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Editorial on the Research Topic

Temporal Structure of Neural Processes Coupling Sensory, Motor and Cognitive Functions of

the Brain

INTRODUCTION

Temporal structure of cognitive and sensory processing holds the key to understanding complex
neural mechanisms involved in higher order brain functions like perception of time. A hypothesis
of embodied cognition posits that cognitive processes are deeply rooted in the interactions with
the external world (Wilson et al., 2002; Anderson et al., 2012). These interactions of the brain with
the external world depend on the accurate representation of the time-dimension in neural circuits
(Gupta, 2014). For example, one cannot catch a flying ball unless the timing of the movements
matches the speed of the ball. Many real world situations depend on the mapping between the
neural and physical representation of time, which is maintained at different hierarchical levels.
Hierarchical processing, consistent with multiple time scales, is manifested during goal-driven
tasks, such as interval timing, duration judgement, and movement coordination. Contributions to
this Research Topic elucidate how key aspects of the time-dimension such as the temporal binding
of neural events play important roles in various cognitive processes, which include perception,
mental time travel, and speech production. Additionally, the multi-scale representation of such
processes from the micro to meso scales—from single neurons to a population of neurons to field
potentials and macroscopic scales of EEG - is, discussed.

CONTRIBUTIONS

Hashimoto and Yotsumoto studied an oscillator-based model of time perception by recording
EEG data during interval timing tasks. They observed that the duration reproduction of a
visual stimulus, flickering at 10Hz, was 1.22 times longer than constantly illuminated stimulus.
The EEG data further revealed an event-related potential (ERP), phase-locked to the flicker,
fluctuating at 10Hz, suggesting an increase in the certainty about the physical time-dimension
in the neural circuits of the brain, which can be analyzed as mutual information. Authors also
found desynchronization of spontaneous neural oscillations during the flicker observation period,
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which is consistent with the presence of desynchronization
during information processing (Kumar et al., 2020).
Furthermore, during time reproduction, there was an increase of
the spontaneous alpha oscillation amplitude. This is consistent
with the synchronization of distributed oscillators by neural
oscillations in the calibration of local circuits during time
reproduction tasks (Gupta, 2014). Thus, the phase-locked 10Hz
ERP induced by the flickering stimulus is likely to improve the
accuracy of neural timing mechanisms in the brain.

Arguably, an increase in the error in timing tasks will
lead to an underestimation of time intervals. This is based
on the likely effect of evolutionary pressures, whenever there
is less certainty about the physical time-dimension in neural
circuits we determine a decrease in interval timing accuracy.
Indeed, the underestimation of time intervals, when accuracy of
timing mechanisms decreases due to the allocation of neuronal
resources/attention to other environmental aspects, will confer
a survival advantage, for example, protecting oneself from an
incoming projectile or catching fruit dropping at a certain speed
from the tree. The same yet to be determined mechanism, which
results in the underestimation of time due to a decrease in
accuracy, could cause time-interval overestimation if there is
an improvement in accuracy. Thus, the stimulus-induced 10Hz
neural entrainment, which increases the certainty of the time-
dimension in neural circuits, would result in the overestimation
of the time interval.

Ben-Soussan and Glicksohn studied the effect of 1 month of
Quadrato Motor Training (QMT), a type of motor training, on
time production in dyslexic patients. In contrast to the control
subjects, the dyslexic subjects produced longer intervals. Authors
argue that longer time interval production is due to increased
attention. QMT activates many parts of the brain simultaneously,
such as areas that are responsible for motor control and
language-related functions. Thus, QMT training will result in
an increased ability to simultaneously keep many networks
active, which may increase neuronal resources for attention.
Development of additional neuronal resources could also
improve the calibration of the clock mechanisms (Gupta, 2014).
This would increase accuracy of internal neural clocks, which as
hypothesized, could be responsible for the over-production of
time intervals.

The magnitude of time-intervals can also affect perception.
This is suggested by the findings of Wan and Chen, who showed
using the Ternus display in a forced choice task that prior
exposure to longer mean (or last) auditory intervals elicited
more reports of group motion, whereas the shorter mean (or
last) auditory interval gave rise to more dominant perception of
element motion. Although longer intervals, greater than 50ms,
promoted group motion in general, the longer auditory intervals,
which are also a more efficient form of the time-dimension input
(Comstock et al.), can produce their effect by increasing the
certainty of longer time intervals in the neural circuits processing
the Ternus display, determining a greater report of groupmotion.
Likewise, the exposure to shorter auditory intervals prior to the
forced choice task, which would increase the certainty of shorter
time intervals, results in a greater report of element motion. The
role of increased certainty is consistent with theory by Gupta and

Bahmer (2019), who proposed that perception is the outcome of
an increase in mutual information, as well as surprisal.

Slater and Tate highlight the significant overlap between
neural systems involved in processing rhythm and those
implicated in Attention Deficit Hyperactivity Disorder (ADHD).
Authors link the impaired attentional control seen in ADHD
to their rhythm-related deficits. They assert that the same
neural bases—from the brain circuitry to dopamine signaling—
that support the processing of musical rhythm are implicated
in ADHD. Additionally, they present computational models
of rhythm perception, based on the entrainment of multiple
neural oscillators (Large and Palmer, 2002; Slater and Tate). The
multiple-oscillators model can also provide a basis to represent
the time-dimension, as well as the transfer of timing information
from one modality to another in the brain (Gupta, 2014), for
example, from auditory to visual, as suggested by the cross-modal
interaction reported by Wan and Chen.

Ravignani et al. presented a mathematical model to explore
small integer-ratio bias in rhythm perception and production.
This small integer bias is likely to be also reflected in the
representation of the time-dimension in neural oscillators, which
would be responsible for the input of time-intervals that are small
integer ratios. This could explain better perception for integer-
ratio stimuli over more complex metrical patterns (Large and
Kolen, 1994), which is in line with the role of temporal duration
in perceptual functions as mentioned above (Wan and Chen).

In subjects doing mental time travel tasks, Schurr et al.
recorded via electrodes inserted in the hippocampus and
the lateral temporal cortex (LTC). Recordings revealed early
modulatory activity between ∼100 and 300ms in the left LTC,
followed by later activity in the left hippocampus between ∼400
and 600ms, which were independent, as shown by electrode
classification. The authors suggest that this represents a division
of labor. Additionally, separation by about 100ms between two
modulations, that are not correlated, also suggests that the
activities in the left LTC and the hippocampus are temporally
coupled, which could serve as a basis for the overall experience
of mental time travel. It should be noted that, in addition
to a synchronous occurrence, two or more neuronal events
may be temporally coupled by a non-zero duration separating
them. Moreover, many temporally coupled neural events may
not be correlated, unless they are also causally related, for
example, by an external stimulus or brain oscillation (Gupta and
Bahmer, 2019). As suggested by this study, temporal coupling
of neural events, without correlations, could contribute to brain
cognitive functions, including the perception of time durations of
various scales.

In a review article, Bahmer and Gupta have argued that
temporal coupling, especially coincidental activation of neural
circuits, is responsible for perceptual functions of the brain.
Simulations showed that few chopper neurons, employing
coincidental activation, can generate different inter-stimulus
intervals, which can contribute to pitch perception at the
cortical level, especially in a difference of 0.2% in pitch by
sensitive listeners.

Pouget et al. have shown using a task of voluntary breathing
control, that intentional initiation of breathing occurred
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when premotor EEG recorded potential reached a threshold.
Furthermore, the reaction time in the voluntary initiation of
breathing was correlated to the amplitude of the threshold, which
varied stochastically. Hence, the initiation of breathing occurred
according to a stochastically distributed reaction time. The
stochastic distribution of breathing initiation times is consistent
with the role of surprisal information in information processing
during speech production (Gupta and Bahmer, 2019). Gupta and
Bahmer (2019) have argued that surprisal information combined
with the increase in mutual information plays an important role
in the mental representation of perceptual objects, such as the
specific contents of speech.

Wang et al. have shown that English alphabet letters (vowels
and the letter t) can be decoded from phase and power of EEG
oscillations over the occipital and temporal regions. However,
in comparison to the phase, the power of oscillation was less
effective in decoding. It should be noted that an increase in
oscillation power indicates that more oscillations are in the
same phase, which would reduce the effectiveness of multiple
individual spikes in representing information. In this study,
synchronization appears, at least to some extent, to represent
information about the alphabets.

Soman et al. have proposed an autoencoder model based
on an oscillatory neural network, which is tested using real
life situations and synthetic EEG signals. Autoencoders
encode signals, perform dimensionality reduction, and
decode the signals. As the authors point out, in the human
brain dimensionality reduction occurs when ∼125 million
photoreceptors converge to ∼1 million neurons in the lateral
geniculate nucleus and then the visual information spreads
to the primary visual areas. The proposed autoencoder
uses biologically plausible features of neuronal oscillatory
systems, such as phase synchronization, frequency tuning,
and convergence. For example, convergence of inputs in the
encoder, combined with an inhibitory network, maximizes
the variance, which extracts useful features of the input, while
resulting in dimensionality reduction. The study of autoencoders
as a computational model can shed light on the functions
of various relay centers throughout the nervous system.
Moreover, in the relay centers, autoencoder-like functionality,
such as synchronization, can incorporate time-dimension into
information processing.

Lloyd et al. adapted network analysis from graph theory
to reveal structures in time (rather than in space) in fMRI
image series in healthy subjects at rest, or passively viewing a
movie, from the human connectome project. In their analysis,
each whole brain image is a temporal node, i.e., a “moment.”.
Collections of correlated moments or nodes across a time-
interval, comprising time points where patterns of global brain
activity are similar—referred to as themes—were significantly
detected. The authors also found rhythms and harmonies in the
patterns of themes, which were broadly similar in two different
experimental conditions. They hypothesized that the detected
rhythms and their harmonic relationship suggests that harmonic
signaling might be adaptive from a computational point of
view. Further analysis of themes revealed that sequences of 6
or 7 s were most often rhythmic. Rhythmic sequences of 6 to

7 s length are unlikely to play a direct role in the information
processing underlying direct perception and action. However, it
would be interesting to see if these rhythmic sequences play a
role in higher mental functions, such as planning and mental
time travel.

Gili et al. argue that metastable dynamics underlie the
interactions between parts of the brain necessary for its dynamic
functioning associated to time perception. Metastability can
be understood as an energy landscape for an ensemble of
possible states, which define the phase space of the brain system.
These possible states tend to achieve local and global minima.
Unlike synchronization, which constrains synchronized parts
of the brain, metastable states are characterized by a tendency
for interacting parts of the brain to be independent. The
authors argue that metastable states underlie time perception
in multimodal sensory processing when different parts of brain
may be independently processing different sensory modalities or
serving motor functions.

Yang et al. studied how wrist stretch (perturbation) modulated
the effective connectivity for the early and late periods
between multiple brain areas, which included the primary
somatosensory cortex, primary motor cortex, premotor cortex,
supplementary motor area, and the posterior parietal cortex
on both hemispheres. Dynamic causal modeling was applied
to analyze the connectivity between different areas and its
modulations when a constant torque was applied in the presence
of the external perturbation. There were greater modulations
in the late phase 100–350ms post-perturbation compared to
20–100ms post-perturbation. This work highlighted interactions
between motor and sensory areas during movements, which
would reflect the interaction of the brain with the four-
dimensional physical world. An increase in connectivity, which
is an estimate of mutual information, would play an important
role in the temporal processing of information underlying the
perceptual functions of the brain.

Das and Ray used spike-LFP coherence to test if the phase
coding by gamma rhythm varies with stimuli contrast or
attention in V1. Here the authors use phase coding (PC) to test
a specific hypothesis: whether stimuli contrast or attentional load
can change the position of the spike relative to the phase of
gamma frequencies in LFP. To be phase coded, spikes resulting
in stronger activation of pyramidal cells appear earlier in gamma
cycles as they overcome the inhibition of pyramidal cells earlier.
Interestingly, they report only a weak effect of attention on
the spike-field phase relationship of PC in V1, which contrasts
with the findings of Fries et al. (2007) and Fries (2015). On
the macroscopic scale, however, Peng et al. argue that visual
crowding, which is mainly attributed to processing in early visual
areas, can be modulated by top-down attention.

CONCLUSION

In our endeavor to understand time-dimension as a bridge
to integrate multi-scale observations of behavior and brain
information processing, the contributions in this Research
Topic have revealed certain key aspects of time-dimension.
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These include the possible role of temporal coupling by
non-zero intervals and the effects of an increase in mutual
information in neural circuits on perception and cognitive
functions, given different aspects of physical time-dimension.
Important future goals at this juncture should include (a) a
study of temporal coupling between unrelated neural events
and (b) an increase in mutual information in the brain, given

the temporal characteristics of external events, such as speed
and rhythmicity.
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Mechanical perturbations applied to the wrist joint typically evoke a stereotypical

sequence of cortical and muscle responses. The early cortical responses (<100 ms) are

thought be involved in the “rapid” transcortical reaction to the perturbation while the late

cortical responses (>100 ms) are related to the “slow” transcortical reaction. Although

previous studies indicated that both responses involve the primary motor cortex, it

remains unclear if both responses are engaged by the same effective connectivity in

the cortical network. To answer this question, we investigated the effective connectivity

cortical network after a “ramp-and-hold” mechanical perturbation, in both the early

(<100 ms) and late (>100 ms) periods, using dynamic causal modeling. Ramp-and-hold

perturbations were applied to the wrist joint while the subject maintained an isometric

wrist flexion. Cortical activity was recorded using a 128-channel electroencephalogram

(EEG). We investigated how the perturbation modulated the effective connectivity for the

early and late periods. Bayesian model comparisons suggested that different effective

connectivity networks are engaged in these two periods. For the early period, we found

that only a few cortico-cortical connections were modulated, while more complicated

connectivity was identified in the cortical network during the late period with multiple

modulated cortico-cortical connections. The limited early cortical network likely allows

for a rapid muscle response without involving high-level cognitive processes, while the

complexity of the late network may facilitate coordinated responses.

Keywords: sensory feedback, stretch response, dynamic causal modeling, sensorimotor network, EEG, effective

connectivity

INTRODUCTION

Bodily movement is one of the main ways how humans interact with the physical world (Schwartz,
2016). Movement can be generated by voluntary and reflex driven actions. Muscle stretch during
active motor task (e.g., maintain an isotonic wrist flexion) results in a sequence of cortical and
muscle responses, involving the central nervous system and the periphery.

In the periphery, the immediate muscle responses to stretch are known as stretch reflexes. Many
studies investigated muscle responses to stretch using electromyography (EMG) after ramp-and-
hold mechanical perturbations. For lower arm muscles, they typically reported a short-latency
stretch response (20–50 ms post-perturbation onset) followed by a long-latency stretch response
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(50–120 ms) and later voluntary reactions (>120 ms) (Scott,
2002; Pruszynski et al., 2011). The short-latency stretch response
depends on the stretch velocity and involves a spinal network
(Houk et al., 1981). The time delays in the afferent pathway
from the periphery to the brain (20–30 ms) (MacKinnon et al.,
2000) and the efferent pathway from the brain to the periphery
(∼20 ms) (Perenboom et al., 2015) would not allow for a
transcortical pathway in the short-latency stretch response.
Several experimental studies indicated cortical contributions
to the long-latency stretch response. Recordings from cortico-
motoneuronal cells in Macaque monkeys showed a cortical effect
on the long-latency stretch response (Cheney and Fetz, 1984).
Subthreshold transcranial magnetic stimulation (TMS) over the
contralateral motor cortex can modulate the long-latency stretch
response but not the short-latency stretch response (Perenboom
et al., 2015). Recent studies indicate the long-latency stretch
response is not as simple as a “reflex” and at least could partly
involve a voluntary feedback control component (Pruszynski
et al., 2011; Pruszynski and Scott, 2012). Thus, we avoid the term
“reflex” and “voluntary” in this paper and use “rapid” and “slow”
transcortical muscle reactions to roughly distinguish the cortical-
involvedmuscle reactions before 120ms (i.e., long-latency stretch
response) and after 120 ms (i.e., “standard” voluntary reaction)
post-perturbation. Similar terminology has been previously used
in a review from Pruszynski and Scott (2012).

In the central nervous system, cortical responses to muscle
stretch have been investigated by previous studies using the
event-related potential (ERP) (Abbruzzese et al., 1985; Campfens
et al., 2015). The latencies and topographies of the stretch-
evoked ERP reflect the time courses of cortical activity and
most active areas in response to the muscle stretch. Both
early (<100 ms post-perturbation onset) and late (>100 ms)
ERP components were reported around the contralateral motor
cortex (Campfens et al., 2015). Considering the efferent motor
conduction delay (∼20 ms), the early cortical response is thought
to related to the rapid transcortical muscle reaction to the
perturbation (<∼120 ms) while the late cortical response may
be related to the slow transcortical muscle reaction (>∼120
ms) (MacKinnon et al., 2000; Pruszynski and Scott, 2012). ERP
results indicate that the primary motor cortex may contribute
to both rapid and slow transcortical muscle reactions; however,
exact cortical pathways are yet to investigate. The full cortical
network for motor control is thought to involve multiple brain
areas, including primary somatosensory cortex (S1), primary
motor cortex (M1), premotor cortex (PM), supplementary motor
area (SMA), and posterior parietal cortex (PPC) (Scott, 2004;
Szameitat et al., 2012). These regions constitute the cortical
sensorimotor network, which is a distributed and adaptable
network that orchestrates the overall human motor behavior
(Scott, 2004; Shibasaki, 2012).

In this study, we used dynamic causal modeling (DCM)
to model the effective connectivity in the cortical network
modulated by muscle stretch. Effective cortical connectivity
refers to the strength of the causal influences between multiple
cortical areas, which can be modulated by external perturbations
(Friston, 2011). A few studies suggested that the rapid and slow
transcortical muscle reactions are engaged by similar neural

circuitries in the brain (Pruszynski et al., 2011; Pruszynski and
Scott, 2012). However, we hypothesize that the early response
engages effective cortical connectivity in a less complex network
to accelerate the muscle response with a shorter delay, i.e.,
rapid transcortical muscle reactions; while the slow transcortical
muscle reaction is governed by a more complex cortical network
in the late cortical response.

To valid our hypothesis, we estimated effective connectivity
among the cortical areas involved in sensorimotor control
of the wrist in response to a perturbation. Previous studies
considered only M1, SMA, and PM as “key motor regions” for
upper limb movement (Grefkes et al., 2008; Chen et al., 2010).
In line with review papers on feedback based motor control
(Scott, 2002, 2004), we added S1 and PPC to our possible
functional cortical network models, since these two areas are
closely related to feedback-based motor control. S1 is the brain
area receiving the peripheral somatosensory input, while the
PPC is known as a sensory association area which is essential
to integrate different sensory inputs. We investigated effective
cortical connectivity in the early period within 100 ms post-
perturbation onset in comparison to the late period between
100 and 350 ms post-perturbation onset to check if the rapid
and slow transcortical muscle reactions involve similar cortical
areas and signal propagation pathways. Considering the afferent
sensory transmission time delay (∼20 ms) (Abbruzzese et al.,
1985; Campfens et al., 2015), we used 20–100 ms as the period
to investigate the early cortical network.

MATERIALS AND METHODS

Subjects and Ethical Statement
Seven healthy right-handed volunteers (one female) aged 23–28
years old participated in the experiment. This study was carried
out in accordance with the recommendations of Human Subject
Research guidelines, the Human Research Ethics Committee
of the Delft University of Technology with written informed
consent from all subjects. All subjects gave written informed
consent in accordance with the Declaration of Helsinki. All
subjects signed informed consent before the experiment and
received a small financial compensation for their participations.
The protocol was approved by the Human Research Ethics
Committee of the Delft University of Technology.

Experimental Protocol
Subjects sat next to a wrist manipulator (Wristalyzer, Moog
Inc., the Netherlands), which is an actuated rotating device
with a single degree of freedom to exert flexion and extension
perturbations to the wrist joint. The lower arm of the subject was
strapped in the armrest, while the subject was closely touching
the handle of the wrist manipulator (fixed with velcro). Subjects
were instructed to relax their fingers and only use the wrist to do
the task. The axis of wrist manipulator rotation was aligned with
the axis of wrist rotation. Wrist torque was measured by a force
transducer within the handle of the wrist manipulator.

The protocol contained 30 trials. Each trial started with
auditory cue “beep” and a fixation in the center of the screen
with a random period of 1.5–2 s. After this random period,
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visual feedback was provided with an arrow in a circle. The
angle of the arrow is proportional to the (low-pass filtered 1
Hz) torque applied by subjects. Subjects were instructed to push
with a constant flexion torque (1.0 Nm) to the handle with
their right wrist (keeping the arrow pointing upwards) using the
visual feedback. Each trial contains 20 flexion and 20 extension
ramp perturbations. Note that the visual feedback was low-pass
filtered to avoid fast visual corrections to the perturbations. The
wrist manipulator applied angular ramp perturbation to stretch
the wrist muscles when the subject maintained the constant
flexion torque (with std. <5%) for a random period of 1.5–
2 s, and then stopped (and held) at the new position until the
next perturbation. A ramp duration of 40 ms was used with the
velocity 1.5 rad/s; giving a ramp amplitude of 0.06 rad. This
duration is below the expected saturation level of long-latency
EMG response and allows for both inhabitation and facilitation of
the long-latency stretch response (Lee and Tatton, 1982; Meskers
et al., 2009; Perenboom et al., 2015). During the ramp, subjects
were instructed to maintain the same level of force. Since the
subjects were required to maintain a flexion torque, only the
data from the extension ramp perturbations (stretching the wrist
flexors) were included for analysis.

Electroencephalogram (EEG) was recorded using a 128-
channel cap (5/10 systems, WaveGuard cap, ANT Neuro,
The Netherlands) with Al/AgCl electrodes. EMG signals were
measured from the flexor and extensor carpi radialis muscles of
the right forearm using bipolar derivations 2 cm inter-electrode
distance. EEG signals were recorded at by a bio-signal amplifier
(Refa System, TMSi, The Netherlands), which acquired data at
a sampling frequency of 2,048 Hz. The amplifier contains an
antialiasing low-pass filter with the cut-off frequency of 552 Hz.

Data Preprocessing
The continuous EEG signals were filtered by a 0.5–100 Hz zero-
phase shift band-pass filter using EEGLAB (Delorme andMakeig,
2004) to remove possible high-frequency noise and slow trends in
the data (e.g., blood pressure, heartbeat, breathing). A notch filter
was used to reject the 50 Hz line power noise. Afterwards, EEG
were segmented into 570 ms epochs with 220 ms pre-stimulus
baseline plus 350 ms post-stimulus recording. The epochs
contaminated by the artifacts (e.g., eye blinks/movements and
EMG artifacts) were removed by visual inspection. In the data,
we did not see visible artifacts due to the transient perturbations.
On average 118 epochs were removed per participant, leaving
472 ± 53 epochs per participants for analysis. Then the ERPs
were derived by grand averaging the remaining epochs using the
period of 220–20 ms before stimulus onset as the baseline. These
extracted ERPs corresponding to the neural activity in the cortical
regions of interest are used to quantify effective connectivity
between those regions via DCM.

Dynamic Causal Modeling
DCM was applied to analyse the effective cortical connectivity.
Although various methods are available for analyzing effective
cortical connectivity, most of them focus on the linear
connectivity, such as partial directed coherence (Kaminski and
Blinowska, 1991; Porcaro et al., 2013) and directed transfer

function (Babiloni et al., 2005). Previous studies have reported
non-linear neuronal coupling in human stretch responses (Yang
et al., 2016b) and voluntary motor control (Chen et al., 2010;
Yang et al., 2016a) of lower arm muscles. Different from
linear connectivity methods, DCM is a non-linear identification
approach to reveal how external inputs cause changes in the
coupling of neural populations in the effective connectivity
network (Friston et al., 2003; Goulden et al., 2014).

We used the standard DCM for ERP (David et al., 2006) as
implemented in Statistical Parametric Mapping toolbox (SPM12,
Wellcome Trust Centre for Neuroimaging, London, UK) to
model effective connectivity among distributed cortical sources
within the sensorimotor network. The analysis was performed
for two different periods 20–100 and 100–350 ms after the
perturbation onset.

DCM estimates effective connectivity in a network of
reconstructed cortical sources. DCM is a neurobiologically
constrained source reconstruction scheme including both spatial
forward modeling and model inversion (David et al., 2006).
For the spatial forward model, DCM uses similar leadfields as
other source reconstructionmethods (Kiebel et al., 2006). Beyond
other source reconstruction methods, DCM combines the spatial
forward model with a biologically informed temporal forward
model to estimate the connectivity between sources (Friston et al.,
2003; David et al., 2006).

In this paper, the leadfield of each source is modeled by
a single equivalent current dipole (Kiebel et al., 2006). DCM
analysis requires users to specify the prior locations (in mm
in MNI coordinates) of each source in the cortical network
for building the spatial forward model (David et al., 2006).
Based on the review from Scott (2002) (Scott, 2002), we selected
eight key regions in the cortical sensorimotor network: left and
right primary somatosensory cortex (S1), left and right primary
motor cortex (M1), left and right bilateral premotor cortex (PM),
supplementary motor area (SMA), and posterior parietal cortex
(PPC). The MNI coordinates of hand/wrist regions in these eight
cortical areas were informed by previous fMRI studies (Szameitat
et al., 2012; Vlaar et al., 2016) and provided in Table 1. Based
on these eight cortical sources (see Figure 1), we specified six
different connectivity models as shown in Figure 2. In all of
the models, the S1 is the source receiving the external input.
The model space was created using two model attributes: (1)
whether the connectivity is partially or fully modulated by the
stimulus, and (2) whether interhemispheric connectivity is left
lateralized (since the perturbation is given to the right wrist) or
symmetric.

The network model is inverted using a Bayesian approach
described by Friston (2002), where a fix-form Laplace
approximation is used to estimate probability distributions
of parameters. This is under the Gaussian assumption, which
enables computation of the likelihood from the prediction
error. We then used Bayesian model comparison to identify
the best model, based on approximation to the log-evidence
obtained in the model inversion (Friston and Penny, 2011).
In this study, we did not find an identical optimal model for
all individuals. According to the practical recommendations
provided by Stephan et al. (2010), the group-level analysis
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was performed to find the best cross-subject model, where the
pooled log-evidence for each model (mi) across subjects (y1,
..., y7) is defined as ln p(y1, ..., y7|mi). Assuming that the data
for different subjects are independent, we then have ln p(y1,
..., y7|mi) = ln p(y1|mi) + ln p(y2|mi) +... + p(y7|mi) (Penny
et al., 2004). This pooled log-evidence indicates how well a
particular model explains multiple datasets. To compare model
evidences on group level, we used random-effect group Bayesian
model selection (BMS). Classical random-effect analysis detects
whether model evidence is consistent across subjects. In contrast,
the group-BMS approach identifies the proportion of subjects,
which is best described in terms of the model evidence, i.e., the
posterior probability that each model is more frequent than
others (Rigoux et al., 2014). The log group Bayes factor (ln BFi,j)
between models is computed from pooled log-evidences, i.e., ln
BFi,j = ln (y1, ..., y7|mi) -ln p(y1, ..., y7|mj), to indicate that how
much model i is superior to model j for the whole data set. The
value of ln BFi,j between 20 and 150 indicates a strong evidence
(according to 95% confidence level) in favor of model i than
model j, while ln BFi,j larger than 150 indicates a very strong
evidence (99% confidence level) (Penny et al., 2004).

TABLE 1 | MNI coordinates (mm) of eight sources in the cortical sensorimotor

network: left (L) and right (R) primary somatosensory cortex (S1), left and right

primary motor cortex (M1), left and right bilateral premotor cortex (PM), and

supplementary motor area (SMA), posterior parietal cortex (PPC).

Sources MNI coordinates (mm)

S1 L −26 −40 68

S1 R 26 −40 68

M1 L −33 −28 70

M1 R 33 −28 70

PM L −54 −2 46

PM R 54 −2 46

SMA −4 −10 64

PPC −4 −46 68

After identifying the best cross-subject model (with the
highest pooled log-evidence), we obtained the mean posterior
estimates of all effective connectivity parameters for each
subject and each period. These parameters represent the relative
connectivity strengths between the two sources. The inferences
on these parameters reflect the input (i.e., the muscle stretch)
modulated changes in the effective connectivity. By investigating
these inferences, we can identify the activities of which cortical
areas are modulated by themuscle stretch and how they influence
other cortical areas.

We averaged the connectivity strengths over subjects using
Bayesian parameter averaging to get the mean estimate for each
directional cortical interaction. We used one-sample t-test (two-
tailed) to identify significant changes in the effective connectivity
(p < 0.05, adjusted by false discovery rate estimation) in the best
cross-subject model to get the perturbation-modulated effective
connectivity for each period.

RESULTS

Bayesian Model Selection
The effective connectivity in the cortical network after stretching
the flexor muscles of the right wrist was modeled with DCM. We
compared different Bayesian model families shown in Figure 2.
Family-level Bayesian model comparison show that the left
lateralized (L) models fit the data better than the symmetric (S)
models for both periods (ln BFL,S = 1,350 for 20–100 ms, and ln
BFL,S = 611 for 100–350 ms). The partial (P) modulated models
fit the data better than the fully (F) modulated models for the
period of 20–100ms (ln BFP,F = 1,706), while the fully modulated
models provide substantially better fit for the period of 100–350
ms (ln BFF,P = 3,670).

Figure 3 shows the pooled log-evidences for different models.
For the period of 20–100 ms, the model comparison shows the
strongest evidence for Model 5, which is a partially modulated
left lateral model, with a Bayes Factor (ln BF5,6) of 168 over the
second-best model (Model 6). For the period of 100–350 ms,

FIGURE 1 | Eight selected cortical regions: left and right primary somatosensory cortex (S1), left and right primary motor cortex (M1), left and right bilateral premotor

cortex (PM), and supplementary motor area (SMA), posterior parietal cortex (PPC).
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FIGURE 2 | Six biologically plausible models for perturbation-modulated network. All of the models, the left S1 (marked in red) is the source receiving the external

input (stretch of the flexor muscles of the right wrist). Model spaces are created using two attributes: partially (P) vs. fully (F) modulated by the stimulus, and left

lateralized (L) vs. symmetric (S).

FIGURE 3 | Results of Bayesian model selection. Comparison of the pooled log-evidences of the six models indicates: (A) Model 5 is the best model (log-evidence =

−7,600) for the period of 20–100 ms and (B) Model 6 is the best model (log-evidence = −1,440) for the period of 100–350 ms.

the strongest evidence is present for Model 6, which is a fully
modulated left lateral model, with a with a Bayes Factor (ln BF6,5)
of 72 over the second-best model (Model 5).

Inference on Coupling Parameters
The analysis of coupling parameters under the best cross-
subject models reveals the significant modulations of effective
connectivity by the perturbation for the period of 20–100 ms
(Model 5) and 100–350ms (Model 6), respectively (see Figure 4).
During the period of 20–100ms, the significant modulations only
occur in the connectivity between M1 and a few cortical areas. In

the left hemisphere (contralateral side to the perturbation), we
detected a decrease in the effective connectivity from PM to M1
while an increase from S1 to M1. In the right hemisphere, only
an increase of effective connectivity is shown from PM to M1.
The cross-hemisphere interaction shows a reduced connectivity
from rightM1 to left M1. The left M1, which comprises the upper
motoneurons of the right wrist muscles, appears a “sink” for all
modulated connectivity pathways in this period.

During the period of 100–350 ms, a larger number of
connections among more cortical areas is modulated by the
perturbation. Different from the period of 20–100 ms, the

Frontiers in Neuroscience | www.frontiersin.org 5 September 2017 | Volume 11 | Article 51813

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Yang et al. Effective Connectivity during Muscle Stretch

FIGURE 4 | Modulatory effects of wrist muscle stretch on effective connectivity in the best model for (A) the period 20–100 ms post-perturbation and (B) the period of

100–350 ms post-perturbation. The significantly modulated effective connectivity and associated brain areas are highlighted in bold. The increased connectivity is

indicated in blue, while the reduced connectivity is given in red. We also provide percentages of coupling change and p-value (in parentheses) for all the significantly

modulated connectivity. The S1 (marked in red circle) is the source receiving the external input (stretch of right wrist).

connectivity with SMA, PPC and right S1 are also modulated.
Specially, we found that a reduced connectivity pathway started
from PPC through SMA to left M1. Additionally, there are three
reduced connectivity pathways starting from PPC, left S1 andM1
all passing through right PM and arriving at left M1.

DISCUSSION

In this study, we investigated the response of the effective
connectivity in the cortical network to stretch of the flexor
muscles of the right wrist. We built model spaces with
left lateralized (i.e., contralateral to the perturbed wrist) and
symmetric models for comparison. We did not include right
lateralized models, since all subjects are right-handed and the
task is performed with the right wrist. DCM suggested strong
evidence that contralateral (left) lateralized models were superior
to the symmetric models for both rapid (20–100 ms) and slow
(100–350 ms) periods. These results are in line with previous
studies reporting contralateral hemisphere dominance of the
cortical response to wrist perturbations (Campfens et al., 2015)
and during motor control (Chen et al., 2010; Yang et al.,
2016b).

DCM for the Early Cortical Response to

Muscle Stretch
During the early period of 20–100 ms, the partially modulated
models (of the effective connectivity in the cortical network)
fit the data better than the fully modulated models, showing
a relatively simpler network compared to the period of 100–
350 ms. In the best model (Model 5), only a few connections
among several key cortical areas are significantly modulated
during the early period (see Figure 4A). This likely facilitates

a rapid motor reaction to the perturbation without involving
high level cognitive processes. Previous studies have found direct
monosynaptic connections between the S1 and M1, which allows
fast signal propagations between S1 and M1 (Rocco-Donovan
et al., 2011). Here, we detected an increased connectivity from
S1 to M1 in the contralateral hemisphere. This enhanced S1-M1
connectivity may lead to a quick sensory-motor processing in
response to the unpredicted change (caused by the perturbation)
in the sensory periphery.

A reduced connectivity from PM to M1 is shown at
contralateral hemisphere in the early period. The PM is thought
to be associated with predictions of sensory consequences
of voluntary movements (Christensen et al., 2007). In the
experiment, the subjects were required to maintain an isotonic
wrist flexor torque before the perturbation. Thus, this voluntary
control was accompanied with both the efferent motor command
and an “efference copy” of this information (Wolpert and
Flanagan, 2001). The communication between the M1 and PM
is likely related to the cortical process of the efference copy to
mediate movement predictions. This process may be inhibited
due to the unpredicted change of sensory input, showing a
decrease of effective connectivity from the PM to M1.

Additionally, a decreased effective connectivity is also shown
from ipsilateral M1 to contralateral M1. The interhemispheric
interaction of M1 has been reported by TMS and EEG studies
during forearm muscle movement control (Ferbert et al., 1992;
Bönstrup et al., 2016). This interhemispheric inhibition is
thought to be related to the activity of inhibitory GABA-ergic
interneurons (Daskalakis et al., 2002) to prevent the interference
from the opposite hemisphere (e.g., mirror movement) during
movement control (Mayston et al., 1999). Thus, this inhibitory
effect may facilitate the cortical response to the unpredictable
perturbation without the interruption of ipsilateral M1. All the
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information of modulation eventually flows into the contralateral
M1which allows the early cortical activity to be transmitted to the
motor units through the monosynaptic corticospinal connection
(Nielsen, 2016). This is the fastest cortical pathway contributing
to the muscle stretch response, which likely lead to the rapid
transcortical muscle response.

Effective Connectivity during the Late

Cortical Response to Muscle Stretch
In the late period of 100–350 ms, there are more cortical areas
and connections are modulated (see Figure 4B). In particular,
the connection between PPC and SMA is modulated, indicating
that these cortical areas may play important roles in the
late cortical responses to muscle stretch. The PPC is thought
be involved in the multisensory integration and coordinate
transformations from sensory inputs to motor outputs during
feedback-based movement control (Andersen and Buneo, 2002).
The SMA is crucial for linking cognition to motor action
(Nachev et al., 2008). The modulation of PPC-SMA connectivity
indicates a high-level cognitive process for the slow, voluntary
response, which is not shown for the early period. The reduced
connectivity from PPC to SMA likely indicates a negative
feedback in sensorimotor control loop. This negative feedback
may play a role in correcting the motor actions based on
the integrated sensory information. Besides, multiple pathways
ending at the contralateral M1 are modulated in this period,
indicating rich communications between different cortical areas.
The complexity of this network in late period likely delays
the voluntary motor output to facilitate the coordinated (slow)
muscle responses.

CONCLUSION

Muscle stretch modulates different effective cortico-cortical
connections during early (before 100 ms post-perturbation)
and late (after 100 ms) periods of cortical responses. Only a
few effective cortico-cortical connections are modulated in the
early period, while more cortical areas are involved in the late
period with more effective connections modulated. The limited
early cortical network likely allows for a rapid muscle response
without involving high-level cognitive processes. The complexity
of the late network may delay the voluntary motor output from
the cortex, so as to facilitate the coordinated responses in the
“standard” voluntary reaction to muscle stretch.
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Increasing evidence indicates that the phase pattern and power of the low frequency

oscillations of brain electroencephalograms (EEG) contain significant information during

the human cognition of sensory signals such as auditory and visual stimuli. Here, we

investigate whether and how the letters of the alphabet can be directly decoded from

EEG phase and power data. In addition, we investigate how different band oscillations

contribute to the classification and determine the critical time periods. An English letter

recognition task was assigned, and statistical analyses were conducted to decode the

EEG signal corresponding to each letter visualized on a computer screen. We applied

support vector machine (SVM) with gradient descent method to learn the potential

features for classification. It was observed that the EEG phase signals have a higher

decoding accuracy than the oscillation power information. Low-frequency theta and

alpha oscillations have phase information with higher accuracy than do other bands. The

decoding performance was best when the analysis period began from 180 to 380ms

after stimulus presentation, especially in the lateral occipital and posterior temporal scalp

regions (PO7 and PO8). These results may provide a new approach for brain-computer

interface techniques (BCI) and may deepen our understanding of EEG oscillations in

cognition.

Keywords: brain-computer interface, support vector machine (SVM), human brain, theta-band oscillation, visual

cortex

INTRODUCTION

The past decade has witnessed great developments in brain–computer interfaces (BCIs), aiming
to help severely physically impaired patients interact with the external world through tasks such
as typing letters of the English alphabet on a computer for communication. Studies have applied
stimulus-evoked brain electroencephalogram (EEG) or electrocorticography (ECoG) signals,
especially event-related potentials (ERPs) with P300 responses (Zhang et al., 2013) and steady-state
visually evoked potentials (SSVEP) (Won et al., 2014; Nezamfar et al., 2016), to discriminate
stimulus characteristics such as letters. There is increasing evidence that the frequency-related
phase pattern and power of neural oscillations may code significant sensory information relevant to
human perception of the external world, especially in low-frequency bands (Luo and Poeppel, 2007;
Schyns et al., 2011; Wang et al., 2012; ten Oever and Sack, 2015). Luo et al. (Luo and Poeppel, 2007)
demonstrated that the phase pattern of theta-band (5–8Hz) activities from the human auditory
cortex contains information used to discriminate spoken sentence signals. Their findings indicated
a approximately 200ms time window (approximately 5Hz within the theta rhythm) that may be

17

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2018.00062
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2018.00062&domain=pdf&date_stamp=2018-02-07
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:yuyuguo@fudan.edu.cn
https://doi.org/10.3389/fnins.2018.00062
https://www.frontiersin.org/articles/10.3389/fnins.2018.00062/full
http://loop.frontiersin.org/people/473864/overview
http://loop.frontiersin.org/people/489388/overview
http://loop.frontiersin.org/people/88515/overview


Wang et al. EEG Phase Encode Input Signals

critical for discrete perceptive processes. Subsequent phase-
decoding studies in audio perception have observed that a similar
oscillation frequency range (3∼7Hz) is dominant in spoken
sentence recognition (Luo and Poeppel, 2007; Howard and
Poeppel, 2010; Wang et al., 2012; Ng et al., 2013; ten Oever
and Sack, 2015). Ng et al. (2013) demonstrated that stimuli can
be discriminated by the firing rates and phase patterns but not
by the oscillation amplitude. Another recent study presented
evidence that syllables with varying visual-to-auditory delays are
preferably processed at different oscillatory phases (ten Oever
and Sack, 2015). Wang et al. (2012) employed the scalp tangential
electric field and the surface Laplacian operator around the
auditory cortical area to improve the recognition rate of English
phonemes. They built a complicated bootstrap-based method
that achieved 53% accuracy for all eight phonemes and showed
that phase sequences performed better. also revealed that changes
in the amplitude (Worden et al., 2000; van Dijk et al., 2008)
and phase (Vanrullen et al., 2011) of ongoing alpha activities
(9–12Hz) several hundred milliseconds before a stimulus can
modulate the visual discrimination level. In fact, more recent
evidence suggests that decreased alpha power may be tightly
correlated to the increase in the visual baseline excitability level,
whichmay serve to improve task performance (Lange et al., 2013;
Iemi et al., 2017).

The above studies suggest the importance of the frequency,
phase, and amplitude of slow oscillatory activities in object
representation and categorization (Fries et al., 2007; Schyns et al.,
2011). For example, the oscillatory power of various frequency
bands may serve to modulate sensory excitability and attention
(Klimesch, 1999; Engel et al., 2001; van Dijk et al., 2008), while
oscillatory phase patterns across theta and gamma bands may be
engaged in information processing, visual attention and working
memory (Lisman and Idiart, 1995; Siegel et al., 2009; Heusser
et al., 2016).

In this study, we examined the possibility of employing
EEG phase and power signals to discriminate input stimulus
for a brain-computer interface (BCI) approach. We chose the
English alphabet as the visual stimulus because it is a “model”
stimulus in BCI research. Based on the above experimental
studies (Luo and Poeppel, 2007; van Dijk et al., 2008; Busch et al.,
2009; Canolty and Knight, 2010; Schyns et al., 2011; VanRullen
and Macdonald, 2012; Wang et al., 2012; ten Oever and Sack,
2015; Watrous et al., 2015; Heusser et al., 2016; Tomassini
et al., 2017), which presented evidence on how the oscillatory
parameters (phase, power, and frequency) may code visual and
auditory information, we hypothesize that information from the
visual presentation of different letters in the English alphabet
may be encoded in EEG low-frequency phase patterns. Phase
decoding and statistical machine-learning analysis may be a
novel method, in addition to the traditional ERP method, for
discriminating visualized letters. This may be of great benefit for
the development of BCI techniques. In addition, it is believed
that visual information first flows through the primary visual
cortex and then up to higher levels such as V3/4 TEO and TE,
which is called the ventral pathway in object recognition tasks
(Tanaka, 1996; Krüger et al., 2013). The ventral pathway was
thought to be particularly important for reading, including word

and letter recognition (Price and Devlin, 2011). Therefore, we
questioned whether there was a classification accuracy difference
between the scalp occipital and scalp tempo-occipital regions. To
examine the above issues, a simple BCI protocol was designed in
which subjects watched randomly selected letters on a computer
monitor. EEG data were collected from each subject, and an
analysis was applied to determine whether visual letter stimuli
could be discriminated based on the EEG phase pattern and
power amplitude.

MATERIALS AND METHODS

Subjects
Fourteen right-handed students from Shanghai Fudan University
were recruited by providing monetary compensation. Right-
handedness was determined using the Edinburgh handedness
inventory (Oldfield, 1971). All subjects (nice males and five
females, mean age 25.4, range: 21–32) had normal color vision,
corrected visual acuity and no history of neurological or
psychiatric problems. This study was approved and supervised
by the Ethics Committee of the School of Life Sciences at Fudan
University (No. 290). All participants signed written informed
consent.

EEG Recordings and Experimental Design
The EEG data were recorded with a 500Hz sampling rate
in a sound-proof room using a 64-channel actiCHamp Brain
Products recording system (Brain Products GmbH, Inc., Munich,
Germany) relative to a Cz reference signal. The ground electrode
was placed on the Fz electrode. The impedance levels were
maintained below 10 kohm.

The stimuli were presented using a pre-programmed e-prime
protocol. Five lowercase letters, “a,” “e,” “I,” “o,” and “t” were
chosen as the letters to be visually presented on the computer
screen. The letter “t” was chosen to exclude pronunciation
peculiarity because the remaining four letters were vowels. The
letters were in white Times New Roman font and presented on
an approximately 12 cm∗12 cm black background, in a field of
view (FOV) of 6.88 degrees. The subjects sat one meter away
from a 23-inch screen. The screen was adjusted as high as the
height of the seated subject so that the subjects could keep their
eyes horizontal. The subjects were directed to focus on the screen
and not to move their heads. When a letter was presented, the
subjects were directed to read it silently without mouth action.
This was intended to keep the subject focused and to avoid
any myoelectric artifacts. The participants were instructed to
minimize eye movements during the visual presentation and to
fixate on the center.

Figure 1 presents the experimental protocol. In each trial, a
randomly displayed letter appeared on the screen for 1 s and was
followed by a 3-s blank interval. Before the appearance of the
letter, the subjects were directed to focus their eyes on a white
cross on the screen for 1 s. In the study, the subject watched
five letters appear individually randomly for 450 trials. The 450
trials were divided into three blocks, with each block containing
150 trials. At the beginning of each block, an instruction was
presented on the screen, and the program was paused until the
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FIGURE 1 | Experimental procedure and data processing. (A) Letters were shown randomly in the center of the screen in white on a black background. The letters

were approximately 12 cm*12 cm. The letters were presented for 1 s, followed by a 3-s resting period. Before presentation of the letter, a white cross was shown on

the screen for subjects to maintain eye fixation. (B) Training sets were extracted from filtered EEG power/phase signals with a fixed window length of 200ms. The

window began 100ms before the appearance of the letter and ended 500ms later.

subject pressed the “enter” button to continue. In each block, the
letters randomly appeared 150 times, with each letter for 30 times.
Between each block, the subject had a short break and then chose
when to continue the next study block. It took approximately
60min to finish three blocks. Between each block, the recording
was paused, and the electrode conductance was examined. The
mean of the successful trials used for analysis is 351 ± 55 (mean
and SD) over all subjects.

Data Preprocessing Analysis
Data preprocessing analysis was performed using EEGLAB
(Delorme and Makeig, 2004) and included bandpass filtering
(0.5–220Hz), epoch extraction locked to the onset of the
letters (−500 to 1,000ms) and baseline correction (−500 to
0ms). To avoid confusion, we called these data “wide-band
data” to differentiate them from the later narrow-band filtered
data such as the alpha band EEG data. Signal artifacts were
removed in two steps. First, the data were visually inspected,
and epochs containing artifacts such as extremely high-amplitude
electrode cable movement-induced fluctuations were rejected.
Second, epochs containing typical eye movements and eye-
blink artifacts that occurred during the first 800ms after the
onset of the letters were rejected. An independent component
analysis (ICA) was applied to decompose the EEG data. After
decomposition, 63 time-sequence data of component activations
were obtained that corresponded to 63 recording channels for
each subject. These component activations were recognized as
EEG activity or non-brain artifacts by visual inspection of their
scalp topographies, time courses, and frequency spectra. The
artifact components related to heart beats, temporal muscle
movement, eye movements and eye blinks were removed. The
criteria for categorizing component activations as EEG activity
included the following: (1) spectral peak(s) at typical EEG
frequencies and (2) similar responses across each trials; i.e., an
EEG response should not occur in a small number of trials
only (Delorme and Makeig, 2004). Based on these criteria, the
component activations representing non-brain artifacts were
removed (the removed ICAs are 11.07 ± 8.62, mean and SD,
for 14 subjects), and the EEG data were reconstructed from the
remaining component activations.

We then employed the Hilbert transform to convert the
real-time artifact-cleaned EEG sequence into a complex time
sequence. Each complex number has amplitude and angle

information. We derived the amplitude sequence A(t) and phase
sequence P(t) separately. Then, we applied machine-learning
analysis based on the amplitude or phase sequence data. The
formula for the Hilbert transform is presented here:

Y(t) = H(x(t)) =

+∞w

−∞

x(τ ) ∗
1

t − τ

dτ

Hilbert transformation converts the raw real signal into an
imaginary counterpart, and these two parts make a complex
signal. The power sequence is defined as the magnitude of this
complex signal, and the phase sequence is its phase angle.

Moreover, delta (1–4Hz), theta (4–8Hz), alpha (8–14Hz),
beta (14–30Hz), and gamma (30Hz above) band oscillations are
five typical rhythms observed in the cortex and are thought to be
closely related to cognition processes (Kahana et al., 2001; Colgin
et al., 2009; Fries, 2015). Additionally, the gamma oscillation
can be further divided into low-gamma (30–50Hz) and high-
gamma (50–150Hz) oscillations. To investigate the functional
role of these oscillations in letter classification performance,
the original epoched EEG response was filtered into these six
bands using a Kaiser window linear phase FIR filter in the
MATLAB FDA toolbox. The stop bands were set to attenuate the
signal magnitude at −30 dB with a 1Hz edge band. A Hilbert
transformation was then applied to the filtered data.

Multi-class Classification Analysis and
Gradient Ascent Approach
Five-class classification was employed to discriminate the five
letters and to investigate the possibility that the EEG phase
pattern or power pattern could be used as a feature in EEG-
based BCI. A supervised machine-learning algorithm, LIBSVM,
a library for support vector machine (SVM) classifiers (Chang
and Lin, 2011), was used and implemented in the MATLAB
toolbox. The classifications were quinary with a chance level of
20 percent, and the results of these quinary predictions were
evaluated electrode by electrode. The Gaussian function was used
as the nonlinear transform function in the SVM classifier, and its
critical parameter sigma was determined using a gradient ascent
approach, which is similar to the steepest descent algorithm,
in which the parameter is adaptively adjusted according to
the changes in classification accuracy to ensure that it can be
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maximized. According to previous research (Schyns et al., 2011),
visual stimuli-evoked EEG responses were most informational in
the occipital and occipital-temporal cortices. Therefore, the focus
was on these 17 electrode sites: P7, P5, P3, P1, Pz, P2, P4, P6,
P8, PO7, PO3, POz, PO4, PO8, O1, Oz, and O2. The additional
methodological steps encompassing the computational strategy
for validating the classification results (cross-validation and
shuttered label training sets) are described below.

Cross-Validation Approaches and
Shuffled-Label Training Sets
Cross-validation of the multiclass classification analysis was
conducted to obtain robust estimates of the discrimination
accuracies and to test the generalization ability of our classifier.
In this study, a 30-fold cross-validation approach was adopted.
The EEG signal sets were randomly divided into 30 parts, and 29
parts were chosen to train the SVM, which was subsequently used
to test the remaining set to obtain the discrimination accuracy
(Please note that there are total 450 trials corresponding to
five letters for one subject. The 450 trials were divided into 30
parts, with each part contains 15 trials for five letters). This
procedure was repeated 30 times, averaging each repetition’s
accuracy to obtain the final accuracy. To exclude the artificial
classification effect caused by the adoption of the SVM classifier
and to estimate the validity of the classification result, the
labels that indicated the letter for each trial were randomly
shuffled 100 times to form 100 random label-training sets. A
multiclass classification analysis with a 30-fold cross-validation
approach was used on these random label-training sets, and a
random label training result ensemble was obtained. In each
turn, a subject was randomly selected and the labels of the
letters was randomly shuffled. After that, we chose the highest
classification accuracy across the electrodes. And then we did this
process one-hundred times. Which means we had 100 random-
labeled accuracies. We called this a random-label classification
accuracies ensemble. A Kolmogorov-Smirnov test (K-S test) was
conducted on this ensemble to determine whether the ensemble
satisfies a supposed distribution, such as a norm distribution,
and if so, to determine its mean value and variance. Finally, the
statistical significance was calculated (p < 0.0013, three sigma
standard) based on the mean and variance of this permuted
accuracy.

For comparisons of classification accuracy difference between
phase and power groups data of 17 electrodes with 12
subjects, we have performed two-way anova analysis and
then performed all the pairwise comparisons using Tukey-
Kramer’s multiple compare method (Specifically, we first applied
[p,∼,stats]=anova2(data,12) in Matlab. Data is a 24∗17 matrix,
with the first 12 lines are power accuracy values from 12 subjects,
while lines from 13 to 24 are phase accuracy values from 12
subjects; and 17 corresponds to 17 electrodes. Then we have
performed multiple comparison with: C = multcompare(stats)
in Matlab, default is Turkey-Kramer method). Tukey-Kramer
Multiple comparison method is one of the best methods for
all-possible pairwise comparisons of group means, to determine
which are significantly different from which others. Multiple

comparison procedure was performed for significant analysis of
pairwise comparison results.

To understand the analysis procedure in a clear way, please see
the flowchart Figure S2.

RESULTS

Classification Accuracy for Wide-Band
EEG Phase and Power Sequences
The power and phase sequences were both 1,500ms (starting at
−500ms before the appearance of “letter” and stopping at the
end of “letter”), and a short 200ms portion (starting at the 100th
ms after the appearance of “letter”) was selected for classification
accuracy analysis. The reason starting at the timing of 100th ms
is based on the following analysis result.

The timing of the appearance of a “letter” is set as 0th ms.
Using this 0th ms timing as the starting point, we chose the
sequence of different sizes of time window to examine where
the valuable information is started to be encoded. The tested
time period is from 0 to 600ms with time step equal to 2ms.
We observed that the classification accuracy is around chance
level for the time period <100ms, while the accuracy increased
rapidly to a 31% high value as the time period was increased
to 200ms, and then fluctuated to reach a saturation level when
the time period was further increased to 600ms (see Figure S1).
This analysis suggests that the the EEG sequence <100th ms may
not contain valuable information. Therefore, in the following,
the classification accuracy values were obtained by training a
SVM classifier using 200ms EEG power/phase sequences that
started at the 100th millisecond after presentation of a letter. The
mean and variance of the classification accuracy of each of the
17 electrodes for all 12 subjects are shown in Figure 2A (data
for the remaining 2 subjects without significant classification
power are shown separately in Figure S3). The highest accuracy
was 46.61% (chance level of 20%) for a wide-band (0.5–220Hz)
EEG phase sequence (Figure 2A). The EEG phase sequence
in 17 electrodes of 12 subjects (28.42 ± 3.21, mean ± SD)
showed significantly higher correct rates than the EEG power
sequence (22.89 ± 3.02, mean ± SD) at a p < 10−9 confidence
level (two way ANOVA analysis with Tukey-Kramer multiple
comparison correction conducted in MATLAB). This implies
that the EEG phase portion contains more information than EEG
power portion. Multiple comparison procedure was performed
for significant analysis of pairwise comparison results, and PO8
was observed to have significantly higher accuracies than P1, P2,
P5, Pz (0.01 < P < 0.05) while no significant difference was
observed between any pair of accuracy values of other electrodes
for phase sequences. The confidence interval was determined
using the variance of a fully random shuffled label training
set classification accuracy. Figure 2B shows the normplot figure
for random label training set classification results. The Y axis
indicates the logarithm of the cumulative density function
(CDF). The regression linear fitting analysis suggests that the
classification accuracy values <29% are mainly from a normal
distribution (K-S test p = 0.038). The mean was 23.81%, and
the variance was 1.76%; thus, the three-sigma level was 29.09%.
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FIGURE 2 | Classification results and accuracy topography. (A) Mean classification accuracies across 12 subjects in 17 electrodes. The error bar indicates the upper

and lower limit of the accuracy. The performance of the EEG phase and power portions are represented in purple and green, respectively. The red dashed line

represents the three-sigma level above the chance level. (B) Normplot figure for random label training set classification results. The Y axis indicates the logarithm of the

cumulative density function (CDF). If a sample set originates from a normal distribution, it will be linear. (C) Accuracy topography for the EEG power portion. The small

black dots represent electrodes. Accurate rates at other sites were determined using the MATLAB Triangle interpolation function. (D) Accuracy topography for the

EEG phase portion.

This value was set as the confidence interval with a one-tail
confidence level P = 0.0013 (see red dashed line in Figure 2A).
We observed that 12 of the 14 subjects with 450-trial tests had
significant classification power above the three-sigma level, with
29.09% accuracy in at least one electrode; further, 8 subjects had
three electrodes, and seven subjects had five powerful electrodes
that showed significant classification power >29.09%. We also
conducted phase and power decoding analyses of the data from
the 2 subjects who did not have electrode data with significant
classification effects (see Figure S3). The highest accuracy for
these subjects was only 29% for the phase classification (Figures
S3A,B) and 27% for the power classification (Figure S3C). The
mean accuracy value of the phase decoding for all 17 electrodes
for the 12 subjects was 28.42 ± 3.21 (mean ± SD) and 27.71 ±

3.45 for all 14 subjects. Hence, the following results analysis were
mainly based on the 12 subjects. The analysis of the 2 subjects
with no significant effects are shown separately in Figures S3, S4.

As is shown in Figures 2C,D for the averaged spectrum
of 12 subjects with at least 1 electrode with significant
classification power, the relatively high classification accuracy

appeared in electrodes placed in the left and right posterior
regions.

Different EEG Frequency Bands and
Period-Specific Classification Results
To examine the critical period for classification, a shifting 200
ms-long window (from −100 to 500ms, 40ms per step) was
applied to the frequency-filtered power and phase time-courses
to extract the training and test sets. We observed that the
discrimination accuracy within the first 100ms period after the
presentation of a letter is always approximately equal to chance,
while most of the valuable decoded information is in the first
half-second period (100–600ms) after the stimuli’s presentation
(see Figures 3, 4). Hence, our analysis suggested that starting at
the 100th millisecond mark after the presentation of a letter may
result in a higher classification power than analysis starting from
0ms after the presentation of a letter (van Gerven et al., 2013;
Watrous et al., 2015).

The training and classification processes were employed on
these frequency- and time-specific phase signal and power sets
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FIGURE 3 | Time-frequency classification significance diagram and bands comparison. (A) Classification significance for the EEG phase portion in different bands and

time periods. for the 12 subjects shown in Figure 2. Each small block represents a 200ms training set. For a particular band and time period, the highest accuracy

among all 17 electrodes was chosen and its corresponding P-value was calculated. The X ticks indicate each periods midpoint, from 0 to 600ms. (B) Comparison of

the EEG phase portion classification performance for all bands for the selected optimal time period. One star corresponds to a P < 0.05 significance level for the

related two bands, and three stars corresponds to P < 0.001. (C) Classification significance for the EEG power portion in different bands and time periods.

(D) Comparison of the classification performance of the EEG power portion of all bands.

FIGURE 4 | Accuracy topography of time series. Three special sets, the EEG theta power, the theta phase and the alpha phase, were selected for plotting as they

had significantly stronger classification power than the others. The EEG theta phase signals clearly had the best performance with long-lasting classification power, the

larger useful area, and the highest accuracy rate.
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to calculate the mean accuracy over 12 subjects in which we
obtained significant results in the previous analysis step. A 2-
dimensional accuracy matrix was obtained with the X ticks
representing the medial time point of each shifting window
and the Y ticks representing all six bands. The classification
accuracies were transformed into their P-value representations.
The P value was calculated as the probability that the frequency-
filtered power and phase time-courses’ accuracy rate can occur
from a norm distribution that we obtained from the shuffled
label training sets. For a higher accuracy rate, a smaller P-
value would be obtained. A denary logarithm of 1/P was
calculated and chosen as the presentation of the classification
performance for illustration purposes. We next compared each
frequency band’s performance. We selected the best performing
time block for each band. Figures 3A,C shows the calculated
classification significance as a function of time for six bands.
Using the calculation, the best performing time block was chosen
based on the highest classification significance level for each
frequency band, and the corresponding accuracy value was
obtained for the same time block. Then, we applied the MATLAB
ANOVA toolbox to examine whether these six bands’ signals had
significantly different classification performance. The EEG phase
signal and power signal portions were treated separately.

The phase and power information in different EEG oscillatory
band frequencies that contribute to the classification were
also studied. Figure 3A shows the results of the calculation
of the classification significance based on the EEG phase
signal, and Figure 3B shows a quantification of its classification
performance for the 12 subjects who had significant classification
power (data for the remaining 2 subjects without significant
classification power are shown in Figure S4). The X ticks
represent the mid-time point of each shifting 200-ms-long
window, which started at 0ms and ended at 600ms. As shown
in Figure 3A, the higher the logarithm value, the higher the
accuracy rate it represents. We also calculated the classification
significance and performance values based on the EEG power
information (Figure 3C). For both the EEG power and the phase
coding performance, the theta frequency band showed higher
classification performance than did the remaining five bands,
and the crucial time period began at 60ms to 580ms (with
a middle time point of 160–480ms). We found that for theta
band, phase part and power part had no significant difference
(MATLAB ttest2, P= 0.89).While in alpha band, phase sequence
had a significantly higher accuracy than its power counterpart
(ttest2, P = 0.0341). Also the beta band performed differently
(P < 0.001).

For both the theta and the alpha frequency bands, the
significance and performance levels are generally relatively lower
in the power coding than the phase coding (Figure 3C). The
highest accuracy appeared in the period from 220 to 420ms for
phase coding at the theta band and at 180 to 380ms for the alpha
band.

Figures 3B,D shows the calculated classification accuracy for
different frequency bands based on EEG oscillatory phase and
power components. The EEG rhythmic frequencies significantly
influenced the classification accuracy [F(5. 96) = 22.64, P < 10−6

MATLAB ANOVA1]. Figure 3B shows that, for EEG phase

coding, there was no significant difference in classification
between the theta (36.70 ± 4.43, mean ± SD) and alpha bands
(35.4 ± 4.21), but there was a significant difference between the
alpha (35.40 ± 4.21) and beta bands (30.74 ± 4.32) (p = 0.0037,
ANOVA1) for the 12 subjects. Figure 3D shows that, for power
coding, the EEG theta band (35.08 ± 5.32) accuracy was
significantly higher than the alpha band (31.67 ± 4.29) accuracy
and that the alpha band accuracy was significantly higher than
that of the other four frequency bands. The remaining four bands
did not show a significant classification effect. In addition, if the
data analysis includes the two non-significant subjects, the phase
decoding accuracy value for the theta band for all 14 subjects
was 35.50 ± 5.08, which was slightly lower than the 36.70 ± 4.43
result for the 12 subjects.

Accuracy Topology Map for Shifting Time
Window Data
Based on our current decoding methods, we would like
to examine the spatial-temporal distribution of classification
accuracy values. Here, we focus on the alpha and theta bands
because they showed significantly high classification accuracy
(Figures 3B,D). The accuracy values from the 12 subjects were
averaged and represented in color (see Figure 4). Figure 4 shows
the classification accuracy map derived from both phase and
power information in the alpha and theta bands for the 17
electrodes as a function of time.

Unlike the results shown in Figure 2D, there was no strong
accuracy lateralization for right hemisphere electrodes, only
slightly longer lasting classification power (e.g., the alpha band
phase signal from 260 to 460ms and the theta band phase signal
from 300 to 500ms). The classification power of electrode PO7
had faded but was still in electrode PO8). Interestingly, electrodes
O1, O2, and O3 also achieved very high accuracy rates, as PO7
and PO8 did in the theta band phase signal, but presented low
values in the alpha band. This difference implies that the theta
and the alpha signals may play distinct roles in recognition and
have different origins (Fries, 2015).

The classification power in all 17 electrodes clearly faded after
380ms, and the accuracy decreased to a chance level. Therefore,
the remaining topographic maps are not shown.

DISCUSSION

Comparison with Existing BCI Methods
and Other Phase Coding Research
This study revealed that the phase patterns and power in the
theta and alpha bands may contain valuable information about
the input stimulus features. This valuable temporal phase coding
approach was confirmed with a conclusion consistent with
the most recent investigations into decoding other visual and
auditory signals in multiple behavior and cognition tasks (Luo
and Poeppel, 2007; Schyns et al., 2011; Vanrullen et al., 2011;
Wang et al., 2012; ten Oever and Sack, 2015). In addition,
decoding of phase and power sequences in different frequency
bands suggests different classification powers. Decoding the
phase patterns in theta and alpha oscillations provided relatively
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higher discrimination accuracy than did the delta, beta and
gamma band oscillations. Previous studies suggested that the
ventral occipital-temporal (vOT) cortex is involved in the
perception of visually presented objects and written words
(Dahaene, 1995; Price and Devlin, 2011; Matsuo et al., 2015).
Our decoding analysis showed a higher classification power
for electrodes placed in occipital-temporal regions compared
to other regions, although we should keep in mind that EEG
electrodes do not necessarily pick up activity directly under the
electrodes. These results provide more evidence to support EEG
phase coding in visual perception. Spatially distributed electrodes
may encode different preferred stimulus features in this process.

