreement with the inclusion 
criteria, from 15 returned by BiomedCentral, 7 by EBSCO 
host, 11 by PubMed/Medline, 363 by ScienceDirect, and 15 
by Web of knowledge. For tremor, 1 study met the inclusion 
criteria, from 23 returned by BiomedCentral, 6 by EBSCO host, 
8 by PubMed/Medline, 618 by ScienceDirect, and 9 by Web of 
knowledge. For Tourette’s syndrome, no study fulfilled the inclu-
sion criteria, from 7 returned by BiomedCentral, 1 by PubMed/
Medline, 245 by ScienceDirect, and 2 by Web of knowledge.  
For Huntington’s disease (HD), 9 studies were in line with the 
inclusion criteria, from 54 returned by BiomedCentral, 22 by 
EBSCO host, 31 by PubMed/Medline, 964 by ScienceDirect, 
and 52 by Web of knowledge. Finally, for Rett syndrome 
(RTT), 5 studies met the inclusion criteria, from 20 returned by 
BiomedCentral, 5 by PubMed/Medline, 638 by ScienceDirect, 
and 13 by Web of knowledge.

ZeBRaFiSH aS a mODel OF 
HyPOKiNetic mOvemeNt DiSORDeRS

Parkinson’s disease and parkinsonism represent the most fre-
quent hypokinetic syndromes. These include akinesia (inability 

to initiate voluntary movements), bradykinesia (slowness of 
voluntary movements), gait and balance disturbances (falls), 
freezing phenomenon (absence or marked reduction of forward 
stepping during walking), and rigidity (resistance to externally 
imposed joint movements).

Parkinson’s Disease
Parkinson’s disease is the most prevalent movement disorder, 
affecting 100–200 per 100,000 people (27). The etiology of PD is 
a combination of genetic and environmental factors that, at some 
point during disease progression, lead to dopaminergic cell loss 
in the substantia nigra pars compacta and to the accumulation 
of protein inclusions known as Lewy bodies. These inclusions 
are primarily composed of the protein α-synuclein (Table  1). 
Mutations in the alpha-synuclein (snca), leucine-rich repeat 
kinase 2 (lrrk2), vps35, PTEN induced putative kinase 1 (pink1), 
parkinsonism associated deglycase (dj-1), and parkin RBR E3 
ubiquitin protein ligase (parkin) are associated with familial 
cases. However, the vast majority of the cases (~90–95%) are 
affected by sporadic PD. The treatment of motor symptoms aims 
at replacing dopamine and includes levodopa, among other 
dopaminergic modulators (Table 1). There are still no disease-
modifying agents for PD, but several drugs are under clinical 
trials.

Chemical Zebrafish Models of PD
1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine (MPTP)-
Induced Models
Parkinson’s disease is the most studied movement disorder in 
zebrafish (Table 2). The effects of exposure to MPTP, known to 
cause loss of dopaminergic neurons and parkinsonism in humans 
(28), have been studied in zebrafish at all developmental stages 
(embryonic, larval, and adulthood). MPTP causes specific loss of 
dopaminergic neurons, a decrease of the dopamine, norepineph-
rine, and serotonin levels, and motility impairments in zebrafish 
larvae (29–32). By labeling monoaminergic neurons with GFP, 
Wen et al. (33) showed that the toxic effects of MPTP are more 
severe in the dopaminergic neurons located in the posterior 
tuberculum of the ventral diencephalon, corresponding to the 
mammalian midbrain dopaminergic neurons (33). Other neu-
ronal clusters, including the serotonergic, also seem to be affected, 
but in less extent (32). By contrast, MPP+, the metabolite of 
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MPTP, does not affect the serotonergic cluster, indicating a more 
specific action (32). MPP+ inhibits the multi-subunit enzyme 
complex I of the mitochondrial electron chain and impairs 
mitochondrial respiration (34). The subacute exposure to a 
low dose of MPP+ causes dramatic retrograde mitochondrial 
transport, before the appearance of neuronal and locomotor 
changes in zebrafish larvae (35). This suggests that MPP+ dam-
ages the mitochondria that are transported back to the cell body 
for degradation. This mechanism of bioenergetic homeostasis 
seems to be impaired at higher concentrations of MPP+. The 
MPTP-induced parkinsonian-like phenotype can be reverted by 
l-deprenyl (selegiline), an MAO-B inhibitor, and nomifensine, 
a DAT inhibitor (29, 30, 32). This indicates that the transport 
of MPTP and its conversion into the active metabolite, MPP+, 
is mediated by the same mechanisms in zebrafish and in mam-
mals (34). Although selegiline is used as an anti-parkinsonian  
agent, its restorative effects in MPTP-lesioned zebrafish do not 
totally mimic the therapeutic effects in PD patients.

In adult zebrafish, MPTP induces a reduction of the levels 
of dopamine and norepinephrine, which results in marked 
decrease of the motor performance (31, 36). MPTP-lesioned 
adult zebrafish exhibit a significant decrease of the swimming 
velocity (bradykinesia), an erratic swimming pattern and 
increase of the freezing episodes (dyskinesia) (37). Strikingly, 
there is no reduction in the number of dopaminergic neurons, 
neither the activation of pathways that lead to cell death (31, 36).  
In mice, the activity of the TH decreases after exposure to 
MPTP (38). This could in part explain the loss of dopamine and 
norepinephrine in zebrafish, despite the lack of cellular death. 
In turn, MPTP could cause a transient loss of function of the 
dopaminergic neurons, instead of its death. A proteomic analysis 
in MPTP-lesioned zebrafish revealed altered transcriptional 
regulation of several genes, including lrrk2, dj-1, park2, and 
pink1. In addition, the expression of 73 proteins, some of which 
associated with neurological pathways, was also changed (37). 
For instance, the neurofilament light polypeptide-like (NEFL) 
protein, involved in the glutamatergic and GABAergic signaling 
in presynaptic nerve terminals, was found downregulated in the 
brain of MPTP-lesioned zebrafish. As demonstrated in zebrafish 
larvae, selegiline induces recovery of the PD-like symptoms 
in MPTP-lesioned adult zebrafish (37). On the other hand, 
adult zebrafish submitted to an MPP+ injection do not exhibit 
abnormal phenotype, in contrast to zebrafish larvae (31). MPP+ 
cannot cross the mammalian BBB (39), suggesting that in adult 
zebrafish the mature BBB prevents the entry of MMP+ into the 
central nervous system (CNS). The differences observed in the 
several developmental stages could result from a lower sensitiv-
ity of adult zebrafish to the neurotoxin. The access of MPTP to 
the brain is very different in each of the developmental stages, 
which in part could result from the distinct routes of administra-
tion adopted. Larvae were exposed to the neurotoxin through 
the water, because of its extreme permeability, whereas, adults 
received a single intramuscular or intraperitoneal injection.

6-Hydroxydopamine (6-OHDA)-Induced Models
6-Hydroxydopamine is a hydroxylated compound of dopamine 
that has been extensively used to induce dopaminergic lesions 
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in rodents (34). Intramuscular injection of 6-OHDA causes a 
decrease of the dopamine and norepinephrine levels in adult 
zebrafish (36). Motor impairments are also observed, despite the 
lack of loss of dopaminergic neurons. By contrast, when admin-
istered into the ventral diencephalon of adult zebrafish, 6-OHDA 
induces significant ablation (>85%) of dopaminergic neurons in 
the posterior tuberculum and two other dopaminergic clusters, 
causing bradykinesia (40). The neuronal population in the olfac-
tory bulb is one of the clusters affected. This mimics the phenotype 
in rats that exhibit olfactory impairments when lesioned with 
6-OHDA into the substantia nigra (41). The inability to cross the 
BBB, explains the different phenotypes observed when 6-OHDA 
is administered intramuscularly or intracranially in zebrafish. 
A recovery of the dopaminergic neurons was observed 30 days 
post-lesion, which can be attributed to the neuro-regenerative 
capacity of the adult zebrafish brain (42). Therefore, the highly 
regenerative nature of zebrafish compromises the study of the 
progressive degenerative process in PD. On the other hand, the 
intracerebral administration of 6-OHDA revealed to be a labori-
ous and meticulous protocol.

In the zebrafish larval stage, exposure to 6-OHDA in the water 
induces a decrease in the expression of TH, reduction in the 
locomotor activity and anxiogenic behavior (43). The locomo-
tor impairments can be rescued by vitamin E, minocycline, and 
levodopa + carbidopa, the most effective drug used in patients 
with PD. Vitamin E is also able to normalize the expression of TH, 
while minocycline attenuates the increase of the expression of 
TNF-α and cd11b mRNA in 6-OHDA-lesioned zebrafish larvae. 
Vitamin E has antioxidant properties (44) and minocycline has 
shown anti-neuroinflammatory activity in rodents (45). This sug-
gests that the oxidative stress and inflammatory process induced 
by 6-OHDA in zebrafish larvae share functional features with 
mammals.

Paraquat-Induced Models
Chronic exposure to pesticides, used in agriculture, has been 
recognized as a risk factor for development of parkinsonian 
syndromes. Paraquat induces oxidative stress and cytotoxicity 
in neurons (46). This herbicide is structurally similar to MPP+ 
and is associated with increased risk of developing PD (47).  
In adult zebrafish, the systemic administration of paraquat causes 
locomotor changes, but no anxiety-like behavior (48). In a differ-
ent study, anxiolytic and aggressive behavior were observed, but 
no motor impairments in paraquat-lesioned adult zebrafish (49). 
While the former mimics the locomotor impairments, the later 
resembles the anxiogenic behavior in paraquat-lesioned rodents 
(50–52). The authors suggested that the results may be influen-
ced by the genotype or gender of fish. Adult zebrafish lesioned  
with paraquat also reveal impairments in spatial memory, a 
decrease in the ratio of DOPAC/dopamine levels, a decrease in 
the expression of DAT, lowered mitochondrial viability, and an 
increase in the expression of antioxidant enzymes (48, 49). TH 
expression and reactive oxygen species (ROS) levels were unal-
tered. Despite the lack of cellular hallmarks of PD, the neurobe-
havioral syndrome in zebrafish is very similar to the one observed 
in paraquat-lesioned rodents (50, 51, 53). The neurotoxic effects 
of paraquat in this model are also variable (50, 51, 54).

Alternatively, when added to the water, paraquat seems to 
induce no parkinsonian-like phenotypes in larvae and adult 
zebrafish. These exhibit a normal number of dopaminergic 
neurons, normal behavior, and no developmental defects (31). 
Instead, when the LC50 of paraquat is used, zebrafish larvae 
exhibit a reduction of the dopamine and serotonin levels, 
activation of antioxidant and oxidative stress related genes, 
and distinct macrophage activation and migration (55, 56). 
In addition, significant increase of apoptotic cells in the head, 
trunk, and tail, and motor deficits are observed. However, the 
authors did not rule out general toxicity, leaving doubts about 
the specificity of the phenotypes observed. In addition, the 
toxic effects of paraquat seem to have high variability. Zebrafish 
larvae with 48 hpf exposed to 600 mg/L of paraquat do not show 
morphological defects, while 0.04 and 100  mg/L of paraquat 
were determined as LC50 in zebrafish larvae with 18 and 72 
hpf, respectively. The successful induction of dopaminergic 
neuronal death by pesticides in rodents has also been strik-
ing. While paraquat is associated with high variability (57), 
rotenone induces weakly reproducible phenotypes and high 
mortality rates (58).

Rotenone-Induced Models
Exposure to rotenone has been linked to a higher risk of PD 
(47). In zebrafish, the phenotypes induced by rotenone are 
incongruent. One study found no cellular or behavioral parkin-
sonian-like phenotypes in larvae and adult zebrafish exposed 
to rotenone (31). By contrast, using the same concentration of 
the pesticide, time of exposure, and route of administration, 
a different study reported that adult zebrafish have decreased 
levels of dopamine and TH, deficits in motor function, anxiety 
and depression-like behavior, and olfactory dysfunction (59). 
Differences in TH expression and motor performance could be 
justified by the different protocols used to determine each of 
the parameters. In one study, the authors determined mRNA 
expression of TH by in situ hybridization and locomotor per-
formance through the mean velocity of swimming. In the other, 
the authors analyzed TH expression by western blot and motor 
capacity through monitorization of freezing, swimming at low 
speed, and swimming at high speed. The difference between 
rotenone and vehicle treated zebrafish was detectable only at 
high speed swimming. The phenotypes observed are character-
istic of PD patients (60, 61), and some mirror the phenotypes 
found in rodents (62, 63).

Other Neurotoxic Agents
Other less conventional methods have been used to induce 
dopa minergic neurotoxicity in zebrafish. This is the case of 
the transgenic line that expresses the reporter cyan fluorescent 
protein and the nitroreductase enzyme under the control of the 
dat promoter [Tg(dat:CFP-NTR)]. When transgenic larvae are 
exposed to metronidazole, the nitroreductase metabolizes it into 
a cytotoxic product that activates the apoptotic pathway and 
induces dopaminergic cell loss. The process can be monitored in 
real time, by detection of the reporter protein. Tg(dat:CFP-NTR) 
zebrafish larvae exposed to metronidazole show a reduction of 
the number of neurons in several dopaminergic clusters. This 
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coincides with a decrease of dopamine levels and the appear-
ance of locomotor impairments (64). The zebrafish line seems to 
maintain a persistent decrease of dopaminergic neurons that lasts 
longer than the other toxin-induced models.

Alternatively, a recent study showed that titanium dioxide 
nanoparticles (TiO2 NPs) cause parkinsonian-like phenotypes in 
zebrafish larvae (65). Exposure to TiO2 NPs induces premature 
hatching and abnormal development, but no lethality. TiO2 NPs 
accumulate in the brain of zebrafish larvae, resulting in the gen-
eration of ROS, loss of dopaminergic neurons, cell death in the 
hypothalamus and locomotor impairments. An increase in the 
expression of pink1, parkin, and uchl1 genes was also observed. 
Surprisingly, the authors also described an increase of the expres-
sion of the α-synuclein gene. Since zebrafish lack the ortholog of 
the human α-synuclein, the authors must have wanted to refer 
to the other two synucleins expressed in zebrafish (66). In rats, 
TiO2 NPs accumulate in the brain, stimulate oxidative stress and 
inflammatory responses, and cause impairments in the CNS (67). 
Despite the similarities of the phenotypes observed in zebrafish 
with the molecular and cellular mechanisms in PD, there is still 
no association of TiO2 NPs with increased risk of PD.

Genetic Zebrafish Models of PD
Synucleins
Among the several zebrafish genes with homology to human 
PD genes, an ortholog of the human α-synuclein appears not 
to be present in the zebrafish genome (68). Instead, zebrafish 
express three synuclein isoforms, β-, γ1-, and γ2-synucleins, that 
seem to compensate the absence of α-synuclein. Functionally, 
the zebrafish γ1-synuclein appears to be the closest to the 
human α-synuclein. Knockdown of the β- or γ1-synucleins 
induces motor impairments in zebrafish, which are even more 
severe when the expression of both synucleins is abrogated 
(69). Zebrafish lacking both synucleins have an abnormal 
development of the dopaminergic system, including delayed 
differentiation of dopaminergic neurons and reduced levels of 
dopamine. The phenotype can be reverted by the expression of 
human α-synuclein. Strikingly, the knockdown of the zebrafish 
β- and γ1-synucleins results in phenotypes that recapitulate 
the aspects observed in rodents lacking all synucleins (70–73).  
In zebrafish, overexpression of γ1-synuclein leads to the forma-
tion of neuronal aggregates and neurotoxicity, similarly to the 
human α-synuclein (74). On the other hand, downregulation 
of γ1-synuclein protects zebrafish from the toxicity of ziram. 
Exposure to ziram dramatically increases the risk to develop 
PD. This pesticide causes loss of dopaminergic neurons and 
impaired swimming behavior in zebrafish (74). Treatment with 
apomorphin recues the motor impairments. Moreover, CLR01, 
an inhibitor of amyloidogenic proteins self-assembly, protects 
zebrafish against ziram-induced neurotoxicity. These data sug-
gest that ziram might induce toxicity on dopaminergic neurons 
through the formation of γ1-synuclein toxic oligomers. Still, 
none of the above zebrafish lines exhibit as a severe phenotype 
as zebrafish overexpressing human α-synuclein. During embry-
onic development, this line presents neuronal apoptosis, which 
results in severe deformities and death within 48–72  h (75). 

The neurotoxic effect of α-synuclein is mediated by the inhibi-
tion of the ubiquitin proteasome system and accumulation of 
α-synuclein. Treatment with CLR01 reduces the aggregation of 
α-synuclein and neuronal apoptosis, increasing viability. The 
devastating effects of the overexpression of human α-synuclein 
may hinder the successful generation of transgenic zebrafish 
lines. Perhaps, by restricting the expression of the protein to the 
dopaminergic neurons or to a transient manner could decrease 
the lethality, while maintaining the pathological mechanisms.

PTEN Induced Putative Kinase 1 (PINK1)
The gene PINK1 is implicated in genetic and sporadic cases 
of PD. Morpholino knockdown of the zebrafish PINK1 
ortholog has added evidence to the importance of this gene 
in the control of oxidative stress and mitochondrial function. 
Downregulation or total abrogation of the expression of PINK1 
results in mitochondrial dysfunction that leads to augmented 
levels of ROS and activation of the apoptotic signaling path-
way in zebrafish (76). The PINK1 null mutant zebrafish line 
also presents mitochondrial impairments (77). The zebrafish 
Pink1 influences the expression of other proteins that are 
critical contributors to the pathogenic process. For instance, 
the activity of the mitochondrial protein GSK3β is increased 
and its inhibition, with LiCl and SB216763, partially rescues 
the phenotypes in PINK1 morphant zebrafish (76). TigarB, 
the zebrafish ortholog of the human glycolysis and apoptosis 
regulator Tigar, is also markedly increased in Pink1 null 
mutants (77). Tigar has been identified as a negative regulator 
of mitophagy, considered to be crucial in the pathogenesis of 
early-onset PD (78). The expression of other 177 genes, from 
the hypoxia-inducible factor (HIF) signaling, TGFβ-signaling, 
and several key toxicological responses (mitochondrial dys-
function, RAR activation, and biogenesis of mitochondria), 
is also altered (79). Particularly, the HIF pathway is the most 
affected pathway in PINK1 knockdown zebrafish. This is 
known to participate in the regulation of oxidative stress and 
neuronal differentiation in vitro (80, 81).

Whereas, the molecular mechanisms seem to be consistent, 
the phenotypes induced by the alteration of Pink1 expression 
in zebrafish vary. PINK1 morphant zebrafish exhibit general 
developmental delay, severe mispatterning of the axonal scaf-
fold, and moderate decrease of the number of neurons, mainly 
in the dopaminergic system (76). The phenotype could be 
rescued by wild-type human pink1 mRNA. Further support-
ing these results, PINK1 knockdown zebrafish show changes 
in neuronal patterning and axonal projections (82). This line 
also presents mild loss of dopaminergic neurons in the dien-
cephalon, which leads to spontaneous or evoked locomotor 
impairments. Motor performance could be rescued by the 
dopamine agonist SFK-38393. Moreover, the expression of 
exogenous PINK1 rescued all phenotypes. By contrast, a sub-
sequent study reported no morphological or behavioral deficits 
in PINK1 morphant zebrafish (83). Instead, increased vulner-
ability to MPTP-induced toxicity was observed. The authors 
described a reduction in the expression of both, th1 and th2 
mRNA forms, but normal levels of dat mRNA. Although there 
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was a mild decrease in the number of TH-positive neurons 
in the dopaminergic diencephalic cluster, the normal levels 
of dat suggest that the downregulation of PINK1 may cause a 
decline in important mRNAs and proteins, instead of neuronal 
death. Still, the increased susceptibility to MPTP strengthens 
the importance of PINK1 in oxidative stress. In accordance, 
the exposure to H2O2 dramatically increases the expression of 
pink1 mRNA in zebrafish, which can be reverted by the anti-
oxidant l-glutathione reduced (84). In PINK1 mutant zebrafish 
larvae, the loss of dopaminergic neurons is more evident and 
accompanied by marked microglial activation (77). In fact, 
PINK1 deficiency causes different phenotypes in mammals, as 
well. In humans, mutations in PINK1 can result in early-onset 
PD and are associated with mitochondrial dysfunction (85). 
In turn, PINK1 knockout mice have a mild phenotype, with 
no neuronal death, no changes in the levels of striatal dopa-
mine, nor in the number and morphology of mitochondria 
(86). Interestingly, it seems that PINK1 knockdown zebrafish 
recapitulate better than mice the human phenotypes.

Parkin RBR E3 Ubiquitin Protein Ligase (Parkin)
Mutations in PINK1 and Parkin are implicated in mitochon-
drial dysfunction and seem to share several pathogenic mecha-
nisms in PD. Consistently, Parkin knockdown zebrafish exhibit 
a phenotype that resembles PINK1 knockdown zebrafish. 
Abrogation of the expression of Parkin leads to impaired mito-
chondrial function, specific loss of dopaminergic neurons in 
the posterior tuberculum, and increased sensitivity to the toxic 
effects of MPP+ (87). Neither the serotonergic nor the motor 
neurons are affected, and the extent of dopaminergic loss is 
not enough to cause behavioral defects. Parkin knockdown 
zebrafish present two important phenotypes, mitochondrial 
dysfunction and dopaminergic cells loss, described in PD 
patients with mutations in Parkin (88, 89). Once again, it 
seems that the zebrafish model mimics better than mice mod-
els the pathological mechanisms in humans. Parkin knockout 
mice do not show any robust morphological changes, neither 
increased susceptibility to MPP+ (90, 91). Notwithstanding, 
morpholino-mediated knockdown of the zebrafish Parkin 
generates very dissimilar phenotypes. In a different study, 
no loss of dopaminergic neurons, neither morphological nor 
behavioral alterations, was observed upon Parkin knockdown 
in zebrafish (92). This result may be the consequence of a 
partial ablation (around 50%) of Parkin expression. Still, this 
line maintained the increased vulnerability to stress-induced 
cell death. Importantly, the authors also described that the 
overexpression of Parkin in a transgenic zebrafish line pro-
tects from proteotoxic stress-induced cell death. Similarly to 
PINK1, Parkin is suggested to have a protective role in PD (93).  
In zebrafish, it seems that the presenilin-associated rhomboid-
like (PARL) protein is also part of the PINK1 and Parkin 
pathway. PARL is a component of the mitochondrial mem-
brane involved in mitochondrial morphology and apoptosis. 
Morpholino knockdown of both zebrafish paralogs, parla and 
parlb, results in high mortality, whereas loss of PARLb leads to 
the mildest phenotype (94). Loss of one of the PARL’s results 

in mild neurodegeneration and disarranged dopaminergic 
neurons. Although changes in survival were not reported, 
generalized cell death was observed. Interestingly, the pheno-
type can be rescued by human parl mRNA and by zebrafish 
and human pink1 mRNA. The PARL gene has been linked to 
familial cases of PD. PARL is suggested to be important in the 
normal trafficking and processing of PINK1 and Parkin in 
mitochondria (95).

DJ-1
Mutations in DJ-1 are associated with early-onset PD. The 
inactivation of DJ-1 in zebrafish leads to an increase in the 
expression of p53 and Bax, but no cellular or morphological 
changes (96, 97). Moreover, the concomitant knockdown of DJ-1 
and mdm2, a negative regulator of p53, results in dopaminergic 
neuronal death (96). This suggests that p53 may mediate cell 
loss in the absence of DJ-1. DJ-1 knockdown zebrafish exhibit 
loss of dopaminergic neurons after exposure to H2O2 and to the 
proteasome inhibitor MG132. The phenotype can be prevented 
with pharmacological inhibition of p53, by pifithrin-alpha  
(96, 97). This demonstrates that DJ-1 knockdown zebrafish are 
susceptible to programmed cell death and that DJ-1 may medi-
ate the stress response machinery. In accordance, DJ-1-deficient 
mice only exhibit dopaminergic cell death after toxin exposure 
(98). The p53-glycerylaldehyde-3-phosphate dehydrogenase 
(GAPDH)–Bax pathway has been suggested to be involved in PD 
(99, 100).

Leucine-Rich Repeat Kinase 2 (LRRK2)
The phenotypes of LRRK2 morphant zebrafish have been cha-
racterized. The first study describing the consequences of the  
inhibition of the expression of LRRK2, showed embryonic 
lethality and severe developmental defects, such as brain devel-
opmental retardation, in zebrafish (101). A more recent study, 
described neuronal loss, affecting the dopaminergic system, 
upregulation of the expression of β-synuclein, Park13, and SOD1, 
and β-synuclein aggregation in the CNS (102). The authors also 
described a wide range of organ abnormalities but did not report 
such overt toxicity as the former study. On the other hand, the 
deletion of the WD40 domain of LRRK2 (ΔWD40-LRRK2) 
causes little impact on embryonic development, in zebrafish 
(101). Instead, this mutant zebrafish line presents a reduction 
and disorganization of the axonal tracts, predominantly in 
the midbrain. In addition, significant loss of the diencephalic 
dopaminergic neurons and locomotor defects were observed. 
The phenotype can be rescued by zebrafish and human lrrk2 
mRNA overexpression. The administration of levodopa rescues 
the motor impairments, but not neurodegeneration, in line with 
the therapeutic effects in humans. Surprisingly, a subsequent 
study was not able to replicate the phenotypes described in the 
ΔWD40-LRRK2 zebrafish line (103). Nevertheless, it has been 
reported that mutations in the LRRK2-WD40 domain increase 
neuronal apoptosis under cellular stress (104). In mice, LRRK2 
knockout and G2019S LRRK2 transgenesis do not induce neu-
ropathological abnormalities, but LRRK2 seems to interfere with 
normal neurite outgrowth (105, 106).
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Other PD Genes
Genes implicated in atypical PD, have also been characterized 
in zebrafish. Park15 is caused by loss of function of the protein 
encoded by the gene fbxo7 (107). Morpholino knockdown of the 
zebrafish Fbxo7 ortholog results in abnormal patterning and loss 
of dopaminergic neurons, which lead to severe motor impair-
ments (108). Treatment with apomorphine, a dopamine agonist, 
can revert the locomotor defects. Surprisingly, the human  
fbxo7 mRNA failed to rescue the morphological phenotypes. 
This observation was justified with an atypical timing and loca-
lization of expression, as compared with the expression of the 
Fbxo7 endogenous zebrafish gene. Fbxo7 morphant zebrafish 
also exhibit developmental defects, as heart deformations, 
sug gesting that Fbxo7 must have an important role in zebrafish 
deve lopment. The zebrafish ortholog of another gene linked 
to atypical PD, atp13a2, has also shown a crucial role during 
embryonic development. Complete abrogation of the expres-
sion of ATP13A2 leads to embryonic lethality, whereas partial 
knockdown results in abnormal splicing of atp13a2 mRNA 
and obvious behavioral impairments (109). The results are in 
line with experiments in mice, which have also revealed the 
importance of ATP13A2 during the early stages of embryonic 
development and neurogenesis (110).

effect of Dopaminergic modulators in 
Zebrafish
When assessing the validity of an animal model, beyond the 
pathological hallmarks of the disease, it is important to explore 
the pharmacologically evoked changes. Studies that report such 
experiments in zebrafish models of PD are scarce, but there exist 
some reports exploring the effects of drugs known to modulate 
movement on healthy zebrafish. For instance, haloperidol and 
chlorpromazine, two dopamine receptor antagonists, have been 
tested on zebrafish larvae. The suppression of the dopaminergic 
signaling by both compounds induces akinetic-like behavior 
(111). Another study supporting these data showed that the 
selective dopamine agonists, SFK-38393 and quinpirole, increase 
motor activity (112). By contrast, the dopamine antagonists, 
SCH-23390 and haloperidol, decrease motor activity in zebrafish 
larvae. Interestingly, the non-selective dopamine agonist, 
apomorphine, and dopamine antagonist, butaclamol, induce 
biphasic dose-response patterns. This may be attributed to the 
action of the drugs on multiple dopaminergic receptors. On the 
other hand, the dopamine antagonists, SCH-23390 and halop-
eridol, induce different dose-response profiles dependent on 
the lighting conditions. The authors suggested that the blockade 
of dopamine receptors in the retinal ganglion cells may have 
perturbed the adaptation to light/dark conditions. Alternatively, 
the effects of haloperidol were studied in catalepsy (muscular 
rigidity). Similarly to rats, it was observed that haloperidol 
causes the increase of catalepsy in zebrafish (113). This can be 
reverted by bromocriptine and pramipexole, two dopamine 
agonists commonly used to improve rigidity. Importantly, this 
study introduced a new core motor symptom of PD on zebrafish, 
in alternative to bradykinesia. All the above-mentioned studies 
demonstrated that the drugs that target the dopaminergic system 

in mammals elicit similar outcomes in zebrafish, suggesting that 
the underlying mechanisms that regulate movement are shared 
by both models. Nevertheless, the demonstration that the phe-
notypes observed in zebrafish actually result from modulation of 
the dopaminergic pathway is needed.

