Nocellara Etnea is one of the main Sicilian cultivars traditionally used to produce both olive oil and naturally fermented table olives. In the present study, the effect of different salt concentrations on physico-chemical, microbiological, sensorial, and volatile organic compounds (VOCs) formation was evaluated in order to obtain functional Nocellara Etnea table olives. The experimental design consisted of 8 treatments as follow: fermentations at 4, 5, 6, and 8% of salt with (E1-E4 samples) and without (C1-C4 samples) the addition of starters. All the trials were carried out at room temperature (18 ± 2°C) and monitored for an overall period of 120 d. In addition, the persistence of the potential probiotic Lactobacillus paracasei N24 at the end of the process was investigated. Microbiological data revealed the dominance of lactic acid bacteria (LAB), starting from the 7th d of fermentation, and the reduction of yeasts and enterobacteria in the final product inoculated with starters. VOCs profile highlighted a high amount of aldehydes at the beginning of fermentation, which significantly decreased through the process and a concomitant increase of alcohols, acids, esters, and phenols. In particular, esters showed an occurrence percentage higher in experimental samples rather than in control ones, contributing to more pleasant flavors. Moreover, acetic acid, ethanol, and phenols, which often generate off-flavors, were negatively correlated with mesophilic bacteria and LAB. It is interesting to note that salt content did not affect the performances of starter cultures and slightly influenced the metabolome of table olives. Sensory data demonstrated significant differences among samples registering the highest overall acceptability in the experimental sample at 5% of NaCl. The persistence of the L. paracasei N24 strain in experimental samples, at the end of the process, revealed its promising perspectives as starter culture for the production of functional table olives with reduced salt content.
Table olives are the most widely consumed fermented food in the Mediterranean countries. Peculiar processing technologies are used to process olives, which are aimed at the debittering of the fruits and improvement of their sensory characteristics, ensuring safety of consumption at the same time. Processors demand for novel techniques to improve industrial performances, while consumers' attention for natural and healthy foods has increased in recent years. From field to table, new techniques have been developed to decrease microbial load of potential spoilage microorganisms, improve fermentation kinetics and ensure safety of consumption of the packed products. This review article depicts current technologies and recent advances in the processing technology of table olives. Attention has been paid on pre processing technologies, some of which are still under-researched, expecially physical techniques, such ad ionizing radiations, ultrasounds and electrolyzed water solutions, which are interesting also to ensure pesticide decontamination. The selections and use of starter cultures have been extensively reviewed, particularly the characterization of Lactic Acid Bacteria and Yeasts to fasten and safely drive the fermentation process. The selection and use of probiotic strains to address the request for functional foods has been reported, along with salt reduction strategies to address health concerns, associated with table olives consumption. In this respect, probiotics enriched table olives and strategies to reduce sodium intake are the main topics discussed. New processing technologies and post packaging interventions to extend the shelf life are illustrated, and main findings in modified atmosphere packaging, high pressure processing and biopreservaton applied to table olive, are reported and discussed.
Table olives are increasingly recognized as a vehicle as well as a source of probiotic bacteria, especially those fermented with traditional procedures based on the activity of indigenous microbial consortia, originating from local environments. In the present study, we report characterization at the species level of 49 Lactic Acid Bacteria (LAB) strains deriving from Nocellara del Belice table olives fermented with the Spanish or Castelvetrano methods, recently isolated in our previous work. Ribosomal 16S DNA analysis allowed identification of 4 Enterococcus gallinarum, 3 E. casseliflavus, 14 Leuconostoc mesenteroides, 19 Lactobacillus pentosus, 7 L. coryniformis, and 2 L. oligofermentans. The L. pentosus and L. coryniformis strains were subjected to further screening to evaluate their probiotic potential, using a combination of in vitro and in vivo approaches. The majority of them showed high survival rates under in vitro simulated gastro-intestinal conditions, and positive antimicrobial activity against Salmonella enterica serovar Typhimurium, Listeria monocytogenes and enterotoxigenic Escherichia coli (ETEC) pathogens. Evaluation of antibiotic resistance to ampicillin, tetracycline, chloramphenicol, or erythromycin was also performed for all selected strains. Three L. coryniformis strains were selected as very good performers in the initial in vitro testing screens, they were antibiotic susceptible, as well as capable of inhibiting pathogen growth in vitro. Parallel screening employing the simplified model organism Caenorhabditis elegans, fed the Lactobacillus strains as a food source, revealed that one L. pentosus and one L. coryniformis strains significantly induced prolongevity effects and protection from pathogen-mediated infection. Moreover, both strains displayed adhesion to human intestinal epithelial Caco-2 cells and were able to outcompete foodborne pathogens for cell adhesion. Overall, these results are suggestive of beneficial features for novel LAB strains, which renders them promising candidates as starters for the manufacturing of fermented table olives with probiotic added value.
Table olives are one of the most important fermented food in the Mediterranean countries. Apart from lactic acid bacteria and yeasts that mainly conduct the olive fermentation, molds can develop on the brine surface, and can have either deleterious or useful effects on this process. From the food safety point of view, occurring molds could also produce mycotoxins, so, it is important to monitor and control them. In this respect, identification of molds associated to two Italian and two Greek fermented black table olives cultivars, was carried out. Sixty strains were isolated and molecularly identified as Penicillium crustosum (21), P. roqueforti (29), P. paneum (1), P. expansum (6), P. polonicum (2), P. commune (1). A group of 20 selected isolates was subjected to technological (beta-glucosidase, cellulolytic, ligninolytic, pectolytic, and xylanolytic activities; proteolytic enzymes) and safety (biogenic amines and secondary metabolites, including mycotoxins) characterization. Combining both technological (presence of desired and absence of undesired enzymatic activities) and safety aspects (no or low production of biogenic amines and regulated mycotoxins), it was possible to select six strains with biotechnological interest. These are putative candidates for future studies as autochthonous co-starters with yeasts and lactic acid bacteria for black table olive production.
Lactobacillus pentosus MP-10 is a potential probiotic lactic acid bacterium originally isolated from naturally fermented Aloreña green table olives. The entire genome sequence was annotated to in silico analyze the molecular mechanisms involved in the adaptation of L. pentosus MP-10 to the human gastrointestinal tract (GIT), such as carbohydrate metabolism (related with prebiotic utilization) and the proteins involved in bacteria–host interactions. We predicted an arsenal of genes coding for carbohydrate-modifying enzymes to modify oligo- and polysaccharides, such as glycoside hydrolases, glycoside transferases, and isomerases, and other enzymes involved in complex carbohydrate metabolism especially starch, raffinose, and levan. These enzymes represent key indicators of the bacteria’s adaptation to the GIT environment, since they involve the metabolism and assimilation of complex carbohydrates not digested by human enzymes. We also detected key probiotic ligands (surface proteins, excreted or secreted proteins) involved in the adhesion to host cells such as adhesion to mucus, epithelial cells or extracellular matrix, and plasma components; also, moonlighting proteins or multifunctional proteins were found that could be involved in adhesion to epithelial cells and/or extracellular matrix proteins and also affect host immunomodulation. In silico analysis of the genome sequence of L. pentosus MP-10 is an important initial step to screen for genes encoding for proteins that may provide probiotic features, and thus provides one new routes for screening and studying this potentially probiotic bacterium.