The method used here is not as general as the classic existing
BCI methods such as SSVEP and P300 (Zhang et al., 2013;
Nezamfar et al., 2016). It also relies on the training of an
SVM classifier. The traditional BCI approach often conducts the
decoding process in real time. In our approach, we first collected
a sufficient amount of EEG response data to input stimuli
and then performed the training and decoding processes. In
future research, we would expect the faster computer speeds and
improved algorithms to allow this decoding approach to occur in
real time. In addition, compared with existing BCI approaches,
our approach is more reliant on subjects. The performance varied
greatly between subjects, similar to the ERD/ERS approach.
This implies that we may train the subject in future research
to improve the classification performance as in some ERD/ERS
research.

Although few studies focus on an EEG phase decoding
approach and its performance is not sufficient to evoke more
attention, the phase decoding method showed a promising
prospect for decoding human brain activities using the mass
electromagnetic field. As suggested recently (Panzeri et al., 2015,
2016), this new method and other related methods can be used
extensively to improve BMIs, and its performance may be further
improved by more sophisticated designs.

Our experimental results are consistent with a previous
phase decoding investigation related to an emotional face
discrimination EEG experiment (Schyns et al., 2011). Almost
similar spatially located electrodes in the theta frequency band
and a similar critical time window were obtained. This may
suggest a similar cortical pathway involved in the visualization
process of alphabet letters and human faces. This similarity
also appeared in human fMRI recording (Dehaene and Cohen,
2011). However, in contrast to the face recognition process, our
experimental results might include an auditory coding effect in
addition to the visualization process. Participants were asked to
sit quietly without vocalizing the letters, however, theymight read
the visualized letters with imaginary pronunciation during the
alphabet letter visualization task. The imaginary pronunciation
sound duration and intensity might be involved in evoking
EEG theta oscillations in the temporal cortex (Luo and Poeppel,
2007; Howard and Poeppel, 2010; Wang et al., 2012; Ng et al.,
2013; ten Oever and Sack, 2015) and enhancing psychoacoustic
sensitivity (Goswami et al., 2011). Additional experiments must
be conducted to identify how much decoded information is
purely derived from the visualization process and how much is
from an imaginary spoken process. Different from the method

of Schyns et al. (2011), we trained an SVM to perform the
classification. The merit of this approach is that it may have a
potential BCI application, although the present method cannot
distinguish how and to what extent the characteristics of the
stimuli are encoded into the EEG oscillation phase patterns that
might be limited by the spatial and temporal resolution of the
EEG signals. Because SVM and other machine-learning methods
are a type of black box, more detailed analytical methods and
experimental designs must be used in future research to examine
the potential value and limitations of this approach.

How low frequency oscillatory phases represent information
in visual perception remains an open issue. In audio perception,
the evidence indicates that theta oscillation is a mimic to the
input speech envelope (Giraud and Poeppel, 2012; Gross et al.,
2014). In this case, the peak (phase zero) of the oscillation may
represent a high amplitude of speech envelope, and the trough
(phase π) is related to the quietness.

In addition, recent studies observed that different neuronal
oscillations are not intendent and isolated (Canolty et al., 2006).
They can interact with each other to modulate oscillation
amplitude and phase patterns, resulting in a cross-frequency
coupling effect. The cross-frequency coupling may include
several interactions, such as phase synchronization, amplitude
co-modulation and phase-amplitude coupling (PAC). PAC is
believed to reflect neural coding of signals within the local
microscale and macroscale networks of the brain (Canolty
and Knight, 2010). There is increasing experimental evidence
suggesting that PAC may provide more useful information
for decoding of object categories (Watrous et al., 2015;
Jafakesh et al., 2016), which need to be deeply studied in
future once high quality data of EEG or ECoG recording is
available.

CONCLUSION

Our experimental results provide strong evidences to confirm
that the frequency, phase patterns and power information of
cortical oscillation parameters contain important information
about stimulus features. First, we found that decoding EEG
phase patterns brings higher discrimination accuracy values than
decoding EEG power portion. Second, frequency range and
cortical spatial location are critical in decoding. We observed
that phase patterns of the theta and alpha rhythms recorded
in the occipital scalp visual and temporal regions contain
more rich information that is valuable for decoding different
input visual stimuli compared to other regions. EEG power
sequences in the theta oscillation showed a significantly higher
discrimination rate than did the chance level, although its
classification performance was slightly lower than EEG phase
pattern. Decoding the EEG phase and power sequence in
the much lower frequency delta band or much higher beta
and gamma frequency bands does not result in significant
discrimination rates. Third, timing is important. Most of
the valuable decoded information is within the first half-
second period (100–600ms) after the stimuli’s presentation,
and this information is hardly captured by the functional
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magnetic resonance imaging technique (with a time resolution
of approximately 1 s).

In sum, our experimental results support that low-frequency
cortical oscillations are actively involved in coding sensory
information. Directly decoding the phase and power sequences
of EEG signals in the theta band may have great potential
in brain-computer interface applications for English alphabet
letter discrimination. Although the present EEG study showed
that electrodes sited in the occipital scalp visual and temporal
regions had higher accuracy rates and always reached the
peak first, future research with combined EEG and functional
MRI experiments may provide better spatial resolution in
distinguishing the precise cortical locations in visual stimulus-
encoding sites.
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In mental time travel (MTT) one is “traveling” back-and-forth in time, remembering,

and imagining events. Despite intensive research regarding memory processes in the

hippocampus, it was only recently shown that the hippocampus plays an essential

role in encoding the temporal order of events remembered, and therefore plays an

important role in MTT. Does it also encode the temporal relations of these events to

the remembering self? We asked patients undergoing pre-surgical evaluation with depth

electrodes penetrating the temporal lobes bilaterally toward the hippocampus to project

themselves in time to a past, future, or present time-point, and then make judgments

regarding various events. Classification analysis of intracranial evoked potentials revealed

clear temporal dissociation in the left hemisphere between lateral-temporal electrodes,

activated at ∼100–300ms, and hippocampal electrodes, activated at ∼400–600ms.

This dissociation may suggest a division of labor in the temporal lobe during

self-projection in time, hinting toward the different roles of the lateral-temporal cortex

and the hippocampus in MTT and the temporal organization of the related events with

respect to the experiencing self.

Keywords: episodic memory, mental time travel, self-projection, self-reference, hippocampus, lateral temporal,

sEEG

INTRODUCTION

A fundamental trait of human cognition is the capacity to engage in “mental time travel”
(MTT), to remember past events or imagine possible future ones (Tulving, 1985). When
Tulving first presented the concept of MTT, it was proposed as a means of extending and
binding together the two more basic functions of episodic memory and episodic future thinking,
also known as “prospection” (Schacter and Addis, 2007; Suddendorf and Corballis, 2007; Bar,
2009; Spreng et al., 2009; Schacter et al., 2012). Over the years, the concept of MTT was
developed beyond the common neurocognitive basis of past and future thinking to include
several different functions (Spreng et al., 2009; Schacter et al., 2012). The process of “scene
construction” has been suggested as a key component of MTT, allowing the retrieval of relevant
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elements from memory and their subsequent binding into a
coherent spatial scene (Hassabis et al., 2007a; Maguire and
Mullally, 2013). Another process suggested as a fundamental
aspect of MTT is self-projection in time, namely the ability
to disengage from the immediate environment and mentally
“project” oneself to a new “self-location” in time, either in the
past or in the future (Buckner and Carroll, 2007; Arzy et al., 2008;
Nyberg et al., 2010;Markowitsch and Staniloiu, 2011; Klein, 2013;
Kurczek et al., 2015). It is from this “self-location” in time that
the individual re-orients herself with respect to different events,
in past or future (Arzy et al., 2009a; Peer et al., 2015). To reiterate,
MTT comprises of several distinct processes, among them: self-
projection to a specific self-location in time, imagination of the
relevant event (that is, the act of remembering a past event or
of prospecting a future one), and self-orientation with respect to
other events (Peer et al., 2014, 2015).

Similarly to the way in which the field of memory research
has progressed from focusing on autobiographical memory to
the broader notion of MTT and related concepts, the study of
their neuroanatomical substrate has also advanced. Whereas,
early studies of memory functions focused on the hippocampus,
various studies have since established the existence of a large-
scale brain network supporting MTT-related processes (Buckner
and Carroll, 2007; Hassabis et al., 2007a; Arzy et al., 2009a;
Schacter and Addis, 2009; Spreng et al., 2009; Nyberg et al., 2010;
Benoit and Schacter, 2015). The key regions of this network
include the medial prefrontal, posterior parietal, and lateral
temporal cortices, and the medial temporal lobe, including the
hippocampus (Addis et al., 2007; Arzy et al., 2009a; Spreng
et al., 2009; Rugg and Vilberg, 2013). Notably, although the
hippocampus is considered a key region in this “core” network
(McNaughton and Morris, 1987; Squire, 1992, 2004; Carpenter
and Grossberg, 1993; Moll and Miikkulainen, 1997; Scoville and
Milner, 2000; Yonelinas, 2002; Burgess et al., 2007; Bird and
Burgess, 2008), its specific involvement in MTT is still debated.
For example, while some reported hippocampal involvement
in future thinking (Okuda et al., 2003; Hassabis et al., 2007b;
Schacter and Addis, 2009), others reported evidence suggesting
that future thinking could be independent of the hippocampus
(Squire et al., 2010; Hurley et al., 2011).

Moreover, elucidating the differential contributions of the
hippocampus and neocortical regions to MTT may have
profound implications for the ongoing debate regarding the
role of the hippocampus in both memory functions and spatial
cognition, including representation of the immediate space,
navigation and spatial orientation (O’Keefe and Dostrovsky,
1971; Doeller et al., 2008; Dombeck et al., 2010; Buzsáki and
Moser, 2013; Eichenbaum and Cohen, 2014; Hartley et al., 2014).
Several attempts have been made to reconcile the role of the
hippocampus in memory functions and spatial cognition. The
“relational memory theory” suggests that the hippocampus offers
a general relational processing mechanism, providing similar
computations for the encoding of episodes as sequences of events,
and the encoding of routes as sequences of places traversed
(Konkel and Cohen, 2009; Eichenbaum and Cohen, 2014).
Alternatively, the abovementioned “scene construction theory”
asserts that the hippocampus supports episodic memories and

imagined future events by facilitating the generation of atemporal
scenes, binding together the event’s disparate elements into a
coherent whole (Maguire and Mullally, 2013). Under this view,
the hippocampus is thought to support spatial navigation by
virtue of ongoing anticipatory scene construction, giving rise to a
continuous representation of the upcoming spatial environment.
While different empirical results support both theories, decisive
experimental evidence for the role of the hippocampus in MTT
is still required.

To investigate the role of the hippocampus in MTT we
recorded intracranial evoked potentials (iEPs) in response to
an established task of self-projection in time (Arzy et al., 2008,
2009a; Figure 1) in three patients with epilepsy undergoing
pre-surgical evaluation. Patients were requested to imagine
themselves either in the present self-location in time (“now”)
or in another self-location, either 10 years toward the past or
toward the future (“then”). It is from this self-location in time
that they had to make judgments with respect to different events.
For control purposes, iEPs were recorded also when patients
performed a spatial task requiring self-projection in space (Arzy
et al., 2006). Patients were implanted with bitemporal depth
electrodes, penetrating both the hippocampus and the lateral
temporal cortex (LTC), a major region in the cortical network
involved in MTT (Svoboda et al., 2006; Arzy et al., 2008; Spreng
et al., 2009; Benoit and Schacter, 2015; Peer et al., 2015). Such
stereo-electroencephalography (sEEG) depth electrodes enable
the separation of neocortical and hippocampal activities in both
the time and space domains, unlike other neuroimagingmethods,
with lower spatial or temporal resolution (such as EEG and
functional MRI, respectively). This setting enabled us to classify
the temporal dynamics of brain activity in the hippocampus and
LTC, to better understand the role of these regions in MTT.

MATERIALS AND METHODS

Participants
Participants were three right-handed epileptic patients (17, 18,
and 40 years old) who suffered from complex partial seizures
resistant to pharmacological treatment, with no history of
psychiatric or other neurological disorders. In order to localize
the seizure onset zone and to dissociate it from essential
cortex, intracranial electrodes were implanted. One patient was
diagnosed with an epileptic focus in the right temporal pole, one
with a left frontal focus, and in one the epileptic focus was found
in the left amygdala.Written informed consent was obtained, and
the procedures were approved by the Ethical Committee of the
University Hospital of Geneva.

Stimuli and Procedures
In the MTT task (Arzy et al., 2008) participants are first asked
to imagine themselves either at the present time (“now”), or
in another time point (“then”), 10 years in the past or in the
future. Participants are then presented with events from personal
life (e.g., car license; first child) or non-personal world events
(e.g., Challenger explosion; Obama’s election), and are asked
to indicate whether this event takes place before or after the
currently imagined time-point (Figure 1). Thus, participants are
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FIGURE 1 | The mental time travel (MTT) task. Participants were asked to “project” themselves to an imagined self-location in the past or future. From this

self-location, or from the present one, they were asked to make judgments indicating their orientation with respect to different events, that is, whether the event has

already happened or is yet to happen, relative to the participant’s location in time.

requested to mentally “project” themselves in time in order to
accomplish the task. Stimuli were designed to be in the range of
±10 years of the imagined time-point, and included events that
were chosen from a validated list of common personal life events
for the personal items, and from major headline news events
for the non-personal items (Arzy et al., 2008, 2009a). Stimuli
appeared for 700ms in the center of a computer screen with an
inter-stimulus interval of 2,000ms as used previously (Arzy et al.,
2008). Judgments were given using index and middle fingers of
the left and right hand in alternating blocks as a button press
on a serial response box. Participants were instructed to respond
as quickly and precisely as possible while maintaining a mental
image of themselves in the appropriate time-point (“now,” “past,”
or “future”). These conditions were performed in different blocks
and counterbalanced across participants. Each block included
120 stimuli, equally distributed among four groups appearing in
random order: personal-events/world-events× before/after.

As a control task, participants also performed a spatial
task involving own-body transformation (Blanke et al., 2005).
This task presents participants with a schematic human figure,
either facing toward them or away from them, with the figure’s
right or left hand marked by a ribbon. Participants either
responded from their present location (“here”), or were asked
to mentally “project” themselves to the location represented by
the schematic figure (“there”). It is from this perspective that
they made judgments regarding the presented figure (Figure S1;
Blanke et al., 2005; Arzy et al., 2006). In the “there” condition,
participants were instructed to indicate whether the figure’s
marked hand is the right or left hand. They were instructed to
respond as fast and precise as possible, yet always perform the
mental projection of their body before responding. In the “here”
condition the same visual stimuli were used, and participants
were asked to decide from their habitual location whether the
indicated hand was on the right or the left side of the computer
screen (Blanke et al., 2005). Stimuli appeared for 300ms in the
center of the computer screen. The interstimulus interval was
2,000ms. Each block included 120 stimuli, equally distributed

among the four conditions, counterbalanced across subjects.
Since the analysis is done within-task, an optimal duration for
stimulus presentation was chosen separately for each task, based
on previous studies.

Overview of Implanted Electrodes
Patients were implanted with depth electrodes penetrating the
temporal lobe from the neocortex to the MTL bilaterally
according to strict clinical criteria. In total, we have analyzed 57
electrodes implanted in all three patients (Figure 2A).

EEG Acquisition and Analysis
Continuous intracranial EEG was acquired with a Deltamed R©

system [1,024Hz (patients 1,2) or 512Hz (patient 3) digitization].
Depth electrodes had a center-to-center distance of 1 cm (Ad-
Tech, Racine, WI). Electrode location was determined by three
dimensional MRI of the brain as well as CT scan with the
implanted electrodes (Blanke et al., 1999, 2005). Preprocessing
and analyses were conducted using Cartool software (Brunet
et al., 2011; https://sites.google.com/site/cartoolcommunity/),
Brainstorm toolbox (Tadel et al., 2011; http://neuroimage.
usc.edu/brainstorm), FieldTrip toolbox (Oostenveld et al.,
2011; http://www.ru.nl/neuroimaging/fieldtrip), and Matlab R©

(Mathworks, inc.). Epochs of EEG from 100ms before to 800ms
after stimulus onset were bandpass filtered (1–120Hz), and
averaged for each of the stimulus conditions to calculate the
intracranial evoked potential (iEPs). In the MTT task, the past
and future conditions were collapsed into one condition (“then”),
allowing a simpler 2 × 2 design (now/then × before/after) in
accordance with previous studies showing similar response to
past and future events (e.g., Arzy et al., 2008, 2009a; Anelli
et al., 2016; Gauthier and van Wassenhove, 2016; for review
see Schacter et al., 2012). Data were inspected visually to reject
epochs with epileptic discharges as well as epochs with other types
of transient noise.
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FIGURE 2 | Electrophysiological results. (A) Depth electrodes locations in the hippocampus and lateral temporal cortex (LTC), shown for each patient on a

co-registration of post-operative CT scan and pre-operative MRI (white circles depict electrodes projected on this slice for visualization purposes; for more precise

localization of these electrodes see Figure S2. Exact neuroanatomical position of each electrode as verified by two certified neuro-radiologists is available in

Table S1. (B) Intracranial evoked potentials (iEPs) recorded at representative electrodes in the left LTC (top) and left hippocampus (bottom) during MTT. LTC

electrodes show high early task modulation, whereas electrodes in the hippocampus show high late task modulation. Shaded areas show time points of significant

differences between conditions in a two-tailed independent samples t-test (p < 0.05, uncorrected).

Electrode Selection
We aimed to differentiate between lateral cortical and
hippocampal activations in response to the MTT and the spatial
tasks. To this end, we identified hippocampal and LTC electrodes
according to their apparent location on a post-implantation
CT, co-registered with the pre-implantation MRI images.
Exact neuroanatomical position of each electrode was verified
by two certified neuro-radiologists using a neuroanatomical
atlas (Harnsberger et al., 2006). Electrodes that showed clearly
defective iEPs were excluded from the analyses.

Electrodes Classification
Following our previous findings using EEG (Arzy et al., 2008),
we defined two time periods of interest: an early period ranging
from 100 to 400ms post stimulus onset that encompassed the
initial peak responses at the LTC, and a late period ranging from
400 to 800ms post stimulus onset that captured a second peak
response in the hippocampus (Figure 2B; Staresina et al., 2012).
To differentiate between LTC and hippocampal electrodes we
defined early and late modulation features for each electrode and
task, as follows (Figure 4): For each condition and period, the
raw modulation was defined as the absolute value of the sum of
differences between iEPs deflections in the two conditions (the
signed area between the two iEPs deflections). Subsequently, the

modulation was normalized by the area under the curve of the
“now” (or “here”) condition in the same period. Accordingly, the
early modulation of electrode i in the time-task is given by:

Early modulation =

∣

∣

∣

∫ 400ms
100ms S

i
then (t) − Sinow (t) dt

∣

∣

∣

∣

∣

∣

∫ 400ms
100ms S

i
now (t) dt

∣

∣

∣

(1)

Where Sinow(t) and Si
then

(t) are the mean iEPs recorded in
electrode i in the “now” and “then” conditions, respectively.
Likewise, the late modulation is defined with integration limits
of 400–800ms.

Each electrode’s position in the two dimensional feature space
was thus determined by its early and late task modulations
(Figure 4D). When lateral temporal and hippocampal electrodes
seemed separable in this representation, we tested for significance
of this separation using Support Vector Machine with a linear
kernel (SVM; Cortes and Vapnik, 1995). Linear SVM is a
supervised learning algorithm that performs linear classification
of the data by constructing the optimal hyperplane with largest
margin for separating data into two groups. To avoid domination
of small numeric results by greater ones we scaled the data by
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FIGURE 3 | Electrodes classification. Electrodes classification using linear SVM, based on early task modulation value (X-axis) and late task modulation value (Y-axis).

(A) MTT task: left hippocampal electrodes (circles) are clearly separable from left lateral temporal cortex (LTC) electrodes (triangles) on the plane of early and late task

modulations (see Figure S3 and Table S2). A separating line is shown, as obtained from SVM classification of all electrodes (left, p < 0.005). No such separation was

found for electrodes in the right hemisphere (right, see Figure S4). (B) Spatial task: no separation between lateral temporal and hippocampal electrodes was found

neither in the left hemisphere (left, see Figure S6) nor in the right (right, see Figure S7).

Z-score procedure for each of the two features (Chang and Lin,
2011).

SVM uses a penalty parameter C > 0 that determines
the tradeoff between margin maximization and training error
minimization. An optimal value for this parameter had to be
determined. Ten different C-values equally spaced on a log-
scale in the range of [10−3,103] were tested, each yielding a
cross-validation classification accuracy using the N-fold cross-
validation procedure (Chang and Lin, 2011). The C-value
yielding the highest cross-validation accuracy was subsequently
used for training the classifier and for statistical tests.

To statistically validate our classification results, we used
a non-parametric permutation test (Ojala and Garriga, 2010).
The null hypothesis of this test is that the dataset labels (LTC
or hippocampal) are independent of the features (early and

late modulations). We re-trained the classifier on all possible
permutations of the dataset labels, and calculated the N-fold
cross-validation accuracy for each permutation. This allowed the
derived classification accuracy to be assigned a p-value. In case
the dataset labels and features are independent in the original
data, one can expect to obtain high p-values (Ojala and Garriga,
2010).

iEP-Amplitude Analysis
We examined whether iEPs significantly differed between
conditions (“now”/“then” and “here”/“there”). To this aim,
statistical analysis (t-tests, two tailed, p < 0.05, uncorrected)
was used on the amplitude of the single unaveraged epochs
over trials, comparing the different experimental conditions in
each time-frame, and searching for significant differences. Since
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FIGURE 4 | Schematic illustration of task modulation extraction. (A) Early and late periods identified in the time windows of 100–400 and 400–800ms post stimulus

onset, respectively. (B) Extraction of early modulation value. The raw modulation was defined as the absolute value of the sum of differences between iEPs in the two

conditions (“then”-“now,” “there”-“here”; left). The normalization factor was defined as the area under the curve of the “now”/“here” condition in the respective period

(middle). The raw modulation was subsequently normalized by the normalization factor of the respective period, resulting in the final task modulation value (right). (C)

Extraction of early modulation value. Same procedure as applied for the early task modulation was used here. (D) Each electrode’s position in the two-dimensional

feature space was determined by its early and late task modulation values.

iEP values at adjacent time-frames are highly dependent, one
cannot use conventional methods of correction for the multiple
comparisons. We therefore used a cluster-based nonparametric
randomization test (Maris and Oostenveld, 2007). In short,
clusters were defined as continuous time-frames in which the
t-statistic exceeded a given threshold (corresponding to p <

0.05). A cluster-level test statistic was defined as the sum of
all t-statistics in the cluster, and the type-I error rate was
controlled by evaluating the cluster-level test statistic under the

randomization null distribution of the maximum cluster-level
test statistic, using 1,000 random permutations between the two
conditions and p < 0.05.

RESULTS

A behavioral self-projection effect was found in two out of the
three patients, with longer reaction times for the “past” and
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“future” conditions compared with the “now” condition (p <

0.05 for all tests), comparable to previous studies using the
same paradigm in larger number of subjects (e.g., Arzy et al.,
2008, 2009a). To distinguish between LTC and hippocampal
involvement we used data from all patients and analyzed 12
electrodes in the left hemisphere (six in the LTC and six in the
hippocampus) and eight electrodes in the right hemisphere (three
in the LTC and five in the hippocampus; Figure 2A, Figure S2).
Analysis of iEPs in the left hemisphere in the MTT task showed
a significant early task modulation in the time window of ∼100–
300ms (p < 0.05 uncorrected) in five out of six LTC electrodes
(Figure 2B, upper row; Figure S3). A late task modulation was
found in the time window of ∼400–600ms in all hippocampal
electrodes (Figure 2B, lower row; Figure S3). Such consistent
effects were not found in the right hemisphere (Figure S4), nor
in the spatial task in either hemisphere (Figures S6, S7).

Classification analysis based on the early and late task
modulations (Figure 3) yielded a significant separation between
LTC and hippocampal electrodes in the MTT task in the
left hemisphere (cross-validation accuracy 100%, p = 0.004;
Figure 3A). Five out of six electrodes which showed late
hippocampal modulation were located in the hippocampal
formation (HF) and one in the parahippocampal gyrus. No
significant separation was found in the right hemisphere (cross-
validation accuracy 75%, p = 0.304; Figure 3B), nor in the
spatial task either for the left or right hemispheres (cross-
validation accuracy 33.33, 62.5%; p = 0.847, 0.982, respectively;
Figures 3C,D). No significant difference between conditions was
found in the MTT task nor in the spatial task using the cluster-
based nonparametric randomization test.

DISCUSSION

The present study used the high temporal and spatial resolution
of intracranial recordings and employed a classification
analysis in order to distinguish between LTC and hippocampal
involvement in self-projection in time, a key component inMTT.
Our iEP data revealed that LTC and hippocampal contributions
to self-projection in time display distinct temporal dynamics.
Classification analysis of electrodes in the left hemisphere showed
a clear temporal dissociation between LTC electrodes that
exhibited an early self-projection component (∼100–300ms),
and hippocampal electrodes that exhibited a late component
(∼400–600ms). No such effect was found either in the right
hemisphere or in a control task of self-projection in space.

Our results suggest the involvement of both LTC and the
hippocampus in MTT. Several neuroimaging studies involving
MTT-related tasks revealed increased activation in both the
medial temporal lobe and the LTC (Addis et al., 2007, 2009a,
2011; Buckner and Carroll, 2007; Schacter and Addis, 2007;
Botzung et al., 2008; Arzy et al., 2009a; Spreng et al., 2009;
Spreng and Grady, 2010; Schacter et al., 2012; Benoit and
Schacter, 2015). The high spatial and temporal resolution of iEPs
enabled us to temporally dissociate the contributions of these
two regions during MTT. We believe these results could not be
explained by mere temporal delay in the processing of the same

information at the circuit level, since other sEEG studies have
identified hippocampal responses within the first few 100ms of
stimulus/task onset (Axmacher et al., 2007, 2010; Olsen et al.,
2012), while here hippocampal activity was found significantly
later (∼400–600ms). Therefore, these results suggest a division
of labor in the temporal lobe: Early processing of self-projection
takes place in the LTC, to establish one’s self-location on the
mental time line (the first step in the MTT task). Subsequently,
hippocampal activity possibly reflects the required computations
for orienting oneself with respect to the presented events (the
second step in the MTT task). These results are in line with
patient data revealing preservation of self-projection effects
despite hippocampal lesions (Arzy et al., 2009b). This latter
implication of the hippocampus in MTT may be related to its
role in determining the temporal order of events, in accordance
with the “relational memory theory” (Eichenbaum and Cohen,
2014). According to this theory, the hippocampus serves as a
general relational processingmechanism, involving, among other
representational schemes, the representation of episodes as the
flow of events across time. The hippocampus may be similarly
involved in the task used here, in determining the temporal
relations of the events to one’s imagined self-location in time.
This is also in line with previous clinical and neuroimaging
studies that found hippocampal activity in tasks involving general
relational processing (Giovanello et al., 2004; Preston et al., 2004;
Prince et al., 2005; Konishi et al., 2006), and specifically in the
context of the temporal order of events (Reber and Squire, 1998;
Hopkins et al., 2004; Lehn et al., 2009; Paz et al., 2010; Davachi
and DuBrow, 2015; Rubin et al., 2015; Jenkins and Ranganath,
2016). Impaired ability to explicitly remember the sequential
order of events was also found in studies in amnestic patients with
hippocampal damage (Reber and Squire, 1998; Hopkins et al.,
2004) as well as lesion studies in nonhuman animals (DeCoteau
and Kesner, 2000; Fortin et al., 2002; Kesner et al., 2002).

Most hippocampal electrodes that showed late hippocampal
modulation were located in the hippocampal formation (HF).
The HF has been shown to be involved in MTT and autonoetic
consciousness in a unique model of patient population with
a specific lesion in the CA1 part of the HF (Bartsch et al.,
2011). In a more precise manner, the HF also contains
the recently discovered time-cells. Accumulating experimental
evidence, mostly in rodents but also in humans, suggest that the
hippocampus plays a central role in the temporal organization
of memories (Devito and Eichenbaum, 2011; for review see
Eichenbaum, 2013). Notably, these cells share similar properties
with place-cells, which encode one’s location in the environment
(Kraus et al., 2015). Likewise, a time-space similarity was recently
found in the distributed manner in which episodic or atemporal
spatial memories are represented along the hippocampal axis,
based on their temporal or spatial scale (Collin et al., 2015).
However, such a similarity between the hippocampal responses
to the MTT and spatial tasks was not evident in our results.
A potential reason for that is that the spatial task here is
not equivalent to the MTT task. Future studies may better
address this point by designing more comparable temporal and
spatial tasks (e.g., Gauthier and vanWassenhove, 2016). Another
possibility is that higher-order functions as examined here are
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BOX 1 | The effect of reducing the number of electrodes used in the classi�cation analysis.

In our study we found significant separation of the LTC and the hippocampus based on their temporal pattern of activity only in the left hemisphere during the time

task. Although these results seem to support left lateralization, the lack of clear separation in the right hemisphere should be interpreted with caution. Due to the small

number of electrodes that met inclusion criteria in the right hemisphere (8 overall, where no LTC electrodes were included for subject 3, compared with 12 overall in

the left hemisphere), classification in this hemisphere is of limited value. In other words, it is possible that the power of the statistical method used in this study is too

low to reveal an effect in the right hemisphere, even if it exists. In principle, one could estimate the number of electrodes required to obtain a certain power level of

the test, yet general procedures for planning sample size are yet to be developed in the case of classification based tests (Maxwell et al., 2008).

To assess the effect of the small number of electrodes in the right hemisphere, we conducted an additional analysis in which the number of electrodes in the

left hemisphere was reduced to match that of the right hemisphere. The same classification analysis was done for all 120 possible subsets of electrodes in the left

hemisphere which include exactly 5 hippocampal electrodes and 3 lateral temporal electrodes, as in the right hemisphere. For each subset we calculated the cross-

validation accuracy and its p-value (see Materials and Methods). Figure S8 shows the distribution of resulting accuracy values and their corresponding p-values.

Although high accuracy values (>75%) were found in a large number of electrodes subsets (84/120), these findings were significant (p < 0.05) for only a small fraction

of the subsets (33/120). These results suggest that the lack of significant temporal separation in the right hemisphere could be the result of reduced power of the

statistical analysis due to the small number of electrodes in this hemisphere.

not directly related to time- and place-cells, which could be
responsible for encoding much shorter distances and time-scales.

Previous studies established the LTC as part of the MTT
network, supporting both episodic memory and episodic future
thinking (Svoboda et al., 2006; Hassabis et al., 2007a; Addis
et al., 2009a; Spreng et al., 2009; Markowitsch and Staniloiu,
2011; Benoit and Schacter, 2015). Nevertheless, its exact role
in the different processes comprising MTT is not completely
clear. Much evidence has accumulated relating LTC activity to
retrieval of semantic memory, by means of neuroimaging studies
of various memory tasks in healthy subjects (Martin and Chao,
2001; McClelland and Rogers, 2003; Konishi et al., 2006), as
well as studies in patients who suffered damage to the LTC
(Hodges et al., 1992; Gilboa et al., 2005; Addis et al., 2009b).
Retrieval of semantic knowledge has been suggested to subserve
both recollection and future thinking, and thus support MTT
(Tulving, 2002; Levine, 2004; Schacter et al., 2012). Recruitment
of LTCwas found in tasks involving decisionmaking with respect
to personal events (Andrews-Hanna et al., 2010), self-projection
in time (St Jacques et al., 2011), construction and elaboration of
past and future events (Addis et al., 2007), and orientation with
respect to different events in time (Peer et al., 2015). The early
iEP modulation we found in LTC further established the notion
that the LTC supports MTT not only via retrieval of semantic
information, but also through direct involvement in the act of
self-projection in time.

Significant separation of the LTC and the hippocampus based
on their temporal pattern of activity was found in our study
only in the left hemisphere. Lateralization in the hippocampi has
been known for a long time, but less so is the lateralization in
the LTC. Our results are concordant with previous studies that
found predominant left lateralization in various tasks involving
autobiographic memory and orientation in time (Maguire, 2001;
Levine, 2004; Svoboda et al., 2006; Arzy et al., 2008; Spreng
et al., 2009; Peer et al., 2015), though some other studies have
suggested right predominance (Fink et al., 1996; Gilboa et al.,
2005; Arzy et al., 2009a). It should be noted that while our
results suggest left lateralization, the lack of effect in the right
hemisphere should be interpreted with caution. Due to the
small number of electrodes that met inclusion criteria in the
right hemisphere (8 overall, where no LTC electrodes were

included for subject 3), classification in this hemisphere is of
limited value. In an additional analysis in which the number
of electrodes in the left hemisphere was reduced to match that
of the right hemisphere, the power of the test was indeed
reduced, as expected (see Box 1 and Figure S8). This is indeed
a main limitation of this study, which includes a relatively small
number of patients. However, this sample size is comparable to
several other studies that include intracranial recording in human
hippocampus (Vanni-Mercier et al., 2009; Staresina et al., 2012;
Kurczek et al., 2015). Such small samples are customary due to the
rare opportunity to record intracranial artifact-free high-quality
electrophysiological data in response to high-cognitive tasks such
as MTT and self-projection, which is not applicable even in
primates. Notably, most patients with temporal electrodes suffer
from hippocampal sclerosis and frequent electrical discharges,
which contaminate the data. Such patients were not included in
our study, making the study sample of high quality, though small.
Moreover, our results were consistent across all subjects. Subjects
were nevertheless epileptic patients in whom interictal epileptic
activity may influence results. To avoid such a disturbance we
applied several methods: First, in two of our patients epileptic foci
were identified elsewhere and in one aberrant epileptic activity
was absent during recording as well as 2 days later. The data was
also inspected visually to exclude any epileptic artifacts. Stimulus-
locked iEPs were clear and similar among patients. Most late
modulations were found in the HF. However, more electrodes
in other hippocampal locations may show responses as well.
This was nevertheless impossible to test in our study, due to
strict clinical considerations regarding electrodes implantation.
It should thus be noted that the HF effect found here does not
exclude a parallel parahippocampal effect.

As noted earlier, the spatial task is not equivalent to the time
task. However, in both tasks patients had to imagine themselves
in a different self-location—in time or in space. The absence
of a significant early component for space in the LTC is also
supported by fMRI and EEG studies using the same space task,
which did not show such an activation (Arzy et al., 2006; Ionta
et al., 2013). The late hippocampal modulation which relates
stimuli to the projected self may be absent due to the nature of
the spatial task used. Further study of a comparable spatial task
involving relational organization of self and landmarks in space
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BOX 2 | Statistical learning and classi�cation in the analysis of intracranial data.

Intracranial electrophysiological recording in awake human patients is the most accurate existing method in the cognitive neurosciences. Unlike non-invasive

methods—such as functional MRI, MEG or EEG—it enables direct recording of neural activity in exceptionally high spatial and temporal resolutions, as well as

a high signal to noise ratio (SNR; Lachaux et al., 2003; Ball et al., 2009). It is therefore the only manner by which electrophysiological correlates of high cognitive

functions may be recorded invasively, since such functions cannot be controlled in non-human animals, including primates. However, statistical group analysis—a

common approach in the abovementioned modalities—is difficult to employ in iEPs. This is due to the strict clinical considerations regarding location of electrodes

implantation and experimental settings, which ultimately lead to significant variability among individual patients. Therefore, whereas other neuroimaging methods are

used to identify group effects across many subjects, in iEPs experiments, where only a handful of patients are usually recruited, analysis is effectuated in the individual

subject level (Kramer et al., 2011; Peer et al., 2015). While the high quality of the data could enable the detection of significant effects on the level of individual

subjects, it is not free of limitations. Statistics is done over trials, which do not necessarily reflect the cognitive effect; the number of repetitions affects both subjects’

performance and statistical power; correction for multiple comparisons is dependent on the number of electrodes, which, in turn, are inserted according to clinical

considerations and differ between patients. Needless to mention, even classical group effects are prone to invalid statistical inferences due to low statistical power,

improper circular analysis, or other biases that tend to increase false-positive rates (Kriegeskorte et al., 2009; Simmons et al., 2011; Button et al., 2013).

A statistical method that may overcome these caveats, and therefore is appropriate for the analysis of iEP data, is statistical learning, and specifically classification

(Arzy et al., 2014; Shalev-Shwartz and Ben-David, 2014). Here we use a distribution-free framework, aiming to identify a classification rule by which a new observation

can be classified as belonging to one class or another. The classification process and resulting predictions are based on a set of features inherent to the data (e.g.,

in iEPs features may be comprised of amplitude, latency or power spectra, or as in our case: late and early task modulations). Each observation, or instance, is

represented as a “vector of features” in the features space. Instances are further labeled as belonging to one of two or more predefined classes (e.g., in iEPs classes

may consist of anatomical electrode location such as hippocampal vs. LTC, different frequency bands, or experimental conditions). In the framework of supervised

learning, a finite set of labeled instances is defined as the training data. Subsequently, the procedure produces a predictor, or classifier, which can be used to predict

the label of new instances, by separating the instances to different classes according to a certain classification rule (e.g., distance to its nearest neighbors or linear

separation). The accuracy of a classifier is the probability that it will predict the correct label on a randomly generated set of instances and can be estimated on a

given instance set using the N-fold cross-validation procedure (also termed “leave-one-out cross-validation”; Chang and Lin, 2011). In this procedure, classification

is learned using N-1 instances, and then used to predict the label of the remaining instance. The process is repeated N times, and the fraction of instances classified

correctly is used as the estimated classifications accuracy. In addition, one may estimate the statistical significance of classification accuracy by using methods such

as non-parametric permutation tests on the dataset labels. Overall, such a statistical learning approach may therefore fit well iEPs analysis, as long as the research

question may be reformulated as a classification problem into two (or several) predefined classes.

could shed light on the role of the hippocampus in non-temporal
relational organization (Gauthier and van Wassenhove, 2016).
We therefore refer in this study mostly to results found in the
MTT task and mention spatial task results with caution.

Our small number of patients did not allow for reliable
statistical testing using conventional approaches. Specifically in
intracranial studies, it is difficult to delineate consistent iEPs
across individuals, in part due to varying relative positions
of the electrodes across different subjects. For example, such
variability leads to “polarity reversal” (Halgren et al., 1982):When
recording iEPs from local generators, the polarity of the resulting
iEP reverses as one records from two opposite sides of this
generator (Figure S5). We therefore suggest that classification,
done at a low dimensional feature space that summarizes the iEPs
recorded at each electrode, is a more suitable statistical method in
such cases, and may serve as a useful tool in analyses of other
neuroscientific data as well (Box 2; see also Arzy et al., 2014).
While classification reliably distinguishes between predefined
classes, the applied predefinition inevitably influences the results.
Classification here was nevertheless based on previous results
using fMRI and EEG, enabling a precise predefinition of classes
with respect to neuroanatomical localization and appropriate
time windows, respectively.

To conclude, in the present study we found that both the
LTC and the hippocampus are involved in MTT; however, while
the first is involved early in the process, as subjects “project”
themselves in time, the latter is only involved later, when subjects
relate the different events to the “projected” self. This division of
labor may contribute to the reconciliation of the major debate
regarding the role of the hippocampus in MTT.
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Figure S1 | Own-body transformation task: Participants viewed a schematic

human figure with one hand marked, facing either toward them or away from

them. In the ‘here’ condition participants were asked to judge from their own

self-location whether the marked hand was on the right or the left side of the

computer screen. In the ‘there’ condition, participants were asked to “project”

themselves to the position represented by the schematic human figure, and from

this self-location to indicate whether the marked hand would be their right or left

hand. Correct responses for each case are indicated below each figure.
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Figure S2 | Depth electrodes locations in the hippocampus and lateral temporal

cortex (LTC), shown on individual patients’ MRI scans.

Figure S3 | Electrophysiological results for the time-task in the left hemisphere.

Intracranial evoked potentials (iEPs) from all electrodes used in the classification

analysis are presented. LTC electrodes (up) show high early task modulation,

whereas electrodes in the hippocampus (bottom) show high late task modulation.

Shaded areas show time points of significant differences between conditions in

two-tailed independent samples t-test (p < 0.05, uncorrected).

Figure S4 | Electrophysiological results for the time-task in the right hemisphere.

iEPs recorded at electrodes in the right LTC and right hippocampus. No clear

distinction in task modulation is apparent between LTC electrodes and electrodes

in the hippocampus. Shaded areas show time points of significant differences

between conditions in two-tailed independent samples t-test (p < 0.05,

uncorrected).

Figure S5 | Demonstration of iEPs polarity-reversal in the electrodes shown in

Figure 1. Some iEPs in Figure 1 are of seemingly opposite polarity between

Patients. This is the result of “polarity reversal” (Halgren et al., 1982). When

recording iEPs from local generators, the polarity of the resulting iEP reverses as

one records from two opposite sides of this generator. Observing such reversal in

our data is expected since the exact relative position of electrodes differed

between subjects. Note the iEPs similarity when plotting the reverse iEP (marked

with an asterisk) in some of the electrodes.

Figure S6 | Electrophysiological results for the space-task in the left hemisphere.

iEPs from all electrodes used in the classification analysis are presented. No clear

distinction in task modulation is apparent between LTC electrodes and electrodes

in the hippocampus. Shaded areas show time points of significant differences

between conditions in two-tailed independent samples t-test (p < 0.05,

uncorrected).

Figure S7 | Electrophysiological results for the space-task in the right

hemisphere. iEPs recorded at electrodes in the right LTC and right hippocampus.

No clear distinction in task modulation is apparent between LTC electrodes and

electrodes in the hippocampus. Shaded areas show time points of significant

differences between conditions in two-tailed independent samples t-test

(p < 0.05, uncorrected).

Figure S8 | The effect of reducing the number of electrodes used in the

classification analysis. The distribution of cross-validation accuracy and

corresponding p-values in the classification analysis of the MTT task, for subsets

of 8 electrodes in the left hemispheres. Each subsets includes exactly 5

hippocampal electrodes and 3 lateral temporal electrodes, as in the right

hemisphere. Although high accuracy values (>75%) were found in a large number

of electrodes subsets (84/120), these findings were significant (p < 0.05) for only a

small fraction of the subsets (33/120).

Table S1 | Electrodes locations.

Table S2 | Early and late modulation in time task, left hemisphere.
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The neural basis of time perception has long attracted the interests of researchers.

Recently, a conceptual model consisting of neural oscillators was proposed and

validated by behavioral experiments that measured the dilated duration in perception

of a flickering stimulus (Hashimoto and Yotsumoto, 2015). The model proposed

that flickering stimuli cause neural entrainment of oscillators, resulting in dilated time

perception. In this study, we examined the oscillator-based model of time perception,

by collecting electroencephalography (EEG) data during an interval-timing task. Initially,

subjects observed a stimulus, either flickering at 10-Hz or constantly illuminated.

The subjects then reproduced the duration of the stimulus by pressing a button. As

reported in previous studies, the subjects reproduced 1.22 times longer durations for

flickering stimuli than for continuously illuminated stimuli. The event-related potential

(ERP) during the observation of a flicker oscillated at 10Hz, reflecting the 10-Hz

neural activity phase-locked to the flicker. Importantly, the longer reproduced duration

was associated with a larger amplitude of the 10-Hz ERP component during the

inter-stimulus interval, as well as during the presentation of the flicker. The correlation

between the reproduced duration and the 10-Hz oscillation during the inter-stimulus

interval suggested that the flicker-induced neural entrainment affected time dilation.

While the 10-Hz flickering stimuli induced phase-locked entrainments at 10Hz, we

also observed event-related desynchronizations of spontaneous neural oscillations in

the alpha-frequency range. These could be attributed to the activation of excitatory

neurons while observing the flicker stimuli. In addition, neural activity at approximately the

alpha frequency increased during the reproduction phase, indicating that flicker-induced

neural entrainment persisted even after the offset of the flicker. In summary, our results

suggest that the duration perception is mediated by neural oscillations, and that time

dilation induced by flickering visual stimuli can be attributed to neural entrainment.

Keywords: time perception, duration perception, neural entrainment, time, EEG
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Hashimoto and Yotsumoto Time Dilation and Neural Entrainments

INTRODUCTION

A major focus of interval-timing studies has been the
mechanism of how physical time-flow is converted into a mental
representation of duration. Many studies have proposed that
neural oscillators with periodic activations are utilized for the
physical-mental conversion of time, but physiologic aspects
of the oscillators are still controversial (Gibbon et al., 1984;
Treisman et al., 1994; Matell and Meck, 2004).

In psychophysical studies, flickering visual stimuli have been
widely used to investigate the function of the oscillators. It
has been reported that a flickering stimulus causes observers
to overestimate the duration of the stimulus, and such
an overestimation is called “time dilation” (Treisman and
Brogan, 1992; Kanai et al., 2006; Ortega and López, 2008).
Hashimoto and Yotsumoto (2015) examined time dilation using
various flickering frequencies, and conducted simulations by
a model that integrated flicker-induced neural entrainments
with a previously proposed oscillator-based model (Matell and
Meck, 2004). The behavioral results were consistent with the
simulations, indicating that neural entrainment can account for
flicker-induced time dilation.

The neurophysiological aspect of the flicker-induced time
dilation has also been investigated. Herbst et al. (2013) reported
that a set of stimuli flickering above the flicker fusion frequency
(Landis, 1954) evoked steady-state visually evoked potentials
(SSVEPs; Regan, 1977), as the stimuli were not perceived as a
flicker and did not cause time dilation. Therefore, they concluded
that conscious perception of a flicker, instead of neural activity
triggered by a flickering stimulus, played a crucial role in time
dilation.

However, EEGs were not recorded in Herbst et al. (2013)
during their interval-timing task. Morillon et al. (2009) showed
that neural activity differs when attending to the temporal aspect
of an event, and when attending to other aspect such as color.
They reported larger BOLD activities in dorsolateral prefrontal

cortex and temporal-parietal junction when the subjects attended
to the temporal aspect, suggesting the temporal processing

network is controlled by attention. Therefore, neural activities

while attending to the duration of the flicker might be different
from neural activities during passive observation of the flicker. To
investigate the effect of a flicker on the interval-timing network,
it is essential to examine neural activity while subjects attend to
the temporal aspect of the flicker stimuli.

In this study, we investigated the physiological relations
between neural oscillation and time perception. Recently, we
proposed a model which assumed that multiple oscillators with
various intrinsic frequencies process interval-timing (Hashimoto
and Yotsumoto, 2015). The model extended the striatal beat-
frequency model (Buhusi and Meck, 2005) which hypothesized
that a duration is encoded as the timing on which a specific subset
of oscillatory neurons simultaneously activates. We further
simulated the activity of the oscillators when a flicker entrained
the oscillators. We demonstrated that when the frequencies
of oscillators were drawn to the flickering frequency, the
simultaneous activation of the oscillatory neurons occurred
earlier than the encoded duration, which in turn caused time

dilation. In previous studies of time distortion, entrainment of
oscillators was considered a factor capable of inducing time
distortion (Treisman and Brogan, 1992; Treisman et al., 1994),
while the presentation of flickering stimuli mainly caused time

dilation (Treisman and Brogan, 1992; Kanai et al., 2006; Ortega
and López, 2008; Kaneko and Murakami, 2009). Hence, neural

entrainment was not considered the dominant source of flicker-
induced time dilation; instead, changes in arousal level (Treisman

and Brogan, 1992; Ortega and López, 2008) and temporal cueing
(Kanai et al., 2006; Kaneko and Murakami, 2009; Herbst et al.,
2013) became the focus of increased research. Hashimoto and
Yotsumoto’s model successfully demonstrated time dilation and
lack of time contraction by combining neural entrainment with
an existing neural model of time perception. In addition, their
model can be physiologically verified because it is directly linked
to a neural model of time perception and flicker-induced time
dilation.

In the present study, we took our model as a working
hypothesis, and recorded EEG data while subjects performed
a duration reproduction task. First, we measured the EEG
power spectrum while subjects observed a flicker. The model
predicts that presentation of a flicker would entrain the time-
encoding neural network and affect neural oscillations in the
brain. Consequently, the neural activities would be phase-locked
to the flicker, and the neural activities may last even after the
disappearance of the flicker. Second, we examined whether the
reproduced duration of a flickering stimulus and the amplitude of
the SSVEP would correlate trial by trial. The model predicts that
an increase in time dilation would be observed with an increase
in neural entrainment, which would be observed as a greater
SSVEP.

Additionally, we analyzed the EEG recordings for duration
reproduction when no flicker was presented. Some previous
studies have reported that the effect of flicker-induced time
dilation lasted after the offset of the flicker (Johnston et al., 2006;
Burr et al., 2007). In addition, neural entrainment was reported
to last ∼0.5 s after the offset of the flicker (Spaak et al., 2014).
Therefore, we analyzed EEG recordings during the reproduction
phase as well as the flicker observation phase.

METHODS

Subjects
Thirteen volunteers (4 men; age range, 18–23 years) with normal
or corrected-to-normal vision participated in the experiment.
One subject was excluded from the analyses because Fp1 and
Fp2 channel malfunctioned resulting in failure in detecting eye
movements and blinks. The data collected from the other 12
subjects (4 men; age range, 18–23 years) were used in the
following analyses. All participants were blind to the purpose
of the study. This study was carried out in accordance with the
recommendations of the ethics boards of the University of Tokyo
with written informed consent from all subjects. All subjects gave
written informed consent in accordance with the Declaration of
Helsinki. The protocol was approved by the institutional review
boards of the University of Tokyo.
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Apparatus
The experiment was conducted in a dark soundproof room.
The stimuli were presented on a 23.6-inch LCD monitor with
a 120-Hz refresh rate, 1,920-pixel width and 1,090-pixel height
(VIEWPixx 3D; VPixx Technologies Inc., Saint-Bruno, QC
Canada). The viewing distance was set to 57.3 cmwith a chin rest.
The experiment was conducted withMATLAB 2014 (Mathworks,
Natick, MA USA) and the Psychophysics Toolbox extensions
(Brainard, 1997; Pelli, 1997; Kleiner et al., 2007).

EEG recordings were obtained at a sampling rate of 512Hz
using a 32-channel EEG system with a signal amplifier,
active electrodes, a battery box (g.USBamp, g.LADYbird,
and g.GAMMAbox, respectively; g.tec medical engineering,
Schiedlberg, Austria) and Simulink with MATLAB 2012. The
electrodes were mounted using an AsiaCap (BrainProducts,
Gilching, Germany) on the following positions: Fp1, Fp2, AFz,
Fz, F3, F4, F7, F8, FC1, FC2, FC5, FC6, T7, T8, Cz, C3, C4, CP1,
CP2, CP5, CP6, Pz, P3, P4, P7, P8, POz O1, O2. Additionally,
three electrodes were mounted on the left-side of the left-eye,
the right-side of the right-eye, and the bottom of the left-eye to
monitor for eye movements and blinking. The ground electrode
was mounted on Fpz and the reference electrode was mounted
on the left earlobe. The ERP and time-frequency representation
analyses were conducted with Fieldtrip software (Oostenveld
et al., 2011) and customMATLAB scripts.

Stimuli
A circular disc with a 4◦ radius was presented against a black
background at the center of the display, and a fixation cross was
overlaid on the circular disc. For each subject, the luminance
of the circular disc was set to be subjectively equiluminant
to 25 cd/m2 white by the heterochromatic flicker photometry
with a 20-Hz square-wave (Bone and Landrum, 2004) to reduce
eyestrain and the effect of luminance adaptation. The luminance
of the fixation cross was also set to be subjectively equiluminant
to 12.5 cd/m2 white.

Procedure
EEG data were recorded while the subjects performed a duration
reproduction task. The time course of the reproduction task is
illustrated in Figure 1.

Before each trial, a green circular disc with a red edge annulus
was presented on the display for 1.2 s; during this time the
subjects were allowed to blink, but not otherwise. A trial started
with a green circular disc overlaid by a gray fixation cross that
was presented for 0.6–1.4 s. It was followed by the presentation
of a white circular disc, which defined the standard duration
that the subjects were asked to remember. The white circular
disc was either continuously illuminated or flickering at 10Hz.
After a reproduction cue was delivered by changing the color of
the fixation cross from gray to red, the subjects reproduced the
remembered standard duration by pressing a space key with a
right index finger. The inter-stimulus interval (ISI) between the
first presentation of a white circular disc and the reproduction
cue was randomly chosen from a range of 0.4–1.0 s. During the
reproduction phase, a white circular disc was again presented on
the display as visual feedback. As soon as the key was released, the

white circular disc disappeared, and a green circular disc replaced
it for 0.6 s.

It should be noted that the luminance of the white circular
disc was set at the same value for all conditions. Therefore,
the maximum luminance was similar for all stimuli, while
the temporal average of the luminance was lower for the
flickering than for the constantly illuminated stimuli. This setting
was a conservative choice in order to avoid false positives of
time dilation and SSVEP. If the averaged luminance had been
controlled using a brighter flicker, it might have led to an
overestimation of time dilation (Xuan et al., 2007) and visually
evoked potentials (Norcia et al., 2015), due to brightness. To
avoid these critical false positives, we chose to control for
maximum luminance and not averaged luminance.

Each subject performed 300 experimental trials and 60 catch
trials, resulting in a total of 360 trials. In the experimental trials,
the standard duration was always 1.0 s, while in the catch trials
the duration of the standard duration was jittered between 0.5
and 1.5 s. There were 150 experimental trials and 30 catch trials
in which the first white circular disc was continuously illuminated
(“static” condition). In the other 150 experimental trials and 30
catch trials, the first white circular disc was flickering (“flickering”
condition). The 360 trials were divided into 30 blocks. The
subjects were allowed to take a break anytime between these 12
blocks.

Behavioral Data Analysis
To remove trials with extraordinary short or long reproduction,
which was caused by instantaneous button press and overlook of
the offset signal, the extraordinary reproductions were detected
by applying distanced-based outlier detection with ε = 0.1 s and
π = 10−5 (Knox and Ng, 1998) for each subject and condition,
resulting excluding 0.6% of trials from the following analyses.

For each subject, a t-test was applied to evaluate the difference
in the reproduced durations in the experimental trials between
the “static” and “flickering” conditions to determine whether the
subjective duration of a flickering stimulus dilated. In addition,
for the catch trials in which the standard duration differed trial-
by-trial, the correlation between the standard durations and the
reproduced durations were tested for each subject and for each
condition to confirm that the subjects attended to the duration of
the stimuli.

For subsequent EEG analysis, the 150 experimental trials
for each stimulus type were sorted in accordance with the
subjects’ reproduced durations. The top 50 trials were classified
as the “long” reproduction trials; the bottom 50, “short”; the
intermediate 50, “middle.”

Electroencephalogram Data Analysis
Preprocessing
An online high-pass filter at 0.1Hz and an online notch
filter at 50Hz were applied to the EEG data, while recording.
The recordings were divided into epochs from the beginning
to the end of the trial, followed by an application of an
offline band-pass filter from 0.2 to 128Hz and an offline
notch filter. Eye movements and blinks were detected as
transient fluctuations in the electrooculogram (EOG), and
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FIGURE 1 | Time course for the duration reproduction task.

the trials containing the artifacts were excluded. After the
trial removal, independent component analysis (ICA) was
applied to the 29 EEG channels without EOGs to correct for
muscle artifacts (Makeig et al., 1996). By visual inspection of
the independent components for each subject, low-frequency
(<1Hz) components bisymmetrically distributed around frontal
electrodes and high-frequency (>20Hz) components evident
only at a few parietotemporal electrodes were excluded as
the muscle artifacts originated from the forehead and temple.
Subsequently, the EEG was reconstructed by the remaining
independent components and the following analyses were
applied to the reconstructed EEG (Jung et al., 2000).

Event-Related Potentials
Each trial was divided into two phases. The observation phase
was defined as a period of −0.6 to 1.6 s, time-locked to the
onset of the standard duration; and the reproduction phase was
defined as a period of −0.84 to 1.14 s, time-locked to the onset
of reproduction. For each subject and stimulus type, the ERP was
calculated by averaging the preprocessed signals. For each ERP,
baseline correction was applied by subtracting the mean signal
within an interval of −0.1 to 0 s. Then, the ERPs acquired from
Pz, P3, P4, POz, O1, and O2 were averaged.

For each of the 1-s standard duration intervals and the 0.4-s
interval occurring just after the offset of the standard duration,
the SSVEP amplitude was calculated by applying the discrete
Fourier transform (Cooley et al., 1969) to the ERP for the
intervals measured for each subject. The detailed formulation is
provided as Supplementary Formula 1. For each of the intervals, a
within-subject t-test was applied to evaluate the differences in the
SSVEP amplitude between “static” and “flickering” conditions.
The amplitudes of the second (20Hz), third (30Hz), and fourth
(40Hz) harmonics were also compared for the “static” and
“flickering” conditions using within-subject t-tests.

To further investigate the relationship between behavior and
SSVEP, the SSVEP amplitudes of the “long,” “middle,” and
“short” reproduction trials were modeled and evaluated using
analysis of variance (ANOVA) followed by a post-hoc Tukey’s
honest significant difference (HSD) test. The type of reproduced
duration (“long,” “middle,” or “short”) was set as a fixed effect and
the subject was set as a random effect in the model. Cohen’s ds
(Cohen, 1988) was calculated for each difference (Equation 1).

Cohen′s d =

sample mean

sample standard deviation
×

√

2 (1)

In addition, for each of the second, third, and fourth SSVEP
harmonic values, the differences in the respective amplitudes of
the “long,” “middle,” and “short” reproduction trials were tested
by ANOVA and the post-hoc Tukey’s HSD test. The fixed and
random effects were set as those for the ANOVA for the base
frequency. Cohen’s ds values were also calculated in the same
manner.

Time-Frequency Representations
The time-frequency representation was calculated for each
trial by projecting the preprocessed signal onto the time-
frequency representation using a short-term Fourier transform
and applying an adaptive Hanning window length. The window
length of the Hanning taper was set at 7 cycles per window. For
each time-frequency representation, a baseline-correction was
applied by subtracting the mean amplitude within an interval
of −0.1 to 0 s for each frequency. Following the baseline-
correction, the time-frequency representations were averaged
for each subject and stimulus type and subsequently, the time-
frequency representations acquired fromPz, P3, P4, POz, O1, and
O2 were averaged.

The difference in time-frequency representation between
the “static” and “flickering” conditions was tested by a
cluster-based permutation (Maris and Oostenveld, 2007) with
ft_timelockstatistics function in the Fieldtrip software. In the
cluster-based permutation test, two conditions were compared
by calculating t-values for every time-frequency data point. A
continuum in which the t-value exceeded a certain criterion was
clustered and t-values in the cluster were summed up, resulting
in a T-value of the cluster. If there were multiple T-values
originating from multiple clusters, T-values, except the largest
one, were rejected. To compute the distribution of T-values based
on the null hypothesis, the label of condition was randomly
assigned to the data sets, andT-values were resampled repeatedly.
The position of the original T-value and the resampled T-
values were sorted and the percentile of the original T-value was
calculated. If the percentile of original T-value was smaller than
2.5% or larger than 97.5%, the two conditions were concluded to
be significantly different.

RESULTS

Behavior
The mean reproduced duration for the “static” condition was
0.95 s (SD: 0.08 s) and 1.16 s (SD: 0.19 s) for the “flickering”
condition. The difference was significant for all subjects (p <

Frontiers in Computational Neuroscience | www.frontiersin.org 4 May 2018 | Volume 12 | Article 3042

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Hashimoto and Yotsumoto Time Dilation and Neural Entrainments

1.0 × 10−5 for each subject, p < 5.0 × 10−4 with Bonferroni
correction), which indicated that the flicker was perceived to be
longer than the constantly illuminated stimulus. The correlation
between the standard duration and the reproduced duration in
catch trials was 0.78 (SD: 0.11) for the “static” condition, and
0.76 (SD: 0.09) for the “flickering” condition. The correlation
was significant in all subjects and conditions (p < 1.0 ×

10−3 for all subjects and conditions, p < 0.05 with Bonferroni
correction), which indicated that the subjects attended to each
standard duration accurately. Additional information regarding
the distribution of the reproduced duration for each subject
and condition is provided in Supplementary Figure 1, and
the detailed results of the correlation analyses are reported
in Supplementary Table 1. The reproduced durations in the
“long,” “middle,” and “short” reproduction trials in the “static”
and “flickering” conditions were shown in Table 1. The mean
differences of reproduced duration between the “long” and
“short” reproduction trials were 0.24 s (SD: 0.06 s) and 0.30 s (SD:
0.10 s) in the “static” and “flickering” conditions, respectively.

Electroencephalogram
Steady State Visually Evoked Potential
Figure 2 illustrates the amplitude of the SSVEP (10-Hz ERP
component) in the observation phase. The amplitude of the
SSVEP was significantly larger in the “flickering” condition than
in the “static” condition [t(11) = 3.02, p = 0.01], suggesting
the flickering stimulus evoked a 10-Hz neural activity phase-
locked to the change in luminance of the flicker. The amplitudes
of the second, third, and forth SSVEP harmonics were also
significantly larger in the “flickering” condition than in the
“static” condition [t(11) = 6.36, 2.41, 3.85; p= 0.0001, 0.03, 0.002,
respectively]. The topographic representation and the frequency
spectrum of the SSVEP are illustrated in Supplementary Figures
2,3, respectively.

The SSVEPs during the 1-s standard duration in the “long”,
“middle”, and “short” reproduction trials were illustrated in
Figure 3. The amplitudes of the SSVEP in the “long,” “middle,”
and “short” reproduction trials were 1.35 µV (SD: 0.89 µV),
1.26 µV (SD: 0.81 µV), and 0.98 µV (SD: 0.66 µV), which are
illustrated in Figure 4A. ANOVA revealed that the amplitudes of
the SSVEP were different across the types of reproduced duration
[F(2, 22) = 8.20, p= 0.004 with and without Greenhouse-Geisser’s
sphericity correction, ε = 0.98]. The post-hoc Tukey’s HSD test
showed significant differences in the amplitude of the SSVEP
between the “long” and “short” reproduction trials, and between

TABLE 1 | Mean and SD of reproduced duration of the trials categorized as

“long,” “middle,” and “short.”

“Long” “Middle” “Short”

Constantly illuminated Mean 1.07 0.95 0.83

(S.D.) (0.09) (0.08) (0.09)

Flickering Mean 1.31 1.15 1.00

(S.D.) (0.22) (0.19) (0.18)

the “middle” and “short” reproduction trials (p < 0.005 and
p < 0.05, Cohen’s d = 1.26 and d = 1.53, respectively). There
was no significant difference in the SSVEP between the “long”
and “middle” reproduction trials.

In addition, the SSVEPs during the 0.4 s immediately after
the offset of the standard duration were calculated for each
subject and stimulus type. Because this 0.4-s interval was an
inter-stimulus interval and the same green circular disc was

FIGURE 2 | The amplitude of the 10-Hz ERP components in the observation

phase in the “static” and “flickering” conditions. The asterisk indicates the

significant difference with α = 0.05. The error bars represent the standard

errors of the mean.

FIGURE 3 | The blue, red, and yellow lines represent ERP of “long,” “middle,”

and “short” reproduction trials, averaged across subjects.
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FIGURE 4 | Amplitudes of the 10-Hz ERP components in the “long,” “middle,” “short” reproduction trials during observation of a flicker (A) and after the offset of the

flicker (B). The single, double, and triple asterisk(s) indicate the significant difference with α = 0.05, 0.01, and 0.005, respectively. The dagger (†) indicates the

marginally significant difference with α = 0.1.

continuously presented both in the “static” and “flickering”
conditions, the difference of the SSVEPs in this interval was not
due to the difference of the presented stimuli, but it reflected the
difference of the neural entrainment lasting even after the offset
of the stimuli. The SSVEP after the offset of the standard duration
was significantly larger in the “flickering” condition than in
the “static” condition [t(11) = 2.46, p < 0.05]. The amplitudes
in the “long,” “middle,” and “short” reproduction trials in the
“flickering” condition were 1.58 µV (SD: 1.44 µV), 1.35 µV (SD:
0.98 µV), and 0.92 µV (SD: 0.72 µV) respectively, which are
illustrated in Figure 4B. ANOVA revealed that amplitudes were
different across the types of reproduced durations [F(2, 22) = 6.18,
p = 0.007 and 0.02 with and without Greenhouse-Geisser’s
sphericity correction, ε = 0.67]. The Tukey’s HSD test showed
a significant difference in the amplitude between the “long” and
“short” reproduction trials (p < 0.01, Cohen’s d = 1.09). There
was a marginally significant difference between the “middle” and
the “short” reproduction trials (p < 0.1, Cohen’s d= 1.34). There
was no significant difference between the “long” and “middle”
reproduction trials.