Overall, chemical and genetic zebrafish models of PD 
repro duce several of the biochemical, neurochemical, morpho-
logical, and neurobehavioral features of the disease in humans. 
Importantly, the pharmacological response to drugs used in the 
clinic is also conserved. The limitations inherent to each model 
do not seem to surpass the limitations also described in rodents 
and, in some cases, zebrafish resemble better than rodents, the 
human features. Finally, the zebrafish genes orthologs to the 
human genes associated with PD seem to be particularly con-
served in terms of sequence and function, as well as, the role of 
the respective protein in the cellular pathways.

Other Parkinsonian Syndromes
Progressive supranuclear palsy is a PD-plus syndrome associated 
with tau neuropathology, which affects about 5–7 per 100,000 
people (114). The neuropathological hallmarks include the 
presence of neurofibrillary tangles (insoluble 4-repeat tau 
protein) or neuropil threads in the basal ganglia and brainstem. 
Neuronal loss is diffuse, affecting different neuronal structures 
(Table  1). Initially, the clinical presentation is heterogeneous 
but tends to develop to unsteady gait, bradykinesia, unexplained 
falls, and ocular motor deficits (vertical supranuclear gaze palsy 
is used to confirm the diagnose). Most of the cases of PSP are 
sporadic and associated with polymorphisms in the gene that 
encodes the tau protein, MAPT. Mutations in the MAPT gene 
have been identified in several familial cases, as well, but are 
rarer.

Recently, zebrafish was used to assess the functional and 
bio chemical consequences of a tau variant, p.A152T, identified 
to increase the risk of PSP in a cohort study (115). The A152T-
tau transgenic zebrafish exhibit increased accumulation and 
phosphorylation of tau, with formation of neurofibrillary tangles 
(Table 2). The phenotype possibly results from impairments in 
the proteasome system. The overexpression of A152T-tau also 
causes neurodegeneration, associated with behavioral deficits in 
zebrafish. The phenomenology is compatible with the phenotypes 
observed in A152T transgenic rodent models (116, 117). The use 
of zebrafish to model PSP is at its beginning and needs further 
developments. Nevertheless, the data described so far indicate 
that zebrafish models of PSP may exhibit several neuropatho-
logical hallmarks of the disease. Effective pharmacotherapeutic 
options for PSP are null at the moment, and zebrafish may help 
to boost the discovery of new drugs.

ZeBRaFiSH aS a mODel OF 
HyPeRKiNetic mOvemeNt DiSORDeRS

Hyperkinetic movement disorders have a more diverse phenom-
enology and include tremors, dystonia (sustained, repetitive, and 
patterned muscle contractions), tics (sudden, rapid, repetitive, 
and non-rhythmic movements), chorea (brief, irregular, abrupt, 
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and non-repetitive movements), and stereotypies (repetitive or 
ritualistic movements), among others.

Dystonia
Dystonia is a common and clinically heterogeneous disorder, 
which can be manifested as an isolated clinical condition 
(primary dystonias) or associated with other neurological 
disorders (secondary dystonias) (118). The cause is diverse 
and includes genetic and environmental factors (Table  1). 
This phenomenon is believed to result from malfunction of 
the basal ganglia and, consequently, abnormal plasticity of the 
sensorimotor cortex (119). The pharmacotherapy for dystonia 
is solely symptomatic, mostly empirical, and adapted to each 
case (Table 1) (120). In the last 5 years, zebrafish have been 
used to understand the mechanisms of dystonia.

Genetic Zebrafish Models of Dystonia
The most common cause of early-onset primary dystonia is a 
mutation in the TOR1A gene (121). In zebrafish, the ortholog 
gene, tor1, is not essential for early development of the motor 
system. The morpholino-mediated knockdown zebrafish 
line presents normal viability, morphology, development, 
and behavior (Table  3) (122). Zebrafish TOR1 may have an  
important role in later events, but the transient effect of 
morpholino-mediated knockdown did not allow to confirm 
this fact. Accordingly, in TOR1A knockout mice, the first 
phenotypic abnormalities are only observed in a later devel-
opmental stage (123). Other genes implicated in dystonia are 
involved in neuronal development and brain maturation in 
zebrafish. For instance, dystonia in early childhood can be 
caused by an autosomal recessive mutation in the pantothen-
ate kinase 2 (PANK2) gene (124). Morpholino knockdown of 
the zebrafish ortholog perturbs the neuronal development 
and brain morphology and induces hydrocephalus (125). The 
phenotype can be rescued by pantethine and coenzyme A.  
To further test the implication of mutations identified in the 
col6a3 gene of subjects with primary dystonia, a study found that 
morpholino knockdown of the zebrafish ortholog gene causes 
deficits in axonal outgrowth (126). The authors suggested 
that Col6a3 may participate in the structural organization of 
neurons. Therefore, its disruption can hamper the establish-
ment of correct neuronal circuitries and synaptic remodeling 
processes, during brain development and maturation. Finally, 
knockdown of the ortholog of the human Atp1a3 leads to brain 
ventricle dilation and depolarization of Rohon–Beard neurons 
in zebrafish (127). Although response to tactile stimuli and 
motility are altered, the dopaminergic neurons seemed to be 
unaffected. Mutations in the Atp1a3 are implicated in rapid-
onset dystonia parkinsonism (RDP) (128). Ventricle dilation 
is not observed in patients with RDP, but numerous symptoms 
reported in dystonic patients suggest the involvement of the 
somatosensory system. In turn, the depolarization of Rohon–
Beard neurons in zebrafish is indicative of altered neuronal 
excitability, also described in rats (129).
In metabolic disorders, the risk to develop dystonia increases 
when the manganese homeostasis is compromised. In zebrafish, 

the mutation of the orthologs of the human manganese trans-
porters, slc30a10 and slc39a14, results in manganese accumula-
tion in the brain (130, 131). This leads to impaired dopaminergic 
and GABAergic signaling. Changes in the swimming pattern 
are also visible upon exposure to manganese. The phenotype 
can be reverted by chelation therapy and iron supplementation, 
currently used in the clinical practice. Maple syrup urine dis-
ease is another metabolic disorder, caused by mutations in the 
dihydrolipoamide branched-chain transacylase E2 (DBT) gene, 
which can result in severe dystonia. In zebrafish, disruption of 
the ortholog gene results in elevated levels of branched-chain 
amino acids (BCAA) (132). This phenomenon is also evidenced 
in mammalian models and patients. The increase of BCAA leads 
to the dysregulation of the neurotransmitter glutamate in the 
brain and spinal cord of zebrafish, which probably contribu-
tes to the progressive aberrant motility behavior evidenced. 
This phenotype was suggested to represent severe dystonia in 
zebrafish larvae.

Chemical Zebrafish Models of Dystonia
Zebrafish are sensitive to neurotoxic drugs that may cause dys-
tonia. Matrine and sophocarpine, two drugs responsible for 
poisoning juvenile and infant patients, induce growth retardation 
in zebrafish (133). Exposure to these drugs also led to changes 
in spontaneous movements and locomotor performance. The 
authors suggested that this phenotype results from the neurotoxic 
effects of the drugs but did not show evidence of neurotoxicity.
In summary, it appears that the heterogeneous nature of dysto-
nia can be reproduced in zebrafish. Zebrafish offers an excellent 
opportunity to understand the pathogenic mechanisms behind 
the vast number of genetic and environmental factors linked 
to dystonia. Nevertheless, this heterogeneity seems to result in 
a large number of studies, with minor characterization and no 
consolidation of the observed phenotypes. This may undermine 
a correct judgment about the validity of zebrafish as a vertebrate 
model of dystonia. Most certainly, further studies are essential.

chorea in Huntington’s Disease
Chorea is the most common symptom of HD, which affects 
around 4–10 per 100,000 people in the western world (134). 
HD is an autosomal-dominant neurodegenerative disorder, 
which results from abnormal expansion of the CAG repeat in the 
huntingtin (HTT) gene (polyglutamine disease) (Table  1). The 
pathogenesis of HD results from the toxic effects of the mutant 
HTT RNA and protein, HTT aggregation (intranuclear inclusions 
of abnormal HTT are pathological hallmark) and impairments in 
protein homeostasis and clearance. These events lead to the death 
of GABAergic medium spiny neurons in the striatum. Chorea 
can be improved by tetrabenazine, and the therapeutic effects 
of other drugs are only empirical (120). There is currently no 
disease-modifying treatment for HD.

Genetic Zebrafish Models of HD
The zebrafish ortholog of the human HTT only encodes four 
glutamines, compared with up to 35 in humans (135). The 
zebrafish HTT protein is essential for iron, lipid, and cholesterol 
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homeostasis (136, 137), energy metabolism (136), and brain 
development (138–140). Its knockdown leads to diverse pheno-
types, including hemoglobulin deficiency (136), neuronal apop-
tosis in the midbrain and hindbrain (138, 139), neurophysiologic 
abnormalities (138–140), decreased expression of brain-derived 
neurotrophic factor (BDNF) (138), deficient formation of neural 
tubes and cell adhesion (140), increased activity of metallopro-
teinases (ADAM10 and Ncadherin) (140), and severe reduction 
in cartilage biogenesis (Table  3) (137). Consistently, patients 
with HD exhibit deficits in iron homeostasis (141, 142), energy 
metabolism (143), BDNF expression (144), and metallopro-
teinases activity (145). As observed in HTT knockout mice, the 
complete abrogation of the expression of zebrafish HTT results 
in embryonic lethality (138). In fact, the mouse models of HD 
either lack overt phenotypes or exhibit premature death (146). 
This makes the HTT morphant zebrafish a valuable alternative 
model to study the cellular function of HTT and its role in the 
pathological mechanisms of HD. Nevertheless, morpholino-
mediated knockdown may result in variable phenotypes and 
must be considered cautiously.

Zebrafish lines expressing normal and expanded polyglu-
tamine (polyQ) fragments of HTT have been reported (147, 148).  
In these lines, the misfolding, oligomerization, aggregation, 
and toxicity of the polyQ fragments are length dependent, 
in a manner similar to that observed in other animal models 
and in patients. Zebrafish embryos overexpressing fragments 
with more than 35Q repeats (mutant form) display insoluble 
protein inclusions and increased apoptosis (148). This leads to 
abnormal morphology and development. Strikingly, apoptosis 
can be detected in cells with no visible inclusions, suggesting 
that the oligomeric forms of the HTT may be the toxic com-
ponents. The ubiquitous expression of the polyQ proteins may 
contribute to the severe phenotype observed. In alternative, it 
would be interesting to observe the effects of polyQ expression 
restricted to the CNS. The toxic effects and aggregation of the 
mutant fragments can be suppressed either by the chaperones 
Hsp40 and Hsp70 or by the ubiquitin ligase C-terminal Hsp70-
interacting protein, resembling other HD models.

Remarkably, the expression of a mutated polyQ fragment 
lacking the 17 amino acids of the HTT N-terminal tail (mHTT-
ΔN17-97Q) elicits toxicity only in neuronal cells of a transgenic 
zebrafish line (149). Particularly in neurons, mHTT-ΔN17-97Q 
fragments rapidly form massive intranuclear aggregates. This 
demonstrates that the neuronal cells have lower capacity to 
maintain the proteostasis of the expanded polyQ fragments. 
Moreover, the mHTT-ΔN17-97Q fragments tend to aggregate 
more and induce a more severe phenotype than the polyQ frag-
ments with an intact N17 terminal. In mice, the expression of the 
htt-97Q gene lacking the N17 causes dramatic accumulation of 
nuclear mutant HTT aggregates and a robust striatal neurode-
generation that leads to adult-onset movement disorder (150). 
These results suggest that the N17 portion of the HTT protein 
substantially prevents the translocation of mutant HTT into the 
nucleus and plays an important role in the molecular mecha-
nisms of the pathogenesis of HD. mHTT-ΔN17-97Q transgenic 
zebrafish are the first to recapitulate one of the pathological 
hallmarks of HD.

Chemical Zebrafish Models of HD
The administration of quinolinic acid (QA) into the striatum 
of adult rodents has been used to induce brain injury that 
replicates HD (151). Interestingly, while inducing injury, this 
excitotoxin also stimulates the subventricular neurogenesis 
zone and neuroblast migration (152, 153). This observation 
encouraged Skaggs and colleagues (154) to lesion the telen-
cephalon of adult zebrafish with QA and study its neuronal 
effects. The QA induces cell death and microglial infiltration 
in the zebrafish CNS (154). However, it also stimulates cell 
proliferation and neurogenesis that results in total repair of 
the damage. The authors suggested that this zebrafish model 
is a powerful tool to study neuronal regeneration in an adult 
vertebrate and to test potential disease-modifying therapies. 
Still, the neurogenesis process in the CNS of adult zebrafish is 
very different from mammals, which might render the transla-
tion of the observations puzzling.

In general, the zebrafish HTT shares several important 
functions with the mammalian ortholog. Zebrafish lines that 
overexpress mutant HTT are proving to be useful to model HD. 
Nevertheless, there is only a shallow description of the motor 
phenotypes, and the responsiveness to pharmacotherapies still 
needs to be tested on these models.

Stereotypies in Rett Syndrome
Rett syndrome is a non-neurodegenerative disorder, which 
affects 1 in 10,000 females by the age of 12 (155). Caused by either 
nonsense or missense mutations in the methyl-CpG-bind ing 
protein 2 (MECP2) gene, RTT is characterized by hand stereotyp-
ies (Table 1). MeCP2 is a nuclear protein that recognizes DNA 
methylation to, presumably, regulate gene expression and activa-
tion. The patients with RTT, exhibit abnormally small and densely 
packed neurons, with reduced dendritic complexity and synaptic 
density. At the cellular level, alterations in different signaling and 
homeostatic pathways are reported, along with mitochondrial 
dysfunction and oxidative stress. The options available for the 
treatment of RTT are currently limited, but several compounds 
are under clinical trials. These include modulators of neurotrans-
mitters or regulators of cellular metabolism and homeostasis 
(Table 1).

Genetic Zebrafish Models of RTT
In mice, null mutations in MeCP2 drastically reduce lifespan 
(156). By contrast, zebrafish carrying a null mutation in MeCP2 
show normal viability and fertility (157). Instead, MeCP2-null 
zebrafish exhibit clear motor impairments at early developmental 
stage (Table 3). These include spontaneous and sensory-evoked 
motor anomalies, and defective anxiety-like behavior. This 
zebrafish line has a nonsense mutation in the methyl-CpG bind-
ing domain (mecp2Q63X), crucial for protein function. The authors 
suggested that the modest phenotype observed may result from 
a compensatory mechanism triggered by other proteins belong-
ing to the MeCP2 family or from gene duplication in zebrafish. 
On the other hand, the studies exploring thigmotaxis in mouse 
models of RTT have yielded confounding results, some of them 
contradictory to the ones observed in zebrafish. The authors 
advocated that the complexity of the neuronal circuitry in mice 
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There is limited understanding of the etiology of this multi-
factorial syndrome (Table 1), because several genetic variants 
and mutations, and non-genetic determinants are implicated. 
Moreover, these are not exclusive of the disease. This heteroge-
neity results in a complex and variable neurological and clinical 
phenomenology. Tourette’s syndrome is typically manifested 
by various motor and phonic chronic tics (172). The cortico–
striato–thalamocortical circuitry is potentially impaired, but 
the specific neuronal pathway(s) involved remain unknown. 
Neuroleptic drugs and the monoamine depleting drug, tetra-
benazine, are the most effective for tic suppression (Table  1). 
There exist different rodent models of tics, but their validity is 
debatable. The inability to assess several human symptomatic 
features, such as premonitory sensation, is an important limita-
tion of these animals. While the same skepticism can apply to 
zebrafish, zebrafish models of Tourette’s syndrome may help to 
elucidate the interplay between genetic and non-genetic risk 
factors. Ultimately, this may provide valuable clues about the 
neuropathology of this syndrome.

DiScuSSiON

Zebrafish have been extensively used in the study of the CNS. 
More recently, the use of zebrafish as a model of human brain 
diseases and for drug discovery has increased (2, 173). Here, 
we review several zebrafish models of movement disorders and 
discuss their translational value. Overall, these models exhibit 
conserved biochemical and neurobehavioral features. In retro-
spect, many advantages can be named, but pitfalls must also be 
highlighted.

First, all studies used zebrafish during embryonic, larval 
or young adult stage. Practical reasons can justify the use of 
zebrafish at these developmental stages. For instance, at embry-
onic and larval stage zebrafish are more permeable, enabling the 
delivery of drugs through the water. In higher vertebrates, some 
of the neurotoxic agents used to model movement disorders 
have to be delivered directly in the brain (174). This approach 
increases variability between animals and is much more inva-
sive, resulting in the death of some animals. Furthermore, the 
time lapse between drug administration and appearance of the 
first phenotypes is much longer in rodents than in zebrafish. 
Nevertheless, the use of zebrafish larvae is not as accurate as 
the use of adult zebrafish, where the BBB is fully functional and 
better mimics the mammalian physiology. The use of zebrafish 
at early developmental stages also allows to explore the function 
of specific genes during system development and maturation. 
However, it must be considered carefully when extrapolating 
the phenotypes observed to chronic and late-onset disorders. 
Moreover, the mutant and transgenic lines described here were 
characterized very early during development, and whether these 
lines display any pathology in adulthood was not reported. 
Inevitably, the brain of zebrafish is more complex at adulthood 
and may mimic more accurately the physiologic features of the 
mammalian brain.

In turn, morpholino-mediated knockdown is extensively 
used, because it is a practical tool to reveal the phenotypes 
induced by downregulation of a gene in zebrafish, but it also 

may have hampered the interpretation of the results in behavioral 
tests. Later proteomic analysis in the MeCP2-null zebrafish line 
revealed changes in the expression of proteins critical for energy 
metabolism, balance of redox status and muscle function (158). 
This is in line with the reported in RTT patients and experimental 
mouse models (159–164).

Additional studies in zebrafish confirmed the essential role 
of MECP2 in neuronal differentiation (165), axonal branching 
of primary motor neurons (166), and peripheral innervation of 
sensory neurons (167). The studies further proved that MeCP2 
regulates the expression of several cell differentiating factors 
(Id1–Her2 axis), BDNF and axonal guidance cues (such as 
Sema5b and Robo2). The indirect disruption of the expression 
of these genes is involved in RTT-like phenotypes. Accordingly, 
downregulation of MeCP2 induces a decrease in motor activity 
and impairments in the sensory function of zebrafish, as observed 
in mice with partial loss of MeCP2 (168).

All these studies strengthened the notion that the zebrafish 
MeCP2 is crucial for the regulation of gene expression and 
activation. Therefore, Mecp2-deficient zebrafish have several 
phenotypes, reminiscent of the phenomenology observed in 
mouse models of RTT and in patients with RTT. The normal 
lifespan in MeCP2-null zebrafish may enable a more profound 
characterization of the pathophysiological dynamics of RTT and 
the screening of new drugs.

Other Hyperkinetic Syndromes
Tremor is a rhythmic oscillation of a body part. Besides resting 
tremor in PD, this phenomenology is mostly common in the neu-
rologic disorder essential tremor (ET) (120). Progressive action 
tremor is the classic feature of ET. The most effective drugs for the 
treatment of ET are propranolol and primidone (Table 1) (169). 
However, these drugs induce highly variable therapeutic effects 
and are associated with several adverse effects. The anticonvul-
sant, topimarate, the GABA agonist, gabapentine, and several 
benzodiazepines have also shown to improve tremor. The patho-
logical mechanisms and etiology of ET are highly heterogeneous 
(170). In addition, these are difficult to identify, because ET is 
commonly a comorbidity. Several genetic and environmental risk 
factors have been suggested, but none was consistently confirmed 
in larger cohort studies. This renders the discovery of effective 
pharmacologic treatments particularly difficult.

Zebrafish may be a practical choice to unravel some of the 
pathological mechanisms and risk factors implicated in ET. 
This model has been used to explore the physiological role of 
TENM4 and the pathological effects of mutations identified in 
the TENM4 of families with ET. Morpholino knockdown of 
the TENM4 zebrafish ortholog results in a modest reduction of 
myelination and aberrant extension, branching and architecture 
of small axons in the CNS of zebrafish (Table 3) (171). Zebrafish 
expressing mutated human TENM4 mRNA show a similar 
phenotype. These observations are concordant with studies in 
other animal models. Since 2015, no other study reported the 
generation of a zebrafish model of tremor, possibly because of 
the limited knowledge about the nature of ET.

Perhaps for the same reason, at the time of this review, no 
zebrafish model of Tourette’s syndrome has been reported. 
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has many pitfalls. The extension of abrogation of the expression 
of the gene can vary drastically, depending on the knockdown 
strategy and efficiency. Zebrafish possess duplicates of several 
genes, which can result in a differentiated regulation of gene 
expression and different phenotypes. In addition, morpholino-
mediated knockdown has an acute and transient effect, which 
does not mimic the chronic effects of downregulation of a gene. 
On the other hand, non-specific and off-target effects are com-
mon, most of the studies lacked the right controls to rule out 
these effects and, therefore, could not exclude that other systems 
could be affected. Finally, the knockdown of a gene may not be 
suited to model some diseases. This is the case of HD, as loss 
of function of the HTT protein alone does not seem to lead 
to the disorder (175). The genetic manipulation of zebrafish is 
particularly easy and should be more exhaustively explored. The 
mutated or transgenic zebrafish lines develop rapidly, which is 
an advantage when compared with the time-consuming devel-
opment of rodent models. When developing transgenic lines, 
neuronal promoters should be used, to prevent overt toxicity 
of the transgene. This has been observed for zebrafish lines that 
overexpress human α-synuclein or HTT polyQ fragments with 
non-specific promoters (75, 148). In rodents, neuronal promot-
ers are commonly used to restrict the expression of the proteins 
to the CNS (176).

Another limitation of most of the studies is the restriction of 
the characterization of the zebrafish model to a single cellular 
biomarker or behavioral parameter. For instance, most of the 
studies in zebrafish models of PD determined the expression 
of TH to assess the integrity of the dopaminergic system, but 
DAT would be a more specific biomarker for this neuronal 
population. The zebrafish proteomics is conserved, which 
allows the use of commercially available biomarkers of other 
species. Several of these markers have already been tested on 
zebrafish targets, and many present similar reactivity. In turn, 
almost all studies limited the evaluation of behavioral changes 
to total locomotor activity and/or speed, which does not rep-
resent the multi symptomatic nature of movement disorders. 
The assessment of these parameters in zebrafish is a sound 
strategy, because they are related to the parameters used in 
rodents to depict bradykinesia. Nevertheless, zebrafish possess 
a diverse repertoire of behaviors with homology to humans, 
which have been cataloged and can be easily explored by 
experimenter-independent behavioral tracking systems (177). 
Several behavioral tests have been optimized to evaluate motor 
performance, motor coordination, balance, escape responses, 
exploratory behavior, reward/punishment-related behavior, 
learning, memory, social interaction, and aggressive or anxious 
behaviors (178–183). It is now crucial to overview the array of 
behavioral tests available for zebrafish, as it has been systemati-
cally done for rodents (184, 185).

Furthermore, similar to other models, a deeper charac-
terization of zebrafish will certainly improve the validity of this 
model system. Regardless the differences between the zebrafish 
brain and mammalian brain, homologous functions have been 
attributed to different neuronal regions of each vertebrate. This is 
the case of the zebrafish diencephalic dopaminergic region (15). 
However, other neuronal components and physiologic events 

that modulate movement are still highly unknown. It would be 
relevant to understand the cerebral components of the zebrafish 
brain that correspond to the constituents of the mammalian 
basal ganglia–thalamocortical circuits and to investigate how 
they are interconnect. Is there a direct and indirect pathway-like 
system in zebrafish? How do zebrafish control movement features 
like velocity or direction? Perhaps, to dissect these processes in 
simpler brain circuitries, as the zebrafish ones, will help to under-
stand more complex mechanisms in mammals. For instance, the 
small size of the zebrafish brain is useful for three-dimensional 
mapping of brain structures. With the up-to-date microscopic 
techniques, whole-brain neuronal connectivity can be easily 
performed in zebrafish and reveal anatomical relationships, that 
in larger brains may not be as facilitated. Another particularity 
that should be further explored is the regenerative capacity of the 
zebrafish CNS. Several neuronal proliferating sites were identified 
in the zebrafish brain as compared with two found in the mam-
malian brain (186). Notwithstanding, many of the molecular 
and cellular factors that drive regeneration in the brain of adult 
zebrafish are poorly understood and yet unknown. This may dif-
ficult the translation of disease-modifying drugs identified using 
zebrafish.

Finally, the distinctive and reproducible behaviors of zebra-
fish exposed to certain neuroactive drugs are a powerful evi-
dence of the conserved functional properties of the neuronal 
circuitries in vertebrates (187–189). In addition, it highlights 
the translational value of zebrafish. To improve the validity 
of this model, it is now important to explore the mechanisms 
triggered by these drugs on the zebrafish targets. This will 
increase our understanding of the zebrafish neuronal modula-
tion, and most importantly, enlighten the pharmacodynamic 
properties of the compounds in zebrafish. In fact, the factors 
that influence the pharmacodynamic and pharmacokinetic 
properties of drugs in zebrafish are poorly understood. For 
instance, previously, it has been assumed that zebrafish totally 
absorb and distribute through the system the small molecules 
present in the water (190). However, a recent review has sug-
gested that the absorption of chemicals, as well as distribution 
through the BBB in zebrafish is comparable to mammals (191). 
Therefore, the chemical properties of the compounds should 
be considered when extrapolating concentrations between 
these two models. The metabolism and excretion of drugs 
in zebrafish are also difficult to predict. Despite zebrafish 
have important metabolic enzymes also found in mammals 
(192), these are not fully characterized. In addition, several 
differences in the metabolism of chemicals have been reported 
(193). The compounds used in the clinic are extensively 
characterized and are particularly adequate to investigate the 
differences of these compounds on fish and mammals. This 
would also create a basis to more precisely extrapolate doses 
between both models.

