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Editorial on the Research Topic
Insights in cardiovascular and smooth muscle pharmacology: 2023

Cardiovascular diseases remain the most common cause of death worldwide (Roth
et al., 2020). Although new therapies have been developed in recent decades, there is still an
urgent need for new approaches and innovative research. In this Research Topic of
Frontiers in Pharmacology, we immerse in relevant aspects and present new research
findings, guiding you through potential approaches and novel aspects in
cardiovascular medicine.

Worldwide, 26 million patients suffer from heart failure, approximately half are
diagnosed with heart failure with preserved ejection fraction (HFpEF) (Savarese and
Lund, 2017; Lebek et al., 2021). Although several drugs with prognostic relevance are
available for heart failure with reduced ejection fraction (HFrEF), such treatments are still
lacking for HFpEF, underlining the urgent need for new therapeutics (Krittanawong et al.,
2024). Highlighting the pathway’s molecular mechanisms, the review of Jiang et al. outlines
the various factors triggering fibroblast activation, and leading to excessive remodeling and
subsequent HFpEF. By focusing on JAK/STAT3, the authors present potential therapeutic
approaches to counteract fibrosis, providing insights for future research on anti-fibrotic
treatments. This review gives a valuable overview of the complexity of cardiac fibrosis and
presents ideas for new, targeted therapies to combat this challenging condition.

Also closely connected and in clinical practice often missed comorbidity in HFpEF are
sleep disorders (Wester et al., 2023). Arrhythmias in this context are addressed by Hegner
et al., investigating the connection between sleep apnea syndrome and atrial arrhythmias.
The study vividly shows that the increased production of reactive oxygen species due to
obstructive sleep apnea leads to cellular sodium overload and induction of cellular
arrhythmias. These novel insights into the mechanisms of arrhythmias in obstructive
sleep apnea provide evidence for the necessity of potential approaches to targeted therapy
in this area.

Twenty years after the discovery of PCSK9 and its effects on LDL cholesterol
metabolism, its inhibition by monoclonal antibodies has become one of the most
effective methods for lowering LDL levels and hereby reducing the progress of
cardiovascular diseases (Abifadel et al., 2003; Cohen et al., 2005; Zendjebil and Steg,
2024). Beyond its central role in liver LDL receptor metabolism, PCSK9 is also present in
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cardiac, cerebral, renal, and other tissues, where it supports essential
physiological functions. The review from Lu et al. examines the
protective role of PCSK9 in extrahepatic tissues, highlighting risks of
deficiency, such as lipid buildup, mitochondrial dysfunction, and
insulin resistance. By analyzing experimental and clinical findings, it
provides insights into the complex effects of PCSK9 inhibition,
encouraging a balanced view on its therapeutic potential.

The renal function reflects another major player in the
physiology and pathophysiology of the cardiovascular system.
Here, the study by Toth et al. vividly highlights how the
inhibition of hypoxia-inducible factor 1α (HIF1α) by Daprodustat
is linked to vascular calcification. Atherosclerosis is a significant
complication, particularly in patients with end-stage renal disease
and on dialysis, making this study an important step forward in the
understanding of the underlying pathomechanisms (Marando et al.,
2024). In addition, Yu et al. provides detailed insights into how
Endothelin-1 receptor (ET-1) antagonists could be used to regulate
blood pressure and fluid balance, which is particularly important for
the treatment of cardiovascular and kidney diseases. The developed
model could help to modulate the targets and effects of ET-1 more
precisely and minimize side effects associated with ETA antagonists
such as fluid retention.

And if nothing else helps? The article by Von Bibra and Hinkel
provides an intriguing overview of current research on stem cell-
based remuscularization transplantation. The focus is on
translational application and study execution in non-human
primates. It offers a practical description of the advantages and
disadvantages of various approaches, providing not only a solid
overview of the current state of research but also suggesting
possibilities for clinical translation. Although the path to a lab-
grown heart is still distant, initial steps leading to independence
from transplants are already in clinical testing.

But where might future cardiovascular medicine develop in the
coming years? Even though cardiovascular research brought several
new and powerful drugs into clinical practice (e.g., gliflozins or
mavacamten), patients’ prognosis is still limited and comparable to
that of cancer patients (Ponikowski et al., 2014; Roth et al., 2020).
This is because current treatments are either ineffective in certain
patient populations (HFpEF vs. HFrEF) or associated with severe
adverse side effects (Heidenreich et al., 2022). The latter might be
either due to unspecific off-target binding of the compound or due to
on-target binding in another tissue where the target protein is not
necessarily pathogenic (Pellicena and Schulman, 2014; Nassal et al.,
2020). Another major challenge in cardiovascular medicine is the
poor compliance of patients to take their prescribed medication,
which further decreases with every extra pill they need to take
(Kulkarni et al., 2006; Gupta et al., 2017). This highlights the urgent
need for precise and tissue-specific approaches that ideally confer

sustained therapeutic benefits. We previously demonstrated that this
can be achieved by CRISPR-Cas gene editing (Lebek et al., 2023a;
Lebek et al., 2023b; Lauerer et al., 2024; Reichart et al., 2023).

In conclusion, this Research Topic underlines the urgent need
for research in the field of cardiovascular medicine, which will
provide new targets and potential therapeutic strategies. Future
therapies will focus on minimizing side effects while enhancing
efficacy for long-lasting therapeutic benefits.
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Sulfur signaling pathway in
cardiovascular disease

Yunjia Song1†, Zihang Xu1†, Qing Zhong1, Rong Zhang1,
Xutao Sun2* and Guozhen Chen3*
1Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese
Medicine, Harbin, China, 2Department of Typhoid, School of Basic Medical Sciences, Heilongjiang
University of Chinese Medicine, Harbin, China, 3Department of Pediatrics, The Affiliated Yantai
Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China

Hydrogen sulfide (H2S) and sulfur dioxide (SO2), recognized as endogenous sulfur-
containing gas signaling molecules, were the third and fourth molecules to be
identified subsequent to nitric oxide and carbon monoxide (CO), and exerted
diverse biological effects on the cardiovascular system. However, the exact
mechanisms underlying the actions of H2S and SO2 have remained elusive
until now. Recently, novel post-translational modifications known as
S-sulfhydration and S-sulfenylation, induced by H2S and SO2 respectively, have
been proposed. These modifications involve the chemical alteration of specific
cysteine residues in target proteins through S-sulfhydration and S-sulfenylation,
respectively. H2S induced S-sulfhydrylation can have a significant impact on
various cellular processes such as cell survival, apoptosis, cell proliferation,
metabolism, mitochondrial function, endoplasmic reticulum stress,
vasodilation, anti-inflammatory response and oxidative stress in the
cardiovascular system. Alternatively, S-sulfenylation caused by SO2 serves
primarily to maintain vascular homeostasis. Additional research is warranted to
explore the physiological function of proteins with specific cysteine sites, despite
the considerable advancements in comprehending the role of H2S-induced
S-sulfhydration and SO2-induced S-sulfenylation in the cardiovascular system.
The primary objective of this review is to present a comprehensive examination of
the function and potential mechanism of S-sulfhydration and S-sulfenylation in
the cardiovascular system. Proteins that undergo S-sulfhydration and
S-sulfenylation may serve as promising targets for therapeutic intervention and
drug development in the cardiovascular system. This could potentially expedite
the future development and utilization of drugs related to H2S and SO2.

KEYWORDS

H2S, SO2, S-sulfhydration, S-sulfenylation, cardiovascular disease

Introduction

H2S is regarded as the third gas signaling molecule, succeeding NO and CO. The
production of H2S from L-cysteine is catalysed by cystathionine γ-lyase (CSE), cystathionine
β synthase (CBS). Furthermore, H2S is also produced by 3-mercaptopyruvate
sulfurtransferase (3-MST), which catalyzes the conversion of 3-mercaptopyruvate,
generated by L-cysteine aminotransferase (CAT) from L-cysteine, into H2S. The
production of H2S from L-cysteine is catalysed by cystathionine γ-lyase (CSE),
cystathionine β synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). CSE
is the primary enzyme responsible for producing H2S in the cardiovascular tissue (Banerjee
et al., 2015). Lately, there has been an increasing amount of attention on SO2, which is closely
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related to H2S, within the cardiovascular system domain. Aspartate
amino transferase (AAT) facilitates enzymatic reactions that convert
sulfur-containing amino acids into SO2, utilizing L-cysteine as the
substrate (Singer and Kearney, 1956). Interestingly, H2S and SO2

share tissue homology and originate from the same metabolic
pathway (Figure 1). They exhibit comparable biological traits in
cardiovascular physiological and pathological processes, including
vasodilation, preservation of the typical vascular structure, and the
development of conditions like pulmonary hypertension,
atherosclerosis, endothelial dysfunction associated with aging,
myocardial injury, and myocardial hypertrophy. As an
illustration, it was discovered that H2S mitigated the harm to
heart muscle cells caused by a lack of oxygen by diminishing the
process of autophagy (Xiao et al., 2015); while in mice treated by
AngII, it was demonstrated that SO2 inhibited autophagy, thereby
attenuating cardiac hypertrophy as indicated by Chen et al. (Chen
et al., 2016). Moreover, occasionally H2S and SO2, which are two gas
signaling molecules, can utilize the identical signaling pathway.
Activation of the PI3K/Akt pathway (Ji et al., 2016) can mediate
protection against brain tissue ischemia-reperfusion (I/R) injury due
to H2S. Additionally, the PI3K/Akt pathway plays a role in
safeguarding against myocardial I/R injury caused by
pretreatment with SO2 (Wang et al., 2011). Nevertheless, the
precise workings of H2S and SO2 remain uncertain. Lately, an
increasing number of scientists have discovered that certain
impacts mentioned earlier could be ascribed to a new type of
chemical alteration caused by H2S and SO2, referred to as
S-sulfhydration, also named persulfidation, and S-sulfenylation.
H2S or SO2 can chemically modify specific cysteine residues of
target proteins through S-sulfhydration or S-sulfenylation,

respectively. The thioredoxin system, closely associated with
cardiovascular diseases (Li et al., 2023), reversed protein
S-sulfhydration or S-sulfenylation, just like S-nitrosylation. The
main focus of this review will be on the involvement of protein
S-sulfhydration and S-sulfenylation by H2S and SO2 in the
cardiovascular system.

H2S induced protein S-sulfhydration

Thiolated proteins can be generated through S-sulfhydration,
which is a common post-translational modification observed
in approximatel one-third of proteins. The thiol modification
of protein molecules is an essential molecular mechanism for
H2S to exert various biological effects (Mustafa et al., 2009a;
Paul and Snyder, 2012). Despite the growing fascination
with protein S-sulfhydration, the exploration of mechanisms
behind the formation of sulfhydrated proteins remains limited
in the existing studies. Initially, it was believed that sulfhydryls on
proteins could react directly with H2S to form protein persulfides,
but this was a misconception. Due to thermodynamic limitations,
the sulfhydryl group on the protein cannot directly react with H2S.
During the S-sulfhydration, both sulfur atoms would be oxidised
and gaseous hydrogen would be formed and disappeared. In this
figure, we have demonstrated several primary processes of
S-sulfhydrated modification, which may occur in the following
scenarios: a) direct interaction between protein sulfhydryl groups
and H2S is not observed; b) however, H2S has the ability to react
with sulfinic acid and generate sulfhydryl groups; c) H2S reacts
with nitrosated cysteine to produce HSNO; however, depending on

FIGURE 1
Generation of endogenous H2S and SO2.
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TABLE 1 H2S-induced S-sulfhydraion on cardiovascular system.

Categories S-sulfhydrated
proteins

Sites Functions Model Reference

Enzymes Caspase 3 Cys163 Anti-
cardiomyocyte

DOX-treated H9c2 Ye et al. (2022)

Apoptosis

Mitochondrial TNF-α-treated HUVECs (n = 4) Diaz et al. (2023)

Bioenergetics

MEK1 Cys341 DNA damage
repair

MMS-treated HUVECs Zhao et al. (2014)

PYK2 Anti-
cardiomyocyte

AOAA-treated H9c2 Bibli et al. (2017)

Apoptosis

MuRF1 Cys44 Myocardial
contractility

db/db mice (n = 90) Sun et al. (2020), Peng et al. (2022)

Anti-myocardial HG+Pal+Ole-treated NRCMs

Degradation

SENP1 Anti-
cardiomyocyte

db/db mice (n = 50); HG+Pal+Ole-
treated NRCMs

Peng et al. (2023)

Apoptosis

Hrd1 Cys115 Lipid
accumulation

db/db mice (n = 50); HG+Pal+Ole-
treated NRCMs

Yu et al. (2020)

db/db mice (n = 60); HG+Ole+Pal-
treated H9c2

Sun et al. (2021)

Cys32,Cys130,Cy

MTHFR s131,Cys193,Cys Cellular
metabolism

High methionine diet-induced HHcy
mice model (n = 10);

Ji et al. (2022)

306 Hcy-treated HL-7702 cells and QSG-
7701 cells

USP8 Mitochondrial db/db mice (n = 50); HG+Ole+Pal-
treated NRCMs

Sun et al. (2020)

Bioenergetics

CaMKII Mitochondrial ISO-induced HF mice model; H2O2-
treated H9c2

Wu et al. (2018)

Bioenergetics

PTP1B Cys215 ER stress
homeostasis

Cardiomyocytes isolated from PTP1B-
KO mice (C57BL/6J);

Kandadi et al. (2015), Coquerel et al.
(2014), Kirshnan et al. (2011)

Y615F-PERK mice; Tu and Tg treated-
HEK-293T cells

PDI Cys343,Cys400 ER stress
homeostasis

Endothelial cell-specific CSE-KO or
CSE-OE mice

Luo et al. (2023)

IKKβ Cys179 Anti-apoptosis MCTP-treated HAPECs Zhang et al. (2019)

MMP1/7/14 Anti-inflammation Zhu et al. (2022)

MMP2/9 Anti-inflammation SMCs isolated from CSE-KO mice;
Human aneurysmal aortic samples

Zhu et al. (2022)

Anti-hypertension

eNOS Cys443 Vasodilation AOAA and L-Cys-treated H9c2; AECs
isolated from CSE-KO mice

Bibli et al. (2017), Altaany et al. (2014)

PDE 5A Vasodilation NaHS or GYY4137-treated aortic rings
isolated from rats (n = 8)

Sun et al. (2017)

(Continued on following page)
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TABLE 1 (Continued) H2S-induced S-sulfhydraion on cardiovascular system.

Categories S-sulfhydrated
proteins

Sites Functions Model Reference

Liver kinase B1 Anti-hypertension PBLs isolated from hypertensive patients
and SHR

Cui et al. (2020)

CSE Cys252,Cys255,C Anti-atherogenesis Paigen and L-methionine induced ApoE-
KO mice HHcy model (n = 45);

Fan et al. (2019)

ys307,Cys310 L-homocysteine-treated HepG2 cells

AAT1 Anti-inflammation CSE-knock down HUVECs, primary
HUVECs and RPAECs

Zhang et al. (2018), Song et al. (2020)

AAT2 MCT-induced male Wistar rats (n = 18)

Receptors PPARγ Cys139 Lipid storage HFD diet-induced obese mice model
(n = 18);

Cai et al. (2016)

IBMX, DEX and insulin-treated 3T3L1-
preadipocytes

ATP5A1 Cys244,Cys294 ATP production Deferoxamine and Nonidet-P40-treated
HepG2 and HEK-293 cells

Módis et al. (2016)

Male CSE-KO- C57/BL6 mice (n = 7)

Drp1 Cys607 Mitochondrial TAC and ISO-treated C57BL/6 mice;
CSE-KO mice (n = 9)

Wu et al. (2022)

Bioenergetics

OPA3 Anti-cardiotoxicity DOX-treated male C57BL/6 mice Wang et al. (2023)

IGF-1R Cellular
proliferation

IGF-1-treated SMCs isolated from CES-
KO mice

Shuang et al. (2018, 2021)

PDC-E1 Cys101 VSMC
proliferation

db/db mice (n = 60); HG+Pal treated
VSMCs

Zhang et al. (2021)

sGC β1 Vasodilation NaHS-treated rats aortic rings (n = 8) Sun et al. (2017)

β3 integrin Vasodilation Human LM, FG, FN and VN treated
HUVECs; flow-treated ECs specific

Jalali et al. (2002), Bibli et al. (2021)

CSE knockout mice

Human antigen R Cys13 Anti-atherogenesis Apolipoprotein -/- mice; Carotid plaques
isolated from patients (n = 24)

Bibli et al. (2019)

SIRT1 Anti-atherogenesis ApoE-KO atherosclerosis mice (n = 20) Du et al. (2019)

Ion channels Kir 6.1 subunit of Cys43 K(ATP) Chennal Mesenteric arteries isolated from
heparinized mice

Mustafa et al. (2011)

KATP

rvSUR1 subunit of Cys6,Cys26 K(ATP) Chennal NEM and CLT-treated HEK-293 cells Jiang et al. (2010)

KATP

TRPV4 Vasodilation Mesenteric arteries isolated from male
SD rats; GSK1016790A-treated

Naik et al. (2016)

AECs

TRPV1 Anti-hypertension HA-induced WKY rats hypertension
model; SHRs model (n = 8)

Yu et al. (2017)

L-type calcium Calcium channel CaCl2 -treated A7r5 cells Dai et al. (2019)

(Ca2+) channels opening

Transcription
factors

Sp1 Cys664 Anti-myocardral Human myocardium samples of
hypertension (n = 26); SHRs model

Meng et al. (2016)

hypertrophy

Cys68,Cys755 Endothelial
pheno-types

CBS-siRNA-transfected HUVECs
(n = 3)

Saha et al. (2016)

(Continued on following page)
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the protein environment, this reaction may also produce protein
persulfides; d) persulfide can be created when H2S reacts with
sulfur-containing molecules found in proteins, e) while sulfhydryl
can be created when H2S reacts with cysteine disulfide (-SS). f)
persulfide can also be utilized as a carrier for the “trans-S-
sulfhydration” reaction. g) and h), metal centers can act as
oxidants and produce protein persulfides from H2S and
thiolated proteins (Figure 2).

Biological processes induced by
S-sulfhydration

The involvement of sulfhydrated modification, a novel post-
translational modification, in cardiovascular disease’s pathological
processes is evident. Proteins undergo a transformation in activity
and function after being S-sulfhydrated, playing crucial roles as
significant toggles or controllers. We review some recent studies on
the targets of S-sulfhydrated modification and explain the
significant role of S-sulfhydration modification in various
pathophysiological progression of the cardiovascular system
(Figures 3, 4; Table 1).

H2S mediated S-sulfhydration on
cardiovascular cell damage

The physiological process of apoptosis, also known as
programmed cell death, is tightly controlled by cells or tissues
for a variety of biological activities. Doxorubicin (DOX) is a
potent anthracycline medication that effectively combats tumors.
Nevertheless, it can induce apoptosis in cardiomyocytes,
resulting in cardiotoxicity and influencing patients’ prognosis
(Wenningmann et al., 2019). Cardiomyocyte apoptosis was
significantly induced by DOX, leading to extensive activation
of caspase family members. Apoptosis involves Caspase-3, which
acts as a significant protease responsible for executing the
process. A study from Ye et al. (Ye et al., 2022) uncovered
that DOX diminished the CSE/H2S pathway, consequently
leading to the apoptosis of cardiomyocytes. Additionally,
enough endogenous H2S S-sulfhydration caspase-3 to block it
from acting, reducing the apoptosis that DOX triggered in
cardiomyocytes. Futher study found that the Cys-163 location
of caspase-3 functioned as the specific site for H2S to sulfidate the
caspase-3 protein. Diaz et al. (Diaz et al., 2023) discovered that
H2S had the capability to reduce the mitochondrial redox

TABLE 1 (Continued) H2S-induced S-sulfhydraion on cardiovascular system.

Categories S-sulfhydrated
proteins

Sites Functions Model Reference

Regulation

IRF-1 Cys53 Mitochondrial SMCs isolated from CSE-KO mice Li et al. (2015)

Bioenergetics

p65 subunit of Cys38 Anti-inflammation TNF-α-treated CSE-KO mice (n = 5);
p65 C38S plasmid-transfected

Sen et al. (2012), Du et al. (2014),
Zhang et al. (2019), Chen et al. (2017)

NF-κB THP-1-derived macrophages; MCTP-
treated PAECs

c-Jun Cys269 Anti-oxidative
stress

H2O2-treated macrophage Li et al. (2018)

Keap1-Nrf2 Cys226,Cys613,C Anti-oxidative
stress

HS diet-treated Dahl rats (n = 30) and
male SD rats (n = 40); STZ-treated

Yang et al. (2013), Hourihan et al.
(2013), Huang et al. (2013), Xie et al.

(2016)
ys151,Cys273 Diabetes LDLr-/- mice (n = 6) and

Nrf2-/- mice (n = 6)

FOXO1 Cys457 Anti-VSMC ET-1-treated A7r5 and 293T cells Tian et al. (2020)

Proliferation

Stat3 Cys259 Anti-vascular β-GP and ascorbate treated HASMCs Zhou et al. (2019)

Calcification

TFEB Cys212 Anti-VSMC
apoptosis

Human atherosclerotic plaque samples;
VSMC-specific cth knockout

Chen et al. (2022)

Anti-vascular Mice; Autophagy inhibitor 3-MA and
CQ-treated HASMCs

Calcification

ASMCs, Artery smooth muscle cells; CLT, chloramine T; ET-1, endothelin-1; FG, fibrinogen; FN, fibronectin; HA, hydroxylamine; HAEC, Human aortic endothelial cells; HAPECs, human

pulmonary artery endothelial cells; HASMCs, Human aortic smooth muscle cells; HEK-293, Human embryonic kidney cells; HepG2, Human hepatocellular carcinoma-derived cells; HG, high

glucose; HS, high salt; HUVECs, Human umbilical vein endothelial cells; LM, laminin; MCTP, monocrotaline pyrrole; MEFs, Embryonic fibroblasts; MMS, methyl methanesulfonate; NEM, N-

ethylmaleimide; NRCMs, Neonatal rat cardiomyocytes; Ole, oleate; PAEC, Pulmonary artery endothelial cell; Pal, palmitate; PBLs, Peripheral blood lymphocytes; PMA, 4β-phorbol-12-
myristate-13-acetate; RPAECs, primary rat pulmonary artery endothelial cells; SHRs, Spontaneously hypertensive rats; STZ, streptozotocin; Tg, thapsigargin; Tu, tunicamycin; VN, vitronectin;

WKY, Wistar-Kyoto.
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condition, lower the activity of pro-caspase 3, and safeguard
endothelial cells from apoptosis caused by TNF-α in isolation.
Additionally, it was discovered that H2S increased the
S-sulfhydration of pro-caspase 3 and enhanced the functioning
of mitochondria in endothelial cells exposed to TNF-α.
Furthermore, nuclear factor κB (NF-κB) functions as a
transcription factor that inhibits apoptosis. In addition, the

anti-apoptotic/pro-survival effects of H2S were attributed to
the S-sulfhydration of NF-κB p65 (Sen et al., 2012).
Nevertheless, the anti-cell death impact was nullified in
macrophages derived from CSE−/− mice, but it was reinstated
through CSE overexpression or the addition of H2S. According to
Sen et al., (Perkins, 2012), it was shown that H2S has the ability to
alter NF-κB p65 at Cys38 thiol, augment the interaction between

FIGURE 2
Themainly proposed formation processes for S-sulfhydrated proteins. (A) Protein sulfhydryl groups are not directly reacted with by H2S; (B)H2S can
react with sulfinic acid to produce sulfhydryl groups; (C) H2S reacts with nitrosated cysteine to produce HSNO; However, depending on the protein
environment, this reaction may also produce protein persulfides; (D) Persulfide can be created when H2S reacts with sulfur-containing molecules found
in proteins; (E) While sulfhydryl can be created when H2S reacts with cysteine disulfide (-SS). (F) Persulfide can also be utilized as a carrier for the”
trans-S-sulfhydration” reaction. (G) (H) Metal centers can act as oxidants and produce protein persulfides from H2S and thiolated proteins.
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FIGURE 4
H2S-induced S-sulfhydrylation in ion channels and nuclear transcription factors, and SO2-induced S-sulfenylation in cardiovascular system. Yellow-
green means ion channels, purple means nuclear transcription factors, green means targets of S-sulfenylation, and gold means common targets for
S-sulfhydration and S-sulfenylation.

FIGURE 3
H2S-induced S-sulfhydrylation on enzymes and receptors in cardiovascular system. Orange means enzymes, and blue teal means receptors, →
means stimulating effect, whereas ⟂ means inhibiting effect.
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sulfhydrated p65 and its co-activator ribosomal protein S3, and
stimulate the transcription of genes that prevent apoptosis. None
of these effects were present following the transfection of p65-
C38S. H2S additionally enhanced the S-sulfhydration of mitogen-
activated extracellular signal-regulated kinase 1 (MEK1) in
human endothelial cells (ECs) and human fibroblasts, whereas

there was a reduced S-sulfhydration of MEK1 in CSE−/−

mice. MEK1 that has been sulfhydrated facilitates the
phosphorylation of ERK1/2, which then moves into the
nucleus to activate PARP-1, an abundant nuclear protein that
plays a crucial role in DNA damage repair, and initiate the repair
of DNA damage. Inhibition of ERK1/2 phosphorylation and

FIGURE 5
Methods for S-sulfhydraion detection. (A)Biotin-switch assay; (B)Cysteinyl labeling assay; (C)➀ Themaleimide assay,➁Biotin-Thiol Assay,➂ Protein
persulfide detection protocol (ProPerDP); (D) Tag-switch assay; (E) Mass spectrometry assay. MMTS, S-methyl methanethiosulfonate; Biotin-HPDP, N-
[6-(biotinamido)hexyl]-3’-(2′-pyridyldithio) propinamide; IAA, Iodoacetic acid; DTT, Dithiothreitol; IAP, Iodoacetamide-linked biotin; IAB, Iodoacetyl-
PEG2-Biotin; MSBT, methylsulfonyl benzothiazole; IAM-Biotin, Iodoacetyl-PEG2-Biotin; TCEP, Tris (2-carboxyethyl)phosphine; IAM,
Iodoacetamide; ACN, Acetonitrile; LC-MS/MS, Liquid chromatography and mass spectrometry.
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PARP-1 activation, as well as the failure to facilitate DNA damage
repair, were observed when Cys341 on MEK1 underwent
mutation (Zhao et al., 2014).

Endothelial NO synthase (eNOS) is directly phosphorylated
and inhibited by proline-rich tyrosine kinase 2 (PYK2), a tyrosine
kinase that is sensitive to redox. A study from Bibli et al. (Bibli
et al., 2017) found that when H9c2 cardiomyocytes were exposed to
H2O2 or when H2S production was pharmacologically inhibited,
there was an elevation in the phosphorylation of PYK2 (Y402) and
eNOS (Y656). When Na2S was administered or CSE was
overexpressed, these effects were blocked. The survival of
H9c2 cells exposed to Η2Ο2 was diminished and further
decreased following the suppression of H2S generation. These
results suggest that H2S may alleviate the PYK2-mediated eNOS
inhibition. Moreover, further studies revealed that the underlying
mechanism was related to the S-sulfhydration modification of
PYK2 and subsequent inhibition of its activity.

The primary adaptive response to cardiac hypertrophy occurs
when cardiomyocytes encounter various damaging stimuli.
Krüppel-like zinc-finger transcription factor 5 (KLF5), also
known as BTEB2 and IKLF, played a crucial role in the
progression of cardiac hypertrophy caused by angiotensin II
(Shindo et al., 2002). A study by Meng et al. (Meng et al., 2016)
discovered that in the cardiac tissues of hypertensive rats and
angiotensin II treated cardiomyocytes, the H2S donor
GYY4137 decreased the activity of the KLF5 promoter, lowered
the level of KLF5 mRNA, hindered the transcriptional activity of
KLF5, and consequently prevented the enlargement of heart
cells. The aforementioned impacts of H2S were facilitated
through its S-sulfhydration of specificity protein 1 (Sp1) at
Cys664, causing Sp1 to be unable to bind to KLF5.

As a consequence of diabetes mellitus (DM), diabetic
cardiomyopathy (DCM) causes anatomical and functional
aberrancies in the myocardium, ultimately resulting in heart
failure (HF). The presence of the cardiomyopathy is linked to
elevated levels of the muscle RING finger-1 (MuRF1), which is
an E3 ubiquitin ligase. A study from Sun et al. (Sun X. et al., 2020)
demonstrated that H2S donor alleviated endoplasmic reticulum
stress (ERS) in db/db mice, including the restoration of
cardiomyocyte activity and structural repair. Additionally, H2S
donor has the ability to inhibit the ubiquitination of myosin

heavy chain 6 (MHC6) and myosin light chain 2 (MLC2) in the
myocardial tissues of db/db mice. Subsequent investigation revealed
that H2S S-sulfhydrated MuRF1 at Cys44 to diminish its association
between and MHC6 and MLC2, preventing myocardial degradation
in the db/db mice. As a crucial calcium transport enzyme in the ER,
SERCA2a has an impact on the relaxation and contraction of the
myocardium. A study from Peng et al. (Peng et al., 2022)
demonstrated that H2S donor effectively increased SERCA2a
protein levels and activity, while decreasing its ubiquitination
levels, as well as MuRF1 expression and cytosolic calcium
concentrations in comparison to the db/db mice. Additional
research revealed that the administration of NaHS increased the
S-sulfhydration of MuRF1, subsequently boosting SERCA2a activity
and expression. While, MuRF1-Cys44 mutant plasmid deteriorated
H2S-mediated S-sulfhydration of MuRF1. The results indicated that
H2S influences the ubiquitination of SERCA2a by S-sulfhydrating
MuRF1 at Cys44, thereby preventing a decrease in myocardial
contractility caused by elevated cytosolic calcium levels.
Moreover, Peng et al. (2023) found that exogenous H2S
suppresses SENP1s by S-sulfhydrating SENP1s at C683 site,
which subsequently increases SERCA2asumo orylation, improves
myocardial contractile-diastolic function, and reduces
cardiomyocytes apoptosis in DCM.

H2S mediated S-sulfhydration on
cardiovascular cellular metabolism

Hyperhomocysteinemia (HHcy), an abnormal elevation of
homocysteine in the plasma, hyperglycemia, and hyperlipidemia
are recognized as risk factors resulting in various complications
related to the cardiovascular diseases. The importance of H2S in
regulating homocysteine, lipid, and glucose metabolism has been
confirmed in numerous studies. CSE-H2S enhanced the nuclear
accumulation of peroxisome proliferator activated receptor γ
(PPARγ), its activity to bind DNA, and the expression of genes
related to adipogenesis through directly S-sulfhydrating PPARγ at
Cys139, resulting in the conversion of glucose into triglyceride
storage within adipocytes. Based on what we know so far, PPAR
has an important role in regulating blood lipid and glucose levels.
Thereby, PPARγ S-sulfhydration could potentially serve as a new

FIGURE 6
Methods for S-sulfenylation detection. S- sulfenylated proteins in cells treated are labeled with the BTD. Labeled proteins are further conjugated
with light and heavy azido biotin with a photocleavable linker and analyzed by LC-MS/MS.
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focus for addressing diabetes, obesity, hyperlipidemia, and
associated cardiovascular complications (Cai et al., 2016).

HMG-CoA reductase degradation protein (Hrd1), an
E3 ubiquitin ligase responsible for transiting protein. In the
models of high glucose-treated db/db mice and neonatal rat
cardiomyocytes, it was discovered that the levels of CSE and
Hrd1 expression were reduced compared to the control mice,
while CD36 and VAMP3 level was elevated. Further study found
that administration of NaHS decreased the accumulation of lipids,
restored the expression of Hrd1 as well as reduced the expression of
VAMP3 and facilitated its ubiquitylation. The underlying
mechanism is that H2S S-sulfhydrated Hrd1 at Cys115 to
regulate VAMP3 ubiquitylation and prevent CD36 translocation
in diabetic cardiomyopathy (Yu et al., 2020). Additionally, a study by
Sun et al. (2021) demonstrated that the H2S donor could boost
Hrd1 expression, as well as enhance DGAT 1 and 2 ubiquitination
level in the myocardium of db/db mice. The underlying mechanism
was associated with H2S-induced S-sulfhydration Hrd1 at Cys115,
which boosted the connection between Hrd1 and DGAT1 and 2,
ultimately preventing the development of liposome in the
myocardial tissues of db/db mice.

The investigation of the key enzymes involved in Hcy
metabolism is crucial as HHcy has been regarded as a
contributing factor to cardiovascular disease.
Methylenetetrahydrofolate reductase (MTHFR) is a pivotal
enzyme controlling the Hcy metabolism within cells. A study
from Ji et al. (2022) found that the bioactivity of MTHFR was
decreased in HHcy of both vivo and vitro studies. The deficiency of
H2S led to a further decrease in MTHFR activity and worsened
HHcy. However, the decreased bioactivity of MTHFR in HHcy was
reversed by H2S donors, resulting in a reduction of the excessive Hcy
level. Furthermore, MTHFR undergoes H2S-mediated
S-sulfhydration at Cys32, Cys130, Cys131, Cys193, and Cys306 in
normal conditions, and the level of S-sulfhydration is directly linked
to the bioactivity of MTHFR. The findings of this research indicated
that H2S has the potential to enhance the bioactivity of MTHFR
through S-sulfhydration, offering a potential therapeutic approach
for HHcy.

H2S mediated S-sulfhydration on
cardiovascular mitochondrial
bioenergetics

Over the past few years, mounting proof has indicated that H2S
has the ability to preserve the structure of mitochondria, decrease
the emission of signals indicating mitochondrial death, and mitigate
cell death reactions regulated by mitochondria in different forms,
thereby providing protection in the cardiovascular system (Szczesny
et al., 2014). Under physiological conditions, H2S can cause a
S-sulfydration of the α subunit of ATP synthase (ATP5A1) at
Cys244 and Cys294. This process helps to sustain the activation
of ATP synthase, thereby supporting mitochondrial bioenergetics
(Módis et al., 2016). A study from Li and Yang, (2015) validated the
significance of H2S in upholding the replication of mitochondrial
DNA and the expression of genes that serve as markers for
mitochondria. According to their findings, interferon regulatory
factor 1 (IRF-1) was sulfhydrated at Cys 53 by H2S, which increased

its affinity for the Dnmt3a promoter. This led to a decrease in DNA
methyltransferase 3a (Dnmt3a) expression and the demethylation of
the mitochondrial transcription factor A promoter, ultimately
facilitating mitochondrial DNA replication. In addition, Wu et al.
(2022) discovered that the CSE/H2S pathway regulates the activity
and translocation of dynamin related protein 1 (Drp1), thereby
influencing cardiac function and mitochondrial morphology. In
terms of mechanism, H2S-mediated Drp1 S-sulfhydration at
Cys607 caused a decrease in phosphorylation, oligomerization,
and GTPase activity of Drp1, and directly competed with NO-
mediated S-nitrosylation. This research revealed that H2S
suppressed Drp1 activity through S-sulfhydrating Drp1 at
Cys607, thereby protecting against HF.

DOX-induced cardiotoxicity is primarily attributed to
ferroptosis a new type of cell death accompanied with an
excessive amount of iron accumulation (Dixon et al., 2012). H2S
had a defensive impact on DOX-triggered ferroptosis in
cardiomyocytes according to the study from Wang et al. (2023).
This effect was achieved through the involvement of optic atrophy 3
(OPA3), a crucial protein in the mitochondrial membrane. DOX
caused a decrease in OPA3 levels, but exogenous H2S was able to
restore them. OPA3 participates in the control of ferroptosis
through its interaction with NFS1, resulting in the inhibition of
ferroptosis. Exogenous H2S counteracted the ubiquitination of
OPA3 induced by DOX through the promotion of
OPA3 S-sulfhydration. These results indicated that H2S
safeguards cardiomyocytes from DOX-induced ferroptosis by
S-sulfhydrating OPA3, inhibiting the ubiquitination of OPA3 and
enhances the expression of cysteine desulfurase (NFS1).

Mitochondrial injury caused by the excessive generation of
reactive oxygen species (ROS) leads to myocardial injury in
diabetic condition. A research by Sun Y. et al. (2020) discovered
that H2S donor enhanced heart functions, decreased levels of
reactive ROS, facilitated the movement of parkin into
mitochondria, and stimulated the formation of mitophagy in the
hearts of db/db mice. The aforementioned effects of H2S were
associated with the rise in S-sulfhydration of USP8, resulting in
the augmentation of parkin deubiquitination process by attracting
parkin to mitochondria.

The involvement of Ca2+/calmodulin-dependent protein kinase
II (CaMKII) is crucial in the progression of HF and the initiation of
damage to myocardial mitochondria. In CSE knockout mouse
models, it was discovered that administering H2S donor resulted
in the mitigation of HF, decrease of lipid peroxidation, maintenance
of mitochondrial function, and inhibition of CaMKII
phosphorylation. And the potential mechanism could be
associated with the S-sulfhydration of CaMKII by H2S, resulting
in the inhibition of CAMKII activity and the maintenance of
cardiovascular homeostasis (Wu et al., 2018).

H2S induced S-sulfhydration on
endoplasmic reticulum stress (ERS) in
the cardiovascular system

The endoplasmic reticulum (ER) consists of a eukaryotic cell
membrane and serves as a crucial organelle for the synthesis,
folding, and secretion of proteins. ERS can be caused by changes
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in the external or internal environment. Numerous studies have
shown that ERS is closely related to the onset and progress of
various cardiovascular ailments. Protein tyrosine phosphatase 1B
(PTP1B), a crucial player in ERS, is considered a promising
candidate for therapeutic intervention in cardiovascular
dysfunction caused by obesity and septic shock (Coquerel
et al., 2014; Kandadi et al., 2015). Krishnan et al. (2011)
discovered that H2S caused S-sulfhydration of PTP1B at
Cys215, leading to the inhibition of its function. This
inhibition, in turn, facilitated the phosphorylation and
activation of protein kinase-like ER kinase, ultimately
promoting the restoration of ER homeostasis. None of these
effects were present in HeLa cells with CSE deletion. These results
imply that H2S controls endoplasmic ERS by S-sulfhydration,
leading to the deactivation of PTP1B. This could potentially serve
as a new mechanism for the beneficial impact of H2S on the
cardiovascular system.

Aortic aneurysm and aortic dissection (AAD) are serious
conditions affecting blood vessels, where the primary focus of
treatment for AAD is the endothelium. According to a research
conducted by Luo et al. (2023), it was discovered that the deletion of
CSE specifically in ECs worsened, while the overexpression of CSE
specifically in ECs improved the advancement of AAD. During
AAD, there was a decrease in S-sulfhydration of proteins in the
endothelium, with protein disulfide isomerase (PDI) being the
primary focus. Enhancing PDI activity and alleviating ERS was
achieved through S-sulfhydration of PDI at Cys343 and Cys400.
This data indicates that H2S mitigated the advancement of AAD by
boosting the activity of protein PDI through the regulation of
S-sulfhydration at Cys343 and Cys400 of PDI.

H2S mediated S-sulfhydration on
cardiovascular cellular inflammation

The connection between H2S and inflammation within the
cardiovascular system is intricate. A study from Du et al. (Du
et al., 2014) discovered that H2S suppressed the inflammation of
macrophages caused by oxidized low-density lipoprotein through
sulfhydrating NF-κB p65 at Cys38, which consequently inhibited the
its phosphorylation, nuclear translocation and DNA binding
activity. Furthermore, it was discovered that H2S suppressed
macrophage inflammation caused by H2O2 through reducing the
activation of the NLRP3 inflammasome, which resulted in the
activation of caspase-1, ultimately decreasing the production of
mitochondrial ROS (mtROS). The underlying mechanism is that
H2S-induced S-sulfhydration of c-Jun increased transcriptional
activity of SIRT3 and p62, leading to a reduction in mtROS
production. Additional discoveries indicated that mutation of
c-Jun Cys269 diminished the protection effects of H2S-induced
c-Jun S-sulfhydration. To summarize, these findings indicate that
H2S alleviates oxidative stress-mediated generation of ROS and the
activation of the NLRP3 inflammasome in mitochondria through
S-sulfhydration of c-Jun at Cys269 (Lin et al., 2018).

Inflammation of the ECs in the pulmonary artery is a crucial
occurrence in the progression of pulmonary arterial hypertension
(PAH). A study by Zhang et al. (Zhang et al., 2018) showed that in
monocrotaline (MCT)-induced pulmonary vascular inflammation and

CSE knockdown-induced ECs inflammation, H2S level was decrcased
while SO2 level was increased. The underlying mechanism was related
to the S-sulfhydration of AAT1/2 byH2S to inhibite the activity of AAT,
leading to the reduction of endogenous SO2 generation. Additionally,
the rise in endogenous SO2 production could potentially act as a
compensative mechanism when the H2S/CSE pathway was
suppressed, thus exerting protection against endothelial
inflammatory responses. Furthermore, they showed that endogenous
H2S effectively deactivated IKKβ by sulfhydrating Cys179 of IKKβ to
suppress NF-κB pathway activation, ultimately attenuating pulmonary
artery ECs inflammation in PAH (Zhang et al., 2019).

H2S mediated S-sulfhydration on
cardiovascular cellular oxidative stress

Oxidative stress is closely related to cardiovascular diseases. Several
experimental findings indicate Keap1 and Nrf2 have a strong
correlation with oxidative stress damage and antioxidant response.
Nrf2 serves as a chief controller of the antioxidant reaction, while
Keap1 functions as a suppressor of Nrf2 (Uesugi et al., 2017; Wasik
et al., 2017). It was confirmed (Yang et al., 2013) that Keap1 underwent
S-sulfhydration in embryonic fibroblasts obtained from mice with the
WT genotype, whereas this modification was not observed in CSE
knockout mice. In mouse embryonic fibroblasts, NaHS-induced
S-sulfhydration of Keap1 at Cys151 to control Nrf2 expression,
positioning and function. Possibly, this could be an innovative
approach to hinder cellular aging through the S-sulfhydration of
Keap1 mediated by H2S. Moreover, Hourihan et al. (Hourihan et al.,
2013) additionally found that H2S deactivated Keap1 through the
S-sulfhydration of Keap1 at the Cys226 and Cys613 location to
upregulate the expression of Nrf 2, which subsequently protects cells
from oxidative stress.

According to recent studies, H2S increased the S-sulfhydration
of Keap1, leading to a decrease in the connection between Keap1 and
Nrf2 in high-salt treated rat, which subsequently followed by a
reduction in blood pressure, collagen buildup, and oxidative stress
(Huang et al., 2016). The findings from aforementioned indicate that
targeting H2S-induced S-sulfhydration of Keap1 could potentially
help reduce oxidative stress and associated cardiovascular diseases.

H2S induced S-sulfhydration on
vascular structure

The excessive growth of vascular smooth muscle cells (VSMCs)
serves as a crucial physiological and pathological foundation for
numerous cardiovascular disorders. And H2S is discovered to
maintain the structure of blood vessels by suppressing the
proliferation of VSMCs. The receptor of insulin-like growth factor-1
(IGF-1), known as IGF-1R, has various effects on the vasculature,
including promoting the growth and movement of VSMCs, as well as
preventing the death of VSMCs both in normal and abnormal
conditions. Studies from Shuang et al. found that H2S effectively
reduces the levels of IGF-1R expression and promotes IGF-1R
S-sulfhydration to weaken the interaction between IGF-1 and IGF-
1R, elucidating the mechanism by which H2S inhibits VSMCs
proliferation (Shuang et al., 2018; Shuang et al., 2021). Further study
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showed that H2S S-sulfhydrates IGF-1R to decrease formation of IGF-
1R/ER-α hybrid, preventing estrogen-induced VSMCs proliferation
(Shuang et al., 2021). In addition, a study from Tian et al. (Tian
et al., 2020) found that the stimulation of ET-1 led to an augmentation
in the proliferation of VSMC A7R5 cells, along with the
phosphorylation of transcription factor forkhead box transcription
factor 1 (FOXO1) and its subsequent relocation from the nucleus to
the cytoplasm in the A7R5 cells. Nevertheless, administration of NaHS
effectively nullified the aforementioned results induced by ET-1.
Additionally, further study found that H2S hinders the
phosphorylation of FOXO1 at Ser256 by S-sulfhydrating FOXO1 at
Cys457. As a result, this action maintains the nuclear positioning and
stimulation of FOXO1 while restraining VSMCs proliferation.

The proliferation of VSMCs induced by hyperglycaemia and
hyperlipidaemia is inhibited by H2S. A study by Zhang et al. (Zhang
et al., 2021) demonstrated that mitochondrial pyruvate dehydrogenase
complex-E1 (PDC-E1) significantly translocated to the nucleus in
VSMCs after high glucose and palmitate treatment. Further study
found that H2S hindered the translocation of PDC-E1 through
S-sulfhydration. Furthermore, PDC-E1 with a mutation at
Cys101 abolished the inhibitory effect of H2S on the proliferation of
VSMCs. These findings indicated that H2S prevented the translocation
of PDC-E1 by S-sulfhydrating PDC-E1 at Cys101, subsequently
inhibiting the proliferation of VSMCs treated with diabetic.

Insufficient growth of ECs is a crucial characteristic of
endothelial dysfunction, leading to diseases related to vascular
injury. The study according to Saha et al. (Saha et al., 2016)
discovered that H2S derived from CBS preserved the cellular
response dependent on VEGF, which includes proliferation
induced by VEGF due to the upregulation of VEGFR-2 and
neuropilin-1 in ECs. And the underlying mechanism was that
H2S S-sulfhydrated the transcription factor Sp1 on Cys68 and
Cys755 residues to enhance Sp1 binding to VEGFR-2,
consequently boosting the proliferation and migration of ECs.

Maintaining elastin homeostasis is a crucial function of the CSE/
H2S system. It was discovered that older CSE knockout mice
experienced significant expansion of the aorta and deterioration
of elasticity in the abdominal aorta, and exhibited heightened
susceptibility to aortic elastic degradation induced by angiotensin
II. While NaHS safeguarded against angiotensin II-induced aortic
medial degeneration in old mice. Furthermore, application of NaHS
or overexpression of CSE reduced the hyperactivity of MMP2/9 and
elastolysis in TNFα-induced SMCs; however, CSE-deficiency
worsened these effects. Additionally study discovered that H2S
hindered the transcription of MMP2 through S-sulfhydrating
Sp1. And H2S as well straightly inhibited excessive MMP activity
through the S-sulfhydration of MMP1, MMP2, MMP7, MMP9, and
MMP14. In sum, these results indicated that the CSE/H2S-induced
S-sulfhydration, resulting in the inactivation of MMPs, contributes
to the development of aortic elastolysis and medial degeneration
(Zhu et al., 2022). This suggests that targeting the CSE/H2S system
could be a potential treatment for aortic aneurysm.

Hyperglycemia can increase vascular calcification. The depletion of
elastin in the tunica media encourages the SMCs to undergo an
osteogenic transformation, leading to the calcification of arterial
medial, which condition is linked to a significant cardiovascular risk
in individuals diagnosed with type 2 diabetes. A study conducted by
Zhou et al. (Zhou Y. B. et al., 2019) demonstrated that NaHS reduced the

calcification of HASMCs exposed to high glucose by lowering levels of
calcium and phosphorus, inhibiting calcium deposition and alkaline
phosphatase (ALP) activity. Additionally, H2S hindered HASMCs
osteogenic transformation by increasing the expression of SMα-actin
and SM22α, which are two characteristicmarkers of smoothmuscle cells,
while decreasing the protein expression of core binding factor α-1 (Cbfα-
1), a crucial factor in bone formation. Furthermore, the administration of
NaHS suppressed the activation of Stat3, as well as the activity and
expression of cathepsin S (CAS), while simultaneously elevating the
elastin protein level. Further study found that inhibiting the activity or
silencing the gene of Stat3 not only reversed the loss of elastin, but also
reduced the expression of CAS. Elastin loss was alleviated by inhibiting
CAS, whereas CAS overexpression worsened it. Additional research
revealed thatNaHS triggered S-sulfhydration in thewild type, but had no
effect on the C259S Stat3 mutant. In conclusion, these findings indicate
that H2S may directly S-sulfhydrated Stat3 at Cys259 and then inhibited
Stat3/CAS signaling to upregulate elastin level, resulting in the
attenuation of vascular calcification.

H2S induced S-sulfhydration on
vasorelaxtion

Vasorelaxation of H2S and its processes have been thoroughly
researched as one of the significant physiologic activities caused by H2S.
With the establishment of S-sulfhydration, a significant amount of
knowledge has been gained regarding the molecular mechanisms
underlying vasodilation induced by H2S.

H2S plays as a vasodilation by S-sulfhydration various KATP
channels subunit. S-sulfhydration of Kir6.1, a component of the
KATP channels, was observed upon overexpression of CSE, and this
phenomenon was not observed in the absence or mutation of CSE. An
additional investigation verified that S-sulfhydrated Kir6.1 at
Cys43 reduced ATP synthesis while increasing the interaction
between phosphatidylinositol 4,5-bisphosphate and Kir6.1, thereby
enhancing KATP channel function and enhancing vasodilation.
Furthermore, the Kir6.1-Cys43 mutants exhibited a reduction in
both in S-sulfhydration and vasodilatation induced by H2S. Possibly,
this could be the primarymechanism through whichH2S functions as a
relaxing factor derived from ECs (Mustafa et al., 2011). Furthermore, it
was found that H2S-induced S-sulfhydration targeted Cys6 and
Cys26 in rvSUR1, which is a subunit of the extracellular loop KATP
channel complex in rats. The KATP channel was activated by H2S,
leading to S-sulfhydration and subsequent relaxation of the blood
vessels (Jiang et al., 2010). Additionally, Kang et al. (Kang et al.,
2015) discovered that H2S S-sulfhydrated sulphonylurea 2B (SUR2B)
at Cys24 and Cys1455, which are both part of the KATP channels
complex, resulting in the recovery of smooth muscle contraction.

In previous studies, ECs are shown to produce endogenous H2S and
to cause dilation in response to H2S. A study by Naik et al. (Naik et al.,
2016) discovered that upon inhibiting TRPV4, the dilation of vessels
caused by H2S-induced influx of Ca2+ and K+ was prevented.
Furthermore, the S-sulfhydration of TRPV4 was increased following
the administration of Na2S in aortic ECs. This implies that TRPV4 is
triggered following S-sulfhydration, potentially serving as the crucial
element in vasodilation. In addition, it was showed that the ability of
the carotid sinus baroreceptor to regulate blood pressure was enhanced
through the S-sulfhydration of TRPV1 by H2S derived from CBS, as
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indicated by Yu et al. (Yu et al., 2017). Additionaly, Dai et al. (Dai et al.,
2019) discovered that NaHS decreased the level of intracellular Ca2+ by
sulfhydrating L-type Ca2+ channels in VSMCs, thereby impacting the
PKC/ERK pathway downstream and preventing the constriction of
VSMCs.

The eNOS, an enzyme that produces NO, is a protein targeted by
H2S, leading to vasodilation. A Study by Altaany et al. (Altaany et al.,
2014) discovered that H2S enhances the activity of eNOS by causing the
S-sulfhydration of eNOS at Cys443, which results in the promotion of
eNOS phosphorylation and inhibition of its S-nitrosylation, ultimately
leading to vasodilation. The soluble guanylatecyclase β1 (sGC β1), one
of the subunits of the sGC protein, plays a crucial role as an enzyme in
the process of catalyzing the synthesis of cGMP; on the other hand,
phosphodiesterase (PDE) facilitates the breakdown of cGMP. And the
sGC β1/PDE/cGMP is a signal transduction pathway associated with
vascular relaxation. A study from Sun et al. (Sun et al., 2017) found that
H2S increased cGMP synthesis by S-sulfhydrating sGC β1 and inhibited
the degradation of cGMP by S-sulfhydrating PDE 5A to exert
vasorelaxant effect in vascular tissues.

Integrins have been related to the detection of flow in ECs. The
activation of β3 integrin occurred when shear stress was applied to ECs,
causing a change in conformation (Jalali et al., 2002). A study from Bibli
et al. (Bibli et al., 2021) discovered that the absence of S-sulfhydration
hindered the connections between β3 integrin and Gα13, leading to the
constant activation of RhoA and hindering the realignment of ECs
caused by flow. Furthermore, there was a correlation between
endothelial function and reduced H2S production, compromised
dilation caused by flow, and the inability to detect β3 integrin
S-sulfhydration. However, all of these results were restored when
H2S supplement was administered. This study suggests that vascular
illness is linked to significant alterations in the S-sulfhydration of
proteins found in ECs, which play a role in facilitating responses to
fluidmovement. Enhancing vascular reactivity in humans was observed
with the temporary addition of H2S, indicating the possibility of
utilizing this pathway for the treatment of vascular disease.

Endogenous CSE/H2S in CD4
+ T-cells plays an important role in

the development of hypertension. In the case of hypertensive
patients or spontaneously hypertensive rats, it was discovered
that CSE/H2S in the isolated peripheral blood lymphocytes
reacted to alterations in blood pressure. This was confirmed by
variations in lymphocyte CSE protein and a negative association
between H2S production and systolic and diastolic blood pressure.
However, there was a positive association between H2S production
and the interleukin 10 level of serum, which is an anti-inflammatory
cytokine. The activation of liver kinase B1 by H2S derived from CSE,
through constitutive S-sulfhydration, triggers the activation of its
target kinase, AMP-activated protein kinase. This activation
promotes the differentiation and proliferation of Treg cells,
which helps to reduce immune-inflammation in the vascular and
renal systems, ultimately preventing hypertension (Bibli et al., 2021).

H2S induced S-sulfhydration on
atherosclerotic

The presence of intimal plaques and cholesterol buildup in the
arterial walls defines atherosclerosis, which is a primarily contributor to
global mortality due to the susceptibility of plaque rupture. H2S,

primarily produced by CSE in cardiovascular organs, serves as a
safeguarding gasotransmitter in atherosclerosis (Zhang et al., 2013). A
study from Chen et al. (Chen et al., 2022) found that CSE-H2S
significantly decreased in ACTA2-positive cells within plaques from
patients, atherosclerotic mice, or VSMCs stimulated with ox-LDL. And
the H2S donor supplementation partially rescued the exacerbation of
plaque size and reduction of autophagy, resulting from the deletion of
CSE in VSMCs, thereby lowering plaque stability. In terms of
mechanism, the S-sulfhydration of TFEB at the Cys212 site by CSE-
H2S facilitates its translocation to the nucleus, subsequently enhancing
VSMCs autophagy. This process promotes the secretion of collagen and
suppresses apoptosis, ultimately reducing the progression of
atherosclerosis and the vulnerability of plaques. Moreover, a study
from Xie et al. (Xie et al., 2016) discovered that GYY4137 reduced
the development of atherosclerotic plaques in the aorta and lowered
levels of ROS in streptozotocin-induced LDL receptor knockout mice
(LDLr−/−). However, this effect was not observed in mice with double
knockout of LDLr−/− and Nrf2−/−. GYY4137 additionally reduced foam
cell development and oxidative stress in peritoneal macrophages
obtained from wild type mice, while having no effect on Nrf2−/−

mice, implying that H2S mitigates the progression of atherosclerosis
in diabetes through amechanism that relies onNrf2. Additional research
revealed that GYY4137 facilitated the separation of Keap1 from Nrf2 in
ECs stimulated by ox-LDL and high-glucose, potentially due to the
S-sulfhydration of Keap1 at Cys151 and Cys273 sites. In the meantime,
the Keap1 mutation at position C151A eliminated the dissociation of
Keap1/Nrf2, the translocation of Nrf2 into the nucleus, and the
inhibition of ROS induced by the administration of GYY4137.
Therefore, it is suggested that the S-sulfhydration of proteins by H2S
could serve as a new therapeutic objective for the prevention of
atherosclerosis accelerated by diabetes. In addition, it was discovered
that CSE specifically deficiency in ECs resulted in an increase in the
expression of CD62E, which is associated with the activation of ECs and
the development of atherosclerosis, and led to an elevated adherence of
monocytes even without an inflammatory trigger, along with also
accelerated the progression of endothelial dysfunction and
atherosclerosis; but these effects were restored when treated with H2S
donor.Mechanistically, the prevention of homodimerization and activity
of human antigen R is achieved through the CSE-H2S induced
S-sulfhydration at Cys13, leading to the attenuation of CD62E target
protein expression (Bibli et al., 2019).

SIRT1, a crucial gene for promoting longevity, acts as a histone
deacetylase and controls the acetylation of certain functional
proteins, thereby exerting an anti-atherogenic impact. In
atherosclerosis mice lacking ApoE, the administration of H2S
donor, NaHS or GYY4137, resulted in decreased area of
atherosclerotic plaque, infiltration of macrophages, inflammation
in the aorta, and levels of lipids in the bloodstream. Treatment with
H2S enhanced the expression of SIRT1 mRNA in the aorta and liver,
as well as promoted SIRT1 deacetylation in ECs and macrophages,
subsequently resulting in the reduction of inflammation in ECs and
macrophages. Mechanismly, the direct S-sulfhydration of H2S on
SIRT1 enhanced the binding of SIRT1 to zinc ion, subsequently
boosting its deacetylation function and stability, ultimately reducing
the formation of atherosclerotic plaques (Du et al., 2019).

Elevated levels of homocysteine can lead to various effects including
dysfunction of the endothelium, heightened risk of blood clot formation,
faster proliferation and movement of VSMCs, and hindered cholesterol

Frontiers in Pharmacology frontiersin.org13

Song et al. 10.3389/fphar.2023.1303465

20

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1303465


transportation by monocytes and macrophages. These factors
collectively contribute to the development of atherosclerosis
(Thambyrajah and Townend, 2000; Lai and Kan, 2015). In the mice
with atherosclerosis and hyperhomocysteinemia, it was discovered that
the serum homocysteine level increased. Additionally, the mRNA,
protein levels and catalytic activity of CSE, which is a crucial enzyme
responsible for homocysteine trans-sulfuration, were reduced due to
hyperhomocysteinemia; while the administration of H2S donor reversed
all of these effects. In terms of mechanism, hyperhomocysteinemia
caused S-nitrosylation of CSE, while H2S S-sulfhydrated CSE at the
identical cysteine sites. Additional research revealed that the catalytic and
binding capabilities of CSE towards L-homocysteine were reduced with
S-nitrosylated CSE, while they were enhanced with S-sulfhydrated CSE.
The alteration of Cys252, Cys255, Cys307, and Cys310 sites in CSE
eliminated the S-nitrosylation or S-sulfhydration of CSE and hindered its
interaction with L-homocysteine. To sum up, the administration of H2S
donor improved the S-sulfhydration of CSE, leading to a reduction in
serum levels of L-homocysteine. This, in turn, played a role in the
beneficial effects against atherosclerosis observed in ApoE-knockout
mice with hyperhomocysteinemia (Fan et al., 2019).

SO2-induced S-sulfenylation on
cardiovascular biological effects

Protein S-sulfenylation, also known as the oxidation of cysteine
thiol to sulfenic acid (Cys-SOH), is a reversible post-translational
modification, playing a pivotal role of SO2 in the modulation of the
cardiovascular system (Figure 4). Following CO, NO, and H2S,
endogenous SO2 has emerged as a new gas signalling molecule
implicated in cardiovascular diseases. Hence, ensuring a consistent
and appropriate production of endogenous SO2 is a crucial subject
when it comes to maintaining cardiovascular balance. A study from
Song et al. (Song et al., 2020) demonstrated that within vascular ECs,
SO2 regulates its own production by employing negative feedback
inhibition of AAT1 function through S-sulfenylation of Cys192 on
AAT1. The discovery will significantly enhance the comprehension of
regulatory mechanisms in maintaining cardiovascular balance.

According to recent research, it has been indicated that internal
SO2 has the ability to alter different biological processes, including
inflammation, apoptosis, as well as vascular remodeling. Moreover,
it is suggested to have a therapeutic effect through S-sulfenylation.
For example, SO2 induced S-sulfenylation of NF-κB p65 at Cys38,
which resulted in the inhibition of NF-κB nuclear translocation and
DNA binding activity. As a result, the NF-κB signaling pathway
caused inflammation was inhibited, leading to a curative effect on
oleic acid-induced acute lung injury (Chen et al., 2017).

The growth of cells relies on the pH level within the cells, known as
intracellular pH (pHi). The alteration of cysteine in the transmembrane
region of the Na+-independent Cl−/HCO3

−exchanger, also known as
anion exchanger (AE), has an impact on pHi. According to research
conducted by Wang et al. (Wang et al., 2019) demonstrated that SO2

decreased the pHi and strongly activated AE. Conversely, the AE
inhibitor greatly reduced the impact of SO2 on pHi in VSMCs.
AE2 S-sulfenylation was associated with the impact of SO2.
Moreover, the AE blocker abolished the inhibitory effect of SO2 on
the proliferation of VSMCs stimulated by platelet-derived growth
factor-BB (PDGF-BB). To summarize, this research showed that

SO2 hinders the growth of VSMCs by directly activating the AE
through posttranslational S-sulfenylation and causing intracellular
acidification.

Another study by Huang et al. (Huang et al., 2021) determined
SO2-induced S-sulfenylation proteomics through chemoproteomics
in angiotensin II-treated VSMCs, which identified a total of 1137 S-
sulfenylated cysteine residues in 658 proteins. Interestingly, 42% of
these residues were found to be influenced by SO2. Among these, an
increase in S-sulfenylation was detected in Cys64 of Smad3, resulting
in a decrease in the ability to bind to DNA. Ultimately, the collagen
protein levels were considerably inhibited, resulting in a reduction in
angiotensin II-mediated vascular remodeling and abnormality.

Extended activation of mitochondrial permeability transition
pore (mPTP) may result in impairment of mitochondrial energy,
enlargement, breakage, programmed cell death, and necrosis (Zhou
B. et al., 2019). Cyclophilin-D (CypD) serves as a significant
controller in the modulation of mPTP opening (Sun et al., 2019).
A study from Lv et al. (Lv et al., 2022) demonstrated that the SO2-
induced S-sulfenylation of CypD at Cys104 leaded to the inhibition
of mPTP opening, safeguarding cardiomyocyte against apoptosis.

Detection of S-sulfhydration

There are several techniques for identifying S-sulfhydration, such as
the altered biotin switch test, cysteinyl labeling test, maleimide test using
fluorescent thiol modifying agents, tag-switch approach, and mass
spectrometry (Figure 5). Nevertheless, currently there is no perfect
technique for identifying S-sulfhydration due to the presence of
inaccurate indications or inadequate sensitivity in the
aforementioned methods. There is an urgent need for more specific
methods to identify S-sulfhydration uniquely. An example of an original
assay for detecting protein S-sulfhydration is the Biotin-Switch method
(Mustafa et al., 2009b). The thiol in proteins was blocked by S-methyl
methanethiosulfonate (MMTS), an alkylating agent. Subsequently,
Biotin-HPDP was conjugated with the persulfides
group. Nevertheless, this approach facilitated the concurrent labeling
of S-sulfhydration and S-nitrosylation, resulting in poor selectivity. The
cysteine labeling method uses IAA as a blocking agent, and IAP is used
to label the persulfide modified proteins (Krishnan et al., 2011). One
concern with this approach is its inability to differentiate persulfides
from intramolecular, intermolecular, and S-nitrosothiols, all of which
will also be broken down by DTT. The maleimide test relies on the
chemical properties of N-ethyl maleimide, a reagent that blocks both
free thiol and persulfide groups (Sen et al., 2012). A drawback of this
fluorescence technique is its limited applicability for proteomic analysis.
The Biotin-Thiol-Assay can employ NM-Biotin or IAB to alkylate both
thiol and persulfide functional groups (Gao et al., 2015; Dóka et al.,
2016), but this approach may result in inaccurate negative signals.

Considering the aforementioned issues with the Biotin-Switch
technique and maleimide approach, Zhang et al. proposed the tag-
switch assay to detect S-sulfhydration modification, the core of which is
the use of two different reagents to label supersulfide. Currently, the
eligible thiol sealers are methansulfonyl benzothiazole
(methylsulfonylbenzothiazole, MSBT) and methyl cyanoacetate (Park
et al., 2015;Wedmann et al., 2016). Furthermore, the analysis of protein
S-sulfhydration also involved the utilization ofmass spectrometry (MS).
By obstructing sulfol groups in the proteins using MSBT, the biotin-
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labeled proteins were subsequently separated into polypeptides in order
to detect persulfated modified proteins and their respective locations.
Nonetheless, this method presents an equal challenge in fully
obstructing protein samples and, as a result, can easily produce
inaccurate positive outcomes (Park et al., 2015).

To summarize, the exploration of S-sulfhydration alteration is still
in its early stages, and the criticality of choosing exceptionally precise
detection agents cannot be overstated in advancing this domain.
Furthermore, the integration of the aforementioned testing
technique with mass spectrometry can effectively prevent inaccurate
positive outcomes. In addition, the development of fluorescent probes
that detect S-Sulfhydrylation protein imaging, even commercially
available ones, is also worthwhile. In short, the exploration of the
detection methods for S-sulfhydration modification will provide an
insight into the biological significance of this post-translational
modification.

Detection of S-sulfenylation

S-sulfenylation, a post-translational modification that can be
reversed, is crucial for regulating protein activity through redox
control in numerous biological processes. The detection and study of
protein S-sulfenylation is not possible directly because it is
inherently unstable. Over the last few decades, different
dimedones (aka dicarbonyl) are now more readily available for
the specific identification and detection of cysteine
S-sulfenylation (Furdui and Poole, 2014). For instance, Western
blotting with the appropriate antibody can be employed to detect
cysteine S-sulfenylation labeled with dimedone (Seo and Carroll,
2009). Dimedone analogs containing fluorescent or biotin reporter
groups can be used to visualize and enhance S-sulfenylated proteins
(Charles et al., 2007). Carroll Lab created the initial DAz-1 probe for
detecting sulfenic acid in its natural environment. This compound is
dimedone that has been chemically modified with an azide group,
enabling its selective recognition by phosphine reagents through the
Staudinger ligation method. This technique is used for the detection,
enrichment, and visualization of altered proteins (Reddie and
Carroll, 2008). In 2012, the Carroll laboratory developed DYn-2,
a novel dimedone analog labeled with alkyne that had superior
stability and efficiency compared to previous probes based on
dimedone for labeling Cys-SOH in situ (Paulsen et al., 2011).
The use of dimedone-based probes has greatly expanded the
number of S-sulfenylated proteins and their corresponding sites.
Several other chemical compounds, apart from dimedone, have been
extensively studied for the specific labeling of S-sulfenic acids (Qian
et al., 2012; Poole et al., 2014; McGarry et al., 2016; Alcock et al.,
2018). In order to develop the next iteration of chemoproteomic
probe for the worldwide exploration of S-sulfenylome, Carroll Lab
initially constructed an innovative collection of 100 cyclic carbon-
nucleophiles that selectively interact with Cys-SOH (Gupta and
Carroll, 2016). Expanding on this source, they additionally created
four novel alkyne-labeled probes, namely, TD, PYD, PRD, and BTD,
for the specific marking of protein S-sulfenic acids. Due to its
exceptional response rate towards Cys-SOH, BTD displayed the
utmost degree of reactivity towards S-sulfenylome (Gupta et al.,
2017). And BTD has demonstrated a strong compatibility with
chemoproteomic platforms that focus on specific sites. Hence, the

novel BTD probe (Fu et al., 2019) can be utilized to achieve a more
efficient approach in mapping and quantifying cysteine
S-sulfenylation in intricate proteomes (Figure 6).

Conclusion

Despite the notable advancements in drug treatment and clinical
guidance for cardiovascular diseases, the prevalence and fatality
rates of such conditions persist at elevated levels due to the aging
population and escalating risk factors. Consequently, there is an
urgent demand for novel therapeutic concepts and strategies to
address cardiovascular diseases. In this context, the discovery of H2S
and SO2 as gas signaling molecules in recent years has emerged as a
significant development, as they exhibit crucial protective effects
within the cardiovascular system. Currently, there is ongoing
development of various H2S and SO2 donors or targeted
prodrugs. In recent years, different types of SO2 donors and
prodrugs with distinct triggering mechanisms have been
designed, including thiol-activated SO2 prodrugs (Zhang et al.,
2023), thermally-activated SO2 prodrugs (Li et al., 2019),
hydrolysis-based SO2 prodrugs (Day et al., 2016), glutathione-
responsive SO2 prodrugs (Xia et al., 2022), and esterase-sensitive
SO2 prodrugs (Wang and Wang, 2017). Additionally, H2S donors
such as CySSPe (Tocmo and Parkin, 2019) and Diallyl trisulfide
(Qiao et al., 2018), and the mitochondrial targeting of H2S prodrugs
AP39 and RT01 (Magierowska et al., 2022), as well as photothermal
therapy-triggered H2S prodrugs (Chen et al., 2015), have emerged as
novel strategies for the treatment of cardiovascular diseases. Over
the last decade, an increasing number of studies have elucidated the
diverse biological regulatory functions of H2S and SO2, specifically
through the direct S-sulfhydration and S-sulfenylation of target
proteins. These modifications have been shown to effectively and
promptly regulate cell signal transmission. Notably, significant
progress has been made in comprehending the role of protein S-
sulfhydration and S-sulfenylation mediated by H2S and SO2 in the
cardiovascular system. It is undeniable that research on protein S-
sulfhydration and S-sulfenylation is being increasingly suggested as
a prospective avenue for future investigations in the realm of gas
signaling molecules. Consequently, the exploration and creation of
cardiovascular protective medications that target S-sulfhydration
and S-sulfenylation may represent a novel path for clinical drug
treatment of cardiovascular injury diseases. In light of this, it is
imperative to collaborate with the fields of drug research and
development and pharmacology research to facilitate the
translation of fundamental research into clinical applications.