The second, third, and forth harmonics of the SSVEP during
the standard duration were not significantly different among the
“long”, “middle,” and “short” reproduction trials [F(2, 22) = 1.82,
0.14, 0.91, respectively; p > 0.1 for all harmonics]. The amplitude
of the SSVEP harmonics during 0.4 s just after the offset were
not significantly different either [F(2, 22) = 0.35, 0.70, 0.51,
respectively; p > 0.1 for all harmonics].

Event-Related Potential and Time-Frequency

Representation
The ERPs in the observation phase were averaged across
subjects, and shown in Figure 5A. In the observation phase,

the 10-Hz flicker caused oscillatory EEG fluctuations at 10Hz
(SSVEP). Figure 5B illustrates the difference in time-frequency
representation in the observation phase between the “static”
and “flickering” condition, represented by the t-values calculated
across subjects. The presentation of a flicker decreased the
EEG amplitude in the wide range of frequency around 10Hz
(p = 0.010), suggesting large event-related desynchronization
(Klimesch et al., 2007) at approximately the alpha band in the
“flickering” condition.

The averaged ERP and the t-values in time-frequency
representation in the reproduction phase are illustrated in
Figures 5C,D. In the “flickering” condition, the EEG amplitude
at approximately the alpha band during the reproduction
increased, while before the onset of reproduction the amplitude
at approximately the beta band decreased (p= 0.018 for the alpha
band activity, p = 0.048 for the beta band activity). Note that the
visual stimuli presented during the reproduction phase did not
flicker even in the flickering condition. Additionally, the time-
frequency representations of EEG averaged across subjects for
each condition and phase are shown in Supplementary Figure 4.

DISCUSSION

In the present study, we measured the neural correlations
between EEG and time dilation in order to evaluate the effects of
neural entrainment in time dilation.We found that 10-Hz flickers
induced time dilation replicating the results of previous studies,
and that the reproduced duration correlated with the amplitude
of the 10-Hz ERP component both before and after the flicker was
offset.

Flicker-induced oscillations that lasted even after the
disappearance of the flicker were also reported by the previous
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FIGURE 5 | [Upper panels] ERP and time-frequency representation in the observation phase (A) and the reproduction phase (C). The blue and red lines represent

ERPs in the “static” and “flickering” condition, respectively. [Lower panels] Difference of time-frequency representation between the “static” and “flickering” condition in

the observation phase (B), and in the reproduction phase (D). The yellow area indicates that the time-frequency amplitude was larger in the “flickering” condition, while

the blue area shows that the time-frequency amplitude was larger in the “static” condition. The gray area indicates no significant differences between the two

conditions. The color bar indicates the t-value at the time-frequency data point.

study (Spaak et al., 2014), and the EEG oscillations were
considered to reflect neural activity being entrained to the flicker.
Therefore, the correlation between the reproduced duration and
the amplitude of the flicker-induced 10-Hz oscillation supported
our hypothesis that the presentation of a flicker can induce
neural entrainment, and that this neural entrainment would
cause flicker-induced time dilation. It should be mentioned
that a significant difference in the 10-Hz ERP amplitude was
not observed comparing long and middle reproduction trials.
However, the lack of difference observed in the 10-Hz ERP
amplitude does not necessarily suggest a lack of difference
in the magnitude of neural entrainment. Rather, it might
be more plausible to attribute this lack of difference to the
relationship between neural entrainment and the consequent
ERP. Because the EEG is the summation of neural activities, it
is natural to assume that the oscillatory 10-Hz ERP observed in
our results represented the collective activity of the entrained
neural oscillators. Mathematically, the phase coherence among
oscillators and the amplitude of their mean activity are associated
by an S-shaped function (Supplementary Figure 5), thus when
comparing two conditions having a stronger neural entrainment,
the difference in the ERP amplitude gradually decreases and is
less detectable. This property may explain why there was no
difference observed in the 10-Hz ERP amplitude comparing
the middle and long reproduction trials. Conversely, it is less
likely that there was no change in ERP because there was no

difference in the magnitude of neural entrainment. Had the
magnitude of the neural entrainment been small in the short
reproduction trials, and large but identical in the middle and
long reproduction trials, the distribution of the reproduced
duration would have been skewed. However, such skewness was
not observed in our results (Supplementary Figure 1). Therefore,
the lack of difference in the ERP amplitude should be attributed
to the relationship between the neural entrainment and the
resulting ERP, rather than on an similar neural entrainment.

The ERP amplitudes of the harmonics were also larger for the
flickering stimuli than for the continuously illuminated stimuli.
However, the amplitudes of the harmonics did not correlate
with the reproduced duration. The difference might be attributed
to the distribution of oscillators in the time-encoding network.
In the model proposed in Hashimoto and Yotsumoto (2015), the
oscillating frequencies of the time-encoding network distribute
more densely at around alpha frequencies compared to other
frequencies. Therefore, the entrainment of the oscillators at
around 10Hz would have larger impact on time perception than
the entrainment of the other oscillators. The difference of impact
might have led to the result that the amplitude of the 10-HZ ERP
component correlated with the amount of time dilation while the
amplitude of the harmonics did not.

Although the ERP analysis revealed the flicker induced
phase-locked 10-Hz neural activity during the observation of a
flicker (Figure 4A), decrease of EEG amplitude at ∼10Hz was
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observed through time-frequency representation (Figure 4B).
The decrement of neural activity at ∼10Hz could be attributed
to the large amplitude of event-related desynchronization.
Klimesch et al. (2007) reviewed that EEG-components at
approximately the alpha band often decrease while performing
cognitive tasks, and such a decrement is considered to reflect
a decrease in spontaneous alpha activity caused by excitatory
brain processing. In our temporal reproduction task, the subjects’
visual system had to process a greater amount of change in
luminance when the stimulus flickered, which could result
in higher event-related desynchronization. If the event-related
desynchronization exceeded the amplitude of 10-Hz neural
activity evoked by the presentation of a flicker, there would have
been no cluster exhibiting increased amplitude at 10Hz with the
flickering stimulus. In fact, the 10-Hz neural activation was not
evident during the visual inspections of the trial-by-trial EEG
analysis. Conversely, in the ERP analysis, averaging canceled
out spontaneous neural activities that had randomly distributed
phases. Therefore, the 10-Hz SSVEP phase locked to the flicker
was clearly observable.

Interestingly, the presentation of a flicker also evoked
neural activity at approximately the alpha band, even in the
reproduction phase when no flicker was presented. There are
some possible explanations for this phenomenon: First, this
oscillation might be attributed to the “replay of the flicker in the
mind” phenomenon, as in this phase, the subjects remembered
the standard duration defined by the presentation of a flicker.
However, this explanation is unlikely because the frequency of
increased activity was slightly higher than 10Hz. If the EEG
oscillation was because of the “replay of the flicker in the
mind” phenomenon, the reproduced duration would be <1.0 s
because the higher EEG frequency would indicate subjectively
faster elapse of time in the reproduction phase than that in
the observation phase. This was not the case with the findings
of our behavioral tests. The second possibility is the aftereffect
of the neural activation induced by observation of a flicker.
Previously, studies have reported that presentation of a flicker
altered perception of the subsequent stimulus. Johnston et al.
(2006) reported that presentation of a flicker compressed the
perceived duration of the subsequent stimulus presented 0.5 s
later, suggesting an aftereffect of a flicker on interval-timing.
Droit-Volet and Wearden (2002) conducted an experiment with
children, and similarly reported the effect of a flicker on the
duration perception of the subsequent stimulus. In line with these
studies, the increased activity during the reproduction phase

could be interpreted as an aftereffect of the neural activation
induced by the preceding flicker. This explanation is congruent

with the model of neural entrainment. Alpha-band neural
entrainment induced by the presentation of a flicker have been
reported to last around 0.5 s (Spaak et al., 2014), and in our
results, the sustained neural entrainment also sustained for 0.4 s
after the offset of the flicker. Therefore, the alpha oscillatory EEG
data observed in our study might reflect the aftereffect.

In our experiments, we evaluated the correlation between
time dilation and neural entrainment by conducting both inter-
stimulus comparisons (“static” and “flickering” conditions) and
intra-stimulus comparisons (“long” and “short” reproduction
trials). The results supported the hypothesis that neural
entrainment induces subjective time dilation. However, in
our studies, we only measured EEGs having continuously
illuminated stimuli and 10-Hz flickers. It would be of value
to conduct additional experiments with stimuli flickering at
different frequencies in order to better examine whether the
correlation between neural entrainment and time dilation is
a general phenomenon. In addition, recording EEGs with
arrhythmic flickers will also be helpful in distinguishing the
neural entrainment due to oscillators, the neural activities
reflecting each flash in the flicker and, in particular, it
will contribute to identify the ultimate source of event-
related desynchronization reflecting excitatory brain processing
induced by the flicker. Despite these reservations, our results
clearly showed that the observation of a flicker during
an interval-timing task evoked a periodic neural activity,
which persisted even after the offset of the flicker, and the
prolonged perception was associated with a larger periodic neural
activity.

In summary, (1) presentation of a flicker induced subjective
time dilation, and the amount of time dilation correlated with
the amplitude of neural entrainment induced by the flicker.
(2) The observation of a flicker evoked large event-related
desynchronization at approximately the alpha band, suggesting
excitatory brain processing. (3) An aftereffect of the flicker was
observed during the reproduction phase because of the increase
in EEG amplitude at approximately the alpha band. These
results indicate that neural entrainment can be triggered by the
presentation of a flicker, and support the working hypothesis that
neural entrainment results in the distortion of interval-timing
perception.
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Crossmodal assimilation effect refers to the prominent phenomenon by which ensemble

mean extracted from a sequence of task-irrelevant distractor events, such as auditory

intervals, assimilates/biases the perception (such as visual interval) of the subsequent

task-relevant target events in another sensory modality. In current experiments, using

visual Ternus display, we examined the roles of temporal reference, materialized as

the time information accumulated before the onset of target event, as well as the

attentional modulation in crossmodal temporal interaction. Specifically, we examined

how the global time interval, the mean auditory inter-intervals and the last interval in the

auditory sequence assimilate and bias the subsequent percept of visual Ternus motion

(element motion vs. groupmotion). We demonstrated that both the ensemble (geometric)

mean and the last interval in the auditory sequence contribute to bias the percept of visual

motion. Longer mean (or last) interval elicited more reports of group motion, whereas the

shorter mean (or last) auditory intervals gave rise to more dominant percept of element

motion. Importantly, observers have shown dynamic adaptation to the temporal reference

of crossmodal assimilation: when the target visual Ternus stimuli were separated by

a long gap interval after the preceding sound sequence, the assimilation effect by

ensemble mean was reduced. Our findings suggested that crossmodal assimilation relies

on a suitable temporal reference on adaptation level, and revealed a general temporal

perceptual grouping principle underlying complex audio-visual interactions in everyday

dynamic situations.

Keywords: temporal window, temporal ventriloquism effect, central tendency effect, assimilation, attention

INTRODUCTION

Multisensory interaction has been traditionally revealed to take place over a narrowed window
time—i.e., within a presumed “temporal window” (Meredith et al., 1987; Powers et al., 2009;
Vroomen and Keetels, 2010; Wallace and Stevenson, 2014; Gupta and Chen, 2016). For example,
paired sound/tactile events presented in temporal proximity to paired visual events can alter the
perceived interval between the visual stimuli, and hence bias the perception of visual apparent
motion (Keetels and Vroomen, 2008; Chen et al., 2010; Shi et al., 2010). The above illusions have
been typically known as temporal ventriloquism (Chen and Vroomen, 2013). Studies on temporal
ventriloquism indeed suggested that crossmodal events appearing in temporal proximities have
higher probabilities of “correlation” and even “causation” relations (Ernst and Di Luca, 2011;
Parise et al., 2012). Based on those relations, sensory events with higher functional priorities (such
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as “precision” in timing) would calibrate/attract the counterpart
events (with lower functional appropriateness) from the other
modalities, give rise to successful multisensory integration.
During the integration, multisensory events within a presumed
short time window will largely obey the “assumption of unity,”
in which the coherent representation of multiple events become
possible when they have been deemed as coming from a common
source (Vatakis and Spence, 2007, 2008; Misceo and Taylor, 2011;
Chuen and Schutz, 2016; Chen and Spence, 2017). As a result, the
effectiveness of crossmodal interaction is enhanced.

However, the presumed “temporal window” for integration
has often been violated in many ecological scenarios. Take an
example: upon hearing the whistle of a running car behind
us, after a decent long delay, we can know exactly what
kind of the “car” is approaching and then make prompt
avoidance. This indicates that humans can adaptively use the
prior knowledge and employ the temporal/spatial information
(including environmental cues associated with the sound)
to facilitate the perceptual decision. This daily scenario,
however, imposes a great challenge for human perception.
How are perceptual grouping and correspondences between
events achieved when the crossmodal events are separated
both in longer temporal ranges and with larger temporal
disparities? Moreover, for the longer temporal range, observers
have difficulties in memorizing all the events and the processing
of the sensory properties (including time information) would
probably exceed their working memory capacities (Cowan, 2001;
Klemen et al., 2009; Klemen and Chambers, 2012; Cohen et al.,
2016). Therefore, the efficiency of crossmodal interaction will
be reduced accordingly. The complex timing scenario as well as
the challenge for time cognition also stems from the variance
of the multiple time intervals. In short temporal range (such
as around 2 s), human observers could discriminate the short
temporal intervals when the coefficient of variance (i.e., “CV,” the
ratio of the interval deviation to its baseline value) is less than
0.3. The discrimination ability is greatly reduced when the CV is
above 0.3 (Allan, 1974; Getty, 1975; Penney et al., 2000).

To cope with the above constraints, human observers adopt
one of the efficient perceptual strategies—“ensemble coding” to
process the mean properties of multiple events. For example,
people can extract the mean rhythm of a given sound sequence
and use this information to allocate visual attention and facilitate
the detection of target events (Miller et al., 2013). Recent studies
have shown that this averaging process is highly dependent
on the temporal reference. The temporal reference included
the generally global time interval before the onset of target
event(s), the variabilities of the multiple intervals and the critical
information of the last interval (Jones and McAuley, 2005;
Acerbi et al., 2012; Cardinal, 2015; Karaminis et al., 2016).
One compelling example is the central tendency effect within
the broader framework of Bayesian optimization (Jazayeri and
Shadlen, 2010; Shi et al., 2013; Shi and Burr, 2016; Roach
et al., 2017), whereby incorporating the mean of the statistical
distribution in the estimation would assimilate the estimates
toward the mean (Jazayeri and Shadlen, 2010; Burr et al., 2013;
Karaminis et al., 2016). For example, the estimation of a target
property, such as the duration of an event, is assimilated toward

to the mean duration of previously encountered target events
(i.e., event history) (Nakajima et al., 1992; Burr et al., 2013;
Shi et al., 2013; Roach et al., 2017). The central tendency
effect indicates that human observers exploit predictive coding
using the averaged sensory properties (Shi and Burr, 2016).
The predictive coding framework states that the brain produces
a Bayesian estimate of the environment (Friston, 2010). A
strong mismatch between the prediction and the actual sensory
input leads to an update of the internal model, and could
trigger observable changes in perceptual decision. During this
updating, attentional process can be considered as a form of
predictive coding to establish an expectation of the moments
in time until the task-relevant, to be integrated stimulus inputs
arrive (Klemen and Chambers, 2012). On the other hand, the
temporal reference (including temporal window) for crossmodal
interaction is flexible by perceptual training (Powers et al.,
2009, 2012), repeated exposure (adaptation) to the sensory
stimuli (Mégevand et al., 2013), or recalibration process through
experience (Sugano et al., 2010, 2012, 2016; Bruns and Röder,
2015; Habets et al., 2017). The flexibility of temporal window
has also been shown to be shaped by the individual differences
(Hillock et al., 2011; Stevenson et al., 2012, 2014; Lewkowicz and
Flom, 2014; Chen et al., 2016; Hillock-Dunn et al., 2016).

Time perception is intrinsically related with attention and
memory (Block and Gruber, 2014). Attention has been revealed
to act as an essential cognitive faculty in integrating information
in themultisensorymind (Duncan et al., 1997; Talsma et al., 2007,
2010; Donohue et al., 2011, 2015; Tang et al., 2016). (Selective)
attention improves the efficiency of pooling task-relevant
information - multiple (complex) properties (Buchan and
Munhall, 2011; Li et al., 2016). Withdrawing attention has been
shown in other tasks/paradigms to degrade the representation
of individual sensory properties (Alsius et al., 2005, 2014). In
the central tendency effect, observers processed task-relevant
sensory properties to obtain the subsequent perceptual decision.
However, whether/how attentionalmodulation would deplete the
limited attentional resources for ensemble coding and hence play
a role in the crossmodal assimilation, has not been empirically
examined.

Therefore, in the present study, we aimed to examine
how the temporal reference and the attentional processing
would affect the crossmodal assimilation. We adopted “temporal
ventriloquism effect” with visual Ternus display. We investigated
how the temporal configurations between an auditory sequence
(withmultiple inter-intervals) and the visual Ternus display (with
one interval) modulate the visual apparent-motion percepts.
Ternus display can elicit two distinct percepts of visual apparent
motion: “element” motion or “group” motion, determined by
the visual inter-stimulus-interval (ISIV) between the two display
frames (with other stimulus settings being fixed). Element
motion is typically observed with short ISIV (e.g., of 50ms), and
group motion with long ISIV (e.g., of 230ms) (Ternus, 1926; Shi
et al., 2010) (see Supplement 1 for visual animation of Ternus
display). Previously we have shown that when two beeps were
presented in temporal proximity to, or synchronously with, the
two visual frames respectively, the beeps can systematically bias
the transitional threshold of visual apparent motion (Shi et al.,
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2010). Here we extended the Ternus temporal ventriloquism
paradigm to investigate the temporal crossmodal ensemble
coding. We implemented five experiments to address this issue.
Experiments 1 and 2 examined the role of temporal window-
interval gap between the offset of sound sequence and the onset of
target Ternus display, to show the temporal constraints of central
tendency effect. Experiment 3 compared the central tendency
effect with the recency effect, by manipulating both the mean
auditory interval and the last auditory interval. In Experiment
4, we fixed the last interval to be equal to the transitional
threshold of perceiving element vs. group motion in the pretest,
and manipulated the mean auditory inter-interval to show a
genuine central tendency effect during crossmodal assimilation.
In Experiment 5, we implemented dual-tasks and asked observers
to perform the visual Ternus task while fulfilling a concurrent
task of counting oddball sounds. Overall, the current results
revealed that crossmodal central tendency effect is subject to
the temporal reference (including the length of global time
interval, the mean interval and the last interval for a given sound
sequence) but less dependent on attentional modulation.

MATERIALS AND METHODS

Participants
A total of 60 participants (14, 13, 7, 12, 14 in Experiments
1–5), ages ranging from 18 to 33 years, took part in the
main experiments. A post-hoc power estimation has shown the
statistical powers are generally approaching or above 0.8 for the
given sample sizes. All observers had normal or corrected-to-
normal vision and reported normal hearing. The experiments
were performed in compliance with the institutional guidelines
set by the Academic Affairs Committee, School of Psychological
and Cognitive Sciences, Peking University. The protocol was
approved by the Committee for Protecting Human and Animal
Subjects, School of Psychological and Cognitive Sciences, Peking
University. All participants gave written informed consent in
accordance with the Declaration of Helsinki, and were paid for
their time on a basis of 40 CNY/hour, i.e., 6.3 US dollars/hour.

Apparatus and Stimuli
The experiments were conducted in a dimly lit (luminance: 0.09
cd/m2) room. Visual stimuli were presented at the center of a 22-
inch CRTmonitor (FD 225P) at a screen resolution of 1024× 768
pixels and a refresh rate of 100Hz. Viewing distance was 57 cm,
maintained by using a chin rest. A Ternus display consisted
of two stimulus frames, each containing two black discs (l0.30
cd/m2; disc diameter and separation between discs: 1.6◦ and 3◦

of visual angle, respectively) presented on a gray background
(16.3 cd/m2). The two frames shared one element location at
the center of the monitor, while containing two other elements
located at horizontally opposite positions relative to the center
(see Figure 1A). Each frame was presented for 30ms; the inter-
stimulus interval (ISIV) between the two frames was randomly
selected from the range of 50–230ms, with a step size of 30ms.

Mono sound beeps (1,000Hz pure tone, 65 dB SPL, 30ms,
except in Experiment 5 where pure tones with pitches of either
1,000Hz or 500Hz were given) were generated and delivered via

an M-Audio card (Delta 1010) to a headset (Philips, SHM1900).
No ramps were applied to modulate the shape of the tone
envelope. To ensure accurate timing of the auditory and visual
stimuli, the duration of the visual stimuli and the synchronization
of the auditory and visual stimuli were controlled via the
monitor’s vertical synchronization pulses. The experimental
program was written with Matlab (Mathworks Inc.) and the
Psychophysics Toolbox (Brainard, 1997; Kleiner et al., 2007).

Experimental Design
Practice
Prior to the formal experiment, participants were familiarized
with Ternus displays of either typical “element motion” (with an
interval of 50ms) or “group motion” (with an interval of 260ms)
in a practice block. They were asked to discriminate the two
types of apparent motion by pressing the left or the right mouse
button, respectively. The mapping between response button and
type of motion was counterbalanced across participants. During
practice, when an incorrect response was made, immediate
feedback appeared on the screen showing the correct response
(i.e., element or group motion). The practice session continued
until the participant reached a mean accuracy of 95%. All
participants achieved this within 120 trials.

Pre-test
For each participant, the transition threshold between element
and group motion was determined in a pre-test session. A trial
began with the presentation of a central fixation cross lasting
300 to 500ms. After a blank screen of 600ms, the two Ternus
frames were presented, synchronized with two auditory tones
[i.e., baseline: ISIV(isual) = ISIA(uditory)]; this was followed by
a blank screen of 300 to 500ms, prior to a screen with a question
mark prompting the participant to make a two-alternative
forced-choice response indicating the type of perceived motion
(element or group motion). The ISIV between the two visual
frames was randomly selected from one of the following seven
intervals: 50, 80, 110, 140, 170, 200, and 230ms. There were
40 trials for each level of ISIV, counterbalanced with left- and
rightward apparent motion. The presentation order of the trials
was randomized for each participant. Participants performed a
total of 280 trials, divided into 4 blocks of 70 trials each. After
completing the pre-test, the proportions of the group motion
responses across seven intervals were fitted to the psychometric
curve using a logistic function (Treutwein and Strasburger, 1999;
Wichmann andHill, 2001). The transitional threshold, that is, the
point of subjective equality (PSE) at which the participant was
likely to report the two motion percepts equally, was calculated
by estimating 50% of reporting of group motion on the fitted
curve. The just noticeable difference (JND), an indicator of the
sensitivity of apparent motion discrimination, was calculated as
half of the difference between the lower (25%) and upper (75%)
bounds of the thresholds from the psychometric curve.

Main Experiments
In the main experiments, the procedure for presenting visual
stimuli was the same as in the pre-test session, except that
prior to the occurrence of two Ternus-display frames, an
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FIGURE 1 | Stimuli configurations for the four experiments. (A) Ternus display: two alternative motion percepts of the Ternus display—“element” motion for the short

ISIs, with the middle black dot perceived as remaining static while the outer dots are perceived to move from one side to the other. “Group” motion for long ISIs, with

the two dots perceived as moving in tandem. The auditory sequence consisted of 6 to 8 beeps (with 7 beeps as the most frequent cases). The Ternus display, with 50

to 230ms interval between the two frames, was followed by a blank interval of 150ms to the offset of the last beep in the short time window condition (the total

interval length from the onset of the first beep to the onset of the first visual Ternus frame was less than 2.4 s), and 3.2 s in the long time window condition. In both the

short and long window conditions, two beeps were synchronously paired with two visual Ternus frames. (B) The configuration was nearly the same as in (A), but for

the short window condition, the two frames followed immediately with the last beep. (C) The competition between the mean interval in temporal window and the last

auditory interval upon the visual Ternus motion. The mean auditory inter-intervals/last auditory intervals could be longer (transition threshold + 70ms) or shorter

(transition threshold −70ms) than the threshold between the element—and group—motion percept. The lengths for both short and long time windows were the same

as in (A). (D) Two types of auditory sequences with five auditory intervals were composed: one with its geometric mean 70ms shorter than the transition threshold of

the visual Ternus motion (“Short” condition), and the other with its geometric mean 70ms longer than the transitional threshold (“Long” condition). The last auditory

interval before the onset of Ternus display was fixed at the individual “transitional threshold” for both sequences. (E) The configuration was similar as in C but the

sound sequence had up to two oddball sounds (500Hz, here we showed two oddball sounds with red labels). The remaining regular sounds were of 1,000Hz

(including the two beeps synchronous with the two visual frames).

auditory sequence consisting a variable number of 6–8 beeps was
presented (see below for the details of the onset of Ternus-display
frames relative to that of the auditory sequence). A trial began
with the presentation of a central fixation marker, randomly for
300 to 500ms. After a 600-ms blank interval, the auditory train
and the visual Ternus frames were presented (see Figure 1A),
followed sequentially by a blank screen of 300 to 500ms and
a screen with a question mark at the screen center prompting
participants to indicate the type of motion they had perceived:
element vs. group motion (non-speeded response). During the
experiment, observers were simply asked to indicate the type of
visual motion (“element” or “group” motion) that they perceived,
while ignoring the beeps. After the response, the next trial started
following a random inter-trial interval of 500 to 700ms.

In Experiment 1, the visual Ternus frames were preceded by
an auditory sequence of 6–8 beeps with the geometric mean
of inter-stimulus interval [ISIA(uditory), i.e., ISIA], manipulated
to be 70ms shorter than, or 70ms longer than the transition
threshold estimated in the pre-test. The [ISIV(isual), i.e., ISIV]
between the two visual Ternus frames was randomly selected

from one of the following seven intervals: 50, 80, 110, 140, 170,
200, and 230ms. The total auditory sequence consisted of 6–8
beeps. Visual Ternus frames were presented on most of all trials
(672 trials in total) following the last beep; the remaining were
catch trials (72 trials) in which the frames were inset in the sound
sequence to break up anticipatory processes. For the short time
window of the auditory sequence, the time interval from the onset
of the first beep to the onset of the first visual frame was less than
2.4 s, and the gap interval between the offset of the last beep and
the onset of the first Ternus frame was 150ms. For the long time
window, the total interval from the onset of the sound to the
first visual frame was 3.2 s. In both the short and long window
conditions, two beeps were synchronously paired with two visual
Ternus frames. All the trials were randomized and organized in
12 blocks (62 trials for each block).

In Experiment 2, the settings were the same as in Experiment
1, except for the condition: the visual frames were following
immediately with the offset of the last beep.

In Experiment 3, we introduced two factors of interval
modulations: the mean interval of temporal window and the last
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auditory interval. The mean auditory inter-intervals and the last
auditory intervals could be larger (transition threshold + 70ms)
or shorter (transition threshold −70ms) than the threshold
between the element- and group- motion percept. Therefore,
there were four combinations of the “interval” conditions:
both the mean interval and the last interval were shorter (i.e.,
“MeanSLastS”); themean interval was shorter but the last interval
was longer (“MeanSLastL”); the mean was longer but the last
interval was shorter (“MeanLLastS”); and both the mean interval
and the last interval were longer (“MeanLLastL”). The onset of the
two visual Ternus frames (30ms) was accompanied by a (30-ms)
auditory beep (i.e., ISIV = ISIA).

In Experiment 4 we compared two auditory sequences: one
with its geometric mean 70ms shorter than the transition
threshold of the visual Ternus motion (hereafter the “Short”
condition), and the other with its geometric mean 70ms longer
than the transitional threshold (hereafter the “Long” condition).
Instead of randomization of the five auditory intervals (excluding
the final synchronous auditory interval with the visual Ternus
interval), the last auditory interval before the onset of Ternus
display was fixed at the “transitional threshold” for both
sequences. The rest four intervals were chosen randomly such
that the coefficient of variance (CV) of the auditory sequence
was in the range between 0.1 and 0.2, which is the normal range
of CV for human observers (Allan, 1974; Getty, 1975; Penney
et al., 2000). By this manipulation, we expected to minimize
the influence of the potential recency effect caused by the last
auditory interval. The audiovisual Ternus frames were appended
at the end of these sequences for 85.7% trials (with 672 trials
out of 784 trials), in which the Ternus display appeared at the
end of the sound sequence (the “onset” of first visual frame
was synchronized with 6th beep). The remaining were 112 catch
trials, in which 56 trials had the Ternus displays at the beginning
of the sound sequence (i.e., the “onset” of the first visual frame
was synchronized with the second beep), and the rest 56 trials
at middle temporal locations (i.e., the “onset” of the first visual
frame was synchronized with the 4th beep). Those catch trials
were used to avoid potential anticipatory attending to the visual
events appearing at the end of the sound sequence. The total 784
trials were randomized and organized in 14 blocks, with each of
56 trials.

In Experiment 5, we used three types of auditory sequences,
in which the mean auditory interval was either shorter than,
equal to or longer than the individual transitional threshold of
Ternus motion. The auditory sequence consisted of 8 to 10 beeps,
including those accompanying the two visual Ternus frames,
with the latter being inserted mainly at the 6th−7th positions
(504 trials), and followed by 0–2 beeps (number selected at
random), to minimize expectations for the onset of the visual
Ternus frames. Two of the beeps (the 6th and the 7th) were
synchronously paired with two visual Ternus frames which were
separated by a visual ISI (ISIV) that varied from 50 to 230ms (for
the critical beeps, ISIV = ISIA). There were up to two oddball
tones (500Hz) in the sound sequence, while the remaining
regular sounds were of 1,000Hz (including the two beeps
synchronous with the two visual frames). Participants completed
a dual-task in which they not only made discriminations of the

Ternus display (“element motion” vs. “group motion”) but also
reported the number of oddball sounds (0–2) (Figure 1).

RESULTS

Experiment 1: The Effect of Short Temporal
Window (With a Temporal Gap Between
Auditory Sequence and Visual Ternus) vs.
Long Temporal Window
The PSEs for the short window and long window were 149.4
(±5.6, standard error) ms and 141.2 (±4.8) ms. The main effect
of temporal window was significant, F(1, 13) = 6.878, p = 0.021,
η
2
g = 0.346. The PSEs for short interval and long interval

were 145.5(±5.2) ms and 145.0 (±4.8) ms, the main effect of
mean interval was not significant, F(1, 13) = 0.120, p = 0.735,
η
2
g = 0.009. The interaction effect between factors of window

and interval was not significant, F(1, 13) = 1.033, p = 0.328,
η
2
g = 0.074. For the JNDs, both the main effects of temporal

window and mean interval were not significant, F(1, 13) = 3.419,
p = 0.087, η

2
g = 0.208 and F(1, 13) = 0.089, p = 0.770, η

2
g =

0.007. And the interaction effect between the two factors was not
significant, F(1, 13) = 2.863, p= 0.114, η2g = 0.180 (Figures 2, 4).

Experiment 2: The Effect of Short Temporal
Window (Without a Gap Between Auditory
Sequence and Visual Ternus) vs. Long
Temporal Window
The PSEs for the short window and long window were 168.7
(±6.2) ms and 156.2 (±5.7). The PSE for short windowwas larger

FIGURE 2 | Psychometric curves for Experiment 1. Mean proportions of

group-motion responses were plotted as a function of the probe visual interval

(ISIv), and fitted psychometric curves, were plotted for the auditory sequences

with the different lengths of temporal windows and with different (geometric)

mean intervals relative to the individual transition thresholds. SW-IntvLong,

Short window with long mean auditory inter-interval; SW-IntvShort, Short

window with short mean auditory inter-interval; LW-IntvLong, Long window

with long mean auditory inter-interval. LW-IntvShort, long window with short

mean auditory inter-interval.
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than the one in long window, F(1, 12) = 20.860, p = 0.001, η2g =

0.635. The PSEs for short interval and long interval were 163.8
(±6.0) ms and 161.0 (±5.8), the main effect of mean interval

FIGURE 3 | Psychometric curves for Experiment 2. SW-IntvLong, Short

window with long mean auditory inter-interval; SW-IntvShort, Short window

with short mean auditory inter-interval; LW-IntvLong, Long window with long

mean auditory inter-interval. LW-IntvShort, long window with short mean

auditory inter-interval.

was not significant, F(1, 12) = 1.869, p = 0.197, η
2
g = 0.135.

Importantly, the interaction effect between factors of window and
interval was significant, F(1, 12) = 5.090, p = 0.044, η2g = 0.298.
Further simple effect analyses showed that for short interval, the
PSE in short window (172.7 ± 7.3ms) was larger than the one
(154.9 ± 5.3ms) in long window, p = 0.001. For long interval,
the PSE in short window (164.7 ± 5.5ms) was larger than the
one (157.3 ± 6.4ms) in long window, p = 0.034. On the other
hand, for the short window, the PSE in short interval (172.7 ±

7.3ms) was larger than the one in long interval (164.7 ± 5.5ms),
p = 0.044. However, for the long window, the PSEs are equal in
both intervals (154.9 vs. 157.3ms for short and long intervals),
p= 0.377.

For the JNDs, both the main effects of temporal window and
mean interval were not significant [F(1, 12) = 2.479, p = 0.141,
η
2
g = 0.171 and F(1, 12) = 0.282, p = 0.605, η

2
g = 0.023]. The

interaction effect between the two factors was not significant,
F(1, 12) = 0.408, p= 0.535, η2g = 0.033 (Figures 3, 4).

Experiment 3: Central Tendency Effect vs.
Last Interval
The PSEs for the short mean interval and long mean interval
were 143.2 (±7.4) ms and 135.3(±9.5). The main effect of mean
interval was significant, F(1, 6) = 9.070, p = 0.024, η

2
g = 0.602.

The PSEs for short last interval and long last interval were 155.8
(±9.7) ms and 122.6 (±7.5) ms, respectively. The main effect of
last interval was significant, F(1, 6) = 65.970, p = 0.000, η

2
g =

0.917. The interaction effect between factors of mean interval

FIGURE 4 | Plotted bars for PSE (point of subjective equality) and JND (just noticeable difference) for Experiments 1 (Upper) and 2 (Down). *p < 0.05, **p < 0.01,

n.s. not significant.
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and last interval was not significant, F(1, 6) = 0.195, p = 0.674,
η
2
g = 0.031. For the JNDs, the JND in short last interval (24.8

± 1.3ms) was larger than the one in long last interval (21.5 ±

1.6ms), F(1, 6) = 11.590, p = 0.014, η
2
g = 0.659. However, the

main effect of mean interval was not significant, F(1, 6) = 0.762,
p = 0.416, η

2
g = 0.113. The interaction effect between the two

factors was also not significant, F(1, 6) = 0.109, p = 0.753, η2g =

0.018. (Figures 5, 6).

Experiment 4: Central Tendency Effect but
With the Last Interval Fixed
Here we made formal manipulation by keeping the last interval
fixed for the “Short” and “Long” auditory sequences. Figure 7
depicts the responses from a typical participant. The PSEs
were 153.1 (±7.3), 137.9 (±9.1) for the “Short” and “Long”
conditions, t(11) = 3.640, p < 0.01. Participants perceived more
dominant percept of Element motion in the “Short” condition
than in the “Long” condition, consistent with the findings of the

FIGURE 5 | Psychometric curves for Experiment 3. MeanSLastS (bold solid

line), Mean short interval with long last auditory interval; MeanSLastL(thin solid

line), Mean short interval with short last auditory interval; MeanLLastS(bold

dashed line), Mean long interval with short last auditory interval;

MeanLLastL(thin dashed line), Mean long interval with long last auditory

interval.

previous experiments. That is, the auditory ensemble mean still
assimilated visual Ternus apparent motion when the last interval
of the auditory sequence was fixed. Therefore, the audiovisual
interactions we found were unlikely only due to the recency
effect.

Experiment 5: Central Tendency Effect
With Attentional Modulation
The PSEs for the baseline, short, equal, and long intervals were
135.9(±3.3), 171.1(±8.9), 151.5 (±9.5), and142.1(±7.4) ms, the
main effect of mean interval was significant, F(2, 39) = 9.020, p <

0.001, η2g = 0.410. Bonferroni corrected comparison showed that
the PSE for baseline was smaller than the one in short condition,
p = 0.014. PSE for short interval condition was larger than the
one in equal condition, p = 0.01; and the PSE for short interval
was also larger than the ones in the equal and long intervals,
p = 0.019 and p = 0.010. However, the PSEs were equal for both

FIGURE 7 | Mean proportions of group-motion responses from a typical

participant are plotted against the probe visual interval (ISIv), and fitted

psychometric curves for the two geometric mean conditions: the “Short”

sequence (with the smaller geometric mean) and “Long” sequence (with the

larger geometric mean) in Experiment 4.

FIGURE 6 | Plotted bars for PSE (point of subjective equality) and JND (just noticeable difference) for Experiment 3. *p < 0.05, **p < 0.01, and ***p < 0.001.
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“equal” and “long” conditions, p = 0.411. The PSEs were equal
for both “baseline” and “equal” condition, p = 0.603, and were
equal between “baseline” and “long” conditions, p= 1.

The JNDs for the baseline, short, equal, and long intervals
were 32.2 (±3.7), 39.3 (±5.1), 44.9 (±7.0), and 40.0 (±4.4) ms,
respectively. The main effect of mean interval was not significant,
F(3, 39) = 2.741, p= 0.056, η2g = 0.174 (Figures 8, 9).

The mean correct rate for reporting the number of oddball
sounds was 83.0 ± 3.1%, one sample T-test with comparison
of 50% showed the correct rate was above the chance level
[t(13) = 10.518, p= 9.984× 10−8].

DISCUSSION

Central tendency, the tendency of judgments of quantitative
properties (lengths, durations etc) for given stimuli to gravitate
toward their mean, is one of the most robust perceptual effects.
The present study has shown that perceptual averaging of
temporal property—auditory intervals, assimilates the visual
interval between the two Ternus-display frames, and biases the
perception of Ternus apparent motion (either to be dominant
“element motion” or dominant “group motion”). This finding is
consistent with the large body of literature on temporal-context
and central tendency effects, within the broader framework of
Bayesian optimization (Jazayeri and Shadlen, 2010; Shi et al.,
2013; Roach et al., 2017), whereby incorporating the mean of
the statistical distribution in the estimation would assimilate the
estimates toward the mean—known as “central tendency effect”
(Jazayeri and Shadlen, 2010; Burr et al., 2013; Karaminis et al.,
2016).

FIGURE 8 | Psychometric curves for Experiment 5. Short (solid line), the mean

auditory inter-interval is shorter than the PSE for visual Ternus motion; Equal

(dashed line), the mean auditory inter-interval is equal to the PSE for visual

Ternus motion; Long (dotted line), the mean auditory inter-interval is longer

than the PSE for visual Ternus motion. The PSE (“transitional threshold”) of

Ternus motion was established by a pre-test for each individual.

By using the paradigm of temporal ventriloquism and the
probe of visual Ternus display (Chen et al., 2010; Shi et al.,
2010; Chen and Vroomen, 2013), we have previously shown that
the auditory capture effect upon the visual events, in which the
perceived visual interval was biased by concurrently presented
auditory events. Observers tended to report the illusory visual
(apparent motion) percepts with the concurrent presence of
auditory beeps. However, the visual-auditory integration effect
is subject to the temporal reference, i.e., the time interval
between the critical visual probe and the sound sequence,
the mean auditory interval and the critical interval between
the last auditory stimulus and the onset of visual events. In
our current setting, when the total time interval between the
onset of auditory signal and the onset of visual events was
above 3 s (3.2 s), it gave rise to a diminished central tendency
effect. On the contrary, when this time interval was less than
2.4 s, the shortened time reference increased the likelihood of
central tendency effect—materialized in the effect of “geometric”
perceptual averaging for auditory intervals upon the visual
Ternus motion. These findings indicate a general temporal
framework of crossmodal integration. As stated in a theoretical
construct of temporal perception, known as the “subjective
present”—a mechanism of temporal integration binds successive
events into perceptual units of 3 s duration (Pöppel, 1997). Such
a temporal integration, which is automatic and pre-semantic, is
also operative inmovement control and other cognitive activities.
In this hierarchical temporal model, the temporal reference for
temporal binding could be extended but limited within 3 s,
together with a memory store (Pöppel, 1997; Pöppel and Bao,
2014). When the framework exceeds 3 s, the integration of the
preceding auditory interval information could be decayed, which
hence makes the auditory assimilation effect reduced.

Interestingly, even with the presumed short temporal window
(within 2.4 s), by inserting a short temporal gap (150ms) between
the offset of the very last beep and the onset of the first visual
frame, we found the central tendency effect was reduced, and
the effect was similar to the results in long temporal window
condition (3.2 s). This finding suggests that the “imminent” and
most recent (“immediate”) temporal gap before the target visual
event is critical for the development of the central tendency
effect. This inference is further substantiated by the results from
Experiments 2 and 3. In Experiment 2, with the configuration of
“short window,” we eliminated the short gap (150ms) between
the offset of the last beep and the onset of the visual frames. We
found that the central tendency effect (short mean interval. vs.
long mean interval) reappeared, though it still remains absent
in the condition of “long window.” Moreover, in Experiment 3,
we further found that the assimilation effect of the last interval
dominates that of the mean auditory interval. This indicates that
the last auditory interval wins the competition over the mean
interval in driving the crossmodal assimilation.

However, the central tendency effect was less dependent on
attentional modulation. Using the dual-tasks of reporting the
percept of visual Ternus motion and the number of oddball
stimuli [i.e., identifying the number of 500Hz beep(s) within a
sound sequence], we again found the central tendency effect was
robust. The observers have invested large attentional resources to
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FIGURE 9 | Plotted bars for PSE (point of subjective equality) and JND (just noticeable difference) for Experiments 5, *p < 0.05.

obtain the decent performance of counting the oddball sounds.
Nevertheless, the performance of crossmodal assimilation effect
still survived. Therefore, the central tendency effect as shown
in the present study, has demonstrated its automatic and
attentional-less demanding nature during crossmodal interaction
(Vroomen et al., 2001; Wahn and Konig, 2015).

The current study has some limitations. Indeed, the temporal
reference before the target visual Ternus display includes
intervals composed by stimuli with different configurations.
The auditory sequence was organized by filled-durations with
multiple beeps, and there was a transition of intra-modal
perceptual grouping (with sounds) to cross-modal grouping
when the last beep was followed by the onset of the first
visual Ternus frame (with audiovisual events) (Burr et al.,
2013). However, the “critical” time window for multisensory
integration was presented as an “empty interval” between the
two visual frames. Therefore, the visual probe we adopted in
current experimental paradigm might restrict the manifestation
of assimilation effect, which was probably due to the differential
timing sensitivities to the “filled-duration” in auditory sequence
vs. “empty-duration” in the visual probe (Rammsayer and Lima,
1991; Grondin, 1993; Rammsayer, 2010). Moreover, the temporal
window, as shown in the auditory sequence, covaried with the
mean ISIs (mean auditory intervals). This potential confound
remains even although we have manipulated the comparisons of
durations between the mean ISIs and the critical interval between
the two visual frames (Experiments 1, 2, 3, and 5), and tried to
tease apart the “central tendency effect” vs. “recency effect” by
fixing the last intervals. Further research is needed to elucidate
this point.

Taken together, the current study has shown that crossmodal
assimilation in temporal domain is shaped by the temporal
reference, in which the observers use the temporal information
by dynamically averaging the intervals (as they unfold in time
sequence) and exploiting the last interval before the target
events. The central tendency effect in temporal domain, similar
to the central effect associated with other sensory properties

such as weights and hues, is adaptively subject to the frame
of reference (Hollingworth, 1910; Helson, 1947, 1948; Helson
and Himelstein, 1955; Sherif et al., 1958; Thomas and Jones,
1962; Helson and Avant, 1967; Thomas et al., 1973; Hébert
et al., 1974; Thomas and Strub, 1974; Newlin et al., 1978; Burr
et al., 2013; Karaminis et al., 2016). Importantly, the temporal
information near the target event is critical for crossmodal
assimilation, wherein the recency effect prevails over the central
tendency effect during the assimilation process (Burr et al.,
2013; Karaminis et al., 2016). Crossmodal assimilation is more
dependent on the temporal duration which entails the integration
of task-relevant (temporal) information to be efficient within
a short window (3 s) in addition to efficient working memory
functions (Pöppel, 1997; Block and Gruber, 2014; Pöppel and
Bao, 2014). However, the crossmodal assimilation is less subject
to another process—attentional modulation (Talsma et al.,
2010).
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Everyday human behavior relies upon extraordinary feats of coordination within the brain.

In this perspective paper, we argue that the rich temporal structure of music provides

an informative context in which to investigate how the brain coordinates its complex

activities in time, and how that coordination can be disrupted. We bring insights from

the neuroscience of musical rhythm to considerations of timing deficits in Attention

Deficit/Hyperactivity Disorder (ADHD), highlighting the significant overlap between neural

systems involved in processing musical rhythm and those implicated in ADHD. We

suggest that timing deficits warrant closer investigation since they could lead to the

identification of potentially informative phenotypes, tied to neurobiological and genetic

factors. Our novel interdisciplinary approach builds upon recent trends in both fields

of research: in the neuroscience of rhythm, an increasingly nuanced understanding

of the specific contributions of neural systems to rhythm processing, and in ADHD,

an increasing focus on differentiating phenotypes and identifying distinct etiological

pathways associated with the disorder. Finally, we consider the impact of musical

experience on rhythm processing and the potential value of musical rhythm in therapeutic

interventions.

Keywords: music, rhythm, attention deficit hyperactivity disorder, ADHD, cognitive control, motor timing,

neuroplasticity, musical expertise

INTRODUCTION

Music is pervasive across cultures and plays an important role in human interaction, development
and social bonding (Cross, 2001). The temporal structure of music is integral to its functions, and
the experience of music relies upon a precisely-timed orchestration of activity across the brain’s
sensory, cognitive, motor, and reward systems. Musical rhythms inspire us to move (Keller and
Rieger, 2009; Dalla Bella et al., 2013), and movement can, in turn, shape our perception of rhythmic
patterns (Phillips-Silver and Trainor, 2005, 2007). Music also facilitates interpersonal synchrony,
increasing pro-social behavior (Cirelli et al., 2012, 2014) and breaking down perceived barriers
between self and other by coordinating shared emotional experiences (Tarr et al., 2014). Several
studies suggest that interaction with music promotes synchronous neural activity not only across
brain regions, but between the brains of individuals, for example during music listening (Abrams
et al., 2013) and improvisation (Müller et al., 2013).

The rewarding qualities of music are also intrinsically linked to its temporal structure, through
the creation and manipulation of expectations over time (Cooper and Meyer, 1960; Huron, 2006).
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Within this temporal framework, the fulfillment and violation
of expectations provides a rich palette of emotional expression,
mediated by the reward transmitter dopamine (Schultz, 1998;
Salimpoor and Zatorre, 2013). The rhythmic patterns found
across a range of musical styles have been shown to exhibit
an optimal balance of predictability and surprise, even in
their written form (Levitin et al., 2012), and the subtle timing
variations found in live musical performance further contribute
to the emotional expression perceived by a listener (Repp, 1995;
Palmer, 1997; Ashley, 2002; Bhatara et al., 2011). As these
examples highlight, the influence of music on human experience
is closely tied to its temporal structure and the coordinated neural
activity it induces, both within and between individuals.

The dynamic interplay between predictive (top-down) and
reactive (bottom-up) processing, exemplified in how the brain
responds to musical rhythm, is also a necessary foundation
for cognitive functions, such as attention (Engel et al., 2001;
Raichle, 2010). For example, the ability to anticipate what is
likely to happen next and streamline the allocation of neural
resources accordingly must be balanced with the ability to
respond to unexpected salient events in the environment. In
disorders such as ADHD, this balance is disrupted, resulting in
impaired attentional control and difficulties inhibiting irrelevant
inputs. We have chosen to consider ADHD in particular
because in addition to the core symptoms of inattention
and/or hyperactivity/impulsivity, ADHD is also characterized
by deficits in motor and perceptual timing (Smith et al., 2002;
Fair et al., 2012; Zelaznik et al., 2012; Demers et al., 2013;
Noreika et al., 2013). Recent studies have revealed rhythm-
related deficits in ADHD (Hove et al., 2017; Puyjarinet et al.,
2017), and much of the same neural infrastructure that supports
the processing of musical rhythm is implicated in ADHD,
from brain circuitry (Silk et al., 2009; Silberstein et al., 2016;
Mueller et al., 2017) and neural dynamics (Başar and Güntekin,
2008; Mazaheri et al., 2014; Loo et al., 2017) to dopamine
signaling, with leading genetic risk factors for ADHD including
dopamine gene variants (Swanson et al., 2000; DiMaio et al.,
2003). Here, we propose that insights from research on musical
rhythm could offer a more nuanced understanding of timing
deficits in ADHD, and potentially lead to the identification of
informative phenotypes, linked to neurobiological and genetic
factors.

THE NEURAL INFRASTRUCTURE OF
MUSICAL RHYTHM

In this section we highlight key components of the neural
infrastructure involved in processing musical rhythm. Although
this is by no means an exhaustive review, some basic definitions
of terms may prove useful. We will use the term “rhythm” to
refer to temporal patterns formed from sequences of durations
or onsets, whereas “beat” refers to a periodic pulse. In a piece
of music, the beat typically defines the basic unit of timing, and
“meter” refers to the grouping of beats into a recurring pattern of
stresses or accents, such as would differentiate the feel of a waltz
vs. a march.

Sensory-Motor Integration
Studies with non-human primates and even zebrafish have
shown that neural ensembles can entrain to a rhythmic stimulus
(Quintana and Fuster, 1999; Sumbre et al., 2008), and it is likely
that human interaction with musical rhythm is founded upon
these basic entrainment mechanisms. However, it is notable that
the natural human tendency to move to music, for example by
tapping a foot to the beat, has proven surprisingly elusive in the
animal kingdom (Patel et al., 2009).

Imaging studies have revealed that in humans, rhythm
perception is associated with activation not only in auditory
cortices but in frontal, parietal and motor regions, including the
supplementary motor area (SMA), basal ganglia and cerebellum
(Grahn and Brett, 2007; Grahn, 2012; Large et al., 2015; Merchant
et al., 2015). It has been suggested that the close sensory-motor
coupling necessary for synchronization of movement to music
may be unique to vocal learning species (including parrots and
songbirds, as well as humans), in which it is a necessary basis for
learning and producing complex communication signals (Patel
and Iversen, 2014). Recent evidence of successful entrainment
to the musical beat in non-vocal-learning species, for example a
California sea lion (Cook et al., 2013), have cast doubt on this
theory. Nonetheless, it is well established that close interaction
between sensory and motor systems provides a sophisticated
mechanism of temporal prediction and feedback (Schroeder
et al., 2010), and that this plays an important role in how humans
process musical rhythm.

The extensive activation of motor areas during rhythm
perception, even in the absence of overt movement (Zatorre et al.,
2007; Chen et al., 2008; Grahn and Rowe, 2009), is consistent
with accumulating evidence that these systems serve a broader
role in temporal processing and cognition. For example, fronto-
striatal and fronto-cerebellar pathways are increasingly viewed
as contributing to more general pattern-detection, predictive
and cognitive functions (Akshoomoff and Courchesne, 1992;
Graybiel, 1997; Schubotz, 2007). It has been proposed that
striatal pathways are particularly involved in generating internal
representations of beat and metrical structure (Grahn and Brett,
2007; Schwartze and Kotz, 2013). On the other hand, cerebellar
circuits are more involved in the precise encoding of complex
sequences, fast timing features and durations (Grube et al., 2010;
Schwartze and Kotz, 2013). Together, these pathways create a
system that can generate complex temporal predictions while also
adapting to incoming information.

Models of Rhythm Perception
In constructing computational models of rhythm perception, a
major challenge is to capture not only the individual components
of temporal processing that are involved, but how those
mechanisms interact in real time to maintain the ongoing
balance between predictive (top-down) and reactive (bottom-
up) processing, discussed above (see McAuley, 2010; Grahn,
2012, for review). For example, several rule-based models have
been proposed in which the regular beat and metrical structure
inferred by a rhythmic pattern are maintained by an internal
clock (Longuet-Higgins and Lee, 1982; Povel and Essens, 1985;
Desain and Honing, 1999). However, these models do not
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generally account for adaptive, online predictions and instead
determine a “best fit” pattern of regular intervals based on the
rhythm sequence as a whole (summarized in Grahn, 2012).

Models based on the entrainment of multiple oscillators have
had greater success in accounting for online prediction that is
tolerant to more complex rhythmic structure while remaining
sensitive to natural variations in performance (Large and Kolen,
1994; Large and Palmer, 2002; Angelis et al., 2013). Indeed,
there is evidence to suggest that natural, non-random patterns
of timing variability (i.e., those exhibiting fractal scaling and
long-range correlations) may actually improve the accuracy of
listeners’ temporal predictions (Rankin et al., 2009, 2014), and
this was also demonstrated by the model (Large and Palmer,
2002).

In their theory of neural resonance, Large and Snyder extend
these computational models to propose that entrainment is
performed in the brain by neural oscillators (Large and Snyder,
2009), and this theory is supported by evidence from imaging
and EEG studies (Large and Snyder, 2009; Nozaradan et al., 2012;
Tierney and Kraus, 2015). Interestingly, individual variation in
the temporal characteristics of neural activity (including long-
range correlations) has been shown to predict variability inmotor
timing behavior (Linkenkaer-Hansen et al., 2001; Smit et al.,
2013). A recent paper also linked these temporal characteristics
of neural activity to fluctuations in attention, and it was proposed
that the typical increase in long-range correlations over the
course of development may be delayed or disrupted in ADHD
(Smit and Anokhin, 2017). This represents a fascinating area for
future study, and a further potential link between ADHD and the
temporal dynamics of brain and behavior.

Within entrainment models, different frequencies of neural
oscillations serve distinct functions. For example, Large and
Snyder suggest that bursts of high frequency oscillatory activity
facilitate coordination across motor and sensory systems. Peaks
in beta (13–30Hz) and gamma (30–100Hz) power were observed
as an anticipatory response to rhythmic patterns (Snyder and
Large, 2005; Fujioka et al., 2009), and persisted even when the
sound stimulus stopped, supporting their role as self-sustaining
timekeepers. Further, temporal modulations in beta activity
were altered by the specific metrical structure imposed by the
listener onto an ambiguous rhythm pattern, suggesting top-down
modulation of oscillatory dynamics (Iversen et al., 2009). Given
the association between beta oscillations andmotor coordination,
the modulation of beta power may provide another indication
of the influence of motor systems on rhythm processing (Large
et al., 2015).

Neural responses to musical rhythm may also take the form
of entrainment to specific frequencies actually present in the
stimulus, for example the frequency of the musical beat. Neural
entrainment to the beat has been observed in a number of EEG
studies in the form of increased spectral power at the frequency
corresponding to the tempo of the musical beat, typically
within the delta range (1–4Hz), and even to harmonics and
subharmonics of that frequency (Nozaradan et al., 2012; Tierney
and Kraus, 2013, 2015; Nozaradan, 2014). The influence of motor
systems on this form of neural beat entrainment was investigated
in a recent lesion study (Nozaradan et al., 2017). Both cerebellar
and basal ganglia patients showed reduced neural activity aligned

with the beat compared with controls, with cerebellar patients
showing reductions specifically with faster tempo rhythms, and
basal ganglia patients showing a greater deficit with complex
rhythm patterns, which the authors interpreted as relying more
heavily on the internal generation of a beat. These findings
suggest that variation in cerebellar and striatal function (such
as observed in ADHD) may be associated with distinct rhythm
processing deficits. This study therefore provides compelling
evidence for distinct specializations of these two motor areas
in the coordination of neural entrainment to musical rhythm,
linked with dissociable deficits.

PARSING HETEROGENEITY IN ADHD: THE
SEARCH FOR PHENOTYPES

ADHD is a highly prevalent and heterogenous disorder.
Despite significant research efforts, characterization of the
neurobiological basis of ADHD has proven elusive: diagnosis
still relies heavily on self-report questionnaires, and treatment
typically takes the form of a trial-and-error pharmacological
approach. It has been difficult to identify biomarkers of the
disorder because there has been no clear mapping between neural
measures and clinical subtypes (i.e., predominantly inattentive,
predominantly hyperactive/impulsive and combined type).

Although ADHD is associated with structural and functional
abnormalities, including within frontal, striatal and cerebellar
pathways, these findings have generally been small, and have not
always been replicated (see Rubia, 2016, for review). Similarly,
profiles of oscillatory dynamics have not been consistent enough
to provide a clear neural “signature” of ADHD. EEG studies
reveal abnormal patterns of oscillatory activity (Başar and
Güntekin, 2008; Mazaheri et al., 2014; Loo et al., 2017), including
reduced power in the beta frequency range. Indeed, a clinical
diagnostic device assessing the ratio between theta and beta
activity was developed and approved by the FDA (USDHHS,
2013). However, a subsequent meta-analysis suggested the theta-
beta ratio is only elevated within a subgroup of individuals
with ADHD, and is therefore not a reliable basis for diagnosis
(Arns et al., 2013). A more nuanced understanding of distinct
phenotypes of ADHD could help to increase diagnostic accuracy,
and improve the development of clinical tools to aid in the
evaluation and monitoring of treatment.

Research in the field is shifting toward the identification
of distinct phenotypes and multiple etiologies (Castellanos and
Tannock, 2002; Nigg et al., 2005; Durston et al., 2011). There is
evidence from neuropsychological (Rommelse et al., 2008; Fair
et al., 2012; Nikolas and Nigg, 2015), electrophysiological (Başar
and Güntekin, 2008; Mazaheri et al., 2014; Loo et al., 2017) and
genetic studies (Shaw et al., 2007; Giedd et al., 2008; Kebir and
Joober, 2011) to suggest the presence of distinct subgroups within
ADHD, beyond the clinical subtypes. However, these subgroups
have yet to be reconciled across methodologies to provide full
characterization of etiological pathways.

Although motor and timing deficits are not included
within the diagnostic criteria for ADHD, they are increasingly
recognized as common symptoms (Toplak et al., 2006; Demers
et al., 2013; Kaiser et al., 2015; Dahan et al., 2016), and have
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been identified as a promising area for future study (Rubia,
2016). Consistent with the presence of multiple phenotypes,
a recent study identifying rhythm deficits in children and
adults with ADHD noted significant variation in performance
within the ADHD group (Puyjarinet et al., 2017). Based on
neuropsychological studies, it has been suggested that deficits in
temporal information processing (e.g., duration discrimination)
and increased response variability may represent distinct
phenotypes, linked to dysfunction in cerebellar and basal ganglia
pathways, respectively (Durston et al., 2011; Fair et al., 2012).
Given the distinct roles of fronto-cerebellar and fronto-striatal
pathways in rhythm processing (Grahn and Brett, 2009; Grahn,
2012; Merchant et al., 2015; Nozaradan et al., 2017), including
their separate influence on neural entrainment discussed in the
previous section, we argue that further examination of rhythm-
related deficits in ADHD could help to characterize phenotypes
of ADHD, and to shed light on the different ways in which the
dynamics within associated neural systems may be disrupted.

Further, genetic risk factors for ADHD include genes
affecting dopaminergic transmission, which may influence
timing behavior (Valera et al., 2010). This is supported by
pharmacological studies in which timing deficits in ADHD
are reduced by methylphenidate (which increases levels of
dopamine) (Noreika et al., 2013) as well as a study in which
dopamine manipulation in healthy controls was associated
with impaired timing skills (Coull et al., 2012). As mentioned
in the introduction, dopamine indexes temporal expectation
within the context of musical rhythm. More broadly, dopamine
supports neural communication within reward, motor and
cognitive pathways and is involved in a wide range of
functions including reward-based learning, motor coordination
and cognitive control. It has been proposed that a common
theme across its various functions is that dopamine coordinates
neural systems to optimize responsiveness at different timescales,
matching the timescales of activity in the environment (Schultz,
2007). In other words, dopamine helps to keep the brain “in
sync” with the world around it. This is accomplished via multiple
dopamine release mechanisms with distinct kinetic properties
(Schultz, 2007). Therefore, we speculate that genetic variation in
specific components of the dopaminergic system could lead to
distinct deficits in neural and behavioral timing. This is consistent
with evidence from animal studies, in which different genetic
modifications affecting dopamine transmission in mice were
associated with distinct behavioral timing deficits (Cevik, 2003;
Drew et al., 2007; Balci et al., 2009, 2010), as well as evidence of
dissociable timing deficits in humans linked to dopamine gene
variants (Wiener et al., 2011).

Dopamine also helps to mediate the balance between
inhibitory and excitatory neural activity that sustains neural
oscillations, therefore genetic variations in dopaminergic
signaling at different timescales may also influence temporal
characteristics of oscillatory dynamics, such as the long-range
correlations discussed above. Disrupted neural dynamics may in
turn influence the development of cortical networks (Uhlhaas
et al., 2010). Indeed, longitudinal studies have demonstrated
distinct trajectories of structural brain development associated
with different dopamine gene polymorphisms in ADHD (Shaw T
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et al., 2007; Giedd et al., 2008), however the potential role of
neural dynamics in mediating these developmental differences
remains to be explored. Recent research indicates that ADHD,
neural dynamics and timing-related behaviors are all heritable
(Tye et al., 2011; Agostino and Cheng, 2016), suggesting that a
“genes to behavior” approach may prove fruitful.

EFFECTS OF EXPERTISE

Several aspects of rhythm processing that are implicated in
ADHD are also strengthened in expert musicians (summarized
in Table 1), suggesting the potential for these systems to be
shaped by experience. Behaviorally, musicians are better than
controls at rhythm perception and temporal discrimination tasks
(Rammsayer and Altenmüller, 2006; Wallentin et al., 2010) and
have more consistent sensorimotor timing (Repp and Su, 2013).
They also demonstrate enhanced cognitive function, including
attention, inhibitory control and working memory (see Benz
et al., 2015, for recent review), with enhanced inhibitory control
linked tomore consistent sensorimotor timing (Slater et al., 2017,
2018). Researchers found that musicians had larger volumes in
motor areas including the cerebellum and basal ganglia, as well as
frontal and parietal regions associated with cognitive control (see
Schlaug, 2015, for review), andmusic training has been associated
with functional changes to oscillatory dynamics (Bhattacharya
and Petsche, 2005; Trainor et al., 2009).

It is possible that group comparisons reflect innate differences
in those drawn to pursue music rather than causal effects of
training, in fact there is some preliminary evidence showing
increased expression of dopamine receptors in musicians
compared with controls, suggesting a potential genetic tendency
toward musicianship (Emanuele et al., 2010). However, evidence
from longitudinal studies (Moreno et al., 2011; Roden et al.,
2014) as well as links between behavioral enhancements, extent
of expertise (Slater et al., 2018) and specific instrument played
(Krause et al., 2010) suggest that experience plays at least
some role in observed differences. Further, therapies focusing
on motor timing or rhythm have shown some success in
ameliorating the broader symptoms of ADHD (Shaffer et al.,
2001; Leisman and Melillo, 2010; Dahan et al., 2016), although
more intervention studies are needed. Taken together, these
findings suggest that common underlying mechanisms involved

in both cognitive and motor control could potentially be
strengthened by music-based interventions, building on the
established use of music-based therapies in the treatment of
a variety of other disorders. With a clearer understanding of

distinct phenotypes, the efficacy of such interventions for ADHD
could be greatly improved.

CONCLUSIONS

By considering how the brain processes musical rhythm, we
force ourselves to take an integrated approach to how the brain
coordinates its activities in time. Here, we argue that it is exactly
this kind of integrated approach that is needed to advance

understanding of a complex, heterogeneous disorder such as
ADHD.

Whereas a great deal of neuroscientific research has focused
on the spatial dimension—within perception itself, as well as
in the localization of functions to particular brain regions—
the inherently temporal nature of musical sound helps to bring
mechanisms of neural coordination to the forefront. In this
review, we have explored common neural infrastructure that
is involved in processing musical rhythm, and implicated in
ADHD. We have discussed how the heterogeneity of ADHD has
hampered progress toward the identification of biomarkers and
objective diagnostic tools. We suggest that further investigation
of the basis of rhythm and timing deficits could ultimately help to
form a more integrated view of the etiologies of ADHD, bridging
the gap between genetic factors (e.g., variation in dopaminergic
signaling), neural dynamics and the development of cortical
networks, and the behavioral control of cognition andmovement.
We have also highlighted that the same neural systems are
strengthened in expert musicians, suggesting the potential
for neuroplasticity to have remediating effects. This novel,
interdisciplinary approach could inform therapeutic strategies,
harnessing the rewarding properties of music to strengthen
coordination within the brain.
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Oscillatory phenomena are ubiquitous in the brain. Although there are oscillator-based

models of brain dynamics, their universal computational properties have not been

explored much unlike in the case of rate-coded and spiking neuron network models.