Probably, a key pitfall in the discovery of new drugs in 
zebrafish is the absence of general guidelines to calculate mam-
malian equivalent doses from zebrafish doses. While between 
mammalian models there exist established formulas (194, 
195), the dose extrapolation from zebrafish to mammals is still 
empirical nowadays. Moreover, much of the existing literature 
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in vivo studies will not only improve our ability to understand 
the pathogenic mechanisms of complex diseases, as movement 
disorders but also precipitate the discovery of novel drugs for 
these disorders. Zebrafish should be considered a practical and 
inexpensive tool for this approach, provided that, as with any 
other non-mammalian model, the potential molecules selected 
in it are further validated by studies in mammals. It is not 
expected of zebrafish models of movement disorders to fully 
recapitulate such complex human phenomenology. Even mam-
malian models have their flaws and do not precisely mimic the 
symptomatology evidenced in patients. Furthermore, several 
compounds selected using the traditional models have also 
failed to demonstrate therapeutic effects in humans. Finally, it 
is vital to create a comprehensive correlation between zebrafish 
and mammalian models and, ultimately, be able to translate the 
findings to humans.

Overall, while it is already evident that zebrafish models 
of movement disorders share many cellular and physiologic 
mechanisms with mammalian models and patients, this model 
is still showing its usefulness for drug discovery. It was not 
until 2011 that a positive hit from a zebrafish-based drug 
screening entered phase I clinical trials (200). The usefulness of 
zebrafish to model human diseases will only be unquestionable 
when a drug selected in this model proves efficacy in human 
patients. Meanwhile, the use of zebrafish to study movement 
disorders will certainly result in a better understanding of 
their mechanisms and, hopefully, in the discovery of better  
therapies.
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has omitted this rationale (196–199). The only way to understand 
this rational is by increasing the number of studies where the 
properties of drugs in zebrafish are translated to mammals. Until 
now, it seems that only a minority has reached this far. It is not 
clear dough, whether there is little interest on these drugs, or 
they actually did not show the same properties in rodents and 
were not reported. The translation of the discoveries will allow 
the elaboration of a meta-analysis where the effective doses in 
zebrafish and mammals can be compared. Ultimately, it would 
boost the generation of formulas that rule dose extrapolation 
from zebrafish to different mammalian models and increase the 
validity of zebrafish models.

cONcluSiON

This review underscores the strengths and limitations of the 
zebrafish models of movement disorders developed to date. 
Importantly, it raises awareness that zebrafish can mimic the 
phenomenology of different movement disorders but needs fur-
ther characterization. To date, there are a substantial number of 
studies reporting the use of zebrafish as a model for PD. However, 
for other movement disorders, this number is still limited. 
Considering the pathological hallmarks, motor phenotypes, and 
responsiveness to pharmacotherapies, from the seven movement 
disorders reviewed here, zebrafish models have only been fully 
characterized in the context of PD. Notwithstanding, the use of 
zebrafish to model human disorders dates back to the beginning 
of the twenty-first century, which compared with the 500 years 
of use of rodent models, is at embryonic stage. This difference of 
half a century may explain the skepticism that still exists about 
the use of zebrafish as an animal model of human diseases. The 
number of studies reporting the use of zebrafish as an animal 
model is growing and, therefore, the analysis of the pros and 
cons of the use of this vertebrate model for drug discovery is 
important.

This study also provides a comprehensive assessment of 
the methodologies adopted and emphasizes that most of the 
limitations are inherent to it. Many techniques are available 
to surpass these limitations and generate consistent and well-
characterized models of movement disorders. With the next-
generation sequencing, to couple genomic approaches with 
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Significant advances have been made uncovering the factors that render neurons

vulnerable in Parkinson’s disease (PD). However, the critical pathogenic events leading to

cell loss remain poorly understood, complicating the development of disease-modifying

interventions. Given that the cardinal motor symptoms and pathology of PD involve the

loss of dopamine (DA) neurons of the substantia nigra pars compacta (SNc), a majority

of the work in the PD field has focused on this specific neuronal population. PD however,

is not a disease of DA neurons exclusively: pathology, most notably in the form of Lewy

bodies and neurites, has been reported in multiple regions of the central and peripheral

nervous system, including for example the locus coeruleus, the dorsal raphe nucleus and

the dorsal motor nucleus of the vagus. Cell and/or terminal loss of these additional nuclei

is likely to contribute to some of the other symptoms of PD and, most notably to the

non-motor features. However, exactly which regions show actual, well-documented, cell

loss is presently unclear. In this review we will first examine the strength of the evidence

describing the regions of cell loss in idiopathic PD, as well as the order in which this loss

occurs. Secondly, we will discuss the neurochemical, morphological and physiological

characteristics that render SNc DA neurons vulnerable, and will examine the evidence for

these characteristics being shared across PD-affected neuronal populations. The insights

raised by focusing on the underpinnings of the selective vulnerability of neurons in PD

might be helpful to facilitate the development of new disease-modifying strategies and

improve animal models of the disease.

Keywords: Parkinson, vulnerability, dopamine, cell death, neurodegeneration

INTRODUCTION

Parkinson’s disease (PD) was first described two centuries ago in An essay on the shaking palsy (1).
Since then, great strides have been made in understanding the disease basics. However—as with
many other neurodegenerative disorders—there is still no disease modifying treatment for PD.
Unfortunately, progress has been slow, and a thorough understanding of the pathological processes
has been elusive.

PD as a clinical diagnosis is characterized by the detection of significant motor deficits
(including bradykinesia, resting tremor, and rigidity) due, in large part, to a loss of
dopamine (DA)-containing neurons of the substantia nigra pars compacta (SNc). The
SNc is a neuronal population projecting to the caudate and putamen and is critical for
regulation of basal ganglia circuitry. At clinical presentation, it has been estimated that
40–60% of SNc DA neurons have already degenerated (2, 3). The clinical features of the
disease are diverse and include substantial non-motor features including, autonomic and
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olfactory dysfunction, constipation, sleep disturbances,
depression, and anxiety (4–6).

The diagnostic criteria for PD have been recently re-defined
by the International Parkinson and Movement Disorder Society
(MDS), with theMDSClinical Diagnostic Criteria for Parkinson’s
disease [MDS-PD Criteria (7)]. A diagnosis is made when there is
documented parkinsonism (defined as bradykinesia, with tremor
at rest and/or rigidity), followed by the exclusion of other
possible causes of parkinsonism, and with additional supporting
criteria, including olfactory dysfunction or cardiac sympathetic
denervation [see (7)]. The recent nature of this re-evaluation
illustrates both the heterogeneity of PD expression, and the
difficulties encountered in defining it.

In ≈70% of the ‘clinically typical PD cases’, the hallmark
pathological finding is the presence of Lewy pathology (LP) in
the SNc (4, 5)—however, LP is also found across the central,
peripheral, and enteric nervous system (CNS, PNS, and ENS)
(6). This includes both Lewy bodies and Lewy neurites: both
similar cellular inclusions, formed predominantly of aggregated
α-synuclein, but also including a large number of different
molecules, proteins and organelles, such as ubiquitin, tubulin,
neurofilaments, lipids, and mitochondria (8).

In considering the broad localization of LP and the origins
of the various symptoms of PD, a critical point to consider is
the dysfunction and loss of neurons in regions of the CNS and
PNS, other than the SNc. There have been, indeed, many studies
concluding that cholinergic neurons in the pedunculopontine
nucleus (PPN), noradrenergic neurons of the locus coeruleus
(LC), cholinergic neurons of the nucleus basalis of Meynert
(NBM) and of the dorsal motor nucleus of the vagus (DMV), and
serotonergic neurons of the raphe nuclei (RN) are lost in PD. The
strength of the evidence for actual neuronal cell body loss in these
regions is highly variable and is one of the questions addressed in
the present review. The fact that the diagnostic criteria for PD
have over time been refined adds another layer of complexity
to the task of identifying the origin of the diverse symptoms of
PD. Presently, PD is classified into either primary or secondary
subtypes. Primary parkinsonism includes genetic and idiopathic
forms of the disease and secondary parkinsonism includes
forms induced by drugs, infections, toxins, vascular defects,
brain trauma or tumors or metabolic dysfunctions. This second
subtype of PD is also sometimes called atypical parkinsonism
when concomitant to progressive supranuclear palsy, multiple
system atrophy or corticobasal degeneration, for example.

Since pathology is likely to emerge through different processes
depending of PD subtypes, and since modern classification was
non-existent when a substantial part of the research literature

Abbreviations: AD, Alzheimer Disease; ADLB, Alzheimer’s Disease with Lewy

bodies; ADNLB, Alzheimer’s Disease with no Lewy bodies; ALS, Amyotrophic

Lateral Sclerosis; CBS, corticobasal syndrome; CGS, central gray substance; CJD,

Creutzfeldt-Jakob disease; ctrl, control; DLB, dementia with Lewy bodies; H&Y,

Hoehn and Yahr scale; iPA, idiopathic paralysis agitans; LBD or iLBD, Lewy

body disease or idiopathic Lewy body disease; LDB or iLDB, dementia with Lewy

bodies or idiopathic dementia with Lewy bodies; LID, levodopa (L-dopa)–induced

dyskinesias; MS, multiple sclerosis; MSA, multiple system atrophy; NPH, normal

pressure hydrocephalus; PD or iPD, Parkinson’s disease or idiopathic Parkinson’s

Disease; PSP, progressive supranuclear palsy; UPDRS, unified Parkinson disease

rating scale.

was produced, attempting to reach clear general vision of various
pathophysiological markers and their link to disease progression
for each sub-type of PD presents a significant challenge. This
review will primarily focus on idiopathic PD, since this category
represents the large majority of cases and is likely to represent
most of the subjects examined in studies where PD type was not
provided.

Another main hurdle in PD research is that the chain of
events that leads to the death of neurons is still not clear. The
fact that pathology is thought to begin years/decades before
the appearance of symptoms might, in part, explain this lack of
progress.

PD has been considered to exist as either a strictly
monogenetic or environmentally-triggered disease, as well as
a mixture of the two. The pathological mechanisms at the
core of each form have been proposed to converge in causing
cellular stress secondary tomitochondrial dysfunction, perturbed
proteostasis and elevated oxidative stress. A major conundrum
is that at first glance, these factors alone fail to explain why PD
pathology is restricted to very limited subsets of brain nuclei.
Therefore, a key question is what do these PD sensitive neurons
have in common and what is it about them that renders them
more vulnerable compared to neurons from other brain regions?

A better understanding of the fundamental nature of cell loss
and cellular dysfunction in the parkinsonian brain is required
to develop critically needed, novel, therapeutic strategies. In this
review, we aim to re-evaluate the evidence for cell loss in PD, then
to highlight the common characteristics that could explain their
selective vulnerability.

PHYSIOPATHOLOGY OF PARKINSON’S
DISEASE

The focus on SNc DA neurons has brought significant advances
in our understanding of PD pathophysiology, as well as of the
signaling pathways that lead to DA neuron death. Studies using
DA neuron selective toxins such as 6-OHDA and MPTP, as well
as investigations of gene products mutated in familial forms of
the disease (including α-synuclein, Parkin, Pink1, LRRK2, DJ-1,
and GBA1), have been instrumental to better understand some
of the key dysfunctional processes implicated in the disease.
These include protein clearance (9–11), mitochondrial turnover
(12–14), ROS management (15, 16), and inflammation (17, 18).
Perturbations of these processes have been proposed to underlie
distinct physiological dysfunctions in PD-vulnerable neurons
(19). Nonetheless, since the first introduction of Levodopa in
the 1950s and the development of deep-brain stimulation in the
1990s, increased understanding of PD pathophysiology has not
yet permitted the discovery of disease-modifying therapies.

As stated previously, PD is more than just a disease of DA and
the SNc. Non-motor symptoms—including a reduced sense of
smell, constipation, orthostatic hypotension, sleep disturbances,
depression, and anxiety—are likely to be due to impaired
function and/or loss of non-DA neurons (20). There has thus
been a growing interest in better understanding the implications
of other regions of the CNS and PNS in the progression of PD
pathology. In the early 2000s, pioneering work by Braak and
colleagues defined stages in PD based on the appearance of LP in
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various regions of the nervous system, correlating their findings
to the symptomatic progression of the disease (21–23). Most
notably, LP was detected in the dorsal IX/X motor nuclei, the
intermediate reticular zone, the medulla oblongata, the pontine
tegmentum, the caudal RN, the gigantocellular reticular nucleus,
the coeruleus–subcoeruleus complex, the pars compacta of the
substantia nigra, the basal prosencephalon, the mesocortex, and
the neocortex. However, multiple lines of evidence suggest that
LP is not systematically seen in the PD brain and LP is also
documented in healthy individuals (24). Also, in some cases
of PD, and most notably in early-onset genetic forms, loss of
SNc DA neurons has been reported to occur in the absence of
detectable LP (25–27).

Although the role of LP in the pathogenesis of PD has
been the subject of much debate (28), the detection of LP has
remained central in investigations of the key brain regions and
circuits underlying PD pathophysiology. In this context, it may
be useful to focus attention on brain and PNS regions that show
documented cell death and/or axonal degeneration, irrespective
of the presence or absence of LP. This could perhaps provide new
perspectives on the actual, more proximate, causes of the major
symptoms of the disease and their progression. Relevant to the
present point, in their most recent and insightful work, Braak
and Tredici write, “We ascribed the same weight to axonopathy
and nerve cell dysfunction (presumably attributable, but not
limited, to the presence of Lewy pathology) as to neuronal
death because the development of pathology together with
neurotransmitter loss, axonal, and somatodendritic dysfunction
inmultiple neuronal populations could prove to bemore stressful
for involved neurons over time than premature cell death within
a select neuronal population” (6).

WHERE AND WHEN DOES NEURONAL
LOSS APPEAR IN PD?

Loss of neurons in the brain is thought to occur in the context of
normal aging. For example, there have beenmultiple publications
reporting significant age-dependent decline in neuron number
in the SNc (29–37), as well as in regions such as the PPN (38),
and LC (39, 40). Above and beyond such cell loss associated with
normal aging, a key question is where in the brain can one find
substantial neuronal loss in PD?

Although numerous publications have referred to cell loss
occurring in many CNS and PNS regions in the context of PD,
we believed it germane to re-evaluate the published scientific
literature addressing this question.

To do so, we took great care to find work concentrating
on neuronal loss and not only denervation [as is common for
the heart, for example (41–43)]. We found 90 primary research
articles reporting PD-specific cell loss in the following regions
(Table 1): the SNc, VTA, amygdala, cortex, DMV, hypothalamus,
laterodorsal tegmental nucleus, LC, NBM, OB, oral pontine
reticular nucleus, PPN, pre-supplementary motor cortex, RN,
supraoptic nucleus, sympathetic/parasympathetic ganglia, and
thalamus. These original articles span from 1953 to 2015.
The techniques used to quantify cell loss varied, and we have
classified them accordingly. Across all regions examined, 14 of

the examinations were defined as observational, 39 as implicating
manual counting, 18 used computer-assisted counting, and 26
used stereological counting methods. While informative, the
value of observational studies can be considered limited given
their lack of precision and the fact that they are greatly
influenced by the observer. Lack of bias is also difficult to
assure in studies involving manual counting. This technique is
also unable to assure that a cell is not being counted twice if
present in two subsequent sections. Other techniques such as
computer-assisted counting were developed to improve on these
aforementioned methods, however, these are also limited in that
they often lack rigorous systematic sampling, are sensitive to
tissue shrinkage, and are often unable to account for local tissue
thickness, or for cells damaged on slice edges. These issues are
systematically addressed using modern stereological counting
techniques. Another issue to consider is that many of the studies
included in this review, including those employing stereology,
either did not use age-matched controls, or did not state whether
counting was conducted blind to diagnosis. Yet another apparent
feature of this literature is the diversity of method iterations used,
the varying number of brain regions assessed in each study and,
importantly, the stage or type of PD studied (and how this was
defined). Here, we will discuss the evidence of cell loss (if not
otherwise stated, relative to healthy control cases), ordering the
regions in subsections according to the strength of the evidence
(Table 1).

SUBSTANTIA NIGRA PARS COMPACTA

Loss of SNc DA neurons in PD is indisputable. Here we
found 38 studies addressing this directly with a total of 612
brains. However, if we consider the methods used, we found
that 10 of these studies were observational, 8 involved manual
counting methods, 8 used computer-assisted methods, and
12 used stereology. Considering stereological methods as best
practice for unbiased evaluation of cell number, 181 brains were
quantified as such for SNc: still a large number. The average
cell loss reported for studies involving stereological methods is
∼68%. The definition and clinical stage of PD in most studies

Methodology and Scales of PD Progression

We searched the scientific literature using the search engines and databases

of PubMed, Google Scholar and Science Direct. The following search terms

were used: “PD,” and “cell loss,” “cell death,” or “reduced cell/neuron

number.” Furthermore, these terms were used in combination with brain

structure keywords: “SNc,” “VTA,” “LC,” “Raphe,” “DMV,” “PPN,” “NBM,” and

“enteric system” (“ENS”), and “gut.” Review and original article abstracts were

screened, then, where appropriate, read. Where any direct or indirect claim

for cell loss was found (rather than only the presence of LP), the claim was

followed to its original source.

The Hoehn and Yahr scale (H&Y) is a widely used clinical rating scale, which

defines broad categories of motor function in PD (where 1 is the least severe,

and 5, most severe symptoms) (132).

Braak staging is a method of classifying the progression of PD pathology

and symptoms based on the presence of Lewy pathology (where 1 represents

initial pathology in the brain stem, and 6, severe pathology including the

neocortex) (21).
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varied greatly, especially in reporting. For example, for the 12
studies using stereological methods, three papers (74, 76, 79)
staged each case according to the Braak staging (to be expected
given that Braak staging only came about in the early 2000s).
In the same 12 studies, the age “since disease onset” varied
between 1 and 27 years when stated, the Hoehn and Yahr ratings
(H&Y, used to describe the progression severity of PD symptoms)
varied between 2 to 5 and the UPDSR score (that includes
H&Y rating, symptoms and quality-of-life scores) was also on
occasion provided. A correlation with disease duration/severity
was found in 10 studies. It is relevant here to mention that some
authors, including Gibb et al. (56) have discussed the selective
vulnerability of restricted sub-regions within the SNc. These
data are important and relevant to the progression of the field;
however, we found this distinction absent in the majority of the
work we examined.

PEDUNCULOPONTINE NUCLEUS AND
LOCUS COERULEUS

The evidence for cell loss for both the PPN (11 studies),
containing cholinergic neurons and the LC (18 studies),
containing noradrenergic neurons, is also relatively strong.

For the PPN, four studies used stereological methods. In these
four studies, the average loss of cholinergic PPN neurons was
41% and the range of PD stages amongst the subjects evaluated
was broad. For example, in Rinne et al. (99), the PD cases ranged
from a H&Y rating of 2.5 to 5; in Karachi et al. (73), UDPRS score
was used, and in both Hepp et al. (101), and Pienaar et al. (102),
the PD cases were between Braak stages 4 and 6 and between
2 and 4, respectively. Although sample sizes were relatively
small in these two last studies, nine and eight, respectively, it is
somewhat surprising that in the most advanced PD group, loss of
cholinergic PPN neurons was not higher than for less advanced
PD subjects, contrarily to the report by Rinne et al. (99).

Surprisingly, we found no study quantifying loss of LC
neurons using stereological counting methods. For the LC, 221
brains were studied, with cell loss ranging from “some” to 94%.
Five of the studies were based on observational quantifications, 4
on manual counting and 9 used computer-assisted counting. In
these 18 papers, when stated, the H&Y score was between 3 and
5, and disease duration was between 1 and 31 years. A correlation
of the extent of cell loss with disease duration was found in two
of these studies (81, 85).

DORSAL MOTOR NUCLEUS OF THE
VAGUS, RAPHE NUCLEI, NUCLEUS
BASALIS OF MEYNERT AND VENTRAL
TEGMENTAL AREA

Substantial cell loss has been documented in the DMV,
containing cholinergic neurons, with 7 studies evaluating this loss
in 49 cases. Of these, only one study (114) used stereology, where
they reported 55% neuronal loss in eight PD cases, ranging from
5 to 24 years post-diagnosis and reported correlation with disease
duration/severity.
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The importance of re-evaluating cell loss is PD is apparent
when considering the serotonergic RN. For these nuclei, which
are considered by many authors to be lost in PD, we found
7 papers describing neuronal loss varying between 0 to 90%.
Cheshire et al. however, using stereology in 44 late-stage PD
subjects, found no cell loss in the dorsal raphe nucleus (78). In the
NBM, containing cholinergic neurons, we found 13 papers, 12
using manual counting methods, and one observational, which
estimated an average neuronal loss of between “some” to 72%.
No correlation with disease duration was reported. The high
prevalence of concomitant PD and Alzheimer’s disease (AD)
might explain why cell loss varied so much for this region.
Surprisingly, only 8 studies directly evaluated neuronal loss in
the VTA, a dopaminergic region often considered to be only
modestly affected in PD.Of these, one study used stereology (120)
to evaluate the loss of neurons in 3 cases of PD (or 6 including
PD with a secondary diagnosis) that were between 1 and 27 years
post-diagnosis and reported an average neuronal loss of 31%.
One paper reported correlation of the extent of cell loss with
disease duration (68).

THALAMUS, HYPOTHALAMUS,
OLFACTORY BULB

Four studies reported neuronal loss in thalamic nuclei, with 2
using stereology (69, 126). In (69), 9 subjects with H&Y disease
ratings between 2 and 5 statistically significant loss of 30–40%was
reported in the centromedian-parafasicular complex. However,
no loss was found in themotor thalamus in 9 subjects with similar
H&Y disease ratings in the work of Halliday et al. (126). Neuronal
loss has also sometimes been reported in the hypothalamus
(9 studies), with one using stereology; Thannickal et al. (110)
reported a 50% cell loss in 10 PD cases, with increased loss with
disease severity. Olfactory dysfunction is now well established
as an early symptom of PD. Four studies evaluating cell loss in
the olfactory bulb were reported. One of these (121) described
a 57% decrease in neuronal number (identified as cells with “a
prominent nucleolus surrounded by Nissl substance”), while the
others (122–124), using stereology, reported a 100% increase in
the number of TH-positive neurons.

PERIPHERAL NERVOUS SYSTEM, SPINAL
CORD AND OTHER BRAIN REGIONS

Though there is substantial evidence for LP occurring in the ENS
(133), we did not find any study reporting direct—quantitative
evidence—for neuronal loss in the gut. Though it has been
inferred that ENS glial cell loss is occurring (134), there is
evidence that neuronal loss in the gut is not associated with PD
(135). Of note, a publication often cited in support of neuronal
loss in the ENS (115) shows, in fact, neuronal loss in the DMV.
With regards to the spinal cord, published evidence is also scarce;
of the studies most relevant here, Wakabayashi et al. (127),
using manual counting methods, described a loss of 31% and
43% respectively in the 2nd and 9th thoracic segments of the

intermediolateral of the spinal cord. For the amygdala, the pre-
supplementary motor cortex, several other cortical regions, the
laterodorsal tegmental nucleus and the oral pontine reticular
nucleus, we found only single studies supporting loss, with
stereology used for the amygdala (30% loss) (130), and cortex
(10% loss) (130) (see Table 1).

REGIONAL ORDER OF CELL LOSS?

In summary, it seems clear that there is some level of cell loss
in PD in restricted regions including the SNc, LC, NBM, PPN,
DMV, VTA, and probably the RN. However—because of the
lack of data for some regions, the variety of techniques used to
count neurons, potentially numerous unintentional sources of
bias, and because of the inconsistency in criteria used for subject
sampling—firm conclusions are somewhat limited. In particular,
it is difficult to conclude on the relative extent and temporal order
of cell loss in these different brain regions as a function of disease
progression, information that would be critical to advance the
field. Indeed, a direct comparison of the extent of neuronal loss in
different regions examined in different studies is hazardous, even
if stereological studies were to be selected. Interestingly, of the
38 studies we identified evaluating cell loss in the SNc, only 5 of
these also looked at the VTA, and of these only 1 used stereology.
Given the importance of the difference in vulnerability of these
two nuclei, a systematic evaluation of the extent of loss of these
neurons in PD would be very informative. But even if as a
technique, stereology mitigates for most of the classic biases, it is
still unable to account for the variation in subject sampling, i.e.,
variation in disease duration, sex and age, unless these criteria
were considered in a similar way for each study. Unfortunately,
this has not, thus far, been the case. In conclusion, it seems clear
that stereological studies comparing multiple regions in the same
subjects and these regions in subjects at different stages of PD are
critically needed to advance the field.

WHAT ARE THE COMMON FEATURES
SHARED BY NEURONS AFFECTED IN PD?

Although, as mentioned previously, the evidence for the extent
of cell loss in regions other than the SNc in the PD brain is
not always sufficiently documented, it is clear that some level of
cell loss occurs in a limited subset of regions beyond the SNc
(Figure 1A), or, to the least, that neuronal functions including
neurotransmission are perturbed in multiple neuronal circuits.
It is therefore of great interest to identify some of the biological
features that distinguish neuronal subgroups in terms of their
basal vulnerability to some of the cellular stresses that are invoked
to trigger PD, including altered proteostasis (due to lysosomal
and/or proteosomal impairment), mitochondrial dysfunction,
and sustained oxidant stress (including from highly reactive DA
metabolites).

Several groups have been tackling this question by
interrogating the characteristics that render neurons, starting
with those of the SNc, particularly vulnerable to degeneration /
cell death (136–138). It is likely that some shared functional or
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FIGURE 1 | (A) Schematic representation of brain regions demonstrating cell loss in Parkinson’s disease. These are color-coded based on the evidence of cell loss.

Red = 60%, orange = 40%, and yellow = 20%. Color gradients indicate uncertainty in the extent of this cell loss. (B) Summary of the converging hypotheses that

may explain the origins of the selective vulnerability of neurons in Parkinson’s disease. This includes the exceptionally large axonal arbor of PD-affected neurons, their

electrophysiological properties, including calcium-dependent pacemaking, and high levels of oxidant stress in the somatodendritic and axonal domain, all thought to

be contributing to cellular dysfunction and cell loss. Pathological protein aggregation and reactive dopamine quinones are considered as additional precipitating

factors.

structural properties are responsible for selective vulnerability
of affected nuclei, as opposed to features truly unique to SNc
DA neurons. The causative characteristic(s) should be present
in all affected neurons, but also be absent in neurons that do
not degenerate or that degenerate much later in the disease.
Four main converging hypotheses on selective vulnerability in
PD have been gaining attention lately (Figure 1B), related to
DA toxicity, iron-content, autonomous pacemaking and axonal
arborization size. The next section will explore the likelihood that
these hypotheses can explain why select neuronal populations
are particularly vulnerable in PD.