However, there exist numerous significant concerns pertaining
to the utilization of H2S-induced S-sulfhydration and SO2-induced
S-sulfenylation in drug development, which necessitate attention for
their prospective clinical application. (1) During the protein S-
sulfhydration process, the generation of both small-molecule
based persulfides and protein persulfides occurs, resulting in
highly reactive species. The metabolic regulation of these species
remains largely unexplored. (2) it is intriguing to investigate the
distinct utilization of H2S and SO2 by cardiovascular cells at specific
temporal intervals. (3) There is an urgent requirement for improved
scientific techniques that possess greater sensitivity and specificity in
order to identify S-sulfhydration. (4) Further research is required to
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explore additional proteins and thoroughly examine the specific
cysteine sites associated with S-sulfhydration and S-sulfenylation
within the cardiovascular system. (5) Nevertheless, not every protein
that undergoes S-sulfhydration and S-sulfenylation experiences a
modified spatial arrangement and functionality. The determination
of this could depend on the positioning of the cysteines that are S-
sulfhydrated/S-sulfenylated. Protein function and signal
transduction will be altered if S-sulfhydrated/S-sulfenylated
cysteines are found in the crucial domain, which is essential for
maintaining the structure and activity of the protein. Put simply,
there could be no notable distinction following S-sulfhydration and
S-sulfenylation, commonly referred to as ‘ineffective S-sulfhydration
and S-sulfenylation’. (6) Furthermore, further studies will explore
the importance of S-sulfhydration/S-sulfenylation in the
cardiovascular system, including but not limited to target gene
transcription, enzymatic activity, and ion channel permeability.
(7) The thioredoxin system regulates the levels of S-sulfhydration
and S-sulfenylation, indicating that modifying the activity or
expression of thioredoxin may play a role in controlling the
intracellular levels of the two modifications and the biological
and pharmacological effects mediated by H2S and SO2. (8)
Further investigation is warranted to explore the potential
interactions between S-sulfhydration and S-sulfenylation and
other post-translational modifications, with the aim of expediting
the advancement of cardiovascular disease treatment. (9) A
comprehensive examination is necessary to thoroughly explore
the clinical significance of S-sulfhydration and S-sulfenylation in
cardiovascular disorders. (10) Additionally, it is important to
acknowledge that proteins modified through S-sulfhydration and
S-sulfenylation may elicit biological effects by activating
downstream components of the target protein. For instance, the
anti-oxidation effect of Keap1 modified by H2S can be observed in
the activation of Nrf2 in the Keap1-Nrf2 pathway, leading to the
activation of downstream anti-oxidation genes. However, it is
important to note that the activation of Nrf2 is not solely
regulated by Keap1, and excessive Nrf2 activation can result in
bodily abnormalities. Therefore, the control of drug release is crucial
in minimizing adverse reactions.

Protein S-sulfhydration or S-sulfenylation, a crucial post-
translational modification induced by H2S or SO2, may
potentially function as a molecular mechanism underlying the
effects of H2S or SO2. Further exploration is necessary to
determine the clinical significance of S-sulfhydration and
S-sulfenylation in cardiovascular disorders. Acquiring
additional knowledge concerning S-sulfhydration and
S-sulfenylation will augment our understanding of the

beneficial influence that these modifications can exert on
specific cysteines in various cardiovascular conditions.
Furthermore, the proteins that are S-sulfhydrated and
S-sulfenylated could serve as promising new targets for
therapeutic intervention and drug development in the
cardiovascular system. This, in turn, could expedite the
advancement and utilization of drugs associated with H2S or
SO2 in the coming years.
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Hallucinogenic drugs are used because they have effects on the central nervous
system. Their hallucinogenic effects probably occur via stimulation of serotonin
receptors, namely, 5-HT2A-serotonin receptors in the brain. However, a close
study reveals that they also act on the heart, possibly increasing the force of
contraction and beating rate and may lead to arrhythmias. Here, we will review
the inotropic and chronotropic actions of bufotenin, psilocin, psilocybin, lysergic
acid diethylamide (LSD), ergotamine, ergometrine, N,N-dimethyltryptamine, and
5-methoxy-N,N-dimethyltryptamine in the human heart.

KEYWORDS

bufotenin, psilocin, psilocybin, LSD, ergotamine, ergometrine, N,N-dimethyltryptamine

Introduction

In this review, “drugs of interest” include the following organic molecules: bufotenin,
psilocin, psilocybin, lysergic acid diethylamide (LSD), ergotamine, ergometrine, N,N-
dimethyl-tryptamine and 5-methoxy-N,N-dimethyltryptamine. These drugs of interest
(Figure 1A) are referred to as tryptamine derivatives. These drugs of interest are thus
structurally similar to 5-hydroxyl-tryptamine (serotonin, 5-HT), the physiological agonist
at serotonin receptors. Unlike indirect sympathomimetic drugs (e.g., metamphetamine,
amphetamine), these compounds probably do not act solely or mainly as releasers of
noradrenaline from storage sites in the human heart (Neumann et al., 2023a; Neumann
et al., 2023b). In contrast, they are directly activate serotonin receptors in the heart (e.g.,
Jacob et al., 2023a). However, at least in vitro these tryptamines or related tiophene analogs
may also act as monoamine transport releasers (Blough et al., 2014; Rudin et al., 2022). The
hallucinogenic effects of these compounds are explained by the stimulation of 5-HT2A-
serotonin receptors in the brain. In the heart, these drugs of interest can activate serotonin
receptors. However, serotonin increases the force of contraction and beating rate in the
human heart via 5-HT4-serotonin receptors and not via 5-HT2A-serotonin receptor
(Neumann et al., 2017; Neumann et al., 2023a). In contrast to other species 5-HT2A-
(rat) or 5-HT3-(guinea pig) serotonin receptors do not increase force in the human heart
(Kaumann et al., 1990, reviews; Neumann et al., 2017; Neumann et al., 2023a). In order to
provide a small animal model for human 5-HT4 serotonin receptors in the heart, we have
generated transgenic mice that overexpress the human 5-HT4-serotonin receptor in the
heart (5-HT4-TG). In cardiac preparations from 5-HT4 TG, serotonin increased the force of
contraction (Gergs et al., 2010). Serotonin does not increase the force of contraction in
isolated mouse cardiac preparations from wild-type mice (Gergs et al., 2010).
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FIGURE 1
(A) Structural formulae of tryptamine derived hallucinogenic compounds. (B) Schematic drawing of the proposed signalling of hallucinogenic
compounds in cardiac myocytes. Ca2+ enters the mammalian heart cell via the L-type Ca2+ channel (LTCC). This process can be enhanced by
hallucinogenic compounds via a cascade starting in the sarcolemma via stimulation of Gs-protein (Gs)-coupled 5-HT4 serotonin or H2 histamine
receptors. Activation of adenylyl cyclase (AC) elevates subsequent production of cAMP and thereby activates cAMP-dependent protein kinase (PKA).
PKA increases cardiac force generation and relaxation by increasing the phosphorylation state (P) of the L-type calcium channel (LTCC), of
phospholamban (PLB) and of the inhibitory subunit of troponin (TnI). Trigger Ca2+ initiates release of Ca2+ from the sarcoplasmic reticulum via ryanodine
receptors (RYR) into the cytosol. There, Ca2+ activates myofilaments and this activation leads to increased inotropy. In diastole, Ca2+ is taken up into the
sarcoplasmic reticulum via a sarcoplasmic reticulum Ca2+-ATPase (SERCA), the activity of which is enhanced due to an increased phosphorylation state
of PLB.
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Interestingly, some of these drugs of interest (e.g., LSD) also
activate histamine receptors, namely, H2-histamine receptors in the
human heart. In the human heart, unlike in some animal hearts, H2-
histamine receptors primarily mediate the positive inotropic or
positive chronotropic effects of exogenous or endogenous
histamine (reviews: Neumann et al., 2021a; Neumann et al., 2022;
Neumann et al., 2023d). To study human H2-histamine receptors in
a small animal model, we generated transgenic mice that overexpress
the H2-histamine receptors in the heart (H2-TG), wherein histamine
increased the force of contraction (Gergs et al., 2020; Neumann et al.,
2021b; Neumann et al. 2021c; Neumann et al. 2021d; Neumann et al.
2021e; Gergs et al., 2021). Similar to serotonin, histamine does not
increase the force of contraction in isolated cardiac preparations
from wild type mice (Gergs et al., 2019).

5-HT4-serotonin and H2-histamine receptors share a common
signal transduction system (Figure 1B). Both receptors are located
on the outside of sarcolemma in cardiomyocytes and they couple to
stimulatory G-proteins. Thereby they increase the activity of the
adenylyl cyclases in the sarcolemma. Finally, both receptors lead to
increased production of 3′, 5′-cyclic adenosine monophosphate
(cAMP). This cAMP activates cAMP-dependent protein kinases
in the cytosol of the cardiomyocytes. The cAMP is eventually
degraded and inactivated by the action of phosphodiesterases.
After stimulation of 5-HT4-serotonin and H2-histamine
receptors, several target proteins in many compartments of the
cardiomyocyte are phosphorylated and usually activated. A key role
is played by the phosphorylation of the L-type Ca2+ channel (LTCC)
in the sarcolemma. This leads to increased entering of trigger Ca2+

into the cardiomyocytes. This trigger Ca2+ then releases Ca2+ from
intracellular stores in the sarcoplasmic reticulum (SR) and this Ca2+

activates the myofilaments. At the same time phosphorylation of
phospholamban in the SR comes about. This mechanism increases
the uptake rate of Ca2+ into the SR and this enhances relaxation of

the heart muscle but also leads to higher filling of Ca2+ into the SR
(Figure 1B). Thus, the next heart beat can be more vigorous because
more Ca2+ can be released by trigger Ca2+ from the SR (Neumann
et al., 2017; Neumann et al., 2022; Neumann et al., 2023c).

Except for LSD, all the drugs of interest occur naturally
(Table 1). They are found mainly in plants or moulds. Some
hallucinogenic compounds are present in high concentrations in
animals, such as frogs or even in humans. The present review of the
effects of the drugs of interest is limited to the mammalian heart,
more specifically the human heart.

The clinical use of this review will facilitate the safe usage of
the drugs of interest. This knowledge is essential because nearly
all drugs of interest have the potential to treat psychiatric
diseases. In addition, during “recreational use”, overdoses of
hallucinogenic drugs can occur. Then, it is helpful to have
guidance on what antidotes might make sense from a
pharmacological point of view.

Bufotenin

Exogenous or endogenous serotonin (5-hydroxytryptamine, 5-
HT) induces a positive inotropic effect, a relaxant effect, a positive
dromotropic effect, and a positive chronotropic effect in the human
heart via human 5-HT4-serotonin receptors (for reviews: Kaumann
and Levy, 2006; Neumann et al., 2017; Neumann et al., 2023a).
Studies on isolated porcine heart preparations have found that 5-HT
can increase force and frequency via porcine 5-HT4-serotonin
receptors (Kaumann, 1990; Villalón et al., 1990). In humans and
porcine but not in other mammalian hearts like mice, cats, rats, dogs,
or rabbits, 5-HT can augment force and beating rate via 5-HT4-
serotonin receptors (Kaumann and Levy, 2006; Neumann et al.,
2017; Neumann et al., 2023c; Neumann et al., 2023d).

TABLE 1 Sources of the hallucinogenic drug.

Source References

Bufotenin 1Toad skin 1Handovsky (1920)

2Brosimum acutifolium 2Moretti et al. (2006)

3Anandenanthera peregrina 3Ott (2001)

4Human body 4Forsström et al. (2001)

Ergometrine Fungi: Claviceps purpurea Dudley and Moir (1935)

Ergotamine Fungi: Claviceps purpurea Stange et al. (1998)

LSD: Lysergic acid diethylamide Chemical laboratory Hofmann (1959)

DMT: N,N-dimethyl-tryptamine 1Diplopterys cabreana 1,2McKenna et al. (1984a)

2Banisteriopsis caapi 3,4Brito-da Costa et al. (2020)

3Psychotria viridis

4Human brain

5-methoxy-N,N-dimethyltryptamine 1Toad skin 1Araujo et al. (2015)

2Banisteriopsis caapi 2McKenna et al. (1984b)

Psilocin Fungi: psilocybe Hofmann (1958), Hofmann (1959)

Psilocybin Fungi: psilocybe Hofmann (1958), Hofmann (1959)
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Bufotenin (5-hydroxy-dimethyltryptamine) is structurally
related to serotonin; it is a dimethylated (on the primary amine
atom) form of serotonin (Figure 1). Hence, it is not surprising that,
based on this similarity, bufotenin can bind to serotonin receptors
and activate them. Indeed, in vitro bufotenin binds to 5-HT2A- and
5-HT2C- serotonin receptors (Almaula et al., 1996). Agonist binding
to 5-HT2A-serotonin receptors might explain the hallucinogenic
effects of bufotenin (Titeler et al., 1988). Moreover, bufotenin binds
potently to 5-HT1A-, 5-HT1B- 5-HT1D-serotonin receptors (Dumuis
et al., 1988).

In this context of affinities to various serotonin receptors, it
seems necessary to discuss the possible detrimental effects of 5-
HT2B- serotonin receptor stimulation for the heart. There is
convincing evidence from cell culture work, animal studies,
clinical retrospective and case control studies that in principle
stimulation of 5-HT2B- serotonin receptor can induce
proliferation of fibroblasts in the mammalian heart. This
proliferation leads to abnormal thickening of leaflets of valves
and can take place. This thickening can occur in the mitral
leaflets, in tricuspid leaflets or on aortic cusps (Cosyns et al.,
2013). This alteration in the anatomy of valves in the human
heart can induce mitral insufficiency, tricuspid insufficiency or
aortic insufficiency. This drug-induced valvular thickening is
diagnosed by exclusion of other underlying pathologies (e.g.,
genetic defects or infections) and anamnesis of drug treatment by
using echocardiography. Such alterations of the mitral valve and/or
the aortic valve in the left heart are a burden to cardiac function and
can lead to congestive heart failure. Similar damage to the tricuspid
valves in the right heart will lead to pulmonary hypertension, like left
ventricular heart failure a potentially deadly disease. In principle,
any drug that stimulates 5-HT2B -serotonin receptors can have such
deadly consequences by the pathological pathway just mentioned
because the 5-HT2B- serotonin receptor in the leaflets can lead to
proliferation of local fibroblasts. Hence, bufotenin might damage the
function of cardiac valves. On the other hand, stimulation of 5-
HT2B- serotonin receptor probably has to be present for a prolonged
period of time and with a sufficiently high occupancy of the 5-HT2B-
serotonin receptor. Hence, if it were sufficient to treat patients for a
short period of (e.g., every 3 months) with small doses of
hallucinogenic drugs like bufotenine (smaller than 100 mg per os
or 10 mg parenterally: Ott, 2001), then the harm for the cardiac
valves could be acceptable (discussed in: McIntyre, 2023).

In this context, one should also mention effects of 5-HT on
human coronary arteries, and human pulmonary arteries, because
they may complicate therapy with hallucinogenic drugs. In brief,
there is convincing evidence that serotonin can lead to
vasoconstriction in coronary vessels (McFadden et al., 1991).
This can lead to or at least may worsen ischemic heart disease
because constriction of coronary arteries. This vasocontraction can
occur via stimulation of 5-HT2A-serotonin receptors (Kaumann
et al., 1994; Nilsson et al., 1999) and/or 5-HT1B-serotonin
receptors (van den Broek et al., 2002) will lead to less perfusion
of the heart. Likewise, pulmonary hypertension can be caused or
aggravated if drugs stimulate 5-HT2A- or 5-HT1B serotonin
receptors in human pulmonary arteries (Cortijo et al., 1997).
Indeed, bufotenin and most hallucinogenic drugs can activate to
5-HT2A-serotonin receptors and/or 5-HT1B-serotonin receptors
(Dumuis et al., 1988; Almaula et al., 1996) and thus they may

cause vasoconstriction. Whether this vasoconstriction occurs with
bufotenin in humans is unclear and might be worth further studies.

Bufotenin exerted positive chronotropic effects in isolated
spontaneously beating right atrial preparations from pigs,
mediated by porcine 5-HT4-serotonin receptors (Medhurst and
Kaumann, 1993). As far as we could find out, there are in the
literature no binding data of bufotenin to 5-HT4-serotonin
receptors. An interaction of bufotenin to 5-HT4-serotonin
receptors is likely from the following experiments: bufotenin
increased force of contraction and beating rate only in isolated
left or right atrial preparations, respectively, of transgenic mice
where the human 5-HT4-receptor was overexpressed in the heart
(5-HT4-TG, Neumann et al., 2023e; Table 4). These effects were
antagonized by 5-HT4 serotonin receptor antagonists (Neumann
et al., 2023e). Moreover, in isolated human right atrial strips, which
were paced to induce contraction, bufotenin likewise increased force
of contraction and these effects were antagonized in transgenic mice
by 5-HT4 serotonin antagonists (Neumann et al., 2023e; Table 4).

Bufotenin was first isolated to purity in Prague from toad skin
(in Latin, Bufo means toad, Handovsky, 1920). The correct
structural formula (they called it “5-Oxy-indolyl-äthyl-
dimethylamin”) was found later in Munich and confirmed by
synthesis (Wieland et al., 1934; Hoshino and Shimodaira, 1935,
review; Chilton et al., 1979).

Bufotenin occurs not only in animals like toads but also in
plants. Shamans in French Guiana used latex from Brosimum
acutifolium to obtain hallucinogenic mixtures containing
bufotenin (Moretti et al., 2006). Interestingly, bufotenin has been
found in toads and the human body (Forsström et al., 2001). It might
be formed enzymatically using a methyltransferase from serotonin
(Figure 1) in human neuronal cells (Kärkkäinen et al., 2005).
Bufotenin may underlie the fairy tale of the Frog Prince by the
Grimm brothers (Siegel and McDaniel, 1991). In the fairy tale,
kissing frogs may have released bufotenin from the frog’s skin
(probably a toad). This bufotenin may have entered the human
brain and led to hallucinations. Under these conditions, one might
have confused the frog with a prince (Siegel and McDaniel, 1991).

Recently, a novel indolethylamine-N-methyltransferase in the
skin and parotid glands of some toad species has been cloned (Chen
et al., 2023). This enzyme probably underlies the production of
bufotenin in the skin of particular toad species (e.g., Bufo marinus,
Bufo Bufo) that are known to be used as sources of bufotenin (Chen
et al., 2023). This novel enzyme is absent in common frogs (Chen
et al., 2023). In toads, biosynthesis starts with tryptophan, which is
hydroxylated to 5-hydroxytryptophan and then decarboxylated,
leading to serotonin. The primary amine in serotonin is first
methylated to monomethylserotonin. This secondary amine is
then methylated again to the tertiary amine N,N-
dimethylserotonin (bufotenin, Chen et al., 2023).

In the first paper on pure bufotenin, bufotenin was studied for its
cardiac effects. While bufotenin (at high doses) did not alter the
force of contraction in the isolated frog heart, it reduced the heart
rate (Handovsky, 1920). Intravenous injection of bufotenin in dogs,
cats, or rabbits increased blood pressure, but shortly after the
injection, the animals died (Handovsky, 1920). However, these
data are questionable. As noted above, no functional cardiac 5-
HT4 serotonin receptors were present in these animals (dog: Chiba,
1977, cat and rabbit; Trendelenburg, 1960). The increase in blood
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pressure is likely not due to an increase in cardiac output, but
probably due to peripheral vasoconstriction following stimulation of
vascular arterial smooth muscle 5-HT2A-serotonin receptors in
these animals.

Moreover, bufotenin can raise the phosphorylation state of
phospholamban (Neumann et al., 2023e). Increased
phosphorylation of phospholamban (Tada et al., 1976) leads to
reduced time to relaxation and an increased rate of tension
relaxation in atrial and ventricular preparations from 5-HT4-TG
mice. Phosphorylated phospholamban de-inhibits the activity of the
Ca2+ pump (Figure 1B) in the sarcoplasmic reticulum, thus
increasing the rate at which calcium cations are pumped from
the cytosol into the sarcoplasmic reticulum; fewer calcium
cations bind to the myofilaments, and myofilaments relax faster
(Hamstra et al., 2020).

This cardiac effect of bufotenin might play a clinical role
(Table 2). Bufotenin can be taken orally to induce hallucinogenic
effects, but perorally, high doses of bufotenin must be given in
humans, because bufotenin seems to undergo a strong first-pass
effect. Indeed, much higher peroral doses (100 mg) of bufotenin
than parenteral doses (10 mg) are needed in humans to bring about
hallucinogenic effects (self-experimentation: Ott, 2001).

In humans, bufotenin can be found physiologically in plasma.
One might ask whether this bufotenin is clinically relevant. Indeed,
plasma levels of bufotenin were elevated in patients with autism and
schizophrenia (Emanuele et al., 2010; Table 3). On the one hand, one
might hypothesise that these high levels of bufotenin might explain
some of the hallucinations accompanying psychiatric diseases. On
the other hand, elevated levels of bufotenin may lead to tachycardia
in untreated patients. If that were the case, one could reduce the
bufotenin-induced tachycardia with 5-HT4-serotonin receptor
antagonists such as tropisetron or piboserod.

Bufotenin has some beneficial effects on depressive patients
(Uthaug et al., 2019). However, there is currently no accepted
clinical indication for bufotenin. Over several decades, bufotenin
and frog skins or plants containing bufotenin have sometimes been
used as “recreational drugs” and have led to intoxication
(Chamakura, 1994; Shen et al., 2010; Davis et al., 2018).

Bufotenin is an important active metabolite of the
hallucinogenic compound 5-methoxy N,N-dimethyltryptamine
(found in plants, vide infra). Bufotenin might be formed by
metabolism in humans taking 5-methoxy N,N-
dimethyltryptamine (Shen et al., 2010). One could treat severely
ill patients with tropisetron, typically regarded as a 5-HT3-serotonin
receptor antagonist. However, the tropisetron also blocks human 5-
HT4-serotonin receptors (Kaumann et al., 1990) and is approved for
use in humans in many countries. Alternatively, one can use the
specific 5-HT4-serotonin receptor antagonist piboserod (Kjekshus
et al., 2009), which has been used in at least one heart failure study in
humans; thus, it might be used off-label, should the need arise in
the patient.

Lysergic acid diethylamide

Lysergic acid diethylamide (in the original publications in
German: Lysergsäurediäthylamid: thence LSD) (LSD, Figure 1A)
is an ergot derivative developed as an analeptic agent (review:
Nichols, 2018). However, LSD turned out to be a hallucinogenic
drug when Albert Hoffmann, the chemist at the Sandoz
pharmaceutical company in Basel, Switzerland, who had
synthesised LSD in 1938 AD, inadvertently ingested around
10–30 µg of LSD in 1943 (review: Nichols, 2018). At that time,
LSD was the most potent hallucinogenic drug. LSD was first

TABLE 2 Clinical studies and tested indications of the hallucinogenic drug.

Clinical studies in
“ClinicalTrials.gov”

Some tested indications for
the drugs in
“ClinicalTrials.gov”

Remarks “Pubmed“
hits

Bufotenin 5 (as metabolite of 5-Me-DMT) Pharmacokinetics, Depression, Autism Studied in depression Uthaug et al.
(2019)

634

Ergometrine 9 Postpartum hemorrhage 2,781

Ergotamine 0 migraine 13,369

LSD: Lysergic acid
diethylamide

8 Pharmacokinetics, Cluster headache,
Palliative care

Studied in alcoholism, depression
Passie et al. (2008); Bogenschutz
et al. (2013)

5,638

DMT: N,N-dimethyl-
tryptamine

0 Religious ceremonies Brito-da
Costa (2020)

42

5-methoxy-N,N-
dimethyltryptamine

10 Pharmacokinetics, Depression Religious ceremonies Brito-da
Costa (2020)

578

Psilocin 1 Comparison with psilocybin Depression: Ross et al. (2016) 275

Psilocybin 130 Pharmacokinetics, depression, terminal
illness, concussion headache, migraine,
phantom limb pain, treatment of cocaine
addiction, alcoholism, smoke cessation,
interaction with serotonin reuptake
inhibitors in depression, anorexia nervosa,
post traumatic stress, binge eating, Morbus
Alzheimer, burn out

Depression: Ross et al. (2016) 1834
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published in a scientific journal in 1947 (Nichols, 2018). Sandoz
produced and gave LSD out to psychiatrists in Europe and the
United States of America to look for potential clinical applications
(Nichols, 2018). LSD (Delysid®) was studied in the 1960s in
psychiatry with the hope of better understanding the molecular
mechanisms of how psychosis is caused and to help with a
psychotherapeutic approach to the patient (Nichols, 2018).
However, from that time on, LSD was primarily used in illicit
ways and, therefore, was practically removed from the legitimate
drug market worldwide (Nichols, 2018). Currently, there is renewed
interest in psychiatry in studying LSD in some contexts. The
hallucinogenic effects of LSD are thought to be caused by the
activation of 5-HT2A-serotonin receptors in the brain (Preller
et al., 2017; review; Liechti et al., 2017), as with the other drugs
of interest in this review.

In ligand binding studies, LSD had the following rank or of
potencies: 5-HT1A- >5-HT2A- >5-HT2C- >5-HT2B- serotonin
receptors. This rank order should be a little bit more specified:
by far the highest affinity was displayed by LSD to 5-H1A-serotonin
receptors and also the affinity at 5-HT2A-serotonin receptors and 5-
HT2C- serotonin receptors is in the nanomolar concentration range.
In contrast, the affinity for the 5-HT2B- serotonin receptor is much
lower with about 10 µM (Rickli et al., 2016). Recent data also noted
that LSD has an affinity for 5-HT4-serotonin receptors and H2-
histamine receptors (around 10 µM for these receptors: Lewis et al.,
2023). From these binding data at 5-HT2B-serotonin receptors one
would assume that LSD can activate this receptor in the patient. This
might lead valvular heart disease (vide supra). However, others
claimed that any proofs for valvular damage through LSD from
clinical studies is currently lacking (Tagen et al., 2023). However,
this valvular side effect should be looked for in prospective
clinical trials.

In isolated cardiac preparations, LSD was found to be a partial
agonist at cardiac H2-histamine receptors in rabbit and guinea pig
cardiac preparations (Angus and Black, 1980; Table 4). This
conclusion was based on the following findings: LSD at low
concentrations increased and at high concentrations reduced the
beating rate in isolated right atrial preparations from rabbits in a

cimetidine (a H2-histamine receptor antagonist)-sensitive fashion
(Angus and Black, 1980). Moreover, LSD antagonised the positive
inotropic effect of histamine in isolated guinea pig papillary muscles
(Angus and Black, 1980). Currently, LSD is used primarily for
“recreational” and “personal” purposes (Araújo et al., 2015),
while some medical studies on its use in the treatment of
alcoholism and depression are on record (Bogenschutz, 2003;
Passie et al., 2008). Also, in Basel, Switzerland, from 2021 to
2023, a trial was recruited to test LSD versus placebo for the
treatment of cluster headache pain (ClinicalTrials.gov Identifier:
NCT03781128, Table 2).

Low doses of LSD, given through the mouth in a solution of
0.5 mL volume (up to 26 µg) in healthy volunteers (male and female)
led to a significant increase in systolic blood pressure, but not in
heart rate or diastolic blood pressure. The missing effect of LSD in
diastolic blood pressure and heart rate (mean values were higher)
could be due to the low dosage of LSD. Indeed, in another study with
more LSD, heart rate and diastolic blood pressure was found to be
elevated: In this clinical study 200 µg LSD, given as an oral solution,
increased systolic and diastolic blood pressure and heart rate in
healthy subjects (male and female). These effects peaked at about
1 hour after drug application and returned to initial values within
about 12 h (Holze et al., 2022). Under these conditions the peak
plasma concentration of LSD was given as 25 ng/mL (Holze et al.,
2022). In another clinical study from Switzerland, 100 µg of LSD was
taken orally, there was an increase in body temperature, blood
pressure, and heart rate compared to a placebo (Holze et al.,
2020). In these probands, peak plasma concentrations of LSD
ranged between 0.99 and 2.9 ng/mL (3.06–8.9 nM: Holze et al.,
2020). In another study, the proportionality of plasma
concentrations and doses taken per os for LSD was reported; a
plasma half-life of 2.6 h for LSD and a first-order elimination
pharmacokinetic behaviour of LSD were detected (Dolder et al.,
2017). The use of nuclear magnetic imaging in the brain has
deepened our understanding of the molecular actions of LSD in
the human brain (Kaelen et al., 2016). Evidence for the binding of
LSD to 5-HT2A-serotonin receptors may result this work (Kaelen
et al., 2016).

TABLE 3 “Therapeutic” and toxic plasma concentrations of the hallucinogenic drug in humans.

Therapeutic Toxic References

Bufotenin 8–16 nM Active metabolite of 5-Me DMT Emanuele et al. (2010) (endogenous concentrations)

Ergometrine 4 nM de Groot et al. (1993)

Ergotamine 0.69 nM1 15 nM2 1Sanders et al. (1986)

2Stange et al. (1998)

LSD: Lysergic acid diethylamide 13–9 nM 233 μM 1Holze et al. (2020)

2Mardal et al. (2017)

DMT: N,N-dimethyl-tryptamine 10.38 µM 1Strassman et al. (1994)

20.3 nM 2Good et al. (2023)

5-Me DMT: 5-methoxy N,N-dimethyltrypta-mine 4 nM Reckweg et al. (2021)

Psilocin 1 0.1 µM 20.15 µM 1Madsen et al. (2019)

2Lim et al. (2012)
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At the time of this review, 122 studies of LSD had started, were
ongoing or were going to be started (clinical.trials.gov, Table 2). In
some of these studies, LSD was tested for the treatment of cluster
headaches or depression. Hence, it might be of clinical interest that
LSD can stimulate human H2-histamine receptors in the heart. A
resultant tachycardia would be detrimental, especially by reducing
the oxygen supply to the heart. These effects are even more overt in
the presence of phosphodiesterase (PDE) inhibitors. In everyday life,
PDEs can be inhibited by theophylline (in tea) or caffeine (in coffee
beverages or power drinks). In patients, PDEs are inhibited when
taking milrinone or levosimendan for heart failure or rolipram for
asthma treatment. In such patients, special caution with LSD is
warranted. One would recommend H2-histamine receptors and 5-
HT4-serotonin receptor antagonists to treat tachycardia.
Conceivably, prophylactic treatment, at least in patients suffering
from angina pectoris with cimetidine, is indicated. This would not
block the potential therapeutic agonist action of LSD on 5-HT2A

serotonin receptors or other serotonin receptors in the brain.
Intoxications with LSD are still being recorded (Liakoni et al.,

2015; Li et al., 2019). In one series, the highest plasma concentration
of LSD during intoxication amounted to 5.9 nM (McCarron et al.,
1990). Brain tissue concentrations of up to 33 µM LSD (and
metabolites) have been reported (Mardal et al., 2017), which are
well in the range of the concentrations needed to elicit contractile
effects in isolated cardiac preparations from H2-TG or the isolated
human atrium (Gergs et al., 2023). Cardiovascular alterations during
LSD intoxication include sinus tachycardia and hypertension (Blaho
et al., 1997). One can probably recommend that the treatment of

LSD intoxication should include an intravenously applied H2-
histamine receptor antagonist, such as cimetidine or ranitidine.

LSD binds to many receptors (e.g., several isoforms 5-HT-
receptors) (Roth et al., 2002). Notably, LSD binds as an agonist
to 5-HT2A- and 5-HT2B- serotonin receptors and the crystal
structure of LSD bound to 5-HT2B- serotonin receptors is now
known (Wacker et al., 2017). LSD led to tachycardia in users (e.g.,
Holze et al., 2020). Indeed, we noted contractile effects in atrial and
ventricular preparations of LSD in H2-TG and 5-HT4-TG (Gergs
et al., 2023). In isolated human right atrial preparations, LSD
increased the force of contraction via H2- and 5-HT4-serotonin
receptors (Gergs et al., 2023). However, it is currently not known
whether LSD increases ventricular function in the human heart. This
is an interesting question to study. In the ventricles of humans, H2-
histamine receptors are present and functional in failing human
hearts (Bristow et al., 1982; Baumann et al., 1983; Matsuda et al.,
2004). 5-HT4 serotonin receptors are likewise expressed in the
human ventricle. However, 5-HT increased force only in isolated
failing human ventricles, but not in isolated non-failing ventricles
(review: Neumann et al., 2023c). In non-failing ventricular human
preparations, serotonin only increased the force of contraction when
initially a phosphodiesterase inhibitor was given (Neumann et al.,
2023c; Table 4).

Hence, it is likely that LSD stimulates force in the ventricle, but
this remains a hypothesis. In the absence of a PDE inhibitor, LSD
concentration dependently reduced the force of contraction (Jacob
et al., 2024). These effects may be due to the antiadrenergic effects of
LSD. Indeed, early binding data have reported an affinity of LSD to

TABLE 4 Cardiac effects in animal and human cardiac preparations of the drugs of interest.

Animal studies Human studies References

Bufotenin Positive chronotropic effect in isolated porcine atrial
preparations via 5-HT4 receptors

1, increase in force
of contraction and in beating rate via 5-HT4

receptors in pigs2 and 5-HT4-TG
3

Increase in force of contraction in isolated human
right atrial preparations via 5-HT4 receptors

3

1Medhurst and Kaumann
(1993)

2Villalon et al. (1990)

3Neumann et al. (2023e)

Ergometrine Increase in left ventricular force of contraction in
isolated perfused guinea pig heart via H2 receptors

1,
increase in force of contraction and beating rate in
atrial preparations only via H2 receptors (H2-TG)

2

Increase in force of contraction in isolated human
right atrial preparations only via H2 receptors

2

1 Bongrani et al. (1979)

2 Jacob et al. (2023a)

Ergotamine Increase in force of contraction and beating rate in
atrial preparations via both H2- and 5-HT4-
receptors (H2-TG, 5-HT4-TG)

Increase in force of contraction in isolated human
right atrial preparations only via H2-receptors

Jacob et al. (2023b)

LSD: Lysergic acid diethylamide Increase in force of contraction in guinea pig and
rabbit ventricular preparations via H2 receptors

1,
increase in force of contraction and in beating rate
in atrial preparations via both H2- and 5-HT4-
receptors (H2-TG, 5-HT4-TG)

2

Increase in force of contraction in isolated human
right atrial preparations via both 5-HT4-receptors
and H2 receptors

2

1Angus and Black (1980)

2Gergs et al. (2023)

DMT: N,N-dimethyl-tryptamine Increase in force of contraction and beating rate in
atrial preparations via 5-HT4 receptors (5-HT4-TG)

Increase in force of contraction in isolated human
right atrial preparations via 5-HT4 receptors

Dietrich et al. (2023)

5-methoxy-N,N-
dimethyltryptamine

Positive chronotropic effect in isolated porcine right
atrial preparations via 5-HT4 receptors

1, increase in
force of contraction and beating rate in atrial
preparations via 5-HT4 receptors (5-HT4-TG)

2

Increase in force of contraction in isolated human
right atrial preparations via 5-HT4-receptors

2

1Medhurst and Kaumann
(1993)

2 Dietrich et al. (2023)

Psilocin Increase in force of contraction and beating rate in
atrial preparations via 5-HT4 receptors (5-HT4-TG)

Increase in force of contraction in isolated human
right atrial preparations via 5-HT4 receptors

Dimov et al. (2023)

Psilocybin Increase in force of contraction and beating rate in
atrial preparations via 5-HT4 receptors (5-HT4-TG)

Increase in force of contraction in isolated human
right atrial preparations via 5-HT4 receptors

Dimov et al. (2023)
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β-adrenergic receptors (Dolphin et al., 1978). It was noted that after
pretreatment with the β-adrenoceptor agonist isoprenaline, LSD
concentration dependently reduced the force of contraction in the
isolated human atrium (Jacob et al., 2024). Similarly, Angus and
Black (1980) found that in guinea pig papillary muscles, LSD
antagonised the positive inotropic effects of histamine. Likewise
LSD inhibited cAMP formation that was stimulated by histamine
(Green et al., 1977). Consistent with the general concept that LSD is
a partial agonist at serotonin receptors, after prestimulation with
serotonin, LSD exerts a concentration-dependent negative inotropic
effect in human right atrial preparations (Jacob et al., 2024). In
summary, LSD behaves as a partial agonist in histamine and
serotonin receptors and as an antagonist at β-adrenergic
receptors in the human isolated atrium. The clinical
consequences of this warrant further investigation.

Ergotamine

Ergotamine and LSD share the lysergic acid moiety (Figure 1A).
Hence, it may not be surprising that ergotamine, like LSD, can bind
to 5-HT2A-serotonin receptors in the brain. As with LSD,
ergotamine can lead to hallucinations (Gulbranson et al., 2002;
Silberstein and McCrory, 2003). Ergotamine can also stimulate
peripheral 5-HT2A-serotonin receptors but also, as a partial
agonist, vasoconstrictory α1-adrenoceptors (review: Silberstein
and McCrory, 2003). Ergotamine is found in fungi like Claviceps
purpurea that grow on cereals and still causes arterial constrictions,
but possibly also hallucinations in consumers of cereals (e.g., Stange
et al., 1998; Liegl and McGrath, 2016; Cervellin et al., 2020;
Huybrechts et al., 2021). Moreover, ergotamine is also degraded
by the cytochrome CYP2D6; some cases of ergotamine intoxication
have been reported when patients are additionally treated with drugs
that are inhibitors of CYP2D6 (Mohamedi et al., 2021).

Ergotamine is also binding to 5-HT2B- serotonin receptors
(Fitzgerald et al., 2000). This binding to and activation of 5-
HT2B- serotonin receptors may explain why ergotamine was the
first drug reported to lead to valvular heart disease (review:
Ledwos et al., 2022). One has argued the ergotamine was
given in these cases continuously over a long time, e.g., to
migraine patients. This long lasting stimulation of 5-HT2B-
serotonin receptors for the reasons discussed above (section
on bufotenin) may explain these detrimental effects of
ergotamine (Ledwos et al., 2022).

Ergotamine is formed in fungi from lysergic acid to which
alanine, proline and phenylalanine are covalently linked
(Jamieson et al., 2021). No inotropic effect of ergotamine was
found in isolated paced cat papillary muscles (Rabinowitz et al.,
1975). However, this is a species problem because H2-histamine
receptors and 5-HT4-serotonin receptors are functionally absent in
the cat heart (Laher and McNeill, 1980, review; Neumann et al.,
2021a). In contrast, a close derivative of ergotamine, called
ergometrine (Figure 1), has been shown to elicit an increase in
force in the guinea pig heart, which contains functional H2-
histamine receptors (review: Neumann et al., 2021a). In
intoxications (Table 3), much high plasma levels of ergotamine,
such as 0.015 µM, have been reported (Stange et al., 1998), which
could be agonistic in cardiac preparations.

Interestingly, ergotamine was an agonist at the human H2-
histamine and serotonin 5-HT4-receptors in the transgenic
mouse atrium (Jacob et al., 2023b; Table 4). This is not without
precedence. Ergotamine acts on many G-protein coupled receptors
(Silberstein and McCrory, 2003). However, In isolated human right
atrial preparations ergotamine increased force of contraction only
via H2-histamine receptors (Jacob et al., 2023b). As with LSD, one
noted with ergotamine alone a time- and concentration-dependent
negative inotropic effect. This negative inotropic effect of
ergotamine is not due to the blocking of β-adrenergic receptors
(Jacob et al., 2024).

Ergometrine (ergobasine, ergonovine
and ergotocine)

Ergometrine is on the list of essential drugs of the World Health
Organisation (WHO, 2021). Like ergotamine, ergometrine is closely
related to LSD (Figure 1). In LSD, the primary lysergic acid molecule
contains two diethyl substituents in the amino group of its amide
derivative (Meneghetti et al., 2020). In the molecule of ergometrine,
there is at this position only one substituent, namely, an
isopropanolol group (lysergic acid beta-propanolamine: Stoll,
1936; Stoll and Burckhardt, 1935; Thomson, 1935).

As mentioned above, in the ergoline ring that is part of the
lysergic acid structure, one can discern structural elements of at least
four neurotransmitters: serotonin, dopamine, noradrenaline and
histamine (Figure 1A). Hence, the agonistic or antagonistic
action of ergometrine on the receptors of these four
neurotransmitters can be predicted. These four neurotransmitters
use more than one receptor. As a result, a broad spectrum of action
via diverse receptors is expected with ergometrine and is indeed a
clinical and experimental observation. Ergometrine can stimulate
α1-and α2-adrenoceptors, leading to vasoconstriction in rats
(Kalkman et al., 1982). Moreover, ergometrine stimulates 5-HT1-
serotonin receptors, which can induce vasoconstriction (Bai et al.,
2004). Ergometrine can also act as a partial agonist at 5-HT2A

serotonin receptors (Hollingsworth 1988. Stimulation of these HT2A

serotonin receptors in humans can lead to vasoconstriction
(Kaumann et al., 1994; van den Broek et al., 2002). If resistance
vessels in the periphery constrict, hypertension would follow. If
vasoconstriction via HT2A serotonin receptors occurs in the
coronary arteries, angina pectoris can follow (Kaumann and
Levy, 2006). Hence, several serotonin receptors alone or
combined could explain why ergometrine can cause
vasoconstriction.

Peripheral vasoconstriction due to ergometrine has probably
been noted since the Middle Ages in Europe (review: Grzybowski
et al., 2021). Ergometrine constricts the arteries of the legs, arms, and
coronary arteries in susceptible patients. This detrimental effect is
sometimes used for diagnostic purposes in cardiology. In some
countries, ergometrine is given to intentionally induce contraction
of the coronary arteries. In this way, patients with variant angina or
“Prinzmetal angina” can be better diagnosed (Romagnoli et al., 2005;
Koizumi et al., 2006; Sueda et al., 2017; Picard et al., 2019).

Interestingly, there are cases in which ergometrine has probably
induced atrial fibrillation in postpartum women (Birch et al., 2019).
These arrhythmias could be due to the stimulation of receptors, as
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ergometrine binds to and stimulates human H2-histamine and 5-
HT4-serotonin receptors (Jacob et al., 2023a) and because H2-
histamine and 5-HT4-serotonin receptors can cause cardiac
arrhythmias (review: Neumann et al., 2021a; Neumann et al., 2023c).

As mentioned above, ergometrine is agonistic at 5-HT2A

serotonin receptors (Hollingsworth et al., 1988). This interaction
in the brain may lead to hallucinations (animal studies: Balsara et al.,
1986, humans; Ott and Neely, 1980). In patients, intoxication with
ergometrine is rare. However, there are case reports that imply the
misuse of ergometrine-containing plants. Seeds of the Hawaiian
baby woodrose (argyreia nervosa) led to hallucinations in humans
(Klinke et al., 2010).

Ergometrine stimulates H2-histamine receptors in guinea pig
perfused hearts (Bongrani et al., 1979; Table 4). Moreover,
ergometrine increased force of contraction and beating rate in
left or right atrial preparations from H2-TG and from 5-HT4-TG
via human H2-histamine receptors and 5-HT4-serotonin receptors
(Jacob et al., 2023a). However, ergometrine was more effective via
H2-histamine receptors than via 5-HT4-serotonin receptors (Jacob
et al., 2023a). In addition, ergometrine via H2-histamine receptors
can increase the force of contraction in isolated human right atrial
preparations if a phosphodiesterase inhibitor is present but only via
H2-histamine receptors and not via 5-HT4-serotonin receptors
(Jacob et al., 2023a). Like ergotamine and LSD, ergometrine
induced (in the absence of a phosphodiesterase inhibitor) a
negative inotropic effect (Jacob al. 2023a).

Phosphodiesterases degrade cAMP and thus inactivate cAMP.
The most relevant phosphodiesterase in the human heart is called
phosphodiesterase III (Kamel et al., 2023). If this phosphodiesterase
III is inhibited by milrinone or cilostamide, then the effect of cAMP
producing pathways is amplified because less cAMP is inactivated
and thus more cAMP is functional to lead to positive inotropic
effects (Feldman et al., 1987). Thus, inhibition of phosphodiesterases
is sometimes used to amplify receptor mediated positive inotropic
effects in human cardiac preparations.

We noted that this negative inotropic effect of ergometrine is
similar to that of LSD and due to antagonistic action at β-
adrenoceptors (Jacob et al., 2024). Moreover, normal therapeutic
peak plasma concentrations of ergometrine (used in gynaecology)
are 4 nM (Table 3) and are thus too low to affect contractile
functions (Jacob et al., 2023a). In cases of intoxication with
ergometrine or ergometrine-containing extracts, higher
ergometrine concentrations might be active on the heart.

N,N-dimethyltryptamine (DMT)

N,N-dimethyltryptamine is structurally related to serotonin (5-
hydroxytryptamine) because it is a substituted tryptamine derivative
with methyl moieties at the aliphatic amino group. Hence, it is not
surprising that, based on this similarity to serotonin, N,N-
dimethyltryptamine can bind to serotonin receptors. Agonist
binding to 5-HT2A-serotonin receptors is thought to explain the
hallucinogenic effects of N,N-dimethyltryptamine (Titeler et al.,
1988). N,N-dimethyltryptamine exerted positive chronotropic
effects in isolated spontaneously beating hearts from rabbits
(Fozard and Ali, 1978). However, the contractile effects of 5-HT
in rabbit atria are not mediated by 5-HT4-serotonin receptors but by

the release of noradrenaline (Trendelenburg, 1960). Hence, the
effects of DMT in rabbit hearts were not 5-HT4-serotonin
receptor-mediated.

N,N-dimethyltryptamine occurs in many plants (Rätsch, 2015)
and is used as a recreational psychedelic drug (global prevalence
studied by Winstock et al., 2014) and even for ritual or religious
purposes (McKenna et al., 1984a, review; Gable, 2007). DMT was
found in the leaves of the plant Diplopterys cabrerana in Ecuador
and Colombia (Ott, 1999; Brito-da Costa et al., 2020). However,
DMT is also synthesised in the human brain and may be a
neurotransmitter in humans (review: Carbonaro and Gatch,
2016). DMT was initially synthesised out of sheer chemical
curiosity without studying biological responses in humans
(Manske, 1931). In some species of toads, DMT was also
detected. As in other animals, tryptophan is decarboxylated to
tryptamine in toads. The decisive next step is catalysed by the
high turnover rates of a particular enzyme in some species of
toads (as mentioned above for bufotenin). Tryptamine is then
sequentially methylated via monomethyltryptamine to DMT via a
newly cloned indolethylamine methylase found, especially in Bufo
marinus (Chen et al., 2023).

The leaves of the Psychotria viridis bush contain DMT. The bark
of a plant (Banisteriopsis caapi vine) and contains harmala alkaloids
which can inhibit the activity enzymemonoamine oxidase A (MAO-
A) (Brito-da-Costa et al., 2020). This mixture, called ayahuasca, has
been used since pre-Columbian times by indigenous tribes of the
Amazon Basin (Gable, 2007). Ayahuasca is used for medical
purposes (Brito-da-Costa et al., 2020). However, if extracts
containing only DMT were drunk, the DMT would be rapidly
inactivated by the MAO-A in the stomach lining. Therefore,
users included plant extracts (here: harmala alkaloids) that
contain MAO-A inhibitors (which at higher concentrations also
inhibit monoamine oxidase B (MAO-B) (reviewed in: Callaway
et al., 1999) when they used ayahuasca (McKenna et al., 1984a).

As with ayahuasca, pure DMT applied perorally alone does not
lead to hallucinations due to the strong first-pass effect. DMT is
metabolised in the gut and liver (McKenna et al., 1984a; Ott, 1999)
like perorally applied serotonin. However, MAO activity (an
example of a first-pass effect) of the gastrointestinal tract is
anatomically avoided, such as when smoking or via injection of
DMT or insufflation of DMT. In this case, DMT is active (Gable,
2007). Moreover, if the metabolism of DMT is impaired by drugs,
hallucinogenic effects will occur.

In many countries, DMT use is restricted out of fear of misuse.
One can argue that the beneficial effects of DMT, for instance, in
psychiatric patients, might be considerable because the toxicity of
DMT is low, and few deaths from DMT have been reported (Brito-
da-Costa et al., 2020). The DMT content in Psychotria viridis bush
and of β-carboline alkaloids in Banisteriopsis caapi vine ranges from
3–9.5 or 0.05%–1.95%mg/g dry weight, respectively, indicating high
variability of doses taken and thus of pharmacological outcome
(McKenna et al., 1984a; Callaway et al., 1996; Callaway et al., 1999;
Callaway et al., 2005). Ayahuasca contains 0.14–0.6 mg/mL, equal to
a total daily dose of 33–36 mg (Gable, 2007). As expected, injection
of DMT leads to cognitive effects faster than taking ayahuasca
(10 min versus 60 min), and the psychological effects are more
potent due to a higher peak plasma concentration of DMT after
injection of the same dose (Riba et al., 2015). Interestingly, some
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species of nutmeg, namely, Virola (Myristicaceae), contain high
concentrations of DMT and at least minute amounts of MAO-
inhibitory β-carbolines (McKenna et al., 1984b). A resin prepared
from the bark of Virola is used by autochthonous Amazon tribes for
hallucinogenic purposes (Plotkin and Schultes, 1990).

There is some debate as to the toxicity of DMT (Cameron et al.,
2018) The lethal dose of DMT in mice is around 47 mg/kg if given
intraperitoneally (Gable, 2007). Based on rodent studies, the dose
where half of the patient would die (LD50) of DMT in men is
estimated at 1.6 mg/kg given intravenously (Gable, 2007). There
have not been recorded deaths due to ayahuasca, but when
polypharmacy is used and pure 5-methoxy-DMT is added, at
least one human death is found in the literature (Sklerov et al., 2005).

In ligand binding studies, DMT had the following rank or of
potencies: 5-HT1A- >5-HT2A- > 5-HT2C- > 5-HT2B (3.4 µM)
serotonin receptors. The highest affinity was displayed by DMT
to 5-H1A-serotonin receptors with 75 nM. The affinity for 5-HT2C-
serotonin is much lower, about 420 nM (Rickli et al., 2016). DMT
inhibited transporters with most potent inhibition for serotonin-
transporter, then noradrenaline-transporter and lowest at
dopamine-transporter (52 μM, Rickli et al., 2016). For adrenergic
and dopaminergic receptors the rank order of affinity of DMT was:
α1-adrenoceptor > α2-adrenoceptor > D2-dopamine receptor > D1-
dopamine receptor (Rickli et al., 2016). From these binding data at 5-
HT2B-serotonin receptors, one would assume that DMT can activate
this 5-HT2B-serotonin receptor in the patient only under certain
conditions. This might lead valvular heart disease (vide supra).
However, others claimed that any proofs from clinical studies is
currently lacking for valvular damage by DMT (Tagen et al., 2023).
However, this side effect should be looked for in prospective
clinical trials.

Initial studies of pure DMT administered intramuscularly in
normal volunteers (0.7–1.1 mg/kg body weight) led to rapid
(5–10 min) brief (1 h) visual hallucinations, euphoria,
mydriasis, and an increase in blood pressure (Szára, 1956). In
a placebo-controlled study in humans, intravenous application of
0.3 mg/kg DMT led to peak DMT plasma levels (at about 5 min
after injection) of 70 ng/mL (about 0.38 μM, Table 3) and
increased heart rate and blood pressure. Additional results
included increased temperature, adrenocorticotropic hormone,
prolactin, and cortisol levels in plasma (Strassman et al., 1994).
Similarly, using ayahuasca preparations from the Amazon Basin
in human volunteers, the half-life of DMT was reported as about
260 min, with a volume of distribution of about 55 L per
kilogram. Temperature, heart rate, blood pressure, pupil
diameter, and breathing rate increased (Callaway et al., 1999).
The plasma concentration of harmine, another tryptamine
derivative, and MAO inhibitor peaked when drunk with
ayahuasca brew at about the same time as DMT, with a
similar volume of distribution (Callaway et al., 1996; Callaway
et al., 1999). These findings may mean that the plant contains not
only the hallucinogenic compound but also some other related
ingredient that improves the bioavailability of the hallucinogenic
compound, at least in part. DMT binds to 5-HT1A, 1B, 1D, - and 5-
HT2A, 5-HT2B, 5-HT2C, 5-HT6 - and 5-HT7 -serotonin receptors
(Deliganis et al., 1991; Brito-da-Costa, 2020). Binding to 5-HT4

serotonin receptors has never been reported to the best of
our knowledge.

5-methoxy-N,N,-dimethyltryptamine (5-
Me-DMT)

5-methoxy-N,N-dimethyltryptamine is also structurally related
to serotonin (5-hydroxytryptamine) because it is a substituted
tryptamine derivative (Figure 1). The molecule 5-methoxy-N,N-
dimethyltryptamine is found in plants and animals (Ott, 2001;
Araújo et al., 2015). Perorally given alone, 5-methoxy-N,N-
dimethyltryptamine is rapidly metabolised by monoamine
oxidases in the gastrointestinal tract to inactive metabolites (Shen
et al., 2010). Hence, it is used parenterally or in combination with
inhibitors of the enzymatic activity of monoamine oxidases (Shen
et al., 2010). These inhibitors could be antidepressant drugs, such as
tranylcypromine. There are also reports in the literature that pure 5-
methoxy-N,N-dimethyltryptamine was mixed with plant extracts
containing the natural monoamino oxidase inhibitor harmaline,
which eventually brought the user to the intensive care unit because
he was intoxicated (Brush et al., 2004).

In anaesthetised rats, 5-methoxy-N,N-dimethyltryptamine
reduced heart rate and blood pressure (Dabiré et al., 1987).
These effects have been suggested to be due to the stimulation of
5-HT1 serotonin receptors (Dabiré et al., 1987). The interpretation
of the data in rat might be made complicated because Dabiré et al.,
1987 used anaesthesia during their experiments. The anaesthesia
might have exerted powerful modulatory effects on cardiac
responsiveness. In contrast, we reported that 5-HT increased the
force of contraction in isolated rat hearts via 5-HT2A serotonin
receptors (Läer et al., 1998).

In pithed rats, 5-methoxy-N,N-dimethyltryptamine failed to
affect the beating rate of the heart (Dabiré et al., 1992).
Surprisingly, the rat heart contains inotropically functional 5-
HT2A serotonin receptors (Läer et al., 1998). The beating rate in
narcotised rats or neonatal rat cardiomyocytes could be increased by
serotonin (Higgins et al., 1981; Torres et al., 1996). In the isolated
blood-perfused rat heart, minor positive chronotropic effects but
significant inotropic effects of 5-HT were observed (Sakai and
Akima, 1979). These divergent findings might result from
methodological differences.

5-methoxy-N,N-dimethyltryptamine is found in plants and
toads. It is often prepared from the Sonoran Desert toad (a toad
with very high concentrations of 5-methoxy-N,N-
dimethyltryptamine in the parotids and the skin) in the southern
United States of America and Central and South America for ritual
or recreational purposes (Araújo et al., 2015). 5-methoxy-N,N-
dimethyltryptamine is a substrate for CYP2D6. CYP2D6 converts
5-methoxy-N,N-dimethyltryptamine to bufotenin (5-hydroxy-N,N-
dimethyltryptamine, see above), also a naturally occurring (in toad
skin or toad venom) hallucinogenic compound (review: Eichelbaum,
2003; Shen et al., 2010, vide supra). The expression of CYP2D6 is
genetically regulated. Thus, slow and fast metabolisers are expected
to experience longer or slower responses to 5-methoxy-N,N-
dimethyltryptamine (review: Eichelbaum, 2003; Shen et al., 2010).
Inhibitors of CYP2D6 are expected to prolong the hallucinogenic
effects of 5-methoxy-N,N-dimethyltryptamine, but this has not yet
been reported in patients.

One could speculate that the hallucinogenic effects of 5-
methoxy-N,N-dimethyltryptamine result, at least in part, from
bufotenine which is an active metabolite of 5-methoxy-N,N-
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dimethyltryptamine (Figure 1A). High concentrations of 5-
methoxy-N,N-dimethyltryptamine are found in the bark and
leaves of some species of the Virola plant (Myristicaceae,
nutmeg) in the federal state Amazonas of the Union of Brazil
(review: Ott, 2001). Extracts of the aforementioned plants were
used as snuffs in shamanic ceremonies in South America dating back
to pre-Columbian times (Ott, 2001). Preparations from species of
Virola contained varying amounts of 5-methoxy-N,N-
dimethyltryptamine (ranging from 0.017% to 1.57% of weight),
sometimes together with smaller amounts of DMT. Hence, 5-
methoxy-N,N-dimethyl-tryptamine is currently thought to be the
main hallucinogenic principle of Virola extracts or Virola-
containing pasts (Ott, 2001).

5-methoxy-N,N-dimethyltryptamine is psychoactive in
various routes of application: 5-methoxy-N,N-
dimethyltryptamine can be injected intravenously, can be
breathed as a vapour, used as a snuff or as an errhine. In
addition 5-methoxy-N,N-dimethyltryptamine can be given
intranasally or sublingually, but also perorally in humans (Ott,
2001; Table 3). Typically, 10 mg (0.14 mg(kg) of chemical pure 5-
methoxy-N,N,-dimethyltryptamine induced (in all the galenic
forms mentioned) a hallucinogenic effect in humans (self-
experiments: Ott, 2001). The addition of MAO inhibitors
(harmaline 3.7 mg and a higher free base) potentiated the
hallucinogenic effect of 5-methoxy-N,N-dimethyltryptamine,
at least when using them nasally, sublingually, and perorally
in humans (self-experiments: Ott, 2001). On the other hand, this
seems to imply that it is active on its own, regardless of the
additional presence of an MAO inhibitor, in contrast to DMT. In
the human heart, 5-methoxy-N,N-dimethyltryptamine is more
potent and effective than DMT in raising the force of contraction,
at least in isolated human atrial preparations (Dietrich et al.,
2023; Table 4).

Recreational drugs like N,N-dimethyltryptamine and 5-
methoxy-N,N-dimethyltryptamine have led to intoxications
(Brush et al., 2004). Our data might argue that these
intoxications can involve the heart and that cardiac side effects
could be treated by 5-HT4 receptor antagonists (Dietrich et al.,
2023; Table 4). From a practical point of view, one could treat
severely ill patients with tropisetron. Our data indicate that
tropisetron can reduce the cardiac effects of 5-methoxy-N,N-
dimethyltryptamine on human 5-HT4 serotonin receptors.
Currently, there are 14 studies of N,N-dimethyltryptamine and
two of 5-methoxy-N,N-dimethyltryptamine (clinical trials.gov,
Table 2). The main indication in these clinical trials was
depression. 5-methoxy-N,N-dimethyltryptamine is metabolised
by CYP2D6 (Shen et al., 2010). The potency of 5-methoxy-
N,N-dimethyltryptamine to increase the force of contraction
could be increased by pretreatment of human atrial
preparations from 5-HT4-TG in combination with the
phosphodiesterase inhibitor cilostamide (Dietrich et al., 2023).
As already mentioned above, In everyday life, PDEs can be
inhibited by theophylline (in tea) or caffeine (in coffee
beverages or power drinks). In patients, PDEs are inhibited
when taking milrinone or levosimendan for heart failure or
rolipram for asthma treatment. In such patients, special caution
is warranted with 5-methoxy-N,N-dimethyltryptamine, based on
our data (Dietrich et al., 2023; Table 4).

Psilocin

Psilocin (Table 1A) is chemically related to serotonin (Hofmann
et al., 1958; Hofmann et al., 1959). Psilocin and its precursor,
psilocybin, can be described as substituted indole derivatives,
namely, [3-(2-dimethylaminoethyl)-1H-indol-4-yl] dihydrogen
phosphate and 4-hydroxy-N,N-dimethyltryptamine, respectively
(Hofmann et al., 1958; Hofmann et al., 1959; Figure 1A). Psilocin
has a high affinity to many receptors, mainly 5-HT2A,B,C

(pdsp.unc.edu., Halberstadt and Geyer, 2011), but its affinity to
5-HT4 serotonin receptors has not yet been reported (McKenna
et al., 1990). The Food and Drug Administration (FDA) in the
United States of America has since given psilocybin a fast-track
designation for depression (Hesselgrave et al., 2021). Clinical studies
have found that psilocybin might be useful in treating alcoholism,
tobacco addiction, depression, and anxiety in cancer patients
(discussed in Geiger et al., 2018).

In ligand binding studies, psilocin had the following rank or of
potencies: 5-HT2A- >5-HT2C- >5-HT1A-serotonin-receptors (Rickli
et al., 2016). It has been recently suggested that psilocybin might be
chemically modified such that a derivate still acts as an
antidepressant but is devoid of unwanted hallucinogenic effects
which are currently thought to result from binding of psilocin to
5-HT2A-serotonin receptors (Hesselgrave et al., 2021). There was
practically no affinity of psilocin for the 5-HT2B-serotonin receptor
(larger than 20 μM, Rickli et al., 2016). From these binding data of
psilocin at 5-HT2B-serotonin receptors, one would assume that
psilocin cannot activate this receptor in the normal client or
patient. Likewise, there is not any proof from clinical studies for
valvular damage due to psilocin (Tagen et al., 2023). However, this
side effect should be looked for in prospective clinical trials. The
affinity of psilocin at others receptors probably does not play a
clinical role. For instance, the affinity at the most sensitive
adrenergic receptor, the α2-adrenoceptor amounts to 2.1 µM
(Rickli et al., 2016). Likewise, psilocin probably does not act
clinically via inhibition of the serotonin transporter (SERT)
activity because its affinity for SERT is too low. For instance, a
Ki value of 3.8 μM (Poulie et al., 2019) at SERT was reported. Such a
high concentration is not reached with therapeutic dosage of
psilocin (e.g., 0.1 µM plasma concentration of psilocin. Madsen
et al., 2019).

Comparing the structural formulae of 5-HT and psilocin, it is
obvious that psilocin is different in two regards: 1) psilocin contains
hydroxyl-moiety at C4, not C5 of the indole ring, and 2) the amine
function is doubly methylated (Figure 1A). Psilocybin is
dephosphorylated to psilocin by alkaline phosphatases that occur
in the blood and in many tissues (in vitro dephosphorylation of
psilocybin: Horita and Weber, 1962; in vivo dephosphorylation of
psilocybin in humans; Hasler et al., 1997). Psilocin is a structural
isomer of bufotenin, chemically 5-hydroxy-N,N-dimethyltryptamine,
and is hallucinogenic (vide supra, Figure 1A). Psilocybin is regarded as
a prodrug, and the active metabolite formed in humans is psilocin
(Hasler et al., 1997). Psilocybin and psilocin are found in many fungi
from the genus Psilocybe (review: Nichols, 2020). The name was
coined using ancient Greek, from the appearance of the fungi to
botanists: psilos (ψιλoς, naked) kube (κυβη, head) (Rätsch, 2015).
These fungi have been used in religious ceremonies since prehistoric
times in some parts of the world (Geiger et al., 2018). They have been
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called “magic mushrooms” because they can cause mind-altering
experiences like hallucinations. The active ingredients of the fungi are,
therefore, often classified as hallucinogenic drugs. The active
ingredients were identified by Albert Hofmann, a Swiss organic
chemist known as the inventor of LSD, in mushrooms from
Central Mexico; he also synthesised psilocin and psilocybin in vitro
(Hofmann et al., 1958; Hofmann et al., 1959).

These magic mushrooms and their ingredients are popular
recreational drugs in the United States of America. Moreover,
psilocybin was detected in several other fungi or moulds, namely,
Conocybe spp. Galerina steglichii, Inocybe spp. and Pluteus
spp. (Rätsch, 2015). Psilocybin is not produced in human cells,
but more generally in mammals, conceivably because crucial
synthetic enzymes are lacking in animals that are present in
fungi. The synthesis of psilocybin in fungi and the enzymes
involved its synthesis in fungi have been presented by others
(Geiger et al., 2018). In brief, in fungi, psilocybin is formed from
L-tryptophan, which is decarboxylated to tryptamine; the next steps
are hydroxylation, phosphorylation, and methylation, ending with
psilocybin (Fricke et al., 2017). Psilocin can be metabolised via side-
chain oxidation and the formation of glucuronides, and it has a half-
life of about 3 hours in humans (Geiger et al., 2018). The enzymes
involved have not yet been clearly described. However, if they are the
typical cytochromes described above, drugs that inhibit cytochromes
are predicted to prolong the half-life and, thus, the pharmacological
action of psilocin (Geiger et al., 2018). Not only psilocybin but also
MAO inhibitors, such as harmine, were formed at the same time.
This is relevant because psilocin is metabolised by MAO-A to the
inactive derivative 4-hydroxyindol-3-yl-acetaldedyde (Blei et al.,
2020). It has been speculated that for better protection against
predators, some fungi produce both hallucinogen (e.g.,
psilocybin) and compounds that prolong hallucinogenic (e.g.,
harmine) effects because inactivation is impaired (Blei et al., 2020).

In Europe and the United States of America, several attempts
were made in the 1960s to use psilocin in psychiatry. The Swiss
pharmaceutical company Sandoz supplied for these studies
psilocybin under the trade name Indocybin®. In such studies
therapeutic applications of psilocybin were sought after. For
instance, one asked whether psilocybin might be an appropriate
tool to explore traits of personality or might help in understanding
the mechanisms of a psychosis (Aldahaff, 1963; Charalampous et al.,
1963; Leary et al., 1963). These studies were regarded as failures
(review: Studerus et al., 2011) and psilocybin fell into disuse and was
removed from the legitimate market. In recent years, a renaissance
of psilocybin has occurred in terminally ill cancer patients and
people suffering from depression (Ross et al., 2016). In these later
studies, the effects of psilocybin on cardiovascular parameters in
patients were reported. They noted tachycardia (Ross et al., 2016).
However, the receptor mechanism has not been studied (Ross et al.,
2016). There are scarce data from the older literature on the cardiac
effects of psilocybin in animals. We found that both psilocin and
psilocybin exerted a positive inotropic effect in isolated human atrial
preparations (Dimov et al., 2023; Table 4). Hence, the
proarrhythmic effects reported in clinical studies of psilocin and
psilocybin might be due, in part, to their cyclic adenosine
monophosphate (cAMP)-increasing effects on the heart.

The so-called “magic mushrooms” contain psilocin and its
prodrug psilocybin; they are heat stable, meaning that they cannot

be inactivated by heating extracts of the mushrooms. Psilocybin
contains a phosphate at the phenolic part of the molecule, in
contrast to its less polar metabolite, hallucinogenic psilocin
(Figure 1). Therefore, psilocybin is more polar and thus soluble in
water than psilocin, which requires organic solvents. Unexpectedly,
we noted that psilocybin, usually regarded as an inactive precursor of
psilocin, was active in isolated human atrial preparations to raise force
of contraction (Dimov et al., 2023; Table 2). Hence, one may argue
that the 5-HT4 serotonin receptor binding part of both compounds
resides in the amino moiety of the drugs and not in the phenolic ring.
However, this speculation needs to be confirmed by direct analysis of
the crystal structure of psilocin and psilocybin bound to the
recombinant human 5-HT4 serotonin receptor in the future.

The hallucinogenic effects of psilocin are usually explained by its
agonistic potency (81 nM = Ki) at 5-HT2A serotonin receptors, which
is less than the potency of LSD at this receptor (Nichols, 2020).
Moreover, psilocin binds to 5-HT2C serotonin receptors (140 nM,
Nichols, 2020). A complete list of the affinities of psilocin for 5-HT
receptors was found in Geiger et al. (2018). From a cardiovascular
point of view, the agonistic effect of psilocin on cardiac 5-HT2A - and
5-HT1 serotonin receptors in the coronaries might cause harmful
vasoconstriction. Stimulation of 5-HT2 serotonin receptorsmight lead
to cuspid leaf defects. Binding to 5-HT4 serotonin receptors has never
been reported (Geiger et al., 2018). It might be relevant that psilocin
binds to H1 histamine receptors (Geiger et al., 2018). In the human
heart, H1-histamine receptors induce bradycardia, have a negative
dromotropic effect and might alter the force of contraction (review:
Neumann et al., 2023c). This indicates a pleiotropic action of psilocin,
possibly explaining its broad spectrum of effects on perception and
awareness (Nichols, 2018).

Psilocybin undergoes a first-pass effect by metabolism in the liver
by an alkaline phosphatase that can be inhibited by β-
glycerolphosphate (Horita, 1963). 25% of perorally taken psilocin
in rats is excreted unmetabolised (Kalberer et al., 1962). The fact that
tropisetron antagonised the positive inotropic effect and positive
chronotropic effect of psilocin and psilocybin is essential for two
reasons (Dimov et al., 2023). This corroborates the conclusion that
psilocin and psilocybin act via 5-HT4-serotonin receptors. Moreover,
these findings suggest that one could treat magic-mushroom-
intoxications with an approved drug, tropisetron. One could also
use a more selective and potent 5-HT4 antagonist like piboserod
which is however not readily available anymore (Kjekshus et al., 2009).

The potency of psilocin to increase the force of contraction could
be increased by pretreatment of atrial preparations from 5-HT4-TG
with a combination of the phosphodiesterase inhibitors cilostamide
(1 µM) and rolipram (0.1 µM). This is consistent with our previous
studies; cilostamide is a PDE III inhibitor, and rolipram is a PDE IV
inhibitor (Neumann et al., 2019). We have previously used the
concentrations of these drugs to potentiate the PIE of 5-HT in atrial
preparations of 5-HT4-TG (Neumann et al., 2019). These findings
support our conclusion that psilocin acts via the generation of
cAMP. If the degradation of cAMP is reduced by reducing PDE
activity, the agonist at the 5-HT4 serotonin receptor can lead to
higher cAMP levels and, thus, higher force generation and elevated
heart beating rate (compare Figure 1).

Extracts from the genus Psilocybe have been used at least as early
as AD 300 in shamanic rites as hallucinogenic products in Middle
America (Nichols, 2020). Psilocybe, however, is naturally occurring
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worldwide and, hence, has probably been used by people in many
places (Nichols, 2020). Psilocin in mushroomsmight have been used
in Africa in the Sahara Desert, ancient Egypt and prehistoric caves in
Spain (Geiger et al., 2018). In healthy volunteers, hallucinogenic
doses (up to 30 mg per os) of psilocybin increased blood pressure
(Hasler et al., 2004). For instance, 30 mg of psilocybin led to peak
plasma levels of about 0.1 µM of psilocin and about 50% occupation
of 5-HT2A serotonin receptors in the brain, as measured by positron
emission tomography (Madsen et al., 2019).

Psilocin and psilocybin could directly lead to tachycardia in
users by stimulating 5-HT4 serotonin receptors in the sinus node.
Tachycardia is a problem in patients with coronary heart disease
because the oxygen supply of the heart might be reduced, and angina
and myocardial infarction might occur. This tachycardia might be
prevented or treated with tropisetron because tropisetron blocks
(not only but also) 5-HT4-serotonin receptors. If one wants to treat
depressive patients (there are currently 66 studies for psilocybin on
file at clinical trials.gov, Table 2) with psilocybin, it might be useful
to give an additional β-adrenoceptor antagonist to reduce the heart
rate. Alternatively, one could prescribe, in addition to psilocin, a 5-
HT4 antagonist that does not pass the blood–brain barrier
(tropisetron easily passes the blood–brain barrier: Wolf, 2000).
However, such drugs are currently regrettably not yet available.