Use of oscillator-based models is often limited to special phenomena like locomotor

rhythms and oscillatory attractor-based memories. If neuronal ensembles are taken to

be the basic functional units of brain dynamics, it is desirable to develop oscillator-based

models that can explain a wide variety of neural phenomena. Autoencoders are a special

type of feed forward networks that have been used for construction of large-scale deep

networks. Although autoencoders based on rate-coded and spiking neuron networks

have been proposed, there are no autoencoders based on oscillators. We propose here

an oscillatory neural network model that performs the function of an autoencoder. The

model is a hybrid of rate-coded neurons and neural oscillators. Input signals modulate

the frequency of the neural encoder oscillators. These signals are then multiplexed

using a network of rate-code neurons that has afferent Hebbian and lateral anti-Hebbian

connectivity, termed as Lateral Anti Hebbian Network (LAHN). Finally the LAHN output

is de-multiplexed using an output neural layer which is a combination of adaptive Hopf

and Kuramoto oscillators for the signal reconstruction. The Kuramoto-Hopf combination

performing demodulation is a novel way of describing a neural phase-locked loop. The

proposed model is tested using both synthetic signals and real world EEG signals. The

proposed model arises out of the general motivation to construct biologically inspired,

oscillatory versions of some of the standard neural network models, and presents itself as

an autoencoder network based on oscillatory neurons applicable to time series signals.

As a demonstration, the model is applied to compression of EEG signals.

Keywords: oscillatory autoencoder, Kuramoto oscillator, adaptive Hopf oscillator, frequency modulation,

multiplexing, phase synchronization, EEG

INTRODUCTION

Despite decades of research, the question of neural code is still controversial. Currently there
are two well-accepted approaches to the problem: the spike rate code and the spike timing code.
The former assumes that the neural code lies in the spike rate and has given rise to large class
of rate-coded neural networks (Lippmann, 1989; Ruck et al., 1990; Lawrence et al., 1997). The
latter holds that the code lies in the spike timing and has led to creation of a large class of spiking
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neuron networks (Maass, 1997b; Izhikevich, 2003, 2004; Ghosh-
Dastidar and Adeli, 2009). Both rate-coded and spiking neuron
networks are endowed with universal computational properties
(Maass, 1997a; Auer et al., 2008). However the basic functional
unit of the brain seems to be, not a single neuron, but a
“cell assembly” (Buzsáki et al., 2012), a cortical column being
an example of such a unit (Buzsáki and Draguhn, 2004).
The collective activity of a cell assembly is not a spike train
but a smoother signal called the local field potential (LFP)
(Buzsáki et al., 2012). Most of the functional neuro–imaging
data including the electroencephalogram (EEG) and functional
Magnetic Resonance Imaging (fMRI) encompass the description
of the neural activity at this level (Logothetis et al., 2001;
David and Friston, 2003; Whittingstall and Logothetis, 2009).
Thus when it comes to the description of neural activity at
the level of cell assemblies the standard tools and concepts of
signal processing could be deployed. The activity of a single cell
assembly can then be described in terms of amplitude, frequency,
and phase. Communication between two cell assemblies can be
described in terms of phase difference at a given frequency. Hence
observed neuro physiological phenomena may be explained in
terms of oscillator entrainment and phase synchronization.

It is then natural to envisage neural models of three broad
classes—rate code based, spike-based, and oscillator based. There
are indeed neural models of oscillators (Wang and Terman,
1995; Campbell et al., 1999; Ijspeert, 2008) but they seem to
be often applied to specialized purposes and do not seem to
enjoy the universality of both rate coded and spiking neuron
network models. Oscillatory neuron models are used to model
extensively oscillatory phenomena of the brain like building
generative models of cortical oscillations to understand brain
rhythms and neuronal synchronization (Cumin and Unsworth,
2007; Breakspear et al., 2010). Furthermore when it comes to
modeling behavior, they are also restricted to those behaviors
that are intrinsically rhythmic like the locomotor movements,
rhythmic hand movements, or swimming movements (Ijspeert
et al., 2005; Ijspeert, 2008). Such restricted use of oscillator
models is untenable since the very same brain oscillations which
drive the hand when making rhythmic tapping movements
also enable it to perform non-rhythmic point-to-point reaching
movements. Although there are exceptions to this case (see
Hoppensteadt and Izhikevich, 2000; Heitmann et al., 2015) there
exist only a minimal literature on using oscillatory dynamics
to explain non-oscillatory behavior. Therefore it is important
to investigate if oscillatory neural network models possess the
property of universal computation that forms the core strength of
its rival models: rate-coded and spiking neural network models.

The strength of the rate coded and spiking neuron networks
lies in the fact that they have been designed to solve a wide of
range of useful information processing problems: to construct
transformations from one space to another (Lippmann, 1989;
Schmidhuber, 2015), to map high dimensional information onto
bounded two-dimensional spaces (Kohonen, 1998), to process
sequences (Frasconi et al., 1995), to store patterns as attractors
(Hopfield, 1982; Trappenberg, 2003), to construct dimensionality
reduced representations by autoencoding (Oja, 1989; Sanger,
1989; Hinton and Salakhutdinov, 2006) and so on. In this

realm of applications, in most cases, equivalent oscillatory neural
network models have not been designed which, when realized,
could form another dimension for understanding standard
neural network theory.

Apart from the aforementioned research on neural codes,
in the realm of neural signal processing, it becomes natural
to link the brain signals arising from EEG and MEG to an
underlying oscillatory process which connects to the mechanistic
underpinnings of brain circuitry. Utilizing these ideas, a large
body of literature exists in the domain of EEG related applications
like Brain Computed Interfaces (BCIs). Often in these studies
motor imagery EEG signals are recorded, classified and the results
of classification are used to drive a machine like the wheelchair
(Leeb et al., 2007a,b). The dependence on the stationarity of
signals is very important for current methods, including optimal
spatial filtering (Ramoser et al., 2000) to solve these class of
problems posing difficulty in reliable processing of EEG. The
stochastic and non-linear nature of EEG signal thus poses
critical challenges in its processing such as feature extraction
and further classification (Pfurtscheller and Neuper, 2001). As of
now, there exists no benchmarkmethod to decipher this problem
of EEG processing. We believe that a better understanding of
the oscillatory neural network models, mimicking the underlying
neural process, could pave way to a novel class of algorithms for
processing EEG signals.

Although the objective of the proposed model is to shed
light on the oscillatory neural code, we would also like to
briefly cite literature on time series data mining and time
series representations. Time series data mining is apparently a
challenging one because of the unique characteristic features
of the time series data such as presence of noise, and non-
linear relation of the data elements (Wilson, 2017). A problem
that often arises in time series data processing is to form
an optimal representation of the data either by reducing or
approximating it, but making sure that the approximated version
of the data still carries the local/global features of the original
version. For the ease and efficient use of the data, the main
challenge is to choose an optimal representation of the same.
Time series data representation is a well-studied area where
methods such as Discrete Fourier Transform (DFT) (Faloutsos
et al., 1994), Discrete Wavelet Transform (DWT) (Percival and
Walden, 2006), time series Piecewise approximation (Keogh
et al., 2001a,b) have been proposed. Due to the current trends
in the use of “big data” processing, other novel methods such
as transformation of the time series data to discrete variables or
symbols has become popular (Lin et al., 2007). The main idea
behind this type of methodology is to transform time series data
to a sequential data of symbols by initially discretizing the time
series using methods like Piecewise Aggregate Approximation
(PAA) (Keogh et al., 2001b). This can be treated as a way to reduce
the number of points in the time series data and this is followed
by converting the approximated numerical data to corresponding
symbols using popular algorithms like SAX (Lin et al., 2007). The
advantage of converting the time series to symbolic sequences is
that, once the transformation is made, standard patternmatching
algorithms can be applied to the sequences for further processing.
The aforementioned methods are successful in data mining area,
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but carry little information on the neural processing of time
series data. This is not a flaw of the aforementioned methods
because they are not intended to provide any neural perspective
on time series data processing. However, the real brain is adept
at time series processing since most of the sensory inputs coming
from different sensory modalities such as vision, proprioception,
auditory, vestibular, tactile, and olfactory stimulus are dynamic
in nature. Hence, the objective of this study is to propose a
computational model that implements the autoencoding of time
series data using biologically plausible neural principles. The
very next sub section named as “background” gives the impetus
behind the proposed modeling architecture.

Background
In response to the aforementioned general motivation, we
now present a network of neural oscillators that serves as
an oscillatory autoencoder. The reason why we choose the
autoencoder architecture is due to the function it serves i.e.,
encoding the high dimensional input to a low dimensional
abstract representation and further decoding it back to the
original input signal. From a neural perspective this can be
broadly viewed as different stages of neural information transfer.
The first stage starts with the encoding of high dimensional
sensory stimulus coming from multiple sensory modalities to
a more compatible abstract representation in the subcortical
structures. For example, visual information fetched by ∼125
million retinal photoreceptors converge to ∼1 million neurons
of the lateral geniculate nucleus in the thalamus (Hubel, 1995).
This is one of the instances (amongmany) of huge dimensionality
reduction that takes place in the real brain. The decoder can
be viewed as the stage in which the information is transferred
from the subcortical structures to other cortical structures with
more number neurons i.e., transfer of information from lower
dimension to higher dimension (Guillery and Sherman, 2002).
Standard autoencoder networks use static neurons that have
limitations in capturing the temporal features of the input in
a naturalistic fashion. The proposed model uses the dynamics
of oscillatory system such as phase synchronization, frequency
tuning, and also uses the signal processing concepts such as
frequency modulation (FM) and multiplexing (MUX) to shed
light on the possible information transfer mechanisms in the
brain.

We brief out here the methods that are adopted to accomplish
the aforementioned objective (this is explained in detail in
the following methods section). In this model, a set of band-
limited signals are frequency modulated by a layer of neural
oscillators, multiplexed by a layer of rate-coded neurons, and
subsequently demultiplexed and demodulated by oscillatory
neurons. The network is a hybrid model consisting of two kinds
of oscillator models (Kuramoto and Hopf oscillators) and rate-
coded dynamic neurons. The signals obtained at the output of
the MUX stage may be considered as a reduced-dimensional
representation of the input signals. Finally we test the model on
actual EEG signals (real world data). The paper is outlined as
follows. Section II presents themethods and themodel equations,
followed by the results in Section III and finally the discussion in
Section IV.

METHODS

Here we propose the architecture of an autoencoder using
oscillatory neurons. The motivation for an oscillatory
autoencoder is explained above in the introduction section.
The model architecture described here consists of Encoder and
Decoder modules as shown in Figure 1. The encoder process
the input signals and makes a lower dimensional representation
of the same. The decoder module reconstructs back the original
input signal from this abstract representation.

The encoder receives inputs as an array of N band limited
signals, s1(t),.., sN(t). These signals are frequency modulated
and multiplexed by the encoder. The multiplexed signals
are demultiplexed and demodulated by the decoder. Both
the encoder and the decoder are networks of oscillators.
The networks are hybrids of Hopf and Kuramoto oscillators
(Kuramoto, 1984; Righetti et al., 2006). The motivation for
choosing two different phase oscillators is described in the
decoder section. The encoder and decoder modules are modeled
as follows.

A. Encoder
The encoder has two stages viz. Frequency Modulation (FM)
stage and MUX stage.

FM Stage
FM stage has N phase oscillators each with different intrinsic
frequencies. N is equal to the dimension of the input. Each of
the input signals is connected to one of these oscillators. Input
is encoded by the phase dynamics as given in (1). This phase
dynamics is equivalent to FM (Haykin et al., 1989) and hence the
name FM stage.

•

θi = ω
E
i + si(t) (1)

θ i is the phase of the ith oscillator in the encoder layer. ω
E
i is

the intrinsic angular frequency of the ith oscillator in the encoder
layer. (Note: The superscript E stands for Encoder layer).

MUX Stage
A classical MUX in electronics literature ensures harmonious
transfer of information between the sender and receiver by acting
like a multiple switch (Omotayo, 1985). Hence, a MUX usually
has n number of input lines and 1 output line. However, in the
proposed model we do not use this strict definition of MUX
instead we take the idea of compressing the n input signals to m
dimensions wherem<n. This is what is exactly achieved through
the hidden layers of a traditional autoencoder. The reason why
we named it MUX is to bring about a direct comparison of
neural information transfer to the radio FM communication
principles.

The MUX stage is implemented by a neural network
architecture known as Lateral Anti-Hebbian Network (LAHN)
that has Hebbian (excitatory) afferent and anti-Hebbian
(inhibitory) lateral connections (Földiak, 1990). The dynamics
of a neuron in LAHN is given by Equation (2). Hebbian learning
applied to the afferent weight connections (Equation 5) brings
the afferent weight vector close to the input data ensuring
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FIGURE 1 | The network architecture of the oscillatory autoencoder network. In the encoder module, the incoming message signals (s1,…, sN(t)) are encoded, via

FM, onto carrier signals with intrinsic frequencies ω
E
1 ,…, ω

E
N. A lateral anti-Hebbian layer is used for frequency multiplexing (MUX) of the modulated signals. In the

decoder module, frequency tracking (FT) is performed by a series of adaptive Hopf oscillators which can tune their intrinsic frequency dynamically, followed by a layer

of Kuramoto oscillators which synchronize to the frequency of the Hopf oscillators to form a basic unit which extracts the embedded input signals (DM). This is further

passed to a leaky integrator (LPF) to get smoothened output of the network [ŝ1,…, ŝN(t)].

feature selection by that particular neuron. The anti-Hebbian
rule applied to the lateral connections induces competition
among the LAHN neurons. Hence each LAHN neuron learns
different features from the input data. This network was
shown to extract optimal features from the input data by
converging transformation weight vectors to the subspace of
the principal components of the input data (Földiak, 1990).
Since this network maximizes the variance of the output
(Földiak, 1990), it extracts optimal features from the input
data. The information required for the unsupervised learning
of LAHN neuron is available locally at its synaptic connections
(Equations 4, 5) and this makes the network biologically
plausible.

This LAHN layer acts as the hidden layer for the oscillatory
autoencoder. The low-dimensional representations constructed
by the hidden layer of a traditional autoencoder are constructed
by this MUX stage in the proposed model. Hence, the number of
inputs going to the MUX layer is same as the number of encoder
oscillators in the FM stage and the number of outputs from the
MUX should be essentially lesser in number than its input to
achieve a dimensionality reduction.

The dynamics of a neuron in theMUX stage is given in (2) and
(3).

Yi(t) =

N
∑

j=1

qijOj(t)+

n
∑

k=1

wikYk(t − 1) (2)

Oj = sin(θj) (3)

Y i is the output of ith neuron, q and w are the afferent and lateral
weight connections of MUX respectively, N is the dimension of
the input, n is the total number of neurons in the LAHN. Oj

is the state of the jth input oscillator. In MUX, lateral weights
are updated using anti-Hebbian learning and afferent weights are
updated using Hebbian learning (Földiak, 1990) as given in (4)
and (5).

1wik = −ηLYi(t)Yk(t − 1) (4)

1qij = ηF[Oj(t)Yi(t)− qijYi
2(t)] (5)

ηL and ηF are the learning rates for lateral and feed forward
weights respectively. MUX with n nodes trained using (4) and
(5) mixes the input FM signals with a minimal overlap in their
frequency spectrums which further decreases the reconstruction
error.

B. Decoder
The decoder has three stages such as Frequency Tracking (FT)
performed by adaptive Hopf oscillators, Demodulation (DM)
using Kuramoto oscillators, and final smoothening of signal by
low-pass filtering (LPF) using leaky integrator neurons stages
respectively. Each section is explained in detail below.

FT Stage
Initially the responses of MUX are passed onwards to the
FT stage. The purpose of this stage is to tease out the
individual frequencies which are mixed by the MUX stage. This
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frequency tracking is achieved by using Hopf oscillators with
adaptive frequency dynamics. Hopf oscillators were successfully
implemented as an adaptive frequency system that updates its
intrinsic frequency in an iterative way until it converges to one
of the frequencies of the input data (Righetti et al., 2006).This
system of Hopf oscillators was previously shown by Righetti et al.
(2006) to learn the frequency components of its input signals.
This was achieved by adding a frequency adaptation variable to
the classical two variable Hopf oscillator dynamics (Righetti et al.,
2006).This was shown in phase oscillators having unit circle phase
plane limit cycles i.e., using Hopf oscillators. They have further
explained similar frequency adaptation dynamics for relaxation
oscillators too. However, in this model we are using harmonic
phase oscillators for the frequency tracking stage as explained
below.

Here, we wanted to achieve the aforementioned phenomena
of tracking the frequency of input data. The adaptive frequency
Hopf oscillators act like band-pass filters and filter out
different frequency bands from the mixed input signal. The
adaptive frequency dynamics is accomplished using the following
equations:

•

ri = ri(µ − ri
2) (6)

•

φ i = ω
D
i −

ε

ri
Y sin(φi) (7)

•

ω
D
i = −εY sin(φi) (8)

r, ϕ and ωD are the radius, phase and angular frequency variables
of a Hopf oscillator respectively (Note: the superscript D stands
for Decoder module). µ is the parameter that controls the radius
of the limit cycle. For µ =1, it produces a unit circle limit cycle. ε
is the coupling factor between the MUX and the Hopf oscillators
(Righetti et al., 2006). Because of linearity of the MUX, ε can be
computed directly using (9).

ε = P+ (9)

P = (I −W)−1Q (10)

P is the transformation matrix of the MUX and P+ is the pseudo
inverse of matrix P. I is the identity matrix. W and Q are the
lateral and afferent weight matrices of LAHN respectively. P can
be derived by virtue of the linearity of LAHN as given in (2).

DM Stage
The purpose of the DM stage is to extract the low-frequency,
band limited message signals from the outputs of the FT
stage. The DM consists of a layer of Kuramoto oscillators.
This shift from Hopf oscillator (in FT stage) to Kuramoto
oscillator (in DM stage) is to implement the process of
phase synchronization. Kuramoto oscillatory dynamics have
been previously implemented to achieve phase synchronization
(Kuramoto, 1984). This synchronization in the phase of two
oscillators is essential for extracting the message from the FM
signal (Haykin et al., 1989) (see Supplementary Material). Each
Hopf oscillator in the FT stage is coupled in a one-to-one fashion
to a Kuramoto oscillator in the DM stage. The pairs of oscillators

(the Kuramoto oscillators of DM and the Hopf oscillators of FT
stage) are coupled through their respective phase variables as
shown in (11) and (12).

•

γ i = ω
E
i + K Di (11)

Di = sin(φi − γi) (12)

γ i is the phase variable of ith Kuramoto oscillator. It has the
same intrinsic frequency, ω

E
i , as that of the encoder oscillators

(Equation 1) and K is a positive coupling factor (Kuramoto,
1984). This stage is crucial since phase synchronization occurs
at this stage and the synchronization dynamics further decodes
the low frequency message signal embedded in the output of the
Hopf Oscillator (see Supplementary Material).

LPF Stage
Di shown in (12) is the output of the decoder which is further
passed through a leaky integrator to smoothen the outputs, i.e.,
low pass filtering (LPF stage). Leaky integrator acts as a low
pass filter which further smoothens out the decoded signal, and
eliminates any high frequency components present. Dynamics of
leaky integrator is given in (13).

d
∧

s i

dt
= −A

∧

si + Di(t) (13)

sI is the state of ith leaky integrator which is the reconstructed
version of the input signal si(t); A is the leakage factor which is a
positive constant.

Hence the proposed model is a hybrid one consisting of
oscillatory layers sandwiching a rate coded layer. Hopf oscillators
are used in the model for FM. A layer of linear neurons with
lateral connections is used for frequency multiplexing which
essentially mixes the FM signals. Hopf oscillators with adaptive
frequency are used to track the carrier frequencies of the FM
signals. Finally, Kuramoto oscillators are used to demodulate the
FM signal and extract the message signal. Parameter values used
for the simulation is given in Table 1.

RESULTS

We now test the model described in the previous section on an
array of synthetic signals and also on real world EEG signals.

TABLE 1 | Parameter values.

Parameter Value

µ 1

ηF 0.01

ηL 0.01

dt 0.01 sec

ǫ 3

K 1
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A. Simulation of the Model on Synthetic
Signals
The synthetic signals used for the simulation are of the general
form s(t)= A1sin(ω1t)+ A2sin(ω2t).

Specifically, we consider 4 signals shown in (14), (15), (16) and
(17) (Figure 2).

s1(t) = sin(10π t)+ 0.5 sin(12π t) (14)

s2(t) = sin(20π t)+ 0.5 sin(28π t) (15)

s3(t) = sin(50π t)+ 0.5 sin(56π t) (16)

s4(t) = sin(70π t)+ 0.5 sin(80π t) (17)

The initial intrinsic angular frequencies of the FM oscillators
are taken as ω

E
= [200Hz, 350Hz, 850Hz, 1000Hz]. The

input signals, as given by Equations (14)–(17), are used to
modulate the encoder oscillators as per Equation (1). Let
the resultant frequency modulated signals be O1, O2, O3, O4

respectively as given by Equation (3). Figures 2A–D shows the
waveforms of the input signals (for a short duration) as given
by Equations. (14)–(17). Figures 3A–D shows the corresponding
frequency spectra. All the frequency spectra are obtained using
the Fourier Transformation on the input signals. Figures 3A–D
clearly show that the input signals are modulated to the
higher frequency regime corresponding to the respective carrier
waves.

The modulated signals are passed through a MUX which
has two neurons (n = 2). The outputs of MUX neurons
(MUX composite signal) are Y1 and Y2 as per Equation (2).
The spectra of Y1 and Y2 are depicted in Figures 3E,F. It
is evident from Figures 3E,F that the MUX selectively picks
and mixes the frequency components of the input signals
in such a way that their frequency spectra have minimum
overlap. In Figure 3E, one neuron of the MUX was more
biased to frequency spectra of O1 and O4. In Figure 3F, the
second neuron of the MUX was more biased to frequency
spectra of O2 and O3. The tendency of the hidden layer in

FIGURE 2 | The synthetic input signals used for simulating the oscillatory

autoencoder network. The waveforms (A–D) follow the equations (14) – (17)

respectively.

a traditional autoencoder to decorrelate the input signals, is
manifesting in the present context as a tendency to remix the
input signals so that there is minimal overlap in the spectrum
(Földiak, 1990).

The FT stage has four Hopf oscillators, which are intended to
track the four modulating frequencies. Tracking the frequency
is similar to tuning the intrinsic oscillations to that particular
channel frequency to fetch the information passed through that
respective channel. Figure 4 depicts the frequency adaptation of
Hopf oscillators at the FT stage. The intrinsic frequencies of Hopf
oscillators are initialized randomly and during the course of time
their frequencies get entrained to a specific modulator frequency.
Through this adaptation, oscillators are able to select a specific
channel of information from a mixture of MUX signals.

Figure 5 shows the FFT of the four Hopf oscillators’
responses. It is evident from the spectrum that each Hopf
oscillator is able to pick individual channel that carries the
message signal and hence implements the demodulation of the
frequency modulated signals. This is an interesting phenomenon
which is also observed in the real brain where two cortical
regions get entrained to a similar LFP frequency for information
transfer or feature binding (Singer and Gray, 1995; Fell and
Axmacher, 2011). Synchronization phenomena also circumvent
the need for any training between the cortical structures to
learn the transmitted information. That is, simply by tuning to
a common frequency, two neural structures can communicate
over a temporary channel, without any retraining of
connections. This is discussed further in detail in the discussion
section.

Figures 6A–D shows the original and the reconstructed
signals (shown for a short duration). The demodulated signals
are of lower amplitude and phase shifted compared to the
original signal. This can be further corrected using proper
amplification and lag shift operation on the output signals.
To quantify the accuracy of reconstructed signal, we compute
the reconstruction error. This gives an idea on how good the
system is with regard to its function as an autoencoder. It is
not advisable to directly compare the input and the raw output
signal because of the phase shift present in the output signal.
To this end, we first corrected the phase shift in the output
signal, by computing cross correlation between the input and
the output signal. Next, we computed the lag corresponding to
the maximum correlation value and circular shifted the output
signal using the previously found maximum lag value to correct
the phase shift. The percentage (%) reconstruction error is then
computed as the deviation of the Pearson correlation coefficient
between the input and the phase corrected output signal from
unity.

%error = [1− corr(x, y)]× 100

where x is the input signal and y is the amplitude and
phase corrected reconstructed output signal. The percentage (%)
reconstruction error with respect to the number of nodes in
the LAHN network shows a decreasing trend indicating a better
recovery of signal with increasing number of nodes in the LAHN
layer (Figure 6E). The reconstruction error is computed after
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FIGURE 3 | The Fourier transform (FFT) of: (A) Modulated signal O1 (B) Modulated signal O2 (C) Modulated signal O3 (D) Modulated signal O4 (E) MUX composite

signal Y1 (F) MUX composite signal Y2. To train the MUX network (LAHN), afferent weights were initialized using random values from uniform distribution [0, 1] and

lateral weights were initialized to zero. ηL and ηF were taken as 10−4.

FIGURE 4 | The adaptation of frequencies at the level of the Hopf oscillators in the decoder module: The frequencies are initialized randomly close to the encoder

frequencies which via adaptation entrain into each of the four carrier signal frequency. We chose µ = 1 for this simulation.

phase correction of the output signals as explained above. This
result shows that choosing an optimal number of neurons in the
hidden layer (based on the reconstruction error), it is possible
to form a more efficient abstract representation of the input
signal.

B. Simulation of the Model on Real World
Signals (EEG Signals)
This section explains the simulation results of the oscillatory
autoencoder model on real world data (i.e., data obtained

through empirical ways). For this, we considered empirically
recorded EEG signals obtained from BCI Competition 2008 -
Graz data set B (Leeb et al., 2008). The dataset essentially consists
of two class motor imagery EEG signals recorded from three
channels (C3, Cz, and C4) (Leeb et al., 2008) at a sampling
rate of 250Hz. Figure 7 shows the 1 s duration EEG signals
from the aforementioned channels. These EEG signals were
recorded during a motor imagery task. For further information
on the experimental protocol the readers may refer (Leeb et al.,
2008).
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FIGURE 5 | The Fourier spectrum of the four Hopf oscillators: (A–D) in the decoder layer show tuning of each oscillator to each channel.

These three EEG signals form the input to the model, which
is further used to modulate the frequency of the phase oscillators
with intrinsic frequencies (500, 600, and 750Hz). Figures 8A–C
shows the frequency spectrum of the frequency modulated
signals (EEG FM signals). These signals were further forward
passed to the LAHN layer (with two nodes) to get the low
dimensional representation of the same and to perform MUX
operation. Figures 8D,E shows the frequency spectrum of the
MUX-LAHN signals. It is vivid from the figure that each LAHN
neuron captures the frequency information of the EEG FM
signals and hence forms a low dimensional representation of the
raw EEG signals.

Composite MUX signals are further forward passed to the
adaptive Hopf oscillators where each Hopf oscillator tunes its
intrinsic frequency to each channel frequency. Adaptive Hopf
oscillators thus separate the signals from the composite MUX
signal (as shown in Figures 9A–B) and this is evident from the
frequency spectrum of each Hopf oscillator (Figures 9C–E).

The adaptive Hopf oscillator outputs are further passed
to the demodulator Kuramoto oscillators for phase locking
and extracts out the embedded EEG signals. Figure 10 shows
the reconstructed EEG signal from three channels along with
the original signal. The reconstructed EEG signals from the
oscillatory autoencoder are smoother than the original EEG
signals. This smoothing could be due to the large time
scales that govern learning in LAHN and adaptive Hopf
oscillatory stage. The subtle changes in the reconstructed
signal are due to the lower dimensional representation of
the LAHN hidden layer. However, the hidden layer serves
as a reliable low dimensional representation of the EEG
signals which is further delineated in the following discussion
section.

Comparison of the Model Result With the
Benchmark Method for Dimensionality
Reduction
In the case of aforementioned EEG result, apart from computing
the % reconstruction error, we compare the obtained values
with a benchmark dimensionality reduction and reconstruction
method to check the goodness of the proposed model. To
accomplish this we performed standard Principal Component
Analysis (PCA) on the input EEG data to reduce its dimension
and further reconstructed back the signal to compute the %
reconstruction error. After computing the reconstruction error
for each signal, an average reconstruction error is computed
to compare it with that of the proposed oscillatory network
model. The average reconstruction error of PCA is obtained
as 5.68% (computed using MATLAB custom code) considering
the first two principal components (because LAHN layer in
the model has 2 neurons). The average reconstruction error of
the oscillatory autoencoder model is obtained as 5.31%. The
average reconstruction error of the proposed oscillatory network
model is slightly lower than the standard PCA method by
0.31%. Apart from the decrease in the reconstruction error, the
neural attributes of the proposed model and also the theory that
the model embodies on the mechanisms of neural information
transfer in the brain enhances the significance of the proposed
model.

DISCUSSION

Summary of the Work
We propose here an oscillatory autoencoder that reconstructs
the input signal using a well defined encoder and decoder
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FIGURE 6 | Comparison of original and reconstructed signal from the oscillatory autoencoder: (A–D) show the original input (top) to the encoder and the

reconstructed signal (bottom) from the decoder using n = 2 in the MUX layer. We used A = 0.9 for the LPF stage. (E) shows the % of reconstruction error with respect

to the number of nodes (n = 1,2,3,4) in the MUX layer.

using the principles of FM, MUX, adaptive frequency
dynamics, and phase synchronization. We simulated the
model using synthetic (linear combination of sinusoids) and
also real world EEG signals, thus showing the robustness of
the model. The proposed study gives a proof of principle
for the potentiality of the oscillatory neural networks in

non-trivial applications where oscillations are seldom used
such as autoencoder (problem addressed in this paper), feature
extraction, clustering, classification etc where mostly rate
coded networks are used. The criticality of oscillations in
neurobiology, as mentioned below, is the motivation of this
work.
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FIGURE 7 | EEG signals from three channels: (Top–Bottom) figures show the EEG signals from C3, Cz and C4 channels respectively for 1 s duration. Voltages on

y-axis are given in µ volt.

FIGURE 8 | Frequency spectrum of EEG FM signals and EEG MUX signal: (A–C) show the frequency spectrum of the EEG frequency modulated signals. (D,E) show

the frequency spectrum of the composite MUX signal obtained from LAHN. It is vivid from the figures that the MUX signals cover the spectral information of the EEG

FM signals and form a low dimensional representation of the same.
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FIGURE 9 | Frequency spectrum of adaptive Hopf oscillators: (A,B) show the frequency spectrum of the two MUX signals. (C–E) show the frequency spectrum of

three adaptive Hopf oscillators and it is evident from the figure that the adaptive Hopf oscillators separate out the frequency spectrum of the EEG FM signals.

FIGURE 10 | Reconstruction of EEG signals: (A), (C) and (E) show the original EEG signals recorded from C3, Cz and C4 respectively and (B), (D) and (F) show the

reconstructed EEG signals of the respective channels by the oscillatory autoencoder model. The % of reconstruction error for each reconstruction is 5.8, 6.23, and

3.9% respectively. The absence of noise in the reconstructed signal and also the dimensionality reduction can influence the reconstruction error.
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Criticality of the Oscillations
Although in computational neuroscience literature, oscillatory
neurons are not as common as rate-coded or spiking neuron
models, oscillations figure prominently in experimental
neurobiology. There exists a large corpus of experimental
literature that correlates animal behavior with the aspects of
neural oscillations (Buzsáki, 2002; Lisman and Buzsáki, 2008;
Adhikari et al., 2010; Fell and Axmacher, 2011). Instances
can be found from experimental neurobiology wherein all
the major components of neural information processing viz.,
communication, representation and learning are implemented
by neural oscillations. Colgin et al. (2009) reported that CA1
region of hippocampus communicates with Medial Entorhinal
Cortex (MEC) via fast gamma synchronization (65–140Hz) and
with CA3 region via slow gamma synchronization (25–50Hz)
(Colgin et al., 2009). That is, by changing the frequency of the
signal, it is possible to select the route by which communication
takes place. Spatially distributed neurons can encode for several
individual features of an object by synchronizing the neural
discharges of the features, a phenomenon known as feature
binding (Singer and Gray, 1995). For instance, the presentation
of an optimally oriented bar gives rise to synchronized spiking
of neurons, which are spatially distributed, in the area 17 of the
visual cortex (Gray and Singer, 1987). Synchronization in the
neural discharge is mirrored in the phase of the corresponding
oscillatory LFP activity too. Hence there is a high correlation
between the spike timing with the phase of the LFP oscillations.
In case of feature binding, synchronization may not sometimes
be evident from the spiking activity of the neurons, but the
LFP activity shows robust phase synchronization (Alonso and
Garcia-Austt, 1987; Buzsáki et al., 1992). Thus understanding
the system dynamics in terms of oscillations becomes crucial.
In the perspective of learning, a volley of high frequency
pre-synaptic pulses with simultaneous depolarization at the
postsynaptic side leads to Long Term Potentiation (LTP) (Bliss
and Lømo, 1973; Lüscher and Malenka, 2012). These high
frequency spikes can be correlated with the corresponding
LFP oscillations. Hence the same LTP defined in terms of
the spikes can be redefined using oscillatory LFP (Chauvette
et al., 2012). Oscillations also have a pivotal role in cognition
in both normal and pathological conditions. For example, the
disconnectivity hypothesis of schizophrenia relates the disease
symptoms to the dysfunction in the communication between
different brain regions (Williams and Boksa, 2010). Gamma
rhythm has been reported to have a role in the information
transfer between the brain regions (Gray et al., 1989). In the
early onset schizophrenic patients there is a reduction in
the power of the gamma oscillation in the Prefrontal Cortex
(PFC) a reason accounted for impaired working memory
(Haenschel et al., 2009). Longer time scale oscillations like
circadian rhythms are also known to play a critical role in
major psychological disorders like bipolar disorder, depression,
addiction (McClung, 2007; Alloy et al., 2015). Thus, from
circadian to high gamma rhythms, oscillator models can
be used to describe brain dynamics over a wide range of
frequencies.

Relation of Neural Information Transfer to
Radio Communication Principles
The proposed work reinforces the hypothesis of information
transfer between the brain regions to FM radio principles
proposed by Hoppensteadt and Izhikevich (1998), that cortical
areas communicate each other by making sure that their
oscillations satisfy a resonant condition (Hoppensteadt and
Izhikevich, 1998). They hypothesized that cortical oscillations are
frequency modulated (FM) and, when the frequencies of two
cortical areas match, they communicate by phase modulation.
Thus, cortical communication is proposed to operate on the
lines similar to FM radio. Although their paper proposed
that signals can be frequency modulated and demodulated,
it does not present how these concepts could actually be
exploited to perform autoencoding, i.e., the input messages
getting frequency modulated, multiplexed, demultiplexed and
frequency demodulated. The proposed oscillatory autoencoder
model realizes this concept by invoking the adaptive frequency
and phase synchronization dynamics which take care of the
frequency tuning to the incoming FM signal and hence offers
a neurally plausible mechanism for the signal transmission
and reconstruction (autoencoding) in the brain. This is
achieved by the use of Hopf and Kuramoto dynamics. Both
Kuramoto and Hopf oscillators have been previously used
as models of neural oscillations in many instances (Cumin
and Unsworth, 2007; Righetti et al., 2009). The Kuramoto
model has been used to explain neuronal synchronization in
large connected networks (Cumin and Unsworth, 2007) and
especially building generative models of cortical oscillations
(Breakspear et al., 2010). On the other hand, adaptive Hopf
oscillators have been used for the generation of rhythmic
output patterns such as central pattern generators involved
in locomotion (Ijspeert et al., 2005). However, we have not
come across any literature exploiting the phase synchronization
properties of Kuramoto oscillators and adaptive frequency
aspects of Hopf oscillator to model frequency multiplexing
and demultiplexing. One of the interesting achievements of the
proposed model is to show that Kuramoto—Hopf oscillator
combination could act as a neural phase locked loop (PLL)
which can be used to decode information from a given cortical
region.

Possible Applications of the Model
Autoencoder networks are usually constructed out of rate coded
neurons, though in the recent times autoencoder networks with
spiking neurons have also been proposed (Burbank, 2015). In
its simplest form, a rate-coded autoencoder is a feedforward
network with a single hidden layer and is trained such that
the target output is the same as the input; the hidden layer
has fewer neurons than the input or the output layer. Then
the hidden layer learns to represent the input using fewer
dimensions and therefore achieves dimensionality reduction of
the input space (Hinton and Salakhutdinov, 2006). A similar
reduction is achieved in the proposed oscillatory model since the
hidden layer, LAHN, is of lower dimension than the input layer.
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The connection between Hebbian learning rule and Principal
Component Analysis (PCA) is not a new idea since Oja has
previously shown how a linear neuron adapting its synaptic
weight connections using Hebbian learning rule can converge
to the first principal component of the input data (Oja, 1989).
This was further extended by Sanger using an asymmetric
Generalized Hebbian Algorithm (GHA) learning rule that makes
the network to learn the first n principal components (Sanger,
1989) instead of just one principal component. Hebbian/anti-
Hebbian network also comes under the category of subspace
learning network. This type of network, reduces the input data
dimension by learning the principal subspace of the input data
(Földiak, 1990; Hu et al., 2015; Pehlevan et al., 2015). Other
neural networks in this line are subspace network, Rubner’s
network (Rubner and Tavan, 1989; Rubner and Schulten, 1990)
etc. Although these networks were initially modeled to explain
the computations behind the processing of streaming sensory
inputs, the synaptic plasticity rules based on the local activity
of the neurons neuronal activity were postulated rather than
derived from a cost function (Földiak, 1990). This gap was further
bridged by computing the local learning rules from a principled
cost function (Hu et al., 2015; Pehlevan et al., 2015). Changing
the non-linearity of the neuronal activation function explained
the potentiality of these networks in extracting the higher order
moments of the input data and hence qualified them as the
neural architectures for Independent Component Analysis (ICA)
(Oja, 1997). The aforementioned studies prove the criticality
of this type of network in various applications that include
subspace learning, source separation problem, dimensionality
reduction etc.

This dimensionality reduction has further implications
especially in EEG processing. The model reconstructs the
original EEG signals from their lower dimensional LAHN
representations. This means that these LAHN signals can serve
as the reliable representations especially for high channel EEG
signals. These representations could potentially be useful in BCI
related processing such as classification of EEG signals, feature
clustering, movement signature detection etc. The EEG signals
used for the model simulation are two class motor imagery
signals which are of particular interest in BCI application. Hence
the proposed model not only provides a biologically plausible
explanation for the information transfer in the brain but also
shows its possible potential application in BCI related EEG
processing. Another important feature that makes the current
model suitable for EEG processing is its ability to average out
the noise present in the input signal. As shown in the results
section, the input EEG signals have high frequency ripples in
its original form which is further averaged out to produce
a smooth reconstructed signal as the output from the model
(Figure 10). This could possibly be due to the large temporal
scale Hebbian learning that happens in the hidden LAHN
layer which could thus average out the noise present in the
input.

Future Extensions of the Proposed Model
A possible extension of the current model could be to add
additional circuitry that will enable routing of the signal from

the ith input channel to the jth output channel. It must be
possible to choose the input/output channels to be coupled
through another layer that projects to the current LAHN layer
that performs multiplexing of FM signals. In such an extended
model, the LAHN layer and the additional circuitry for route
selection can be compared to the functions of the thalamus
with respect to cortico-thalamic information processing. Hence
the proposed model serves as the proof of principle for the
potentiality of the oscillatory neural networks in information
transfer i.e., encoding and decoding of real world signals using
the principles of modulation, MUX, frequency adaptation and
phase synchronization and also shows its possible potential role
in EEG related applications. Another direction that the proposed
model could possibly take is to pick the brain components
from the EEG signals. By brain component we mean the
sources inside the brain responsible for the generation of the
EEG signal. Current approaches like Independent Component
Analysis (ICA) require manual selection of components which
has a source inside the brain for further analysis. We envisage
that using a hierarchical network of LAHN, we could possibly
isolate the brain components better due to its inherent ability
to filter out noise. As a future work, we envisage that the
current model could be possibly used (may be by invoking
minor changes) to study the EEG related phenomena like mu
band Event Related Desynchronization (ERD), Visual Evoked
Event Related Potential (ERP) etc which can possibly shed
light on the neural principles behind the occurrence of these
phenomena.

CONCLUSION

We propose a hybrid oscillatory network model that performs
the function of an autoencoder. Using this network, we are
able to encode the information onto oscillations, reduce the
dimensionality of information and effectively decode them using
a neural phase locked loop. The model was successfully applied
to both synthetic as well as real world EEG signals. Hence
the proposed model shows an oscillatory neural framework in
describing information transfer in the brain. By reconstructing
the EEG signals from its abstract representations in the hidden
layer we have shown the model’s ability in better feature
extraction of EEG signal which is a critical part in EEG
processing. Finally, we conclude that exploring the universality
of oscillator networks would open avenues for developing an
entirely new class of neural network models that describe
brain function in terms of oscillatory properties— amplitude,
frequency, and phase. The whole motivation of this work
was to show a proof of principle for the potentiality of the
oscillatory networks in other domains where usually rate coded
or spiking neurons were used. In the future, we plan to
apply the model to a wider variety of real world time series
signals.
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It has long been known that the auditory system is better suited to guide temporally

precise behaviors like sensorimotor synchronization (SMS) than the visual system.

Although this phenomenon has been studied for many years, the underlying neural and

computational mechanisms remain unclear. Growing consensus suggests the existence

of multiple, interacting, context-dependent systems, and that reduced precision in visuo-

motor timing might be due to the way experimental tasks have been conceived. Indeed,

the appropriateness of the stimulus for a given task greatly influences timing performance.

In this review, we examine timing differences for sensorimotor synchronization and

error correction with auditory and visual sequences, to inspect the underlying neural

mechanisms that contribute to modality differences in timing. The disparity between

auditory and visual timing likely relates to differences in the processing specialization

between auditory and visual modalities (temporal vs. spatial). We propose this difference

could offer potential explanation for the differing temporal abilities between modalities.

We also offer suggestions as to how these sensory systems interface with motor and

timing systems.

Keywords: sensorimotor synchronization, timing, rhythm, visual perception, auditory perception

INTRODUCTION

Many behavioral studies have examined human timing ability in tasks of sensorimotor
synchronization (SMS) where subjects synchronize their movements to an external rhythm.

Comparisons between auditory metronomes and visual flashing metronomes reveal that
movement synchronization is less variable and can occur at faster rates with auditory metronomes
(Chen et al., 2002; Repp, 2003; Repp and Penel, 2004; Lorås et al., 2012). However, visuo-motor
synchronization greatly improves when synchronizing with a moving periodic visual metronome
(Hove et al., 2010). Adding a changing velocity profile to the moving visual metronome further
reduces variability in SMS tapping (Hove et al., 2013a; Iversen et al., 2015), and Gan et al. (2015)
suggests that a more realistic velocity profile can bring visual SMS to be as temporally precise as
auditory SMS, at moderate but not fast tempi. While most studies of SMS look at finger tapping,
others have included synchronized circle drawing, gait, dancing, and eye movements in the context
of modality-specific timing effects (e.g., Repp and Su, 2013).
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Studies on auditory and visual interference also suggest
auditory timing is more prominent. When concurrent auditory
metronomes and visual flashing metronomes are presented
out-of-phase, the auditory sequences interfere with visuomotor
timing, but not vice versa (Repp and Penel, 2002, 2004).
The interference effect is considerably reduced with moving
visual metronomes and is tied to training and experience
as the auditory dominance is stronger in musicians and
weaker in video gamers (Hove et al., 2013a). Similarly,
auditory cues can improve visual temporal discrimination
(Morein-Zamir et al., 2003; Parise and Spence, 2008). This
effect only holds for the temporal domain however, as the
visual system dominates when auditory and visual stimuli
conflict in the spatial domain; spatial dominance in the visual
modality is apparent in the well-known “ventriloquist effect”
(Vroomen et al., 2001).

ROLE OF ERROR CORRECTION IN TIMING

Error correction is a crucial component of any SMS task.
By inducing perturbations and errors in SMS, we can gain
insight into the underlying timing mechanisms. A common
method to induce errors in a SMS task is to occasionally
perturb an otherwise isochronous metronome (Repp, 2000,
2001a,b; Praamstra et al., 2003; Repp and Keller, 2004; Jang
et al., 2016; Jantzen et al., 2018). Error correction in SMS
can be broken down into two distinct mechanisms: a phase-
correction mechanism for correcting errors in relative phase,
and a period-correction mechanism that corrects changes to
the internal timekeeper period (Repp, 2001b; Repp and Keller,
2004). Period corrections require conscious awareness of the
error as it involves a conscious updating of the internal rhythm;
while a phase correction can happen even with errors too small
for conscious awareness and does not involve updating the
central timekeeper period and so is considered a more peripheral
process than period correction (Repp, 2001b, 2005). An error
corrected under the phase-correction mechanism is typically
a gradual adjustment that occurs over several beats, while an
error corrected under the period-correction mechanism will be
evidenced by a pronounced correction, usually followed by a
more gradual phase-correction-like pattern after the initial large
correction (Repp, 2001b).

While error correction has been well documented in auditory
SMS, relatively little work has investigated error correction
in visual SMS. In a recent study comparing error correction
for auditory and flashing visual sequences, we observed error
corrections for perturbations in the auditory condition that were
modulated by the direction of the perturbations, but no such
modulation was found for perturbations in the visual condition
(Comstock and Balasubramaniam, 2017a). This suggests the
visual system may not engage in the same SMS timing
mechanisms as the auditory system. Additional evidence for a
discrepancy in error correction for auditory and visual sequences
can be gleaned from the autocorrelation structure of adjacent
taps: unlike auditory SMS, tapping with visual flashes does not
produce a negative lag1 autocorrelation that can indicate of the

presence of a robust central timekeeping and error-correction
mechanism (Hove and Keller, 2010). However, visuomotor
synchronization with moving and apparent-motion metronomes
do produce a negative lag1 autocorrelation, suggesting that a
moving visual metronome may engage error correction (Hove
and Keller, 2010; Hove et al., 2010); note that negative lag1
autocorrelation does not necessarily stem from error correction
and can arise from other timing factors (e.g., Wing and
Kristofferson, 1973). It remains unclear if error correction
will occur with perturbations in moving visual metronomes
or with larger phase perturbations in a flashing visual
metronome.

UNDERLYING PHYSIOLOGY OF THE

AUDITORY AND VISUAL TIMING SYSTEM

Brain Networks Involved in Timing Activity
Investigating the neural underpinnings in auditory and visual
timing is a massive undertaking due to the many different
timing subprocesses and tasks, including: SMS, interval timing,
rhythm perception, timing recall, time perception, etc.. Excellent
reviews of the brain mechanisms involved in various timing
activities include: a review of neural activity in music production
(Zatorre et al., 2007); a review of neural activity involved in
time perception (Wiener et al., 2010); and an overview of neural
activation in SMS as part of a larger review of SMS (Repp
and Su, 2013). This body of work consistently demonstrates
that temporal processing across tasks and sensory modalities
relies heavily on the motor system. This motor network includes
the supplemental motor area (SMA), primary motor cortex,
lateral premotor cortex, anterior cingulate, basal ganglia, and
cerebellum (Repp and Su, 2013). Auditory rhythm perception
activates the motor system and is closely linked to movement
(Janata et al., 2012; Iversen and Balasubramaniam, 2016; Ross
et al., 2016a,b). The SMA is also strongly implicated in motor
timing (Coull et al., 2016; Merchant and Yarrow, 2016), and
along with the pre-SMA could be a hub of motor timing
(Schwartze et al., 2012). Subcortical regions are especially active
during sub-second time perception (Wiener et al., 2010), sub-
second interval timing (Repp and Su, 2013), and rhythm timing
(Grahn and Rowe, 2009; Wiener et al., 2010; Coull et al., 2011;
Teki et al., 2011; Hove et al., 2013b). There is evidence of a
dorsal auditory stream connecting the auditory cortex to the
motor cortex through the posterior parietal cortex that plays
a role in rhythm perception (Patel and Iversen, 2014; Ross
et al., 2018). Interestingly this dorsal stream is also implicated
in visual and tactile rhythm perception (Araneda et al., 2017;
Rauschecker, 2017), adding to the idea of a common timing
system tied to themotor system. Further evidence of the common
timing system is found in a study of auditory and visual
synchronization that dissociated modality and tapping stability –
putamen activation was highest when synchronizing to auditory
beeps, moderate with a frequency-modulated siren and with a
moving visual metronome, and lowest with a flashing visual
metronome, closely paralleling behavioral performance (Hove
et al., 2013b).
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While visual SMS activates many of the same motor
regions as auditory SMS (Hove et al., 2013b; Araneda et al.,
2017), some activations are specific to the visual system. The
visual cortex shows activity related to interval timing that
follows the expected scalar property, such that size of timing
errors measured in the visual cortex scale in proportion to
size of the interval being timed as predicted by Weber’s
law (Shuler, 2016). Additionally, Zhou et al. (2014) found
evidence that visual feature processing in the early visual
cortex can contribute to duration perception, furthering the
notion that at least some timing information is processed
independently within the visual cortex. Additionally, in visual
rhythm perception, the visual cortex plays a role predicting
rhythmic onsets (Comstock and Balasubramaniam, 2017b, 2018).
The additional activations with visual timing tasks, taken
together with behavioral results, suggest the timing accuracy in
visual processing may be compared to the auditory system due to
the additional computational demands of processing the higher
complexity of visual spatial information along with temporal
information.

Role of Cortical Oscillations in Timing

Encoding and Spreading Information

Across the Brain
In addition to looking at the networks and regions involved
in temporal processing, a growing body of work shows the
role of cortical oscillations in encoding timing across multiple
frequency bands. Cortical oscillations play a role in connecting
regions across the brain, with higher frequencies utilized for
localized interaction and lower frequencies for longer range
interaction (Sarnthein et al., 1998; Von Stein and Sarnthein,
2000). This pattern of oscillations is used to connect and
calibrate disparate timing systems in the brain (Gupta and
Chen, 2016). Oscillations relating to timing appear to arise from
multiple context-specifc timing systems in the brain (Wiener
and Kanai, 2016). The question is then how these functionally
and anatomically disparate systems integrate and interact. It
appears that oscillations from different timing systems are
coordinated within the striatum (Matell and Meck, 2004; Gu
et al., 2015).

Beta band activity (∼20Hz) is tied to the motor system and
several studies indicate beta’s role in predicting timing of auditory
rhythms (Fujioka et al., 2009, 2012, 2015). Additionally, beta
activity reflects top-down imposition of metrical structure on
auditory rhythms (Iversen et al., 2009). Recently, beta activity has
also been linked to timing predictions within the visual system
in response to visual rhythms (Comstock and Balasubramaniam,
2017b).

With rhythm perception, evidence shows that internal
oscillations arise to match the fundamental frequency of the
rhythm, and frequency of the meter (Nozaradan et al., 2011),
as well as to the frequency of imagined rhythms (Okawa et al.,
2017). These findings align with the Neural Resonance Theory
that posits neural rhythms synchronize to auditory rhythms, and
these neural rhythms can influence attention, expectancy, and
motor planning (Large and Snyder, 2009). As of yet, it is unclear

if this same neural resonance to meter would arise with visual
stimuli.

Neural Underpinnings of Error Correction
The neural correlates of error correction reveal more evidence
for multiple interacting and overlapping timing mechanisms.
Error detection of timing perturbations in auditory SMS tasks
modulates the P1, N1, and N2 auditory ERP components
depending on both the size and direction of the perturbation
(Praamstra et al., 2003; Jang et al., 2016). Jantzen et al.
(2018) also found a theta response stemming from the Pre-
SMA and anterior cingulate for error detection, an increase
in theta coupling between the SMA and the motor cortex
for late perturbations. In visual error detection, the visual
P1 component is reduced in latency only for large late
perturbations (Comstock and Balasubramaniam, 2017a). Each
of these instances show cortical activation specific to a type of
perturbation, although these effects are generally limited to larger
perturbations.

Smaller perturbations that elicit a phase-correction response
are believed to be driven primarily by subcortical mechanisms.
Applying repetitive TMS to downregulate motor and premotor
cortices produced no effect on phase correction (Doumas et al.,
2005), whereas phase-correction was impaired by repetitive TMS
to the cerebellum (Bijsterbosch et al., 2011). This fits with the
suggestion that phase-correction is primarily subcortical based
on evidence from how rapidly the movement trajectory changes
after a perturbation (Hove et al., 2014). A possible network
that exhibits the rapid timing required for the phase-correction
response is a cortico-striatal circuit connecting the cerebellum to
the SMA-striatal network via the thalamus (Kotz et al., 2016).

The data on the neural underpinnings of error correction
suggest multiple timing systems, each with specific roles, yet able
to coordinate for rapid response. Commensurate with this idea
is work suggesting the basal ganglia integrates various timing
systems through oscillation comparators (Matell andMeck, 2004;
Gu et al., 2015). The limited data on visual error correction,
however, leave open how well this network can interface with the
visual timing systems.

EVIDENCE THE AUDITORY SYSTEM HAS

PRIVILEGED ACCESS TO TIMING

SYSTEMS

Considering the auditory system’s timing advantage along with
the prominence of the motor system in timing processing, we
suggest that the auditory system’s advantage in timing stems
from its stronger coupling to the motor system. Auditory timing
compared to visual timing tasks often yield more activation
in motor structures, such as the SMA and premotor cortex
(Jäncke et al., 2000). Even when visual SMS tasks employed
the modality-appropriate moving visual metronomes, audio-
motor synchronization with auditory beeps yielded greater
activation in the putamen (Hove et al., 2013b). Likewise, priming
a visual rhythm with a similar auditory rhythm resulted in
increased putamen activation compared to a visual rhythm
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alone, while a visual rhythm yielded no priming effect on
an auditory rhythm (Grahn et al., 2011). The finding that
the increased visual synchronization ability provided by a
bouncing ball does not transfer to purely perceptual rhythm
perception provides further evidence of the role of motor
coupling in timing tasks (Silva and Castro, 2016). Additionally,
the privileged link between auditory and motor systems can be
seen in Parkinson’s disease, a disorder that impairs movement
due to cell loss within the basal ganglia (Davie, 2008). For
example, Parkinsonian gait can improve when cued by an
external rhythm, and these interventions are more effective when
synchronizing with auditory metronomes than with flashing
visual metronomes (Rochester et al., 2005; Arias and Cudeiro,
2008).

Visual timing activities recruit timing centers within the
visual system that, based on behavioral results, are less precise
compared to the auditory timing system. In Jäncke et al.
(2000), visual timing tasks resulted in increased activity in the
right superior cerebellum, vermis, and right inferior parietal
lobe compared to auditory timing tasks. Visual timing tasks
also recruit areas MT, V5, and the superior parietal lobe,
tying into the dorsal visual stream (Jantzen et al., 2005), and
visual rhythm perception induces increased beta activity at
event onsets arising from the visual cortex (Comstock and
Balasubramaniam, 2017b). It is unclear if these timing activations
in the visual system are the result of compensating for a weaker
connection to the motor timing system. It may be that the
temporal processing in the visual system is additional processing
of visual information required to interface with the motor
system.

While differences in coupling strength to the motor system
are crucial for modality timing differences, other factors are
likely. To that end, it is clear that the visual system is able
to pick out high speed temporal information, for example,
V1 will phase lock its input/output to up to a 100Hz visual
flashing stimuli (Williams et al., 2004). This suggest that
entrainment is not easily transferred to the systems involved
in time/rhythm perception, especially at the time frame usually
involved in rhythm perception, indicating that the issue may
be one of translation. A likely place for that translation
would be within the dorsal pathway, which has been found
to have neurons with high temporal resolution in macaques,
with higher temporal resolution in the auditory dorsal stream
(Rauschecker, 2017). If there is a higher temporal resolution
of the auditory dorsal stream than in the visual dorsal stream,
then it may give explanation as to why the visual system
cannot synchronize at the higher frequencies achieved by the
auditory system. Of course, it cannot be ruled out that the
difference in temporal resolution is due to different levels of
timing precision available to the dorsal stream. Reduced timing
precision in the visual stream may be caused by increased
necessary processing due to richer sensory input of the visual
system compared to the auditory system. Indeed, greater
processing requirements and longer processing time may help
to account for the inability of the visual system to allow for
synchronization at the higher tempos allowed by the auditory
system.

ROLE OF THE

VESTIBULAR-TACTILE-SOMATOSENSORY

SYSTEM

Another link between auditory and motor systems is that
auditory rhythm perception may be tied to the vestibular-tactile-
somatosensory (VTS) system, which is important for movement
and dance, and therefore closely tied to the motor system and
attuned to timing (Todd and Lee, 2015). In addition to its ties for
movement, the VTS system is clearly tied to the auditory system
with regards to rhythm perception (Phillips-Silver and Trainor,
2005, 2007, 2008; Trainor et al., 2009), and through common
neural activation (Araneda et al., 2017). These ties between the
auditory and VTS system may be an additional factor in the
dominance of the auditory system in the temporal domain.

Since VTS rhythms are ubiquitous in fetal life through the
mother’s gait, heart rate, breathing, etc., and since these networks
are tied into auditory rhythm systems, it is likely that the
VTS system is heavily tied into the timing systems used in
auditory rhythm perception and in motor rhythm production
(Provasi et al., 2014). This is further strengthened by the fact
that movement and rhythms are linked and proprioception (part
of the VTS system) plays a large role in perception of rhythms
that is tied into auditory rhythm perception and production
(Trainor et al., 2009). Interactions between the VTS system
with visual rhythm perception remains mostly unexplored at
this point however, so it is unclear how much this system
plays a supramodal role in the timing involved in rhythm
perception/production, or if it is only tied to the auditory and
motor rhythm timing systems. Further research in this area is
needed to answer these questions.

EVOLUTIONARY ORIGINS OF

SENSORIMOTOR SYNCHRONIZATION

In an evolutionary context, it makes sense that auditory and
motor systems would be tightly interconnected. First, rhythms
in language are critical for both perception and production and
may be a driver of SMS ability (Patel, 2006). Beyond language,
matching movement to sound is a necessary result of human
evolution that allows for the social and cultural inclination
of humanity via music (Hagen and Bryant, 2003; Brown and
Jordania, 2013). Dance is also tightly connected with music
and culture and can provide a further explanatory account of
human SMS capability and the connection between the motor
and auditory systems (Fitch, 2016; Iversen, 2016; Laland et al.,
2016; Ravignani and Cook, 2016).

Beyond humans, common adaptations appear to increase SMS
ability in several non-human species capable of some level of
audio-motor entrainment such as parrots (Patel et al., 2009),
bonobos (Large and Gray, 2015), and sea-lions (Cook et al.,
2013). Although some animals can exhibit rhythmic capabilities,
some remarkably well like Ronan the sea-lion (Rouse et al.,
2016), they are in some ways limited compared to humans (Patel
and Iversen, 2014; Merker et al., 2015). Even though there are
animals that can entrain to auditory rhythms, only humans
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appear to be naturally inclined to do so (Wilson and Cook, 2016).
Finally, there is some evidence that non-human primates are
able to synchronize their movements to predictable visual stimuli
(Takeya et al., 2017), yet there has been much less research on
visual SMS compared to auditory SMS in non-humans.

GENERAL SYNTHESIS AND FUTURE

DIRECTIONS

In looking at how the brain processes timing information, it
is clear that many context sensitive mechanisms interact and
coordinate to provide optimal timing output. Much of this
interaction appears to happen within the motor system and
likely involves the subcortical systems to coordinate the various
mechanisms. Current research suggests that oscillations play a
key role coordinating the interactions among various timing
circuits. However, it is not clear if the various timing systems
compute measures of time in the same way. When considering
that auditory and visual systems take in very different kinds
of information and use it in different ways, i.e., auditory has a
stronger temporal precision, and visual has a strong spatial bias, it
seems likely that the timing mechanisms themselves may greatly
differ.

Consider the difference between extracting timing
information between a moving visual rhythm and an auditory
rhythm. Moving visual stimuli contain more information
than auditory stimuli, such that while entraining to auditory
stimuli, prediction of the onset of the next event involves
encoding the interval between two events and utilizing that
information to predict the onset of the next event. With a
moving visual rhythmic stimulus, that interval information is
present, but so is information on position/velocity/acceleration.
This means predictions of the onset of the next event can
be made as part of a continuous process. The fact that even
with this information, visual SMS is at best equal to auditory
SMS except at fast speeds, begs the question as to why visual
SMS is less capable. One possible explanation for this is that
the visual system has to encode much more information,
and further, encoding that information into a form that is
usable by the motor network may require extra processing.
This may explain the timing activity found within the visual
cortex during visual SMS. Even when there is a simple flashing
metronome, there is a measure of timing activity originating
from the visual cortex. Considering the reduced temporal
ability with visual flashing metronomes, it suggests there may
be a translation issue in harnessing a system not optimized
to temporal processing the way the auditory system has
been, resulting in a weaker connection to the motor timing
network.

Different timing systems likely employ varying mechanisms
and computational principles that are appropriate to the time
scale, cellular properties, and general needs of the system.
Existing computational models that capture a range of these
phenomena across levels include: pacemaker accumulator
models, multiple oscillator models, memory trace models,

random process models, ramping activity models, delay line
models, and state space trajectory-based models (Addyman et al.,
2016; Hass and Durstewitz, 2016). Such models help illustrate the
variety of ways to process timing information within a neural
network. Evidence also suggests that cells with specific timing
mechanisms exist in the basal ganglia and cerebellum (Lusk et al.,
2016), yet other areas with multiple functional properties also
process timing, such as in the prefrontal cortex (Hyman et al.,
2012) and hippocampus (MacDonald et al., 2011). The areas that
have multiple functions, as in the hippocampus and prefrontal
cortex, will then likely have different computational approach
than more specialized timing structures.

Given that there are multiple ways to process timing, and
that many forms of cognition require some form of temporal
processing, it would be surprising to find that timingmechanisms
are not ubiquitous in the brain. This raises an important
question. If many different timing mechanisms are available
for a given task, and only one output (through action), how
do neural systems arrive at the best timing information to
use? A strong candidate explanation for this would implicate a
mechanism that helps integration through an optimal Bayesian
process (Hass and Durstewitz, 2016). Evidence from multimodal
sensory integration suggests that when timing information is
presented frommultiple modalities, the modalities are combined
and weighted based on reliability in Bayesian optimal solution
(Ernst and Banks, 2002). Since most timing related activity
requires motor output, we would expect that the source of timing
to be utilized would be determined before, or as that timing
information becomes available to the motor system. This seems
to make the case that the striatal cells operating as a comparator
may be the seat of the Bayesian process to determine the optimal
timing source for motor timing.

Since there is some disparity in the amount of work on
auditory and visual SMS error correction, there is a need to
further study the error correction capabilities within visual SMS.
It is currently unknown if visual error correction can be as fast
as auditory error correction when dealing modality appropriate
stimuli, such as a moving visual sequence or bouncing ball.
Another major area of needed work is in understanding the
mechanisms by which the Bayesian optimal timing source is
chosen in cases where multiple sources are available. If timing
mechanisms are as ubiquitous in the brain as evidence suggests,
then there may be a variety of ways these mechanisms interface
with the motor timing system to produce a single output. Further
imaging and computational work is required to understanding
this mechanism.
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Brain signals often show rhythmic activity in the so-called gamma range (30–80Hz),

whose magnitude and center frequency are modulated by properties of the visual

stimulus such as size and contrast, as well as by cognitive processes such as attention.

How gamma rhythm can potentially influence cortical processing remains unclear;

previous studies have proposed a scheme called phase coding, in which the intensity

of the incoming stimulus is coded in the position of the spike relative to the rhythm.

Using chronically implanted microelectrode arrays in the primary visual cortex (area V1)

of macaques engaged in an attention task while presenting stimuli of varying contrasts,

we tested whether the phase of the gamma rhythm relative to spikes varied as a function

of stimulus contrast and attentional state. A previous study had found no evidence of

gamma phase coding for either contrast or attention in V1, but in that study spikes

and local field potential (LFP) were recorded from the same electrode, due to which

spike-gamma phase estimation could have been biased. Further, the filtering operation to

obtain LFP could also have biased the gamma phase. By analyzing spikes and LFP from

different electrodes, we found a weak but significant effect of attention, but not stimulus

contrast, on gamma phase relative to spikes. The results remained consistent even after

correcting the filter induced lags, although the absolute magnitude of gamma phase

shifted by up to ∼15◦. Although we found a significant effect of attention, we argue that

a small magnitude of phase shift as well as the dependence of phase angles on gamma

power and center frequency limits a potential role of gamma in phase coding in V1.