DOPAMINE TOXICITY

Firstly, it has been suggested that DA neurons in general are
most at risk because they produce DA as a neurotransmitter,
a molecule that can be toxic in certain conditions through
the generation of reactive quinones during its oxidation (139).
This oxidation has been proposed to be implicated in the
production of neuromelanin in SNc DA neurons. These DA
quinones have been shown to interact with and negatively impact
the function of mitochondrial protein complexes I, III, and V
(140) and of other proteins such as tyrosine hydroxylase, the
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DA transporter and α-synuclein (141, 142). Such reactive by-
products can promote mitochondrial dysfunction, pathological
aggregation of proteins such as α-synuclein and oxidative stress
(143). Increasing the vesicular packaging of DA accordingly
reduces the vulnerability of DA neurons, while down-regulating
vesicular packaging has the opposite effect (144–147). Although
highly relevant, this phenomenon alone does not readily explain
the differential vulnerability of different dopaminergic neuron
subgroups (such as SNc vs. VTA) and cannot contribute to the
potential vulnerability of non-dopaminergic neurons in PD. Also,
in the context of DA-induced toxicity, it is puzzling that levodopa
therapy, acting to increase DA synthesis, does not appear to
accelerate cell loss (148, 149). For these reasons, even if DA
toxicity most certainly contributes to degeneration of SNc DA
neurons, it is certainly not the sole factor driving neuronal death
in PD.

IRON CONTENT

Secondly, iron content is thought to also be an important
contributor to the selective vulnerability of SNc DA neurons.
Iron is known to be able to generate ROS by the Fenton reaction
and has been shown to accumulate with age in SNc (150–
152). Since the mitochondrial electron transport chain relies on
iron sulfur clusters for its function and since it is believed that
SNc neurons have particularly high bioenergetic demands (136,
138, 153), elevated iron content could in part underlie elevated
and sustained mitochondrial activity. Another interesting feature
of iron in SNc DA neurons is that it can be chelated by
neuromelanin, which renders it unavailable for mitochondrial
function. Even if the affinity of iron for neuromelanin is much
lower than for other iron binding proteins such as ferritin,
it is possible that accumulation of neuromelanin and loss of
ferritin concentration with age impacts gradually mitochondrial
function, which could eventually promote cell death. However,
data about potential iron content and iron-binding protein
concentration changes in PD is still a matter of debate (154, 155).
In addition, data is lacking on iron levels in other brain regions
presenting cell death in PD. In fact, the only other region studied
in this context has been the LC, which did not show high iron
relative to the SNc (156–159).

AUTONOMOUS PACEMAKING

A third highly attractive hypothesis to explain the vulnerability
of SNc DA neurons has its origins in the fact that these neurons
demonstrate autonomous pacemaking. Many receptors/channels
can potentially modulate the excitability and survival of DA
neurons (160). The fact that pacemaking activity in SNc DA
neurons is accompanied by slow oscillations in intracellular
calcium concentrations, caused by the opening of voltage-
dependent Cav1 plasma membrane calcium channels (Cav1.1
and 1.3) has recently renewed interest to this topic. In the
Cav1 family, Cav1.3 has been suggested to be of particular
interest because its voltage-sensitivity and inactivation properties
allow a subset of the calcium channels to always stay open
during pacemaking, causing extensive calcium entry (137). These

oscillations have a positive contribution to cell physiology
because they help maintain pacemaking and directly promote
mitochondrial oxidative phosphorylation (OXPHOS) (161).
However, by doing so, they have been proposed to also promote
chronically high levels of ROS production (162, 163). Along
with a reduction in mitochondrial function with age, chronically
elevated oxidative stress has been proposed to be a causative
factor in the decline of neuronal survival (164). Interestingly,
CaV currents and autonomous pacemaking are also a feature of
LC and DMV neurons (162, 163), and have been hypothesized
to be involved in their vulnerability. The fact that other neuronal
populations also expressing Cav1.3 such as hippocampal neurons
(165) and striatal spiny projection neurons (166) do not
degenerate in PD highlights the possibility that the particular
vulnerability of SNc DA neurons is due to a combination of
physiological phenotypes and not only intracellular calcium
oscillations. Intriguingly, recent post-mortem studies showed
that there was no decrease in Cav1.3 mRNA level in early or
late stage PD in human SNc compared to controls (166, 167),
despite significant loss of SNc neurons. Finally, in addition to
CaV channels, ATP sensitive potassium channels (K-ATP) have
also been reported to regulate the excitability and vulnerability of
SNc DA neurons (168).

AXONAL ARBORIZATION SIZE

A fourth hypothesis proposes that neurons such as those of the
SNc are particularly vulnerable because of the massive scale of
their axonal arborization, leading to very high numbers of axon
terminals, elevated energetic requirements, and chronically high
oxidant stress. Indeed, it has been shown that SNc DA neurons
have an exuberant and highly arborized axonal arborization
with estimates upwards of a million neurotransmitter release
sites per SNc DA neuron in humans (136, 169): this would
make them some of the most highly arborized neurons in the
nervous system. This characteristic has the potential to place
a very large bioenergetic burden on these cells, leaving little
margin for additional bioenergetic stress (136, 138, 153). Related
to this, it has been calculated that the ATP requirement for
propagation of one action potential grows exponentially with
the level of branching (170). In a recent publication (138),
we demonstrated in vitro that reducing the axonal arbor size
of SNc DA neurons to a size more similar to that of VTA
DA neurons using the axonal guidance factor Semaphorin 7A,
was sufficient to greatly reduce basal OXPHOS and reduce
their vulnerability to toxins including MPP+ and rotenone.
Although as previously discussed, the extent of neuronal
loss is still unclear for many neuronal populations, it does
seem likely that most neuronal nuclei affected in PD include
neurons that are relatively few in number, but all possess
long and profuse unmyelinated axonal arbors and a large
number of axonal terminals (171–176). However, comparative
data evaluating axonal arbor size amongst these populations
and in populations of neurons that do not degenerate in PD
is presently lacking. An interesting possible exception to this
hypothesis could be striatal cholinergic interneurons, which
were previously estimated in rats to present 500,000 axonal
varicosities (177, 178), but have not been reported to degenerate
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in PD. This estimate was obtained by dividing the estimated
number of terminals by the estimated number of cholinergic
interneurons in the striatum, which was based on the total
number of striatal neurons and the proportion of cholinergic
interneurons. Considering recent stereological counting of the
number of neurons in the rat striatum, it is possible that the
total number of terminals estimated for striatal cholinergic
neurons may have been overestimated by a factor of six
(179). Based on this report, axonal arborization size of striatal
cholinergic interneurons would be less than half of that of SNc
neurons. Careful quantitative and comparative studies are clearly
needed.

A GLOBAL BIOENERGETIC FAILURE
HYPOTHESIS

One commonality between these four hypotheses is that
they all suggest that vulnerable neurons are under intense
mitochondrial/bioenergetic demand. This could alter the
oxidative stress response by depleting antioxidants like
glutathione (GSH), as previously suggested to occur in the
PD brain (180–182). This stress could also, at a certain point,
place the cells in a situation in which the rate of OXPHOS
required to sustain neurotransmitter release and cellular
excitability leaves too little of the cell’s resources to sustain
other key cellular functions such as degradation of damaged
or misfolded proteins (137). This could lead to preferential
dysregulation of axon terminals, triggering a dying back cascade
culminating later in cell death (3, 183, 184). Approximately half
of the oxygen consumed by mitochondria in SNc DA neurons
appears to be used by activity-dependent cellular processes such
as firing and neurotransmitter release (138). In this context,
axon terminal degeneration seen early in the disease, prior to cell
death, could be in part an attempt by stressed neurons to adapt
to such excessively high metabolic needs. Such a dying back
process could also lead to increased amounts of damaged axonal
proteins to manage, potentially promoting their accumulation in
intracellular inclusions. Since α-synuclein is highly concentrated
in axon terminals, it is possible that retraction of axonal processes
in a cell where protein degradation systems are overwhelmed,
promotes creation of pathological aggregates of this protein, thus
accelerating cell death. Interestingly, lysosomal defects secondary
to GBA1 gene mutations are present in up to 10% of PD patients.
This gene encodes a glucocerebrosidase responsible for breaking
down lysosomal glucolipid. When GBA1 is mutated, the level of
glucolipid and of misfolded proteins increases in neurons. This
is likely to represent a particular challenge for highly arborized
neurons such as those of the SNc, perhaps explaining why such
mutations are now considered the greatest genetic risk factor for
PD (185–191). Similarly, mutations in gene products implicated
in mitophagy and mitochondrial antigen presentation (PARK2,
PINK1) (192, 193), oxidative stress response (PARK7) (194, 195),
or vesicular trafficking (LRRK2) (196, 197) are present in familial
forms of PD and their detrimental impact on cellular functions
could also represent larger challenges for highly arborized and
energetically ambitious neurons.

TOWARD BETTER TREATMENTS OF PD

In the context of the hypotheses discussed here regarding
the origin of the selective vulnerability of neurons in PD,
novel strategies to promote survival and preservation of
cellular functions amongst challenged neuronal populations
could possibly come from approaches that aim to reduce
mitochondrial burden by either reducing neuronal metabolic
needs or optimizing mitochondrial function. As an example,
the CaV1.3 channel inhibitor isradipine is presently in phase
3 clinical trial and could possibly reduce the calcium- and
activity-related metabolic stress of SNc DA neurons leading to
neuroprotection (198). Other promising molecules could come
from the repurposing of drugs used to treat diabetes and other
metabolic diseases. One example is exenatide, a glucagon-like-
peptide-1 agonist that has the property to increase glucose-
induced insulin secretion, to prevent the rise of ROS and
prevent decreases of mitochondrial function in diet-induced
obese mice (199). This agonist was found to reduce the loss
of DA neurons in the MPTP mouse model (200) and a recent
clinical trial has shown improved motor function after 60
days of administration to PD patients (201). Overexpression
of the mitochondrial deacetylase SIRT3 has also recently been
shown in two studies to reduce basal OXPHOS by DA neurons
and to protect SNc neurons in rodent models of PD (202,
203). With further discoveries of the underlying causes of the
intrinsic vulnerability of neurons in the PD brain and PNS,
multiple other strategies may soon be devised to address some
of the specific challenges faced by energetically challenged
neurons.

In conclusion, although the presently available data strongly
argue that multiple populations of neurons are affected
in PD and degenerate to varying extents, new work is
needed to provide a more systematic, comparative, and time-
dependent quantification of neuronal loss in this disease. More
comprehensive and convincing data on cell death and axon
terminal dysfunction in PD will likely provide additional impetus
for new work aiming to solve the long-awaited challenge of
identifying disease-modifying therapeutic approaches for this
incapacitating and ill-treated disorder.
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Pre-α-pro-GDNF and
Pre-β-pro-GDNF Isoforms Are
Neuroprotective in the
6-hydroxydopamine Rat Model of
Parkinson’s Disease
Anna-Maija Penttinen 1, Ilmari Parkkinen 1, Merja H. Voutilainen 1, Maryna Koskela 1,

Susanne Bäck 2, Anna Their 1, Christopher T. Richie 3, Andrii Domanskyi 1,

Brandon K. Harvey 3, Raimo K. Tuominen 2, Liina Nevalaita 1, Mart Saarma 1 and

Mikko Airavaara 1*

1HiLIFE Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland, 2Division of Pharmacology and

Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland, 3National Institute on Drug Abuse,

National Institutes of Health, Baltimore, MD, United States

Glial cell line-derived neurotrophic factor (GDNF) is one of the most studied neurotrophic

factors. GDNF has two splice isoforms, full-length pre-α-pro-GDNF (α-GDNF) and

pre-β-pro-GDNF (β-GDNF), which has a 26 amino acid deletion in the pro-region.

Thus far, studies have focused solely on the α-GDNF isoform, and nothing is known

about the in vivo effects of the shorter β-GDNF variant. Here we compare for the

first time the effects of overexpressed α-GDNF and β-GDNF in non-lesioned rat

striatum and the partial 6-hydroxydopamine lesion model of Parkinson’s disease. GDNF

isoforms were overexpressed with their native pre-pro-sequences in the striatum using

an adeno-associated virus (AAV) vector, and the effects on motor performance and

dopaminergic phenotype of the nigrostriatal pathway were assessed. In the non-lesioned

striatum, both isoforms increased the density of dopamine transporter-positive fibers at

3 weeks after viral vector delivery. Although both isoforms increased the activity of the

animals in cylinder assay, only α-GDNF enhanced the use of contralateral paw. Four

weeks later, the striatal tyrosine hydroxylase (TH)-immunoreactivity was decreased in

both α-GDNF and β-GDNF treated animals. In the neuroprotection assay, both GDNF

splice isoforms increased the number of TH-immunoreactive cells in the substantia nigra

but did not promote behavioral recovery based on amphetamine-induced rotation or

cylinder assays. Thus, the shorter GDNF isoform, β-GDNF, and the full-length α-isoform

have comparable neuroprotective efficacy on dopamine neurons of the nigrostriatal

circuitry.

Keywords: neurotrophic factors, neurodegeneration, GDNF, splice variant, alternative splicing, tyrosine

hydroxylase, dopamine
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INTRODUCTION

Originally purified from a rat glioma cell line, glial cell-
derived neurotrophic factor (GDNF) was shown to promote
differentiation and survival of rat midbrain dopamine neurons,
increase outgrowth of neurites and dopamine uptake in vitro
(1). Moreover, GDNF stimulated the formation of new
axon terminals in dopamine neurons (2). These findings
led to increased interest in GDNF’s therapeutic potential for
Parkinson’s disease (PD), in which the progressive degeneration
ofmidbrain dopamine neurons in substantia nigra pars compacta
(SNpc) and their projections to striatum (caudate nucleus and
putamen) is causing major motor disturbances, such as tremor
and postural instability (3). Indeed, in animal models of PD,
GDNF has been shown to protect the dopaminergic nigrostriatal
pathway from 6-OHDA or MPTP-induced degeneration when
administered as a protein or gene therapy (4–7), and to restore
the dopaminergic phenotype (i.e., striatal dopaminergic markers,
such as tyrosine hydroxylase (TH) and the dopamine level) of
the pathway after the degeneration in rodent and non-human
primate models of PD (3, 8–11).

The human GDNF gene consists of six exons and the
rodent GDNF gene of three exons (12–14) (Figure 1). The
alternative splicing site in the third exon produces two conserved
splice isoforms; full-length pre-α-pro-GDNF (α-GDNF) and
the shorter pre-β-pro-GDNF (β-GDNF), which has a deletion
of 26 amino acids (GKRPPEAPAEDRSLGRRRAPFALSSDS)
in the pro-region (12–16) (Figure 1). The deletion does not
interfere with the proteolytic cleavage site, and both isoforms
are cleaved to mature GDNF. The pre-region is cleaved off in
the endoplasmic reticulum and the pro-region mainly in the
secretory vesicles (1, 16, 17). The pro-region has been suggested
to play a role in the folding and secretion of GDNF (18). In vitro,
both isoforms are secreted from the cells upon overexpression but
in drastically different manner. α-GDNF and the corresponding
mature GDNF are secreted constitutively while β-GDNF and its
corresponding mature GDNF are secreted activity-dependently
(17). Furthermore, the isoforms have different localization
patterns inside the cells: α-GDNF is mainly localized in the
Golgi complex, whereas β-GDNF is localized in secretogranin II
(scgII)- and Rab3A-positive vesicles of the regulated secretory
pathway (17). Despite these differences in localization and
secretion, the two major splice isoforms, α-GDNF and β-GDNF,
are expressed in the same tissues, but in varying proportions
(14–16). Interestingly, β-GDNF mRNA expression is present at
relatively high levels during brain development when neuronal
contacts are formed (15).

GDNF is functional as a homodimer, stabilized by a
disulfide-bond (19). It exerts its functions via binding first to
a lipid raft-resident glycosylphosphoinositol-anchored GDNF

Abbreviations: 6-OHDA, 6-hydroxydopamine; α-GDNF, pre-α-pro-GDNF; β-

GDNF, pre-β-pro-GDNF; ANOVA, analysis of variance; DAT, dopamine

transporter; GDNF, glial cell line-derived neurotrophic factor; GFP, green

fluorescent protein; GP, globus pallidus; IHC, immunohistochemistry; PD,

Parkinson’s disease; scAAV, self-complementary adeno-associated virus; scgII,

secretogranin II; SEM, standard error of mean; SNpc, substantia nigra pars

compacta; TH, tyrosine hydroxylase.

receptor α (GFRα), followed by formation of a heterohexameric
complex with two Ret (rearranged during transfection) receptors
(20). Alternatively, the signaling is initiated by GDNF-GFRα

via NCAM (21) or syndecan-3 (22). The exact pro-survival
mechanism of GDNF is not known, but activation of Ret can
initiate several signaling cascades, of which the mitogen activated
protein (MAP) kinase and phosphoinositositide-3-kinase (PI3K)
pathways have been suggested to play a role in the survival
promoting actions (23).

Although GDNF is a widely studied trophic factor, and its
potential as a therapeutic agent for neurodegenerative diseases
is well established including human clinical trials for Parkinson’s
disease, there are only few studies about the biology of β-GDNF.
All previous studies have focused on the effects and properties of
α-GDNF, whereas the biological effects of the shorter β-isoform
are still largely unknown. This is the first study to compare the
effects of the twomajor GDNF isoforms in non-lesioned striatum
as well as in the 6-hydroxydopamine (6-OHDA) rat model of
PD. We report here the effects of β-GDNF to be comparable to
the effects of α-GDNF on the dopaminergic phenotype of the
nigrostriatal dopamine neurons. In non-lesioned striatum, both
GDNF isoforms increased the density of dopamine transporter
(DAT)-immunoreactive striatal fibers 3 weeks after viral vector
delivery, but only α-GDNF increased the use of contralateral paw
in the cylinder test at the same time point. Four weeks later,
overexpression of both isoforms downregulated TH. However,
the isoforms equally protected the TH-immunoreactive cell
bodies in SNpc against 6-OHDA-induced degeneration.

MATERIALS AND METHODS

Generation of
pscAAV-CMV-pre-α-pro-GDNF and
pscAAV-CMV-pre-β-pro-GDNF Constructs
To produce the self-complementary AAV (scAAV) vectors
expressing human pre-α-pro-GDNF and pre-β-pro-GDNF, the
cDNA fragments encoding human pre-α-pro-GDNF and pre-
β-pro-GDNF were produced by PCR using pAAV-pre-α-
pro-GDNF and pAAV-pre-β-pro-GDNF (17) as a template
accordingly. PCR was performed with Phusion Hot-Start
polymerase (ThermoFisher Scientific, Waltham, MA). PCR
products were purified and digested by BamHI and NotI
restriction enzymes (ThermoFisher Scientific, Waltham, MA)
and ligated into a pscAAV-CMV vector using T4 DNA ligase
(ThermoFisher Scientific, Waltham, MA). The plasmid pscAAV-
CMV was obtained by cutting out the eGFP insert from
pscAAV-CMV-eGFP using BamHI and NotI restriction sites.
Both cloned constructs were verified by DNA sequencing.
Primers used for cloning of pre-α-pro-GDNF and pre-β-pro-
GDNF into pscAAV-CMV were forward 5′-TAGGATCCATGA
AGTTATGGGATGTCGTGG-3′ containing BamHI restriction
site and reverse 5′-TAGCGGCCGCTCAGATACATCCACACC
TTTTA-3′ containing NotI restriction site.

The self-complementary AAV vectors, scAAV-pre-α-pro-
GDNF, scAAV-pre-β-pro-GDNF and scAAV-CMV-eGFP were
packaged as serotype 1 (24), then purified and titered as described
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FIGURE 1 | Organization of main human GDNF splice isoforms. (A,B) In GDNF gene line represents introns and boxes represent exons (not in scale). Black boxes

represent protein coding areas. Pre-α-pro-GDNF isoform has a full-length 58 amino acid pro-region, whereas the pre-β-pro-GDNF has shorter 32 amino acid

pro-region.

previously (25). The titers for the vectors were scAAV1-CMV-
eGFP 7.40 × 1013 vg/ml, scAAV1-CMV-pre-α-pro-GDNF 2.14
× 1012 vg/ml, and scAAV1-CMV-pre-β-pro-GDNF 1.73 × 1012

vg/ml, respectively. AAV vector work was conducted by the
Optogenetics and Transgenic Technology Core, NIDA IRP, NIH,
Baltimore MD, USA.

Animals
The experiments were carried out in accordance with the 3R
principles of the EU directive 2010/63/EU on the care and
use of experimental animals, and local laws and regulations
[Finnish Act on the Protection of Animals Used for Scientific
or Educational Purposes (497/2013) and Government Decree
on the Protection of Animals Used for Scientific or Educational
Purposes (564/2013)]. All animal procedures were reviewed
and approved by the national Animal Experiment Board of
Finland (License number ESAVI/7812/04.10.07/2015). A total
of 123 adult male Wistar rats weighing 210-350 g (RRID:
RGD_5508396, Harlan/Envigo, Horst, The Netherlands) were
used in the experiments. The animals were group housed under
standard laboratory conditions in 12 h light/dark cycle with free
access to food and water. The well-being of the animals was
observed on a regular basis.

Intrastriatal Administration of Viral Vectors
and 6-OHDA
All stereotaxic surgeries were performed under isoflurane
anesthesia (4% induction and 2.5% maintenance) and carprofen
(5 mg/kg, s.c.) was used as post-operative analgesic as previously
described (26). For the viral vector injections, animals were
randomly allocated to treatment groups. 4.5 µl of scAAV1-pre-
α-pro-GDNF, scAAV1-pre-β-pro-GDNF or scAAV1-eGFP was
equally distributed to three sites in the right striatum. AAV
injections were carried out as previously described (27). The
injection coordinates according to bregma were (1) A/P +1.6
L/M −2.8 D/V −6.0 from skull, (2) A/P 0.0 L/M −4.1 D/V
−5.5 from skull, and 3) A/P-1.2 L/M −4.5 D/V −5.5 from skull

(28). Injections were done in a 10◦ angle at a rate of 0.5 µl/min.
The microinjection needle was kept in place for additional 5min
to avoid backflow of the solution (26). In the neuroprotection
experiment 3× 2 µg of 6-OHDA (Sigma Aldrich, St. Louis, MO)
was injected to the same sites as the viral vectors 3 weeks later
(Figure 4A).

Tissue Levels of GDNF
To assess the tissue levels of GDNF, 15 animals received 3
µl of scAAV1-pre-α-pro-GDNF (n = 5), scAAV1-pre-β-pro-
GDNF (n = 5) or scAAV1-eGFP (n = 5) distributed evenly
to the three striatal injection sites as described above. Three
weeks later, animals were deeply anesthetized with pentobarbital
(90 mg/kg, i.p., MebunatVet, Orion Pharma, Espoo, Finland)
and decapitated. Brains were snap frozen in cold isopentane
and stored at −70◦C. The striatal samples were collected from
the frozen brain and mechanically homogenized in lysis buffer
(137mM NaCl, 2.7mM KCl, 8.1mM Na2HPO4, 1% Igepal,
10% glycerol, 1:25 Complete Mini EDTA-free (Roche, Basel,
Switzerland) and centrifuged at 5,000 × g for 5min at +4◦C.
The GDNF levels were determined from the supernatants by
commercial enzyme-linked immunosorbent assay (ELISA) kit
according to the manufacturer’s recommendations (Promega,
Madison, WI).

Behavioral Assays
Cylinder Test
Motor asymmetry was assessed with the cylinder test before viral
vector administration and 3 and 7 weeks after the administration
(Figures 2A, 3A). In the neuroprotection experiment the
cylinder test was conducted 3 and 7 weeks after virus injection
(before and 4 weeks after 6-OHDA injection) (Figure 4A). Freely
moving rats were monitored for 5min in a plexiglass cylinder
(diameter 20 cm) under red light, and the contacts between
forepaws and the cylinder wall were counted by a blinded
observer. Placement of the whole palm on the cylinder wall to
support the body while exploring was considered as a touch.
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FIGURE 2 | Effects of GDNF isoform overexpression on dopaminergic markers in non-lesioned striatum 3 weeks after AAV-injection. (A) Experimental design. (B)

Overexpression levels of GDNF isoforms were confirmed with ELISA [Kruskal-Wallis test H(3) = 15.457, p = 0.001, followed by Bonferroni corrected Mann-Whitney U

post-hoc test, **p < 0.01, *p < 0.05, n = 5 in each group]. (C) Representative images of GFP- and GDNF-stained striatal sections. Arrows point to the injected side.

40x magnification of the area is designated by the black box and scale bar is 50µm. (D) GFP signal was observed in SN reticulata, but not in TH-immunoreactive cells

in SNpc. Upper panels show 5x magnification with scale bar 100µm, lower panels show 20x magnification with scale bar 50µm. (E) Both GDNF isoforms co-localized

with scgII-immunoreactive structures. Blue = dapi, green = scgII, red = GDNF (upper row alpha, lower row beta), scale bar 7.5µm. (F) Optical density of striatal

TH-immunoreactive fibers was similar in all treatment groups (GFP 111 ± 4%, α-GDNF 124 ± 7%, and β-GDNF 118 ± 6% of the intact side, n = 8–10 in each group)

(G) Density of TH-immunoreactive fibers was at similar level in all treatment groups throughout the whole striatum (n = 8–10). (H) Representative images of TH-stained

striatal sections. Arrows point to the injected side. (I) Overexpression of both GDNF isoforms increased the optical density of striatal DAT-immunoreactive fibers

(Continued)
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FIGURE 2 | [one-way ANOVA F (2,24) = 11.336, p < 0.001, Fisher’s LSD post-hoc test α-GDNF vs. GFP p < 0.001 and β-GDNF vs. GFP p = 0.002, ***p < 0.001,

**p < 0.01, n = 8–10]. (J) The effects of GDNF isoforms were consistent throughout whole striatum [one-way ANOVA rostral F (2, 24) = 5.315, p = 0.012, Fisher’s LSD

post-hoc analysis α-GDNF vs. GFP p = 0.005 and β-GDNF vs. GFP p = 0.026; central F (2, 24) = 11.339, p < 0.0001, Fisher’s LSD post-hoc analysis α-GDNF vs.

GFP p < 0.0001 and β-GDNF vs. GFP p = 0.002; caudal: F (2, 24) = 7.674, p = 0.003 Fisher’s LSD post-hoc analysis α-GDNF vs. GFP p = 0.001 and β-GDNF vs.

GFP p = 0.006, ***p < 0.001, **p < 0.01, *p < 0.05 n = 8–10]. (K) Representative images of DAT-stained striatal sections. Arrows point to the injected side. (L,M)

Short-term overexpression of GDNF isoforms in non-lesioned striatum did not induce behavioral changes in the cylinder test, as measured by (N) vertical activity

(baseline GFP 43 ± 4, α-GDNF 38 ± 3, and β-GDNF 40 ± 3 rearings, 3 weeks after scAAV GFP 37 ± 5, α-GDNF 36 ± 3, and β-GDNF 38±3 rearings) or (M)

contralateral paw touches, (n = 8–10 in each group). (L) All animals gained weight in similar manner during the 3 weeks of the experiment (n = 15 in each group).