Moreover, in normal dosing, one can question whether psilocin
plasma levels are high enough to stimulate cardiac 5-HT4 serotonin
receptors. As mentioned above, 0.1 μM of psilocin was measured
under therapeutic conditions below any contractile effect. However,
phosphodiesterase inhibitors (clinically used as levosimendan,
milrinone, roflumilast, theophylline or caffeine) potentiate the
contractile effects of 5-HT. We would argue that
phosphodiesterase inhibitors would also potentiate the effects of
psilocin. Finally, if depressive patients used an MAO inhibitor such
as moclobemide, tranylcypromine, or deprenyl, the degradation of
psilocin would be impaired, and higher plasma concentrations of
psilocin might be reached; this could induce rapid heartbeat by
simulating the cardiac 5-HT4 serotonin receptors. It has been
reported that taking mushrooms led to cardiac death, probably
via cardiac arrhythmia, in a patient 10 years after her heart
transplant. The postmortal psilocin concentration in her plasma
was 30 μg/L (0.15 µM, Lim et al., 2012; Table 3).

When giving increasing dosage of psilocybin to healthy
volunteers, one did not notice even at the highest dosage (315 µg
per kilogram body weight) changes in surface electrocardiograms or
increased incidences of supraventricular or ventricular arrhythmias
nor increases in heart rate (Hasler et al., 2004). However, at this dosing
they noted an increase in blood pressure (Hasler et al., 2004).
However, the study recruited only eight male and female
volunteers with an age range of 22–44 years, so larger studies seem
to be needed (Hasler et al., 2004). In a later clinical study on twelve
healthy volunteers (gender and age were not reported), 0.6 mg per kilo
Gram body weight was given (Dahmane et al., 2021). Under these
conditions psilocybin, probably through its metabolite psilocin,
increased the heart rate in these volunteers and tended to prolong
the heart rate corrected QT interval. Hence, at high dosages psilocybin
may cause detrimental torsade de pointes, a cardiac arrhythmia
(Dahmane et al., 2021). The authors however, argued that the
therapeutic dosing would be lower and therefore arrhythmias
might not occur (Dahmane et al., 2021). In a third study,

32 volunteers were given 20 mg psilocybin through the mouth.
The only cardiovascular alteration the authors reported was an
increase in diastolic blood pressure (Ley et al., 2023). No other
cardiovascular effects like arrhythmias were reported (Ley et al., 2023).

Outlook

Hallucinogenic compounds are undergoing renewed interest in
psychiatry. It remains to be seen how effective and safe they will be in
the clinical routine treatment of psychiatric patients. Moreover,
people will continue to take hallucinogenic drugs for thought-
altering or recreational purposes. Hence, side effects remain a
concern. This review provides a detailed oversight of the known
cardiac effects in humans and how they can be predicted with some
certainty, based on studies in experimental animals. One can
summarize our review in the following way for inotropy in the
human atrium: ergometrine is solely an agonist at H2-histamine
receptors. Psilocin, psilocybin, DMT and 5-Me-DMT are solely
agonists at 5-HT4-serotonin receptors. Finally, LSD is a dual
agonist at H2-receptors and at 5-HT4-receptors. At least
proarrhythmic side effects should be considered and treated using
approved drugs that are antagonistic to the 5-HT4-serotonin or H2-
histamine receptors. Controlled clinical trials should be initiated to
make the therapeutic use of hallucinogenic drugs safer.
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Cardiac fibrosis is a serious health problem because it is a common pathological
change in almost all forms of cardiovascular diseases. Cardiac fibrosis is
characterized by the transdifferentiation of cardiac fibroblasts (CFs) into
cardiac myofibroblasts and the excessive deposition of extracellular matrix
(ECM) components produced by activated myofibroblasts, which leads to
fibrotic scar formation and subsequent cardiac dysfunction. However, there
are currently few effective therapeutic strategies protecting against
fibrogenesis. This lack is largely because the molecular mechanisms of cardiac
fibrosis remain unclear despite extensive research. The Janus kinase/signal
transducer and activator of transcription (JAK/STAT) signaling cascade is an
extensively present intracellular signal transduction pathway and can regulate
a wide range of biological processes, including cell proliferation, migration,
differentiation, apoptosis, and immune response. Various upstream mediators
such as cytokines, growth factors and hormones can initiate signal transmission
via this pathway and play corresponding regulatory roles. STAT3 is a crucial player
of the JAK/STAT pathway and its activation is related to inflammation, malignant
tumors and autoimmune illnesses. Recently, the JAK/STAT3 signaling has been in
the spotlight for its role in the occurrence and development of cardiac fibrosis
and its activation can promote the proliferation and activation of CFs and the
production of ECM proteins, thus leading to cardiac fibrosis. In this manuscript,
we discuss the structure, transactivation and regulation of the JAK/
STAT3 signaling pathway and review recent progress on the role of this
pathway in cardiac fibrosis. Moreover, we summarize the current challenges
and opportunities of targeting the JAK/STAT3 signaling for the treatment of
fibrosis. In summary, the information presented in this article is critical for
comprehending the role of the JAK/STAT3 pathway in cardiac fibrosis, and
will also contribute to future research aimed at the development of effective
anti-fibrotic therapeutic strategies targeting the JAK/STAT3 signaling.
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cardiovascular diseases, JAK/STAT3 signaling, cardiac fibrosis, cardiac fibroblast
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1 Introduction

Cardiovascular disease is still the major cause of global death
despite great progress in treatment methods. Myocardial fibrosis is a
common pathology of most cardiovascular diseases at the end stage
(Rockey et al., 2015). It can destroy the cardiac structure, impair
cardiac excitation-contraction coupling, and impede cardiac
function of both contraction and relaxation, thereby promoting
the development of cardiovascular disease into heart failure
(Gyöngyösi et al., 2017; Nguyen et al., 2017). The order of
severity of cardiac fibrosis is related to higher long-term
mortality of cardiovascular disease, particularly heart failure
(Azevedo et al., 2010; Aoki et al., 2011). Due to the complex and
incompletely elucidated mechanisms of fibrosis, there is currently no
specific antifibrotic treatment available for cardiac fibrosis.

The Janus kinase/signal transducer and activator of
transcription (JAK/STAT) signaling pathway, as a central
communication node within cells, plays an essential role in a
variety of pathophysiological activities like cell division,
differentiation, immune regulation and tumorigenesis (Zhang
J. Q. et al., 2022). It has been reported that many upstream
mediators can activate this pathway to exert their biological
functions, comprising growth factors, hormones, and cytokines
(Darnell et al., 1994; Liu J. et al., 2023). The JAK/STAT pathway
consists of three parts: ligand-receptor complexes, JAKs, along with
transcription factors STATs. Among the STAT protein family,
STAT3 is the most well-studied member and its activation can
play beneficial or detrimental roles in various diseases. On the one
hand, STAT3 shows highly activated in most cancers and cardiac
injuries (Xian et al., 2021; Zhuang et al., 2022) and is demonstrated
to be a pathogenic regulator (Yu and Jove, 2004). On the other hand,
STAT3 is also recognized as a protective molecule, and its activation
may confer cardioprotection against several cardiovascular diseases
including ischemia and ischemia-reperfusion injury (Negoro et al.,
2000; Fuglesteg et al., 2008; Harhous et al., 2019) and cardiac
hypertrophy (Enomoto et al., 2015). Recently, accumulating
evidence has confirmed a novel profibrotic role of the JAK/
STAT3 signaling activation in multiple tissues and organs,
including the heart (Bao et al., 2020), liver (Ogata et al., 2006),
kidney (Zheng et al., 2019), lung (Celada et al., 2018), and skin (Dees
et al., 2020). In this regard, the JAK/STAT3 pathway may emerge as
a potential therapeutic target for treating fibrotic diseases (Barry
et al., 2007). However, there is a lack of a comprehensive summary
on the role of the JAK/STAT3 signaling in mediating cardiac
fibrosis. In this review, we discuss the structure, transactivation
and regulation of the JAK/STAT3 signaling pathway and review
current progress on the role of this pathway in cardiac fibrosis and
challenges and opportunities of targeting the JAK/STAT3 signaling
for the treatment of fibrosis.

2 The cellular and molecular
mechanisms of cardiac fibrosis

Cardiac fibrosis usually occurs when myocardial tissue is
suffering from a pathological stimulus such as ischemia, hypoxia,
overload, inflammation or other pathogenic factors. It serves a dual
role: it protects myocardial tissue integrity as a normal reparative

response during injury, yet persistent and excessive scar formation
greatly impairs the heart’s systolic and diastolic functions (Leask,
2015). Cardiac fibrosis not only increases ventricular stiffness but
also induces the secretion of growth factors and cytokines to
promote cardiomyocyte hypertrophy, ultimately leading to a
decline in myocardial compliance, heart failure, and even sudden
death (Mohammed et al., 2015; Francis Stuart et al., 2016).

Cardiac fibrosis is a common pathological feature manifested by
multiple cardiovascular diseases, such as heart failure, hypertension,
arrhythmia, cardiomyopathy, and myocardial infarction, and also
plays a significant role in their onset and progression (Tao et al.,
2014; Chen et al., 2015; Chung et al., 2021; Qi et al., 2022). Cardiac
fibrosis manifests as the over-proliferation and differentiation of CFs
and massive accumulation of extracellular matrix (ECM)
components in the myocardium, like fibronectin, type I collagen,
and type III collagen (Schafer et al., 2017). Myofibroblasts
differentiated from CFs can synthesize contractile proteins like α-
smooth muscle actin (α-SMA), leading to the distortion of tissue and
cell structure (Hinz, 2007; Hinz, 2010). On the other hand,
myofibroblasts can express excessive amounts of ECM proteins,
thus leading to the substitution of permanent fibrotic scars for
normal tissues, increased cardiac stiffness, and varying degrees of
cardiac diastolic and systolic dysfunction (Weber, 1989; Cleutjens
et al., 1995; Dobaczewski et al., 2006; Liu et al., 2017; Wang
et al., 2022b).

The source of myofibroblasts in fibrotic hearts remains a
disputed matter. Although some studies indicate that a significant
proportion of myofibroblasts may originate from endothelial cells,
epithelial cells or hematopoietic fibroblast progenitors (Möllmann
et al., 2006; Zeisberg et al., 2007; Aisagbonhi et al., 2011), prevailing
evidence confirms that the primary source of myofibroblasts in
fibrotic heart tissue could be the activation of resident CFs (Ali et al.,
2014; Moore-Morris et al., 2014; Kanisicak et al., 2016; Shinde and
Frangogiannis, 2017; Moore-Morris et al., 2018). Furthermore, it has
been suggested that pericytes could potentially serve as a reservoir of
myofibroblasts, but the precise mechanism by which they operate
remains uncertain, and there may be an overlap between pericytes
and resident fibroblast subsets (Humphreys et al., 2010).

Although the molecular mechanisms involved in cardiac fibrosis
are complex and variable, the transformation of CFs to
myofibroblasts plays a central role in the process of cardiac
fibrosis. Acute cardiac injury initiates a robust inflammatory
response. This process involves the infiltration of immune cells
into the cardiac tissue, which subsequently release inflammatory
cytokines such as transforming growth factor (TGF)-β1, tumor
necrosis factor-α (TNF-α) and interleukins (ILs) (Bujak and
Frangogiannis, 2007; Christia et al., 2013). These cytokines
activate CFs and instigate ECM remodeling through diverse
signaling cascades. Concurrently, neurohormones within the
renin-angiotensin-aldosterone system (RAAS) and the
sympathetic nervous system, particularly Angiotensin II (Ang II),
aldosterone, and catecholamines, are upregulated (Zou et al., 2004;
Ferreira et al., 2016; Azushima et al., 2020). Their activation compels
myofibroblasts to ramp up collagen production, culminating in the
deposition of fibrotic tissue in the heart, which is a hallmark of
cardiac remodeling. Additionally, mechanical stress, often a
consequence of increased cardiac afterload in conditions like
hypertension or valvular disease, prompts cardiomyocytes and
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fibroblasts to adapt by modifying their ECM, which alters their size,
shape, and function (Li et al., 2018). Moreover, oxidative stress in the
cardiac environment, primarily characterized by the overproduction
of reactive oxygen species (ROS), inflicts direct cellular damage and
fosters inflammation and apoptosis. These effects collectively trigger
signaling pathways that exacerbate myocardial fibrosis (Grosche
et al., 2018). Lastly, metabolic imbalances, including the production
of advanced glycation end-products (AGEs) and lipotoxicity in
cardiomyocytes, along with vascular implications like endothelial
dysfunction, significantly contribute to the progression of cardiac
fibrosis (Huby et al., 2015; Chen et al., 2016; Marciniec et al., 2017).

Among the aforementioned mediators, TGF-β1 is regarded as a
central and potent profibrotic factor and evokes cardiac fibrosis
mainly through activation of downstream classic small mother
against decapentaplegic (Smad) signaling pathway. This process
involves the binding of extracellular TGF-β1 ligand to TGF-β
type II receptor (TGF-βRII), which phosphorylates TGF-β type I
receptor (TGF-βRI). Activated TGF-βRI then phosphorylates and
activates R-Smads (mainly Smad2 and Smad3), which further form a
complex with Smad4. The complex moves to the nucleus and
interacts with other co-activators to induce the transcription of
fibrosis-related genes such as fibronectin, α-SMA and collagens (Shi
and Massagué, 2003; Działo et al., 2018; Hu et al., 2018).
Additionally, TGF-β1 also leads to cardiac fibrosis through
activating several noncanonical (also called Smad-independent)
signaling pathways, like phosphatidylinositol 3-kinase/protein
kinase B (PI3K/Akt), mitogen-activated protein kinase [MAPK,
mainly comprising p38, c-Jun NH2-terminal kinase (JNK) and
extracellular signal-regulated kinase (ERK)] or Rho-like GTPases
signaling pathways. In addition to the most common TGF-β
signaling, the pathogenesis of cardiac fibrosis also involves a
variety of other intracellular molecular pathways, including the
JAK/STAT3 signaling (Zhang et al., 2019b), Wnt/β-Catenin
signaling (Mizutani et al., 2016), integrin/focal adhesion kinase
(FAK) signaling (Zhao et al., 2016; Molkentin et al., 2017),
Hippo signaling (Singh et al., 2016), and myocardial related
transcription factor (MRTF)/serum response factor (SRF)
signaling (Tomasek et al., 2005; Lighthouse and Small, 2016).
Therefore, targeting these fibrotic mediators or cascades could
provide promising therapeutic approaches for treating
fibrotic diseases.

3 Structure, function, transcriptional
activity and regulation of the JAK/
STAT3 signaling pathway

3.1 Molecular structure of STAT3

In mammals, there are seven proteins belonging to the STAT
family, which consists of cytoplasmic transcription factors named
STAT1-STAT4, STAT5a, STAT5b, and STAT6 (Hu et al., 2020b).
Among these, STAT3 is the most extensively studied and plays pivotal
roles in controlling various cellular biological processes. STAT3 was
originally discovered in 1994 through a series of studies on cytokine-
induced acute responses of target genes. Unlike other familymembers,
global deletion of STAT3 can cause embryonic death. The
STAT3 protein consists of 770 amino acid residues and, similar to

other members of the STAT family, it can be divided into six distinct
functional domains (Figure 1): an NH2-terminal domain (NTD), a
coiled-coil domain (CCD), a DNA binding domain (DBD), a linker
domain (LD), an Src homology 2 (SH2) domain, and a COOH-
terminal transactivation domain (TAD). Each domain has a specific
function (Hu et al., 2021) (Table 1).

STAT3 is expressed widely in different cell types within the heart,
such as cardiomyocytes, fibroblasts, immune cells, and endothelial
cells. Two isoforms of the STAT3 protein, STAT3α (92 kDa) and
STAT3β (83 kDa), are produced through alternative splicing of the
identical gene. STAT3β is missing the COOH-terminal 55 amino
acids, which are correspondingly replaced by seven distinct amino
acid residues (Schaefer et al., 1995; Caldenhoven et al., 1996). Research
has shown that while STAT3β is not vital for survival, mice deficient in
STAT3α do not survive past birth (Maritano et al., 2004). STAT3α
possesses two phosphorylation sites, namely, Tyr705 and Ser727,
whereas STAT3β only possesses one phosphorylation site,
specifically Tyr705. When either Tyr705 or Ser727 is
phosphorylated, STAT3 is activated and exerts its function. STAT3
can be activated by more than 50 extracellular ligands, which are
commonly some cytokines, hormones, growth factors, and
chemokines, such as ILs, interferons, colony-stimulating factors,
epidermal growth factor (EGF), and platelet-derived growth factor
(PDGF) (Darnell, 1997; Hu et al., 2021). STAT3’s biological functions
are complicated and diverse and its main physiological roles under
normal conditions are summarized in the following section.

STAT3 is an important intracellular signaling molecule that has
multiple functions under normal physiological conditions. These
functions include: (1) Regulating the proliferation and
differentiation of various cell types by binding to specific DNA
sequences and affecting gene expression. For example,
STAT3 promotes the proliferation of corneal limbal keratinocytes
via aΔNp63-dependent mechanism, and inhibiting this pathway can
increase cell differentiation (Hsueh et al., 2011). STAT3 also
mediates megakaryocyte differentiation induced by RAD001 (Su
et al., 2013). (2) Regulating the activation, proliferation, and
secretion of cytokines by immune cells, which can modulate
immune responses and inflammation. For instance,
STAT3 inhibition can induce apoptosis and/or activate effective
immune responses in colon cancer cells, overcoming cancer-induced
immune tolerance (Jahangiri et al., 2020). Likewise, systemic
injection of penetrating c-Myc and gp130 peptides can inhibit
pancreatic tumor growth and induce anti-tumor immunity
(Aftabizadeh et al., 2021). (3) Mediating the expression of
inflammation-related genes in response to various cytokines and
growth factors. One of the most prominent examples is IL-6, which
we will discuss in detail later. (4) Maintaining the self-renewal and
differentiation of stem cells by regulating the transcription of target
genes. Phosphorylated STAT3 is functionally associated with the
expression of self-renewal genes in embryonic stem cells (Bourillot
et al., 2009). Moreover, constitutively activated STAT3 can sustain
the self-renewal process in the absence of leukemia inhibitory factor
(LIF) (Matsuda et al., 1999). (5) Participating in tissue repair and
regeneration processes by modulating cell survival and growth. For
instance, Transmembrane and ubiquitin like domain containing 1
(Tmub1) inhibits the phosphorylation and activation of STAT3,
impairing liver regeneration in mice after partial hepatectomy (Fu
et al., 2019). Conversely, Krüppel-like factor 4 (KLF4) deletion in
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vivo induces axonal regeneration in adult retinal ganglion cells
(RGCs) through the JAK/STAT3 signaling pathway. This
regeneration can be further enhanced by removing the endogenous
JAK/STAT3 pathway inhibitor SOCS3 (Qin et al., 2013). (6)
Regulating the energy metabolism of cells by influencing the
expression of mitochondrial oxidative phosphorylation-related
genes. For example, icaritin inhibits the survival and glycolysis of
glioblastoma (GBM) cells through the IL-6/STAT3 pathway (Li et al.,
2019a). Additionally, STAT3 promotes mitochondrial respiration and
reduces the production of ROS in neural precursor cells (Su et al.,
2020). (7) Playing an essential role in early embryonic development, as
embryos with STAT3 gene defects will die in the early stages of
development. In humans, LIF and STAT3 are expressed in decidual
tissue during early pregnancy. LIF can induce
STAT3 phosphorylation in non-decidualized and decidualized
human endometrial stromal cells in vitro, suggesting that LIF/
STAT3 signaling is involved in human embryo implantation and
decidualization (Shuya et al., 2011). Furthermore, conditional ablation
of STAT3 in the uterus can result in embryo implantation failure (Lee
et al., 2013).

3.2 Molecular structure of JAK

In mammals, the JAK family consists of four mainmembers (JAK1-
JAK3 and Tyk2), which are non-receptor tyrosine protein kinases
(Schindler and Darnell, 1995). JAK1, JAK2, and Tyk2 have broad
expression, whereas JAK3 is mainly present in cells of the
hematopoietic lineage (Speirs et al., 2018). Upon interaction of

cytokines or growth factors with their corresponding receptors, JAK
tyrosine kinases are activated, thereby facilitating intracellular signal
transduction.

The JAK protein is made up of seven similar regions (JH1-JH7)
and includes four functional domains: a domain for tyrosine kinase,
a domain for pseudokinase, an SH2 domain, and an NH2-terminal
FERM domain (Four-point-one protein, Ezrin, Radixin, Moesin)
(Figure 2) (Banerjee et al., 2017). The carboxy-terminal portion of
each JAK includes the catalytic kinase domain (JH1) and the
pseudokinase domain (JH2). JH1, containing nearly 250 amino
acid residues, is the active phosphotransferase domain needed for
phosphorylation of cytokine receptors and downstream STAT
proteins. JH2 is similar to JH1 in structure, but it is generally
considered to have no catalytic activity and can regulate the
kinase activity of JH1 (Zhao et al., 2018; Xin et al., 2020).
According to reports, the JAK2 protein’s JH2 exhibits a minimal
level of kinase activity as stated by Ungureanu et al. (2011). The
N-terminal region of each JAK contains the SH2 (JH3 with half of
JH4) and FERM (JH5-JH7 and one-half of JH4) domains, which
collectively facilitate the interaction between JAK proteins and the
box1/2 regions of cytokine receptors located near the cell membrane
(Saharinen et al., 2000; Wallweber et al., 2014; Hubbard, 2017;
Morris et al., 2018; Xin et al., 2020; Raivola et al., 2021).

3.3 Canonical JAK/STAT3 signaling pathway

The JAK/STAT signaling pathway is activated by more than
50 cytokines and growth factors, including hormones, interferons

FIGURE 1
The domain structure and phosphorylation sites of STAT3 protein. STAT3 has two splicing isoforms, STAT3α and STAT3β, and they are comprised of
770 and 722 amino acids, respectively. STAT3 contains six different functional domains, including the NH2-terminal domain, coiled-coil domain, DNA
binding domain, linker domain, SH2 domain, and COOH-terminal transactivation domain (TAD). “Y”means a tyrosine phosphorylation site, and “S”means
a serine phosphorylation site [adapted from ref. (Hu et al., 2021).

TABLE 1 Function of STAT3 domains.

Domain Function Kishore and Verma (2012), Haghikia et al. (2014), Harhous et al. (2019), Hu et al. (2021)

NTD Promoting the formation of STAT3 dimers and regulating nuclear translocation

CCD Providing binding sites for regulatory factors and participating in regulating nuclear import and export

DBD Recognizing and binding to specific DNA elements of target genes

LD Affecting DNA binding stability

SH2 Recognizing phosphotyrosine sites of receptors and contributing to form STAT3 dimers

TAD Recruiting co-activators and regulating target gene transcription

Abbreviation:NTD, NH2-terminal domain; CCD, coiled-coiled domain; DBD, DNA-binding domain; LD, linker domain; SH2, Src homology 2 domain; TAD, COOH-terminal transactivation

domain.
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(IFN), ILs, and colony stimulating factors (Darnell, 1997). These
molecules regulate various cellular events, such as hematopoiesis,
immune adaptability, tissue repair, inflammation, cell apoptosis, and
adipogenesis (Owen et al., 2019). The JAK/STAT3 pathway is
activated when these extracellular ligands bind to their dedicated
transmembrane receptors (Figure 3). The cytosolic domains of these
receptors are constitutively interacting with receptor-related JAK
tyrosine kinases. These JAK kinases are nonactivated before the
ligand stimulation, while the coupling of the ligand with its receptor
results in auto-phosphorylation of JAK kinases (Feng et al., 1997).
Upon activation, the JAK molecules phosphorylate the cytoplasmic
segment of the receptors at particular tyrosine residues,
subsequently serving as binding sites for cytoplasmic
STAT3 protein and attracting the recruitment of the
STAT3 protein. After docking, STAT3 is phosphorylated by JAK
kinase and subsequently associates with itself or other
phosphorylated STAT monomers to create homodimers or
heterodimers upon separation from the receptor. Ultimately,
these dynamic molecular pairs migrate from the cytoplasm to the
nucleus, where they attach to target gene promoters and stimulate
the expression of target genes (O’Shea et al., 2015; Durham et al.,
2019), often causing proliferation, differentiation, and apoptosis.

3.4 Noncanonical JAK/
STAT3 signaling pathway

The function of STAT3 is influenced by different post-translational
modifications, including phosphorylation, methylation, acetylation,

and ubiquitination, occurring at various amino acid sites. In
addition to classical signal transduction, JAK/STAT3 may also
play a role in nonclassical signal transduction. Research has
indicated that STAT3, which is not phosphorylated on Tyr705,
has the ability to move from cytoplasm to the nucleus and can
activate various STAT3 target genes in the absence of Ser727
phosphorylation (Bharadwaj et al., 2020). Additionally, the
process can be facilitated by Lys685 acetylation and NF-kB
signaling activation, as suggested by previous studies (Yang
et al., 2007; Dasgupta et al., 2014). Besides being activated in
the cytosol, all STAT proteins (excluding STAT4) have the ability
to localize to the mitochondrion, leading to an enhancement in
oxidative phosphorylation and membrane polarization. For
example, STAT3 monomers phosphorylated on Ser727 can
translocate into the mitochondrion without dimerization to
increase membrane polarization and ATP synthesis, and inhibit
ROS production and mitochondrial permeability transition pore
(MPTP) opening, thus exerting a protective role (Boengler et al.,
2010; Garama et al., 2016; Avalle and Poli, 2018). Besides,
STAT3 has also been reported to translocate to the endoplasmic
reticulum and contribute to reduce oxidative stress-induced
apoptosis (Avalle et al., 2019). In the nucleus, certain STAT
molecules that are not phosphorylated interact with
heterochromatin protein 1 (HP1) located on heterochromatin.
Phosphorylation of STAT by JAK or other kinases can cause
the detachment of HP1 from heterochromatin, leading to its
destabilization. Subsequently, phospho-STAT can interact with
particular regions on autosomes and regulate the expression of
target genes (Shi et al., 2006; Shi et al., 2008b; Li, 2008). This
noncanonical JAK/STAT signaling is critical for sustaining
heterochromatin stability. Moreover, increasing evidence has
shown that activation of JAK/STAT signaling can cause
chromatin remodeling in mammals (Christova et al., 2007; Shi
et al., 2008a). Besides being triggered by JAK, STAT3 can also be
activated by alternative non-receptor tyrosine kinases or JAK-
independent receptors. As an example, the c-Src enzyme is capable
of phosphorylating STAT3, which then can promote the
expression of oncogenes (Yu et al., 1995). EGF receptor and
PDGF receptor can directly activate STAT3 (Ruff-Jamison et al.,
1994; Liu et al., 2023a).

3.5 Cross-talk between the STAT3 signaling
and other pathways

Besides the prevalent JAK/STAT3 signaling pathway, STAT3 also
engages in alternative signaling pathways or establishes
communication with these pathways, thereby producing biological
impacts. STAT3 is involved in the classic TGF-β/Smad signaling
pathway (Pedroza et al., 2018; Chen et al., 2019b; Sun et al., 2022)
and Smad-independent TGF-β signaling pathways, such as the ERK-
mediated MAPK (Park et al., 2020; Shen et al., 2021), JNK (Park et al.,
2020), and PI3K/Akt signaling pathways (Zhu et al., 2018; Lee et al.,
2019). In addition to TGF-β-related signaling pathways, STAT3 also
participates in many other signaling cascades, such as Fyn (a member
of the Src kinase family) (Seo et al., 2016; Zhu et al., 2018; Zhu et al.,
2023), peroxisome proliferator-activated receptor (PPAR) (Lo et al.,
2017b; Németh et al., 2019), and Notch signaling (Chen et al., 2019c).

FIGURE 2
Structure of JAK. (A). Domains and conserved phosphorylation
sites of the JAK protein. The JAK protein family contains four
members, JAK1-3, and TYK2. Each is composed of seven homologous
regions, labeled JH1-JH7. These regions make up four distinct
functional domains, of which, JH1 corresponds to the kinase domain;
JH2 is the pseudokinase domain; JH3 and a portion of JH4 together
form the SH2 domain; and the combination of JH5, JH6, JH7, and the
rest of JH4 constitutes the FERM domain. “P” represents conserved
tyrosine phosphorylation sites of the JAK protein. (B). Three-
dimensional spatial structure of JAK in cells [adapted from ref. (Hu
et al., 2021).
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3.6 Negative regulation of canonical JAK/
STAT3 signaling

The inhibition of canonical JAK/STAT3 signaling involves three
primary categories of negative regulators (Figure 3): protein
inhibitor of activated STAT (PIAS), protein tyrosine
phosphatases (PTPs), and suppressor of cytokine signaling
(SOCS/CIS). These regulators, as described by Liongue et al., play
a crucial role in preventing the excessive phosphorylation of STAT3
(Liongue et al., 2016; Villarino et al., 2017; Yang et al., 2017).

The process of JAK/STAT signal transduction contains a series
of intracellular tyrosine phosphorylation, so PTPs have a key role in
regulating this pathway. PTPs can directly dephosphorylate and
inactivate the STAT dimers, and block the JAK/STAT cascade. For
instance, a receptor tyrosine phosphatase PTPRTR can bind to and
dephosphorylate the tyrosine residue at site 705 in STAT3 (Zhang
et al., 2007). SHP-2, a significant member of the PTP family and also
a target gene for activated STAT3, can decrease the phosphorylation
level of STAT3 (Schmitz et al., 2000). In addition, PTPs can
dephosphorylate JAK and prevent the JAK/STAT signaling.

The PIAS family comprises four transcription regulatory factors,
namely, PIAS1-PIAS4. PIAS was originally identified to be a
suppressor of STAT, and PIAS3 can combine with STAT3. PIAS
only binds to phosphorylated STAT dimers rather than STAT
monomers (Hu et al., 2021). PIAS mainly suppresses the
transcriptional activity of STAT by means of three mechanisms.

(1) Preventing the DNA-binding activity of STAT and blocking
STAT-DNA interactions (Sonnenblick et al., 2004). (2) Recruiting
transcriptional co-inhibitory factor such as histone deacetylase
(Tussié-Luna et al., 2002). (3) Promoting STAT SUMOylation
(Yuan et al., 2015).

SOCS family proteins are considered as major triggers of the
JAK/STAT signaling attenuation, and there are eight members in
this family: SOCS1-7 and cytokine-inducible SH2 protein (CIS)
(Minamoto et al., 1997; Piessevaux et al., 2008; Kazi et al., 2014).
Cytokine-stimulated JAK/STAT signaling activation induces the
SOCS proteins, which act as negative feedback suppressors to
regulate this pathway (Naka et al., 1997; Kershaw et al., 2013b).
For example, SOCS3 gene is quickly induced by phosphorylated
STAT3 dimers in the nucleus, and in turn SOCS3 protein interacts
with activated JAK and its receptor to suppress JAK activity, thus
preventing further JAK/STAT3 signaling activation (Babon et al.,
2012; Kershaw et al., 2013a). SOCS primarily inhibits the JAK/STAT
cascade in the following ways. (1) It competes with STAT for
binding to the phosphorylated receptor and prevents STAT
recruitment. (2) It forms an E3 ubiquitin ligase complex via the
COOH-terminal SOCS box and degrades JAK or STAT that binds to
SOCS (Kamran et al., 2013). (3) The SOCS protein has the ability to
directly and specifically interact with either JAK or its receptor in
order to inhibit the activity of JAK kinase. An example is the
presence of a distinct brief pattern known as the kinase
inhibitory region (KIR) in SOCS1 and SOCS3. This pattern

FIGURE 3
Signal transduction and negative regulation of the canonical JAK/STAT3 pathway. The JAK/STAT3 cascade is initiated by the interaction between a
ligand and its corresponding receptor. This interaction leads to the auto-phosphorylation of the JAK kinase bound to the receptor. Once activated, JAK
phosphorylates a tyrosine residue on the receptor, creating a docking site for cytoplasmic STAT3 and recruiting STAT3. At this docking site, JAK
phosphorylates STAT3. The phosphorylated STAT3 then dissociates from the receptor and forms dimers. These STAT3 dimers move to the nucleus,
where they bind to promoters and regulate transcription. The JAK/STAT3 cascade is controlled by three primary types of negative regulators: PTPs
(protein tyrosine phosphatases), PIAS (protein inhibitor of activated STAT), and CIS/SOCS (suppressor of cytokine signaling). PTPs block the JAK/
STAT3 signalingmainly by interacting directly with the STAT3 dimers and JAK to dephosphorylate them. PIAS prevents the JAK/STAT3 signaling principally
by inhibiting the binding of STAT3 to DNA. As a common objective caused by the activation of JAK/STAT3, CIS/SOCS mainly hinders the JAK/
STAT3 cascade through the followingmethods: (1) obstructing the recruitment of STAT3 to the phosphorylated receptor; (2) directly interacting with JAK
to suppress its kinase function; (3) prompting the creation of an E3 ubiquitin ligase complex that breaks down JAK or prevents STAT3 from binding to the
SOCS protein [adapted from refs. (Gurzov et al., 2016; Hu et al., 2021).
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enables these two proteins to hinder the catalytic activity of JAK by
directly binding to JAK or its receptor (Sasaki et al., 1999; Yasukawa
et al., 1999; Alexander, 2002).

3.7 The JAK/STAT3 pathway induces fibrosis

Studies have indicated that the JAK/STAT3 pathway plays a key
role in the process of fibrosis. It can be activated by various pro-
fibrotic mediators, such as TGF-β1, PDGF, vascular endothelial
growth factor (VEGF), IL-6, Ang II, serotonin (5-HT), and
endothelin (ET-1), and then leads to fibrogenesis (Rane and
Reddy, 2000; Zhang et al., 2015; Roskoski, 2016) (Figure 4A).
The JAK/STAT3 pathway is also demonstrated to be a central
integrator of multiple pro-fibrotic pathways and its activation can
promote the activation of fibroblasts and the expression of fibrosis-
related genes, such as α-SMA, collagens, and fibronectin (Zhang
et al., 2015; Chakraborty et al., 2017; Dees et al., 2020). In addition,
once activated, STAT3 can induce the expression of hypoxia-
inducible factor-1α (HIF-1α), a transcription factor that responds
to hypoxic conditions and stimulates the production of ECM (Yang
et al., 2021) (Figure 4A). Activated STAT3 can also trigger epithelial
to mesenchymal transition (EMT), a cellular process that allows
epithelial cells to transform into mesenchymal cells with more
power in migration and invasion, and facilitates the progression
of fibrosis (Montero et al., 2021; Yang et al., 2021) (Figure 4B).

3.8 The effects of the JAK/STAT3 pathway
on different types of cardiac injury

The JAK/STAT3 pathway plays a pivotal role in various aspects of
cardiac physiology and pathology, exhibiting multifaceted roles in the
heart (Figure 5). It mediates protective effects in different stages of
ischemia, including ischemia pre-, post-, and remote conditioning
(Hattori et al., 2001; You et al., 2011; Gao et al., 2017). Agents such
as N-acetylcysteine (NAC) and allopurinol (Wang et al., 2013), and
insulin (Fuglesteg et al., 2008) are known to protect against myocardial
ischemia-reperfusion injury through activation of the JAK/STAT3
pathway. Their protective mechanism likely involves the reduction
of ROS production, decrease in cardiomyocyte apoptosis, promotion of
angiogenesis, and delay inMPTP opening. In the context of myocardial
infarction, molecular factors like miR-124, IL-10, and growth arrest and
DNA damage-inducible α (GADD45A) exert beneficial effects through
the STAT3 pathway. Specifically, miR-124 offers anti-apoptotic
benefits, IL-10 provides anti-inflammatory effects, and GADD45A
enhances VEGF-mediated angiogenesis, collectively improving
prognosis (He et al., 2018; Wang et al., 2022a; Tesoro et al., 2022).
Conversely, conditional deletion of STAT3 in cardiomyocytes
exacerbates cardiac remodeling during the subacute phase of
myocardial infarction or under chronic β-adrenergic stimulation
(Enomoto et al., 2015; Zhang et al., 2016). Furthermore,
cardiomyocyte-specific transgenic expression of SOCS1 inhibits JAK/
STAT3 activation in enterovirus-induced myocarditis, but this is
associated with increased mortality in mice, highlighting a complex
interplay (Yasukawa et al., 2003).

Despite its protective roles, the JAK/STAT3 pathway also has
detrimental effects. For instance, in myocarditis, IL-6-triggered

increases in liver complement C3 and Th17 cells may exacerbate
inflammation (Camporeale et al., 2013; Wang et al., 2020).
Additionally, inhibiting the JAK/STAT3 signaling with
piceatannol could improve sepsis-induced cardiac dysfunction by
relieving cell apoptosis and inflammation in septic mice and H9C2
cardiomyocytes, suggesting a critical role of the JAK/STAT3
pathway in sepsis-related myocardial injury (Xie et al., 2021).
This pathway also skews macrophage polarization towards
M1 and away from M2, contributing to coxsackievirus B3
(CVB3)-induced myocardial inflammation and injury (Wang
et al., 2023). Chronic activation of JAK/STAT3 can induce
cardiac hypertrophy, as evidenced by Ang II-induced activation
of TLR4 and STAT3, promoting hypertrophy via the IL-6/JAK2/
STAT3 pathway (Han et al., 2018). Other activators like Heat-shock
transcription factor 1 (HSF1), isoproterenol, and Fibronectin type
III domain containing 5 (FNDC5) also trigger this pathway,
resulting in increased cardiac inflammation, oxidative stress, and
pathological hypertrophy (Zhao et al., 2017; Yuan et al., 2018; Geng
et al., 2019). Moreover, JAK/STAT3 is implicated in cardiac
arrhythmias. Inhibiting JAK2/STAT3 phosphorylation reduces
malignant ventricular arrhythmias post-myocardial infarction by
attenuating ventricular remodeling (Gao et al., 2020). Cardiac-
specific SOCS3 gene knockout mice exhibit myocardial
sarcoplasmic reticulum Ca2+ overload and subsequent ventricular
arrhythmias because of the activation of cardiac gp130 signaling
(Yajima et al., 2011). Additionally, IL-6 overexpression, via the
STAT3 pathway, promotes cardiac sympathetic nerve activity,
increasing the incidence of ventricular arrhythmias (Peng
et al., 2023).

4 Multiple mediators regulate cardiac
fibrosis through the
STAT3 signaling pathway

4.1 ILs

ILs are a type of cytokine proteins that various cells, mainly
immune ones, produce. Cytokines modulate cellular functions such
as growth, maturation, movement, adhesion, activation and
differentiation (Zhang and An, 2007; Brocker et al., 2010). ILs are
a large family of cytokines with more than 60 members, which can be
grouped into four categories: IL-1 related, type 1 helical (IL-4 related,
γ chain and IL-6/IL-12 related), type 2 helical (IL-10 related and IL-28
related), and IL-17 related (Brocker et al., 2010). ILs regulate
homeostasis by influencing the cardiovascular, neuroendocrine and
metabolic systems in the human body (Corwin, 2000).

Recent research has demonstrated that ILs contribute to
myocardial fibrosis via the STAT3 pathway. Some ILs play
proinflammatory and fibrotic roles, and IL-6 is the most
representative (Figure 6). In the absence of NF-E2-related factor 2
(Nrf2), IL-6 levels further increase in response to Ang II, thereby
activating the IL-6/STAT3 pathway, which causes cardiomegaly and
inflammation (Chen et al., 2019a). In addition, Ang II can induce Toll-
like receptor phosphorylation of STAT3, increase IL-6 production, and
continuously activate the JAK/STAT pathway, thereby providing
positive feedback and promoting myocardial hypertrophy, fibrosis,
and ventricular remodeling (Chen et al., 2017a; Han et al., 2018; Zhang
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FIGURE 4
(A). Different JAK/STAT3 activators that play important roles in the pathophysiology of myocardial fibrosis. (1) TGF-β interacts with its receptor (TGF-
βR) on the cell surface, initiating receptor kinase activity. This activity leads to JAK phosphorylation and subsequent activation of STAT3. However, the
precise mechanism underlying this process remains to be fully elucidated. (2) IL-6 binds to its specific receptor, IL-6R, forming a complex. This complex
then associates with the membrane protein gp130. Activation of JAKs, which are associated with gp130, is critical for phosphorylating specific
tyrosine residues on gp130. These residues act as anchoring points for STAT3. (3) Ang II and ET-1 engage with the GPCR family, triggering the
phosphorylation of tyrosine in JAK kinase and consequently activating STAT3. (4) PDGF and VEGF each bind to their respective tyrosine kinase receptors.
This binding results in the phosphorylation of tyrosine residues on the receptors, which can indirectly or transactivate JAK, leading to the activation of the
STAT3 pathway. Once phosphorylated, STAT3 dimerizes and moves into the nucleus. In the nucleus, these STAT3 dimers attach to specific DNA
sequences, enhancing the transcription of genes that are pivotal in driving inflammation and fibrosis, including collagen, fibronectin, α-SMA, etc. In
addition, the activation of STAT3 has the capability to stimulate the expression of HIF-1α and enhance the production of ECM in hypoxic environments.
(B). Epithelial to mesenchymal transition (EMT). The activation of JAK/STAT3 signaling by pathological stimuli has the potential to induce a phenotypic
transition of epithelial cells into mesenchymal cells. These mesenchymal cells exhibit enhanced migration and invasion capabilities. (By Figdraw).
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et al., 2019b). IL-6 enhances STAT3 phosphorylation in cultured CFs,
whereas inhibiting STAT3 reduces IL6-induced collagen synthesis and
reverses pressure overload-induced cardiac hypertrophy (Mir et al.,
2012). In a transverse aortic constriction (TAC)-induced mouse heart
failure model, inhibiting IL6/gp130/STAT3 with raloxifene alleviated
TAC-induced myocarditis, cardiac remodeling and dysfunction (Huo
et al., 2021). In mice with CVB3-induced dilated cardiomyopathy
(DCM), IL-6 knockout reduced the phosphorylation level of STAT3 in
myocardial tissue, thereby improving myocardial remodeling induced
by DCM (Li et al., 2019b).

4.2 TGF-β

The TGF-β and STAT3 signaling pathways have a feedback loop
that regulates the acute/chronic stress response in the heart. TGF-β
signaling affects STAT3 as an important target in its downstream
pathway (Pedroza et al., 2018; Chen et al., 2019b; Sun et al., 2022).
Several studies have demonstrated the interaction between TGF-β and
STAT3 in cardiac fibrosis. For instance, it has been reported that TGF-
β-induced CD44/STAT3 signaling plays a crucial part in atrial fibrosis

and fibrillation formation. CD44 is a membrane receptor that
modulates fibrosis. Blocking CD44 signaling can reduce TGF-β-
induced STAT3 activation and collagen expression in atrial
fibroblasts, implicating a potential approach for treating atrial
fibrosis and fibrillation (Chang et al., 2017). Moreover, Ephrinb2-
mediated myocardial fibrosis involves the activation of the TGF-β/
Smad3 and STAT3 pathways. Further study revealed that Ephrinb2
could enhance the interaction of TGF-β/Smad3 and STAT3 signaling
to promote cardiac fibrosis (Su et al., 2017). Furthermore, tyrosine
mutation at site 705 to glutamic acid constitutively activated STAT3,
which could further enhance the interaction between Smad3 and
STAT3 (Su et al., 2017). One previous study showed that a high-fat
diet could activate the left ventricular renin–angiotensin system (RAS)
and JAK1/2-STAT1/3 pathways in rats by increasing ROS and IL-6
production, ultimately causing cardiac fibrosis. This creates a positive
feedback loop that activates the TGF-β1/Smad3 fibrotic pathway and
enhances left ventricular collagen synthesis (Eid et al., 2019). In
cultured CFs, TGF-β1 can activate STAT3 phosphorylation,
increasing fibrosis-related protein expression, and relaxin can block
STAT3 phosphorylation and reverse TGF-β1-induced fibrosis (Yuan
et al., 2017). These results suggest that STAT3 either acts as a separate

FIGURE 5
The role of activation of the JAK/STAT3 pathway in different types of cardiac damage. (1) In ischemia-reperfusion injury, agents such as NAC,
allopurinol, and insulin may confer protective effects. They achieve this by reducing ROS production and cardiomyocyte apoptosis, promoting
angiogenesis, and delaying the opening of the MPTP. (2) In the case of myocardial infarction, certain molecular factors likemiR-124, IL-10, and GADD45A
exert beneficial effects through the STAT3 pathway. These include anti-apoptotic (miR-124), anti-inflammatory (IL-10), and VEGF-mediated
angiogenic effects (GADD45A), collectively contributing to improved prognosis. (3) The situation of myocarditis is more complex. The upregulation of
SOCS1 can inhibit inflammation. Meanwhile, the upregulation of complement C3 and Th17 cells, along with the downregulation of Piceatannol, may
exacerbate inflammation. These findings highlight the multifaceted impact on the progression of myocarditis. (4) Cardiac hypertrophy is influenced by
Ang II, HSF1, isoproterenol, and FNDC5, which collaboratively induce hypertrophy through increased oxidative stress and inflammation. (5) Arrhythmias
are closely associated with JAK/STAT3 activity, which contributes to myocardial sarcoplasmic reticulum Ca2+ overload, increased cardiac sympathetic
nerve activity, and ventricular remodeling. “↑” represents activation, upregulation or exacerbation, and “↓” represents inhibition, downregulation or relief.
(By Figdraw).
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FIGURE 6
IL-6 causes myocardial fibrosis through the JAK/STAT3 signaling pathway. IL-6 binds to its receptor, IL-6R, forming a complex that activates the
gp130 receptor. This activation triggers the JAK family of tyrosine kinases. Once activated, these JAKs phosphorylate STAT3, a crucial step in the signaling
pathway. Phosphorylated STAT3 dimerizes and translocates into the nucleus. There, STAT3 dimers bind to specific DNA sequences, promoting the
transcription of genes that are pivotal in mediating inflammation and fibrosis. (By Figdraw).

FIGURE 7
STAT3 influences cardiac fibrosis through multiple pathways. (1) The crosstalk between STAT3 and miR manifests in several ways: STAT3 can form
either a direct feedback or an indirect feedback loop by binding with miR; it can also mediate the transcription of downstreammiR; meanwhile, miR can
influence the translation of STAT3 mRNA. (2) Positioned downstream of the TGF-β/SMAD signaling cascade, STAT3 might collaboratively regulate
myocardial fibrosis with TGF-β. Their synergistic action could potentially be associated with the phosphorylation of STAT3. (By Figdraw).
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signal molecule downstream of TGF-β or interacts with the TGF-β/
Smad pathway to regulate cardiac fibrosis (Figure 7).

4.3 MicroRNAs (miRs)

MiRs are a class of endogenous noncoding single-stranded
RNAs that are about 19–25 nucleotides long. First, within the
nucleus, RNA polymerase II transcribes the gene encoding the
miR into the primary transcript (pri-miR). Then, the pri-miR is
transported to the cytoplasm under the cooperative action of the
Ran-GTP enzyme and transporter Exportin5, and the double-
stranded RNA-specific nuclease Dicer enzyme cleaves the pri-
miR, which is transported to the cytoplasm to form double-
stranded miR of 21–25 nucleotides. The helicase unwinds the
double-stranded miR, leading to degradation of one strand and
the formation of a mature miR with a hydroxyl group at the 3′-end
and a phosphate group at the 5′-end. Finally, the RNA-induced gene
silencing complex binds the mature miR, thereby regulating target
gene silencing post-transcriptionally (Lu and Rothenberg, 2018). In
recent years, the relationship between miRs and pathological fibrosis
has been examined, but the specific mechanisms by which miRs
regulate fibrosis are still worth exploring. During the development of
liver fibrosis induced by viral hepatitis, the levels of miR-16, miR-
146a, miR-221, and miR-222 were markedly increased in the serum
of patients with chronic hepatitis C (Abdel-Al et al., 2018). In the
livers of mice treated with CCl4, miR-30c and miR-193 were
specifically downregulated (Roy et al., 2015). Interestingly, other
studies indicated that miR-29 could promote apoptosis in
cardiomyocytes by downregulating antiapoptotic genes such as
Bcl-2, CDC42 and Tcl-1, while miR-29 could prevent fibrosis by
inhibiting the release of collagen from the ECM (Pekarsky et al.,
2006; Mott et al., 2007; van Rooij et al., 2008). These results indicate
that different miRs may have opposite effects on fibrosis regulation,
and the same miR may have significant differences in fibrosis
regulation.

STAT3 and miRs have crosstalk that is crucial for maintaining
cardiac function under normal and pathological conditions. This
STAT3-miR crosstalk can mediate cardiac disease in several ways.
First, STAT3 can directly bind to miRs to mediate a feedback
regulatory relationship or mediate an indirect feedback regulatory
relationship with miRs through a long noncoding RNA (lncRNA)/
protein. As an example, in oxygen-glucose deprivation-induced
cardiomyocyte injury, lncRNA MIAT, which is associated with
myocardial infarction, captures miR-181a-5p and boosts the
expression of JAK2. This, in turn, amplifies myocardial
inflammation and apoptosis through the JAK2/STAT3 signaling
pathway (Tan et al., 2021). In addition, miR-21 activates the STAT3
signaling by targeting tumor suppressor cell adhesion molecule 1
(CADM1) and enhances cardiac fibrosis (Cao et al., 2017). Second,
STAT3 can directly mediate the transcription of downstream miRs,
and phosphorylated STAT3 can cooperate with other transcription
factors to promote or inhibit the transcription of miRs. In diabetic
hearts exposed to ischaemia/reperfusion, STAT3 has the ability to
attach to the miR-17–92 promoter and stimulate the targeted
inhibition of pro-apoptotic prolyl hydroxylase 3 (PHD3) by miR-
17/20a, resulting in a decrease in apoptosis (Samidurai et al., 2020).
Moreover, phosphorylated STAT3 can interact with NF-κB and

inhibit miR-188-3p expression (Kuo et al., 2017; Sp et al., 2018;
Masoumi-Dehghi et al., 2020). Third, miRs specifically recognize the
3′UTR of STAT3 mRNA and form incomplete complementary
pairing, resulting in the inhibition of STAT3 mRNA translation,
thereby blocking STAT3 expression. Following myocardial
infarction, the expression of STAT3 mRNA is reduced by miR-
17-5p and miR-124, which leads to the deterioration of autophagy,
inflammation, myocardial remodeling, and apoptosis. These miRs
bind to the 3′UTR of STAT3 mRNA (He et al., 2018; Chen et al.,
2022). In summary, multiple miRs can interact with STAT3 through
different mechanisms to enhance or inhibit cardiac
fibrosis (Figure 7).

4.4 Other mediators impact cardiac fibrosis
through the STAT3 signaling pathway

In addition to the above mediators that can affect cardiac fibrosis
through the STAT3 signaling pathway, there are other mediators
that can affect myocardial fibrosis caused by ischemia/reperfusion,
atrial fibrillation, diabetic heart disease, DCM, and hypertensive
heart damage through the STAT3 signaling pathway (Table 2).

5 The regulatory role of STAT3 and
autophagy in cardiac fibrosis

Autophagy is widely present in eukaryotic organisms and is a
process that degrades harmful substances in cells and promotes their
recycling through the lysosome pathway. In general, moderate
autophagy can maintain the stability of the internal environment,
while excessive autophagy can induce cell damage (Kuma et al.,
2017). The process is mainly divided into four stages: induction,
initiation, elongation, and mature degradation, which are regulated
by complex molecular mechanisms (Estrada-Navarrete et al., 2016;
Liu et al., 2016; Lin et al., 2019; Kaushal et al., 2020). Autophagy
recovers and removes damaged proteins and organelles, playing an
important role in maintaining the normal function of myocardial
cells (Mialet-Perez and Vindis, 2017). Interestingly, the role of
autophagy in fibrosis may vary with fibrosis progression. Zhang
et al. found that inhibiting autophagy could improve myocardial
fibrosis in mice subjected to TAC surgery (Zhang et al., 2021). At
20 weeks after TAC in mice with endothelial leptin receptor gene
knockout, myocardial fibrosis in these mice was improved by
autophagy activation (Gogiraju et al., 2019). These research
results demonstrate that the activation or inhibition of autophagy
may occur during the process of cardiac fibrosis, and the role of
autophagy in fibrosis has a dual nature.

Autophagy could potentially be linked to numerous signaling
pathways, one of which is the STAT3 signaling pathway that governs
the fate of cells, determining whether they survive or perish. Yuan
et al.’s research indicates that relaxin attenuates TGF-β1-induced
autophagy in primary CFs by suppressing the phosphorylation of
STAT3, thereby reducing cardiac fibrosis (Yuan et al., 2017). In
septic cardiomyopathy, the reduced expression of miR-125b
leads to excessive activation of STAT3/high mobility group box
protein 1 (HMGB1), resulting in elevated ROS generation and
impaired autophagic flow, ultimately leading to myocardial
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dysfunction (Yu et al., 2021). Additionally, the overexpression of
Src-associated in mitosis 68 (Sam68) promotes the osteogenic
differentiation of human valvular interstitial cells (hVICs)
through the STAT3 signaling-mediated autophagy inhibition,
thus inducing aortic valve calcification, while knockdown of
Sam68 reduces the phosphorylation of TNF-α-activated
STAT3 and the expression of downstream genes, thereby
affecting autophagic flow in hVICs (Liu et al., 2023b). The
activation of STAT3 is crucial for reducing cardiac autophagy
and inhibiting cardiac ischemia/reperfusion injury, as
demonstrated by the inhibition of soluble receptor for advanced
glycation end-products on cardiac ischemia/reperfusion injury
(Dang et al., 2019).

6 Challenges and opportunities for
targeting the STAT3 signaling pathway
for the treatment of fibrosis

Targeting STAT3 for heart disease treatment presents significant
challenges. STAT3 is widely recognized for its role in promoting
myocardial fibrosis. However, myocardial fibrosis may not always be
detrimental in certain heart diseases. Excessive fibrosis, for instance,
can lead to adverse remodeling in myocardial infarction patients,
potentially resulting in heart failure. Yet, in the early stages of

myocardial infarction, fibrosis is crucial in maintaining the
structural integrity of the infarcted ventricle (Prabhu and
Frangogiannis, 2016). Moreover, STAT3 actively participates in
the activation and proliferation of CFs, fostering fibrotic
remodeling. In cardiomyocytes, STAT3 exhibits a dual nature. It
can offer protective or adverse effects, such as enhancing survival
and mitigating oxidative stress or mediating cardiac hypertrophy
(Wang et al., 2021; Li et al., 2022). Despite cardiomyocytes not being
directly involved in ECM production, they can influence the fibrotic
response through paracrine signals (Qu et al., 2017). Additionally,
the STAT3 signaling pathway interacts with other pathways, playing
varying roles. JAK1, for example, binds to TGF-βR1, while JAKs also
associate with gp130 and get activated by TGF-β (Itoh et al., 2018).
Previous studies have shown that STAT3 works in tandem with
Smad3 to induce connective tissue growth factor, contributing to
fibrosis (Liu et al., 2013; Tang et al., 2017). Conversely, overactivated
STAT3 signaling in lung fibroblasts diminishes SMAD signaling by
reducing Smad3 phosphorylation, potentially due to
Smad7 induction, although this theory requires experimental
validation (O’Donoghue et al., 2012). Thus, identifying the
optimal timing for STAT3 inhibition is crucial for maximizing
therapeutic benefits and minimizing side effects. Targeting
STAT3 in CFs could effectively reduce fibrosis, but its protective
potential in cardiomyocytes warrants consideration. Overall,
STAT3’s role in cardiac biology is multifaceted. A thorough

TABLE 2 Mediators regulate fibrosis through the STAT3 signaling pathway.

Mediators Models Effects and related mechanisms Reference

SHP-1 SHP-1-overexpressing myocytes and fibroblasts The use of STAT3 agonist colivelin leads to more ROS
generation, ECM deposition, and TGF-β1/SMAD2 activation

Zang et al. (2023)

Hypoxia/reoxygenation induced cardiomyocytes Y-box protein 1 knockdown attenuates acute myocardial
infarction damage via SHP-1 mediated STAT3 suppression

Cao et al. (2020)

PTEN Coronary artery ischemia/reperfusion model in Type 1 diabetes
rats induced by Streptozotocin

PTEN partially inhibits the post ischemic regulation and post
hypoxic regulation of diabetes heart through destroying JAK2/

STAT3 signaling pathway

Xue et al. (2016)

βIV spectrin Cardiac specificity βIV spectrin KO mice βIV spectrin deficiency in cardiomyocytes causes
STAT3 impairment, fibrosis, and impaired cardiac function

Unudurthi et al. (2018)

Genetic and acquired mouse models of βIV-spectrin deficiency βIV spectrin protein dysfunction leads to nuclear
STAT3 accumulation and activation, which changes gene

expression and CF behavior. Fibrosis and cardiac dysfunction
in βIV spectrin-deficient mice are abolished by

STAT3 inhibition

Patel et al. (2019)

Elabela Ang II induced myocardial hypertrophy and fibrosis
exacerbation in hypertensive mice

By inhibiting the IL-6/STAT3/GPX4 signaling pathway,
antagonize the promoting effects of Ang II mediated cardiac

microvascular endothelial cells deionization, adverse
myocardial remodeling, fibrosis, and cardiac dysfunction

Zhang et al. (2022b)

PPAR Type 1 diabetes rat model induced by Streptozotocin PPARδ activation might suppress STAT3 and lower connective
tissue growth factor and Fibronectin levels in diabetic rats with

cardiac fibrosis

Lo et al. (2017b)

PPARα knockout mice PPARα blocks T helper 17 cell differentiation via IL-6/STAT3/
RORγT pathway, thus alleviating autoimmune Myocarditis

Chang et al. (2019)

SIRT3 SIRT3 knockout mice SIRT3 can inhibit the STAT3-NFATc2 signaling pathway,
thereby reducing myofibroblast transdifferentiation and

preventing cardiac fibrosis

Guo et al. (2017)

Abbreviation: SHP-1, tyrosine phosphatase 1; ECM, extracellular matrix; ROS, active oxygen; TGF-β1, transforming growth factor-β1; SMAD2, small mother against decapentaplegic 2; PTEN,

phosphatase and tensin homologue deleted on chromosome 10; CF, cardiac fibroblasts; GPX4, glutathione peroxidase; PPAR, peroxisome proliferator-activated receptor.
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understanding of its function across various cell types and disease
stages is essential for developing effective treatments.

Despite the complexities in targeting STAT3 signaling for
fibrosis treatment, recent advancements have yielded promising
results (Table 3). Presently, methods to directly inhibit STAT3,
aimed at targeting fibrosis, are categorized based on various target
domains. These include the SH2, DBD, NTD, and TAD. In this
section, we highlight key STAT3 inhibitors that specifically target
these domains of the STAT3 protein.

6.1 Inhibitors targeting the SH2 domain

STAT3 homodimerization is facilitated by protein-protein
interactions between the SH2 domains of the individual
monomers, particularly via phosphorylation at Tyr705. This
pivotal molecular interaction has been harnessed to develop
inhibitors targeting STAT3 directly (Furtek et al., 2016).
Inhibiting the SH2 domain not only disrupts STAT3 activation
and dimerization but also impedes its subsequent nuclear
translocation and the expression of genes regulated by STAT3.

Several small molecule STAT3 inhibitors, notably Stattic, S3I-
201, and S3I-201 analogs, play a significant role in mitigating
myocardial fibrosis. These inhibitors function by binding to the
SH2 domain of STAT3, thereby curtailing its activity. Elevated levels
of fibroblast growth factor 23 (FGF23) are reported to induce atrial
fibrosis in atrial fibrillation patients through enhancing ROS
production and subsequent STAT3 and Smad3 phosphorylation.
Stattic has been shown to counteract these effects (Dong et al., 2019).
Moreover, administering S3I-201 tomice withmyocardial infarction
has demonstrated reduced left atrial fibrosis in vivo (Chen
et al., 2017b).

Another category of inhibitors targeting STAT3’s SH2 domain
comprises derivatives of natural compounds. Cryptotanshinone, a
primary active component extracted from Salvia miltiorrhiza,
suppresses the STAT3 pathway to reduce cardiac fibrosis and
improve cardiac function in diabetic rats (Lo et al., 2017a). In
vitro studies reveal that cryptotanshinone significantly curbs Ang
II-induced cardiomyocyte hypertrophy and TGF-β-induced
myofibroblast activation by impeding STAT3 phosphorylation

and nuclear translocation (Li et al., 2023). Additionally, natural
compounds like curcumin and resveratrol have been identified to
possess properties beneficial in combating atherosclerosis (Zordoky
et al., 2015; Ganjali et al., 2017).

These inhibitors are crucial for their anti-inflammatory and
anti-atherosclerotic properties, suggesting their potential as
therapeutic agents for ameliorating fibrosis. However, these
inhibitors are not without drawbacks. A primary issue is that
most inhibitors targeting the SH2 domain lack specificity to
STAT3, making it challenging to exclude the involvement of
other STAT proteins in fibrosis (Szelag et al., 2016). Additionally,
STAT3 monomers or unphosphorylated STAT3 proteins can
interact with other proteins to transcribe downstream target
genes, which limits the efficacy of targeting the SH2 domain.
Further complicating matters, activating mutations in the SH
domain have been identified in somatic cells. The impact of these
somatic mutations on the binding efficiency of SH2 domain
inhibitors to STAT3, and consequently on their effectiveness,
remains to be fully understood (Qiu and Fan, 2016). Therefore,
the precise targeting of STAT3’s SH2 domain warrants further
research focus.

6.2 Inhibitors targeting the DBD domain

The DBD of STAT3 specifically recognizes and binds to distinct
DNA elements in target genes. This selective interaction facilitates
the precise induction of target gene expression, characterized by
high specificity.

Research has uncovered that platinum compounds, including
IS3-295, CPA-1, CPA-7, and platinum tetrachloride (IV), effectively
block the DNA-binding activity of STAT3. These compounds can
inhibit cell growth and induce apoptosis, while not affecting normal
cells and avoiding prolonged STAT3 activation (Beebe et al., 2018).
Additionally, Galiellalactone, a natural product, impedes STAT3’s
DNA-binding activity by interacting with its DBD domain. To
enhance its oral bioavailability, N-acetyl L-cysteine methyl ester
has been added to the thiol group, resulting in the creation of the
prodrug GPA512. However, GPA512’s lack of specificity, as it also
disrupts other signaling pathways like NF-κB and TGF-β, could pose

TABLE 3 STAT3 inhibitors for treating organ fibrosis.

Classification Inhibitor
name

Target
site

Mode of targeting
STAT3

Fibrotic organs
treated

Reference

Small molecules Stattic SH2 Phosphorylation myocardium, liver, lung,
kidney

Celada et al. (2018), Dong et al. (2019), Fu et al.
(2019), Park et al. (2022)

S3I-201 SH2 Dimerization myocardium, lung, liver Chen et al. (2017b), Wang et al. (2018), Yuan
et al. (2023)

BP-1–102 SH2 Dimerization kidney Zhu et al. (2019)

STX-0119 NTD DNA binding liver, kidney Choi et al. (2019), Makitani et al. (2020)

Niclosamide Unknown Unknown liver, lung, kidney Chen et al. (2021), Cui et al. (2021), Gan et al.
(2023)

Natural compounds Cucurbitacin I SH2 Phosphorylation liver Hu et al. (2020a)

Cryptotanshinone SH2 Phosphorylation myocardium, liver, lung Lo et al. (2017a), Zhang et al. (2019a), Zhao et al.
(2022)

Frontiers in Pharmacology frontiersin.org13

Jiang et al. 10.3389/fphar.2024.1336102

56

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1336102


challenges in its future development (Don-Doncow et al., 2014;
Escobar et al., 2016). InS3-54, discovered through an advanced
computer screening method, selectively binds to STAT3’s DBD
domain in vitro, inhibiting its DNA-binding activity. Its analog,
InS3-54A18, exhibits improved solubility, specificity, and
pharmacological properties, while showing minimal side effects
in animal models (Huang et al., 2016).

While virtual screening techniques, including molecular
modeling, have demonstrated that certain inhibitors can directly
bind to the DBD domain of STAT3, the scarcity of adequate assay
systems has limited the identification of small molecule inhibitors in
this category. This constraint has significantly impeded the drug
development process. Additionally, inhibitors targeting the
STAT3 DBD encounter similar challenges to those faced by
SH2 domain-targeting inhibitors in terms of therapeutic application.

6.3 Inhibitors targeting NTD and
TAD domains

Inhibitors targeting the NTDs and TAD of STAT3 can modulate
the binding of STAT3 dimers and regulate DNA transcription,
potentially contributing to anti-fibrotic effects. In the study of the
selective STAT3 NTD inhibitor ST3-H2A2, Timofeeva et al. observed
that this compound robustly activated apoptosis genes, leading to
the induction of apoptosis in cancer cells (Timofeeva et al., 2013).
Moreover, researchers have successfully identified the allosterically
active small molecule K116, which binds to the TAD of STAT3 and
effectively inhibits its activity (Huang et al., 2018).

In summary, while numerous STAT3 inhibitors have
demonstrated anti-fibrotic properties, identifying inhibitors that
are highly efficient, low in toxicity, and have minimal side effects
remains a challenge. Additionally, there is a scarcity of extensive
animal studies on the pharmacology and toxicology of these
inhibitors. Furthermore, only a limited number of these
inhibitors have progressed to clinical evaluation. However, the
integration of STAT3 inhibitors with other targeted therapeutic
agents, particularly in combination with immunotherapy agents,
offers promising potential. It is hoped that future research will lead
to significant advancements, enabling the broader clinical
application of STAT3 inhibitors.

7 Conclusion

Cardiac fibrosis results from the excessive accumulation of ECM
in the myocardium and is central to many cardiac pathologies. Since
JAK/STAT3 activation can increase fibrotic effector cells and ECM
deposition through various pathways, it may be a potential target of
antifibrotic therapy. As mentioned previously, we emphasized the
promoting effects of various mediators on cardiac fibrosis through

activation of the JAK/STAT3 signaling pathway. However, there
may be many other mediators that have not yet been identified, and
modern proteomics technology and protein identification will speed
up the discovery. Regarding fibrosis, the antifibrotic effect of
STAT3 inhibitors is receiving attention, but there has been little
research on their ability to inhibit myocardial fibrosis. While further
research is required to elucidate its role in various types of
myocardial fibrosis, the JAK/STAT3 signaling holds promise as a
therapeutic target for cardiac fibrosis due to its connection between
cardiac inflammation and fibrosis.
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Endothelin-1 (ET-1) is a potent vasoconstrictor with strong anti-natriuretic and
anti-diuretic effects. While many experimental studies have elucidated the
mechanisms of ET-1 through its two receptors, ETA and ETB, the complexity
of responses and sometimes conflicting data make it challenging to understand
the effects of ET-1, as well as potential therapeutic antagonism of ET-1 receptors,
on human physiology. In this study, we aimed to develop an integrated and
quantitative description of ET-1 effects on cardiovascular and renal function in
healthy humans by coupling existing experimental data with a mathematical
model of ET-1 kinetics and an existing mathematical model of cardiorenal
function. Using a novel agnostic and iterative approach to incorporating and
testing potential mechanisms, we identified aminimal set of physiological actions
of endothelin-1 through ETA and ETB receptors by fitting the physiological
responses (changes in blood pressure, renal blood flow, glomerular filtration
rate (GFR), and sodium/water excretion) to ET-1 infusion, with and without ETA/
ETB antagonism. The identified mechanisms align with previous experimental
studies on ET-1 and offer novel insights into the relative magnitude and
significance of endothelin’s effects. This model serves as a foundation for
further investigating the mechanisms of ET-1 and its antagonists.
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1 Introduction

ET-1 is a potent vasoconstrictor, especially in the renal
vasculature, and is anti-natriuretic and anti-diuretic. It exerts
these effects through its two receptors–ETA and ETB. Both
receptors have been detected in all tissues with blood supply,
indicating their ubiquitous expression (Regard et al., 2008;
Davenport et al., 2016). Their relative and absolute densities vary
by location and across species. Systemically, saturation binding
assays show that resistance vessels express primarily ETA, while
in the kidney, relative expression of ETB overall is much higher
compared to ETA (Davenport et al., 2016). Within the kidney,
though, the relative concentrations of ETA and ETB vary. ETA

and ETB have both been found to be expressed in the
preafferent, afferent, efferent, and peritubular capillaries, as well
is in the proximal tubule, thick ascending limb, and collecting duct.
But preafferent and afferent arterioles have relatively higher
expression of ETA, while efferent and peritubular arterioles have
higher expression of ETB. Both receptor types are also expressed in
the tubule. ETA is found primarily in the proximal tubule. ETB is
found in all segments, but the inner medullary collecting duct has
the highest density of ETB receptors (Kohan et al., 2011).

A large body of experimental studies have provided a great deal
of data for understanding of the effects of ET-1 through each
receptor by utilizing various approaches, including ET-1 infusion
studies, knock-out studies, and perturbation with various receptor
agonists/antagonists [for a thorough review, see (Davenport et al.,
2016; Kohan et al., 2011)]. However, the complexity of responses
and sometimes conflicting data, especially across species, make it
challenging to predict effects in human physiology. For instance,
while it is well established that ET-1 causes vasoconstriction through
ETA, the effects of ETB are more complex. Both ETB agonism and
antagonism have been shown to cause vasoconstriction (Haynes
et al., 1995; Love et al., 2000). ETB appears to constrict the afferent
arteriole but dilate the efferent arteriole (Inscho et al., 2005). In
addition, while ET-1 infusion certainly exerts anti-natriuretic and
anti-diuretic effects, under some conditions ET-1 appears to inhibit
reabsorption and promote natriuresis/diuresis in the collecting duct
(Kohan et al., 2011).

Mathematical modeling can be a tool for integrating knowledge
of physiology and various data sets into a consistent quantitative
framework in order to better understand a system. In this study, we
aimed to utilize existing experimental data to develop an integrated
and quantitative description of endothelin effects on cardiovascular
and renal function in healthy humans. Using a mathematical model
of endothelin kinetics published in a sister paper, coupled to an
existing mathematical model of cardiorenal function (Hallow et al.,
2014; Hallow and Gebremichael, 2017; Hallow et al., 2018), we
aimed to estimate the magnitude of physiological actions of
endothelin-1 through ETA and ETB receptors by fitting the
physiological response to ET-1 infusion, with and without ETA/
ETB antagonism. Quantitively understanding the physiological
effects of ET-1 and ET-1 antagonism in normal subjects is a first
step toward better understanding its role in cardiovascular and renal
disease, and both the beneficial effects and deleterious fluid retention
in previous clinical studies of ETA antagonists. This knowledge
could help harness ETA antagonists to gain renal benefit while
mitigating fluid retention.