Keywords: attention, spike-field coherence, spike-gamma phase, contrast, area V1, stLFP

INTRODUCTION

Gamma oscillations are rhythmic fluctuations in a frequency range between 30 and 80Hz in
brain signals (Buzsaki, 2006; Buzsáki et al., 2013), which have been consistently linked with
high-level cognitive processes such as attention (Fries et al., 2001; Gregoriou et al., 2009), perception
(Rodriguez et al., 1999) and feature binding (Singer, 1999). In recordings from the primary
visual cortex (area V1), gamma is also known to be highly dependent on the properties of visual
stimulus, such as size (Gieselmann and Thiele, 2008; Ray and Maunsell, 2011a; Jia et al., 2013),
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orientation (Berens et al., 2008; Jia et al., 2011), and contrast
(Ray and Maunsell, 2010; Jia et al., 2013). Although several
hypotheses about how gamma rhythm could influence neural
processing have been proposed, such as binding by synchrony
(Singer, 1999) and communication-through-coherence (Fries,
2015), whether gamma plays a functional role remains unclear
(Ray and Maunsell, 2015).

Here we test a specific hypothesis called phase coding (PC),
originally proposed in the context of theta rhythm in the
hippocampus (O’Keefe and Recce, 1993; Buzsáki and Chrobak,
1995), in which information is coded in the position of the spike
relative to the rhythm. In the context of gamma rhythm (Fries
et al., 2007), which is thought to be associated with an inhibitory
network of interneurons (Bartos et al., 2007; Cardin et al., 2009;
Sohal et al., 2009), this hypothesis posits that the rhythmic
network inhibition interacts with excitatory input to pyramidal
cells such that the more excited cells (which can overcome
the inhibition earlier) fire earlier in the gamma cycle. Thus,
stimulus intensity can be coded in the gamma phase relative to
the spike. However, whether gamma PC occurs is controversial,
with evidence both in favor and against the hypothesis. We
have earlier shown that in macaque secondary somatosensory
cortex, the phase of gamma rhythm does not vary with stimulus
intensity (Ray et al., 2008). In V1, one study showed some
evidence of PC with different orientations (which they took as
a proxy for stimulus intensity), at least for sites that had weak
gamma power andweak gamma-spike phase locking (Vinck et al.,
2010). Other studies in V1 showed no evidence of PC when the
stimulus contrast (a more direct index of stimulus intensity as
compared to orientation) was varied (Chalk et al., 2010; Ray
and Maunsell, 2010). Importantly, Chalk and colleagues further
showed that even attention, which increases the effective contrast
of the stimulus (Carrasco et al., 2004), does not cause a shift
in spike-gamma phase. They also showed that in V1, attention
causes a reduction in gamma power and spike-gamma coupling
(Chalk et al., 2010), exactly opposite of what has been shown in
higher cortical areas such as V4 (Fries et al., 2001).

While Chalk et al. (2010) failed to provide evidence in
favor of PC, one limitation of their study was that spikes
and local field potential (LFP) were collected from the same
electrode, which can potentially bias the spike-gamma phase
relationship because of the presence of spike-related transients
(Ray, 2015). Specifically, spikes are associated with a “transient”
in the LFP recorded from the same electrode, which could
be due to synaptic activity that leads to the spike as well as
low-frequency component of the action potential (spike “bleed-
through”; see Ray, 2015, for details). The remaining studies either
removed this transient using signal processing techniques such
as Matching Pursuit (Ray et al., 2008), or used spikes and LFP
from different electrodes (Ray and Maunsell, 2010; Vinck et al.,
2010) that reduces the bias (see section Discussion for more
details on this), but none of these reports studied the effect
of attention on spike-gamma phase. To test whether stimulus
contrast can be coded in the phase of the gamma rhythm, we
here trained monkeys to do a demanding attention task while
presenting stimuli that varied in contrast to study the effect
of both contrast and attention on spike-gamma phase, while

recording from chronically implantedmicroelectrode arrays such
that spike-gamma phase could be estimated using spikes and
LFPs recorded from different electrodes. Note that since attention
is thought to increase the effective stimulus contrast (Carrasco
et al., 2004), testing whether gamma phase varies with attentional
state is also a test for gamma PC for contrast. We further studied
the effect of the online causal filter used to obtain the LFP,
which introduces a delay in the LFP and has been shown to
influence spike-LFP relationships (Okun, 2017), but has not been
accounted for in previous studies.

MATERIALS AND METHODS

Experimental procedures have been described in detail in earlier
studies (Ray andMaunsell, 2010, 2011b; Shirhatti et al., 2016); we
provide a brief description here.

Ethics Statement
The animal protocols reported in this study were approved by
the Institutional Animal Care and Use Committee of Harvard
Medical School.

Electrophysiological Recordings
Two male rhesus monkeys (Macaca mulatta) were implanted
with a scleral search coil and a head post and were subsequently
trained to perform an attentionally demanding task. Once they
learned the behavioral task, a microelectrode array (Blackrock
Microsystems, 96 active electrodes) was implanted in the right
V1 cortex (about 15mm anterior from the occipital ridge and
15mm lateral from the midline). The microelectrodes were
1mm long and 400µm apart from each other, with impedance
between 0.3 and 1 M� at 1 kHz. Although histological analysis
had not been performed to identify the exact location of the
microelectrode tips, they are expected to be in cortical layer 2/3
or 4 based on the approximate thickness of V1 (2mm; Hubel and
Wiesel, 1977). Electrical signals were recorded using commercial
hardware and software (Blackrock Microsystems), referenced
to a wire placed on the dura near the microelectrode grid.
Raw electrical signals were filtered between 0.3Hz (Butterworth
filter, 1st order, analog) and 500Hz (Butterworth, 4th order,
digital) and digitized at 2 kHz (16-bit resolution) to get the LFP.
Multi-units were extracted by filtering the raw signal between
250Hz (Butterworth filter, fourth order, digital) and 7,500Hz
(Butterworth filter, third order, analog) followed by an amplitude
threshold (set at ∼6.25 and ∼4.25 of the signal SD for the two
monkeys). To improve the quality of unit isolation, multi-units
were subsequently sorted offline (Offline Sorter, Plexon Inc.).
The receptive fields, obtained by flashing small Gabor stimuli
on a rectangular grid that encompassed the receptive fields of
all the electrodes in the array, were located in the lower left
quadrant of the visual space at an eccentricity of about 3–5◦. As
in previous studies, only electrodes for which stable estimates of
the receptive fields could be obtained (27 and 66 electrodes for
the two monkeys), were used for subsequent analysis.
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Behavioral Task Paradigm
The monkeys were required to maintain their gaze within 1◦

of a small central dot (0.05◦-0.10◦ diameter) during the task
while two achromatic odd-symmetric static Gabor stimuli were
synchronously flashed for 400ms with a mean inter-stimulus
period of 600ms. One of the two Gabor stimuli was centered
on the receptive field of one of the recorded sites (new location
for every session) while the second stimulus was located at an
equal eccentricity on the opposite side of the central fixation
point. The monkeys were cued to pay attention to one of the two
stimulus locations in different blocks of trials by presenting two
instruction trials (not included in the analysis) at the start of the
block, in which there was only a single stimulus. The contrasts
of the attended and unattended Gabor stimuli were equal on
each presentation and could take any of the eight possible
values: 0, 1.6, 3.1, 6.2, 12.5, 25, 50, and 100%, chosen pseudo-
randomly. At an unstipulated time drawn from an exponential
distribution (mean 2,000ms, range 1,000–7,000ms for Monkey
1; mean 3,000ms, range 1,000–7,000ms for Monkey 2), the
orientation of the stimulus at the cued location changed by 90◦.
An exponential distribution was used to minimize expectation
of target appearance and to keep the attentional state uniform
during a trial since the hazard function is flat for an exponentially
distributed target onset time. The monkeys were rewarded with
a drop of juice for making a saccade to the location of the
altered stimulus within 500ms of orientation change. To account
for saccade latency and to minimize guessing, monkeys were
rewarded only for saccades beginning at least 100ms after the
orientation change. Trials were terminated at 7,000ms if the
target had not appeared, in which case the monkeys were
rewarded for maintaining fixation throughout that trial. These
catch trials were excluded from analysis (for more details, see Ray
and Maunsell, 2010 and Figure 1).

The Gabor stimuli used for this task were both static with
SD of 0.5◦, spatial frequency of 4 cycles per degree, with one of
the Gabor stimuli located at the center of the receptive field of
one of the recorded sites (new recording site for each session),
at its preferred orientation. Data from the two monkeys were
collected in 10 and 17 recording sessions, respectively. Only
correct trials were used for analysis. For each of the correct trials,
only the second stimulus up to the last stimulus before target
onset were used for analysis. We only used stimulus contrasts
for which salient gamma oscillations were observed (25, 50, and
100% contrasts). For each contrast and attention condition, on
average we obtained 79 ± 4 (range 55–101) stimulus repeats for
Monkey 1 and 74± 5 (range 47–120) for Monkey 2.

Electrodes and Electrode Pair Selection
Electrodes with receptive field centers within 0.2◦ of the stimulus
center in each of the recording sessions were used for analysis,
yielding 63 electrodes (23 unique; many electrodes were selected
in several recording sessions) for Monkey 1 and 89 electrodes (53
unique) for Monkey 2. These are referred to as “LFP” electrodes.
For spike-field coherence (SFC), spike-triggered LFP (stLFP) and
spike-gamma phase histograms, we selected a subset of the LFP
electrodes from which at least 20 spikes could be recorded in
the analysis interval (150–400ms after stimulus onset) and the

FIGURE 1 | Attention Task. While the monkey maintained fixation, two

achromatic Gabor stimuli were flashed for 400ms with an inter-stimulus delay

of 510–690ms at two spatial locations from the fixation spot; one of the stimuli

overlapped with the receptive field of recorded V1 neurons (indicated by a red

circle for clarity; not visible to the monkey) and the other stimulus appeared at

a location of equal eccentricity in the opposite hemifield. The monkey was

cued to covertly attend to one of the two locations in different blocks of trials

(indicated by black dotted circle, not visible to the monkey). At an unsignaled

time, during one of the stimulus presentations, the orientation of the cued

stimulus was changed by 90◦. The monkey was rewarded with a drop of juice

for making a saccade to the location of orientation change. If there was no

change during a trial (catch trial), the monkey was rewarded for maintaining

fixation throughout that trial.

signal to noise ratio of the isolation (Kelly et al., 2007) was greater
than 2. This generated 23 (12 unique) and 39 (27 unique) “spike”
electrodes for Monkeys 1 and 2, respectively. For each session, we
took all combinations of spike and LFP electrodes with receptive
fields within 0.2◦ of the stimulus center, yielding 23 (12 unique)
and 39 (27 unique) “same” spike-LFP pairs (Figure 3), and 163
(120 unique) and 170 (147 unique) pairs of “different” spike-LFP
electrodes for Monkeys 1 and 2, respectively (Figures 4, 5).

DATA ANALYSIS

All data were analyzed using custom codes written in MATLAB
(The MathWorks, RRID:SCR_001622). Individual data analysis
methods are briefly summarized below.

Change in Power Spectral Density (PSD)
Plots (Figure 2)
Stimulus-induced responses were first obtained by subtracting
the mean LFP across all stimulus repeats for each condition
(i.e., the event-related potential) from individual single trial
time series data. Subsequent analyses were performed on these
stimulus-induced responses. Power spectral densities (PSDs) for
different stimulus and attention conditions were computed using
the multi-taper method with 5 tapers using the Chronux toolbox
(Bokil et al., 2010); http://chronux.org/, (RRID:SCR_005547).
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FIGURE 2 | Change in alpha and gamma power and gamma peak frequency with contrast and attention. (A) Change in Power-spectral densities (PSDs) during

stimulus period (150–400ms after stimulus onset) from the pre-stimulus baseline (−300 to −50ms) for different contrasts: 25% (left panel), 50% (middle), and 100%

(right), for attend-in (colored) and attend-out (black) conditions, for 63 electrodes in Monkey 1 (top row) and 89 electrodes in Monkey 2 (bottom row). All changes were

computed with respect to the baseline PSD during the attend-out condition. Also shown is the change in baseline PSD for attend-in condition (dark gray trace); the

same for the attend-out case is trivially zero (light gray). PSD traces for 25 and 50% contrast for attend-in condition is overlaid (dashed-dot color traces) on the 100%

contrast panel to show how gamma peak frequency changes with contrast. The alpha and gamma band frequencies used for subsequent analysis are shown in

triangles and circles respectively. (B) Change in alpha power (in decibels) between attend-in and attend-out condition for 25% (blue), 50% (green), and 100% (red)

contrasts. Error bars represent standard error of mean across 63 electrodes from Monkey 1 (top row) and 89 electrodes from Monkey 2 (bottom row). Significant

differences (p < 0.05, t-test) are indicated by “*”. (C) Same as (B), but for gamma power. (D) Change in gamma peak frequency (Hz) between attend-in and

attend-out condition for contrasts 25% (blue), 50% (green), and 100% (red). Error bars represent standard error of mean across 63 electrodes from Monkey 1 (top

row) and 89 electrodes from Monkey 2 (bottom row).

The analysis period was selected between 150 and 400ms after
stimulus onset to avoid stimulus onset related transients and
compared against a “baseline period” between−300 and−50ms
of stimulus onset. To ensure that the change in power from
baseline was not affected due to differences in the baseline power
for different attention conditions, change in PSDs were plotted
with respect to the baseline response of “attend-out” (attention
directed outside the receptive field) condition for each stimulus
contrast value:

1PSDi = 10
(

log10 (ST)i − log10 (BLAtt Out)i
)

Here i represents the contrast condition (25, 50, or 100%),1PSDi

represents the change in PSD in decibels, (ST)i denotes the PSD
in the stimulus epoch and (BLAtt Out)i denotes the baseline PSD
for attend-out condition.

For the change in alpha power shown in Figure 2B, we first
averaged the power between 8 and 12Hz (triangles in Figure 2A;
note that because we used an analysis interval of 250ms, we
had a frequency resolution of 4Hz) and subsequently took the
difference between the “attend-in” (attention directed inside the
receptive field) and attend-out power on a log scale:

1Poweri = 10
(

log10 (STAtt In)i − log10 (STAtt Out)i

)

Here (ST) i denotes the alpha power in the stimulus epoch
for the ith contrast condition. For gamma power, the same
procedure was used with three frequency bins centered around

the peak gamma frequency (shown in circles in Figure 2A). For
computing peak gamma frequency, we choose the frequency
bin for which 1PSDi attained its maximum value between
30 and 60Hz.

Coherency Analysis (Figures 3–5)
The coherency between two signals x and y is computed using the
following equation:

Coherencyxy
(

f
)

=

Sxy(f )
√

Sxx(f )Syy(f )

Where Sxy (f ) denotes the cross-spectrum between the signals
x and y and Sxx (f ) and Syy (f ) denote the auto spectra of each
signal. The coherency values were computed using the multi-
taper method implemented in Chronux toolbox using five tapers.
All the coherence analyses were performed using the sorted
multiunit dataset. For spike-field coherence, the spike time series
was converted to a binary time series (at 0.5ms resolution)
with a “1” at each time position containing a spike and “0”
otherwise (500 data points for the stimulus period). The results
were similar for three tapers. All the circular statistical analyses
were performed using an open source circular statistics toolbox in
MATLAB (CircStat; Berens, 2009). Spike-triggered LFP (stLFP)
were computed by taking a ±25ms segment of the LFP around
each spike in the stimulus period and subsequently taking the
average of those segments.
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FIGURE 3 | Relationship between Spikes and LFPs recorded from the same electrode, as a function of Contrast and Attention. (A) Mean spike-LFP coherence for 25,

50, and 100% contrasts for Monkey 1 (three columns on the left) and Monkey 2 (three columns on the right). Black and colored traces represent attend-out and

attend-in conditions respectively. Spike-LFP coherence was computed for the time interval between 150 and 400ms post stimulus onset. Spikes and LFP were

recorded from 23 and 39 electrodes in the two monkeys, whose receptive fields were within 0.2◦ of the stimulus center. (B) Average spike-triggered LFP average for

the same electrode and analysis duration as (A); Time of the spike (0ms) is shown by a dotted line for clarity. (C) Phase histograms of the spike-LFP coherence values

at peak and two surrounding gamma frequencies, for attend-out condition (indicated by black triangles in each panel in (A) and attend-in condition (indicated by

colored circles in each panel in (A). The circular means of the spike-gamma phase values are indicated for attend-out and attend-in condition, along with the p-value

obtained from Watson-Williams test to compare the mean phases.

Removing Filtering Effect (Figure 5)
Any causal filter necessarily introduces a delay in the signal,
which may be dependent on the frequency of the signal.
Butterworth filters have a linear relationship between phase
delay and frequency, such that the group delay (which roughly
translates to how much each frequency component of the signal
shifts in time due to the filtering process) is almost constant over
a wide frequency range. We removed the low-pass filtering effect
by dividing the Fourier Transform of the LFP by the Fourier
Transform of the low-pass LFP filter (4th order Butterworth
filter with a low-pass cutoff at 500Hz; constructed in MATLAB
using the command “butter”) and subsequently taking the inverse
Fourier Transform (Okun, 2017). The correction was only done
between 0 and 500Hz because the power of the LFP (as well
as the filter) was very less beyond 500Hz. The group delay
of this Butterworth filter was ∼0.8ms over almost the entire
frequency range of interest (including the gamma range), such
that the stLFP constructed from the corrected LFP signal had a
similar shape as the uncorrected stLFP but was shifted leftward
by∼0.8ms (Figure 5B vs. Figure 4B).

Note that in addition to this low-pass filter, three other
filtering operations also need to be accounted for. The data
acquisition system had two analog hardware filters: a high pass

filter at 0.3Hz (first order, Butterworth) and a low-pass filter at
7,500Hz (third order, Butterworth). In addition, to obtain spike
data, the signal was high-pass filtered at 250Hz (fourth order,
Butterworth, digital). However, all three filters had negligible
group delay (<0.1ms) between 500–5,000Hz, suggesting that
these filtering operations did not change the position of the
spike appreciably. Similarly, the high-pass filter had a large group
delay at very low frequencies, as shown by Okun (2017), but it
was negligible in the gamma range. Therefore, these three filters
did not have an appreciable effect on the spike-gamma phase
estimation.

RESULTS

Spatial Attention Reduces Alpha and
Gamma Power and Increases Peak
Gamma Frequency in Area V1
Wefirst analyzed changes in alpha and gamma power and gamma
peak frequency for attend-in versus attend-out conditions to test
whether our results were in agreement with previous attention
studies in macaque primary visual cortex (Chalk et al., 2010).
Figure 2A shows the average change in PSD during the stimulus
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FIGURE 4 | Relationship between Spikes and LFPs recorded from different electrodes, as a function of Contrast and Attention. Same as Figure 3, but the analysis is

performed on 163 and 170 pairs of different spike-LFP electrodes (the receptive fields of both were within 0.2◦) for Monkeys 1 and 2, respectively.

FIGURE 5 | Relationship between Spikes and LFPs recorded from different electrodes, as a function of Contrast and Attention, after removing the filtering effect.

Same as Figure 4, but after removing the effect of the low-pass filter on the LFP (solid traces). The stLFP and spike-gamma phase histogram plots in Figures 4B,C

are overlaid as dashed-dot traces on the corresponding panels to show the outcome of filtering-effect removal on these measures.
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period (150–400ms after stimulus onset) from the pre-stimulus
baseline (−300 to −50ms), for attend-out (black trace) and
attend-in condition (color trace) for 25% (blue), 50% (green),
and 100% (red) contrasts. Gamma peak frequency increased with
increasing contrast (traces for different contrasts are overlaid in
the rightmost plot for comparison), as reported previously (Ray
and Maunsell, 2010). To account for potential differences in the
baseline activity due to attention, all changes were computed
with respect to the baseline activity of the unattended condition
(see section Materials and Methods). Consistent with previous
studies, we found a strong suppression of alpha power due to
attention in both monkeys, which could be observed in the
baseline PSD as well (dark gray trace), confirming that the
monkeys were indeed attending to the stimuli.

To test these results quantitatively, we first performed a three-
way ANOVA test with factors of monkey (2 levels: Monkey
1 and 2), attention (attend-out, attend-in) and contrast (25,
50, and 100%). Alpha power was averaged over 8 and 12Hz
(inverted triangles in Figure 2A), while gamma power was
averaged in an eight Hz band around the peak frequency for
each contrast (40, 48, and 56Hz for Monkey 1, and 40, 44,
and 56Hz for Monkey 2; Figure 2A; see section Materials and
Methods for details). The factor monkey was significant for
alpha power (Fmonkey = 243.23, p = 9.3 × 10−49), gamma

power (Fmonkey = 417.45, p = 1.3 × 10−76), and peak gamma
frequency (Fmonkey = 4.52, p = 0.004). Thus, we performed a
two-way ANOVA with factors attention and contrast separately
for the two monkeys for alpha power, gamma power and peak
gamma frequency. The effect of contrast on alpha power was
not significant for Monkey 1 (Fcontrast = 0.65, p = 0.522) but
significant effect for Monkey 2 (Fcontrast = 7.06, p = 9 × 10−4).
The effect of attention on alpha power was significant for both
monkeys (Fattention = 24.88, p = 9.4 × 10−7 for Monkey 1 and
Fattention = 10.17, p = 1.5 × 10−3 for Monkey 2). However,
there was no significant interaction between the two factors
on alpha power for either monkey (Fcontrast × attention = 0.87,
p = 0.42 for Monkey 1 and Fcontrast × attention = 0.91, p = 0.40
for Monkey 2). For gamma power, the effect of contrast was
significant for both monkeys (Fcontrast = 11.9, p= 9.8× 10−6 for
Monkey 1 and Fcontrast = 37.78, p = 4.6 × 10−16 for Monkey 2)
but the effect of attention was not significant (Fattention = 0.3,
p = 0.58 for Monkey 1 and Fattention = 1.72, p = 0.19 for
Monkey 2). Again, there was no interaction between the factors
(Fcontrast × attention = 0.05, p = 0.95 for Monkey 1 and Fcontrast
× attention = 0.17, p = 0.85 for Monkey 2). For peak gamma
frequency, there was significant effect of both contrast and
attention in bothmonkeys (Fcontrast = 415.46, p= 1.6× 10−95 for
Monkey 1 and Fcontrast = 973.36, p= 7.7× 10−178 for Monkey 2;
Fattention = 5.07, p = 0.025 for Monkey 1 and Fattention = 33.31,
p= 1.4× 10−8 for Monkey 2). The interaction of the two factors
was significant only in Monkey 2 (Fcontrast × attention = 1.11,
p= 0.33 for Monkey 1 and Fcontrast × attention = 3.37, p= 0.04 for
Monkey 2). Similar results were obtained in a 2-factor ANOVA
performed on the data pooled over the two monkeys.

These results were further confirmed using pairwise t-tests.
In almost all conditions, alpha power significantly reduced with
attention (Figure 2B; Monkey 1: t-test, N = 63, p = 3.9 ×

10−7, 1.1 × 10−13, 3.5 × 10−5 for 25, 50, and 100% contrasts
respectively; p = 8.9 × 10−22 for all the contrast conditions
combined; Monkey 2: t-test, N = 89, p = 0.057, 2.4 × 10−14,
3.1 × 10−13 and 8.6 × 10−20 for 25, 50, 100% contrasts and
the combined condition, respectively). The reduction in gamma
power was significant only for the 50% contrast condition for
Monkey 1 (t-test, N = 63, p = 0.41, 0.013, 0.86, and 0.052 for
25, 50, 100% and combined contrast conditions, respectively),
and for 25 and 100% contrasts for Monkey 2 (t-test, N = 89,
p = 3.4 × 10−8, 0.72, 0.014 and 1.5 × 10−6 for 25, 50, 100%
and combined contrast conditions, respectively). Similarly, the
increase in gamma peak frequency was significant only for 25%
contrast condition for Monkey 1 (t-test, N = 63, p = 0.007, 0.15,
0.13, and 7.8 × 10−4 for 25, 50, 100% and combined contrast
conditions, respectively), and all contrasts for Monkey 2 (t-test,
N = 89, p = 1.7 × 10−9, 6.7 × 10−11, 0.013 and 6.7 × 10−19 for
25, 50, 100% and combined contrast conditions, respectively).

The weak effect of attention on gamma power is not surprising
for two reasons. First, because we recorded from a chronically
implanted microelectrode array, the stimuli were optimized only
for a single site in each session and therefore were non-optimal
for most electrodes, unlike the study by Chalk et al. (2010) where
stimuli were better optimized. Second, since the stimuli were
only presented for 400ms (to minimize attentional fluctuations
within the stimulus duration) and the analysis duration was only
250ms, the frequency resolution was 4Hz, whichmade it difficult
to correctly estimate peak frequency shifts that are typically only
2–3Hz in V1 (Ray andMaunsell, 2010; Bosman et al., 2012). Note
that the second limitation can be partially overcome by using
Matching Pursuit (Chandran et al., 2016), which allowed us to
better characterize the gamma peak frequency shifts in a previous
study (see Supplementary Figure 2 of Ray and Maunsell, 2010);
we have used multi-taper analysis here because the spike-field
coherence (SFC), which was also used to get spike-gamma phase,
was obtained using the same technique. In general, the effects of
attention on V1 were consistent with the findings of Chalk et al.
(2010), and were almost always significant when the results were
pooled across contrasts.

Effect of Contrast and Attention on SFC,
stLFP, and Spike-Gamma Phase Computed
Using Spike and LFP Recorded From the
Same Electrode
Next, we analyzed how attention modulated SFC, stLFP and
spike-gamma phase when spikes and LFP were recorded from
the same electrode (23 and 39 sites for the two monkeys; see
Materials and Methods for details), as was the case in the study
by Chalk et al. (2010). The magnitude of the SFC (Figure 3A)
showed clear peaks in the gamma frequency range, and the peak
gamma frequency shifted with an increase in contrast. Consistent
with Chalk et al. (2010) and the results obtained using power
(Figure 2), we found a reduction in SFC magnitude and an
increase in peak gamma frequency with attention in almost all
conditions. The stLFP plots (Figure 3B) showed the presence
of a prominent rhythm around the time of the spike, especially
for Monkey 2, whose trough was shifted 3–4ms away from
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zero. These results were reflected in the spike-gamma phase
histograms (Figure 3C), obtained by taking the average angle
of the SFC across the three frequency bins around the peak
gamma frequency (as highlighted in Figure 3A). Following the
convention used by Chalk and colleagues, phase angles were
defined such that trough of the gamma rhythm was at 180◦ and
rightward shift of the trough increased the phase angle. Themean
phase angles were ∼210◦ for Monkey 1 and ∼235◦ for Monkey
2 and were not significantly different across attention conditions
(circular mean phases and the associated p-values obtained from
Watson-Williams test are shown in the legend). Even when
pooled across contrasts, the mean phases between attend-in and
attend-out conditions were not significantly different (Watson-
Williams multi-sample test, p = 0.28 and 0.33 for Monkeys 1
and 2). Similarly, the mean phases at different contrasts were
not significantly different from each other in either attend-out
or attend-in conditions (Watson-Williams multi-sample test,
p = 0.89 (attend-out) and p = 0.9 (attend-in) for Monkey 1;
p = 0.66 (attend-out) and p = 0.55 (attend-in) for Monkey 2).
These results are consistent with Chalk et al. (2010), who
obtained a median phase of ∼-0.65π, which translates to ∼243◦.
An offset of ∼30◦-50◦ from the trough (180◦) is also consistent
with the findings of Vinck et al. (2010) and Ray and Maunsell
(2010), although in these two studies the convention was chosen
such that rightward shift of the trough led to a reduction of phase
angle below 180◦ (such that the phase angles were between∼130◦

and∼150◦).
Although our results are consistent with previous studies,

there are two serious flaws in these results, which can be clearly
observed in the stLFP plots (Figure 3B). First, there is a large
spike-related transient (sharp negative dip near time zero), which
biases the estimation of the gamma phase. Specifically, this
transient can be decomposed into a series of sinusoids with their
troughs aligned to the trough of the transient, effectively “pulling”
the phase of any true phase-locked rhythm toward 180◦ (for a
detailed discussion, see Ray, 2015). This can be observed in the
two monkeys: the estimated spike-gamma phase is closer to 180◦

for Monkey 1 compared to Monkey 2 (∼210◦ vs.∼235◦), simply
because the relative magnitude of the transient compared to the
gamma rhythm is larger for Monkey 1. The second flaw is that
the spike-related transient, which should be around the time of
the spike itself, is shifted toward positive values. We address both
these concerns below.

Effect of Using Different Electrodes for
Spikes and LFP on SFC, stLFP, and
Spike-Gamma Phase
One popular method to reduce the spike-related transient is
to take spikes and LFP from different electrodes (Ray and
Maunsell, 2010; Vinck et al., 2010; Ray, 2015). We, therefore,
repeated the analysis on 163 and 170 “different” spike-LFP
pairs for the two monkeys, such that the receptive fields of
both were located within 0.2◦ of stimulus center (see section
Materials and Methods for details). Mean SFC showed similar
results as before, with clear peaks in the gamma frequency
range and an increase in peak gamma frequency with increasing

contrast, and a slight reduction in SFCmagnitude and an increase
in peak frequency with attention in some cases. Spike-related
transient, which was prominent in Figure 3B, was now much
reduced, better revealing the true gamma rhythm in the stLFP
(Figure 4B) whose trough was 3–4ms after the spike in both
the monkeys. Mean spike-gamma phases were now ∼235◦ and
∼245◦ for the two monkeys (Figure 4C; note that the shift in
mean phase between Figures 3, 4 is much larger for Monkey 1
because the spike transient was relatively much larger for that
monkey). Interestingly, for both monkeys and for all contrast
conditions, attention appeared to shift the mean gamma-spike
phase away from 180◦. Although this phase difference did not
reach significance for many contrast levels (circular means and
p-values obtained using Watson-Williams multi-sample test are
shown in the bottom of Figure 4C), the phase differences were
highly significant when combined across contrasts (Watson-
Williams multi-sample test, p = 7 × 10−5 and 5 × 10−3 for
Monkeys 1and 2), albeit the actual magnitude of the difference
was small (∼19◦ and ∼6◦). The mean phases at different
contrasts were not significantly different from each other in either
the attend-out or the attend-in condition [Watson-Williams
multi-sample test, p= 0.36 (attend-out), p = 0.11 (attend-in) for
Monkey 1 and p = 0.7 (attend-out), p = 0.34 (attend-in) for
Monkey 2].

Effect of Removing the Filtering Artifact on
SFC, stLFP, and Spike-Gamma Phase
Relation
The rightward shift of the spike-related transient away from
zero (Figures 3B, 4B) is simply due to the effect of the filtering
operation to obtain the LFP.We, therefore, removed this filtering
effect (see Materials and Methods for details) and reanalyzed
SFC, stLFP and spike-gamma phase for “different” pair condition
(Figure 5; for the “same” electrode condition, this operation
caused the trough of the spike-transient to shift near zero; data
not shown). While this operation did not change any of the
results shown in Figure 4, the mean phases decreased by ∼10◦

at both 25 and 50% and ∼13◦ at 100% contrast (for the same
shift in time, the shift in degrees depends on the frequency
of the rhythm; Figures 4B,C are overlaid as dashed-dot traces
on the corresponding panels in Figure 5 to show the outcome
of filtering-effect removal). Otherwise, like Figure 4, the effect
of attention on spike-gamma phase remained significant when
phases were pooled across contrast conditions (Watson-Williams
multi-sample test, p = 6 × 10−5 for Monkey 1 and 8 × 10−3

for Monkey 2). Similarly, the mean phases at different contrasts
were not significantly different from each other in either the
attend-out or the attend-in condition [Watson-Williams multi-
sample test, p = 0.58 (attend-out), p = 0.07 (attend-in) for
Monkey 1 and p = 0.69 (attend-out), p = 0.73 (attend-in) for
Monkey 2].

DISCUSSION

We investigated whether increasing stimulus contrast or
allocating more attention to a stimulus (which increases its
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effective contrast) shifts the position of the spike relative
to the phase of the gamma rhythm, as posited by the
PC hypothesis. We highlighted two issues that can bias
the phase estimation: the presence of the spike-related
transient and the effect of filtering to obtain the LFP. After
accounting for these issues, we found no effect of stimulus
contrast and a weak but significant effect of attention on
spike-gamma phase. Although these results are consistent
with the PC hypothesis in the context of attention, we
discuss three issues that severely limit the efficacy of gamma
PC in V1.

Issue 1: Magnitude of Gamma PC in V1
For a rhythm occurring at 50Hz (time period of 20ms), the
interval between the peak and the subsequent trough (the interval
over which the inhibition fades away) is 10ms, which is the
maximum range over which PC can operate. It is clear from our
results, as well as prior reports, that even if PC occurs, it only
uses a small sub-interval within this interval. Since spikes occur
away from the trough of the rhythm with increasing stimulus
intensity under PC, the delay of the trough from the spike at
100% contrast sets the dynamic range of this coding scheme.
In our data, spikes occurred at ∼230◦ at 100% contrast, similar
to the value reported by Chalk et al. (2010) (∼240◦) and Vinck
et al. (2010) (∼137◦ for preferred orientation, which translates
to ∼223◦ as per our convention). For a rhythm at ∼50Hz,
a shift of ∼50◦ translates to only ∼3ms out of the available
∼10ms for coding. Further, even when contrast was reduced to
25%, there was no discernable change in the trough position.
The only study that did show any evidence of phase coding
(Vinck et al., 2010) showed a shift of ∼20◦ between the best
and worst orientation, which translates to only ∼1ms shift (in
addition, see other issues with their results below). In our data,
the shift in phase due to attention is even lesser, especially for
Monkey 2 (in addition, see Issue 3 below). It can be argued
that the phase could shift down to 180◦ for very low contrasts
(providing a dynamic range of ∼3ms), but it is well known that
gamma rhythm itself is weak or absent at very low contrasts
(Henrie and Shapley, 2005; Jia et al., 2013) and also peaks at
a lower frequency (see Issue 3). Thus, if we consider the range
of contrasts for which gamma is reliable, the magnitude of PC
(i.e., the range over which the spike varies with respect to the
rhythm) appears to be very small in V1. In this context, our
filtering correction becomes significant, since even though the
group delay is only∼0.8ms, it still decreases the dynamics range
by a further∼20–25%.

Issue 2: Effect of Changing Gamma
Amplitude
As shown in Figure 3, spikes are associated with a transient in the
LFP recorded from the same electrode, which biases the spike-
LFP phase analysis. Because the amplitude of an extracellular
action potential generally decreases rapidly as a microelectrode
is moved away from the neuron (Gold et al., 2006; Schomburg
et al., 2012), the spatial spread of a spike is thought to be very
local (for example, Xing and colleagues used a range between
30 and 100µm for single units; Xing et al., 2009). Therefore,

one way to reduce the spike transient is to take the LFP from a
neighboring electrode that is separated from the spike electrode
by at least a few hundred microns (for a representative case,
see Vinck et al., 2010). There are, however, two issues with this
approach. First, although taking spikes and LFPs from different
electrodes drastically reduces the spike-related transient, it does
not completely eliminate it (Ray, 2015). For example, as shown
in Figures 2A,E of Ray and Maunsell (2011b) where stLFPs
were constructed using spikes and LFP electrodes separated
by different distances for the same two monkeys as used in
this study, the spike-transient could be seen up to electrode
pairs separated by ∼400µm for Monkey 1 and ∼0.4–1.6mm
for Monkey 2, albeit the magnitude of the spike-transient was
much smaller than when stLFP was constructed from the same
electrode (d = 0 condition in those plots). This happens because
neurons near the LFP electrode are often correlated with the
neuron being recorded from the spike electrode, and those
neurons produce a transient in the LFP electrode that are locked
to the spikes on the spike electrode. The second issue is that this
procedure implicitly assumes that gamma oscillations recorded
from two nearby electrodes are similar, but the spatial spread
of LFP itself is a topic of debate. While some studies have
shown that the spatial spread of LFP could be large (up to a
few mm; Kajikawa and Schroeder, 2011), others have shown
that it could be only a few hundred microns (Katzner et al.,
2009; Xing et al., 2009; Dubey and Ray, 2016). A modeling
study showed that the spread could depend on the degree
of correlation in the neural population (Lindén et al., 2011).
Consequently, there might be differences in the gamma recorded
from neighboring microelectrodes. For example, we have shown
that when a Gabor stimulus is presented, two microelectrodes
separated by as little as 0.2◦ can exhibit significantly different
center frequencies (Ray and Maunsell, 2010). Therefore, some
studies have used other techniques to remove the spike-transient,
such as Matching Pursuit (Ray et al., 2008) or a Bayesian
Framework (Zanos et al., 2011). All these methods substantially
reduce the spike-transient, although it is unlikely that they
completely eliminate it.

A small spike-transient is unlikely to influence the estimation
of gamma phase when the rhythm itself is very strong but
may shift the phase toward 180◦ when the rhythm is weak.
For example, even when spikes and LFPs were recorded from
separate electrodes (Figure 4), the mean phases for Monkey 1
were about ∼10◦ less than Monkey 2, who had a much stronger
gamma rhythm than Monkey 1. A visual inspection of the
stLFP (Figure 4B) reveals a small spike-transient like structure
in Monkey 1, which could have contributed to the reduction
in spike-gamma phase as compared to Monkey 2. Importantly,
in cases where the magnitude of gamma itself varies across
conditions, an apparent shift in spike-gamma phase could just
be due to a differential contribution of the spike-transient which
“pulls” the phase toward 180◦. For example, Vinck et al. (2010)
showed that gamma PC was stronger when gamma power and
gamma phase locking was very weak (see their Figure 6). Because
they did not show the stLFPs, it is unclear whether the apparent
phase shift they documented was because of a genuine leftward
shift of the gamma trough or the presence of a spike-transient
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whose contribution was larger when the gamma rhythm itself was
weak.

Issue 3: Effect of Changing Gamma Peak
Frequency
PC hypothesis makes sense when the rhythm has a stable
frequency. However, the center frequency of gamma rhythm
varies systematically with changes in a variety of stimulus
parameters, such as size (Gieselmann and Thiele, 2008; Ray and
Maunsell, 2011a; Jia et al., 2013), contrast (Ray and Maunsell,
2010; Bosman et al., 2012; Jia et al., 2013), and drift rates (Gray
and Viana Di Prisco, 1997; Friedman-Hill et al., 2000). For
example, although we show that the spike-gamma phase angles
do not vary with stimulus contrast, note that these angles are
computed for different gamma frequencies, making it harder to
interpret and compare these phase values. Vinck et al. (2010)
used different orientations for comparison, but gamma center
frequencies can vary even for different orientations, although the
trends are not always consistent (see Figure 2D of Jia et al., 2013
and Figure 1 of Murty et al., 2018). For the same delay between
the spike and gamma trough, the effective phase angle is greater
when the rhythm is faster. For example, in our data, the stLFP
troughs appear to coincide between the attend-in and attend-
out cases in almost all conditions (Figure 5B). However, since
attention slightly increases the gamma frequency, the effective
phase lag in degrees could be larger, which could explain the small
but consistent increase in phase angles.

We note, however, that we computed phase over a 250ms
window (similar results were obtained for 200ms window),
which cover more than 10 cycles of the rhythm. During natural
vision, we make 3–4 saccades every second (even during fixation,
we make several micro-saccades per second), and such eye
movements can change or reset the phase of LFP oscillations
(Bosman et al., 2009; Ito et al., 2011). It is possible that PC
occurs within a single or a few cycles of gamma rhythm, for
which gamma need not even have stable frequency over time. It
is also possible that PC occurs differently during natural viewing
as opposed to a paradigm where animals are trained to fixate for
long durations. For example, Ito and colleagues showed that in
freely viewing monkeys, fixation-related spike synchronization
occurred at an early phase of the rate response after fixation-
onset, and the first spikes after the onset of a fixation were
locked to a specific epoch of the LFP modulation (Ito et al.,
2011). Other studies have also shown that gamma rhythm tends
to appear in short bursts over a few cycles (Xing et al., 2012;
Lundqvist et al., 2016; Chandran Ks et al., 2017), and therefore
PC could theoretically occur over shorter duration than what was
considered here. Comparable recordings from monkeys during
natural viewing conditions as well as advanced signal processing
techniques are required to test this hypothesis.

Weak Effect of Attention in V1
The effect of attention was weaker in our data than the
findings of Chalk et al. (2010), possibly due to the use

of sub-optimal stimuli for many sites, fewer sites, and a
shorter analysis window. However, it is unlikely that our
results would change drastically if these limitations could be
overcome. First, the effect of attention on gamma in V1 is
in general weak (Chalk et al., 2010; Buffalo et al., 2011).
Second, although the reduction in gamma power and SFC with
attention were small, we obtained a pronounced reduction in
alpha power in all cases. Similarly, the increase in gamma
peak frequency (1–3Hz in our data) was comparable to
a previous study by Bosman and colleagues, who reported
an increase in gamma peak frequency of 2–3Hz (Bosman
et al., 2012). Third, although the analysis window was
shorter than previous studies, which yielded a poor frequency
resolution, the stLFP plots were computed in the time-
domain itself and therefore did not suffer from the poor
frequency resolution, but even these did not show a substantial
rightward shift as is expected from the PC hypothesis. Fourth,
while we had fewer recording sites that may have yielded
less statistical power for power analysis (Figure 2), we had
a substantial number of pairs (163 and 170 for the two
monkeys), so the main result regarding the PC hypothesis
(Figure 5) did not suffer from the lack of statistical power.
Finally, although the effect of attention was weak, contrast
had a strong effect on gamma power and frequency, but
the PC hypothesis for contrast did not yield a significant
result.

In summary, although we did find a weak effect of
attention on spike-gamma phase relationship, based on the
variety of issues that we have discussed, gamma PC is at best
expected to play a minor role in the coding the stimulus
contrast in V1.
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Time estimation is an important component of the ability to organize and plan sequences
of actions as well as cognitive functions, both of which are known to be altered in
dyslexia. While attention deficits are accompanied by short Time Productions (TPs),
expert meditators have been reported to produce longer durations, and this seems to
be related to their increased attentional resources. In the current study, we examined
the effects of a month of Quadrato Motor Training (QMT), which is a structured
sensorimotor training program that involves sequencing of motor responses based on
verbal commands, on TP using a pre-post design. QMT has previously been found to
enhance attention and EEG oscillatory activity, especially within the alpha range. For the
current study, 29 adult Hebrew readers were recruited, of whom 10 dyslexic participants
performed the QMT. The normal readers were randomly assigned to QMT (n = 9) or
Verbal Training (VT, identical cognitive training with no overt motor component, and only
verbal response, n = 10). Our results demonstrate that in contrast to the controls, longer
TP in females was found following 1 month of intensive QMT in the dyslexic group, while
the opposite trend occurred in control females. We suggest that this longer TP in the
female dyslexics is related to their enhanced attention resulting from QMT. The current
findings suggest that the combination of motor and mindful training, embedded in QMT,
has a differential effect depending on gender and whether one is dyslexic or not. These
results have implications for educational and contemplative neuroscience, emphasizing
the connection between specifically-structured motor training, time estimation and
attention.

Keywords: time production, quadrato motor training, dyslexia, gender difference, time and motion studies

INTRODUCTION

Timing deficits in dyslexia include those concerned with time estimation (Nicolson et al.,
1995; Ramus et al., 2003; Hölzel et al., 2011), rhythm tapping (Wolff et al., 1990; Wolff,
2002), detecting complex timing patterns (Kujala et al., 2007), rapid temporal processing
(Tallal et al., 1993), auditory temporal sensitivity (Witton et al., 1998) and visual motion detection
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(Talcott et al., 2000). Consequently, dyslexia-related timing
deficits have at different times been hypothesized as underlying
dyslectics’ visual and auditory perception problems, motor
coordination problems and fluency and automatization
problems (Nicolson et al., 2001), all of which have been
proposed as adversely affecting the development of language and
literacy skills (Overy et al., 2003). The full extent of the timing
deficits is yet to be established, but suggests the need for further
investigation.

A critical factor here seems to be the cerebellum, which is
implicated in both timing functions (Ivry and Hazeltine, 1992;
Ivry, 2000, p. 187; Ivry et al., 2002; Rubia, 2006) and in dyslexia
(Reynolds et al., 2003; Kujala et al., 2007; Reynolds and Nicolson,
2007; Ben-Soussan et al., 2014a). Thus, cerebellar deficits are
thought to affect articulation and working memory, due to
deficits in timing which interfere with automatization of learning
(Thomas and Karmiloff-Smith, 2002; Overy et al., 2003; Ram-
Tsur et al., 2013).

In fact, cerebellar oscillatory function and its role in motor
acquisition and timing have long been acknowledged (Andres
et al., 1999; Swinnen, 2002; De Zeeuw et al., 2011). Given
that impaired motor skills are often observed in dyslexics,
some researchers have attributed dyslexics’ cognitive and motor
deficiencies to abnormal development and functioning of the
cerebellum (Nicolson et al., 1995, 2001). These findings have
led to the claim that the role of the cerebellum is not limited
to regulating the timing, rate, force, rhythm and accuracy of
movements, but also to the speed, capacity, consistency and
appropriateness of cognitive processes (Schmahmann, 2004;
Hölzel et al., 2011; Buckner, 2013).

Ben-Soussan et al. (2015) have recently presented a general
model tying cerebellar function to cognitive improvement,
by means of a particular form of motor training, which
might be viewed as meditation-in-action, namely Quadrato
Motor Training (QMT). QMT has been found to increase
creativity, reflectivity and spatial cognition (Ben-Soussan
et al., 2013, 2014b, 2015), as well as to increase neuronal
synchronization and connectivity, especially within the alpha
(8–12 Hz) range (Lasaponara et al., 2017). In addition, a
month of daily QMT was found to improve reading and
increase cerebellar alpha oscillations in dyslexic adults (Ben-
Soussan et al., 2014a). Recently, QMT was further found
to increase fractional anisotropy (FA) in tracts related
to sensorimotor and cognitive functions and mindfulness,
including the corticospinal tracts, anterior thalamic radiations
and uncinate fasciculi, as well as in the left inferior fronto-
occipital, superior and inferior longitudinal fasciculi
(Piervincenzi et al., 2017), reflecting better white matter
integrity as a result of greater intravoxel coherence of fiber
orientation, axon density and diameter and/or myelination
(Beaulieu et al., 1996; Sen and Basser, 2005; Caminiti et al.,
2013).

Let us contrast a hypothesized QMT-based improvement in
the functioning of dyslexic adults to that found for another
movement-based form of training, which has also reported
an improvement in reading fluency for dyslectic participants.
Reynolds et al. (2003) study was conducted on dyslectic pupils,

reporting improvements in balance, dexterity and reading. As
they subsequently reported in a follow-up study (Reynolds
and Nicolson, 2007), both dyslexic and non-dyslexic children
benefited from the training, while alternative hypotheses raised
by critics of the original study (e.g., based on potential artifacts,
such as a Hawthorne effect) could be ruled out. In these studies,
training was comprised of a home-based exercise program. In the
study we report below, our QMT is also a home-based motor-
exercise program. We do, however, also employ a home-based
verbal-exercise program, as a suitable control.

Our present question concerns the hypothesized effect of
QMT on time perception (specifically, time production, TP) in
dyslectic adults. In a recent study (Ben-Soussan et al., 2017),
normal reading participants reported a number of changes in
their time perception during QMT, including: ‘‘an elongation of
time, after a while, I had time to move from point to point, I
didn’t have to be in a hurry. I was faster and the exercise was
slower’’; ‘‘In the last day, when I finish, the precision—I can do
manymore things in a time, which I didn’t think I can do.’’ While
QMT has thus been found to affect the subjective experience of
time, the effects of QMT on TP have yet to be examined. Given
that QMT is viewed as meditation-in-action, one can refer to
the literature on meditation and time perception to develop a
working hypothesis.

Meditation has been found to lead to a relative overestimation
of target durations in passing (Glicksohn, 2001; Berkovich-
Ohana et al., 2012; Kramer et al., 2013). Longer produced
durations may be explained by a decrease in arousal (due to
the decrease in the pacemaker speed of the internal clock),
and an increase in size of the subjective time units (Glicksohn,
2001). QMT, viewed as meditation-in-action, should, like other
forms ofmeditation, therefore lead to longer produced durations.
We further consider gender, given that males usually make
relatively longer TPs (Block et al., 2000, p. 1341; Zakay and Block,
1997, p. 13; Glicksohn and Hadad, 2012), and that male and
female dyslectics may differ in the neurocognitive underpinnings
of their dyslexia (Lambe, 1999). Hence, we expect to see a
lengthening of TP (post—pre QMT), especially so for males. We
further expect to see such effects for dyslectic individuals. If there
is a gender-dependent change in TP in dyslectics, this would
lend further support for searching for gender-dependent patterns
of neural activity during this specific task of TP (which usually
involves chronometric counting; Glicksohn and Hadad, 2012), as
well as among other tasks involving auditory processing (Lambe,
1999, p. 532).

Given that our two reviewers expressed concern that
because our participants were probably engaged in chronometric
counting (as we, ourselves, have suggested), we might have
compromised our study of TP, we shall take this opportunity
to engage in debate about this issue. Some researchers argue
that chronometric counting should be discouraged (e.g., Mimura
et al., 2000; Kladopoulos et al., 2004); others argue that this
should be encouraged (e.g., Miró et al., 2003; Myers and Tilley,
2003). Some researchers specifically request their participants
to engage in counting so that the same strategy is employed
by all participants (e.g., Perbal et al., 2003; Coelho et al.,
2004). Counting is a natural strategy to employ in a task
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of TP; and, as Fetterman and Killeen (1990, p. 766) argue,
‘‘The ubiquity of the practice calls into question experimental
psychologists’ attempts to prevent or interfere with subjects’
counting strategies as a means of eliciting ‘uncontaminated’
temporal judgments. . .’’ Counting is undeniably a timing task
(Brown et al., 2013); both timing without counting, and
timing with counting, seem to be correlated to a fair degree
(Bartholomew et al., 2015). Furthermore, techniques used to
prevent countingmay ‘‘...be distracting and introduce extraneous
variables that can obscure effects specifically related to timing
mechanisms’’ (Gaudreault and Fortin, 2013, p. 598). Consider,
for example, the recent study reported by Schreuder et al.
(2014). They employed three target durations of 1.33, 1.58
and 2.17 min, each to be produced in their TP task. As
they write (p. 3), ‘‘we wanted to use intervals that exceeded
1 min, as these seem harder to produce because participants
need to concentrate for a longer period of time.’’ To prevent
counting they required their participants to remember, in
parallel, an 8-character password (e.g., Z2Hx89bS). There are
two problems, to our mind, with this procedure. First, these
target durations are beyond an outer bound of 100 s for what
would be considered to be time perception; as Wackermann
(2007, p. 20) suggests, beyond this upper bound ‘‘time is
merely cognitively (re)constructed, not actually experienced or
‘‘perceived,’’ a fact that is frequently ignored by contemporary
time perception research.’’ Second, one does not usually try
to retain in memory an 8-character password. Hence, what
exactly is being investigated in this particular task of TP?
In the present study, our participants were most probably
employing chronometric counting as a natural strategy, hence
were involved in timing per se, and not in adopting what
might well be for them a suboptimal and unfamilar strategy
(not counting). Given our interest in the performance of
our dyslectic participants, in particular, this seems to be
ecologically wise.

MATERIALS AND METHODS

Participants and Design
For the current study, 29 adult Hebrew readers (19 women (F)
and 10 men (M), mean age ± SD: 28 ± 5) were recruited, of
whom 10 were dyslexic. The normal readers were randomly
assigned to QMT (n = 9; 7 F + 2 M) or Verbal Training
(VT, n = 10; 7 F + 3 M); the dyslexics were assigned to
QMT (5 F + 5 M). The study was approved by the ethics
committee of Bar-Ilan University. Upon entering the lab, all
participants gave written informed consent. The study included
three phases: pre-training assessment (Day 1), 28 days of
daily training, and post-training assessment of TP. Pre and
Post-training assessment took place at the lab. On the other
training days, the participants performed the task at home.
Compliance was controlled using a diary and daily recording of
the training using a webcam. In addition, a semi-structured oral
interview regarding QMT-induced experience was conducted,
which included three open-ended questions regarding the
participant’s physical, emotional and cognitive experiences
during and following QMT (Ben-Soussan et al., 2017).

The Training Groups
Quadrato Motor Training (QMT)
The QMT group practiced the QMT in full. The QMT requires
standing at one corner of a 0.5 m × 0.5 m square and making
movements to different corners of the square in response to
verbal instructions given by an audio tape recording indicating
the next corner to which the participant should move. There
are three optional directions of movement, and the movement is
always in one step. We used a specific sequence of movements
provided by Patrizio Paoletti, founder of the QMT program,
translated from Italian to Hebrew by the first author. Each
movement can be forward, backward, left, right, or diagonal.
The instructions direct participants to keep the eyes focused
straight ahead, hands loose at the side of the body. They are
also told to immediately continue with the next instruction
and not to stop due to mistakes. At each corner, there are
three possible directions to move (for example, from corner
1 the participant can move to corner 2, to corner 3 or to
corner 4). The training thus consists of 12 possible movements
(3 directions × 4 corners): 2 forward, 2 backward, 2 left, 2 right
and 4 diagonals. The participant is required to move from one
corner to another according to the number on the recording. For
example, if the sequence required is 1, 2, 1, 2, 1, 2, 3, 2, 4, 3, 1. . ..
this means moving to the first corner, then to the second, then
back to the first, and so on.

The practice comprised 69 commands (23 sequences of
movements that last ∼88 s; with a ∼25 s interval between
each set of 23 commands for calibration). Thus, in total the
whole QMT session lasted ∼6 min. Each movement has two
instructions: the starting current position and the target position
(‘‘one four’’ means move from corner 1 to corner 4). Between
noting the starting current position and the target position
there was a randomized Inter-Stimulus Interval (ISI) of between
1,100 ms and 1,300 ms. ISI between trials (namely, between the
previous target position and the next trial) was a randomized ISI
of between 2,300 ms and 2,650 ms; see Figure 1.

In the current study we aimed at controlling limb velocity, by
using a movement sequence comprising a total of 69 instruction
steps, paced at a rate of 0.5 Hz (similar to a slow walking rate),
which was the same for all participants. We also controlled
for the decision regarding the responding limb by instructing

FIGURE 1 | The Quadrato Motor Training (QMT). (A) A graphical illustration of
the QMT. (B) A participant during the QMT while waiting for the next
instruction (left) and following the instruction (right). Written consent was
obtained from the individual for the publication of this image.
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participants to begin all movements with the leg closest to the
center of the square.

Verbal Training (VT)
The VT group stood 1 m in front of the square, but did not
move on the corners of it. Instead, their instructions were
to respond to the taped commands verbally by stating what
direction of movement would be required in order to reach
the corner specified by the command. For a movement from
corner 1 to corner 2, they were required to say ‘‘straight;’’ for
a movement from corner 1 to corner 3, they were required
to say ‘‘diagonal.’’ The following is a list of all possible
combinations and the appropriate response: 1–2, 4-3, ‘‘straight;’’
2-1, 3–4, ‘‘back;’’ 1–3, 4-2, 3-1, 2–4, ‘‘diagonal;’’ 1–4, 2–3, ‘‘right;’’
4-1, 3-2, ‘‘left.’’

Time Production (TP) Task
Four target durations of 4, 8, 16 and 32 s served for the TP
task. The participant was required to remain with eyes closed
while producing each of these target durations by pressing
a finger button (Glicksohn, 1996) for the required period
of time. Each target interval was produced twice, the target
durations being presented in random order to the participant.
Produced (P) and target (T) durations (in seconds) were
log-transformed (to base 2), with required durations rendering
thereby a linear scale ranging between 2 and 5, with a
midpoint value of 3.5; produced duration was then regressed
on required duration. We look at three dependent measures:
(1) mean log(P); (2) the slope of log(P) regressed on log(T); and
(3) the intercept of that regression line (Glicksohn and Hadad,
2012).

RESULTS

Figures 2–4 presents individual log-log plots of produced
duration as a function of target duration, blocked according
to Group and Gender. For the controls assigned to VT (CV),
one may note the essential linearity of the data in the log-log
plot. We have fitted the linear regression lines for one CV male,
and for two CV females, to exemplify this. The diagonal in
each plot indicates what would be veridical TP (i.e., produced
time = target duration). Note that for two of the CV male
participants, produced duration post-training is longer than that
of pre-training, and for the third male, the opposite is the case.
Given this small group size, these opposite trends will easily
cancel out, leaving no clear post-pre difference in TP, as we will
subsequently show. For the CV females, one notes an increase in
produced duration post-training for two participants, a decrease
in produced duration post-training for three participants, and no
noticeable change post vs. pre for the remaining two participants
in this group. Again, this will result in a canceling out of effects,
as with the male participants.

Turning to the participants assigned to QMT, we note that
for the controls (CQ), one of the two males produces longer
durations post-training (as can be seen on comparing the
regression lines), while four of the females produce shorter
durations post-training, and for the remaining three there is no

noticeable change post vs. pre. This is a clear effect for Gender, for
these controls, as we will subsequently show. In contrast, when
looking at the dyslectic participants, one notes that three of the
fivemales produce somewhat longer durations post-training, and
three of the five females producemarkedly longer durations post-
training. We turn now to a formal analysis of these trends, using
analysis of variance (ANOVA).

For each of our three dependent measures (mean, slope,
intercept), we ran a Group (dyslectics assigned to QMT, controls
assigned to QMT, controls assigned to VT) × Gender (male,
female) × Time (pre, post) ANOVA, adopting the Greenhouse-
Geisser p-value for each effect. Figure 5 presents mean (±SE)
values for mean log(P). The three-way interaction for this
measure was significant (F(2,23) = 3.85, MSE = 0.068, p < 0.05).
There was no main effect for Gender (F(1,23) = 1.71, ns), Group
(F(2,23) < 1) or Time (F(1,23) = 2.95, p = 0.10), and no two-way
interactions.

We found a significant lengthening of produced time for the
female dyslectics following QMT (t(4) = −3.80, p < 0.05; n = 5),
in contrast there was a decrease in produced time for the control
females following QMT (t(6) = 2.56, p < 0.05; n = 7). No
such difference was found in the VT group, either for females
(t(6) = 0.28, ns; n = 7), or for males (t(2) = 0.05, ns; n = 3).

We ran a comparable ANOVA, this time with log(P)
comprising a profile of four mean values for each of the
four target durations (Target Duration). In this analysis,
we uncovered a Target Duration × Gender interaction
(F(3,63) = 3.86, MSE = 0.036, p < 0.05), as well as the
expected main effect for Target Duration (F(3,63) = 1,481.26,
MSE = 0.036, p < 0.001). In short, increasing target duration
results in increasing produced duration, for bothmale and female
participants, as one would expect; furthermore, for the longer
target durations, male participants produce longer durations
than do female participants, while for the specific target duration
of 2 s, females produce longer target durations than males. Given
that these effects are not dependent on Group, our focus onmean
log(P) and on the three-wayGroup×Gender×Time interaction
for this is supported.

Turning to the other two measures, we found no three-way
interaction for the slope (F(2,23) < 1) nor for the intercept
(F(2,23) < 1). Mean slope values range between 0.92 and 1.06,
hence do not deviate from an expected slope of 1.00 (Glicksohn
and Hadad, 2012), while mean intercept values range between
−0.11 and 0.59. For the slope, there was no main effect for
Gender (F(1,23) = 3.17, p = 0.09) or Group (F(2,23) < 1), and no
two-way interaction. For the intercept, there was also no main
effect for Gender (F(1,23) < 1), but there was a main effect for
Group (F(2,23) = 3.58, MSE = 0.185, p < 0.05), whereby the
controls assigned to VT had a higher mean intercept (0.461) than
the dyslectics assigned to QMT (0.321) and the controls assigned
to QMT (0.016).

There were no baseline differences in TP between dyslexic and
normal readers for any of the three measures. Specifically, for
mean log(P), slope and intercept, there was no main effect for
Group (F(2,23) = 1.56, 0.11, 1.73, respectively, all ns), for Gender
(F(1,23) = 0.55, 2.18, 0.53, respectively, all ns) nor their interaction
(F(2,23) < 1 for each).
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FIGURE 2 | Individual log-log plots of produced duration of the dyslectics assigned to QMT group (D), as a function of target duration, blocked according to Gender.

First-Person Reports
The semi-structured interview revealed that eight participants
from the QMT group reported having increased attention and
relaxation. More specifically, participant 03, a dyslexic male,
reported: ‘‘I had to focus that the inner leg will be first but
with practice it became less hard. In the beginning, I really had
to concentrate for that. Maybe more balance and equilibrium.’’
Participant 34, a dyslexic male, reported having ‘‘more sharpness.
Things are retrieved faster. More focused. Yes, it contributes to
focus, you have focus.’’ Participant 33, a dyslexic female, reported
havingmore ‘‘Attention, and listeningmore what people say. Not

just hearing the voice but the listening.’’ In addition, two dyslexic
and two normal readers reported a sense of relaxation and
calmness following the training. Participant 1, a dyslexic female,
reported: ‘‘I am calmer. I don’t know if it is because of it, but
in some place my stress decreased from all things and their
meaning, let’s say if I don’t find an apartment, I will go abroad,
it’s not critical. Acceptance.’’ Participant 31, a dyslexic male,
reported ‘‘relaxation as a result of the training. As a result of
the relaxation, looking at the decisions in a more reasonable or
concentrated way. The practice felt a bit meditative’’. Participants
08 and 06, normal female readers, reported ‘‘feeling calmer;’’ and
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FIGURE 3 | Individual log-log plots of produced duration of the controls assigned to QMT (CQ) as a function of target duration, blocked according to Gender.

‘‘feelings of relaxation and calmness. It has a bit of an effect
like meditation. It enters into a state of mind that I should
do the experiment. And also when my thoughts wandered,
you need to be focused and to the thing to keep me in the
frame,’’ respectively.

The only participant who reported being more aroused
following the training was actually from the verbal control group:
‘‘I felt two things. One, is that when I am tired, I am more
concentrated during the training and there were times I really
awoke after.’’

DISCUSSION

Time estimation is an important component of the ability to
organize and plan sequences of actions as well as cognitive
functions. While attention deficits are accompanied by short
TPs, expert meditators have been reported to produce longer
durations, related to their increased attentional resources. In

the current study, we examined the effects of a month of
QMT, a structured sensorimotor training program that involves
sequencing of motor responses based on verbal commands, on
TP using a pre-post design. Our results demonstrate that in
contrast to the controls, longer TP was found following 1 month
of intensive QMT in the female dyslexic group, while shorter
TP was found for the control females following QMT. We
suggest that this may be related to three mediating inter-related
mechanisms, including enhanced attention resulting from QMT,
better working memory and better cerebellar functioning.
The semi-structured interview confirmed this hypothesis and
revealed that participants from the QMT group reported having
increased attention and relaxation. This is in line with our
previous report (Ben-Soussan et al., 2017).

The involvement of the cerebellum in cognition has been
overshadowed by years of focus on its motor role. Yet, the
cerebellum, possibly but not exclusively through its connections
with frontal and prefrontal areas, contributes to cognition,
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FIGURE 4 | Individual log-log plots of produced duration of the controls assigned to Verbal Training (VT) control (CV) as a function of target duration, blocked
according to Gender.

learning and language (Beaton and Mariën, 2010; Pesce and
Ben-Soussan, 2016), leading also to the notion of the linguistic
cerebellum (Jansen et al., 2005; Stoodley and Schmahmann,
2009). More specifically, it has been suggested that cerebellar
dysfunction may be involved in dyslexia due to the cerebellum’s
role as an oscillator, producing synchronized activity within
neuronal networks, including sensorimotor networks critical for
reading, timing and attention (Buhusi and Meck, 2005; Ben-
Soussan et al., 2014a).

Within an internal-clock framework, a change in attentional
resources can result in longer perceived duration (Kramer et al.,
2013). Such a practice-enhanced attention results in better
working memory (Davis and Hayes, 2011), which is a main
deficit in dyslexics (Jeffries and Everatt, 2004; Smith-Spark and
Fisk, 2007). In turn, working memory is closely related to the
cerebellum (Justus and Ivry, 2001; Ravizza et al., 2006). In
fact, it has been suggested that the cerebellar impairments in
dyslexia, which are linked to reduced articulation speed, may
lead to impaired working memory, and in turn to the language
impairments (Nicolson et al., 2001).