Data is expressed as mean ± SEM.

FIGURE 3 | Effects of GDNF isoform overexpression on dopaminergic markers in non-lesioned striatum 7 weeks after AAV-injection. (A) Experimental design. (B)

Optical density of striatal TH-immunoreactive fibers was significantly lower in both isoform treated groups compared to GFP [one-way ANOVA, F (2, 28) = 10.56,

p = 0.0004, followed by Bonferroni post-hoc test, ***p < 0.001, **p < 0.01 n = 10–11]. (C) Representative images of TH- (green), GFP-, (red) and GDNF- (red)

stained striatal sections from infrared analysis, arrows point to the injected side. (D) No significant changes in contralateral (left) paw touches were observed 3 or 7

weeks after injection of GDNF isoforms [one-way ANOVA F (2, 28) = 0.7678, p = 0.4736]. Data is expressed as mean ± SEM. (E) Animals treated with either α- or

β-GDNF isoform gained weight significantly less compared to GFP-treated animals, both 3 and 7 weeks after AAV-injections [two-way ANOVA treatment effect

F (2, 58) = 33.044, p < 0.0001; time effect F (1,58) = 5 2,966, p < 0.0001; treatment × time interaction F (2, 58) = 0.358, p = 0.701]. 3 week time point 1-way ANOVA

F (2, 29) = 13.040, p < 0.0001, Fisher’s LSD post-hoc test GFP vs. α-GDNF p < 0.001, GFP vs. β-GDNF vs. p = 0.001, and α-GDNF vs. β-GDNF p = 0.294. Seven

week time point one-way ANOVA F (2, 29) = 18.689, p < 0.0001, Fisher’s LSD post-hoc test GFP vs. α-GDNF p < 0.0001, GFP vs. β-GDNF vs. p = 0.0001, and

α-GDNF vs. β-GDNF p = 0.073, ***p < 0.001, n = 10 in each group.

Rotation Assay
In the neuroprotection experiment, the motor asymmetry was
also measured with the d-amphetamine-induced rotation assay.
The rotation assay was performed as previously described (26).
In brief, the rotational behavior was monitored for 120min
after administration of d-amphetamine sulfate (2.5 mg/kg, s.c.,
Sigma Aldrich, St. Louis, MO) in automated rotation bowls (Med

Associates, Inc., Fairfax, VT). Full 360◦ ipsilateral turns were
given positive value.

Tissue Processing and
Immunohistochemistry
Three or seven weeks (neuroprotection experiment) after the
virus injection, animals were anesthetized with pentobarbital
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FIGURE 4 | Neither GDNF isoform displayed neuroprotective effects in the rotational assay or the drug-free cylinder test. (A) Experimental design. (B) The rotational

behavior was at similar level in all treatment groups (n = 15–16). (C) α-GDNF increased the use of contralateral paw in the pre-lesion cylinder test on week three

[one-way ANOVA F (2, 43) = 4.492, p = 0.017, followed by Fisher’s LSD post-hoc test **p < 0.01, n = 15–16], but the effect was abolished after 6-OHDA

administration. (D) Both GDNF isoforms increased the exploratory activity of the animals before the lesion in the cylinder test [one-way ANOVA F (2, 43) = 3.871,

p = 0.028, followed by Fisher’s LSD post-hoc test *p < 0.05, n = 15–16 in each group]. Data is expressed as mean ± SEM.

(90 mg/kg, i.p., MebunatVet, Orion Pharma, Espoo, Finland)
and transcardially perfused with phosphate buffered saline (PBS)
and 4% paraformaldehyde (PFA) solution. Brains were removed
and post-fixed overnight in 4% PFA at +4◦C and transferred to
sucrose series of 20 and 30% sucrose.

The brains were cut in a freezing microtome in 40µm thick
sections in series of six. Free-floating sections were stained as
previously described (26). In brief, the sections were washed and
treated with 0.3% hydrogen peroxide solution. For DAT staining,
the sections were incubated in 10mM citrate buffer, pH 6.0,
at 80◦C for 30min. After incubation in the blocking solution
(4% bovine serum albumin and 0.1% Triton X-100 in PBS) the
sections were incubated with the primary antibody overnight at
+4◦C. Primary antibodies and the dilutions used in the studies
are designated in Table 1. Next, the sections were incubated with
biotinylated secondary antibodies (anti-rat, anti-mouse, or anti-
rabbit, Vector Laboratories, Burlingame, CA) and the staining
was reinforced with avidin-biotin-complex (Vector Laboratories,
Burlingame, CA) and visualized with 3′, 3′diaminobenzidine.
The stained sections were scanned with automated microscope
slide scanner (Pannoramic 250 Flash II, 3D Histech, Budapest,
Hungary).

To detect scAAV1 transduction pattern in the SN,
immunofluorescence staining was carried out for the sections.
The sections were incubated in the blocking solution (4%
bovine serum albumin and 0.1% Triton X-100 in PBS),
followed by incubation with primary antibody (anti-TH,
Table 1) overnight at +4◦C. After washing, the sections were
incubated with Alexa 568-conjugated goat-anti-mouse secondary

antibody (1:300, ThermoFisher Scientific, Waltham, MA) and
mounted on microscope slides. GFP signal was visible without
immunofluorescence staining.

For the confocal microscopy, the striatal sections were
incubated with blocking solution for 1 h followed by 1 h
incubation with the first primary antibody (ScgII, Table 1) at
RT. After this, the second primary antibody (anti-GDNF) was
added and the sections were incubated at +4◦C overnight.
The following day, sections were incubated with Alexa 488-
conjugated donkey-anti-mouse secondary antibody (1:500,
ThermoFisher Scientific, Waltham, MA) antibody for 15min
and then for 1 h after the addition of Alexa 568-conjugated
donkey-anti-goat secondary antibody (1:500, ThermoFisher
Scientific, Waltham, MA) at RT. Sections were mounted in PBS,
allowed to dry overnight, washed in ddH2O, allowed to dry
o/n and subsequently coverslipped using Vectashield HardSet
Antifade Mounting Medium with DAPI (H-1500; Vector Labs,
Burlingame, CA).

For infrared analysis, the sections were incubated with
blocking solution for 1 h followed by 1 h incubation with the
primary antibody for anti-TH at RT. After this, the second
primary antibody (anti-GFP or anti-GDNF, Table 1) was added
and the sections were incubated at +4◦C overnight. Next day,
sections were incubated in IRDye R© 800CW secondary antibody
for 15min and then for 1 h after the addition of the other
secondary antibody, anti-Goat or anti-Rabbit IRDye R© 680RD
(All secondary antibodies 1:2,000, LI-COR Biosciences, Lincoln,
NE) at RT. Before mounting, the sections were rinsed with
ddH2O for 5min at RT.
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TABLE 1 | Antibodies and their dilutions used in immunohistochemistry.

Antigen Host Producer Cat# RRID Dilution

Dopamine transporter (DAT) Rat Millipore MAB369 AB_2190413 1:2,000

Glial cell line-derived neurotrophic factor (GDNF) Goat R & D systems AF-212-NA AB_2111398 1:3,000a 1:1,000b

Green fluorescent protein (GFP) Rabbit Life technologies A11122 N/A 1:2,000

Tyrosine hydroxylase (TH) Mouse Millipore MAB318 AB_2201528 1:2,000

Secretogranin II Mouse Abcam ab20246 AB_445463 1:500

a In expression pattern studies.
bConfocal microscopy and infrared analysis.

Confocal Microscopy
Slides were imaged using a Leica TCS SP5 confocal microscope
(CLSM; Leica Microsystems, Buffalo Grove, IL) through a 63×
oil-immersion objective. The brightness/contrast of the image
taken with Laser-405 (DAPI) was adjusted by ImageJ for optimal
visual display.

Estimation of Optical Density of TH- and
DAT-Immunoreactive Fibers in the Striatum
The density of TH- and DAT-immunoreactivity was measured
from six adjacent sections with ImagePro software (Media
Cybernetics, Inc., Rockville, MD) by a blinded observer. Corpus
callosumwas used as a background to correct the values. The data
are presented as a percentage of the intact side.

In the infrared assay, the sections were scanned with Odyssey
Infrared Imaging System (LI-COR Biosciences, Lincoln, NE)
with 42-micron resolution. The TH optical densities from the
injected and non-injected (intact) side of four striatal sections
per animal were measured using the Odyssey Infrared Imaging
System software. Background optical density was measured
from the cortex or corpus callosum depending on the integrity
of the section. The density of TH-immunoreactive fibers was
assessed by subtracting the background intensity values and
normalizing the injected side to the optical density of the intact
side. The data are presented as a percentage of the intact
side.

Estimation of Number of
TH-Immunoreactive Cells in the SNpc
The number of TH-immunoreactive cells in the SNpc was
determined with Matlab (RRID: SCR_001622, MathWorks,
Kista, Sweden) as previously described (26) by a blinded observer.
Images taken with whole slide scanner (Pannoramic 250 Flash
II, 3D Histech, Budapest, Hungary, with 20x objective) from six
adjacent nigral sections were analyzed. The data are presented as
a percentage of the intact side.

Statistics
Results are given as mean ± SEM. Statistical analysis was
performed with SPSS (RRID: SCR_002865, IBM, Armonk, NY)
or Prism version 6.01 (GraphPad Software, Inc., La Jolla,
San Diego, CA). Differences between treatment groups were
assessed with one-way analysis of variance (ANOVA) or two-
way ANOVA and if significant, followed by Fisher’s Least
Significant Difference (LSD) or Bonferroni post-hoc analysis (7

week overexpression experiment). In cases of non-homogenous
variances (ELISA assay), Kruskal-Wallis analysis of variance
followed by Bonferroni corrected Mann-Whitney U post-hoc
was conducted. A difference was considered to be significant at
p ≤ 0.05.

RESULTS

Overexpression of GDNF in the
Non-lesioned Striatum
A scAAV-vector encoding pre-α-pro-GDNF (α-GDNF), pre-β-
pro-GDNF (β-GDNF), or green fluorescent protein (GFP, as a
control) was injected into three sites in the non-lesioned striatum.
The level of GDNF overexpression was determined with ELISA 3
weeks after the gene delivery. The infusion of scAAVs produced
a marked overexpression of GDNF in the striatum (Figure 2B).
The level of GDNF in the intact (contralateral) side was 40 ± 8
pg/mg tissue, in scAAV-GFP-treated side 15± 6 pg/mg tissue, in
scAAV-α-GDNF-treated side 1,906 ± 629 pg/mg tissue, and in
scAAV-β-GDNF-treated side 1,115 ± 402 pg/mg tissue (GFP vs.
α-GDNF p = 0.005, GFP vs. β-GDNF p = 0.017, and α-GDNF
vs. β-GDNF p= 0.465, Figure 2B).

Although the ELISA results showed robust GDNF
overexpression in the striatum, immunohistochemistry was
also applied to explore the protein distribution along the
nigrostriatal tract. Since GFP is retained inside the cells, it had
more restricted staining pattern in the striatum (Figure 2C).
In contrast, GDNF is a secretory protein (1) and the staining
pattern was widely spread, covering most of the striatum of
the injected side. Minimal immunoreactivity was observed
on the contralateral, non-injected side. To determine whether
scAAV1 transduces post-synaptic striatal neurons, pre-synaptic
dopamine neurons, or both we carried out immunofluorescence
staining for TH and compared it to GFP. GFP expression
in the SN reticulata was not in TH-immunoreactive fibers
or TH-immunoreactive cells of the SNpc (Figure 2D). This
staining pattern suggests that striatal delivery of scAAV1 does
not transduce nigrostriatal dopaminergic neurons, but nigral
gene expression is due to transduction of striatal medium spiny
projection neurons. In vitro β-GDNF has been shown to co-
localize mostly with the scgII signal in the cells, unlike α-GDNF
(17). In contrast, we found that overexpression with AAVs
under the CMV promoter in vivo both α-GDNF and β-GDNF
were found to be co-localized with the scgII-signal (Figure 2E).
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Moreover, both isoforms were ubiquitously expressed in cell
bodies, and no specific sub-localization patterns were observed.

Overexpression of GDNF Isoforms Do Not
Alter the Density of TH-Immunoreactive
Fibers but Increases the Density of
DAT-Immunoreactive Fibers in the
Non-lesioned Striatum 3 Weeks After
scAAV Delivery
Since GDNF has been shown to regulate the markers for
dopaminergic phenotype, we next studied the effects of α-GDNF
or β-GDNF overexpression on the dopaminergic markers TH
and dopamine transporter (DAT) in non-lesioned striatum 3
weeks after the scAAV administration. GDNF overexpression
did not alter the striatal TH optical density. Thus, the optical
densities of striatal TH-immunoreactive fibers were similar in
all treatment groups (Figures 2F,H). We divided sections into
three categories: rostral, central, and caudal, each containing
two adjacent sections, to analyze the TH optical density along
the rostrocaudal axis in the striatum. The density of TH-
immunoreactive fibers was at the same level in all three striatal
areas for all treatment groups (Figure 2G). In contrast, the
density of DAT-immunoreactive fibers was increased in α- and
in β-GDNF-treated animals compared to GFP-treated animals
(α-GDNF vs. GFP p<0.001 and β-GDNF vs. GFP p = 0.002,
Figures 2I,K). Furthermore, the effect of GDNF isoforms on
DAT-immunoreactive fiber density was increased in all sections
along the rostro-caudal axis in the striatum [two-way ANOVA
treatment effect F(2, 72) = 23.285, p < 0.0001; site effect
F(2, 72) = 0.490, p= 0.615; treatment× site effect F(4, 72) = 0.588,
p= 0.672, Figure 2J).

Overexpression of GDNF isoforms did not change the
behavior of the animals in the cylinder test. The vertical activity
of the animals remained on the same level 3 weeks after scAAV-
administration compared to baseline measured before the viral
vector delivery (Figure 2L). The use of the contralateral paw was
at similar level in all treatment groups both before viral vectors
were administered and 3 weeks later (Figure 2M). Furthermore,
animals gained weight comparably by the 3 week time point
(Figure 2N).

Overexpression of GDNF Isoforms
Decreases the Density of
TH-Immunoreactive Fibers in the
Non-lesioned Striatum 7 Weeks After Viral
Vector Delivery
The effect of GDNF isoform overexpression on striatal TH-
immunoreactivity was assessed also 7 weeks after viral vector
delivery (Figures 3A–C). At this time point, there was a
significant decrease in the density of TH-immunoreactive fibers
in the non-lesioned striata of both α-GDNF and β-GDNF-treated
animals (GFP vs. α-GDNF p = 0.0006 and GFP vs. β-GDNF
p = 0.0026). There was no statistically significant difference
between the GDNF isoform groups.

Unlike in the shorter (3 week) overexpression study, no
differences in the use of contralateral paw was observed 7 weeks
after injections in the cylinder test (Figure 3D). The use of the
contralateral paw was at a similar level in all treatment groups,
before viral vectors were administered, 3 weeks as well as 7 weeks
after AAV injections.

Interestingly, non-lesioned GDNF-treated animals
gained less weight than non-lesioned GFP-treated animals
(Figure 3E). Three weeks after viral vector administration
GFP-treated animals had gained weight 17 ± 1%, α-GDNF
9 ± 1% and β-GDNF 10 ± 1% compared to their initial
weight (GFP vs. α-GDNF p < 0.001, GFP vs. β-GDNF
vs. p = 0.001). Four weeks later, 7 weeks after the viral
vector delivery, GFP-treated animals had gained weight 28
± 1%, α-GDNF 16 ± 1%, and β-GDNF 19 ± 2% of their
initial weight (GFP vs. α-GDNF p < 0.0001, GFP vs. β-
GDNF vs. p = 0.0001, and α-GDNF vs. β-GDNF p = 0.073,
Figure 3E).

GDNF Splice Isoforms Protect
TH-Immunoreactive Cells in SNpc With no
Behavioral Correlates
The neuroprotective effects of GDNF splice isoforms were tested
in the 6-OHDA partial lesion model. scAAV encoding either α-
GDNF, β-GDNF, or GFP was administered into three sites in
the striatum, and 3 weeks later 6 µg of 6-OHDA was evenly
distributed (3 × 2 µg) to the same sites as the viral vector. The
effects were evaluated with the d-amphetamine-induced rotation
assay 5 and 7 weeks after scAAV-injection (2 and 4 weeks after
lesioning, respectively), as well as with the drug-free cylinder
test 3 and 7 weeks after scAAV-injection (before and 4 weeks
after lesioning, respectively, Figure 4A). Amphetamine-induced
rotational behavior was at similar level in all treatment groups
on week five and on week seven (Figure 4B). Two-way ANOVA
did not show significant effects in rotational behavior [treatment
effect F(2, 92) = 1.333, p = 0.269; time effect F(1, 92) = 1.270,
p= 0.263; treatment× time F(2, 92) = 0.020, p= 0.980].

In the pre-lesion cylinder test on week 3, α-GDNF-treated
animals showed increased use of contralateral (left) paw (GFP
vs α-GDNF p = 0.005, Figure 4C). 6-OHDA injection reduced
the use of the contralateral paw in all groups to the same level
[two-way ANOVA treatment effect F(2, 86) = 3.215, p = 0.045;
6-OHDA effect F(1, 86) = 41.803, p < 0.0001; treatment × 6-
OHDA interaction F(2, 86) = 0.545, p = 0.582). Even though
only α-GDNF showed an effect in the spontaneous use of
paws, both isoforms increased the exploratory activity of the
animals on week three, seen as an increase in the amount
of rearings (GFP vs α-GDNF p = 0.019 and GFP vs. β-
GDNF p = 0.024, Figure 4D). Four weeks after 6-OHDA
administration the exploratory activity was reduced to the same
level in all treatment groups [two-way ANOVA treatment effect
F(2, 86) = 3.406, p = 0.038; 6-OHDA effect F(1, 86) = 29.071, p
< 0.0001; treatment × 6-OHDA interaction F(2, 86) = 1.130,
p= 0.328].

The density of TH-immunoreactive fibers in the striatum
was at the same level in all treatment groups (Figures 5A,C)
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4 weeks after 6-OHDA administration. The density of TH-
immunoreactive fibers was similar over the whole striatum in
all groups (Figure 5B). The density of DAT-immunoreactive
fibers was increased in GDNF-treated groups, but the difference
did not reach statistical significance (Figures 5D–F). When
the striatal DAT-immunoreactivity was analyzed in more detail
throughout the striatum, two-way ANOVA revealed a significant
treatment effect [treatment effect F(2, 85) = 4.388, p = 0.015; site
effect F(2, 85) = 0.272, p = 0.762; treatment × site interaction
F(4, 85) = 0.130, p= 0.971; Figure 5E].

In the SNpc both GDNF isoforms protected and rescued TH-
immunoreactive cells (GFP vs. α-GDNF p = 0.001 and GFP
vs. β-GDNF p < 0.001, Figures 5G,I). The difference between
GDNF-treated animals and GFP-treated animals was consistent
in all three analyzed areas [two-way ANOVA treatment effect
F(2, 124) = 21.493, p< 0.001; site effect F(2, 124) = 0.388, p= 0.679;
treatment × site interaction F(4, 124) = 0.352, p = 0.842,
Figure 5H].

Striatal Overexpression of GDNF Isoforms
Induces Sprouting of TH- and
DAT-Immunoreactive Fibers in Globus
Pallidus
Administration of exogenous GDNF has been shown to induce
sprouting around the nigrostriatal pathway (29–32). In non-
lesioned animals, sprouting was not observed 3 weeks after
viral vector injection (Figure 6). Instead, the sprouting of TH-
and DAT-immunoreactive fibers in the globus pallidus (GP)
was detected 7 weeks after virus injection, 4 weeks after
6-OHDA injection, in both α- and β-GDNF-treated groups
(Figure 6). In contrast, 6-OHDA injection cleared the TH- and
DAT-immunoreactivity completely from the GP of GFP-treated
animals.

DISCUSSION

Until now, very little has been known about the biology of
the shorter β-GDNF isoform and its functions in the adult
mammalian brain. We compared the effects of full-length α-
GDNF and the shorter β-GDNF splice isoforms in non-lesioned
animals and in the partial 6-OHDA rat model of PD. Both
GDNF splice isoforms were overexpressed with their native
pre-pro-sequences (pre-α-pro-GDNF and pre-β-pro-GDNF) in
striatum using scAAV1 vectors. We found that in the non-
lesioned striatum, both isoforms increased the density of
DAT-immunoreactive fibers and decreased the density of TH-
immunoreactive fibers. In the neuroprotection assay, both α-
GDNF and β-GDNF overexpression increased the number of
TH-immunoreactive cells after 6-OHDA-induced degeneration.

GDNF is produced as a precursor protein, pre-pro-GDNF,
and proteolytically cleaved to mature GDNF in endoplasmic
reticulum and secretory vesicles (1, 17). Although the pro-region
is not necessarily needed for secretion of GDNF, it has been
suggested to have a role in the protein folding and secretion (18,
33). In addition, the full-length pro-region of α-GDNF contains
an 11 amino acids long peptide, dopamine neuron stimulating

peptide-11 or brain excitatory peptide (14, 34, 35), which has both
neurotrophic and neuroprotective properties in vitro and in vivo
(35). GDNF produced in mammalian cells has been shown to be
more stable than GDNF produced in E. coli (18), possibly due
to posttranslational modifications. These findings support the
consideration of pro-GDNF for future gene and protein-based
therapies using GDNF.

Administration of AAVs encoding the GDNF isoforms to
the striatum is in accordance with the target derived hypothesis
of neurotrophic factors. This paradigm is also warranted
by reports that the receptors for GDNF signaling, GFRα1
and Ret are expressed in the midbrain dopamine neurons
(36, 37). The exact mechanism of GDNF’s neuroprotective
effects remains unknown, but the striatal delivery of GDNF
might affect the neuronal targets of the nigrostriatal pathway,
inducing axonal sprouting and re-innervation (7, 30). This
results in functional recovery, despite only partially protecting
nigral TH-immunoreactive cell bodies. However, protection of
nigral TH-immunoreactive cells without beneficial effect on
behavior has been reported (38). On the other hand, nigral
administration of GDNF prior to 6-OHDA provides almost
complete protection of TH-immunoreactive cell bodies without
functional recovery (7, 30). This lack of functional recoverymight
be due to the lack of sufficient axonal growth response and
re-innervation of the lesioned striatum at the time of analysis
(6, 7, 30, 31). Recent work demonstrates the importance of
Ret in mediating neuroprotective and neurorestorative effects
of GDNF (39). In addition, although endogenous GDNF is
not required for survival midbrain dopamine neurons (40),
increasing concentrations of endogenous GDNF at its native
locus is neuroprotective (41).

In our experiments the striatal delivery of the GDNF gene
before 6-OHDA administration neither isoform was able to
attenuate the acute effects of striatal 6-OHDA but protected
the nigral TH-immunoreactive cells partially from degeneration.
The 6-OHDA lesion used in the experiment produced rather
severe, 67% loss of TH-immunoreactive cells in the SNpc
and 69% loss of TH-immunoreactive fibers in the striatum.
The robust lesion might partly explain the lack of behavioral
recovery, the level of GDNF overexpression wasn’t sufficient
to protect the nerve terminals from degeneration. In the
rotation assay, β-GDNF treatment showed a tendency for initial
protective effect 2 weeks after 6-OHDA lesion. Whether this
mild, albeit not significant effect was due to 6-OHDA and/or
amphetamine-induced secretion of β-GDNF, remains to be
elucidated. However, the lack of functional effects might also be
due to short follow-up period, 4 weeks after 6-OHDA injection,
since Kirik and colleagues (7) have shown the behavioral effects
to be detectable at earliest 7 weeks post-lesion in the cylinder and
rotation assays.

Previous studies have shown that long-term overexpression of
GDNF can cause changes in behavior and dopamine phenotype,
and long-term high-expression of GDNF may not provide
optimal neuroprotective effect (11, 42). In the pre-lesion cylinder
test, α-GDNF-treated animals used their contralateral paw more
compared to GFP- or β-GDNF-treated animals. Additionally,
both GDNF splice isoforms increased the activity of the animals
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FIGURE 5 | Immunohistochemistry revealed both isoforms to protect TH-immunoreactive cells in the SNpc. (A) Optical density of striatal TH-immunoreactive fibers

was decreased in all treatment groups 4 weeks after 6-OHDA administration (n = 14–15). (B) The density of TH-immunoreactive fibers was at the same level through

the whole rostro-caudal axis of striatum (n = 14–15). (C) Representative images of striatal TH-immunoreactivity. (D) Optical density of striatal DAT-immunoreactive

fibers [one-way ANOVA F (2, 29) = 1.815, p = 0.181, n = 10–11]. (E) Optical density of DAT-immunoreactive fibers was increased in GDNF-treated animals throughout

whole striatum [two-way ANOVA treatment effect p = 0.015, One-way ANOVA rostral F (2, 28) = 1.358, p = 0.274; central: F (2, 28) = 1.045, p = 0.375; caudal:

F (2, 29) = 2.343, p = 0.114, n = 10–11]. (F) Representative images of striatal DAT-immunoreactivity. (G) Both GDNF isoforms increased the number of

TH-immunoreactive cells in the SNpc [one-way ANOVA F (2, 42) = 8.828, p < 0.001, followed by Fisher’s LSD analysis, ***p < 0.001, n = 14–16]. (H) The effect was

consistent throughout the whole SNpc [One-way ANOVA rostral F (2, 42) = 6.004, p = 0.005, Fisher’s LSD post-hoc analysis α-GDNF vs. GFP p = 0.003 and β-GDNF

vs. GFP p = 0.008; central F (2, 41) = 8.784, p = 0.001, Fisher’s LSD post-hoc analysis α-GDNF vs. GFP p = 0.004 and β-GDNF vs. GFP p < 0.0001; caudal

F (2, 41) = 7.214, p = 0.002 Fisher’s LSD post-hoc analysis α-GDNF vs. GFP p = 0.001 and β-GDNF vs. GFP p = 0.004, **p < 0.01, ***p < 0.001, n = 14–16]. (I)

Representative images of TH-immunoreactivity in the SN. Scale bar 200µm. Data expressed as mean ± SEM.

in the pre-lesion cylinder test. This is in line with earlier studies,
where GDNF increased the locomotor activity of the animals
(7, 43, 44). Exogenous GDNF has been shown to initially increase
TH expression (43) and activity (7, 45), as well as the level
of dopamine (43, 44) and dopamine turnover (7, 43). On the
other hand, long-lasting overexpression of GDNF has been
documented to downregulate TH expression in both lesioned and
non-lesioned rat striatum (32, 46–49). Our observations are in
line with these previously published studies, as downregulation of
striatal TH was observed after 7 weeks of overexpression, but not
in earlier, 3 week time point. Time-dependent downregulation
and associated decrease in enzymatic activity can be due to
feedback regulation after long-term dopamine neuron activity
(49–51). Interestingly, overexpression of both α- and β-GDNF
increased the density of striatal DAT-immunoreactive fibers in
non-lesioned striatum after 3 weeks. While the long-term effects
of GDNF on striatal DAT expression are still unclear, there
seems to be dose-dependence, where lower doses of GDNF

do not affect DAT expression, but higher doses downregulate
DAT expression (52). Moreover, GDNF has been suggested to
regulate DAT activity by increasing dimerization and protein-
protein interactions (41, 51, 53). Downregulation of TH might
be a species-specific phenomenon, as it has not been detected in
non-human primates treated with viral vectors encoding GDNF
(10, 54–60). Instead, TH-immunoreactivity is increased in the
putamen of naïve non-human primates after GDNF-treatment
(54, 55, 58). Also, these changes on dopamine phenotypic
markers can be one explanation why we did not observe robust
neuroprotective effects on striatal fibers.