2 Materials and methods

2.1 Cardiorenal model

We utilized a previously published cardiorenal model
(Hallow et al., 2014; Hallow et al., 2017; Hallow and
Gebremichael, 2017; Hallow et al., 2018), summarized
schematically in Figures 1A–D. This model describes the key
physiological processes of kidney function, Na+ and water
homeostasis, and blood pressure control, including blood flow
and pressure through the renal vasculature (Figure 1A); renal
filtration, reabsorption, and excretion of sodium, water, and
glucose (Figure 1C); whole-body fluid/electrolyte distribution
(Figure 1B); and key neurohormonal and intrinsic feedback
mechanisms (Figure 1D). Full model equations, parameters,
and initial conditions have been published previously.

2.2 Endothelin 1 kinetics model

The development, calibration, and validation of a mathematical
model of endothelin-1 kinetics is described in a sister paper (Hallow
et al., manuscript in review - Frontiers in Pharmacology), and
illustrated schematically in Figure 1E. In brief, Big ET-1 is
assumed to be produced at a constant rate; ECE converts Big
ET-1 to ET-1 in the tissue compartment; ET-1 is distributed
between the tissue and plasma compartments; in each
compartment, ET-1 binds to ETA and ETB receptors to form
receptor-ligand complexes which are then cleared by
internalization. The model also describes competitive binding of
antagonists to the ETA and ETB receptor, and allows specification of
selectivity and binding affinities for each receptor. The model was
calibrated to the response to infusion of ET-1 or BigET-1 in three
studies (Kaasjager et al., 1997; Parker et al., 1999; Hunter et al.,
2017), and was validated by reproducing the ET-1 response to ET-1
in a different study (Bohm et al., 2003), as well as the ET-1 response
to ETA antagonist BQ123 and ETB antagonist BQ788.

2.3 Integration and calibration of
endothelin-1 effects in the
cardiorenal model

The model of endothelin-1 kinetics and receptor antagonism
was incorporated into and mechanistically linked with the
cardiorenal model. Specifically, endothelin-1 exerts its
physiological effects by binding to ETA and ETB receptors. Thus,
the concentrations of ET-1 bound to ETA or ETB receptors [(ET1RA)
and (ET1RB), respectively in Figure 1E] were linked to the
mechanistic effects of each receptor.

To do this, it was first necessary to identify the primary
mechanisms of each receptor, and then to determine the shape
and magnitude of the mathematical relationship between each
ET1-receptor complex and its mechanisms, as presented in
Figure 1F.

Based on the body of available experimental data (Haynes et al.,
1995; Love et al., 2000; Inscho et al., 2005; Kohan et al., 2011;
Davenport et al., 2016), we postulated possible mechanistic effects of
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FIGURE 1
Mathematical model of cardiorenal function. (A) the renal vasculature is modeled by a single preafferent resistance vessel flowing into N parallel
nephrons with an afferent, efferent, and peritubular resistance; RBF and glomerular hydrostatic and oncotic pressures are calculated as a function of MAP,
renal venous pressure, and resistances. (B) The balance between Na+ and water excretion and intake determines blood volume and plasma Na+

concentration. Na+ and water move between the blood and interstitial fluid according to starling forces, and Na+ may be sequestered non-
osmotically in a peripheral storage compartment. Blood volume and venous compliance and capacitance determines venous return and cardiac output,
which together with total peripheral resistance, determine MAP. (C)Glomerular filtration is described by the balance of starling forces and the glomerular
ultrafiltration coefficient Kf. Na+, glucose, and water are reabsorbed at different fractional rates in the proximal tubule, loop of Henle, distal convoluted
tubule, and connecting tubule/collecting duct. (D) Multiple regulatory mechanisms, including the renin-angiotensin-aldosterone system (RAAS), renal
sympathetic activity, atrial natriuretic peptide (ANP), and vasopressin, provide feedback onmodel variables. (E) Endothelin-1 kinetics submodel. Big ET-1 is
assumed to be produced at a constant rate; ECE converts Big ET-1 to ET-1 in the tissue compartment; ET-1 is distributed between the tissue and plasma
compartments; in each compartment, ET-1 binds to ETA and ETB receptors to form receptor-ligand complexes which are then cleared by internalization.
(F) Physiological effects of ET-1 through the ETA and ETB receptor, included in the final model. P, pressure; R, resistance; RBF: renal blood flow; MAP,
mean arterial pressure; RIHP, renal interstitial hydrostatic pressure; Na, sodium; SNGFR: single nephron glomerular filtration rate; ϕ, mass flow rate; F,
volumetric flow rate; C, concentration; MD, macula densa; ANP, atrial natriuretic peptide; RAAS, renin angiotensin aldosterone system; AGT,

(Continued )
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ET-1 through the ETA and ETB receptor, illustrated in Figure 2A.
However, we took an agnostic approach to the existence, magnitude,
and functional form of each relationship. Most physiological effects
are saturable and thus well described as sigmoidal when considered
over the full range of concentrations. However, if the range of
concentrations observed physiologically or experimentally do not
sufficiently cover the extremes, the saturation may not be detectable.
Also, even if saturation occurs, there is not always sufficient data to
estimate both the magnitude and steepness of the relationship. In
these cases, a linear model, which only requires estimation of the
slope m, may be more appropriate. Thus, for each possible
mechanism, two possible functional forms were considered:
linear (Eq. 1) and sigmoidal (Eq. 2).

Elinear � max 1 +mi ET1Ri] − [ET1Ri0[ ]( ), 0( ) (1)
Esig � 1 + mi

1 + e
ET1Ri[ ]− ET1Ri0[ ]

b

− mi

2
(2)

Here, ET1Ri represents the concentration of ET-1 bound to the
either the ETA or ETB receptor. ET1Ri0 is the bound concentration
under normal conditions.mi defines the magnitude of the effect, and
for the sigmoidal response, b defines the steepness of the sigmoidal
function. E is the physiological effect on the target parameter. E is
one when ET1Ri is at its normal concentration, and may increase or
decrease the target parameter as ET1Ri changes.

2.3.1 Mechanism selection
The possible mechanistic effects of ET-1 through the ETA and

ETB receptor, illustrated in Figure 2A, were first tested and
selected for inclusion in the final model using a forward
selection approach followed by a backward elimination
step. The mechanism selection process is illustrated in
Figure 3. Briefly, the base model, referred to as the NULL
model, contained no mechanistic effects of ET-1. An initial
objective function (OBJ) was determined by calculating the
sum of the square error between the simulation and observed
data for two experimental studies, described below. In the first
round of selection, each mechanism and functional form was
tested individually. For each, the slope m (linear) or slope m and
steepness b (sigmoidal) was optimized to the experimental data.
The mechanism that produced the greatest OBJ reduction,
compared to the NULL model, was kept in the model for the
next round. In the second round, each remaining mechanism/
shape combination was tested in combination with the
mechanism from the first round. The mechanism that
produced the greatest reduction in OBJ, compared to the first
round OBJ, was kept for the next round. This was repeated until
no further improvements in OBJ occurred. At this point, the
remaining mechanisms that did not improve OBJ were
considered unimportant in explaining the experimental data,
and were not included in the model. For the mechanisms
identified as important in each of the forward rounds, a

backward elimination round was used to confirm the
contribution of each included mechanism. For this, first the
OBJ with all included mechanisms was calculated. Then the
OBJ was calculated after dropping each of the mechanisms
individually. If any mechanism did not increase OBJ when
dropped, this would indicate that that mechanism was not
necessary to explain the data.

2.3.2 Parameter estimation
During the mechanism selection process, unknown model

parameters were estimated by simultaneously fitting two
experimental studies. These two studies were selected because
they were conducted in human subjects and measured both
plasma ET-1 and renal and systemic responses over time. The
studies provide complementary information for constraining
model parameters.

Infusion of increasing doses of ET-1: In (Kaasjager et al., 1997), six
healthy subjects were placed on a diet of 200 mmol sodium per
day for 5 days. They were then administered an infusion of ET-1
at increasing infusion rates: 0.5 ng/kg/min (0.2 pmol/kg/min)
ET-1 for 60 min, followed by 1 ng/kg/min (0.4 pmol/kg/min)
for 60 min, followed by a final 2.0 ng/kg/min (0.8 pmol/kg/min)
for 60 min. Subjects were given an oral water load of 25 mL/kg
body weight before the experiment began, and were asked to
drink water matching their urinary output volume to maintain
water loading. Plasma ET-1 was measured before infusion and at
75, 125, and 225 min after the start of the infusion. GFR was
measured through inulin clearance and estimated renal plasma
flow (RPF) was measured through para-aminohippuric acid
(PAH). Renal blood flow (RBF) was calculated as RPF*(1-
packed cell volume). Mean arterial pressure (MAP) was
measured continuously. Renal vascular resistance (RVR) was
calculated as MAP/RBF. Urine was collected throughout the
study and urine flow rate, sodium excretion rate, fractional
excretion of sodium, and fractional excretion of lithium
were reported.
ETA or ETB inhibition followed by ET-1 infusion: In Bohm
et al. (2003), six healthy, male subjects were studied on three
different days separated by at least 1 week. Subjects were
infused with either 0.9% saline (for 15 min), the ETA inhibitor
BQ123 (2.5–5 nmol/kg/min for 50 min), or the ETB inhibitor
BQ788 (4 nmol/kg/min for 15 min). After 30 min, subjects
were also infused with ET-1 (4 pmol/kg/min; 10 ng/kg/min)
for 20 min. Plasma ET-1 was measured at 0, 15, 30, 40, and
50 min. RBF was measured through PAH clearance. MAP was
measured continuously, and RVR was calculated from
RBF and MAP.

Study protocols were simulated as described in each manuscript,
including sodium and water loading, doses of ET-1, ETA, and ETB

FIGURE 1 (Continued)

angiotensinogen; Ang, angiotensin; AT1, angiotensin receptor type 1; AT2, angiotensin receptor type 2; MR, mineralocorticoid receptor; aldo,
aldosterone; V, volume; kd, binding affinity; ktp and kpt, intercompartmental transfer rate constants.
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FIGURE 2
A large set of postulated mechanistic effects of ET-1 through ETA and ETB tested for inclusion in the model (A), and a subset of these mechanisms,
found to be necessary to explain experimental data, were included in the final model (B).

FIGURE 3
Process for mechanism selection and parameter estimation. OBJ, objective function value.

Frontiers in Pharmacology frontiersin.org05

Yu et al. 10.3389/fphar.2024.1332394

68

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1332394


TABLE 1 Estimated slope for each include mechanism, and contribution of mechanism to improvement in objective function.

Signal Effect Initial calibration Refined
calibration

Slope
(SE)

OBJ

Reduction from
NULL (%)

Reduction from previous
round (%)

ET1-ETA Preafferent Arteriole
Resistance

0.344 (9.1%) −59 −59 0.288 (8.9%)

Proximal Tubule Na+

Reabsorption
0.041 (4.6%) −18 −45 0.0311 (5.1%)

Afferent Arteriole Resistance 1.79 (3.6%) −2.3 −13 1.66 (3.5%)

Systemic Arterial Resistance 0.068 (3.1%) −4.2 −19 0.060 (3.5%)

Efferent Arteriole Resistance 0.086 (12%) −1.4 −10 0.0635 (14%)

ET1-ETB Efferent Arteriole Resistance −0.008 (19%) −0.05 −4 −0.0059 (22%)

Systemic Arterial Resistance 0.013 (5.1%) −3.1 −19 0.0135 (5.2%)

FIGURE 4
(A) Calibrated model reproduces the response of healthy subjects to ET-1 infusion observed in Kaasjager et al. (1997). (B) Simulated direct
mechanistic effects of ET-1 infusion. MAP, mean arterial pressure; GFR, glomerular filtration rate; RPF, renal plasma flow; FENa, fractional excretion of
sodium; FELi, fractional excretion of lithium; R, resistance; aa, afferent arteriole; ea, efferent arteriole; SVR, systemic vascular resistance; PT,
proximal tubule.
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antagonist administered, and timing of doses. Parameters were
estimated by minimizing the least square error between the
observed and model-predicted responses.

2.3.3 Validation
The model was validated by simulating a separate experimental

study of ETA inhibition followed by ET-1 infusion (Vuurmans et al.,
2004). In this study, nine healthy, male subjects were studied on four
different days separated by at least 1 week, in randomized order. To
maintain diuresis, subjects were infused with a 5% glucose solution, and
then were instructed to consume water matching urinary output.
Subjects then received either 0.9% saline (for 15 min) or the ETA

inhibitor VML588 at a dose of 0.05, 0.2, or 0.4 mg/kg/hr through the
remainder of the study. Ninety minutes after the start of the study,
subjects were also infused with ET-1 (1 pmol/kg/min) for 20 min. GFR
wasmeasured through inulin clearance and estimated renal plasma flow
(RPF) was measured through para-aminohippuric acid (PAH). Renal
blood flow (RBF) was calculated as RPF*(1- packed cell volume). Mean
arterial pressure (MAP) was measured continuously. Renal vascular
resistance (RVR) was calculated as MAP/RBF. Urine was collected at
30 min intervals and sodium excretion rate was reported.

2.3.4 Technical implementation
The model was implemented in R v4.1.2 using the RxODE

package (Wang et al., 2016). Optimization was performed using the
L-BFGS-B method in the optim package. Model code is available at
https://bitbucket.org/cardiorenalmodel/endothelin-dynamics.

3 Results and discussion

3.1 Model calibration and
mechanism selection

Figure 2B shows the final mechanisms selected for inclusion in
the model. Estimated parameter values are given in Table 1. For all
mechanisms, a linear form was found to be sufficient, and use of a
sigmoidal function did not improve the objective function. This
should not be interpreted to mean that the relationships are not
saturable - only that they are reasonably approximated as linear over
the range of the available experimental data. There certainly must be
saturation of effects at high concentrations. It may be that the
concentrations in the experimental studies do not reach
concentrations sufficient to saturate the response, or that the data
is not sufficiently granular to detect nonlinearity.

As shown in Figures 4A, 5, the calibrated model reasonably
reproduced the observed magnitude and time course of changes in
physiological variables in both experimental studies used for model
calibration. The model was able to describe all of the key features of
the response to ET-1 infusion (Figures 4A, 5—yellow), as well as the
differing effects of ETA and ETB antagonism (Figures 5 – blue and
purple). As observed in the experimental data, each antagonist alone
had a minimal effect on RBF, RVR, and MAP, but blunted (ETA

antagonist) or exacerbated (ETB antagonist) the response to ET-1.
Because the model parameters were optimized to fit both studies

simultaneously, some aspects of the experimental data are fit less

FIGURE 5
A Calibratedmodel reproduces the response of healthy subjects to ETA or ETB antagonism followed by ET-1 infusion observed in Bohm et al. (2003).
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than perfectly. The optimization process makes tradeoffs between
individual study and variable fits to find the set of parameters that
best fits the data overall. For instance, the observed RBF response to
ET-1 infusion in (Figure 4A) was stronger than the observed
response to ET-1 infusion in (Figure 5 - yellow), even though the
increase in plasma ET-1 was slightly higher in Bohm et al. Thus, the
optimization produced a simulated change in RBF that was slightly
weaker than observed in the first study and slightly stronger than
observed in the second study. The mechanistic effects of ET-1
infusion, adjusted to reproduce the outcomes observed in
Kaasjager et al. (1997) are depicted in Figure 4B.

Using the calibrated parameters, the model reasonably predicted
the response to the ETA antagonist VML588, as shown in Figure 6.
To simulate this study, only the plasma concentrations of VMK
588 were adjusted–all other parameters were fixed to their estimated
values in Table 1. The model reproduced observed changes in GFR
and Na+ excretion in response to ETA inhibition well, alone and with
ET-1 infusion. It also reproduced the changes in RBF and RVR,
although the predicted response was on the low end of the standard
error of the measured value. For MAP, the model reproduced the
lack of change with ETA inhibition alone (at 90 min), and the
simulated rise in MAP with ET-1 infusion at 210 min fell within
the standard error of the measured value, although it was on
the high end.

However, while it reproduced the trend of a reduction in MAP
with ETA antagonism relative to placebo during ET-1 infusion, the
simulated absolute MAP at 210 min fell above the observed values in
the ETA antagonist arms. This is likely due to differences in the

observed MAP response to ETA antagonism between the calibration
study (Bohm et al., 2003) and the experimental study used for
validation. In MAP remained unchanged during ET-1 infusion
following ETA antagonism (Figures 5 blue), while in MAP fell
below baseline during ET-1 infusion and ETA antagonism.
Increasing the simulated concentration of VML588 (and thus the
degree of ETA inhibition) could improve the MAP response but
worsened the response of other variables (not shown).

This validation step demonstrated that the calibrated model and
mechanisms identified can reasonably predict the key trends and
behaviors in a new study. But this new study also provides further
information for further constraining the model parameters.
Therefore, the model parameters were estimated again, this time
including the data from Vuurmans et al. (2004) in the objective
function. The parameter estimates from the initial and refined
calibration are given in Table 1. Parameter values shifted slightly
from the initial calibration, but there were no major changes
in values.

3.2 ET-1 mechanisms

3.2.1 Renal vascular effects
The strongest and most important mechanism of ET-1

identified was a vasoconstrictive effect through ETA on the renal
preglomerular vasculature (preafferent and afferent arterioles). This
effect was identified in the first round of optimization and greatly
reduced the objective function relative to the NULL model, and to a

FIGURE 6
Model validation: Using identified mechanisms and calibrated parameters, the model reasonably reproduces the response to ETA antagonism
(VML588) and ET-1 infusion in a separate clinical study in healthy subjects (Vuurmans et al., 2004). RBF, renal blood flow; RVR, renal vascular resistance;
GFR, glomerular filtration rate; MAP, mean arterial pressure.
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vastly greater extent than other mechanisms tested. After including
this mechanism, though, other mechanisms provided substantial
further improvements in the model. On the efferent arteriole, a weak
vasoconstrictive effect of ET-1 through ETA and a vasodilatory effect
through ETB were found to be important, but these effects were
much weaker than the preglomerular effect of ETA. No effect of ETB

on the afferent arteriole was necessary to explain the data.
These findings are generally consistent with the experimental

literature. The renal vasoconstrictive effects of ET-1 are well-
established (Kohan et al., 2011), and ETA expression has been
found in all parts of the renal vasculature (Davenport et al.,
1994; Endlich et al., 1996; Wendel et al., 2006). However, it is
expressed relatively higher in the preglomerular vasculature
(Wendel et al., 2006; Kohan et al., 2011; Davenport et al., 2016).
Studies have shown that ETA antagonists reduce vasoconstriction of
the preafferent and afferent arterioles with ET-1 infusion (Endlich
et al., 1996; Inscho et al., 2005), and the maximum vasoconstrictive
effect of ET-1 on the afferent is greater than on efferent (Edwards
et al., 1990). Thus, the finding of a strong vasoconstrictive effect of
ETA on the afferent and weaker effect on the efferent is consistent
with these studies.

Studies in the hydronephrotic rat kidney have reported that ETA

antagonists block preglomerular constriction with ET-1, but have
little effect on efferent tone (Endlich et al., 1996). Experiments in
blood-perfused juxtaglomerular nephron preparations found that
ETB constricts the afferent arteriole but dilates the efferent arteriole.
In this study, the vasodilatory effect of ETB on efferent resistance was
detected, although it was the least necessary to explain the data. An
effect of ETB on afferent resistance was not detected. This does not

necessarily conflict with the experiments by (Inscho et al., 2005)—
but it suggests that the data used in building this model was not
sufficient to detect this mechanism, and suggests that this effect is
less important in determining the response to ET-1 infusion as ETA/
ETB agonists under the conditions in the calibration experiments.

3.2.2 Systemic arterial vasoconstriction
A vasoconstrictive effect of both ETA and ETB on the systemic

vasculature was identified, and the effect through ETA was about
four times stronger than the effect through ETB. The
vasoconstrictive effect of ET-1 through ETA on a wide range of
blood vessel types is well established (Davenport et al., 2016).
However, the data regarding ETB is conflicting. Of particular
interest, while studies have found that ETB antagonists induce
constriction (Love et al., 2000), studies of the ETB agonist
sarafotoxin have found that it also induces constriction (Haynes
et al., 1995). These results at first seem in conflict, but the model is
actually consistent with both of these results and offers an
explanation as well. This is illustrated in Figure 7, which shows
the simulated changes in systemic vascular resistance (SVR), [ET-1],
[ET1-RA], [ET1-RB], and their respective effects on vascular
resistance during ETB antagonism. Because ETB stimulates
vasoconstriction, ETB antagonism reduces ET-1 binding to ETB,
sending a weak vasodilatory signal to SVR. But because ETB is the
main clearance receptor for ET-1, ETB antagonism also causes ET-1
to rise, thus increasing its binding to the ETA receptor. Because the
vasoconstrictive effect of ETA is much stronger than that of ETB, the
vasoconstrictive effect through ETA dominates, causing SVR to rise.
A similar effect occurs to renal vascular resistance.

FIGURE 7
Simulated effects of ETB antagonism with BQ788 on systemic vascular resistance (SVR). ETB antagonism reduces ET-1 binding to ETB (A), sending a
weak vasodilatory signal to SVR (B). But because ETB is the main clearance receptor for ET-1, ETB antagonism also causes ET-1 to rise (C), thus increasing
its binding to the ETA receptor (D). Because the vasoconstrictive effect of ETA is much stronger than that of ETB, the vasoconstrictive effect through ETA
dominates (E), causing SVR to rise (F).

Frontiers in Pharmacology frontiersin.org09

Yu et al. 10.3389/fphar.2024.1332394

72

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1332394


3.2.3 Sodium transport
The second most important effect in explaining the

experimental data, after the ETA vasoconstriction of the
preglomerular vasculature, was an effect of ET-1 on sodium
retention in the proximal tubule through ETA. ETA is expressed
in the proximal nephron, and studies that have measured lithium
clearance (a measure of proximal sodium reabsorption) with ET-1
infusion have consistently found a decrease in lithium clearance or
fractional excretion of lithium, indicating an increase in proximal
Na + reabsorption (Rabelink et al., 1994; Sorensen et al., 1994;
Kaasjager et al., 1997; Vuurmans et al., 2004). However, studies of
ET-1 control of sodium excretion are complex and difficult to study
at the organ level, and results across studies are conflicting (Kohan
et al., 2011). Garcia and Garvin found increased PT fluid
reabsorption at low ET-1 concentrations (0.1–1 p.m.) and
decreased reabsorption at high concentrations (~1,000 p.m.)
(Garcia and Garvin, 1994). ET-1 concentrations in the
experimental studies used in fitting the model ranges from 1 to
50 p.m., closer to the low-concentration range used by Garcia and
Garvin, and thus consistent with sodium retention.

Effects of ETB on sodium transport, in either the proximal tubule
or the collecting duct, were found to be unnecessary to explain the
experimental data. This does not mean that this effect does not
exist–experimental studies have demonstrated a role of ETB in
collecting duct natriuresis (Kohan et al., 2011). However, it
indicates that this effect cannot be detected in the data used for
calibration, and that this mechanism is not necessary to explain the
responses observed in the experimental studies considered. In
(Kaasjager et al., 1997), the decrease in fractional excretion of
lithium parallels the changes in Na + excretion, and the effects of
ET-1 on proximal tubule reabsorption are sufficient to produce the
observed Na + excretion rates in this study, as well as in the
validation study by (Vuurmans et al., 2004).

3.2.4 Venous constriction/reduced venous
capacitance

The model was insensitive to effects of ET-1 on venous
capacitance or venous compliance. Including this effect tended to
shift other parameters, but did not improve or worsen the objective
function. This indicates that the measured data does not hold
sufficient information to identify and quantify venous effects.
However, the effects of ET-1 on venous tone through ET-1 have
been clearly demonstrated experimentally. ET-1 caused both venous
and arterial contractions in both human and canine vessels, with
significantly lower EC50 in veins compared to arteries (Cocks et al.,
1989). Maximum contraction in veins was 100% that of max
contraction with K+ depolarization, while in arteries it ranges
from 25% to 80%. In small arteries and veins, ETA antagonists
blocked this effect, but ETB antagonists and agonists had no effect,
indicating that it is mediated by ETA (Riezebos et al., 1994).
Therefore, further investigating and additional data is needed to
better inform this mechanism in the model going forward.

3.2.5 The role of ETB
ETB antagonism induces renal vasoconstriction and reduced

renal blood flow (see Figure 5), but interestingly, the only identified
direct effects of ETB were weak systemic vasoconstriction and weak
efferent vasodilation. The model suggests that the effects of ETB

antagonists are primarily the consequence of reduced clearance of
ET-1 through ETB when it is blocked, resulting in higher plasma and
renal ET-1 and increased binding to the ETA receptor (Figure 7). In
the context of ETA antagonist selectivity, this suggests that as
selectivity decreases and the potential for ETB binding increases,
the primary consequence is likely to be reduced ET-1 clearance,
increased ET-1 concentrations, more ET-1 available to bind to any
open ETA receptors, thus effectively reducing the degree of ETA

antagonism.

3.2.6 Limitations
There are a number of limitations of this study. As noted, the

ability to detect ET-1 mechanisms is limited by the data used to
inform the model. Lack of identification of an effect does not mean
an effect does not exist. It only means that the effect is not necessary
to explain the observed data, and mechanisms not detected in this
study may emerge as important if additional variables were
measured. For example, effects on venous capacitance were not
needed o explain the current data, but this could be because the data
utilized included only measures that strongly reflect arterial function
(e.g., cardiac output and blood pressure). Inclusion of additional
variables such as venous pressure or cardiac filling pressure may be
necessary to identify a venous effect, but these variables are
unfortunately much more difficult to obtain clinically.

This model provides a starting point for continuous testing and
integration of additional data sets going forward, which may allow
detection and quantification of further mechanisms, especially in the
collecting duct and venous circulation. Also, inclusion of additional
data sets may allow identification of nonlinear effects, which could
not be detected in this study.

All experimental studies used in this analysis were conducted in
men. Therefore, this model represents the male response to ET-1. The
response could look distinctly different in females, and studies conducted
in females should be incorporated into the model in the future.

4 Conclusion

In this study, we updated our previously published cardiorenal
model to account for the pathophysiological mechanism of ET1 and
its complexes of ET1A and ET1B. The physiologic mechanisms of
ET-1 through each of its receptors in the systemic and renal
vasculature and renal tubules was rigorously evaluated and
calibrated using clinical observations of acute vascular and renal
response to ET-1 infusion and ETA/ETB antagonists in healthy
subjects. The model is capable of reproducing changes in blood
pressure, renal blood flow, GFR, and sodium/water excretion with
ETA or ETB antagonism. The mechanisms identified are consistent
with the larger body of experimental studies on ET-1, and provide
novel insights into the relative magnitude and importance of
endothelin’s effects. The preglomerular vasoconstrictive effect of
ET-1 through ETA was found to be much stronger than either its
efferent vasoconstrictive effect through ETA or its efferent
vasodilatory effect through ETB. This analysis suggests that the
vasoconstrictive and fluid retention responses to ETB antagonists
are more likely explained by reduced ET-1 clearance by ETB,
resulting in increased binding to ETA, rather than direct effects
through ETB. However, finding that a mechanism was not necessary
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to explain the data in this analysis, which in included arterial and
renal function measures, does not negate its existence. For instance,
an effect on venous capacitance was not detected, but this could be
due to lack of information on venous function in the variables
measured. This model provides a tool for understanding and
predicting clinical responses to therapeutics that targeting the
endothelin system. For example, this model is currently being
utilized to aid in the clinical development of the highly selective
ETA antagonist zibotentan by predicting the renal hemodynamics
and fluid status alone and in combination with a sodium glucose
cotransporter 2 (SGLT2 inhibitor).
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Non-human primates (NHP) are valuable models for late translational pre-clinical
studies, often seen as a last step before clinical application. The unique similarity
betweenNHPs and humans is often the subject of ethical concerns. However, it is
precisely this analogy in anatomy, physiology, and the immune system that
narrows the translational gap to other animal models in the cardiovascular
field. Cell and gene therapy approaches are two dominant strategies
investigated in the research field of cardiac regeneration. Focusing on the cell
therapy approach, several xeno- and allogeneic cell transplantation studies with a
translational motivation have been realized in macaque species. This is based on
the pressing need for novel therapeutic options for heart failure patients. Stem
cell-based remuscularization of the injured heart can be achieved via direct
injection of cardiomyocytes (CMs) or patch application. Both CM delivery
approaches are in the late preclinical stage, and the first clinical trials have
started. However, are we already ready for the clinical area? The present
review concentrates on CM transplantation studies conducted in NHPs,
discusses the main sources and discoveries, and provides a perspective about
human translation.

KEYWORDS

cardiac regeneration, cardiomyocyte transplantation, heart failure, myocardial
infarction, large animal models, non-human primates, pluripotent stem cells

1 Introduction

Cardiovascular diseases are the primary cause of death worldwide, and the heart failure
rate is still increasing (Khan et al., 2020; Bozkurt et al., 2023). Ischemic heart disease ranks as
the most prevalent, which justifies the scientific desire to explore new treatment options for
the injured heart. Current pharmacological treatments focus on the remaining myocardium
to manage the symptoms by reducing the adverse remodeling process (Azevedo et al., 2016)
but not reversing the process. The only curative treatment option for end-stage heart failure
patients at the moment is heart transplantation. However, due to a limited donor pool and
post-transplant complications, it is only an opportunity for a restricted patient population
(Awad et al., 2022). Therefore, cardiac regenerative approaches have been studied
intensively over the last decades (Eschenhagen et al., 2022; Garbern and Lee, 2022).
Since induced pluripotent stem (iPS) cell-derived cardiomyocytes (CMs) are available in
unlimited numbers (Takahashi and Yamanaka, 2006; Yu et al., 2007), one ambitious
strategy became realistic: the transplantation of new CMs to the injured heart (Weinberger
and Eschenhagen, 2021). Remuscularization of the damaged heart has been successfully
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approached in several small animal studies. Large grafts combined
with beneficial functional outcomes were achieved with direct CM
injection (Caspi et al., 2007; Laflamme et al., 2007; Shiba et al., 2012)
and CM-containing patches (Zimmermann et al., 2006; Weinberger
et al., 2016; Querdel et al., 2021). These promising results
encouraged the field to move forward toward translation.
Therefore, as a next step, large animal models are deemed
indispensable for this therapeutic strategy prior to clinical
translation (Dixon and Spinale, 2009; Chong and Murry, 2014).
First, first-in-human clinical trials with healthy volunteers are not
applicable for this kind of therapeutic approach. Second, the heart
weight to cell number/patch size and the different routes of
application cannot be addressed sufficiently in rodents. In
addition, large animals better model human disease phenotypes
due to their comparable anatomy and physiology (Plews et al., 2012;
Hotham and Henson, 2020; Martínez-Falguera et al., 2021). The CM
transplantation approach, therefore, has mainly been addressed in
pigs and non-human primates (NHPs). The advantages of the pig
model are the similar heart size and heart weight-to-body weight
ratio, as well as the identical heart rate to humans (Lelovas et al.,
2014; Romagnuolo et al., 2019). However, the establishment of a
sufficient human transferable immunosuppression to avoid graft
rejection seems challenging (Kawamura et al., 2012; Chong and
Murry, 2014; Zimmermann, 2017). The other clinically highly
relevant large animal model for CM transplantation is the non-
human primate. Several groups translated the cardiac
remuscularization approach to NHP models (key publications
summarized in Table 1).

This review will introduce the utilized NHP models, the applied
myocardial infarction (MI) induction methods, the cell sources, and
their delivery to the injured heart. Additionally, we will discuss the
study designs of transplantation and follow-up timing. Finally, we

will sum up the limitations and have a discussion on clinical
obstacles and future deliberations.

2 Main

2.1 Non-human primate models

Primates consist of more than 300 species, classified into three
major categories: New World monkeys/Platyrrhini, Old World
monkeys/Catarrhini, and others (T. Nakamura et al., 2021).
Within the European Union, only non-human primates can be
used for preclinical biomedical research due to their close
phylogenetic background and similarities to human beings. NHP
models still play an important role in translation and applied
research, not only in the cardiovascular field. Within the broad
variety of NHPs, the following species are the most utilized ones in
biomedical research: common marmoset (Callithrix jacchus, New
World monkey), cynomolgus macaque (Macaca fascicularis, Old
World monkey), rhesus macaque (Macaca mulatta, Old World
monkey), and baboons (Papio genus, e.g., anubis or hamadryas,
Old World monkey) (Chatfield and Morton, 2018). The latter
species are presently used primarily for solid organ or cardiac
valve xenotransplantation studies. Their size/large scale is a key
value to investigate pig heart to primate transplantation (Bailey,
2009; Längin et al., 2018). Marmosets are not suitable for
transplantation purposes due to their small size (300–500 g, adult
animals) and hematopoietic chimerism, which complicates the
evaluation of the immune reaction (Silva et al., 2017). Non-
human primates are conspicuously suitable for exploring MI-
based treatment options due to their negligible collateral
perfusion, similar to the human coronary network (Buss et al.,

TABLE 1 Key publications of cardiomyocyte replacement therapy in non-human primates.

Study
reference

NHP
species

Age
and

weight
(kg)

n-
number
and sex

MI
induction
method

Tx post
MI

(weeks)

Delivery
approach

Cell
source

Immunosuppression Follow-
up

(weeks)

Gruh et al.
(2024)

M.
fascicularis

4–8 years,
7–13

n = 14 (15)
(1f, 14 m)

Thoracotomy
PL

2 Injection hiCMA MPred, ABC, and CsA 2, 12

Cheng et al.
(2023)

M. mulatta 5–18 years,
9–11

n = 11 (m) PCI or
Thoracotomy
I/R, 90 min

4 Injection hiPSC-
CM

and EC

MPred, ABC, and Tac 4

Li et al. (2021) M. mulatta 4–6 years,
7–14

n = 15
(17) (m)

Thoracotomy
I/R, 180 min

0 Injection and
i.v. and i.c.

hiPSC-
CM

MPred, Tac, and MMF 4, 8, 12

Kashiyama et al.
(2019)

M.
fascicularis

6 years, 4–6 n = 12 (m) Thoracotomy
PL

2 Cardiac sheets Allogeneic Pred, Tac, and MMF 12, 24, 36

Liu et al. (2018) M.
nemestrina

6–15 years,
5–13

n = 9 (17),
(1 m, 8f)

PCI I/R,
180 min

2 Injection hESC-CM MPred, CsA, and ABC 4, 12

Shiba et al.
(2016)

M.
fascicularis

4–5 years, 3 n = 10 (f) Sternotomy
I/R, 180 min

2 Injection Allogeneic MPred and Tac 12

Chong et al.
(2014)

M.
nemestrina

5–14 years,
9–12

n = 6 (7),
(3 m, 3f)

PCI I/R, 90 min 2 Injection hESC-CM MPred, CsA, and ABC 2, 4, 12

Abbreviations: NHP, non-human primate; M,Macaca; kg, kilogram; m, male; f, female; MI, myocardial infarction; PCI, percutaneous coronary intervention; I/R, ischemia reperfusion injury; PL,

permanent ligation; min, minutes; Tx, transplantation; i.v., intravenous; i.c., intracoronary, hiCMA, human-induced pluripotent stem cell-derived cardiomyocyte aggregates; hiPSC, human-

induced pluripotent stem cells; hESC, human embryonic stem cells; CM, cardiomyocytes; EC, endothelial cells, MPred, methylprednisolone; Pred, prednisolone; CsA, cyclosporine A; ABC,

abatacept; Tac, tacrolimus; MMF, mycophenolate mofetil.
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1983). Considering the size, phylogenetic similarities, and
availability for translational, clinically relevant CM
transplantation studies, macaques seem to be the best model to
use. In addition, they are well-characterized, immunosuppression
protocols are established, and a variety of assays and antibodies are
available to analyze the heart. To investigate cardiac
remuscularization, different macaque species were utilized
(Figure 1). Which of the three macaque species was selected for
use in the studies normally depends on the availability and
experience of the individual institutes with the respective species.

In addition to the model organism (the NHP here), the choice of
cell source for iPS cell-derived CMs is of importance for
translational studies, as summarized in the question of allo-
versus xenotransplantation, both with advantages and
disadvantages. Allotransplantation would reflect the human
clinical trial situation, because the cell source here is finally used,
while using human cells means xenotransplantation, which might
need intensified immunosuppression. However, for macaques, as
well as for other NHP species, iPS cell-derived CMs are available and
would allow for an allogeneic approach (Stauske et al., 2020;

Rodriguez-Polo and Behr, 2022). Still, in most translational
studies discussed in this review (Tables 1, 2), human iPS cell-
derived CMs were used for transplantation; only in two of the
studies was the allogeneic transplantation approach utilized (Shiba
et al., 2016; Kashiyama et al., 2019). As shown in Table 1,
homogeneity within these studies is less stringent as in rodent
studies, which is reflected in a wide age range (4–18 years) and
in the weight of the used animals. Heart failure is most prevalent
among patients over 60 years of age (Bozkurt et al., 2023). However,
CM transplantation studies in rodents mainly used young animals;
therefore, adult animals (as used in the studies displayed in Table 1)
might reflect more of the human situation, even though only animals
over 15 years of age would be considered older. Nevertheless, the
consequences of cardiac aging and CM senescence (Anderson et al.,
2019; Salerno et al., 2022) have not been discussed in the displayed
NHP studies. In addition to the age differences, variations in body
weight (3–14kg, Table 1) should be emphasized. Body weight
correlates with heart weight (Stahl, 1965); therefore, differences
in heart size should be considered when discussing cell dosage.
Variances of up to 8 kg in body weight within the studies could

FIGURE 1
Non-human primates as a late preclinical model of cardiac remuscularization. Comparison of themain physiological parameters of NHPs to humans
(left). Examples of utilized macaque species (right): Macaca nemestrina (pig-tailed macaque), Macaca fascicularis (cynomolgus macaque), and Macaca
mulatta (rhesus macaque). Pictures taken (from left to right) by Carolin Kade, Chris Schloegl, and Margrit Hampe with the permission from the German
Primate Center (DPZ).

TABLE 2 Key publications of cardiomyocyte replacement therapy in non-human primates.

Study
reference

Cell
source

CM
preparation

Transfer Scar
size

Input cell
number

Graft size Quantification
engrafted CM

Gruh et al. (2024) hiCMAs Aggregates 10–12 i.m.
injection

n/a 50mio n/a n/a

Cheng et al. (2023) hiPSC-CM
(and EC)

Single cells 4 i.m. injections n/a 500mio CM
(+500mio EC)

3%–5% of LV n/a

Li et al. (2021) hiPSC-CM Single cells 10 i.m.
injections

n/a 100mio/kg for i.m.
application

n/a n/a

Kashiyama et al.
(2019)

Allogeneic Cardiac sheets 4 epicardial
sheets

n/a 4 × 3,6mio (14mio) n/a n/a

Liu et al. (2018) hESC-CM Single cells 15 i.m.
injections

20% of LV 750mio 2% of LV 10%
of Scar

22-126mio

Shiba et al. (2016) Allogeneic Single cells 10 i.m.
injections

9% of LV 400mio 16% of Scar n/a

Chong et al. (2014) hESC-CM Single cells 15 i.m.
injections

5% of LV 1000mio 2% of LV n/a

Abbreviations: hiCMA, human-induced pluripotent stem cell-derived cardiomyocyte aggregate; hiPSC, human-induced pluripotent stem cell; hESC, human embryonic stem cell; CM:

cardiomyocyte; EC, endothelial cell; i.m, intramyocardial; LV, left ventricle; mio, million; kg, kilogram; n/a, not applicable.
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impact the calculation of sufficient cell quantities and thereby affect
the effect size as well as the immune reaction and off-target effects. A
general limitation in studies conducted in macaques is that almost
exclusively male animals are used. The rational for this is that mainly
male monkeys are available as youngmales have to be excluded from
the breeding groups, while female animals are of utmost importance
for the social structure of the breeding groups and therefore are
rarely obtainable. It is, therefore, gratifying that female animals were
included in more than one study. Although not specifically
addressed in these studies, it is known from the field of cell
transplantation that sex (mis)matches between the donor and
recipient can affect the outcome (Kim et al., 2016; Ali et al.,
2019). Therefore, when translating this to clinical trials, the sex
of the donor versus recipient, in addition to the human leukocyte
antigen (HLA) match, should be taken into account.

2.2 Methods to induce myocardial infarction

Several procedures have been established to induce myocardial
infarction (MI) in animal models (Martin et al., 2022). In
comparison to ablation methods (e.g., cryoinjury), direct
interventions on coronary arteries, such as the left anterior
descending coronary artery (LAD), are thought to be the more
clinically relevant model, reflecting MI in patients. In general, two
models are used in this context: total occlusion of a coronary vessel
and ischemia/reperfusion (I/R) injury, which is only a timely
occlusion of the coronary artery. The later reflects more of the
clinical situation since in patients, revascularization is the first
choice of treatment. However, iPS cell-derived CM-
transplantation seeks more treatment in the chronic phase
(development of or reversal of heart failure) after myocardial
infarction than the acute phase; therefore, we do not discuss the
two different models and their impact on inflammation, scarring,
and remodeling in the review. The different approaches of infarct
induction in biomedical research are described as follows:
induction of vessel occlusion can be achieved either surgically
in an open-chest approach (via lateral thoracotomy or sternotomy)
or via interventional catheter approaches (percutaneous
transluminal coronary angioplasty, PTCA), both of which were
used in the studies discussed in this review. The open-chest
approach allows for either I/R or permanent occlusion via
ligation, a procedure that has been studied in NHP for nearly a
hundred years (de Waart et al., 1936). The advantage of a surgical
approach is the direct visualization of the coronary artery to
identify the correct position of the ligature and have a visually
controlled target area of infarction after vessel occlusion (Shin
et al., 2021). However, the surgical exposure of the heart is an
invasive, painful procedure that includes a serious risk of infection.
Tissue damage, especially the pericardial incision, leads to
inflammation and epicardial fibrosis and thereby complicating
re-operation for CM application in the surgical approach.
Therefore, another access possibility could be considered:
transluminal access is used to generate ischemic events through
balloon inflation. The deflation of the balloon after a specific time
(up to 180 min in NHPs, Table 1) results in a reperfusion. The
catheter-based I/R is a minimally invasive strategy that
circumvents the open chest. However, the identification of the

desired occlusion location is more challenging, and anticoagulant
and antiarrhythmic therapy is needed (Camacho et al., 2016).
Furthermore, equipment needed for the catheter-based approach,
an angiography system, is not available in all animal facilities,
while the surgical approach does not require a specific equipment
setup. From the perspective of animal welfare, the catheter-based,
minimally invasive access seems to be advantageous since it is
associated with less tissue damage and therefore less painful. The
Murry group used the catheter-based approach, starting with an
ischemic time of 90 min of the distal LAD in their first NHP study
(Chong et al., 2014). However, the duration and position were
insufficient to induce substantial damage, and only a minimal
decline in global myocardial function was described (Liu et al.,
2018). Therefore, in the second study, they chose a more extended
period of ischemia (180 min) and occluded the coronary artery
more proximal (mid-LAD) (Liu et al., 2018). The results
demonstrated larger, transmural infarct scars with a clear
decline in global myocardial function. Surprisingly, the increase
in ischemic time did not lead to increased trop-out of animals in
the second published study. The latest study by Cheng et al.
generated functional impairment after 90 min occlusion time of
the mid-LAD. Since interventional revascularization
(percutaneous coronary intervention, PCI) has become a
standard procedure for hospitalized patients with acute MI, the
I/R model closely resembles their history. Nevertheless, there are
still up to 30% of MI patients where no timely reperfusion is
achievable (Cohen et al., 2010; Gharacholou et al., 2010), which is
better reflected by the permanent ligation model. A further
clinically relevant aspect is that the reperfusion itself causes
additional damage (I/R injury) through a complex array of
immune responses (Dorweiler et al., 2007; Yellon and
Hausenloy, 2007). The differences in the subsequent
inflammation and remodeling processes caused by these two
different MI induction methods and the time point of
transplantation after MI could influence the engraftment of the
iPS cell-derived CMs; however, this has not been part of the
investigations in NHPs so far. The induction techniques of
permanent ligation and the I/R approach model the acute
change from normal perfusion to complete vessel occlusion,
mimicking therefore thrombotic, embolic or vasospastic
etiologies. However, these causes are less common in humans
than ischemia due to slowly progressing coronary atherosclerosis
and stenosis, which can then be exacerbated by acute thrombotic
occlusion or plaque rupture (DeWood et al., 1980; Burke and
Virmani, 2007; Herrington et al., 2016; Severino et al., 2020). Both
the permanent occlusion and the reperfusion approach (Figure 2)
are clinically relevant.

However, since the used animals are rather young and healthy,
no additional cardiovascular risk factors or co-morbidities were
involved, and the occlusion occured suddenly. This only partially
reflects the patient’s situation, and the results (especially functional
improvement) need to be interpreted cautiously.

2.3 Cardiomyocyte delivery and engraftment

In addition to the variation in ischemia duration and the kind of
approach, the CM delivery is a second important technical aspect
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that needs to be taken into account. The major goal of the CM
transplantation is to implant an effective number of cells at the site of
interest with a good integration and survival of the transplanted
cells. When reviewing methods to introduce new CMs to the heart,
two main delivery routes have been accomplished: transplantation
via intramyocardial (or intra-scar) injection (as single-cell solution
or small aggregates) and the epicardial application of preformed 3D-
constructs (Figure 3).

Both approaches carry their advantages and drawbacks (Feric
and Radisic, 2016; Kadota and Shiba, 2019). Although efficacy
was repeatedly proven in small animal models for both delivery
approaches, the CM injection strategy has been mainly tested in
NHP models (Tables 1, 2). This is thought to be more convenient

for patient application because it can be performed minimally
invasively via a catheter-based transluminal approach and does
not necessarily require an open-chest approach. The study of
Kashiyama et al. is the only publication that reported epicardial
CM delivery via cell sheets in NHPs. The other remuscularization
studies realized in NHPs focused on CM injection (Chong et al.,
2014; Shiba et al., 2016; Liu et al., 2018; Cheng et al., 2023; Gruh
et al., 2024). A recent project tested additional CM delivery
approaches in cynomolgus monkeys (Li et al., 2021). Li et al.
compared intracoronary, intravenous, and intramyocardial
application of CMs and concluded that among the tested
delivery strategies, intramyocardial injection is the most
efficient delivery route for clinical purposes.

The CM transplantation studies followed the hypothesis that
functional recovery is based on repopulated force-generating CMs.
This implies that a substantial remuscularization must be achieved
to validate their therapeutic potential. As mentioned previously,
sufficient immunosuppression is required to afford cell engraftment
in the xeno- and allogeneic approach. Based on clinical organ
transplant treatment, different combinations of
immunosuppression drugs (Table 1) have been successfully
applied in terms of CM survival. Graft size also depends on the
input cell number (Querdel et al., 2021). The tested CM numbers per
macaque heart ranged from 50 million to one billion cells via 4 to
15 injections per heart (Table 2).

Kashiyama et al. applied 14 million cells spread over four cardiac
sheets. These publications reported the graft-related repopulation of
CMs. Evaluation of the graft size was only performed in some
macaque studies (Chong et al., 2014; Shiba et al., 2016; Liu et al.,
2018) and exhibited that CM injection resulted in a
remuscularization of up to 5% of the left ventricle, which is
comparable with the achievements in small animal studies
(Eschenhagen et al., 2022). However, most studies lack a
quantification of cell mass and number at the end of the
experiments (Table 2) to better investigate cell survival and the
engraftment of different approaches. In further studies, the focus
should be not only on safety and functional improvement but also

FIGURE 2
Techniques to generate myocardial infarction in macaques. MI, myocardial infarction; I/R, ischemia reperfusion.

FIGURE 3
Main delivery approaches of cardiomyocyte (CM) transfer to the
injured heart: intramyocardial CM injection and epicardial patch
application.
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on cell survival, gain of myocardial mass, and coupling/engraftment
of the cells in the host myocardium.

2.4 Cell sources

In addition to the delivery method, the cell source is an
important aspect in terms of an adequate engraftment and
potential side effects of different cell types. The cell-based field of
cardiac regeneration tested already different cell sources. In addition
to differentiated CMs, iPS cells have also been applied for
transplantation in small animals. Beneficial effects were observed
when iPS cells were delivered via injection and with a patch
approach (Nelson et al., 2009; Dai et al., 2011). To reduce the
teratogenic risk of iPS cells, cardiovascular progenitor cells (CVPCs)
were also part of the investigations (Vicinanza et al., 2017; Wang
et al., 2017; Monsanto et al., 2020). However, the only study which
addressed CVPC in NHPs reported a lack of remuscularization (Zhu
et al., 2018). Herein, we focus on the cell type of this review: the
widely used stem cell-derived cardiomyocytes. The first CM
transplantation study described in NHPs used human embryonic
stem cell (hESC)-derived CMs (Chong et al., 2014). In order to
overcome legal, political, and ethical concerns associated with
human embryos, the field has evolved in the direction of human
iPS cells as a basis for CM generation (Aboul-Soud et al., 2021). The
best exogenously cell source to avoid immunological cell rejection
would be individual patient-derived (=autologous) CMs. Currently,
the autologous approach does not seem applicable for a broad
clinical use. High costs, the time-consuming process of cell-line
generation, and regulatory hurdles limit it since an individual cell
line would be counted as ATMP (advanced therapy medicinal
product) and therefore has to fulfill all safety and functionality
requirements. From a clinical perspective, it is comprehensible that
CMs of human origin were generated and tested for transplantation
purposes. Most preclinical studies are based on the xenogenic
background, where human cells were transplanted. Nevertheless,
this might require more intense immunosuppression and does not
reflect the clinical situation. However, as an equivalent to the clinical
phase I trial, an allogeneic approach was used in two studies, where
CMs derived from macaque iPS cells were used. Shiba and
coworkers demonstrated that allogeneic major histocompatibility
complex (MHC)-matched CM transplantation is feasible with
immunosuppression, and the engrafted CM survived the
observation period (12 weeks). The second study, which
addressed the allogeneic approach via cardiac sheet application,
described cell survival for both MHC-matched and mismatched
recipients. Unfortunately, no more transplanted CMs were
detectable in the group with the most extended follow-up period
of 6 months (Kashiyama et al., 2019). Regardless of the cell origin
(xeno- or allogeneic), the studies displayed that immunosuppression
still seems unavoidable.

2.5 Study designs: timing of transplantation
and follow-up

Previous studies in small animals mainly transplanted CMs in
the early stage after injury and were analyzed after a short follow-up

period (Zimmermann et al., 2006; Laflamme et al., 2007; Caspi et al.,
2007; Shiba et al., 2012; Funakoshi et al., 2016; Weinberger et al.,
2016; W. Zhu et al., 2018; Munarin et al., 2020; Sun et al., 2020;
Jabbour et al., 2021; Querdel et al., 2021). In this setting, promising
results were obtained: partial scar remuscularization resulted in
functional improvement. For a more basic research approach,
these proof-of-principal studies with early cell transplantation
were sufficient to address the fundamental questions of cell
survival and functional benefit after (sub-)acute myocardial
infarction. However, since the widespread access to reperfusion
therapy, more and more patients survive an acute MI event and
develop heart failure over time (Heusch et al., 2014; Heusch and
Gersh, 2017). The transplantation early after MI does not resemble
well the most likely clinical application for these regenerative
approaches (Eschenhagen et al., 2022). To narrow the gap to the
clinical scenario of patients with advanced heart failure,
transplantation was performed in the chronic stage after injury in
selected rodent studies (Fernandes et al., 2010; Shiba et al., 2014;
Riegler et al., 2015; von Bibra et al., 2022). Irrespective of the CM
delivery route (injection and patch application), the outcomes were
almost identical: transplantation is less efficient than that in the
subacute injury models. Grafts were smaller, and no significant
increase in functional parameters was observed. In the proof-of-
concept studies performed in NHPs, where the goal should be to
represent the potential human application as effectively as possible,
it was surprising that, apart from one study (Cheng et al., 4 weeks),
only the early injury (0 days and 2 weeks) was again the subject of
investigation. This does not reflect the anticipated CM therapy as a
last resort for patients with chronic ischemic heart failure (Kadota
et al., 2020; Silver et al., 2021). To phrase it more provocatively, it is
understandable that the subacute transplantation setting was used
again because better results can be expected here. However, the
contribution to narrowing the translational gap is debatable in this
acute to subacute phase after MI. Inflammation, remodeling, and the
development of heart failure are still ongoing and might influence
engraftment, cell survival, and partly masks the beneficial effects of
the transplanted CMs. In regard to investigating long-term survival
of the transplanted CMs, some NHP studies included extended
follow-up periods (Table 1). Animals treated with injected CMs were
observed for up to 3 months, and cells survived with an efficient
immunosuppression regimen. The transplantation of cardiac sheets
was monitored for up to half a year, with the less encouraging
observation of chronic rejection.

3 NHP study achievements and
translational impediments

The preclinical investigations of cardiac remuscularization
therapy advanced considerably since NHP models entered the
validation process. Since 2014, several publications evaluated the
transplantation of in vitro-generated CM in injured macaque hearts.
The key benefit of these studies is undoubtedly the translational
value due to the proximity to humans. Central achievements were
gained in the clinically predictive, human-like NHP model. The
in vitro generation of iPSC-derived CMs is at an advanced
technological level (Lyra-Leite et al., 2022). Application in NHPs
demonstrated that clinically scalable amounts of CMs with a high
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purity can be produced and applied to the injured heart. Induction
of myocardial infarction was created via permanent or transient
LAD occlusion, mimicking the human’s MI scenario and simulating
closely clinical reality. Substantial damage of the heart with
functional impairment was generated and therefore opened a
therapeutic window. Sufficient immunosuppression regimen, in
clinically relevant doses, enabled xeno- and allogeneic
transplanted cells to survive over months. Safety was
demonstrated over the post-transplant observation period, and
no teratoma or abnormal cell growth has been reported.

To summarize it with a more global picture, CM transplantation
resulted in a substantial remuscularization of the injured macaque
hearts, and an amelioration of function was repeatedly
demonstrated. These findings can be considered encouraging for
the translational field and led to clinical translation. Now, more than
five clinical trials using iPS cell-derived CMs in heart failure patients
are ongoing (ClinicalTrials.gov).

However, some limitations should be discussed regarding the
macaque model.

Limited availability of these animals and ethical and economic
conflicts led to studies with small sample sizes (Table 1). This
implicates a high standard deviation, with a limited statistical
outcome in evaluating efficacy. Both induction methods of MI in
the NHPmodels generated an acute-to-normal rather than an acute-
to-chronic vessel occlusion, therefore lacking the ability to mimic
the history of atherosclerosis and endothelial dysfunction that is
frequently displayed in patients.

NHPs are often regarded as the ideal model of translation. In
comparison to other large animal models (e.g., pigs), the
macaque species are smaller in size. According to that, the
heart has 1/10 of the weight of a human adult heart (Gandolfi
et al., 2011; Chong and Murry, 2014). In particular, regarding
dose-finding studies, the macaques allow only limited
investigations. Calculations to determine an effective cell
amount for human application should be carried out carefully
(Eschenhagen et al., 2022).

To return to the original question: Is the CM transplantation
approach ready for clinical application? No, because aside from the
translational achievements ascertained in NHP models, relevant
clinical impediments need to be discussed, addressed, and
resolved first:

Since large animal models have been implemented in the
preclinical investigation of cardiac remuscularization,
engraftment arrhythmias (EA) were frequently reported
(Chong et al., 2014; Shiba et al., 2016; Liu et al., 2018). These
observations of post-transplant arrhythmias emphasise the
importance of large animal models for preclinical validation,
as these studies have additional value to the rodent results. EAs
are discussed at the moment as one of the most concerning
barrier toward translation (Eschenhagen et al., 2017). This
ventricular tachycardia occurred transiently, mainly in the first
weeks after CM transplantation. Hence, the immaturity of the
implanted CMs seems reasonable to cause this focal automaticity.
To suppress these potentially life-threatening EAs,
pharmacological treatment has already been investigated in
pigs (K. Nakamura et al., 2021). In addition, approaches to
enhance CM maturation prior to in vivo application could
tackle the issue (Karbassi and Murry, 2022).

The consensus in the research community that the allogeneic
approach will be most likely applicable in the clinic harbors the
immunological dilemma. Even if MHC-matched donors were
selected for allogeneic transplantation, therapy with
immunosuppressants is still necessary to avoid graft rejection
(Shiba et al., 2016; Kashiyama et al., 2019). Further investigations
in evaluating concentrations and ideal combinations are important
due to the fact that the long-term treatment of gravely ill heart failure
patients can result in severe side effects, and the immunosuppression
itself could have an impact on the MI disease pathway (Ruiz and
Kirk, 2015; Diehl et al., 2016; Demkes et al., 2021). A more elegant
way of avoiding immune rejection has emerged with the generation
of hypoimmunogenic cell lines (Deuse et al., 2019). The application
of gene-edited CMs that can evade the immune system is a highly
desirable alternative to immunocompromising agents (Lanza et al.,
2019; Sung et al., 2023).

An additional issue is still the poor cell survival and the low
engraftment rate (Robey et al., 2008). One approach to improve cell
retention after injection has recently been demonstrated in
cynomolgus monkeys. The co-transplantation of endothelial cells
substantially enlarged graft size (Cheng et al., 2023). Cell survival
can also be limited by the application route. Macaque studies mainly
addressed the CM injection, where a major discussed drawback is
the direct cell washout after injection (Chong and Murry, 2014;
Martens et al., 2014). Patch approaches are often discussed as the
delivery alternative to prevent a high cell loss after injection (Huang
et al., 2020; Li et al., 2021; Yu et al., 2023). A cell survival comparison
with patch-based CM application is, due to the sparse publication
record, not possible in NHPs so far. To overcome the limitations of
each delivery approach and to synergize their benefits, one
stimulating idea would be to combine both strategies.

The so-called intramyocardial injection of CMs is frequently
displayed in NHP studies. Nevertheless, the global idea is to
remuscularize the damaged part (scar) of the heart and not to
create hyperplasia in the viable myocardium. For most of the studies,
the intramyocardial injection is indeed the correct term because the
presented grafts are frequently surrounded by the vital myocardium.
The neologistic term of intrascar injection would better reflect the
aim of the approach, which is remuscularization, not
hypermuscularization. Unfortunately, inadequate application to
the infarct area was not only a limitation of the tiny hearts of
small mammals, it was also evident or apparent in large animal NHP
studies. In future projects, technical approaches that result in
injecting the CMs primarily in the scar (and of course in the
border zone) rather than generating additional myocardium in
the viable zone should be addressed.

As mentioned previously, most of the NHP studies transplanted
CMs in an early (sub-)acute stage of injury. Therefore, the
translational question, of how successful will the engraftment be
when targeting chronically injured hearts in patients, is still open.
For future perspective, one idea to improve the transplantation
success in the chronic setting could be to identify beneficial
pathways present in the subacute injury. Identified targets could
be included in the patch or injection medium or eventually used to
pretreat the injured heart prior to transplantation. The chronically
injured heart is more hostile for CM transplantation because of the
absence of inflammatory cells and the stiff collagenous scar with a
low vascular density (von Bibra et al., 2022). In other words, the
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subacute setting could be more likely because of the ongoing
remodeling process with inflammation and neoangiogenesis.
Targets of these pathways could be used to improve the
transplantation success in the clinically relevant chronic setting.
For a clinical application, the long-term graft maintenance is
essential. The only study that included a follow-up observation of
6 months reported chronic rejection. Longer follow-up studies are
also needed to scrutinize the risk of tumor growth.

In spite of the advanced translational progress gained with the
NHP studies, numerous demands remain and need further
investigation. However, cardiac remuscularization is currently at
an exciting stage; the intensive preclinical work has already led to the
first clinical trials. According to ClinicalTrials.gov, more than five
clinical trials are running at the moment to evaluate the therapeutic
potential of CM transplantation. Even though the studies conducted
in NHPs mainly investigated the CM injection, a variety of delivery
strategies are approached in the clinical trials. The HEAL-CHF trial
(NTC03763136) from China is set up to test the intramyocardial
injection of CMs during coronary artery bypass grafting. In addition
to the epicardial injection, the same group is testing an alternative
access for intramyocardial injection. Via a catheter-based
endocardial application, different CM doses are injected
(NTC04982081). The German BioVAT-HF trial (NCT04396899)
used engineered heart muscles as an epicardial patch approach. The
collagen-based tissue contains, in addition to iPS cell-derived CMs,
stromal cells. The Japanese LAPiS trial (NTC04645018) evaluated
the safety of CM spheroid. In addition, a case report from Japan
(#jRCT205319008) described recently the successful transplantation
of CM-containing patches (Miyagawa et al., 2022). Fortunately, no
adverse events (e.g., arrhythmias and tumor growth) were detected.
However, immunosuppression was suspended 3 months after
transplantation.

In summary, first steps toward clinical application are done in
iPS cell-derived CM transplantation. However, these are all early
clinical trials, with low patient numbers, and only a few centers
participating in these trials. Therefore, larger clinical trials have to be
performed before bringing this approach to a broad clinical

application. The field, however, is, in our view, moving in the
right direction, and late translation seems to be possible.

Author contributions

CB: writing–original draft. RH: writing–review and editing.

Funding

The authors declare that no financial support was received for
the research, authorship, and/or publication of this article.

Acknowledgments

We acknowledge financial support by the Open Access
Publication Fund of the University of Veterinary Medicine
Hannover, Foundation. Illustrations in Figures 1–3 were created
with biorender.com.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and
do not necessarily represent those of their affiliated organizations, or
those of the publisher, the editors, and the reviewers. Any product that
may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Aboul-Soud, M. A. M., Alzahrani, A. J., and Mahmoud, A. (2021). Induced
pluripotent stem cells (iPSCs)—roles in regenerative therapies, disease modelling
and drug screening. Cells 10 (9), 2319. doi:10.3390/CELLS10092319

Ali, N., Ullah, H., Shaikh, M. U., and Adil, S. N. (2019). Outcome of donor and
recipient sex match versus mismatch in stem cell transplant procedure. Int. J. Hematol.
Oncol. 8 (4), IJH21. doi:10.2217/IJH-2019-0006

Anderson, R., Lagnado, A., Maggiorani, D., Walaszczyk, A., Dookun, E., Chapman, J.,
et al. (2019). Length-independent telomere damage drives post-mitotic cardiomyocyte
senescence. EMBO J. 38 (5), e100492. doi:10.15252/embj.2018100492

Awad, M. A., Shah, A., and Griffith, B. P. (2022). Current status and outcomes in heart
transplantation: a narrative review. Rev. Cardiovasc. Med. 23 (1), 11. doi:10.31083/J.
RCM2301011

Azevedo, P. S., Polegato, B. F., Minicucci, M. F., Paiva, S. A. R., and Zornoff, L. A. M.
(2016). Cardiac remodeling: concepts, clinical impact, pathophysiological mechanisms
and pharmacologic treatment. Arq. Bras. Cardiol. 106 (1), 62–69. doi:10.5935/ABC.
20160005

Bailey, L. L. (2009). The baboon in xenotransplant research. Baboon Biomed. Res.,
371–380. doi:10.1007/978-0-387-75991-3_19

Bozkurt, B., Ahmad, T., Alexander, K. M., Baker, W. L., Bosak, K., Breathett, K., et al.
(2023). Heart failure epidemiology and outcomes statistics: a report of the heart failure society
of America. J. Cardiac Fail. 29 (10), 1412–1451. doi:10.1016/J.CARDFAIL.2023.07.006

Burke, A. P., and Virmani, R. (2007). Pathophysiology of acute myocardial infarction.
Med. Clin. N. Am. 91 (4), 553–572. doi:10.1016/J.MCNA.2007.03.005

Buss, D. D., Hyde, D. M., and Steffey, E. P. (1983). Coronary collateral development in
the rhesus monkey (Macaca mulatta). Basic Res. Cardiol. 78 (5), 510–517. doi:10.1007/
BF01906462

Camacho, P., Fan, H., Liu, Z., and He, J. Q. (2016). Large mammalian animal models
of heart disease. J. Cardiovasc. Dev. Dis. 3 (4), 30. doi:10.3390/jcdd3040030

Caspi, O., Huber, I., Kehat, I., Habib, M., Arbel, G., Gepstein, A., et al. (2007).
Transplantation of human embryonic stem cell-derived cardiomyocytes improves
myocardial performance in infarcted rat hearts. J. Am. Coll. Cardiol. 50 (19),
1884–1893. doi:10.1016/J.JACC.2007.07.054

Chatfield, K., and Morton, D. (2018). The use of non-human primates in research,
81–90. doi:10.1007/978-3-319-64731-9_10

Cheng, Y. C., Hsieh, M. L., Lin, C. J., Chang, C. M. C., Huang, C. Y., Puntney, R., et al.
(2023). Combined treatment of human induced pluripotent stem cell-derived
cardiomyocytes and endothelial cells regenerate the infarcted heart in mice and
non-human primates. Circulation 148 (18), 1395–1409. doi:10.1161/
CIRCULATIONAHA.122.061736

Chong, J. J. H., and Murry, C. E. (2014). Cardiac regeneration using pluripotent stem
cells—progression to large animal models. Stem Cell. Res. 13 (3), 654–665. doi:10.1016/J.
SCR.2014.06.005

Frontiers in Pharmacology frontiersin.org08

von Bibra and Hinkel 10.3389/fphar.2024.1408679

83

http://biorender.com
https://doi.org/10.3390/CELLS10092319
https://doi.org/10.2217/IJH-2019-0006
https://doi.org/10.15252/embj.2018100492
https://doi.org/10.31083/J.RCM2301011
https://doi.org/10.31083/J.RCM2301011
https://doi.org/10.5935/ABC.20160005
https://doi.org/10.5935/ABC.20160005
https://doi.org/10.1007/978-0-387-75991-3_19
https://doi.org/10.1016/J.CARDFAIL.2023.07.006
https://doi.org/10.1016/J.MCNA.2007.03.005
https://doi.org/10.1007/BF01906462
https://doi.org/10.1007/BF01906462
https://doi.org/10.3390/jcdd3040030
https://doi.org/10.1016/J.JACC.2007.07.054
https://doi.org/10.1007/978-3-319-64731-9_10
https://doi.org/10.1161/CIRCULATIONAHA.122.061736
https://doi.org/10.1161/CIRCULATIONAHA.122.061736
https://doi.org/10.1016/J.SCR.2014.06.005
https://doi.org/10.1016/J.SCR.2014.06.005
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1408679


Chong, J. J. H., Yang, X., Don, C.W., Minami, E., Liu, Y.W., Weyers, J. J., et al. (2014).
Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate
hearts. Nature 510 (7504), 273–277. doi:10.1038/NATURE13233

Cohen, M., Boiangiu, C., and Abidi, M. (2010). Therapy for ST-segment
elevation myocardial infarction patients who present late or are ineligible for
reperfusion therapy. J. Am. Coll. Cardiol. 55 (18), 1895–1906. doi:10.1016/J.JACC.
2009.11.087

Dai, B., Huang,W., Xu, M., Millard, R.W., Gao, M. H., Hammond, H. K., et al. (2011).
Reduced collagen deposition in infarcted myocardium facilitates induced pluripotent
stem cell engraftment and angiomyogenesis for improvement of left ventricular
function. J. Am. Coll. Cardiol. 58 (20), 2118–2127. doi:10.1016/j.jacc.2011.06.062

Demkes, E. J., Rijken, S., Szymanski, M. K., Hoefer, I. E., Sluijter, J. P. G., and de Jager,
S. C. A. (2021). Requirements for proper immunosuppressive regimens to limit
translational failure of cardiac cell therapy in preclinical large animal models.
J. Cardiovasc. Transl. Res. 14 (1), 88–99. doi:10.1007/s12265-020-10035-2

Deuse, T., Hu, X., Gravina, A., Wang, D., Tediashvili, G., De, C., et al. (2019).
Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune
rejection in fully immunocompetent allogeneic recipients. Nat. Biotechnol. 37 (3),
252–258. doi:10.1038/s41587-019-0016-3

de Waart, A., Storm, C. J., and Koumans, A. K. J. (1936). Ligation of the coronary
arteries in Javanese monkeys: I. Introduction, general experimental results, especially
the changes in the ventricular electrocardiogram. Am. Heart J. 11 (6), 676–704. doi:10.
1016/S0002-8703(36)90495-7

DeWood, M. A., Spores, J., Notske, R., Mouser, L. T., Burroughs, R., Golden, M. S.,
et al. (1980). Prevalence of total coronary occlusion during the early hours of transmural
myocardial infarction. N. Engl. J. Med. 303 (16), 897–902. doi:10.1056/
NEJM198010163031601

Diehl, R., Ferrara, F., Müller, C., Dreyer, A. Y., McLeod, D. D., Fricke, S., et al. (2016).
Immunosuppression for in vivo research: state-of-the-art protocols and experimental
approaches. Cell. Mol. Immunol. 14 (2), 146–179. doi:10.1038/cmi.2016.39

Dixon, J. A., and Spinale, F. G. (2009). Large animal models of heart failure: a critical
link in the translation of basic science to clinical practice. Circ. Heart Fail. 2 (3),
262–271. doi:10.1161/CIRCHEARTFAILURE.108.814459

Dorweiler, B., Pruefer, D., Andrasi, T. B., Maksan, S. M., Schmiedt, W., Neufang, A.,
et al. (2007). Ischemia-reperfusion injury: pathophysiology and clinical implications.
Eur. J. Trauma Emerg. Surg. 33 (6), 600–612. doi:10.1007/s00068-007-7152-z

Eschenhagen, T., Bolli, R., Braun, T., Field, L. J., Fleischmann, B. K., Frisén, J., et al.
(2017). Cardiomyocyte regeneration: a consensus statement. Circulation 136 (7),
680–686. doi:10.1161/CIRCULATIONAHA.117.029343

Eschenhagen, T., Ridders, K., and Weinberger, F. (2022). How to repair a broken
heart with pluripotent stem cell-derived cardiomyocytes. J. Mol. Cell. Cardiol. 163,
106–117. doi:10.1016/j.yjmcc.2021.10.005

Feric, N. T., and Radisic, M. (2016). Strategies and challenges to myocardial
replacement therapy. Stem Cells Transl. Med. 5 (4), 410–416. doi:10.5966/SCTM.
2015-0288

Fernandes, S., Naumova, A. V., Zhu, W. Z., Laflamme, M. A., Gold, J., and Murry, C.
E. (2010). Human embryonic stem cell-derived cardiomyocytes engraft but do not alter
cardiac remodeling after chronic infarction in rats. J. Mol. Cell. Cardiol. 49 (6), 941–949.
doi:10.1016/j.yjmcc.2010.09.008

Funakoshi, S., Miki, K., Takaki, T., Okubo, C., Hatani, T., Chonabayashi, K., et al.
(2016). Enhanced engraftment, proliferation, and therapeutic potential in heart using
optimized human iPSC-derived cardiomyocytes. Sci. Rep. 6, 19111. doi:10.1038/
SREP19111

Gandolfi, F., Vanelli, A., Pennarossa, G., Rahaman, M., Acocella, F., and Brevini, T. A.
L. (2011). Large animal models for cardiac stem cell therapies. Theriogenology 75 (8),
1416–1425. doi:10.1016/J.THERIOGENOLOGY.2011.01.026

Garbern, J. C., and Lee, R. T. (2022). Heart regeneration: 20 years of progress and
renewed optimism. Dev. Cell. 57 (4), 424–439. doi:10.1016/J.DEVCEL.2022.01.012

Gharacholou, S. M., Alexander, K. P., Chen, A. Y., Wang, T. Y., Melloni, C., Gibler, W.
B., et al. (2010). Implications and reasons for the lack of use of reperfusion therapy in
patients with ST-segment elevation myocardial infarction: findings from the CRUSADE
initiative. Am. Heart J. 159 (5), 757–763. doi:10.1016/J.AHJ.2010.02.009

Gruh, I., Martens, A., Cebotari, S., Schrod, A., Haase, A., Halloin, C., et al. (2023). Cell
therapy with human iPSC-derived cardiomyocyte aggregates leads to efficient
engraftment and functional recovery after myocardial infarction in non-human
primates. doi:10.1101/2023.12.31.573775

Herrington, W., Lacey, B., Sherliker, P., Armitage, J., and Lewington, S. (2016).
Epidemiology of atherosclerosis and the potential to reduce the global burden of
atherothrombotic disease. Circulation Res. 118 (4), 535–546. doi:10.1161/
CIRCRESAHA.115.307611

Heusch, G., and Gersh, B. J. (2017). The pathophysiology of acute myocardial
infarction and strategies of protection beyond reperfusion: a continual challenge.
Eur. heart J. 38 (11), 774–784. doi:10.1093/EURHEARTJ/EHW224

Heusch, G., Libby, P., Gersh, B., Yellon, D., Böhm, M., Lopaschuk, G., et al. (2014).
Cardiovascular remodelling in coronary artery disease and heart failure. Lancet 383
(9932), 1933–1943. doi:10.1016/S0140-6736(14)60107-0

Home (2024). ClinicalTrials.gov. Available at: https://clinicaltrials.gov/ (Accessed:
March 28, 2024).