In addition to the centrality of phonological mechanisms in
dyslexia, recent evidence also supports an important role for
attentional mechanisms (Shaywitz and Shaywitz, 2008; Shaywitz
et al., 2017). The lengthening of TP following QMT in the
female dyslexic group could be related to increased attention and

activation of the cerebellum. In fact, QMT was previously found
to increasemindfulness and attentional effort (Ben-Soussan et al.,
2017), as well as to improve white matter integrity of neuronal
pathways related to attention and learning (Piervincenzi et al.,
2017) in normal readers. Furthermore, given that participants
predominantly employ chronometric counting when engaging
with our TP task (Glicksohn and Hadad, 2012), the (right)
cerebellum was surely activated (Tracy et al., 2000; O’Leary et al.,
2003; Hinton et al., 2004). QMT, similar to other mindfulness
training, involves deliberately staying in the present moment
(Kramer et al., 2013; Ben-Soussan et al., 2014b). We note that
mindfulness meditation trains attentional skills and produces
increased attentional resources (Lutz et al., 2008).

The shortening of TP for the control females following QMT
could be related to their induced arousal as a consequence of
the motor training, speeding up the internal clock rate, hence
leading to a shortening of TP (Ozel et al., 2004). In fact, a similar
trend has been previously observed on using MEG, wherein both
dyslectic and control groups improved reading performance;
cerebellar alpha oscillations increased in the dyslexic group, while
the opposite trend occurred in the normal reader group (Ben-
Soussan et al., 2014a).

A common element of many theories related to the cause of
dyslexia is the conviction that timing skills, and particularly rapid
timing skills and motor timing skills, are a fundamental problem
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FIGURE 5 | Mean (±SE) values for mean log(P) as a function of Group (dyslectics assigned to QMT, D; controls assigned to QMT, CQ and controls assigned to VT,
CV), Gender (male, female) and Time (pre, post).

area. In fact, it has been previously suggested that a deficit in
rapid temporal processing can cause specific auditory perception
problems, leading to specific phonological perception problems
(Tallal et al., 1993). Yet, in the current study we did not find
baseline differences in TP between dyslexic and normal readers
in any of the three measures.

We expected to see a lengthening of TP (post—pre QMT),
especially so for males. In contrast to our hypothesis, we observed
a lengthening of TP, for the female participants. A trend of a
lengthening of TP occurred for both QMT groups, in contrast
to the VT control group, yet this lengthening of TP was not
statistically significant for the males, probably due to the small
number of these participants. We have detected an interaction
involving gender, whereby the hypothesized lengthening of TP
for both QMT groups is found only for males, while for females
this lengthening is found only for the dyslectics, in contrast
to a shortening of TP observed for the controls, and this is
intriguing. Ingalhalikar et al. (2014) have recently shown that ‘‘In
all supratentorial regions, males had greater within-hemispheric
connectivity, as well as enhanced modularity and transitivity,
whereas between-hemispheric connectivity and cross-module
participation predominated in females. However, this effect was
reversed in the cerebellar connections.’’ Can our results be related

to these gender differences in cerebellar connectivity? There is
much to explore here in future studies.

The current study is a preliminary attempt to examine the
connection between sensorimotor training, TP and dyslexia. The
main limitations of the current study are the small sample size
and the use of only one training paradigm. In the future, a study
on a larger sample that includes dyslexic no-training and verbal
control groups may extend the current results.

CONCLUSION/SIGNIFICANCE

The current findings suggest that the combination of motor
and mindful training, embedded in QMT, has a differential
effect depending on one’s gender and whether one is dyslectic
or not. This may have valuable implications for educational
and contemplative neuroscience, in emphasizing the connection
between specifically-structured motor training, time estimation
and attention.
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The dynamics of the environment where we live in and the interaction with it, predicting

events, provided strong evolutionary pressures for the brain functioning to process

temporal information and generate timed responses. As a result, the human brain is

able to process temporal information and generate temporal patterns. Despite the clear

importance of temporal processing to cognition, learning, communication and sensory,

motor and emotional processing, the basal mechanisms of how animals differentiate

simple intervals or provide timed responses are still under debate. The lesson we learned

from the last decade of research in neuroscience is that functional and structural brain

connectivity matter. Specifically, it has been accepted that the organization of the brain

in interacting segregated networks enables its function. In this paper we delineate the

route to a promising approach for investigating timing mechanisms. We illustrate how

novel insight into timing mechanisms can come by investigating brain functioning as a

multi-layer dynamical network whose clustered dynamics is bound to report the presence

of metastable states. We anticipate that metastable dynamics underlie the real-time

coordination necessary for the brain’s dynamic functioning associated to time perception.

This new point of view will help further clarifying mechanisms of neuropsychiatric

disorders.

Keywords: brain networks, multiscale modeling, metastable state brain dynamics, timing and time perception,

functional MRI, electrophysiology

THE VIEW

Timing is an umbrella term that encompasses a variety of processes based on the prediction and
estimation of temporal intervals across a wide range of scales, from hundreds of milliseconds to
seconds. Theoretical models, mainly based on the existence of an internal clock (Gibbon, 1977),
have been challenged by compelling behavioral findings that enhance suspects about its biological
plausibility (Karmarkar and Buonomano, 2007). Alternate models have been proposed, describing
timing as an ensemble of neural processes emerging from the activity of neural circuits inherently
capable of temporal processing as a result of the complexity of cortical networks coupled with
the presence of time-dependent neuronal properties (Buonomano and Maass, 2009). In this view,
neural systems can benefit from the temporal evolution of their states, caused by the variation in
neural and synaptic properties. The overall effect results in an adaptation of cerebral networks that
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could be tuned to discriminate temporal intervals (Bueno et al.,
2017). State-dependent models can be extended to be consistent
with the majority of timing models (Hass and Durstewitz, 2016),
with the different models indicating specific constraints on what
would collapse the state space. Although a route is traced toward
a comprehensive description of timing, it is still unclear whether
brain networks states are part of a coding scheme used to track
time or a by-product of other processes that could generate a
time-decodable signal. A possible theoretical framework could
be the multi-scale description of brain networks both in space
and time. On one hand it would be able to capture the local-
to-global properties of neural processes that give rise to timing,
on the other hand it would allow to grasp the integration
processes among brain regions responsible for timing by means
of metastability of network states (Friston, 1997; Fingelkurts
and Fingelkurts, 2004, 2017; Deco and Kringelbach, 2016).
Accordingly, our perspective view about the best strategy able
to provide a coherent and complete description of timing can be
divided in three steps: (1) the choice of tasks involving different
aspects of timing (Coull and Nobre, 1998, 2008; Coull, 2004;
Coull et al., 2013; Ciullo et al., 2018a) to be administered on
a steady-state fashion (Gonzalez-Castillo and Bandettini, 2018;
Tommasin et al., 2018) in order to saturate the activity of the
areas interacting during the specific task; (2) the brain activity
should be monitored by means of different techniques able to
highlight different temporal and spatial scales (e.g., fMRI, hd-
EEG, MEG). Specifically the different scales can be cast in a
common framework according to the multilayer representation
(De Domenico et al., 2013) (different spatial scales for the same
time scale or different temporal scales for the same spatial one);
(3) the temporal dynamics from each task will be finally analyzed
and fitted to theoretical models of neuronal synchronization
(Deco et al., 2017; Cavanna et al., 2018) in order to cluster the
dynamics of brain’s activity during time processing.

In the following paragraphs the core of each step is clarified
and a review of the state-of-the-art is proposed.

TIMING IN HUMAN AND NON—HUMAN

ANIMALS

The perception of what happens around us and the capacity
to respond to it are crucially based on our ability of keeping
track of time. Since both perception and action change over
time, timing is necessary to estimate environmental dynamics,
evaluate interplay between events and predict the consequences
of our actions. Throughout normal development we acquire a
sense of duration and rhythm that is basic to many behavioral
aspects (Allman et al., 2012). Even if there is no specific system
that senses time, human and non-human animals can estimate
temporal intervals across a wide range of scales (Mauk and
Buonomano, 2004; Buhusi and Meck, 2005). Intervals ranging
from hundreds of milliseconds to seconds are typically associated
with sensory and motor processing, learning, cognition and
emotional processing (Figure 1), while larger intervals include
processes that range from decision making to sleep-wake cycles
(Buhusi and Meck, 2005). There is experimental evidence that

timing is an intrinsic computational ability of every circuit in
the cortex and that it can be performed locally. This notion
implies that during perception tasks cortical networks can tell
time as a result of time-dependent changes in synaptic properties,
which influence any population response to sensory events in a
history dependent fashion (Karmarkar and Buonomano, 2007).
Furthermore, with the above mentioned sensory timing, motor
timing is supposed to depend on the activity of highly connected
cortical recurrent networks able to self-sustain activity (Mauk
and Buonomano, 2004).

Psychophysical experiments suggest that sensory timing
can be local (Johnston et al., 2006; Burr et al., 2007; van
Wassenhove and Nagarajan, 2007), even if other results suggest
that temporal performance variability in different contexts may
be better described by a hybrid model (Merchant et al., 2008).
Neuroimaging research suggests that a partially distributed
timing mechanism sustains contextual flexibility. It is supposed
to be integrated by core structures such as the cortico-thalamic-
basal ganglia (CTBG) circuit and regions that are selectively
engaged by different behavioral contexts (Buhusi and Meck,
2005; Coull et al., 2011). Cell activity changes, associated
with temporal processing in behaving monkeys, have been
described in areas composing different circuits responsible for
sensorimotor processing via the skeletomotor or oculomotor
effector systems (Perrett, 1998; Lebedev et al., 2007; Tanaka,
2007; Genovesio et al., 2009; Mita et al., 2009). Most of
these studies reported climbing activity during different timing
conditions: discrimination of time, time estimation, single
interval reproduction and delay related response. Specifically,
Merchant et al. (2013) showed a variable discharge rate of
cells of Medial Premotor Cortex (MPC) as a function of
interval durations with a synchronization-continuation tapping
task. This suggested the MPC might contain a representation
of interval duration, in the hundred of milliseconds, where
diverse populations of interval-tuned cells are typically activated
according to the duration of the produced interval. Ramping
activity of MPC cells encodes either the elapsed or the
remaining time for a temporalized movement such that
the dynamic organization of motor intentions and action is
sustained by ramping cells. Accordingly, interval tuning on the
overall discharge rate affects more cognitive facets of temporal
processing.

By moving to larger temporal and spatial scales, functional
magnetic resonance imaging (fMRI) studies in humans showed
that interval timing is regulated by distributed brain networks
whose involvement is flexibly adapted according to task
demands: timing emerges from the interaction among diverse
brain regions rather than from processing in a specific one
(Livesey et al., 2007; Coull et al., 2008; Harrington et al.,
2010; Fingelkurts, 2014). For example pattern of timing-
related activation in bilateral caudate and putamen was found
to be distinguished from that found for most other brain
regions in time-perception tasks. Only the anterior insula was
found to exhibit the same activation pattern. This region
crucially integrates processing from disparate domains (e.g.,
interoception, emotion, and cognition), including time (Kosillo
and Smith, 2010; Wittmann et al., 2010), via its dense pattern
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FIGURE 1 | Timing taxonomy. (A) Human and non-human animals have developed multiple systems able to perform different tasks that are based on timing

processing at different scales, that range over more than 10 orders of magnitude. (B) Explicit vs. Implicit timing. Explicit timing is engaged by tasks requiring either

motor production (motor timing) or perceptual discrimination (perceptual timing) of a timed duration. Implicit timing is engaged as a product of the temporal regularity

of either a motor output (emergent timing) or a perceptual input (temporal expectation). The latter can be established either incidentally via a temporally regular stimulus

structure (exogenous temporal expectation) or deliberately via informative pre-cues (endogenous temporal expectation). Adapted from (Coull and Nobre, 2008).

of connections with most association areas in the basal
ganglia and the occipital, temporal and prefrontal cortex. The
connectedness of anterior insula with frontal cognitive control
areas suggests that it supports the perceptual integration of
sensory information (Eckert et al., 2009). By stimulating the
supramarginal gyrus of the right hemisphere with transcranial
magnetic stimulation (TMS) a dilation of perceived duration
was induced because of its effect on interval encoding (Wiener
et al., 2012). This result indicates that the neural circuitry
that encodes time crucially includes the right supramarginal
gyrus, confirming the detrimental effect of right parietal
damage on time perception (Harrington et al., 1998). These
findings support also the hypothesis of a network of multiple
central clocks and distributed processes of timing mechanisms
(Merchant et al., 2008). The ability to organize behaviors
within periods in the range of seconds to minutes, depends
on a cognitive system that requires multiple neuropsychological
functions (Buhusi and Meck, 2005; Coull and Nobre, 2008),
consequently pathophysiological distortions in timemight reflect
neuropsychological deficits typical of definite neuropsychiatric
disorders as schizophrenia (Ciullo et al., 2016, 2018a), acquired
brain injury (Piras et al., 2014), Parkinson’s disease (Wearden
et al., 2008), Huntington’s disease (Beste et al., 2007) and
attention-deficit hyperactivity disorder (Zelaznik et al., 2012).
Thus, the understanding of timing mechanisms and of the
related cognitive processes may also allow the realization of
a model system aiming to characterize cognitive dysfunctions
in order to define novel tools for early diagnosis and to
develop novel targeted cognitive therapies. However, despite
intensive investigations and substantial progress, the absence of
a definitive framework encompassing the multifaceted nature
of timing processes indicate that our understanding of the
principles and mechanisms underlying brain functioning during

time perception remains still incomplete. Nonetheless, all the
results described above emphasize the role of interactions among
distributed neuronal populations at different spatiotemporal
scales in enabling flexible cognitive operations that give rise to
sense of time (Fingelkurts and Fingelkurts, 2006). Given the
functional specialization and integration that sustain the sense of
time, a promising framework able to provide a modeling of time
perception in the brain from an explicitly integrative perspective
is represented by complex network theory. Recent developments
in the quantitative analysis of complex networks, based largely
on graph theory, have been rapidly translated to studies of brain
network organization. Accordingly, the brain is described as
a network of nodes and edges, while analytic advancements in
network science and statistics allow us to represent and quantify
functional interactions among brain regions of interest in order
tomake inferences about its organizational properties both at rest
and as a function of cognitive demands. To our knowledge, a
network based description of brain regions integration in timing
is still largely incomplete and actually available only in Ciullo
et al. (2018b) and Ghaderi et al. (2018).

This kind of cerebral systems modeling (Bassett and Sporns,
2017), will be crucially beneficial in the close future to an
organic description of brain functioning during the estimation
of temporal intervals and eventually to a better description of
disorders characterized by impaired time perception.

MULTISCALE BRAIN NETWORKS

A tentative modeling of time perception processes necessarily
points to a description of brain functioning based on the interplay
ofmulti-scale brain networks (Fingelkurts et al., 2010; Bassett and
Siebenhühner, 2013). The meaning of “scale” can vary according
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to the context: (i) a network’s spatial scale, which refers to the
resolution at which its connected regions of interest (nodes) and
connections (edges) are defined, and can range from individual
cells and synapses size (Jarrell et al., 2012; Shimono and Beggs,
2015; Lee et al., 2016), to brain regions and fiber tracts (Bullmore
and Bassett, 2011) and (ii) temporal scales with precision ranging
from sub-millisecond (Burns et al., 2014), to lifetime (Betzel et al.,
2014; Gu et al., 2015). Although it is important to understand
the functioning of individual elements, at each scale it is crucial
to understand the sets of pair-wise relations that arrange the
elements into the larger description of a totally interconnected
system, namely the local and global topology of the network
(Fingelkurts et al., 2010; Barabasi, 2016). Together these scales
define a three-dimensional space in which the evolution of the
brain network complexity is reported, being each point identified
by three coordinates: space, time, and topology (Betzel and
Bassett, 2017). Most descriptions of time perception mechanisms
exist as single points in this space being based on analyses focused
on networks defined singularly at one spatial, temporal, and
topological scale. We anticipate that, while such studies have
proven illuminating, in order to better understand the brain’s
true multi-scale, multi-level nature, it is essential that analyses
begin to form bridges that link different scales to one another in
order to offer a comprehensive description of the mechanisms
that govern timing.

One promising approach to study a network that changes over
multiple timescales is to make use of multi-layer network models
of temporal networks (De Domenico et al., 2013; Kivelä et al.,
2014). The multi-layer network model can treat estimates of the
network’s topology at different points of the time-scale as “layers.”
This implies the necessity to integrate different modalities of
investigation spanning different time-scales. It could be done by
creating a multi-layer from different non-invasive neuroimaging
techniques: from high-density electroencephalography (hd-EEG)
(Liu et al., 2017), to magnetoencephalography (MEG) (de
Pasquale et al., 2010), fast fMRI (Lewis et al., 2016), classical fMRI
(Telesford et al., 2016) and combined EEG-fMRI (Mullinger and
Bowtell, 2010; Yu et al., 2016). On the other hand, invasive
approaches are able to detect multiple single neuron signals in
non-human animals (Logothetis, 2012) and in human patients
that need deep brain stimulation (Okun, 2014). Traditional
analysis would characterize each layer independently of one
another, while multi-layer network analysis treats the ensemble
of layers as a single unit, characterizing its structure as a whole to
explicitly bridge multiple temporal scales. Since the multi-layer
network model doesn’t depend on the timescales represented by
each layer, it can include any timescale made accessible using
neuroimaging technologies.

As well as for time, the space dimension can be also
investigated at multiple scales (Figure 2A). MEG and fMRI
analyses of human brain networks are limited by the accuracy
of the inverse source localization of signal generators (MEG),
and the spatial granularity of the individual voxel (fMRI).
Nonetheless, it is possible to probe multiple spatial scales by
appropriately aggregating the minimal units of interest into
parcels or regions of interest. Several parcellation approaches
have been proposed, distinguishing to one another according to

different criteria as spatial variation in functional connectivity,
myelination, cytoarchitectonics, etc. (Tzourio-Mazoyer et al.,
2002; Craddock et al., 2012; Wang et al., 2015; Glasser et al., 2016;
Gordon et al., 2016). Since the choice of parcellation conditions
the network’s topology (Wang et al., 2009; Zalesky et al., 2010), it
must be checked if any result is not driven by the specific choice
of parcellation, and is reproducible (at least qualitatively) using a
different set of parcels at the same resolution (Bassett et al., 2011).
A route for future research is to apply multi-scale topological
analysis to voxel-level networks during the execution of tasks. It
will allow identifying different parcels differentially involved in
different brain states in order to sub-divide specific brain areas
responsible for sustaining different cognitive engagements.

METASTABILITY: A RESOURCE OF BRAIN

NETWORKS FOR SUSTAINING TIME

PERCEPTION MECHANISMS

Large-scale brain networks have been showed to be organized
according to multiple segregated sub-networks of interacting
areas. It has been suggested that a dynamic, adaptable brain
network arrangement in response to environmental stimulations
underlies successful cognition (Bressler and Kelso, 2001; Fries,
2005). Dynamic combination of responses to sensory inputs, and
spontaneous processing is at the core of brain activity, where
task evoked responses should not be interpreted only in terms of
localized processing, but should also take into account distributed
processing occurring as activity flow across intrinsic networks
(Smith et al., 2009; Zalesky et al., 2014; Sadaghiani et al., 2015;
Cole et al., 2016; Shine et al., 2016). This allows a description
of brain functioning in terms of a continuous recruitment of
neuronal populations in a temporally coordinated fashion both
during tasks execution, and at rest (Fingelkurts and Fingelkurts,
2005). Recently, it has been found that the neuronal engagement
follows a precise hierarchy, according to two distinct sets of
networks, or metastates, that the brain tends to cycle within
(Vidaurre et al., 2017).

Metastates or metastable cerebral states are the core of
a prominent conceptual framework known as Metastability
(Scott Kelso, 1995; Fingelkurts and Fingelkurts, 2004, 2017;
Freeman and Holmes, 2005; Werner, 2007). It offers a
description of the reciprocal influence among interconnected
parts and processes when pure synchronization does not occur.
In coordination dynamics, such synchronization corresponds
to stable fixed points of collective states (Friston, 1997).
Metastability can be better understood by defining an energy
landscape for the ensemble of possible states experienced by
the brain: the phase space of the brain system (Fingelkurts
and Fingelkurts, 2004, 2017). Generally, a system dynamically
evolves attracted toward states of minimum energy, which can
be either local or global. After being temporarily attracted
toward a local state of minimum energy, an externally driven
system can flee the basin of attraction and experience other
equilibrium states. The dynamics of a metastable system
is characterized by states that only transiently attract the
dynamics. Since during its dynamic evolution the system
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FIGURE 2 | Multiscale and multistable nature of the brain. (A) Rather than considering the brain as a list of parts defined at a particular scale, brain network theory

take advantage of the complexity of the interactions between the parts, and identifies the dependence of phenomena across scales. Box dimensions give outer

bounds of the spatial and temporal scales at which relational data are measured and interactions unfold. Adapted from an image of neuroscience recording methods

(Sejnowski et al., 2014). (B) The concepts of energy landscape and metastability. Points of these landscapes correspond to particular states of the system. The

system at equilibrium (green) is perturbed (at t0) toward a state (red) that subsequently (at t1) relaxes. In (a) the system is stable and local minima (equilibrium points)

are deep: dynamics are rapidly restored and the effects of perturbation are short-lasting. In (b) the energy landscape is almost flat and the stability of local minima

decreases: the system can easily explore different (metastable) states without an external driving or endogenous fluctuation.

tends to linger around these metastable states, the idea of a
repertoire of conditions or configurations can be introduced
(Figure 2B). Consequently, components are able to influence
each other’s destiny without being caught in a sustained
state of synchronization, unable to create collectively new
information Scott Kelso, 1995; Tognoli and Kelso, 2014). The
emergence of metastable dynamics has been theoretically showed
to be contingent upon the coupling between modules of a
dynamical system (Friston, 1997; Strogatz, 2001; Shanahan,
2010; Cabral et al., 2011). Specifically, dynamic patterns of
functional brain networks, consistent with metastable dynamics,
come out when coupling is topologically characterized by
short average path lengths and high clustering (Wildie and
Shanahan, 2012) of modules. The efficiency of task-related
brain activity has been showed to depend on metastability of
spontaneous brain activity, which allows for optimal experience
of the dynamical repertoire (Cabral et al., 2014). Recently
metastability in brain networks has been investigated in aging,
consciousness and neuronal communication in healthy subjects
(Deco and Kringelbach, 2016; Deco et al., 2017; Naik et al.,

2017; Cavanna et al., 2018) and in Schizophrenia and Alzheimer’s
disease patients (Córdova-Palomera et al., 2017; Koutsoukos
and Angelopoulos, 2018). A variety of methods are described
in order to capture synchronization and metastability in brain
functioning.

Since metastability is a fundamental concept to grasp the
behavior of complex systems theoretically and empirically,
we anticipate that a form of metastability exists in time
processing systems that parallels the metastability observed
in many other aspects of brain functioning. The need for
metastability in time perception modeling follows right from
the definition. Metastability is the simultaneous occurrence
of two competing tendencies: the inclination of individual
components to exist as interacting entities and the propensity
for the components to be characterized just by their independent
behavior (Kelso, 2012). As a consequence metastability may be
thought as a dynamical condition that allows the coordination
of heterogeneous elements as it happens during time perception
(brain areas having disparate intrinsic dynamics or brain areas
whose activity is associated with different sensory, motor
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and cognitive processes) (Fingelkurts and Fingelkurts, 2006;
Fingelkurts, 2014). Metastable brain theory may ameliorate
timing modeling as it does not favor extremes, e.g., integrated
vs. segregated processes, but it tends to reconcile them. Since
metastability is a characteristic of the full complexity of the brain,
it reaches a maximum when the balance between segregative and
integrative forces is found. Furthermore, metastability doesn’t
need active induction since no disengagement mechanisms are
required, as it happens in timing processing (Kononowicz et al.,
2016). Finally, the crucial importance of time to perception and
action necessitates metastability, in order to explain the ease with
which timing can be performed by a range of different neural
architectures. Clustering the dynamics of brain’s activity during
time processing may unearth the presence of metastable states
associated with this specific aspect of cognition.

CONCLUSION

Here we propose that the route along which future research
will find novel insight into timing mechanisms is drawn in
the direction of brain investigation as a multi-layer dynamical
network whose clustered dynamics unavoidably reports the
presence of metastable states. This perspective paves the way

for future investigations into both the role of timing in other
cognitive domains, from learning to agency, and the role that
temporal dependency of brain network states has in cognition,
elucidating the general characteristics of human cognitive
activity that exists at a wide range of spatiotemporal scales. At
the same time, our better understanding of dysfunctional timing
processes will crucially allow us to develop novel diagnostics
of neuropsychiatric diseases, and to design personalized
therapeutics for rehabilitation and treatment of brain disorders
characterized by distorted time perception.
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Speech or programmed sentences must often be interrupted in order to listen to and
interact with interlocutors. Among many processes that produce such complex acts, the
brain must precisely adjust breathing to produce adequate phonation. The mechanism
of these adjustments is multifactorial and still poorly understood. In order to selectively
examine the adjustment in breath control, we recorded respiratory-related premotor
cortical potentials from the scalp of human subjects while they performed a single
breathing initiation or inhibition task. We found that voluntary breathing is initiated if,
and only if, the cortical premotor potential activity reaches a threshold activation level.
The stochastic variability in the threshold correlates to the distribution of initiation times
of breathing. The data also fitted a computerized interactive race model. Modeling
results confirm that this model is also as effective in respiratory modality, as it has
been found to be for eye and hand movements. No modifications were required to
account for respiratory cycle inhibition processes. In this overly simplified task, we
showed a link between voluntary initiation and control of breathing and activity in a
fronto-median region of the cerebral cortex. These results shed light on some of the
physiological constraints involved in the complex mechanisms of respiration, phonation,
and language.

Keywords: motor control, countermanding task, breathing, decision making, inhibition (psychology)

INTRODUCTION

In vertebrate animals, the central nervous system generates a rhythmic command that
drives the contraction of respiratory muscles in order to move air in and out of the
lungs. The mechanisms of this automatic control have been deeply investigated. This
control relies primarily on groups of brainstem neurons in dynamic interaction (Feldman
et al., 2013) that generate the respiratory rhythm and adjust it to the metabolic activity
of the body. Voluntary breathing commands can also arise from higher brain structures,
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and the respiratory muscles are represented within the primary
motor cortex (Smith, 1938; Gandevia and Rothwell, 1987;
Similowski et al., 1996). Patients with locked-in syndrome retain
emotional influences on breathing but have no voluntary control
of respiratory movements (Heywood et al., 1996). Over the last
decade, functional studies in humans have shown that neuronal
activity in the premotor cortex and the supplementary motor
areas are also involved when subjects are exposed to inspiratory
resistance and breathe against it without being instructed to do
so (Raux et al., 2007, 2013). Cortico-subcortical cooperation in
generating the neural drive to breathe has been demonstrated
in patients with deficient respiratory automatism (Tremoureux
et al., 2014a), in normal subjects during hypocapnia-related
inhibition of the respiratory automatism (Dubois et al., 2016), in
patients with inspiratory muscle weakness (Georges et al., 2016),
and in patients with abnormally high inspiratory resistances
(Launois et al., 2015). In all cases their electroencephalographic
activity suggests involvement of the premotor cortex. In this
study we pushed the argument further by testing the hypothesis
of a causal involvement of the cerebral cortex in the voluntary
initiation and inhibition of a single breath command, and tested
it by recording respiratory-related premotor cortical potentials in
the scalp of awake subjects during such maneuvres.

Although, research on voluntary respiratory control is
most often based on neurophysiological studies, computational
modeling also has a role to play. Among the multitude of existing
computational models, the race model offers an interesting
method to investigate breathing modality in the context of
an inhibitory task. This task consists of two types of trials:
Go trials, where subjects were instructed to perform an action
as quickly as possible, and Stop trials, where subjects had to
inhibit this action. This paradigm is useful when studying the
ability of a subject to inhibit an action, and allows to the time
needed to stop an action to be assessed (Stop Signal Reaction
Time or SSRT), which is not observable directly. Logan et al.
(1984) developed a race model to estimate the SSRT in an
oculomotor countermanding task. Beyond the access to the
time needed to cancel an action, this model provides a way
to explore functional mechanisms responsible for inhibition
performance. This model involves two independent units, a go
and a stop process, performing a race from a baseline until one
of these processes crossed an arbitrary threshold; the winner of
this race is the first process that crosses the threshold. More
recently, Boucher et al. (2007a) added interactions between go
and stop units to account for electrophysiological recordings
of single units in macaques . Race models have been tested
in eye and hand modality (Boucher et al., 2007b) but never,
to our knowledge, on respiratory modality. In this study,
we tested the modified Boucher et al.’s race model to assess
whether it would be qualitatively adequate to account for
respiratory data in the particular context of a countermanding
task.

Our study focused on the magnitude and timing of the fronto-
median cortical premotor potential activity, examining whether
its stochastic variability could account for breathing initiation
time and inhibition. This study is an important contribution to
an improved understanding of how humans initiate vocalizations

and the disentanglement of the distinct and shared processes
within the complex mechanisms of respiration, phonation, and
language.

MATERIALS AND METHODS

Subjects and Session Design
This study was part of a wider respiratory-related cortical activity
research program that has been approved by the local ethical
committee. The subjects gave informed consent to participate.
Data were collected from six human subjects (five males, mean
age 31 years ± 8). Each subject participated in two sessions with
256 NoStop trials and two sessions with 128 NoStop and 128
Stop trials. Each session lasted for approximately 60 min. The
trial order and the session order were both randomized across
subjects. All subjects reported having normal or corrected-to-
normal vision.

Ventilatory Movement Recording
The subjects’ ventilatory movements were measured using
custom-built magnetometers (Mead et al., 1967). Two magnets
were positioned, one ventrally and one dorsally, at the level of
the umbilicus using an elastic belt. This allowed us to measure
abdominal expansion, a direct indicator of diaphragmatic
contraction insofar as the diaphragm is the only muscle whose
contraction increases abdominal circumference. A PC with a
NI-DAQ analog acquisition card (National Instruments Corp.,
Austin, TX, United States) running the Xenomai operating
system for parallel real-time acquisition (sampling frequency
1,000 Hz) recorded ventilatory movements and the various
stimuli presented on-screen during the sessions.

Initiation Breathing Task – NoStop Trials
Subjects sat 57 cm away from a TV display monitor (Dell 21”).
Each trial started with the presentation of two purple horizontal
bars centered on a black background. The two bars were vertically
separated by 10◦ of visual angle (Figure 1). After a random
delay ranging from 500 to 1,000 ms, a green bar (Go signal)
appeared 6◦ above the top fixation bar, instructing the subject
to initiate inspiration. To provide feedback of the amplitude
of the corresponding evoked respiratory response, the subject’s
abdominal movements were displayed on the screen as a cross
that moved up and down with abdominal expansion (see below).
A calibration procedure was performed at the beginning of each
block to adjust gain and offset so the respiration amplitude
modulation remained within the range of the breathing initiation
bars.

Countermanding Breathing Task – Stop
Trials
As in the initiation-breathing task, each trial started with the
presentation of two purple horizontal bars centered on a black
background (Figure 1). The two bars were vertically separated
by 10◦ of visual angle. After a random delay ranging from 500
to 1,000 ms, a green bar (Go signal) appeared 6◦ above the top
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FIGURE 1 | Experimental setup: the respiratory movements of the subjects were assessed using a magnetometer that measured the distance between two
magnets. These were placed on the abdomen and on the back at the height of the umbilicus, and maintained in position with an elastic belt. This allowed us to
measure abdominal expansion, an indirect indicator of diaphragmatic contraction. During respiratory tasks, electroencephalographic potential (ERPs) signal were
recorded. Each trial started with the presentation of two purple horizontal bars (10◦ length of visual angle) centered on a black background. The two bars were
vertically separated by 10◦ of visual angle. After a random delay ranging from 500 to 1,000 ms, a green bar (Go signal) appeared 6◦ above the top fixation bar,
instructing the subject to initiate an inspiration. Abdominal movements were displayed on the subject’s screen as a cross that moved up and down in relation to
abdominal expansion and contraction to provide feedback to the subject of the amplitude of the evoked respiratory response. On 50% of trials (at random), after a
delay (Stop Signal Delay- SSD) ranging from 48 to 640 ms, a green bar was presented in the center of the screen, instructing the subject to stop the inspiration.
A failure to inhibit inspiration was classed as a non-canceled trial, while a successfully inhibited inspiration was classed as a canceled trial.

fixation bar, instructing the subject to initiate an inspiration.
Abdominal movements were displayed on the subject’s screen
as a cross that moved up and down according to abdominal
expansion and contraction to provide feedback to the subject of
the amplitude of the evoked respiratory response. A calibration
procedure was performed at the beginning of each block to adjust
gain and offset so the respiration amplitude modulation remained
within the range of the breathing initiation bars. In a second type
of trial – the task started with the presentation of two purple
horizontal bars centered on a black background. On 50% of
trials (at random), after a delay (Stop Signal Delay- SSD) ranging
from 48 to 640 ms, a green bar was presented in the center of
the screen, instructing the subject to stop his/her inspiration.
A failure to inhibit inspiration was classed as a non-canceled trial,
while a successfully inhibited inspiration was classed as a canceled
trial.

Reaction Time Measurement
The ventilatory movement signal was processed offline using
Matlab (MATLAB Release 2012b, The MathWorks, Inc., Natick,
MA, United States). The onset of breathing movement was

determined using a derivative of the abdominal expansion signal
based on a threshold limit compared with the resting breathing
signal. The reaction time was the difference between a Go signal
presentation and the onset of inspiration.

EEG Signal Recording
During respiratory tasks, electroencephalographic (EEG) signal
was recorded using nine active electrodes positioned according to
the international 10–20 system, recorded with a V-Amp system,
(Brain Product, Munich, Germany). The reference was calculated
from the electrodes A1 and A2. The impedance of each electrode
was estimated between 5 and 10 k� and was always lower less
than 25 k�. Abdominal ventilatory movements and the EEG
signal were later synchronized using markers.

EEG Signal Processing
Ensemble averaging was first performed to improve the signal-
to-noise ratio and reveal the potentials, in a manner typical
to the study of evoked potentials. The continuously recorded
electroencephalographic signal was split into three epochs,
each of one second, extending from 0.5 s before to 2.5 s
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after the Go signal presentation (green bar). A thresholding
method was used to detect artifact and periods exhibiting
activity ± 3 standard deviation of the mean were discarded.
The rejection rate was approximately 30% in the various
sessions. Trials were sorted into five (NoStop sessions) or
three (NoStop trials of Stop sessions) groups according to
reaction time, and the EEG signal was averaged point by
point.

Race Model
The interactive race model is composed of a go unit and a stop
unit. Their activity is governed by two stochastic differential
equations (Usher and McClelland, 2001) with a null leakage
factor:

dago(t) = µgo − ßstop.astop(t) + ξ go (1)

dastop(t) = µstop − ßgo.ago(t) + ξ stop (2)

Each unit is defined by three parameters: the mean growth
rate (µ); the inhibition parameter on the other unit (ß); and
a Gaussian noise term (ξ ) with a mean of zero variance of
σ2

go or σ2
stop, where a represents the activity of the unit. The

race finished when a unit crossed the threshold, fixed at 1,000
(arbitrary units), within a limit of 800 ms. If unit activity is
negative during the race, the activity was reset to zero at this point
(non-physiologic value). An additional parameter, D, was added
to the model to take into account the stimulus encoding that
occurred in the go and stop units (respectively Dgo and Dstop).
Dgo was determined and set constant for each subject using values
from the EEG recordings. Dgo was calculated when the activity
signal equaled the baseline mean plus five standard deviations
in the EEG signal. Dstop, µ, ß, and σ are the unconstrained
parameters of the model.

We tested these interactive race models to find the parameters
that best fitted the data from six subjects who performed two
sessions of a breathing countermanding task. Two sessions were
removed from the analysis because of bimodality observed in
reaction times.

We fitted inhibition function, reaction time distributions of
correct NoStop trials and failed stop-signal trials. For each fit,
we computed a chi-square test between data from the model and
the subjects. Inhibition function chi-squares were calculated by
summing chi-squares computed at each stop-signal-delay (SSD)
between error rates from model and subject data. The chi-squares
of the reaction times of correct and failed NoStop stop-signal
trials were calculated as follows: each distribution was sorted
into five quintiles; a “local” chi-square was computed at each
quintile between the proportion of trials from model regarding
subjects’ data, then the five “local” chi-squares were added.
A general chi-square was then calculated by adding the local chi-
squares together. To find the best parameters for each subject,
we minimized the general chi-square using a minimization
function (patternsearch from the global optimization toolbox
of Matlab). Patternsearch looks for a minimum based on an
adaptive mesh that is aligned with the coordinate directions.
Because minimization functions are sensitive to start point, we

FIGURE 2 | Threshold of premotor activity response as a function of breath
initiation times. (A) Normalized average of the diaphragmatic signal (black
lines) and normalized activity at Fz aligned on target onset (red lines). Thick
and thin vertical lines represent, respectively, the mean of response
times ± standard error of mean. (B) Average activity at Fz aligned on breath
onset. Dot indicates the time of target presentation of each correct trial (the Y
values of each dot represents, its trial position during the session). Trials have
been sorted by mean reaction time into five groups. (C) Activity at FZ aligned
on target onset (same convention as in B). (D) Average activation level
10–20 ms before breath initiation is plotted against mean reaction time for the
five reaction time groups for this recording session.
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ran patternsearch from 50 randomly chosen starting points.
Finally, to avoid a local minimum, we again started patternsearch
from 200 new start points. These starting points were determined
by the best parameters from first run and were defined as follows:
best parameters ± 0.01 units and best parameters ± 0.02 units.
All these procedures were performed on a supercomputer cluster
(NEC, 40 nodes, 28 cpu Intel Xeon E5-2680 V4 2.4 GHz/node,
128 Go RAM/node).

RESULTS

Figure 2 shows the responses from a representative session of
256 NoStop trials. The activity recorded at Fz began to increase
∼100 ms before breathing initiation, peaking shortly before
breathing initiation.

Specific measures of movement-related neural activity were
required to evaluate the prediction that the trigger threshold
of breathing preparation varied with reaction time. We tested
this prediction by measuring the level of neural activation as a
function of the time at which the presumed threshold triggering
the movement was crossed. On the basis of electrophysiological
studies of cortical control in arm, leg, and eye movements,
we estimate that measurements of neural activity 10–20 ms
before breathing initiation are an accurate index of the level of
trigger threshold activation. We defined the threshold activation
as the average level of the activation function in the period
between 20 and 10 ms before breathing initiation. We compared
the activation threshold across groups of NoStop-trials with
different reaction times. Figure 2 presents the activity at Fz
for sorted response times aligned on breath onset (top panel)

FIGURE 3 | Across all sessions and all subjects. Average activation level
10–20 ms before breath initiation is plotted against mean reaction time for five
reaction time groups representative of each particular session. Each line
represents the linear regression plot between reaction time.

and target presentation (middle panel). The activation threshold
increases for longer reaction times (bottom panel). We divided
the distribution of trials into five groups according to their
reaction times (Neshige et al., 1988). A linear regression analysis
indicated a significant relation between the activation threshold
and reaction time. As shown in Figure 3, significant changes
in activation threshold with reaction time were observed for
11 of the 12 sessions (R2 = 0.78 ± 0.21, mean and standard
error, all p-values were lower than 0.001). The p-value was
computed by transforming the correlation to create a t-statistic
having 3◦ of freedom. The confidence bounds were based on an
asymptotic normal distribution of 0.5∗log((1 + r)/(1 – r)), with
an approximate variance equal to 1/(N – 3).

In one session, the impedance value was too high and
signal quality was insufficient to be included in the analysis.
These results are consistent with variable threshold activity in
adjustment of reaction time in breathing.

To determine not only if activation threshold co-varies
with reaction time, but if this activity is sufficient to predict
whether breathing is going to be initiated or not, we examined
the modulation of activity recorded at Fz while the subject
was performing a countermanding breathing task (Figure 1).
Figure 4A shows the response of a representative session of 256
non-canceled trials and 256 canceled trials. A linear regression
analysis indicates a relation between the threshold activation and
reaction time (R2 = 0.48, p< 0.001) for this session.

As in the NoStop task, Fz activity in the non-canceled
trials recorded began to increase approximately 100 ms before
breathing initiation, peaking shortly before it, which we
characterize as a failure of inhibition. We compared the activation
threshold across groups of non-canceled trials with the activity
during canceled trials. The activity in canceled trials remained
low and never reached the threshold activity of trials with shorter
or longer reaction times as shown in Figure 4 (top panel).
The threshold activation for the group of canceled trials was
essentially unchanged compared to baseline activity. Changes in
threshold activation with reaction time were observed between
subjects: see Figure 4 (bottom panel). These results are consistent
with variable threshold activity and causal linkage between
premotor threshold activity and breathing initiation.

To compare response time according to the phase of the
spontaneous cycle we divided the response trials into two groups.
In the first group, defined as the Inspiratory group, the response
times were made in the half cycle that included the initiation
of inspiration movement. In the second group, defined as the
Expiratory group, the response times were made in the half
cycle that included the initiation of expiratory movement. Across
sessions and subjects (Figure 5), the average mean response times
initiated in the half cycle including the initiation of inspiration
movement was not significantly different from the response times
initiated in the half cycle that included the initiation of expiratory
movement (Mann–Whitney U-test: p = 0.79).

The outputs of data modeling are the best parameters µ

(mean growth rate), Ò (noise in simulated signals), ß (weight
of inhibition of the other unit), and Dstop (time to encode
stop signal) corresponding to the smallest find by minimization
procedure.
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FIGURE 4 | Threshold premotor activity response and breathing inhibition or breathing initiation times. (A) Activity at Fz aligned on breath onset. NoStop trials have
been sorted by mean reaction time into three groups. Activity recorded during successful Canceled trials are presented by the black curve (B) Average activation
level 10–20 ms before breath initiation or estimated response time are plotted against mean reaction time for the three reaction time groups for this recording
session. ∗∗∗Represents significant p value < 0.001.

Results from behavioral data modeling by interactive race
model are summarized in Table 1 for each subject and session.
SSRTs represents the Stop Signal Reaction Time (ms) calculated
by an integration method (Hanes and Schall, 1995) based on
simulated data.

An example of simulated data compared to observed data is
shown in Figure 6 to illustrate the model fitting. This figure
represents real data from session 3a and the best parameters
from the interactive race model. Panel a) shows the cumulative
latencies of NoStop trials; here we can see that these parameters
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FIGURE 5 | Comparison of mean response times initiated in the half cycle including the initiation of inspiration movement or half cycle including the initiation of
expiratory movement (Mann–Whitney U-test: p = 0.79). Error bars represent the standard deviation of the mean (across 6 subjects and 11 sessions).

of the model qualitatively fit the real distribution of reaction
times. Panel b) shows the inhibition function; the simulated
data closely resemble the observed experimental data though
when stop signal delay was 450 ms, there was some divergence.
Panel c) shows the cumulative distribution of non-canceled Stop
trials; again, modeled data closely resemble experimental data,
apart from between 400 and 500 ms. In all but one session
(session 1a) the initiation of an inhibition curve was observed
for SSDs shorter than 200ms (see Supplementary Figure 1, for
all sessions). In one session (session 1a) the estimation of SSRTs
was problematic and therefore require cautious interpretation.
Similar outputs and models’ mimicries exist in the context of
countermanding task (modulation of e.g., µgo or DSTOP etc. . . ).
Therefor possible combinations of parameters might produce
similar estimates of behavioral parameters (Pouget et al., 2011).
Simultaneous physiological and behavioral measurement would
be required to disentangle such possible discrepancies. In our
present context, our models were unsufficently constraint to be
able to conclude. Our modest goal was simply to expose the fact
that a already proposed simple model of eye movement control
holds with a unique control of breathing initiation.

DISCUSSION

Our study focused on specific premotor activity potentials in
the fronto-medial cortex that increase in relation to voluntary
breathing (Macefield and Gandevia, 1991), loaded breathing
(Raux et al., 2007), or speech breathing (Tremoureux et al.,
2014b). We first tested whether variability in a single breathing
initiation time might be accounted for by modulation of
this activity. The results show that voluntary breathing is
initiated if, and only if, the cortical premotor potential
activity reached a threshold activation level. In the context
of countermanding a breathing task, our results show that
voluntary breathing is initiated if, and only if, the cortical
premotor potential activity reaches a specific threshold
activation level. The stochastic variability of this threshold
correlates with the distribution of breathing initiation times.
Similar premotor potentials have been recorded during
voluntary limb, leg and eye movements, with some cerebral
potentials being distinguishable in the latter. The major
component is a slow negativity, termed the Bereitschaftspotential
(readiness potential), which develops before the movement

TABLE 1 | Outputs of data modeling for each behavioral session.

Subject/Session 1a 1b 2a 2b 3a 3b 4a 5a 5b 6a

µgo 0.91 1.64 2.71 2.34 1.96 1.4 1.97 2.37 2.31 2.34

Ògo 36.82 46.05 16.51 10.99 11.63 15.53 6.29 23.79 11.96 15.34

µstop 45.95 17.5 81.72 8.58 66.35 79.69 77.29 81.76 64.68 83.13

Òstop 50.81 32.22 99.28 81.81 83.16 85.24 54.01 74.41 22.8 97.19

ßgo 6.37 9.07 0.51 0.33 0.36 0.35 0.05 0.37 0.13 0.41

ßstop 3.25 3.49 6.39 8.5 5.56 4.63 5.61 5.89 6.48 3.18

Dstop 93 88 164 152 30 55 161 116 145 126

χ2 0.06 0.11 0.07 0.27 0.06 0.26 0.12 0.08 0.06 0.25

SSRTs 58 206 333 329 196 132 179 236 234 236
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FIGURE 6 | Thin lines represent simulated data and thick lines observed data. For each panel, the x axis is time (ms). (A) Cumulative latencies of NoStop trials.
(B) Inhibition function. The y axis represents the error rate in response to Stop trials and the x axis the times of the stop signal delay (SSD). (C) Cumulative latencies
of non-canceled Stop trials.

(Deecke et al., 1969; Papakostopoulos et al., 1975; Kristeva
and Kornhuber, 1980). Based on subdural recordings from
the exposed cerebral cortex (Lee et al., 1986; Neshige et al.,
1988), and on topographical analysis of scalp recordings
(Barrett et al., 1986; Tarkka and Hallett, 1990), this premotor
potential is considered to originate in the supplementary
motor area and primary motor cortex. This evoked potential
does not accompany pathological limb movements generated
subcortically (Obeso et al., 1981). Additionally, this potential
is present during an array of cortically controlled respiratory
movements (see above), but does not accompany involuntary
respiratory activity (Macefield and Gandevia, 1991) or abnormal
respiratory activity such as hiccups (Raux et al., 2007). To
our knowledge this is the first study that demonstrates that

voluntary breathing initiation times might be accounted
for by the modulation of cortical premotor potential
activity.

Regarding breathing control, several mechanisms are required
for adequate speech production. Firstly, as speech is produced
during expiration, the control of the duration of vocalized
sentences implies inhibition on the automatic breathing pattern
generators (for automatic inspiration not to provoke unwanted
speech interruptions). In many animals, breath holding during
submersion involves strong reflex inhibition of respiratory
activity, for example in reaction to snout submersion in the dog
(review in Butler, 1982); see also (Lin, 1982). However, natural-
diving mammals can perform voluntary apneas spontaneously
or in response to training (Ridgway et al., 1969). In humans,
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a cortical network capable of substantiating such speech-related
inhibitory inputs has been described during voluntary apneas
(McKay et al., 2008). Secondly, producing sentences of variable
length at a variable loudness implies the ability to prepare
these sentences through tailored pre-phonatory breaths. We
have previously shown that the corresponding respiratory EEG
activities were similar to those involved in the production of
voluntary respiratory maneuvres such as sniffing (Tremoureux
et al., 2014b), suggesting that some aspects of the speech-
related breathing control might derive from a previously selected
ability to cortically prepare the volume and timing of particular
breaths. In certain species, the ability to prepare inspirations
according to locomotor and environmental context appears to
be crucial. For example, marine mammals must coordinate
inspirations with surfacing, sometimes with important timing
constraints, such as during sustained rapid swimming in
dolphins. Their ability to voluntarily control breathing for non-
respiratory purposes has long been described (Ridgway et al.,
1969), e.g., during bubble ring play (McCowan et al., 2000).
Thirdly, speech must be fluently adapted to social interactions.
Participation in conversation implies the possibility to prepare
pre-phonatory breaths, to cue them from various signals, to
adapt them to unplanned changes in speech programming, or
to completely inhibit them to comply with the necessities of
the inter-human exchange. This conversational ability requires
excitatory-inhibitory interplays very similar to those described
for locomotor and oculomotor movements. Our data suggest
that this is indeed the case. Furthermore, the interactive race
model has been tested on countermanding eye and hand tasks in
previous studies (Papakostopoulos et al., 1975), and our results
suggest that this model is also qualitatively effective in breath
modality without any further modification.

While analyzing possible interactions between the voluntary
and reflexive commands of expiration we did not find any
statistical differences between reaction times at different points
in the cycle of respiration: reaction times during expiration
are not significantly longer than in inspiration. Because many
factors could lead to an absence of significant variations our
results only indicate that any possible interaction between
the voluntary and reflexive command, if it exists, is weak in
the context of our countermanding paradigm. In support of
these findings, it has been shown that the spinal inspiratory
motoneurons are hyperpolarized during expiration compared
with inspiration (see for example Berger, 1979). Furthermore, it
has been also been shown that the automatic inspiratory drive
is sufficient to facilitate the response of the diaphragm to the
cortical inputs generated by transcranial magnetic stimulation
(Straus et al., 2004; Mehiri et al., 2006). It could therefore have
been hypothesized that, in our present experiment, RTs would

have been shorter for voluntary inspirations initiated within
the inspiratory phase of the automatic breathing cycle than
within its expiratory phase as a consequence of bulbo-spinal
facilitation. The fact that this was not the case is coherent with
the notion that the expiratory disfacilitation of respiratory moto-
neurons can be overcome by corticospinal inputs in animals
(see for example Planche, 1972) as in humans (Similowski
et al., 1996). It also indicates that the excitatory corticospinal
drive to inspiratory muscles not only bypasses the brainstem
central pattern generators (Corfield et al., 1998) but can also
be powerful enough to be beyond modulation by their output
(under resting breathing conditions). The high values of µstop
and ßstop observed in most of the model sessions underline the
necessity for the inhibition process to be very fast to be effective.
These observations suggest that the automatic respiration cycle
generated by the brainstem can be overridden by cortical outputs
with the same efficiency at any moment of the respiratory cycle
and that these cortical outputs can take full precedence over their
subcortical counterparts.
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We review the role of oscillations in the brain and in the auditory system showing

that the ability of humans to distinguish changes in pitch can be explained as a

precise analysis of temporal information in auditory signals by neural oscillations. The

connections between auditory brain stem chopper neurons construct neural oscillators,

which discharge spikes at various constant intervals that are integer multiples of 0.4 ms,

contributing to the temporal processing of auditory cochlear output. This is subsequently

spatially mapped in the inferior colliculus. Electrophysiological measurements of auditory

chopper neurons in different species show oscillations with periods which are integer

multiples of 0.4 ms. The constant intervals of 0.4 ms can be attributed to the smallest

synaptic delay between interconnected simulated chopper neurons. We also note the

patterns of similarities between microcircuits in the brain stem and other parts of the

brain (e.g., the pallidum, reticular formation, locus coeruleus, oculomotor nuclei, limbic

system, amygdala, hippocampus, basal ganglia and substantia nigra), dedicated to the

processing of temporal information. Similarities in microcircuits across the brain reflect

the importance of one of the key mechanisms in the information processing in the brain,

namely the temporal coupling of different neural events via coincidence detection.

Keywords: canonical microcircuits, cochlear nucleus, locus coerulus, limbic system, amygdala, hippocampus,

basal ganglia, substantia nigra

1. INTRODUCTION

Oscillations are defined as periodic temporal changes in the state parameters of a system and
characterize stable states in the non-linear neural dynamics of the brain. The study of oscillations
in the human brain began in the early part of the last century, when neural oscillations were
recorded by electroencephalography (EEG) in 1924 byHans Berger at the University of Jena. Neural
oscillations in the EEG recordings are classified according to their frequency in different bands.
However, EEG signals are only the summed electrical activity of the brain, as they are measured at
the surface of the skull. This averaged activity wouldmaskmechanisms, subserved by oscillations in
smaller subpopulations of neurons. Furthermore, invasive single unit recording (extracellular and
intracellular) as well as the recording of local field potentials reveal the presence of oscillations.

130

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2018.00793
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2018.00793&domain=pdf&date_stamp=2018-10-31
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:bahmer@ukw.de
https://doi.org/10.3389/fnins.2018.00793
https://www.frontiersin.org/articles/10.3389/fnins.2018.00793/full
http://loop.frontiersin.org/people/463070/overview
http://loop.frontiersin.org/people/45266/overview


Bahmer and Gupta Auditory Oscillations as a General Model

2. THE ROLE OF OSCILLATIONS IN
COUPLING NEURAL ACTIVITIES IN THE
BRAIN

Neural oscillations are observed in various parts of the brain
involving different sensory systems, such as the visual, olfactory,
motor, and auditory system. In the midbrain, the presence
of neural oscillations in electrophysiological recordings in the
auditory system was discovered by Langner (1978), which
led to the model of auditory temporal processing and neural
oscillators by Langner (1981). Later, neural oscillations became
a hot topic of research in the visual system. Studies of Gray
and Singer (Gray and Singer, 1989; Gray, 1994), and others
(Eckhorn et al., 1988) linked oscillations in the visual system
to the binding of various percepts. It was shown that neural
oscillations, resulting from the synchronization of spatially
segregated retinal ganglion cells evoked by stationary andmoving
visual stimuli, are reliably transmitted by the lateral geniculate
nuclei, which suggests the importance of maintaining temporal
coupling of neural activities in processing the perception of global
stimulus properties such as size and continuity of spatial features
(Neuenschwander and Singer, 1996). The temporal coupling of
peripheral neural activities between adjacent retinal ganglion
cells is due to the presence of intercellular gap junctions (Roy
et al., 2017). Studies of olfactory responses has also revealed
temporal coupling of neuronal activities. Gilles Laurent and his
colleagues observed that during an oscillatory response to odor in
locusts, different neurons in the olfactory antennal lobe showed
a higher probability of coincidental firing in a pair of neurons
in some cycles but not in other cycles of the oscillatory response
(Wehr and Laurent, 1996). Furthermore, neural oscillations play
a pivotal role in various timing functions of the brain, including
time perception (Buhusi and Meck, 2005; Gupta, 2014). In a
recent study, recordings from the medial prefrontal cortex in
monkeys, who produced different time-intervals using hand
or eye movements, showed that the firing rate profiles were
temporally scaled to match the produced intervals (Wang et al.,
2018). This finding could be explained by the differences in
the activation profiles of temporally-coupled subsets of neurons
during the production of short and long intervals. Moreover,
this study is consistent with the idea that the time course of
the temporal coupling of neurons is responsible in part for the
conscious time-interval production, while the scaling of the time
course is correlated to the length of produced intervals.

3. OSCILLATIONS IN THE AUDITORY
BRAIN STEM AS A TEMPORAL SCALE

Oscillations in the auditory pathways are observed in the
cochlear nucleus and the inferior colliculus (Figure 1) among
others. These oscillations are attributed to a class of neurons
in the cochlear nucleus, called “chopper neurons” (see e.g.,
Blackburn and Sachs, 1989). Chopper neurons, which exhibit
a unique response pattern, project to the inferior colliculus.
They generate oscillations with a frequency, which is relatively
independent of the changes of important stimulus parameters

FIGURE 1 | This schematic depicts key brain structures for processing

auditory inputs. The cochlear nucleus in the brain stem is the initial processing

center for auditory inputs and contains a variety of neurons capable of

temporal processing. One such class of neurons, called chopper neurons,

show a characteristic post stimulus time histogram, with ISIs (interspike

intervals) which remain relatively constant and is unrelated to the stimulus

frequency.

(Pfeiffer, 1966; Blackburn and Sachs, 1989; Wiegrebe andWinter,
2001; Winter et al., 2001). The interspike interval (ISI) of
chopper neurons exhibit a distribution pattern in different
species, which is centered at integer multiples of 0.4 ms (Langner
and Schreiner, 1988; Bahmer and Langner, 2006a). In Mandarin,
a tonal language wherein word meanings change with the pitch,
periods, which are integer multiples of 0.4 ms can be found
in statistically preferred tones (Langner, 2015). Recently, the
temporal constant of 0.4 ms was found in electrophysiological
recordings of the cochlear nucleus in human auditory brain
stem implant patients (Bahmer et al., 2017). Chopper neurons
play a key role in pitch perception (Langner, 1981; Hewitt
et al., 1992; Wiegrebe and Winter, 2001). Incoming acoustical
stimuli contain information about the pitch in their temporal
modulation. Information about the temporal modulation is
transferred via the auditory nerve to the ascending auditory
pathways. The tuning of the auditory nerve fibers alone is not
sufficient to explain the precision with which humans distinguish
between pitch differences (just noticeable differences are about
0.2%, Fastl and Weinberger, 1981). Therefore, in addition to
the coarse spectral analysis of the incoming signals in the
cochlea, a subsequent temporal analysis is mandatory. Especially
for absolute listeners, an inherent scale (neural oscillations in
clock mechanism) could explain their outstanding ability to
determine absolute pitch. Candidates producing such scales
would be the chopper neurons in the cochlear nucleus of
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the brain stem. Chopper neurons have a significant role in
the periodicity analyzing model introduced by Langner (1981,
1983) including the cochlear nucleus, inferior colliculus, and
lemniscus lateralis. According to this model, a neuronal network
including different types of oscillators (Figures 2, 4) correlates
features of the input signal to each other or correlates the
features of the input signal to neuronal oscillations. In both
modes, chopper neurons provide the temporal scale (Oscillator
circuit 1, Figure 2). The function of the network is based upon
the correlation of undelayed (oscillator circuit 1) and delayed
neuronal responses (oscillator circuit 2) of the depicted neurons
(Figure 2) to envelopes of amplitude modulated (AM) signals.
These responses converge at neurons acting as coincidence
detectors. Each modulation period of an AM signal activates
the trigger neuron, which in turn activates a rapid oscillation
(oscillator potential with a predefined frequency). Via parallel
processing, the integrator neuron responds to the same cycle
of the modulation frequency but with a longer delay which
corresponds to the integration period from the integrator-like
function. Moreover, the coincidence neuron will be activated,
despite different delay intervals of the two previous units,
provided that the integration period equals the period of the AM
signal. A coincidence neuron will respond more often, when its
inputs are synchronized, i.e., when the spikes of the oscillator
and of the integrator converge synchronously. Thus, modulation
periods (periodicity; τm), m×τm, with m = 1, 2, ..., which activate
the oscillations and drive the coincidence unit, can be computed
according to the following linear equation:

m× τm = n× τc − k× τk (1)

where k, m, n are small integers. n×τc is the integration period,
which consists of n carrier periods and after this interval the
integrated input signal reaches a threshold. 1/τc is the carrier
frequency of the AM signal, 1/τk the frequency of the auditory
oscillations. Equation (1) will be referred here as coincidence
equation. The parameter m takes into account the fact that
coincidence neurons respond also to harmonics (m > 1) of
the modulation frequency of the AM signal, which implicates
ambiguity of IC neurons with respect to harmonically related
signals. A solution to this problem is proposed by an input from
the inhibitor (anatomically attributed to the lemniscus lateralis,
a spiral structure). Because of the cochlear frequency analysis,
neurons respond strongest at a characteristic frequency (CF).
In addition to the CF, the coincidence neuron is tuned to a
certain periodicity, i.e., a certain modulation frequency of an
AM signal, also called the best modulation frequency (BMF).
Therefore, different trigger, oscillator, integrator, and coincidence
units are incorporated to explain the range of periodicity of AM
signals (Langner, 2015). A detailed simulation of the periodicity
analyzing model introduced by Langner (1981, 1983) can be
found in Borst et al. (2004) and Voutsas et al. (2005). An example
of the simulation results of the periodicity model with and
without inhibition is depicted in Figure 3.

For the peripheral auditory system, ISIs of neural oscillations
are argued to serve as a temporal scale (Bahmer and Langner,
2005). Absolute listeners may use this temporal scale for their

outstanding ability to determine absolute pitch of the incoming
tonal acoustic signals.

In a work presented here, we show that by simulating chopper
neurons with various oscillation frequencies these neurons may
serve a scale for a subsequent temporal analysis as for pitch
determination. Furthermore, we hypothesize that microcircuits
found in the auditory system which are dedicated to temporal
analysis are ubiquitous in the brain for an operation in the
temporal domain.

4. NEURONAL MODELING OF
OSCILLATION IN THE AUDITORY BRAIN
STEM

The simulation of the oscillatory neuronal network in the
auditory brain stem from Bahmer and Langner (2006b) are
performed in Matlab 2006 (The MathWorks, Inc., Nattick)
and NEURON (Hines and Carnevale, 1997). The differential
equations are numerically realized by the Euler method in
Matlab. Time steps of 25 µs are sufficient for the relevant time
scales of about 0.1ms. Signal, onset neuron, and chopper neurons
are implemented as script-files, and auditory nerve fiber response
is calculated within a mex-file inMatlab. Programs were executed
on a PC with 2.0 GHz and 512 MB RAM.

The inner ear, inner stereociliary hair cells and auditory nerve
fibers were modeled according to Hemmert et al. (2003). A
wave-digital filter model describes the vibrations of the basilar
membrane on the basis of the passive inner ear hydrodynamics;
it consists of 125 mass-spring resonators that are connected
by a coupling-mass (Strube, 1985; Zwicker, 1986). To simulate
the outer hair cell function, the amplitude of the vibration of
the basilar membrane is amplified and the traveling-wave along
the basilar membrane is sharpened at the low values of the
amplitude. This is performed by the second order resonators
that are added at the outputs of the cochlear filter bank. The
quality factors of the resonators are altered in all iteration
steps depending on the displacement of each resonator. Four
stages of the resonators are cascaded to achieve physiologically
plausible amplification and filter shapes. Bundles of stereocilia
of sensory hair cells are deflected by fluid motion from the
movements of the basilar membrane (Mountain and Cody,
1999). When bundles of stereocilia are deflected, ion channels
open and K+-ions diffuse into the sensory hair cells. The K+-
ion diffusion depolarizes the inner hair cell membrane. Due
to the depolarization, Ca2+-ions enter the cell through voltage
activated Ca-channels. High Ca2+-concentration within the cell
leads to the fusion of synaptic vesicles with the cell membrane
(Moser and Beutner, 2000; Beutner et al., 2001). Specific quanta
of neurotransmitter release are required to trigger the action
potential at the postsynaptic membrane. Since there is a depletion
of vesicles with release, spiking probability of the auditory nerve
diminishes after a strong stimulus (adaptation). The model also
includes a refractory period of about 1 ms (Carney, 1993). The
generation of the action potential is a stochastic process due to
the implemented random vesicle fusion. A single inner hair cell
is connected to 20 synapses of the auditory nerve. Physiological
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FIGURE 2 | The periodicity analyzing neural model from Langner (2015) consists of two oscillators driven by the incoming auditory signal (Langner, 1981, 1983).

Trigger neurons shown in this schematic are frequency-specific t-stellate cells/ chopper neurons, which give rise to tonic firing in response to phasic firing by the

auditory nerve (Oertel et al., 2011). Successful periodicity analysis in the brain stem will result when coincidence activation takes place. Coincidence activation,

projecting to the auditory cortex, can also account for sparse coding in the auditory cortex while there is tonic/phasic firing at the level of the brain stem and periphery.