As reported here and previously by others (29–32, 61) striatal
administration induces loss of GP-passing fibers and striatal
administration of GDNF induces sprouting of dopaminergic
fibers in rostral GP and entopeduncular nucleus. In the rostral
GP TH-immunoreactive fibers can be roughly divided to two
different categories, thick and thin fibers. The thick fibers are
more likely to represent the dopaminergic projections from
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FIGURE 6 | Both GDNF isoforms induced sprouting of TH- and DAT-immunoreactive fibers in globus pallidus. Representative images from intact side, GFP, α-GDNF,

and β-GDNF treated animals. Scale bar is 500µm.

SNpc to striatum passing through GP and the thinner TH-
immunoreactive fibers direct dopamine afferent projections to
the GP (61, 62). Besides sprouting of TH-immunoreactive fibers,
we also observed sprouting of DAT-immunoreactive fibers in GP,
suggesting axonal sprouting toward the striatum. Whereas this
sprouting is considered to be a more beneficial phenomenon,
nigral administration of GDNF induces sprouting around SN
and along the nigrostriatal tract, which can be detrimental to
the animals and even mask the beneficial effects of GDNF (7,
31).

In addition to affecting the behavior and dopaminergic
phenotype, GDNF overexpression has been reported to induce
weight loss in rats (45, 63). Long-term overexpression of
GDNF isoforms in non-lesioned striatum slowed down the
weight gain of animals. Though in the initial 3 week
treatment we did not observe differences in the weight
gain, subsequent 7 week treatment experiment showed a
significant reduction in the weight gain for GDNF treated
group both at 3 and 7 weeks post-treatment. One possible
explanation for this is the difference in the initial weight of
the animals. The long-term overexpression experiment was
started with animals with average weight 321 g, whereas the
short-term experiment was started with animals weighing 281 g
on average. The conclusion from this experiment is that
there is no difference between the isoforms on the weight
gain.

The amounts of GDNF protein used in the clinical trials
have been suggested to be excessive (18). In our study, both
isoforms were overexpressed in a level comparable to previously
published in vivo studies using viral vectors (7, 32, 47). However,

the level of α-GDNF protein was higher than the level of β-
GDNF. A similar phenomenon was reported when the GDNF
splice variants were overexpressed in the brain using DNA
nanoparticles (64). Moreover, in human brain the expression
level of α-GDNF mRNA is higher compared to β-GDNF mRNA
(14).

Selection of the vector construct does not only affect the
expression level of the transgene, but also the localization
of the transgene expression. In contrast to differences in the
intracellular localization of the isoforms in vitro (17), in vivo
both isoforms seemed to co-localize with scgII-positive secretory
vesicles but were also present in the scgII-negative areas. This
discrepancy might be due to the used cytomegalovirus promoter
in the vector construct. A more specific promoter should be
chosen to mimic the endogenous expression and localization
patterns. Furthermore, the titer should be optimized to target
scgII-positive vesicles specifically and to avoid over-saturation
of the vesicles. In addition, to mimic the expression pattern of
endogenous GDNF in striatum, the expression should be targeted
to parvalbumin-positive interneurons (65).

To summarize, we compared the effects of the major GDNF
splice isoforms, α-GDNF and β-GDNF, in non-lesioned striatum
and in a partial 6-OHDA lesion model of PD. Studies with β-
GDNF are of interest, since many of the GDNF’s aforementioned
effects are suggested to be dose-dependent. The differentially
regulated secretion yet similar neuroprotective effects of β-GDNF
compared to α-GDNF make β-GDNF an interesting candidate
for PD therapy. Further studies are first needed to establish
optimal gene delivery and therapeutic efficacy of pre-pro-β-
GDNF.
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The functional organization of the dorsal striatum is complex, due to the diversity

of neural inputs that converge in this structure and its subdivision into direct

and indirect output pathways, striosomes and matrix compartments. Among the

neurotransmitters that regulate the activity of striatal projection neurons (SPNs), opioid

neuropeptides (enkephalin and dynorphin) play a neuromodulatory role in synaptic

transmission and plasticity and affect striatal-based behaviors in both normal brain

function and pathological states, including Parkinson’s disease (PD). We review recent

findings on the cell-type-specific effects of opioidergic neurotransmission in the dorsal

striatum, focusing on the maladaptive synaptic neuroadaptations that occur in PD and

levodopa-induced dyskinesia. Understanding the plethora of molecular and synaptic

mechanisms underpinning the opioid-mediated modulation of striatal circuits is critical

for the development of pharmacological treatments that can alleviate motor dysfunctions

and hyperkinetic responses to dopaminergic stimulant drugs.

Keywords: opioids, dopamine, striatum, Parkinson’s disease, signaling pathway, synaptic plasticity

INTRODUCTION

Opioidergic signaling is involved in several functional aspects of the peripheral and central
nervous system and due to the broad distribution of opioid receptors throughout the brain,
its activation modulates different neural circuits. Opiate drugs are widely used as analgesic to
induce antinociception and to treat pain disorders. However, edonic effects of opiates induce
addictive behaviors that entail the involvement of opioidergic system in reward processes (1, 2).
Opioid receptors and the endogenous opioid peptides Enkephalin (Enk) and Dynorphin (Dyn) are
expressed at striatal circuits, where the opioid system modulates the activity of spiny projection
neurons (SPNs) during movement control in both a healthy state and in motor disorders such
as Parkinson’s disease (PD). In PD, functional changes in striatal pathways are associated with a
reorganization of molecular and synaptic mechanisms that counteract the loss of dopaminergic
cells. However, aberrant neuroadaptations in the striatal circuit can be responsible for critical
aspects of PD, as observed in levodopa-induced dyskinesia (LID). It is still unclear what role
opioid transmission plays in striatal circuity and how this system affects neural reorganization,
both in PD and in response to dopaminergic treatment. Here, we review recent findings on
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the cell-type-specific effects of opioid transmission in the
dorsal striatum, including the signaling pathways, synaptic and
behavioral effects mediated by opioid ligands, as well as their
interactions with dopaminergic transmission in both a PD
state and in response to dopaminergic treatment with levodopa
(L-DOPA).

ANATOMY AND PHYSIOLOGY OF THE
BASAL GANGLIA

The basal ganglia (BG) comprise a distributed group of nuclei
that include the striatum, which is composed by the caudate
and putamen (CPu), the globus pallidus, with the pars externa
(GPe) and interna (GPi), the subthalamic nucleus (STN); and
the substantia nigra pars compacta (SNpc) and pars reticulata
(SNpr). The Striatum and the STN represent the main input
nuclei of the BG, while the GP and SNpr are the two output
structures projecting to the thalamus and brainstem (3–7). The
BG nuclei’s connectivity to cortical regions provides a complex
network of sensorimotor, limbic and associative information,
conferring on the BG a pivotal role in the control of movement
as well as in associative learning, emotion and reward-related
behavior (8).

Nearly 95% of the striatum is composed of striatal projection
neurons (SPNs), which are GABA (γ-aminobutyric acid)-
ergic neurons that relay inhibitory efferent transmission and
are rich in dopaminergic receptors (DR). These neurons are
classified in two subtypes based on their projection targets,
neuropeptides expression and DR subtypes (9). SPNs that
express the neuropeptide Dyn and bear D1 excitatory receptors
(D1Rs) (10) belong to what is termed the direct striatonigral
pathway (dSPNs), projecting directly to the GPi/SNpr. On the
other hand, SPNs expressing Enk and bearing D2 inhibitory
receptors (D2Rs) project to the GPi/SNpr indirectly through
the GPe, as part of the indirect striatopallidal pathway (iSPNs)
(9, 11). In a healthy state (see Figure 1A), the activation
of the direct pathway promotes movement execution by
reducing the neural firing of the GPi/SNpr to the thalamus
and boosting glutamatergic thalamocortical transmission. In
parallel, activation of the indirect pathway reduces movement
initiation, exciting GPi/SNpr transmission by inhibiting the GPe
and activating the STN, ultimately leading to the inhibition
of thalamocortical transmission (4, 12, 13). The concomitant
activation of both striatofugal pathways maintains a balance
between the direct and indirect pathways, activating specific and
voluntary actions through the direct pathway and inhibiting
involuntary movements through the indirect pathway (13, 14).

Excitatory corticostriatal transmission on SPNs is modulated
by dopaminergic input from the SNpc through “diffusion-
based volume transmission,” where dopamine (DA) diffuses away
from the synapse to reach extrasynaptic receptors and regulate
excitability of SPNs (15). However, sparse release sites defined as
active zone have been identified in the striatal DA axons to allow
for a fast DA release and to generate a localized DA signal (16).
Once released, DA exerts a dual effect on striatal neurons (17),
exciting the direct pathway by binding to D1Rs and inhibiting

the indirect pathway by binding to D2Rs. DA discharge from the
dopaminergic neurons of the SNpc is crucial for the initiation and
execution of motor sequences (14, 18).

THE OPIOIDERGIC SYSTEM: PEPTIDES
AND RECEPTORS

Enk, Dyn and β-endorphin belong to family of endogenous
peptides produced through the proteolytic cleavage of protein
precursors such as preproenkephalin-A (PPENK), which
forms six copies of methionine-Enk (Met-Enk) and one
copy of leucine-Enk; preproenkephalin-B (also known as
preprodynorphin), which produces Dyn and endorphin; and
finally, proopiomelanocortin, which produces β-endorphin. The
endogenous peptides have different degrees of selectivity for the
opioid receptors; Enk binds δ opioid receptors (DORs) and µ

opioid receptors (MORs), Dyn is selective for κ-opioid receptors
(KORs), and β-endorphin binds MORs (1).

Opioid receptors (ORs) are seven-transmembrane receptors
and belong to a superfamily of G protein-coupled receptors
(GPCRs) with inhibitory activity (Gαi/o) on cellular excitability
and synaptic transmission (1). OR activity promotes the
activation of G-protein-coupled inwardly rectifying K+ channels,
inhibits Ca+ channels and adenylyl cyclase (AC), and reduces
neurotransmitter release and neural activity (19, 20). ORs are
broadly distributed in the brain, with some structures exhibiting
higher expression of a specific type of receptor, while others have
three overlapping receptors that can interact locally with one
another in synergistic or antagonistic ways (21).

A broad distribution of MORs has been observed in the
thalamus, amygdala and locus coeruleus (1), and in the thalamic
afferents to the striatum (22). MOR expression has also been
observed in CPu striosomal compartments that project to
the SNpc (23) (Figure 2). Specifically, MORs are expressed in
striosomes both on dSPNs enriched in Dyn precursor and on
iSPNs (24), where they colocalize with D2Rs in dendrites (25).
MORs are also expressed on striatal cholinergic interneurons
(26, 27).

DORs are abundant in layers II, III, IV and V of the cerebral
cortex and in the striosomes and matrix compartments of the
CPu, with a higher dorsolateral distribution than ventromedial
(28). On a cellular level, DORs are expressed within the nucleus
and in the somatodendritic area on iSPNs, but not on dSPNs
(24, 29).

KORs are predominantly found in the medial sector of
the CPu and in the nucleus accumbens and showed a
higher coexpression with D1Rs (24). They are also localized
presynaptically in the nigrostriatal afferents of the SNpc.

OPIOID RECEPTOR SIGNALING

The activation of opioidergic GPCRs by endogenous opioid
peptides or exogenous agonists leads to the dissociation of
Gα/βγ subunits that stimulate various intracellular effectors.
The inhibitory activity of opioid receptors includes several
processes that are selectively initiated by the Gα and Gβγ protein
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FIGURE 1 | Basal ganglia motor loop in (A) normal, (B) PD, and (C) LID condition. The schematic represents the direct, indirect and hyperdirect pathways projecting

to the thalamus and spinal cord and the changes of expression of opiod peptides, Enk and Dyn. Red, blue and black lines indicate GABA-ergic, glutamatergic and

dopaminergic projections, respectively. Changes in the rate of neural transmission are indicated with thick (increased activity) and thin (decreased activity) lines.

Changes in the expression of Enk and Dyn are depicted in green (increased levels) and light green (decreased levels). The gray color of substantia nigra pars compact

(SNc) is representative of PD state due to the loss of dopaminergic cells.

FIGURE 2 | Representative cartoon of opioid receptors distribution and expression in striosomes and matrix compartments of the dorsal striatum. The drawing shows

the different input and output pathways related to the striosomes (red lines) and matrix compartments (green lines) and the changes in the expression levels of MOR

and DOR. GPe (globus pallidus pars externa) and STN (subthalamic nucleus) indicate the indirect pathway targets; SNr (substantia nigra pars reticulata) and GPi

(globus pallidus pars interna) indicate the direct pathway targets; SNc (substantia nigra pars compacta) is the target of the specific pathway arising from the striosomal

compartments.
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subunits. The Gα subunit inhibits AC by decreasing intracellular
cyclic adenosine monophosphate (cAMP) levels and activates the
inward-rectifier K+ channel, leading to the hyperpolarization of
the cellular membrane and the inhibition of neural activity (30).
The inhibition of AC and cAMP by the Gα subunit can also lead
to a reduction of Ca2+ conductance (31), although this reduction
is predominately induced by the direct binding of Gβγ subunit
to the channel, and the consequent decrease in neurotransmitter
release. Indeed, activation of KORs on the nigrostriatal afferents
of the SNpc reduces the release of DA and influences the kinetics
of the DA transporter (32, 33). Intrastriatal injection of a MOR
agonist alters extracellular DA levels in the shell and core of the
nucleus accumbens and in the rostral and caudal subregions of
the dorsal striatum, where the reduction is thought to be due
to presynaptic activation of MORs on DA terminals (34, 35).
Activation of MORs on striatal cholinergic interneurons reduces
Ach release and decreases cholinergic interneurons excitability
(26, 27).

Besides inhibiting the AC /cAMP, opioid receptors shape
several other cellular responses. The interaction with different
G proteins, β-arrestins or kinases, can promote the activation
of different effectors or signaling pathways (36), or prompt
the internalization and desensitization of receptor functional
activity (19, 37), with significant changes in behavior (38). The
direct activation of opioid receptors and the release of Gβγ

subunits can promote the activation of mitogen-activated protein
kinases (MAPKs) (19, 39). Notably, activation of MAPK can
be also mediated by binding of DA to D1R. In the dorsal
striatum of PD animal models, pulsatile replacement of DA,
for example by L-DOPA treatment, leads to an overstimulation
of the direct striatonigral pathway that promotes the activation
of MAPK and its downstream effectors, such as extracellular
signal-regulated kinases ERK1/2 or transcription factors (40–42).
Increased levels of phosphorylated ERK (p-ERK) or immediate
early genes are associated with aberrant cellular responses and
dysfunctional behaviors in PD and LID state (43–45). Therefore,
opioidergic and dopaminergic receptors could both activate
postsynaptic signaling cascades that converge to ultimately
promote an increase of proteins and transcriptional factors
that affect striatal-based behaviors. However, it is still unclear
whether alterations of the striatal motor function arise from a
synergic activity of the dopaminergic and opioidergic system or if
opioid transmission only modulates the molecular and synaptic
mechanisms mediated by dopaminergic transmission.

COMPARTMENT-SPECIFICITY
LOCALIZATION OF OPIOID RECEPTORS
IN THE DORSAL STRIATUM

Beyond the classical division of the striatum into the direct
and indirect pathways, this structure is also subdivided into
striosomes (defined as striatal bodies) and matrix compartments
(Figure 2), which are defined according to neurotransmitter
and receptor segregation, afferent and efferent connections (46),
signaling cascade activation (47) and neurophysiological features
(48). Striosomes represent about 10–15% of the dorsal striatum

and are mainly localized in the medial sector of the CPu (29, 49),
where they are characterized by acetylcholinesterase (AchE)-poor
zones and by immunoreactivity against Enk, substance P and
GABA (50). The matrix compartment comprises 85% of the
remaining striatum. It is rich in AchE, contains calcium-binding
proteins such as parvoalbumin and calbindin, and is directly
affiliated with the sensorimotor system (51). Both striosomes
and matrix contain dSPNs and iSPNs, although dSPNs are
more prevalent in the striosomal compartment and project
predominantly to dopaminergic neurons in the SNpc (50, 52).

The matrix and striosomal compartments also receive
inputs from different cortical areas; striosomes are related
to the limbic area, whereas the matrix is associated with
sensorimotor and associative areas (53) (see Figure 2). Overall,
this complex striatal subdivision, together with a discrete
distribution of neuromodulators between matrix and striosomes
compartments, reflects that SPNs functional activity might differ
in compartment-specific manner and affect different striatal-
based behaviors (54).

While dSPNs and iSPNs are broadly distributed in both
striosomes and matrix, opioid-mediated synaptic transmission
seems to segregate (46), perhaps due to the different distributions
of opioid receptors on dSPNs and iSPNs in these compartments.
For example, application of MOR and DOR agonists reduces
GABAergic synaptic responses in both dSPNs and iSPNs
predominantly in the striosomal compartment, but not in the
matrix (29, 48). Specifically, the binding of Enk to DORs
located on iSPNs collaterals that synapse on dSPNs, suppresses
the inhibition of dSPNs only in the striosomes, but not in
matrix, leading to strengthened striosomal dSPNs responses to
corticostriatal inputs (29). The behavioral implications of this
connectivity might be relevant in PD, where changes in the levels
of the endogenous opioid Enk might promote or reduce dSPNs
response to cortical inputs, thereby affecting the release of DA
through the striatonigral pathway (29).

OPIOID-MEDIATED
NEUROTRANSMISSION AND SYNAPTIC
PLASTICITY IN THE DORSAL STRIATUM

The first neurophysiological studies on the opioid-mediated
neurostransmission at striatal circuits investigated the role of
these neuropeptides in the modulation of glutamatergic inputs
mainly arising from the cortex. These studies showed that MOR
and DOR agonists inhibited glutamatergic inputs to the striatum
(55) and more specifically, selective MOR agonists reduced the
excitatory inputs at the corticostriatal level in both striosomes
andmatrix compartments (48, 56). In addition, the application of
exogenous MOR and DOR agonists or the release of endogenous
opioids induced long-term depression (LTD) on striatal SPNs in
both the DLS and the dorsomedial striatum (DMS). Specifically,
MOR activation inhibited thalamostriatal excitatory inputs,
whereas the activation of DOR inhibited corticostriatal inputs;
these results indicate the specificity of opioid-mediated synaptic
plasticity in the dorsal striatum (22). Interestingly, applying an
exogenous KOR agonist induced LTD more selectively in the
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TABLE 1 | Summary of opioid-mediated neurotransmission and synaptic plasticity

in the dorsal striatum.

Activation of

opioid recepetors

Distribution Signal

MOR Thalamostriatal afferents

Striosomal dSPN and iSPN

Cholinergic interneurons

↓EPSCs (22)

↓IPSCs (29, 48)

↓ACh release (26, 27)

DOR Nigrostriatal terminal

iSPN striosomal collaterals

Corticostriatal afferents

↓ DA release (34, 35)

↓ IPSCs (29)

↓ EPSCs (22)

KOR Presynaptic nigrostriatal

afferents

Striatal SPNs in DLS

↓ DA release (33)

LTP (57)

LTD (22)

According to the specific distribution of opioid receptors, changes in neurotransmitter

release or synaptic plasticity are observed in response to exogenous and endogenous

opioid agonists. ESPCs, excitatory postsynaptic currents; ISPCs, inhibitory postsynaptic

currents; Ach, acetylcholine; DA, dopamine; LTP, long term potentiation; LTD, long term

depression.

DLS than in the DMS, suggesting subregional specificity of KOR-
mediated synaptic plasticity (22) (Table 1). This subregional
difference between the DLS and DMS might be related to their
distinct functional roles in motor control. Behavioral studies
demonstrate that the DLS is more connected to the control
of body movements rather than to more general control of
locomotor activity (58, 59). In PD animals treated with L-DOPA,
higher levels of Dyn precursor (PDYN) mRNA, selective for
KOR binding, are expressed in the DLS than the DMS (60–62).
Moreover, higher PDYN mRNA expression in the lateral striatal
portion of the DA-denervated hemisphere correlates only with
the severity of dyskinesia, instead of with locomotor variables that
define animals’ spontaneous motion (60, 62).

Opioids have been shown to regulate striatal LTD (22). In
contrast, their effect on long-term potentiation (LTP) in the
dorsal striatum remains unexplored. Most of the studies that
have attempted to characterize the role of opioids in LTP have
examined different functional areas, such as the ventral tegmental
area (63), hippocampus or C-fiber of the spinal dorsal horn (64).
A recent study investigated the effect of KOR activation on LTP in
the corticostriatal pathway (57), and demonstrated that applying
Dyn reduced the release of DA, as expected by binding to KOR on
DA nigrostriatal terminals. Moreover, selective activation of the
D1R-SPNs that promote the co-release of Dyn also led to impared
corticostriatal LTP, likely due to the KOR-mediated reduction in
DA release from the nigrostriatal pathway (57) (Table 1).

OPIOID NEURONTRANSMISSION IN
PARKINSON’S DISEASE AND
LEVODOPA-INDUCED DYSKINESIA

The broad distribution of opioid receptors in the striatum and
their interplay with dopaminergic transmission point at critical
role for opioidergic neuropeptides in modulating striatal activity
andmotor control, in particular, both in healthy and pathological
states, such as in PD. This is a progressive neurodegenerative
disorder characterized by the loss of dopaminergic cells in the

SNpc, which results in motor deficits (i.e., bradykinesia, rest
tremor, rigidity, and postural and gait impairment) (65, 66).
PD patients develop these symptoms only after a significant
depletion of striatal DA– by 60 to 80% (67) – likely because of
compensatory DA production by surviving neurons or unknown
compensatory mechanisms within or outside of the BG (68).
Furthermore, the loss of dopaminergic neurons in the SNpc
results in a functional imbalance in the two major output
pathways of the striatum: hypoactivity in the direct circuit and
hyperactivity in the indirect circuit. This imbalance leads to an
overstimulation of the GPi/SNpr which decreases thalamic input
to motor cortical areas, resulting in reduced movement and
classical Parkinson’s symptoms (Figure 1B).

Various animalmodels of PD are used to better understand the
disease’s pathophysiology, but none of them fully exhibit all PD
symptoms, nor do they develop a neurodegenerative state similar
to that in PD patients. For this reason, the most suitable animal
model depends on the scientific question being investigated (69).
Parkinsonian motor deficits due to DA depletion or DA neuronal
death are usually recreated in animals through the injection of
selective neurotoxins such as 6-hydroxydopamine (6-OHDA) in
rat and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)
in mouse or primate, while specific molecular events and protein
aggregation are investigated using genetic models of PD-related
mutations (70).

PD symptoms can be alleviated with dopaminergic treatments
that aim to replace the DA deficiency in the nigrostriatal pathway.
No curative treatments exist for PD patients, and currently
available therapies are symptomatic. To date, L-DOPA remains
the most effective drug for exogenous dopaminergic replacement
and for counteracting PD symptoms. However, as the disease
progresses and dosages of L-DOPA increase, many patients
develop disabling complications, including severe fluctuations in
motor function (on-off phenomena) and abnormal involuntary
movements called L-DOPA-induced dyskinesia (LID) (71,
72). The pathophysiology of LID has been associated with
aberrant activation of the direct striatal pathway and with
increased levels of the endogenous opioid neuropeptides Enk
and Dyn (Figure 1C). It is still unclear whether opioid
transmission can affect the neural reorganization of striatal
pathways, and if changes in opioid expression might have a
compensatory or synergistic effect on striatal-based behaviors in
PD and LID.

OPIOID PEPTIDE EXPRESSION IN PD AND
LID

Several studies have been conducted in animal models to
investigate changes in the expression of endogenous opioids in
the dorsal striatum and their association with motor impairment
and dyskinetic movements. Indeed, DA and its binding to D1Rs
and D2Rs can modulate the striatal levels of mRNA expression
of Dyn and Enk neuropeptide precursors (PDYN and PPENK).
Changes in PDYN and PPENKmRNA levels have been observed
in PD, where DA transmission is lost, and in LID, during the
exogenous replacement of DA (Figure 1).
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In the striatum of 6-OHDA andMPTP animal models (60, 62,
73, 74), as well as in PD patients (75), the levels of PPENKmRNA
expression are increased, irrespective of L-DOPA treatment.
The levels of PPENK mRNA remain highly expressed in PD
animals also given chronic L-DOPA treatment (76) as well as
in PD patients affected by dyskinesia (77), suggesting persistent
adaptive changes in the Enk peptide (78).

In contrast, nigrostriatal DA denervation leads to a reduction
in the levels of PDYN mRNA (60, 62, 79, 80) that increase
under L-DOPA therapy compared to untreated or non-dyskinetic
states, consistently across different study models (62, 76, 78, 81).
These observations suggest that the expression of opioidergic
neuropeptides involved in the modulation of BG output is strictly
regulated by striatal DA levels, likely also through the activation
of postsynaptic transcription factors that ultimately can promote
the expression of multiple genes, including those for opioidergic
peptides.

In addition, in dyskinetic PD rat model, high levels of
both PPENK and PDYN are overall correlated with L-DOPA-
induced locomotor alterations. While there is a more specific
association between high levels of PDYN mRNA and dyskinetic
movements (60), on the other hand, high expression of PPENK
mRNA is also correlated with locomotor hyperactivity, beyond
dyskinesia (62). These observations suggest that Enk and Dyn
might play different roles in striatal-based behavioral effects and
in locomotor alterations in response to dopaminergic treatment.

OPIOID RECEPTOR EXPRESSION IN PD
AND LID

Along with different levels of opioidergic peptides expression,
alterations in the levels of opioidergic receptor immunoreactivity
have been observed in both PD patients and animal models.
Piccini et al. (82) found reduced opioid receptor binding in
the caudate of PD patients, and in the putamen and thalamus
of dyskinetic PD patients compared to non-dyskinetic. Similar
observations have been described in animal studies, although
some differences were found across the various models.

Striatal levels of MOR binding and µ-immunoreactivity were
reduced in PD rats (83) and in MPTP-lesioned macaques
treated with L-DOPA (80), as well as in PD patients undergoing
chronic L-DOPA therapy (84). Lower levels of DOR binding are
expressed in the GP and striatal areas of 6-OHDA dyskinetic
rats, while an increase of δ-immunoreactivity occurs in the
motor and premotor cortex (83) (Figure 2). Consistent with
these results, PD patients treated with L-DOPA have reduced
levels of DOR binding compared with control patients (84). KOR
binding levels are decreased in the striatal areas of dyskinetic
PD rats and in the GP of PD rats with and without LID (83);
low κ-immunoreactivity is observed only in the GP structure of
MPTP-denervated macaques with and without dyskinesia (80).