Hotham, W. E., and Henson, F. M. D. (2020). The use of large animals to facilitate the
process of MSC going from laboratory to patient—“bench to bedside”. Cell. Biol.
Toxicol. 36 (2), 103–114. doi:10.1007/S10565-020-09521-9

Huang, K., Ozpinar, E. W., Su, T., Tang, J., Shen, D., Qiao, L., et al. (2020). An off-the-
shelf artificial cardiac patch improves cardiac repair after myocardial infarction in rats
and pigs. Sci. Transl. Med. 12 (538), 9683. doi:10.1126/scitranslmed.aat9683

Jabbour, R. J., Owen, T. J., Pandey, P., Reinsch, M., Wang, B., King, O., et al. (2021). In
vivo grafting of large engineered heart tissue patches for cardiac repair. JCI Insight 6
(15), e144068. doi:10.1172/JCI.INSIGHT.144068

Kadota, S., and Shiba, Y. (2019). Pluripotent stem cell-derived cardiomyocyte
transplantation for heart disease treatment. Curr. Cardiol. Rep. 21 (8), 73–77.
doi:10.1007/s11886-019-1171-3

Kadota, S., Tanaka, Y., and Shiba, Y. (2020). Heart regeneration using pluripotent
stem cells. J. Cardiol. 76 (5), 459–463. doi:10.1016/j.jjcc.2020.03.013

Karbassi, E., and Murry, C. E. (2022). Flexing their muscles: maturation of stem cell-
derived cardiomyocytes on elastomeric substrates to enhance cardiac repair. Circulation
145 (18), 1427–1430. doi:10.1161/CIRCULATIONAHA.122.059079

Kashiyama, N., Miyagawa, S., Fukushima, S., Kawamura, T., Kawamura, A., Yoshida,
S., et al. (2019). MHC-Mismatched allotransplantation of induced pluripotent stem cell-
derived cardiomyocyte sheets to improve cardiac function in a primate ischemic
cardiomyopathy model. Transplantation 103 (8), 1582–1590. doi:10.1097/TP.
0000000000002765

Kawamura, M., Miyagawa, S., Miki, K., Saito, A., Fukushima, S., Higuchi, T., et al.
(2012). Feasibility, safety, and therapeutic efficacy of human induced pluripotent
stem cell-derived cardiomyocyte sheets in a porcine ischemic cardiomyopathy
model. Circulation 126 (11 Suppl. 1), S29–S37. doi:10.1161/CIRCULATIONAHA.
111.084343

Khan, M. A., Hashim, M. J., Mustafa, H., Baniyas, M. Y., Al Suwaidi, S. K. B. M.,
AlKatheeri, R., et al. (2020). Global epidemiology of ischemic heart disease: results from
the global burden of disease study. Cureus 12 (7), e9349. doi:10.7759/cureus.9349

Kim, H. T., Zhang, M. J., Woolfrey, A. E., St Martin, A., Chen, J., Saber, W., et al.
(2016). Donor and recipient sex in allogeneic stem cell transplantation: what really
matters. Haematologica 101 (10), 1260–1266. doi:10.3324/HAEMATOL.2016.147645

Laflamme, M. A., Chen, K. Y., Naumova, A. V., Muskheli, V., Fugate, J. A., Dupras, S.
K., et al. (2007). Cardiomyocytes derived from human embryonic stem cells in pro-
survival factors enhance function of infarcted rat hearts. Nat. Biotechnol. 25 (9),
1015–1024. doi:10.1038/nbt1327

Längin, M., Mayr, T., Reichart, B., Michel, S., Buchholz, S., Guethoff, S., et al. (2018).
Consistent success in life-supporting porcine cardiac xenotransplantation. Nature 564
(7736), 430–433. doi:10.1038/S41586-018-0765-Z

Lanza, R., Russell, D. W., and Nagy, A. (2019). Engineering universal cells that evade
immune detection. Nat. Rev. Immunol. 19 (12), 723–733. doi:10.1038/s41577-019-
0200-1

Lelovas, P. P., Kostomitsopoulos, N. G., and Xanthos, T. T. (2014). A comparative
anatomic and physiologic overview of the porcine heart. J. Am. Assoc. Lab. Animal Sci.
53 (5), 432–438.

Li, H., Wang, T., Feng, Y. Y., Sun, K., Huang, G. R., Cao, Y. L., et al. (2023). Optimal
transplantation strategy using human induced pluripotent stem cell-derived
cardiomyocytes for acute myocardial infarction in nonhuman primates. MedComm
4 (3), e289. doi:10.1002/MCO2.289

Li, J., Hu, S., Zhu, D., Huang, K., Mei, X., López de Juan Abad, B., et al. (2021). All
roads lead to Rome (the heart): cell retention and outcomes from various delivery routes
of cell therapy products to the heart. J. Am. Heart Assoc. 10 (8), e020402. doi:10.1161/
JAHA.120.020402

Liu, Y. W., Chen, B., Yang, X., Fugate, J. A., Kalucki, F. A., Futakuchi-Tsuchida, A.,
et al. (2018). Human embryonic stem cell-derived cardiomyocytes restore function in
infarcted hearts of non-human primates. Nat. Biotechnol. 36 (7), 597–605. doi:10.1038/
nbt.4162

Lyra-Leite, D. M., Gutiérrez-Gutiérrez, Ó., Wang, M., Zhou, Y., Cyganek, L., and
Burridge, P. W. (2022). A review of protocols for human iPSC culture, cardiac
differentiation, subtype-specification, maturation, and direct reprogramming. Star.
Protoc. 3 (3), 101560. doi:10.1016/J.XPRO.2022.101560

Martens, A., Rojas, S. V., Baraki, H., Rathert, C., Schecker, N., Zweigerdt, R., et al.
(2014). Substantial early loss of induced pluripotent stem cells following transplantation
in myocardial infarction. Artif. Organs 38 (11), 978–984. doi:10.1111/AOR.12268

Martin, T. P., MacDonald, E. A., Elbassioni, A. A. M., O’Toole, D., Zaeri, A. A. I.,
Nicklin, S. A., et al. (2022). Preclinical models of myocardial infarction: from
mechanism to translation. Br. J. Pharmacol. 179 (5), 770–791. doi:10.1111/BPH.15595

Martínez-Falguera, D., Iborra-Egea, O., and Gálvez-Montón, C. (2021). iPSC therapy
for myocardial infarction in large animal models: land of hope and dreams.
Biomedicines 9 (12), 1836. doi:10.3390/BIOMEDICINES9121836

Miyagawa, S., Kainuma, S., Kawamura, T., Suzuki, K., Ito, Y., Iseoka, H., et al. (2022).
Case report: transplantation of human induced pluripotent stem cell-derived

Frontiers in Pharmacology frontiersin.org09

von Bibra and Hinkel 10.3389/fphar.2024.1408679

84

https://doi.org/10.1038/NATURE13233
https://doi.org/10.1016/J.JACC.2009.11.087
https://doi.org/10.1016/J.JACC.2009.11.087
https://doi.org/10.1016/j.jacc.2011.06.062
https://doi.org/10.1007/s12265-020-10035-2
https://doi.org/10.1038/s41587-019-0016-3
https://doi.org/10.1016/S0002-8703(36)90495-7
https://doi.org/10.1016/S0002-8703(36)90495-7
https://doi.org/10.1056/NEJM198010163031601
https://doi.org/10.1056/NEJM198010163031601
https://doi.org/10.1038/cmi.2016.39
https://doi.org/10.1161/CIRCHEARTFAILURE.108.814459
https://doi.org/10.1007/s00068-007-7152-z
https://doi.org/10.1161/CIRCULATIONAHA.117.029343
https://doi.org/10.1016/j.yjmcc.2021.10.005
https://doi.org/10.5966/SCTM.2015-0288
https://doi.org/10.5966/SCTM.2015-0288
https://doi.org/10.1016/j.yjmcc.2010.09.008
https://doi.org/10.1038/SREP19111
https://doi.org/10.1038/SREP19111
https://doi.org/10.1016/J.THERIOGENOLOGY.2011.01.026
https://doi.org/10.1016/J.DEVCEL.2022.01.012
https://doi.org/10.1016/J.AHJ.2010.02.009
https://doi.org/10.1101/2023.12.31.573775
https://doi.org/10.1161/CIRCRESAHA.115.307611
https://doi.org/10.1161/CIRCRESAHA.115.307611
https://doi.org/10.1093/EURHEARTJ/EHW224
https://doi.org/10.1016/S0140-6736(14)60107-0
https://clinicaltrials.gov/
https://doi.org/10.1007/S10565-020-09521-9
https://doi.org/10.1126/scitranslmed.aat9683
https://doi.org/10.1172/JCI.INSIGHT.144068
https://doi.org/10.1007/s11886-019-1171-3
https://doi.org/10.1016/j.jjcc.2020.03.013
https://doi.org/10.1161/CIRCULATIONAHA.122.059079
https://doi.org/10.1097/TP.0000000000002765
https://doi.org/10.1097/TP.0000000000002765
https://doi.org/10.1161/CIRCULATIONAHA.111.084343
https://doi.org/10.1161/CIRCULATIONAHA.111.084343
https://doi.org/10.7759/cureus.9349
https://doi.org/10.3324/HAEMATOL.2016.147645
https://doi.org/10.1038/nbt1327
https://doi.org/10.1038/S41586-018-0765-Z
https://doi.org/10.1038/s41577-019-0200-1
https://doi.org/10.1038/s41577-019-0200-1
https://doi.org/10.1002/MCO2.289
https://doi.org/10.1161/JAHA.120.020402
https://doi.org/10.1161/JAHA.120.020402
https://doi.org/10.1038/nbt.4162
https://doi.org/10.1038/nbt.4162
https://doi.org/10.1016/J.XPRO.2022.101560
https://doi.org/10.1111/AOR.12268
https://doi.org/10.1111/BPH.15595
https://doi.org/10.3390/BIOMEDICINES9121836
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1408679


cardiomyocyte patches for ischemic cardiomyopathy. Front. Cardiovasc. Med. 9,
950829. doi:10.3389/fcvm.2022.950829

Monsanto, M. M., Wang, B. J., Ehrenberg, Z. R., Echeagaray, O., White, K. S., Alvarez,
R., et al. (2020). Enhancing myocardial repair with CardioClusters. Nat. Commun. 11
(1), 3955. doi:10.1038/S41467-020-17742-Z

Munarin, F., Kant, R. J., Rupert, C. E., Khoo, A., and Coulombe, K. L. K. (2020).
Engineered human myocardium with local release of angiogenic proteins improves
vascularization and cardiac function in injured rat hearts. Biomaterials 251, 120033.
doi:10.1016/J.BIOMATERIALS.2020.120033

Nakamura, K., Neidig, L. E., Yang, X., Weber, G. J., El-Nachef, D., Tsuchida, H., et al.
(2021). Pharmacologic therapy for engraftment arrhythmia induced by transplantation of
human cardiomyocytes. Stem Cell. Rep. 16, 2473–2487. doi:10.1016/J.STEMCR.2021.08.005

Nakamura, T., Fujiwara, K., Saitou, M., and Tsukiyama, T. (2021). Non-human
primates as a model for human development. Stem Cell. Rep. 16 (5), 1093–1103. doi:10.
1016/j.stemcr.2021.03.021

Nelson, T. J., Martinez-Fernandez, A., Yamada, S., Perez-Terzic, C., Ikeda, Y., and
Terzic, A. (2009). Repair of acute myocardial infarction by human stemness factors
induced pluripotent stem cells. Circulation 120 (5), 408–416. doi:10.1161/
CIRCULATIONAHA.109.865154

Plews, J. R., Gu, M., Longaker, M. T., and Wu, J. C. (2012). Large animal induced
pluripotent stem cells as pre-clinical models for studying human disease. J. Cell. Mol.
Med. 16 (6), 1196–1202. doi:10.1111/J.1582-4934.2012.01521.X

Querdel, E., Reinsch, M., Castro, L., Köse, D., Bähr, A., Reich, S., et al. (2021). Human
engineered heart tissue patches remuscularize the injured heart in a dose-dependent
manner. Circulation 143, 1991–2006. doi:10.1161/CIRCULATIONAHA.120.047904

Riegler, J., Tiburcy, M., Ebert, A., Tzatzalos, E., Raaz, U., Abilez, O. J., et al. (2015). Human
engineered heart muscles engraft and survive long term in a rodent myocardial infarction
model. Circulation Res. 117 (8), 720–730. doi:10.1161/CIRCRESAHA.115.306985

Robey, T. E., Saiget, M. K., Reinecke, H., and Murry, C. E. (2008). Systems approaches
to preventing transplanted cell death in cardiac repair. J. Mol. Cell. Cardiol. 45 (4),
567–581. doi:10.1016/J.YJMCC.2008.03.009

Rodriguez-Polo, I., and Behr, R. (2022). Non-human primate pluripotent stem cells
for the preclinical testing of regenerative therapies. Neural Regen. Res. 17 (9),
1867–1874. doi:10.4103/1673-5374.335689

Romagnuolo, R., Masoudpour, H., Porta-Sánchez, A., Qiang, B., Barry, J., Laskary, A.,
et al. (2019). Human embryonic stem cell-derived cardiomyocytes regenerate the
infarcted pig heart but induce ventricular tachyarrhythmias. Stem Cell. Rep. 12 (5),
967–981. doi:10.1016/J.STEMCR.2019.04.005

Ruiz, R., and Kirk, A. D. (2015). Long-term toxicity of immunosuppressive therapy.
Transplant. Liver, 1354–1363. doi:10.1016/B978-1-4557-0268-8.00097-X

Salerno, N., Marino, F., Scalise, M., Salerno, L., Molinaro, C., Filardo, A., et al. (2022).
Pharmacological clearance of senescent cells improves cardiac remodeling and function
after myocardial infarction in female aged mice.Mech. Ageing Dev. 208, 111740. doi:10.
1016/J.MAD.2022.111740

Severino, P., D’Amato, A., Pucci, M., Infusino, F., Adamo, F., Birtolo, L. I., et al.
(2020). Ischemic heart disease pathophysiology paradigms overview: from plaque
activation to microvascular dysfunction. Int. J. Mol. Sci. 21 (21), 8118. doi:10.3390/
IJMS21218118

Shiba, Y., Fernandes, S., Zhu, W. Z., Filice, D., Muskheli, V., Kim, J., et al. (2012).
Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in
injured hearts. Nature 489 (7415), 322–325. doi:10.1038/nature11317

Shiba, Y., Filice, D., Fernandes, S., Minami, E., Dupras, S. K., Biber, B. V., et al. (2014).
Electrical integration of human embryonic stem cell-derived cardiomyocytes in a
Guinea pig chronic infarct model. J. Cardiovasc. Pharmacol. Ther. 19 (4), 368–381.
doi:10.1177/1074248413520344

Shiba, Y., Gomibuchi, T., Seto, T., Wada, Y., Ichimura, H., Tanaka, Y., et al. (2016).
Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate
hearts. Nature 538 (7625), 388–391. doi:10.1038/nature19815

Shin, H. S., Shin, H. H., and Shudo, Y. (2021). Current status and limitations of
myocardial infarction large animal models in cardiovascular translational research.
Front. Bioeng. Biotechnol. 9, 673683. doi:10.3389/FBIOE.2021.673683

Silva, M. O. M., Armada, J. L. A. D., Verona, C. E. S., Heliodoro, G., and Nogueira, D.
M. (2017). Cytogenetics and molecular genetic analysis of chimerism in marmosets
(Callithrix: primates). An. Acad. Bras. Ciências 89 (4), 2793–2804. doi:10.1590/0001-
3765201720170484

Silver, S. E., Barrs, R. W., and Mei, Y. (2021). Transplantation of human pluripotent
stem cell-derived cardiomyocytes for cardiac regenerative therapy. Front. Cardiovasc.
Med. 8, 707890. doi:10.3389/fcvm.2021.707890

Stahl,W. R. (1965). Organ weights in primates and other mammals. Science 150 (699),
1039–1042. doi:10.1126/SCIENCE.150.3699.1039

Stauske, M., Rodriguez Polo, I., Haas, W., Knorr, D. Y., Borchert, T., Streckfuss-
Bömeke, K., et al. (2020). Non-human primate iPSC generation, cultivation, and cardiac
differentiation under chemically defined conditions. Cells 9 (6), 1349. doi:10.3390/
CELLS9061349

Sun, X., Wu, J., Qiang, B., Romagnuolo, R., Gagliardi, M., Keller, G., et al. (2020).
Transplanted microvessels improve pluripotent stem cell-derived cardiomyocyte
engraftment and cardiac function after infarction in rats. Sci. Transl. Med. 12 (562),
eaax2992. doi:10.1126/SCITRANSLMED.AAX2992

Sung, T. C., Maitiruze, K., Pan, J., Gong, J., Bai, Y., Pan, X., et al. (2023). Universal and
hypoimmunogenic pluripotent stem cells for clinical usage. Prog. Mol. Biol. Transl. Sci.
199, 271–296. doi:10.1016/BS.PMBTS.2023.02.014

Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells from
mouse embryonic and adult fibroblast cultures by defined factors. Cell. 126 (4), 663–676.
doi:10.1016/j.cell.2006.07.024

Vicinanza, C., Aquila, I., Scalise, M., Cristiano, F., Marino, F., Cianflone, E., et al.
(2017). Adult cardiac stem cells are multipotent and robustly myogenic: c-kit expression
is necessary but not sufficient for their identification. Cell. death Differ. 24 (12),
2101–2116. doi:10.1038/CDD.2017.130

von Bibra, C., Shibamiya, A., Geertz, B., Querdel, E., Köhne, M., Stüdemann, T., et al.
(2022). Human engineered heart tissue transplantation in a Guinea pig chronic injury
model. J. Mol. Cell. Cardiol. 166, 1–10. doi:10.1016/j.yjmcc.2022.01.007

Wang, L., Meier, E. M., Tian, S., Lei, I., Liu, L., Xian, S., et al. (2017). Transplantation
of Isl1+ cardiac progenitor cells in small intestinal submucosa improves infarcted heart
function. Stem Cell. Res. Ther. 8 (1), 230. doi:10.1186/S13287-017-0675-2

Weinberger, F., Breckwoldt, K., Pecha, S., Kelly, A., Geertz, B., Starbatty, J., et al.
(2016). Cardiac repair in Guinea pigs with human engineered heart tissue from induced
pluripotent stem cells. Sci. Transl. Med. 8 (363), 363ra148. doi:10.1126/scitranslmed.
aaf8781

Weinberger, F., and Eschenhagen, T. (2021). Cardiac regeneration: new hope for an
Old dream. Annu. Rev. Physiology 83 (1), 59–81. doi:10.1146/annurev-physiol-031120-
103629

Yellon, D. M., and Hausenloy, D. J. (2007). Myocardial reperfusion injury. Injury 357
(11), 1121–1135. doi:10.1056/NEJMRA071667

Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S.,
et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells.
Science 318 (5858), 1917–1920. doi:10.1126/science.1151526

Yu, Y., Tham, S. K., Roslan, F. F., Shaharuddin, B., Yong, Y. K., Guo, Z., et al. (2023).
Large animal models for cardiac remuscularization studies: a methodological review.
Front. Cardiovasc. Med. 10, 1011880. doi:10.3389/FCVM.2023.1011880

Zhu, K., Wu, Q., Ni, C., Zhang, P., Zhong, Z., Wu, Y., et al. (2018). Lack of
remuscularization following transplantation of human embryonic stem cell-derived
cardiovascular progenitor cells in infarcted nonhuman primates. Circ. Res. 122 (7),
958–969. doi:10.1161/CIRCRESAHA.117.311578

Zhu, W., Zhao, M., Mattapally, S., Chen, S., and Zhang, J. (2018).
CCND2 overexpression enhances the regenerative potency of human induced
pluripotent stem cell-derived cardiomyocytes: remuscularization of injured ventricle.
Circulation Res. 122 (1), 88–96. doi:10.1161/CIRCRESAHA.117.311504

Zimmermann, W. H. (2017). Translating myocardial remuscularization. Circulation
Res. 120 (2), 278–281. doi:10.1161/CIRCRESAHA.116.310194

Zimmermann, W.-H., Melnychenko, I., Wasmeier, G., Didié, M., Naito, H., Nixdorff,
U., et al. (2006). Engineered heart tissue grafts improve systolic and diastolic function in
infarcted rat hearts. Nat. Med. 12 (4), 452–458. doi:10.1038/nm1394

Frontiers in Pharmacology frontiersin.org10

von Bibra and Hinkel 10.3389/fphar.2024.1408679

85

https://doi.org/10.3389/fcvm.2022.950829
https://doi.org/10.1038/S41467-020-17742-Z
https://doi.org/10.1016/J.BIOMATERIALS.2020.120033
https://doi.org/10.1016/J.STEMCR.2021.08.005
https://doi.org/10.1016/j.stemcr.2021.03.021
https://doi.org/10.1016/j.stemcr.2021.03.021
https://doi.org/10.1161/CIRCULATIONAHA.109.865154
https://doi.org/10.1161/CIRCULATIONAHA.109.865154
https://doi.org/10.1111/J.1582-4934.2012.01521.X
https://doi.org/10.1161/CIRCULATIONAHA.120.047904
https://doi.org/10.1161/CIRCRESAHA.115.306985
https://doi.org/10.1016/J.YJMCC.2008.03.009
https://doi.org/10.4103/1673-5374.335689
https://doi.org/10.1016/J.STEMCR.2019.04.005
https://doi.org/10.1016/B978-1-4557-0268-8.00097-X
https://doi.org/10.1016/J.MAD.2022.111740
https://doi.org/10.1016/J.MAD.2022.111740
https://doi.org/10.3390/IJMS21218118
https://doi.org/10.3390/IJMS21218118
https://doi.org/10.1038/nature11317
https://doi.org/10.1177/1074248413520344
https://doi.org/10.1038/nature19815
https://doi.org/10.3389/FBIOE.2021.673683
https://doi.org/10.1590/0001-3765201720170484
https://doi.org/10.1590/0001-3765201720170484
https://doi.org/10.3389/fcvm.2021.707890
https://doi.org/10.1126/SCIENCE.150.3699.1039
https://doi.org/10.3390/CELLS9061349
https://doi.org/10.3390/CELLS9061349
https://doi.org/10.1126/SCITRANSLMED.AAX2992
https://doi.org/10.1016/BS.PMBTS.2023.02.014
https://doi.org/10.1016/j.cell.2006.07.024
https://doi.org/10.1038/CDD.2017.130
https://doi.org/10.1016/j.yjmcc.2022.01.007
https://doi.org/10.1186/S13287-017-0675-2
https://doi.org/10.1126/scitranslmed.aaf8781
https://doi.org/10.1126/scitranslmed.aaf8781
https://doi.org/10.1146/annurev-physiol-031120-103629
https://doi.org/10.1146/annurev-physiol-031120-103629
https://doi.org/10.1056/NEJMRA071667
https://doi.org/10.1126/science.1151526
https://doi.org/10.3389/FCVM.2023.1011880
https://doi.org/10.1161/CIRCRESAHA.117.311578
https://doi.org/10.1161/CIRCRESAHA.117.311504
https://doi.org/10.1161/CIRCRESAHA.116.310194
https://doi.org/10.1038/nm1394
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1408679


CaMKIIδ-dependent
dysregulation of atrial Na+

homeostasis promotes
pro-arrhythmic activity in an
obstructive sleep apnea
mouse model
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Mathias Gugg1, Maximilian Trum1, Anna-Maria Lauerer1,
Lars Siegfried Maier1, Michael Arzt1, Simon Lebek1*† and
Stefan Wagner1*†

1Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany,
2Department of Neurology and Clinical Neurophysiology, University Hospital Augsburg,
Augsburg, Germany

Background: Obstructive sleep apnea (OSA) has been linked to various
pathologies, including arrhythmias such as atrial fibrillation. Specific treatment
options for OSA are mainly limited to symptomatic approaches. We previously
showed that increased production of reactive oxygen species (ROS) stimulates
late sodium current through the voltage-dependent Na+ channels via Ca2+/
calmodulin-dependent protein kinase IIδ (CaMKIIδ), thereby increasing the
propensity for arrhythmias. However, the impact on atrial intracellular Na+

homeostasis has never been demonstrated. Moreover, the patients often
exhibit a broad range of comorbidities, making it difficult to ascertain the
effects of OSA alone.

Objective: We analyzed the effects of OSA on ROS production, cytosolic Na+

level, and rate of spontaneous arrhythmia in atrial cardiomyocytes isolated from
an OSA mouse model free from comorbidities.

Methods:OSAwas induced in C57BL/6 wild-type and CaMKIIδ-knockout mice
by polytetrafluorethylene (PTFE) injection into the tongue. After 8 weeks, their
atrial cardiomyocytes were analyzed for cytosolic and mitochondrial ROS
production via laser-scanning confocal microscopy. Quantifications of the
cytosolic Na+ concentration and arrhythmia were performed by
epifluorescence microscopy.

Results: PTFE treatment resulted in increased cytosolic and mitochondrial
ROS production. Importantly, the cytosolic Na+ concentration
was dramatically increased at various stimulation frequencies in the
PTFE-treated mice, while the CaMKIIδ-knockout mice were protected.
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Accordingly, the rate of spontaneous Ca2+ release events increased in the wild-
type PTFE mice while being impeded in the CaMKIIδ-knockout mice.

Conclusion: Atrial Na+ concentration and propensity for spontaneous Ca2+ release
events were higher in an OSA mouse model in a CaMKIIδ-dependent manner,
which could have therapeutic implications.

KEYWORDS

sleep-disordered breathing, reactive oxygen species, CaMKIIδ, Na+ homeostasis, cardiac
arrhythmias, obstructive sleep apnea

1 Introduction

Over the past few decades, sleep-disordered breathing (SDB) has
emerged as a highly prevalent disease that currently affects about
one billion patients worldwide (Benjafield et al., 2019). SDB is
frequently associated with various cardiovascular disorders, such
as hypertension (Pengo et al., 2020), heart failure with reduced or
preserved ejection fractions (HFrEF/HFpEF) (Arzt et al., 2016;
Lebek et al., 2021; Wester et al., 2023; Hegner et al., 2024), and
arrhythmias like atrial fibrillation (Gami et al., 2004; Hegner et al.,
2021a; Hegner et al., 2021b; Mehra et al., 2022), which may lead to
subsequent strokes (Arzt et al., 2005). The interactions between SDB
and these cardiovascular disorders can substantially contribute to
patient morbidity and mortality while also posing economic
challenges (Gami et al., 2004; Arzt et al., 2005; Arzt et al., 2016;
Benjafield et al., 2019; Pengo et al., 2020; Lebek et al., 2021; Mehra
et al., 2022; Wester et al., 2023). The current therapeutic strategies
for SDB are mainly based on lifestyle interventions (e.g., weight loss,
reduced alcohol intake, sports, and exercise) and continuous positive
airway pressure (CPAP) therapy (Aurora et al., 2012; Randerath
et al., 2017; Patil et al., 2019). However, patient compliance with
these measures are often quite low, and adaptive servo-ventilation
therapy has even been shown to increase mortality in HFrEF
patients with central sleep apnea (Cowie et al., 2015; McEvoy
et al., 2016). Thus, new and advanced therapeutic strategies are
urgently needed for patients with SDB, which in turn requires
detailed understanding of the pathological mechanisms involved.

We previously found increased production levels of reactive
oxygen species (ROS) in human atrial biopsies of patients with SDB
(Lebek et al., 2020b). This increase was shown to result in increased
Ca2+/calmodulin-dependent protein kinase II (CaMKII) activation
and enhanced CaMKII-dependent late Na+ current in the biopsies of
patients with SDB (Lebek et al., 2020b; Lebek et al., 2022). Notably,
the enhanced late Na+ current is an important trigger for early
afterdepolarizations (EADs) and subsequent arrhythmias (Wagner
et al., 2006; Sossalla et al., 2010; Glynn et al., 2015; Lebek et al.,
2020b; Lebek et al., 2022). Indeed, we demonstrated an increased
frequency of multicellular arrhythmias in the isolated trabeculae of
patients with SDB that could be blocked with CaMKII inhibition as
well as late Na+ current inhibition (Lebek et al., 2020b; Lebek et al.,
2022). However, these studies were limited by patient heterogeneity
and their various comorbidities that impacted myocardial Na+

homeostasis (Lebek et al., 2020b; Lebek et al., 2022). It is also
unclear whether myocardial Na+ concentration is actually affected
by the altered Na+ currents in SDB. Recently, we demonstrated for
the first time that intracellular Na+ entry and Na+ concentration
were higher in the atrial myocytes of patients with heart failure and

preserved ejection fraction—conditions in which SDB is very
common (Trum et al., 2024).

Therefore, we developed a mouse model of obstructive sleep
apnea (OSA) by injecting polytetrafluorethylene (PTFE) into the
murine tongue (Lebek et al., 2020a; Hegner et al., 2023); these
mice developed diastolic and mild systolic left-ventricular
dysfunctions after 8 weeks (Lebek et al., 2020a; Hegner et al.,
2023). Importantly, this approach allows analysis of OSA mice
without the confounding comorbidities that are frequently
exhibited by patients. PTFE is an inert substance that
permanently increases the murine tongue volume, thereby
leading to increased frequency of apneas, inspiratory flow
limitations (hypopneas), and subsequent hypoxemia (Lebek
et al., 2020a; Hegner et al., 2023). Notably, these OSA events
occur spontaneously in PTFE-injected mice and preferentially
during the murine sleeping period, making this mouse model a
suitable tool for investigating OSA-dependent effects in the
absence of any potentially confounding comorbidities (Lebek
et al., 2020a; Hegner et al., 2023). The objective of the current
work was to explore whether atrial ROS production increased in
the OSA mice that could subsequently lead to CaMKIIδ-
dependent pro-arrhythmic dysregulation of atrial Na+

homeostasis.

2 Materials and methods

All experiments involving mice were in compliance with the
directive 2010/63/EU of the European Parliament, Guide for the
Care and Use of Laboratory Animals published by the US National
Institutes of Health (NIH Publication No. 85–23, revised 1985), and
local institutional guidelines. The government of Unterfranken,
Bavaria, Germany also approved the animal protocol for this
study (protocol number: 55.2-2532-2-512).

2.1 OSA induction by PTFE injection

OSA was induced in the study mice as described previously
(Lebek et al., 2020a; Hegner et al., 2023). CaMKIIδ knockout (−/−)
and C57BL/6 wild-type mice were randomly assigned to either the
control (CTRL) or OSA induction by PTFE injection (PTFE) groups
(Figure 1). The PTFE (35 μm particle size, Sigma-Aldrich) was
injected into the tongues of the male mice at the age of
8–12 weeks (Lebek et al., 2020a). For optimal analgesia, the mice
were treated with buprenorphine (0.1 mg/kg bodyweight
intraperitoneal) 1 h before PTFE injection. Anesthesia was
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established using intraperitoneal injections of fentanyl (0.05 mg/kg
bodyweight), medetomidine (0.5 mg/kg), and midazolam (5 mg/kg).
Thereafter, the mice were placed on a heating plate in the supine
position. The anesthesia was continuously monitored by recording
the respiration and ECG, and the body temperature was monitored
using a rectal probe. In total, 100 μL of diluted PTFE (50% w/v in
glycerol, Sigma-Aldrich) was injected into multiple sites at the base
of the tongue using a 27-gauge cannula. Ultrasound imaging was
used to confirm successful PTFE injection into the tongue
(Vevo3100 system, VisualSonics). Once the procedure was
completed, the anesthesia was reversed using intraperitoneal
injections of atipamezole (2.5 mg/kg), flumazenil (0.5 mg/kg), and
buprenorphine (0.1 mg/kg bodyweight). The surgeries were
performed by an experienced investigator who was blinded to the
genotype of the mice. To reduce the stress on the animals, we
refrained from revalidating the OSA severity resulting from PTFE
injection as this was previously investigated in detail (Lebek
et al., 2020a).

2.2 Isolation of atrial cardiomyocytes

The mouse atrial cardiomyocytes were isolated as described
previously (Hegner et al., 2023). In brief, the explanted hearts were
mounted on a Langendorff perfusion apparatus and retrogradely
perfused with 113 mmol/L of NaCl, 4.7 mmol/L of KCl, 0.6 mmol/
L of KH2PO4, 0.6 mmol/L of Na2HPO4 × 2 mmol/L of H2O,
1.2 mmol/L of MgSO4 × 7mmol/L of H2O, 12 mmol/L of NaHCO3,
10 mmol/L of KHCO3, 10 mmol/L of HEPES, 30 mmol/L of
taurine, 10 mmol/L of 2,3-butanedione monoxime, and
5.5 mmol/L of glucose for 4 min at 37°C (pH 7.4). Next, trypsin
0.6%, 7.5 mg/mL of liberase TM (Roche), and 0.125 mmol/L of
CaCl2 were added while maintaining perfusion until the heart
became flaccid. Then, the murine atrium was collected in a
perfusion buffer supplemented with 5% bovine calf serum. The
tissue was sliced into small pieces and disintegrated by pipetting.
Stepwise Ca2+ reintroduction was then performed by increasing
[Ca2+] from 0.1 to 1.0 mmol/L. Owing to the limited number of
atrial cardiomyocytes obtained from the cell isolation, only one of
the following methods could be performed per subject.

2.3 Measurements of atrial ROS production

Isolated atrial cardiomyocytes were plated on laminin-coated
recording chambers and loaded with either 5 μmol/L of CellRox™
Orange (Thermo Fisher Scientific) or 5 μmol/L of MitoSox™ Red
(Thermo Fisher Scientific) in the presence of 0.04% (w/v) pluronic
acid (Invitrogen; 15 min incubation at 37°C). The chambers were
then placed on a laser-scanning confocal microscope (Zeiss LSM
700), and measurements were performed in Tyrode’s solution
containing 140 mmol/L of NaCl, 4 mmol/L of KCl, 5 mmol/L of
HEPES, 1 mmol/L ofMgCl2, 10 mmol/L of glucose, and 1mmol/L of
CaCl2 (pH 7.4 at room temperature with NaOH). The frame scans
(CellRox™ Orange: 555 nm excitation, LP 560 nm emission;
MitoSox™ Red: 488 nm excitation, LP 490 nm emission) were
acquired once every minute for 10 min upon electrical field
stimulation (1 Hz). The CellRox™ Orange and MitoSox™ Red
fluorescence (F) values were then normalized with respect to the
background fluorescence (F/F0). The slope of increase in F/F0 over
time was used as the measure of cellular (CellRox™ Orange) and
mitochondrial (MitoSox™ Red) ROS productions.

2.4 Epifluorescence microscopy

Intracellular Na+ was determined by epifluorescence microscopy
using the Na+-sensitive sodium-binding benzofuran isophthalate-
AM (SBFI-AM) dye (Thermo Fisher Scientific). The isolated atrial
cardiomyocytes were plated on laminin-coated measurement
chambers and loaded with 10 μmol/L of SBFI-AM for 90 min at
room temperature according to manufacturer instructions. The
loaded chambers were then placed on the stage of an inverted
microscope (Nikon Eclipse TE2000-U) and superfused with
Tyrode’s solution containing 140 mmol/L of NaCl, 4 mmol/L of
KCl, 5 mmol/L of HEPES, 1 mmol/L of MgCl2, 10 mmol/L of
glucose, and 1 mmol/L of CaCl2 (pH 7.4 at 37°C with NaOH).
Regular electrical stimulation was then performed by field
stimulation (1, 2, and 4 Hz with 20 V for 4 ms) in a sequential
manner for 5 min per frequency. The emissions were obtained using
a fluorescence detection system (IonOptix), and the SBFI
fluorescence emission ratio was measured by alternating

FIGURE 1
Experimental study flowchart.
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excitations at 340 nm and 380 nm. Then, steady-state measurements
averaged over 10 s with ongoing stimulation were analyzed. For
some experiments, calibration of the F340 nm/380 nm fluorescence
ratio for fixed Na+ concentrations (0, 10, and 20 mmol/L) was
performed. To achieve this, a K+-free solution containing
30 mmol/L of NaCl, 115 mmol/L of Na-gluconate, 10 mmol/L of
HEPES, 2 mmol/L of EGTA, and 10 mmol/L of glucose (pH 7.2 at
37°C with TRIS) was mixed with an Na+-free solution containing
30 mmol/L of KCl, 115 mmol/L of K-gluconate, 10 mmol/L of
HEPES, 2 mmol/L of EGTA, and 10 mmol/L of glucose
(pH 7.2 at 37°C with TRIS) in an appropriate proportion to
achieve the desired Na+ concentration. For all Na+ calibration
solutions, the ionophore Gramicidin D (10 μmol/L, Sigma-
Aldrich) was added to achieve cell permeabilization. For the
10 and 20 mmol/L Na+ calibration solutions, an additional
100 μmol/L of the Na+/K+-ATPase inhibitor strophanthidin
(Sigma-Aldrich) was added. Continuous electrical stimulation
was then performed at 1 Hz as described above, and the steady-
state fluorescence ratio was recorded after 20 min for each step in the
calibration process (with Tyrode’s solution for 0, 10, and 20 mmol/L
of Na+).

The spontaneous Ca2+ release events were analyzed by
epifluorescence microscopy as described previously (Hegner
et al., 2023). In short, the atrial cardiomyocytes were loaded with
the Ca2+-sensitive dye Fura-2-AM (5 μmol/L, Thermo Fisher
Scientific) and subjected to regular electrical field stimulation at
1, 2, and 4 Hz for 5 min per frequency. Deviations from the diastolic
Ca2+ baseline between two stimulated transients were defined as the
spontaneous Ca2+ release events and counted by one investigator
blinded to the genotype and intervention.

2.5 Statistical analysis

The experiments were performed and analyzed after being
blinded to the genotype (wild-type vs CaMKIIδ−/−) and treatment
(CTRL vs PTFE) of the mice, and the results were presented as mean
values per mouse ±standard error of the mean (SEM) for three
significant digits. The normal distribution was assessed via the
Shapiro–Wilk normality test, and student’s t-test was used to
compare two normally distributed continuous variables. One-way
ANOVA with Holm–Sidak’s post hoc correction was performed for
comparisons of more than two normally distributed groups.
GraphPad PRISM 10 was used to test for differences between the
linear regression slopes. Two-sided p-values below 0.05 were
considered to be statistically significant.

3 Results

3.1 ROS production is increased in atrial
cardiomyocytes of OSA mice

Previously, we demonstrated increased ROS production in the
myocardium of patients with SDB (Arzt et al., 2022). Additionally,
we were able to show increased ROS production in the ventricular
cardiomyocytes of the PTFE-treated mice (Hegner et al., 2023).
Since high-risk cardiovascular patients often have various

comorbidities, such as diabetes, heart failure, and coronary artery
disease, it is difficult to determine the independent effect of SDB on
ROS production. Therefore, in this study, we analyzed the effect of
specific OSA induction by PTFE treatment in mouse atrial
cardiomyocytes.

Eight weeks after the PTFE injections, the cytosolic ROS
production in the experimental mice increased compared to
those of the control animals (1.63e-2 ± 2.2e-3 in PTFE vs 7.95e-
3 ± 1.3e-3 (ΔF/F0*min−1) in control, p = 0.006, n = 7 vs 7, Figures
2A–C). Moreover, the time-dependent cytosolic ROS production
estimated by linear regression analysis was elevated in the PTFE-
treated mice compared to the controls (r2 = 0.666, p < 0.001, n = 7 in
PTFE vs r2 = 0.327, p < 0.001, n = 7 in control, and p < 0.001 for
difference in slopes, Figure 2B).

Similarly, mitochondrial ROS production quantified by
MitoSox™ Red was higher in the PTFE-treated mice than the
controls (2.68e-2 ± 4.4e-3 in PTFE vs 1.51e-2 ± 1.7e-3 in control,
p = 0.030, n = 7 vs 7, Figures 2D–F). Congruently, the time-
dependent mitochondrial ROS production estimated by linear
regression analysis was elevated in the PTFE mice compared to
the controls (r2 = 0.578, p < 0.001, n = 7 in PTFE vs r2 = 0.540, p <
0.001, n = 7 in control, p < 0.001 for difference in slopes, Figure 2E).

3.2 CaMKII-dependent dysregulation of
atrial Na+ homeostasis

The atrial cardiomyocyte Na+ concentration was assessed by
epifluorescence microscopy using the Na+-sensitive SBFI-AM
fluorescence dye. The cardiomyocytes underwent continuous
electrical stimulation at 1, 2, and 4 Hz to account for differences
between the physiological human and murine heart rates. The SBFI
F340/380 ratio was analyzed at steady-state levels (Figure 3A). In the
wild-type PTFE mice, the SBFI ratio increased to 1.26 ± 8.2e-3 as
compared to 1.17 ± 1.2e-2 in the control mice (p < 0.001, Figure 3B),
while the CaMKIIδ−/− PTFE mice remained protected (p < 0.001,
Figure 3B). Importantly, the SBFI F340/380 ratio increased similarly
across all frequencies, including 2 and 4 Hz, in the wild-type PTFE
mice while remaining at healthy control levels in the CaMKIIδ−/−
PTFE mice (Figures 3C, D).

Calibration experiments were conducted to convert the
ratiometric SBFI fluorescence values to Na+ concentrations
(mmol/L) (Figure 4A). The SBFI fluorescence ratios were
plotted for fixed Na+ concentrations (0, 10, and 20 mmol/L,
Figure 4B). The SBFI F340/380 ratio was converted to
intracellular Na+ concentration (mmol/L) using the resulting
calibration curve. The atrial cardiomyocyte Na+ concentration
at 1 Hz increased in the wild-type PTFE mice to 20.0 ± 0.65 from
12.6 ± 0.94 mmol/L in the wild-type control (p < 0.001,
Figure 4C) but remained at the control level (13.5 ±
0.74 mmol/L) in the CaMKIIδ−/− PTFE mice (p < 0.001 vs
wild-type PTFE, Figure 4C). At 2 Hz stimulation, the Na+

concentration increased to 20.6 ± 0.53 mmol/L in the wild-
type PTFE mice from 14.1 ± 0.96 mmol/L in the wild-type
control (p < 0.001). During 4 Hz stimulation, the intracellular
Na+ concentration increased further to 21.6 ± 0.62 mmol/L in the
wild-type PTFE mice from 15.7 ± 1.2 mmol/L in the control (p =
0.002). Moreover, at 2 and 4 Hz, Na+ concentrations in the
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FIGURE 2
ROS production is increased in the atrial cardiomyocytes of PTFE mice: (A) original laser-scanning confocal microscopy images of atrial
cardiomyocytes loaded with the CellRox™Orange dye (artificial coloring of monochrome image with Blue_Yellow LUT); (B) linear regression analysis of
the cytosolic ROS production over time (n = 15/7 control (CTRL) vs n = 14/7 PTFE); (C)mean slope of cytosolic ROS production over time (n = 15/7 CTRL vs
n = 14/7 PTFE); (D) original laser scanning confocal microscopy images of atrial cardiomyocytes loaded with the MitoSox™ Red dye (artificial
coloring of monochrome image with Red_Hot LUT); (E) linear regression analysis of the mitochondrial ROS production over time (n = 15/7 CTRL vs n =
13/7 PTFE); (F)mean slope of mitochondrial ROS production over time (n = 15/7 CTRL vs n = 13/7 PTFE). N indicates the number of cells/number of mice.
The comparisons are based on student’s t-test and linear regression analysis as appropriate.

FIGURE 3
Cytosolic Na+ is elevated only in the atrial cardiomyocytes of wild-type PTFE mice: (A) original traces of the SBFI ratio (F340/F380) in the atrial
cardiomyocytes; mean SBFI ratios at (B) 1 Hz, (C) 2 Hz, and (D) 4 Hz electrical stimulation (n = 19/5 wild-type control (CTRL), n = 38/10 wild-type PTFE,
n = 32/10 CaMKIIδ−/− CTRL, and n = 36/10 CaMKIIδ−/− PTFE). N indicates the number of cells/number of mice. The comparisons are based on one-way
ANOVA with Holm–Sidak’s post hoc correction.
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CaMKIIδ−/− PTFE mice were similar to those of the wild-type
control mice (2 Hz: 14.0 ± 0.82 mmol/L, p < 0.001 vs wild-type
PTFE; 4 Hz: 14.6 ± 0.93 mmol/L, p < 0.001 vs wild-type PTFE).

3.3 CaMKII-dependent arrhythmias in
isolated atrial myocytes of OSA mice

Spontaneous Ca2+ release events were assessed in isolated
atrial cardiomyocytes loaded with the Ca2+-sensitive Fura-2-AM
dye during regular electrical stimulation. Non-stimulated pro-
arrhythmic events could be observed in the myocytes from the
wild-type PTFE mice (Figure 5A, indicated by red arrows), while
the Ca2+ transient characteristics remained unaltered in the
PTFE mice (Figures 5B–D). At 1 Hz stimulation, the
incidence of spontaneous Ca2+ release events increased in the
wild-type PTFE mice by more than two-fold to 5.85e-2 ± 7.9e-3
(s−1) from 2.11e-2 ± 3.5e-3 in the wild-type control mice (p <
0.001, Figure 5E). Atrial cardiomyocytes from the CaMKIIδ−/−
PTFE mice were protected from such an increase in the rate of
arrhythmias (2.65e-2 ± 7.8e-3, p = 0.007 vs wild-type PTFE,
Figure 5E). Similar effects were also observed at 2 Hz
stimulation, with the rate of pro-arrhythmic non-stimulated
events increasing to 9.86e-2 ± 1.4e-2 in the wild-type PTFE
mice from 4.11e-2 ± 8.0e-3 in the wild-type control mice (p <
0.001, Figure 5F), whilst the CaMKIIδ−/− PTFE mice exhibited no
increase in the frequency of spontaneous Ca2+ release events
(3.20e-2 ± 7.4e-3, p < 0.001 vs wild-type PTFE, Figure 5F). At a
stimulation rate of 4 Hz, which is closer to the physiological
murine heart rate (Li et al., 1999), the rate of atrial pro-
arrhythmic events remained elevated by more than two-fold
in the wild-type PTFE mice compared to the control (1.29e-1 ±
1.7e-2 vs 5.24e-2 ± 6.8e-3, p < 0.001, Figure 5G). Once again,
atrial cardiomyocytes from the CaMKIIδ−/− PTFE mice exhibited
arrhythmia frequencies comparable to those of the healthy
controls (4.34e-2 ± 1.1e-2, p < 0.001 vs wild-type PTFE,
Figure 5G). Additionally, no significant differences were
observed between the CaMKIIδ−/− control and PTFE mice
(Figures 5E–G).

4 Discussion

In the present study, we show increased ROS production, Na+

overload, and more frequent spontaneous Ca2+ release events in the
atrial cardiomyocytes of OSA mice. The current therapeutic
strategies for SDB are mostly limited to lifestyle interventions
and CPAP therapy (Aurora et al., 2012; Randerath et al., 2017;
Patil et al., 2019). However, patient compliance is often low in such
cases, and interventions such as adaptive servo-ventilation therapy
may even be detrimental in certain patients (Cowie et al., 2015;
McEvoy et al., 2016). Although SDB is associated with increased
incidence of atrial fibrillation and lower sustained success of
cardioversion or pulmonary vein isolation (Gami et al., 2004;
Gami et al., 2007; Linz et al., 2018), CPAP therapy has failed to
reduce the arrhythmia burden and incidence of adverse
cardiovascular events (Peker et al., 2016; Traaen et al., 2021).
Additionally, SDB patients have been reported to frequently
suffer from heart failure, especially HFpEF (Lebek et al., 2021;
Levy et al., 2022; Wester et al., 2023). These aspects highlight the
urgent need for more targeted and effective therapies for
SDB patients.

Recently, we showed for the first time that intracellular Na+

entry and Na+ concentration are higher in the atrial myocytes of
patients with HFpEF, a condition in which SDB is very common,
which could contribute to atrial contractile dysfunction and
arrhythmias (Trum et al., 2024). Interestingly, we also showed
that patients with SDB have increased late Na+ current in their
remodeled atria, which could contribute to intracellular Na+

overload (Lebek et al., 2022). However, because these patients
could also have various comorbidities, it is very difficult to
determine the standalone effects of OSA.

The SDB mouse model utilized in this study is ideal for
exploration of the pathological mechanisms and novel
therapeutic targets as it is devoid of the confounding
comorbidities frequently exhibited by patients; the mouse model
is also more widely available than SDB patient biomaterial (Lebek
et al., 2020a; Hegner et al., 2023). It is noted that these mice
developed diastolic and mild systolic left-ventricular dysfunctions,
which also resulted in increased heart and lung weights (Lebek et al.,

FIGURE 4
Measurement of Na+ concentration and calibration procedure: (A) protocol for SBFI-AM calibration to Na+ concentration performed in the atrial
cardiomyocytes; (B)mean SBFI ratios (F340/F380) at 0, 10, and 20 mmol/L of Na+ with linear regression (n = 14 cells); mean intracellular Na+ concentration
at (C) 1 Hz electrical stimulation (n = 19/5 wild-type control (CTRL), n = 38/10wild-type PTFE, n = 32/10 CaMKIIδ−/−CTRL, and n = 36/10 CaMKIIδ−/− PTFE).
N indicates the number of cells/number of mice. The comparisons are based on one-way ANOVA with Holm–Sidak’s post hoc correction or linear
regression analysis as appropriate.
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2020a; Hegner et al., 2023). It is therefore possible that the effects
observed in the ventricles may contribute to changes in the atria.

4.1 SDB-dependent pathological
mechanisms promoting arrhythmias

The frequently discussed pro-arrhythmic mechanisms that
could facilitate atrial fibrillation in SDB include intrathoracic
pressure changes (Linz et al., 2011), autonomous imbalance and
beta-adrenergic stimulation during nocturnal awakening periods

(Abboud and Kumar, 2014), increased arterial blood pressure
(Hetzenecker et al., 2013), structural remodeling (Anter et al.,
2017), conduction abnormalities (Anter et al., 2017; Hegner
et al., 2021b), ion-channel dysfunction and triggered activity
(Lebek et al., 2020b; Lebek et al., 2022), and intermittent
hypoxia/desaturation (Tkacova et al., 1998; Iwasaki et al., 2014).
The latter is also a strong inductor of oxidative stress and ROS
production (Gozal and Kheirandish-Gozal, 2008). Indeed, we
previously observed increased production of cytosolic ROS in
human atrial tissues of SDB patients (Lebek et al., 2020b). In
agreement with these observations, in this study, we report

FIGURE 5
CaMKIIδ−/− mice are protected from spontaneous Ca2+ release events: (A) original recordings of Ca2+ transients (Fura-2 ratio, F340/F380) in the atrial
cardiomyocytes, where the spontaneous Ca2+ release events are indicated by red arrows in the wild-type PTFE mice; (B) mean diastolic Ca2+, (C) Ca2+

transient amplitude, and (D) relaxation time to 70% of baseline at 1 Hz with ANOVA; p = n.s. Incidence of spontaneous Ca2+ release events at (E) 1 Hz, (F)
2 Hz, and (G) 4 Hz electrical stimulation. N = 57/18 wild-type control (CTRL), n = 66/22 wild-type PTFE, n = 27/9 CaMKIIδ−/− CTRL, and n = 26/
9 CaMKIIδ−/− PTFE. N indicates the number of cells/number of mice. The comparisons are based on one-way ANOVA with Holm–Sidak’s post hoc
correction.
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increased cytosolic and mitochondrial ROS production in the atrial
myocytes of OSA mice without comorbidities.

ROS have been shown to oxidize many ion channels and
transporters. Indeed, direct oxidation of the ryanodine type-2
receptors (RyR2) can promote increased diastolic sarcoplasmic
reticulum Ca2+ release and subsequent arrhythmias (Huang et al.,
2021). On the other hand, CaMKIIδ is a kinase central to myocardial
Na+ and Ca2+ homeostasis that can also be directly oxidized at
methionine-281 and -282, thereby releasing the catalytic domain
leading to increased enzyme activation (Erickson et al., 2008; Lebek
et al., 2023b; Lebek et al., 2024).

Our group previously established that cardiac CaMKIIδ activity
is pathologically increased in SDB patients and also in SDB mice in
the model used in this study (Lebek et al., 2020a; Lebek et al., 2020b;
Arzt et al., 2022; Hegner et al., 2023). In the present study, we present
data from isolated atrial cardiomyocytes, but the limited amount of
tissue precluded further protein target analysis, which is a potential
limitation of this study. There are several important downstream
targets of CaMKIIδ, including voltage-gated Na+ channels
NaV1.5 and NaV1.8, RyR2, phospholamban, L-type Ca2+

channels, and Na+/Ca2+ exchangers, which have been shown to
be involved in arrhythmogenesis (Bers, 2002; Fischer et al., 2013;
Bengel et al., 2021). CaMKIIδ overactivation in SDB can lead to
disturbed Ca2+ homeostasis, including increased sarcoplasmic
reticulum Ca2+ leakage, pro-arrhythmic non-stimulated events in
humans and mice, and multicellular arrhythmias in the patient
trabeculae (Lebek et al., 2020b; Arzt et al., 2022; Hegner et al., 2023).
These pro-arrhythmic events could serve as triggers of atrial
fibrillation (Nattel et al., 2020).

4.2 Disturbance of atrial Na+ homeostasis as
a novel pathological mechanism in SDB

Increased CaMKIIδ activation can facilitate intracellular Na+

level overload (Wagner et al., 2006; Wagner et al., 2011), and recent
studies have highlighted the interactions between CaMKIIδ and
increased Na+ influx in heart failure (Bengel et al., 2021), resulting in
increased myocyte Na+ concentration (Despa, 2018). One of the
proposed mechanisms is increased late Na+ current (late INa), which
was detected in the atrial myocytes of patients with SDB (Lebek et al.,
2020b; Lebek et al., 2022). However, data regarding Na+ in the
mouse atrial myocytes is scarce as the biomaterial is limited by the
small murine atrium and methodological challenges (Garber et al.,
2022). Garber et al. (2017, 2022) recommend calibrating each
myocyte individually, which we did not perform for every cell in
this study with the aim of increasing the yield. Consequently, the
converted Na+ concentrations may be more general estimates. The
quiescent murine atrial myocyte Na+ concentrations were previously
reported at ~8 mmol/L with an increase to 11–12 mmol/L at 1 Hz
stimulation. Since the Na+ concentration increases in a frequency-
dependent manner (Despa et al., 2002; Pieske et al., 2002), we
conducted measurements at multiple frequencies (1, 2, and 4 Hz)
to account for the increased rates that are commonly seen in human
atrial arrhythmias (Lu and Chen, 2021). In addition, this allowed us
to take into account the physiologically different heart rates of
humans and mice to offer a more comprehensive translational
perspective. Our data are in direct agreement with the findings of

previously published literature as we estimated the atrial myocyte
Na+ concentration to be ~12 mmol/L at 1 Hz stimulation in healthy
wild-type mice.

Importantly, at all the tested frequencies, the Na+ concentrations in
the atrial cardiomyocytes were profoundly higher in the OSA mice in
excess of Δ+5mmol/L. Owing to the selected calibration range of
0–20 mmol/L Na+ (Figure 4B), any reported concentrations above
20 mmol/L may even be underestimated. An increase in the
intracellular Na+ by this margin impairs Na+/Ca2+ exchanger (NCX)
function owing to reduced transmembrane Na+ gradients in a manner
similar to that observed in heart failure (Despa et al., 2002; Pieske et al.,
2002; Hegner et al., 2022). ImpairedNCX functionmay further increase
the cellular Ca2+ levels by reduced Ca2+ export, which could further
increase CaMKIIδ activation in a Ca2+-dependent fashion, thereby
exacerbating Na+ increase (Sapia et al., 2010; Bengel et al., 2021).
Moreover, increased Na+ influx is linked to initiation of atrial
fibrillation (Sossalla et al., 2010; Wan et al., 2016). Cellular Na+

overload is also known to increase cytosolic and mitochondrial ROS
productions (Kohlhaas et al., 2010). Indeed, we measured increased
intracellular andmitochondrial ROS productions in the cardiomyocytes
of OSA mice. In turn, this could promote a vicious cycle by leading to
further Na+ increase via CaMKIIδ activation. Importantly, we did not
observe any increase in atrial Na+ concentrations in the cardiomyocytes
of CaMKIIδ−/− SDB mice at any of the evaluated frequencies.

In line with the disturbed Na+ homeostasis, we also observed
more than two-fold increase in pro-arrhythmic events in the atrial
cardiomyocytes of the wild-type SDB mice at all stimulation
frequencies (1, 2, and 4 Hz), which was almost similar to the
levels of healthy controls in the CaMKIIδ−/− SDB mice.
Moreover, production of ROS has been linked to
arrhythmogenesis in cardiomyocytes (Liu et al., 2022).
Importantly, ROS production and NADPH oxidase activity are
higher in SDB (Gozal and Kheirandish-Gozal, 2008), whereas the
other Ca2+ transient characteristics remain unaltered in the PTFE
mice. This may be attributed to compensatory effects on the
sarcoplasmic reticulum Ca2+ content, as observed in patients with
paroxysmal atrial fibrillation (Voigt et al., 2014). We previously
reported a reduced Ca2+ transient amplitude in the ventricular
cardiomyocytes of SDB mice (Hegner et al., 2023), which we did
not observe in the atrial cardiomyocytes in the present study.

Our data suggest that modulation of CaMKIIδ activity could be a
promising antiarrhythmic approach in SDB. Even as pharmacological
inhibition of CaMKIIδ is being investigated (Pellicena and Schulman,
2014; Lebek et al., 2018), CRISPR-Cas9 gene editing of CAMK2D
could be an advanced strategy to overcome the previous limitations, as
this technology has been used with >2,000-fold increased specificity
toward CAMK2D compared to other isoforms (Lebek et al., 2023a).
Additionally, pharmacological inhibition and genetic ablation of
(oxidative) activation of CaMKIIδ have been shown to protect
from pro-arrhythmic activities (Lebek et al., 2018; Lebek et al.,
2023a; Lebek et al., 2023b; Hegner et al., 2023).

5 Conclusion

Patients with SDB are at increased risk of developing atrial
fibrillation and have demonstrated lower efficacy for currently
available anti-arrhythmic therapies. In fact, targeted anti-arrhythmic

Frontiers in Pharmacology frontiersin.org08

Hegner et al. 10.3389/fphar.2024.1411822

93

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1411822


therapies are completely lacking in SDB. In the present study, we
demonstrated that in an SDBmousemodel devoid of comorbidities, the
production of cytosolic and mitochondrial ROS increased in the atrial
cardiomyocytes. ROS are known to facilitate persistent overactivation of
Ca2+/calmodulin-dependent protein kinase IIδ (CaMKIIδ), which
results in disruption of the cellular Na+ and Ca2+ homeostasis.
Herein, we describe elevated Na+ concentrations at multiple
stimulation frequencies associated with higher chances of
spontaneous Ca2+ release events in SDB mice. Importantly, the
CaMKIIδ−/− mice were protected from such effects. Therefore,
inhibition of CaMKIIδ in SDB may reduce Na+ overload and
protect against arrhythmias, which could have therapeutic
implications in the future.
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Short-chain fatty acids regulate
erastin-induced cardiomyocyte
ferroptosis and
ferroptosis-related genes

Xiaojun He1†, Qiang Long1, Yiming Zhong1, Yecen Zhang1,
Bei Qian1, Shixing Huang1, Lan Chang1, Zhaoxi Qi1, Lihui Li1,
XinmingWang1, Xiaomei Yang2,3,4, Wei Dong Gao5, Xiaofeng Ye1*
and Qiang Zhao1*†

1Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of
Medicine, Shanghai, China, 2Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine,
Shandong University, Jinan, China, 3School of Medicine, Cheeloo College of Medicine, Shandong
University, Jinan, China, 4Department of Cardiology, Johns Hopkins School of Medicine, Baltimore, MD,
United States, 5Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University
School of Medicine, Baltimore, MD, United States

Background: Ferroptosis has been proven to contribute to the progression of
myocardial ischemia/reperfusion (I/R) injury and can be inhibited or promoted by
ATF3. Short-chain fatty acids (SCFAs) have shown benefits in various
cardiovascular diseases with anti-inflammatory and antioxidant effects.
However, the impact of SCFAs on ferroptosis in ischemic-stimulated
cardiomyocytes remains unknown. This study aimed to investigate the effect
of SCFAs on cardiomyocyte ferroptosis, the expression of ATF3, and its potential
upstream regulators.

Methods and results: The expression of ATF3, ferroptosis pathway geneset (FPG),
and geneset of potential regulators for ATF3 (GPRA, predicted by the PROMO
database) was explored in the public human myocardial infarction single-cell
RNA-seq (sma) dataset. Cardiomyocyte data was extracted from the dataset and
re-clustered to explore the FPG, ATF3, and GPRA expression patterns in
cardiomyocyte subclusters. A dose-dependent toxic experiment was run to
detect the suitable dose for SCFA treatment. The erastin-induced ferroptosis
model and hypoxia-reoxygenation (H/R) model (10 h of hypoxia followed by 6 h
of reoxygenation) were adopted to assess the effect of SCFAs via the CCK8 assay.
Gene expression was examined via RT-PCR and western blot. Ferroptosis
markers, including lipid peroxides and Fe2+, were detected using the liperfluo
and ferroOrange probes, respectively. In the sma dataset, upregulated ferroptosis
pathway genes were mainly found in the infarction-stimulated cardiac cells
(border zone and fibrotic zone), particularly the cardiomyocytes and
adipocytes. The ATF3 and some of its potential transcription factors (VDR,
EGR3, PAX5, and SP1) can be regulated by SCFA. SCFA can attenuate erastin-
induced lipid peroxidation in cardiomyocytes. SCFA treatment can also reverse
erastin-induced Fe2+ increase but may strengthen the Fe2+ in the H/R model. We
also precisely defined a ferroptosis subcluster of cardiomyocytes (CM09) that
highly expressed FPG, ATF3, and GPRA.

Conclusion: The ATF3 and the ferroptosis pathway are elevated in
cardiomyocytes of injury-related cardiac regions (border zone, ischemic zone,
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and fibrotic zone). SCFA can attenuate cardiomyocyte ferroptosis and regulate the
expression of ATF3. Our study offers novel insights into the potential targets of
SCFAs in the cardiovascular system.

KEYWORDS

short-chain fatty acids, cardiomyocytes, ferroptosis, ischemia/reperfusion injury, ATF3

Introduction

Cardiovascular disease remains the leading cause disease of
death worldwide annually. Despite progress in acute treatment,
the effectiveness of therapies aimed at reducing the progress of
heart failure has been limited due to an incomplete understanding of
remodeling processes (Niccoli et al., 2019). Over the last 10 years,
ferroptosis, an iron- and lipid-dependent form of regulated cell
death, has been recognized as an important process involved in
numerous cardiovascular diseases (Fang et al., 2023). The inhibition
of ferroptosis and chelation of iron during acute and chronic
myocardial ischemia/reperfusion (I/R) injury can result in cardio-
protection, highlighting ferroptosis as a potential therapeutic target
in myocardial I/R injury (Conrad and Proneth, 2019; Fang et al.,
2019; Han et al., 2023). Therefore, thoroughly understanding the
mechanisms involved in regulating ferroptosis in cardiomyocytes
might improve disease management.

The gene ATF3 (Activating Transcription Factor 3) has been
upregulated in cardiomyocyte subtypes activated by myocardial
infarction (MI) stimulation (Kuppe et al., 2022). Studies have
indicated that ATF3 can function as a cardioprotective molecule,
(Ke et al., 2023), elevated at the early stage of cardiac reperfusion,
and inhibit cardiomyocyte ferroptosis triggered by erastin and RSL3
(Liu H. et al., 2022). However, ATF3 also has the ability to promote
ferroptosis, (Wang et al., 2020; Fu et al., 2021), indicating its
complex role as a ferroptosis regulator.

Short-chain fatty acids (SCFAs) are the main product of fiber
fermentation by the gut microbiota and have been shown to protect
against myocardial ischemia and I/R injury, (Yu et al., 2021; Zhou
et al., 2021), but the underlying mechanisms remain to be elucidated.
SCFAs can be absorbed into the bloodstream and play important
roles in various physiological processes, such as metabolism, gut
barrier function, immune regulation, and inflammation (Yang et al.,
2020). The glutathione (GSH) synthesis plays an important role in
regulating ferroptosis (Kang et al., 2023). Studies have shown that
sodium acetate can reverse the increased level of plasma GSH
induced by nicotine in rats, (Dangana et al., 2020) and sodium
butyrate was reported to aggravate lipid peroxidation in a high-fat
diet (HFD)-fed rats, (Oyabambi and Olaniyi, 2023) both of which
indicate the impact of SCFAs on ferroptosis. Butyrate has been
reported to ameliorate ferroptosis in ulcerative colitis by modulating
the Nrf2/GPX4 signal pathway (Chen et al., 2024). However,
whether SCFAs benefit against myocardial ischemia and I/R
injury was mediated by the regulation of ferroptosis
remains unknown.

Given the emerging evidence of a link between ferroptosis and
cardiomyocyte injury, there is a need to investigate the impact of
SCFAs on ATF3 expression, as well as its potential regulators, and
their role in modulating ferroptosis in cardiomyocytes. This study
aims to address this knowledge gap and provide further insights into

the therapeutic potential of SCFAs in attenuating cardiomyocyte
injury and regulating the occurrence of ferroptosis. We provide
expression patterns of ferroptosis pathway genes at single-cell
resolution based on public human myocardial infarction. Besides,
the effects of SCFA on ferroptosis and ATF3 mRNA levels in
cardiomyocytes were explored.

Methods

Analysis of single-nucleus RNA sequencing
(snRNA-seq) data

The processed spatial multi-omic atlas data (sma) “All-
snRNA-Spatial multi-omic map of human Myocardial
infarction” was downloaded from the cellxgene database
(https://cellxgene.cziscience.com/collections/8191c283-0816-424b-
9b61-c3e1d6258a77), and was analyzed by the Seurat (v4.3.0) R
package. Cardiomyocyte data was extracted and normalized,
followed by principal component analysis (PCA) reduction,
batch effect correction with the harmony package, and clustering
using Seurat’s FindNeighbors and FindClusters function. The
Unified Manifold Approximation and Projection (UMAP) was
created via Seurat’s RunUMAP function. The weighted
correlation network analysis (WGCNA) was taken by the
hdwgcna R package (Morabito et al., 2021; Morabito et al.,
2023). Pseudotime trajectory analysis was taken by the
Monocle2 R package (Trapnell et al., 2014; Qiu et al., 2017a; Qiu
et al., 2017b). The cell-cell communication was analyzed by the
cellchat R package (Jin et al., 2021/02).

The ferroptosis-related genes in KEGG hsa04216 (https://www.
kegg.jp/dbget-bin/www_bget?hsa04216) and wikipathways
WP4313 (https://www.wikipathways.org/pathways/WP4313.html)
were combined as a single geneset. We then calculated the z
score (Amrute et al., 2023) of this ferroptosis pathway geneset
across cardiac regions and cell types in the sma datasets. The
heterogeneity distribution of the ferroptosis pathway geneset
was observed.

Potential transcription factors of ATF3 were predicted by the
PROMO database (http://alggen.lsi.upc.es/cgi-bin/promo_v3/
promo/promoinit.cgi?dirDB=TF_8.3) with species restricted to
humans. The promoter region of ATF3 was defined as the
2000 upstream bases and 100 downstream bases of the
ATF3 gene sequence (hg38_knownGene_ENST00000341491.9,
range = chr1:212606761-212620875) and acquired from the
UCSC database (https://genome.ucsc.edu/) (Table 1).