FIGURE 3 | Simulation results of the periodicity model without (Left) and with (Right) an inhibitory connection. The response results from 16 periodicity models tuned

to characteristic frequencies (CF) and best modulation frequencies (BMF) with the ratio 6:1 (CF/BMF). Stimuli are 256 combinations of 16 carrier and 16 modulation

frequencies. The carrier frequency axes corresponds to the CF of one periodicity model (from Voutsas et al., 2005).

and anatomical findings have led to the following simulation
paradigm (Figure 4). (A) Two or three chopper neurons (fast)
which are connected, can activate its subsequent neighbor,
operate as a pace-maker, and project to other chopper neurons
(slow) that have a longer refractory period. The fast neurons
act as a pace-maker with a clock-rate of 0.4 ms. The slower
chopper neurons which, due to longer refractory periods, skip
short intervals while producing outputs at the long intervals,
which are multiples of 0.4 ms. This reduces the number of the
chopper neurons that are required to produce ISIs longer than
0.8 ms. (B) The first of two additional inputs are transmitted
via five synapses from the auditory nerve fibers (Ferragamo
et al., 1998a). (C) The additional input comes from the onset
neuron and activates only one of the chopper neurons in the

circuit. The onset neuron (trigger) receives its broadband input
from the auditory nerve and excites one chopper neuron (fast).
Inputs from the auditory nerve depolarize the membrane of the
chopper neurons. This change in the membrane voltage enables
chopping but does not initiate it. The reason is that the weights
of auditory nerve synapses are adjusted in such a way that the
auditory nerve input alone cannot drive the membrane voltage
to the threshold. Instead, the chopping is initialized by a spike
from the trigger/onset neuron. The onset neuron is a simplified
version of the model that was proposed by Rothman and Manis
(2003) and is based on Hodgkin-Huxley (HH) equations. The
model consists of a sodium (INa), a low-threshold potassium
(ILTK), an excitatory synaptic (IE) and a leakage (Ilk) current. The
low threshold of the potassium channel opening is responsible
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for the onset neuron behavior (Rothman and Manis, 2003).
Simulation parameters of the adapted HH-like onset neuron can
be found in Bahmer and Langner (2006b). Chopper neurons
are modeled as leaky integrate-and-fire neurons with synapses
(Bleeck, 2000). The synapses are modeled as follows. The action
potential in the presynaptic neuron leads to the fusion of
vesicles, discharging neurotransmitters into the synaptic cleft.
The emission of vesicles is simulated by use of a look-up table.
The neurotransmitter molecules traveling in the cleft to the
postsynaptic neuron is modeled by diffusion. The decay of
neurotransmitter effect is simulated by a leaky integrator. The
probability of open channels for certain ions increases as the
concentration of neurotransmitter in the synaptic cleft becomes
higher. Various ions produce either excitatory or inhibitory
postsynaptic currents. A hyperbolic tangent function controls
the channel conductance. A time delay with adjustable jitter
(parameters: mean and standard deviation) that stands for the
overall neurotransmitter diffusion time was integrated in the
simulation. Details like the neuron and synapse model equations
and simulation parameters can be found in Bahmer and Langner
(2006b). The simulation of chopper neuron soma activity is based
on a leaky integrate-and-fire model. The incoming postsynaptic
currents from the synaptic inputs are integrated and build up
a postsynaptic potential while a leakage current diminishes the
input. When the potential reaches a predefined threshold, a spike
is elicited, and the membrane potential is reset. The absolute and
relative refractory period (exponentially decreasing) ensures that
the spike generation is suppressed or needs a stronger input,
respectively, for a given period of time. The time constant of
the fast chopper neurons in the simulation is set to 0.8 ms to
ensure a fast chopping; whereas the time constants of the slow
chopper neurons is set to higher values according to their low
chopping frequencies. The summed weight of the synapses of the
nerve is on average eight times lower in the simulations than
the weights of the synapses of the chopper and onset neuron.
Excitatory postsynaptic potentials lead to the subthreshold
depolarization of the membrane to enable chopping. This weak
auditory nerve input does not mean that the overall response
of the chopper neuron is low because the input from the
network also contributes to the response. As an alternative to
the leaky integrate-and-fire chopper neuron model described in
the previous section, the HH-like chopper model of Rothman
and Manis (2003) for the simulation environment NEURON
was simulated (Bahmer and Langner, 2010). According to the
results, the model has the disadvantage that it cannot reproduce
in vivo data of subpopulations of chopper neurons showing small
ISIs (e.g., 1.4 ms, Young et al., 1988). Moreover, the dynamic
range of the spike rate of real chopper neurons is about 200–300
spikes/s in average (Frisina et al., 1990). If this physiologically
dynamic range is applied to the simulation, the corresponding
ISIs in the simulation span a range of about 5–23 ms, whereas
in vivo values of ISIs differ much less with varying levels (e.g.,
Frisina et al., 1990). Therefore, the model was adapted by means
of genetic algorithms (Bahmer and Langner, 2010) which resulted
in cell parameters in a physiologically plausible range. For the
simulation of the modified model, the currents are varied in
NEURON and the corresponding voltage responses are saved.

FIGURE 4 | Periodicity model from Langner and Bahmer (Langner, 2015,

chapter 9). (A) The model topology of the “oscillator” (red circle) contains fast

and slow chopper neurons. (B) Corresponding “neuronal recordings.” In

Figure 2, the “oscillator” corresponds to oscillator circuit 1 and the “reducer”

to oscillator circuit 2.

The voltage responses were then analyzed in Matlab and the
ISIs were plotted versus the input strength. For the neuronal
modeling II, the auditory nerve input is modeled as a signal step
and the onset neuron is modeled as a single-spike generator.

5. SIMULATION OF A SMALL NETWORK
OF FAST PACEMAKER NEURONS IN THE
AUDITORY SYSTEM

Blackburn and Sachs (1989) classified (anterior ventral) cochlear
nucleus neurons using regularity analysis of ISIs. Important
parameters of this analysis were mean and standard deviation.
The coefficient of variation value (CV, ratio: standard deviation
to the mean of ISIs) enables a comparison of different units
of chopper neurons and different stimulus levels. The CV is
computed as a function of time. Sustained chopper neurons
are a subtype of chopper neurons and classified by a small
CV, indicating their highly regular ISIs. Figure 5 shows the
simulation results of the multi-oscillator and physiological data
of a sustained chopper neuron in the CN (Bahmer, 2007). Firing
rate and ratio of peak heights match their known physiological
properties. The data obtained after the simulation, such as firing
rate, number of peaks, and ratio of peak heights are similar to
electrophysiological data. Even the regularity analysis could be
matched to i data. In this simulation, a jitter (standard deviation
0.26 ms) is added to the synaptic delay of the interconnections of
the fast chopper neurons.

6. SIMULATION OF A SMALL NETWORK
OF SLOW PACEMAKER NEURONS IN THE
AUDITORY SYSTEM

Simulation with the adapted model (Figure 6, see also Bahmer,
2007) shows oscillations with ISIs of 0.8 ms duration. Two of
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FIGURE 5 | “Oscillator” response from Figure 4: Simulated chopper neuron (A,B) and recording of a sustained chopper neuron (C,D) in the CN of the cat (Blackburn

and Sachs, 1989). (A,C) Peri-stimulus time histogram (PSTH) response to 500 stimuli (bin width: 0.3 ms). (B,D) Regularity analysis: mean (µ), standard deviation (σ ),

and coefficient of variation (CV) of interspike intervals. For simulated and in vivo responses, stimuli were short tone bursts (25 ms, 1.6 ms rise and fall time) with

frequency at the CF of the chopper neuron (2.89 kHz), 30 dB above threshold.

FIGURE 6 | A set of chopper neurons provides time intervals that are multiples

of 0.4 ms by reducing a high-frequency input from a pacemaker micro-circuit.

these adapted neurons can mutually excite each other and act as
pacemaker. This pacemaker projects to other chopper neurons
that have slower time constants and, therefore, skip a certain
number of spikes. Nevertheless, the skipping results in ISIs with
are integer multiples of 0.4 ms (Figure 6). In the simulation, the
post synaptic current (Figure 7 left, PSC) drives the membrane
voltage of the slow chopper neuron to the threshold but due to
the refractory period several supra-threshold inputs are skipped.
Only action potentials at every third supra-threshold input are
elicited. Thus, action potentials are only elicited at every third
supra-threshold input (ISI: 1.2 ms). For a set of slow chopper
neurons, action potentials with various ISI (integer multiples of
0.4 ms) are generated which depends on the refractory period.
Note that the refractory period is not necessarily an integer
multiple of 0.4 ms, but is a continuous variable; however, ISIs are
integer multiples of 0.4 ms, corresponding to the periodic inputs
from the fast chopper neurons.

As it can be noted from equation 1, the solution for
the correlation of the integration period of the carrier, the

modulation frequency, and frequency of auditory oscillations is
constrained by integer values of m, k and n. The integer values
of m, k and n would represent the number of oscillations, which
are reached in respective circuits before integration, a correlate
of perception occurs. In fact, as discussed later, circuit patterns
found in the auditory system for an effective analysis of high
temporal informational content can be found throughout the
entire brain (Oertel and Young, 2004; Langner, 2015). We review
literature, which shows that many microcircuits, which employ
coincidence detection mechanism to temporally couple neural
events, are found across the brain.

7. INHIBITION OF THE SELF-EXCITING
OSCILLATOR MICROCIRCUIT IN THE
AUDITORY BRAIN STEM

The simulation of a cluster of chopper neurons shows that
oscillations with precise ISIs can be generated with the help of a
few neurons. Two or three interconnected fast chopper neurons
act as a pacemaker with a smallest temporal resolution of 0.4
ms projecting to the slow chopper neurons. The slow neurons
can skip supra-threshold inputs and generate outputs at longer
ISIs. In physiological measurement ISIs span a wide range of
durations (Young et al., 1988). In the simulation from Bahmer
and Langner (2006b), chopper neurons can excite each other as
observed in T-stellate cells (Ferragamo et al., 1998b). T-stellate
cells also receive an inhibitory input from D-stellate cells. This
input, in the presence of the input from the auditory nerve,
can inhibit the self-excitation of the network. In the simulation
from Bahmer and Langner (2006b), the offset at the end of
the input from the auditory nerve was sufficient to stop the
excitation of the network. In a future version, the input from D-
stellate cells shall be included as excitation must be balanced by
inhibition especially if the network contains more interconnected
chopper neurons. Furthermore, a combination of inhibitory and
excitatory inputs enhances the signal detection and provides
means of gain control by reducing noise by inhibition (Caspary
et al., 1994; Josephson and Morest, 1998).

For the fast chopper neurons, this input enables chopping;
it is a condition for starting and stopping the chopper neurons
and is necessary in a self-exciting network (Bahmer and Langner,
2007). But, in the context of the current model, this does not
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FIGURE 7 | (Left) Simulation of slow chopper neuron that receives input from two fast chopper neurons and the auditory nerve. (Right) Various integer multiples of

0.4 ms can be provided by a small number of chopper neurons, which receive an input from the same pacemaker.

seem to be necessary for the slow chopper neurons because
this functional role is substituted by the projection of the fast
chopper neurons. On the other hand, if an additional inhibition
of chopper neurons is included (see above: functional role of
inhibition of D-stellate cells) this input again seems reasonable.
However, if the inhibition is strong enough to mute the circuit,
the onset neuron would not activate the chopper neurons. With
the help of the excitatory inputs from the auditory nerve, the
inhibition is balanced, and the onset neuron is able to activate the
chopper neurons. Moreover, the integration of inhibition in this
model can plausibly enhance dynamic processing (Eguia et al.,
2010).

8. TRANSFORMATION OF INCOMING
AUDITORY INFORMATION INTO A SPARSE
CODE

Psychoacoustical studies in the past have indicated that the
perception of speech is not adequately accounted by place
frequency mechanisms (Rosen, 1992). The temporal information
represented in sounds is also important in the perception
of speech (Rosen, 1992). Therefore, it is noteworthy that a
recent theoretical work and a growing number of experimental
studies indicate that time-dimension is an integral part of
information processing underlying various perceptual functions
(Gupta, 2014; Gupta and Chen, 2016). Most natural sounds
are modulated in amplitude (Joris et al., 2004; Eguia et al.,
2010), and, thus, they are represented by two frequencies: a fast
frequency, which represents fine oscillations of sound waves and
a slow frequency of the amplitude modulation. The oscillations
of both frequencies, forming the structure of AM signals of
natural sounds processed by cochlea, help to represent physical
time-dimension (Gupta, 2014). The spike structure of the AM
signals is phase locked to the movements of inner hair cells,
which directly results from the pressure changes produced by
amplitude-modulated sound waves. Thus, oscillatory structure

of AM signals inputs temporal information into neural circuits
when they are processed by trigger neurons (Figure 2).Moreover,
this is consistent with the discussion of equation 1, based on
the periodicity analyzing model (Langner, 1981, 1983) which
suggests that both the carrier frequency of sounds as well as
its modulation frequency are responsible for the integration
underlying perception. The coincidence detection (Figure 2),
responsible for integration would result in a sparse code (Harris
et al., 2011), which would be processed in the cortical auditory
areas to create the perception of sound.

9. COINCIDENCE DETECTION VIA
DISTRIBUTED MICROCIRCUITS IS A KEY
MECHANISM FOR CONSCIOUS BRAIN
FUNCTIONS

Neural oscillations are hypothesized to play a pivotal role
in decoding the temporal information in ramping neuronal
activities (Gupta, 2014) that are commonly observed in the
cortex (Leon and Shadlen, 2003; Durstewitz, 2004; Lebedev
et al., 2008; Schneider and Ghose, 2012; Narayanan, 2016).
As discussed in the Introduction, temporal coupling of neural
events is important for various cognitive functions of the brain.
Moreover, the temporal coupling can be realized by coincidental
activation of neural circuits. Furthermore, our models support
the role of coincidence detection in the analysis of temporal
information in auditory signals. Coincidence detection would
play a key role in generating the information that produces
a consciously timed behavior. According to the schematic
in Figure 8, this information is processed when coincidence
detector neuron is stimulated by both, excitatory presynaptic
terminals controlled by gamma oscillations (Fries, 2015) as
well an increasing excitatory input coming from a ramping
neuronal activity. In this mechanism, the ramping activity of
neurons resembles an integrator and the oscillators periodicity
determine the limit of integration. A coincidence detection
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model (Figure 8), based on the periodicity analyzing model
for auditory signals proposed by Langner (2015), can provide
a basis for decoding the information coded by the pattern
of ramping activity. As argued by Gupta and Chen (2016),
action and perception are temporally coupled by hierarchical
neural oscillations. Consistent with this, a coincidence detection
of three events is depicted in Figure 8. Two of these events
are fast-(gamma) oscillations nested in the excitation phase of

a slow-oscillation (Figure 8C). The third event is the ramping
activity of a neuron (Figure 8A). The output of the neuron
with the ramping activity stimulates the neuron (Figure 8B)
in the brain area synchronized with the nested oscillation.
The neuron in (Figure 8B) will be stimulated when ramping
activity reaches the threshold, coinciding with the nested gamma
oscillations. The time-period from the start of the ramping
activity, called Integration Period, will encode the timing of the
action.

Cross-frequency coupling allows discrete packets of high
(gamma band) frequency oscillations to be formed across
larger areas of the brain synchronized by low (alpha and beta
bands) frequency oscillations (Buzsáki and Watson, 2012; Gupta
and Chen, 2016). The excitatory phase of neural oscillations
can increase the probability of coincidental firing of neurons
leading to information processing via discrete circuits in a
network. Furthermore, according to a leading modern theory
of perception, predictive coding, there is an interaction between
feedforward and feedback information (Friston, 2008). Cross-
frequency coupling would lead to integration by climbing
neuronal activities in the cortex during interaction between
feedforward and feedback circuits. Experimental evidence and
theoretical considerations, reviewed earlier (Bastos et al.,
2012), suggest that feedforward connections, predominantly
present in the superficial layers of the cortex, use higher
frequency oscillation (gamma range), compared to alpha or beta
frequency used by feedback connections in the deep cortical
layers.

Integration Period = p× τslow + q× τfast (2)

τslow and τfast are periodicities of slow- and fast-oscillations,
and p and q are integers. Ramping activities could also play
an important role in the analysis of multiple inputs that
underlies a decision process. Single cell recording from layer 5
in the primary motor cortex of rats had shown that there is
a strong modulation of specific neuronal activity when there
are unfamiliar movements, such as the right or left movements
(Cohen and Nicolelis, 2004), which is a suggestive of a decision
process. Moreover, the neurons in the cortical layer 5 send
axons to the thalamus, basal nuclei, brain stem as well as
the spinal cord to control motor movements (Crossmann and
Neary, 2010). Since the primary motor cortex receives inputs
from the prefrontal cortex and different sensory areas (Borra
and Luppino, 2017; Kheradmand and Winnick, 2017), ramping
activity may result from a variable balance of inputs from
many of these areas, which would be the basis for the decision
process.

FIGURE 8 | Coincidence detection of three events. Two of these events are

gamma oscillations nested in the excitation phase of a low-frequency

oscillation (C); the third event is a ramping activity of a neuron (A). The output

of the neuron ramping activity stimulates the neuron (B) in the brain area

synchronized with the nested oscillation. The neuron in (B) will be stimulated

when ramping activity reaches a threshold coinciding with the nested gamma

oscillations. The time-period from the start the ramping activity, called

Integration Period, will encode the timing of the action.

10. ANATOMICAL SUBSTRATES FOR
CANONICAL MICROCIRCUITS FOR
TEMPORAL PROCESSING IN THE BRAIN

The auditory system has evolved by adapting its internal
functional structures for a fast processing of incoming signals. As
outlined in the Introduction, a periodicity analysis of incoming
signals can be accomplished by simple neuronal elements
(Langner, 1981). These elements resemble components like
integrators, differentiators, and temporal coincidence detectors.
Even the occurrence of harmonics in the periodicity analysis—
the unwanted side effect of a correlation analysis see Figure 3—
is suppressed by a helical structure located in the lemnisculs
lateralis (Ochse, 2004; Voutsas et al., 2005; Langner, 2015).
Note that oscillations are ubiquitous in the brain as outlined
in the Introduction. However, in contrast to their specific
functional role as a temporal scale in the auditory brain stem,
they are rather seen as an epiphenomenon in other brain
areas, that is, no distinct meaning can be generally attributed
to a certain oscillation frequency. Nevertheless, oscillations are
a power tool for communication between neuronal networks
(Gray and Singer, 1989; Gray, 1994; Fries, 2015). Given that
temporal neuronal processing is enhanced by oscillations, it
is not surprising to find similar canonical microcircuits in
the brain (e.g., the cerebellum-like circuit pattern found in
the dorsal cochlear nucleus and pallidum, see Oertel and
Young, 2004). There are several parts of the brain that
contain helical-like structures after reconstructing from sections,
and resolved at the level of cells [Figure 9, ventral part of
the lemniscus lateralis, locus coeruleus, oculomotor nuclei,

Frontiers in Neuroscience | www.frontiersin.org 8 October 2018 | Volume 12 | Article 793137

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Bahmer and Gupta Auditory Oscillations as a General Model

amygdala, hippocampus (cornu ammonis 3), and pars compacta
and reticulata of the substantia nigra, Langner (2015)]. These
structures provide plausible anatomical solutions for processing
hierarchical oscillations as there could be at least two gradients of
frequencies in ensembles of neurons: one from periphery to the
center and the other between several turns of the helix (Langner,
2015).

11. OSCILLATIONS AS A TARGET FOR
BRAIN-COMPUTER-INTERFACES

It has always been a vision to interface the brain with a
computer to control brain functions. In the auditory system,
computer-brain interfaces have already become reality with the
development of cochlea, brain stem, and midbrain implants.
Cochlea implants stimulate the auditory nerve in the cochlea
with electrical impulses, brain stem implants are located in the
cochlear nucleus, midbrain implants in the inferior colliculus.
These implants are still undergoing further improvements
through research, and understanding the role of the oscillations
in the cochlear nucleus may be the key to further improvements.
In addition, a resonance phenomenon may help to locate target
structures for auditory brain stem implants. Ramsden et al.
(2016) have postulated the existence of chopper neurons with a
preference for certain oscillations periods (Bahmer and Langner,
2006a,b) as a target for electrical stimulation. Based on the
idea of targeting certain neuronal networks, strategies have
been proposed in electrical stimulation of neuronal networks
for cochlear implants, auditory brain stem implants, auditory
mid brain implants, as well as for deep brain stimulation
(Bahmer et al., 2009; Bahmer, 2016, 2017; Bahmer and Schleich,
2016). These stimulation strategies and alternative pulse shapes
(Bahmer et al., 2010; Bahmer and Baumann, 2016) may also

be useful for the deep brain stimulation in psychiatric diseases
(Buzsáki and Watson, 2012).

12. OSCILLATIONS UNDERLYING
AUDITORY STEADY STATE RESPONSES:
IMPACT ON SCHIZOPHRENIA AND
DEPRESSION

Studies have shown that the perception of sound waves is
associated with an increased inter-hemispheric interaction via
synchronization long-range gamma bands (Steinmann et al.,
2014). Gamma oscillations could play a key role during the
long-distance synchronization of local circuits in this inter-
hemispheric interaction (Buzsáki andWatson, 2012; Fries, 2015).
In each gamma cycle, there is a state of excitation, lasting
3 ms, which triggers an inhibition, lasting for the remainder
of the gamma cycle (Fries, 2015). The precision of the 3 ms
excitation in the gamma cycle may help to temporally align
neural events via long-range gamma band synchronization
(Steinmann et al., 2014) in circuits, subserving the perception
of sound waves in two hemispheres. Thus, the perception of
sounds could be causally related with the temporal coupling in
cortical areas, which would result from the coincidence detection
events, similar to the processing of auditory signals in the brain
stem.

In schizophrenia, which is characterized by the impairment
of the perceptual functions, patients often suffer from
hallucinations. Thus, it is not surprising that a meta-analytic
study finds that in schizophrenia, there is a reduction in the
power as well as phase locking values of the 40 Hz gamma-range
auditory steady state responses (ASSR) (Thuné et al., 2016). This
is consistent with a reduction in the temporal coupling of neural

FIGURE 9 | (Left) Example for a helical-like structure in the hippocampus. (Right) Helical-like structures can be seen in various locations in the brain, such as the

basal ganglia (substantia nigra), reticular formation (locus coeruleus), and limbic system (hippocampus, amygdala), both reproduced from Langner (2015) with

permission.

Frontiers in Neuroscience | www.frontiersin.org 9 October 2018 | Volume 12 | Article 793138

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Bahmer and Gupta Auditory Oscillations as a General Model

activities, processing sound stimuli in schizophrenia, which
would be responsible for the impairments in sound perception,
contributing to auditory hallucinations. In addition, ASSR is also
affected in bipolar disorder (Rass et al., 2010).

Depression is the most prevalent psychiatric disease (a
roughly 20% lifetime incidence in Western populations) and
the third largest amongst all illnesses in the world (Mathers
et al., 2008). Abnormal differences in oscillations after auditory
stimulation have been found between depressed patients versus
controls (Iosifescu, 2011). Treatment options are restricted,
and the medication success is often based on trial-and-error
and a relevant question is whether a particular measure can
predict the outcome of the treatment (Buzsáki and Watson,
2012). Interestingly, the loudness-dependence of auditory evoked
potentials, can determine the responsiveness to serotonergic
versus non-serotonergic antidepressants (Hegerl and Juckel,
1993; Iosifescu, 2011).

13. CONCLUSION

In this review, we discuss how temporal information in auditory
signals can be accurately analyzed by means of the oscillating
activity of chopper neurons in the brain stem. This analysis
involves the activation of coincidence neurons, which detects
the temporal coupling between the discharges by circuits of
chopper neurons with a regular firing pattern, and the integrator
neurons with a ramping activity pattern (Figure 4), which would
project to the cortex as a sparse code. Moreover, neurons

with ramping activity, resembling the integrator neurons, are
commonly found across the cortex. Mechanisms involving
coincidence detection neurons, modulated by nested gamma
oscillations may contribute to the information processing that
decodes the activity of ramping neurons (Figure 8). Additionally,
it should be noted that the coincident activation only detects
spatiotemporal convergence of neural events; however, primary
triggering events may be few milliseconds apart (Fries, 2015).
Coincidence detection of neural events, is also likely to form
the basis of a variety of perceptions, such as sensations of
smell, sound, even the spatial perception of visual objects.
As noted above, the impairments of temporal coupling could
also contribute partly to the defects of conscious functions in
schizophrenia, bipolar disorder, depression, just to name a few.
Accordingly, the future investigations of the temporal coupling
in the brain may help us develop new treatments of some of the
most socially devastating ailments.
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Visual crowding is the difficulty experienced in identifying a target flanked by other
objects within the peripheral visual field. Despite extensive research conducted on
this topic, the precise relationship between attention and crowding is still debatable.
One perspective suggests that crowding is a bottom-up and pre-attentive process,
while another suggests that crowding is top-down and attentional. A third perspective
proposes that crowding is a combination of bottom-up and top-down processes.
To address this debate, the current study manipulated the attention and distance
between targets and flankers, while simultaneously measuring event-related potentials,
in human participants. Results indicated that, compared to uncrowded targets, crowded
targets elicited more negative frontal N1 and P2 activity and a less negative occipital
N1 activity, regardless of whether targets were attended or unattended, and a more
positive occipital P2 activity when they were attended. Furthermore, the crowded minus
uncrowded difference amplitude was more negative over the frontal region and more
positive over the occipital region when the targets were attended, compared to when
they were unattended during the N1 and P2 stages. This suggests that crowding,
a concept that originates from Gestalt grouping, occurs automatically and can be
modulated by attention.

Keywords: crowding, attention, Gestalt grouping, event-related potentials, temporal dynamic

INTRODUCTION

The crowding effect is a visual phenomenon in which objects are easily identified in isolation,
but become more difficult to identify when surrounded by other objects in the peripheral visual
field (Pelli and Tillman, 2008). In a typical scenario, a letter can be identified when it is presented
alone, but it cannot be recognized when it is flanked by other letters (Pelli et al., 2004). In addition
to English letters, the identification of various other targets has been found to deteriorate in the
presence of neighboring objects, including orientation signals (van den Berg et al., 2010), Chinese
characters (Yeh et al., 2012; Peng et al., 2013; Zhou et al., 2016), and faces (Farzin et al., 2009).
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The relationship between attention and crowding has been
the focus of several recent studies. One perspective suggests
that crowding is bottom-up and pre-attentive. This assertion
is based on the notion that crowding occurs at a lower visual
processing level. An early view suggested that the neural activity
caused by flanking objects decreases neural activity related to
the target due to lateral inhibition (Westheimer and Hauske,
1975). Another view, based on spatial pooling, posits that features
from both targets and flankers are pooled, and that these features
are compulsorily averaged (Parkes et al., 2001) or combined
into a jumbled percept (Levi, 2008; Pelli and Tillman, 2008).
Consistent with the pre-attentive account of crowding, Põder
(2006, 2007) demonstrated the important role of bottom-up
salience in the binding of visual features, which determines the
observed extent of crowding. Dakin et al. (2009) indicated that
crowding does not reflect an attentional limit, and that crowding
and attention rely on distinct neural mechanisms. Specifically,
crowding persists even when people are completely unaware
of the flankers, which suggests that conscious awareness and
attention are not prerequisites for crowding (Ho and Cheung,
2011). Furthermore, Yong et al. (2014) examined the question
of why individuals with posterior cortical atrophy (PCA) show
excessive crowding in central vision and suggested that crowding
in PCA can be regarded as a pre-attentive process that uses
averaging to regularize the pathologically noisy representation of
letter feature positions.

Another perspective of this topic suggests that crowding
is top-down and attentional. This is based upon the idea
that crowding occurs at a higher processing level. Therefore,
while crowded targets can be perceived, the coarse attentional
resolution in peripheral vision limits access of crowded targets
to the consciousness (He et al., 1996, 1997). A probabilistic
substitution model assumes that crowding results from binding a
target and nearby distractors to incorrect spatial locations (Ester
et al., 2014, 2015). This perspective has been supported by several
studies. Attention improves performance at peripheral locations
by enhancing spatial resolution (Yeshurun and Carrasco,
1998). Furthermore, attention reduces the critical target–flanker
distance at which the flankers no longer interfere with target
identification (Yeshurun and Rashal, 2010). Moreover, attention
can be directly guided to various flankers. In a study examining
this, attended flankers produced typical lateral interactions,
while ignored flankers did not (Freeman et al., 2001). Attention
modulates target–flanker integration, rather than just the
processing of local flanker elements (Freeman et al., 2003).
However, strong and specific attentional modulation of contour–
integration mechanisms in early vision are sensitive to collinear
configurations (Freeman et al., 2004). Therefore, covert attention
to stimuli can increase the weights of their pooled features during
crowding (Mareschal et al., 2010).

Electrophysiological studies suggest that attention plays
a critical role in crowding. For instance, evidence from
an attention-related N2pc component showed that attention
functions to minimize interference from flankers at intermediate
target–flanker distances (Hilimire et al., 2009, 2010; Bacigalupo
and Luck, 2015). Additionally, evidence from a sustained
posterior contralateral negativity (SPCN) study showed that

working memory may be recruited when attention fails to select
the target at small target–flanker distances (Bacigalupo and
Luck, 2015). The earliest ERP component, C1, which originates
from V1 areas, is suppressed by crowded targets, whereas no
suppression of C1 is found if the crowded targets are not
attended. This indicates that attention-dependent V1 suppression
contributes to crowding at a very early stage of visual processing
(Chen et al., 2014). Chicherov et al. (2014) suggested that the
P1 component reflects basic stimulus characteristics (i.e., flanker
length), and N1 suppression reflects the occurrence of crowding
when targets and flankers are grouped into wholes.

A third perspective suggests that crowding is a combination
of bottom-up and top-down processes (i.e., crowding occurs
automatically and can be modulated by attention). This
perspective comes from the Gestalt grouping hypothesis of
crowding. Increasing evidence shows that Gestalt grouping is
critical for crowding (Malania et al., 2007; Saarela et al., 2009;
Sayim et al., 2010). These findings are well explained by the
hypothesis that crowding is strong when the flankers are grouped
with the target and weaker when the target is segregated from
the flankers (Manassi et al., 2012; Herzog et al., 2015; Herzog
and Manassi, 2015). For instance, a cortical neural network
model has been proposed that uses perceptual grouping and a
novel segmentation process to account for several properties of
visual crowding, such as effects of flanker length, the number of
flanker lines, Gestalt effects, uncrowding effects, and similarity
effects (Francis et al., 2017). While the relationship between
Gestalt grouping and attention is well known, it is important
to note that Gestalt grouping occurs automatically. Thus, visual
stimuli that is irrelevant to a given task can be grouped without
attention (Russell and Driver, 2005; Lamy et al., 2006), and
the formation of visual object representations by grouping can
occur outside the focus of voluntary attention (Müller et al.,
2010). Electrophysiological evidence has shown that Gestalt
stimuli automatically capture attention (Marini and Marzi, 2016).
Further, Gestalt grouping has been shown to be modulated by
attention. For example, grouping can be modulated by task
relevance and attention as early as 100 ms after onset of sensory
stimulation (Han et al., 2005), with this interaction between
attention and grouping taking place as early in the perceptual
process as the primary visual cortex (Wu et al., 2005; Khoe et al.,
2006).

The relationship between attention and crowding needs
further elucidation. First, additional evidence is necessary to
test whether crowding can occur automatically. Behavior studies
have shown that crowding is distinct from attention (Dakin
et al., 2009) and occurs automatically (Ho and Cheung, 2011;
Yong et al., 2014). Yet, several studies have emphasized that
attention plays a crucial role in crowding, and that crowding
may not occur completely automatically (Herzog et al., 2015;
Francis et al., 2017). While N1 components have been found
to be suppressed when observers discriminate crowded targets
(Chicherov et al., 2014; Ronconi et al., 2016), no study to date has
reported whether the N1 signal can be suppressed by crowded
targets if they are unattended. Additionally, more direct evidence
needs to be provided for the attentional modulation of crowding.
Chicherov et al. (2014) reported that N1 suppression was much
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stronger when the task was to discriminate the crowded Vernier
as compared with the flankers length discrimination task. In this
task, targets and flankers were in very close proximity, especially
for crowded targets; thus, the Vernier may be attended to a
certain extent, and this may lead to a slight N1 suppression in the
length discrimination task. In the ideal situation, it is necessary
to examine the N1 suppression elicited by crowded targets both
when the targets are attended and when they are not.

The present study focused on the temporal dynamic
relationship between crowding and attention. We combined a
crowding paradigm (Yeh et al., 2012; Peng et al., 2013; Zhou et al.,
2016) with a cross-modal delayed response oddball paradigm
(Wei et al., 2002; Chen et al., 2010). The intermodal selective
attention paradigm has been shown to effectively manipulate
attention (Alho, 1992; Woods et al., 1992). The cross-modal
delayed response paradigm can effectively control attention and
minimize target effects (Wei et al., 2002). A series of auditory and
visual stimuli are presented in sequence. The presentation of an
attended visual stimulus (e.g., a crowded or uncrowded target) is
followed by zero, one, or two unattended auditory stimuli (e.g., a
tone) and a response signal. This order can also be reversed (e.g.,
the tone is the attended stimulus, and the crowded or uncrowded
target is the unattended stimulus). Participants are required to
identify signals of the attended modality, ignore those of the
unattended modality, and wait to respond until presentation of
the response signal.

Given that crowding is reflected by N1 suppression
(Chicherov et al., 2014; Ronconi et al., 2016), three hypotheses
on the relationship between attention and crowding can be
tested. First, if crowding is bottom-up and pre-attentive, N1
should be suppressed by crowded targets when the targets are
not unattended. Next, if crowding is top-down and attentional,
N1 suppression would be stronger when the crowded targets
are attended than when unattended. Finally, if crowding is a
combination of bottom-up and top-down processes, the above
two predictions would be observed simultaneously.

Further, additional evidence can be provided to test the Gestalt
grouping hypothesis by a measurement of the P2 component.
A study reported that P2 engages in grouping elements into
a unitary object (Flevaris et al., 2013). If crowding originates
from Gestalt grouping, similar results to the N1 stage would
be observed during the P2 stage. In other words, a significant
difference in P2 amplitude between crowded and uncrowded
targets, both in the attended and unattended conditions, will
be observed, and the crowded minus uncrowded difference
amplitude will be modulated by attention.

MATERIALS AND METHODS

Participants
Eighteen right-handed undergraduate students (two males, 19–
24 years of age) participated in this experiment. One participant
(female, 23 years of age) was excluded because of excessive
eye movement and blinking during the experiment. Participants
were not taking any medications and did not suffer from any
central nervous system abnormalities or injuries. All were naive

to the purpose of the experiment. The study was approved by
the institutional review board of Southwest University. Written
informed consent was obtained from each participant. The
experimental procedure was conducted in accordance with the
Declaration of Helsinki (World Medical Association, 2013).

Experimental Material and Apparatus
Visual stimuli were 20 Chinese single-character words, four
Chinese pseudo-characters, a fixation, and a visual response
signal. Ten Chinese words indicated animals (e.g., means
elephant), and ten indicated inanimate objects (e.g., means
home). Four pseudo-characters were made from stroke features
using TrueType software. They were white, single-bodied, and
had no semantic meaning (Peng et al., 2013). The visual angles
of all the characters were 1 × 1◦. The fixation point was a white
dot with a diameter of 0.4◦. The visual response signal was a red
square with a width of 0.5◦. Visual stimuli were presented on a
22-inch Iiyama MA203DT D color monitor with a background
screen color of medium gray (RGB color coordinates: 128, 128,
128). The refresh rate of the computer monitor was 85 Hz. The
computer screen was placed approximately 80 cm in front of the
participants’ eyes.

Auditory stimuli were two sinusoidal tones and an auditory
response signal. The sinusoidal tones were delivered with 1000 or
800 Hz at 30 ms, 60 dB HL. The auditory response signal was a
faint click at 500 Hz, 30 ms, 20 dB HL. All auditory stimuli were
presented binaurally through earphones.

Procedure
The experiment employed a cross-modal delayed response
oddball paradigm (Figure 1; Wei et al., 2002; Chen et al.,
2010). Participants were asked to fixate on the center of the
screen and put on earphones. Each participant carried out
two tasks. Task 1 involved attending to visual stimuli and
ignoring auditory stimuli; Task 2 involved attending to auditory
stimuli and ignoring visual stimuli. The orders of the two tasks
(attending visual and attending auditory) were counterbalanced
between participants. Both Task 1 and Task 2 included 800 trials.
Participants were provided rest for 30 s after finishing 100 trials,
and for 2 min after finishing a task. The experimental procedure
was programmed with E-prime 1.1.

Task 1: Attending to Visual Stimuli While Ignoring
Auditory Stimuli
Participants were instructed to attend to visual signals and ignore
auditory signals (Figure 1A). They were required to fixate on
the center point throughout the study and to view targets only
utilizing peripheral vision. At the beginning of each trial, a
white fixation dot was presented at the center of the screen for
500–700 ms. A target word and two flankers (flanker, target,
flanker) were randomly presented for 1000 ms in either the left
or right visual field on the horizontal meridian. The eccentricity
of the target was 6◦, and the spacing between the target and the
flankers was at either 1◦ (crowded trials) or 4◦ (uncrowded trials).
The crowded and uncrowded targets were presented randomly.
According to a typical oddball paradigm (Hillyard et al., 1973),
we set animal targets as deviant stimuli with a small probability
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FIGURE 1 | Schematic illustration of the stimulus display sequence. (A) Attending to visual stimuli while ignoring auditory stimuli. (B) Attending to auditory stimuli
while ignoring visual stimuli. The Chinese character means elephant and means home.

(20%) and inanimate targets as standard stimuli with a large
probability (80%). There were 160 animal targets, including 80
crowded and 80 uncrowded targets, and 640 inanimate targets,
including 320 crowded and 320 uncrowded targets. Two flankers
were selected randomly from the four pseudo-characters. After
a randomized delay of 500–700 ms, 0–2 tones were presented.
The duration of each tone was 30 ms. The time interval between
the two tones was 500–700 ms. The frequency of 640 tones was
800 Hz, while 160 tones were 1000 Hz. Finally, a visual response
signal (a small red square) was presented for 30 ms after a
randomized inter-stimulus interval of 500–700 ms. Participants
were required to judge the meanings of targets and to make
responses by pressing one of the two mouse buttons with the
thumb of either hand. Half of the participants were instructed to
press the left mouse button if the meaning of target word was
not an animal and to press the right mouse button if the target’s
meaning was an animal, whereas the other half of the participants
were instructed to perform the opposite action. Once the small
red square appeared, participants were required to respond as
quickly and accurately as possible. The next trial was presented
once the participants had responded; the maximum time interval
for response was 2000 ms.

Task 2: Attending to Auditory Stimuli While Ignoring
Visual Stimuli
Participants were instructed to attend to auditory stimuli and
ignore visual stimuli (Figure 1B). A tone (0–2 crowded or
uncrowded words) and a faint click were presented successively.
A randomized delay of 500–700 ms was inserted between the two

stimuli. Participants were asked to discriminate the tone pitches
and hold their response until the response signal (the faint click)
was presented at the end of the trial. Half of the participants were
instructed to press the left mouse button if the pitch was 800 Hz
and to press the right mouse button if the pitch was 1000 Hz,
while the other half of the participants were instructed to do the
opposite. Other details of the task were the same as those reported
in Task 1.

Electrophysiological Recording
Continuous electroencephalogram (EEG) was acquired from
Ag/AgCl electrodes mounted on a Quick-Cap (Neuroscan Inc.).
Sixty-four electrodes were positioned according to the extended
10–20 system. All EEG electrodes were referenced to the left
mastoid. The horizontal electrooculogram (EOG) was acquired
using a bipolar pair of electrodes positioned at the external
ocular canthi, and vertical EOGs were recorded from electrodes
placed above and below the left eye. The EEG and EOG were
digitized at 500 Hz with an amplifier bandpass of 0.05–100 Hz
and were stored for offline analysis. All electrode impedances
were maintained below 5 k�.

EEG Analysis
EEGLAB (Delorme and Makeig, 2004) and MATLAB (The
MathWorks, Inc., Massachusetts, United States) were used for
offline EEG data processing. Continuous EEG data were re-
referenced to the average of the right and left mastoids and
were digitally low-pass filtered at 40 Hz. ERPs were time-locked
to the onset of the target words, with an average epoch of
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700 ms, including a 100 ms pre-stimulus baseline. All trials, no
matter whether the response was correct or not, were included in
analysis.

Ocular artifacts were rejected using a two-step procedure
(Woodman and Luck, 2003; Luck, 2005). In the first step, for each
point in the epoch, the mean value of the preceding 100 ms and
that of the subsequent 100 ms were determined, and a difference
value between two mean values was calculated. After this action
was performed for each point, the largest difference value was
compared with a threshold to determine whether the trial should
be rejected. The single-trial waveforms were checked by visual
inspection to determine a threshold value for each individual
participant. Using the threshold, all clearly visible artifacts were
rejected without the rejection of large numbers of artifact-free
trials. We also excluded any participant for whom more than 25%
of the trials were rejected owing to eye movements (Woodman
and Luck, 2003). One participant’s data were excluded from the
analysis because artifacts led the rejection of 46.8% of trials. On
average, 11.4% of trials, ranging from 1.9 to 21.4% were rejected
for the 17 remaining participants.

In the second step, the average horizontal EOG waveforms
for left-target and right-target trials were calculated to assess the
degree of residual eye movement activity. The average difference
in voltage between left-target and right-target trials was less than
2.7 µV, which corresponded to an average eye movement of less
than 0.2◦ (Lins et al., 1993; Zhang and Luck, 2009). Thus, it was
determined that subjects were able to maintain fixation on the
central fixation point throughout the task.

P1 (peaking at about 90 ms), N1 (about 160 ms), and P2
(about 230 ms) components were elicited by both crowded and
uncrowded targets in both attended and unattended conditions
(Figure 3). As shown in Figure 3, ERP component amplitude
was measured from the mean amplitude of the 40-ms window
centered at the grand average ERP peak latency and was
separately determined for each condition (Näätänen et al., 2004).

The regions of interest (ROIs) were chosen according to
previous studies and topographic information regarding P1, N1,
P2, and crowded minus uncrowded wave differences observed
in the current study (Figures 4, 5). Previous studies revealed
the functional significance of the occipital region in crowding
(Chen et al., 2014; Chicherov et al., 2014). The P1, N1, and
P2 were predominantly distributed over the frontal, central,
or occipital regions (Figure 4). As shown in Figure 5, results
are consistent with previous studies that positive occipital
distribution is accompanied by a negative frontal distribution
(Clark and Hillyard, 1996; Flevaris et al., 2013). Thus, frontal and
occipital electrodes were chosen as ROIs. ERP amplitudes at the
F1, F2, F3, F4, F5, F6, and Fz electrode sites were averaged as
measures of the frontal cluster, and those at the O1, O2, Oz, PO7,
PO8, P7, and P8 electrode sites were averaged as measures of the
occipital cluster (Zhang and Luck, 2009).

Planned comparisons were performed to address specific
hypotheses. In order to assess whether crowding occurs
automatically, each ERP component (P1, N1, and P2) was
subjected to a paired samples t-test. These tests were conducted
on the mean amplitude of ERP components to determine whether
the means of the crowded and uncrowded conditions were equal.

Paired t-tests were conducted in the attended and unattended
conditions over both the frontal and occipital regions (four tests
for each ERP component). To obtain a family wise confidence
level of 0.95, a Bonferroni correction was used to adjust each
individual confidence interval of 0.9875, and the corresponding
significance level was set at 0.05/4 = 0.0125 (Armstrong, 2014).

In order to assess whether attention modulates crowding,
difference amplitudes were obtained by subtracting the
amplitudes of uncrowded ERP components from that of
crowded ERP components in the attended and unattended
conditions, respectively. For each ERP component, a paired
sample t-test was conducted on the difference amplitudes to test
whether the means of the attended and unattended conditions
were equal. Paired t-tests were conducted over both the frontal
and occipital region (two tests for each ERP component). The
corresponding significance level was 0.05/2 = 0.025. Cohen’s d
was used to estimate the effect size of the t-tests.

RESULTS

Behavioral Data
Accuracy was computed for each participant in the crowded,
uncrowded, and auditory conditions (Figure 2). A one-way,
repeated measures analysis of variance (ANOVA) that was
performed on accuracy scores revealed a significant main effect
of condition [F(2,32) = 23.853, p < 0.001, ηp

2 = 0.599].
Specifically, accuracy was significantly lower in the crowded
(ranging from 39 to 79%) than in the uncrowded condition
(ranging from 53% to 96%) [t(16) = −7.396, p < 0.001, Cohen’s
d = −1.794]. However, the accuracy difference between the
uncrowded and auditory (ranging from 58 to 98%) conditions
was not significant [t(16) = −0.144, p > 0.05, Cohen’s d = 0.035].
The results indicated that crowding led to a significant decline
in performance, and that the identification of uncrowded targets
had approximately the same level of difficulty as that observed in
the auditory task.

Event-Related Potential Data
Figures 3, 4 shows ERP waveforms elicited by crowded and
uncrowded targets in both attended and unattended conditions.

FIGURE 2 | The accuracy of the crowded, uncrowded, and auditory tasks.
The error bars indicate standard error.
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FIGURE 3 | Butterfly plots of grand average event-related potentials and topographies. Crowded (A) and uncrowded (B) targets in the attended condition; crowded
(C) and uncrowded (D) targets in the unattended condition.

An obvious separation between the crowded and uncrowded
targets appeared during the N1–P2 stage (Figure 4). Figure 5A
shows wave amplitude differences obtained by subtracting
uncrowded ERPs from crowded ERPs in the attended and
unattended conditions. Figure 5B shows the topographic results
of the crowded minus uncrowded difference waves in the
attended and unattended conditions during the P1, N1, and
P2 stages. Compared with difference in amplitude wave in the
unattended group, the difference in the amplitude wave of the
attended group was more negative over the frontal region and
more positive over the occipital region during the N1 and P2
stages (Figure 5).

Planned comparisons showed that crowded targets elicited a
more positive P1 amplitudes compared with uncrowded targets
in the attended condition [t(16) = 3.132, p < 0.01, Cohen’s
d = 0.760] and in the unattended condition [t(16) = 4.094,
p< 0.01, Cohen’s d = 0.993] over the frontal region. However, the
difference between the crowded and uncrowded conditions was
not significant in the attended and unattended conditions over
the occipital region (p-values > 0.05; Figure 6A).

For the difference in wave amplitude (crowded – uncrowded)
during the P1 stage, planned comparisons did not reveal
any significant differences between the attended and
unattended conditions over the frontal and occipital regions
(p-values > 0.05).

Planned comparisons showed that crowded targets elicited a
more negative N1 amplitude compared with uncrowded targets

FIGURE 4 | The average event-related potentials for crowded and uncrowded
targets in the attended and unattended conditions. The analysis windows for
crowded and uncrowded conditions were marked with magenta and black
rectangles, respectively.

in the attended [t(16) = −4.829, p < 0.001, Cohen’s d = −1.171]
and unattended [t(16) = −2.980, p < 0.01, Cohen’s d = −0.723]
conditions over the frontal region. The crowded targets elicited
a less negative N1 amplitude compared to uncrowded targets in
both the attended [t(16) = 5.159, p < 0.001, Cohen’s d = 1.251]
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FIGURE 5 | Difference in crowded minus uncrowded wave amplitudes (A) and topographies (B) in the attended and unattended conditions.

FIGURE 6 | Amplitude of P1 (A), N1 (B), and P2 (C) components in the
attended and unattended conditions over the frontal and occipital regions.
Error bars indicate standard error.

and unattended [t(16) = 3.394, p < 0.01, Cohen’s d = 0.823]
conditions over the occipital region (Figure 6B).

During the N1 stage, planned comparisons revealed that
the difference amplitude was more negative in the attended
(−1.289 ± 0.267 µV) than in the unattended condition
(−0.516 ± 0.173 µV) over the frontal region [t(16) = −2.852,

p< 0.025, Cohen’s d = −0.692]. Further, the difference amplitude
was more positive in the attended (1.410 ± 0.273 µV) than in
the unattended condition (0.804 ± 0.237 µV) over the occipital
region [t(16) = 2.665, p < 0.025, Cohen’s d = 0.646].

Planned comparisons showed that the crowded targets elicited
less positive P2 amplitudes compared with the uncrowded
targets in the attended [t(16) = −3.706, p < 0.01, Cohen’s
d = −0.899] and unattended [t(16) = −3.461, p < 0.01, Cohen’s
d = −0.839] conditions over the frontal region. Over the
occipital region, the crowded targets elicited a more positive
P2 amplitude as compared with the uncrowded targets in the
attended condition [t(16) = 3.701, p < 0.01, Cohen’s d = 0.898],
whereas there was no significant difference between the crowded
and uncrowded targets in the unattended condition (p > 0.05;
Figure 6C).

In the P2 stage, the difference amplitude was more negative
in the attended (−1.996 ± 0.539 µV) than in the unattended
condition (−0.7648 ± 0.221 µV) over the frontal region
[t(16) = −2.829, p < 0.025, Cohen’s d = −0.686], whereas it was
more positive in the attended (1.038 ± 0.280 µV) than in the
unattended condition (−0.473 ± 0.240 µV) over the occipital
region [t(16) = 5.255, p < 0.001, Cohen’s d = 1.275].

DISCUSSION

The present study combined a selective attention paradigm
with a crowding paradigm to identify the relationship between
attention and crowding. Consistent with previous studies (Pelli
et al., 2004; Yeh et al., 2012; Peng et al., 2013), the ability
to discriminate crowded targets dropped sharply compared to
uncrowded targets (Figure 2). Additionally, the present study
reproduced the N1 suppression in the crowding task (Chicherov
et al., 2014; Ronconi et al., 2016). Furthermore, the current results
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suggest that crowding indeed occurs automatically and can be
modulated by attention.

We found that crowded targets evoked a more positive
P1 component compared to uncrowded targets, irrespective of
whether they were attended or unattended. Previous studies
have shown that the P1 wave reflects early visual processing of
low-level characteristics of stimuli, such as luminance, intensity,
eccentricity, and size (Johannes et al., 1995; Busch et al., 2004;
Schadow et al., 2007). Chicherov et al. (2014) reported that the
P1 amplitude positively correlated with the length of flankers in
a Vernier crowding task. Consistent with the findings of such
previous studies, P1 was found to reflect the early, lower-level
visual processing of stimulus characteristics in the present study.

We found that the N1 was largest over the frontal–central
region or occipital region (Figure 3), which is consistent with
a previous study that a posterior N150 was distributed over the
occipitoparietal region, and an anterior N155 was distributed
over the frontal–central region (Di Russo et al., 2002). A posterior
N1 component is usually accompanied by a smaller frontal
component with reverse polarity (Clark and Hillyard, 1996). It
may be in part due to volume transmission (Hedge et al., 2015).
However, the entire frontal N1 is not due to volume transmission
of N1 from occipital areas, but an overlap of a small positive
component and a negative N155, thus we did not observe a
frontal N1 component with reverse polarity in the current study.
It is consistent with a notion that ERP events can be a complex
result of underlying neural phenomena, which are difficult to
study (Luck, 2014). Only one thing can be certain is that the
timing of the ERP event in occipital and frontal areas (Luck,
2014).

Additionally, the current study found that crowded targets
elicited a more negative frontal N1 and a less negative occipital
N1 compared with uncrowded targets, irrespective of whether
they were attended or unattended (Figure 4). These results
replicated the findings of the occipital N1 suppression of
crowding (Chicherov et al., 2014; Ronconi et al., 2016) and
were consistent with the previous finding that crowding is
associated with a suppression of V1, regardless of whether
targets were attended or unattended (Millin et al., 2014). These
results are in line with the bottom-up and pre-attentive account
of crowding. Furthermore, the current study found that the
difference in amplitude of the crowded minus uncrowded wave
during the N1 stage was more negative over the frontal and
more positive over the occipital region, when the targets were
attended (Figures 5, 6). These results are in line with the top-
down and attentional account of crowding. Thus, the current
study provided electrophysiological evidence that crowding
occurs automatically, and that it can be modulated by attention.
The lateral inhibition and spatial pooling hypotheses predict
that crowding occurs automatically (Westheimer and Hauske,
1975; Parkes et al., 2001), while the attentional resolution
hypothesis predicts that crowding can be modulated by attention
(He et al., 1996, 1997). However, these crowding hypotheses
cannot fully predict the relationship between attention and
crowding. The Gestalt grouping principle is more applicable
to the current study. When the flankers and targets were
closer, they were grouped, and therefore, crowding occurred.

The Gestalt grouping hypothesis predicts that crowding is
a combination of bottom-up (Müller et al., 2010; Marini
and Marzi, 2016) and top-down (Wu et al., 2005; Khoe
et al., 2006) processes. The current results most closely align
with predictions made by the Gestalt grouping hypothesis of
crowding.

In addition, the present findings of the P2 component are
consistent with the Gestalt grouping hypothesis of crowding.
Similar to the N1 component, the current study found that,
crowded targets (compared to uncrowded targets) elicited a more
negative frontal P2, irrespective of whether the targets were
attended or unattended, as well as a less negative occipital P2
when targets were attended (Figure 4). Further, the difference
in the crowded minus uncrowded wave amplitude during the
P2 stage was more negative over the frontal and more positive
over the occipital region when the targets were attended than
when they were unattended (Figures 5, 6). It was also noted
that the topographic elements of the difference waves were
similar during the N1 and P2 stages (Figure 5B). A previous
study reported that irrelevant probes superimposed on a moving
image elicited an enhanced P2 component when the probes were
contained within the boundaries of an object that was perceived
as unitary, and that the topography of the P2 elicited by probes
during object perception was distinct from that during fragment
perception. These results indicate that the P2 wave is associated
with grouping elements into unitary objects (Flevaris et al., 2013).
Similar to the N1 component, P2 was found to be associated with
Gestalt grouping in the present study.

The effects of target presentation time deserve further
consideration. The presentation time of targets was 1 s in the
present study, which was in line with the procedure followed
in a previous study (Peng et al., 2013). Both the onset and
offset of targets elicit neural activity (Baltzell and Billings, 2014).
Using a long presentation time, we can avoid the overlapping
of the neural activity of the offset with that of the cognitive
process that we examined. However, more eye movement might
be caused by visual stimuli with a longer presentation time.
The current study rejected ocular artifacts using a two-step
procedure (Woodman and Luck, 2003; Luck, 2005) and found
that the remaining average eye movement was less than 0.2◦.
Thus, the effect of eye movement was excluded from ERP data. In
addition, a longer presentation time may result in targets being
able to access consciousness. The cross-modal delayed response
of the oddball paradigm has been shown to control attention
effectively; P300 component, an index of working memory and
conscious perception (Salti et al., 2012), was only observed
in the attended condition (Wei et al., 2002). This indicates
that Wei et al.’s paradigm can exclude conscious access before
and during the P300 stage in the unattended condition. The
current study focused upon P1 (peaking at about 90 ms), N1
(about 160 ms), and P2 (about 230 ms) components. These
components are earlier than P300, thus these components are not
affected by consciousness in the unattended condition. Though
we cannot exclude the possibility that the unattended targets
access consciousness after the P300 stage, this does not affect the
explanations of the findings on the P1, N1, and P2 components
in the current study.
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Finally, analytical methods used were checked to determine if
they affected the conclusions of the current study. For instance,
a two-step procedure to reject ocular artifacts (Woodman
and Luck, 2003; Luck, 2005) was used. This procedure was
utilized in a previous study on neural correlates of visual
crowding (Chicherov et al., 2014). A separate study on the
neural oscillatory correlates of crowding used Independent
Component Analysis (ICA) to detect and correct ocular
artifacts and removed epochs containing voltage deviation that
exceeded ±75 µV (Ronconi et al., 2016). To the best of our
knowledge, no previous research on this topic has checked
whether the above two procedures are functionally equivalent.
In addition, the current study use planned comparisons rather
than ANOVA, because specific hypotheses that crowding
occurs automatically and attention modulates crowding were
maintained. It is necessary to determine whether similar
statistical results can be obtained by using ANOVA. To address
these issues, we conducted a supplementary analysis using ICA
and ANOVA. Continuous EEG data were re-referenced, filtered,
and segmented in the same manner described in Section 2.5
EEG analysis. Then, the ±75 µV ICA criterion was used to
remove ocular artifacts. Similar ERP waveforms were obtained
(Supplementary Figures S1–S3). Further, repeated measures
ANOVA was conducted on amplitudes of P1, N1, and P2 waves.
This analysis yielded similar statistical results (Supplementary
Results). Therefore, the conclusions drawn in the current study
do not appear to be affected by the analytical methods used.

CONCLUSION

The present study employed a “cross-modal delayed response”
oddball paradigm to investigate the relationship between
attention and crowding. Previous findings that P1 reflects

the early low-level processing of stimuli characteristics were
replicated. We revealed that the N1 and P2 components were
associated with the concept of Gestalt grouping in crowding.
Specifically, crowding-related neural activity was found to
appear, regardless of whether the crowded targets were attended
or unattended. Additionally, neural activities appeared to be
modulated by attention during the N1 and P2 stages. These
results suggest that crowding occurs automatically and can be
modulated by attention. Our results are consistent with previous
studies on Gestalt grouping, which supports the notion that
crowding originates from Gestalt grouping.
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One curious aspect of human timing is the organization of rhythmic patterns in small

integer ratios. Behavioral and neural research has shown that adjacent time intervals in

rhythms tend to be perceived and reproduced as approximate fractions of small numbers

(e.g., 3/2). Recent work on iterated learning and reproduction further supports this: given

a randomly timed drum pattern to reproduce, participants subconsciously transform it

toward small integer ratios. The mechanisms accounting for this “attractor” phenomenon

are little understood, but might be explained by combining two theoretical frameworks

from psychophysics. The scalar expectancy theory describes time interval perception

and reproduction in terms of Weber’s law: just detectable durational differences equal

a constant fraction of the reference duration. The notion of categorical perception

emphasizes the tendency to perceive time intervals in categories, i.e., “short” vs. “long.” In

this piece, we put forward the hypothesis that the integer-ratio bias in rhythm perception

and production might arise from the interaction of the scalar property of timing with the

categorical perception of time intervals, and that neurally it can plausibly be related to

oscillatory activity. We support our integrative approach with mathematical derivations

to formalize assumptions and provide testable predictions. We present equations to

calculate durational ratios by: (i) parameterizing the relationship between durational

categories, (ii) assuming a scalar timing constant, and (iii) specifying one (of K) category

of ratios. Our derivations provide the basis for future computational, behavioral, and

neurophysiological work to test our model.

Keywords: rhythm, music perception, scalar expectancy theory, neural oscillations, integer ratio

INTEGER RATIOS AND MUSICAL RHYTHM

What are small integer ratios, and what makes integer-ratio rhythms special? A ratio between two
inter-onset-intervals (IOIs) is the division between two, usually adjacent durations. Integer ratios
can be written as a fraction: 1.5 equals 15/10 or 3/2, but

√

2 for instance cannot be written as a
fraction. An integer ratio is small if the result of the division can be written as a small integer
number divided by another small integer number e.g., 2/3, but not 23/51 (Pikovsky et al., 2003;
Strogatz, 2003).

A rhythm, by definition as used here, is a pattern of durations (London, 2004, p. 4)
characterized by the succession of event onsets over time, in other words a series of IOIs.
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Auditory rhythms with small integer ratios between IOIs
are common in the world’s music (Essens and Povel, 1985;
Toussaint, 2013; Savage et al., 2015). Psychological and neural
research suggests that small integer-ratio rhythms allow a more
accurate internal representation (Essens, 1986; Sakai et al., 1999),
improved deviance detection (Jones and Yee, 1997; Large and
Jones, 1999), enhanced memory (Deutsch, 1986; Palmer and
Krumhansl, 1990) and reproduction (Povel and Essens, 1985;
Essens, 1986), and better synchronization (Patel et al., 2005).
The distortion of near-integer ratios toward integer ones (or
their harmonics) reported in behavioral (Fraisse, 1982) and
neurophysiological studies (Motz et al., 2013) further supports
the idea of small ratios acting as “attractors” (Gupta and Chen,
2016). This idea has recently received support from studies of
iterated learning and reproduction. When humans reproduce
an initially randomly-timed rhythmic sequence, and this process
is repeated in a cascade fashion within one or across several
individuals, the sequence is subconsciously reshaped to be
composed of IOIs related by small integer ratios (Figure 1A;
c.f. Polak et al., 2016; Ravignani et al., 2016, 2018; Jacoby and
McDermott, 2017).

Why do rhythms (i.e., patterns of durations) tend to exhibit
small integer ratios? Why are humans drawn to rhythms with
such a peculiar mathematical property, in both perception and
production? Does this property reflect a special quirk of music
perception and/or motor sequencing, or could it be explained
by domain-general aspects of cognition? Can we explore these
alternatives through mathematical formalism? Here, we explore
mathematically the possibility that the human bias toward small
integer ratios may be explained by a combination of scalar
expectancy and categorical perception.

We begin by outlining the relevant classical frameworks for
human timing, and go on to summarize the evidence in support
of the small-integer ratio bias in rhythm perception. We then
present our proposal linking the frameworks to the bias through
mathematical formalisms. Specifically, we draw on the scalar
property of time interval estimation to formulate a simple model
of categorical perception that may result in an integer ratio bias
(Figure 1), and link this to neural oscillations. We conclude by
briefly discussing the merits and limitations of our model and
outlining future goals.

PSYCHOPHYSICAL AND OSCILLATORY

APPROACHES

Two major theoretical approaches, among several, have been
suggested to account for the mechanisms behind human timing
(Wing and Kristofferson, 1973a,b; Getty, 1975; Meck, 1996;
Church, 1999; Grondin, 2001, 2010; Mauk and Buonomano,
2004; Karmarkar and Buonomano, 2007; Ivry and Schlerf,
2008; Allman et al., 2014; Merker, 2014). The most influential
and empirically tested psychoacoustic model is the “scalar
expectancy theory” (Wearden, 1991; Allman and Meck, 2011).
Psychophysical research shows that human timing often follows
Weber’s law (Bizo et al., 2006): the error for an interval duration
being timed is proportional to the duration of that interval.
One perception-based formulation states that the ratio between

the just-noticeable difference (JND) and the duration of a
reference stimulus is constant across stimulus length (Grondin,
2001). In another formulation, the coefficient of variation
(standard deviation divided by mean) in estimating durations is
constant across durations (Figure 1D; Gibbon, 1977).

Another relevant approach to timingmechanisms comes from
neuroscience and physics. It suggests that neural oscillations
entrain (or even “resonate”) with the periodicity of external
stimuli at multiple time-scales (Buzsaki, 2006; Large, 2008;
Arnal and Giraud, 2012; Gupta, 2014; Aubanel et al., 2016;
Celma-Miralles et al., 2016). Specifically, it states that phase
and frequency of neural oscillations entrain with the phase
and frequency of external events at multiple metrical levels.
For instance, processing a metronome beat will induce low-
frequency oscillations and/or power fluctuations in high-
frequency oscillations following the periodicity of the beat,
plus its multiples or divisors. Critically, the stability of the
connection between two or more active neural oscillations,
i.e., the “resistance” to external perturbations, depends on the
ratio of their periods (e.g., 1:1, 2:1, 2:3). Small integer ratios
typically confer greater stability. This may explain the perceptual
advantage for integer-ratio stimuli over more complex metrical
patterns (Large and Kolen, 1995). Other frameworks state that
specific neurons or neural channels are tuned to particular
durational intervals or tempi (Merchant et al., 2013; Bartolo et al.,
2014).

ITERATED DRUMMING EXPERIMENTS:

SMALL INTEGER RATIOS AS COGNITIVE

ATTRACTORS

Recent behavioral research investigated human priors for
durations in rhythmic patterns (Ravignani et al., 2016,
2018; Jacoby and McDermott, 2017). Participants were
given drumming sequences to reproduce to the best of
their ability. The patterns produced were presented to the
same or a new participant in an iterative procedure. Strikingly,
“first-generation” participants were given completely random
patterns, and “last-generation” participants produced rhythms
exhibiting small integer ratios, in line with previous work on e.g.,
bimanual tapping (Peper et al., 1991, 1995a,b; Peper and Beek,
1998).

Specifically, participants were presented with sequences of
IOIs sampled from a uniform distributionU (e.g., Figure 1B). As
the patterns were transmitted through “chains of reproductions,”
(Ravignani et al., 2016, 2018; Jacoby and McDermott, 2017),
distribution U converged toward a distribution D: a human
observer’s posterior distribution of IOIs (e.g., Figure 1A). This
distribution is multimodal, and the modes are related by
small integer ratios, a universal property of human musical
cultures (Ravignani et al., 2016; Jacoby and McDermott,
2017).