Even though the exposure to L-DOPA treatment in PD
animals and PD patients leads to a reduction in opioid receptor
binding levels, Chen and colleagues (85) assessed G protein-
coupled receptor signaling as a marker of MOR, DOR and KOR
activity in MPTP-lesioned non-human primates. Interestingly,

TABLE 2 | Summary of opioidergic drugs used as pharmacological intervention to

counteract parkinsonian symptoms and dyskinetic movements in PD animal

model.

Opioidergic

drugs

Opioid receptor

targets

Function Effect

Cyprodine

ADL5510

MOR Antagonist ↓ LID (86, 87)

Naltrindole DOR Antagonist ↓ LID (86, 88)

Akinesia (89)

SNC-80 DOR Agonist ↑ Kinesia in PD state

(90–92)

nor-BNI KOR Antagonist No effect on LID (86)

U50,488 KOR Agonist ↓ LID (93)

↑ Akinesia

Nalbuphine KOR-MOR Agonist-

antagonist

↓ LID (94)

Naloxone KOR-MOR-DOR Antagonist ↓ LID (95, 96)

nor-BNI, nor-binaltorphimine; LID, levodopa-induced dyskinesia; PD, Parkinson disease.

they found a hyperactive transduction signal mediated by all
three opioid receptors in the striatum. This suggests that in the
parkinsonian state under L-DOPA treatment, although the levels
of receptor binding can be decreased, the response to activation
of opioid receptors is in fact enhanced.

PHARMACOLOGICAL IMPLICATIONS OF
OPIOIDS IN MOTOR FUNCTION

Elucidating the role of opioidergic transmission in the molecular
mechanisms that control motor function is complex, not only
due to the striatum’s neural heterogeneity, but also because of the
broad distribution of opioid receptors throughout the brain. The
activation of opioid-mediated postsynaptic signaling cascades
likely depends on several factors, including opioid agonists and
their response to ORs, the type of ORs activated, and whether
receptor stimulation is acute or chronic. Systemic administration
of opioidergic drugs might affect different neural circuits
and modulate behavioral aspects beyond locomotor activity.
Therefore, pharmacological approaches used to distinguish the
neural pathways in the control and alteration of movement
should be considered critically.

Considering the enhanced expression of endogenous opioid
peptides in the striatum of PD animal models and in PD patients,
selective agonists and antagonists to ORs have been used to
counteract akinesia in PD and to reduce the development of
dyskinesia in response to L-DOPA treatment (Table 2). MOR
antagonists (cyprodine and ADL5510) alleviated LID in MPTP-
lesioned non-human primates without interfering with the
antiparkinsonian effects of L-DOPA (86, 87). A selective DOR
antagonist (naltrindole) has a similar effect, reducing dyskinetic
movements in MPTP-lesioned marmoset and 6-OHDA rats
treated with L-DOPA (86, 88), although there is an akinetic effect
on motor activity in a PD model without DA treatment (89). A
selective DOR agonist (SNC-80) increased locomotor activity in
naive and PD animals, but its potential therapeutic applications
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are limited by its convulsive effects (90–92). In contrast, a κ-
receptor antagonist (norBNI) did not induce any anti-dyskinetic
effect in MPTP-lesioned macaques (86); yet a selective κ-receptor
agonist (U50, 488) reduced LID in PD rats and monkeys, but
impaired the anti-parkinsonian effects of L-DOPA treatment
(93). In line with these effects, the synthetic opioid analgesic
nalbuphine, acting as both a KOR agonist and aMOR antagonist,
reduced LID in a non-human primatemodel of PD and decreased
the levels of specific molecular markers associated with the
development of dyskinesia (94). Also noteworthy is the effect
of the non-selective antagonist naloxone, which reduced LID
in 6-OHDA rats (95, 96), although results in MPTP-lesioned
macaques and PD patients were inconclusive (97, 98).

The literature makes it clear that different pharmacological
responses are expected across animal models and in human
patients, likely due to the greater neural organization and
connectivity in primates and humans. The lost of DA in PD
and its exogenous replacement by L-DOPA lead to changes in
the expression of opioid peptides and receptor immunoreactivity
that reflect a strong interaction between dopaminergic and
opioidergic systems in the BG motor circuit. However, it is
still debated whether changes in the opioid transmission occur
to compensate for DA denervation and L-DOPA treatment, or
whether these changes interact with the molecular and synaptic
mechanisms associated with altered neural responses in motor
diseases.

CONCLUDING REMARKS

The recent advances in understanding the striatal functionality
highlight the strong impact of opioidergic transmission to
modulate synaptic plasticity and cellular responses of the SPNs.
The studies here reviewed, demonstrate that opioid receptors
have a regional (ventral vs. dorsal striatum), compartmental
(striosomes vs. matrix) and cellular (dSPNs vs. iSPNs) specificity
that affects the striatal activity in response to different inputs.
Such specificity reflects the complexity of striatal organization

and the efforts to find selective opioidergic treatments that
can modulate specific neural pathways. Although the literature

points out the inhibitory effect of opioid agonists on synaptic
transmission and neurotransmitters release, it is still debated
how opioid receptors interact with dopaminergic receptors and
whether they share commonmechanisms to activate postsynaptic
signaling cascades and downstream effectors. The interaction
between opioidergic and dopaminergic pathways becomes
crucial in PD and LID where the high levels of endogenous
opioids occurs in parallel with aberrant dopaminergic
transmission, and are associated with alterated striatal-based
behaviors. Since the broad distribution of opioid receptors
throughout the brain, pharmacological approaches should aim
to selectively target defined receptor subtypes, in a cell-type- and
input-specific manner. The use of chemogenetic or optogenetic
approaches are therefore crucial to dissect opioidergic
neurotransmission within the striatum and its interaction
with dopaminergic system. This would be instrumental to
develop specific pharmacological treatments able to restore
maladaptive changes without interfering with other neuronal
pathways.
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The motor thalamus (MTh) and the nucleus reticularis thalami (NRT) have been

largely neglected in Parkinson’s disease (PD) research, despite their key role as

interface between basal ganglia (BG) and cortex (Cx). In the present study, we

investigated the oscillatory activity within the Cx, MTh, and NRT, in normal and

different dopamine (DA)-deficient states. We performed our experiments in both acute

and chronic DA-denervated rats by injecting into the medial forebrain bundle (MFB)

tetrodotoxin (TTX) or 6-hydroxydopamine (6-OHDA), respectively. Interestingly, almost

all the electroencephalogram (EEG) frequency bands changed in acute and/or chronic

DA depletion, suggesting alteration of all oscillatory activities and not of a specific band.

Overall, δ (2–4Hz) and θ (4–8Hz) band decreased in NRT and Cx in acute and chronic

state, whilst, α (8–13Hz) band decreased in acute and chronic states in the MTh and

NRT but not in the Cx. The β (13–40Hz) and γ (60–90Hz) bands were enhanced

in the Cx. In the NRT the β bands decreased, except for high-β (Hβ, 25–30Hz) that

increased in acute state. In the MTh, Lβ and Hβ decreased in acute DA depletion state

and γ decreased in both TTX and 6-OHDA-treated animals. These results confirm that

abnormal cortical β band are present in the established DA deficiency and it might be

considered a hallmark of PD. The abnormal oscillatory activity in frequency interval of

other bands, in particular the dampening of low frequencies in thalamic stations, in

both states of DA depletion might also underlie PD motor and non-motor symptoms.

Our data highlighted the effects of acute depletion of DA and the strict interplay in the

oscillatory activity between the MTh and NRT in both acute and chronic stage of DA

depletion. Moreover, our findings emphasize early alterations in the NRT, a crucial station

for thalamic information processing.

Keywords: motor thalamus, nucleus reticularis thalami, 6-hydroxydopamine, tetrodotoxin, Parkinson’s disease,

neuronal oscillations
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INTRODUCTION

Recent evidence has suggested that abnormal oscillatory activity
at specific frequencies within basal ganglia (BG) and cortex (Cx)
represents a hallmark of Parkinson’s disease (PD) (1–10). This
abnormal oscillatory activity may reflect dysfunctions of cortico-
BG-thalamo-cortical loop linked to Parkinsonian symptoms in
both PD patients and/or animal models of this disease (8–11) and
its recognition could provide possible biomarkers for the disease
state.

Brain oscillatory activities are classically segmented into
different frequency band intervals, i.e., 2–4Hz (delta, δ), 4–8Hz
(theta, θ), 8–13Hz (alpha, α), 13–40Hz (beta, β), and 60–90Hz
(gamma, γ). Each band is associated with one or more specific
physiological behavior and differently contribute to information
processing (12). β oscillations are involved in motor control and
are greatly enhanced at different sites within the BG circuit in
both PD patients and animal models of PD (9, 11, 13, 14). In
addition, elevated β band synchronization could be considered
as an expression of bradykinesia (13, 15). As proof of its strong
association with motor signs in PD, β activity is reduced by
dopaminergic therapies (15, 16). Recent evidence (17) supports
the idea of functional subdivision of this band in low-β (Lβ,
15–20Hz) and high-β (Hβ, 25–30Hz). Lβ in the subthalamic
nucleus (STN) is tightly associated with Parkinsonian symptoms
in patients that do not receive medications, whereas Hβ reflects
the degree of coupling between cortical and STN activity (18, 19).
Nevertheless, the exact role of Lβ and Hβ band in PD remains an
unsolved question.

Opposite to β, γ band is supposed to be associated to
dyskinesia (20) and more generally to modulation of movements
(20). In particular, γ band is involved in voluntary movements
(21, 22), but also in motor imagery (23), as well as in planning of
movements (24).

In addition, γ band has also been related to sensory and
cognitive processing (25), attention, long-term memory and
language tasks (26, 27). In PD patients, a γ decrease has been
shown during anti-Parkinsonian therapies (15, 28). In line, deep
brain stimulation (DBS) of STN at γ frequencies facilitates
movements (29) and it is powerfully expressed in both Cx and
globus pallidus (GP) in levodopa-induced dyskinesia (LID) in 6-
hydroxydopamine (6-OHDA)-lesioned rats (20, 30). Concerning
STN DBS, a correlation between frequency of stimulation and
improvement of symptoms has been recently shown (31). For
example, during 5Hz DBS, a worsening of bradykinesia has
been shown, while both bradykinesia and tremor showed no
improvement at frequencies below 50Hz (32).

The θ band has been described in frontal and central cortical
regions (33), as implicated in several functions different from
the control of voluntary movements, such as sensory processing
and memory in healthy people (34). The θ band increased in PD
patients, selectively during a motor task (35), as well as in PD
patients experiencing freezing of gait (36).

The δ band is instead associated with sleep functions (37) as
well as with cognitive processes (38).

It has been shown the association between δ band disruption
with PD (39–41). For instance, the administration of the

Delta Sleep-inducing peptide into the SNc induces Parkinsonian
syndrome in rat (42).

Moreover, Parker and colleagues (43) showed that δ

expression on medial frontal cortex (MFC) is associated with
cognitive dysfunctions in both PD patients and animal models
and DA depletion in the MFC. In addition, sleep disturbances are
common symptoms in PD (44) and often they arise before the
onset of motor symptoms (45). Although, the DAergic treatment
seems have no effect of sleep functions (41, 46), some might have
positive effects on sleep quality (47).

Finally, α frequency, according to the inhibition-timing
hypothesis (48), is negatively correlated with cortical excitability
and its enhancement prevents task-irrelevant interference (49).
The thalamic- and cortical-generated α activity has a role in
attentive tasks in physiological conditions (50–52) and it is
modulated by visual task performance in occipital lobe (53). In
addition, α oscillation is modulated by visual stimuli (54), even if
they are sub- and supraliminal stimuli (55). In line, correlation
between the phase of α oscillatory activity and the saccadic
reaction time in cognitive task responses has been reported (56).
It has been hypothesized that changes in α band expressionmight
underlie some cognitive and attentive difficulties observed in PD
patients (57). Within the BG circuit, the sensory-motor thalamus
(MTh) has critical role in motor information processing (58), but
contrasting data exist concerning its neuronal activity in PD (59).
According to the searchlight hypothesis, the nucleus reticularis
thalami (NRT) has a fundamental role as the guardian of the
thalamus, contributing to the encoding of thalamic information
(60–68). In particular, the sensorimotorMTh is modulated by the
NRT motor sector.

In spite of its importance, the oscillatory activity across
multiple frequency bands within the MTh and the NRT is
a neglected area in PD studies. Therefore, we monitored the
electrocorticogram (ECoG) and the local field potentials (LFPs)
of the MTh and the NRT in two dopamine (DA) depletion states
in a PD animal model. We first performed our recordings in
the standardized Parkinsonian animal model obtained with the
injection of 6-OHDA, capable of causing a chronic DA depletion.

Additionally, since it has been shown that some PD
symptoms, such as bradykinesia, are already associated with
acute DA depletion state induced by tetrodotoxin (TTX), we
performed a similar study in animal with acute DA depletion
induced by TTX (69–74).

We hypothesized that the oscillatory activity within MTh-
NRT might be different in acute DA depletion state from that
recorded in chronic 6-OHDA-lesioned rats, due to the presence
of adaptive mechanisms.

METHODS

Ethical Approval
All experimental electrophysiological and histological
procedures were carried out in compliance with Switzerland
laws on animal experimentation and approved by the Animal
Research Committee and the Veterinary Office of the Canton
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of Ticino, Switzerland (TI-08-2015). We analyzed 42 adult male
Sprague Dawley rats weighing∼300 g.

Pre-recording Surgery
Rats were anesthetized with urethane (1.4 g/kg, i.p.) (Sigma
Chemical Co., St Louis, MO, USA) and mounted on a stereotaxic
instrument (Stoelting Co., Wheat Lane, Wood Dale, IL, USA),
maintaining the body temperature at 37–38◦C with a heating
pad (Stoelting Co., Wheat Lane, Wood Dale, IL, USA) placed
beneath the animal. A midline scalp incision was made, the skull
was drilled on the left side and the dura was then spread out to
expose the cortical surface. All wound margins were infiltrated
with a local anesthetic (lidocaine 0.5%). All electrophysiological
recordings were performed in three categories of animals: in
normal rats, in 6-OHDA-lesioned rats and in acutely DA-
depleted animals (see Table 1).

Unilateral 6-OHDA Lesioning
Chronic DA depletion was induced by performing a unilateral
6-OHDA denervation in the left hemisphere with standard
technique (75, 76). The animals were anesthetized with 1.5–
2.5% isoflurane in oxygen, mounted on a stereotaxic instrument
(Stoelting Co., Wheat Lane, Wood Dale, IL, USA) for the
injection of the neurotoxin (8 µg/4 µl of saline solution
containing 0.1% of ascorbic acid) in the medial forebrain bundle
(MFB; stereotaxic coordinates: 2.56mm posterior to the bregma,
2mm lateral to the midline, and 8.6mm below the cortical
surface). The electrophysiological recordings were performed
21–29 days after the surgery.

Pharmacological Blockade of the Medial
Forebrain Bundle
The pharmacological blockade of the MFB was performed
according to previous publications (55–57). TTX was injected
via inverse microdialysis by using a probe with 1mm dialytic
membrane (CMA/11 microdialysis probe, CMA Microdialysis,
Stockholm, Sweden). TTX was perfused by using a syringe pump
(CMA/400, CMA Microdialysis, Stockholm, Sweden) with a rate
flow of 1 µl/min, for 10min.

Electrophysiological Recordings
The ECoG was recorded through a screw electrode (Dentorama,
Stockholm, Sweden, 8mm of total length, 3mm tip lenght)
placed on the cortical surface above the right frontal Cx (3.0mm
anterior of bregma and 2.0mm lateral to the midline) and

TABLE 1 | Animals utilized in the study.

Animal groups for electrophysiology Sacrificed Analyzed

CTL rats 10 6

TTX-treated rats 34 27

6-OHDA-lesioned rats 15 9

Total 59 42

CTL, control; TTX, tetrodotoxin; 6-OHDA, 6-hydroxydopamine.

referenced against an indifferent screw electrode placed above
cerebellum. Raw ECoG was band-pass filtered (0.1–300Hz) and
amplified (×2000; Neurolog). The ECoG was on-line digitalized
with a sample rate of 600Hz through an analogical/digital
interface (Micro1401 mk II, Cambridge Electronic Design,
Cambridge, UK) and stored on a computer for the subsequent
inspection. During cortical recordings, we collected LFPs from
the left MTh or the NRT (from 1.2mm to 1.8 posterior of bregma
and from 2 to 2.6mm lateral to the midline). The recordings
were performed using tungsten electrodes (Word Precision
Instrument, USA, TM33B01). At the end of the recordings, the
animals were sacrificed. The recordings were carried out 21–29
days after the administration of 6-OHDA, while in TTX-treated
animals, after TTX infusion.

LFP and ECoG Analysis
The local field potentials were analyzed by Spike2 script
(SUDSA22) to calculate the total power of δ band (δ, 2–4Hz),
θ band (θ, 4–8Hz), α band (α, 8–13Hz), low-β band (Lβ, 13–
25Hz), high-β band (Hβ, 25–40Hz), and γ band (γ, 60–90Hz)
in the Cx, MTh, and NRT of control (CTL), acute and chronic
DA-depleted rats. The analysis was performed with raw data
in the first 6min of recording using the fast Fourier transform
(FFT) analysis (4096 points). Figure 1 represents an example of
recording, with smoothing signal.

Statistical Analysis
For the comparison of total power of analyzed bands, among CTL
vs. TTX and 6-OHDAwe performed the non-parametric Kruskal
Wallis test followed byMannWhitney U test for the comparisons
CTL vs. TTX, CTL vs. 6-OHDA, and TTX vs. 6-OHDA. For each
statistical analysis a value of p < 0.05, corrected per number
of comparisons (n = 3), therefore p = 0.016, was considered
statistically significant. For each condition, we calculated the
mean of each of the 6min and then compared the 6min among
conditions in the MTh and the NRT. The cortical bands were
calculated as ECoG recorded during MTh and during NRT
neurons. Therefore, the comparisons were made on the mean of
6min (n = 6) for each structures. The results are expressed as
mean± SEM. For exact p value, please refer to Results section.

The ECoG and the LFP from the MTh and NRT was divided
into the six different frequency bands. The total power of
each band was calculated and compared among CTL, acute,
and chronic DA depletion states (Supplementary Tables 1–3).
Then the percentage of change in comparison to CTL was
calculated for each band in the Cx, the MTh and the NRT
(Supplementary Tables 4A–C).

We recorded from a total of 59 rats (CTL n= 10, TTX-treated
n= 34, and 6-OHDA-denervated rats n= 15) and analyzed from
a total of 42 animals (CTL n = 6; TTX-treated n = 27 and 6-
OHDA-denervated rats n= 9). In detail, in CTL rats we analyzed
a total of 7 LFP recordings from the NRT and 15 LFP recordings
from theMTh, recorded parallel to EEG (total of n= 22); in TTX-
treated rats we analyzed 11 LFP recordings from the NRT and 16
LFP recordings from the MTh, recorded parallel to EEG (total of
n= 27); in 6-OHDA rats we analyzed 5 LFP recordings from the
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FIGURE 1 | Example of recordings, from the ECoG trace, the MTh and the NRT in control condition. The raw data was processing with smoothing.

NRT and 15 LFP recordings from the MTh, recorded parallel to
EEG (n= 20).

RESULTS

Overall, after DA depletion the magnitude of changes of
oscillatory activity in all analyzed frequency ranges within the
NRT was more marked than that within the MTh and the Cx.
Figure 1 shows an example of recordings in control condition in
the Cx, the MTh and the NRT.

Effects of DA-Depletion on Cortical
Oscillatory Activities
The cortical activity changed after both chronic and acute
DA depletion, with exception of α band (CTL: 0.0065 ±

0.0004; acute state: 0.0069 ± 0.00047; chronic state: 0.0064 ±

0.0003).
The δ band decreased of 20.5% in chronic DA depletion

state (δ: 0.0439 ± 0.0009 in CTL, 0.026 ± 0.0052 in acute
state and 0.0349 ± 0.0011 in chronic state; CTL vs. acute state
p= 0.021, CTL vs. chronic state p= 0.000, acute vs. chronic state
p= 1).

The θ band decreased in acute (32.3%) and chronic (17.2%)
DA depletion states (θ: 0.0254 ± 0.0005 in CTL, 0.017 ± 0.002
in acute state, and 0.021 ± 0.0006 in chronic state; CTL vs. acute
state p= 0.000, CTL vs. chronic state p= 0.000, acute vs. chronic
state p= 0.299).

The Lβ, Hβ, and γ band frequencies increased in both acute
and chronic DA depletion state (Lβ: 0.0049 ± 0.0003 in CTL,
0.0066 ± 0.0001 in acute state and 0.0077 ± 0.00007 in chronic

state; CTL vs. acute state p = 0.000, CTL vs. chronic state
p= 0.000. acute vs. chronic state p= 0.000. Hβ: 0.0024± 0.0002
in CTL, 0.0038 ± 0.00018 in acute state and 0.00398 ± 0.00009
in chronic state; CTL vs. acute state p = 0.000, CTL vs. chronic
state p = 0.000, acute vs. chronic state p = 0.686. γ: 0.0004 ±

0.00002 in CTL, 0.0052 ± 0.00024 in acute state and 0.0014 ±

0.00004 in chronic state; CTL vs. acute state p = 0.000, CTL
vs. chronic state p = 0.000, acute vs. chronic state p = 0.000).
The Lβ increased by 34.9 and 55.6% in acute and chronic DA
depletion state, respectively, the Hβ increased by 62% in acute
state and of 67.9% in chronic DA depletion state, whilst the γ

band increased by 1258.4% and of 261.6% in chronic state, in
acute and chronic depletion states, respectively (Figures 2A, 3A;
Supplementary Tables 1A,B, 4A).

These results underlid that the cortical oscillatory activity in
low frequencies range seems to be negatively affected by DA-
depletion states, with exception of α band, that instead did not
change in any conditions. On the contrary, the DA-depletion
states tend to increase the oscillations in high frequencies
ranges (Lβ, Hβ, and γ band). In addition, the results show
that the cortical activity seems to be affected not just in
chronic DAergic denervation but also in acute state, induced
by TTX.

Effects of DA-Depletion on MTh Oscillatory
Activities
In the MTh (Supplementary Tables 2A,B; Figures 2B, 3B),
the acute and chronic DA depletion affected differently the
oscillatory activity. In particular, the δ (0.0745 ± 0.0024 in
CTL, 0.0601 ± 0.0027 in acute state and 0.062 ± 0.0047
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FIGURE 2 | δ (delta), θ (theta), and α (alpha) bands of the cortex (Cx), the MTh and the NRT (from top), in control, acute (TTX-infused rats) and

chronic (6-OHDA-denervated rats) DA-depletion states. *p < 0.016, Mann Whitney Test.

in chronic state) did not change in DA depletion states in
comparison to CTL. The θ and α bands decreased in acute
state (θ: 0.0315 ± 0.0007 in CTL, 0.0235 ± 0.0005 in acute
state and 0.0262 ± 0.0017 in chronic state; CTL vs. acute state
p = 0.004, CTL vs. chronic state p = 0.037, acute vs. chronic
state p = 0.337. α: 0.0094 ± 0.0003 in CTL, 0.0064 ± 0.0003
in acute state and 0.0081 ± 0.0004 in chronic state; CTL vs.
acute state p = 0.004, CTL vs. chronic state p = 0.025, acute
vs. chronic state p = 0.01). In particular, θ band decreased
of 25.5% in acute state, whilst α band decreased of 31.7% in
acute state (Supplementary Table 4B). Similarly, the Lβ and Hβ

bands decreased just in acute DA depletion of 34.6 and 35.7%,
respectively (Supplementary Table 4B), respectively (Lβ: 0.0052
± 0.0002 in CTL, 0.0034 ± 0.00009 in acute state and 0.0053 ±

0.0002 in chronic state; CTL vs. acute state p = 0.004, CTL vs.
chronic state p = 1, acute vs. chronic state p = 0.004. Hβ: 0.0019
± 0.00004 in CTL, 0.0012 ± 0.00003 in acute state and 0.0019 ±
0.00004 in chronic state, CTL vs. acute state p = 0.004, CTL vs.
chronic state p= 0.262, acute vs. chronic state p= 0.004).

The γB decreased in both acute and chronic DA depletion
state of 71.8 and 30.8%, respectively (0.0011 ± 0.00004 in CTL,
0.0003 ± 0.00002 in acute state and 0.0008 ± 0.00001 in chronic
state; CTL vs. acute state p = 0.004, CTL vs. chronic state
p= 0.004, acute vs. chronic state p= 0.004).

Interestingly, these results show that the MTh oscillatory
activity is strongly and mainly affected by acute DA depletion
state. Indeed, TTX, but not 6-OHDA, with exception of δ and
γ bands, induced the decrease of all analyzed bands.

Frontiers in Neurology | www.frontiersin.org August 2018 | Volume 9 | Article 663129

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Grandi et al. Dopamine Change Cortical and Thalamic Oscillations

FIGURE 3 | Lβ (low beta), Hβ (high beta) and γ (gamma) bands of the cortex (Cx), the MTh and the NRT (from top), in control, acute (TTX-infused rats) and chronic

(6-OHDA-denervated rats) DA-depletion states. *p < 0.016, Mann Whitney test.

Effects of DA-Depletion on the NRT
Oscillatory Activities
In the NRT (Supplementary Tables 3A,B; Figures 2C, 3C), the
acute and chronic DA depletion states changed all the analyzed
bands. In particular, δ (0.0806 ± 0.005 in CTL, 0.0010 ± 0.00007
in acute state and 0.0408± 0.0032 in chronic state, CTL vs. acute
state p= 0.004, CTL vs. chronic state p= 0.004, acute vs. chronic
state p = 0.004), θ (0.0347 ± 0.0018 in CTL, 0.002 ± 0.0002 in
acute state and 0.0163 ± 0.0013 in chronic state, CTL vs. acute
state p= 0.004, CTL vs. chronic state p= 0.004, acute vs. chronic
state p = 0.004), α (0.013 ± 0.0008 in CTL, 0.002 ± 0.0001 in
acute state and 0.0063 ± 0.0005 in chronic state, CTL vs. acute
state p= 0.004, CTL vs. chronic state p= 0.004, acute vs. chronic
state p= 0.004) and Lβ (0.0101± 0.0007 in CTL, 0.0073± 0.0001

in acute state and 0.0074± 0.0001 in chronic state, CTL vs. acute

state p= 0.004, CTL vs. chronic state p= 0.004, acute vs. chronic
state p = 0.522) bands decreased in both acute and chronic DA
depletion state. Hβ (0.0032± 0.00005 in CTL, 0.0083± 0.0003 in
acute state and 0.0022± 0.000043 in chronic state, CTL vs. acute
state p= 0.004, CTL vs. chronic state p= 0.004, acute vs. chronic

state p= 0.004) and γ (0.0014± 0.00003 in CTL, 0.059± 0.0017
in acute state and 0.00097 ± 0.00003 in chronic state, CTL vs.

acute state p = 0.004, CTL vs. chronic state p = 0.004, acute vs.
chronic state p= 0.004) increased in acute state and decreased in
chronic state.