The R language code used for single-cell data analysis and the
ferroptosis pathway geneset were available in GitHub repositories
(https://github.com/Xiao851213/SCFA_Ferroptosis_new/blob/
main/20240329).
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Cell culture

The human AC16 cardiomyocytes (cat. #C1360, WHELAB,
China) and murine HL1 cardiomyocytes (cat. #C2173, WHELAB,
China) were cultured in a humidified incubator (5% CO2, 37°C)
with the Dulbecco’s modified Eagle’s (DMEM)/F12 1:1 medium
(cat. #CB003, Shanghai Epizyme Biomedical Technology Co., Ltd,
Shanghai, China) supplemented with 12.5% fetal bovine serum
(FBS, cat. #S711-001S, the Lonsera) and penicillin/streptomycin
(100 U/mL, 100 U/mL, cat. #CB010, Shanghai Epizyme
Biomedical Technology Co., Ltd., Shanghai, China). Cells at
70%–80% confluence were used for subsequent experiments.

Hypoxia-reoxygenation injury model

The hypoxia-reoxygenation (H/R) model was induced using the
AnaeroPack™ (anaerobic cultivation set) with an airtight container (a
2.5 L rectangle jar, Mitsubishi gas chemical, Japanese) (Wen et al., 2021).
In detail, cells cultured for 1 day were washed twice with phosphate-
buffered saline (PBS), cultured in sugar and serum-free DMEM, and
then placed into a sealed airtight container that contains an AnaeroPack,
the oxygen concentration decreased to <0.1% within 1 hour, and the
carbon dioxide concentration wasmaintained at about 5%. Hypoxia was
continued for 10 h and terminated by removing the culture bottle from
the airtight container and replacing it with a standard culturemedium in
a CO2 incubator at 37°C for 6 h.

SCFA exposure

To assess the impact of SCFAs on the viability of cardiomyocytes
in vitro, AC16 cells were seeded in 96-well plates for 24 h with
DMEM/F12 containing 12.5% FBS. The cells were then treated with
either sodium acetate (NaAc, cat. #S116319, Aladdin, Shang, China),
sodium butyrate (NaBu, cat. #S102954, Aladdin, Shanghai, China),

sodium propionate (NaPr, cat. #S100121, Aladdin, Shanghai,
China), or a SCFA mixture (NaAc: NaPr: NaBu ≈ 30:2:1) for 24 h.

The detectable physiological levels of SCFA are in the range of
(acetate 0–410 μM; propionate 0–18.3 µM; butyrate 0–81 μM,
including blood, cerebrospinal fluid (CSF), breast milk, and
urine; Human Metabolome Database, http://www.hmdb.ca/) and
the relative levels of the three SCFAs correspond to approximately
30:2:1 for acetate: propionate: butyrate (Yang et al., 2020). The
physical and upper physiological levels of concentrations were
adopted to obtain a dose-dependent curve. The concentrations of
the SCFAs are presented in Table 2.

Ferroptosismodel induction and assessment

The ferroptosis model was induced by erastin (cat. #S7242,
Selleck), a typical ferroptosis inducer (Yan et al., 2022). Erastin
was diluted to a 10 mM working stock solution with
dimethylsulfoxide (DMSO). AC16 cells were seeded in 96-well
plates for 24 h with DMEM/F12 containing 12.5% FBS, followed
by exposure to 10 µM erastin for 24 h (Wu et al., 2023).

A Liperfluo probe (cat. #L248, Dojindo Molecular Technologies,
Inc.) was used to evaluate cellular lipid peroxidation. Cells after the
indicated treatments were washed with serum-free DMEM and
incubated with 5 μM Liperfluo for 30 min at 37°C (Nakamura et al.,
2023). The intracellular Fe2+ was detected by the FerroOrange probe
(cat. #F374, Dojindo Molecular Technologies, Inc.). Cells were
incubated with 1 μM FerroOrange for 30 min at 37°C (Tian et al.,
2021). Stained cells were observed using confocal scanning microscopy.
The fluorescence of each group was evaluated using ImageJ software.

CCK-8 assay

Cell viability was assessed using the cell counting kit-8 (CCK-8,
cat. #CX001S, Shanghai Epizyme Biomedical Technology Co., Ltd,

TABLE 1 ATF3 promoter sequence used for transcription factor prediction.

ATF3 promoter sequence

>hg38_knownGene_ENST00000341491.9 range = chr1:212606761-212620875 5’pad = 0 3’pad = 0 strand = + repeatMasking = none
GAGATAACAAATAACTTCATTCAAATGCAAACACTCCTCCACCTAATCCCGCCCGGTGTCCGCCGGGCTGCTCCGACACGCCCGGGGTTTACCTGCGCGCA
CTCCAGCGGGAGGGCGGGTTGTGGAGGTGTGCTGAGCGGCGCGCGGGGGTGAGGGCGTGGAAGCGGAGGGTGGGGCCCGGAGAGCCGTTACCAGGGCGA
AAAGTAAAGCGAAAACACCCGCCCTGCACTTCCCGCGCGACGCCGCTGGAAATCGGTTCAGGTCCAGAGCAGGATCTCGGAGGATCCCGCGTGGAACTCCAG
GGCTCCCGGGTCCGCCGGGGCGCAAAGACTTCCGAGGCCGCCCTCCGCGTGTTCCCAGGCCCGTGGAGAGGTGGGTGGTCTGAGTGAGGTCGGGCTTGGCG
GCGAGGAACCCCGGTGGGGGGAACTGGGGACTTCAAGTGAGACCCAGGCTCCAGACACCTCTAGTTTCTACCCCAAATTACCAAACTGTGACCTTCGGCCGC
CTCTCTCCCAGAGGCAGGTGGAAAGGAGCAGGTGTTTCTGCCCTTCACCGTGCCCCCACACCCTGCGGCCGCGCAGGTCTCCCTCCCAGGCAGGTGCGAAAG
TCCCAGGCCACACTTGTGTCTACAAATAGTCATCCACGGGCAGTCAAGAAGGTTCCTTGGTTCTGCCGCTCTCTGAGCAGAAATTGTTGGGGTCGGGGAATAA
GAACCAGGAAATCGTTTTTAAGGTTCAAACCCAGTTCTGCTGAGGTCTCAGCTCGAATCTCGGACCACGGGGCCCCGCCTTTCCCGCCACCCTGGCTTGAGG
GCAGAGGGGATTTCTGCTGCGGGTTCCGCCTGTGGTCATTGCGTCCCCATTCCGGGCCGTCCGGTCCCAGTCCAATCGGCTCTGGGAGCAGAAGAACACGTG
AAAGCTGAACATGGGTTTTCCCTAAATATTGCCTGAGAGCGGGGCGACCCCCAGGCCTGGGCAGGTTCGCGGACCCCAAAGCACCTTCTCTTTCCCCCTCCTC
CTGGCCGCTGGCTTCCGCCCCCTCCTACCCTCCCACCGGGTTGCCTCTGATTCCTCCTGGACTCCGATCTTTTCACGCTCTTGTTGGTTTCACTGACATGTTC
TTGTCAATTTCAAACGCTTTGTGATTGTAAAAAAAAAAAAATCGAACCGATACGGTCCTACCACTCGCCCTAGTTTCGGAGCCCGGAGCTGTCCTGCGTGTGC
GTCCATGTGGAGTGTCCGGGGCTGCGGGCTCGGGCGCACGGTGCCAGCCGAGGGCTGCCCTCCGCTTTTGTGTTAACCGGCGGGCTTCTCGCGGTCCCCGCC
GCAGAGGTCACACCCGGCGGGTAACGGCGTGGATACACCGAAGGGTGACTTTGGACACCTTCCCCACACCACAGACTAACGCTTCTGCCCCTACTCCGCCCCT
GCTAGAGAAGTAGGAGGCCAGTGGGGGAGGGGGTATTTTCCTGAAGCTCCAGAAAATGACCACGCATTTTAGAGAAAGGTCGTGCCCGCTTCCCAGCCTCAC
CTAGTCTGGGCTGGGGCCGGGACCCGCCTCCCCACCTTCCCCGCCCCCCCCGCTCTTCAACCTAGCGGAGGGACAGATGCCAGCGCGGTGGAGTCATGCCGC
TGGCTTGGGCACCATTGGTCATGCCTGGAACACGCAGCAGCGAGTACGCACATCTGGCGGCTATCCCGGGCGGCTCCGGTCCTGATATGGAGAGAGAGGGC
GGGCTGGTGTGTGTCTCAGTGAGCGAGGCTGGGGGAACGCGCCTGGGCTGGCTCCTCCCCGAACTTGCATCACCAGTGCCCCCTCTCTCCACCCGCCTTCGG
CCCCGCCTTGGCCCCTCCTCCACCCCCCTTCCTCCGCTCCGTTCGGCCGGTTCTCCCGGGAAGCTATTAATAGCATTACGTCAGCCTGGGACTGGCAACACGG
AGTAAACGACCGCGCCGCCAGCCTGAGGGCTATAAAAGGGGTGATGCAACGCTCTCCAAGCCCATGTGTTGTGCTGGTTTCTGTTCATTTAAATCTGTCGGTT
GCTGAGACCTAGCGATTCCCTGCCTTTCCCTCCCCATTATGGGGGGTGCCTAGCTTTAA
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Shanghai, China). Briefly, cells were incubated with fresh medium
(containing 10% CCK-8 reagent) for 2 h. The optical density at
450 nm (OD450) was determined by a microplate reader (BioTek,
United States) and normalized to blank wells (cell-free medium with
CCK-8 reagent).

Quantification of mRNA levels

Total RNA was acquired using a TRIzol reagent (cat. #R0016,
Beyotime, Shanghai, China) and an RNA extraction kit (cat.
#A2010A0402, BioTNT, Shanghai, China). The concentration
was analyzed with a Nanodrop 8000 spectrophotometer (Thermo
Fischer Scientific), with concentration at 50–120 ng/μL and A260/
A280 of 1.8–2.1 for all samples. RNA was converted into cDNA
using a reverse transcription kit (Wuhan servicebio Technology
CO., LTD, Wuhan, China). Then, RT-PCR was performed using
SYBR Green qPCRMaster Mix (Wuhan servicebio Technology CO.,
Ltd., Wuhan, China); expression was detected using a fast real-time
PCR system (CFX Connect, Bio-rad, CA, United States). Cycle
counts for mRNA quantification were normalized to GAPDH.
Relative expression (ΔCt) and quantification (RQ = 2–ΔΔC) for
each mRNA were calculated using the ΔΔCt method. All
reactions were performed according to the manufacturer’s
instructions. All primers were verified for producing a single
specific PCR product via melting curve analysis. The primers
used in the study are presented in Table 3.

Western blot

Total cellular proteins were extracted using RIPA lysis buffer
(cat. #FD008, HANGZHOU FUDE BIOLOGICAL TECHNOLOGY
CO. LTD., China), ultrasonic lysis machine (cat. #VCX130, Sonics &
Materials, INC. United States), and metal bath (cat. #HB120-S,
DragonLab DWB, China). Proteins were separated via
electrophoresis on a 4%–20% SDS gel (cat. #36250ES10,
YEASEN, China) and transferred to PVDF membranes (cat.
#IPVH00010, Millipore, Germany). After blocking with 5%
bovine serum albumin (BSA, cat. #V908933, Merk, Germany) for
1 h, The PVDFmembranes were incubated with primary antibodies,
including anti-GAPDH (1:5000, cat. #A19056, ABclonal, China)
(Bian et al., 2024), anti-ATF3 (1:1000, cat. #A13469, Abclonal,

China) (Li et al., 2023; Liu et al., 2023), and anti-GPX4 (1:1000,
cat. #CL488-67763, PTG, China) (Wang L. et al., 2022) antibodies at
4°C for >10 h. Subsequently, the membranes were incubated with
the HRP-conjugated Goat anti-Rabbit/Mouse IgG (H + L) (cat.
#AS014 & AS003, Abclonal, China) for 1 hour at room
temperature. The protein bands were visualized with a Fdbio-
Dural ECL Chemiluminescence Kit (cat. #FD8020, HANGZHOU
FUDE BIOLOGICAL TECHNOLOGY CO. LTD., China)
and imaged.

Results

The relationship between ATF3 and
ferroptosis pathway in ischemic heart

Our research delves into the crucial topic of the ferroptosis
pathway genes and the pivotal role of ferroptosis regulator ATF3 in
myocardial infarction. To create a comprehensive ferroptosis
pathway geneset (FPG), we combined the genes in KEGG
hsa04216 and wikipathways WP431. We then calculated the z
score of this ferroptosis pathway geneset across cardiac regions
and cell types in the published spatial multi-omic atlas dataset (the
sma dataset) (Kuppe et al., 2022). This dataset provides an
integrative high-resolution map of human cardiac remodeling
after myocardial infarction using single-nucleus RNA sequencing
(snRNA-seq), single-nucleus chromatin accessibility, and spatial
transcriptomic profiling method. The dataset includes 31 samples
from 23 individuals, including four non-transplanted donor hearts
as controls (CTRL), and samples from tissues with necrotic areas
(ischaemic zone (IZ) and border zone (BZ)) and the unaffected left
ventricular myocardium (remote zone (RZ)) of patients with acute
myocardial infarction. Nine human heart specimens at later stages
after myocardial infarction that exhibited ischaemic heart disease
were defined as fibrotic zone (FZ) samples. The snRNA-seq part of
the sma dataset (191,795 cells included) was extracted for analysis in
this study. Figure 1A illustrates the whole cells, identified cell types,
and region sources of the sma snRNA-seq dataset. Potential
regulators of ATF3 were predicted via the PROMO database
(Supplementary Figure S1A) and combined as a geneset of
potential regulators for ATF3 (GPRA).

In the sma snRNA-seq dataset, BZ samples have the largest
proportion of cells with upregulated FPG (Figure 1B). When divided

TABLE 2 Short-chain fatty acid concentrations used in this study.

SCFA
concentration

C0 C1 C2 C3 C4 C5 C6 C7

Mixture 0 NaAc (3 μM) +
NaPr (0.2 μM)
+ NaBu (0.1 μM)

NaAc (30 μM)
+ NaPr (2 μM)
+ NaBu (1 μM)

NaAc (300 μM)
+ NaPr (20 μM)
+ NaBu (10 μM)

NaAc (3 mM) +
NaPr (0.2 mM) +
NaBu (0.1 mM)

NaAc (30 mM)
+ NaPr (2 mM)
+ NaBu (1 mM)

NaAc (300 mM)
+ NaPr (2 mM) +
NaBu (1 mM)

NaAc (3 M) +
NaPr (0.2 M)
+
NaBu (0.1 M)

NaAc 0 3 μM 30 μM 300 μM 3 mM 30 mM 300 mM 3 M

NaPr 0 0.2 μM 2 μM 20 μM 200 μM 2 mM 20 mM 200 mM

NaBu 0 0.1 μM 1 μM 10 μM 100 μM 1 mM 10 mM 100 mM

The mixture consists of sodium acetate (NaAc), sodium propionate (NaPr), and sodium butyrate (NaBu) with concentrations in the same column of the table; for example, the C1 mixture =

NaAc (3 μM): NaPr (0.2 μM): NaBu (0.1 μM).
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by cell types, FPG was enriched in adipocytes, myeloid,
cardiomyocytes, and mast cells (Figure 1C). The FZ tissue has
the most significant proportion of ATF3+ cells (Figure 1D).
Elevated expression of ATF3 was also observed in IZ cells
(Figure 1E). The relative enrichment of FPG, ATF3, and GPRA
for different cell types differed among region groups
(Supplementary Figure S2). In the BZ, there was the same
elevation trend of FPG, ATF3, and GPRA in cardiomyocytes,
adipocytes, and cycling cells [a cluster with enriched cell-cycle
marker gene MKI67 and showed a high score of cell-cycle G2/M
and S phases (Kuppe et al., 2022)]. This indicates the involvement of
ATF3 and its potential transcription factors in the ferroptosis of
cardiomyocytes, adipocytes, and cycling cells during post-MI
cardiac remodeling.

In cardiomyocytes, FPG was upregulated in injury-related cells
(BZ and FZ), while ATF3 and GPRA were mostly enriched in FZ
(Figure 1F). The elevation of ATF3 was also found in IZ
cardiomyocytes (Figure 1G). To identify the cardiomyocyte
subpopulation that is critical to ferroptosis, we extracted
cardiomyocyte data from the sma snRNA-seq dataset, corrected
the batch effect (Supplementary Figure S3A, B), and re-clustered
according to cell density on the Uniform manifold approximation
and projection (UMAP) plot to recognize the subclusters of each
region (Supplementary Figure S3C). Cardiomyocytes were clustered
into 14 subpopulations, which are CM0-CM13 (Figure 1H;
Supplementary Figure S4). The FPG was enriched in the FZ
cluster CM09 (top marker genes: ABRA, DDIT3, and OTUD1)
and the BZ cluster CM02 (top marker genes: UBASH3B,
C4orf54, NRXN3). The co-enrichment of FPG, ATF3, and GPRA
were also observed in cardiomyocytes’ CM09 and CM02 clusters
(Figure 1I; Supplementary Figure S4B). In conclusion, ATF3 may
involved but partially regulates ferroptosis pathway genes in
myocardial infarction.

SCFA regulates ferroptosis in the
physiological and
pathophysiological condition

We then adopted human (AC16 cell line) and murine
(HL1 cell line) cardiomyocytes to study the effect of SCFAs on
ferroptosis and ATF3 expression at physiological conditions, 1 h-
hypoxia exposure, hypoxia-reoxygenation (H/R) model, and
erastin-induced ferroptosis model. A dose-dependent toxic
experiment was run to detect the suitable dose for SCFA
treatment. The concentration of acetate, propionate, butyrate,
and SCFA mixture was divided into seven levels (Table 2). The
24-h treatment of SCFAs with the C6 and C7 concentrations
decreased cell viability (Supplementary Figure S5). In the 1-h
hypoxia model, SCFAs (sodium propionate (NaPr), sodium
butyrate (NaBu), and mixture) significantly and consistently
decrease cardiomyocyte viability (Supplementary Figure S5B).
The C5 level concentration (the maximum dose that does not
reduce cell viability) was adopted for the following experiments.

SCFA treatment can promote the mRNA expression level of
ATF3, either in mice (normal and 1h-hypoxia model, Figure 2A)
or human cardiomyocyte cell line (normal, 1h-hypoxia
exposure), H/R exposure (10-h hypoxia plus 6-h re-oxygen),

and erastin-induced ferroptosis model, Figure 2B). The
potential promoters of ATF3 (VDR, EGR3, PAX5, and SP1)
were also affected by 24-h SCFA exposure. In the murine
cardiomyocyte cell line, NaPr and NaBu upregulated VDR
under both normal and hypoxic conditions, while hypoxia
attenuated the VDR upregulation by NaPr. EGR3 was
upregulated by either a single or a mixture of SCFA. The
effect of sodium acetate (NaAc) and the SCFA mixture on
EGR3 was attenuated by 1-h hypoxia exposure (Figure 2A). In
the human cardiomyocyte cell line, VDR and SP1 were
upregulated by SCFA mixture in 1-h hypoxia exposure and
H/R model (Figure 2B, upper & middle panel). SCFA mixture
promotes the expression of PAX5 in the H/R model but not the 1-
h hypoxia model (Figure 2B, upper & middle panel). In the
erastin-induced ferroptosis model, VDR and EGR3 were
increased under SCFA mixture stimulation (Figure 2B,
lower panel).

We also detected the effect of SCFA on the ATF3 protein level.
The results were totally opposite to those of the mRNA level. SCFA
decreased the ATF3 protein in nearly all cases except the 1 h-
hypoxia model of the human cardiomyocyte AC16 cell line
(Figure 2C). The protein expression of anti-ferroptosis markers,
glutathione peroxidase 4 (GPX4), was inhibited by the SCFA
mixture except in the 1h-hypoxia model of the mouse
cardiomyocyte HL1 cell line.

SCFA treatment can increase the cell viability of
AC16 cardiomyocytes in H/R exposure (p < 0.0001) but not
the erastin-induced ferroptosis model (p = 0.9984) (Figure 2D).
To confirm the occurrence of ferroptosis, we performed Liperfluo
staining and FerroOrange staining in the H/R model and erastin-
induced ferroptosis model with or without SCFA rescue (Figures
2E, F). Liperfluo staining showed obvious lipid peroxidation in
response to H/R or erastin stimulation. This effect in the erastin
stimulation model was rescued by SCFA treatment. In the H/R
model, a decrease in lipid peroxides was observed in the SCFA-
managed group but without statistical significance. The
fluorescence intensity of FerroOrange, a Fe2+-specific probe,
increased sharply upon erastin stimulation. SCFA treatment
can reverse erastin-induced Fe2+ increase but may strengthen
the Fe2+ in the H/R model.

TABLE 3 Primers for RT-PCR

Genes Primers

GAPDH 5′-CCTCGTCCCGTAGACAAAATG-3′,
5′-TGAGGTCAATGAAGGGGTCGT-3′

ATF3 5′-CGCTGGAGTCAGTTACCGTCAA-3′,
5′-TTCCGGTGTCCGTCCATTC-3′

VDR 5′-CTGCCTGACCCTGGTGACTT-3′,
5′- CTTGGTGATGCGGCAATCT-3′

EGR3 5′-ACTACAACCTGTACCACCATCCCA-3′,
5′-TGATGGTCTCCAGTGGGGTAAT-3′

PAX5 5′-CATCAAGCCAGAACAGACCACA-3′,
5′-TGACAATAGGGTAGGACTGTGGG-3′

SP1 5′-AAGATGTTGGTGGCAATAATGGG-3′,
5′-GTTGTTGCTGTTCTCATTGGGTG-3′
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Discussion

In this study, we found the upregulation of the ferroptosis
pathway geneset (derived from the KEGG hsa04216 and
wikipathways WP4313) and ATF3 in infarction-stimulated
cardiac cells (border zone, ischemic zone, and fibrotic zone),

particularly the cardiomyocytes. The ATF3 and some of its
potential transcription factors (VDR, EGR3, PAX5, and SP1) can
be regulated by SCFA. SCFA can attenuate ischemia-reperfusion cell
death and erastin-induced lipid peroxidation cardiomyocytes. SCFA
treatment can also reverse erastin-induced Fe2+ increase but may
strengthen the Fe2+ in the H/R model. We also precisely defined a

FIGURE 1
The relationship between ATF3 and ferroptosis pathway in ischemic heart (A), Uniform manifold approximation and projection (UMAP) embedding
of the single-nuclear RNA-seq data of myocardial infarction heart tissue derived from the spatial multi-omic atlas (sma) study, titled “Spatial multi-omic
map of human myocardial infarction” (Christoph Kuppe et al.). Cell types were illustrated in different cardiac regions (BZ, border zone; CTRL, control
samples; FZ, fibrotic zone; IZ, ischaemic zone; RZ, remote zone) (B,C), Dot plot illustrating the expression of ferroptosis pathway geneset (FPG)
among myocardial infarction regions (B) and cell types (C) (D), The expression of ATF3 among myocardial infarction regions (E), Violin plot of
ATF3 expression level across myocardial infarction regions (F), The expression of ferroptosis pathway geneset (FPG), ATF3, and geneset of potential
regulators for ATF3 (GPRA) in different regions of cardiomyocytes (G), Violin plot of ATF3 expression in different regions of cardiomyocytes (H), UMAP of
64,510 cardiomyocytes derived from the sma study (I), The FPG, ATF3, and GPRA expression across cardiomyocyte subclusters.
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ferroptosis subcluster of cardiomyocytes
(ABRA+DDIT3+OTUD1+ CM09).

The ATF3, a member of the activator protein 1 (AP-1)
transcription factor family, plays a crucial role in various
cellular processes, including cell differentiation, apoptosis,

proliferation, inflammation, and responses to cellular stress
(Hai and Hartman, 2001). It has been noted that
ATF3 promotes ferroptosis9, 10 and improves pathological
cardiac fibrosis (Wang B. et al., 2022). However, it has also
been implicated that ATF3 expression in cardiomyocytes

FIGURE 2
Short-chain fatty acids (SCFAs) regulate ferroptosis and ferroptosis-related genes (A), Murine HL1 cardiomyocytes were treated for 24 h with SCFAs
and either 1-h hypoxia stimulation or normoxic conditions. Acetate: 30 mM, propionate: 2 mM, butyrate: 1 mM, SCFA mixture: 30 mM acetate, 2 mM
propionate, and 1 mM butyrate. *p < 0.05 and **p < 0.01 for comparisons between the hypoxia and normal conditions groups. h1: p < 0.05, h2: p < 0.01,
h3: p < 0.001, h4: p < 0.0001, hypoxia group gene expression fold change compared to control. n1: p < 0.05, n2: p < 0.01, n3: p < 0.001, n4: p <
0.0001, normal condition group gene expression fold change compared to control (B), Human AC16 cardiomyocytes were treated for 24 h with SCFA (a
mixture containing 30mMacetate, 2mMpropionate, and 1mMbutyrate) and either 1-h hypoxia stimulation (upper panel), H/R (10-h hypoxia plus 6-h re-
oxygen, middle panel), or erastin-induced ferroptosis model (10 µM erastin for 24 h, lower panel) (C), HL1 (upper panel) and AC16 cells (lower panel)
treated for 24 h with SCFA (amixture containing 30mM acetate, 2mM propionate, and 1mM butyrate) followed by 1-h hypoxia stimulation, H/R (10-hour
hypoxia plus 6-hour re-oxygen), or erastin-induced ferroptosis model (10 µM erastin for 24 h). The ATF3 and GPX4 protein levels were detected via
western blot. The density of the plot was quantitated via the ImageJ software. (D), The effect of SCFA on cell viability was tested using the CCK8method in
H/R (10-h hypoxia plus 6-h re-oxygen) and the erastin-induced ferroptosis (10 µM erastin for 24 h) model (E), Effect of SCFA on ferroptosis index in H/R
(10-hour hypoxia plus 6-hour re-oxygen) and the erastin-induced (10 µM erastin for 24 h) ferroptosis. Representative Liperfluo and FerroOrange staining
images are presented (scale bar: 50 μm) (F), Semiquantitative analysis of the fluorescence intensity of lipid peroxides (detected by Liperfluo) and ferrous
iron (detected by FerroOrange). For (A–D,F), Data are expressed as themean ± SD. Ns, no significance, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001,
calculated by either t-test or two-way ANOVA with Tukey’s post hoc test via the GraphPad software. n = 3 (3 independent experiments).
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preserves homeostasis in the heart and controls peripheral
glucose tolerance (Kalfon et al., 2017). Otherwise, elevated
ATF3 can inhibit cardiomyocyte ferroptosis triggered by
erastin and RSL3 (Liu H. et al., 2022). In our study, SCFA
may inhibit cardiomyocyte ferroptosis via the regulation of
ATF3 expression in either H/R injury or erastin-induced
ferroptosis.

The upregulation of these genes in response to SCFAs suggests
that SCFAs can potentially influence various downstream cellular
processes such as ferroptosis. Ferroptosis is closely linked to specific
molecular pathways associated with lipid peroxidation, which can be
triggered by intracellular iron supplementation and inhibition of the
synthesis of GSH (Kang et al., 2023). Previous research has indicated
that NaAc can reverse the nicotine-induced elevation of plasma
GSH levels, (Dangana et al., 2020), while NaBu has been shown to
exacerbate lipid peroxidation (Oyabambi and Olaniyi, 2023).
Consequently, SCFAs have the potential to either promote cell
ferroptosis via the GSH inhibition effect or attenuate ferroptosis
via the anti-inflammatory and anti-oxidative stress effect. Butyrate
could ameliorate ferroptosis in ulcerative colitis by modulating the
Nrf2/GPX4 signal pathway and improving the intestinal barrier
(Chen et al., 2024).

In our study, SCFA has nearly the opposite effect on the mRNA
and protein levels of ATF3 and GPX4. This indicates the post-
translational regulation function of SCFA, which is consistent with a
previously published article that butyrate could reduce the
expression of inflammatory genes via the inhibition of mRNA-
stabilizing proteins (Torun et al., 2019). SCFA presented with the
attenuation of H/R-induced cell death and erastin-induced
cardiomyocyte ferroptosis, proved by the change of cell viability,
ferrous iron, and lipid peroxides. While no effect is observed in
Supplementary Figure S5A; Figure 2D (right graph) shows that
SCFAs increase viability. However, the differences in cell viability
between control and SCFA-treated groups are minimal, indicating
the limited effect in our studied models and heterogeneity among
different experiments.

Our previous study demonstrated that SCFAs exert a
negative cardiac inotropic effect both in vitro and in vivo,
providing evidence of their direct impact on cardiac tissue (Poll
et al., 2021). NaBu has been reported to offer protection against
cardiac I/R injury and induce changes in gene expression within the
cardiac tissue. Specifically, these gene expression alterations were
observed in pathways related to “signaling molecules and
interaction,” “immune system,” “cell growth and death,” and
“global and overview maps,” including pathways associated with
antigen processing and presentation (Yu et al., 2021). Another study
published in 2016 demonstrated that NaBu can protect against
oxidative stress in HepG2 cells (Xing et al., 2016). These findings
strengthen the stability of our study.

The unique elevated ferroptosis level in adipocytes of cardiac
tissue was observed in this study, which was not reported before.
However, it has been reported that high-altitude hypoxia
exposure can induce iron overload and ferroptosis in adipose
tissue (Zhang et al., 2022). Since the adipose tissue is a crucial
regulator secreting various bioactive factors signaling to
myocardial cells, (Liu X. et al., 2022), ferroptosis pathway
dysregulation in cardiac adipocytes may play critical roles in
responding to cardiac ischemic and I/R injury.

There were some limitations in this study. First, whether SCFA
attenuated cardiomyocyte H/R injury via inhibition of ferroptosis
still needs to be explored. Second, whether the effects of SCFA on I/R
injury and ferroptosis rely on ATF3 regulation remains unknown.
On the other hand, there are two direct receptors of SCFA,
G-protein coupled receptor 41 (GPR41) and GPR43. The role of
GPR41/43 in SCFA benefits has not been studied. These issues will
be investigated in future research.

Conclusion

In the heart of myocardial infarction, the ferroptosis pathway is
elevated in cardiomyocytes and adipocytes injury-related cardiac
regions (border zone, ischemic zone, and fibrotic zone), as well as the
ATF3. SCFA can regulate lipid peroxidation and ferrous iron
induced by either hypoxia-reoxygenation or erastin. SCFA can
promote the stress-responsive and ferroptosis gene ATF3 at the
mRNA level but inhibit the protein level. We also identified a
distinct subcluster of cardiomyocytes exhibiting a high ferroptosis
pathway expression level. These findings shed light on potential
targets of SCFAs involved in ferroptosis and their role in conferring
protection against cardiac ischemic injury.
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SUPPLEMENTARY FIGURE S1
The screening process to identify transcription factors (TFs) associated with
ATF3 (A), Identification of the TFs predicted to associate with the promoter
of ATF3, as determined by PROMO software. A total of 83 transcription
factors were identified (B), The binding site of VDR, EGR3, PAX5, and SP1 on
the promoter region of ATF3.

SUPPLEMENTARY FIGURE S2
Theheterogeneity of ferroptosis pathway genes, ATF3, and its promoters geneset
(A), Cell types heterogeneity of ferroptosis pathway genes (FPG) in different
cardiac regions of the sma dataset (B), Cell types heterogeneity of ATF3 in
different cardiac regions of the sma dataset (C), The geneset of potential
regulators for ATF3 (GPRA) in different cardiac regions of the sma dataset.

SUPPLEMENTARY FIGURE S3
The cardiomyocyte in the published sma dataset (A), The sma single-nuclear
cardiomyocytes data before batch correction (B), The sma single-nuclear
cardiomyocytes data after batch correction (C), Density estimation of the
number of cardiomyocyte nuclei split by the cardiac zone.

SUPPLEMENTARY FIGURE S4
The cardiomyocyte subclusters of human myocardial infarction tissue (A),
UMAP of cardiomyocyte subclusters in different zones of the human heart.
RZ, remote zone; BZ, border zone; IZ, ischemic zone; FZ, fibrotic zone (B),
Top marker genes of the cardiomyocyte subclusters (C,D), Distribution of
cardiomyocyte subclusters in different groups (C) and samples (D).

SUPPLEMENTARY FIGURE S5
Dose-dependent effect of SCFAs on cardiomyocyte viability. Cell viability of
AC16 cells treated with different concentrations of SCFAs (24 h) at normal
condition (A)orwith 1-hhypoxia exposure (B). N=3.Data are expressed as the
mean ± SD. Significance was calculated using one-way ANOVA with Tukey’s
post hoc test or the t-test. p-values < 0.05 were considered statistically
significant. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, compared to
C0 concentration. SCFA concentration (C0–C7) is presented in Table 2.
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Proprotein convertase subtilisin/
kexin type 9 deficiency in
extrahepatic tissues: emerging
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Proprotein convertase subtilisin/kexin type 9 (PCSK9) is primarily secreted by
hepatocytes. PCSK9 is critical in liver low-density lipoprotein receptors (LDLRs)
metabolism. In addition to its hepatocellular presence, PCSK9 has also been
detected in cardiac, cerebral, islet, renal, adipose, and other tissues. Once
perceived primarily as a “harmful factor,” PCSK9 has been a focal point for the
targeted inhibition of both systemic circulation and localized tissues to treat
diseases. However, PCSK9 also contributes to the maintenance of normal
physiological functions in numerous extrahepatic tissues, encompassing both
LDLR-dependent and -independent pathways. Consequently, PCSK9 deficiency
may harm extrahepatic tissues in close association with several
pathophysiological processes, such as lipid accumulation, mitochondrial
impairment, insulin resistance, and abnormal neural differentiation. This review
encapsulates the beneficial effects of PCSK9 on the physiological processes and
potential disorders arising from PCSK9 deficiency in extrahepatic tissues. This
review also provides a comprehensive analysis of the disparities between
experimental and clinical research findings regarding the potential harm
associated with PCSK9 deficiency. The aim is to improve the current
understanding of the diverse effects of PCSK9 inhibition.

KEYWORDS

PCSK9, PCSK9 deficiency, PCSK9 inhibition, PCSK9 monoclonal antibody, low-density
lipoprotein receptors

1 Introduction

Proprotein convertase subtilisin/kexin type 9 (PCSK9) was originally termed neural
apoptosis-regulated convertase 1 because of its robust expression in the telencephalons of
embryonic mice (Seidah et al., 2003). The expression of PCSK9 correlates with neural
progenitor cell differentiation into more abundant neuronal lineages (Seidah et al., 2003).
Subsequently identified as the third pathogenic gene associated with familial
hypercholesterolemia, along with low-density lipoprotein receptors (LDLRs) and
apolipoprotein B (ApoB) genes, PCSK9 has been extensively studied concerning its
interplay with lipid homeostasis (Abifadel et al., 2003). The modulation of lipid levels
by PCSK9 occurs mainly through the downregulation of LDLRs on the hepatocyte
membrane surface, which inhibits the degradation of low-density lipoprotein cholesterol
(LDL-C) in circulation (Rudenko et al., 2002; Lagace et al., 2006). Mechanistically,
PCSK9 lacks proteolytic activity. Instead, it binds to the epidermal growth factor
fragment of LDLR through its catalytic domain, facilitating delivery of LDLR to the
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endosome-lysosome for degradation. For example, when
Gypenoside LVI is used to inhibit the expression of PCSK9 in
HepG2 cells, an increase in the density of LDLR on the HepG2 cell
membrane can be detected, along with an observed increase in red
fluorescently labeled LDL in the cytoplasm (Wang et al., 2021).
Subsequently, PCSK9 re-circulates to the cellular outer membrane to
initiate further LDLR interactions (Bottomley et al., 2009; Cui et al.,
2015). PCSK9 also orchestrates the degradation of membrane
receptors, such as low-density lipoprotein receptor-related protein
1 (LRP1/ApoER) (Fu et al., 2017), low-density lipoprotein receptor-
related protein 8 (LRP8/ApoER2) (Poirier et al., 2008), cluster of
differentiation 36 (CD36) (Demers et al., 2015), cluster of
differentiation 81 (CD81) (Le et al., 2015), very-low-density
lipoprotein receptor (VLDLR) (Poirier et al., 2008), and epithelial
sodium channel (ENaC) (Sharotri et al., 2012) through a similar
pathway. The role of PCSK9 as a predictor of the risk of
atherosclerosis is evident from its gain-of-function mutation,
which correlates with the occurrence of conditions, such as
coronary heart disease (CAD), abdominal aortic aneurysm,
peripheral artery disease, and stroke (Ferreira et al., 2020; Qin
et al., 2021; Sawada et al., 2022). In contrast, individuals with
loss-of-function (LOF) mutations in the PCSK9 gene have lower
serum LDL-C levels, which reduces the risk of coronary heart
disease and stroke (Kent et al., 2017). These insights

substantiate the potential of PCSK9 inhibition as a strategy
to lower LDL-C levels. Currently, PCSK9 monoclonal
antibodies are the most extensively employed inhibitors.
These antibodies reduce serum LDL-C levels by 60%–70%
and deliver sustained benefits to individuals with established
CAD (ODonoghue et al., 2022).

Hepatic PCSK9 is abundantly expressed and is the primary
source of serum PCSK9 (Zaid et al., 2008). Extrahepatic tissues, such
as the heart, brain, intestine, kidney, and pancreas, also secrete
PCSK9 (Figure 1) (Qin et al., 2021; Momtazi-Borojeni et al., 2022;
Boutari et al., 2023; Skeby et al., 2023). PCSK9 operates in an
autocrine manner in these tissues and does not constitute
circulating PCSK9 (Levy et al., 2013; Barisione et al., 2021; Lin
et al., 2021). In the heart, PCSK9 acts as an inflammatory mediator
expressed in ischemic myocardial cells, fostering local inflammation
and cell death (Wang et al., 2020). In the brain, PCSK9 binds to
LRP1 and impedes β-amyloid protein clearance, and interacts with
various inflammatory factors, underpinning neurodegenerative
conditions like Alzheimer’s disease (AD) (Mazura et al., 2022).
Therefore, in addition to affecting LDL-C levels, PCSK9 has
several other functions, and its inhibition offers a novel
therapeutic avenue for extrahepatic organ diseases, such as acute
myocardial infarction (AMI) and AD (Abuelezz and
Hendawy, 2021).

FIGURE 1
Distribution of PCSK9 expression and effects. PCSK9 is located in various extrahepatic organs, including heart, brain, islets, kidney, intestine, testis,
and periodontium, and in adipose tissue. The yellow segments indicate PCSK9 locations; Pros, the protective impact of PCSK9; Cons, detrimental effects.
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Although studies have focused on targeted PCSK9 inhibition for
disease treatment, it is crucial to acknowledge its role in maintaining
normal physiological functions in multiple tissues (Şener and
Tokgözoğlu, 2023). The inhibition of PCSK9 increases various
lipoprotein receptors, such as LDLR, VLDLR, and CD36,
significantly enhancing the ability of cells to absorb lipids
(Poirier et al., 2008; Bottomley et al., 2009; Cui et al., 2015;
Demers et al., 2015). Unlike the liver, many extrahepatic tissues
struggle to manage excessive lipid uptake by redirecting excess
cholesterol into the liver through high-density lipoprotein
packaging (Lewis and Rader, 2005). Thus, PCSK9 deficiency
disrupts lipid homeostasis in extrahepatic cells by fostering
excessive cholesterol uptake over metabolism, impairing damage
to cells (Paul et al., 2016), while also contributing to various
physiological activities, including brain nerve development, renal
blood pressure regulation, and body fat distribution (Poirier et al.,
2006; Baragetti et al., 2017).

This review summarizes the pleiotropic biological functions of
PCSK9 and the potential physiological consequences of its
deficiency, offering insights into the rationale for the widespread
use of PCSK9 inhibitors.

2 PCSK9 gene transcriptional
regulation

In vitro, both sterol regulatory element-binding protein 1-c
(SREBP1-c) and sterol regulatory element-binding protein 2
(SREBP2) bind to the sterol regulator element (SRE) within the
PCSK9 gene promoter, leading to the upregulation of
PCSK9 expression (Jeong et al., 2008). However, in vivo, the
primary regulator of PCSK9 is SREBP2 (Jeong et al., 2008). The
expression of SREBP2 can be induced by low sterol concentrations
and statin usage (Eberlé et al., 2004; Davignon and Dubuc, 2009).
Positioned upstream of the SRE is histone nuclear factor P, which
enhances PCSK9 expression by facilitating the acetylation of the
PCSK9 promoter histone H4. This process greatly intensifies the
transcriptional activity of SREBP2 in PCSK9 (Li and Liu, 2012). As a
cholesterol-sensitive transcription factor of PCSK9, E2F
transcription factor 1 directly elevates its transcriptional activity
or enhances PCSK9 expression by activating SREBP1-c under
insulin stimulation (Denechaud et al., 2016; Lai et al., 2017).

The binding sequence for hepatocyte nuclear factor 1-α (HNF1-
α), situated 28bp upstream of SRE, is also important in upregulating
PCSK9 expression. Mutations in this sequence disrupt the SRE
sequence promoter (Li et al., 2009). Forkhead box class O 3a
(FoxO3a) acts as an inhibitory transcription factor for
PCSK9 and is activated by epigallocatechin gallate derived from
green tea. The expression of FoxO3a potentially competes with the
action of HNF1-α, inhibiting its effect (Cui et al., 2020). Notably, in a
patient with drug-resistant hypercholesterolemia, serum
PCSK9 concentrations surged by 15-fold, coinciding with the
detection of HNF4-α overexpression, indicating that HNF4-α
might also play a role in PCSK9 regulation (Lau et al., 2020). An
association between PCSK9 and HNF4-α was also observed in a rat
model with partial fat resection (Dettlaff-Pokora et al., 2019).

Further upstream of the SRE, the specificity protein 1 (sp1)
binding site is believed to mediate PCSK9 transcription. Mutations

at this site lead to significant changes in PCSK9 expression (Blesa
et al., 2008; Jeong et al., 2008). The PCSK9 promoter region also
features a binding site for carbohydrate-responsive element-binding
protein (ChREBP). Metformin acts in a glucose-dependent manner
and suppresses PCSK9 expression by inhibiting ChREBP (Hu et al.,
2021). A comprehensive overview of the regulatory factors that
influence PCSK9 expression is shown in Figure 2 (Costet et al., 2006;
Cariou et al., 2010; Chen et al., 2014; Ooi et al., 2015; Levenson et al.,
2017; Sponder et al., 2017; Guo WJ. et al., 2021; Sadik et al., 2022).

3 PCSK9 protects lipid metabolism in
myocardium

3.1 Cardiomyocyte and lipid toxicity

Cardiomyocytes have substantial energy requirements and
exhibit a distinct approach to energy metabolism. Remarkably,
60% of this energy is derived from fatty acid (FA) oxidation,
primarily esterified FAs from circulation coupled with de novo
FA synthesis (Razani et al., 2011). The precise composition of
FAs is crucial, because they affect the physiological performance
of the heart. Notably, FAs contribute to membrane phospholipids
and cardiolipin, which are essential components of both cell and
mitochondrial membranes (Chen et al., 2021). Additionally, certain
entities, such as prostaglandin E2 (PGE2), PGD2, PGI2, linoleic
acid, n-3 polyunsaturated FAs, and their metabolites exhibit
cardiovascular safeguarding effects and improve ischemia-
reperfusion injury (Moriyama et al., 2022). However, when the
supply of FAs surpasses the capacity of β oxidation and storage as
triacylglycerol, excessive accumulation of FAs leads to lipotoxicity
(Lopaschuk et al., 2021). Clinically, lipotoxicity has been identified
as a precursor of myocardial remodeling in cardiomyocytes of
patients with diabetes, potentially driving ventricular remodeling
and cardiac dysfunction (Ernande et al., 2010; Salvatore et al., 2021).
Mechanistically, excessive intake of FAs by cardiomyocytes
culminates in the accumulation of detrimental lipid metabolites,
such as ceramide and diacylglycerol (DSouza et al., 2016).
Concurrently, excessive FA intake disrupts the mitochondrial
respiratory chain function and uncouples oxidative
phosphorylation, impairing mitochondrial integrity and energy
metabolism in cardiomyocytes (Goldberg et al., 2012).

3.2 PCSK9 deficiency in myocardium is
associated with heart failure

Heart failure with preserved ejection fraction (HFpEF) is defined
as heart failure with an ejection fraction ≥50%. HFpEF is frequently
accompanied by metabolic risk factors that include type 2 diabetes
mellitus (T2DM), obesity, and hypertension (Schiattarella et al.,
2019). At a molecular level, these patients often exhibit
cardiomyocyte lipid overload (Schiattarella et al., 2019). Excessive
lipid uptake by cardiomyocytes is a pivotal factor in HFpEF (Leggat
et al., 2021). Studies have revealed the significance of cardiomyocyte
lipoprotein receptors (CD36, LDLR, and VLDLR) as conduits for the
uptake and transport of FAs, which are strongly associated with
progression of heart failure (Sung et al., 2011). In middle-aged wild
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type (WT) mice fed on a high-fat diet, increased CD36 expression
reportedly causes cardiomyocyte hypertrophy (Sung et al., 2011).
Patients with diabetes and HFpEF show elevated LDLR expression
in the myocardium (Patel et al., 2020). In WT mouse models,
VLDLR exacerbates the cardiomyocyte lipid burden and hastens
the progression of heart failure (Perman et al., 2011).

Previous studies have confirmed that PCSK9 regulates the
degradation of lipid uptake receptors, such as LDLR, CD36, and
VLDLR (Poirier et al., 2008; Bottomley et al., 2009; Cui et al., 2015;
Demers et al., 2015).Whether PCSK9 deficiency leads to enrichment
of these receptors in the cardiomyocyte membrane, and also leads to
HEpEF has garnered attention (Da Dalt et al., 2021). Da Dalt et al.
first established that PCSK9 knockdown in mice resulted in HFpEF,
as evidenced by increased left ventricular posterior wall thickness
and reduced exercise capacity (Da Dalt et al., 2021). Cardiomyocytes
from PCSK9 knockout mice exhibited elevated LDLR and
CD36 levels, accompanied by substantial lipid droplet
accumulation around the mitochondria (Da Dalt et al., 2021).
The authors also described that, remarkably, liver-specific
PCSK9 knockout mice displayed none of these changes,
suggesting that myocardial autocrine PCSK9 plays a
cardioprotective and lipid regulatory role (Da Dalt et al., 2021).
This was further validated in a cardiomyocyte-specific
PCSK9 knockout model by Laudette et al. (2023). Reduced
PCSK9 expression in the myocardium resulted in signs of heart
failure, left ventricular dilatation, myocardial interstitial fibrosis, and
pulmonary congestion in middle-aged mice (28 weeks old),
ultimately leading to mortality within 8 weeks (Laudette et al.,
2023). The authors also described that in vitro cultured
cardiomyocytes with silenced PCSK9 exhibited changes in
mitochondrial membrane lipid components, increased levels of
free FAs, decreased electron transfer chain activity, and
mitochondrial distortion and breakage (Laudette et al., 2023).

Individuals harboring p.R46L variants accumulate epicardial fat
and have an increased left ventricular mass index, despite
maintaining a normal left ventricular ejection fraction,

underscoring the significance of PCSK9 in cardiomyocyte lipid
uptake balance (Baragetti et al., 2017; Da Dalt et al., 2021).
However, in another extensive nested case-control study,
PCSK9 LOF carriers displayed left ventricular size, ejection
fraction, and heart failure prevalence comparable to those in
normal individuals (Trudsø et al., 2023).

In summary, PCSK9 is released from the myocardium, rather
than from circulation, and actively preserves myocardial lipid
homeostasis. The absence of PCSK9 within the myocardium
leads to disruption of lipid metabolism, myocardial dysfunction,
and potential heart failure. However, PCSK9 LOF carriers in the
general population do not exhibit the same degree of myocardial
damage as that observed in PCSK9 knockout animals and in vitro
models. Possible explanations, which remain to be comprehensively
examined, include the partial retention of lipid regulatory effects in
low-expressing PCSK9 myocardium compared to knockout models
or enhanced compensatory mechanisms in human cardiomyocytes
against PCSK9 deficiency.

4 PCSK9 protects lipid metabolism in
β-cells
4.1 β-cells and lipid toxicity

The American Diabetes Association characterizes T2DM as
progressive insulin insufficiency coupled with insulin resistance
(2, 2022). Central to T2DM pathology is the demise of islet β-
cells, driven by factors like lipid toxicity, glucotoxicity, and amyloid
formation (Stumvoll et al., 2005; Eizirik et al., 2020). Excessive
cholesterol accumulation within islet cells fosters lipid toxicity,
impeding insulin secretion, and inducing β-cell death (Perego
et al., 2019; Tricò et al., 2022). The lipid buildup curtails ATP
production by inhibiting glycolysis, depletes calcium stores that are
necessary for insulin secretion, and alters insulin particle formation,
all damaging the release process of β-cells (Cnop et al., 2002; Lu

FIGURE 2
PCSK9 transcriptional regulation and the physiological factors capable of influencing the serum concentration of PCSK9. TSH, thyrotropin; LFD,
low-fat diets; HFD, low-fat diets.

Frontiers in Pharmacology frontiersin.org04

Lu et al. 10.3389/fphar.2024.1413123

110

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1413123


et al., 2011; Bogan et al., 2012). Additionally, the accumulation of
cholesterol on mitochondrial membranes impairs mitochondrial
function, accumulation on endoplasmic reticulum triggers
endoplasmic reticulum stress, and accumulation on cytoplasmic
membranes triggers apoptosis proteins, leading to β-cell death (Lu
et al., 2011; Paul et al., 2016; Lytrivi et al., 2020). Notably, β-cell
lipotoxicity is primarily driven by the accumulation of LDL-C, while
HDL-C averts β-cell apoptosis (Rütti et al., 2009). In LDLR knockout
mice, LDLR is essential for β-cell LDL-C uptake, mediating
lipotoxicity (Kruit et al., 2010).

4.2 Deficiency of PCSK9 in β-cells and
association with diabetes

PCSK9 is detectable in islets and regulates the abundance of
LDLR on the surface of β-cells (Tchéoubi et al., 2022). While many
studies suggest an autocrine function of β-cells, a paracrine role of
PCSK9 from δ-cells impacting β-cells cannot be excluded (Mbikay
et al., 2010; Da Dalt et al., 2019). In PCSK9 knockout mice,
pancreatic islets displayed anomalous contours, inflammatory cell
infiltration, and early β-cell apoptosis (Mbikay et al., 2010). High
glucose levels and relative insulin deficiencies were evident in the
blood (Mbikay et al., 2010). Subsequent investigations indicated that
PCSK9 knockout boosted LDLR density on β-cell surfaces, with a
large presence of lipid droplets and immature insulin secretion
particles within cells, despite low plasma insulin levels (Mbikay
et al., 2015; Da Dalt et al., 2019). These findings imply that
PCSK9 deficiency-driven lipid accumulation does not affect
insulin synthesis but does impair β-cell secretory function.
Remarkably, in PCSK9 knockout models, females displayed
relatively normal glucose disposal compared to glucose-intolerant
males, who manifested impaired plasma glucose and glucose-
stimulated insulin secretion (Mbikay et al., 2015; Roubtsova
et al., 2015). Ovariectomies in females mirrored the islet damage
observed in males, and estrogen treatment reversed this effect
(Roubtsova et al., 2015). The ability of estrogen to protect against
apoptosis through its interaction with estrogen receptors on β-cells
suggests an islet-protective role in the absence of PCSK9 (Babiloni-
Chust et al., 2022; Sharma and Prossnitz, 2022). Notably, β-cell
lipotoxicity induced by PCSK9 deficiency was reversed in
PCSK9 and LDLR double-knockout mice, implying that LDLR-
based lipid uptake pathways underlie this damage (Da Dalt et al.,
2019). Furthermore, liver-specific PCSK9 knockout prevented lipid
accumulation and restored islet β-cell secretory function, suggesting
that localized islet PCSK9 regulates LDLR degradation, rather than
serum PCSK9 levels (Da Dalt et al., 2019). Conversely, pancreatic-
specific PCSK9 knockout boosted LDLR on β-cell surfaces, despite
normal serum PCSK9 levels, leading to insufficient insulin secretion
(Marku et al., 2022). Surprisingly, PCSK9 deficiency appears to
trigger a protective strategy against lipid accumulation in β-cells
(Marku et al., 2022). Enhanced expression of ATP-binding cassette
transporter A1 (ABCA1), ATP-binding cassette transporter G1, and
liver X receptor has been noted in β-cells, suggesting heightened
lipid efflux to combat lipid buildup (Brunham et al., 2007; Kruit
et al., 2012). Moreover, proteins responsible for cholesterol
esterification, including acetyl coenzyme A acetyltransferase 1,
and sterol O-acyltransferase 1, are reportedly significantly

upregulated (Da Dalt et al., 2019; Marku et al., 2022). As key
players in cholesterol esterification, their increased levels aid
cholesterol consumption (Chang et al., 2006).

The islet-protective effects of PCSK9 have also been reported in
humans. A meta-analysis linking PCSK9 LOF variants and diabetes
risk demonstrated the correlation between decreased LDL-C and
increased risk of diabetes, with an odds ratio of 1.19 (95% confidence
interval 1.02–1.38) for each 1 mmol/L decrease in LDL-C (Lotta
et al., 2016). This trend is consistent with a higher diabetes risk in
individuals harboring PCSK9 LOF variants with impaired fasting
glucose at baseline, despite a reduced risk of CAD (Ference et al.,
2016). In a Mendelian randomized study, PCSK9 LOF mutations
causing low LDL-C levels were associated with elevated fasting
glucose, body weight, and an increased risk of new-onset diabetes
(Schmidt et al., 2017). Nonetheless, several studies have reported
that PCSK9 LOF variants do not alter fasting blood glucose or
insulin levels and are not linked to diabetes development
(Bonnefond et al., 2015; Chikowore et al., 2019). This
discrepancy could be explained by the observation that
PCSK9 levels in humans are typically reduced by approximately
15% in LOF variants, which is significantly lower than that in
PCSK9 knockout animal models. Hence, human
PCSK9 deficiency effects might be compensated for more
effectively (Humphries et al., 2009).

Notably, merely knocking out PCSK9 may not impair β-cell
insulin secretion function, despite the observed substantial
upregulation of LDLR on β-cell surfaces (Langhi et al., 2009). In
a specific knockout mouse model focused on β-cells, no irregularities
in diabetes-related markers were observed, and islet function
remained unaffected (Peyot et al., 2021). However, mRNA levels
of LDLR and 3-hydroxy-3-methylglutaryl-coenzyme A reductase
decreased by 32% and 29%, respectively, indicating that β-cells
might curb endogenous cholesterol synthesis to forestall excessive
lipid buildup (Peyot et al., 2021). Examination of human β-cells
cultured in vitro demonstrated that both secreted and exogenous
PCSK9 could influence LDLR density, yet the absence of
PCSK9 from either source did not disrupt insulin secretion
(Ramin-Mangata et al., 2021). Notably, serum PCSK9 does not
appear to degrade β-cell LDLR (Da Dalt et al., 2019; Marku
et al., 2022).

To summarize, the impact of the lack of PCSK9 secreted by β-
cells on islet function remains contentious. The reported reduction
in LDLR degradation due to PCSK9 autocrine absence heightens
lipid uptake by β-cells. Conversely, islet β-cells appear to exhibit a
compensatory capacity against lipid accumulation. This manifests as
diminished lipoprotein receptor synthesis, reduced de novo
cholesterol synthesis, increased receptor excretion of surplus
lipids, and augmented cholesterol esterification (Table 1).
Furthermore, research has indicated that glucagon secreted by
pancreatic α-cells can inhibit PCSK9 expression. Given that
many diabetic patients have increased glucagon production and
decreased insulin production, could this lead to β-cell lipotoxicity
related to islet PCSK9 deficiency? These questions warrant further
investigation (Folli et al., 2018; Spolitu et al., 2019). Insulin
upregulates liver PCSK9 via the SREBP1-c pathway (Costet et al.,
2006), indicating the possibility that insulin promotes autocrine
PCSK9 expression as a mechanism for regulating β-cell lipid
homeostasis.
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5 Neuroprotective effect of PCSK9 in
the brain

In rodent studies, no alteration in brain LDLR levels was
observed following adenovirus-mediated overexpression of
PCSK9 in the liver or by injection of recombinant PCSK9. These
findings indicate that serum PCSK9 cannot breach the blood-brain
barrier (Schmidt et al., 2008). This assertion is further supported by
the substantial disparity between PCSK9 concentrations in

cerebrospinal fluid and serum PCSK9 levels, along with the lack
of circadian rhythm synchronization between the two (Chen et al.,
2014). These observations collectively underscore the significance of
brain-derived autocrine PCSK9, rather than hepatic PCSK9 within
the brain.

The expression of PCSK9 in the brain exhibits regional
specificity. During embryonic development of zebrafish, PCSK9 is
highly expressed in the notochord, cerebral cortex, cerebellar
granulosa cell precursors, and other neural-forming regions

TABLE 1 Effects of islet autocrine PCSK9 deficiency on islet β cell function and diabetes risk.

Authors Study models Lipoprotein
receptors on β
cells

Effects on islet Diabetes risk Ref.

Langhi, C.
et al.
2009

PCSK9 knockout mice LDLR protein↑ PCSK9 autocrine deficiency did not
change the content and composition
of cholesterol in islets

PCSK9 autocrine deficiency did not
affect fasting glucose levels, insulin
levels, or GSIS

Langhi et al. (2009)

Mbikay, M.
et al.
2010

PCSK9 knockout mice LDLR mRNA↑
LDLR protein↑

PCSK9 autocrine deficiency induced
abnormal islet morphology,
inflammatory cell infiltration, islet
cells apoptosis, and less insulin in the
islet

PCSK9 autocrine deficiency induced
hyperglyce- mia, hypoinsulinemia,
and glucose intolerance developed in
mice

Mbikay et al.
(2010)

Da Dalt, L.
et al.
2019

PCSK9 knockout mice;
liver-specific
PCSK9 knockout mice

LDLR,
ACAT1 mRNA↑
HMGCR mRNA↓
LDLR protein↑

PCSK9 autocrine deficiency resulted
in enlarged islets, insulin
accumulation in beta cells, and the
accumulation of mitochondria
-related lipid droplets

PCSK9 autocrine deficiency induced
impaired glucose tolerance, without
insulin resistance and hyperglycemia

Da Dalt et al.
(2019)

Peyot, M. L.
et al.
2021

PCSK9 knockout mice;
pancreas -specific
PCSK9 knockout mice

LDLR, HMGCR
mRNA↓
LDLR protein↑

PCSK9 knockout mice had normal
insulin levels in the islets. Pancreas-
specific PCSK9 knockout mice had
higher insulin content in islets due to
active basal protein secretion

PCSK9-deficient mice showed
normal glucose tolerance and insulin
sensitivity despite in- creased basal
insulin secretion

Peyot et al. (2021)

Ramin-
Mangata,
S. et al.
2021

Human pancreatic
β cell

LDLR protein↑ Although PCSK9 affected LDLR
concentration and LDL-C uptake in β
cells, neither endoge- nous nor
exogenous PCSK9 deficiency affected
insulin secretion

PCSK9 autocrine deficiency did not
affect GSIS

Ramin-Mangata
et al. (2021)

Marku, A.
et al.
2022

Pancreas-specific
PCSK9 knockout mice

LDLR, ABCA1,
ABCG1, LXR,
SOAT1 protein↑

PCSK9 autocrine deficiency leads to
increased lipid uptake by β cells and
intracellular accumulation of
cholesterol and insulin

Pancreas-specific PCSK9 knockout
mice had normal circulating
cholesterol levels but had glucose
intolerance and hypoinsulinemia

Marku et al. (2022)

Bonnefond, A.
et al.
2015

PCSK9 p.R46L genetic
variant

— — PCSK9 LOF was not associated with
glucose homeostasis (FPG, HbA1c,
HOMA-IR), fasting insulin levels and
diabetes incidence but was associated
with elevated fasting glucose levels

Bonnefond et al.
(2015)

Ference, B. A.
et al.
2016

PCSK9 variants — — PCSK9 LOF mutations increased the
incidence of diabetes, but only in
individuals with impaired fasting
glucose and on an order of
magnitude less than the protection of
the cardiovascular system

Ference et al.
(2016)

Lotta, L. A.
et al.
2016

PCSK9 variants — — A decrease in serum LDL-C
concentration is associated with an
increased risk of new-onset diabetes

Lotta et al. (2016)

Lotta, L. A.
et al.
2016

PCSK9 variants — — A decrease in serum LDL-C
concentration is associated with an
increased risk of new-onset diabetes

Kleinewietfeld and
Hafler (2013)

Chikowore, T.
et al.
2019

PCSK9 variants — — PCSK9 LOF is associated with lower
fasting blood glucose levels during
adolescence

Chikowore et al.
(2019)
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TABLE 2 Clinical trials.

Trail Number Duration Target population Intervention Primary endpoints Secondary
endpoints

Significant
outcomes

Reference

ATHEROREMO-IVUS
study

581 — Patients who underwent coronary
angiography for acute coronary
syndrome (ACS) or stable angina

— — — Circulating PCSK9 levels are
positively correlated with the
volume of the plaque necrotic
core tissue

Cheng et al.
(2016)

GLAGOV randomized
clinical trial

968 76 weeks Patients with coronary artery
disease taking statins

Evolocumab
420 mg monthly

The nominal change in
percent atheroma volume

Percentage of patients
demonstrating plaque
regression

Evolocumab significantly
reduces the volume of
atherosclerotic plaques

Nicholls et al.
(2016)

PACMAN-AMI
randomized clinical trial

300 52 weeks Patients undergoing percutaneous
coronary intervention for acute
myocardial infarction

Alirocumab
150 mg biweekly

The change in percent
atheroma volume of non-
infarct-related coronary
arteries

Changes in maximum lipid
core burden index and
minimal fibrous cap thickness

Alirocumab significantly
improves the regression of
plaques in non-infarct-related
coronary arteries

Räber et al. (2022)

ARCHITECT study 104 78 weeks Patients with familial
hypercholesterolemia without
clinical ASCVD

Alirocumab
150 mg biweekly

Coronary plaque burden Atherosclerotic Plaque
Volume, Architecture and
Composition

Alirocumab reduces plaque
burden, increases the volume
of calcified/fibrotic plaques,
and reduces necrotic tissue
volume

Pérez de Isla et al.
(2023)

FOURIER trial 27,564 2.2 years Patients with ASCVD and LDL-
C ≥1.8 mmol/L

Evolocumab
420 mg monthly/140 mg
biweekly

Composite of cardiovascular
death, myocardial infarction
(MI), stroke, hospitalization
for unstable angina, or
coronary revascularization

Composite of cardiovascular
death, myocardial infarction,
or stroke.

Evolocumab significantly
lowers the risk of primary and
secondary endpoint events

Sabatine et al.
(2017)

ORION-9,
-10 and −11 study

3,655 18 months Patients with heterozygous familial
hypercholesterolaemia, ASCVD, or
ASCVD risk equivalent on
maximally tolerated statin-therapy

Inclisiran 284 mg
On days 1, 90, and 6-
monthly

Non-adjudicated CV death,
cardiac arrest, non-fatal MI,
and fatal and non-fatal stroke

Total fatal and non-fatal MI,
and stroke

Inclisiran significantly reduced
composite MACE, but not
fatal/non-fatal MIs or fatal/
non-fatal stroke

Ray et al. (2023a)

PC-SCA-9 prospective
study

174 — Patients hospitalized for ACS — — — Serum PCSK9 levels are
positively associated with
severity of coronary artery
lesions in ACS

Cariou et al.
(2017)

ODYSSEY program 985 3.2 years Patients diagnosed with
heterozygous familial
hypercholesterolemia

Alirocumab
75/150 mg biweekly

The long-term safety of
alirocumab (treatment-
emergent adverse events,
laboratory data, and vital
signs)

Efficacy of alirocumab on lipid
parameters and the long-term
immunogenicity of alirocumab

No long-term safety issues
were observed with alirocumab

Farnier et al.
(2018)

ORION-3 trial 382 4 years Patients with prevalent ASCVD or
high-risk primary prevention and
elevated LDL cholesterol despite
maximally tolerated statins or other
LDL-lowering treatments

Inclisiran 300 mg
6-monthly

The percentage change in
LDL-C

Changes in serum LDL-C and
PCSK9 levels

The 4-year averaged mean
reduction of LDL-C
cholesterol was 44.2%, with
reductions in PCSK9 ranging
from 62·2% to 77·8%.

Ray et al. (2023b)

ORION-1 trial 501 240 days Patients at high risk for
cardiovascular disease who had
elevated LDL cholesterol levels

Inclisiran 100, 200, or
300 mg at days 1 and 90

The change from baseline in
LDL cholesterol level

Adverse event incidence rate Patients who received
inclisiran had dose-dependent
reductions in PCSK9 and
LDL--C levels

Liu et al. (2019)
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(Poirier et al., 2006). Prominent PCSK9 expression in the frontal
cortex of mouse embryos has been described (Rousselet et al., 2011).
In contrast, the adult mouse brain has significantly lower
PCSK9 expression than its fetal counterpart, with a prevalence in
regions of sustained neurogenesis, such as the outer granular layer
and rostral extension of the cerebellar olfactory peduncle (Seidah
et al., 2003). Collectively, these observations strongly hint at a role of
PCSK9 in neurodevelopment. In zebrafish embryos injected with
PCSK9mRNA inhibitors, abnormal neurogenesis was observed 24 h
post-fertilization, as evidenced by cerebellar neuron disarray,
deletion of the parietal cap and posterior brain, and
disappearance of the posterior midbrain boundary. The peak
mortality rate was observed at 48–96 h post-fertilization (Poirier
et al., 2006). During retinoic acid-induced differentiation of mouse
embryonic pluripotent cells, PCSK9mRNA levels peaked on the 2nd
day. Simultaneously, SREBP2 mRNA and LDLR protein levels
exhibited negligible changes, indicating that the influence of
PCSK9 on neurogenesis was independent of LDLR (Poirier et al.,
2006). Similarly, PCSK9 deficiency in adult mice did not affect LDLR
levels within the olfactory bulb (Rousselet et al., 2011). In rodent
models, PCSK9 levels were notably diminished in both neural
centers and the placenta of fetal mice with neural tube defects
(An et al., 2015). This suggests that PCSK9 plays a pivotal role in
fetal neural development and serves as a potential biomarker for the
diagnosis of prenatal neural tube defect (An et al., 2015). Notably,
although PCSK9 is essential for brain survival in certain species, its
importance does not seem to extend to mammals. Experiments with
PCSK9 knockout mouse embryos showed that the integrity of the
telencephalon tissue remained intact, suggesting that PCSK9 is not
particularly critical for mouse brain development (Rousselet et al.,
2011). Furthermore, there were no indications of disorders in the
stratification of the cerebral cortex or cerebellar structures in adult
mice lacking PCSK9 (Rashid et al., 2005).

A long-term study involving African American individuals with
PCSK9 LOF variants found no link between prolonged exposure to
low PCSK9 levels and neurocognitive impairment or cognitive
decline (Mefford et al., 2018). Similarly, a randomized controlled
study involving European participants revealed no significant
differences in neurocognitive function, intelligence, memory, or
brain gray or white matter volumes between PCSK9 LOF variant
carriers and controls (Ghouse et al., 2022). Even in cases of complete
PCSK9 LOF mutations, in which serum PCSK9 is undetectable,
individuals exhibit normal survival and fertility (Zhao et al., 2006;
Hooper et al., 2007). Considering the potential positive effect of
PCSK9 on neurodevelopment, several studies have explored the
association between PCSK9 monoclonal antibodies and
neurocognitive diseases. Analysis of pooled data from 14 trials
indicated no notable increase in overall adverse events, including
neurological disorders, associated with the use of PCSK9 inhibitors
(Robinson et al., 2017).

In summary, although PCSK9 deficiency negatively affects
neurodevelopment in experimental models, this effect seems to
be less severe in humans. This can be explained from three
perspectives. First, the complexity of the lipid metabolism
pathway in the mammalian brain compared with that in fish
may enable compensatory mechanisms that mitigate the effects
of PCSK9 deficiency. Second, owing to the challenge of
lipoprotein penetration through the blood-brain barrier, the brain

predominantly relies on neurons and glial cells for de novo
cholesterol synthesis, which maintains the stability of the
cholesterol pool (Orth and Bellosta, 2012). Third, the passage of
PCSK9 monoclonal antibodies into the brain via the blood-brain
barrier is challenging.

6 PCSK9 regulates sodium reabsorption
in the kidney

The Epithelial Sodium Channel (ENaC) non-voltage-gated ion
channel protein is widely expressed in the kidneys, lungs, distal
colon, sebaceous glands, eccrine glands, and other tissues,
facilitating the transcellular absorption of sodium ions
(Hanukoglu et al., 2017). In the kidney, ENaC resides in the
luminal membrane of the distal tubules and collecting ducts of
the distal nephrons. Its activity is influenced by salt intake and
mineralocorticoid secretion (Zhang et al., 2022). Given its role in
sodium absorption and blood volume maintenance, gain-of-
function and deletion mutations in ENaC can lead to severe salt-
sensitive hypertension and hypotension, respectively (Bonny and
Hummler, 2000; Furuhashi et al., 2005). PCSK9 is notably abundant
in the distal renal collecting duct, making it the second-largest
source of PCSK9 after the liver (Seidah et al., 2003; Liu and
Vaziri, 2014). Unlike LDLR endocytosis, PCSK9 orchestrates
ENaC degradation via the proteasomal pathway. This action
curtails the intracellular ENaC pool, suppresses ENaC exocytosis,
and reduces ENaC density on the cell membrane surfaces (Sharotri
et al., 2012). In a PCSK9 knockout mouse model, renal ENaC
expression increased by nearly one-third, but blood pressure and
sodium homeostasis remained unaffected (Berger et al., 2015). Post-
amiloride ENaC inhibition and urinary sodium excretion increased
comparably in wild-type and PCSK9 knockout mice, further
underscoring the lack of physiological impact of
PCSK9 deficiency on ENaC function (Berger et al., 2015).

Consequently, there is a discordance in the link between
PCSK9 deficiency and blood pressure in humans. Among
Caucasians, p.R46L variants do not increase the risk of
hypertension compared to controls (Zhao et al., 2006). In an
exploration of the association between PCSK9 genetic variants
and blood pressure in African Americans, the PCSK9 variant was
found to have a modest influence on diastolic blood pressure (Tran
et al., 2015). However, in a male population of Asian descent, the
PCSK9 p.R46L group demonstrated markedly higher blood pressure
than non-carriers (Jeenduang et al., 2015). In one unique case, an
individual bearing a PCSK9 LOF mutation barely expressed
PCSK9 and did not manifest hypertension (Cariou et al., 2009).
Furthermore, examination of patients with hypertension showed no
correlation between blood pressure and serum PCSK9 levels (Yang
et al., 2016).