Here we aim to explain the distribution D via established
psychophysical principles, none of which explicitly entail small-
integer ratios. In other words, is the integer ratio bias a perceptual
primitive in itself, or might it arise from the interaction of more
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FIGURE 1 | Graphical representation of different types of IOI distributions. (A) Empirical distribution of drumming data showing two peaks (slightly below 200 and

400ms) consistent with the notion of integer ratio categories. Data from the last experimental generation of chain 2 in Ravignani et al. (2016). (B) Uniform distribution

from 100 to 1,000ms. (C) Multimodal distribution based on 3 randomly chosen centroids without further assumptions. (D) Multimodal distribution around the same 3

centroids assuming the scalar timing property. (E) Multimodal distribution assuming the scalar timing property and showing small integer ratios. Data in panels (B–E)

are simulated; they were randomly sampled from several normal distributions, with total sample size as in (A). (F) Schematic representation of potential parameters

linking scalar timing and small integer ratios. Panel (F) was produced without simulated or experimental data. Notice how the x-coordinate of the intersection point

between the two Gaussians can be parameterized as to µ1 + scu1µ1 (first Gaussian) and µ2 − scl2µ2 (second Gaussian). For more than two Gaussians, the

intersection can be parameterized as µk + scu
k
µk (first Gaussian) and µk+1 − scl

k+1µk+1 (second Gaussian). This parameterization is used in the derivations below.

fundamental primitives? Jacoby and McDermott (2017) related
a theoretically hypothesized prior with built-in integer ratios to
an empirically estimated prior, showing that these were aligned.

Here, we investigate whether it is possible to derive a prior
with similar properties by not building in the integer-ratio, but
by combining empirically founded principles of timing with a
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minimum of assumptions (and room for refinement by future
testing).

PROBABILISTIC INFERENCE FOR

INTERVAL RATIO CATEGORIES

Our concrete question is: Under which conditions will a
distribution G show small-integer ratios, without having built
these ratios into our model?

Without any assumptions, distribution G would equal the
uniform IOI distribution U in expectation. In other words
which results on basic mechanisms of rhythm perception and
production allow us to turn U into G? Below, we make four
assumptions based on psychophysical evidence and reduce the
number of free parameters in the model drastically with little loss
of generality.We begin by elaborating on previous formalizations
to make relevant assumptions explicit and comparable.

ASSUMPTION 1: CATEGORICAL TIMING

An n-event rhythm defines a sequence of IOIs d = (d1, . . . , dn−1)
and of ratios r = (r1, . . . , rn−2), such that ri = di+1/di.
Perception of a rhythm r induces a representation z =

(z1, . . . , zn−2), with a strong tendency to categorize. The vector
z is a sequence of a small number of unique phenomenal
interval-ratio categories that represent the observed data r. More
specifically, the notation zi = k identifies that interval ratio
ri is attributed to phenomenal category k (Ravignani et al.,
2018). Whilst not used explicitly in our calculations, z formalizes
the first key assumption: the processing of rhythmic sequences
recruits a categorical interpretation of time intervals from a
continuous stream of events (Clarke, 1987; Schulze, 1989; Desain
and Honing, 2003). Behavioral evidence shows that also human
motor timing is categorical: participants tapping produce IOI
distributions with distinct peaks reflecting underlying durational
categories (Collyer et al., 1994). This suggests that the distribution
G can be approximated as a multimodal mixture of normal
distributions (Figure 1C), rather than a uniform distribution
(Figure 1B). A small number of durational categories naturally
results in a small number of ratio categories. For the perception
of a rhythmic sequence as a whole, we would argue that the
perceived durations be transformed toward forming small ratios,
as supported by iterated drumming experiments (Jacoby and
McDermott, 2017), “ideally” into integer multiples of the smallest
unit. Whilst categorical timing may appear to be a simplifying
psychological concept (Schulze, 1989; Drake and Bertrand, 2001;
Desain and Honing, 2003; ten Hoopen et al., 2006) based on
behavioral observations, it may not be that far off neural reality.
The notion of durational categories relate to basic durational
tuning properties of premotor neurons recorded in non-human
primates (Merchant et al., 2013). For instance, categories can be
mapped to interval tuning in the premotor neurons of monkeys
performing a synchronization continuation task (Merchant et al.,
2013). Here, the distribution of preferred intervals could be
viewed as a prior, although this distribution is multimodal, rather
than bimodal as in Merchant et al. (2013). In addition, human

neuroimaging work showed specific activation patterns for the
perceptual processing of integer interval ratios (Sakai et al.,
1999). Moreover, sequences of small integer ratios may induce
a metrical beat by the hierarchical organization of periodicity at
two or more levels, i.e., the occrurence of an accent at a multiple
small integer of the shortest time unit at the next higher level
(Povel and Essens, 1985). Metrical structure is thus a higher,
multi-level demonstration of the psychological prior toward
small-integer ratios, that affords accurate reproduction (Povel
and Essens, 1985). Moreover, the perceptual timing of rhythms
with such a metrical beat is more accurate, their subjective
percept “catchier” and their recognition more robust against
temporal scaling, i.e., speeding up or slowing down the tempo,
as the pattern is processed as one coherent whole rather than
a series of time intervals, in contrast to rhythms that feature
small integer ratios but no metrical beat (Grube and Griffiths,
2009).

ASSUMPTION 2: BAYESIAN INFERENCE

OVER GAUSSIAN CATEGORIES

A general assumption in rhythm research is that perceptual
timing can be described as a process combining prior beliefs
with sensory input. One way to capture this mathematically
is to model time perception as Bayesian inference (Jazayeri
and Shadlen, 2010; Cicchini et al., 2012; Merchant et al., 2013;
Pérez and Merchant, 2018). Whilst our analysis relies on the
nature of the prior rather than how it is deployed during
perceptual interpretation, taking a Bayesian viewpoint is useful.
It lets us express a prior distribution as an inductive bias
(Thompson et al., 2016) and has been successfully applied
in previous models of time interval estimation (e.g., Jazayeri
and Shadlen, 2010; Cicchini et al., 2012). Employing Bayesian
inference, we can characterize participant behavior as attributing
a categorical representation to interval ratio ri according to
the distribution p

(

zi = k |ri
)

∝ p(ri|zi = k)p(zi = k).
Our focus is the prior distribution over categories, p(zi = k),
equivalently G. Alternatively, it would be possible to model
learners’ assumptions about a likelihood distribution as a
source of bias (e.g., Jazayeri and Shadlen, 2010; Cicchini et al.,
2012).

Jacoby and McDermott (2017) recently modeled n-
interval rhythms as single points in the n-1 dimensional
simplex, and formulated a multivariate-mixture prior over
this space, assuming Gaussian models to underlie each of
the mixtures. Namely, they formulated a multivariate p(z)
directly. Our approach to the prior is closely related. Like
Jacoby and McDermott (2017), we express the prior as a
mixture of Gaussian components. However, our formulation
treats an n-interval rhythm as a set of n-1 independent
samples from a univariate multimodal distribution, rather
than a single multivariate sample. The two approaches
essentially represent minor variants of the model for
covariance of interval ratio categories. The assumption that
the distribution p(z) has a Gaussian form should be tested in
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future work, but is in line with existing work and a fair first
approximation.

We write the prior as a K-dimensional Gaussian mixture of
interval ratio categories, and the data likelihood as i.i.d. Gaussian
underlying these categories, such that the marginal distribution
of interval ratios has the form:

p (r) = G (r) =

∏n−1

i= 1

∑K

k= 1
ϕkN(di;µk, σk) (1)

Here, the prior assigns to each Gaussian k = 1, ..., K a weight
in the mixture, ϕk, which determines its relative prominence as
a category; a category mean µk, which specifies the expected
interval ratio underlying this category; and a category variance
σk. The assumption we make is that weights are constant: ϕk =

K−1 (corresponding to an equal number of observations in
the Gaussians in Figures 1C–E). Whilst we hope to examine
this assumption empirically in the future, we proceed under
the most neutral assumption: no interval-ratio category is
privileged.

ASSUMPTION 3: A SMALL NUMBER OF

SUB-SECOND CATEGORIES

Assuming that our indexing of categories under the
prior is strictly ordered by the category means, such
that µj < µk⇔ j < k, we can immediately express our second

empirical constraint on distribution G: only few categories exist
(Desain and Honing, 2003; Motz et al., 2013; Ravignani et al.,
2016, 2018). K is naturally limited by our approach to only model
components for small integer ratios, and these are limited in
number. Furthermore, we bound the range of category means
µk from 200ms (London, 2004, p. 35) to 1,000ms (Shaffer,
1983; Desain and Honing, 2003; Buhusi and Meck, 2005). This
constraint limits K to the largest number of categories such that
no category mean exceeds 1,000 ms:

K = argmaxk µk s.t. µk ≤ 1000 for k = 1, . . . ,K. (2)

ASSUMPTION 4: SCALAR TIMING

So far, our assumptions constrain neither category means µk

nor standard deviations σk. Our final, perhaps most central
assumption is that timing exhibits scalar properties in the sub-
second time range considered here (Gibbon, 1977; Matell and
Meck, 2000). Scalar timing drastically reduces the number of
free parameters describing distribution G, by expressing category
variances as a function of categorymeans. The standard deviation
of each category σk equals the mean µk multiplied by a constant,
dimensionless factor s (Figure 1E):

σk = s µk. (3)

Previous empirical reports estimated s to approximate 0.025
(Friberg and Sundberg, 1995; Madison and Merker, 2004).

LINKING CATEGORICAL PERCEPTION

AND SCALAR TIMING: HOW CLOSE CAN

WE GET TO INTEGER RATIO INTERVALS?

All four assumptions are empirically based and independent of
each other. Now, G can be further characterized by the degree of
overlap between Gaussians composing the mixture. To formalize
this, we assume each category k to intersect with its adjacent
neighbors k−1 and k+1 at a distance proportional to cl

k
and

cu
k
away from its mean µk (Figure 1F), which is a constant

proportion of the standard deviation σk. c
l
k
and cu

k
parameterize

the overlap between categories: they express how many standard
deviations away from its mean µk the cluster k intersects the
cluster k+1, and how many standard deviations away from its
mean µk+1 the cluster k+1 intersects the cluster k (Figure 1F
shows an example for k= 1,2).

Combining this idea of a parameterized overlap with scalar
properties, each cluster k extends from µk− scl

k
µk to µk+ scu

k
µk.

Under these assumptions, the distance between the means of two
adjacent distributions (Figure 1F) can be written as

µk+1 − µk = sclk+1µk+1 + scukµk, (4)

and their ratio as

rk = µk+1/µk . (5)

Substituting (5) into (4) provides

rkµk − µk = sclk+1rkµk + scukµk, (6)

which can be simplified and rewritten as

rk = (1+ scuk )/(1− sclk+1). (7)

Equation (7) requires, to be well-defined, that its right side is
positive, namely

0 < clk+1 <

1

s
. (8)

Operationally, the category means following from the constraints
on G can be calculated using the recursion equation:

µk+1 = rkµk. (9)

The constraints structure the space of component Gaussians in
the prior such that, by specifying µ1, we can compute µk for all k
≤ K using Equation (9) (Figure 1E).

These quantitative tools enable the formulation of several
questions. Given our post-hoc knowledge that the prior is
characterized by categories centered at small integer ratios, do
the constraints we laid out structure the prior such that integer-
ratio clusters are predicted by setting µ1 to the smallest possible
integer ratio?

An alternative approach might be to assume that one ratio
is e.g., ½, and ask whether our equations imply small integer
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FIGURE 2 | Schematic representation of the perspective introduced by this paper. Black solid-line boxes represent empirically supported assumptions. “Bayesian

inference” is outlined in gray to indicate that it is used here as a working assumption and conceptual framework, rather than an empirically supported assumption on

cognitive processes (Shi et al., 2013). “Neural oscillations” are dashed because they represent observed neural process whose connection with the other behavioral

concepts has not been proven (yet). The quantitative parameters are: category means µi , a scalar constant s, and ci , which is the abbreviation of cl
i
and cu

i
,

parameterizing the overlap between categories. The proposed way of representing rhythmic structure depends, among other factors, on the constancy of rk (see

main text). A deviation from this constancy would result in larger integer ratios, with the deviation accumulating over the categories when iterating equation (8).

Empirical work (e.g., Ravignani et al., 2016; Jacoby and McDermott, 2017) has tried to operationalize the connection between the “mathematical perfection” of integer

ratios and their empirical counterpart in a number of alternative ways. This perspective does not address how and when a real number is perceived as an integer ratio,

leaving this as an empirical question for psychophysics research. In general, large integer ratios, and even irrational-number ratios, can be perceived as small integer

ratios if close enough to one. For instance, 27/12
≈1.498307 is irrational (Coxeter, 1968) but close to 3/2. Virtually all pianos, today, employ this irrational number

(1.498307) in their well-tempered tuning, which is “close enough” for human hearing to the integer ratio 3:2. At the same time, the “catchiness” of a rhythm also

depends on small deviations from the integer ratios. For instance, delayed occurrences of expected beats even at varying levels of deviation from the underlying

rhythms (together with the compensatory temporary speed-ups) are perceived as interesting, while a strictly regular rhythm will quickly appear dull.

ratios for the remaining cluster centers. More generally, do the
constraints laid out impose an integer ratio structure on the prior
without assuming an integer ratio for any of the clusters, simply
by setting ck in a certain way?

HOW DO cu
k
AND cl

k
RELATE TO µk ?

The x-coordinates for the intersection point, expressed as µk −

scl
k
µk and µk + scu

k
µk, can be substituted in the respective

Gaussian probability density functions, equated to impose the
condition of intersection on the y-axis (Figure 1F):

2 ∗ log
(

sµk

)

+

((µk + scu
k
µk)− µk)

2

s2µ2
k

= 2 ∗ log
(

sµk+1

)

+

((µk+1 − scl
k+1

µk+1)− µk+1)
2

s2µ2
k+1

(10)

which simplifies as:

(cuk)
2
− (clk+1)

2
= 2 log(µk+1/µk). (11)

Equation (11) means that the difference of squares between c’s is
proportional to the logarithm of the ratio of the two means.

To make an example with actual numbers, if one substitutes
µk = µ1 = 100 ms and µk+1 = µ2 = 200 ms in (11), the

equation becomes (cu
k
)2− (cl

k+1
)
2
= 2 log(2). Hence r1 =

µk+1
µk

=

2, cu1 ≈ 2.5 and cl2 ≈ 2.2 are two approximate solutions (among
the infinite possible ones) of this particular example.

As the right side of Equation (11) is always strictly positive,
cu
k

can never equal cl
k+1

. While this does not constitute a
mathematical contradiction with our formulation (still leaving an
infinite number of mathematically possible c’s), it is admittedly
difficult to interpret psychophysically.

SUGGESTED EXPERIMENTS: MODELING

AND PSYCHOPHYSICS

Equations (7, 9) support a potential link between scalar timing
and integer ratios, as they include the integer ratios rk and the
scalar constant s (Figure 2). These generative formulas can be
implemented in computational simulations to explore the shape
of the parameter space. Given specific values for parameters s,
cu
k
and cl

k
, the equations will return a unique set of ratios: are
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these small integer ratios? Likewise, given one single integer ratio
µ1, all other µk are determined by Equation (9): which values
of µ1 result in r being integer ratios and s, cu

k
and cl

k
being

psychophysically plausible values?
The perspective we offer here creates the basis for expanding

not only into theoretical but also empirical work on s, cu
k
and cl

k
.

Experimental research can advance this approach by estimating
s, cu

k
and cl

k
via Equation (7) or (11). Here, we treated the

parameter s as an a priori known, one-valued constant (s =

0.025). To improve the model further, the variance of s might be
estimated by replications of previous psychophysical experiments
such as those by Friberg and Sundberg (1995) and Madison
and Merker (2004). Values for cu

k
and cl

k
can be estimated

from experiments testing the perception (and misattribution) of
durational categories.

LIMITATIONS, DISCUSSION, AND

CONCLUSIONS

We explore quantitative links between scalar timing and the
human bias toward small integer ratios. The arguments we
provide reduce the explanatory space to a few hypotheses. One
possibility is that integer ratios are not a human cognitive
primitive, but rather a simple by-product of other cognitive
constraints, and their interaction.

Alternatively, the scalar timing framework might not be the
most suitable one to explain the integer-ratio phenomenon of
human rhythm. If one adopts oscillatory frameworks, integer
ratios might simply arise from the oscillatory properties of brain
activity, and so can scalar properties and categorical perception.
Small integer ratios in particular would just reflect epiphenomena
of harmonics of one oscillator or the interaction between two
or more oscillators (Collyer et al., 1994; Strogatz, 2003; Buzsaki,
2006; Gupta, 2014; Merker, 2014; Gupta and Chen, 2016). Neural
resonance to musical rhythm (Large, 2008), interval tuning

(Merchant et al., 2013; Bartolo et al., 2014), and population
clocks (Crowe et al., 2014; Gouvêa et al., 2015; Bakhurin
et al., 2016; Merchant and Averbeck, 2017) present alternative
timing mechanisms, documented by in-vivo recordings of neural
populations and compatible with the observed small integer bias.

In any case, scalar timing and oscillatory theories are
simplifications, i.e., approximate descriptions derived from
confined experimental set-ups. Neurally and behaviorally,
the dissociation or compatibility between scalar timing and
oscillatory theories is more complex than it may appear in higher
level cognitive theories, and only detailed neural models will
enable us to define the actual underlying mechanisms.
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The Musical Structure of Time in the
Brain: Repetition, Rhythm, and
Harmony in fMRI During Rest and
Passive Movie Viewing
Dan Lloyd*

Department of Philosophy and Program in Neuroscience, Trinity College, Hartford, CT, United States

Space generally overshadows time in the construction of theories in cognitive
neuroscience. In this paper, we pivot from the spatial axes to the temporal, analyzing
fMRI image series to reveal structures in time rather than space. To determine affinities
among global brain patterns at different times, core concepts in network analysis
(derived from graph theory) were applied temporally, as relations among brain images at
every time point during an fMRI scanning epoch. To explore the temporal structures
observed through this adaptation of network analysis, data from 180 subjects in
the Human Connectome Project were examined, during two experimental conditions:
passive movie viewing and rest. The temporal brain, like the spatial brain, exhibits a
modular structure, where “modules” are intermittent (distributed in time). These temporal
entities are here referred to as themes. Short sequences of themes – motifs – were
studied in sequences from 4 to 11 s in length. Many motifs repeated at constant
intervals, and are therefore rhythmic; rhythms, converted to frequencies, were often
harmonic. We speculate that the structure and interaction of these global oscillations
underwrites the capacity to experience and navigate a world which is both recognizably
stable and noticeably changing at every moment – a temporal world. In its temporal
structure, this brain-constituted world resembles music.

Keywords: fMRI, graph theory, time, temporality, oscillation, rhythm, harmony, music

INTRODUCTION

In science, “ontology” denotes the determination of the relevant categories and objects available
to observation and hypothesis formation (Chakravartty, 2017). Historically, scientific ontologies
have divided space first, and only later, time. This is vivid in neuroscience: From the Latin-fluent
anatomists to Brodmann to the physical Connectome (Sporns et al., 2005; Hagmann et al., 2007),
neuroscience continues to deploy a rich spatial ontology. Temporal ontologies in neuroscience are
comparatively recent, but equally rich. An exemplary building block of temporal ontology rests
on the exploration of oscillatory neural signals. Fourier analysis affords a powerful descriptive
vocabulary which has been abundantly employed in neuroscience. (The references are too many
to list in one place, but will appear throughout this paper). The Fourier Transform (FT) has
moreover inspired a family of wavelet transforms (WT). These techniques have been abundantly
exploited in the study of the temporal brain (see section “Oscillation, Information Broadcasting,
and Maintenance” for discussion). However, does the FT/WT framework provide a complete
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temporal ontology for the brain? Are there other temporal
structures, beyond the FT/WT package, that are detectable
in brain image series? Here, we will borrow a few basic
concepts from a domain where time is centrally important:
music. Many musical concepts are essentially temporal, involving
order, duration, and temporal relationships in their definition.
Centuries of music theory and musicology (including cognitive
musicology) afford reasonable criteria for their measurement
(Sethares, 1998, 2007; Lloyd, 2011; Huron, 2014). Might they or
their analogs apply to neuroimaging time series?

New departures in method necessarily involve exploratory
data analysis, and new ontologies particularly involve starting
afresh. There are therefore many possible directions for this
paper to take (Hutchison et al., 2013; Allen et al., 2014;
Calhoun et al., 2014; Kopell et al., 2014). Some plausible
starting points and assumptions are highly negotiable. Their
motivation will be reviewed in the methods section, but are also
discussed in sections “What now? What’s next?”; “Oscillation,
Information Broadcasting and Maintenance”, “Rhythm”; and
“Harmony”. Here, we first develop a “temporal parcellation” of
the imaging data to be examined. That is, we extract a preliminary
differentiation of the temporal landscape, just as spatially rooted
dynamics rests on a spatial parcellation as its foundation. Graph
theory is one method (among many) that can be applied here,
but with a pivot from space to time. In its spatial (standard)
application, graph theory begins with a set of spatially discrete
entities, called nodes (brain regions, usually), and some measure
of linkage (edges) between them (often correlation) (Sporns et al.,
2005; Hagmann et al., 2007; Bullmore and Sporns, 2009; Sporns,
2011a,b; cf. Stanley et al., 2013; Fallani et al., 2014). The links
are thresholded in order to define adjacency among the nodes.
Working from the adjacency graph, various communities of
nodes can be distinguished, along with other network properties
of interest. These go by different names: modules, networks,
communities, clubs, or cliques, among others. They can be
defined in various ways, but one common measure of modularity
discovers groups that have many interconnections among the
nodes within the group, but only sparse connections between the
groups (Bullmore and Sporns, 2009; Rubinov and Sporns, 2010;
Sporns, 2011a, 2012).

Network analyses have usually been employed spatially or
spatiotemporally. Spatial network analyses begin with spatially
delineated regions (nodes). The time series of activation at
all nodes are correlated over the entire time course of an
experimental condition for one or more subjects, forming
the basis of the resulting graph or network. Spatiotemporal
modularity posits that the functional relationships among nodes
are variable over time. For example, the same correlational
measure might be applied along a sliding temporal window
to generate a sequence of modular parcellations, a dynamic
functional connectome (Hutchison et al., 2013; Allen et al.,
2014; Calhoun et al., 2014). This temporal sensitivity nonetheless
rests on an initial spatial parcellation or a sequence of
spatial parcellations.

In contrast to both these applications, in this study the graph-
theoretic analysis is exclusively based on temporal features in
data. Or in other words, there is no initial spatial segregation;

the region of interest is simply the brain in its entirety, and
the similarity measures are applied exclusively along the spatial
dimensions. Instead of regional/spatial nodes, the foundational
entities are temporal, namely, individual whole brain images,
captured via fMRI, at each moment in time in the series of images.
These fully temporal “nodes” might well be called “moments.”

Despite the application of graph theory, the complete pivot
toward time translates the spatial concepts inherent in graph
theory as spatial metaphors for relations in time. Adjacency
among moments is measured by their spatial correlation (across
all the voxels of each image, compared image to image), rather
than temporal correlation of time series recorded at spatially
distinct sites. By this measure moments that are separated by
long intervals might nonetheless be adjacent. The equivalent
of a module, then, might be distributed in time, and such
modules might interweave; the spatial connotations of the term
“module” is misleading in this context. We propose instead
to refer to these collections of correlated moments as themes.
One theme might be present for a single uninterrupted interval,
or it may be distributed temporally among other themes. In
short, a theme comprises timepoints where patterns of global
brain activity are similar, and divisions among themes are
determined by the modularity algorithm. The sequence of
thematic instantiations comprises an overall thematic profile of
an image series. Subsets of the overall thematic profile, short
continuous sequences of thematic instantiations, are motifs.
[Note that this usage differs from “motif” in network analysis
(Milo et al., 2002)] The strategy for this analysis is sketched in
Figure 1, with a division between a space-first parcellation (A)
and a temporal parcellation (B).

This complete pivot toward time foregrounds the structure of
time in the brain, without assumptions about spatial structure.
The first and fundamental question, then, is simply: Is there
temporal structure in fMR image series? This will offer a data-
driven ontology of temporality in the brain. It will be useful,
however, only if we can meaningfully describe observed temporal
organization. There are many paths to follow, some of them to
be discussed in specific contrasts with the methods here; the
path in this paper, toward quasi-musical properties, does not
exclude other approaches. If there is an anatomy of time, this
global temporal parcellation can then provide a data-driven clue
to the spatial divisions most relevant to the dynamic functional
connectome (Zuo et al., 2010).

MATERIALS AND METHODS

For this analysis, data from 180 adult subjects (ages 20–35, 108
Female) in two scanning conditions were downloaded from the
Human Connectome Project 1200 Subjects Data Release, May
2018 (HCP1; data repository2; Marcus et al., 2011; Van Essen
et al., 2013; Hodge et al., 2016). Subjects were scanned on a
Siemens MAGNETOM 7T MR scanner housed at the Center for
Magnetic Resonance (CMRR) at the University of Minnesota in

1https://www.humanconnectome.org/
2https://db.humanconnectome.org
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FIGURE 1 | Conceptual sketch of the reorientation of graph theory from space to time. (A) Graph theory is a powerful tool for discovering networks among spatially
localized modules. Their starting point is an association matrix relating identified regions of the brain to each other, usually through measures of correlation of activity
over time. Network discovery algorithms find the spatial network links among the identified regions – the spatial connectome. (B) The same tools are here deployed
across time. The starting point is an association matrix, but here the associations are between identified moments in time. Network discovery algorithms link
sequences of images into themes, which recur as the experiment unfolds. Recurrence and recapitulation are the temporal analogs of spatial network connections.
The profile of linked themes is a map along the dimension of time – the temporal connectome. The brainy depiction of the spatial connectome and the linear
depiction of the temporal connectome are arbitrary conventions for visualizing quantitative relationships among states of brain activity.

Minneapolis, MN, using a Nova32 32-channel Siemens receiver
head coil. Whole-brain sequence gradient-echo EPI images were
acquired with the following parameters: TR 1000 ms; TE 22.2 ms;

flip angle 45 degrees; FOV 208 × 208 mm (RO × PE); Matrix
130 × 130 (RO × PE); Slice thickness 1.6 mm; 85 slices;
1.6 mm isotropic voxels; Multiband factor 5; Image Acceleration
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factor(iPAT) 2; Partial Fourier (pF)sampling 7/8; Echo spacing
0.64 ms; BW 1924 Hz/Px3.

The two conditions studied here are: (1) resting with eyes
open, 900 images (15 min), using the first of four imaging
sessions with each subject, and (2) passive movie viewing, 900
images, using the first of four imaging sessions in that condition
(Smith et al., 2013). The audio/visual movie was a compilation
of short excerpts from Vimeo videos available under Creative
Commons licensing3.

Preprocessing
Images were preprocessed using HCP minimal preprocessing
pipelines (Glasser et al., 2013; Marcus et al., 2013). This includes
three structural pipelines: PreFreeSurfer, to create an aligned
and undistorted structural volume space for each subject and
register subjects’ spaces to MNI space; FreeSurfer, to parcel
volumes into predefined structures, reconstruct white and pial
cortical surfaces, and register surfaces to FreeSurfer’s surface
atlas, fsaverage; PostFreeSurfer, performing individual surface
registration using multimodal surface matching (MSM), based
on areal features including sulcal depth, myelin, and functional
connectivity maps.

Then, the fMRI Surface pipeline mapped the cortical gray
matter voxels onto cortical surface vertices, and subcortical
volume voxels, to standardize the surface and subcortical
“grayordinate” space for all subjects. [Among other advantages,
mapping via surface vertices greatly reduces the number
of datapoints needed to express 7T images, making further
computational analysis feasible (Glasser et al., 2013).] These
data were smoothed with a surface algorithm to 2 mm FWHM
(Glasser et al., 2013). Finally, 7T rfMRI 4D volume and
grayordinate (surface vertices + subcortical voxels) Data, and
7T movie data, were further preprocessed to remove structured
artifacts using FSL’s FIX (FMRIB’s ICA-based Xnoiseifier, Salimi-
Khorshidi et al., 2014). For details, see Glasser et al. (2013, 2016)
and the HCP 1200 Subjects Data Release Reference Manual3.
The preprocessed data sets were downloaded from HCP
during May 2018.

Graphs
Association matrices were constructed using partial correlations
between all voxels in each image series, while controlling for
their mean activation (Marrelec et al., 2007; Smith et al.,
2011; Hutchison et al., 2013; Varoquaux and Craddock, 2013;
Epskamp and Fried, 2018). Each matrix was converted to
binary (undirected) connection graph by thresholding the matrix
to preserve the top 5% of inter-node values (Rubinov and
Sporns, 2010). These binary association matrices were the basis
for all subsequent analyses. In traditional network analysis,
these steps would be applied to spatially distinct regions
(usually anatomically defined regions of interest). Here, the
entities to be linked are not spatial but temporal. Instead
of measuring correlations of time series between regions, we
measure correlations of spatial patterns between time points. The

3https://www.humanconnectome.org/storage/app/media/documentation/s1200/
HCP_S1200_Release_Reference_Manual.pdf

overall analysis is sketched in Figure 1, with a division between
a space-first parcellation (A) and a temporal parcellation (B).
Each whole-brain image is a node (a “moment”) in a temporally
connected network, to be analyzed with graph theoretic methods.
All the measures described herein were assessed for significance
by contrast with baseline random images that preserve the degree
distribution of the original data (“null-hypothesis networks,”
Rubinov and Sporns, 2010). That is, the distribution of the
numbers of links originating from nodes remains constant while
the pairings of the connection matrix are varied randomly
(Maslov and Sneppen, 2002). The randomizing function and
other functions are found in the Brain Connectivity Toolbox
(BCT4 Rubinov and Sporns, 2010). In all cases except where
noted 100 baseline association matrices were generated for each
subject to be contrasted, subject by subject, with the actual data.
Appropriate corrections for multiple comparisons were applied
using the Bonferroni method.

Theme and Modularity
Modularity in network analysis denotes the subdivision of
network nodes into non-overlapping groups where similarity is
greatest within the group, and minimized between the groups
(Rubinov and Sporns, 2010). The temporal analog of the
module is the theme, which comprises moments of similarity
among the full brain images, as assessed through the association
matrix described above. A temporal theme is conceptually quite
different from a spatial module; nonetheless various measures
of modularity can be applied. Modularity was measured using
two standard measures (Girvan and Newman, 2002; Newman,
2006; Reichardt and Bornholdt, 2006; Blondel et al., 2008),
also implemented through BCT. Modularity assessments with
these two algorithms were very similar, and so further analysis
was based in the Louvain group method of Blondel et al.
(2008). In addition to providing the optimal group divisions,
the modularity algorithms calculate a statistic quantifying the
degree to which the network can be subdivided into groups
with high ingroup similarity and low outgroup similarity (Kaiser,
2011). We compare this statistic for each subject with the same
statistic generated for 18,000 surrogate association matrices (100
per subject). Similar analyses, including baseline contrasts, were
conducted for both the rest and movie conditions.

This method is conceptually similar to several recent proposals
for deriving network architecture from time series data (Voss
et al., 2004; Lacasa et al., 2008; Shirazi et al., 2009). Lacasa
et al. (2008) describe a “visibility graph” from which some of
the properties of classical graph theory can be observed, along
with scaling properties. Shirazi et al. (2009) regard particular
binned values in a time series as node identifications, and
represent the transitions from each time point to the next as
an internodal link with probabilities derived from the original
series (Shirazi et al., 2009). These methods begin with a time
series of a single variable. The target in this paper is distinct
in two ways. First, each moment in the fMRI time series is
a vector of ∼96,000 continuous variables, while the methods
just mentioned begin from time series of one variable. More

4https://sites.google.com/site/bctnet/
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important, in the application here the goal is not the recovery
of a physical network, but rather a compact representation of
dynamical (temporal) properties of the image series. We move
from one temporal series to another, in effect reducing the
dimensionality of time series data. (Accordingly, other methods
for dimensionality reduction could also be applied, e.g., Principal
component analysis, Independent component analysis, Cluster
analysis, among others). The application of graph theory probes
the sequence of images as an oscillation among distinct themes
(continuing with fully temporal descriptive language).

Thematic (Temporal) Profiles
Following the application of these techniques, we can consider
time series as dynamic temporal profiles, rather than as the
expression of fixed spatial networks. Methods going forward,
thus, are somewhat novel. This section will introduce them, along
with their rationale.

We consider three features of the data sets: repetition, rhythm,
and harmony. These are nested: Where repetitions recur with a
constant interval between them, there is rhythm. Where there are
multiple rhythms and the frequencies of rhythmic repetitions are
in integer relations to one another, there is harmony.

Repetition
The modular analysis decomposed the time series of global brain
activity patterns into a small number of themes, reducing the
experiment to a sequence of themes with various durations and
alternations. We examined short image sequences (motifs) to
see if particular sequences repeat over the image series. We
considered sequences of length n, where n ranged from 4 to
11 s. Each sequence (1:n, 2:n + 1, etc.) was compared to all
other sequences in each subject’s thematic profile, and exact
matches counted.

In the initial analysis, these counts were compared with
similar analyses of thematic profiles derived from 100 surrogate
association matrices for each subject, as described above. For
each sequence length (from 4 to 11 s), repetitions in the data
were compared with 100 surrogate data profiles using a one-
tailed t-test, corrected for multiple comparisons. Then these
measures were compared between the two stimulus conditions,
rest and movie viewing.

Rhythm
Even in domains where rhythm seems apparent, like music,
an algorithm for rhythm detection can be elusive – computers
can find the beat only very imperfectly (Sethares, 2007). The
noisy signals of fMRI are even more difficult, compounded
by the absence of intuitive or perceptible rhythms in the
data. Here we deploy a continuous measure of “rhythmicity,”
understood as the tendency for events that repeat to be
separated by a constant interval. It follows from the analysis of
repetition, just described. As the repetitions were counted, the
intervals between each occurrence of any repeating sequence
(motif) as each length (from 4 to 11 images) were also
recorded. Where motifs recur more than twice, we compare
the intervals between repetitions. If these intervals are equal,
then that motif is recurring rhythmically. The presence of

these congruent intervals as a proportion of all intervals
then serves as one index of rhythmicity. Note that as
certain intervals recur more frequently, then other intervals
become relatively more rare. This tilt toward rhythmicity is
therefore reflected in the standard deviation of the set of
numbers of occurrences of each interval. This value can then
be compared to standard deviations of random surrogates
derived from null network variations generated for each
subject. These values then are compared across the two
experimental conditions.

Harmony
The search for harmony rests on a more tentative approach.
A harmonic signal essentially comprises power at a fundamental
frequency and/or at integer multiples of that fundamental.
Together these higher frequencies form the harmonics of the
fundamental. (These are also called overtones or partials). A
signal with this spectral structure, then, is harmonic. In principle,
harmonicity is easy to detect: the peak amplitude frequencies
should be separated in frequency by constant differences.
However, with these data neither the fundamental nor the
harmonic frequencies are known, and certainly not apparent
from the noisy Fourier spectrum. Instead, we exploit the rhythm
information just collected: the repeating intervals are easily
converted into frequencies, and thus the histogram of intervals
transforms into the histogram of frequencies. In effect, this is
an alternative form of signal spectrum (not based in Fourier
analysis), where numbers of occurrences of each interval converts
to amplitude at each frequency.

Then, we adapted the amplitude spectra to amplify the
hidden harmonics. Specifically, the spectrum for each subject was
downsampled by factors of 2 through 7, and the resultant vectors
added to the original. (Downsampling decreases the sampling
rate by integer factors. For example, a vector downsampled by a
factor of two comprises every second element of the original). The
downsampling of a harmonic signal spectrum preserves peaks at
the same point in each downsampling. (In effect, each harmonic
peak is moved left by an integer factor, so lower and higher
harmonics coincide). This is shown schematically in Figure 2.
Adding the original and downsampled vectors amplifies the
magnitude of the harmonics. This method is similar to “harmonic
product spectrum” methods for pitch detection (Cuadra et al.,
2001), with the difference that here we sum, rather than multiply,
the downsampled vectors. Using this method a maximum value
for the summed vectors (original and downsampled transforms)
can be calculated. (The position in the vector of this maximum
is often interpreted as the fundamental frequency, but this is
not necessary for the present analysis). Here we are interested
in the maximum magnitude of this compounded amplitude. We
identify the presence of harmonics by comparing amplitude at
each point in the summed/downsampled vectors to similar points
in 100 surrogate datasets, using a one-tailed t-test, corrected for
multiple comparisons (Bonferroni method). The technique is
applied to sequences of each tested length (4 through 11 images).
In effect, this analysis considers repeating sequences as oscillators,
and groups oscillators by the length of the sequences that repeat.
Thus, we cast the net broadly in the hopes that harmonic
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FIGURE 2 | Detecting harmonic signals: A harmonic signal is composed of
sinusoidal “partials” whose frequencies are integer multiples of a fundamental
frequency. Accordingly, if a harmonic signal spectrum is compressed to one
half its original length (i.e., downsampled by 2, taking every other point), then
the fundamental and the 1st harmonic will occur at the same point in the
original and downsampled spectrum. Their sum thereby amplifies the
presence of the harmonic partial. As this process is repeated for successive
downsamples, harmonic partials are increasingly amplified. The presence of
amplified peaks is thus the marker of harmonic oscillators. (A) An original
spectrum of frequencies and amplitudes from Fourier analysis of choral
singing. (B) The same spectrum, downsampled by 2. The 1st harmonic now
coincides with the fundamental. (C) The orginal spectrum, downsampled by
3. The second harmonic now corresponds with the original fundamental and
the 1st harmonic. (D) Summing the original and the two downsamplings.
Harmonicity is apparent in the sharp peaks in the summation. Note that the
summed spectrum no longer represents the original frequency gradient, being
is a mix of different frequencies at every point. The original fundamental
frequency cannot be recovered from the summation, but we can determine
that the fundamental is some integer multiple of the main summed peak. The
same conclusion applies to the other peaks in (D), some of which could be
fundamental frequencies, while some might be subharmonics of a higher
frequency with a greater amplitude, and some might represent higher
harmonics of a lower frequency partial.

oscillation can emerge from the background of the inharmonic.
These values were compared in the two experimental conditions.

Several standard approaches are the obvious foils: These derive
from Fourier analysis and include Wavelet decomposition and
measurements of phase synchrony. Fourier analysis construes a
signal as a superposition of sinusoids at various frequencies and
phases. Or in other words, the basis set for Fourier analysis is
a series of sine/cosine functions. Periodic signals are built on
that basis, stretched and slipped along the time axis. The second
approach takes a brief basis function (the “mother wavelet”),
stretches it to various lengths, and matches it to the target
signal at every time point. The wavelet decomposition thus
construes the signal as a moment by moment superposition of

the chosen basis functions, something like a short-segmented
or “windowed” Fourier analysis. Phase synchrony between two
signals is calculated from instantaneous phase measurements
(Lachaux et al., 1999; Varela et al., 2001; Laird et al., 2002;
Glerean et al., 2012).

The methods in this study, in contrast to Fourier and Wavelet
approaches, make fewer assumptions about the basis function to
be tested against the target signal (in this case, a thematic profile).
We use segments of the thematic profile itself as basis functions,
and analyze the entire signal against each of the thematic profile
segments. Thus, every short sequence extracted from the signal
is tested along a sliding window as a potential basis function
for the whole signal itself. Thus, multiple basis functions are
tested, derived from the data itself. For each sequence, we
measure its repetition, and from the timing of repetitions we
calculate rhythm and harmony. As in the initial parcellation,
significance is tested via the permutations derived from the null
networks. In this study, the segments tested ranged from four
to eleven images (seconds). This window was selected because,
in general, the analysis is computationally intensive, requiring
some selectivity in what can be feasibly explored. Sequences
of shorter than 4 s repeated densely in both the data and the
permutations, rendering the comparison moot. At greater than
11 s, repetitions occurred only rarely, attenuating the comparison
with the null permutations.

The measurement of rhythm follows a similar strategy,
namely, examining the intervals between repetitions of repeating
sequences. That periodicity in turn directly determines frequency
of the revealed rhythms. These can be tested for harmonic
relations, as described above. In general, then, the methods here
are both open-ended and data-driven, resting on the sequences
that occur in the data, and therefore afford more opportunities
for discovering temporal regularities even if transient. In contrast,
both Fourier analysis and Wavelet analysis make assumptions
about the basis functions. For the FT this is of course the sine
function; Wavelets can have many different shapes, but in all cases
the analyst specifies the wavelet prior to the analysis. Arguably
these assumptions could miss regularities that the methods here
might detect. On the other hand both of the standard methods
use basis functions stretched to various scales, and so in this sense
are more receptive to regularities at multiple scales than the more
constrained methods of this study.

Phase synchrony is a powerful marker of functional
relatedness (Varela et al., 2001; Laird et al., 2002; Buzsáki and
Draguhn, 2004; Glerean et al., 2012; Gupta and Chen, 2016;
Gravel et al., 2018). However, it too rests on an a priori decision,
namely the band-pass filtering of the target signals, necessary for
determining instantaneous phase. The methods in the current
study identify a range of frequencies involved in multiple rhythms
and thus multiple harmonic relationships. Once again, the data is
doing the driving.

One final rationale for the methods here is the analogy with
music. The concepts of rhythm and harmony employed here
are strict analogs of standard usage in musicology. If there is
something to be made of the comparison of brain activation and
music, these are among the measures we would hope might apply
(Lloyd, 2011, 2013).
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In summary, the stages of the analysis are these: The starting
point is the full pattern of all voxels for each of 900 brain
images (for each subject, in two experimental conditions).
These are grouped according to a modularity algorithm into
themes. The resultant vector, or thematic profile, is the basis
for subsequent analysis. To measure repetition, we examine
short excerpts or sequences (motifs) drawn from each thematic
profile, separately considering all sequences from 4 to 11 s in
length, counting the number of repeated occurrences of each
sequence. To measure rhythm, we examine the intervals between
repetitions of repeating sequences, counting the number of times
specific inter-sequence intervals occur. To measure harmonicity,
we examine the frequency of rhythmic repetitions, using the
downsampling proceedure described above to identify integer
ratios between frequencies.

RESULTS

In this study, we observe the presence of the temporal counterpart
to modularity (see Table 1). Within and across subjects, two
widely used measures of modularity agreed that the temporal
connectome has a modular architecture. Following the Louvain
group method, the modularity statistic, summarizing the degree
to which the network can be subdivided into groups with high
ingroup similarity and low outgroup similarity, averaged 0.1740
(SD 0.05) for the movie-viewing scans and 0.1905 (SD 0.05) for
the rest-state scans. Randomized null networks averaged 0.1206
(SD 0.0261). In comparative terms, subject data/surrogate data,
the subjects are approximately 1.5 times greater in this statistic
than the surrogates. Adjusting for multiple comparisons, 96%
of subjects in the movie viewing condition displayed significant
modular organization along the time dimension, and 94% in the
rest condition. 99% displayed significant modularity in at least
one of the two conditions. Pivoted toward time, these module-
analogs are called themes. Analysis identified 7.5 and 7.2 themes
on average, respectively, in each subject in the two conditions,
movie and rest, compared to approximately 12 themes in

TABLE 1 | Global modularity measures for brain images collected during two
experimental conditions.

Global modularity measures,
180 Ss × 900 images

Movie Rest

N 180 180

Mean modularity (q) ± SD 0.1740 (0.0546) 0.1905 (0.0542)

(Mean surrogate data) 0.1143 (0.0297) 0.1269 (0.0261)

% significant subjects 96 94

Modal node (theme) count 5 4

Surrogate modal node (theme)
count

9 9

The modularity statistic (q) was computed using the Louvain group method (Blondel
et al., 2008). Most subjects displayed community-grouping structures over time
among recurrent themes, as assessed through contrasts with modularity measures
derived from null networks (Rubinov and Sporns, 2010). Actual data tended toward
network reconstructions with around five distinct themes. The surrogate models
oscillated among more distinct themes.

randomized surrogates. These fundamental observations indicate
that the progression of themes is structured, analogous to the
modular architectures discovered when graph theory is applied
to spatial networks.

Subsequent questions, then, probe the origin and structure of
the apparent temporal dynamics, collected in Table 2. Repetition
was measured by simply comparing all the subsequences of 4–
11 images in each thematic profile, and counting exact matches
throughout the profile. This analysis found highly significant
repetition for at least some subjects at all of these durations.
Overall, during the rest condition 81% of subjects displayed at
least one sequence with repetitions greater than the surrogates.
On average, each subject displayed significant repetition for 6
sequence lengths. The sequence length exhibiting repetition in
the largest subset of subjects was 6 s. During the movie viewing
condition, 87% of subjects showed repetition for at least one
sequence length; on average, each manifested repetition for 6
different sequence lengths. Sequence lengths of 6 or 7 s were the
most frequent repeaters.

Rhythmicity was measured by examining the intervals
between repetitions and counting the number of recurrences
of each interval. As with the repetitions, this was separately
examined for sequences of lengths 4 through 11 s. These
tabulations were compared with similar tabulations for 100
surrogate data sets, and significant deviations recorded (as
always, correcting for multiple comparisons). Overall 88 and
91%, respectively, of movie and rest condition subjects showed
significant rhythmicity at least one sequence length. Sequences of
6 or 7 s were most often rhythmic, displayed by around 86% of
subjects in both conditions.

Harmonicity was measured by summing the original and
six downsampled spectra for each subject. By shrinking the
spectra by an integer factor, the downsampling preserves peaks
in relationships of integer multiples – i.e., harmonics. (Due to the
downsampling, the peaks of the summed downsampled spectra
cannot be assigned to specific frequencies). This test yielded
highly significant harmonics for all subjects in the two conditions.
Sequence lengths of 4–7 s were harmonically organized in nearly
all subjects, with all subjects viewing movies displaying harmony
for 5 s sequences, and all subjects in the rest condition displaying
harmonics for sequences of 5, 6, and 7 s. In both conditions
over 40 specific peaks exceeded baseline surrogate measures in
both conditions.

DISCUSSION

What Now? What’s Next?
Very generally, animal brains face a dual computational demand:
they must sense (and interpret) what is immediately present; and
they must predict what will happen next (over a future from
milliseconds to hours to years) (Friston and Stephan, 2007; Clark,
2013, 2016; Hohwy, 2013). In computational terms, all animals
need a capacity to continuously maintain representations of past
and future environmental (and bodily) conditions, while at the
same time continuously refreshing, updating, and modifying
these representations as new information arrives.
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TABLE 2 | Repetition, rhythm, and harmony.

Repetition, Rhythm, and Harmony

Passive movie viewing

Sequence length (s)

4 5 6 7 8 9 10 11

Repetition

% of Ss with significant values 67 75 78 81 79 82 78 77

Repeats of themes/length of image series 1.70 1.09 0.73 0.48 0.33 0.23 0.17 0.12

Std 0.78 0.54 0.41 0.31 0.24 0.19 0.15 0.12

Rhythm

% of Ss with significant values 76 85 85 86 82 72 63 59

Rhythmicity: std of significant interval counts 1.60 1.48 1.26 1.06 0.86 0.68 0.55 0.47

Mean difference from random surrogates 0.78 0.80 0.71 0.63 0.57 0.47 0.39 0.36

Harmony

% of Ss with significant values 99 100 99 98 97 90 87 84

Median # of significant freqs per S 48.0 65.0 62.5 57.5 50.0 44.0 37.5 34.5

Harmonicity: mean ratio data vs. surrogates, power at
downsampled frequencies

3.40 12.95 15.34 8.21 6.60 7.17 8.35 8.48

± SEM 0.08 0.88 0.90 0.30 0.20 0.21 0.28 0.33

Rest

Repetition

% of Ss with significant values 61 68 72 73 69 67 63 61

Repeats of themes/length of image series 1.82 1.18 0.78 0.50 0.34 0.23 0.16 0.11

Std 0.84 0.70 0.49 0.35 0.29 0.23 0.18 0.14

Rhythm

% of Ss with significant values 78 84 87 83 72 67 56 53

Rhythmicity: std of significant interval counts 1.71 1.55 1.34 1.05 0.80 0.64 0.48 0.39

Mean difference from random surrogates 0.71 0.75 0.67 0.56 0.49 0.43 0.32 0.28

Harmony

% of Ss with significant values 99 100 100 100 97 96 93 92

Median # of significant freqs per S 42.00 53.00 56.00 54.00 47.00 43.00 35.00 30.00

Harmonicity: mean ratio data vs. surrogates, power at
downsampled frequencies

2.09 10.84 10.91 12.90 13.54 8.60 6.42 6.71

± SEM 0.05 1.23 0.59 0.57 0.79 0.41 0.22 0.26

The temporal connectome as it arises in the brain is characterized by high degrees of repetition, the presence of regular intervals between repetitions (i.e., rhythm), and
the integer multiple relations among the frequencies of rhythms, as determining by the downsampled sum of spectra described in the text and Figure 2.

This sketch of cognition is subject to three general constraints:
First, to be useful, information that is generated at one source
must be available to modify information elsewhere. Global
availability leads to the second constraint: For information to
be effectively integrated across the brain, it must be transmitted
with minimum confusion. In effect, channels must converge and
diverge without crosstalk. Third, all this temporal mixing and
matching must work quickly, to keep up with a dynamic world.

Oscillation, Information Broadcasting,
and Maintenance
How might repetition, rhythm, or harmony enable these
computational ends? Oscillations are everywhere at frequencies
from less than 1 to 150 Hz (Biswal et al., 1995; Linkenkaer-
Hansen et al., 2001; Buzsáki and Draguhn, 2004; Buzsáki, 2006;
Zuo et al., 2010; Kopell et al., 2014), and most likely originate in

neural activity (Zuo et al., 2010). Along with their observation
we find a cornucopia of proposals for their function. Many
of these posit interactions among oscillations at different
frequencies, where frequency bands have distinct functions
(Glassman, 1999; Onslow et al., 2011; Aru et al., 2015; Wiener
and Kanai, 2016; Lundqvist et al., 2018; Zhang et al., 2018).
For example, Friston et al. (2015) have proposed that theta
and gamma oscillations signal from the periphery up while
beta oscillations provide feedback from the top down in
the visual system. Other researchers propose that oscillations
perform a gating function, for synchronizing signals (Buzsáki and
Draguhn, 2004; Fries, 2005, 2015; Maris et al., 2016). Canolty
et al. (2010) propose that oscillation is the electrophysiological
signature of Hebbian cell assemblies at work (Canolty et al.,
2010). In general, however, oscillation implies a capacity for
information maintenance (Buzsáki and Draguhn, 2004). This
may be important for maintaining attention and working
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memory, among other functions (Buzsáki and Draguhn, 2004;
Hipp et al., 2011; Aru et al., 2015; Fries, 2015; Gregoriou et al.,
2015; Gupta and Chen, 2016). Instantaneous coupling of signals
(“microstates”) are another variation on the communicative role
of oscillations (Schack, 2004; Dimitriadis et al., 2013). These
are generally derived from EEG data, with the exception of
Ville et al. (2010) and Hipp et al. (2011), who found scale-free
dynamics including the frequencies observed through fMRI, and
Zuo et al. (2010) who explored frequency bands below 0.1 Hz, to
identify regions of the brain where oscillations within particular
frequency bands exhibited greater amplitude.

Rhythm
The rhythms described in this study are particularly apt
candidates for temporal holding patterns, in that the methods
here define the elements in rhythmic repetition as sequences
of thematic moments. What is repeating is itself a temporally
extended pattern (4–11 s), drawn from an alphabet of around
seven themes. The many rhythms found in both the rest
and movie conditions invite a more detailed study of these
patterns, in addition to research into their frequency of oscillation
(Zuo et al., 2010).

Harmony
Among the many discussions of oscillations in the brain,
discussions of harmonic relationships among frequencies are
rare. [Atasoy et al. (2016) probes spatial frequencies in harmonic
relations, but not temporal harmonics]. Yet harmonic partials are
rampant in the data in the present study – at least 30 partials
were discovered in the frequencies of sequence occurrence at all
sequence lengths. What could be the functional significance of
this widespread observation?

A speculative argument could begin with functional
distinctions between the stages of signal processing in any
system, the brain included. A full mechanistic account of such
a system must explain how signals are generated, how they are
transmitted, and how they are received/interpreted. Abundant
research explores how neuronal oscillations are generated; a
fairly large literature considers how signals propagate over space
and time; but there is little consideration of how a received signal
is processed. Fourier analyses are computationally intensive, and
require many signal samples to be precise – it seems unlikely that
the brain computes in this way. In a periodic signal, however,
the minimum interpretable packet is one cycle. Accordingly,
in principle the fastest processing is most feasible when cycle
time, the interval between repetitions of the periodic signal, is
shortest. In general, harmonic signals offer a useful combination
of multiple superimposed frequencies and short cycle times.
This follows from the definition of harmonics, which are signals
whose frequencies are in integer ratios, but might also be
illustrated with an example. The left panel of Figure 3 illustrates
different harmonic signals, the pure signal at one frequency,
sin(x), and several composite signals, sin(x) + sin(x × C)
where x is a monotonic vector (of time points) and C is an
integer. Accordingly, the composite signals on the left side of
the figure are harmonic signals of various lengths, with the same
fundamental frequency. For each, one cycle is bracketed. The

FIGURE 3 | Harmonic and inharmonic periodic signals. Left panels display a
basic sinusoidal signal (A) and two signals with the fundamental frequency of
(A) plus one harmonic (B) and two harmonics (C). The period of each cycle is
demarcated with vertical dashed lines. In the harmonic signals the period
remains the same as packages of different harmonics are added. Right panels
display two inharmonic signals (E,F) which result when the added signals are
not integer multiples of the fundamental (The basic sinusoid signal (A) is
recapitulated in panel (D), for ease of comparison.). One effect of inharmicity is
the stretching of periods. Multiple frequencies when added are most efficiently
encoded in harmonic signals.

right panel presents examples of inharmonic signals and their
cycle times. It is apparent that the harmonic signals have the
shortest cycles, as is indeed implied by the integer relationships
of their frequencies. Thus, if a signal is composed of multiple
frequencies, the smallest package (quickest, easiest, most
efficient) that delivers all the frequency information employs
frequencies in harmonic relationships. The example introduces
just two harmonic partials, but this hypothetical computational
process can accommodate more complex harmonic signals as
well. The presence and absence of harmonics afford the system a
binary code, albeit one of modest capacity. Such a system gets off
the ground without Fourier analysis, and packages its message in
a minimum interval (Glassman, 2000).

Harmonic signals, in short, afford rapid “unpacking” by
their receivers, a property that might make them adaptive for
natural selection.

Could the brain implement a computational process that
can extract harmonics from a mixed signal? Encouragement
comes from the real biological analogy of hearing, which sorts
fundamentals and overtones through a combination of cochlear
shape and specialized sensory neurons. It does so quickly, but
not in a single cycle. Glassman considered harmonic information
at the timescale captured by EEG, proposing that short term
memory with its famous capacity limitation might be embodied
in a harmonic resonance of a complex marker or cue for
each memorized item (Glassman, 1999). In each octave of any
resonator the number of subharmonics is limited [subharmonics
are frequencies of higher harmonics dropped from their octaves
(halved repeatedly) into a single octave]. He hypothesized that
the harmonics could keep separate the items while binding them
in a stable system of resonances, amenable to extraction at the
time of recall. In the current paper the time resolution of fMRI
limits the analysis to very low frequencies. A single cycle affords
ample neural computation time. Indeed, it’s most likely that any
real neural process that exploits harmonics is operating at higher
frequencies, leaving only subharmonics in the cycles discernible
to fMRI (Buzsáki, 2006).
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How might signal analysis work at the neural level? Timing
in many animals may be supported by harmonic properties
of the interaction of oscillations from particular brain regions
(Gupta and Chen, 2016). The “striatal beat frequency” model
of timing posits multiple oscillators at frequencies in harmonic
relationships (Matell and Meck, 2004; Buhusi and Meck, 2005;
Merchant et al., 2011; Kononowicz and van Wassenhove, 2016).
For example, suppose there are three distinct oscillators with
periods of 2, 3, and 5 s. At various moments their oscillations will
coincide. The 2 s and 3 s oscillations reinforce at every 6 s, while 2
and 5 converge every 10 s. All three reinforce every 30 s. To time
intervals of 6, 10, or 30 s a system needs simply to detect these
convergences. Timing in this example is a punctate response.
Temporal perception emerges when we imagine continuous
relationships among harmonics. If the “beats” are rising and
falling gradients, as might emerge from a time-varying harmonic
signal, their mix could provide continuous temporal information.

Frequency is only part of the information that could be
encoded by harmonics. Harmonic signals also differentiate by
the relative phase of their component frequencies, which is the
offset of the zero-crossings of their cycles. Since amplitude is
additive from moment to moment in any signal, in-phase and
out-of-phase signals have very different overall shapes (despite
similar spectra). This offers another feature with a capacity to
carry temporal information (Gupta and Chen, 2016; Hakim and
Vogel, 2018). The phase of a periodic signal is set at the origin
of the signal, or (more likely) reset by an event that interrupts
continuing oscillation. If different events reset different signals at
different frequencies, and if those frequencies are harmonically
related, then the ongoing signal encodes the interval between the
initiating events. Figure 4 illustrates an example. Each is the sum
of the same fundamental and first harmonic. However, in each
panel the origin of the harmonic sinusoid has been time-shifted
by a different interval. As in the earlier examples, the cycle time
remains the same, and the overall structure of peaks within each
period. But the relative magnitude of the peaks shifts with the
mismatched phases. One cycle of a harmonic signal, it seems,
can signal phasic differences, another available and quick vehicle
for usable information. I’ve suggested that the event of initiation
of a resonant wave could be what determines its phase. If that’s
so, then the package carries a rough representation of sequence.
Once again, harmonics can be added, each with a different phase
(see also Onslow et al., 2011; Maris et al., 2016; Zhang et al., 2018).

To summarize this discussion, the computational constraints
of temporal context, separability of signals, and speed might
be efficiently met in a resonating system that is wired for
rhythm and harmony.

Limitations and Future Directions
Recent literature has emphasized the importance of confirming
the reliability of the many measures typical of FMRI research
(Zuo and Xing, 2014; Poldrack et al., 2017; Zuo et al., 2019a,b).
This has not been undertaken in this paper. Therefore, the actual
statistical power of the analysis awaits further study. Meanwhile,
however, several features of the data and its analysis indicate that
the main results of this study do rest on reliable observations.
First, the effects described are large, as is the size of the data

FIGURE 4 | Harmonic signals with the same frequency but different phase
offset differ in their wave form for each cycle (e.g., A–C). Phase offsets and
wave forms. Harmonic signals with the same frequency but different phase
offset differ in their wave form for each cycle. Dashed lines demarcate one
cycle. Phasic information could be recovered from relative amplitude peaks
within a single cycle.

set, with 180 subjects examined. For example, the modularity
measure used here, when compared to the 100 null networks for
each subject and task, has an effect size greater than 1 by Hedges’ g
(Hedges, 1981). These observations are consistent across the two
tasks examined, similar to the report of O’Connor et al. (2017)
comparing four experimental conditions. More important, the
Human Connectome Project has had replicability as a major
goal (Marcus et al., 2013), and its reliability is supported in
Termenon et al. (2016). Scanning at 7 Tesla, using standardized
preprocessing pipelines, and the application of cortical surface
coordinates to localize brain activity all increase confidence in the
consistency of the scans (but see Cremers et al., 2017; Poldrack
et al., 2017; Smith and Nichols, 2018). Studies of the reliability
of HCP subjects have been less frequent, although the HCP
records more than 500 phenotypic features for each subject, again
indicating the care the researchers are bringing to their task.
Nonetheless the analysis here should be regarded as provisional,
pending a future examination of this issue.

CONCLUSION

Temporal Processing in the Brain
This paper offers an initial attempt to outline novel aspects of
temporality in the human brain, at the low temporal resolution
afforded by fMRI. The first step was to create a matrix of
relationships among moments, an association matrix determined
by similarity of patterns. This immediately revealed that the brain
patterns are not simply counting off the seconds, where each
image is most similar to its nearest temporal neighbor. Instead,
the brains of our subjects moved among a small number of states.
These clusters can be established by many different methods
(Lloyd, 2002, 2004, 2012). Here we employed graph theoretic
measures of modularity to outline the stable clusters we’ve called
themes. The “network” discovered in this way is a sequential
alternation of themes, a thematic profile. This served as a first
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approximation of temporal processing analyzed independently
from the general framework of Fourier and wavelet analysis.

The observation of modular temporal structure motivated
a search for intrinsic temporal anatomy, regularities within
the thematic structures projected by graph theory. There are
many avenues of exploration possible. Here, we looked at the
regular manifestations of repetition, rhythm, and especially
harmony, a distinctively useful configuration of oscillations that
seems to exploit discernible features that only harmonic signals
possess. The analysis here suggested that there are harmonic
relationships underlying the oscillations of the thematic profiles;
their computational uses suggest that harmonic signaling might
be a useful adaptation. Harmonic signals provide short repeating
temporal motifs from which separate frequencies can be
extracted. The motifs resonate at their fundamental frequency
and within each period harmonics oscillate in regular patterns.
These patterns are further modified by the relative phases of the
component frequencies.

In this package of harmonics we may discern a basic structure
of temporality. It is a resonating holding pattern which carries
information originating before the interval of each repetition.
The broad similarities in the temporal properties in two very
different experimental conditions, movie viewing and rest, imply
that the observed rhythms and harmonies are fundamental to
informational processes in the brain. From this vantage point we
can’t determine if the global brain patterns we observe originate
from separate sources with distinct frequency profiles, or from a
single harmonic resonator, but we can observe the relationships
among the frequencies that can be extracted. Moreover, in this
analysis we haven’t examined relative phase for the extracted
harmonics, but here too this information could come from a
single global source or multiple sources. The answers to these
questions would pivot back toward the spatial, for example,
measuring the amplitudes of oscillations in various brain regions
(Zuo et al., 2010). But strictly within the temporal realm, brain
dynamics are orderly and perseverating. The observations here
suggest a human capacity to spread out from the immediate
present tense of sensation, toward an overall temporal landscape.
The brains examined here show signs of a present inflected
by a past that resonates and possibly holds information about
sequence and interval, and thus can also encode expectations
of the immediate future. There is, of course, much that is
speculative here; these proposals are offered as a starting point
for further study.

The Music of Thought
Certain concepts seem apt for redeployment in the study of
temporality: theme and modularity, repetition, rhythm, and
especially harmony. These of course are familiar through music.
In other works, I’ve suggested that the analogies between brain
dynamics and musical form should be taken literally, or at any
rate as literally as language in the hypothetical “language of
thought” (Lloyd, 2011). Musical concepts have one common
feature that makes them especially useful here: time is essential
to all of them, and so they are properties appropriate to the
observations following the pivot from space to time (Lloyd, 2013).
Such concepts could apply, but it is an empirical question whether

they do apply. Are there in fact rhythm, theme and refrain, and
harmony in fMRI signals? In the experiment reviewed here, the
answer is a (tentative) yes. Indeed, the fMRI analyses here point
to the pervasive presence of repetition, rhythm, and especially
harmony. Among human artifacts, only music approaches this
density and structure of repetition (Huron, 2014). In sharp
contrast, these properties are at best weakly present in language,
which has often been proposed as the model for cognition and
ultimately brain function (Fodor, 1979; Lloyd, 2011).

One attractive topic for further exploration is the scaling
behavior of the rhythms observed here (He et al., 2010; Kello
et al., 2010; Ville et al., 2010; Hardstone et al., 2012). Since
frequency here has a novel definition, scaling behaviors would
require a distinct test, a topic for future study [especially since
music exhibits well-known scaling laws (Manaris et al., 2005;
Lloyd, 2011; González-Espinoza et al., 2017)].

The literal connection to music may seem implausible. After
all, music is a cultural artifact and art form seemingly incidental
to the serious business of survival and reproduction – “auditory
cheesecake,” in Pinker’s (1997) memorable phrase. But several
considerations suggest that sidelining music is a mistake. In many
ways music is fully parallel to language in its intimacy with the
human condition: Music is universal to human cultures (Patel,
2010); World musical systems almost universally share certain
features, including the use of scales and limited rhythmic patterns
(Huron, 2014); Music is old. [The oldest instrument, a carefully
crafted flute, was made more than 40,000 years ago (Higham et al.,
2012)]. Music is potentially advantageous for social cohesion
or sexual selection (Levitin, 2007; Patel, 2010). Music, unlike
language, lacks the power to denote specific objects and scenes
(Hanslick, 1891; Kivy, 1990; Lloyd, 2011). But what it might
represent, by analogy, is the dynamic operation of the brain itself.
Musicians may be improvising a model of mind in sound. In
that case, musical concepts are not externals brought to bear on
brain dynamics, but rather the natural, intuitive expression of
that dynamic, a “music of thought.”
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