The δ, θ, α, and Lβ bands decreased by 98.8, 94.3, 83.4, and
27.8% in acute state, respectively, and by 49.4, 53, 51.4, and
27.2% in chronic state. The Hβ and γ bands increased by 154.8
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and 4055.1% in acute state and decreased by 32.1 and 31.6% in
chronic state (Supplementary Table 4C).

The results show that the NRT is strongly affected by both
acute and chronic DA depletion states, differently from MTh.
Indeed, the δ, θ, α, and Lβ bands, decreased in both DA depletion
states. Interestingly, in the high frequencies range (Hβ and γ

bands), the activity increased in acute DA depletion state and
instead decreased in chronic state.

DISCUSSION

Compelling evidence shows that abnormal oscillatory activity
within the Cx and BG circuit mainly in the β range, but not only,
contributes to motor impairments in PD (13). On the other hand,
the effects of DA depletion in crucial structures of the cortico-
subcortical loop such as the MTh and its principal modulator,
i.e., the NRT have been poorly investigated. In order to shedmore
light on this important field, we investigated band oscillations in
the cortical and subcortical MTh-NRT loop in rats in both acute
and chronic DA-depleted states.

Cortical and NRT δ Band Is Affected by
Acute and Chronic DA Depletion
In line with the observation of a δ decrease in cognitively normal
PD patients (39), we found a reduction of δ wave power at
cortical level in chronic DA-depleted state. In addition, we found
that δ wave also decrease after early acute DA-depletion NRT.
The δ band is associated with sleep modulation and disruption
of this activity reflect sleep-disorders (77). Interestingly, one
of the most common symptom in early stage of PD concerns
sleep deficits (44). In addition, frequencies around δ power
intervals are associated with PD tremor and are detected in the
STN in decision conflict situations (78). Our results showed a
decrement of oscillations in δ frequency in both thalamic nuclei
and Cx.

Cortical and Thalamic θ Band Decreases in
Both Acute and Chronic Depletion State
Contrary to previous reports (79, 80), we observed a decrease
of θ activity in both acute and chronic DA-depleted states in
the three investigated areas. In the NRT we found an increase
in chronic DA depletion state in comparison to acute state,
without nevertheless reach the baseline level. Cavanagh and
colleagues demonstrated that in PD patients the θ power in the
MPC and the STN is associated with decision conflict situations
and that STN-DBS alters this coupling (78). Therefore, θ power
increases in frontal Cx, associated with PD in a specific task
conditions, while it decreases in our anesthetized PD animal
model.

Thalamic α Band Decreases in Acute and
Chronic DA Depletion States
According to previous report, decrease of cortical α power
correlates with dementia (57). Whilst we failed to find any
changes in cortical α band, it decreased in the MTh and the NRT.
In particular, NRT-α power decreased in both acute and chronic

DA depletion in comparison to control, whereas in the MTh it
decreased just in acute state. The power of α frequency was higher
in chronic than acute DA depletion conditions. Consistently, the
thalamus is supposed to be the α band rhythms generator (79), as
postulated by the inhibition-timing hypothesis of α oscillations
(48, 81).

Cortical β Bands Increase in DA Depletion
State, Whilst It Decreases in MTh in Acute
State
The β band is one of the most studied oscillatory activity critically
involved in PD (8, 11, 13, 82). In physiological conditions it
is suppressed by motions (83), whilst its impairment leads to
deficits in complex sensorimotor processes such as repetitive
movements (84, 85) and it is pathophysiological relevant to
bradykinesia (10, 15). More precisely, it has been reported a
correlation between rigidity and bradykinesia and the β band
(86). Moreover, Lβ band (12–30Hz) shows a decrease in power
in response to dopaminergic treatment (87). Hβ power in STN
is enhanced in patients with freezing of gait in comparison to
patients without this common PD characteristic (88). In addition,
the Lβ band is prominent in inattentive state, whilst it has been
observed a shift to Hβ band during walking in the substantia
nigra pars reticulata (SNr) of chronically 6-OHDA-denervated
rats (17).

Here, we found an increment of cortical Lβ and Hβ band in
both acute and chronic DA depletion state. Compared to the Cx,
the thalamic β activity is differently affected by DA depletion. In
MTh, β band power is decreased in acute state. In NRT, the Lβ
band is decreased in both acute and chronic state, whilst the Hβ

band is increased in acute state.
In addition, our results support the idea that β band has

cortical and not thalamic origins (89). In particular, we observed
that the cortical β band increased in both acute and chronic
DA depletion states whilst MTh and NRT bands are differently
modulated. The MTh Lβ and Hβ decreased just in acute state,
whilst NRT Hβ increased in acute state and decreased in chronic
state. The NRT Lβ decreased instead in both acute and chronic
DA depletion states. Interestingly, in chronic state the β band in
the MTh did not change in comparison to control and this may
be due to the fact theMTh is affected by opposite influence by the
Cx and the NRT.

γ Band Is Affected by Both Acute and
Chronic DA Depletion
As it has been previously reported (90, 91), TTX-treated and
6-OHDA-lesioned rats showed an increment of the oscillatory
activity in the Cx in the γ frequency. Similarly, NRT activity
increased, whilst MTh γ activity is decreased. This increase of
cortical and NRT γ band could be considered as a basis for
developing of dyskinesia during levo-dihydroxyphenylalanine
(L-DOPA) treatment. The cortical γ activity is coupled with
thalamic α oscillations (92). We found that cortical γ and
thalamic α bands showed opposite behaviors, indeed the DA
depletion states determined the increment of cortical γ power
and decrement of the thalamic α band.
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CONCLUSION

Taking together, the evidence from literature and the present
results reveal an evident complex oscillatory pattern of neuronal
activity in PD, at the level of different nuclei of BG-thalamic-
cortical network. Furthering our understanding of these aberrant
oscillations will likely contribute to the advance of early diagnosis
based on non-invasive investigation of brain activity.

Our results support the idea that there is not a unique band
responsible of the PD pathological mechanisms, instead all bands
could contribute to the pathological complexity of the oscillatory
activity. Importantly, since the chronic DA depletion state did
not drastically affect the thalamic oscillatory activity, our data
raise the possibility that some aspects of these oscillatory activity
in PD may be promoted by the acute DA loss (69, 70, 93), and
the involvement of the NRT. The injection of TTX in MFB is
accompanied by increase of cortical β and γ bands, as typically
recorded in chronic DA denervation and in PD patients (13, 15,
20). The MTh oscillations change occurs preferentially in acute
DA depletion state, while not in chronic state due to the fact
that it may be compensated by the NRT activity. In the acute
DA depletion state, the changes in different BG circuit sites, such
as SN and GP (69, 70, 93) might instead result in the observed
changes of thalamic activity.

This result could be considered an important starting point
in order to shed some light on the role of the NRT, a structure
usually neglected in PD pathophysiology, in a hypothetical
widely Cx-BG network. Therefore, the thalamic information is
processed in the NRT, and may enhance or suppress thalamic
responsiveness, depending on the relative timing of afferent
inputs and NRT activation (94). The NRT is implicated in a
variety of functions, such as motor, arousal, sleep modulation,
sensory, and associative stimuli coding (95), and each NRT
sector encodes the relative specific information. Nevertheless,
since it is a small and deep brain structure, it is difficult to
investigate it in vivo, and elucidate its specific role in modulating
larger-scale brain activity. Early models of the NRT functions
posit that thalamocortical and NRT neurons are reciprocally
innervated (96), determining the oscillatory phenomena (97, 98).
However, computational models support the idea that an open-
loop could explain the thalamic-NRT circuit. Accordingly, low-
threshold bursting in an open-loop circuit could be consider
a mechanism by which the NRT may paradoxically enhance
thalamocortical activation, depending on the relative timing of
the NRT and thalamocortical neurons (95). This dynamic NRT-
thalamic-cortical loop could explain the hypothetical role of the
NRT for thalamocortical modulation (95).

In pathological conditions, the strong changes of the NRT
oscillatory activities in acute DA depletion state could explain
the absence of acute cortical and the thalamic change and the
later cortical and thalamic changes in chronic DA deficiency
condition.

Our results are in line with the evidence of a strong influence
of the NRT in cortical and thalamic firing mode modulation in
physiological and pathological conditions involving dysfunctions
of acetylcholine, nicotine and DA systems (99). Overall, the
strong impairments of the NRT oscillatory activity in all analyzed
frequencies in both acute and chronic DA depletion states may
suggest a possible critical role of the NRT in both PD motor and
non-motor symptoms, in early and late stages.

Our study has some caveats. Firstly, we have to consider that
findings in PD animal models cannot totally be translated to
human disease state. Moreover, we have to consider that (i) the
dopaminergic depletion is not the unique feature of PD; (ii)
the 6-OHDA lesion does not reflect totally the PD symptoms,
and (iii) the electrophysiological recordings were performed
under urethane anesthesia, rending impossible to explore if
oscillatory activity depends on the motions and/or cognitive
tasks, impaired in PD. In spite of these limitations, we think
that our results represent an important starting point in order
to better understand the changes of thalamo-cortical oscillations
induced by dopaminergic denervation in PD.
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39. Emek-Savaş DD, Özmüş G, Güntekin B, Çolakoglu BD, Çakmur R,
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Tau protein—a member of the microtubule-associated protein family—is a key protein

involved in many neurodegenerative diseases. Tau pathology in neurodegenerative

diseases is characterized by pathological tau aggregation in neurofibrillary tangles (NFTs).

Diseases with this typical pathological feature are called tauopathies. Parkinson’s disease

(PD) was not initially considered to be a typical tauopathy. However, recent studies have

demonstrated increasing evidence of tau pathology in PD. A genome-wide association

(GWA) study indicated a potential association between tauopathy and sporadic PD. The

aggregation and deposition of tau were also observed in ∼50% of PD brains, and it

seems to be transported from neuron to neuron. The aggregation of NFTs, the abnormal

hyperphosphorylation of tau protein, and the interaction between tau and alpha-synuclein

may all contribute to the cell death and poor axonal transport observed in PD and

Parkinsonism.

Keywords: tauopathy, Parkinson’s disease (PD), hyperphosphorylation, alpha-synuclien, tau protein

INTRODUCTION

Tau protein is produced from a single human gene named microtubule-associated protein tau
(MAPT), which is located on chromosome 17 and encodes a cytoskeletal protein that stabilizes
microtubules (1). Although tau is widely distributed in neurons of the central nervous system
(CNS), its levels in CNS astrocytes and oligodendrocytes are low (2). Tau proteins play a role
in stabilizing microtubules, binding to membrane, and regulating axonal transport (3–5). Under
physiological conditions, tau is highly soluble and unfolded. However, with changes in isoforms
or phosphorylation patterns in pathological states, tau proteins become insoluble and misfolded,
causing damage to neurons and axonal transport (6, 7). Protein misfolding, accumulation, and
aggregation have been observed in many neurodegenerative diseases (8), which may contribute to
neuron damage and neurological disorders. The pathological aggregation of tau or neurofibrillary
tangles are known as tauopathy, an important hallmark of many human neurodegenerative disease,
such as Alzheimer’s disease (AD) and Parkinson’s disease (PD) (9, 10).

Parkinson’s disease, named after Dr. James Parkinson, is a major neurodegenerative disease that
primarily affects motor systems but can also be accompanied by cognitive and behavioral problems
(11). There is a widespread neuron degeneration in PD brains, affecting up to 70% of dopaminergic
neurons in the substantia nigra (SN) by the time of death (12, 13). The neuropathological hallmarks
of PD include Lewy bodies (LBs) in the SN, brainstem, and rostral and forebrain regions and the
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selective deletion of dopaminergic neurons in the SN (14, 15).
Cell-death induced damage in SN may be the source of patient
movement disorders. Although the causes of this cell death are
generally unclear, researchers have observed an enrichment of tau
protein and alpha-synuclein in neuronal Lewy bodies, which may
be related to tauopathy in PD (16). Immunohistochemistry with
anti-tau antibodies showed high level of NFTs in the substantia
nigra from post-mortem human brain tissue (17). Researchers
have also reported that tauopathies in PD and PD with dementia
(PDD) were only observed in DA neurons of the nigrostriatal
region, which contrasts with the wide-spread expression pattern
of tau throughout the entire brain in AD (18).

Although tau pathology in AD and other tau-associated
neurodegenerative diseases have been previously described, the
importance of tau pathology in PD has been undervalued.
Therefore, we reviewed the tau pathologies that might be
involved in PD (Figure 1), seeking to identify tau as a potential
therapeutic target.

ASSEMBLED TAU IN PD

Structure of Normal TAU
There are six different isoforms of tau protein in the human
brain, with the differences among them resulting from alternative
mRNA splicing of a single gene located on chromosome 17
(19). The microtubule-binding domains of the protein consist
of adjoining sequence and repeat sequences. The six isoforms
are divided into two categories based on the number of these
repeats, namely, 3R and 4R. The 3R tau isoform has three
repeats, while 4R tau has four repeats (20). Each of the repeats
is able to bind to microtubules, and the more repeats the
protein has, the stronger affinity it will have with them (21).
Therefore, when compared with 3R tau, 4R tau is considerably
easier to bundle with and polymerize microtubules. In different
tauopathies, the pathological tau protein has different isoforms
and conformations. Progressive supranuclear palsy (PSP) and
corticobasal degeneration (CBD) are both associated with
Parkinson’s disease and are associated with 4R tau deposits in
neurons andmicroglia (22). A study of amultigenerational family
suffering from X-linked parkinsonian syndrome also showed a
strong 4R tauopathy in the striatum (23).

Assembled TAU in PD and Other
Neurodegenerative Diseases
Tau protein is soluble and unfolded under physiological
conditions; however, in many neurodegenerative diseases,
tau appears to be insoluble and assembled (24). The most
probable mechanism of tau assembly involves mutations of
the microtubule-associated protein tau (MAPT). MAPT is a
single gene located on chromosome 17q21, containing 16 exons
(25). A genome-wide association (GWA) study for sporadic
PD cases in Europe confirmed that MAPT is closely linked
to sporadic PD (26). MAPT is divided into two haplogroups
called H1 and H2 based on whether the gene is in the inverted
orientation (27). A meta-analysis in Caucasian populations
reported that the H2 haplotype is more relevant to PD than
the H1 haplotype, as the risk of suffering from PD is lower

in Caucasians with the H2 haplotype (28). Certain FTDP-
17 mutations, including missense mutations, deletions in the
coding region, and intronic mutations, result in tau aggregation.
This aggregation can cause dominantly inherited frontotemporal
dementia and Parkinsonism linked to chromosome 17 (29). Most
missense mutations in the coding region tend to affect how well
tau can associate with microtubules (30). However, studies also
show that some missense mutations such as G272V, P301L, and
P301S may play an important role in filament assembly because
they markedly facilitated the propensity for tau to assemble (31).
If the mutation is in the repeat region or if changes in the relative
amounts of 3R tau or 4R tau could lead to overproduction of
4R tau, the filament morphology tends to be incorrectly over-
folded (32). Tau deposition and assembled filaments are observed
in many neurodegenerative diseases and are considered a typical
neuropathological hallmark. Significantly lower levels of soluble
tau and a lower 3R-tau to 4R-tau ratio has been shown in the SN
of patients with PD (33), indicating tauopathy similarity between
PD and AD. PSP and CBD are subtypes of Parkinson’s disease
known as Parkinson-plus syndromes, and both are associated
with the formation of tau deposits. Filamentous tau deposits can
be observed in neurons and microglia in these diseases (34).

Prion-Like Pathological TAU Spreading in
Animal Models and Patients With PD
Increasing evidence shows that tau aggregation and deposition
contribute to PD pathology. Thus, to best understand the
mechanisms underlying PD pathogenesis, early diagnosis, and
treatment, determining how tau aggregation spreads to other
areas is imperative. Researchers have observed Lewy bodies in
grafted neurons that patients with PD received as transplants
(35). The assumption was that neurofibrillary lesions spread
along the neuronal pathways in the brain. Recent evidence
shows that misfolded tau can move from cell to cell, similar to
prion disease (36). Clavaguera and other researchers inserted a
mutant human tau transgene into mice to show that human
tau can be transported from neuron to neuron (37). Another
study has shown that the spreading of the tau inclusions
depended on the initial injection site of synthetic tau fibrils.
The pathological tau were more likely to spread through
functionally connected neuroanatomical pathways rather than
through adjacent anatomical locations (38).

After showing prion-like transmission and spreading of
tauopathy by injecting pathological tau from the human brain
into transgenic ALZ17 mice, researchers assessed the role
that different tau strains play in this pathological process. By
separately injecting human brain homogenates from patients
who suffered from argyrophilic grain disease (AGD), PSP, and
CBD into different ALZ17 mice, researchers demonstrated that
the different tau isoforms may induce different tauopathies.
Mice receiving CBD or AGD tau differentially displayed silver-
positive or silver-negative astrocytic plaques that matched the
injection patterns and that were highly similar to the types of
tau-related pathological damage typically found in the brains of
patients suffering from the respective diseases (39). Furthermore,
12 months after injecting ALZ17 mice with brain homogenate
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FIGURE 1 | Tauopathy in PD. Tau proteins are integrated with microtubules and stabilize microtubules in physiological condition. However, when tau proteins are

hyperphosphorylated, they begin to disintegrate from microtubules, causing neuronal dysfunction. Hyperphosphorylated tau proteins prone to assemble together to

form oligomers and develop into filamentous neurofibrillary tangles (NFTs). Hyperphosphorylated tau proteins also interact with α-synuclein to promote aggregation

and fibrilization each other, and subsequently cause the formation of lewy bodies and axonal transport dysfunction.

from mice that had been injected with the human tau P301S
transgene 18 months earlier, the ALZ17 mice showed fewer tau
inclusions than those of mice that had been injected with AGD
brain extracts (40). Similar phenomena were observed in mice
injected with filament 4R-tau strains formed in HEK293T cells
(41). Further, in patients with PD who received cell-replacement
therapy to repair brain damage, hyperphosphorylated tau such
as phospho-tau Ser202 and Thr205 were found in grafted
neurons years after transplantation (42). Taken together, these
findings demonstrate tau strain-specific prion-like transmission
and spreading in the disease state, including in PD. Additionally,
the specific strain plays an important role in causing distinct
pathologies.

Abnormal Hyperphosphorylation of the
TAU Protein
Hyperphosphorylation of the tau protein is another mechanism
through which tau might accumulate and form filaments,
which might also influence the ability of tau to bind to
microtubules, possibly limiting how microtubules can be
combined and resulting in their aggregation into NFTs (43).
In this way, the microtubules might disintegrate, eventually
leading to the impaired transport capacity of axon microtubules.
Tau protein appears to be easily phosphorylated because of
its 85 potential phosphorylation sites, and researchers have
characterized over 20 kinases that may be related to the
phosphorylation of tau protein after its transcription (44).
With respect to the healthy human brain, there are only two

or three phosphorylated amino acid residues in tau protein,
while there may be considerably more in brains exhibiting
tauopathy (45). Additional research indicates that the most
likely mechanism underlying the hyperphosphorylation is either
upregulated protein-kinase activity or downregulated protein-
phosphatase activity (46). Among protein kinases, GSK-3β (a
proline-directed protein kinases) and CDK5 (a non-PDPK non-
proline-directed protein kinase) are probably the two most
important kinases in tauopathy. Using neuronal stem/progenitor
cells and transgenic mice, researchers have demonstrated a
pivotal role for GSK-3β in the interaction between DA neurons
and astrocytes during damage and recovery (47), which might be
related to the death of DA neurons in PD. Further, the application
of CDK5 in cortex suffering from Lewy body disease was reported
in 2000, indicating that CDK5 may participate in the formation
of Lewy bodies (48). In contrast, unlike GSK-3β and CDK5, a
series of protein phosphatases (PP-2A, PP-2B, and PP-1) can
dephosphorylate protein tau in vitro and in vivo, which may act
to protect against tauopathy (49). Reduced activity levels of PP-
2A in the brains of patients with PD and AD indirectly confirmed
this inference (50, 51).

Hyperphosphorylation of tau protein is an important step
in tau aggregation and the formation of neurofibrillary tangles
(52). Antibodies targeting p-taus were able to detect tau isoforms
in brain tissue suffering from sporadic PD or dementia with
Lewy bodies, indicating the existence of hyperphosphorylated
tau protein in NFTs (53). Tau aggregation more easily begins
from the C-terminus of the protein (54). Therefore, kinases
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that phosphorylate at the C-terminus might be crucial for
the formation of tau filaments and aggregates. For example,
an in vitro study indicated that the GSK-3β associated with
the phosphorylation of tau at the C-terminal had an ability
to promote the fibrillation of the protein, while the level of
microtubule assembly stayed low due to DYRK1A (55). A study
on the structure and dynamics of phosphorylated tau filaments
using computer simulations indicated that the all the masses
and charges had changed because of phosphorylation at regions
associated with microtubules, resulting in further aggregation of
tau (56).

Phosphorylated tau is also proved to be related to the N-
methyl-D-aspartic receptor (NMDAR) at postsynaptic sites (57),
which suggests that the toxic pathology of tau phosphorylation
is associated with the synapse. Meanwhile, the FTDP-17
tau mutant, which is known to be associated with PDD,
was shown to interfere with synaptic vesicles in presynaptic
terminals, causing the dysfunction of vesicle traffic and
presynaptic activity (58). There are also a number of studies
showing that the hyperphosphorylation of tau protein may
depolymerize microtubules, causing their dysfunction, impaired
axonal transport, and ultimately cell death (59). Okadaic acid,
an inhibitor of tau phosphorylation, was used to investigate the
synaptic structure of neurons in rats (60). This study highlights
the potential relationship between phosphorylated tau and the
loss of synaptic function. Similar results have been shown in
animal models. Transgenic mice expressing human tau P301L
show Parkinsonism as early as 6.5 months (61), while a similar
phenotype occurs in the K3 mouse model that expresses human
tau with the K396I mutation. In this latter case, Parkinsonism
symptoms can be improved using L-dopa (62).

P-TAU Associated With Alpha-Synuclein
Leads to Toxic Injury in PD
One of the key proteins involved in PD pathology is alpha-
synuclein, a highly soluble neuronal cytoplasmic protein that is
localized to presynaptic elements in the CNS (63). Under certain
conditions, such as missense mutations, post-translational
modifications (e.g., phosphorylation and C-terminal truncation),
and peroxynitrite stimulation, alpha-synuclein is prone to being
fibrillated and to residing in Lewy bodies with other proteins
(64), which is a feature of PD that occurs along with Lewy
neurites.

Researchers found that tau protein, especially phosphorylated
tau, existed in Lewy bodies along with alpha-synuclein and that
neurofibrillary tangles could be observed around Lewy bodies
(53, 65, 66). This phenomenon led researchers to hypothesize
a positive interaction between tau and alpha-synuclein. A
transgenic mouse model of PD showed increased levels of p-tau
and the co-localization and overexpression of alpha-synuclein
and p-tau, which were deposited in large inclusion bodies
that are considered similar to Lewy bodies in PD (67). A
series of experiments in vitro indicate that tau incubated with
synthesized alpha-synuclein oligomers can induce all forms of
tau, including the assembly of toxic tau forms (68). Furthermore,
studies using QBI293 cells demonstrated that alpha-synuclein

induces tangles of tau and promotes phosphorylation of tau
in cells (69). Reports also indicate that the nucleus of neurons
were surrounded by alpha-synuclein and human tau with
the P301L mutation, which may be to blame for the loss
of neuronal function (70). Researchers have been able to
successfully detect the aggregation of the two proteins in brains
of patients with PD using two novel antibodies specific to
oligomeric tau and alpha-synuclein (71). Similar results were
shown in a transgenic mouse model that was inoculated with
alpha-synuclein supplied from preformed fibrils, indicating
that the existence of both alpha-synuclein and tau promotes
fibrillation, and this phenomenon is also confirmed in human
brain (72).

Studies on the genetics of brain tissue indicate that an
interaction between tau and alpha-synuclein in (PDD) with Lewy
bodies (73).

As mentioned above, specific protein kinases may
hyperphosphorylate tau protein at certain sites, causing toxic
isoforms of tau. Among these kinases, protein kinases A can be
stimulated by alpha-synuclein, resulting in tau phosphorylation
at Ser262/356 (74). Studies focused on GSK-3β, which is
associated with the toxic p-tau isoform in AD, also indicate
that there may be an interaction between alpha-synuclein and
accumulated p-tau (75). Another study using transgenic mice
that overexpressed or lacked alpha-synuclein demonstrated
that alpha-synuclein is indispensable for the activation of GSK-
3β. A co-IP experiment in SH-SY5Y cells also demonstrated
the existence of an alpha-synuclein, p-tau, and p-GSK-3β
(76) complex. Furthermore, researchers have developed a
mouse model with a S9A-point mutation of human GSK-3β
to investigate the relationship between alpha-synuclein and
p-tau, showing a positive association between the two proteins
in vitro, as well as in behavioral, and biochemical experiments
(77, 78). Additionally, p-GSK-3β-Y216, the kinase-active form
of GSK-3β, is co-localized with both p-tau and alpha-synuclein
and is broadly expressed in the whole brain, while p-tau, and
alpha-synuclein are expressed in TH+ DA neurons of the
midbrain (78).

After showing the positive relationship between p-tau and
alpha-synuclein, researchers are still investigating themechanism
underlying the toxic interaction between the two proteins.
Several studies indicate that neurotoxic MPP+ induces the
abnormal hyperphosphorylation of tau along with alpha-
synuclein in vitro (79) and in vivo (80). Studies in a drosophila
model demonstrated that tau interacting with alpha-synuclein
ruined the organization of the cytoskeleton, leaving low-
functioning axonal transport and structural abnormalities in
neuronal synapses that resulted in PD-related cell death (81).
However, the precise relationship between tau and alpha-
synuclein and the molecular mechanisms responsible for PD
are still unclear. There might be a cascade reaction in
which the accumulation of alpha-synuclein in synapses recruits
tau (82) and induces damage; the resulting low-functioning
axonal transport will further promote the accumulation of
tau and alpha-synuclein, and therefore, more fibrillation will
be present in neurons, which will eventually lead to cell
death.
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CONCLUSIONS

Tau is a key protein in many neurodegenerative diseases;
however, its importance has been underestimated preoperatively
in PD and PDD. Soluble, unfolded tau, after being
phosphorylated or mutated, becomes insoluble and misfolded,
resulting in conformational changes in microtubules and the
aggregation of NFTs. Themobility of abnormal tau through brain
tissue in PD is similar to prion-like diseases. The accumulation
of hyperphosphorylated tau also affects axonal transport and
appears to work with alpha-synuclein to contribute to tauopathy
in PD and AD.

Although there is no effective treatment or drug therapy for
PD and other similar neurodegenerative diseases, understanding
the structure, function, and mechanism of tau and tau pathology

might be helpful for early diagnosis and treatment of PD in the
future.
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