In summary, there are disparities in research findings regarding
the link between PCSK9 deficiency and salt-sensitive hypertension
among Asian and African American groups. Thus, there may be
racial disparities in the effects of PCSK9 deficiency on blood
pressure. However, due to the scarcity of research data, the
extent to which renal PCSK9 deficiency influences blood pressure
regulation remains unclear. The establishment of additional animal
models, such as specific renal collecting duct PCSK9 knockout

Frontiers in Pharmacology frontiersin.org08

Lu et al. 10.3389/fphar.2024.1413123

114

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1413123


models, is imperative to more precisely determine the regulatory
effects of PCSK9 on ENaC and blood pressure.

7 PCSK9 is involved in intestinal lipid
absorption

The efficient excretion of cholesterol through the intestine is
important for maintaining optimal plasma cholesterol levels. In
addition to the conventional hepatobiliary route, recent studies have
revealed a novel mechanism termed transintestinal cholesterol efflux
(TICE), which is particularly active in the proximal intestine (van
der Velde et al., 2007). The efficacy of TICE hinges on multiple
factors. One factor is the role of ApoB-48 in basolateral membrane
binding to chylomicrons, facilitating their reuptake via LDLR
presentation. PCSK9 influences this reuptake by modulating
LDLR density (Le May et al., 2009). Another factor is the
complementary cooperation between the ATP-binding cassette
transporter G5/G8 and ABCB1 proteins in the apical intestinal
epithelial membrane, which orchestrates cholesterol transport
from the lumen to the interior (Hui et al., 2008; Le May et al.,
2013; Dugardin et al., 2017). In rodents, approximately one-third of
the total fecal cholesterol discharge occurs through TICE, doubling
the amount via bile pathways, underscoring the dominant role of
TICE in cholesterol elimination (van der Veen et al., 2009). TICE
can be activated by food and medications that include phytosterols,
bile acids, fasting, liver X receptor agonists, peroxisome proliferator-
activated receptor agonists, ezetimibe, and statins (Tanaka and
Kamisako, 2021; Garçon et al., 2022). In humans, TICE is also
an important component of the body’s reverse cholesterol transport
(RCT) process. It is estimated that 35% of fecal cholesterol is
produced through the TICE pathway (Garçon et al., 2022). In
humans, TICE is also inducible, clinical studies have found that
treatment with 10 mg/day of the lipid-lowering drug ezetimibe for
4 weeks can enhance TICE by fourfold (Jakulj et al., 2016). These
findings has spurred research aimed at lipid reduction. Compared
with hepatobiliary stimulation, TICE activation has fewer adverse
effects, making it a promising avenue for further investigation
(Garçon et al., 2022).

Within the gastrointestinal tract of rodents, abundant
PCSK9 and LDLR expression spans the small intestine to the
colon. The PCSK9 and LDLR levels are harmoniously distributed
along the cephalocaudal axis of the intestine (Le May et al., 2009).
Immunofluorescence staining has revealed that PCSK9 primarily
resides within the intestinal epithelium, including goblet cells and
enterocytes, and is prominently situated on both the basolateral and
apical facets (Le May et al., 2009). However, whether
PCSK9 produced by the intestinal cells can enter the bloodstream
remains debatable. In the early stages of differentiation of the Caco-2
colon cancer cell line, PCSK9 secretion from the basolateral
compartment was observed (Levy et al., 2013; Moreau et al.,
2021). However, after the differentiation and maturation of Caco-
2 cells, PCSK9 secretion reportedly became negligible (Moreau et al.,
2021). Despite significant PCSK9 protein detection in human and
rodent intestinal tissues, in vitro cultivation of these intestinal tissues
did not reveal PCSK9 secretion, suggesting a predominantly
autocrine role for PCSK9 expressed by intestinal cells (Moreau
et al., 2021).

PCSK9 knockout upregulates TICE in vivo and in vitro (Le May
et al., 2013). Studies involving rodents have indicated that increased
chylomicron clearance in PCSK9 knockout mice leads to a
significant postprandial reduction in triglyceride (Le May et al.,
2009). However, while PCSK9 knockout results in decreased ApoB
secretion in intestinal cells, which logically leads to a decrease in the
number of triglyceride-rich chylomicrons, there is a compensatory
increase in the volume of these structures (Le May et al., 2009).
Subsequent investigations revealed that PCSK9 knockout can trigger
a notable increase in intestinal LDLR levels (Le May et al., 2009).
Considering that the clearance of chylomicrons remnants relies
largely on the LDLR-ApoB pathway, it is plausible to speculate
that a deficiency in intestinal PCSK9 promotes the reuptake of
chylomicrons by increasing intestinal LDLR levels, thereby reducing
postprandial plasma LDL-C and triglyceride levels (Le May et al.,
2009). These findings pave the way for potential lipid regulation
treatments centered on the intestinal PCSK9/LDLR axis. Dietary
therapy involving the acute intragastric administration of plant
sterols in rodents resulted in a five-fold increase in intestinal
LDLR expression, greatly enhancing TICE (De Smet et al., 2015).
Similarly, exercise training in rodents leads to elevated LDLR levels
in the basolateral membrane of the intestinal canal, further boosting
TICE (Farahnak et al., 2018). Interventions involving a rodent diet
and exercise have also yielded interesting results, such as significant
upregulation of intestinal PCSK9 expression. This could be partially
explained by the upregulation of SREBP2 expression in the intestine,
whereas hepatic PCSK9 expression was inhibited. However, this
phenomenon warrants further investigation to provide a more
comprehensive explanation (De Smet et al., 2015; Farahnak
et al., 2018).

Although preliminary studies in animal and in vitromodels have
revealed the impact of PCSK9 on TICE, relevant clinical research on
the impact of PCSK9 on TICE in humans is still lacking. Future
clinical research is needed to observe changes in TICE among
individuals with PCSK9 LOF mutations and patients using
PCSK9 inhibitors.

8 Protective effect of PCSK9 in
other tissues

8.1 PCSK9 protects lipid metabolism in
seminiferous tubules

The testes are partitioned into two cellular compartments by the
blood-testosterone barrier: the interstitium, which is primarily
responsible for lipid metabolism and androgen synthesis, and the
seminiferous tubule, which is responsible for germ cell growth and
development. Within seminiferous tubules, LDLR-mediated lipid
transport plays a crucial role in maintaining high lipid levels and
providing essential nutrients necessary for spermatogonial division
and differentiation (Schenk and Hoeger, 2010). Although
PCSK9 mRNA has been detected in the testis, its length (2.2 kb)
differs from that in other tissues (2.8 kb) (Seidah et al., 2003).
PCSK9 has been identified in the adipose tissue of the epididymis,
interstitial tissue of the testis, sperm tubules, in rodents (Pelletier
et al., 2022). Recent research has highlighted the role of PCSK9 in
regulating lipid metabolism to maintain seminiferous tubule
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function. In PCSK9 knockout mice, cholesterol accumulation and
immune cell infiltration were observed in the seminiferous tubules,
accompanied by increased LDLR levels and the presence of the
inflammatory factor interleukin-17 (Pelletier et al., 2022). This
cytokine, secreted mainly by highly infiltrating γδT cells in the
testis, has been linked to macrophage polarization and autoimmune
responses in experimental orchitis models (Park et al., 2005;
Kleinewietfeld and Hafler, 2013; Wilharm et al., 2021). Excessive
cholesterol accumulation promotes expression of this interleukin
and creates an inflammatory environment that contributes to
seminiferous tubule dysfunction (Wang et al., 2015; Varshney
et al., 2016; Kim et al., 2019).

8.2 PCSK9 prevents abnormal distribution of
adipose tissue and local inflammation

PCSK9 is expressed in visceral adipose tissue and is regulated by
natriuretic peptides and insulin (Bordicchia et al., 2019). Within
adipose tissue, the primary influences of PCSK9 appear to be on
CD36 and VLDLR, involving the intake and accumulation of FAs,
rather than on LDLR (Roubtsova et al., 2011; Christiaens et al., 2012;
Demers et al., 2015). Among these receptors, CD36 governs the
differentiation of pre-adipocytes into mature adipocytes, and the
absence of CD36 significantly diminishes the subcutaneous and
gonadal fat content in mice (Christiaens et al., 2012). In vitro
experiments involving adipocytes have revealed a three-fold
increase in CD36 expression and uptake of oxidized LDL
following PCSK9 knockout. This genetic alteration leads to
ectopic fat accumulation in the visceral organs of mice (Baragetti
et al., 2017).

In individuals carrying PCSK9 LOF variants, heightened visceral
fat thickness, including central obesity, liver steatosis, and epicardial
fat, has been detected. These changes appear to be tied to adipocyte
hypertrophy and inflammatory responses (Baragetti et al., 2017; Hay
et al., 2022). Given these findings, it is reasonable to infer that the
presence of PCSK9 in adipose tissue contributes to the balanced
distribution of body fat through the regulation of adipocyte
metabolism.

Although LDLR is not typically regarded as the primary pathway
for lipid uptake in adipose tissue, particularly in white adipose tissue,
including epicardial adipose tissue, low levels of PCSK9 can trigger
upregulated LDLR expression within adipocytes (Dozio et al., 2020),
consequently prompting additional uptake of LDL-C (Dozio et al.,
2020). The accumulation of excess LDL-C in adipocytes can initiate
localized inflammation and insulin resistance by activating the
NOD-like receptor thermal protein domain-associated protein 3
(NLRP3) inflammatory corpuscles. These activated inflammatory
corpuscles induce mitochondrial dysfunction and insulin resistance
by activating macrophages infiltrated within adipose tissue (Dozio
et al., 2020; Javaid et al., 2023). Notably, among obese individuals
with low serum PCSK9 concentrations, the surface expression of
LDLR and CD36 increased by 81% and 36%, respectively, on white
adipose tissue cells (Cyr et al., 2021). This led to a corresponding
elevation in the activation level of NLRP3 inflammatory corpuscles
and increased susceptibility to diabetes mellitus, surpassing that
observed in other subjects (Cyr et al., 2021). The fact that
PCSK9 exhibits an anti-inflammatory effect within adipose tissue

is intriguing, given that it is typically considered a pro-inflammatory
factor (Ding et al., 2020; Punch et al., 2022). This implies that
PCSK9 has dual functions in inflammatory reactions, exerting both
anti- and pro-inflammatory effects. This novel hypothesis requires
validation in various tissue types other than adipose tissue.

8.3 PCSK9 deficiency aggravates apical
periodontitis

PCSK9 deficiency significantly influences apical periodontitis.
Gram-negative bacteria mainly drive this chronic inflammatory
ailment, particularly Porphyromonas gingivalis, which infiltrates
periodontal support tissue (Ye et al., 2023). The expression of
PCSK9 was increased in a mouse model of apical periodontitis
induced by P. gingivalis and in the gingival tissues of patients with
periodontitis (Sun et al., 2018). Although PCSK9 can promote the
release of pro-inflammatory cytokines and exacerbates the
inflammatory response, it can also facilitate the osteogenic
differentiation of periodontal ligament stem cells (Sun et al.,
2018). However, in cases of PCSK9 deficiency, LDLR expression
within periodontal tissue increases, intensifying the differentiation
of bone marrow macrophages to osteoclasts and amplifying
cementum loss (Huang et al., 2022). This cascade of events
hinges on LDLR dependence, as evidenced by experiments
involving LDLR knockout, which reportedly arrested the
worsened progression of apical periodontitis in a state of
PCSK9 deficiency (Huang et al., 2022).

9 Advancements in the clinical benefits
and safety of PCSK9 inhibition therapy

9.1 PCSK9 and vasculature

Within the vasculature, PCSK9 serves as a pivotal regulator of
LDL-C levels and acts as a driver of atherosclerosis and subsequent
atherosclerotic cardiovascular diseases (ASCVD) (Boutari et al.,
2023). This effect is manifest through the promotion of chronic
vascular inflammation, formation of atherosclerotic plaques, and
initiation of thrombosis (Boutari et al., 2023; Hummelgaard et al.,
2023). In macrophages, the secretion of PCSK9 is triggered by
oxidized LDL, leading to macrophage polarization via the Toll-
like receptor 4/nuclear factor kappa B signaling pathway (Wang
et al., 2022). PCSK9 is also secreted by vascular smooth muscle cells,
which exhibit enhanced proliferation, migration, and foam cell
formation induced by oxidized LDL, thus aggravating
atherosclerosis (Liu et al., 2023). The influence of PCSK9 extends
to platelets; PCSK9 secretion stimulates platelet activation,
intensifies platelet-dependent thrombosis, and fosters thrombotic
inflammatory reactions (Petersen-Uribe et al., 2021). In clinical
practice, a noteworthy correlation has been established between
the serum concentration of PCSK9 and the presence and proportion
of atherosclerotic necrotic core tissues, as demonstrated by
intramural ultrasound virtual histological imaging (Cheng et al.,
2016). The focus of recent research has shifted to the impact of
PCSK9 inhibition therapy on coronary plaque (Nicholls et al., 2016).
In a double-blind randomized controlled trial involving patients
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with AMI, serial multimodal intracoronary imaging was performed
(Räber et al., 2022). The percent atheroma volume in non-infarct
related coronary arteries showed a more significant reduction in
patients treated with PCSK9 monoclonal antibodies in combination
with statins for 52 weeks compared to those treated with statins
alone (−2.13% vs. −1.21%) (Räber et al., 2022). Furthermore, in an
open-label, single-arm clinical trial involving patients with familial
hypercholesterolemia but without clinical ASCVD, 78 weeks of
PCSK9 monoclonal antibody alirocumab treatment led to a
decrease in the coronary plaque burden from 34.6% to 30.4%
(Pérez de Isla et al., 2023). Notably, there are changes in the
characteristics of coronary artery plaques, with an increase in the
proportion of calcified and mainly fibrous plaques, along with a
decrease in necrotic and fibrous fatty plaques (Pérez de Isla et al.,
2023). The collective findings indicate the benefits of
PCSK9 inhibition therapy on the volume, composition, and
phenotype of coronary plaque (Räber et al., 2022; Pérez de Isla
et al., 2023).

PCSK9 LOF variants associated with congenital
PCSK9 deficiency reportedly exhibited a 14% reduction in
plasma LDL-C levels and a 21% decrease in TG levels compared
with non-carriers (Ooi et al., 2017). A comprehensive meta-analysis
of nine studies on PCSK9 LOF variants further revealed variations in
plasma LDL-C levels among black and white populations, with
reductions of 35 and 13 mg/dL, respectively. Importantly, both
groups exhibited a lower risk of CAD than non-carriers (Kent et al.,
2017). Thus, PCSK9 LOF mutations provide substantial vascular
protection in clinical settings.

9.2 PCSK9 inhibition and clinical
cardiovascular benefits

PCSK9 inhibitors have promising potential in the treatment of
ASCVD (Hummelgaard et al., 2023). Beyond well-established
monoclonal antibodies such as evolocumab and alirocumab,
which target the PCSK9 protein, and small interfering RNA
(siRNA) therapies, such as inclisiran targeting PCSK9 mRNA,
various innovative approaches, including gene editing, vaccines,
and peptides, have been explored (Hummelgaard et al., 2023). In
a randomized, double-blind, prospective controlled trial involving
patients with ASCVD, the incidence of the primary endpoint (9.8%
vs. 11.3%) and critical secondary endpoint (5.9% vs. 7.4%) after
48 weeks of treatment with a PCSK9 monoclonal antibody was
significantly lower than that in the control group (Sabatine et al.,
2017). Similarly, a comprehensive analysis of multiple Phase III
trials found that after 90 days of treatment with PCSK9 siRNA, the
incidence of composite major adverse cardiovascular events
(MACE) was notably reduced (7.1% vs. 9.4%) compared with the
placebo group (Ray et al., 2023a). Patients who undergo
percutaneous coronary intervention (PCI) usually face a
heightened risk of MACE (Furtado et al., 2022). In a randomized
controlled study with a median follow-up period of 2.2 years,
patients with a history of PCI were treated with
PCSK9 monoclonal antibodies, resulting in a significant
reduction in the incidence of MACE (11.2% vs. 13.2%) and risk
of vascular remodeling (7.2% vs. 9.3%), as reported previously
(Furtado et al., 2022).

Furthermore, beyond their primary and secondary preventive
applications in ASCVD, the clinical use of PCSK9 inhibitors has
been increasing. Recent research has shifted its focus toward the
feasibility of applying PCSK9 inhibition therapy to patients with
acute coronary syndrome (ACS) as soon as possible, as both serum
and ischemic myocardial PCSK9 levels surge rapidly during ACS,
potentially contributing to acute inflammatory reactions (Cariou
et al., 2017; Ding et al., 2018; Ferri et al., 2022). In a placebo-
controlled trial in patients with AMI, the PCSK9 monoclonal
antibody treatment group was treated with alirocumab within
24 h of emergency PCI (Räber et al., 2022). After 52 weeks, the
alirocumab treatment group exhibited a significantly lower
incidence of adverse events (70.7% vs. 72.8%) and coronary
revascularization (8.2% vs. 18.5%) than the placebo group (Räber
et al., 2022). In another prospective randomized controlled study
among extremely high-risk ACS patients, patients were randomly
assigned to the evolocumab group or placebo group at a ratio of 1:1,
and the first medication was administered within 48 h after PCI
(Hao et al., 2022). During the 3 months follow-up period, MACE
incidences were significantly lower in the evolocumab group than in
the placebo group (8.82% vs. 24.59%). In summary,
PCSK9 inhibition therapy has significant cardiovascular benefits
in patients with ACSVD (Hao et al., 2022).

9.3 Advances in clinical studies on the safety
of PCSK9 inhibition

While PCSK9 inhibition therapy has become increasingly
pivotal in lipid reduction and cardiovascular event management,
concerns regarding its safety have arisen given the vital role of
PCSK9 in overall physiological metabolism and organ function. In
the ODYSSEY open-label extension study, spanning an average
observation period of 2.5 years, no significant increase in sudden
adverse events was observed in patients with familial
hypercholesterolemia undergoing PCSK9 monoclonal antibody
treatment (Farnier et al., 2018). Similarly, a more extended
FOURIER-OLE study with a median follow-up time of 5 years
concluded that PCSK9 inhibitor use did not significantly increase
the incidence of serious adverse events, including neurocognitive
impairment or new-onset diabetes mellitus in patients with ASCVD
(ODonoghue et al., 2022). Additionally, an open-label extension
study assessing the safety of inclisiran reported a mere 1% incidence
of serious safety adverse events after 4 years of drug intervention,
equivalent to that in the control group (Ray et al., 2023b).
Recognizing the potential negative effects of statins on
neurocognitive function, multiple studies have investigated the
relationship between PCSK9 inhibitors and neurocognitive
function (Shahid et al., 2022). A systematic review of seven
studies found no association between the use of
PCSK9 monoclonal antibodies and neurocognitive events (Shahid
et al., 2022). While statins can slightly elevate the risk of new-onset
diabetes mellitus, mainly by reducing sensitivity to blood sugar
fluctuations via inhibiting islet β-cell glucose transporter-2 and
insulin receptors in tissues, current clinical evidence suggests that
PCSK9 monoclonal antibodies are sufficiently safe (McNamara
et al., 2009; Gotoh and Negishi, 2015). Although
PCSK9 inhibition therapy may lead to a slight increase in
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hyperglycemia, this increase is not significant enough to induce new-
onset diabetes mellitus (Guo Y. et al., 2021; Carugo et al., 2022).
Furthermore, there remains a notable gap in clinical research
regarding the potential adverse effects of PCSK9 silencing in
extrahepatic organs. The clinical trials mentioned in this chapter
are summarized in Table 2.

The collective findings suggest that PCSK9 deficiency in clinical
practice may not carry the same degree of harm as that observed in
experimental models. However, in individuals with PCSK9 loss-of-
function mutations and patients using PCSK9 inhibitors, PCSK9 levels
are only partially reduced, far from the extent of PCSK9 knockout
observed in experimental animal and in vitro models. Therefore, the
potential negative consequences of a PCSK9 deficiency should not be
ignored. Moreover, current research on the safety of PCSK9 inhibitors
is limited by relatively short observation periods, making it challenging
to ensure the long-term safety of continuous PCSK9 inhibition
therapy, especially in high-risk patients who may require lifelong
treatment. Extensive prospective studies are needed to ascertain
whether such therapies can harm extrahepatic tissues. Currently,
there are some shortcomings in the research on the safety of
PCSK9 inhibitors, notably in proving their potential benefits or
risks across different patient groups, particularly in high-risk
patients with specific conditions. Additionally, when patients were
administered PCSK9 inhibitors, there were substantial individual
variations in PCSK9 and LDL-C levels. To assess whether
PCSK9 inhibition poses a risk to extrahepatic organs, it is crucial to
closely monitor individuals with significantly reduced levels of
PCSK9 and LDL-C levels when using PCSK9 inhibitors.
Monoclonal antibodies are the most widely used PCSK9 inhibitors
in clinical practice. While such antibodies primarily counteract
circulating PCSK9, it is essential to consider their potential impact
on PCSK9 levels in extrahepatic tissues. The emergence of PCSK9 gene
silencing therapies has further emphasized this concern. In contrast to
monoclonal antibodies, PCSK9 siRNA and PCSK9 gene editing
techniques that do not target the liver are more likely to interfere
with PCSK9 synthesis in extrahepatic tissues.

10 Discussion

To date, despite the vigorous development of PCSK9 inhibitors,
the understanding of the diverse physiological functions of
PCSK9 in extrahepatic tissues remains incomplete. The lack of
PCSK9 in mouse myocardium has been shown to affect
myocardial contractility. However, these results are limited to
animal knockout models. The impact of clinical use of
PCSK9 inhibitors on myocardial contractility requires long-term
clinical observation and rigorous clinical studies.

The relationship between PCSK9 and diabetes is complex. A
deficiency of autocrine PCSK9 in the islets may impair β-cell
function, leading to diabetes (Da Dalt et al., 2019). However,
serum PCSK9 levels are generally elevated in diabetic patients
(Ibarretxe et al., 2016). This suggests that the roles of islet-
derived PCSK9 and liver-derived PCSK9 in diabetes may differ,
necessitating more research to uncover the underlying mechanisms.

Existing evidence indicates that the function of PCSK9 in the
brain may be independent of LDLR (Poirier et al., 2006). Future
research should clarify whether the neuroprotective effects of

PCSK9 depend on lipoprotein receptors other than LDLR or on
specific non-lipid-related effects, and further elucidate the molecular
mechanisms involved. Additionally, when exploring the effects of
PCSK9 on the brain, special attention should be paid to differences
in research conclusions due to species variations in
experimental animals.

Current studies suggest that PCSK9 deficiency does not
significantly affect blood pressure (Berger et al., 2015). However,
given that PCSK9 does regulate renal ENaC, there is a clinical need
to gather long-term follow-up data on the blood pressure of patients
using PCSK9 inhibitors. Research on the impact of PCSK9 on TICE
in the intestine is limited to laboratory findings. Clinical studies are
needed to verify whether PCSK9 inhibitors can significantly
stimulate TICE, similar to ezetimibe (Jakulj et al., 2016).

Generally, future research should aim to construct more tissue-
specific PCSK9 knockout animal models and conduct more clinical
studies, preclinical experiments, and interdisciplinary collaborations
to better understand the roles of PCSK9 in extrahepatic tissues.

In human, studies indicate that, on average, the plasma
PCSK9 level in PCSK9 LOF mutants is only reduced by 15%–

20% compared to the normal population, with significant variability
among individuals (Humphries et al., 2009; Lakoski et al., 2009;
Wanneh et al., 2017). Future research should focus on comparing
PCSK9-deficient mutant populations exhibiting the lowest
PCSK9 expression with the normal population to ascertain any
potential link between PCSK9 deficiency and associated diseases.
Furthermore, clinical usage of PCSK9 inhibitors has not
demonstrated an increased risk of serious safety adverse events,
such as neurocognitive impairment or NODM. However, it is crucial
not to overlook the substantial reduction of over 90% in serum
PCSK9 levels observed within hours of clinical application of
PCSK9 monoclonal antibodies, and this effect can last for
15 days (Gibbs et al., 2017; Liu et al., 2019). Inclisiran, another
PCSK9 inhibitor, reduces serum PCSK9 levels by over 70% within
30 days and maintains this reduction for 180 days (Ray et al., 2017;
Ray et al., 2019; Ray et al., 2023b). According to the frequency of use
of these drugs, patients will be in a state of low PCSK9 level for a long
time. Moreover, studies demonstrate that CRISPR base editing of
PCSK9 can remarkably reduce PCSK9 expression in nonhuman
primates by 90% (Musunuru et al., 2021). These findings highlight a
more significant reduction of PCSK9 level in individuals using
PCSK9 inhibitors long-term compared to PCSK9 LOF mutants.
Consequently, the potential consequences of prolonged
PCSK9 deficiency may be more severe in PCSK9 inhibitor users.
It remains imperative to conduct comprehensive, long-term clinical
monitoring to assess the safety and efficacy of PCSK9 inhibition
therapy in different patient populations, especially those at high risk
for extrahepatic tissue-related complications. In conclusion, while
the clinical significance of PCSK9 circulation and localized
inhibition is apparent, our understanding of the role(s) of
PCSK9 in extrahepatic tissue remains limited. Circulating
PCSK9 originates from the liver and primarily acts on the liver.
All the effects of extrahepatic PCSK9 are autocrine and generally do
not increase circulating PCSK9 levels. This may suggest that
PCSK9 could have both intracellular and extracellular effects on
these tissues. Although existing data show that the possibility of
serious safety problems due to the application of PCSK9 inhibitors is
low, long-term follow-up of their possible negative effects cannot be

Frontiers in Pharmacology frontiersin.org12

Lu et al. 10.3389/fphar.2024.1413123

118

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1413123


ignored when PCSK9 inhibitors are used clinically. This is the first
review to delve into the pathophysiological interplay between
PCSK9 deficiency and diverse extrahepatic tissue diseases. We
hope that this review helps galvanize future research efforts
toward unraveling protective contributions of PCSK9 in
extrahepatic tissue.
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CHOP branch of endoplasmic
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cooperation between HIF-1α and
ATF4 promotes
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Introduction: Vascular calcification is accelerated in patients with chronic kidney
disease (CKD) and increases the risk of cardiovascular events. CKD is frequently
associatedwith anemia. Daprodustat (DPD) is a prolyl hydroxylase inhibitor for the
treatment of CKD-associated anemia that enhances erythropoiesis through the
activation of the hypoxia-inducible factor 1 (HIF-1) pathway. Studies showed that
DPD promotes osteogenic differentiation of human aortic smooth muscle cells
(HAoSMCs) and increases aorta calcification in mice with CKD. HIF-1 activation
has been linked with endoplasmic reticulum (ER) stress; therefore, here we
investigated the potential contribution of ER stress, particularly activating
transcription factor 4 (ATF4), to the pro-calcification effect of DPD.

Methods: Here, we used an adenine-induced CKD mouse model and HAoSMCs
as an in vitro vascular calcification model to study the effect of DPD.

Results: DPD treatment (15 mg/kg/day) corrects anemia but increases the
expression of hypoxia (Glut1, VEGFA), ER stress (ATF4, CHOP, and GRP78),
and osteo-/chondrogenic (Runx2, Sox9, BMP2, and Msx2) markers and
accelerates aorta and kidney calcification in CKD mice. DPD activates the
PERK/eIF2α/ATF4/CHOP pathway and promotes high phosphate-induced
osteo-/chondrogenic differentiation of HAoSMCs. Inhibition of ER stress with
4-PBA or silencing of ATF4 attenuates HAoSMC calcification. DPD-induced
ATF4 expression is abolished in the absence of HIF-1α; however, knockdown
of ATF4 does not affect HIF-1α expression.
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Conclusion:We concluded that DPD induces ER stress in vitro and in vivo, in which
ATF4 serves as a downstream effector of HIF-1 activation. Targeting ATF4 could be
a potential therapeutic approach to attenuate the pro-calcific effect of DPD.

KEYWORDS

chronic kidney disease (CKD), vascular calcification, prolyl hydroxylase inhibitor, hypoxia-
inducible factor 1, endoplasmic reticulum stress, ATF4, Daprodustat

1 Introduction

CKD is frequently associated with cardiovascular calcification,
mainly driven by hyperphosphatemia, a well-characterized
calcification inducer (Giachelli, 2009; Ogata et al., 2024). CKD-
associated calcification participates in disease progression and the
development of cardiovascular complications, which are the major
causes of death in CKD patients (Mizobuchi et al., 2009; Zoccali
et al., 2023).

Anemia is common and contributes to the increased mortality and
morbidity of CKD patients (Hanna et al., 2021; Atkinson and Warady,
2018; Kovesdy et al., 2023). The current standard of anemia treatment is
intravenous iron supplementation together with the administration of
erythropoiesis-stimulating agents (ESAs) (Hanna et al., 2021).
Unfortunately, studies showed that ESAs increase the probability of
major cardiovascular events (MACE) in CKD patients (Babitt and Lin,
2012; Portolés et al., 2021). Prolyl hydroxylase domain-containing
(PHD) enzyme inhibitors represent a new concept in treating CKD-
associated anemia through the activation of the hypoxia-inducible
factor (HIF) pathway and subsequent erythropoiesis (Mima, 2021).

Numerous clinical trials have been completed with three
different PHD inhibitors Roxadustat, Vadadustat, and
Daprodustat (DPD) concluding that these orally administrable
compounds are effective and safe alternatives to ESAs for anemia
treatment in CKD patients. All of the compounds are approved for
marketing in Japan, Roxadustat is approved in China and DPD is the
only one approved by the United States Food and Drug
Administration (FDA) for anemia management in CKD patients.
On the other hand, according to the ASCEND-D trial, DPD is not a
safer alternative in comparison to ESAs for the occurrence of MACE
in CKD patients (Singh et al., 2021). Previously, we showed that
DPD promotes CKD-associated vascular and aortic valve
calcification via the activation of the HIF pathway (Tóth et al.,
2022; Csiki et al., 2023). However, the involvement of other
molecular mechanisms by which DPD could contribute to
MACE in CKD patients remained unclear.

The endoplasmic reticulum (ER) is a multifunctional organelle
that plays important roles in protein folding, assembly, secretion,
lipid synthesis, and calcium homeostasis (Lin et al., 2008;Walter and
Ron, 2011). Various types of stress, e.g., starvation, hypoxia, certain
drugs, toxins, etc., can trigger disruption of ER homeostasis (Lin
et al., 2008; Walter and Ron, 2011). Cells respond to ER stress by
activating a complex signal transduction pathway known as the
unfolded protein response (UPR) through three stress sensor
proteins, i.e., protein kinase RNA-like ER kinase (PERK),
inositol-requiring protein 1α (IRE1α), and activating
transcription factor 6 (ATF6) (Ron and Walter, 2007; Hetz,
2012). UPR can trigger adaptive responses, or if ER stress is
sustained, it can lead to apoptosis. PERK phosphorylates the

alpha subunit of eukaryotic initiation factor 2 (eIF2α), leading to
a nearly global translational arrest and selective translation of
activating transcription factor 4 (ATF4). Transcriptional factor
C/EBP homologous protein (CHOP) is an important target of
ATF4, which promotes ER stress-induced apoptosis when
restoration of ER homeostasis fails (Ron and Walter, 2007; Hetz,
2012). ATF4 is an essential transcription factor that mediates not
only ER stress but also the terminal differentiation of osteoblasts by
regulating osteoblast-specific gene expressions (Yang et al., 2004;
Karsenty, 2008). Additionally, ATF4 actively participates in the
phenotype switch of vascular smooth muscle cells (VSMCs) into
osteoblast-like cells and subsequent vascular calcification, which
notion is supported by the attenuation of CKD-driven aortic
calcification in vascular smooth muscle cell-specific ATF4-
deficient mice (Masuda et al., 2016; Rao et al., 2022).

It has been shown that ATF4 is translationally induced by
hypoxia and the PHD inhibitor dimethyloxalylglycine (Köditz
et al., 2007). We previously reported that DPD accelerates high
phosphate-induced calcification of human aortic smooth muscle
cells (HAoSMCs) and valve interstitial cells that causes an increase
in aortic and valve calcification respectively, in mice with adenine-
induced CKD (Tóth et al., 2022; Csiki et al., 2023).

Thus, we postulated that DPD-induced vascular calcification
involves the activation of ER stress. In this study, we investigated
whether 1) DPD induces ER stress and hypoxia in adenine-induced
CKD mice, 2) DPD upregulates osteogenic markers and promotes
calcification in adenine-induced CKD mice, 3) DPD induces PERK
phosphorylation, ATF4, glucose-regulated protein 78 (GRP78), and
CHOP expression in HAoSMCs, 4) DPD promotes calcification and
osteogenic differentiation of HAoSMCs in an ER-stress and ATF4-
dependent manner, and 5) there is a hierarchy between DPD-
induced HIF-1α and ATF4 responses.

2 Materials and methods

2.1 Materials

The detailed list of materials (company name, catalog number,
sequences, etc.) can be found in the “Resources table” in the
Supplementary Material.

2.2 Cell culture and treatments

HAoSMCs were maintained in Dulbecco’s Modified Eagle
Medium (DMEM) supplemented with 10% fetal bovine serum
(FBS), antibiotic antimycotic solution, sodium pyruvate, and
L-glutamine. Cells were maintained at 37°C in a humidified
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atmosphere with 5%CO2. Cells were grown to ~90% confluency and
used between passages five and 8. To induce calcification, HAoSMCs
were exposed to an osteogenic medium (OM) that was obtained by
supplementing the growth medium with inorganic phosphate (Pi)
(NaH2PO4-Na2HPO4, 1–2.5 mmol/L, pH 7.4). DPD was utilized at
concentrations ranging from 1 to 100 μmol/L after being dissolved in
dimethyl sulfoxide (DMSO) to create a stock solution (25 mmol/L).
In some experiments, we used sodium-4-phenylbutyrate (4-PBA,
stock solution: 50 mmol/L in DMSO, working concentration:
250 μmol/L) to inhibit ER stress.

2.3 Alizarin red (AR) staining and
quantification

After washing with Dulbecco’s phosphate buffered saline
(DPBS), the cells were fixed in 4% paraformaldehyde for 20 min
and rinsed with distilled water. Cells were stained with Alizarin Red
S solution (2%, pH 4.2) for 10 min at room temperature. Excessive
dye was removed by several washes in distilled water. To quantify
AR staining, we added 100 μL of hexadecyl-pyridinium chloride
solution (100 mmol/L) to each well and measured optical density
(OD), using a microplate reader at 560 nm.

2.4 Quantification of Ca deposition

Cells grown on 96-well plates were washed twice with DPBS and
decalcified with HCl (0.6 mol/L) for 30 min. The Ca content of the
HCl supernatants was determined by the QuantiChrome Calcium
Assay Kit. Following decalcification, cells were washed with DPBS
and solubilized with a solution of NaOH (0.1 mol/L) and sodium
dodecyl sulfate (0.1%), and the protein content of the samples was
measured with the BCA protein assay kit. The Ca content of the cells
was normalized to protein content and expressed as μg/mg protein.

2.5 Osteocalcin (OCN) detection

Cells grown on 6-well plates were washed twice with DPBS and
decalcified with 100 μL of EDTA (0.5 mol/L, pH 6.9) for 30 min.
OCN content of the EDTA-solubilized ECM samples was quantified
by an enzyme-linked immunosorbent assay according to the
manufacturer’s protocol.

2.6 Ex vivo aorta organ culture model and
quantification of aortic ca

C57BL/6 mice (8–12-week-old male, n = 18) were exterminated
by CO2 inhalation and perfused with 5 mL of sterile DPBS. The
entire aorta was harvested and cleaned under aseptic conditions, and
cut into pieces. Aorta rings were maintained in control, high Pi +
DPD (25 μmol/L), and high Pi+4-PBA (250 μmol/L) in DMEM
supplemented with 10% FBS, antibiotic antimycotic solution,
sodium pyruvate, L-glutamine, and 2.5 μg/mL Fungizone. After
7 days, the aorta pieces were washed in phosphate-balanced saline
(PBS), opened longitudinally, and decalcified in 25 µL of 0.6 mmol/L

HCl overnight. Ca content was determined by the QuantiChromCa-
assay kit, as described previously.

2.7 CKD induction, DPD treatment and near-
infrared imaging and quantification of aortic
calcification in mice

Animal care and experimental procedures were performed
following the institutional and national guidelines and were
approved by the Institutional Ethics Committee of the University
of Debrecen under registration number 10/2021/DEMÁB. Animal
studies were reported in compliance with the ARRIVE guidelines.
All the mice were housed in a temperature- (22°C) and light-
controlled (12-h light/12-h dark) room, in cages with standard
beddings and unlimited access to food and water. C57BL/6 mice
(10 weeks old, male, n = 30) were randomly divided into three
groups: control (Ctrl), CKD, and CKD + DPD (CKDD) (10 mice/
group). CKD was induced by a two-phase diet, as described
previously (Tani et al., 2017). In the first 6 weeks, the mice
received a diet containing 0.2% adenine and 0.7% phosphate,
followed by a diet containing 0.2% adenine and 1.8% phosphate
for 3 weeks. Ctrl mice received a normal chow diet. DPD was
suspended in 1% methylcellulose and administered orally at a dose
of 15 mg/kg/day from week 7. Following the 9-week diet five mice/
group were anesthetized with isoflurane and injected retro-orbitally
with 2 nmol of OsteoSense dye that was dissolved in 100 µL of PBS.
Twenty-4 hours later, mice were euthanized by CO2 inhalation and
blood was taken by heart puncture into K3-EDTA-containing tubes.
Then mice were perfused with 5 mL of ice-cold PBS. Kidneys and
aortas were isolated and analyzed immediately ex vivo by an IVIS
Spectrum In Vivo Imaging System.We took kidney and aorta tissues
out from the remaining 15 mice (5 mice/group), snap freeze them in
liquid nitrogen and kept at −80°C for further analysis.

2.8 Laboratory analysis of renal function and
anemia in CKD mice

Serum urea, creatinine, phosphate and calcium levels were
determined in mice by kinetic assays on a Cobas®
c501 instrument. K3-EDTA anticoagulated whole blood murine
samples were analyzed by a Siemens Advia-2120i hematology
analyzer with the 800 Mouse C57BL program of Multi-Species
software. Hemoglobin concentration was measured by a cyanide-
free colorimetric method. Hematocrit values were determined as a
calculated parameter derived from red blood cell count (RBC in T/L)
and mean cell volume (MCV in fL).

2.9 Real-time quantitative polymerase chain
reaction (qPCR)

Total RNA was extracted from the kidney and aorta of C57BL/
6 mice using Tri Reagent following the manufacturer’s protocol.
RNA was reverse transcribed using a High-Capacity cDNA Reverse
Transcription Kit. The qPCR reactions were carried out according to
the protocol of the iTaq universal SYBR® Green Supermix reagent,
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using primers listed in the “Resources table.” PCR was performed
using a real-time PCR machine.

2.10 Western blot analysis

HAoSMCs were lysed in Laemmli lysis buffer. Proteins were
resolved by SDS-PAGE (7.5% and 10%) and transferred onto

nitrocellulose membranes. Western blotting was performed with
the use of the primary antibodies listed in the “Resources table.”
Following the primary antibody binding, membranes were
incubated with horseradish peroxidase-linked rabbit and mouse
IgG. Antigen-antibody complexes were visualized with the
enhanced chemiluminescence system Clarity Western ECL.
Chemiluminescent signals were detected conventionally on an
X-ray film or digitally with the use of a C-Digit Blot Scanner.

FIGURE 1
DPD promotes HIF pathway activation and ER stress in kidney and aorta in C57BL/6 mice fed with an adenine + high Pi diet. (A) Scheme of the
experimental protocol. (B) Body weight; (C) hemoglobin; (D) red blood cell count; (E) hematocrit; (F) plasma urea; (G) creatinine; (H) phosphate; and (I)
calcium level. (J and K) mRNA levels of hypoxia and ER stress markers in (J) kidney and (K) aorta samples. (L) Protein expressions of ATF4 and CHOP in
kidney lysates. Membranes were reprobed for β-actin. Representative Western blots and analyses (n = 3). Data are expressed as mean ± SD, n = 5.
Ordinary one-way ANOVA followed by Tukey’s multiple comparison test was used to calculate p values. *p < 0.05, **p < 0.01, ***p < 0.005,
****p < 0.001.p
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After detection, the membranes were stripped and reprobed for β-
actin. Blots were quantified by using the built-in software on the
C-Digit Blot Scanner.

2.11 RNA silencing

To knockdown ATF4 gene expressions, we used Silencer® select
siRNA constructs targeting HIF-1α and ATF4. As a control, we used
the negative control #1 construct. Lipofectamine® RNAiMAX
reagent was used to transfect HAoSMCs according to the
manufacturer’s protocol.

2.12 Statistical analysis

Results are expressed as mean ± SD. At least three independent
experiments were performed for all in vitro studies. Statistical
analyses were performed with GraphPad Prism 8.0.1 software.
Comparisons between more than two groups were carried out by
a one-way ANOVA followed by Tukey’s multiple-comparisons test.
To compare each of several treatment groups with a single control
group, we performed a one-way ANOVA followed by Dunnett’s post
hoc test. A value of p < 0.05 was considered significant.

3 Results

3.1 DPD promotes HIF pathway activation
and ER stress in the kidney and aorta of
CKD mice

Fifteen C57BL/6 mice (8–12 weeks old, male) were randomized
into three groups (n = 5/group): control (Ctrl), CKD, and CKD
treated with DPD (CKDD). CKD was induced with a 9-week-long,
two-phase adenine- and high-phosphate-containing diet, as detailed
in Figure 1A. DPD was administered orally at a dose of 15 mg/kg/
day in the last 3 weeks of the experiment (Figure 1A). Ctrl mice
received a normal chow diet. Hematological parameters, body
weight, and kidney function were evaluated at the end of the
experiment. Both CKD and CKDD mice lost approximately one-
third of their initial weight during the experiment (Figure 1B). DPD
completely corrected CKD-induced anemia revealed by similar
hemoglobin, RBC count, and hematocrit values in Ctrl and
CKDD mice (Figures 1C,E). Elevated plasma urea, creatinine,
and phosphate levels indicated that the kidney function of the
CKDD mice had declined to the same degree as that of the CKD
mice (Figures 1F–I). CKD treatment did not change plasma calcium
levels (Figure 1I).

CKD was associated with increased renal mRNA expression of
specific hypoxia and ER stress markers, such as glucose transporter 1
(Glut1), ATF4, CHOP, and glucose-regulated protein 78 (GRP78)
(Figure 1J). DPD treatment further exacerbated CKD-induced
activation of HIF-1 target genes and ER stress markers in the
kidneys (Figure 1J). In comparison to Ctrl, CKDD treatment
triggered a 3-fold increase in Glut1, vascular endothelial growth
factor A (VEGFA), and CHOP mRNA expressions in the aorta
(Figure 1K). We observed marked upregulation of the protein

expressions of ER stress markers ATF4 and CHOP in the
kidneys of CKDD mice (Figure 1L).

3.2 DPD upregulates markers of osteo-/
chondrogenic differentiation and increases
kidney and aorta calcification in CKD mice

Osteosense staining was performed to evaluate soft tissue
calcification in Ctrl, CKD, and CKDD mice. CKD was associated
with increased kidney and aorta calcification, which was further
exacerbated by DPD treatment (Figures 2A–D). Aorta calcium
measurement supported the pro-calcifying effect of DPD in CKD
animals (Figure 2E). Calcification is a highly regulated process,
similar to bone formation; therefore, next, we investigated the
expression of osteo-/chondrogenic markers in kidney and aorta
samples. Compared to Ctrl, Runt-related transcription factor 2
(Runx2), SRY-box transcription factor 9 (Sox9), bone
morphogenetic protein 2 (BMP2), and Msh Homeobox 2 (Msx2)
mRNA levels were higher in the kidneys of CKDmice. Furthermore,
we noticed that CKDD mice had higher Sox9 and Msx2 mRNA
levels than CKD animals had (Figure 2F). In the aorta, CKD
triggered an increase in BMP2 mRNA expression compared to
Ctrl, whereas CKDD induced marked elevations of Sox9, BMP2,
and Msx2 mRNA levels (Figure 2G). Overall, these results show that
DPD treatment induces hypoxia response and ER stress, increases
osteo-/chondrogenic marker expressions, and promotes
hydroxyapatite deposition in the kidney and aorta of CKD mice.

3.3 DPD induces HIF-1 activation and the
PERK-eIF2α-ATF4 pathway and promotes
high Pi-induced calcification in HAoSMCs

The stress signal network between hypoxia and ER stress is
implicated in the progression of CKD; therefore, we further
examined the effect of DPD on these pathways using an in vitro
calcification model. Exposition of HAoSMCs to DPD (1–100 μmol/
L) induced stabilization of HIF-1α and subsequent activation of the
HIF-1 pathway, as revealed by a dose-dependent increase in Glut-1
protein expression (Figure 3A). We could not detect changes in HIF-1α
mRNA levels in DPD-treated HAoSMCs, suggesting that DPD
regulates HIF-1α in a post-transcriptional manner (Figure 3B).
Hypoxia is a pathophysiological condition that induces ER stress
through PERK; therefore, next, we investigated PERK activation in
HAoSMCs in response to high Pi (2.5 mmol/L) with or without DPD
(10 μmol/L). Pi-induced PERK phosphorylation was further
exacerbated by DPD (Figure 3C). Furthermore, compared to
control, the levels of phosphorylated eIF2α (P-eIF2α) were elevated
by Pi and Pi + DPD (Figure 3C). The activation of the PERK pathway
by Pi + DPD induced a massive upregulation of ATF4 mRNA and
protein expressions (Figures 3D,E) as well as CHOP, and Grp78
(Figure 3F). Sustained ER stress can induce apoptosis, therefore next
we investigated whether DPD influences cell viability. We performed
MTT assay, and found that DPD (10 μmol/L) decreased cell viability in
both normal and high Pi conditions (Figure 3G). Then, we addressed
the pro-calcifying effect of DPD in HAoSMCs. As revealed by Alizarin
red staining, DPD (10 μmol/L) largely intensified Pi-induced
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calcification (Figure 3H). The ECM of HAoSMCs treated with Pi +
DPD had approximately 2.4 times more calcium deposition than the
ECM of Pi-treated cells (Figure 3I). Moreover, OCN accumulation in
the ECM of Pi + DPD-treated HAoSMCs was about 4-times higher
compared to Pi-treated cells (Figure 3J).

3.4 The pro-calcification effect of DPD is
dependent on ER stress activation and ATF4

After establishing that DPD induces ER stress and accelerates high
Pi-induced calcification, we investigated whether ER stress plays a
causative role in HAoSMC calcification triggered by Pi + DPD.
First, we tested the effect of an ER stress inhibitor, 4-phenylbutyrate
(4-PBA), on HAoSMC calcification. AR staining revealed that 4-PBA
inhibited Pi + DPD-induced calcification of HAoSMCs (Figure 4A).
Additionally, 4-PBA inhibited the accumulation of Ca and OCN in the
ECM of Pi + DPD-treated HAoSMCs and attenuated ex vivo aorta
calcification (Figures 4B–D). Furthermore, the knockdown of ATF4 by
siRNA decreased Pi + DPD-induced calcification of HAoSMCs as
evaluated by AR staining, as well as Ca and OCN measurements from
the ECM (Figures 4E–H). These results show that DPD induces ER
stress, particularly ATF4, which plays a crucial role in Pi + DPD-
induced HAoSMC calcification.

3.5 HIF-1α is required for DPD-induced
upregulation of ATF4

After showing that both the HIF-1 pathway and ATF4 activation
play essential roles in Pi + DPD-induced HAoSMC calcification, we
wanted to understand whether there is a cross-communication
between these two pathways. To this end, we applied HIF-1α
targeted siRNA and examined the protein expression of HIF-1α
and ATF4 in response to Pi (2.5 mmol/L), DPD (10 μmol/L), and Pi
+ DPD (Figure 5A). Western blot results revealed that the HIF-1α
knock-down approach was successful and that in the absence of
HIF-1α, DPD fails to upregulate ATF4 expression (Figure 5A). On
the other hand, DPD induced HIF-1α expression regardless of the
presence of ATF4 (Figure 5B). These results suggest a hierarchy
between HIF-1α and ATF4 upon DPD treatment, in which HIF-1α
is upstream of ATF4.

4 Discussion

The pathomechanism of vascular calcification in CKD is
extremely complex and influenced by many factors and
molecular pathways (Tóth et al., 2020). Growing evidence
suggests that ER stress is a major contributor to vascular

FIGURE 2
DPD increases soft tissue calcification in the kidney and aorta of CKD mice. Mice were treated as shown in Figure 1A. (A–D) Brightfield and
macroscopic fluorescence reflectance imaging of (A) kidney and (C) aorta; (B and D) quantification of OsteosenseTM staining. (E) Ca content of aortas
normalized to protein level. (F)mRNA levels of osteogenicmarkers in kidney and (G) aorta samples. Data are expressed asmean± SD, n = 5.Ordinary one-
way ANOVA followed by Tukey’s multiple comparison test was used to calculate p values. *p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.001.
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calcification (Duan et al., 2009; Liberman et al., 2011; Masuda et al.,
2012; Masuda et al., 2013; Shanahan and Furmanik, 2017; Furmanik
et al., 2021). In the present study, we found that DPD promotes
vascular calcification through the coordinated activation of the HIF-
1 pathway and the PERK–eIF2α–ATF4–CHOP axis.

The first important observation of this study is that DPD
increases HIF activation, generates ER stress, and promotes
kidney and aorta calcification in CKD mice (Figures 1, 2). In this
work, we used a non-invasive, well-characterized CKD model in
which we induced tubular damage by an adenine-containing diet

FIGURE 3
DPD induces hypoxia signaling and endoplasmic reticulum stress and promotes Pi-induced calcification of HAoSMCs. (A, B) HAoSMCs were
cultured in the presence of DPD (1–100 μmol/L). (A) Protein expression of HIF-1α and Glut1 in whole cell lysates was evaluated after 24 h of treatment.
Membranes were reprobed for β-actin. Representative Western blots and densitometry analyses on the relative expression of HIF-1α and Glut1 (n = 3). (B)
mRNA level of HIF-1α after 12 h of treatment. (C)HAoSMCs were cultured in the presence or absence of Pi (2 mmol/L) and DPD (10 μmol/L). Protein
expression of phospho-PERK (P-PERK), PERK, phospho-eIF2α (P-eIF2α), and eIF2αwasmeasured in whole cell lysates (15 min, 30min). Membranes were
reprobed for β-actin. Representative Western blots and relative expression of P-PERK normalized to PERK and P-eIF2α normalized to eIF2α (n = 3). (D–F)
HAoSMCs were cultured in the presence of DPD (1–100 μmol/L). (D) ATF4 mRNA and (E–F) protein expression of ATF4, CHOP, and GRP78 in whole cell
lysates (6 h). Membranes were reprobed for β-actin. Representative Western blots and densitometry analyses on the relative expression of ATF4, CHOP,
and GRP78 (n = 3). (H–J) HAoSMCs were cultured in an osteogenic medium supplemented with phosphate (2 mmol/L Pi) in the presence or absence of
DPD (10 μmol/L). (H) Representative Alizarin Red staining (day 4) and quantification (n = 5). (I)Ca content of HCl-solubilized ECM samples. (J)OCN level in
EDTA-solubilized ECM samples (day 8). Data are expressed as mean ± SD. Ordinary one-way ANOVA followed by Tukey’s multiple comparison test was
used to calculate p values. *p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.001.p
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(Tani et al., 2017). Previously, we showed that these CKD mice are
anemic and titrated out the dose of DPD that corrects CKD-induced
anemia in this model (Tóth et al., 2022; Csiki et al., 2023). Using the
minimal anemia-correcting dose of DPD, we observed an elevation
of the mRNA level of the HIF target genes Glut1 and VEGFA in both
the kidney and the aorta (Figure 1). This is in agreement with our
previous in vitro results, in which we showed that PHD inhibitors,
including DPD, stabilize HIF-α subunits, activate HIF signaling, and
upregulate Glut1 and VEGFA in HAoSMCs and valve interstitial
cells (Tóth et al., 2022; Csiki et al., 2023).

A growing body of evidence suggests that hypoxia and ER stress
signaling are interconnected and implicated in the pathogenesis of
various diseases, including CKD (Maekawa and Inagi, 2017; Díaz-
Bulnes et al., 2020). Hypoxia and the PHD inhibitor CoCl2 activate
PERK and phosphorylate eIF2α in embryonic fibroblasts (Koumenis
et al., 2002). It is interesting to note that PHD inhibition attenuates
post-ischemic myocardial damage in hearts challenged by ischemia/
reperfusion by inducing ER stress proteins including ATF4 and
GRP78 while also lowering the level of pro-apoptotic component
CHOP (Pereira et al., 2014). The interplay between HIF and ER
stress pathways is well-known in tumor biology and serves as an
important adaptation mechanism (Lin et al., 2024).

Our results revealed that mRNA levels of ER stress markers
(ATF4, CHOP, and GRP78) are elevated in the kidneys of CKD

mice, and DPD triggers further increases in these markers.
Additionally, we showed that DPD treatment upregulates
protein expression of ATF4 and CHOP in the kidneys of
CKDD mice (Figure 1). Vascular calcification is a common
feature of CKD and contributes to the increased morbidity
and mortality of CKD patients. Here we found that HIF
activation and ER stress observed in CKDD mice are
accompanied by increased kidney and aorta calcification and
elevation of mRNA markers of osteo-/chondrogenic
differentiation (Runx2, Sox9, BMP2, and Msx2) as compared
to CKD mice (Figure 2).

An additional noteworthy finding of this investigation is that
DPD stimulates the PERK–eIF2α–ATF4–CHOP axis, hence
facilitating high Pi-induced calcification in vitro in HAoSMCs
(Figure 3). In agreement with our results, previous studies
showed that PHD inhibitors are capable of activating the
PERK–eIF2α branch of UPR; as such, CoCl2 triggers PERK and
eIF2α activation in embryonic fibroblasts, and
dimethyloxalylglycine stabilizes ATF4 in HeLa cells (Koumenis
et al., 2002; Köditz et al., 2007).

Failure of ER stress resolution via UPRmay lead to the activation
of pro-apoptotic mechanisms. A recent study showed that activation
of the PERK-eIF2α-ATF4-CHOP pathway is involved in Arnicolide
D-induced oncosis in hepatocellular carcinoma cells (Lin et al.,

FIGURE 4
DPD increases the calcification of HAoSMCs through ER stress and ATF4 activation. (A–C) HAoSMCs were exposed to high Pi (2 mmol/L) and DPD
(10 μmol/L) in the presence or absence of 4-PBA (250 μmol/L). (A) Representative AR staining (day 4) and quantification. (B)Ca content of HCl-solubilized
ECM (day 4). (C)OCN level in EDTA-solubilized ECM samples (day 10). (D) Aortic rings of C57BL/6mice were cultured in control, high Pi + DPD (25 μmol/
L), and high Pi + DPD+4-PBA conditions. Ca content of aorta rings normalized to protein level (day 7). (E–H)HAoSMCs were exposed to Pi (2 mmol/
L) and DPD (10 μmol/L) in the presence of ATF4 or scrambled siRNA. (E) Protein expression of ATF4 in whole cell lysates (6 h). Membranes were reprobed
for β-actin. Representative Western blots and relative expression of ATF4 normalized to β-actin. (F) Representative AR staining (day 4) and quantification.
(G) Ca content of HCl-solubilized ECM (day 4). (H) OCN level in EDTA-solubilized ECM samples (day 8). Data are expressed as mean ± SD, n = 3–6.
Ordinary one-way ANOVA followed by Tukey’s multiple comparison test was used to calculate p values. **p < 0.01, ***p < 0.005, ****p < 0.001.
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2024). Here we showed that DPD decreases the viability of
HAoSMCs but further investigation is needed to clarify the type
of DPD-induced cell death and the potential involvement of the
PERK-eIF2α-ATF4-CHOP pathway.

Accumulating evidence suggests the critical involvement of ER
stress activation in the transition of smooth muscle cells to a
calcifying osteoblast-like phenotype. Diverse molecules such as
BMP2, stearate, tumor necrosis factor α, high glucose, saturated
fatty acids, parathyroid hormone, and C5a-C5aR1 have been shown
to promote the osteogenic transition of VSMCs through ER stress
induction (Liberman et al., 2011; Masuda et al., 2012; Masuda et al.,
2013; Zhu et al., 2015; Shanahan and Furmanik, 2017; Shiozaki et al.,
2018; Furmanik et al., 2021; Duang et al., 2022; Liu et al., 2023). Here
we showed that the ER stress inhibitor 4-PBA prevents DPD-
induced HAoSMCs and ex vivo aorta ring calcification (Figure 4),

which observations prove that ER stress plays a key role in the pro-
calcification effect of DPD.

ATF4 is an ER stress-induced pro-osteogenic transcriptional
activator that has been identified as a central mediator of the ER
stress-induced osteogenic transition of VSMCs and vascular
calcification by several studies (Masuda et al., 2012; Masuda
et al., 2013; Masuda et al., 2016; Furmanik and Shanahan, 2018).
The most important proof of this notion is Masuda et al.’s study,
which showed calcification attenuation in smooth muscle cell-
specific ATF4 knock-out mice (Masuda et al., 2016). Our results
also revealed that knockdown of ATF4 inhibits DPD-induced
promotion of HAoSMC calcification (Figure 4). Therefore, the
third key finding of this work is that ER stress and particularly
ATF4 play a critical causative role in the pro-calcification
effect of DPD.

FIGURE 5
Crosstalk between hypoxia signaling and ER stress in Pi + DPD-induced HIF-1α and ATF4 responses in HAoSMCs. (A,B) Cells were exposed to Pi
(2mmol/L) and DPD (10 μmol/L) in the presence of HIF-1α, ATF4, and scrambled siRNA. Protein expression of HIF-1α and ATF4 in whole cell lysates (24 h).
Membranes were reprobed for β-actin. Representative Western blots and relative expression of HIF-1α and ATF4 normalized to β-actin. Data are
expressed as mean ± SD, n = 3. Ordinary one-way ANOVA followed by Tukey’s multiple comparison test was used to calculate p values. **p < 0.01,
****p < 0.001.
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DPD is a PHD inhibitor that initiates HIF signaling by
stabilizing HIF alpha subunits of the HIF complex. Recent
studies demonstrated that HIF activation, mediated either by
hypoxia or PHD inhibition, promotes the phenotype switch of
VSMCs into osteoblast-like cells under both normal and high
phosphate conditions in a HIF-1α-dependent manner (Mokas
et al., 2016; Balogh et al., 2019; Tóth et al., 2022; Csiki et al.,
2023; Negri, 2023).

DPD induces both HIF-1α and ATF4 expressions in HAoSMCs.
Growing evidence suggests bidirectional cooperation between HIF-
1α and ATF4 in regulating diverse processes. For example, a single-
allele deletion of HIF-1α is associated with lower CHOP expression
and smaller infarct size in a mouse model of chronic intermittent
hypoxia-mediated myocardial injury (Moulin et al., 2020). Here,
using the siRNA approach to knockdown HIF-1α and ATF4, we
found that HIF-1α is involved in DPD-induced upregulation of
ATF4, but ATF4 does not control HIF-1α expression under these
circumstances (Figure 5). Contradictory with this Chee et al. found
that ATF4 regulates HIF-1α expression, but HIF-1α is not required
for hypoxia-induced upregulation of ATF4 in pancreatic cancer cells
(Chee et al., 2023). One explanation for this discrepancy could be
that Chee et al. used 0.2% O2 to induce HIF-1α, while we used a
prolyl hydroxylase inhibitor. Also, pancreatic cancer cells exist in a
hypoxic environment while HAoSMCs live in a relatively well-
oxygenated niche, which can lead to differences in their hypoxia
responses. Nevertheless, further studies are needed to deepen our
understanding of this phenomenon.

PHIs represent novel oral drug options for anemia management
in patients with CKD. The use of PHIs is expected to rise, warranting
further research to investigate the potential off-target effects of these
drugs. In line with this notion, previously we have shown that DPD
enhances vascular calcification in a mice model of CKD (Tóth et al.,
2022), and here we described that DPD-induced activation of the
PERK-eIF2α-ATF4-CHOP axis of ER stress contributes to the pro-
calcification effect of DPD. The limitation of our study is that we
focused our work on DPD and have not tested the other PHIs;
Roxadustat and Vadadustat. Another limitation of our work is that
we performed our experiments exclusively in male C57BL/6 mice.
Other mice strains and female mice should also be tested in the
future. Nevertheless, to our knowledge, this is the first study showing
that DPD induces ER stress in vitro and in vivo. ER stress is a key
vascular calcification mechanism, therefore we strongly believe that
this research can initiate further development to fine-tune PHIs for
better and safer anemia management in CKD patients.
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Glossary

AR alizarin red

ATF4 activating transcription factor 4

ATF6 activating transcription factor 6

BMP2 bone morphogenetic protein 2

CHOP transcriptional factor C/EBP homologous protein

CKD chronic kidney disease

CKDD CKD treated with DPD

Ctrl Control

DMEM Dublecco’s modified eagle medium

DMSO dimethyl sulphoxide

DPBS Dulbecco’s phosphate-buffered saline

DPD Daprodustat

ECM extracellular matrix

EDTA ethylenediamine-tetraacetic acid

ER endoplasmic reticulum

ESAs erythropoiesis-stimulating agents

eIF2α eukaryotic initiation factor 2 alpha

FBS fetal bovine serum

FDA U.S. Food and Drug Administration

Glut1 glucose transporter 1

GM growth medium

GRP78 glucose-regulated protein 78

HAoSMC human aortic smooth muscle cell

HIF hypoxia-inducible factor

IRE1α inositol-requiring protein 1α

MACE major cardiovascular event

OCN Osteocalcin

OD optical density

OM osteogenic medium

PBS phosphate-buffered saline

P-eIF2α phospho-eIF2α

PHD prolyl hydroxylase domain-containing

PERK protein kinase RNA-like ER kinase

Pi inorganic phosphate

P-PERK phospho-PERK

Runx2 runt-related transcription factor 2

4-PBA sodium-4-phenylbutyrate

qPCR quantitative polymerase chain reaction

Sox9 SRY-box transcription factor 9

VEGFA vascular endothelial growth factor A

VSMCs vascular smooth muscle cells

UPR unfolded protein response
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High-density lipoprotein protects
normotensive and hypertensive
rats against ischemia-reperfusion
injury through differential
regulation of mTORC1 and
mTORC2 signaling

Reham Al-Othman1, Aishah Al-Jarallah1* and Fawzi Babiker2

1Department of Biochemistry, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait, 2Department
of Physiology, College of Medicine, Kuwait University, Kuwait City, Kuwait

Background: High-density lipoprotein (HDL) protects against myocardial
ischemia-reperfusion (I/R) injury. Mammalian target of rapamycin complexes
1 and 2 (mTORC1 and mTORC2) play opposing roles in protecting against I/R
injury, whereby mTORC1 appears to be detrimental while mTORC2 is protective.
However, the role of HDL and mTORC signaling in protecting against I/R in
hypertensive rodents is not clearly understood. In this study, we investigated the
involvement of mTORC1 and mTORC2 in HDL-mediated protection against
myocardial I/R injury in normotensive Wistar Kyoto (WKY) rats and
spontaneously hypertensive rats (SHR).

Methods:Hearts fromWKY and SHRwere subjected to I/R injury using amodified
Langendorff system. Hemodynamics data were collected, and infarct size was
measured. Rapamycin and JR-AB2-011were used to test the role ofmTORC1 and
mTORC2, respectively. MK-2206 was used to test the role of Akt in HDL-
mediated cardiac protection. The expression levels and the activation states of
mediators of mTORC1 and mTORC2 signaling and myocardial apoptosis were
measured by immunoblotting and/or enzyme-linked immunosorbent
assay (ELISA).

Results: HDL protected hearts from WKY and SHR against I/R injury as indicated
by significant improvements in cardiac hemodynamics and reduction in infarct
size. HDL induced greater protection in WKY compared to SHR. HDL treatment
attenuatedmTORC1 signaling inWKY by reducing the phosphorylation of P70S6K
(mTORC1 substrate). In SHR however, HDL attenuated mTORC1 signaling by
reducing the levels of phospho-mTORC1, Rag C (mTORC1 activator), and
phospho-PRAS40 (mTORC1 inhibitor). HDL increased the phosphorylation of
mTORC2 substrate Akt, specifically the Akt2 isoform in SHR and to a greater
extent in WKY. HDL-induced protection was abolished in the presence of Akt
antagonist and involved attenuation of GSK, caspases 7 and 8 activation, and
cytochrome C release.

Conclusion: HDL mediates cardiac protection via attenuation of mTORC1,
activation of mTORC2-Akt2, and inhibition of myocardial apoptosis. HDL
regulates mTORC1 and mTORC2 signaling via distinct mechanisms in
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normotensive and hypertensive rats. HDL attenuation of mTORC1 and activation of
mTORC2-Akt2 signaling could be a mechanism by which HDL protects against
myocardial I/R injury in hypertension.

KEYWORDS

HDL, mTOR, Akt, ischemia/reperfusion injury, hypertension, apoptosis

Introduction

Hypertension continues to be a key risk factor in the
development of cardiovascular diseases (Khan et al., 2020).
Hypertension-induced cardiovascular complications involve
functional and structural changes in the myocardium and
coronary arteries including, but not limited, to increased
workload, left ventricular hypertrophy (Yildiz et al., 2020),
endothelial dysfunction (Gallo et al., 2021), and enhanced
atherosclerotic plaque development (Ruilope and Schmieder,
2008; Li and Chen, 2005) resulting in ischemic heart disease
(IHD). Hearts from hypertensive rodents demonstrated a
notable resistance to the protection offered by ischemic
postconditioning (Wagner et al., 2013; Babiker et al., 2019),
erythropoietin (Yano et al., 2011), helium (Oei et al., 2012), and
captopril (Penna et al., 2010). We have recently reported that acute
and chronic treatment with high-density lipoprotein (HDL)
protects hearts from spontaneously hypertensive rats (SHR)
against myocardial ischemia-reperfusion (I/R) injury (Al-
Jarallah and Babiker, 2022; Al-Jarallah and Babiker, 2024). The
cardioprotective effects of HDL in hypertension are however not
clearly understood.

Mammalian target of rapamycin complex 1 (mTORC1) and
complex 2 (mTORC2) regulate cellular responses to stress
conditions including ischemia (Laplante and Sabatini, 2012).
mTORC1 inhibition with rapamycin protected against
myocardial I/R injury and reduced cardiomyocyte apoptosis
(Filippone et al., 2017; Das et al., 2015; Samidurai et al., 2020)
suggesting a detrimental role of mTORC1 in mediating myocardial
I/R injury. mTORC2 on the other hand, via the activation of protein
kinase B (Akt), appears to be cardioprotective (Filippone et al., 2017;
Samidurai et al., 2020; Yano et al., 2014). Interestingly, rapamycin-
mediated inhibition of mTORC1 reduced blood pressure, albumin
secretion and renal inflammatory cell infiltration in Dahl salt-
sensitive rats (Kumar et al., 2017). HDL activated
phosphatidylinositol-3-kinase (PI3K)/AKt/mTORC signaling and
protected against oxidative stress-induced cardiomyocyte
apoptosis (Nagao et al., 2017). Nonetheless, the effect of HDL on
mTORC1 and mTORC2 in the protection against I/R injury in
hypertensive rodents is not clearly understood. We hypothesize that
HDL protects against I/R injury by inhibiting mTORC1 and
activating mTORC2 in spontaneously hypertensive rats (SHR).
We report that mTORC1 and mTORC2 exhibit contrasting
functions in mediating myocardial I/R injury. Moreover, we
demonstrate that HDL offers protection against I/R injury in
normotensive and hypertensive rats to varying degrees. HDL
inhibited mTORC1 in normotensive and hypertensive rats via
different mechanisms. HDL, however, activated mTORC2 in both
genotypes. HDL-mediated protection against I/R injury in WKY
and SHR involved attenuation of myocardial apoptosis.

Materials and methods

Materials

All materials were purchased from Sigma Aldrich (Germany,
Steinheim) unless stated otherwise.

Animals and instrumentation

Twelve to fourteen-week-old male Wistar Kyoto (WKY) rats
and spontaneously hypertensive rats (SHR) were randomized and
used in the study (n = 4–9 rats per treatment). The SHR model was
chosen because it is a well-established model for studying essential
hypertension and hypertension-related physiological and
biochemical changes (Al-Jarallah and Babiker, 2024; Dodd et al.,
2012). SHR are characterized by elevated blood pressure, autonomic
nervous system imbalances cardiovascular and renal complications,
making it a valuable tool for understanding the pathophysiology of
hypertension and testing potential treatments (Jama et al., 2022;
Zhou and Frohlich, 2007). Animals were kept under internationally
accepted conditions in the Animal Resource Center, Faculty of
Medicine, Kuwait University. All animals were maintained under
controlled temperature (21–24 C), 12 h light/dark cycle (light
7 a.m.–7 p.m.) and 50% humidity. The rats were housed in
plastic cages (2 rats/cage) with unrestricted access to tap water
and food. All procedures were approved by the Health Sciences
Research Ethics Committee (ID:3640). Blood pressure was
measured using the CODA-4 channel system (Kent Scientific
Corporation, United States). Normotensive and hypertensive rats
were defined by systolic blood pressure (SBP) cutoff values of
≤120 mmHg and ≥160 mmHg, respectively.

Experimental procedures and protocols

Heart cannulation and perfusion were performed using a
modified Langendorff system as previously described in (Juggi
et al., 2011). Briefly, the heart was carefully isolated and
immersed in cold (4°C) Krebs-Hensleit (KH) solution. The
isolated hearts were perfused retrogradely with a freshly prepared
KH buffer mmol/L: NaCl 117.86, KCl 5.59, CaCl2.H2O 2.4, NaHCO3

20, KH2PO4 1.19, MgCl2.6H2O 1.2, Glucose 12.11. The buffer was
gazed with a mixture of O2 (95%) and CO2 (5%), pH (7.35–7.45) at
37°C. After stabilization (20 min), regional ischemia was induced by
occluding the left anterior descending (LAD) coronary artery for
30 min. The success of ischemia induction was evaluated at the onset
of ischemia by an immediate drop in the coronary flow. Preload was
kept constant at 6 mmHg under basal controlled conditions and
perfusion pressure (PP) at 50 mmHg was maintained throughout
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the experimental procedure. A water-filled latex balloon was placed
and secured in the left ventricular (LV) cavity. The balloon was
attached to a pressure transducer and a “DC-Bridge amplifier (DC-
BA)” with a pressure module (DC-BA type 660, Hugo-Sachs
Electronik, Germany) and interfaced to a personal computer for
monitoring LV developed pressure (DPmax). LV developed
pressure was derived from acquisition of LV end systolic pressure
(LVESP) using Max-Min module (Number MMM type 668, Hugo
Sachs Elektronik-Harvard Apparatus GmbH, Germany) which
converts the output from DC bridge amplifier to DPmax by
subtracting LV end diastolic pressure (LVEDP) from the LVESP.
All hearts were subjected to ischemia produced by LAD coronary
artery occlusion by a snare at ~0.5 cm below the atrioventricular
groove, and a small rigid plastic tube was positioned between the
heart and the snare to ensure complete occlusion of the
coronary artery.

Hearts were subjected to I/R injury without any treatments
(untreated controls, Supplementary Figure S1, group A) or treated
with mTORC1 antagonist, rapamycin (100 nM) (Das et al., 2015),
mTORC2 specific antagonist JR-AB2-011 (5 µM) (Benavides-
Serrato et al., 2017) or Akt antagonist, MK-2206 (5 µM) (Chen
et al., 2018) infused at 25 min of ischemia and continued until
10 min of reperfusion (Supplementary Figure S1, group B).
Alternatively, hearts were treated with HDL (400 µg) (Lee
BioSolutions, United States) (Al-Jarallah and Babiker, 2024)
administered 5 min before reperfusion and continued for an
additional 10 min (Supplementary Figure S1, group C). In the
fourth group, hearts were pretreated with MK-2206 (5 µM)
infused 5 min prior to the addition of HDL (400 µg) and
continued during the first 10 min of reperfusion (Supplementary
Figure S1, group D). At the end of each experiment, hearts were
collected, snap-frozen in liquid nitrogen, and stored at −80 °C for
further analysis.

Data collection and processing

Left ventricular function was evaluated by the assessment of LV
end diastolic pressure (LVEDP) and DPmax, cardiac contractility
was monitored by heart contractility index values (±dp/dt), while
coronary-vascular dynamics were evaluated by the coronary flow,
measured using an electromagnetic flow probe attached to the
inflow of the aortic cannula interfaced to a personal computer.
The coronary flow (CF) (mL/min) was continuously monitored
using a software developed specifically for this purpose and was
manually verified by the timed collection of coronary effluent. The
coronary vascular resistance (CVR) and hemodynamics data were
determined every 10 s using an online data acquisition program
(Isoheart software V 1.524-S, Hugo-Sachs Electronik, Germany).

Evaluation of infarct size by
triphenyltetrazolium chloride staining

Hearts (n = 3) were sliced transversely into 4–6 pieces from apex
to base. The slices were incubated in 1% triphenyltetrazolium
chloride (TTC) solution in isotonic (pH 7.40) phosphate buffer
and fixed in 4% formaldehyde for 24 h. Infarct size was measured

blindly using Scion ImageJ (ImageJ, Wayne Rasb and National
Institute of Health, United States). The infarcted area of the LV
was expressed as a percentage of the total LV area.

Tissue homogenization and protein
extraction

Hearts were homogenized using a polytron homogenizer (Ultra-
Turrax: T 25 basic: IKA®-Werk, Germany) in ice cold buffer
containing: 0.2x PBS, 0.1% triton-x100, 1x protease inhibitor
cocktail, 1x phosphatase inhibitor cocktail, pH (7.40). The hearts
were subjected to four homogenization cycles, 30 s each, with 60 s
cooling in between. Homogenates were centrifuged at 6,000 rpm for
15 min at 4°C in a benchtop centrifuge (Beckman J2-MI,
United States). The supernatant was collected, aliquoted, and stored
at −80°C for further analysis. Protein concentration was estimated
using a BCA assay kit (Thermo Fisher Scientific, MA, United States)
following manufacturer instructions. Absorbance readings were
measured at 562 nm (BMG LabTech ClarioStar, Germany).

Immunoblotting

Protein expression was detected using sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) followed by
immunoblotting against target proteins. Samples (50 µg protein)
mixed with the loading buffer were boiled for 5 min and loaded into
4%–20% gradient Tris-glycine polyacrylamide gels (BioRad,
United States). Proteins were then transferred to polyvinylidene
difluoride (PVDF) membranes. Membranes were blocked with 5%
nonfat dairy milk (NFDM) or 5% bovine serum albumin (BSA) in
Tris-buffered saline, 0.1% Tween (TBS-T) for 1 h at room
temperature. Membranes were blotted with primary antibodies
against phospho-mTOR (Ser2448), total mTOR, phosphorylated-
40 kDa proline-rich AKT substrate (PRAS40) (Thr246), total
PRAS40, phosphorylated-ribosomal protein S6 kinase beta-1
(P70S6K) (Thr 389), total P70S6K, phosphorylated-eukaryotic
translation initiation factor 4E (eIF4E)-binding protein (4E-BP1)
(Thr37/46) and total 4E-BP1, Ras-related GTP-binding protein C
(RagC), phospho-Akt (Ser473), total Akt, phosphorylated-Akt1
(Ser473), total Akt1, phosphorylated-Akt2 (Ser474), total Akt2,
phosphorylated-glycogen synthase kinase (GSK)-3β (Ser9), total
GSK-3β, caspase-7, GAPDH (Cell Signaling, MA, United States)
or caspase-8 (Santacruz, United States), overnight at 4°C, followed
by horseradish peroxidase (HRP)-conjugated donkey anti-rabbit or
donkey anti-mouse antibodies (Jackson ImmunoResearch,
United States). Bands were developed using enhanced
chemiluminescence (ECL) reagent (Bio-Rad, United States) and
detected using Bio-Rad Chemidoc (Bio-Rad chemi-Doc™ MP
Imaging System, United States). Bands were quantified using
Image Lab software (Bio-Rad, United States).

Measurements of cytochrome C release

Cytochrome c release was measured in heart homogenates using
a commercially available kit from Abcam (ab210575) following the
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manufacturer’s protocol. Briefly, heart homogenates were diluted
(200 x), added to wells precoated with cytochrome c antibody
cocktail, and incubated for 1 h at room temperature on a plate
shaker. The reaction was then developed by the addition of a
substrate solution for 10 min followed by the addition of the
stop solution. Cytochrome c levels were determined by
measuring the absorbance at 450 nm (BMG LabTech ClarioStar,
Germany) and plotting the obtained values against the cytochrome c
standard provided with the kit.

Statistical analysis

Data are presented as means ± standard error of the mean
(SEM). A two-way analysis of variance (ANOVA) followed by post
hoc analysis using Bonferroni test was used to test the difference
between themeans of multiple groups (GraphPad Prism 10.0.2). The
two-tailed unpaired student t-test was used to test the significance
between two groups that followed a normal distribution while the
Mann–WhitneyU test was used to compare two groups that failed to
follow the normal distribution. Differences were considered
statically significant at P < 0.05.

Results

mTORC1 and mTORC2 play opposing roles
in mediating myocardial I/R injury in
normotensive and hypertensive rats

Hearts from SHR demonstrated signs of cardiac enlargement
(Table 1). SHR had significantly higher (P < 0.01) SBP and diastolic
blood pressure (DBP) relative to WKY. In addition, SHR exhibited
significantly (P < 0.01) higher heart rate, blood flow, and volume
relative to WKY (Table 1).

Inhibition of mTORC1 with rapamycin protected rodents
against myocardial I/R injury (Filippone et al., 2017). Hearts
from hypertensive rodents were shown to be resistant to

protection induced by pharmacological agents proven, otherwise,
to be protective in normotensive rodents (Babiker et al., 2019). The
involvement of mTORC1 in mediating I/R injury in SHR has not
been previously investigated, we therefore tested if
mTORC1 inhibition with rapamycin can protect hypertensive
rats from myocardial I/R injury. Rapamycin treatment
significantly (P < 0.05) improved LVEDP and Pmax (Figures
1A,B) compared to the respective ischemic period and untreated
controls in WKY and SHR. On the other hand, infusion of JR-AB2-
011 significantly (P < 0.05) increased LVEDP in SHR and decreased
Pmax in WKY and SHR. Moreover, rapamycin significantly (P <
0.05) increased the contractility index ± dP/dt (Table 2) and CF and
decreased CVR compared to the respective ischemic period and
untreated controls (Figures 1C,D) in WKY and SHR. In addition,
rapamycin treatment reduced infarct size in normotensive and
hypertensive rats (Figure 1E). This data suggests that
mTORC1 plays a detrimental role in mediating I/R injury and
inhibition of mTORC1 is protective in normotensive and
hypertensive rats. To test the role of mTORC2 we used
mTORC2 specific antagonist JR-AB2-011 (Benavides-Serrato
et al., 2017; Guenzle et al., 2020). Administration of JR-AB2-011
(5 µM) did not improve cardiac functions in WKY and SHR evident
by the persistent deterioration in LV function (Figures 1A,B),
cardiac contractility, (Table 2), and coronary vascular dynamics,
(Figures 1C,D), compared to the respective ischemic period and
untreated control, neither it reduced the infarct size (Figure 1E)
suggesting that mTORC2 plays a protective role in WKY and SHR.
Collectively this data suggest that mTORC1 and mTORC2 play
opposing roles in mediating myocardial I/R injury in normotensive
and hypertensive rats.

HDL protects against myocardial I/R injury
by selectively inhibiting mTORC1 and
activating mTORC2 signaling

We tested the effect of HDL on I/R-induced myocardial
injury in hearts isolated from WKY and SHR. HDL
administration, 5 minutes before reperfusion, protected hearts
from WKY and SHR from myocardial I/R injury (Figure 2). This
was evident by the significant (P < 0.05) improvements in LV
functions (LVEDP, Pmax) (Figures 2A,B) cardiac contractility
(±dp/dt), (Table 2), and coronary hemodynamics (CF, CVR)
(Figures 2C,D) relative to ischemia and relative to untreated
controls. Interestingly, HDL induced significantly (P < 0.05)
greater protection in WKY relative to SHR, possibly
suggesting differences in HDL-mediated signaling between
WKY and SHR. Consistent with the protection observed in
the physiological parameters we tested, HDL reduced the
infarct size in both genotypes (Figure 2E).

To test the effects of HDL on themTORC1 signaling pathway we
measured the activation state of mTORC1, mTORC1 substrates,
P70S6K, 4E-BP1, and mTORC1 inhibitor, PRAS40. In addition,
we examined the expression levels of mTORC1 activator, Rag C
in heart homogenates fromWKY and SHR treated with or without
HDL. SHR demonstrated significantly (P < 0.05) higher
basal levels of mTOR phosphorylation at Ser2448, a site
predominantly phosphorylated in mTORC1 (Copp et al., 2009)

TABLE 1 Heart and body weights of WKY and SHR, and CODA 4-channel
high throughput non-invasive blood pressure measurement data.

WKY SHR

Body weight (g) 324.7 ± 6.090 279.5 ± 3.832****

Heart Weight (g) 1.667 ± 0.02619 1.551 ± 0.02530**

Heart weight/Body weight 5.23E-03 ± 1.10E-04 5.59E-03 ± 9.18E-05*

Systolic Blood Pressure (mmHg) 113.8 ± 1.277 180.0 ± 1.368****

Diastolic Blood Pressure (mmHg) 74.05 ± 1.013 122.2 ± 1.663****

Mean 86.95 ± 1.079 141.1 ± 1.538****

Rate (Plus/min) 167.8 ± 4.871 291.3 ± 4.572****

Flow (µL/min) 5.787 ± 0.4262 9.023 ± 0.3133****

Volume (µL) 32.36 ± 2.472 62.24 ± 2.058****

*P vs. WKY (P < 0.05).

**P vs. WKY (P < 0.01).

****P vs. WKY (P < 0.0001).
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(Figure 3A). HDL treatment significantly (P < 0.05) reduced
Ser2448 phosphorylation in SHR but did not have any
significant effects in WKY (Figure 3A). This data suggests
enhanced basal activation of mTORC1 in SHR that is
significantly reduced by HDL treatment.

The binding of PRAS40 to mTORC1 results in complex
inhibition (Oshiro et al., 2007). The phosphorylation of
PRAS40 by Akt, however, results in its dissociation from the
complex and alleviation of inhibition (Sancak et al., 2007; Wang
et al., 2007). SHR expressed significantly (P < 0.05) higher basal

FIGURE 1
The role of mTORC1 and mTORC2 in mediating I/R injury in WKY and SHR. Post-ischemic recovery parameters of cardiac functions including left
ventricular functions (LVPEDP (A), Pmax (B)) and coronary hemodynamic (CF (C), CVR (D)). Data were computed at 30 min of reperfusion and presented
asmeans ± SEMof n = 4–9 rats per group. Infarct size determination by TTC staining on (n = 3) rats per group (E). *P < 0.05, **P< 0.01, ***P< 0.001, ****P<
0.0001, LVEDP, left ventricular end diastolic pressure; Pmax, maximum developed pressure; CF, coronary flow; CVR, coronary vascular resistance.
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TABLE 2 Cardiac contractility in normotensive and hypertensive rats subjected to different treatments.

WKY SHR

Treatment +dp/dt -dp/dt +dp/dt -dp/dt

Ischemia Reperfusion Ischemia Reperfusion Ischemia Reperfusion Ischemia Reperfusion

Control 51.5 ± 2.3 53.5 ± 6.5 52.3 ± 2.95 49.7 ± 4.3 50.5 ± 1.7 46.2 ± 2.6 51.6 ± 1.8 49.3 ± 1.4

Rapamycin 52.0 ± 6.1 90.7 ± 7.4$$$$#### 50.9 ± 5.1 86.7 ± 7.7$$$#### 67.9 ± 3.7 95.9 ± 4.1$#### 64.8 ± 7.6 91.3 ± 9.1$####

JR-AB-011 101.2 ± 6.1 94.2 ± 12.7### 96.8 ± 8.6 79.6 ± 9.0# 106.3 ± 10.4 86.5 ± 13.1## 104.5 ± 8.7 89.0 ± 9.2##

HDL 60.9 ± 6.4 95.2 ± 5.3$$$$#### 55.4 ± 4.1 96.8 ± 8.2$$$$#### 48.3 ± 2.2 71.4 ± 3.9$##* 48.7 ± 2.0 68.5 ± 1.1$##***

MK-0226 65.4 ± 4.1 42.1 ± 6.6 53.0 ± 3.9 39.5 ± 5.7 57.3 ± 3.9 51.7 ± 4.1 41.0 ± 3.1 46.6 ± 1.7

MK-0226+HDL 54.3 ± 4.8 51.2 ± 7.9 42.1 ± 4.8 32.6 ± 4.6•••• 45.8 ± 3.3 50.2 ± 4.8 42.7 ± 7.3 36.5 ± 7.3•••

$p vs. Ischemia (P < 0.05).
$$$p vs. Ischemia (P < 0.001).
$$$$p vs. Ischemia (P < 0.0001).

#P vs. Control (P < 0.05).
##P vs. Control (P < 0.01).
###P vs. Control (P < 0.001).
####P vs. Control (P < 0.0001).

*P vs. the same treatment in WKY (P < 0.05).

***P vs. the same treatment in WKY (P < 0.001).
•••

P vs. HDL, in the same genotype (P < 0.001).
••••

P vs. HDL, in the same genotype (P < 0.0001).
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levels of phospho-PRAS40 compared to WKY (Figure 3C),
indicating the presence of increased levels of active mTORC1-
PRAS40-free in SHR. HDL treatment significantly (P < 0.05)
reduced PRAS40 phosphorylation in SHR, however, it did not
change the phosphorylation state of PRAS40 in WKY
(Figure 3C). Moreover, HDL treatment did not affect total
PRAS40 expression in WKY and SHR (Figure 3D). Similar levels
of total-PRAS40 were detected in hearts from normotensive and

hypertensive rats. Furthermore, we examined the protein levels of
mTORC1 activator, Rag C (Figure 3E). Basal protein levels of Rag C
were not significantly (P < 0.05) different between WKY, and SHR.
HDL did not affect Rag C protein levels in WKY, yet it significantly
(P < 0.05) reduced Rag C expression in SHR (Figure 3E). Finally, we
tested the effect of HDL on the activation state of the
mTORC1 substrate, P70S6K. (Figure 3F). WKY expressed
significantly (P < 0.05) higher basal levels of phospho-P70S6K

FIGURE 2
HDL protects WKY and SHR against myocardial I/R injury. Post-ischemic recovery parameters of cardiac functions including left ventricular
functions (LVPEDP (A), Pmax (B)) and coronary hemodynamic (CF (C), CVR (D)). Data were computed at 30min of reperfusion and presented as means ±
SEM of n = 9 rats per group. Infarct size determination by TTC staining (n = 3) rats per group (E). *P < 0.05, **P< 0.01, ***P< 0.001, ****P< 0.0001, LVEDP,
left ventricular end diastolic pressure; Pmax, maximum developed pressure; CF, coronary flow; CVR, coronary vascular resistance.
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compared to SHR (Figure 3F). HDL treatment significantly (P <
0.05) reduced P70S6K phosphorylation in WKY. Total P70S6K
protein levels were significantly (P < 0.05) higher in SHR than in

WKY (Figure 3G). HDL treatment, however, did not affect total
P70S6K levels in WKY or SHR (Figure 3G). The HDL treatment
significantly (P < 0.05) increased levels of phospho-4E-BP1 in SHR

FIGURE 3
HDL inhibits mTORC1 signaling in WKY and SHR. Hearts from WKY and SHR subjected to I/R injury in the presence or absence of HDL were
immunoblotted against mediators of mTORC1 signaling cascade: phospho-mTOR (A), total mTORC (B), phospho-PRAS40 (C), total PRAS40 (D), Rag C
(E), phospho-P70S6K (F), total P70S6K (G), phospho-4EBP1 (H), total 4EBP1 (I), and GAPDH as a loading control. Data are means ± SEM. *P < 0.05, **P<
0.01, ***P< 0.001, ****P< 0.0001, n = 3-6.
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but not in WKY (Figure 3H). To summarize, immunoblotting
experiments revealed that HDL has an inhibitory effect on
mTORC1 signaling in WKY and SHR. The mechanism of HDL-
mediated inhibition of mTORC1 appears to be different between

normotensive and hypertensive rats. In WKY, HDL reduced the
levels of phospho-P70S6K. In SHR however, HDL decreased
PRAS40 phosphorylation and Rag C protein levels (Figures
3A–G). Together this suggests that HDL-mediated inhibition of

FIGURE 4
HDL-mediated cardiac protection requires Akt. Post-ischemic recovery parameters of cardiac functions including left ventricular functions (LVPEDP
(A), Pmax (B)) and coronary hemodynamic (CF (C), CVR (D)). Data were computed at 30min of reperfusion and presented asmeans ± SEMof n = 9 rats per
group. Infarct size determination by TTC staining (n = 3) rats per group (E). *P < 0.05, **P< 0.01, ***P< 0.001, ****P< 0.0001, LVEDP, left ventricular end
diastolic pressure; Pmax, maximum developed pressure; CF, coronary flow; CVR, coronary vascular resistance.
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mTORC1 could be one mechanism by which HDL protects against
I/R injury in WKY and SHR. Nonetheless, HDL appears to
differentially regulate mediators of mTORC1 signaling in
WKY and SHR.

Protein kinase B (Akt) is a downstream target of mTORC2 (Oh
and Jacinto, 2011). To test the effect of HDL on mTORC2 signaling
we used Akt specific antagonist MK-2206 (Chen et al., 2018; Akhtar
and Jabeen, 2018) and examined the phosphorylation state of

FIGURE 5
HDL induces the activation of Akt2 isoform. Heart homogenates fromWKY and SHR subjected to I/R injury, treated with MK-2206 in the presence or
absence of HDL, were subjected to immunoblotting against phospho-Akt, phospho-Akt1 or phospho-Akt2, total Akt, total Akt1, or total Akt2 (A–C) or
phosphorylated and total PRAS40 (D) and GAPDH as a loading control. Data are means ± SEM, *P < 0.05, **P< 0.01, ***P< 0.001, ****P< 0.0001, n = 3–6.

Frontiers in Pharmacology frontiersin.org10

Al-Othman et al. 10.3389/fphar.2024.1398630

145

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1398630


specific Akt isoforms in response to HDL treatment. MK-2206
infusion did not protect the heart against I/R injury in WKY and
SHR as indicated by impaired LV function (Figures 4A,B), cardiac
contractility (Table 2), and coronary vascular dynamics (Figures
4C,D) and the lack of change in infarct size (Figure 4E) relative to the
control. MK-2206 treatment however, abolished the protective
effects of HDL in WKY and SHR (Figure 4). This was consistent
with the infarct size data whereby HDL did not reduce the infarct
size in MK-2206 treated WKY or SHR (Figure 4E).

Three Akt isoforms have been identified (Kumar and Madison,
2005; Yu et al., 2015), of which Akt1 and Akt2 are predominantly
expressed in the myocardium (Abeyrathna and Su, 2015; Muslin,
2011). We examined the effect of HDL on the phosphorylation of
these isoforms. HDL treatment significantly increased (P < 0.05)
total Akt phosphorylation at Ser473 in WKY and SHR which was
completely abolished in the presence of Akt antagonist (Figure 5A).
Interestingly, HDL treatment did not increase Akt1 phosphorylation
(Figure 5B), yet it significantly (P < 0.05) increased

FIGURE 6
HDL reduces markers of myocardial apoptosis. Heart homogenates from WKY and SHR, subjected to I/R injury in the presence or absence of HDL,
were subjected to immunoblotting against, phospho-GSK-3β (Ser9), and total GSK-3β (A), procaspase −7, cleaved caspase 7 (B), cleaved caspase 8 (C)
and GAPDH as a loading control, and were subjected to ELISA against cytochrome c (D). Data are means ± SEM, *P < 0.05, **P< 0.01, ***P< 0.001, ****P<
0.0001, n = 3-6.
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Akt2 phosphorylation in WKY and SHR (Figure 5C). Furthermore,
HDL induced significantly (P < 0.05) greater activation of Akt2 in
WKY relative to SHR. Treatment with Akt inhibitor abolished total,
non-isoform specific, Akt (Figure 5A), Akt1 (Figure 5B), and Akt2

(Figure 5C) phosphorylation in the presence or absence of HDL.
Moreover, Akt inhibition reduced the phosphorylation of Akt
substrate, PRAS40 (Figure 5D) in WKY and SHR by 100% and
94.3%, respectively. Akt inhibition reduced PRAS40 phosphorylation

FIGURE 7
Proposed Mechanism of HDL mediated protection against myocardial I/R injury in WKY and SHR. HDL inhibits mTORC1, activates mTORC2, and
inhibitsmyocardial apoptosis inWKY and SHR. HDL-mediated inhibition ofmyocardial apoptosis could be onemechanism bywhichHDL protects against
I/R injury in normotensive and hypertensive rats.

Frontiers in Pharmacology frontiersin.org12

Al-Othman et al. 10.3389/fphar.2024.1398630

147

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1398630


by 95.4% and 93.3% in HDL-treated WKY and SHR, respectively
(Figure 5D). Together this data suggests that Akt is an essential
signaling mediator downstream of HDL that is involved in HDL-
mediated cardiac protection. HDL specifically induced
Akt2 activation in a magnitude that was proportional to the level
of HDL-mediated cardiac protection in normotensive and
hypertensive rats. Enhanced HDL-induced activation of Akt2,
and enhanced HDL mediated cardiac protection were observed
in WKY relative to SHR. Moreover, our data suggest that
PRAS40 is a downstream target of Akt in WKY and SHR. HDL
appears to phosphorylate PRAS40 through Akt dependent (major)
and independent (minor) mechanisms in SHR.

HDL protects against I/R injury by inhibiting
myocardial apoptosis

The phosphorylation of Akt inhibits GSK-3β and attenuates
myocardial apoptosis (Liu et al., 2020; Huang et al., 2016; Murphy
and Steenbergen, 2005). We demonstrate that HDL treatment
significantly enhanced GSK-3β phosphorylation (Figure 6A) in
SHR with a trend towards an increase in WKY. Furthermore,
HDL administration reduced the levels of caspase 7 (Figure 6B)
and caspase 8 (Figure 6C) and significantly reduced cytochrome c
release (Figure 6D) in heart homogenates from normotensive and
hypertensive rats. Together these data suggest that HDL attenuates
pathways involved in cardiomyocyte apoptosis. HDL attenuation of
cardiomyocyte apoptosis could be one mechanism by which HDL
protects against myocardial I/R injury in normotensive and
hypertensive rats.

Discussion

In this study, we investigated the involvement of mTORC1 and
mTORC2 signaling in HDL-mediated cardiac protection in
normotensive and hypertensive rats. We demonstrate that
mTORC1 and mTORC2 play opposing roles in mediating
myocardial I/R injury. Furthermore, we show that HDL protects
against I/R injury in normotensive and hypertensive rats to different
extents. HDL inhibits mTORC1 and activates mTORC2 signaling
and attenuates myocardial apoptosis following I/R injury (Figure 7).

Mammalian target of rapamycin (mTOR) is present in two
complexes, the rapamycin-sensitive mTORC1 and the rapamycin-
insensitive mTORC2 (Loewith et al., 2002). mTORC1 regulates
protein synthesis, cellular growth, proliferation, ribosomal and
mitochondrial biogenesis, autophagy, and metabolism (Johnson
et al., 2013; Wullschleger et al., 2006). mTORC1 form a complex
with mammalian lethal with SEC13 protein 8 (mLST8), DEP
domain-containing mTOR-interacting protein (deptor), PRAS40,
tti1/tel2 and regulatory-associated protein of regulatory-associated
protein of mammalian target of rapamycin (raptor) (Sciarretta et al.,
2014). PRAS40 inhibits complex activity, however, upon
phosphorylation it dissociates resulting in the alleviation of the
complex (Oshiro et al., 2007; Nascimento and Ouwens, 2009). On
the other hand, mTORC1 is activated by Rag GTPases. Rag GTPases
form heterodimers whereby Rag A or Rag B interact with Rag C or
Rag D (Kim et al., 2008). Active mTORC1 phosphorylates and

activates p70S6K which then phosphorylates ribosomal protein
S6 and inhibits the binding of 4E-BP1 to eIF4E (Choo et al.,
2008; Pullen and Thomas, 1997). mTORC2 however, is
composed of the following subunits: SEC13 protein 8, deptor, sin
1, tti1/tel2 and rapamycin-insensitive companion of mTOR (rictor).
mTORC2 activates Akt (Sarbassov et al., 2005) and inhibits
apoptosis (Filippone et al., 2017). Our data suggests that
mTORC1 plays a detrimental role while mTORC2 plays a
protective role in mediating myocardial I/R injury in WKY and
SHR (Figure 1; Table 2). In addition, hearts from normotensive and
hypertensive rats expressed significantly different basal levels of
mTORC1 signaling mediators. SHR expressed significantly higher
basal levels of phosphorylated-mTOR, phosphorylated-PRAS40,
and total-P70S6K, while WKY expressed significantly higher
basal levels of phosphorylated-P70S6K (Figure 3). WKY and SHR
also expressed significantly different levels of mTORC2 substrates,
Akt1 and Akt2. These differences in the basal expression level or
activation states of mTORC1 and mTORC2 signaling mediators
may suggest differences in the function and/or contribution of these
cascades between WKY and SHR which awaits further
investigations.

We demonstrate that short-term treatment of HDL protects
against myocardial I/R injury in normotensive and hypertensive rats
as indicated by improvements in cardiac functions, coronary
hemodynamics, and reduction in infarct size (Figure 2; Table 2).
Consistent with our previously reported data (Al-Jarallah and
Babiker, 2022), HDL was more protective in WKY than it was in
SHR (Figure 2; Table 2). The finding that HDL is protective when
administered at reperfusion suggests that HDL may represent a
promising target for the treatment of ischemic heart disease in
normotensive and hypertensive patients. Our findings align with
previous reports demonstrating the cardioprotective effects of HDL
against ischemic injury (Calabresi et al., 2003; Frias et al., 2013;
Gomaraschi et al., 2016). However, the protective mechanisms of
HDL against myocardial I/R injury appear to be complex and
multifaceted (Durham et al., 2018; Pedretti et al., 2019; White
et al., 2016).

We report that HDL inhibited mTORC1 signaling in WKY and
SHR (Figure 3). Nonetheless, the mechanism of HDL-mediated
inhibition of mTORC1 appears to be different between
normotensive and hypertensive rats (Figure 3). In WKY, HDL
significantly reduced the level of phospho-P70S6K but did not
affect the activation state of mTORC or PRAS40, neither it
affected the expression of Rag C. HDL-mediated reduction in
P70S6K phosphorylation implicates a reduction in
mTORC1 activity in response to HDL, despite of the lack of
change in the phosphorylation state of mTORC at Ser2448. HDL
treatment in SHR however, reduced the levels of phospho-mTORC,
phospho-PRAS40 (inactive inhibitor of mTORC1), and Rag C
(mTORC1 activator). To our surprise, HDL did not affect the
levels of phospho-P70S6K in hearts from hypertensive rats,
possibly suggesting the involvement of other substrates
downstream of mTORC1 in response to HDL treatment in these
rats. In addition to P70S6K, mTORC1 directly phosphorylates 4E-
BP1 (Kazi et al., 2011). HDL treatment increased 4E-BP1
phosphorylation (Figure 3H). Nonetheless, this could be due to
mTORC1-indenpendent signaling (Qin et al., 2016). To conclude, in
WKY P70S6K appears to be a key downstream substrate of
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mTORC1, and HDL inhibited mTORC1 by reducing the levels of
phosphorylated P70S6K. In SHR however, P70S6K activation
seemed to be less significant, despite the increase in basal total
levels of P70S6K. Moreover, the mechanism of HDL-mediated
inhibition of mTORC1 in SHR involved modulation of
mTORC1 activator (Rag C) and inhibitor (PRAS40) suggesting
the existence of different mechanisms by which HDL inhibited
mTORC1 in WKY and SHR.

In addition, HDL-mediated cardiac protection involved the
activation of mTORC2 signaling as indicated by enhanced
phosphorylation of mTORC2 substrate, Akt (Oh and Jacinto,
2011; Jacinto et al., 2006), in normotensive and hypertensive rats
(Figure 5). This is consistent with the previously reported effect of
reconstituted HDL on the activation of mTORC2 in angiogenic cells
(Guo et al., 2011). Furthermore, our data is consistent with HDL-
mediated activation of Akt in protecting against oxidative damage
induced cardiomyocyte necrosis (Durham et al., 2018). Together
this suggests that HDL-mediated inhibition of mTORC1 and
activation of mTORC2 signaling could be one mechanism by
which HDL protects against I/R injury in WKY and SHR.

We further examined the requirement of Akt in HDL-mediated
cardiac protection using Akt antagonist, MK-2206. Treatment with
MK-2206 abolished HDL-induced improvements in cardiac
functions, coronary vascular dynamics (Figures 4A–D; Table 2),
and reduction in infarct size (Figure 4E) in WKY and SHR
suggesting the requirement of Akt in HDL-induced cardiac
protection.

Three Akt isoforms exist of which, Akt1 and Akt2 are the
predominant isoforms expressed in the myocardium (Matsui and
Rosenzweig, 2005). The lack of Akt1 on an apolipoprotein E
knockout background induced features of plaque vulnerability
and cardiac dysfunction (Fernandez-Hernando et al., 2009).
Moreover, Akt1 played an essential role in mediating
physiological cardiac growth and attenuated pathological cardiac
hypertrophy (DeBosch et al., 2006a). Akt2 however, was dispensable
in maintaining cardiac phenotype (Cho et al., 2001). Nonetheless,
Akt2 regulated cardiac glucose metabolism and survival (DeBosch
et al., 2006b).

A considerable amount of interaction between mTORC1 and
mTORC2 has been reported. For instance, mTORC1-induced
activation of P70S6K suppresses mTORC2 (Fu and Hall, 2020;
Harrington et al., 2004). In addition, Akt mediates a positive
activation loop between mTORC1 and mTORC2 whereby
mTORC2 activates Akt (Abeyrathna and Su, 2015), which then
alleviates mTORC1 inhibition by phosphorylating PRAS40 (Wang
et al., 2007). Treatment with Akt antagonist, MK-2206, abolished the
phosphorylation of total, non-isoform specific, Akt, Akt1, and
Akt2 and Akt target, PRAS40 (Figure 5). This is consistent with
the finding that phosphorylation of PRAS40 at Thr-246 is mediated
by Akt in response to insulin (Kovacina et al., 2003; Nascimento
et al., 2010). The presence of Akt independent phosphorylation of
PRAS40 has also been reported (Lv et al., 2017; Sanchez Canedo
et al., 2010). The finding that MK-2206 treatment blocked the
cardioprotective effect of HDL and completely abolished Akt
phosphorylation in HDL-treated WKY and SHR indicates the
requirement of Akt in HDL-mediated cardiac protection. In
addition, the reduction in PRAS40 phosphorylation in the
presence of Akt antagonist indicates that PRAS40 is a

downstream target of Akt. The presence of residual 5.7%
phosphorylated PRAS40 in the presence of MK-2206 suggests the
presence of, a minor, Akt-independent phosphorylation of
PRAS40 in SHR (Figure 5D).

Interestingly, our data indicate that HDL activates Akt2 but
not Akt1 in WKY and SHR (Figures 5B,C). Moreover, the
magnitude of HDL-induced activation of Akt2 was consistent
with the magnitude of HDL-mediated cardiac protection against
I/R injury in WKY and SHR. HDL was more potent in activating
Akt2 in WKY and resulted in greater protection from I/R injury in
these rats. HDL treatment, however, did not affect
PRAS40 phosphorylation in hearts from normotensive rats. The
finding that HDL specifically activated Akt2 isoform yet did not
induce PRAS40 phosphorylation, could possibly suggest that
PRAS40 phosphorylation is likely to be mediated by Akt1 or
Akt3 isoforms in WKY. In line with this observation, the lack
of Akt2 did not affect the phosphorylation state of PRAS40 (Lv
et al., 2017). Moreover, slicing Akt3 but not Akt1 or Akt2 blocked
PRAS40 phosphorylation (Sun et al., 2020), indicating the
involvement of Akt3 in PPRAS40 phosphorylation. In addition,
the role of Akt3 in mediating PRAS40 phosphorylation was
reported in malignant melanoma (Madhunapantula et al.,
2007). A lack of HDL-induced activation of Akt1 (our data), or
possibly Akt3 (remains to be tested), may therefore explain the lack
of HDL-induced PRAS40 phosphorylation in WKY. The finding
that HDL activated Akt2 isoform and reduced the phosphorylation
of PRAS40 in hearts from SHR further supports the notion that
Akt2 isoform does not play a significant role in the
phosphorylation of PRAS40. HDL-mediated reduction in
PRAS40 phosphorylation in SHR could alternatively be due to
HDL-induced activation of phospho-protein phosphatases.
Perturbation of plasma membrane cholesterol has been shown
to regulate the activity of PP2A/HePTP phosphatase complex
(Wang et al., 2003). PRAS40 activity is regulated by phospho-
protein phosphatases including PTEN and MAPK-phosphatase-7
(MKP7) (Du et al., 2014; Wang et al., 2020). Thus, it’s plausible to
speculate that HDL-mediated cholesterol efflux (Rosenson et al.,
2012) may enhance the activity of these phosphatases resulting in
reduced PRAS40 phosphorylation. These possibilities, however,
remain to be directly tested. To conclude, Akt plays a non-
dispensable role in mediating the phosphorylation of
PRAS40 in WKY and SHR. HDL appears to differentially
regulate PRAS40 in WKY and SHR. In WKY HDL did not
affect PRAS40 phosphorylation, in SHR however, HDL
attenuated PRAS40 phosphorylation. HDL-mediated reduction
in PRAS40 phosphorylation in SHR indicates the enhanced
association of un-phosphorylated PRAS40 (active inhibitor)
with mTORC1 and subsequent complex inhibition which could
possibly be required to suppress the enhanced mTORC1 activity in
SHR (Figures 3C, 5D). It has been reported that
mTORC1 phosphorylates PRAS40 at Ser-183, Ser-212, and Ser-
221 and alleviates PRAS40 induced substrate competition (Wang
et al., 2008). The effect of HDL on PRAS40 phosphorylation on
other sites remains however to be investigated. The finding that
HDL specifically activated Akt2 suggests a novel role of Akt2 in
HDL-mediated cardiac protection in normotensive and
hypertensive rats. In contrast however, HDL mediated
activation of Akt1 and Akt2 has been implicated in HDL-
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mediated protection against doxorubicin induced apoptosis
(Durham et al., 2018). The lack of involvement of Akt1 in
HDL-mediated protection against I/R injury could be due to
species (WKY and SHR vs C57BL6 mice), model (ex-vivo vs
in vitro), or pathway (I/R injury vs doxorubicin induced
apoptosis) related differences. Apoptosis can be initiated
through the extrinsic pathway that involves caspase 8, initiator
caspase, (Tummers and Green, 2017), or via the intrinsic
mitochondrial pathway, which involves mPTP opening,
cytochrome c release, and caspase 7, executioner caspase,
activation (Lakhani et al., 2006; Riedl and Salvesen, 2007). Akt
phosphorylates and inactivates mediators of cellular apoptosis
including inhibits mPTP opening, cytochrome c release, and
activation of caspases (Tsang et al., 2004). HDL inactivated
GSK and reduced cytochrome c release, caspases 7 and
8 activation (Figure 6).

Our data are consistent with the previously reported data on the
anti-apoptotic effects of HDL (Frias et al., 2013; White et al., 2016).
In addition to its anti-apoptotic effects, HDL could protect against
I/R injury by virtue of its antioxidant (Calabresi et al., 2003;
Fogelman et al., 2013; Mineo et al., 2006) and anti-inflammatory
(Al-Jarallah and Babiker, 2022; Barter et al., 2004; Gomaraschi et al.,
2008) effects. The cardioprotective anti-inflammatory, and
antioxidant effects of HDL were not investigated in this study,
nonetheless, they cannot be excluded.

To our knowledge, this is the first study to demonstrate the role
of HDL in regulating mTORC1 and mTORC2 signaling in
protecting against myocardial I/R injury in normotensive and
hypertensive rats. HDL inhibited mTORC1 in normotensive and
hypertensive rats yet, via different mechanisms. HDL activated
mTORC2, indicated by increased Akt2 phosphorylation in WKY
and SHR. HDL-mediated inhibition of mTORC1, activation of
mTORC2, and inhibition of myocardial apoptosis could explain
HDL-mediated cardiac protection from I/R injury in normotensive
and hypertensive rats.

Our study, however, has some limitations including the rat’s age,
gender, and dosage of HDL treatment used. Additional studies in
female rats are required to demonstrate if HDL is equally protective
in both genders. It also will be interesting to test if HDL can protect
hearts from older rats, with marked hypertension-induced
deterioration in cardiac functions from I/R injury or if different
concentrations and/or routes of HDL administration protect to
different extents.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be directed
to the corresponding author.

Ethics statement

The animal study was approved by Health Sciences Research
Ethics Committee, Health Sciences Center, Kuwait University.
ID3640. The study was conducted in accordance with the local
legislation and institutional requirements.

Author contributions

RA-O: Conceptualization, Formal Analysis, Investigation,
Writing–original draft. AA-J: Conceptualization, Data curation,
Funding acquisition, Investigation, Methodology, Project
administration, Resources, Software, Supervision, Validation,
Visualization, Writing–review and editing. FB: Conceptualization,
Investigation, Methodology, Software, Supervision, Validation,
Writing–review and editing.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. We would
like to acknowledge the Research Sector (Grant No. YM04/18) and
the School of Graduate Studies at Kuwait University, for funding
the project.

Acknowledgments

We acknowledge the technical support of Mona Rostum,
Godwin Budadasari, Lilly Verges, and Anju Devassy.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fphar.2024.1398630/
full#supplementary-material

SUPPLEMENTARY FIGURE 1
Hearts were isolated and divided into four groups (n=4-9 rat/group from
each genotype). Group-A (untreated controls) was subjected to 30 min of
ischemia followed by 30 min of reperfusion. Group-B (antagonist) was
infused 5 min before reperfusion and continued for an additional 10 min of
reperfusion. In group-C (HDL) was subjected to 30min of ischemia in which
HDL was added 5 min before the beginning of reperfusion. HDL
administration was continued during the first 10 min of reperfusion. In
Group-D (antagonist + HDL) hearts were subjected to ischemia in the
presence of MK-2206 (5 µM) infused at 20min of ischemia followed by the
addition of HDL (400 µg) 5 min before reperfusion. HDL and antagonist
administration continued during the first 10 min of reperfusion.
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Introduction: Endothelin-1 (ET-1) regulates renal and vascular function, but the
clinical utility of selective ETA receptor antagonists has been limited due to
associated fluid retention. The mechanisms underlying fluid retention remain
poorly understood but could be a consequence of changes in ET-1 binding to the
unantagonized ETB receptor, either through increased ET-1 or non-selective ETB.

Methods: Amathematicalmodel of ET-1 kineticswas developed to quantify effects of
ETA antagonist exposure and selectivity on concentrations of ET-1 and its complexes
with ETA and ETB receptors. The model describes ET-1 production, tissue and plasma
distribution, ETA and ETB receptor binding, and receptor-mediated clearance, andwas
calibrated and validated with human ET-1 infusion studies.

Results: The model confirmed the significant role of ETB in ET-1 clearance. By
varying both drug ETA selectivity (Kib/Kia) and concentration over a wide range,
simulations predicted that while selective ETA antagonist (selectivity >1) always
decreased [ET1-ETA], the change in [ET1-ETB] was more complex. It increased up
to 45% as drug concentrations approached and exceeded Kia, but the increase
was diminished as drug concentration increased further and fell below baseline at
high concentrations. The drug concentration required to cause a decrease in
[ET1-ETB] was lower as ETA selectivity decreased.

Discussion: This is the first mechanistic mathematical model of ET-1 kinetics that
describes receptor-mediated clearance, and the consequence of ETB blockade on
ET-1 concentrations. It provides a useful tool that can coupled with experimental
studies to quantitively understand and investigate this complex and dynamic system.

KEYWORDS

endothelin, endothelin receptor antagonist, mathematical modeling, kinetics, ETA, ETB

1 Introduction

Endothelin-1 (ET-1) is an autocrine/paracrine regulator of renal and vascular function,
and antagonism of ET-1 effects has been pursued as a therapeutic target for cardiovascular
diseases. ET-1 antagonists have proven beneficial in treating pulmonary arterial
hypertension (PAH) (Correale et al., 2018), and been shown to reduce proteinuria and
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potentially improve outcomes in patients with diabetic kidney
disease (DKD) (de Zeeuw et al., 2014; Heerspink et al., 2019).
However, their utility in treating cardiovascular diseases has been
limited by adverse events related to fluid retention (Packer et al.,
2017; Waijer et al., 2021).The mechanisms underlying this effect
have proven difficult to fully understand, in part because of the
complex physiology of the endothelin system.

ET-1 is produced primarily in the kidney and lungs by
conversion of its precursor Big-ET through endothelin converting
enzyme (ECE) in endothelial cells. It elicits its physiological effects
by binding to two receptors: ETA and ETB. It is also cleared by
receptor binding, primarily by ETB. Binding to ETA mediates
vasoconstriction, while ETB is thought to mediate vasodilation
and natriuresis. See Davenport et al. (2016) for a thorough
review of endothelin physiology.

Endothelin receptor antagonists vary in their selectivity for ETA

and ETB receptors. Inhibiting one receptor can cause ET-1 to
increase (since clearance is reduced), and thus may increase
binding through the other receptor. Because ETB is largely
responsible for ET-1 clearance, ETB inhibition in particular may
result in a rise in ET-1 binding to ETA (Kelland et al., 2010).

Fluid retention effects of selective ETA antagonists have been
proposed to be related to non-selective inhibition of ETB at high doses
(Vercauteren et al., 2017; Battistini et al., 2006) or to incompletely
understand the pleiotropic effects of ETA. A better understanding of
ET-1 kinetics and dynamics may aid in the identification of optimal
dosing of endothelin antagonists that could provide efficacy while
minimizing potential risk of adverse effects.

Understanding the physiological response to endothelin
antagonists depends on understanding the degree of inhibition
and/or activation of each receptor type. In this study, we
developed a mechanistic mathematical model of ET-1 kinetics
and blockade by selective or non-selective receptor antagonists.
We then utilized this model to quantify the effect of endothelin

antagonist selectivity on concentrations of ET-1 to the ETA and ETB

receptors in the plasma and tissue compartments. This is a first step
in developing a more quantitative understanding of the mechanisms
underlying clinically observed responses to endothelin antagonism.

2 Methods

2.1 Model description

Figure 1 shows a schematic of the ET-1 kinetics model. Big ET-1,
the precursor to ET-1, is assumed to be produced endogenously at a
constant rate (ProdBigET), and is converted to ET-1 through the
action of endothelin converting enzyme (ECE).

d BigET[ ]( )
dt

� ProdBigET − Kcat

Km
BigET[ ] ECE[ ] (1)

Kcat/Km is the catalytic efficiency of ECE (Schweizer et al., 1997).
ET-1 exhibits saturable, high-affinity binding to ETA and ETB

receptors, with similar dissociation constant Kd for both receptor
types (Bacon et al., 1996). ET-1 is cleared by binding to and
internalization of these receptors, with most of the clearance
occurring through ETB. Total ET-1 concentration ([ET1]tot) is
the sum of concentrations of unbound ET-1 ([ET1]) and ET-1
bound to the ETA and ETB receptors ([ET1-ETA] and [ET1-
ETB],respectively). Because the dissociation constant is similar for
both receptors, we lump ETA and ETB receptors together as one
receptor concentration [ET1-R] for now. Later, we will revisit this
and distinguish between binding to the two receptor types.

ET1]tot � ET1[ ] + ET1–ETA[ ] + ET1–ETB[ ] � ET1[ ] + [ET1–R[ ]
(2)

Similarly, the total receptor concentration ([R]tot) is the sum of
free ETA and ETB receptors concentration ([ETA] and [ETB]), and
the ligand-receptor complexes ([ET1-ETA] and [ET1-ETB]):

FIGURE 1
Model Schematic. In brief, Big ET-1 is assumed to be produced at a constant rate; ECE converts Big ET-1 to ET-1 in the tissue compartment; ET-1 is
distributed between the tissue and plasma compartments; in each compartment, ET-1 binds to ETA and ETB receptors to form receptor-ligand complexes
which are then cleared by internalization. Vp: Central compartment volume; Vt: Tissue compartment volume.
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R[ ]tot � ETA[ ] + ET1–ETA[ ] + ETB[ ] + ET1–ETB[ ]
� R[ ] + ET1–R[ ] (3)

Receptor binding is assumed to occur several orders of
magnitude faster than production, distribution, or internalization,
so that equilibrium between binding and dissociation is achieved
almost instantaneously, and the ligand, receptor, and ligand-
receptor complex are assumed to be in quasi-equilibrium (Mager
and Krzyzanski, 2005), so that:

Kd � koff
kon

� R[ ]* ET1[ ]
ET1–R[ ] (4)

Combining Equations 2–4 gives:

Kd � Rtot − ET1[ ]tot − ET1[ ]( )( )* ET1[ ]
ET1]tot − [ET1[ ] (5)

Unbound ET-1 can then be solved from Equation 5 in terms of
total ET-1 concentration, total receptor concentrations, and Kd, as
expressed in Equation 6.

ET[ ] � 1
2

( ) ET[ ]tot − R[ ]tot −Kd( ) + ������������������������������
ET[ ]tot − R[ ]tot −Kd( )2 + 4Kd ET[ ]tot

√[ ]
(6)

Combining Equations 2, 4 and rearranging, the receptor-ligand
complex concentration [ET1-R] is given by:

ET1–R[ ] � R[ ]tot ET1[ ]
Kd + ET1[ ] (7)

Most ET-1 production occurs in the lung and kidney, where the
highest concentrations of ECE are found (Hunter et al., 2017).
Studies of radiolabeled ET-1 have also shown that ET-1 is
rapidly cleared from the circulation and taken up in the lungs,
kidneys, and liver (Fukuroda et al., 1994; Parker et al., 1999). Thus,
ET-1 kinetics are modeled with 2 compartments–a plasma and a
tissue compartment. ET-1 production is assumed to be much larger
in the tissue than plasma compartment, so that plasma ET-1
production is negligible. For each compartment, the rate of
change of total ET-1 is the net sum of ET1 production (tissue
compartment only), distribution, and internalization by receptor
binding. Total ET-1 in each compartment (p denotes plasma and t
denotes tissue), is given by:

d ET1[ ]total,t( )
dt

� ProdET−1 − Ktp ET1[ ]t +Kpt ET1[ ]p

− Kint
R[ ]tot,t ET1[ ]t
Kd + ET1[ ]t (8)

d ET1[ ]total,p( )
dt

� Ktp ET1[ ]t −Kpt ET1[ ]p −Kint

R[ ]tot,p ET1[ ]p
Kd + ET1[ ]p (9)

At steady state, [ET1]p is the normal plasma ET-1 concentration
([ET1]p0). There are 7 unknown parameters: the intercompartmental
distribution rates Ktp and Kpt, the receptor-ligand internalization rate
constant Kint, the receptor concentrations in each compartment
[R]tot,t and [R]tot,p, BigET-1 production rate ProdBigET, and the
concentration of endothelin converting enzyme [ECE].

Endogenous big-ET production is assumed to be constant, and
ProdBigET as expressed in Equation 10, can be determined from the
steady-state constraint for Equation 1:

ProdBigET � Kcat

Km
BigET[ ]0 * ECE[ ] (10)

The steady-state tissue concentration of ET-1 can be determined
from Equation 9 at steady-state:

ET1[ ]t0 �
Kpt ET1[ ]p0 + Kint R[ ]tot,p ET1[ ]p0

Kd+ ET1[ ]p0
Ktp

(11)

Then, the total tissue receptor concentration (Equation 12),
which is assumed constant, can be determined from Equation 8
at steady-state and Equation 11.

R[ ]tot,t �
ProdET−1 −Ktp ET1[ ]t0 + Kpt ET1[ ]p0

Kint
ET1[ ]p0

Kd+ ET1[ ]p0( ) (12)

This leaves 5 parameters to be estimated by fitting
experimental data.

2.2 Parameter estimation

Unknown model parameters were estimated by simultaneously
fitting three different experimental studies. Each study provided
important pieces of information for parameter estimation.

Radiolabeled ET-1 clearance study: In Parker et al. (1999),
5 healthy human participants were administered a bolus venous
infusion of radiolabeled ET-1 over 5 minutes, and radiolabeled
plasma ET-1 was measured at 0, 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16,
18, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 100, 120, 150, 180, 210 and
240 min after the start of the infusion. This study provided
information for constraining intercompartmental distribution and
receptor internalization rates. However, the ET-1 dose was unknown
and assumed tiny relative to plasma ET-1, so only relative
concentrations could be fit.

Infusion of increasing doses of ET-1: In Kaasjager et al. (1997),
6 healthy participants were administered an infusion of ET-1 at
increasing infusion rates. Participants received 0.5 ng/kg/min ET-1
for 60 min, followed by 1 ng/kg/min for 60 min, followed by a final
2.0 ng/kg/min for 60 min. Plasma ET-1 was measured before
infusion and at 75, 125, and 225 min after the start of the
infusion. This study provided further information for
constraining intercompartmental distribution and receptor
internalization rates, and also provided information for
constraining receptor concentration and compartment volumes.

Infusion of Big ET-1: In Hunter et al. (2017), 10 healthy human
participants were administered an infusion of Big-ET at increasing
infusion rates. Participants received 0.75 pmol/min for 30 min,
followed by 15 pmol/min for 30 min, followed by 300 pmol/min for
another 30 min. Plasma ET-1 was measured at baseline and at 30-
min intervals through 150 min. This study provided information for
quantifying ECE concentration, and further information for
constraining intercompartmental distribution rates, volumes, and
receptor concentration.

Fitting these three studies simultaneously provided sufficient
information to estimate all model parameters. The study protocol
for each study was simulated. Parameters were estimated by
minimizing the least square error between the observed and
model-predicted plasma ET-1 concentrations.
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2.3 Distinguishing ETA and ETB binding and
internalization

After estimating model parameters with lumped ETA and ETB,
we then separated out the contributions of ET1A and ET1B.

Let fB be the fraction of total receptors that are ETB receptors.
Then the fraction of total receptors that are ETA receptors, fA,
is 1 – fB.

Then, the concentration of each receptor (in the absence of an
inhibitor) can be determined, as given in Equations 13, 14:

RB[ ]tot � fB R[ ]tot (13)
RA[ ]tot � 1 − fB( ) R[ ]tot (14)

And concentration of the bound complex can then be expressed
as Equations 15, 16:

ET1–RA[ ] � RA[ ]tot ET1[ ]
Kd + ET1[ ] (15)

ET1–RB[ ] � RB[ ]tot ET1[ ]
Kd + ET1[ ] (16)

The relative expression of ETA and ETB receptors differ across
tissues. The density of ETA is much higher than ETB in resistance
vessels. In the lung, which is the tissue with the highest overall
receptor concentration, the fraction of ETB is around 40%, while in
the kidney it is around 70%–80% (Davenport et al., 2016; Kuc et al.,
1995). Thus, we allow fB to be estimated separately for tissue and
plasma compartments.

Equations 8, 9 can be rewritten to Equations 17, 18 as:

Vt
d ET1[ ]tot,t( )

dt
� ProdET−1 −KtpVt ET1[ ]t +KptVp ET1[ ]p

− KintVt RA[ ]tot,t + RB[ ]tot,t( ) ET1[ ]t
Kd + ET1[ ]t (17)

Vp

d ET1[ ]tot,p( )
dt

� KtpVt ET1[ ]t − KptVp ET1[ ]p

−KintVp RA[ ]tot,p + RB[ ]tot,p( ) ET1[ ]p
Kd + ET1[ ]p

(18)

2.4 Modeling competitive ETA and ETB
inhibition

Endothelin antagonists are competitive inhibitors with varying
degrees of selectivity for ETA or ETB receptors. Let [I] be the
concentration of a competitive endothelin antagonist, with an
affinity Kia for ETA receptors and Kib for ETB receptors. The
concentration of the ligand-receptor complex in the presence of
an antagonist can be expressed as Equations 19, 20 (see
Supplementary Material for derivation):

ET1–RA[ ] � RA[ ]tot ET1[ ]
Kd 1 + I[ ]

Kia
( ) + ET1[ ] (19)

ET1–RB[ ] � RB[ ]tot ET1[ ]
Kd 1 + I[ ]

Kib
( ) + ET1[ ]

(20)

It can further be shown that the concentrations of free ETA and
ETB receptors are:

RA[ ] � RA[ ]tot
1 + ET1[ ]

Kd
+ I[ ]

Kia

(21)

RB[ ] � RB[ ]tot
1 + ET1[ ]

Kd
+ I[ ]

Kib

(22)

Substituting Equations 21, 22 into Equation 2 gives ET1tot, as
expressed in Equation 23.

ET1tot � ET1[ ] + ET1[ ]
Kd

RA[ ]tot
1 + ET1[ ]

Kd
+ I[ ]

Kia

+ RB[ ]tot
1 + ET1[ ]

Kd
+ I[ ]

Kib

⎛⎝ ⎞⎠ (23)

With some additional algebra, the concentration of free [ET1]
can be obtained by solving the resulting third order polynomial for
[ET1] (see Supplementary Material for full derivation).

2.5 Validation

To validate the model, a separate experimental study, not used in
model calibration, was simulated and compared with study results.

Validation Dataset: ETA or ETB inhibition followed by ET-1
infusion: In Bohm et al. (2003), 6 healthy, male participants were
studied on 3 different days separated by at least 1 week. Participants
were infused with either 0.9% saline (for 15 min), the ETA inhibitor
BQ123 (2.5–5 nmol/kg/min for 50 min), or the ETB inhibitor BQ788
(4 nmol/kg/min for 15 min). After 30 min, participants were also
infused with ET-1 (4 pmol/kg/min) for 20 min. Plasma ET-1 was
measured at 0, 15, 30, 40, and 50 min.

To model this study, binding affinities and selectivity of the
selective ETA antagonist BQ123 and selective ETB antagonist
BQ788 were set to previously reported values in human tissue
(BQ123: Kia = 0.78 nM, Kib = 24.3 μM (Peter and Davenport,
1996); BQ788: Kia = 1 μM, Kib = 9.8 nM (Russell and
Davenport, 1996)).

2.6 Sensitivity analysis

To evaluate which parameters contribute most to the
uncertainty in the model output, we computed the Sobol indices
using the sensobol package in R (Puy et al., 2022), a form of global
sensitivity analysis (IM SJMMCE, 1993). Assuming mutual
independence among the input parameters, the variance of the
output is decomposed into fractions which can be attributed
either to a single input parameter (first order Sobol indices) or to
a set of parameters (higher order Sobol indices). The total-order
index Ti measures the first-order effect of a parameter jointly with its
interactions with all the parameters (Homma and Saltelli, 1996).

2.7 Model implementation

The model was implemented in R v4.1.2 using the RxODE
package (Wang et al., 2016). Optimization was performed using the
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L-BFGS-B method in the optim package. Model code is available at
https://bitbucket.org/cardiorenalmodel/endothelin-kinetics.

3 Results and discussion

3.1 Model calibration

As shown in Figure 2, the calibrated model reasonably
reproduced the observed magnitude and time-course of changes
in ET-1 following an ET-1 bolus (Figure 2A), increasing rates of
Big ET-1 infusion (Figure 2B), or increasing rates of ET-1 infusion
(Figure 2C). Estimated parameter values are given in Table 1. In

order to simultaneously fit all three studies, it was necessary to
allow [ECE] to vary for each study. For all other estimated
parameters, the same estimated values allowed the model to
reasonably fit all studies simultaneously. Simultaneously fitting
all studies did require some trade-off in fit: each study could be fit
more precisely if parameters were estimated separately for each
study. However, the simultaneously fit parameters are more useful
than study-specific parameters in providing a general model of ET-
1 kinetics, and thus these parameters were used for the rest of
this analysis.

3.2 Model Validation

The calibrated model was able to reproduce the changes in
plasma ET-1 observed by Bohm et al. (2003) (Figure 3A). First, the
model reproduced the change in plasma ET-1 during ET-1 infusion
in the placebo arm, demonstrating that the ET-1 model can predict
ET-1 kinetics in a new experiment. Secondly, the model reproduced
the augmented rises in ET-1 with selective ETA or ETB antagonist,
resulting from reduced clearance when the receptors are inhibited.
Consistent with the experimental data, the rise in ET-1 with ETB

antagonism was much greater than with ETA antagonism, indicating
that the model recapitulates the dominant role of ETB in ET-
1 clearance.

For ETB antagonism, the model did overpredict the increase in
ET-1 during the period of ETB antagonism alone, prior to the start
of ET-1 infusion. While Bohm et al. reported no change in ET-1
during this period, other studies have found that ET-1 does
increase with similar doses of BQ788 (Okada and Nishikibe,
2002; Strachan et al., 1999), but this increase is delayed. This
could be due to a delay in BQ788 reaching ETB in peripheral
tissues. When a pharmacodynamic delay was introduced, the
model came closer to reproducing the observed ET-1 changes.
Because other studies have noted a rise in ET-1 with BQ788, we did
not want to overfit the model to this single datapoint in this single
study, and thus no further changes were made to force fit
this point.

3.3 Simulations

3.3.1 Effect of selective ET receptor antagonism on
non-antagonized receptor complex

Changes in ETB activation with selective ETA antagonists
have been proposed as a mechanism for fluid retention with ETA

receptor antagonists. On one hand, inhibition of ETB at high
doses of selective ETA receptor antagonists has been proposed to
cause fluid retention by blocking natriuretic/diuretic effects of
ETB (Battistini et al., 2006; Baltatu et al., 2012). On the other
hand, activation of ETB receptors as a consequence of elevated
ET-1 with ETA antagonism has been proposed to increase
vascular permeability and redistribute plasma volume,
resulting in edema (Vercauteren et al., 2017). A first step in
understanding these possible mechanisms is to quantify how
the concentration of a selective antagonist affects plasma ET-1
and the formation of bound complex with the non-
antagonized receptor.

FIGURE 2
Model Calibration: Model parameters were estimated by fitting:
(A), the response to radiolabeled ET-1 bolus (Parker et al., 1999); (B),
increasing doses of Big ET-1 infusion (Hunter et al., 2017); (C),
increasing doses of ET-1 infusion (Kaasjager et al., 1997).
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We first simulated a perfectly selective ETA antagonist by setting
Kia to 1 and Kib to 1020 (to approximate zero ETB antagonism). The
drug concentration was then varied from 0.001 to 1,000X Kia, and
steady-state changes in the bound complexes [ET1-ETA] and [ET1-
ETB] were determined in the plasma and tissue compartments. This
was repeated for a perfectly selective ETB antagonist, with Kia set to
1020 (to approximate zero ETA antagonism)and Kib set to 1, and drug
concentration varied from 0.001 to 100,000X Kib.

As shown in Figure 4A, as the concentration of a selective ETA

antagonist was increased relative to Kia, the formation of bound
complex [ET1-ETB] increased up to 33% and 45% in the tissue and
plasma compartments, respectively, as bound complex [ET1-ETA]
suppression approached 100%. For selective ETB antagonism
(Figure 4B), as the concentration was increased relative to Kib,
the rise in ET1-ETA complex was quite large, increasing to more
than 200% and 500% in the tissue and plasma compartments,
respectively, as bound complex [ET1-ETB] suppression
approached 100%.

In both cases, the rise in the complex of ET-1 with the non-
inhibited receptor occurred due to a compensatory rise in ET-1
concentration, since inhibiting either receptor reduced ET-1
clearance. Since ETB is responsible for a larger portion of ET-1
clearance than ETA, the rise in ET-1 with ETB antagonism was much
larger than with ETA antagonism. Consequently, the rise in [ET1-
ETA] with ETB antagonism was also much larger than the rise in
ET1-ETB with ETA antagonism.

If there were no change in ET-1 concentration, it would be
expected that when the drug concentration equals Ki (when
log10(conc/Ki) = 1), the complex of ET-1 with the antagonized

receptor would be reduced 50%. However, in both cases, the
concentration required to produce a 50% reduction was shifted
higher as a result of the rise in ET-1 concentration (See Equations 19,
20). This shift was much larger with ETB antagonism, due to the
larger rise in ET-1.

Sobol sensitivity analysis indicated that the uncertainty in
predicted changes in ET1-ETA or ET1-ETB was nearly completely
due to the choice of fB–fraction of total receptors that are ETB

receptors. To explore the effect of fB on the model predictions, we
repeated the simulations above when fB is set to 0.5 (a scenario of
equal concentrations of ETA and ETB receptors, and thus equal
clearance through each receptor–inconsistent with (Bohm et al.,
2003) and other studies (Fukuroda et al., 1994; Dupuis et al., 1996)),
or to 0.999 (a scenario in which ET receptors are 99.9% ETB and
0.1% ETA). In the first case, the rise in the non-antagonized receptor
complex was equal for selective ETA and ETB antagonists (i.e., ET1-
ETB rise with ETA antagonism was the same as ET1-ETA rise with
ETB antagonism). The ET-1 concentration also rose equally. At the
other extreme, when fB is set to 0.999, there was no change in ET1-
ETB with ETA antagonism, but ET1-ETA increased more than 2000-
fold with ETB antagonism. However, in all cases, the shape of the
curves, and thus the dependency on Ki and concentration, remained
the same. Only the magnitudes changed (Supplementary
Figures S1, S2).

3.3.2 Effect of antagonist selectivity on non-
antagonized receptor complex

We then investigated the effect of antagonist receptor selectivity
by varying both drug ETA selectivity (Kib/Kia) and drug

TABLE 1 Model parameters.

Parameter Definition Value Units Source

BigET(0) Normal plasma Big ET-1 concentration, initial condition 0.93 pmol/L Miyauchi et al. (2012)

[ET1]p(0) Normal plasma ET-1 concentration, initial condition 3.2 pmol/L Kaasjager et al. (1997)

Kcat/Km ECE catalytic efficiency 2.64e-4 L/min/
pmol

Schweizer et al. (1997)

Kd ET-1 dissociation constant for ETA and ETB 400 pmol/L Bacon et al. (1996)

Vp Central compartment volume 81.6 (1.1%) L estimated

Vt Tissue compartment volume 2.64 (7%) L estimated

[ECE] Endothelin converting enzyme concentration Parker: 162.6 (2.5%)
Hunter: 98 (4.6%)
Kaasjager: 27 (10.7%)

nmol/L estimated

Kpt ET-1 distribution rate from plasma to tissue 0.87 (18.5%) /min estimated

Ktp ET-1 distribution rate from tissue to plasma 0.98 (2.3%) /min estimated

Kint Receptor-ligand internalization rate 0.0095 (0.4%) pmol/min estimated

Rtot,p Total receptor concentration in plasma compartment 460 (1.2%) pmol/L estimated

Rtot,t Total receptor concentration in tissue compartment 7,738 pmol/L Calculated from steady-state
constraints

[ET1]t(0) Total (bound and unbound) concentration of ET-1, initial condition 88.3 pmol/L Calculated from steady-state
constraints

fB,t Fraction of total receptors that are ETB receptors in tissue compartment 0.65 (11%) — estimated

fB,c Fraction of total receptors that are ETB receptors in plasma compartment 0.8 (15%) — estimated
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FIGURE 3
(A)Model Validation: The calibratedmodel reproduced experimentally observed changes in plasma ET-1 observed by Bohmet al. (2003) in response
to placebo, BQ123 (ETA antagonist 4 nmol/kg/min for 50 min), or BQ788 (ETB antagonist 4 nmol/kg/min for 15 min) followed by ET-1 infusion. Speed of
rise in plasma ET-1 with BQ788 is overpredicted; assuming a delay between plasma drug concentration and tissue inhibitory effect on ETB (light purple)
more closely reproduces the data (B)Model-predicted changes in the physiologically active bound complexes of ET1 to ETA or ETB in the plasma and
tissue compartments.
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concentration over a wide range. In Figure 5, all concentrations are
plotted relative to Kia for consistency. [ET-1] increased with
increasing concentrations for all selectivity values, but the higher
the selectivity for ETA, the higher the drug concentration (relative to
Kia) required to increase ET-1 (Figures 5A, B). Trends were the same
but concentrations were much higher in the tissue compared
to plasma.

The complex [ET1-ETA] always decreased with increasing
concentration of selective ETA antagonist (selectivity >1). For

ETB selective antagonism (selectivity <1), [ET1-ETA] was non-
monotonic–for concentrations well below Kia, it increased, and
increased faster with increasing. However, as concentrations
approached and exceeded Kia (and thus also far exceeded Kib),
the rise in [ET1-ETA] began to become smaller, and [ET1-ETA]
eventually began to decrease at concentrations well above Kia

(Figures 5C, D).
The complex [ET1-ETB] always decreased with increasing

concentrations of ETB-selective antagonists (selectivity <1).

FIGURE 4
(A) Effect of increasing concentration of a perfectly selective ETA antagonist. Simulation predicts that as the concentration of a selective ETA
antagonist increases, the formation of bound complex [ET1-ETB] increases up to 33% and 45% in the tissue and plasma compartments, respectively, as
bound complex [ET1-ETA] suppression approaches 100%; (B) Effect of increasing concentration of a perfectly selective ETB antagonist. Simulation
predicts that as the concentration of a selective ETB antagonist increases, the formation of bound complex [ET1-ETA] increases more than 200% and
500% in the tissue and plasma compartments, respectively, as bound complex [ET1-ETB] suppression approaches 100%.
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Interestingly, though, for ETA-selective antagonists, the rise in [ET1-
ETB] was minimal at concentrations less than 0.1X Kia, then became
larger as concentrations approached and exceeded Kia. After
reaching a maximum increase of around 45% (plasma) or 33%
(tissue), further increases in concentration did not further increase
[ET1-ETB]. Instead, as concentrations rose further, [ET1-ETB]
began to fall and quickly became negative. The concentration
required to cause a decrease in [ET1-ETB] was higher as
selectivity increased (Figures 5E, F).

Thus, depending on the concentration, ETA antagonists can
increase (at low concentrations) or decrease (at high concentrations)
the activation of ETB. The higher the selectivity for ETA, the higher
the concentration required to cause ETB to decrease.

Figure 6 shows the change in plasma [ET1-ETB] for different
selective ETA antagonists, based on their reported selectivities
(Davenport et al., 2016). For a relatively non-selective antagonist
like bosentan, [ET1-ETB] rise did not quite reach the maximum

before falling, and became negative at concentrations around 100X
Kia. However, for more selective ETA antagonists, the rise in [ET1-
ETB] tended to max out as concentrations rose. There was no
difference in the maximum rise between ambrisentan, atrasentan,
sitaxentan, and zibotentan. However, while ambrisentan causes
[ET1-ETB] to become negative at concentrations around 1,000x
Kia, [ET1-ETB] remained positive with zibotentan for
concentrations up to 100,000xKia.

Several limitations should be noted. Receptor concentrations
of ETA and ETB vary across tissues and across species. This
analysis assumed a constant relative concentration of receptors,
but this could vary by tissue. Receptor concentration may also
change due to compensatory upregulation or downregulation due
to antagonism, and this was not considered. Nearly all of the
experimental data used to develop the model was collected in
males, and there are likely sex differences that could impact the
model’s predictiveness in females. Endogenous ET-1 production

FIGURE 5
Effect of antagonist selectivity on plasma and tissue changes in ET-1 (A, B), ETA activation by ET-1 (C, D), ETB activation by ET-1 (E, F). ETA
antagonism: selectivity >1, ETB antagonism: selectivity <1.
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was assumed constant, but in reality its secretion changes in
response to physiological signals.

4 Conclusion

This is the first mechanistic mathematical model of ET-1 kinetics
that describes receptor-mediated clearance, and the consequence of
ETB blockade on ET-1 concentrations. It provides a useful tool that
can coupled with experimental studies to quantitively understand and
investigate this complex and dynamic system. This analysis quantifies
effect of ETA antagonists on ETB activation, but does not describe the
physiological consequences of changes in ETA and ETB binding. This
is addressed in our sister paper.
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